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PREFACE
The importance of discrete and combinatorial mathematics has increased dramatically
within the last few years. The purpose of the Handbook of Discrete and Combinatorial
Mathematics is to provide a comprehensive reference volume for computer scientists,
engineers, mathematicians, and others, such as students, physical and social scientists,
and reference librarians, who need information about discrete and combinatorial math-
ematics.

This book is the first resource that presents such information in a ready-reference form
designed for use by all those who use aspects of this subject in their work or studies.
The scope of this book includes the many areas generally considered to be parts of
discrete mathematics, focusing on the information considered essential to its application
in computer science and engineering. Some of the fundamental topic areas covered
include:

logic and set theory graph theory
enumeration trees
integer sequences network sequences
recurrence relations combinatorial designs
generating functions computational geometry
number theory coding theory and cryptography
abstract algebra discrete optimization
linear algebra automata theory
discrete probability theory data structures and algorithms.

Format

The material in the Handbook is presented so that key information can be located
and used quickly and easily. Each chapter includes a glossary that provides succinct
definitions of the most important terms from that chapter. Individual topics are cov-
ered in sections and subsections within chapters, each of which is organized into clearly
identifiable parts: definitions, facts, and examples. The definitions included are care-
fully crafted to help readers quickly grasp new concepts. Important notation is also
highlighted in the definitions. Lists of facts include:

• information about how material is used and why it is important
• historical information
• key theorems
• the latest results
• the status of open questions
• tables of numerical values, generally not easily computed
• summary tables
• key algorithms in an easily understood pseudocode
• information about algorithms, such as their complexity
• major applications
• pointers to additional resources, including websites and printed material.
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Facts are presented concisely and are listed so that they can be easily found and un-
derstood. Extensive crossreferences linking parts of the handbook are also provided.
Readers who want to study a topic further can consult the resources listed.

The material in the Handbook has been chosen for inclusion primarily because it is
important and useful. Additional material has been added to ensure comprehensiveness
so that readers encountering new terminology and concepts from discrete mathematics
in their explorations will be able to get help from this book.

Examples are provided to illustrate some of the key definitions, facts, and algorithms.
Some curious and entertaining facts and puzzles that some readers may find intriguing
are also included.

Each chapter of the book includes a list of references divided into a list of printed
resources and a list of relevant websites.

How This Book Was Developed

The organization and structure of the Handbook were developed by a team which in-
cluded the chief editor, three associate editors, the project editor, and the editor from
CRC Press. This team put together a proposed table of contents which was then ana-
lyzed by members of a group of advisory editors, each an expert in one or more aspects
of discrete mathematics. These advisory editors suggested changes, including the cover-
age of additional important topics. Once the table of contents was fully developed, the
individual sections of the book were prepared by a group of more than 70 contributors
from industry and academia who understand how this material is used and why it is
important. Contributors worked under the direction of the associate editors and chief
editor, with these editors ensuring consistency of style and clarity and comprehensive-
ness in the presentation of material. Material was carefully reviewed by authors and
our team of editors to ensure accuracy and consistency of style.

The CRC Press Series on Discrete Mathematics and Its Applications

This Handbook is designed to be a ready reference that covers many important distinct
topics. People needing information in multiple areas of discrete and combinatorial
mathematics need only have this one volume to obtain what they need or for pointers
to where they can find out more information. Among the most valuable sources of
additional information are the volumes in the CRC Press Series on Discrete Mathematics
and Its Applications. This series includes both Handbooks, which are ready references,
and advanced Textbooks/Monographs. More detailed and comprehensive coverage in
particular topic areas can be found in these individual volumes:

Handbooks

• The CRC Handbook of Combinatorial Designs

• Handbook of Discrete and Computational Geometry

• Handbook of Applied Cryptography

Textbooks/Monographs

• Graph Theory and its Applications

• Algebraic Number Theory

• Quadratics
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• Design Theory

• Frames and Resolvable Designs: Uses, Constructions, and Existence

• Network Reliability: Experiments with a Symbolic Algebra Environment

• Fundamental Number Theory with Applications

• Cryptography: Theory and Practice

• Introduction to Information Theory and Data Compression

• Combinatorial Algorithms: Generation, Enumeration, and Search

Feedback

To see updates and to provide feedback and errata reports, please consult the Web page
for this book. This page can be accessed by first going to the CRC website at

http://www.crcpress.com

and then following the links to the Web page for this book.
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BIOGRAPHIES
Victor J. Katz

Niels Henrik Abel (1802–1829), born in Norway, was self-taught and studied the
works of many mathematicians. When he was nineteen years old, he proved that
there is no closed formula for solving the general fifth degree equation. He also
worked in the areas of infinite series and elliptic functions and integrals. The term
abelian group was coined in Abel’s honor in 1870 by Camille Jordan.

Abraham ibn Ezra (1089–1164) was a Spanish-Jewish poet, philosopher, astrologer,
and biblical commentator who was born in Tudela, but spent the latter part of
his life as a wandering scholar in Italy, France, England, and Palestine. It was in
an astrological text that ibn Ezra developed a method for calculating numbers of
combinations, in connection with determining the number of possible conjunctions of
the seven “planets” (including the sun and the moon). He gave a detailed argument
for the cases n = 7, k = 2 to 7, of a rule which can easily be generalize to the modern
formula C(n, k) =

∑n−1
i=k−1 C(i, k − 1). Ibn Ezra also wrote a work on arithmetic in

which he introduced the Hebrew-speaking community to the decimal place-value
system. He used the first nine letters of the Hebrew alphabet to represent the first
nine numbers, used a circle to represent zero, and demonstrated various algorithms
for calculation in this system.

Aristotle (384–322 B.C.E.) was the most famous student at Plato’s academy in Athens.
After Plato’s death in 347 B.C.E., he was invited to the court of Philip II of Mace-
don to educate Philip’s son Alexander, who soon thereafter began his successful
conquest of the Mediterranean world. Aristotle himself returned to Athens, where
he founded his own school, the Lyceum, and spent the remainder of his life writing
and lecturing. He wrote on numerous subjects, but is perhaps best known for his
works on logic, including the Prior Analytics and the Posterior Analytics. In these
works, Aristotle developed the notion of logical argument, based on several explicit
principles. In particular, he built his arguments out of syllogisms and concluded that
demonstrations using his procedures were the only certain way of attaining scientific
knowledge.

Emil Artin (1898–1962) was born in Vienna and in 1921 received a Ph.D. from the Uni-
versity of Leipzig. He held a professorship at the University of Hamburg until 1937,
when he came to the United States. In the U.S. he taught at the University of Notre
Dame, Indiana University, and Princeton. In 1958 he returned to the University
of Hamburg. Artin’s mathematical contributions were in number theory, algebraic
topology, linear algebra, and especially in many areas of abstract algebra.

Charles Babbage (1792–1871) was an English mathematician best known for his in-
vention of two of the earliest computing machines, the Difference Engine, designed
to calculate polynomial functions, and the Analytical Engine, a general purpose cal-
culating machine. The Difference Engine was designed to use the idea that the nth
order differences in nth degree polynomials were always constant and then to work
backwards from those differences to the original polynomial values. Although Bab-
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bage received a grant from the British government to help in building the Engine, he
never was able to complete one because of various difficulties in developing machine
parts of sufficient accuracy. In addition, Babbage became interested in his more
advanced Analytical Engine. This latter device was to consist of a store, in which
the numerical variables were kept, and a mill, in which the operations were per-
formed. The entire machine was to be controlled by instructions on punched cards.
Unfortunately, although Babbage made numerous engineering drawings of sections
of the Analytical Engine and gave a series of seminars in 1840 on its workings, he
was never able to build a working model.

Paul Gustav Heinrich Bachmann (1837–1920) studied mathematics at the Univer-
sity of Berlin and at Göttingen. In 1862 he received a doctorate in group theory and
held positions at the universities at Breslau and Münster. He wrote several volumes
on number theory, introducing the big-O notation in his 1892 book.

John Backus (born 1924) received bachelor’s and master’s degrees in mathematics
from Columbia University. He led the group at IBM that developed FORTRAN.
He was a developer of ALGOL, using the Backus-Naur form for the syntax of the
language. He received the National Medal of Science in 1974 and the Turing Award
in 1977.

Abu-l-’Abbas Ahmad ibn Muhammad ibn al-Banna al-Marrakushi (1256–
1321) was an Islamic mathematician who lived in Marrakech in what is now Morocco.
Ibn al-Banna developed the first known proof of the basic combinatorial formulas,
beginning by showing that the number of permutations of a set of n elements was n!
and then developing in a careful manner the multiplicative formula to compute the
values for the number of combinations of k objects in a set of n. Using these two
results, he also showed how to calculate the number of permutations of k objects from
a set of n. The formulas themselves had been known in the Islamic world for many
years, in connection with specific problems like calculating the number of words of
a given length which could be formed from the letters of the Arabic alphabet. Ibn
al-Banna’s main contribution, then, was to abstract the general idea of permutations
and combinations out of the various specific problem situations considered earlier.

Thomas Bayes (1702–1761) an English Nonconformist, wrote an Introduction to the
Doctrine of Fluxions in 1736 as a response to Berkeley’s Analyst with its severe crit-
icism of the foundations of the calculus. He is best known, however, for attempting
to answer the basic question of statistical inference in his An Essay Towards Solving
a Problem in the Doctrine of Chances, published three years after his death. That
basic question is to determine the probability of an event, given empirical evidence
that it has occurred a certain number of times in a certain number of trials. To do
this, Bayes gave a straightforward definition of probability and then proved that for
two events E and F , the probability of E given that F has happened is the quo-
tient of the probability of both E and F happening divided by the probability of F
alone. By using areas to model probability, he was then able to show that, if x is the
probability of an event happening in a single trial, if the event has happened p times
in n trials, and if 0 < r < s < 1, then the probability that x is between r and s is
given by the quotient of two integrals. Although in principle these integrals can be
calculated, there has been a great debate since Bayes’ time about the circumstances
under which his formula gives an appropriate answer.

James Bernoulli (Jakob I) (1654–1705) was one of eight mathematicians in three
generations of his family. He was born in Basel, Switzerland, studied theology in
addition to mathematics and astronomy, and entered the ministry. In 1682 be began
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to lecture at the University of Basil in natural philosophy and mechanics. He became
professor at the University of Basel in 1687, and remained there until his death. His
research included the areas of the calculus of variations, probability, and analytic
geometry. His most well-known work is Ars Conjectandi, in which he described
results in combinatorics and probability, including applications to gambling and the
law of large numbers; this work also contained a reprint of the first formal treatise
in probability, written in 1657 by Christiaan Huygens.

Bhaskara (1114–1185), the most famous of medieval Indian mathematicians, gave a
complete algorithmic solution to the Pell equation Dx2±1 = y2. That equation had
been studied by several earlier Indian mathematicians as well. Bhaskara served much
of his adult life as the head of the astronomical observatory at Ujjain, some 300 miles
northeast of Bombay, and became widely respected for his skills in astronomy and the
mechanical arts, as well as mathematics. Bhaskara’s mathematical contributions are
chiefly found in two chapters, the Lilavati and the Bijaganita, of a major astronomical
work, the Siddhāntasiromani. These include techniques of solving systems of linear
equations with more unknowns than equations as well as the basic combinatorial
formulas, although without any proofs.

George Boole (1815–1864) was an English mathematician most famous for his work
in logic. Born the son of a cobbler, he had to struggle to educate himself while
supporting his family. But he was so successful in his self-education that he was able
to set up his own school before he was 20 and was asked to give lectures on the work
of Isaac Newton. In 1849 he applied for and was appointed to the professorship in
mathematics at Queen’s College, Cork, despite having no university degree. In 1847,
Boole published a small book, The Mathematical Analysis of Logic, and seven years
later expanded it into An Investigation of the Laws of Thought. In these books, Boole
introduced what is now called Boolean algebra as part of his aim to “investigate the
fundamental laws of those operations of the mind by which reasoning is performed;
to give expression to them in the symbolical language of a Calculus, and upon this
foundation to establish the science of Logic and construct its method.” In addition
to his work on logic, Boole wrote texts on differential equations and on difference
equations that were used in Great Britain until the end of the nineteenth century.

William Burnside (1852–1927), born in London, graduated from Cambridge in 1875,
and remained there as lecturer until 1885. He then went to the Royal Naval College
at Greenwich, where he stayed until he retired. Although he published much in
applied mathematics, probability, and elliptic functions, he is best known for his
extensive work in group theory (including the classic book Theory of Groups). His
conjecture that groups of odd order are solvable was proved by Walter Feit and John
Thompson and published in 1963.

Georg Ferdinand Ludwig Philip Cantor (1845–1918) was born in Russia to Danish
parents, received a Ph.D. in number theory in 1867 at the University of Berlin, and
in 1869 took a position at Halle University, where he remained until his retirement.
He is regarded as a founder of set theory. He was interested in theology and the
nature of the infinite. His work on the convergence of Fourier series led to his study
of certain types of infinite sets of real numbers, and ultimately to an investigation
of transfinite numbers.

Augustin-Louis Cauchy (1789–1857) the most prolific mathematician of the nine-
teenth century, is most famous for his textbooks in analysis written in the 1820s for
use at the École Polytechnique, textbooks which became the model for calculus texts
for the next hundred years. Although born in the year the French Revolution began,
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Cauchy was a staunch conservative. When the July Revolution of 1830 led to the
overthrow of the last Bourbon king, Cauchy refused to take the oath of allegiance to
the new king and went into a self-imposed exile in Italy and then in Prague. He did
not return to his teaching posts until the Revolution of 1848 led to the removal of
the requirement of an oath of allegiance. Among the many mathematical subjects
to which he contributed besides calculus were the theory of matrices, in which he
demonstrated that every symmetric matrix can be diagonalized by use of an orthog-
onal substitution, and the theory of permutations, in which he was the earliest to
consider these from a functional point of view. In fact, he used a single letter, say S,
to denote a permutation and S−1 to denote its inverse and then noted that the
powers S, S2, S3, . . . of a given permutation on a finite set must ultimately result
in the identity. He also introduced the current notation (a1a2 . . . an) to denote the
cyclic permutation on the letters a1, a2, . . . , an.

Arthur Cayley (1821–1895), although graduating from Trinity College, Cambridge
as Senior Wrangler, became a lawyer because there were no suitable mathematics
positions available at that time in England. He produced nearly 300 mathematical
papers during his fourteen years as a lawyer, and in 1863 was named Sadlerian profes-
sor of mathematics at Cambridge. Among his numerous mathematical achievements
are the earliest abstract definition of a group in 1854, out of which he was able to
calculate all possible groups of order up to eight, and the basic rules for operating
with matrices, including a statement (without proof) of the Cayley-Hamilton theo-
rem that every matrix satisfies its characteristic equation. Cayley also developed the
mathematical theory of trees in an article in 1857. In particular, he dealt with the
notion of a rooted tree, a tree with a designated vertex called a root, and developed
a recursive formula for determining the number of different rooted trees in terms of
its branches (edges). In 1874, Cayley applied his results on trees to the study of
chemical isomers.

Pafnuty Lvovich Chebyshev (1821–1894) was a Russian who received his master’s
degree in 1846 from Moscow University. From 1860 until 1882 he was a professor at
the University of St. Petersburg. His mathematical research in number theory dealt
with congruences and the distribution of primes; he also studied the approximation
of functions by polynomials.

Avram Noam Chomsky (born 1928) received a Ph.D. in linguistics at the University
of Pennsylvania. For many years he has been a professor of foreign languages and
linguistics at M.I.T. He has made many contributions to the study of linguistics
and the study of grammars.

Chrysippus (280–206 B.C.E.) was a Stoic philosopher who developed some of the ba-
sic principles of the propositional logic, which ultimately replaced Aristotle’s logic of
syllogisms. He was born in Cilicia, in what is now Turkey, but spent most of his life
in Athens, and is said to have authored more than 700 treatises. Among his other
achievements, Chrysippus analyzed the rules of inference in the propositional calcu-
lus, including the rules of modus ponens, modus tollens, the hypothetical syllogism,
and the alternative syllogism.

Alonzo Church (1903–1995) studied under Hilbert at Göttingen, was on the faculty
at Princeton from 1927 until 1967, and then held a faculty position at UCLA. He
is a founding member of the Association for Symbolic Logic. He made many con-
tributions in various areas of logic and the theory of algorithms, and stated the
Church-Turing thesis (if a problem can be solved with an effective algorithm, then
the problem can be solved by a Turing machine).
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George Dantzig (born 1914) is an American mathematician who formulated the gen-
eral linear programming problem of maximizing a linear objective function subject
to several linear constraints and developed the simplex method of solution in 1947.
His study of linear programming grew out of his World War II service as a mem-
ber of Air Force Project SCOOP (Scientific Computation of Optimum Programs),
a project chiefly concerned with resource allocation problems. After the war, linear
programming was applied to numerous problems, especially military and economic
ones, but it was not until such problems could be solved on a computer that the real
impact of their solution could be felt. The first successful solution of a major linear
programming problem on a computer took place in 1952 at the National Bureau of
Standards. After he left the Air Force, Dantzig worked for the Rand Corporation
and then served as a professor of operations research at Stanford University.

Richard Dedekind (1831–1916) was born in Brunswick, in northern Germany, and
received a doctorate in mathematics at Göttingen under Gauss. He held positions
at Göttingen and in Zurich before returning to the Polytechnikum in Brunswick.
Although at various times he could have received an appointment to a major Ger-
man university, he chose to remain in his home town where he felt he had sufficient
freedom to pursue his mathematical research. Among his many contributions was
his invention of the concept of ideals to resolve the problem of the lack of unique
factorization in rings of algebraic integers. Even though the rings of integers them-
selves did not possess unique factorization, Dedekind showed that every ideal is either
prime or uniquely expressible as the product of prime ideals. Dedekind published
this theory as a supplement to the second edition (1871) of Dirichlet’s Vorlesungen
über Zahlentheorie, of which he was the editor. In the supplement, he also gave one
of the first definitions of a field, confining this concept to subsets of the complex
numbers.

Abraham deMoivre (1667–1754) was born into a Protestant family in Vitry, France,
a town about 100 miles east of Paris, and studied in Protestant schools up to the age
of 14. Soon after the revocation of the Edict of Nantes in 1685 made life very difficult
for Protestants in France, however, he was imprisoned for two years. He then left
France for England, never to return. Although he was elected to the Royal Society
in 1697, in recognition of a paper on “A method of raising an infinite Multinomial
to any given Power or extracting any given Root of the same”, he never achieved a
university position. He made his living by tutoring and by solving problems arising
from games of chance and annuities for gamblers and speculators. DeMoivre’s major
mathematical work was The Doctrine of Chances (1718, 1736, 1756), in which he
devised methods for calculating probabilities by use of binomial coefficients. In
particular, he derived the normal approximation to the binomial distribution and,
in essence, invented the notion of the standard deviation.

Augustus DeMorgan (1806–1871) graduated from Trinity College, Cambridge in
1827. He was the first mathematics professor at University College in London, where
he remained on the faculty for 30 years. He founded the London Mathematical Soci-
ety. He wrote over 1000 articles and textbooks in probability, calculus, algebra, set
theory, and logic (including DeMorgan’s laws, an abstraction of the duality principle
for sets). He gave a precise definition of limit, developed tests for convergence of
infinite series, and gave a clear explanation of the Principle of Mathematical Induc-
tion.

René Descartes (1596–1650) left school at 16 and went to Paris, where he studied
mathematics for two years. In 1616 he earned a law degree at the University of
Poitiers. In 1617 he enlisted in the army and traveled through Europe until 1629,
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when he settled in Holland for the next 20 years. During this productive period of
his life he wrote on mathematics and philosophy, attempting to reduce the sciences
to mathematics. In 1637 his Discours was published; this book contained the devel-
opment of analytic geometry. In 1649 he has invited to tutor the Queen Christina
of Sweden in philosophy. There he soon died of pneumonia.

Leonard Eugene Dickson (1874–1954) was born in Iowa and in 1896 received the
first Ph.D. in mathematics given by the University of Chicago, where he spent much
of his faculty career. His research interests included abstract algebra (including the
study of matrix groups and finite fields) and number theory.

Diophantus (c. 250) was an Alexandrian mathematician about whose life little is
known except what is reported in an epigram of the Greek Anthology (c. 500), from
which it can calculated that he lived to the age of 84. His major work, however,
the Arithmetica, has been extremely influential. Despite its title, this is a book on
algebra, consisting mostly of an organized collection of problems translatable into
what are today called indeterminate equations, all to be solved in rational numbers.
Diophantus introduced the use of symbolism into algebra and outlined the basic rules
for operating with algebraic expressions, including those involving subtraction. It
was in a note appended to Problem II-8 of the 1621 Latin edition of the Arithmetica
— to divide a given square number into two squares — that Pierre de Fermat first
asserted the impossibility of dividing an nth power (n > 2) into the sum of two nth
powers. This result, now known as Fermat’s Last Theorem, was finally proved in
1994 by Andrew Wiles.

Charles Lutwidge Dodgson (1832–1898) is more familiarly known as Lewis Carroll,
the pseudonym he used in writing his famous children’s works Alice in Wonderland
and Through the Looking Glass. Dodgson graduated from Oxford University in 1854
and the next year was appointed a lecturer in mathematics at Christ Church College,
Oxford. Although he was not successful as a lecturer, he did contribute to four
areas of mathematics: determinants, geometry, the mathematics of tournaments and
elections, and recreational logic. In geometry, he wrote a five-act comedy, “Euclid
and His Modern Rivals”, about a mathematics lecturer Minos in whose dreams Euclid
debates his Elements with various modernizers but always manages to demolish the
opposition. He is better known, however, for his two books on logic, Symbolic
Logic and The Game of Logic. In the first, he developed a symbolical calculus for
analyzing logical arguments and wrote many humorous exercises designed to teach
his methods, while in the second, he demonstrated a game which featured various
forms of the syllogism.

Eratosthenes (276–194 B.C.E) was born in Cyrene (North Africa) and studied at
Plato’s Academy in Athens. He was tutor of the son of King Ptolemy III Euergetes
in Alexandria and became chief librarian at Alexandria. He is recognized as the
foremost scholar of his time and wrote in many areas, including number theory (his
sieve for obtaining primes) and geometry. He introduced the concepts of meridians
of longitude and parallels of latitude and used these to measure distances, including
an estimation of the circumference of the earth.

Paul Erdős (1913–1996) was born in Budapest. At 21 he received a Ph.D. in math-
ematics from Eőtvős University. After leaving Hungary in 1934, he traveled exten-
sively throughout the world, with very few possessions and no permanent home,
working with other mathematicians in combinatorics, graph theory, number theory,
and many other areas. He was author or coauthor of approximately 1500 papers
with 500 coauthors.
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Euclid (c. 300 B.C.E.) is responsible for the most famous mathematics text of all time,
the Elements. Not only does this work deal with the standard results of plane
geometry, but it also contains three chapters on number theory, one long chapter
on irrational quantities, and three chapters on solid geometry, culminating with the
construction of the five regular solids. The axiom-definition-theorem-proof style of
Euclid’s work has become the standard for formal mathematical writing up to the
present day. But about Euclid’s life virtually nothing is known. It is, however,
generally assumed that he was among the first mathematicians at the Museum and
Library of Alexandria, which was founded around 300 B.C.E by Ptolemy I Soter,
the Macedonian general of Alexander the Great who became ruler of Egypt after
Alexander’s death in 323 B.C.E.

Leonhard Euler (1707–1783) was born in Basel, Switzerland and became one of the
earliest members of the St. Petersburg Academy of Sciences. He was the most pro-
lific mathematician of all time, making contributions to virtually every area of the
subject. His series of analysis texts established many of the notations and methods
still in use today. He created the calculus of variations and established the theory of
surfaces in differential geometry. His study of the Königsberg bridge problem led to
the formulation and solution of one of the first problems in graph theory. He made
numerous discoveries in number theory, including a detailed study of the properties
of residues of powers and the first statement of the quadratic reciprocity theorem.
He developed an algebraic formula for determining the number of partitions of an
integer n into m distinct parts, each of which is in a given set A of distinct positive
integers. And in a paper of 1782, he even posed the problem of the existence of a
pair of orthogonal latin squares: If there are 36 officers, one of each of six ranks from
each of six different regiments, can they be arranged in a square in such a way that
each row and column contains exactly one officer of each rank and one from each
regiment?

Kamāl al-Dīn al-Fāris̄i (died 1320) was a Persian mathematician most famous for his
work in optics. In fact, he wrote a detailed commentary on the great optical work of
Ibn al-Haytham. But al-Farisi also made major contributions to number theory. He
produced a detailed study of the properties of amicable numbers (pairs of numbers
in which the sum of the proper divisors of each is equal to the other). As part of this
study, al-Fāris̄i developed and applied various combinatorial principles. He showed
that the classical figurate numbers (triangular, pyramidal, etc.) could be interpreted
as numbers of combinations and thus helped to found the theory of combinatorics
on a more abstract basis.

Pierre de Fermat (1601–1665) was a lawyer and magistrate for whom mathematics
was a pastime that led to contributions in many areas: calculus, number theory,
analytic geometry, and probability theory. He received a bachelor’s degree in civil
law in 1631, and from 1648 until 1665 was King’s Counsellor. He suffered an attack
of the plague in 1652, and from then on he began to devote time to the study
of mathematics. He helped give a mathematical basis to probability theory when,
together with Blaise Pascal, he solved Méré’s paradox: why is it less likely to roll a 6
at least once in four tosses of one die than to roll a double 6 in 24 tosses of two dice.
He was a discoverer of analytic geometry and used infinitesimals to find tangent
lines and determine maximum and minimum values of curves. In 1657 he published
a series of mathematical challenges, including the conjecture that xn + yn = zn has
no solution in positive integers if n is an integer greater than 2. He wrote in the
margin of a book that he had a proof, but the proof would not fit in the margin. His
conjecture was finally proved by Andrew Wiles in 1994.
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Fibonacci (Leonardo of Pisa) (c. 1175–c. 1250) was the son of a Mediterranean mer-
chant and government worker named Bonaccio (hence his name filius Bonaccio, “son
of Bonaccio”). Fibonacci, born in Pisa and educated in Bougie (on the north coast
of Africa where his father was administrator of Pisa’s trading post), traveled exten-
sively around the Mediterranean. He is regarded as the greatest mathematician of
the Middle Ages. In 1202 he wrote the book Liber Abaci, an extensive treatment
of topics in arithmetic and algebra, and emphasized the benefits of Arabic numerals
(which he knew about as a result of his travels around the Mediterranean). In this
book he also discussed the rabbit problem that led to the sequence that bears his
name: 1, 1, 2, 3, 5, 8, 13, . . . . In 1225 he wrote the book Liber Quadratorum, studying
second degree diophantine equations.

Joseph Fourier (1768–1830), orphaned at the age of 9, was educated in the military
school of his home town of Auxerre, 90 miles southeast of Paris. Although he hoped
to become an army engineer, such a career was not available to him at the time
because he was not of noble birth. He therefore took up a teaching position. Dur-
ing the Revolution, he was outspoken in defense of victims of the Terror of 1794.
Although he was arrested, he was released after the death of Robespierre and was
appointed in 1795 to a position at the École Polytechnique. After serving in various
administrative posts under Napoleon, he was elected to the Académie des Sciences
and from 1822 until his death served as its perpetual secretary. It was in connection
with his work on heat diffusion, detailed in his Analytic Theory of Heat of 1822,
and, in particular, with his solution of the heat equation ∂v

∂t = ∂2v
∂x2 + ∂2v

∂y2 , that he
developed the concept of a Fourier series. Fourier also analyzed the relationship
between the series solution of a partial differential equation and an appropriate inte-
gral representation and thereby initiated the study of Fourier integrals and Fourier
transforms.

Georg Frobenius (1849–1917) organized and analyzed the central ideas of the theory of
matrices in his 1878 memoir “On linear substitutions and bilinear forms”. Frobenius
there defined the general notion of equivalent matrices. He also dealt with the
special cases of congruent and similar matrices. Frobenius showed that when two
symmetric matrices were similar, the transforming matrix could be taken to be
orthogonal, one whose inverse equaled its transpose. He then made a detailed study
of orthogonal matrices and showed that their eigenvalues were complex numbers
of absolute value 1. He also gave the first complete proof of the Cayley-Hamilton
theorem that a matrix satisfies its characteristic equation. Frobenius, a full professor
in Zurich and later in Berlin, made his major mathematical contribution in the area
of group theory. He was instrumental in developing the concept of an abstract group,
as well as in investigating the theory of finite matrix groups and group characters.

Evariste Galois (1811–1832) led a brief, tragic life which ended in a duel fought under
mysterious circumstances. He was born in Bourg-la-Reine, a town near Paris. He
developed his mathematical talents early and submitted a memoir on the solvabil-
ity of equations of prime degree to the French Academy in 1829. Unfortunately,
the referees were never able to understand this memoir nor his revised version sub-
mitted in 1831. Meanwhile, Galois became involved in the revolutionary activities
surrounding the July revolution of 1830 and was arrested for threatening the life
of King Louis-Phillipe and then for wearing the uniform of a National Guard divi-
sion which had been dissolved because of its perceived threat to the throne. His
mathematics was not fully understood until fifteen years after his death when his
manuscripts were finally published by Liouville in the Journal des mathématique.
But Galois had in fact shown the relationship between subgroups of the group of
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permutations of the roots of a polynomial equation and the various extension fields
generated by these roots, the relationship at the basis of what is now known as Galois
theory . Galois also developed the notion of a finite field in connection with solving
the problem of finding solutions to congruences F (x) ≡ 0 (mod p), where F (x) is a
polynomial of degree n and no residue modulo the prime p is itself a solution.

Carl Friedrich Gauss (1777–1855), often referred to as the greatest mathematician
who ever lived, was born in Brunswick, Germany. He received a Ph.D. from the
University of Helmstedt in 1799, proving the Fundamental Theorem of Algebra as
part of his dissertation. At age 24 Gauss published his important work on number
theory, the Disquisitiones Arithmeticae, a work containing not only an extensive
discussion of the theory of congruences, culminating in the quadratic reciprocity
theorem, but also a detailed treatment of cyclotomic equations in which he showed
how to construct regular n-gons by Euclidean techniques whenever n is prime and
n−1 is a power of 2. Gauss also made fundamental contributions to the differential
geometry of surfaces as well as to complex analysis, astronomy, geodesy, and statistics
during his long tenure as a professor at the University of Göttingen. It was in
connection with using the method of least squares to solve an astronomical problem
that Gauss devised the systematic procedure for solving a system of linear equations
today known as Gaussian elimination. (Unknown to Gauss, the method appeared in
Chinese mathematics texts 1800 years earlier.) Gauss’ notebooks, discovered after
his death, contained investigations in numerous areas of mathematics in which he
did not publish, including the basics of non-Euclidean geometry.

Sophie Germain (1776–1831) was forced to study in private due to the turmoil of
the French Revolution and the opposition of her parents. She nevertheless mas-
tered mathematics through calculus and wanted to continue her study in the École
Polytechnique when it opened in 1794. But because women were not admitted as
students, she diligently collected and studied the lecture notes from various mathe-
matics classes and, a few years later, began a correspondence with Gauss (under the
pseudonym Monsieur LeBlanc, fearing that Gauss would not be willing to recognize
the work of a woman) on ideas in number theory. She was, in fact, responsible for
suggesting to the French general leading the army occupying Brunswick in 1807 that
he insure Gauss’ safety. Germain’s chief mathematical contribution was in connec-
tion with Fermat’s Last Theorem. She showed that xn + yn = zn has no positive
integer solution where xyz is not divisible by n for any odd prime n less than 100.
She also made contributions in the theory of elasticity and won a prize from the
French Academy in 1815 for an essay in this field.

Kurt Gödel (1906–1978) was an Austrian mathematician who spent most of his life at
the Institute for Advanced Study in Princeton. He made several surprising contribu-
tions to set theory, demonstrating that Hilbert’s goal of showing that a reasonable
axiomatic system for set theory could be proven to be complete and consistent was in
fact impossible. In several seminal papers published in the 1930s, Gödel proved that
it was impossible to prove internally the consistency of the axioms of any reasonable
system of set theory containing the axioms for the natural numbers. Furthermore,
he showed that any such system was inherently incomplete, that is, that there are
propositions expressible in the system for which neither they nor their negations are
provable. Gödel’s investigations were stimulated by the problems surrounding the
axiom of choice, the axiom that for any set S of nonempty disjoint sets, there is
a subset T of the union of S that has exactly one element in common with each
member of S. Since that axiom led to many counterintuitive results, it was impor-
tant to show that the axiom could not lead to contradictions. But given his initial
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results, the best Gödel could do was to show that the axiom of choice was relatively
consistent, that its addition to the Zermelo-Fraenkel axiom set did not lead to any
contradictions that would not already have been implied without it.

William Rowan Hamilton (1805–1865), born in Dublin, was a child prodigy who
became the Astronomer Royal of Ireland in 1827 in recognition of original work
in optics accomplished during his undergraduate years at Trinity College, Dublin.
In 1837, he showed how to introduce complex numbers into algebra axiomatically
by considering a+ ib as a pair (a, b) of real numbers with appropriate computational
rules. After many years of seeking an appropriate definition for multiplication rules
for triples of numbers which could be applied to vector analysis in 3-dimensional
space, he discovered that it was in fact necessary to consider quadruplets of numbers,
which Hamilton named quaternions. Although quaternions never had the influence
Hamilton forecast for them in physics, their noncommutative multiplication provided
the first significant example of a mathematical system which did not obey one of the
standard arithmetical laws of operation and thus opened the way for more “freedom”
in the creation of mathematical systems. Among Hamilton’s other contributions was
the development of the Icosian game, a graph with 20 vertices on which pieces were
to be placed in accordance with various conditions, the overriding one being that a
piece was always placed at the second vertex of an edge on which the previous piece
had been placed. One of the problems Hamilton set for the game was, in essence, to
discover a cyclic path on his game board which passed through each vertex exactly
once. Such a path in a more general setting is today called a Hamilton circuit.

Richard W. Hamming (1915–1998) was born in Chicago and received a Ph.D. in
mathematics from the University of Illinois in 1942. He was the author of the first
major paper on error correcting and detecting codes (1950). His work on this problem
had been stimulated in 1947 when he was using an early Bell System relay computer
on weekends only. During the weekends the machine was unattended and would
dump any work in which it discovered an error and proceed to the next problem.
Hamming realized that it would be worthwhile for the machine to be able not only
to detect an error but also to correct it, so that his jobs would in fact be completed.
In his paper, Hamming used a geometric model by considering an n-digit code word
to be a vertex in the unit cube in the n-dimensional vector space over the field of
two elements. He was then able to show that the relationship between the word
length n and the number m of digits which carry the information was 2m ≤ 2n

n+1 .
(The remaining k = n−m digits are check digits which enable errors to be detected
and corrected.) In particular, Hamming presented a particular type of code, today
known as a Hamming code, with n = 7 and m = 4. In this code, the set of actual
code words of 4 digits was a 4-dimensional vector subspace of the 7-dimensional
space of all 7-digit binary strings.

Godfrey Harold Hardy (1877–1947) graduated from Trinity College, Cambridge in
1899. From 1906 until 1919 he was lecturer at Trinity College, and, recognizing the
genius of Ramanujan, invited Ramanujan to Cambridge in 1914. Hardy held the
Sullivan chair of geometry at Oxford from 1919 until 1931, when he returned to
Cambridge, where he was Sadlerian professor of pure mathematics until 1942. He
developed the Hardy-Weinberg law which predicts patterns of inheritance. His main
areas of mathematical research were analysis and number theory, and he published
over 100 joint papers with Cambridge colleague John Littlewood. Hardy’s book A
Course in Pure Mathematics revolutionized mathematics teaching, and his book A
Mathematician’s Apology gives his view of what mathematics is and the value of its
study.
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Abū ’Al̄i al-Hasan ibn al-Haytham (Alhazen) (965–1039) was one of the most
influential of Islamic scientists. He was born in Basra (now in Iraq) but spent most
of his life in Egypt, after he was invited to work on a Nile control project. Although
the project, an early version of the Aswan dam project, never came to fruition, ibn
al-Haytham did produce in Egypt his most important scientific work, the Optics.
This work was translated into Latin in the early thirteenth century and was studied
and commented on in Europe for several centuries thereafter. Although there was
much mathematics in the Optics, ibn al-Haytham’s most interesting mathematical
work was the development of a recursive procedure for producing formulas for the
sum of any integral powers of the integers. Formulas for the sums of the integers,
squares, and cubes had long been known, but ibn al-Haytham gave a consistent
method for deriving these and used this to develop the formula for the sum of fourth
powers. Although his method was easily generalizable to the discovery of formulas
for fifth and higher powers, he gave none, probably because he only needed the fourth
power rule in his computation of the volume of a paraboloid of revolution.

Hypatia (c. 370–415), the first woman mathematician on record, lived in Alexandria.
She was given a very thorough education in mathematics and philosophy by her
father Theon and became a popular and respected teacher. She was responsible for
detailed commentaries on several important Greek works, including Ptolemy’s Al-
magest, Apollonius’ Conics, and Diophantus’ Arithmetica. Unfortunately, Hypatia
was caught up in the pagan-Christian turmoil of her times and was murdered by an
enraged mob.

Leonid Kantorovich (1912–1986) was a Soviet economist responsible for the develop-
ment of linear optimization techniques in relation to planning in the Soviet economy.
The starting point of this development was a set of problems posed by the Leningrad
timber trust at the beginning of 1938 to the Mathematics Faculty at the University
of Leningrad. Kantorovich explored these problems in his 1939 book Mathematical
Methods in the Organization and Planning of Production. He believed that one
way to increase productivity in a factory or an entire industrial organization was
to improve the distribution of the work among individual machines, the orders to
various suppliers, the different kinds of raw materials, the different types of fuels,
and so on. He was the first to recognize that these problems could all be put into the
same mathematical language and that the resulting mathematical problems could
be solved numerically, but for various reasons his work was not pursued by Soviet
economists or mathematicians.

Abū Bakr al-Karaj̄i (died 1019) was an Islamic mathematician who worked in Bagh-
dad. In the first decade of the eleventh century he composed a major work on
algebra entitled al-Fakhr̄i (The Marvelous), in which he developed many algebraic
techniques, including the laws of exponents and the algebra of polynomials, with the
aim of systematizing methods for solving equations. He was also one of the early
originators of a form of mathematical induction, which was best expressed in his
proof of the formula for the sum of integral cubes.

Stephen Cole Kleene (1909–1994) studied under Alonzo Church and received his
Ph.D. from Princeton in 1934. His research has included the study of recursive func-
tions, computability, decidability, and automata theory. In 1956 he proved Kleene’s
Theorem, in which he characterized the sets that can be recognized by finite-state
automata.

Felix Klein (1849–1925) received his doctorate at the University of Bonn in 1868.
In 1872 he was appointed to a position at the University of Erlanger, and in his
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opening address laid out the Erlanger Programm for the study of geometry based on
the structure of groups. He described different geometries in terms of the properties
of a set that are invariant under a group of transformations on the set and gave
a program of study using this definition. From 1875 until 1880 he taught at the
Technische Hochschule in Munich, and from 1880 until 1886 in Leipzig. In 1886
Klein became head of the mathematics department at Göttingen and during his
tenure raised the prestige of the institution greatly.

Donald E.Knuth (born 1938) received a Ph.D. in 1963 from the California Institute
of Technology and held faculty positions at the California Institute of Technology
(1963–1968) and Stanford (1968–1992). He has made contributions in many areas,
including the study of compilers and computational complexity. He is the designer
of the mathematical typesetting system TEX. He received the Turing Award in 1974
and the National Medal of Technology in 1979.

Kazimierz Kuratowski (1896–1980) was the son of a famous Warsaw lawyer who be-
came an active member of the Warsaw School of Mathematics after World War I. He
taught both at Lwów Polytechnical University and at Warsaw University until the
outbreak of World War II. During that war, because of the persecution of educated
Poles, he went into hiding under an assumed name and taught at the clandestine
Warsaw University. After the war, he helped to revive Polish mathematics, serving
as director of the Polish National Mathematics Institute. His major mathemati-
cal contributions were in topology; he formulated a version of a maximal principle
equivalent to the axiom of choice. This principle is today known as Zorn’s lemma.
Kuratowski also contributed to the theory of graphs by proving in 1930 that any
non-planar graph must contain a copy of one of two particularly simple non-planar
graphs.

Joseph Louis Lagrange (1736–1813) was born in Turin into a family of French de-
scent. He was attracted to mathematics in school and at the age of 19 became a
mathematics professor at the Royal Artillery School in Turin. At about the same
time, having read a paper of Euler’s on the calculus of variations, he wrote to Eu-
ler explaining a better method he had recently discovered. Euler praised Lagrange
and arranged to present his paper to the Berlin Academy, to which he was later
appointed when Euler returned to Russia. Although most famous for his Analytical
Mechanics, a work which demonstrated how problems in mechanics can generally be
reduced to solutions of ordinary or partial differential equations, and for his Theory
of Analytic Functions, which attempted to reduce the ideas of calculus to those of
algebraic analysis, he also made contributions in other areas. For example, he un-
dertook a detailed review of solutions to quadratic, cubic, and quartic polynomials
to see how these methods might generalize to higher degree polynomials. He was led
to consider permutations on the roots of the equations and functions on the roots
left unchanged by such permutations. As part of this work, he discovered a version
of Lagrange’s theorem to the effect that the order of any subgroup of a group divides
the order of the group. Although he did not complete his program and produce a
method of solving higher degree polynomial equations, his methods were applied by
others early in the nineteenth century to show that such solutions were impossible.

Gabriel Lamé (1795–1870) was educated at the École Polytechnique and the École
des Mines before going to Russia to direct the School of Highways and Transporta-
tion in St. Petersburg. After his return to France in 1832, he taught at the École
Polytechnique while also working as an engineering consultant. Lamé contributed
original work to number theory, applied mathematics, and thermodynamics. His
best-known work is his proof of the case n = 5 of Fermat’s Last Theorem in 1839.
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Eight years later, he announced that he had found a general proof of the theorem,
which began with the factorization of the expression xn + yn over the complex num-
bers as (x + y)(x + αy)(x + α2y) . . . (x + αn−1y), where α is a primitive root of
xn − 1 = 0. He planned to show that the factors in this expression are all relatively
prime and therefore that if xn + yn = zn, then each of the factors would itself be an
nth power. He would then use the technique of infinite descent to find a solution in
smaller numbers. Unfortunately Lamé’s idea required that the ring of integers in the
cyclotomic field of the nth roots of unity be a unique factorization domain. And, as
Kummer had already proved three years earlier, unique factorization in fact fails in
many such domains.

Edmund Landau (1877–1938) received a doctorate under Frobenius and taught at
the University of Berlin and at Göttingen. His research areas were analysis and
analytic number theory, including the distribution of primes. He used the big-O
notation (also called a Landau symbol) in his work to estimate the growth of various
functions.

Pierre-Simon de Laplace (1749–1827) entered the University of Caen in 1766 to
begin preparation for a career in the church. He soon discovered his mathematical
talents, however, and in 1768 left for Paris to continue his studies. He later taught
mathematics at the École Militaire to aspiring cadets. Legend has it that he exam-
ined, and passed, Napoleon there in 1785. He was later honored by both Napoleon
and King Louis XVIII. Laplace is best known for his contributions to celestial me-
chanics, but he was also one of the founders of probability theory and made many
contributions to mathematical statistics. In fact, he was one of the first to apply his
theoretical results in statistics to a genuine problem in statistical inference, when
he showed from the surplus of male to female births in Paris over a 25-year period
that it was “morally certain” that the probability of a male birth was in fact greater
than 1

2 .

Gottfried Wilhelm Leibniz (1646–1716), born in Leipzig, developed his version of
the calculus some ten years after Isaac Newton, but published it much earlier. He
based his calculus on the inverse relationship of sums and differences, generalized
to infinitesimal quantities called differentials. Leibniz hoped that his most origi-
nal contribution to philosophy would be the development of an alphabet of human
thought, a way of representing all fundamental concepts symbolically and a method
of combining these symbols to represent more complex thoughts. Although he never
completed this project, his interest in finding appropriate symbols ultimately led
him to the d and

∫
symbols for the calculus that are used today. Leibniz spent much

of his life in the diplomatic service of the Elector of Mainz and later was a Counsel-
lor to the Duke of Hanover. But he always found time to pursue his mathematical
ideas and to carry on a lively correspondence on the subject with colleagues all over
Europe.

Levi ben Gerson (1288–1344) was a rabbi as well as an astronomer, philosopher,
biblical commentator, and mathematician. He lived in Orange, in southern France,
but little is known of his life. His most famous mathematical work is the Maasei
Hoshev (The Art of the Calculator) (1321), which contains detailed proofs of the
standard combinatorial formulas, some of which use the principle of mathematical
induction. About a dozen copies of this medieval manuscript are extant, but it is
not known whether the work had any direct influence elsewhere in Europe.

Augusta Ada Byron King Lovelace (1815–1852) was the child of the famous poet
George Gordon, the sixth Lord Byron, who left England five weeks after his daugh-
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ter’s birth and never saw her again. She was raised by her mother, Anna Isabella
Millbanke, a student of mathematics herself, so she received considerably more math-
ematics education than was usual for girls of her time. She was tutored privately by
well-known mathematicians, including William Frend and Augustus DeMorgan. Her
husband, the Earl of Lovelace, was made a Fellow of the Royal Society in 1840, and
through this connection, Ada was able to gain access to the books and papers she
needed to continue her mathematical studies and, in particular, to understand the
workings of Babbage’s Analytical Engine. Her major mathematical work is a heav-
ily annotated translation of a paper by the Italian mathematician L. F. Menabrea
dealing with the Engine, in which she gave explicit descriptions of how it would
solve specific problems and described, for the first time in print, what would today
be called a computer program, in this case a program for computing the Bernoulli
numbers. Interestingly, only her initials, A.A.L., were used in the published ver-
sion of the paper. It was evidently not considered proper in mid-nineteenth century
England for a woman of her class to publish a mathematical work.

Jan 5Lukasiewicz (1878–1956) studied at the University of Lwów and taught at the
University of Lwów, the University of Warsaw, and the Royal Irish Academy. A
logician, he worked in the area of many-valued logic, writing papers on three-valued
and m-valued logics, He is best known for the parenthesis-free notation he developed
for propositions, called Polish notation.

Percy Alexander MacMahon (1854–1929) was born into a British army family and
joined the army himself in 1871, reaching the rank of major in 1889. Much of
his army service was spent as an instructor at the Royal Military Academy. His
early mathematical work dealt with invariants, following on the work of Cayley
and Sylvester, but a study of symmetric functions eventually led to his interest
in partitions and to his extension of the idea of a partition to higher dimensions.
MacMahon’s two volume treatise Combinatorial Analysis (1915–16) is a classic in
the field. It identified and clarified the basic results of combinatorics and showed
the way toward numerous applications.

Mahāvīra (ninth century) was an Indian mathematician of the medieval period whose
major work, the Ganitasārasan̄graha, was a compilation of problems solvable by var-
ious algebraic techniques. For example, the work included a version of the hundred
fowls problem: “Doves are sold at the rate of 5 for 3 coins, cranes at the rate of 7
for 5, swans at the rate of 9 for 7, and peacocks at the rate of 3 for 9. A certain man
was told to bring at these rates 100 birds for 100 coins for the amusement of the
king’s son and was sent to do so. What amount does he give for each?” Mahāv̄ira
also presented, without proof and in words, the rule for calculating the number of
combinations of r objects out of a set of n. His algorithm can be easily translated into
the standard formula. Mahavira then applied the rule to two problems, one about
combinations of tastes and another about combinations of jewels on a necklace.

Andrei Markov (1856–1922) was a Russian mathematician who first defined what
are now called Markov chains in a paper of 1906 dealing with the Law of Large
Numbers and subsequently proved many of the standard results about them. His
interest in these chains stemmed from the needs of probability theory. Markov never
dealt with their application to the sciences, only considering examples from literary
texts, where the two possible states in the chain were vowels and consonants. Markov
taught at St. Petersburg University from 1880 to 1905 and contributed to such fields
as number theory, continued fractions, and approximation theory. He was an active
participant in the liberal movement in pre-World War I Russia and often criticized
publicly the actions of state authorities. In 1913, when as a member of the Academy
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of Sciences he was asked to participate in the pompous ceremonies celebrating the
300th anniversary of the Romanov dynasty, he instead organized a celebration of the
200th anniversary of Jacob Bernoulli’s publication of the Law of Large Numbers.

Marin Mersenne (1588–1648) was educated in Jesuit schools and in 1611 joined the
Order of Minims. From 1619 he lived in the Minim Convent de l’Annonciade near the
Place Royale in Paris and there held regular meetings of a group of mathematicians
and scientists to discuss the latest ideas. Mersenne also served as the unofficial
“secretary” of the republic of scientific letters in Europe. As such, he received
material from various sources, copied it, and distributed it widely, thus serving as
a “walking scientific journal”. His own contributions were primarily in the area
of music theory as detailed in his two great works on the subject, the Harmonie
universelle and the Harmonicorum libri, both of which appeared in 1636. As part of
his study of music, he developed the basic combinatorial formulas by considering the
possible tunes one could create out of a given number of notes. Mersenne was also
greatly interested in the relationship of theology to science. He was quite concerned
when he learned that Galileo could not publish one of his works because of the
Inquisition and, in fact, offered his assistance in this matter.

Hermann Minkowski (1864–1909) was a German Jewish mathematician who received
his doctorate at the University of Königsberg. He became a lifelong friend of David
Hilbert and, on Hilbert’s suggestion, was called to Göttingen in 1902. In 1883, he
shared the prize of the Paris Academy of Sciences for his essay on the topic of the
representations of an integer as a sum of squares. In his essay, he reconstructed
the entire theory of quadratic forms in n variables with integral coefficients. In
further work on number theory, he brought to bear geometric ideas beginning with
the realization that a symmetric convex body in n-space defines a notion of distance
and hence a geometry in that space. The connection with number theory depends
on the representation of forms by lattice points in space.

Muhammad ibn Muhammad al-Fullāni al-Kishnāwī (died 1741) was a native
of northern Nigeria and one of the few African black scholars known to have made
contributions to “pure” mathematics before the modern era. Muhammad’s most
important work, available in an incomplete manuscript in the library of the School
of Oriental and African Studies in London, deals with the theory of magic squares.
He gave a clear treatment of the “standard” construction of magic squares and also
studied several other constructions — using knight’s moves, borders added to a magic
square of lower order, and the formation of a square from a square number of smaller
magic squares.

Peter Naur (born 1928) was originally an astronomer, using computers to calculate
planetary motion. In 1959 he became a full-time computer scientist; he was a de-
veloper of the programming language ALGOL and worked on compilers for ALGOL
and COBOL. In 1969 he took a computer science faculty position at the University
of Copenhagen.

Amalie Emmy Noether (1882–1935) received her doctorate from the University of
Erlangen in 1908 and a few years later moved to Göttingen to assist Hilbert in
the study of general relativity. During her eighteen years there, she was extremely
influential in stimulating a new style of thinking in algebra by always emphasizing
its structural rather than computational aspects. In 1934 she became a professor
at Bryn Mawr College and a member for the Institute for Advanced Study. She is
most famous for her work on Noetherian rings, and her influence is still evident in
today’s textbooks in abstract algebra.
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Blaise Pascal (1623–1662) showed his mathematical precocity with his Essay on Con-
ics of 1640, in which he stated his theorem that the opposite sides of a hexagon
inscribed in a conic section always intersect in three collinear points. Pascal is bet-
ter known, however, for his detailed study of what is now called Pascal’s triangle
of binomial coefficients. In that study Pascal gave an explicit description of math-
ematical induction and used that method, although not quite in the modern sense,
to prove various properties of the numbers in the triangle, including a method of
determining the appropriate division of stakes in a game interrupted before its con-
clusion. Pascal had earlier discussed this matter, along with various other ideas in
the theory of probability, in correspondence with Fermat in the 1650s. These letters,
in fact, can be considered the beginning of the mathematization of probability.

Giuseppe Peano (1858–1932) studied at the University of Turin and then spent the
remainder of his life there as a professor of mathematics. He was originally known as
an inspiring teacher, but as his studies turned to symbolic logic and the foundations
of mathematics and he attempted to introduce some of these notions in his elemen-
tary classes, his teaching reputation changed for the worse. Peano is best known
for his axioms for the natural numbers, first proposed in the Arithmetices prin-
cipia, nova methodo exposita of 1889. One of these axioms describes the principle
of mathematical induction. Peano was also among the first to present an axiomatic
description of a (finite-dimensional) vector space. In his Calcolo geometrico of 1888,
Peano described what he called a linear system, a set of quantities provided with
the operations of addition and scalar multiplication which satisfy the standard prop-
erties. He was then able to give a coherent definition of the dimension of a linear
system as the maximum number of linearly independent quantities in the system.

Charles Sanders Peirce (1839–1914) was born in Massachusetts, the son of a Harvard
mathematics professor. He received a master’s degree from Harvard in 1862 and an
advanced degree in chemistry from the Lawrence Scientific School in 1863. He made
contributions to many areas of the foundations and philosophy of mathematics. He
was a prolific writer, leaving over 100,000 pages of unpublished manuscript at his
death.

George Pólya (1887–1985) was a Hungarian mathematician who received his doctor-
ate at Budapest in 1912. From 1914 to 1940 he taught in Zurich, then emigrated to
the United States where he spent most of the rest of his professional life at Stanford
University. Pólya developed some influential enumeration ideas in several papers in
the 1930s, in particular dealing with the counting of certain configurations that are
not equivalent under the action of a particular permutation group. For example,
there are 16 ways in which one can color the vertices of a square using two colors,
but only six are non-equivalent under the various symmetries of the square. In 1937,
Pólya published a major article in the field, “Combinatorial Enumeration of Groups,
Graphs and Chemical Compounds”, in which he discussed many mathematical as-
pects of the theory of enumeration and applied it to various problems. Pólya’s work
on problem solving and heuristics, summarized in his two volume work Mathematics
and Plausible Reasoning , insured his fame as a mathematics educator; his ideas are
at the forefront of recent reforms in mathematics education at all levels.

Qin Jiushao (1202–1261), born in Sichuan, published a general procedure for solving
systems of linear congruences — the Chinese remainder theorem — in his Shushu
jiuzhang (Mathematical Treatise in Nine Sections) in 1247, a procedure which makes
essential use of the Euclidean algorithm. He also gave a complete description of a
method for numerically solving polynomial equations of any degree. Qin’s method
had been developed in China over a period of more than a thousand years; it is
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similar to a method used in the Islamic world and is closely related to what is now
called the Horner method of solution, published by William Horner in 1819. Qin
studied mathematics at the Board of Astronomy, the Chinese agency responsible
for calendrical computations. He later served the government in several offices, but
because he was “extravagant and boastful”, he was several times relieved of his duties
because of corruption. These firings notwithstanding, Qin became a wealthy man
and developed an impressive reputation in love affairs.

Srinivasa Ramanujan (1887–1920) was born near Madras into the family of a book-
keeper. He studied mathematics on his own and soon began producing results in
combinatorial analysis, some already known and others previously unknown. At the
urging of friends, he sent some of his results to G. H. Hardy in England, who quickly
recognized Ramanujan’s genius and invited him to England to develop his untrained
mathematical talent. During the war years from 1914 to 1917, Hardy and Ramanu-
jan collaborated on a number of papers, including several dealing with the theory
of partitions. Unfortunately, Ramanujan fell ill during his years in the unfamiliar
climate of England and died at age 32 soon after returning to India. Ramanujan
left behind several notebooks containing statements of thousands of results, enough
work to keep many mathematicians occupied for years in understanding and proving
them.

Frank Ramsey (1903–1930), son of the president of Magdalene College, Cambridge,
was educated at Winchester and Trinity Colleges. He was then elected a fellow of
King’s College, where he spent the remainder of his life. Ramsey made important
contributions to mathematical logic. What is now called Ramsey theory began with
his clever combinatorial arguments to prove a generalization of the pigeonhole prin-
ciple, published in the paper “On a Problem of Formal Logic”. The problem of that
paper was the Entscheidungsproblem (the decision problem), the problem of search-
ing for a general method of determining the consistency of a logical formula. Ramsey
also made contributions to the mathematical theory of economics and introduced the
subjective interpretation to probability. In that interpretation, Ramsey argues that
different people when presented with the same evidence, will have different degrees
of belief. And the way to measure a person’s belief is to propose a bet and see what
are the lowest odds the person will accept. Ramsey’s death at the age of 26 deprived
the mathematical community of a brilliant young scholar.

Bertrand Arthur William Russell (1872–1970) was born in Wales and studied at
Trinity College, Cambridge. A philosopher/mathematician, he is one of the founders
of modern logic and wrote over 40 books in different areas. In his most famous
work, Principia Mathematica, published in 1910–13 with Alfred North Whitehead,
he attempted to deduce the entire body of mathematics from a single set of primitive
axioms. A pacifist, he fought for progressive causes, including women’s suffrage in
Great Britain and nuclear disarmament. In 1950 he won a Nobel Prize for literature.

al-Samaw’al ibn Yahyā ibn Yahūda al-Maghribī (1125–1180) was born in Bagh-
dad to well-educated Jewish parents. Besides giving him a religious education, they
encouraged him to study medicine and mathematics. He wrote his major mathemat-
ical work, Al-Bāhir (The Shining), an algebra text that dealt extensively with the
algebra of polynomials. In it, al-Samaw’al worked out the laws of exponents, both
positive and negative, and showed how to divide polynomials even when the division
was not exact. He also used a form of mathematical induction to prove the binomial
theorem, that (a + b)n =

∑n
k=0 C(n, k)an−kbk, where the C(n, k) are the entries in

the Pascal triangle, for n ≤ 12. In fact, he showed why each entry in the triangle
can be formed by adding two numbers in the previous row. When al-Samaw’al was
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about 40, he decided to convert to Islam. To justify his conversion to the world,
he wrote an autobiography in 1167 stating his arguments against Judaism, a work
which became famous as a source of Islamic polemics against the Jews.

Claude Elwood Shannon (born 1916) applied Boolean algebra to switching circuits
in his master’s thesis at M.I.T in 1938. Shannon realized that a circuit can be
represented by a set of equations and that the calculus necessary for manipulating
these equations is precisely the Boolean algebra of logic. Simplifying these equations
for a circuit would yield a simpler, equivalent circuit. Switches in Shannon’s calculus
were either open (represented by 1) or closed (represented by 0); placing switches
in parallel was represented by the Boolean operation “+”, while placing them in
parallel was represented by “ · ”. Using the basic rules of Boolean algebra, Shannon
was, for example, able to construct a circuit which would add two numbers given in
binary representation. He received his Ph.D. in mathematics from M.I.T. in 1940
and spent much of his professional life at Bell Laboratories, where he worked on
methods of transmitting data efficiently and made many fundamental contributions
to information theory.

James Stirling (1692–1770) studied at Glasgow University and at Balliol College,
Oxford and spent much of his life as a successful administrator of a mining company
in Scotland. His mathematical work included an exposition of Newton’s theory of
cubic curves and a 1730 book entitled Methodus Differentialis which dealt with
summation and interpolation formulas. In dealing with the convergence of series,
Stirling found it useful to convert factorials into powers. By considering tables of
factorials, he was able to derive the formula for log n!, which leads to what is now
known as Stirling’s approximation: n! ≈ (n

e )n
√

2πn. Stirling also developed the
Stirling numbers of the first and second kinds, sequences of numbers important in
enumeration.

Sun Zi (4th century) is the author of Sunzi suanjing (Master Sun’s Mathematical
Manual), a manual on arithmetical operations which eventually became part of the
required course of study for Chinese civil servants. The most famous problem in
the work is one of the first examples of what is today called the Chinese remainder
problem: “We have things of which we do not know the number; if we count them by
threes, the remainder is 2; if we count them by fives, the remainder is 3; if we count
them by sevens, the remainder is 2. How many things are there?” Sun Zi gives the
answer, 23, along with some explanation of how the problem should be solved. But
since this is the only problem of its type in the book, it is not known whether Sun
Zi had developed a general method of solving simultaneous linear congruences.

James Joseph Sylvester (1814–1897), who was born into a Jewish family in London
and studied for several years at Cambridge, was not permitted to take his degree
there for religious reasons. Therefore, he received his degree from Trinity College,
Dublin and soon thereafter accepted a professorship at the University of Virginia. His
horror of slavery, however, and an altercation with a student who did not show him
the respect he felt he deserved led to his resignation after only a brief tenure. After
his return to England, he spent 10 years as an attorney and 15 years as professor
of mathematics at the Royal Military Academy at Woolwich. Sylvester returned to
the United States in 1871 to accept the chair of mathematics at the newly opened
Johns Hopkins University in Baltimore, where he founded the American Journal of
Mathematics and helped initiate a tradition of graduate education in mathematics in
the United States. Sylvester’s primary mathematical contributions are in the fields
of invariant theory and the theory of partitions.
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John Wilder Tukey (born 1915) received a Ph.D. in topology from Princeton in
1939. After World War II he returned to Princeton as professor of statistics, where
he founded the Department of Statistics in 1966. His work in statistics included
the areas of spectra of time series and analysis of variance. He invented (with J. W
Cooley) the fast Fourier transform. He was awarded the National Medal of Science
and served on the President’s Science Advisory Committee. He also coined the word
“bit” for a binary digit.

Alan Turing (1912–1954) studied mathematics at King’s College, Cambridge and in
1936 invented the concept of a Turing machine to answer the questions of what a
computation is and whether a given computation can in fact be carried out. This
notion today lies at the basis of the modern all-purpose computer, a machine which
can be programmed to do any desired computation. At the outbreak of World
War II, Turing was called to serve at the Government Code and Cypher School in
Bletchley Park in Buckinghamshire. It was there, during the next few years, that
he led the successful effort to crack the German “Enigma” code, an effort which
turned out to be central to the defeat of Nazi Germany. After the war, Turing
continued his interest in automatic computing machines and so joined the National
Physical Laboratory to work on the design of a computer, continuing this work after
1948 at the University of Manchester. Turing’s promising career came to a grinding
halt, however, when he was arrested in 1952 for homosexual acts. The penalty for
this “crime” was submission to psychoanalysis and hormone treatments to “cure”
the disease. Unfortunately, the cure proved worse than the disease, and, in a fit of
depression, Turing committed suicide in June, 1954.

Alexandre-Théophile Vandermonde (1735–1796) was directed by his physician fa-
ther to a career in music. However, he later developed a brief but intense interest in
mathematics and wrote four important papers published in 1771 and 1772. These
papers include fundamental contributions to the theory of the roots of equations,
the theory of determinants, and the knight’s tour problem. In the first paper, he
showed that any symmetric function of the roots of a polynomial equation can be
expressed in terms of the coefficients of the equation. His paper on determinants
was the first logical, connected exposition of the subject, so he can be thought of
as the founder of the theory. Toward the end of his life, he joined the cause of the
French revolution and held several different positions in government.

François Viète (1540–1603), a lawyer and advisor to two kings of France, was one
of the earliest cryptanalysts and successfully decoded intercepted messages for his
patrons. In fact, he was so successful in this endeavor that he was denounced by
some who thought that the decipherment could only have been made by sorcery. Al-
though a mathematician only by avocation, he made important contributions to the
development of algebra. In particular, he introduced letters to stand for numerical
constants, thus enabling him to break away from the style of verbal algorithms of
his predecessors and treat general examples by formulas rather than by giving rules
for specific problems.

Edward Waring (1734–1798) graduated from Magdalen College, Cambridge in 1757
with highest honors and shortly thereafter was named a Fellow of the University.
In 1760, despite opposition because of his youth, he was named Lucasian Professor
of Mathematics at Cambridge, a position he held until his death. To help solidify
his position, then, he published the first chapter of his major work, Miscellanea
analytica, which in later editions was renamed Meditationes algebraicae. Waring is
best remembered for his conjecture that every integer is the sum of at most four
squares, at most nine cubes, at most 19 fourth powers, and, in general, at most r
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kth powers, where r depends on k. The general theorem that there is a finite r for
each k was proved by Hilbert in 1909. Although the result for squares was proved
by Lagrange, the specific results for cubes and fourth powers were not proved until
the twentieth century.

Hassler Whitney (1907–1989) received bachelor’s degrees in both physics and music
from Yale; in 1932 he received a doctorate in mathematics from Harvard. After a
brief stay in Princeton, he returned to Harvard, where he taught until 1952, when he
moved to the Institute for Advanced Study. Whitney produced more than a dozen
papers on graph theory in the 1930s, after his interest was aroused by the four color
problem. In particular, he defined the notion of the dual graph of a map. It was
then possible to apply many of the results of the theory of graphs to gain insight into
the four color problem. During the last twenty years of his life, Whitney devoted his
energy to improving mathematical education, particularly at the elementary school
level. He emphasized that young children should be encouraged to solve problems
using their intuition, rather than only be taught techniques and results which have
no connection to their experience.
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INTRODUCTION

This chapter covers material usually referred to as the foundations of mathematics, in-
cluding logic, sets, and functions. In addition to covering these foundational areas, this
chapter includes material that shows how these topics are applied to discrete mathe-
matics, computer science, and electrical engineering. For example, this chapter covers
methods of proof, program verification, and fuzzy reasoning.

GLOSSARY
action: a literal or a print command in a production system.

aleph-null: the cardinality, ℵ0, of the set N of natural numbers.

AND: the logical operator for conjunction, also written ∧.

antecedent: in a conditional proposition p → q (“if p then q”) the proposition p
(“if-clause”) that precedes the arrow.

antichain: a subset of a poset in which no two elements are comparable.

antisymmetric: the property of a binary relation R that if aRb and bRa, then a = b.

argument form: a sequence of statement forms each called a premise of the argument
followed by a statement form called a conclusion of the argument.

assertion (or program assertion): a program comment specifying some conditions
on the values of the computational variables; these conditions are supposed to hold
whenever program flow reaches the location of the assertion.

asymmetric: the property of a binary relation R that if aRb, then bR/ a.

asymptotic: A function f is asymptotic to a function g, written f(x) ∼ g(x), if
f(x) �= 0 for sufficiently large x and limx→∞

g(x)
f(x) = 1.

atom (or atomic formula): simplest formula of predicate logic.

atomic formula: See atom.

atomic proposition: a proposition that cannot be analyzed into smaller parts and
logical operations.

automated reasoning : the process of proving theorems using a computer program
that can draw conclusions that follow logically from a set of given facts.

axiom: a statement that is assumed to be true; a postulate.

axiom of choice: the assertion that given any nonempty collection A of pairwise
disjoint sets, there is a set that consists of exactly one element from each of the sets
in A.

axiom (or semantic axiom): a rule for a programming language construct prescribing
the change of values of computational variables when an instruction of that construct-
type is executed.

basis step: a proof of the basis premise (first case) in a proof by mathematical induc-
tion.

big-oh notation: f is O(g), written f = O(g), if there are constants C and k such
that |f(x)| ≤ C|g(x)| for all x > k.

bijection (or bijective function): a function that is one-to-one and onto.

bijective function: See bijection.
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binary relation from a set A to a set B: any subset of A×B.

binary relation on a set A: a binary relation from A to A; i.e., a subset of A×A.

body of a clause A1, . . . , An ← B1, . . . , Bm in a logic program: the literals B1, . . . , Bm

after ←.

cardinal number (or cardinality) of a set: for a finite set, the number of elements;
for an infinite set, the order of infinity. The cardinal number of S is written |S|.

cardinality : See cardinal number.

Cartesian product (of sets A and B): the set A×B of ordered pairs (a, b) with a ∈ A
and b ∈ B (more generally, the iterated Cartesian product A1 × A2 × · · · × An

is the set of ordered n-tuples (a1, a2, . . . , an), with ai ∈ Ai for each i).

ceiling (of x): the smallest integer that is greater than or equal to x, written �x�.
chain: a subset of a poset in which every pair of elements are comparable.

characteristic function (of a set S): the function from S to {0, 1} whose value at x
is 1 if x ∈ S and 0 if x /∈ S.

clause (in a logic program): closed formula of the form ∀x1 . . .∀xs(A1 ∨ · · · ∨ An ←
B1 ∧ · · · ∧Bm).

closed formula: for a function value f(x), an algebraic expression in x.

closure (of a relation R with respect to a property P): the relation S, if it exists, that
has property P and contains R, such that S is a subset of every relation that has
property P and contains R.

codomain (of a function): the set in which the function values occur.

comparable: Two elements in a poset are comparable if they are related by the partial
order relation.

complement (of a relation): given a relation R, the relation R where aRb if and only
if aR/ b.

complement (of a set): given a set A in a “universal” domain U , the set A of objects
in U that are not in A.

complement operator: a function [0, 1]→ [0, 1] used for complementing fuzzy sets.

complete: property of a set of axioms that it is possible to prove all true statements.

complex number: a number of the form a+ bi, where a and b are real numbers, and
i2 = −1; the set of all complex numbers is denoted C.

composite key : given an n-ary relation R on A1×A2×· · ·×An, a product of domains
Ai1×Ai2×· · ·×Aim

such that for each m-tuple (ai1 , ai2 , . . . , aim
) ∈ Ai1×Ai2×· · ·×

Aim
, there is at most one n-tuple in R that matches (ai1 , ai2 , . . . , aim

) in coordinates
i1, i2, . . . , im.

composition (of relations): for R a relation from A to B and S a relation from B to
C, the relation S ◦ R from A to C such that a(S ◦ R)c if and only if there exists
b ∈ B such that aRb and bSc.

composition (of functions): the function f ◦ g whose value at x is f(g(x)).

compound proposition: a proposition built up from atomic propositions and logical
connectives.

computer-assisted proof : a proof that relies on checking the validity of a large
number of cases using a special purpose computer program.
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conclusion (of an argument form): the last statement of an argument form.

conclusion (of a proof): the last proposition of a proof; the objective of the proof is
demonstrating that the conclusion follows from the premises.

condition: the disjunction A1 ∨ · · · ∨An of atomic formulas.

conditional statement: the compound proposition p→ q (“if p then q”) that is true
except when p is true and q is false.

conjunction: the compound proposition p∧ q (“p and q”) that is true only when p
and q are both true.

conjunctive normal form: for a proposition in the variables p1, p2, . . . , pn, an equiv-
alent proposition that is the conjunction of disjunctions, with each disjunction of the
form xk1 ∨ xk2 ∨ · · · ∨ xkm , where xkj is either pkj or ¬pkj .

consequent: in a conditional proposition p → q (“if p then q”) the proposition q
(“then-clause”) that follows the arrow.

consistent: property of a set of axioms that no contradiction can be deduced from the
axioms.

construct (or program construct): the general form of a programming instruction
such as an assignment, a conditional, or a while-loop.

continuum hypothesis: the assertion that the cardinal number of the real numbers
is the smallest cardinal number greater than the cardinal number of the natural
numbers.

contradiction: a self-contradictory proposition, one that is always false.

contradiction (in an indirect proof): the negation of a premise.

contrapositive (of the conditional proposition p → q): the conditional proposition
¬q → ¬p.

converse (of the conditional proposition p→ q): the conditional proposition q → p.

converse relation: another name for the inverse relation.

corollary : a theorem that is derived as an easy consequence of another theorem.

correct conclusion: the conclusion of a valid proof, when all the premises are true.

countable set: a set that is finite or denumerable.

counterexample: a case that makes a statement false.

definite clause: clause with at most one atom in its head.

denumerable set: a set that can be placed in one-to-one correspondence with the
natural numbers.

diagonalization proof : any proof that involves something analogous to the diagonal
of a list of sequences.

difference: a binary relation R−S such that a(R−S)b if and only if aRb is true
and aSb is false.

difference (of sets): the set A−B of objects in A that are not in B.

direct proof : a proof of p→ q that assumes p and shows that q must follow.

disjoint (pair of sets): two sets with no members in common.

disjunction: the statement p ∨ q (“p or q”) that is true when at least one of the two
propositions p and q is true; also called inclusive or.
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disjunctive normal form: for a proposition in the variables p1, p2, . . . , pn, an equiv-
alent proposition that is the disjunction of conjunctions, with each conjunction of
the form xk1 ∧ xk2 ∧ · · · ∧ xkm , where xkj is either pkj or ¬pkj .

disproof : a proof that a statement is false.

divisibility lattice: the lattice consisting of the positive integers under the relation
of divisibility.

domain (of a function): the set on which a function acts.

element (of a set): member of the set; the notation a ∈ A means that a is an element
of A.

elementary projection function: the function πi:X1 × · · · × Xn → Xi such that
π(x1, . . . , xn) = xi.

empty set: the set with no elements, written ∅ or { }.
epimorphism: an onto function.

equality (of sets): property that two sets have the same elements.

equivalence class: given an equivalence relation on a set A and a ∈ A, the subset
of A consisting of all elements related to a.

equivalence relation: a binary relation that is reflexive, symmetric, and transitive.

equivalent propositions: two compound propositions (on the same simple variables)
with the same truth table.

existential quantifier: the quantifier ∃x, read “there is an x”.

existentially quantified predicate: a statement (∃x)P (x) that there exists a value
of x such that P (x) is true.

exponential function: any function of the form bx, b a positive constant, b �= 1.

fact set: set of ground atomic formulas.

factorial (function): the function n! whose value on the argument n is the product
1 · 2 · 3 . . . n; that is, n! = 1 · 2 · 3 . . . n.

finite: property of a set that it is either empty or else can be put in a one-to-one
correspondence with a set {1, 2, 3, . . . , n} for some positive integer n.

first-order logic: See predicate calculus.

floor (of x): the greatest integer less than or equal to x, written �x�.
formula: a logical expression constructed from atoms with conjunctions, disjunctions,

and negations, possibly with some logical quantifiers.

full conjunctive normal form: conjunctive normal form where each disjunction is a
disjunction of all variables or their negations.

full disjunctive normal form: disjunctive normal form where each conjunction is a
conjunction of all variables or their negations.

fully parenthesized proposition: any proposition that can be obtained using the
following recursive definition: each variable is fully parenthesized, if P and Q are
fully parenthesized, so are (¬P ), (P ∧Q), (P ∨Q), (P → Q), and (P ↔ Q).

function f :A→ B: a rule that assigns to every object a in the domain set A exactly
one object f(a) in the codomain set B.

functionally complete set: a set of logical connectives from which all other connec-
tives can be derived by composition.
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fuzzy logic: a system of logic in which each statement has a truth value in the inter-
val [0, 1].

fuzzy set: a set in which each element is associated with a number in the interval [0, 1]
that measures its degree of membership.

generalized continuum hypothesis: the assertion that for every infinite set S there
is no cardinal number greater than |S| and less than |P(S)|.

goal: a clause with an empty head.

graph (of a function): given a function f :A→ B, the set { (a, b) | b = f(a) } ⊆ A×B.

greatest lower bound (of a subset of a poset): an element of the poset that is a lower
bound of the subset and is greater than or equal to every other lower bound of the
subset.

ground formula: a formula without any variables.

halting function: the function that maps computer programs to the set { 0, 1 }, with
value 1 if the program always halts, regardless of input, and 0 otherwise.

Hasse diagram: a directed graph that represents a poset.

head (of a clause A1, . . . , An ← B1, . . . , Bm): the literals A1, . . . , An before ←.

identity function (on a set): given a set A, the function from A to itself whose value
at x is x.

image set (of a function): the set of function values as x ranges over all objects of the
domain.

implication: formally, the relation P ⇒ Q that a proposition Q is true whenever
proposition P is true; informally, a synonym for the conditional statement p→ q.

incomparable: two elements in a poset that are not related by the partial order
relation.

induced partition (on a set under an equivalence relation): the set of equivalence
classes under the relation.

independent: property of a set of axioms that none of the axioms can be deduced
from the other axioms.

indirect proof : a proof of p→ q that assumes ¬q is true and proves that ¬p is true.

induction: See mathematical induction.

induction hypothesis: in a mathematical induction proof, the statement P (xk) in
the induction step.

induction step: in a mathematical induction proof, a proof of the induction premise
“if P (xk) is true, then P (xk+1) is true”.

inductive proof : See mathematical induction.

infinite (set): a set that is not finite.

injection (or injective function): a one-to-one function.

instance (of a formula): formula obtained using a substitution.

instantiation: substitution of concrete values for the free variables of a statement or
sequence of statements; an instance of a production rule.

integer: a whole number, possibly zero or negative; i.e., one of the elements in the set
Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
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intersection: the set A ∩B of objects common to both sets A and B.

intersection relation: for binary relations R and S on A, the relation R ∩ S where
a(R ∩ S)b if and only if aRb and aSb.

interval (in a poset): given a ≤ b in a poset, a subset of the poset consisting of all
elements x such that a ≤ x ≤ b.

inverse function: for a one-to-one, onto function f :X → Y , the function f−1:Y → X
whose value at y ∈ Y is the unique x ∈ X such that f(x) = y.

inverse image (under f :X → Y of a subset T ⊆ Y ): the subset {x ∈ X | f(x) ∈ T },
written f−1(T ).

inverse relation: for a binary relation R from A to B, the relation R−1 from B to A
where bR−1a if and only if aRb.

invertible (function): a one-to-one and onto function; a function that has an inverse.

irrational number: a real number that is not rational.

irreflexive: property of a binary relation R on A that aR/ a, for all a ∈ A.

lattice: a poset in which every pair of elements has both a least upper bound and a
greatest lower bound.

least upper bound (of a subset of a poset): an element of the poset that is an upper
bound of the subset and is less than or equal to every other upper bound of the
subset.

lemma: a theorem that is an intermediate step in the proof of a more important
theorem.

linearly ordered: the property of a poset that every pair of elements are comparable,
also called totally ordered.

literal: an atom or its negation.

little-oh notation: f is o(g) if limx→∞
∣∣ f(x)

g(x)

∣∣ = 0.

logarithmic function: a function logb x (b a positive constant, b �= 1) defined by the
rule logb x = y if and only if by = x.

logic program: a finite sequence of definite clauses.

logically equivalent propositions: compound propositions that involve the same
variables and have the same truth table.

logically implies: A compound proposition P logically implies a compound proposi-
tion Q if Q is true whenever P is true.

loop invariant: an expression that specifies the circumstance under which the loop
body will be executed again.

lower bound (for a subset of a poset): an element of the poset that is less than or
equal to every element of the subset.

mathematical induction: a method of proving that every item of a sequence of
propositions such as P (n0), P (n0 + 1), P (n0 + 2), . . . is true by showing: (1) P (n0)
is true, and (2) for all n ≥ n0, P (n)→ P (n + 1) is true.

maximal element: in a poset an element that has no element greater than it.

maximum element: in a poset an element greater than or equal to every element.

membership function (in fuzzy logic): a function from elements of a set to [0,1].
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membership table (for a set expression): a table used to calculate whether an ob-
ject lies in the set described by the expression, based on its membership in the sets
mentioned by the expression.

minimal element: in a poset an element that has no element smaller than it.

minimum element: in a poset an element less than or equal to every element.

monomorphism: a one-to-one function.

multi-valued logic: a logic system with a set of more than two truth values.

multiset: an extension of the set concept, in which each element may occur arbitrarily
many times.

mutually disjoint (family of sets): (See pairwise disjoint.)

n-ary predicate: a statement involving n variables.

n-ary relation: any subset of A1 ×A2 × · · · ×An.

naive set theory : set theory where any collection of objects can be considered to be
a valid set, with paradoxes ignored.

NAND: the logical connective “not and”.

natural number: a nonnegative integer (or “counting” number); i.e., an element of
N = {0, 1, 2, 3, . . .}. Note: Sometimes 0 is not regarded as a natural number.

negation: the statement ¬p (“not p”) that is true if and only if p is not true.

NOP: pronounced “no-op”, a program instruction that does nothing to alter the values
of computational variables or the order of execution.

NOR: the logical connective “not or”.

NOT: the logical connective meaning “not”, used in place of ¬.

null set: the set with no elements, written ∅ or { }.
omega notation: f is Ω(g) if there are constants C and k such that |g(x)| ≤ C|f(x)|

for all x > k.

one-to-one (function): a function f :X → Y that assigns distinct elements of the
codomain to distinct elements of the domain; thus, if x1 �= x2, then f(x1) �= f(x2).

onto (function): a function f :X → Y whose image equals its codomain; i.e., for every
y ∈ Y , there is an x ∈ X such that f(x) = y.

OR: the logical operator for disjunction, also written ∨.

pairwise disjoint: property of a family of sets that each two distinct sets in the family
have empty intersection; also called mutually disjoint.

paradox: a statement that contradicts itself.

partial function: a function f :X → Y that assigns a well-defined object in Y to some
(but not necessarily all) the elements of its domain X.

partial order: a binary relation that is reflexive, antisymmetric, and transitive.

partially ordered set: a set with a partial order relation defined on it.

partition (of a set): given a set S, a pairwise disjoint family P = {Ai} of nonempty
subsets of S whose union is S.

Peano definition: a recursive description of the natural numbers that uses the concept
of successor.

Polish prefix notation: the style of writing compound propositions in prefix notation
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where sometime the usual operand symbols are replaced as follows: N for ¬, K for ∧,
A for ∨, C for →, E for ↔.

poset: a partially ordered set.

postcondition: an assertion that appears immediately after the executable portion of
a program fragment or of a subprogram.

postfix notation: the style of writing compound logical propositions where operators
are written to the right of the operands.

power (of a relation): for a relation R on A, the relation Rn on A where R0 = I,
R1 = R and Rn = Rn−1 ◦R for all n > 1.

power set: given a set A, the set P(A) of all subsets of A.

precondition: an assertion that appears immediately before the executable portion of
a program fragment or of a subprogram.

predicate: a statement involving one or more variables that range over various do-
mains.

predicate calculus: the symbolic study of quantified predicate statements.

prefix notation: the style of writing compound logical propositions where operators
are written to the left of the operands.

premise: a proposition taken as the foundation of a proof, from which the conclusion
is to be derived.

prenex normal form: the form of a well-formed formula in which every quantifier
occurs at the beginning and the scope is whatever follows the quantifiers.

preorder: a binary relation that is reflexive and transitive.

primary key : for an n-ary relation on A1, A2, . . . , An, a coordinate domain Aj such
that for each x ∈ Aj there is at most one n-tuple in the relation whose jth coordinate
is x.

production rule: a formula of the form C1, . . . , Cn → A1, . . . , Am where each Ci is a
condition and each Ai is an action.

production system: a set of production rules and a fact set.

program construct: See construct.

program fragment: any sequence of program code, from a single instruction to an
entire program.

program semantics (or semantics): the meaning of an instruction or of a program
fragment; i.e., the effect of its execution on the computational variables.

projection function: a function defined on a set of n-tuples that selects the elements
in certain coordinate positions.

proof (of a conclusion from a set of premises): a sequence of statements (called steps)
terminating in the conclusion, such that each step is either a premise or follows from
previous steps by a valid argument.

proof by contradiction: a proof that assumes the negation of the statement to be
proved and shows that this leads to a contradiction.

proof done by hand: a proof done by a human without the use of a computer.

proper subset: given a set S, a subset T of S such that S contains at least one element
not in T .
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proposition: a declarative sentence or statement that is unambiguously either true or
false.

propositional calculus: the symbolic study of propositions.

range (of a function): the image set of a function; sometimes used as synonym for
codomain.

rational number: the ratio a
b of two integers such that b �= 0; the set of all rational

numbers is denoted Q.

real number: a number expressible as a finite (i.e., terminating) or infinite decimal;
the set of all real numbers is denoted R.

recursive definition (of a function with domain N ): a set of initial values and a rule
for computing f(n) in terms of values f(k) for k < n.

recursive definition (of a set S): a form of specification of membership of S, in which
some basis elements are named individually, and in which a computable rule is given
to construct each other element in a finite number of steps.

refinement of a partition: given a partition P1 = {Aj} on a set S, a partition
P2 = {Bi} on the same set S such that every Bi ∈ P2 is a subset of some Aj ∈ P1.

reflexive: the property of a binary relation R that aRa.

relation (from set A to set B): a binary relation from A to B.

relation (on a set A): a binary relation from A to A.

restriction (of a function): given f :X → Y and a subset S ⊆ X, the function f |S
with domain S and codomain Y whose rule is the same as that of f .

reverse Polish notation: postfix notation.

rule of inference: a valid argument form.

scope (of a quantifier): the predicate to which the quantifier applies.

semantic axiom: See axiom.

semantics: See program semantics.

sentence: a well-formed formula with no free variables.

sequence (in a set): a list of objects from a set S, with repetitions allowed; that is, a
function f :N → S (an infinite sequence, often written a0, a1, a2, . . .) or a function
f : {1, 2, . . . , n} → S (a finite sequence, often written a1, a2, . . . , an).

set: a well-defined collection of objects.

singleton: a set with one element.

specification: in program correctness, a precondition and a postcondition.

statement form: a declarative sentence containing some variables and logical symbols
which becomes a proposition if concrete values are substituted for all free variables.

string : a finite sequence in a set S, usually written so that consecutive entries are
juxtaposed (i.e., written with no punctuation or extra space between them).

strongly correct code: code whose execution terminates in a computational state
satisfying the postcondition, whenever the precondition holds before execution.

subset of a set S: any set T of objects that are also elements of S, written T ⊆ S.

substitution: a set of pairs of variables and terms.

surjection (or surjective function): an onto function.
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symmetric: the property of a binary relation R that if aRb then bRa.

symmetric difference (of relations): for relations R and S on A, the relation R⊕ S
where a(R⊕ S)b if and only if exactly one of the following is true: aRb, aSb.

symmetric difference (of sets): for sets A and B, the set A ⊕ B containing each
object that is an element of A or an element of B, but not an element of both.

system of distinct representatives: given sets A1, A2, . . . , An (some of which may
be equal), a set {a1, a2, . . . , an} of n distinct elements with ai ∈ Ai for i = 1, 2, . . . , n.

tautology : a compound proposition whose form makes it always true, regardless of
the truth values of its atomic parts.

term (in a domain): either a fixed element of a domain S or an S-valued variable.

theorem: a statement derived as the conclusion of a valid proof from axioms and
definitions.

theta notation: f is Θ(g), written f = Θ(g), if there are positive constants C1, C2,
and k such that C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for all x > k.

totally ordered: the property of a poset that every pair of elements are comparable;
also called linearly ordered.

transitive: the property of a binary relation R that if aRb and bRc, then aRc.

transitive closure: for a relation R on A, the smallest transitive relation containing R.

transitive reduction (of a relation): a relation with the same transitive closure as
the original relation and with a minimum number of ordered pairs.

truth table: for a compound proposition, a table that gives the truth value of the
proposition for each possible combination of truth values of the atomic variables in
the proposition.

two-valued logic: a logic system where each statement has exactly one of the two
values: true or false.

union: the set A ∪B of objects in one or both of the sets A and B.

union relation: for R and S binary relations on A, the relation R∪S where a(R∪S)b
if and only if aRb or aSb.

universal domain: the collection of all possible objects in the context of the imme-
diate discussion.

universal quantifier: the quantifier ∀x, read “for all x” or “for every x”.

universally quantified predicate: a statement (∀x)P (x) that P (x) is true for ev-
ery x in its universe of discourse.

universe of discourse: the range of possible values of a variable, within the context
of the immediate discussion.

upper bound (for a subset of a poset): an element of the poset that is greater than
or equal to every element of the subset.

valid argument form: an argument form such that in any instantiation where all the
premises are true, the conclusion is also true.

Venn diagram: a figure composed of possibly overlapping circles or ellipses, used to
picture membership in various combinations of the sets.

verification (of a program): a formal argument for the correctness of a program with
respect to its specifications.
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weakly correct code: code whose execution results in a computational state satis-
fying the postcondition, whenever the precondition holds before execution and the
execution terminates.

well-formed formula (wff ): a proposition or predicate with quantifiers that bind
one or more of its variables.

well-ordered: property of a set that every nonempty subset has a minimum element.

well-ordering principle: the axiom that every nonempty subset of integers, each
greater than a fixed integer, contains a smallest element.

XOR: the logical connective “not or”.

Zermelo-Fraenkel axioms: a set of axioms for set theory.

zero-order logic: propositional calculus.

1.1 PROPOSITIONAL AND PREDICATE LOGIC

Logic is the basis for distinguishing what may be correctly inferred from a given collec-
tion of facts. Propositional logic, where there are no quantifiers (so quantifiers range
over nothing) is called zero-order logic. Predicate logic, where quantifiers range over
members of a universe, is called first-order logic. Higher-order logic includes second-
order logic (where quantifiers can range over relations over the universe), third-order
logic (where quantifiers can range over relations over relations), and so on. Logic has
many applications in computer science, including circuit design (§5.8.3) and verification
of computer program correctness (§1.6). This section defines the meaning of the sym-
bolism and various logical properties that are usually used without explicit mention.
[FlPa88], [Me79], [Mo76]

In this section, only two-valued logic is studied; i.e., each statement is either true
or false. Multi-valued logic, in which statements have one of more than two values, is
discussed in §1.7.2.

1.1.1 PROPOSITIONS AND LOGICAL OPERATIONS

Definitions:

A truth value is either true or false, abbreviated T and F , respectively.

A proposition (in a natural language such as English) is a declarative sentence that
has a well-defined truth value.

A propositional variable is a mathematical variable, often denoted by p, q, or r, that
represents a proposition.

Propositional logic (or propositional calculus or zero-order logic) is the study
of logical propositions and their combinations using logical connectives.

A logical connective is an operation used to build more complicated logical expressions
out of simpler propositions, whose truth values depend only on the truth values of the
simpler propositions.

c© 2000 by CRC Press LLC



A proposition is atomic or simple if it cannot be syntactically analyzed into smaller
parts; it is usually represented by a single logical variable.

A proposition is compound if it contains one or more logical connectives.

A truth table is a table that prescribes the defining rule for a logical operation. That
is, for each combination of truth values of the operands, the table gives the truth value
of the expression formed by the operation and operands.

The unary connective negation (denoted by ¬) is defined by the following truth table:

p ¬p
T F
F T

Note: The negation ¬p is also written p′, p, or ∼p.
The common binary connectives are:

p ∧ q conjunction p and q

p ∨ q disjunction p or q

p→ q conditional if p then q

p↔ q biconditional p if and only if q

p⊕ q exclusive or p xor q

p ↓ q not or p nor q

p | q or p ↑ q not and p nand q

The connective | is called the Sheffer stroke. The connective ↓ is called the Peirce arrow .
The values of the compound propositions obtained by using the binary connectives are
given in the following table:

p q p ∨ q p ∧ q p→ q p↔ q p⊕ q p ↓ q p | q
T T T T T T F F F
T F T F F F T F T
F T T F T F T F T
F F F F T T F T T

In the conditional p→ q, p is the antecedent and q is the consequent. The conditional
p→ q is often read informally as “p implies q”.

Infix notation is the style of writing compound propositions where binary operators
are written between the operands and negation is written to the left of its operand.

Prefix notation is the style of writing compound propositions where operators are
written to the left of the operands.

Postfix notation (or reverse Polish notation) is the style of writing compound
propositions where operators are written to the right of the operands.

Polish notation is the style of writing compound propositions where operators are
written using prefix notation and where the usual operand symbols are replaced as
follows: N for ¬, K for ∧, A for ∨, C for →, E for ↔. (Jan HLukasiewicz, 1878–1956)

A fully parenthesized proposition is any proposition that can be obtained using the
following recursive definition: each variable is fully parenthesized, if P and Q are fully
parenthesized, so are (¬P ), (P ∧Q), (P ∨Q), (P → Q), and (P ↔ Q).
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Facts:
1. The conditional connective p→ q represents the following English constructs:

• if p then q • q if p
• p only if q • p implies q
• q follows from p • q whenever p
• p is a sufficient condition for q • q is a necessary condition for p.

2. The biconditional connective p↔ q represents the following English constructs:
• p if and only if q (often written p iff q)
• p and q imply each other
• p is a necessary and sufficient condition for q
• p and q are equivalent.

3. In computer programming and circuit design, the following notation for logical op-
erators is used: p AND q for p ∧ q, p OR q for p ∨ q, NOT p for ¬p, p XOR q for p⊕ q,
p NOR q for p ↓ q, p NAND q for p | q.
4. Order of operations: In an unparenthesized compound proposition using only the
five standard operators ¬, ∧, ∨,→, and↔, the following order of precedence is typically
used when evaluating a logical expression, at each level of precedence moving from left to
right: first ¬, then ∧ and ∨, then→, finally↔. Parenthesized expressions are evaluated
proceeding from the innermost pair of parentheses outward, analogous to the evaluation
of an arithmetic expression.
5. It is often preferable to use parentheses to show precedence, except for negation
operators, rather than to rely on precedence rules.
6. No parentheses are needed when a compound proposition is written in either prefix or
postfix notation. However, parentheses may be necessary when a compound proposition
is written in infix notation.
7. The number of nonequivalent logical statements with two variables is 16, because
each of the four lines of the truth table has two possible entries, T or F . Here are
examples of compound propositions that yield each possible combination of truth values.
(T represents a tautology and F a contradiction. See §1.1.2.)

p q T p ∨ q q → p p→ q p | q p q p↔ q

T T T T T T F T T T
T F T T T F T T F F
F T T T F T T F T F
F F T F T T T F F T

p q p⊕ q ¬q ¬p p ∧ q p ∧ ¬q ¬p ∧ q p ↓ q F

T T F F F T F F F F
T F T T F F T F F F
F T T F T F F T F F
F F F T T F F F T F

8. The number of different possible logical connectives on n variables is 22n

, because
there are 2n rows in the truth table.

Examples:
1. “1+1 = 3” and “Romulus and Remus founded New York City” are false propositions.
2. “1 + 1 = 2” and “The year 1996 was a leap year” are true propositions.
3. “Go directly to jail” is not a proposition, because it is imperative, not declarative.
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4. “x > 5” is not a proposition, because its truth value cannot be determined unless
the value of x is known.
5. “This sentence is false” is not a proposition, because it cannot be given a truth value
without creating a contradiction.
6. In a truth table evaluation of the compound proposition p ∨ (¬p ∧ q) from the
innermost parenthetic expression outward, the steps are to evaluate ¬p, next (¬p ∧ q),
and then p ∨ (¬p ∧ q):

p q ¬p (¬p ∧ q) p ∨ (¬p ∧ q)

T T F F T
T F F F T
F T T T T
F F T F F

7. The statements in the left column are evaluated using the order of precedence indi-
cated in the fully parenthesized form in the right column:

p ∨ q ∧ r ((p ∨ q) ∧ r)
p↔ q → r (p↔ (q → r))
¬q ∨ ¬r → s ∧ t (((¬q) ∨ (¬r))→ (s ∧ t))

8. The infix statement p∧ q in prefix notation is ∧ p q, in postfix notation is p q ∧, and
in Polish notation is K pq.
9. The infix statement p→ ¬(q∨r) in prefix notation is → p¬∨ q r, in postfix notation
is p q r∨¬→, and in Polish notation is C pN A q r.

1.1.2 EQUIVALENCES, IDENTITIES, AND NORMAL FORMS

Definitions:

A tautology is a compound proposition that is always true, regardless of the truth
values of its underlying atomic propositions.

A contradiction (or self-contradiction) is a compound proposition that is always
false, regardless of the truth values of its underlying atomic propositions. (The term
self-contradiction is used for such a proposition when discussing indirect mathematical
arguments, because “contradiction” has another meaning in that context. See §1.5.)

A compound proposition P logically implies a compound proposition Q, written
P ⇒ Q, if Q is true whenever P is true. In this case, P is stronger than Q, and Q is
weaker than P .

Compound propositions P and Q are logically equivalent, written P ≡ Q, P ⇔ Q, or
P iff Q, if they have the same truth values for all possible truth values of their variables.

A logical equivalence that is frequently used is sometimes called a logical identity .

A collection C of connectives is functionally complete if every compound proposition
is equivalent to a compound proposition constructed using only connectives in C.
A disjunctive normal expression in the propositions p1, p2, . . . , pn is a disjunction of
one or more propositions, each of the form xk1 ∧ xk2 ∧ · · · ∧ xkm , where xkj is either pkj

or ¬pkj .

A disjunctive normal form (DNF) for a proposition P is a disjunctive normal ex-
pression that is logically equivalent to P .
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A conjunctive normal expression in the propositions p1, p2, . . . , pn is a conjunction
of one or more compound propositions, each of the form xk1 ∨xk2 ∨· · ·∨xkm , where xkj

is either pkj or ¬pkj .

A conjunctive normal form (CNF) for a proposition P is a conjunctive normal
expression that is logically equivalent to P .

A compound proposition P using only the connectives ¬, ∧, and ∨ has a logical dual
(denoted P ′ or P d), obtained by interchanging ∧ and ∨ and interchanging the constant
T (true) and the constant F (false).

The converse of the conditional proposition p→ q is the proposition q → p.

The contrapositive of the conditional proposition p→ q is the proposition ¬q → ¬p.
The inverse of the conditional proposition p→ q is the proposition ¬p→ ¬q.

Facts:
1. P ⇔ Q is true if and only if P ⇒ Q and Q⇒ P .
2. P ⇔ Q is true if and only if P ↔ Q is a tautology.
3. Table 1 lists several logical identities.
4. There are different ways to establish logical identities (equivalences):

• truth tables (showing that both expressions have the same truth values);
• using known logical identities and equivalence to establish new ones;
• taking the dual of a known identity (Fact 7).

5. Logical identities are used in circuit design to simplify circuits. See §5.8.4.
6. Each of the following sets of connectives is functionally complete:

{∧,∨,¬}, {∧,¬}, {∨,¬}, { | }, { ↓ }.
However, these sets of connectives are not functionally complete:

{∧}, {∨}, {∧,∨}.
7. If P ⇔ Q is a logical identity, then so is P ′ ⇔ Q′, where P ′ and Q′ are the duals
of P and Q, respectively.
8. Every proposition has a disjunctive normal form and a conjunctive normal form,
which can be obtained by Algorithms 1 and 2.

Algorithm 1: Disjunctive normal form of proposition P .

write the truth table for P
for each line of the truth table on which P is true, form a “line term”
x1 ∧ x2 ∧ · · · ∧ xn, where xi := pi if pi is true on that line of the truth table

and xi := ¬pi if pi is false on that line
form the disjunction of all these line terms

Algorithm 2: Conjunctive normal form of proposition P�

write the truth table for P
for each line of the truth table on which P is false, form a “line term”

x1 ∨ x2 ∨ · · · ∨ xn, where xi := pi if pi is false on that line of the truth table
and xi := ¬pi if pi is true on that line

form the conjunction of all these line terms
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Table 1 Logical identities.

name rule

Commutative laws p ∧ q ⇔ q ∧ p p ∨ q ⇔ q ∨ p

Associative laws p ∧ (q ∧ r)⇔ (p ∧ q) ∧ r p ∨ (q ∨ r)⇔ (p ∨ q) ∨ r

Distributive laws p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r)

DeMorgan’s laws ¬(p ∧ q)⇔ (¬p) ∨ (¬q) ¬(p ∨ q)⇔ (¬p) ∧ (¬q)
Excluded middle p ∨ ¬p⇔ T
Contradiction p ∧ ¬p⇔ F
Double negation law ¬(¬p)⇔ p

Contrapositive law p→ q ⇔ ¬q → ¬p
Conditional as disjunction p→ q ⇔ ¬p ∨ q

Negation of conditional ¬(p→ q)⇔ p ∧ ¬q
Biconditional as implication (p↔ q)⇔ (p→ q) ∧ (q → p)
Idempotent laws p ∧ p⇔ p p ∨ p⇔ p

Absorption laws p ∧ (p ∨ q)⇔ p p ∨ (p ∧ q)⇔ p

Dominance laws p ∨T⇔ T p ∧ F⇔ F
Exportation law p→ (q → r)⇔ (p ∧ q)→ r

Identity laws p ∧T⇔ p p ∨ F⇔ p

Examples:
1. The proposition p ∨ ¬p is a tautology (the law of the excluded middle).
2. The proposition p ∧ ¬p is a self-contradiction.
3. A proof that p↔ q is logically equivalent to (p ∧ q) ∨ (¬p ∧ ¬q) can be carried out
using a truth table:

p q p↔ q ¬p ¬q p ∧ q ¬p ∧ ¬q (p ∧ q) ∨ (¬p ∧ ¬q)
T T T F F T F T
T F F F T F F F
F T F T F F F F
F F T T T F T T

Since the third and eighth columns of the truth table are identical, the two statements
are equivalent.
4. A proof that p ↔ q is logically equivalent to (p ∧ q) ∨ (¬p ∧ ¬q) can be given by a
series of logical equivalences. Reasons are given at the right.

p↔ q ⇔ (p→ q) ∧ (q → p) biconditional as implication
⇔ (¬p ∨ q) ∧ (¬q ∨ p) conditional as disjunction
⇔ [(¬p ∨ q) ∧ ¬q] ∨ [(¬p ∨ q) ∧ p] distributive law
⇔ [(¬p ∧ ¬q) ∨ (q ∧ ¬q)] ∨ [(¬p ∧ p) ∨ (q ∧ p)] distributive law
⇔ [(¬p ∧ ¬q) ∨ F] ∨ [F ∨ (q ∧ p)] contradiction
⇔ [(¬p ∧ ¬q) ∨ F] ∨ [(q ∧ p) ∨ F] commutative law
⇔ (¬p ∧ ¬q) ∨ (q ∧ p) identity law
⇔ (¬p ∧ ¬q) ∨ (p ∧ q) commutative law
⇔ (p ∧ q) ∨ (¬p ∧ ¬q) commutative law
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5. The proposition p ↓ q is logically equivalent to ¬(p∨ q). Its DNF is ¬p∧¬q, and its
CNF is (¬p ∨ ¬q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q).
6. The proposition p|q is logically equivalent to ¬(p ∧ q). Its DNF is (p ∧ ¬q) ∨ (¬p ∧
q) ∨ (¬p ∧ ¬q), and its CNF is ¬p ∨ ¬q.
7. The DNF and CNF for Examples 5 and 6 were obtained by using Algorithm 1 and
Algorithm 2 to construct the following table of terms:

p q p ↓ q DNF terms CNF terms

T T F ¬p ∨ ¬q
T F F ¬p ∨ q

F T F p ∨ ¬q
F F T ¬p ∧ ¬q

p q p | q DNF terms CNF terms

T T F ¬p ∨ ¬q
T F T p ∧ ¬q
F T T ¬p ∧ q

F F T ¬p ∧ ¬q

8. The dual of p ∧ (q ∨ ¬r) is p ∨ (q ∧ ¬r).
9. Let S be the proposition in three propositional variables p, q, and r that is true
when precisely two of the variables are true. Then the disjunctive normal form for S is

(p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r)

and the conjunctive normal form for S is

(¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ q ∨ r).

1.1.3 PREDICATE LOGIC

Definitions:

A predicate is a declarative statement with the symbolic form P (x) or P (x1, . . . , xn)
about one or more variables x or x1, . . . , xn whose values are unspecified.

Predicate logic (or predicate calculus or first-order logic) is the study of state-
ments whose variables have quantifiers.

The universe of discourse (or universe or domain) of a variable is the set of possible
values of the variable in a predicate.

An instantiation of the predicate P (x) is the result of substituting a fixed constant
value c from the domain of x for each free occurrence of x in P (x). This is denoted by
P (c).

The existential quantification of a predicate P (x) whose variable ranges over a do-
main set D is the proposition (∃x ∈ D)P (x) or (∃x)P (x) that is true if there is at least
one c in D such that P (c) is true. The existential quantifier symbol, ∃, is read “there
exists” or “there is”.

The universal quantification of a predicate P (x) whose variable ranges over a domain
set D is the proposition (∀x ∈ D)P (x) or (∀x)P (x), which is true if P (c) is true for
every element c in D. The universal quantifier symbol, ∀, is read “for all”, “for each”,
or “for every”.

The unique existential quantification of a predicate P (x) whose variable ranges
over a domain set D is the proposition (∃!x)P (x) that is true if P (c) is true for exactly
one c in D. The unique existential quantifier symbol, ∃!, is read “there is exactly one”.

The scope of a quantifier is the predicate to which it applies.

c© 2000 by CRC Press LLC



A variable x in a predicate P (x) is a bound variable if it lies inside the scope of an
x-quantifier. Otherwise it is a free variable.

A well-formed formula (wff ) (or statement) is either a proposition or a predicate
with quantifiers that bind one or more of its variables.

A sentence (closed wff ) is a well-formed formula with no free variables.

A well-formed formula is in prenex normal form if all the quantifiers occur at the
beginning and the scope is whatever follows the quantifiers.

A well-formed formula is atomic if it does not contain any logical connectives; otherwise
the well-formed formula is compound.

Higher-order logic is the study of statements that allow quantifiers to range over
relations over a universe (second-order logic), relations over relations over a universe
(third-order logic), etc.

Facts:

1. If a predicate P (x) is atomic, then the scope of (∀x) in (∀x)P (x) is implicitly the
entire predicate P (x).

2. If a predicate is a compound form, such as P (x) ∧ Q(x), then (∀x)[P (x) ∧ Q(x)]
means that the scope is P (x)∧Q(x), whereas (∀x)P (x)∧Q(x) means that the scope is
only P (x), in which case the free variable x of the predicate Q(x) has no relationship
to the variable x of P (x).

3. Universal statements in predicate logic are analogues of conjunctions in propositional
logic. If variable x has domain D = {x1, . . . , xn}, then (∀x ∈ D)P (x) is true if and only
if P (x1) ∧ · · · ∧ P (xn) is true.

4. Existential statements in predicate logic are analogues of disjunctions in proposi-
tional logic. If variable x has domain D = {x1, . . . , xn}, then (∃x ∈ D)P (x) is true if
and only if P (x1) ∨ · · · ∨ P (xn) is true.

5. Adjacent universal quantifiers [existential quantifiers] can be transposed without
changing the meaning of a logical statement:

(∀x)(∀y)P (x, y) ⇔ (∀y)(∀x)P (x, y)
(∃x)(∃y)P (x, y) ⇔ (∃y)(∃x)P (x, y).

6. Transposing adjacent logical quantifiers of different types can change the meaning
of a statement. (See Example 4.)

7. Rules for negations of quantified statements:

¬(∀x)P (x) ⇔ (∃x)[¬P (x)]

¬(∃x)P (x) ⇔ (∀x)[¬P (x)]

¬(∃!x)P (x) ⇔ ¬(∃x)P (x) ∨ (∃y)(∃z)[(y �= z) ∧ P (y) ∧ P (z)].

8. Every quantified statement is logically equivalent to some statement in prenex nor-
mal form.

9. Every statement with a unique existential quantifier is equivalent to a statement
that uses only existential and universal quantifiers, according to the rule:

(∃!x)P (x)⇔ (∃x)
[
P (x) ∧ (∀y)[P (y)→ (x = y)]

]
where P (y) means that y has been substituted for all free occurrences of x in P (x), and
where y is a variable that does not occur in P (x).
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10. If a statement uses only the connectives ∨, ∧, and ¬, the following equivalences
can be used along with Fact 7 to convert the statement into prenex normal form. The
letter A represents a wff without the variable x.

(∀x)P (x) ∧ (∀x)Q(x) ⇔ (∀x)[P (x) ∧Q(x)]

(∀x)P (x) ∨ (∀x)Q(x) ⇔ (∀x)(∀y)[P (x) ∨Q(y)]

(∃x)P (x) ∧ (∃x)Q(x) ⇔ (∃x)(∃y)[P (x) ∧Q(y)]

(∃x)P (x) ∨ (∃x)Q(x) ⇔ (∃x)[P (x) ∨Q(x)]

(∀x)P (x) ∧ (∃x)Q(x) ⇔ (∀x)(∃y)[P (x) ∧Q(y)]

(∀x)P (x) ∨ (∃x)Q(x) ⇔ (∀x)(∃y)[P (x) ∨Q(y)]

A ∨ (∀x)P (x) ⇔ (∀x)[A ∨ P (x)]

A ∨ (∃x)P (x) ⇔ (∃x)[A ∨ P (x)]

A ∧ (∀x)P (x) ⇔ (∀x)[A ∧ P (x)]

A ∧ (∃x)P (x) ⇔ (∃x)[A ∧ P (x)].

Examples:

1. The statement (∀x ∈ R)(∀y ∈ R) [x + y = y + x] is syntactically a predicate pre-
ceded by two universal quantifiers. It asserts the commutative law for the addition of
real numbers.

2. The statement (∀x)(∃y) [xy = 1] expresses the existence of multiplicative inverses
for all number in whatever domain is under discussion. Thus, it is true for the positive
real numbers, but it is false when the domain is the entire set of reals, since zero has no
multiplicative inverse.

3. The statement (∀x �= 0)(∃y) [xy = 1] asserts the existence of multiplicative inverses
for nonzero numbers.

4. (∀x)(∃y) [x + y = 0] expresses the true proposition that every real number has an
additive inverse, but (∃y)(∀x) [x+y = 0] is the false proposition that there is a “universal
additive inverse” that when added to any number always yields the sum 0.

5. In the statement (∀x ∈ R) [x+y = y+x], the variable x is bound and the variable y
is free.

6. “Not all men are mortal” is equivalent to “there exists at least one man who is not
mortal”. Also, “there does not exist a cow that is blue” is equivalent to the statement
“every cow is a color other than blue”.

7. The statement (∀x)P (x)→ (∀x)Q(x) is not in prenex form. An equivalent prenex
form is (∀x)(∃y) [P (y)→ Q(x)].

8. The following table illustrates the differences in meaning among the four different
ways to quantify a predicate with two variables:

statement meaning

(∃x)(∃y) [x + y = 0] There is a pair of numbers whose sum is zero.
(∀x)(∃y) [x + y = 0] Every number has an additive inverse.
(∃x)(∀y) [x + y = 0] There is a universal additive inverse x.
(∀x)(∀y) [x + y = 0] The sum of every pair of numbers is zero.

9. The statement (∀x)(∃!y) [x+y = 0] asserts the existence of unique additive inverses.
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1.2 SET THEORY

Sets are used to group objects and to serve as the basic elements for building more
complicated objects and structures. Counting elements in sets is an important part of
discrete mathematics.

Some general reference books that cover the material of this section are [FlPa88],
[Ha60], [Ka50].

1.2.1 SETS

Definitions:

A set is any well-defined collection of objects, each of which is called a member or an
element of the set. The notation x ∈ A means that the object x is a member of the
set A. The notation x /∈ A means that x is not a member of A.

A roster for a finite set specifies the membership of a set S as a list of its elements
within braces, i.e., in the form S = {a1, . . . , an}. Order of the list is irrelevant, as is the
number of occurrences of an object in the list.

A defining predicate specifies a set in the form S = {x | P (x) }, where P (x) is a
predicate containing the free variable x. This means that S is the set of all objects x
(in whatever domain is under discussion) such that P (x) is true.

A recursive description of a set S gives a roster B of basic objects of S and a set
of operations for constructing additional objects of S from objects already known to be
in S. That is, any object that can be constructed by a finite sequence of applications
of the given operations to objects in B is also a member of S. There may also be a list
of axioms that specify when two sequences of operations yield the same result.

The set with no elements is called the null set or the empty set, denoted ∅ or { }.
A singleton is a set with one element.

The set N of natural numbers is the set {0, 1, 2, . . .}. (Sometimes 0 is excluded from
the set of natural numbers; when the set of natural numbers is encountered, check to
see how it is being defined.)

The set Z of integers is the set {. . . ,−2,−1, 0, 1, 2, . . .}.
The set Q of rational numbers is the set of all fractions a

b where a is any integer and b
is any nonzero integer.

The set R of real numbers is the set of all numbers that can be written as terminating
or nonterminating decimals.

The set C of complex numbers is the set of all numbers of the form a + bi, where
a, b ∈ R and i =

√
−1 (i2 = −1).

Sets A and B are equal, written A = B, if they have exactly the same elements:

A = B ⇔ (∀x)
[
(x ∈ A)↔ (x ∈ B)

]
.

Set B is a subset of set A, written B ⊆ A or A ⊇ B, if each element of B is an element
of A:

B ⊆ A ⇔ (∀x)
[
(x ∈ B)→ (x ∈ A)

]
.
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Set B is a proper subset of A if B is a subset of A and A contains at least one element
not in B. (The notation B ⊂ A is often used to indicate that B is a proper subset of A,
but sometimes it is used to mean an arbitrary subset. Sometimes the proper subset
relationship is written B⊂

�=A, to avoid all possible notational ambiguity.)

A set is finite if it is either empty or else can be put in a one-to-one correspondence
with the set {1, 2, 3, . . . , n} for some positive integer n.

A set is infinite if it is not finite.

The cardinality |S| of a finite set S is the number of elements in S.

A multiset is an unordered collection in which elements can occur arbitrarily often,
not just once. The number of occurrences of an element is called its multiplicity .

An axiom (postulate) is a statement that is assumed to be true.

A set of axioms is consistent if no contradiction can be deduced from the axioms.

A set of axioms is complete if it is possible to prove all true statements.

A set of axioms is independent if none of the axioms can be deduced from the other
axioms.

A set paradox is a question in the language of set theory that seems to have no
unambiguous answer.

Naive set theory is set theory where any collection of objects can be considered to
be a valid set, with paradoxes ignored.

Facts:
1. The theory of sets was first developed by Georg Cantor (1845–1918).
2. A = B if and only if A ⊆ B and B ⊆ A.
3. N ⊂ Z ⊂ Q ⊂ R ⊂ C.
4. Every rational number can be written as a decimal that is either terminating or else
repeating (i.e., the same block repeats end-to-end forever).
5. Real numbers can be represented as the points on the number line, and include all
rational numbers and all irrational numbers (such as

√
2, π, e, etc.).

6. There is no set of axioms for set theory that is both complete and consistent.
7. Naive set theory ignores paradoxes. To avoid such paradoxes, more axioms are
needed.

Examples:
1. The set {x ∈ N | 3 ≤ x < 10 }, described by the defining predicate 3 ≤ x < 10 is
equal to the set {3, 4, 5, 6, 7, 8, 9}, which is described by a roster.
2. If A is the set with two objects, one of which is the number 5 and other the set
whose elements are the letters x, y, and z, then A = {5, {x, y, z}}. In this example,
5 ∈ A, but x /∈ A, since x is not either member of A.
3. The set E of even natural numbers can be described recursively as follows:

Basic objects: 0 ∈ E,
Recursion rule: if n ∈ E, then n + 2 ∈ E.

4. The liar’s paradox: A person says “I am lying”. Is the person lying or is the person
telling the truth? If the person is lying, then “I am lying” is false, and hence the person
is telling the truth. If the person is telling the truth, then “I am lying” is true, and
the person is lying. This is also called the paradox of Epimenides. This paradox also
results from considering the statement “This statement is false”.
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5. The barber paradox: In a small village populated only by men there is exactly one
barber. The villagers follow the following rule: the barber shaves a man if and only
if the man does not shave himself. Question: does the barber shave himself? If “yes”
(i.e., the barber shaves himself), then according to the rule he does not shave himself. If
“no” (i.e., the barber does not shave himself), then according to the rule he does shave
himself. This paradox illustrates a danger in describing sets by defining predicates.
6. Russell’s paradox: This paradox, named for the British logician Bertrand Russell
(1872–1970), shows that the “set of all sets” is an ill-defined concept. If it really were a
set, then it would be an example of a set that is a member of itself. Thus, some “sets”
would contain themselves as elements and others would not. Let S be the “set” of “sets
that are not elements of themselves”; i.e., S = {A | A /∈ A }. Question: is S a member
of itself? If “yes”, then S is not a member of itself, because of the defining membership
criterion. If “no”, then S is a member of itself, due to the defining membership criterion.
One resolution is that the collection of all sets is not a set. (See Chapter 4 of [MiRo91].)
7. Paradoxes such as those in Example 6 led Alfred North Whitehead (1861–1947) and
Bertrand Russell to develop a version of set theory by categorizing sets based on set
types: T0, T1, . . . . The lowest type, T0, consists only of individual elements. For i > 0,
type Ti consists of sets whose elements come from type Ti−1. This forces sets to belong
to exactly one type. The expression A ∈ A is always false. In this situation Russell’s
paradox cannot happen.

1.2.2 SET OPERATIONS

Definitions:

The intersection of sets A and B is the set A ∩ B = {x | (x ∈ A) ∧ (x ∈ B) }. More
generally, the intersection of any family of sets is the set of objects that are members of
every set in the family. The notation⋂

i∈I Ai = {x | x ∈ Ai for all i ∈ I }
is used for the intersection of the family of sets Ai indexed by the set I.

Two sets A and B are disjoint if A ∩B = ∅.
A collection of sets { ai | i ∈ I } is disjoint if

⋂
i∈I Ai = ∅.

A collection of sets is pairwise disjoint (or mutually disjoint) if every pair of sets
in the collection are disjoint.

The union of sets A and B is the set A∪B = {x | (x ∈ A) ∨ (x ∈ B) }. More generally,
the union of a family of sets is the set of objects that are members of at least one set in
the family. The notation⋃

i∈I Ai = {x | x ∈ Ai for some i ∈ I }
is used for the union of the family of sets Ai indexed by the set I.

A partition of a set S is a pairwise disjoint family P = {Ai} of nonempty subsets
whose union is S.

The partition P2 = {Bi} of a set S is a refinement of the partition P1 = {Aj} of the
same set if for every subset Bi ∈ P2 there is a subset Aj ∈ P1 such that Bi ⊆ Aj .

The complement of the set A is the set A = U − A = {x | x /∈ A } containing every
object not in A, where the context provides that the objects range over some specific
universal domain U . (The notation A′ or Ac is sometimes used instead of A.)
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The set difference is the set A − B = A ∩ B = {x | (x ∈ A) ∧ (x /∈ B) }. The set
difference is sometimes written A \B.

The symmetric difference of A and B is the set A⊕B = {x | (x ∈ A−B) ∨ (x ∈
B −A) }. This is sometimes written A2B.

The Cartesian product A×B of two sets A and B is the set { (a, b) | (a ∈ A) ∧ (b ∈
B) }, which contains all ordered pairs whose first coordinate is from A and whose second
coordinate is from B. The Cartesian product of A1, . . . , An is the set A1×A2×· · ·×An =∏n

i=1 Ai = { (a1, a2, . . . , an) | (∀i)(ai ∈ Ai) }, which contains all ordered n-tuples whose
ith coordinate is from Ai. The Cartesian product A × A × · · · × A is also written An.
If S is any set, the Cartesian product of the collection of sets As, where s ∈ S, is the
set

∏
s∈S As of all functions f :S →

⋃
s∈S As such that f(s) ∈ As for all s ∈ S.

The power set of A is the set P(A) of all subsets of A. The alternative notation 2A

for P(A) emphasizes the fact that the power set has 2n elements if A has n elements.

A set expression is any expression built up from sets and set operations.

A set equation (or set identity) is an equation whose left side and right side are both
set expressions.

A system of distinct representatives (SDR) for a collection of sets A1, A2, . . . , An

(some of which may be equal) is a set {a1, a2, . . . , an} of n distinct elements such that
ai ∈ Ai for i = 1, 2, . . . , n.

A Venn diagram is a family of n simple closed curves (typically circles or ellipses)
arranged in the plane so that all possible intersections of the interiors are nonempty
and connected. (John Venn, 1834–1923)

A Venn diagram is simple if at most two curves intersect at any point of the plane.

A Venn diagram is reducible if there is a sequence of curves whose iterative removal
leaves a Venn diagram at each step.

A membership table is a table used to calculate whether an object lies in the set
described by a set expression, based on its membership in the sets mentioned by the
expression.

Facts:

1. If a collection of sets is pairwise disjoint, then the collection is disjoint. The converse
is false.

A B
A

B C

2. The following figure illustrates Venn diagrams for two and three sets.

3. The following figure gives the Venn diagrams for sets constructed using various set
operations.

A B A B U

A

A B A

B C

(A ∩ B) - CA - B(A ∪ B)A ∩ B A
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4. Intuition regarding set identities can be gleaned from Venn diagrams, but it can be
misleading to use Venn diagrams when proving theorems unless great care is taken to
make sure that the diagrams are sufficiently general to illustrate all possible cases.

5. Venn diagrams are often used as an aid to inclusion/exclusion counting. (See §2.4.)

6. Venn gave examples of Venn diagrams with four ellipses and asserted that no Venn
diagram could be constructed with five ellipses.

7. Peter Hamburger and Raymond Pippert (1996) constructed a simple, reducible Venn
diagram with five congruent ellipses. (Two ellipses are congruent if they are the exact
same size and shape, and differ only by their placement in the plane.)

8. Many of the logical identities given in §1.1.2 correspond to set identities, given in
the following table.

name rule

Commutative laws A ∩B = B ∩A A ∪B = B ∪A

Associative laws A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪ (B ∪ C) = (A ∪B) ∪ C

Distributive laws A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

DeMorgan’s laws A ∩B = A ∪B A ∪B = A ∩B

Complement laws A ∩A = ∅ A ∪A = U

Double complement law A = A

Idempotent laws A ∩A = A A ∪A = A

Absorption laws A ∩ (A ∪B) = A A ∪ (A ∩B) = A

Dominance laws A ∩ ∅ = ∅ A ∪ U = U

Identity laws A ∪ ∅ = A A ∩ U = A

9. In a computer, a subset of a relatively small universal domain can be represented by
a bit string. Each bit location corresponds to a specific object of the universal domain,
and the bit value indicates the presence (1) or absence (0) of that object in the subset.

10. In a computer, a subset of a relatively large ordered datatype or universal domain
can be represented by a binary search tree.

11. For any two finite sets A and B, |A∪B| = |A|+ |B| − |A∩B| (inclusion/exclusion
principle). (See §2.3.)

12. Set identities can be proved by any of the following:
• a containment proof: show that the left side is a subset of the right side and the

right side is a subset of the left side;
• a membership table: construct the analogue of the truth table for each side of

the equation;
• using other set identities.

13. For all sets A, |A| < |P(A)|.
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14. Hall’s theorem: A collection of sets A1, A2, . . . , An has a system of distinct repre-
sentatives if and only if for all k = 1, . . . , n every collection of k subsets Ai1 , Ai2 , . . . , Aik

satisfies |Aii ∪Ai2 ∪ · · · ∪Aik
| ≥ k.

15. If a collection of sets A1, A2, . . . , An has a system of distinct representatives and if
an integer m has the property that |Ai| ≥ m for each i, then:

• if m ≥ n there are at least m!
(m−n)! systems of distinct representatives;

• if m < n there are at least m! systems of distinct representatives.

16. Systems of distinct representatives can be phrased in terms of 0-1 matrices and
graphs. See §6.6.1, §8.12, and §10.4.3.

Examples:

1. {1, 2} ∩ {2, 3} = {2}.
2. The collection of sets {1, 2}, {4, 5}, {6, 7, 8} is pairwise disjoint, and hence disjoint.

3. The collection of sets {1, 2}, {2, 3}, {1, 3} is disjoint, but not pairwise disjoint.

4. {1, 2} ∪ {2, 3} = {1, 2, 3}.
5. Suppose that for every positive integer n, [j mod n] = { k ∈ Z | k mod n = j }, for
j = 0, 1, . . . , n− 1. (See §1.3.1.) Then { [0 mod 3], [1 mod 3], [2 mod 3] } is a partition
of the integers. Moreover, { [0 mod 6], [1 mod 6], . . . , [5 mod 6] } is a refinement of
this partition.

6. Within the context of Z as universal domain, the complement of the set of positive
integers is the set consisting of the negative integers and 0.

7. {1, 2} − {2, 3} = {1}.
8. {1, 2} × {2, 3} = {(1, 2), (1, 3), (2, 2), (2, 3)}.
9. P({1, 2}) = {∅, {1}, {2}, {1, 2}}.
10. If L is a line in the plane, and if for each x ∈ L, Cx is the circle of radius 1 centered
at point x, then

⋃
x∈L Cx is an infinite strip of width 2, and

⋂
x∈L Cx = ∅.

11. The five-fold Cartesian product {0, 1}5 contains 32 different 5-tuples, including,
for instance, (0, 0, 1, 0, 1).

12. The set identity A ∩B = A ∪ B is verified by the following membership table.
Begin by listing the possibilities for elements being in or not being in the sets A and B,
using 1 to mean “is an element of” and 0 to mean “is not an element of”. Proceed to
find the element values for each combination of sets. The two sides of the equation are
the same since the columns for A ∩B and A ∪B are identical:

A B A ∩B A ∩B A B A ∪B

1 1 1 0 0 0 0
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 0 1 1 1 1

13. The collection of sets A1 = {1, 2}, A2 = {2, 3}, A3 = {1, 3, 4} has systems of
distinct representatives, for example {1, 2, 3} and {2, 3, 4}.
14. The collection of sets A1 = {1, 2}, A2 = {1, 3}, A3 = {2, 3}, A4 = {1, 2, 3}, A5 =
{2, 3, 4} does not have a system of distinct representatives since |A1∪A2∪A3∪A4| < 4.
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1.2.3 INFINITE SETS

Definitions:

The Peano definition for the natural numbers N :
• 0 is a natural number;
• every natural number n has a successor s(n);
• axioms:

3 0 is not the successor of any natural number;
3 two different natural numbers cannot have the same successor;
3 if 0 ∈ T and if (∀n ∈ N )

[
(n ∈ T )→ (s(n) ∈ T )

]
, then T = N .

(This axiomatization is named for Giuseppe Peano, 1858–1932.)

A set is denumerable (or countably infinite) if it can be put in a one-to-one corre-
spondence with the set of natural numbers {0, 1, 2, 3, . . .}. (See §1.3.1.)

A countable set is a set that is either finite or denumerable. All other sets are un-
countable.

The ordinal numbers (or ordinals) are defined recursively as follows:
• the empty set is the ordinal number 0;
• if α is an ordinal number, then so is the successor of α, written α+ or α + 1,

which is the set α ∪ {α};
• if β is any set of ordinals closed under the successor operation, then β is an

ordinal, called a limit ordinal.

The ordinal α is said to be less than the ordinal β, written α < β, if α ⊆ β (which is
equivalent to α ∈ β).

The sum of ordinals α and β, written α + β, is the ordinal corresponding to the well-
ordered set given by all the elements of α in order, followed by all the elements of β
(viewed as being disjoint from α) in order. (See Fact 26 and §1.4.3.)

The product of ordinals α and β, written α · β, is the ordinal equal to the Cartesian
product α×β with ordering (a1, b1) < (a2, b2) whenever b1 < b2, or b1 = b2 and a1 < a2

(this is reverse lexicographic order).

Two sets have the same cardinality (or are equinumerous) if they can be put into
one-to-one correspondence (§1.3.1.). When the equivalence relation “equinumerous” is
used on all sets (see §1.4.2.), the sets in each equivalence class have the same cardinal
number. The cardinal number of a set A is written |A|. It can also be regarded as the
smallest ordinal number among all those ordinal numbers with the same cardinality.

An order relation can be defined on cardinal numbers of sets by the rule |A| ≤ B if
there is a one-to-one function f :A→ B. If |A| ≤ |B| and |A| �= |B|, write |A| < |B|.
The sum of cardinal numbers a and b, written a + b, is the cardinal number of the
union of two disjoint sets A and B such that |A| = a and |B| = b.

The product of cardinal numbers a and b, written ab, is the cardinal number of the
Cartesian product of two sets A and B such that |A| = a and |B| = b.

Exponentiation of cardinal numbers, written ab, is the cardinality of the set AB of
all functions from B to A, where |A| = a and |B| = b.
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Facts:

1. Axiom 3 in the Peano definition of the natural numbers is the principle of mathe-
matical induction. (See §1.5.6.)

2. The finite cardinal numbers are written 0, 1, 2, 3, . . . .

3. The cardinal number of any finite set with n elements is n.

4. The first infinite cardinal numbers are written ℵ0,ℵ1,ℵ2, . . . ,ℵω, . . . .

5. For each ordinal α, there is a cardinal number ℵα.

6. The cardinal number of any denumerable set, such as N , Z, and Q, is ℵ0.

7. The cardinal number of P(N ), R, and C is denoted c (standing for the continuum).

8. The set of algebraic numbers (all solutions of polynomials with integer coefficients)
is denumerable.

9. The set R is uncountable (proved by Georg Cantor in late 19th century, using a
diagonal argument). (See §1.5.7.)

10. Every subset of a countable set is countable.

11. The countable union of countable sets is countable.

12. Every set containing an uncountable subset is uncountable.

13. The continuum problem, posed by Georg Cantor (1845–1918) and restated by
David Hilbert (1862–1943) in 1900, is the problem of determining the cardinality, |R|,
of the real numbers.

14. The continuum hypothesis is the assertion that |R| = ℵ1, the first cardinal
number larger than ℵ0. Equivalently, 2ℵ0 = ℵ1. (See Fact 35.) Kurt Gödel (1906–1978)
proved in 1938 that the continuum hypothesis is consistent with various other axioms of
set theory. Paul Cohen (born 1934) demonstrated in 1963 that the continuum hypothesis
cannot be proved from those other axioms; i.e., it is independent of the other axioms of
set theory.

15. The generalized continuum hypothesis is the assertion that 2ℵα = ℵα+1 for
all ordinals α. That is, for infinite sets there is no cardinal number strictly between |S|
and |P(S)|.
16. The generalized continuum hypothesis is consistent with and independent of the
usual axioms of set theory.

17. There is no largest cardinal number.

18. |A| < |P(A)| for all sets A.

19. Schröder-Bernstein theorem: If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|. (This is
also called the Cantor-Schröder-Bernstein theorem.)

20. The ordinal number 1 = 0+ = {∅} = {0}, the ordinal number 2 = 1+ = {0, 1}, etc.
In general, for finite ordinals, n + 1 = n+ = {0, 1, 2, . . . , n}.
21. The first limit ordinal is ω = {0, 1, 2, . . .}. Then ω + 1 = ω+ = ω ∪ {ω} =
{0, 1, 2, . . . , ω}, and so on. The next limit ordinal is ω + ω = {0, 1, 2, . . . , ω, ω + 1, ω +
2, . . .}, also denoted ω · 2. The process never stops, because the next limit ordinal can
always be formed as the union of the infinite process that has gone before.

22. Limit ordinals have no immediate predecessors.

c© 2000 by CRC Press LLC



23. The first ordinal that, viewed as a set, is not countable, is denoted ω1.

24. For ordinals the following are equivalent: α < β, α ∈ β, α ⊂ β.

25. Every set of ordinal numbers has a smallest element; i.e., the ordinals are well-
ordered. (See §1.4.3.)

26. Ordinal numbers correspond to well-ordered sets (§1.4.3). Two well-ordered sets
represent the same ordinal if they can be put into an order-preserving one-to-one cor-
respondence.

27. Addition and multiplication of ordinals are associative operations.

28. Ordinal addition and multiplication for finite ordinals (those less than ω) are the
same as ordinary addition and multiplication on the natural numbers.

29. Addition of infinite ordinals is not commutative. (See Example 2.)

30. Multiplication of infinite ordinals is not commutative. (See Example 3.)

31. The ordinals 0 and 1 are identities for addition and multiplication, respectively.

32. Multiplication of ordinals is distributive over addition on the left: α(β + γ) =
αβ + αγ. It is not distributive on the right.

33. In the definition of the cardinal number ab, when a = 2, the set A can be taken
to be A = {0, 1} and an element of AB can be identified with a subset of B (namely,
those elements of B sent to 1 by the function). Thus 2|B| = |P(B)|, the cardinality of
the power set of B.

34. If a and b are cardinals, at least one of which is infinite, then a + b = a · b = the
larger of a and b.

35. cℵ0 = ℵℵ0
0 = 2ℵ0

36. The usual rules for finite arithmetic continue to hold for infinite cardinal arithmetic
(commutativity, associativity, distributivity, and rules for exponents).

Examples:

1. ω1 > ω · 2, ω1 > ω2, ω1 > ωω.

2. 1 + ω = ω, but ω + 1 > ω.

3. 2 · ω = ω, but ω · 2 > ω.

4. ℵ0 · ℵ0 = ℵ0 + ℵ0 = ℵ0.

1.2.4 AXIOMS FOR SET THEORY

Set theory can be viewed as an axiomatic system, with undefined terms “set” (the
universe of discourse) and “is an element of” (a binary relation denoted ∈).

Definitions:

The Axiom of choice (AC) states: If A is any set whose elements are pairwise disjoint
nonempty sets, then there exists a set X that has as its elements exactly one element
from each set in A.
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The Zermelo-Fraenkel (ZF) axioms for set theory: (The axioms are stated infor-
mally.)

• Extensionality (equality): Two sets with the same elements are equal.

• Pairing : For every a and b, the set {a, b} exists.

• Specification (subset): If A is a set and P (x) is a predicate with free variable x,
then the subset of A exists that consists of those elements c ∈ A such that P (c)
is true. (The specification axiom guarantees that the intersection of two sets
exists.)

• Union: The union of a set (i.e., the set of all the elements of its elements) exists.
(The union axiom together with the pairing axiom implies the existence of the
union of two sets.)

• Power set: The power set (set of all subsets) of a set exists.

• Empty set: The empty set exists.

• Regularity (foundation): Every nonempty set contains a “foundational” element;
that is, every nonempty set contains an element that is not an element of any
other element in the set. (The regularity axiom prevents anomalies such as a
set being an element of itself.)

• Replacement: If f is a function defined on a set A, then the collection of images
{ f(a) | a ∈ A } is a set. The replacement axiom (together with the union
axiom) allows the formation of large sets by expanding each element of a set
into a set.

• Infinity : An infinite set, such as ω (§1.2.3), exists.

Facts:

1. The axiom of choice is consistent with and independent of the other axioms of set
theory; it can be neither proved nor disproved from the other axioms of set theory.

2. The axioms of ZF together with the axiom of choice are denoted ZFC.

3. The following propositions are equivalent to the axiom of choice:

• The well-ordering principle: Every set can be well-ordered; i.e., for every set A
there exists a total ordering on A such that every subset of A contains a smallest
element under this ordering.

• Generalized axiom of choice (functional version): If A is any collection of non-
empty sets, then there is a function f whose domain is A, such that f(X) ∈ X
for all X ∈ A.

• Zorn’s lemma: Every nonempty partially ordered set in which every chain (totally
ordered subset) contains an upper bound (an element greater than all the other
elements in the chain) has a maximal element (an element that is less than no
other element). (§1.4.3.)

• The Hausdorff maximal principle: Every chain in a partially ordered set is con-
tained in a maximal chain (a chain that is not strictly contained in another
chain). (§1.4.3.)

• Trichotomy : Given any two sets A and B, either there is a one-to-one function
from A to B, or there is a one-to-one function from B to A; i.e., either |A| ≤ |B|
or |B| ≤ |A|.
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1.3 FUNCTIONS
A function is a rule that associates to each object in one set an object in a second set

(these sets are often sets of numbers). For instance, the expected population in future
years, based on demographic models, is a function from calendar years to numbers.
Encryption is a function from confidential information to apparent nonsense messages,
and decryption is a function from apparent nonsense back to confidential information.
Computer scientists and mathematicians are often concerned with developing methods
to calculate particular functions quickly.

1.3.1 BASIC TERMINOLOGY FOR FUNCTIONS

Definitions:

A function f from a set A to a set B, written f :A→ B, is a rule that assigns to every
object a ∈ A exactly one element f(a) ∈ B. The set A is the domain of f ; the set B
is the codomain of f ; the element f(a) is the image of a or the value of f at a. A
function f is often identified with its graph { (a, b) | a ∈ A and b = f(a) } ⊆ A×B.

Note: The function f :A → B is sometimes represented by the “maps to” notation
x 4→ f(x) or by the variation x 4→ expr(x), where expr(x) is an expression in x. The
notation f(x) = expr(x) is a form of the “maps to” notation without the symbol 4→.

The rule defining a function f :A→ B is called well-defined since to each a ∈ A there
is associated exactly one element of B.

If f :A → B and S ⊆ A, the image of the subset S under f is the set f(S) = { f(x) |
x ∈ S }.
If f :A→ B and T ⊆ B, the pre-image or inverse image of the subset T under f is
the set f−1(T ) = {x | f(x) ∈ T }.
The image of a function f :A→ B is the set f(A) = { f(x) | x ∈ A }.
The range of a function f :A → B is the image set f(A). (Some authors use “range”
as a synonym for “codomain”.)

A function f :A→ B is one-to-one (1–1, injective, or a monomorphism) if distinct
elements of the domain are mapped to distinct images; i.e., f(a1) �= f(a2) whenever
a1 �= a2. An injection is an injective function.

A function f :A → B is onto (surjective, or an epimorphism) if every element of
the codomain B is the image of at least one element of A; i.e., if (∀b ∈ B)(∃a ∈ A)
[f(a) = b] is true. A surjection is a surjective function.

A function f :A → B is bijective (or a one-to-one correspondence) if it is both
injective and surjective; i.e., it is 1–1 and onto. A bijection is a bijective function.

If f :A → B and S ⊆ A, the restriction of f to S is the function fS :S → B where
fS(x) = f(x) for all x ∈ S. The function f is an extension of fS . The restriction of f
to S is also written f |S .

A partial function on a set A is a rule f that assigns to each element in a subset of A
exactly one element of B. The subset of A on which f is defined is the domain of
definition of f . In a context that includes partial functions, a rule that applies to all
of A is called a total function.
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Given a 1–1 onto function f :A → B, the inverse function f−1:B → A has the rule
that for each y ∈ B, f−1(y) is the object x ∈ A such that f(x) = y.

If f :A→ B and g:B → C, then the composition is the function g◦f :A→ C defined
by the rule (g◦f)(x) = g(f(x)) for all x ∈ A. The function to the right of the raised
circle is applied first.
Note: Care must be taken since some sources define the composition (g◦f)(x) = f(g(x))
so that the order of application reads left to right.

If f :A→ A, the iterated functions fn:A→ A (n ≥ 2) are defined recursively by the
rule fn(x) = f ◦ fn−1(x).

A function f :A→ A is idempotent if f ◦ f = f .

A function f :A→ A is an involution if f ◦ f = iA. (See Example 1.)

A function whose domain is a Cartesian product A1 × · · · × An is often regarded as
a function of n variables (also called a multivariate function), and the value of f at
(a1, . . . , an) is usually written f(a1, . . . , an).

An (n-ary) operation on a set A is a function f :An → A, where An = A × · · · × A
(with n factors in the product). A 1-ary operation is called monadic or unary , and a
2-ary operation is called binary .

Facts:

1. The graph of a function f :A→ B is a binary relation on A×B. (§1.4.1.)

2. The graph of a function f :A→ B is a subset S of A×B such that for each a ∈ A
there is exactly one b ∈ B such that (a, b) ∈ S.

3. In general, two or more different objects in the domain of a function might be
assigned the same value in the codomain. If this occurs, the function is not 1–1.

4. If f :A → B is bijective, then: f◦f−1 = iB (Example 1), f−1◦f = iA, f−1 is
bijective, and (f−1)−1 = f .

5. Function composition is associative: (f◦g)◦h = f◦(g◦h), whenever h:A → B,
g:B → C, and f :C → D.

6. Function composition is not commutative; that is, f◦g �= g◦f in general. (See
Example 12.)

7. Set operations with functions: If f :A→ B with S1, S2 ⊆ A and T1, T2 ⊆ B, then:

• f(S1 ∪ S2) = f(S1) ∪ f(S2);

• f(S1 ∩ S2) ⊆ f(S1) ∩ f(S2), with equality if f is injective;

• f(S1) ⊇ f(S1) (i.e., f(A− S1) ⊇ B − f(S1)), with equality if f is injective;

• f−1(T1 ∪ T2) = f−1(T1) ∪ f−1(T2);

• f−1(T1 ∩ T2) = f−1(T1) ∩ f−1(T2);

• f−1(T1 ) = f−1(T1) (i.e., f−1(B − T1) = A− f−1(T1));

• f−1(f(S1)) ⊇ S1, with equality if f is injective;

• f(f−1(T1)) ⊆ T1, with equality if f is surjective.

8. If f :A→ B and g:B → C are both bijective, then (g ◦ f)−1 = f−1 ◦ g−1.

9. If an operation ∗ (such as addition) is defined on a set B, then that operation can be
extended to the set of all functions from a set A to B, by setting (f ∗g)(x) = f(x)∗g(x).
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10. Numbers of functions: If |A| = m and |B| = n, the numbers of different types of
functions f :A→ B are given in the following list:

• all: nm (§2.2.1)
• one-to-one: P (n,m) = n(n− 1)(n− 2) . . . (n−m + 1) if n ≥ m (§2.2.1)
• onto:

∑n
j=0(−1)j

(
n
j

)
(n− j)m if m ≥ n (§2.4.2)

• partial: (n + 1)m (§2.3.2)

Examples:

1. The following are some common functions:

• exponential function to base b (for b > 0, b �= 1): the function f :R → R+

where f(x) = bx. (See the following figure.) (R+ is the set of positive real
numbers.)

• logarithm function with base b (for b > 0, b �= 1): the function logb:R+ → R
that is the inverse of the exponential function to base b; that is,

logb x = y if and only if by = x.

• common logarithm function: the function log10:R+ → R (also written log)
that is the inverse of the exponential function to base 10; i.e., log10 x = y when
10y = x. (See the following figure.)

• binary logarithm function: the function log2:R+ → R (also denoted log
or lg) that is the inverse of exponential function to base 2; i.e., log2 x = y when
2y = x. (See the following figure.)

• natural logarithm function: the function ln:R+ → R is the inverse of
the exponential function to base e; i.e., ln(x) = y when ey = x, where e =
limn→∞(1 + 1

n )n ≈ 2.718281828459. (See the following figure.)
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• iterated logarithm: the function log∗:R+ → {0, 1, 2, . . .} where log∗ x is the
smallest nonnegative integer k such that log(k) x ≤ 1; the function log(k) is
defined recursively by

log(k) x =

{
x if k = 0
log(log(k−1) x) if log(k−1) x is defined and positive
undefined otherwise.

• mod function: for a given positive integer n, the function f :Z → N defined by
the rule f(k) = k mod n, where k mod n is the remainder when the division
algorithm is used to divide k by n. (See §4.1.2.)

• identity function on a set A : the function iA:A→ A such that iA(x) = x for
all x ∈ A.
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• characteristic function of S: for S ⊆ A, the function χ
S
:A→ {0, 1} given by

χ
S
(x) = 1 if x ∈ S and χ

S
(x) = 0 if x /∈ S.

• projection function: the function πj :A1 × · · · × An → Aj (j = 1, 2, . . . , n)
such that πj(a1, . . . , an) = aj .

• permutation: a function f :A→ A that is 1–1 and onto.

• floor function (sometimes referred to, especially in number theory, as the great-
est integer function): the function � �:R → Z where �x� = the greatest
integer less than or equal to x. The floor of x is also written [x]. (See the
following figure.) Thus �π� = 3, �6� = 6, and �−0.2� = −1.

• ceiling function: the function � �:R → Z where �x� = the smallest integer
greater than or equal to x. (See the following figure.) Thus �π� = 4, �6� = 6,
and �−0.2� = 0.

2. The floor and ceiling functions are total functions from the reals R to the integers Z.
They are onto, but not one-to-one.

3. Properties of the floor and ceiling functions (m and n represent arbitrary integers):
• �x� = n if and only if n ≤ x < n + 1 if and only if x− 1 < n ≤ x;

• �x� = n if and only if n− 1 < x ≤ n if and only if x ≤ n < x + 1;

• �x� < n if and only if x < n; �x� ≤ n if and only if x ≤ n;

• n ≤ �x� if and only if n ≤ x; n < �x� if and only if n < x;

• x− 1 < �x� ≤ x ≤ �x� < x + 1;

• �x� = x if and only if x is an integer;

• �x� = x if and only if x is an integer;

• �−x� = −�x�; �−x� = −�x�;
• �x + n� = �x�+ n; �x + n� = �x�+ n;

• the interval [x1, x2] contains �x2� − �x1�+ 1 integers;

• the interval [x1, x2) contains �x2� − �x1� integers;

• the interval (x1, x2] contains �x2� − �x1� integers;

• the interval (x1, x2) contains �x2� − �x1� − 1 integers;

• if f(x) is a continuous, monotonically increasing function, and whenever f(x) is
an integer, x is also an integer, then �f(x)� = �f(�x�)� and �f(x)� = �f(�x�)�;

• if n > 0, then
⌊

x+m
n

⌋
=

⌊ �x�+m
n

⌋
and

⌈
x+m

n

⌉
=

⌈ 
x�+m
n

⌉
(a special case of the

preceding fact);

• if m > 0, then �mx� = �x�+ �x + 1
m�+ · · ·+ �x + m−1

m �.

4. The logarithm function logb x is bijective from the positive reals R+ to the reals R.
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5. The logarithm function x 4→ logb x is the inverse of the function x 4→ bx, if the
codomain of x 4→ bx is the set of positive real numbers. If the domain and codomain are
considered to be R, then x 4→ logb x is only a partial function, because the logarithm of
a nonpositive number is not defined.

6. All logarithm functions are related according to the following change of base formula:
logb x = loga x

loga b .

7. log∗ 2 = 1, log∗ 4 = 2, log∗ 16 = 3, log∗ 65536 = 4, log∗ 265536 = 5.

8. The diagrams in the following figure illustrate a function that is onto but not 1–1
and a function that is 1–1 but not onto.

A f B

onto, not 1-1

A f B

1-1, not onto

9. If the domain and codomain are considered to be the nonnegative reals, then the
function x 4→ x2 is a bijection, and x 4→ √x is its inverse.

10. If the codomain is considered to be the subset of complex numbers with polar
coordinate 0 ≤ θ < π, then x 4→ √x can be regarded as a total function.

11. Division of real numbers is a multivariate function from R × (R − {0}) to R,
given by the rule f(x, y) = x

y . Similarly, addition, subtraction, and multiplication are
functions from R×R to R.

12. If f(x) = x2 and g(x) = x + 1, then (f ◦ g)(x) = (x + 1)2 and (g ◦ f)(x) = x2 + 1.
(Therefore, composition of functions is not commutative.)

13. Collatz conjecture: If f : {1, 2, 3, . . .} → {1, 2, 3, . . .} is defined by the rule f(n) = n
2

if n is even and f(n) = 3n + 1 if n is odd, then for each positive integer m there is a
positive integer k such that the iterated function fk(m) = 1. It is not known whether
this conjecture is true.

1.3.2 COMPUTATIONAL REPRESENTATION

A given function may be described by several different rules. These rules can then
be used to evaluate specific values of the function. There is often a large difference
in the time required to compute the value of a function using different computational
rules. The speed usually depends on the representation of the data as well as on the
computational process.

Definitions:

A (computational) representation of a function is a way to calculate its values.

A closed formula for a function value f(x) is an algebraic expression in the argument x.

A table of values for a function f :A → B with finite domain A is any explicit
representation of the set { (a, f(a)) ∈ A×B | a ∈ A }.
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An infinite sequence in a set S is a function from the natural numbers {0, 1, 2, . . .}
to the set S. It is commonly represented as a list x0, x1, x2, . . . such that each xj ∈ S.
Sequences are often permitted to start at the index 1 or elsewhere, rather than 0.

A finite sequence in a set S is a function from {1, 2, . . . , n} to the set S. It is commonly
represented as a list x1, x2, . . . , xn such that each xj ∈ S. Finite sequences are often
permitted to start at the index 0 (or at some other value of the index), rather than at
the index 1.

A value of a sequence is also called an entry , an item, or a term.

A string is a representation of a sequence as a list in which the successive entries are
juxtaposed without intervening punctuation or extra spacing.

A recursive definition of a function f with domain S is given in two parts: there is
a set of base values (or initial values) B on which the value of f is specified, and
there is a rule for calculating f(x) for every x ∈ S − B in terms of previously defined
values of f .

Ackermann’s function (Wilhelm Ackermann, 1896–1962) is defined recursively by

A(x, y, z) =




x + y if z = 0
0 if y = 0, z = 1
1 if y = 0, z = 2
x if y = 0, z > 2
A(x,A(x, y − 1, z), z − 1) if y, z > 0.

An alternative version of Ackermann’s function, with two variables, is defined recursively
by

A(m,n) =




n + 1 if m = 0
A(m− 1, 1) if m > 0, n = 0
A(m− 1, A(m,n− 1)) if m, n > 0.

Another alternative version of Ackermann’s function is defined recursively by the rule
A(n) = An(n), where A1(n) = 2n and Am(n) = A

(n)
m−1(1) if m ≥ 2.

The (input-independent) halting function maps computer programs to the set { 0, 1 },
with value 1 if the program always halts, regardless of input, and 0 otherwise.

Facts:

1. If f :N → R is recursively defined, the set of base values is frequently the set
{f(0), f(1), . . . , f(j)} and there is a rule for calculating f(n) for every n > j in terms
of f(i) for one or more i < n.

2. There are functions whose values cannot be computed. (See Example 5.)

3. There are recursively defined functions that cannot be represented by a closed for-
mula.

4. It is possible to find closed formulas for the values of some functions defined recur-
sively. See Chapter 3 for more information.

5. Computer software developers often represent a table as a binary search tree (§17.2).

6. In Ackermann’s function of three variables A(x, y, z), as the variable z ranges from 0
to 3, A(x, y, z) is the sum of x and y, the product of x and y, x raised to the exponent y,
and the iterated exponentiation of x y times. That is, A(x, y, 0) = x+y, A(x, y, 1) = xy,

A(x, y, 2) = xy, A(x, y, 3) = xx··
·x

(y xs in the exponent).
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7. The version of Ackermann’s function with two variables, A(x, y), has the following
properties: A(1, n) = n + 2, A(2, n) = 2n + 3, A(3, n) = 2n+3 − 3.
8. A(m,n) is an example of a well-defined total function that is computable, but not
primitive recursive. (See §16.)

Examples:
1. The function that maps each month to its ordinal position is represented by the
table

{(Jan, 1), (Feb, 2), . . . , (Dec, 12)}.
2. The function defined by the recurrence relation

f(0) = 0; f(n) = f(n− 1) + 2n− 1 for n ≥ 1

has the closed form f(x) = x2.

3. The function defined by the recurrence relation

f(0) = 0, f(1) = 1; f(n) = f(n− 1) + f(n− 2) for n ≥ 2

generates the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . (see §3.1.2) and has the closed form

f(n) = (1 +
√

5)n − (1−
√

5)n

2n
√

5
.

4. The factorial function n! is recursively defined by the rules

0! = 1; n! = n · (n− 1)! for n ≥ 1.

It has no known closed formula in terms of elementary functions.

5. It is impossible to construct an algorithm to compute the halting function.

6. The halting function from the Cartesian product of the set of computer programs
and the set of strings to {0, 1} whose value is 1 if the program halts when given that
string as input and 0 if the program does not halt when given that string as input is
noncomputable.

7. The following is not a well-defined function f : {1, 2, 3, . . .} → {1, 2, 3, . . .}

f(n) =




1 if n = 1
1 + f(n

2 ) if n is even
f(3n− 1) if n is odd, n > 1

since evaluating f(5) leads to the contradiction f(5) = f(5) + 3.

8. It is not known whether the following is a well-defined function f : {1, 2, 3, . . .} →
{1, 2, 3, . . .}

f(n) =

{ 1 n = 1
1 + f(n

2 ) n even
f(3n + 1) n odd, n > 1.

(See §1.3.1, Example 13.)

1.3.3 ASYMPTOTIC BEHAVIOR

The asymptotic growth of functions is commonly described with various special pieces
of notation and is regularly used in the analysis of computer algorithms to estimate the
length of time the algorithms take to run and the amount of computer memory they
require.
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Definitions:

A function f :R → R or f :N → R is bounded if there is a constant k such that
|f(x)| ≤ k for all x in the domain of f .

For functions f, g:R → R or f, g:N → R (sequences of real numbers) the following are
used to compare their growth rates:

• f is big-oh of g (g dominates f) if there exist constants C and k such that
|f(x)| ≤ C|g(x)| for all x > k.

Notation: f is O(g), f(x) ∈ O(g(x)), f ∈ O(g), f = O(g).

• f is little-oh of g if limx→∞
∣∣ f(x)

g(x)

∣∣ = 0; i.e., for every C > 0 there is a constant k

such that |f(x)| ≤ C|g(x)| for all x > k.
Notation: f is o(g), f(x) ∈ o(g(x)), f ∈ o(g), f = o(g).

• f is big omega of g if there are constants C and k such that |g(x)| ≤ C|f(x)|
for all x > k.

Notation: f is Ω(g), f(x) ∈ Ω(g(x)), f ∈ Ω(g), f = Ω(g).

• f is little omega of g if limx→∞
∣∣ g(x)
f(x)

∣∣ = 0.

Notation: f is ω(g), f(x) ∈ ω(g(x)), f ∈ ω(g), f = ω(g).

• f is theta of g if there are positive constants C1, C2, and k such that C1|g(x)| ≤
|f(x)| ≤ C2|g(x)| for all x > k.

Notation: f is Θ(g), f(x) ∈ Θ(g(x)), f ∈ Θ(g), f = Θ(g), f ≈ g.

• f is asymptotic to g if limx→∞
g(x)
f(x) = 1. This relation is sometimes called

asymptotic equality .
Notation: f ∼ g, f(x) ∼ g(x).

Facts:
1. The notations O( ), o( ), Ω( ), ω( ), and Θ( ) all stand for collections of functions.
Hence the equality sign, as in f = O(g), does not mean equality of functions.
2. The symbols O(g), o(g), Ω(g), ω(g), and Θ(g) are frequently used to represent
a typical element of the class of functions it represents, as in an expression such as
f(n) = n log n + o(n).
3. Growth rates:

• O(g): the set of functions that grow no more rapidly than a positive multiple
of g;

• o(g): the set of functions that grow less rapidly than a positive multiple of g;
• Ω(g): the set of functions that grow at least as rapidly as a positive multiple of g;
• ω(g): the set of functions that grow more rapidly than a positive multiple of g;
• Θ(g): the set of functions that grow at the same rate as a positive multiple of g.

4. Asymptotic notation can be used to describe the growth of infinite sequences, since
infinite sequences are functions from {0, 1, 2, . . .} or {1, 2, 3, . . .} to R (by considering
the term an as a(n), the value of the function a(n) at the integer n).

5. The big-oh notation was introduced in 1892 by Paul Bachmann (1837–1920) in the
study of the rates of growth of various functions in number theory.

6. The big-oh symbol is often called a Landau symbol, after Edmund Landau (1877–
1938), who popularized this notation.
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7. Properties of big-oh:

• if f ∈ O(g) and c is a constant, then cf ∈ O(g);

• if f1, f2 ∈ O(g), then f1 + f2 ∈ O(g);

• if f1 ∈ O(g1) and f2 ∈ O(g2), then
3 (f1 + f2) ∈ O(g1 + g2)
3 (f1 + f2) ∈ O(max(|g1|, |g2|))
3 (f1f2) ∈ O(g1g2);

• if f is a polynomial of degree n, then f ∈ O(xn);

• if f is a polynomial of degree m and g a polynomial of degree n, with m ≥ n,
then f

g ∈ O(xm−n);

• if f is a bounded function, then f ∈ O(1);

• for all a, b > 1, O(loga x) = O(logb x);

• if f ∈ O(g) and |h(x)| ≥ |g(x)| for all x > k, then f ∈ O(h);

• if f ∈ O(xm), then f ∈ O(xn) for all n > m.

8. Some of the most commonly used benchmark big-oh classes are: O(1), O(log x),
O(x), O(x log x), O(x2), O(2x), O(x!), and O(xx). If f is big-oh of any function in this
list, then f is also big-oh of each of the following functions in the list:

O(1) ⊂ O(log x) ⊂ O(x) ⊂ O(x log x) ⊂ O(x2) ⊂ O(2x) ⊂ O(x!) ⊂ O(xx).

The benchmark functions are drawn in the following figure.
xx

100,000

10,000
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1

9. Properties of little-oh:

• if f ∈ o(g), then cf ∈ o(g) for all nonzero constants c;

• if f1 ∈ o(g) and f2 ∈ o(g), then f1 + f2 ∈ o(g);

• if f1 ∈ o(g1) and f2 ∈ o(g2), then
3 (f1 + f2) ∈ o(g1 + g2)
3 (f1 + f2) ∈ o(max(|g1|, |g2|))
3 (f1f2) ∈ o(g1g2);

• if f is a polynomial of degree m and g a polynomial of degree n with m < n, then
f
g ∈ o(1);

• the set membership f(x) ∈ L + o(1) is equivalent to f(x)→ L as x→∞, where
L is a constant.
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10. If f ∈ o(g), then f ∈ O(g); the converse is not true.
11. If f ∈ O(g) and h ∈ o(f), then h ∈ o(g).
12. If f ∈ o(g) and h ∈ O(f), then h ∈ O(g).
13. If f ∈ O(g) and h ∈ O(f), then h ∈ O(g).
14. If f1 ∈ o(g1) and f2 ∈ O(g2), then f1f2 ∈ o(g1g2).
15. f ∈ O(g) if and only if g ∈ Ω(f).
16. f ∈ Θ(g) if and only if f ∈ O(g) and g ∈ O(f).

17. f ∈ Θ(g) if and only if f ∈ O(g) and f ∈ Ω(g).

18. If f(x) = anx
n + · · ·+ a1x + a0 (an �= 0), then f ∼ anx

n.

19. f ∼ g if and only if
(

f
g − 1

)
∈ o(1) (provided g(x) = 0 only finitely often).

Examples:

1. 5x8 + 10200x5 + 3x + 1 ∈ O(x8).

2. x3 ∈ O(x4), x4 /∈ O(x3).

3. x3 ∈ o(x4), x4 /∈ o(x3).

4. x3 /∈ o(x3).

5. x2 ∈ O(5x2); x2 /∈ o(5x2).

6. sin(x) ∈ O(1).

7. x7−3x
8x3+5 ∈ O(x4); x7−3x

8x3+5 ∈ Θ(x4)

8. 1 + 2 + 3 + · · ·+ n ∈ O(n2).

9. 1 + 1
2 + 1

3 + · · ·+ 1
n ∈ O(log n).

10. log(n!) ∈ O(n log n).

11. 8x5 ∈ Θ(3x5).

12. x3 ∈ Ω(x2).

13. 2n + o(n2) ∼ 2n.

14. Sometimes asymptotic equality does not behave like equality: lnn ∼ ln(2n), but
n �∼2n and lnn− lnn �∼ln(2n)− lnn.

15. π(n) ∼ n
ln n where π(n) is the number of primes less than or equal to n.

16. If pn is the nth prime, then pn ∼ n lnn.

17. Stirling’s formula: n! ∼
√

2πn(n
e )n.

1.4 RELATIONS

Relationships between two sets (or among more that two sets) occur frequently through-
out mathematics and its applications. Examples of such relationships include integers
and their divisors, real numbers and their logarithms, corporations and their customers,
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cities and airlines that serve them, people and their relatives. These relationships can
be described as subsets of product sets.
Functions are a special type of relation. Equivalence relations can be used to describe
similarity among elements of sets and partial order relations describe the relative size
of elements of sets.

1.4.1 BINARY RELATIONS AND THEIR PROPERTIES

Definitions:

A binary relation from set A to set B is any subset R of A×B.

An element a ∈ A is related to b ∈ B in the relation R if (a, b) ∈ R, often written
aRb. If (a, b) /∈ R, write aR/ b.

A binary relation (relation) on a set A is a binary relation from A to A; i.e., a subset
of A×A.

A binary relation R on A can have the following properties (to have the property, the
relation must satisfy the property for all a, b, c ∈ A):

• reflexivity : aRa

• irreflexivity : aR/ a

• symmetry : if aRb, then bRa

• asymmetry : if aRb, then bR/ a

• antisymmetry : if aRb and bRa, then a = b

• transitivity : if aRb and bRc, then aRc

• intransitivity : if aRb and bRc, then aR/ c

Binary relations R and S from A to B can be combined in the following ways to yield
other relations:

• complement of R: the relation R from A to B where aRb if and only if aR/ b
(i.e., ¬(aRb))

• difference: the binary relation R − S from A to B such that a(R − S)b if and
only if aRb and ¬(aSb)

• intersection: the relation R ∩ S from A to B where a(R ∩ S)b if and only if
aRb and aSb

• inverse (converse): the relation R−1 from B to A where bR−1a if and only if
aRb

• symmetric difference: the relation R⊕S from A to B where a(R⊕S)b if and
only if exactly one of the following is true: aRb, aSb

• union: the relation R ∪ S from A to B where a(R ∪ S)b if and only if aRb or
aSb.

The closure of a relation R with respect to a property P is the relation S, if it exists,
that has property P and contains R, such that S is a subset of every relation that has
property P and contains R.

A relation R on A is connected if for all a, b ∈ A with a �= b, either aRb or there are
c1, c2, . . . , ck ∈ A such that aRc1, c1Rc2, . . . , ck−1Rck, ckRb.
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If R is a relation on A, the connectivity relation associated with R is the relation R′

where aR′b if and only if aRb or there are c1, c2, . . . , ck ∈ A such that aRc1, c1Rc2, . . . ,
ck−1Rck, ckRb.

If R is a binary relation from A to B and if S is a binary relation from B to C, then
the composition of R and S is the binary relation S ◦R from A to C where a(S ◦R)c
if and only if there is an element b ∈ B such that aRb and bSc.

The nth power (n a nonnegative integer) of a relation R on a set A, is the relation Rn,
where R0 = { (a, a) | a ∈ A } = IA (see Example 4), R1 = R and Rn = Rn−1 ◦R for all
integers n > 1.

A transitive reduction of a relation, if it exists, is a relation with the same transitive
closure as the original relation and with a minimal superset of ordered pairs.

Notation:
1. If a relation R is symmetric, aRb is often written a ∼ b, a ≈ b, or a ≡ b.
2. If a relation R is antisymmetric, aRb is often written a ≤ b, a < b, a ⊂ b, a ⊆ b,
a 8 b, a ≺ b, or a : b.

Facts:
1. A binary relation R from A to B can be viewed as a function from the Cartesian
product A × B to the boolean domain {TRUE, FALSE} (often written {T, F}). The
truth value of the pair (a, b) determines whether a is related to b.
2. Under the infix convention for a binary relation, aRb (a is related to b) means
R(a, b) = TRUE; aR/ b (a is not related to b) means R(a, b) = FALSE.
3. A binary relation R from A to B can be represented in any of the following ways:

• a set R ⊆ A×B, where (a, b) ∈ R if and only if aRb (this is the definition of R);

• a directed graph DR whose vertices are the elements of A∪B, with an edge from
vertex a to vertex b if aRb (§8.3.1);

• a matrix (the adjacency matrix for the directed graph DR): if A = {a1, . . . , am}
and B = {b1, . . . , bn}, the matrix for the relation R is the m × n matrix MR

with entries mij where mij = 1 if aiRbj and mij = 0 otherwise.

4. R is a reflexive relation on A if and only if { (a, a) | a ∈ A } ⊆ R; i.e., R is a reflexive
relation on A if and only if IA ⊆ R.
5. R is symmetric if and only if R = R−1.
6. R is an antisymmetric relation on A if and only if R ∩R−1 ⊆ { (a, a) | a ∈ A }.
7. R is transitive if and only if R ◦R ⊆ R.
8. A relation R can be both symmetric and antisymmetric. See the first example in
Table 2.
9. For a relation R that is both symmetric and antisymmetric: R is reflexive if and
only if R is the equality relation on some set; R is irreflexive if and only if R = ∅.
10. The closure of a relation R with respect to a property P is the intersection of all
relations Q with property P such that R ⊆ Q, if there is at least one such relation Q.
11. The transitive closure of a relation R is the connectivity relation R′ associated
with R, which is equal to the union

⋃∞
i=1 R

i of all the positive powers of the relation.
12. A transitive reduction of a relation may contain pairs not in the original relation
(Example 8).
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13. Transitive reductions are not necessarily unique (Example 9).
14. If R is a relation on A and x, y ∈ A with x �= y, then x is related to y in the
transitive closure of R if and only if there is a nontrivial directed path from x to y in
the directed graph DR of the relation.
15. The following table shows how to obtain various closures of a relation and gives
the matrices for the various closures of a relation R with matrix MR on a set A where
|A| = n.

relation set matrix

reflexive closure R ∪ { (a, a) | a ∈ A } MR ∨ In

symmetric closure R ∪R−1 MR ∨MR−1

transitive closure
⋃n

i=1 R
i MR ∨M

[2]
R ∨ · · · ∨M

[n]
R

The matrix In is the n × n identity matrix, M
[i]
R is the ith boolean power of the ma-

trix MR for the relation R, and ∨ is the join operator (defined by 0 ∨ 0 = 0 and
0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1).
16. The following table provides formulas for the number of binary relations with
various properties on a set with n elements.

type of relation number of relations

all relations 2n2

reflexive 2n(n−1)

symmetric 2n(n+1)/2

transitive no known simple closed formula (§3.1.7)

antisymmetric 2n · 3n(n−1)/2

asymmetric 3n(n−1)/2

irreflexive 2n(n−1)

equivalence (§1.4.2) Bn = Bell number =
∑n

k=1

{
n
k

}
where

{
n
k

}
is a Stirling subset number (§2.4.2)

partial order (§1.4.3) no known simple closed formula (§3.1.7)

Algorithm:
1. Warshall’s algorithm, also called the Roy-Warshall algorithm (B. Roy and S. War-
shall described the algorithm in 1959 and 1960, respectively), Algorithm 1, is an algo-
rithm of order n3 for finding the transitive closure of a relation on a set with n elements.
(Stephen Warshall, born 1935)

Algorithm 1: Warshall’s algorithm.

input: M = [mij ]n×n = the matrix representing the binary relation R
output: M = the transitive closure of relation R

for k := 1 to n
for i := 1 to n

for j := 1 to n
mij := mij ∨ (mik ∧mkj)
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Examples:

1. Some common relations and whether they have certain properties are given in the
following table:

set relation reflexive symmetric antisymmetric transitive

any nonempty set = yes yes yes yes
any nonempty set �= no yes no no

R ≤ (or ≥) yes no yes yes
R < (or >) no no yes yes

positive integers is a divisor of yes no yes yes
nonzero integers is a divisor of yes no no yes

integers congruence mod n yes yes no yes
any set of sets ⊆ (or ⊇) yes no yes yes
any set of sets ⊂ (or ⊃) no no yes yes

2. If A is any set, the universal relation is the relation R on A× A such that aRb for
all a, b ∈ A; i.e., R = A×A

3. If A is any set, the empty relation is the relation R on A × A where aRb is never
true; i.e., R = ∅.

4. If A is any set, the relation R on A where aRb if any only if a = b is the identity
(or diagonal) relation I = IA = { (a, a) | a ∈ A }, which is also written ∆ or ∆A.

5. Every function f :A → B induces a binary relation Rf from A to B under the
rule aRfb if and only if f(a) = b.

6. For A = {2, 3, 4, 6, 12}, suppose that aRb means that a is a divisor of b. Then R
can be represented by the set
{(2, 2), (2, 4), (2, 6), (2, 12), (3, 3), (3, 6), (3, 12), (4, 4), (4, 12), (6, 6), (6, 12), (12, 12)}.
The relation R can also be represented by the digraph with the following adjacency
matrix 


1 0 1 1 1
0 1 0 1 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


.

7. The transitive closure of the relation {(1, 3), (2, 3), (3, 2)} on {1, 2, 3} is the relation
{(1, 2), (1, 3), (2, 2), (2, 3), (3, 2), (3, 3)}.

8. The transitive closure of the relation R = {(1, 2), (2, 3), (3, 1)} on {1, 2, 3} is the
universal relation {1, 2, 3} × {1, 2, 3}. A transitive reduction of R is the relation given
by {(1, 3), (3, 2), (2, 1)}. This shows that a transitive reduction may contain pairs that
are not in the original relation.

9. If R = { (a, b) | aRb for all a, b ∈ {1, 2, 3} }, then the relations {(1, 2), (2, 3), (3, 1)}
and {(1, 3), (3, 2), (2, 1)} are both transitive reductions for R. Thus, transitive reductions
are not unique.
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1.4.2 EQUIVALENCE RELATIONS

Equivalence relations are binary relations that describe various types of similarity or
“equality” among elements in a set. The elements that look alike or behave in a similar
way are grouped together in equivalence classes, resulting in a partition of the set.
Any element chosen from an equivalence class essentially “mirrors” the behavior of all
elements in that class.

Definitions:

An equivalence relation on A is a binary relation on A that is reflexive, symmetric,
and transitive.

If R is an equivalence relation on A, the equivalence class of a ∈ A is the set R[a] =
{ b ∈ A | aRb }. When it is clear from context which equivalence relation is intended,
the notation for the induced equivalence class can be abbreviated [a].

The induced partition on a set A under an equivalence relation R is the set of equiv-
alence classes.

Facts:
1. A nonempty relation R is an equivalence relation if and only if R ◦R−1 = R.
2. The induced partition on a set A actually is a partition of A; i.e., the equivalence
classes are all nonempty, every element of A lies in some equivalence class, and two
classes [a] and [b] are either disjoint or equal.
3. There is a one-to-one correspondence between the set of all possible equivalence
relations on a set A and the set of all possible partitions of A. (Fact 2 shows how to
obtain a partition from an equivalence relation. To obtain an equivalence relation from
a partition of A, define R by the rule aRb if and only if a and b lie in the same element
of the partition.)
4. For any set A, the coarsest partition (with only one set in the partition) of A is
induced by the equivalence relation in which every pair of elements are related. The
finest partition (with each set in the partition having cardinality 1) of A is induced by
the equivalence relation in which no two different elements are related.
5. The set of all partitions of a set A is partially ordered under refinement (§1.2.2 and
§1.4.3). This partial ordering is a lattice (§5.7).
6. To find the smallest equivalence relation containing a given relation, first take the
transitive closure of the relation, then take the reflexive closure of that relation, and
finally take the symmetric closure.

Examples:
1. For any function f :A → B, define the relation a1Ra2 to mean that f(a1) = f(a2).
Then R is an equivalence relation. Each induced equivalence class is the inverse image
f−1(b) of some b ∈ B.
2. Write a ≡ b (mod n) (“a is congruent to b modulo n”) when a, b and n > 0 are
integers such that n | b − a (n divides b − a). Congruence mod n is an equivalence
relation on the integers.
3. The equivalence relation of congruence modulo n on the integers Z yields a partition
with n equivalence classes: [0] = { kn | k ∈ Z }, [1] = { 1 + kn | k ∈ Z }, [2] = { 2 + kn |
k ∈ Z }, . . . , [n− 1] = { (n− 1) + kn | k ∈ Z }.
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4. The isomorphism relation on any set of groups is an equivalence relation. (The same
result holds for rings, fields, etc.) (See Chapter 5.)

5. The congruence relation for geometric objects in the plane is an equivalence relation.

6. The similarity relation for geometric objects in the plane is an equivalence relation.

1.4.3 PARTIALLY ORDERED SETS

Partial orderings extend the relationship of ≤ on real numbers and allow a comparison
of the relative “size” of elements in various sets. They are developed in greater detail
in Chapter 11.

Definitions:

A preorder on a set S is a binary relation ≤ on S that has the following properties for
all a, b, c ∈ S:

• reflexive: a ≤ a

• transitive: if a ≤ b and b ≤ c, then a ≤ c.

A partial ordering (or partial order) on a set S is a binary relation ≤ on S that
has the following properties for all a, b, c ∈ S:

• reflexive: a ≤ a

• antisymmetric: if a ≤ b and b ≤ a, then a = b

• transitive: if a ≤ b and b ≤ c, then a ≤ c.

Notes: The expression c ≥ b means that b ≤ c. The symbols 8 and < are often used
in place of ≤ and ≥. The expression a < b (or b > a) means that a ≤ b and a �= b.

A partially ordered set (or poset) is a set with a partial ordering defined on it.

A directed ordering on a set S is a partial ordering that also satisfies the following
property: if a, b ∈ S, then there is a c ∈ S such that a ≤ c and b ≤ c.
Note: Some authors do not require that antisymmetry hold in the definition of directed
ordering.

Two elements a and b in a poset are comparable if either a ≤ b or b ≤ a. Otherwise,
they are incomparable.

A totally ordered (or linearly ordered) set is a poset in which every pair of elements
are comparable.

A chain is a subset of a poset in which every pair of elements are comparable.

An antichain is a subset of a poset in which no two distinct elements are comparable.

An interval in a poset (S,≤) is a subset [a, b] = {x | x ∈ S, a ≤ x ≤ b }.
An element b in a poset is minimal if there exists no element c such that c < b.

An element b in a poset is maximal if there exists no element c such that c > b.

An element b in a poset S is a maximum element (or greatest element) if every
element c satisfies the relation c ≤ b.

An element b in a poset S is a minimum element (or least element) if every element
c satisfies the relation c ≥ b.
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A well-ordered set is a poset (S,≤) in which every nonempty subset contains a mini-
mum element.

An element b in a poset S is an upper bound for a subset U ⊆ S if every element c
of U satisfies the relation c ≤ b.

An element b in a poset S is a lower bound for a subset U ⊆ S if every element c of U
satisfies the relation c ≥ b.

A least upper bound for a subset U of a poset S is an upper bound b such that if c
is any other upper bound for U then c ≥ b.

A greatest lower bound for a subset U of a poset S is a lower bound b such that if c
is any other lower bound for U then c ≤ b.

A lattice is a poset in which every pair of elements, x and y, have both a least upper
bound lub(x, y) and a greatest lower bound glb(x, y) (§5.7).

The Cartesian product of two posets (S1,≤1) and (S2,≤2) is the poset with domain
S1 × S2 and relation ≤1×≤2 given by the rule (a1, a2)≤1×≤2 (b1, b2) if and only if
a1 ≤1 b1 and a2 ≤2 b2.

The element c covers another element b in a poset if b < c and there is no element d
such that b < d < c.

A Hasse diagram (cover diagram) for a poset (S,≤) is a directed graph (§11.8)
whose vertices are the elements of S such that there is an arc from b to c if c covers b,
all arcs are directed upward on the page when drawing the diagram, and arrows on the
arcs are omitted.

Facts:
1. R is a partial order on a set S if and only if R−1 is a partial order on S.
2. The only partial order that is also an equivalence relation is the relation of equality.
3. The Cartesian product of two posets, each with at least two elements, is not totally
ordered.
4. In the Hasse diagram for a poset, there is a path from vertex b to vertex c if and
only if b ≤ c. (When b = c, it is the path of length 0.)
5. Least upper bounds and greatest lower bounds are unique, if they exist.

Examples:
1. The positive integers are partially ordered under the relation of divisibility, in which
b ≤ c means that b divides c. In fact, they form a lattice (§5.7.1), called the divisibility
lattice. The least upper bound of two numbers is their least common multiple, and the
greatest lower bound is their greatest common divisor.
2. The set of all powers of two (or of any other positive integer) forms a chain in the
divisibility lattice.
3. The set of all primes forms an antichain in the divisibility lattice.
4. The set R of real numbers with the usual definition of ≤ is a totally ordered set.
5. The set of all logical propositions on a fixed set of logical variables p, q, r, . . . is
partially ordered under inverse implication, so that B ≤ A means that A → B is a
tautology.
6. The complex numbers, ordered under magnitude, do not form a poset, because they
do not satisfy the axiom of antisymmetry.
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7. The set of all subsets of any set forms a lattice under the relation of subset inclusion.
The least upper bound of two subsets is their union, and the greatest lower bound is
their intersection. Part (a) in the following figure gives the Hasse diagram for the lattice
of all subsets of {a, b, c}.

8. Part (b) of the following figure shows the Hasse diagram for the lattice of all positive
integer divisors of 12.

9. Part (c) of the following figure shows the Hasse diagram for the set {1, 2, 3, 4, 5, 6}
under divisibility.

10. Part (d) of the following figure shows the Hasse diagram for the set {1, 2, 3, 4} with
the usual definition of ≤.

(a,b,c)

(a,b) (a,c) (b,c)

(a) (b) (c)

0

4 6

2 3

12

1

4

2 3 5

6

1

4

3

2

1

(a) (b) (c) (d)

11. Multilevel security policy : The flow of information is often restricted by using se-
curity clearances. Documents are put into security classes, (L,C), where L is an element
of a totally ordered set of authority levels (such as “unclassified”, “confidential”, “se-
cret”, “top secret”) and C is a subset (called a “compartment”) of a set of subject areas.
The subject areas might consist of topics such as agriculture, Eastern Europe, economy,
crime, and trade. A document on how trade affects the economic structure of Eastern
Europe might be assigned to the compartment {trade, economy, Eastern Europe}. The
set of security classes is made into a lattice by the rule: (L1, C1) ≤ (L2, C2) if and only
if L1 ≤ L2 and C1 ⊆ C2. Information is allowed to flow from class (L1, C1) to class
(L2, C2) if and only if (L1, C1) ≤ (L2, C2). For example, a document with security class
(secret, {trade, economy}) flows to both (top secret, {trade, economy}) and (secret,
{trade, economy, Eastern Europe}), but not vice versa. This set of security classes
forms a lattice (§5.7.1).

1.4.4 n-ARY RELATIONS

Definitions:

An n-ary relation on sets A1, A2, . . . , An is any subset R of A1 ×A2 × · · · ×An.

The sets Ai are called the domains of the relation and the number n is called the
degree of the relation.

A primary key of an n-ary relation R on A1×A2× · · ·×An is a domain Ai such that
each ai ∈ Ai is the ith coordinate of at most one n-tuple in R.
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A composite key of an n-ary relation R on A1×A2×· · ·×An is a product of domains
Ai1 ×Ai2 × · · · ×Aim such that for each m-tuple (ai1 , ai2 , . . . , aim) ∈ Ai1 ×Ai2 × · · · ×
Aim , there is at most one n-tuple in R that matches (ai1 , ai2 , . . . , aim) in coordinates
i1, i2, . . . , im.

The projection function Pi1,i2,...,ik
: A1 × A2 × · · · × An → Ai1 × Ai2 × · · · × Aik

is
given by the rule

Pi1,i2,...,ik
(a1, a2, . . . , an) = (ai1 , ai2 , . . . , aik

).

That is, Pi1,i2,...,ik
selects the elements in coordinate positions i1, i2, . . . , ik from the

n-tuple (a1, a2, . . . , an).

The join Jk(R,S) of an m-ary relation R and an n-ary relation S, where k ≤ m and
k ≤ n, is a relation of degree m + n− k such that

(a1, . . . , am−k, c1, . . . , ck, b1, . . . , bn−k) ∈ Jk(R,S)

if and only if

(a1, . . . , am−k, c1, . . . , ck) ∈ R and (c1, . . . , ck, b1, . . . , bn−k) ∈ S.

Facts:

1. An n-ary relation on sets A1, A2, . . . , An can be regarded as a function R from
A1×A2×· · ·×An to the Boolean domain {TRUE, FALSE}, where (a1, a2, . . . , an) ∈ R
if and only if R(a1, a2, . . . , an) = TRUE.

2. n-ary relations are essential models in the construction of database systems.

Examples:

1. Let A1 be the set of all men and A2 the set of all women, in a nonpolygamous
society. Let mRw mean that m and w are presently married. Then each of A1 and A2

is a primary key.

2. Let A1 be the set of all telephone numbers and A2 the set of all persons. Let nRp
mean that telephone number n belongs to person p. Then A1 is a primary key if each
number is assigned to at most one person, and A2 is a primary key if each person has
at most one phone number.

3. In a conventional telephone directory, the name and address domains can form a
composite key, unless there are two persons with the same name (no distinguishing
middle initial or suffix such as “Jr.”) at the same address.

4. Let A = B = C = Z, and let R be the relation on A×B×C such that (a, b, c) ∈ R
if and only if a + b = c. The set A×B is a composite key. There is no primary key.

5. Let A = all students at a certain college, B = all student ID numbers being used at
the college, C = all major programs at the college. Suppose a relation R is defined on
A×B × C by the rule (a, b, c) ∈ R means student a with ID number b has major c. If
each student has exactly one major and if there is a one-to-one correspondence between
students and ID numbers, then A and B are each primary keys.

6. Let A = all employee names at a certain corporation, B = all Social Security
numbers, C = all departments, D = all job titles, E = all salary amounts, and F =
all calendar dates. On A × B × C × D × E × F × F let R be the relation such that
(a, b, c, d, e, f, g) ∈ R means employee named a with Social Security number b works in
department c, has job title d, earns an annual salary e, was hired on date f , and had the
most recent performance review on date g. The projection P1,5 (projection onto A×E)
gives a list of employees and their salaries.
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1.5 PROOF TECHNIQUES

A proof is a derivation of new facts from old ones. A proof makes possible the derivation
of properties of a mathematical model from its definition, or the drawing of scientific
inferences based on data that have been gathered. Axioms and postulates capture
all basic truths used to develop a theory. Constructing proofs is one of the principal
activities of mathematicians.

Furthermore, proofs play an important role in computer science — in such areas
as verification of the correctness of computer programs, verification of communications
protocols, automatic reasoning systems, and logic programming.

1.5.1 RULES OF INFERENCE

Definitions:

A proposition is a declarative sentence that is unambiguously either true or false.
(See §1.1.1.)

A theorem is a proposition derived as the conclusion of a valid proof from axioms and
definitions.

A lemma is a theorem that is an intermediate step in the proof of a more important
theorem.

A corollary is a theorem that is derived as an easy consequence of another theorem.

A statement form is a declarative sentence containing some variables and logical
symbols, such that the sentence becomes a proposition if concrete values are substituted
for all the free variables.

An argument form is a sequence of statement forms.

The final statement form in an argument form is called the conclusion (of the argu-
ment). The conclusion is often preceded by the word “therefore” (symbolized ... ).

The statement forms preceding the conclusion in an argument form are called premises
(of the argument).

If concrete values are substituted for the free variables of an argument form, an argu-
ment of that form is obtained.

An instantiation of an argument is the substitution of concrete values into all free
variables of the premises and conclusion.

A valid argument form is an argument form such that in every instantiation in which
all the premises are true, the conclusion is also true.

A rule of inference is an alternative name for a valid argument form, which is used
when the form is frequently applied.

Facts:

1. Substitution rule: Any variable occurring in an argument may be replaced by an
expression of the same type without affecting the validity of the argument, as long as
the replacement is made everywhere the variable occurs.
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2. The following table gives rules of inference for arguments with compound statements.

argument argumentname name
form form

Modus ponens p→ q Modus tollens p→ q
(method of affirming) p (method of denying) ¬q

... q ... ¬p
Hypothetical p→ q Disjunctive p ∨ q

syllogism q → r syllogism ¬p
... p→ r ... q

Disjunctive p Dilemma by p ∨ q
addition ... p ∨ q cases p→ r

q → r
... r

Constructive p ∨ r Destructive ¬q ∨ ¬s
dilemma p→ q dilemma p→ q

r → s r → s
... q ∨ s ... ¬p ∨ ¬r

Conjunctive p Conditional p
addition q proof p ∧ q → r

... p ∧ q ... q → r

Conjunctive p ∧ q Rule of given contra-
simplification ... p contradiction diction c

¬p→ c
... p

3. The following table gives rules of inference for arguments with quantifiers.

name argument form

(∀x ∈ D)Q(x)
Universal instantiation

... Q(a) (a any particular element of D)

Generalizing from the Q(a) (a an arbitrarily chosen element of D)
generic particular ... (∀x ∈ D)Q(x)

(∃x ∈ D)Q(x)
Existential specification

... Q(a) (for at least one a ∈ D)

Q(a) (for at least one element a ∈ D)
Existential generalization

... (∃x ∈ D)Q(x)

4. Substituting R(x)→ S(x) in place of Q(x) and z in place of x in generalizing from
the generic particular gives the following inferential rule:
Universal modus R(a)→ S(a) for any particular but arbitrarily chosen a ∈ D

ponens: ... (∀z ∈ D) [R(z)→ S(z)].

5. The rule of generalizing from the generic particular determines the outline of most
mathematical proofs.

6. The rule of existential specification is used in deductive reasoning to give names to
quantities that are known to exist but whose exact values are unknown.
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7. A useful strategy for determining whether a statement is true is to first try to prove
it using a variety of approaches and proof methods. If this is unsuccessful, the next
step may be to try to disprove the statement, such as by trying to construct or prove
the existence of a counterexample. If this does not work, the next step is to try to
prove the statement again, and so on. This is one of the many ways in which many
mathematicians attempt to develop new results.

Examples:

1. Suppose that D is the set of all objects in the physical universe, P (x) is “x is a
human being”, Q(x) is “x is mortal”, and a is the Greek philosopher Socrates.

argument form an argument of that form

(∀x ∈ D) [P (x)→ Q(x)] ∀ objects x, (x is a human being)→ (x is mortal).
(informally: All human beings are mortal.)

P (a) (for particular a ∈ D) Socrates is a human being.
... Q(a) ... Socrates is mortal.

2. The argument form shown below is invalid: there is an argument of this form (shown
next to it) that has true premises and a false conclusion.

argument form an argument of that form

(∀x ∈ D) [P (x)→ Q(x)] ∀ objects x, (x is a human being)→ (x is mortal).
(informally: All human beings are mortal.)

Q(a) (for particular a ∈ D) My cat Bunbury is mortal.
... P (a) ... My cat Bunbury is a human being.

In this example, D is the set of all objects in the physical universe, P (x) is “x is a
human being”, Q(x) is “x is mortal”, and a is my cat Bunbury.

3. The distributive law for real numbers, (∀a, b, c ∈ R)[ac+ bc = (a+ b)c], implies that
2
√

2 + 3
√

2 = (2 + 3)
√

2 (because 2, 3, and
√

2 are particular real numbers).

4. Since 2 is a prime number that is not odd, the rule of existential generalization
implies the truth of the statement “∃ a prime number n such that n is not odd”.

5. To prove that the square of every even integer is even, by the rule of generalizing
from the generic particular, begin by supposing that n is any particular but arbitrarily
chosen even integer. The job of the proof is to deduce that n2 is even.

6. By definition, every even integer equals twice some integer. So if at some stage
of a reasoning process there is a particular even integer n, it follows from the rule of
existential specification that n = 2k for some integer k (even though the numerical
values of n and k may be unknown).

1.5.2 PROOFS

Definitions:

A (logical) proof of a statement is a finite sequence of statements (called the steps of
the proof) leading from a set of premises to the given statement. Each step of the proof
must either be a premise or follow from some previous steps by a valid rule of inference.

In a mathematical proof , the set of premises may contain any item of previously
proved or agreed upon mathematical knowledge (definitions, axioms, theorems, etc.) as
well as the specific hypotheses of the statement to be proved.

A direct proof of a statement of the form p→ q is a proof that assumes p to be true
and then shows that q is true.

c© 2000 by CRC Press LLC



An indirect proof of a statement of the form p → q is a proof that assumes that ¬q
is true and then shows that ¬p is true. That is, a proof of this form is a direct proof of
the contrapositive ¬q → ¬p.
A proof by contradiction assumes the negation of the statement to be proved and
shows that this leads to a contradiction.

Facts:

1. A useful strategy to determine if a statement of the form (∀x ∈ D) [P (x) → Q(x)]
is true or false is to imagine an element x ∈ D that satisfies P (x) and, using this
assumption (and other facts), investigate whether x must also satisfy Q(x). If the answer
for all such x is “yes”, the given statement is true and the result of the investigation is
a direct proof. If it is possible to find an x ∈ D for which Q(x) is false, the statement
is false and this value of x is a counterexample. If the investigation shows that is not
possible to find an x ∈ D for which Q(x) is false, the given statement is true and the
result of the investigation is a proof by contradiction.

2. There are many types of techniques that can be used to prove theorems. Table 2
describes how to approach proofs of various types of statements.

Examples:

1. In the following direct proof (see Table 1, item 2), the domain D is the set of all
pairs of integers, x is (m,n), and the predicate P (m,n) is “if m and n are even, then
m + n is even”.

Theorem: For all integers m and n, if m and n are even, then m + n is even.
Proof: Suppose m and n are arbitrarily chosen even integers. [m + n must be
shown to be even.]
1. ... m = 2r, n = 2s for some integers r and s (by definition of even)
2. ... m + n = 2r + 2s (by substitution)
3. ... m + n = 2(r + s) (by factoring out the 2)
4. r + s is an integer (it is a sum of two integers)
5. ... m + n is even (by definition of even)

The following partial expansion of the proof shows how some of the steps are justified
by rules of inference combined with previous mathematical knowledge:

1. Every even integer equals twice some integer:
[∀ even x ∈ Z (x = 2y for some y ∈ Z)]

m is a particular even integer.
... m = 2r for some integer r.

3. Every integer is a real number: [∀n ∈ Z (n ∈ R)]
(∀ integer n, n is a real number.)

r and s are particular integers.
... r and s are real numbers.

The distributive law holds for real numbers: [∀a, b, c ∈ R (ab + ac = a(b + c))]
2, r, and s are particular real numbers.

... 2r + 2s = 2(r + s).

4. Any sum of two integers is an integer: [∀m,n ∈ Z (m + n ∈ Z)]
r and s are particular integers.

... r + s is an integer.
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Table 1 Techniques of proof.

statement technique of proof

p→ q Direct proof : Assume that p is true. Use rules of inference
and previously accepted axioms, definitions, theorems, and
facts to deduce that q is true.

(∀x ∈ D)P (x) Direct proof : Suppose that x is an arbitrary element of
D. Use rules of inference and previously accepted axioms,
definitions, and facts to deduce that P (x) is true.

(∃x ∈ D)P (x) Constructive direct proof : Use rules of inference and pre-
viously accepted axioms, definitions, and facts to actually
find an x ∈ D for which P (x) is true.
Nonconstructive direct proof : Deduce the existence of x
from other mathematical facts without a description of how
to compute it.

(∀x∈D)(∃y∈E)P (x, y) Constructive direct proof : Assume that x is an arbitrary
element of D. Use rules of inference and previously accepted
axioms, definitions, and facts to show the existence of a
y ∈ E for which P (x, y) is true, in such a way that y can
be computed as a function of x.
Nonconstructive direct proof : Assume x is an arbitrary
element of D. Deduce the existence of y from other math-
ematical facts without a description of how to compute it.

p→ q Proof by cases: Suppose p ≡ p1∨ · · · ∨pk. Prove that each
conditional pi→q is true. The basis for division into cases
is the logical equivalence [(p1∨ · · · ∨pk)→q] ≡ [(p1→q) ∧
· · · ∧ (pk→q)].

p→ q Indirect proof or Proof by contraposition: Assume that
¬q is true (that is, assume that q is false). Use rules of
inference and previously accepted axioms, definitions, and
facts to show that ¬p is true (that is, p is false).

p→ q Proof by contradiction: Assume that p→ q is false (that is,
assume that p is true and q is false). Use rules of inference
and previously accepted axioms, definitions, and facts to
show that a contradiction results. This means that p → q
cannot be false, and hence must be true.

(∃x ∈ D)P (x) Proof by contradiction: Assume that there is no x ∈ D for
which P (x) is true. Show that a contradiction results.

(∀x ∈ D)P (x) Proof by contradiction: Assume that there is some x ∈ D
for which P (x) is false. Show that a contradiction results.

p→ (q ∨ r) Proof of a disjunction: Prove that one of its logical equiv-
alences (p ∧ ¬q)→ r or (p ∧ ¬r)→ q is true.

p1, . . . , pk are Proof by cycle of implications: Prove p1 → p2, p2 → p3,
equivalent . . . , pk−1 → pk, pk → p1. This is equivalent to proving

(p1 → p2) ∧ (p2 → p3) ∧ · · · ∧ (pk−1 → pk) ∧ (pk → p1).
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5. Any integer that equals twice some integer is even: [∀x ∈ Z (if x = 2y for
some y ∈ Z, then x is even.)]

2(r + s) equals twice the integer r + s.
... 2(r + s) is even.

2. A constructive existence proof :

Theorem: Given any integer n, there is an integer m with m > n.

Proof: Suppose that n is an integer. Let m = n+ 1. Then m is an integer and
m > n.

The proof is constructive because it established the existence of the desired integer m
by showing that its value can be computed by adding 1 to the value of n.

3. A Nonconstructive existence proof :

Theorem: Given a nonnegative integer n, there is always a prime number p
that is greater than n.

Proof: Suppose that n is a nonnegative integer. Consider n! + 1. Then n! + 1
is divisible by some prime number p because every integer greater than 1 is
divisible by a prime number, and n! + 1 > 1. Also, p > n because when n! + 1
is divided by any positive integer less than or equal to n, the remainder is 1
(since any such number is a factor of n!).

The proof is a nonconstructive existence proof because it demonstrated the existence of
the number p, but it offered no computational rule for finding it.

4. A proof by cases:

Theorem: For all odd integers n, the number n2 − 1 is divisible by 8.

Proof: Suppose n is an odd integer. When n is divided by 4, the remainder is
0, 1, 2, or 3. Hence n has one of the four forms 4k, 4k + 1, 4k + 2, or 4k + 3
for some integer k. But n is odd. So n �= 4k and n �= 4k + 2. Thus either
n = 4k + 1 or n = 4k + 3 for some integer k.

Case 1 [n = 4k + 1 for some integer k]: In this case n2 − 1 = (4k + 1)2 − 1 =
16k2 + 8k + 1 − 1 = 16k2 + 8k = 8(2k2 + k), which is divisible by 8 because
2k2 + k is an integer.

Case 2 [n = 4k + 3 for some integer k]: In this case n2 − 1 = (4k + 3)2 − 1 =
16k2 + 24k + 9− 1 = 16k2 + 24k + 8 = 8(2k2 + 3k + 1), which is divisible by 8
because 2k2 + 3k + 1 is an integer.

So in either case n2−1 is divisible by 8, and thus the given statement is proved.

5. A proof by contraposition:

Theorem: For all integers n, if n2 is even, then n is even.

Proof: Suppose that n is an integer that is not even. Then when n is divided
by 2 the remainder is 1, or, equivalently, n = 2k + 1 for some integer k. By
substitution, n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. It follows that
when n2 is divided by 2 the remainder is 1 (because 2k2 + 2k is an integer).
Thus, n2 is not even.

In this proof by contraposition, a direct proof of the contrapositive “if n is not even,
then n2 is not even” was given.
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6. A proof by contradiction:

Theorem:
√

2 is irrational.

Proof : Suppose not; that is, suppose that
√

2 were a rational number. By
definition of rational, there would exist integers a and b such that

√
2 = a

b , or,
equivalently, 2b2 = a2. Now the prime factorization of the left-hand side of this
equation contains an odd number of factors and that of the right-hand side
contains an even number of factors (because every prime factor in an integer
occurs twice in the prime factorization of the square of that integer). But this
is impossible because the prime factorization of every integer is unique. This
yields a contradiction, which shows that the original supposition was false.
Hence

√
2 is irrational.

7. A proof by cycle of implications:

Theorem: For all positive integers a and b, the following statements are equiv-
alent:

(1) a is a divisor of b;
(2) the greatest common divisor of a and b is a;
(3)

⌊
b
a

⌋
= b

a .

Proof : Let a and b be positive integers.

(1)→ (2): Suppose that a is a divisor of b. Since a is also a divisor of a, a is a
common divisor of a and b. But no integer greater than a is a divisor of a. So
the greatest common divisor of a and b is a.

(2) → (3): Suppose that the greatest common divisor of a and b is a. Then
a is a divisor of both a and b, so b = ak for some integer k. Then b

a = k, an
integer, and so by definition of floor,

⌊
b
a

⌋
= k = b

a .

(3) → (1): Suppose that
⌊

b
a

⌋
= b

a . Let k =
⌊

b
a

⌋
. Then k =

⌊
b
a

⌋
= b

a , and k
is an integer by definition of floor. Multiplying the outer parts of the equality
by a gives b = ak, so by definition of divisibility, a is a divisor of b.

8. A proof of a disjunction:

Theorem: For all integers a and p, if p is prime, then either p is a divisor of a,
or a and p have no common factor greater than 1.

Proof: Suppose a and p are integers and p is prime, but p is not a divisor of a.
Since p is prime, its only positive divisors are 1 and p. So, since p is not a
divisor of a, the only possible positive common divisor of a and p is 1. Hence a
and p have no common divisor greater than 1.

1.5.3 DISPROOFS

Definitions:

A disproof of a statement is a proof that the statement is false.

A counterexample to a statement of the form (∀x ∈ D)P (x) is an element b ∈ D for
which P (b) is false.

c© 2000 by CRC Press LLC



Facts:

1. The method of disproof by counterexample is based on the following fact:

¬[(∀x ∈ D)P (x)] ⇔ (∃x ∈ D) [¬P (x)].

2. The following table describes how to give various types of disproofs:

statement technique of disproof

(∀x∈D)P (x) Constructive disproof by counterexample: Exhibit a spe-
cific a ∈ D for which P (a) is false.

(∀x∈D)P (x) Existence disproof : Prove the existence of some a ∈ D for
which P (a) is false.

(∃x∈D)P (x) Prove that there is no a ∈ D for which P (a) is true.

(∀x∈D) [P (x)→ Q(x)] Find an element a ∈ D with P (a) true and Q(a) false.

(∀x∈D)(∃y∈E)P (x, y) Find an element a ∈ D with P (a, y) false for every y ∈ E.

(∃x∈D)(∀y∈E)P (x, y) Prove that there is no a ∈ D for which P (a, y) is true for
every possible a ∈ E.

Examples:

1. The statement (∀a, b ∈ R) [ a2 < b2 → a < b ] is disproved by the following coun-
terexample: a = 2, b = −3. Then a2 < b2 (because 4 < 9) but a �< b (because 2 �< −3).

2. The statement “every prime number is odd” is disproved by the following coun-
terexample: n = 2, since n is prime and not odd.

1.5.4 MATHEMATICAL INDUCTION

Definitions:

The principle of mathematical induction (weak form) is the following rule of
inference for proving that all the items in a list x0, x1, x2, . . . have some property P (x):

P (x0) is true basis premise
(∀k ≥ 0 ) [if P (xk) is true, then P (xk+1) is true] induction premise

... (∀n ≥ 0) [P (xn) is true]. conclusion

The antecedent P (xk) in the induction premise “if P (xk) is true, then P (xk+1) is true”
is called the induction hypothesis.

The basis step of a proof by mathematical induction is a proof of the basis premise.

The induction step of a proof by mathematical induction is a proof of the induction
premise.

The principle of mathematical induction (strong form) is the following rule of
inference for proving that all the items in a list x0, x1, x2, . . . have some property P (x):

P (x0) is true basis premise
(∀k ≥ 0) [if P (x0), P (x1), . . . , P (xk) are all (strong) induction premise

true, then P (xk+1) is true]
... (∀n ≥ 0) [P (xn) is true]. conclusion
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The well-ordering principle for the integers is the following axiom: If S is a
nonempty set of integers such that every element of S is greater than some fixed integer,
then S contains a least element.

Facts:

1. Typically, the principle of mathematical induction is used to prove that one of the
following sequences of statements is true: P (0), P (1), P (2), . . . or P (1), P (2), P (3), . . . .
In these cases the principle of mathematical induction has the form: if P (0) is true and
P (n)→ P (n + 1) is true for all n ≥ 0, then P (n) is true for all n ≥ 0; or if P (1) is true
and P (n)→ P (n + 1) is true for all n ≥ 1, then P (n) is true for all n ≥ 1

2. If the truth of P (n+1) can be obtained from the previous statement P (n), the weak
form of the principle of mathematical induction can be used. If the truth of P (n + 1)
requires the use of one or more statements P (k) for k ≤ n, then the strong form should
be used.

3. Mathematical induction can also be used to prove statements that can be phrased
in the form “For all integers n ≥ k, P (n) is true”.

4. Mathematical induction can often be used to prove summation formulas and in-
equalities.

5. There are alternative forms of mathematical induction, such as the following:
• if P (0) and P (1) are true, and if P (n)→ P (n+2) is true for all n ≥ 0, then P (n)

is true for all n ≥ 0;
• if P (0) and P (1) are true, and if [P (n) ∧ P (n + 1)] → P (n + 2) is true for all

n ≥ 0, then P (n) is true for all n ≥ 0.

6. The weak form of the principle of mathematical induction, the strong form of the
principle of mathematical induction, and the well-ordering principle for the integers are
all regarded as axioms for the integers. This is because they cannot be derived from the
usual simpler axioms used in the definition of the integers. (See the Peano definition of
the natural numbers in §1.2.3.)

7. The weak form of the principle of mathematical induction, the strong form of the
principle of mathematical induction, and the well-ordering principle for the integers are
all equivalent. In other words, each of them can be proved from each of the others.

8. The earliest recorded use of mathematical induction occurs in 1575 in the book
Arithmeticorum Libri Duo by Francesco Maurolico, who used the principle to prove
that the sum of the first n odd positive integers is n2.

Examples:

1. A proof using the weak form of mathematical induction: (In this proof, x0, x1, x2, . . .
is the sequence 1, 2, 3, . . . , and the property P (xn) is the equation 1 + 2 + · · · + n =
n(n+1)

2 .)

Theorem: For all integers n ≥ 1, 1 + 2 + · · ·+ n = n(n+1)
2 .

Proof:
Basis Step: For n = 1 the left-hand side of the formula is 1, and the

right-hand side is 1(1+1)
2 , which is also equal to 1. Hence P (1) is true.

Induction Step: Let k be an integer, k ≥ 1, and suppose that P (k) is true.
That is, suppose that 1+2+· · ·+k = k(k+1)

2 (the induction hypothesis) is true.
It must be shown that P (k + 1) is true: 1 + 2 + · · ·+ (k + 1) = (k+1)((k+1)+1)

2 ,
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or, equivalently, that 1 + 2 + · · ·+ (k + 1) = (k+1)(k+2)
2 . But, by substitution

from the induction hypothesis,
1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

= k(k+1)
2 + (k + 1)

= (k+1)(k+2)
2 .

Thus, 1 + 2 + · · ·+ (k + 1) = (k+1)(k+2)
2 is true.

2. A proof using the weak form of mathematical induction:

Theorem: For all integers n ≥ 4, 2n < n!.

Proof:
Basis Step: For n = 4, 24 < 4! is true since 16 < 24.
Induction Step: Let k be an integer, k ≥ 4, and suppose that 2k < k! is

true. The following shows that 2k+1 < (k + 1)! must also be true:

2k+1 = 2 · 2k < 2 · k! < (k + 1)k! = (k + 1)!.

3. A proof using the weak form of mathematical induction:

Theorem: For all integers n ≥ 8, n cents in postage can be made using only
3-cent and 5-cent stamps.

Proof: Let P (n) be the predicate “n cents postage can be made using only
3-cent and 5-cent stamps”.

Basis Step: P (8) is true since 8 cents in postage can be made using one
3-cent stamp and one 5-cent stamp.

Induction Step: Let k be an integer, k ≥ 8, and suppose that P (k) is true.
The following shows that P (k + 1) must also be true. If the pile of stamps
for k cents postage has in it any 5-cent stamps, then remove one 5-cent stamp
and replace it with two 3-cent stamps. If the pile for k cents postage has only
3-cent stamps, there must be at least three 3-cent stamps in the pile (since
k �= 3 or 6). Remove three 3-cent stamps and replace them with two 5-cent
stamps. In either case, a pile of stamps for k + 1 cents postage results.

4. A proof using an alternative form of mathematical induction (Fact 5):

Theorem: For all integers n ≥ 0, Fn < 2n. (Fk are Fibonacci numbers. See
§3.1.2.)

Proof: Let P (n) be the predicate “Fn < 2n ”.
Basis Step: P (0) and P (1) are both true since F0 = 0 < 1 = 20 and

F1 = 1 < 2 = 21.
Induction Step: Let k be an integer, k ≥ 0, and suppose that P (k) and

P (k+1) are true. Then P (k+2) is also true: Fk+2 = Fk +Fk+1 < 2k +2k+1 <
2k+1 + 2k+1 = 2 · 2k+1 = 2k+2.

5. A proof using the strong form of mathematical induction:

Theorem: Every integer n ≥ 2 is divisible by some prime number.

Proof : Let P (n) be the sentence “n is divisible by some prime number”.
Basis Step: Since 2 is divisible by 2 and 2 is a prime number, P (2) is true.
Induction Step: Let k be an integer with k > 2, and suppose that P (i) (the

induction hypothesis) is true for all integers i with 2 ≤ i < k. That is, suppose
for all integers i with 2 ≤ i < k that i is divisible by a prime number. (It must
now be shown that k is divisible by a prime number.)
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Now either the number k is prime or k is not prime. If k is prime, then k
is divisible by a prime number, namely itself. If k is not prime, then k = a · b
where a and b are integers, with 2 ≤ a < k and 2 ≤ b < k. By the induction
hypothesis, the number a is divisible by a prime number p, and so k = ab is
also divisible by that prime p. Hence, regardless of whether k is prime or not,
k is divisible by a prime number.

6. A proof using the well-ordering principle:

Theorem: Every integer n ≥ 2 is divisible by some prime number.

Proof: Suppose, to the contrary, that there exists an integer n ≥ 2 that is
divisible by no prime number. Thus, the set S of all integers ≥ 2 that are
divisible by no prime number is nonempty. Of course, no number in S is
prime, since every number is divisible by itself.

By the well-ordering principle for the integers, the set S contains a least
element k. Since k is not prime, there must exist integers a and b with 2 ≤ a <
k and 2 ≤ b < k, such that k = a · b. Moreover, since k is the least element of
the set S and since both a and b are smaller than k, it follows that neither a nor
b is in S. Hence, the number a (in particular) must be divisible by some prime
number p. But then, since a is a factor of k, the number k is also divisible by
p, which contradicts the fact that k is in S. This contradiction shows that the
original supposition is false, or, in other words, that the theorem is true.

7. A proof using the well-ordering principle:

Theorem: Every decreasing sequence of nonnegative integers is finite.

Proof: Suppose a1, a2, . . . is a decreasing sequence of nonnegative integers:
a1 > a2 > · · · . By the well-ordering principle, the set {a1, a2, . . .} contains a
least element, an. This number must be the last in the sequence (and hence
the sequence is finite). If an is not the last term, then an+1 < an, which
contradicts the fact that an is the smallest element.

1.5.5 DIAGONALIZATION ARGUMENTS

Definition:

The diagonal of an infinite list of sequences s1, s2, s3, . . . is the infinite sequence whose
jth element is the jth entry of sequence sj .

A diagonalization proof is any proof that involves the diagonal of a list of sequences,
or something analogous to this.

Facts:
1. A diagonalization argument can be used to prove the existence of nonrecursive func-
tions.
2. A diagonalization argument can be used to prove that no computer algorithm can
ever be developed to determine whether an arbitrary computer program given as input
with a given set of data will terminate (the Turing Halting Problem).
3. A diagonalization argument can be used to prove that every mathematical theory
(under certain reasonable hypotheses) will contain statements whose truth or falsity is
impossible to determine within the theory (Gödel’s Incompleteness Theorem).
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Example:

1. A diagonalization proof :

Theorem: The set of real numbers between 0 and 1 is uncountable. (Georg
Cantor, 1845–1918)

Proof: Suppose, to the contrary, that the set of real numbers between 0 and 1
is countable. The decimal representations of these numbers can be written in
a list as follows:

0.a11a12a13 . . . a1n . . .
0.a21a22a23 . . . a2n . . .
0.a31a32a33 . . . a3n . . .

...
0.an1an2an3 . . . ann . . .

...

From this list, construct a new decimal number 0.b1b2b3 . . . bn . . . by specifying
that

bi =
{

5 if aii �= 5
6 if aii = 5.

For each integer i ≥ 1, 0.b1b2b3 . . . bn . . . differs from the ith number in the
list in the ith decimal place, and hence 0.b1b2b3 . . . bn . . . is not in the list.
Consequently, no such listing of all real numbers between 0 and 1 is possible,
and hence, the set of real numbers between 0 and 1 is uncountable.

1.6 AXIOMATIC PROGRAM VERIFICATION

Axiomatic program verification is used to prove that a sequence of programming instruc-
tions achieves its specified objective. Semantic axioms for the programming language
constructs are used in a formal logic argument as rules of inference. Comments called
assertions, within the sequence of instructions, provide the main details of the argument.
The presently high expense of creating verified software can be justified for code that
is frequently reused, where the financial benefit is otherwise adequately large, or where
human life is concerned, for instance, in airline traffic control. This section presents a
representative sample of axioms for typical programming language constructs.

1.6.1 ASSERTIONS AND SEMANTIC AXIOMS

The correctness of a program can be argued formally based on a set of semantic axioms
that define the behavior of individual programming language constructs [Fl67], [Ho69],
[Ap81]. (Some alternative proofs of correctness use denotational semantics [St77], [Sc86]
or operational semantics [We72].) In addition, it is possible to synthesize code, using
techniques that permit the axioms to guide the selection of appropriate instructions
[Di76], [Gr81]. Code specifications and intermediate conditions are expressed in the
form of program assertions.
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Definitions:

An assertion is a program comment containing a logical statement that constrains the
values of the computational variables. These constraints are expected to hold when
execution flow reaches the location of the assertion.

A semantic axiom for a type of programming instruction is a rule of inference that
prescribes the change of value of the variables of computation caused by the execution
of that type of instruction.

The assertion false represents an inconsistent set of logical conditions. A computer
program cannot meet such a specification.

Given two constraints A and B on computational variables, a statement that B follows
from A purely for reasons of logic and/or mathematics is called a logical implication.

The postcondition for an instruction or program fragment is the assertion that imme-
diately follows it in the program.

The precondition for an instruction or program fragment is the assertion that imme-
diately precedes it in the program.

The assertion true represents the empty set of logical conditions.

Notation:

1. To say that whenever the precondition {Apre} holds, the execution of a program
fragment called “Code” will cause the postcondition {Apost} to hold, the following
notation styles can be used:

• Horizontal notation: {Apre} Code {Apost}
• Vertical notation: {Apre}

Code
{Apost}.

• Flowgraph notation:

2. Curly braces { . . . } enclose assertions in generic program code. They do not denote
a set.

3. Semantic axioms have a finite list of premises and a conclusion. They are represented
in the following format:

{Premise 1}
...

{Premise n}
- - - - - - - - - -
{Conclusion}

4. The circumstance that A logically implies B is denoted A⇒ B.
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1.6.2 NOP, ASSIGNMENT, AND SEQUENCING AXIOMS

Formal axioms of pure mathematical consequence (no operation, from a computational
perspective) and of straight-line sequential flow are used as auxiliaries to verify correct-
ness, even of sequences of simple assignment statements.

Definitions:

A NOP (“no-op”) is a (possibly empty) program fragment whose execution does not
alter the state of any computational variables or the sequence of flow.

The Axiom of NOP states:
{Apre} ⇒ {Apost} Premise 1
- - - - - - - - - - - - - -
{Apre} NOP {Apost} Conclusion

Note: The Axiom of NOP is frequently applied to empty program fragments in order
to facilitate a clear logical argument.

An assignment instruction X := E; means that the variable X is to be assigned the
value of the expression E.

In a logical assertion A(X) with possible instances of the program variable X, the
result of replacing each instance of X in A by the program expression E is denoted
A(X ← E).

The Axiom of Assignment states:
{true} No premises
- - - - - - - - - - - - - -
{A(X ← E)}X := E; {A(X)} Conclusion

The following Axiom of Sequence provides that two consecutive instructions in the
program code are executed one immediately after the other:

{Apre} Code1 {Amid} Premise 1
{Amid} Code2 {Apost} Premise 2
- - - - - - - - - - - - - - - -
{Apre} Code1, Code2 {Apost} Conclusion

(Commas are used as separators in program code.)

Examples:

1. Example of NOP: Suppose that X is a numeric program variable.
{X = 3} ⇒ {X > 0} mathematical fact
- - - - - - - - - - - - - - -
{X = 3} NOP {X > 0} by Axiom of NOP

2. Suppose that X and Y are integer-type program variables. The Axiom of Assign-
ment alone implies correctness of all the following examples:
(a) {X = 4} X := X ∗ 2; {X = 8}
A(X) is {X = 8}; E is X ∗2; A(X ← E) is {X ∗2 = 8}, which is equivalent to {X = 4}.
(b) {true} X := 2; {X = 2}
A(X) is {X = 2}; E is 2; A(X ← E) is {2 = 2}, which is equivalent to {true}.
(c) {(−9 < X) ∧ (X < 0)} Y := X; {(−9 < Y ) ∧ (Y < 0)}
A(Y ) is {(−9 < Y ) ∧ (Y < 0)}; E is X; A(Y ← E) is {(−9 < X) ∧ (X < 0)}.
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(d) {Y = 1} X := 0; {Y = 1}
A(X) is {Y = 1}; E is 0; A(X ← E) is {Y = 1}.
(e) {false} X := 8; {X = 2}
A(X) is {X = 2}; E is 8; A(X ← E) is {8 = 2}, which is equivalent to {false}.

3. Examples of sequence:
(a) {X = 1} X := X + 1; {X > 0}

i. {X = 1} ⇒ {X > −1} mathematics
ii. {X = 1} NOP {X > −1} Axiom of NOP
iii. {X > −1} X := X + 1; {X > 0} Axiom of Assignment
iv. {X = 1} NOP, X := X + 1; {X > 0} Axiom of Sequence on ii, iii
v. {X = 1} X := X + 1; {X > 0} definition of NOP.

(b) {Y = a ∧ X = b} Z := Y ; Y := X; X := Z; {X = a ∧ Y = b}
i. {Y = a ∧ X = b} Z := Y ; {Z = a ∧ X = b} Axiom of Assignment
ii. {Z = a ∧ X = b} Y := X; {Z = a ∧ Y = b} Axiom of Assignment
iii. {Y = a ∧ X = b} Z := Y, Y := X, {Z = a ∧ Y = b} Axiom of Sequence on i, ii
iv. {Z = a ∧ Y = b} X := Z; {X = a ∧ Y = b} Axiom of Assignment
v. {Y = a ∧ X = b} Z := Y, Y := X, X := Z, Axiom of Sequence

{X = a ∧ Y = b} on iii, iv.

1.6.3 AXIOMS FOR CONDITIONAL EXECUTION CONSTRUCTS

Definitions:

A conditional assignment construct is any type of program instruction containing
a logical condition and an imperative clause such that the imperative clause is to be
executed if and only if the logical condition is true. Some types of conditional assignment
contain more than one logical condition and more than one imperative clause.

An if-then instruction if IfCond then ThenCode has one logical condition (which
follows the keyword if) and one imperative clause (which follows the keyword then).

The Axiom of If-then states:
{Apre ∧ IfCond} ThenCode {Apost} Premise 1
{Apre ∧ ¬IfCond} ⇒ {Apost} Premise 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
{Apre} if IfCond then ThenCode {Apost} Conclusion

An if-then-else instruction if IfCond then ThenCode else ElseCode has one
logical condition, which follows the keyword if, and two imperative clauses, one after
the keyword then, and the other after the keyword else.
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The Axiom of If-then-else states:
{Apre ∧ IfCond} ThenCode {Apost} Premise 1
{Apre ∧ ¬IfCond} ElseCode {Apost} Premise 2
- - - - - - - - - - - - - - - - - - - - - - - - -
{Apre} if IfCond then ThenCode else ElseCode {Apost} Conclusion

Examples:
1. If-then:
{true} if X = 3 then Y := X; {X = 3→ Y = 3}

i. {X = 3} Y := X; {X = 3 ∧ Y = 3} Axiom of Assignment
ii. {X = 3 ∧ Y = 3} NOP {(X = 3)→ (Y = 3)} Axiom of NOP

(Step ii uses a logic fact: p ∧ q ⇒ p→ q)
iii. {X = 3} Y := X; {X = 3→ Y = 3} Axiom of Sequence on i, ii

(Step iii establishes Premise 1 for Ax. of If-then)
iv. {¬(X = 3)} ⇒ {X = 3→ Y = 3} Logic fact

(Step iv establishes Premise 2 for Ax. of If-then)
v. {true} if X = 3 then Y := X; {X = 3→ Y = 3} Axiom of If-then on iii, iv.

2. If-then-else:
{X > 0}

if (X > Y ) then M := X; else M := Y ;
{(X > 0) ∧ (X > Y →M = X) ∧ (X ≤ Y →M = Y )}
i. {X > 0 ∧ X >Y } M := X; {X > 0 ∧ (X >Y →M =X) ∧ (X ≤Y →M =Y )}

by Axiom of Assignment and Axiom of NOP (establishes Premise 1)
ii. {X > 0 ∧ ¬(X >Y )} M := Y ; {X > 0 ∧ (X >Y →M =X) ∧ (X ≤Y →M =Y )}

by Axiom of Assignment and Axiom of NOP (establishes Premise 2)
iii. Conclusion now follows from Axiom of If-then-else.

1.6.4 AXIOMS FOR LOOP CONSTRUCTS

Definitions:

A while-loop instruction while WhileCond do LoopBody has one logical condi-
tion called the while-condition, which follows the keyword while, and a sequence of
instructions called the loop-body . At the outset of execution, the while condition is
tested for its truth value. If it is true, then the loop body is executed. This two-step
process of test and execute continues until the while condition becomes false, after which
the flow of execution passes to whatever program instruction follows the while-loop.
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A loop is weakly correct if whenever the precondition is satisfied at the outset of
execution and the loop is executed to termination, the resulting computational state
satisfies the postcondition.

A loop is strongly correct if it is weakly correct and if whenever the precondition is
satisfied at the outset of execution, the computation terminates.

The Axiom of While defines weak correctness of a while-loop (i.e., the axiom ig-
nores the possibility of an infinite loop) in terms of a logical condition called the loop
invariant denoted “LoopInv” satisfying the following condition:

{Apre} ⇒ {LoopInv} “Initialization” Premise
{LoopInv ∧WhileCond} LoopBody {LoopInv} “Preservation” Premise
{LoopInv ∧ ¬WhileCond} ⇒ {Apost} “Finalization” Premise
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
{Apre} while {LoopInv} WhileCond do LoopBody {Apost} Conclusion

Example:
1. Suppose that J , N , and P are integer-type program variables.
{Apre : J = 0 ∧ P = 1 ∧ N ≥ 0}
while {LoopInv : P = 2J ∧ J ≤ N} (J < N) do

P := P ∗ 2;
J := J + 1;

endwhile
{Apost : P = 2N}

i. {Apre : J = 0 ∧ P = 1 ∧ N ≥ 0} ⇒ {LoopInv : P = 2J ∧ J ≤ N}
Initialization Premise trivially true by mathematics

ii. {LoopInv ∧WhileCond : (P = 2J ∧ J ≤ N) ∧ (J < N)}
P := P ∗ 2;
J := J + 1;
{LoopInv : P = 2J ∧ J ≤ N}

Preservation Premise proved using by Axiom of Assignment twice
and Axiom of Sequence

iii. {LoopInv ∧ ¬WhileCond : (P = 2J ∧ J ≤N) ∧ ¬(J <N)} ⇒ {Apost : P = 2N}
Finalization Premise provable by mathematics

iv. Conclusion now follows from Axiom of While.

Fact:
1. Proof of termination of a loop is usually achieved by mathematical induction.
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1.6.5 AXIOMS FOR SUBPROGRAM CONSTRUCTS

The parameterless procedure is the simplest subprogram construct. Procedures with
parameters and functional subprograms have somewhat more complicated semantic ax-
ioms.

Definitions:

A procedure is a sequence of instructions that lies outside the main sequence of in-
structions in a program. It consists of a procedure name, followed by a procedure
body.

A call instruction call ProcName is executed by transferring control to the first
executable instruction of the procedure ProcName.

A return instruction causes a procedure to transfer control to the executable instruction
immediately following the most recently executed call to that procedure. An implicit
return is executed after the last instruction in the procedure body is executed. It is
good programming style to put a return there.

In the following Axiom of Procedure (parameterless), Apre and Apost are the
precondition and postcondition of the instruction call ProcName; ProcPre and ProcPost
are the precondition and postcondition of the procedure whose name is ProcName.

{Apre} ⇒ {ProcPre} “Call” Premise
{ProcPre} ProcBody {ProcPost} “Body” Premise
{ProcPost} ⇒ {Apost} “Return” Premise
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
{Apre} call ProcName; {Apost} Conclusion

1.7 LOGIC-BASED COMPUTER PROGRAMMING PARADIGMS

Mathematical logic is the basis for several different computer software paradigms. These
include logic programming, fuzzy reasoning, production systems, artificial intelligence,
and expert systems.

1.7.1 LOGIC PROGRAMMING

A computer program in the imperative paradigm (familiar in languages like C, BASIC,
FORTRAN, and ALGOL) is a list of instructions that describes a precise sequence
of actions that a computer should perform. To initiate a computation, one supplies
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the iterative program plus specific input data to the computer. Logic programming
provides an alternative paradigm in which a program is a list of “clauses”, written in
predicate logic, that describe an allowed range of behavior for the computer. To initiate
a computation, the computer is supplied with the logic program plus another clause
called a “goal”. The aim of the computation is to establish that the goal is a logical
consequence of the clauses constituting the logic program. The computer simplifies the
goal by executing the program repeatedly until the goal becomes empty, or until it
cannot be further simplified.

Definitions:

A term in a domain S is either a fixed element of S or an S-valued variable.

An n-ary predicate on a set S is a function P :Sn → {T, F}.
An atomic formula (or atom) is an expression of the form P (t1, . . . , tn), where n ≥ 0,
P is an n-ary predicate, and t1, . . . , tn are terms.

A formula is a logical expression constructed from atoms with conjunctions, disjunc-
tions, and negations, possibly with some logical quantifiers.

A substitution for a formula is a finite set of the form {v1/t1, . . . , vn/tn}, where each
vi is a distinct variable, and each ti is a term distinct from vi.

The instance of a formula ψ using the substitution θ = {v1/t1, . . . , vn/tn} is the formula
obtained from ψ by simultaneously replacing each occurrence of the variable vi in ψ by
the term ti. The resulting formula is denoted by ψθ.

A closed formula in logic programming is a program without any free variables.

A ground formula is a formula without any variables at all.

A clause is a formula of the form ∀x1 . . .∀xs(A1 ∨ · · · ∨An ← B1 ∧ · · · ∧Bm) with no
free variables, where s, n,m ≥ 0, and A’s and B’s are atoms. In logic programming,
such a clause may be denoted by A1, . . . , An ← B1, . . . , Bm.

The head of a clause A1, . . . , An ← B1, . . . , Bm is the sequence A1, . . . , An.

The body of a clause A1, . . . , An ← B1, . . . , Bm is the sequence B1, . . . , Bm.

A definite clause is a clause of the form A ← B1, . . . , Bm or ← B1, . . . , Bm, which
contains at most one atom in its head.

An indefinite clause is a clause that is not definite.

A logic program is a finite sequence of definite clauses.

A goal is a definite clause ← B1, . . . , Bm whose head is empty. (Prescribing a goal for
a logic program P tells the computer to derive an instance of that goal by manipulating
the logical clauses in P .)

An answer to a goal G for a logic program P is a substitution θ such that Gθ is a
logical consequence of P .

A definite answer to a goal G for a logic program P is an answer in which every
variable is substituted by a constant.

Facts:

1. A definite clause A← B1, . . . , Bm represents the following logical constructs:

If every Bi is true, then A is also true;
Statement A can be proved by proving every Bi.
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2. Definite answer property : If a goal G for a logic program P has an answer, then it
has a definite answer.

3. The definite answer property does not hold for indefinite clauses. For example,
although G = ∃xQ(x) is a logical consequence of P = {Q(a), Q(b) ←}, no ground
instance of G is a logical consequence of P .

4. Logic programming is Turing-complete (§16.3); i.e., any computable function can
be represented using a logic program.

5. Building on the work of logician J. Alan Robinson in 1965, computer scientists
Robert Kowalski and Alain Colmerauer of Imperial College and the University of Mar-
seille-Aix, respectively, in 1972 independently developed the programming language
PROLOG (PROgramming in LOGic) based on a special subset of predicate logic.

6. The first PROLOG interpreter was implemented in ALGOL-W in 1972 at the Uni-
versity of Marseille-Aix. Since then, several variants of PROLOG have been introduced,
implemented, and used in practical applications. The basic paradigm behind all these
languages is called Logic Programming.

7. In PROLOG, the relation “is” means equality.

Examples:

1. The following three clauses are definite:
P ← Q,R P ← ← Q,R.

2. The clause P, S ← Q,R is indefinite.

3. The substitution {X/a, Y/b} for the atom P (X,Y, Z) yields the instance P (a, b, Z).

4. The goal ← P to the program {P ←} has a single answer, given by the empty
substitution. This means the goal can be achieved.

5. The goal ← P to the program {Q ←} has no answer. This means it cannot be
derived from that program.

6. The logic program consisting of the following two definite clauses P1 and P2 com-
putes a complete list of the pairs of vertices in an arbitrary graph that have a path
joining them:

P1. path(V, V )←
P2. path(U, V )← path(U,W ), edge(W,V )

Definite clauses P3 and P4 comprise a representation of a graph with nodes 1, 2, and
3, and edges (1,2) and (2,3):

P3. edge(1,2) ←
P4. edge(2,3) ←

The goal G represents a query asking for a complete list of the pairs of vertices in an
arbitrary graph that have a path joining them:

G. ← path(Y,Z)

There are three distinct answers of the goal G to the logic program consisting of
definite clauses P1 to P4, corresponding to the paths (1,2), (1,2,3), and (2,3), respec-
tively:

A1. {Y/1, Z/2}
A2. {Y/1, Z/3}
A3. {Y/2, Z/3}
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7. The following logic program computes the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . ,
where the predicate fib(N,X) is true if X is the Nth number in the Fibonacci sequence:

fib(0, 0)←
fib(1, 1)←
fib(N,X + Y )← N > 1, fib(N − 1, X), fib(N − 2, Y )

The goal “← fib(6, X)” is answered {X/8}, the goal “← fib(X, 8)” is answered {X/6},
and the goal “← fib(N,X)” has the following infinite sequence of answers:

{N/0, X/0}
{N/1, X/1}
{N/2, X/1}

...

8. Consider the problem of finding an assignment of digits (integers 0, 1, . . . , 9) to letters
such that adding two given words produces the third given word, as in this example:

S E N D
+ M O R E

M O N E Y

One solution to this particular puzzle is given by the following assignment:

D = 0, E = 0, M = 1, N = 0, O = 0, R = 0, S = 9, Y = 0.

The following PROLOG program solves all such puzzles:

between(X,X,Z)← X < Z.
between(X,Y, Z)← between(K,Y, Z), X is K − 1.
val([ ], 0)←.
val([X|Y ], A)← val(Y,B), between(0, X, 9), A is 10 ∗B + X.
solve(X,Y, Z)← val(X,A), val(Y,B), val(Z,C), C is A + B.

The specific example given above is captured by the following goal:

← solve([D,N,E, S], [E,R,O,M ], [Y,E,N,O,M ]).

The predicate between(X,Y, Z) means X ≤ Y ≤ Z. The predicate val(L,N)
means that the number N is the value of L, where L is the kind of list of letters that
occurs on a line of these puzzles. The notation [X|L] means the list obtained by writing
list L after item X. The predicate solve(X,Y, Z) means that the value of list Z equals
the sum of the values of list X and list Y .

This example illustrates the ease of writing logic programs for some problems where
conventional imperative programs are more difficult to write.

1.7.2 FUZZY SETS AND LOGIC

Fuzzy set theory and fuzzy logic are used to model imprecise meanings, such as “tall”,
that are not easily represented by predicate logic. In particular, instead of assigning
either “true” or “false” to the statement “John is tall”, fuzzy logic assigns a real number
between 0 and 1 that indicates the degree of “tallness” of John. Fuzzy set theory assigns
a real number between 0 and 1 to John that indicates the extent to which he is a member
of the set of tall people. See [Ka86], [Ka92], [KaLa94], [YaFi94], [YaZa94], [Za65], [Zi91],
[Zi93].
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Definitions:

A fuzzy set F = (X,µ) consists of a set X (the domain) and a membership function
µ:X → [0, 1]. Sometimes the set is written { (x, µ(x)) | x ∈ X } or {µ(x)x | x ∈ X }.
The fuzzy intersection of fuzzy sets (A,µA) and (B,µB) is the fuzzy set A ∩B with
domain A ∩B and membership function µA∩B(x) = min(µA(x), µB(x)).

The fuzzy union of fuzzy sets (A,µA) and (B,µB) is the fuzzy set A∪B with domain
A ∪B and membership function µA∪B(x) = max(µA(x), µB(x)).

The fuzzy complement of the fuzzy set (A,µ) is the fuzzy set ¬A or A with domain A
and membership function µA(x) = 1− µ(x).

The nth constructor con(µ, n) of a membership function µ is the function µn. That
is, con(µ, n)(x) = (µ(x))n.

The nth dilutor dil(µ, n) of a membership function µ is the function µ1/n. That is,
dil(µ, n)(x) = (µ(x))1/n.

A T-norm operator is a function f : [0, 1]× [0, 1]→ [0, 1] with the following properties:
• f(x, y) = f(y, x) commutativity

• f(f(x, y), z) = f(x, f(y, z)) associativity

• if x ≤ v and y ≤ w, then f(x, y) ≤ f(v, w) monotonicity

• f(a, 1) = a. 1 is a unit element

The fuzzy intersection A ∩f B of fuzzy sets (A,µA) and (B,µB) relative to the
T-norm operator f is the fuzzy set with domain A ∩ B and membership function
µA∩f B(x) = f(µA(x), µB(x)).

An S-norm operator is a function f : [0, 1]×[0, 1]→ [0, 1] with the following properties:
• f(x, y) = f(y, x) commutativity

• f(f(x, y), z) = f(x, f(y, z)) associativity

• if x ≤ v and y ≤ w, then f(x, y) ≤ f(v, w) monotonicity

• f(a, 1) = 1.

The fuzzy union A ∪f B of fuzzy sets (A,µA) and (B,µB) relative to the S-norm
operator f is the fuzzy set with domain A ∪B and membership function µA∪f B(x) =
f(µA(x), µB(x)).

A complement operator is a function f : [0, 1]→ [0, 1] with the following properties:
• f(0) = 1
• if x < y then f(x) > f(y)
• f(f(x)) = x.

The fuzzy complement ¬fA of the fuzzy set (A,µ) relative to the complement
operator f is the fuzzy set with domain A and membership function µ¬f

(x) = f(µ(x)).

A fuzzy system consists of a base collection of fuzzy sets, intersections, unions, com-
plements, and implications.

A hedge is a monadic operator corresponding to linguistic adjectives such as “very”,
“about”, “somewhat”, or “quite” that modify membership functions.

A two-valued logic is a logic where each statement has exactly one of the two values:
true or false.
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A multi-valued logic (n-valued logic) is a logic with a set of n (≥ 2) truth values;
i.e., there is a set of n numbers v1, v2, . . . , vn ∈ [0, 1] such that every statement has
exactly one truth value vi.

Fuzzy logic is the study of statements where each statement has assigned to it a truth
value in the interval [0, 1] that indicates the extent to which the statement is true.

If statements p and q have truth values v1 and v2 respectively, the truth value of p∨ q
is max(v1, v2), the truth value of p∧ q is min(v1, v2), and the truth value of ¬p is 1−v1.

Facts:

1. Fuzzy set theory and fuzzy logic were developed by Lofti Zadeh in 1965.

2. Fuzzy set theory and fuzzy logic are parallel concepts: given a predicate P (x), the
fuzzy truth value of the statement P (a) is the fuzzy set value assigned to a as an element
of {x | P (x) }.
3. The usual minimum function min(x, y) is a T-norm. The usual real maximum
function max(x, y) is an S-norm. The function c(x) = 1− x is a complement operator.

4. Several other kinds of T-norms, S-norms, and complement operators have been
defined.

5. The words “T-norm” and “S-norm” come from multi-valued logics.

6. The only difference between T-norms and S-norms is that the T-norm specifies
f(a, 1) = a, whereas the S-norm specifies f(a, 1) = 1.

7. Several standard classes of membership functions have been defined, including step,
sigmoid, and bell functions.

8. Constructors and dilutors of membership functions are also membership functions.

9. The large number of practical applications of fuzzy set theory can generally be
divided into three types: machine systems, human-based systems, human-machine sys-
tems. Some of these applications are based on fuzzy set theory alone and some on
a variety of hybrid configurations involving neurofuzzy approaches, or in combination
with neural networks, genetic algorithms, or case-based reasoning.

10. The first fuzzy expert system that set a trend in practical fuzzy thinking was the
design of a cement kiln called Linkman, produced by Blue Circle Cement and SIRA
in Denmark in the early 1980s. The system incorporates the experience of a human
operator in a cement production facility.

11. The Sendai Subway Automatic Train Operations Controller was designed by Hi-
tachi in Japan. In that system, speed control during cruising, braking control near sta-
tion zones, and switching of control are determined by fuzzy IF-THEN rules that process
sensor measurements and consider factors related to travelers’ comfort and safety. In
operation since 1986, this most celebrated application encouraged many applications
based on fuzzy set controllers in the areas of home appliances (refrigerators, vacuum
cleaners, washers, dryers, rice cookers, air conditioners, shavers, blood-pressure measur-
ing devices), video cameras (including fuzzy automatic focusing, automatic exposure,
automatic white balancing, image stabilization), automotive (fuzzy cruise control, fuel
injection, transmission and brake systems), robotics, and aerospace.

12. Applications to finance started with the Yamaichi Fuzzy Fund, which is a fuzzy
trading system. This was soon followed by a variety of financial applications world-wide.
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13. Research activities will soon result in commercial products related to the use of
fuzzy set theory in the areas of audio and video data compression (such as HDTV),
robotic arm movement control, computer vision, coordination of visual sensors with
mechanical motion, aviation (such as unmanned platforms), and telecommunication.

14. Current status: Most applications of fuzzy sets and logic are directly related to
structured numerical model-free estimators. Presently, most applications are designed
with linguistic variables, where proper levels of granularity are being used in the evalu-
ations of those variables, expressing the ambiguity and subjectivity in human thinking.
Fuzzy systems capture expert knowledge and through the processing of fuzzy IF-THEN
rules are capable of processing knowledge combining the antecedents of each fuzzy rule,
calculating the conclusions, and aggregating them to the final decision.

15. One way to model fuzzy implication A → B is to define A → B as ¬cA ∪f B
relative to some complement operator c and to some S-norm operator f . Several other
ways have also been considered.

16. A fuzzy system is used computationally to control the behavior of an external
system.

17. Large fuzzy systems have been used in specifying complex real-world control sys-
tems. The success of such systems depends crucially on the specific engineering pa-
rameters. The correct values of these parameters are usually obtained by trial-and-
readjustment.

18. A two-valued logic is a logic that assumes the law of the excluded middle: p ∨ ¬p
is a tautology.

19. Every n-valued logic is a fuzzy logic.

Examples:

1. A committee consisting of five people met ten times during the past year. Person A
attended 7 meetings, B attended all 10 meetings, C attended 6 meetings, D attended no
meetings, and E attended 9 meetings. The set of committee members can be described
by the following fuzzy set that reflects the degree to which each the members attended
meetings, using the function µ: {A,B,C,D,E} → [0, 1] with the rule µ(x) = 1

10 (number
of meetings attended):

{(A, 0.7), (B, 1.0), (C, 0.6), (D, 0.0), (E, 0.9)},
which can also be written as

{0.7A, 1.0B, 0.6C, 0.0D, 0.9E}.
Person B would be considered a “full” member and person D a “nonmember”.

2. Four people are rated on amount of activity in a political party, yielding the fuzzy
set

P1 = {0.8A, 0.45B, 0.1C, 0.75D},
and based on their degree of conservatism in their political beliefs, as

P2 = {0.6A, 0.85B, 0.7C, 0.35D}.
The fuzzy union of the sets is

P1 ∪ P2 = {0.8A, 0.85B, 0.7C, 0.75D},
the fuzzy intersection is

P1 ∩ P2 = {0.6A, 0.45B, 0.1C, 0.35D}
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and the fuzzy complement of P1 (measurement of political inactivity) is

P1 = {0.2A, 0.55B, 0.9C, 0.25D}.

3. In the fuzzy set with domain T and membership function

µT (h) =

{ 0 if h ≤ 170
h−170

20 if 170 < h < 190
1 otherwise

the number 160 is not a member, the number 195 is a member, and the membership
of 182 is 0.6. The graph of µT is given in the following figure.

µ(h)

h
170 190

1

0

Quite Tall

4. The fuzzy set (T, µT ) of Example 3 can be used to define the fuzzy set “Tall”
= (H,µH) of tall people, by the rule µH(x) = µT (height(x)) where height(x) is the
height of person x calibrated in centimeters.

5. The second constructor con(µH , 2) of the fuzzy set “Tall” can be used to define a
fuzzy set “Quite tall”, whose graph is given in the following figure.

µ(h)

h
170 190

1

0

Somewhat Tall

6. The second dilutor dil(µH , 2) of the fuzzy set “Tall” defines the fuzzy set “Somewhat
tall”, whose graph is given in the following figure.

µ(h)

h
170 190

1

0

Somewhat Tall
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7. The concept of “being healthy” can be modeled using fuzzy logic. The truth
value 0.95 could be assigned to “Fran is healthy” if Fran is almost always healthy.
The truth value 0.4 could be assigned to “Leslie is healthy” if Leslie is healthy some-
what less than half the time. The truth of the statements “Fran and Leslie are healthy”
would be 0.4 and “Fran is not healthy” would be 0.05.

8. Behavior closed-loop control systems: The behavior of some closed-loop control
systems can be specified using fuzzy logic. For example, consider an automated heater
whose output setting is to be based on the readings of a temperature sensor. A fuzzy set
“cold” and the implication “very cold → high” could be used to relate the temperature
to the heater settings. The exact behavior of this system is determined by the degree of
the constructor used for “very” and by the specific choices of S-norm and complement
operators used to define the fuzzy implication — the “engineering parameters” of the
system.

1.7.3 PRODUCTION SYSTEMS

Production systems are a logic-based computer programming paradigm introduced by
Allen Newell and Herbert Simon in 1975. They are commonly used in intelligent systems
for representing an expert’s knowledge used in solving some real-world task, such as a
physician’s knowledge of making medical diagnoses.

Definitions:

A fact set is a set of ground atomic formulas. These formulas represent the information
relevant to the system.

A condition is a disjunction A1 ∨ · · · ∨An, where n ≥ 0 and each Ai is a literal.

A condition C is true in a fact set S if:
• C is empty, or
• C is a positive literal and C ∈ S, or
• C is a negative literal ¬A, and B �∈S for each ground instance B of A, or
• C = A1 ∨ · · · ∨An, and some condition Ai is true in S.

A print command “print(x)”, means that the value of the term x is to be printed.

An action is either a literal or a print command.

A production rule is of the form C1, . . . , Cn → A1, . . . , Am, where n,m ≥ 1, each Ci

is a condition, each Ai is an action, and each variable in each action appears in some
positive literal in some condition.

The antecedent of the rule C1, . . . , Cn → A1, . . . , Am is C1, . . . , Cn.

The consequent of the rule C1, . . . , Cn → A1, . . . , Am is A1, . . . , Am.

An instantiation of a production rule is the rule obtained by replacing each variable
in each positive literal in each condition of the rule by a constant.

A production system consists of a fact set and a set of production rules.
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Facts:

1. Given a fact set S, an instantiation C1, . . . , Cn → A1, . . . , Am of a production rule
denotes the following operation:

if each condition Ci is true in S then
for each Ai:

if Ai is an atom, add it to S
if Ai is a negative literal ¬B, then remove B from S
if Ai is “print(c)”, then print c.

2. In addition to “print”, production systems allow several other system-level com-
mands.

3. OPS5 and CLIPS are currently the most popular languages for writing production
systems. They are available for most operating systems, including UNIX and DOS.

4. To initialize a computation prescribed by a production system, the initial fact set
and all the production rules are supplied as input. The command “run1” non-deter-
ministically selects an instantiation of a production rule such that all conditions in the
antecedent hold in the fact set, and it “fires” the rule by carrying out the actions in the
consequent. The command “run” keeps on selecting and firing rules until no more rule
instantiations can be selected.

5. Production systems are Turing complete.

Examples:

1. The fact set S = {N(3), 3 > 2, 2 > 1} may represent that “3 is a natural number”,
that “3 is greater than 2”, and that “2 is greater than 1”.

2. If the fact set S of Example 1 and the production N(x)→ print(x) are supplied as
input, the command “run” will yield the instantiation N(3) → print(3) and fire it to
print 3.

3. The production rule N(x), x > y → ¬N(x), N(y) has N(3), 3 > 2 → ¬N(3), N(2)
as an instantiation. If operated on fact set S of Example 1, this rule will change S to
{3 > 2, 2 > 1, N(2)}.
4. The production system consisting of the following two production rules can be used
to add a set of numbers in a fact set:

¬S(x)→ S(0)
S(x), N(y)→ ¬S(x),¬N(y), S(x + y).

For example, starting with the fact set {N(1), N(2), N(3), N(4)}, this production system
will produce the fact set {S(10)}.

1.7.4 AUTOMATED REASONING

Computers have been used to help prove theorems by verifying special cases. But
even more, they have been used to carry out reasoning without external intervention.
Developing computer programs that can draw conclusions from a given set of facts
is the goal of automated reasoning. There are now automated reasoning programs
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that can prove results that people have not been able to prove. Automated reasoning
can help in verifying the correctness of computer programs, verifying protocol design,
verifying hardware design, creating software using logic programming, solving puzzles,
and proving new theorems.

Definitions:

Automated reasoning is the process of proving theorems using a computer program
that can draw conclusions which follow logically from a set of given facts.

A computer-assisted proof is a proof that relies on checking the validity of a large
number of cases using a special purpose computer program.

A proof done by hand is a proof done by a human without the use of a computer.

Facts:

1. Computer-assisted proofs have been used to settle several well-known conjectures,
including the Four Color Theorem (§8.6.4) and the nonexistence of a finite projective
plane of order 10 (§12.2.3).

2. The computer-assisted proofs of both the Four Color Theorem and the nonexistence
of a finite projective plane of order 10 rely on having a computer verify certain facts
about a large number of cases using special purpose software.

3. Hardware, system software, and special purpose program errors can invalidate a
computer-assisted proof. This makes the verification of computer-assisted proofs im-
portant. However, such verification may be impractical.

4. Automated reasoning software has been developed for both first-order and higher-
order logics. A database of automated reasoning systems can be found at

http://www-formal.stanford.edu:80/clt/ARS/systems.html

5. Automated reasoning software has been used to prove new results in many areas,
including settling long-standing, well-known, open conjectures (such as the Robbins
problem described in Example 2).

6. Proofs generated by automated reasoning software can usually be checked without
using computers or by using software programs that check the validity of proofs.

7. Proofs done by humans often use techniques ill-suited for implementation in auto-
mated proof software.

8. Automatic proof systems rely on proof procedures suitable for computer implemen-
tation, such as resolution and the semantic tableaux procedure. (See [Fi96] or [Wo96]
for details.)

9. The effectiveness of automatic proof systems depends on following strategies that
help programs prove results efficiently.

10. Restriction strategies are used to block paths of reasoning that are considered to
be unpromising.

11. Direction strategies are used to help programs select the approaches to take next.

12. Look-ahead strategies let programs draw conclusions before they would ordinarily
be drawn following the basic rules of the program.
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13. Redundancy-control strategies are used to eliminate some of the redundancy in
retained information.

14. There are efforts underway to capture all mathematical knowledge into a database
that can be used in automated reasoning systems (see the information about the QED
system in Example 3).

Examples:

1. The OTTER system is an automated reasoning system for first order logic developed
at Argonne National Laboratory [Wo96]. OTTER has been used to establish many
previously unknown results in a wide variety of areas, including algebraic curves, lattices,
Boolean algebra, groups, semigroups, and logic. A summary of these results can be
found at

http://www.mcs.anl.gov/home/mccune/ar/new results

2. The automated reasoning system EQP, developed at Argonne National Laboratory,
settled the Robbins problem in 1996. This problem was first proposed in the 1930s by
Herbert Robbins, and was actively worked on by many mathematicians. The Robbins
problem can be stated as follows. Can the equivalence

¬(¬p)⇔ p

be derived from the commutative and associative laws for the “or” operator ∨ and the
identity

¬(¬(p ∨ q) ∨ ¬(p ∨ ¬q))⇔ p?

The EQP system, using some earlier work that established a sufficient condition for the
truth of Robbins’ problem, found a 15-step proof of the theorem after approximately 8
days of searching on a UNIX workstation when provided with one of several different
search strategies.

3. The goal of the QED Project is to build a repository that represents all important,
established mathematical knowledge. It is designed to help mathematicians cope with
the explosion of mathematical knowledge and help in developing and verifying computer
systems.
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2.6.5 Pólya’s Enumeration Formula
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INTRODUCTION

Many problems in mathematics, computer science, and engineering involve counting
objects with particular properties. Although there are no absolute rules that can be
used to solve all counting problems, many counting problems that occur frequently can
be solved using a few basic rules together with a few important counting techniques.
This chapter provides information on how many standard counting problems are solved.

GLOSSARY
binomial coefficient: the coefficient

(
n
k

)
of xkyn−k in the expansion of (x+ y)n.

coloring pattern (with respect to a set of symmetries of a figure): a set of mutually
equivalent colorings.

combination (from a set S): a subset of S; any unordered selection from S. A k-
combination from a set is a subset of k elements of the set.

combination coefficient: the number C(n, k) (equal to
(
n
k

)
) of ways to make an

unordered choice of k items from a set of n items.

combination-with-replacement (from a set S): any unordered selection with re-
placement; a multiset of objects from S.

combination-with-replacement coefficient: the number of ways to choose a mul-
tiset of k items from a set of n items, written CR(n, k).

cycle index: for a permutation group G, the multivariate polynomial PG obtained by
dividing the sum of the cycle structure representations of all the permutations in G
by the number of elements of G.

cycle structure (of a permutation): a multivariate monomial whose exponents record
the number of cycles of each size.

derangement: a permutation on a set that leaves no element fixed.

exponential generating function (for {ak}∞0 ): the formal sum
∑∞

k=0 ak
xk

k! , or any
equivalent closed-form expression.

falling power: the product xk = x(x−1) . . . (x−k+1) of k consecutive factors starting
with x, each factor decreasing by 1.

Ferrers diagram: a geometric, left-justified, and top-justified array of cells, boxes,
dots or nodes representing a partition of an integer, in which each row of dots
corresponds to a part of the partition.

Gaussian binomial coefficient: the algebraic expression
[

n
k

]
in the variable q defined

for nonnegative integers n and k by
[

n
k

]
= qn−1

q−1 · qn−1−1
q2−1 · · · qn+1−k−1

qk−1
for 0 < k ≤ n

and
[

n
0

]
= 1.

generating function (or ordinary generating function) for {ak}∞0 : the formal
sum

∑∞
k=0 akx

k, or any equivalent closed-form expression.

hook (of a cell in a Ferrers diagram): the set of cells directly to the right or directly
below a given cell, together with the cell itself.

hooklength (of a cell in a Ferrers diagram): the number of cells in the hook of that
cell.

Kronecker delta function: the function δ(x, y) defined by the rule δ(x, y) = 1 if
x = y and 0 otherwise.
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lexicographic order: the order in which a list of strings would appear in a dictionary.

Möbius function: the function µ(m) where

µ(m) =

{ 1 if m = 1
(−1)k if m is a product of k distinct primes
0 if m is divisible by the square of a prime,

or a generalization of this function to partially ordered sets.

multinomial coefficient: the coefficient
(

n
k1 k2 ... km

)
of xk1

1 x
k2
2 . . . xkm

m in the expan-
sion of (x1 + x2 + · · · + xm)n.

ordered selection (of k items from a set S): a nonrepeating list of k items from S.

ordered selection with replacement (of k items from a set S): a possibly-repeating
list of k items from S.

ordinary generating function (for the sequence {ak}∞0 ): See generating function.

partially ordered set (or poset): a set S together with a binary relation ≤ that is
reflexive, antisymmetric, and transitive, written (S,≤).

partition: an unordered decomposition of an integer into a sum of positive integers.

Pascal’s triangle: a triangular table with the binomial coefficient
(
n
k

)
appearing in

row n, column k.

pattern inventory : a generating function that enumerates the number of coloring
patterns.

permutation: a one-to-one mapping of a set of elements onto itself, or an arrangement
of the set into a list. A k-permutation of a set is an ordered nonrepeating sequence
of k elements of the set.

permutation coefficient: the number of ways to choose a nonrepeating list of k items
from a set of n items, written P (n, k).

permutation group: a nonempty set P of permutations on a set S, such that P is
closed under composition and under inversion.

permutation-with-replacement coefficient: the number of ways to choose a pos-
sibly repeating list of k items from a set of n items, written PR(n, k).

poset: See partially ordered set.

problème des ménages: the problem of finding the number of ways that married
couples can be seated around a circular table so that no men are adjacent, no women
are adjacent, and no husband and wife are adjacent.

problème des rencontres: given balls 1 through n drawn out of an urn one at a
time, the problem of finding the probability that ball i is never the ith one drawn.

Stirling cycle number: the number
[

n
k

]
of ways to partition n objects into k non-

empty cycles.

Stirling number of the first kind: the coefficient s(n, k) of xk in the polynomial
x(x− 1)(x− 2) . . . (x− n+ 1).

Stirling number of the second kind: the coefficient S(n, k) of xk in the represen-
tation xn =

∑
k S(n, k)xk of xn as a linear combination of falling powers.

Stirling subset number: the number
{

n
k

}
of ways to partition n objects into k

nonempty subsets.

symmetry (of a figure): a spatial motion that maps the figure onto itself.
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tree diagram: a tree that displays the different alternatives in some counting process.

unordered selection (of k items from a set S): a subset of k items from S.

unordered selection (of k items from a set S with replacement): a selection of k
objects in which each object in the selection set S can be chosen arbitrarily often
and such that the order in which the objects are selected does not matter.

Young tableau: an array obtained by replacing each cell of a Ferrers diagram by a
positive integer.

2.1 SUMMARY OF COUNTING PROBLEMS

Table 1 lists many important counting problems, gives the number of objects being
counted, together with a reference to the section of this Handbook where details can be
found. Table 2 lists several important counting rules and methods, and gives the types
of counting problems that can be solved using these rules and methods.

Table 1 Counting problems.

The notation used in this table is given at the end of the table.

objects number of objects reference

Arranging objects in a row:

n distinct objects n! = P (n, n) = n(n− 1) . . . 2 · 1 §2.3.1

k out of n distinct objects nk =P (n, k) =n(n−1) . . . (n−k+1) §2.3.1

some of the n objects are identical:
k1 of a first kind, k2 of a second
kind, . . . , kj of a jth kind, and
where k1 + k2 + · · · + kj = n

(
n

k1 k2 ... kj

)
= n!

k1! k2!...kj !
§2.3.2

none of the n objects remains in its
original place (derangements)

Dn = n!
(
1− 1

1!+ · · ·+(−1)n 1
n!

)
§2.4.2

Arranging objects in a circle (where rotations, but not reflections, are equivalent):

n distinct objects (n− 1)! §2.2.1

k out of n distinct objects P (n,k)
k §2.2.1

Choosing k objects from n distinct objects:

order matters, no repetitions P (n, k) = n!
(n−k)! = nk §2.3.1

order matters, repetitions allowed PR(n, k) = nk §2.3.3

order does not matter, no repeti-
tions

C(n, k) =
(
n
k

)
= n!

k!(n−k)! §2.3.2

order does not matter, repetitions
allowed

CR(n, k) =
(

k+n−1
k

)
§2.3.3
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objects number of objects reference

Subsets:

of size k from a set of size n
(
n
k

)
§2.3.2

of all sizes from a set of size n 2n §2.3.4

of {1, . . . , n}, without consecutive
elements

Fn+2 §3.1.2

Placing n objects into k cells:

distinct objects into distinct cells kn §2.2.1

distinct objects into distinct cells,
no cell empty

{
n
k

}
k! §2.5.2

distinct objects into identical cells
{

n
1

}
+

{
n
2

}
+ · · ·+

{
n
k

}
= Bn §2.5.2

distinct objects into identical cells,
no cell empty

{
n
k

}
§2.5.2

distinct objects into distinct cells,
with ki in cell i (i = 1, . . . , n),
and where k1 + k2 + · · ·+ kj = n

(
n

k1 k2 ... kj

)
§2.3.2

identical objects into distinct cells
(
n+k−1

n

)
§2.3.3

identical objects into distinct cells,
no cell empty

(
n−1
k−1

)
§2.3.3

identical objects into identical pk(n) §2.5.1
cells

identical objects into identical pk(n) − pk−1(n) §2.5.1
cells, no cell empty

Placing n distinct objects into k
[

n
k

]
§2.5.2

nonempty cycles

Solutions to x1 + · · · + xn = k:

nonnegative integers
(
k+n−1

k

)
=

(
k+n−1

n−1

)
§2.3.3

positive integers
(

k−1
n−1

)
§2.3.3

integers where 0 ≤ ai ≤ xi for all i
(

k−(a1+···+an)+n−1
n−1

)
§2.3.3

integers where 0 ≤ xi ≤ ai for one
or more i

inclusion/exclusion principle §2.4.2

integers where x1 ≥ · · · ≥ xn ≥ 1 pn(k) − pn−1(k) §2.5.1

integers where x1 ≥ · · · ≥ xn ≥ 0 pn(k) §2.5.1

Solutions to x1 + x2 + · · · + xn =
n in nonnegative integers where
x1 ≥ x2 ≥ · · · ≥ xn ≥ 0

p(n) §2.5.1

Solutions to x1 + 2x2 + 3x3 + · · ·+
nxn = n in nonnegative integers

p(n) §2.5.1
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objects number of objects reference

Functions from a k-element set to an n-element set:

all functions nk §2.2.1

one-to-one functions (n ≥ k) nk = n!
(n−k)! = P (n, k) §2.2.1

onto functions (n ≤ k) inclusion/exclusion §2.4.2

partial functions
(
k
0

)
+

(
k
1

)
n+

(
k
2

)
n2+ · · ·+

(
k
k

)
nk §2.3.2

= (n+ 1)k

Bit strings of length n:

all strings 2n §2.2.1

with given entries in k positions 2n−k §2.2.1

with exactly k 0s
(
n
k

)
§2.3.2

with at least k 0s
(
n
k

)
+

(
n

k+1

)
+ · · ·+

(
n
n

)
§2.3.2

with equal numbers of 0s and 1s
(

n
n/2

)
§2.3.2

palindromes 2�n/2� §2.2.1

with an even number of 0s 2n−1 §2.3.4

without consecutive 0s Fn+2 §3.1.2

Partitions of a positive integer n into positive summands: §2.5.1

total number p(n)

into at most k parts pk(n)

into exactly k parts pk(n) − pk−1(n)

into parts each of size ≤ k pk(n)

Partitions of a set of size n:

all partitions B(n) §2.5.2

into k parts
{

n
k

}
§2.5.2

into k parts, each part having at
least 2 elements

b(n, k) §3.1.8

Paths:
from (0, 0) to (2n, 0) made up of

line segments from (i, yi) to (i+
1, yi+1), where integer yi ≥ 0,
yi+1 = yi ± 1

Cn §3.1.3

from (0, 0) to (2n, 0) made up of
line segments from (i, yi) to (i+
1, yi+1), where integer yi > 0

Cn−1 §3.1.3

(for 0 < i < 2n), yi+1 = yi ± 1

from (0, 0) to (m,n) that move 1
unit up or right at each step

(
m+n

n

)
§2.3.2
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objects number of objects reference

Permutations of {1, . . . , n}:

all permutations n! §2.3.1

with k cycles, all cycles of length
≥ 2

d(n, k) §3.1.8

with k descents E(n, k) §3.1.5

with k excedances E(n, k) §3.1.5

alternating, n even (−1)n/2En §3.1.7

alternating, n odd Tn §3.1.7

Symmetries of regular figures: §2.6

n-gon 2n

tetrahedron 12

cube 24

octahedron 24

dodecahedron 60

icosahedron 60

Coloring regular 2-dimensional & 3-dimensional figures with ≤ k colors: §2.6

corners of an n-gon, allowing rota-
tions and reflections

1
2n

∑
d|n
ϕ(d)k

n
d + 1

2k
(n+1)

2 ,

n odd;

1
2n

∑
d|n
ϕ(d)k

n
d + 1

4 (k
n
2 + k

(n+2)
2 ),

n even

corners of an n-gon, allowing only
rotations

1
n

∑
d|n
ϕ(d)k

n
d

corners of a triangle, allowing ro-
tations and reflections

1
6 [k3 + 3k2 + 2k]

corners of a triangle, allowing only
rotations

1
3 [k3 + 2k]

corners of a square, allowing rota-
tions and reflections

1
8 [k4 + 2k3 + 3k2 + 2k]

corners of a square, allowing only
rotations

1
4 [k4 + k2 + 2k]

corners of a pentagon, allowing
rotations and reflections

1
10 [k5 + 5k3 + 4k]

corners of a pentagon, allowing
only rotations

1
5 [k5 + 4k]
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objects number of objects reference

corners of a hexagon, allowing ro-
tations and reflections

1
12 [k6 + 3k4 + 4k3 + 2k2 + 2k]

corners of a hexagon, allowing
only rotations

1
6 [k6 + k3 + 2k2 + 2k]

corners of a tetrahedron 1
12 [k4 + 11k2]

edges of a tetrahedron 1
12 [k6 + 3k4 + 8k2]

faces of a tetrahedron 1
12 [k4 + 11k2]

corners of a cube 1
24 [k8 + 17k4 + 6k2]

edges of a cube 1
24 [k12 + 6k7 + 3k6 + 8k4 + 6k3]

faces of a cube 1
24 [k6 + 3k4 + 12k3 + 8k2]

Number of sequences of wins/losses
in a n+1

2 -out-of-n playoff series
(n odd)

2C(n, n+1
2 ) §2.3.2

Sequences a1, . . . , a2n with n 1s and
n −1s, and each partial sum a1+
· · · + ak ≥ 0

Cn §3.1.3

Well-formed sequences of parenthe-
ses of length 2n

Cn §3.1.3

Well-parenthesized products of n+
1 variables

Cn §3.1.3

Triangulations of a convex (n+ 2)-
gon

Cn §3.1.3

Notation:

B(n) or Bn: Bell number nk = n(n− 1) . . . (n− k + 1) = P (n, k):
falling power

b(n, k): associated Stirling number of the P (n, k) = n!
(n−k)! : k-permutation

second kind

Cn = 1
n+1

(
2n
n

)
: Catalan number p(n): number of partitions of n

C(n, k) =
(
n
k

)
= n!

k!(n−k)! : binomial coefficient pk(n): number of partitions of n into
at most k summands

d(n, k): associated Stirling number of p∗k(n): number of partitions of n into
the first kind exactly k summands

En: Euler number
[

n
k

]
: Stirling cycle number

ϕ: Euler phi-function
{

n
k

}
: Stirling subset number

E(n, k): Eulerian number Tn: tangent number

Fn: Fibonacci number
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Table 2 Methods of counting and the problems they solve.

statement technique of proof

rule of sum
(§2.2.1)

problems that can be broken into disjoint cases, each of
which can be handled separately

rule of product
(§2.2.1)

problems that can be broken into sequences of indepen-
dent counting problems, each of which can be solved
separately

rule of quotient
(§2.2.1)

problems of counting arrangements, where the arrange-
ments can be divided into collections that are all of the
same size

pigeonhole principle
(§2.2.3)

problems with two sets of objects, where one set of objects
needs to be matched with the other

inclusion/exclusion
principle (§2.4)

problems that involve finding the size of a union of sets,
where some or all the sets in the union may have com-
mon elements

permutations
(§2.2.1, 2.3.1, 2.3.3)

problems that require counting the number of selections
or arrangements, where order within the selection or
arrangement matters

combinations
(§2.3.2, 2.3.3)

problems that require counting the number of selections
or sets of choices, where order within the selection does
not matter

recurrence relations
(§2.3.6)

problems that require an answer depending on the inte-
ger n, where the solution to the problem for a given
size n can be related to one or more cases of the prob-
lem for smaller sizes

generating functions
(§2.3.7)

problems that can be solved by finding a closed form for
a function that represents the problem and then manip-
ulating the closed form to find a formula for the coeffi-
cients

Pólya counting
(§2.6.5)

problems that require a listing or number of patterns,
where the patterns are not to be regarded as different
under certain types of motions (such as rotations and
reflections)

Möbius inversion
(§2.7.1)

problems that involve counting certain types of circular
permutations
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2.2 BASIC COUNTING TECHNIQUES

Most counting methods are based directly or indirectly on the fundamental principles
and techniques presented in this section. The rules of sum, product, and quotient are the
most basic and are applied more often than any other. The section also includes some
applications of the pigeonhole principle, a brief introduction to generating functions,
and several examples illustrating the use of tree diagrams and Venn diagrams.

2.2.1 RULES OF SUM, PRODUCT, AND QUOTIENT

Definitions:

The rule of sum states that when there are m cases such that the ith case has ni

options, for i = 1, . . . ,m, and no two of the cases have any options in common, the total
number of options is n1 + n2 + · · · + nm.

The rule of product states that when a procedure can be broken down into m steps,
such that there are n1 options for step 1, and such that after the completion of step i−1
(i = 2, . . . ,m) there are ni options for step i, the number of ways of performing the
procedure is n1n2 . . . nm.

The rule of quotient states that when a set S is partitioned into equal-sized subsets
of m elements each, there are |S|

m subsets.

An m-permutation of a set S with n elements is a nonrepeating ordered selection
of m elements of S, that is, a sequence of m distinct elements of S. An n-permutation
is simply called a permutation of S.

Facts:

1. The rule of sum can be stated in set-theoretic terms: if sets S1, . . . , Sm are finite
and pairwise disjoint, then |S1 ∪ S2 ∪ · · · ∪ Sm| = |Si| + |S2| + · · · + |Sm|.
2. The rule of product can be stated in set-theoretic terms: if sets S1, . . . , Sm are finite,
then |S1 × S2 × · · · × Sm| = |S1| · |S2| · · · · · |Sm|.
3. The rule of quotient can be stated in terms of the equivalence classes of an equiv-
alence relation on a finite set S: if every class has m elements, then there are |S|/m
equivalence classes.

4. Venn diagrams (§1.2.2) are often used as an aid in counting the elements of a sub-
set, as an auxiliary to the rule of sum. This generalizes to the principle of inclu-
sion/exclusion (§2.3).

5. Counting problems can often be solved by using a combination of counting methods,
such as the rule of sum and the rule of product.

Examples:

1. Counting bit strings: There are 2n bit strings of length n, since such a bit string
consists of n bits, each of which is either 0 or 1.

2. Counting bit strings with restrictions: There are 2n−2 bit strings of length n (n ≥ 2)
that begin with two 1s, since forming such a bit string consists of filling in n−2 positions
with 0s or 1s.
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3. Counting palindromes: A palindrome is a string of symbols that is unchanged if
the symbols are written in reverse order, such as rpnbnpr or 10011001. There are k�n/2�

palindromes of length n where the symbols are chosen from a set of k symbols.

4. Counting the number of variable names: Determine the number of variable names,
subject to the following rules: a variable name has four or fewer characters, the first
character is a letter, the second and third are letters or digits, and the fourth must
be X or Y or Z. Partition the names into four sets, S1, S2, S3, S4, containing names of
length 1, 2, 3, and 4 respectively. Then |S1| = 26, |S2| = 26 × 36, |S3| = 26 × 362, and
|S4| = 26×362×3. Therefore the total number of names equals |S1|+ |S2|+ |S3|+ |S4| =
135,746.

5. Counting functions: There are nm functions from a set A = {a1, . . . , am} to a set
B = {b1, . . . , bn}. (Construct each function f : A → B by an m-step process, where
step i is to select the value f(ai).)

6. Counting one-to-one functions: There are n(n−1) . . . (n−m+1) one-to-one functions
from A = {a1, . . . , am} to B = {b1, . . . , bn}. If values f(a1), . . . , f(ai−1) have already
been selected in set B during the first i−1 steps, then there are n− i+1 possible values
remaining for f(ai).

7. Counting permutations: There are n(n−1) . . . (n−m+1) = n!
(n−m)! m-permutations

of an n-element set. (Each one-to-one function in Example 6 may be viewed as an m-
permutation of B.) (Permutations are discussed in §2.3.)

8. Counting circular permutations: There are (n − 1)! ways to seat n people around
a round table (where rotations are regarded as equivalent, but the clockwise/counter-
clockwise distinction is maintained). The total number of arrangements is n! and each
equivalence class contains n configurations. By the rule of quotient, the number of
arrangements is n!

n = (n− 1)! .

9. Counting restricted circular permutations: If n women and n men are to be seated
around a circular table, with no two of the same sex seated next to each other, the
number of possible arrangements is n(n− 1)!2 .

2.2.2 TREE DIAGRAMS

When a counting problem breaks into cases, a tree can be used to make sure that every
case is counted, and that no case is counted twice.

Definitions:

A tree diagram is a line-drawing of a tree, often with its branches and/or nodes
labeled. The root represents the start of a procedure and the branches at each node
represent the options for the next step.

Facts:

1. Tree diagrams are commonly used as an important auxiliary to the rules of sum and
product.

2. The objective in a tree-counting approach is often one of the following:
• the number of leaves (endnodes)
• the number of nodes
• the sum of the path products.
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Examples:
1. There are 6 possible sequences of wins and losses when the home team (H) plays the
visiting team (V) in a best 2-out-of-3 playoff. In the following tree diagram each edge
label indicates whether the home team won or lost the corresponding game, and the
label at each final node is the outcome of the playoff. The number of different possible
sequences equals the number of endnodes — 6.

V  2-0

V  2-1

V  2-1

H  2-1

H  2-1W

W

W

W
W

L

L

L

L

L

H  2-0

2. Suppose that an experimental process begins by tossing two identical dice. If the
dice match, the process continues for a second round; if not, the process stops at one
round. Thus, an experimental outcome sequence consist of one or two unordered pairs of
numbers from 1 to 6. The three paths in the following tree represent the three different
kinds of outcome sequences. The total number of possible outcomes is the sum of the
path products 62 + 6 · 15 + 15 = 141.

6 doubles

15 non-doubles

6 doubles

15 non-doubles

2.2.3 PIGEONHOLE PRINCIPLE

Definitions:

The pigeonhole principle (Dirichlet drawer principle) states that if n+1 objects
(pigeons) are placed into n boxes (pigeonholes), then some box contains more than one
object. (Peter Gustav Lejeune Dirichlet, 1805–1859)

The generalized pigeonhole principle states that if m objects are placed into k
boxes, then some box contains at least

⌈
m
k

⌉
objects.

The set-theoretic form of the pigeonhole principle states that if f :S → T where S
and T are finite and any two of the following conditions hold, then so does the third:
• f is one-to-one
• f is onto
• |S| = |T |.
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Examples:

1. Among any group of eight people, at least two were born on the same day of the
week. This follows since there are seven pigeonholes (the seven days of the week) and
more than seven pigeons (the eight people).

2. Among any group of 25 people, at least four were born on the same day of the week.
This follows from the generalized pigeonhole principle with m = 25 and k = 7, yielding⌈

m
k

⌉
=

⌈
25
7

⌉
= 4.

3. Suppose that a dresser drawer contains many black socks and blue socks. If choosing
in total darkness, a person must grab at least three socks to be absolutely certain of
having a pair of the same color. The two colors are pigeonholes; the pigeonhole principle
says that three socks (the pigeons) are enough.

4. What is the minimum number of points whose placement in the interior of a 2 × 2
square guarantees that at least two of them are less than

√
2 units apart? Four points

are not enough, since they could be placed near the respective corners of the 2 × 2
square. To see that five is enough, partition the 2 × 2 square into four 1 × 1 squares.
By the pigeonhole principle, one of these 1× 1 squares must contain at least two of the
points, and these two must be less than

√
2 units apart.

5. In any set of n+ 1 positive integers, each less than or equal to 2n, there are at least
two such that one is a multiple of the other. To see this, express each of the n + 1
numbers in the form 2k · q, where q is odd. Since there are only n possible odd values
for q between 1 and 2n, at least two of the n + 1 numbers must have the same q, and
the result follows.

6. Let B1 and B2 be any two bit strings, each consisting of five ones and five zeros.
Then there is a cyclic shift of bit string B2 so that the resulting string, B′

2, matches B1

in at least five of its positions. For example, if B1 = 1010101010 and B2 = 0001110101,
then B′

2 = 1000111010 satisfies the condition. Observe that there are 10 possible cyclic
shifts of bit string B2. For i = 1, . . . , 10, the ith bit of exactly five of these strings will
match the ith bit of B1. Thus, there is a total of 50 bitmatches over the set of 10 cyclic
shifts. The generalized pigeonhole principle implies that there is at least one cyclic shift
having

⌈
50
10

⌉
= 5 matching bits.

7. Every sequence of n2+1 distinct real numbers must have an increasing or decreasing
subsequence of length n + 1. Given a sequence a1, . . . , an2+1, for each aj let dj and ij
be the lengths of the longest decreasing and increasing subsequences beginning with aj .
This gives a sequence of n2 + 1 ordered pairs (dj , ij). If there were no increasing or
decreasing subsequence of length n + 1, then there are only n2 possible ordered pairs
(dj , ij), since 1 ≤ dj ≤ n and 1 ≤ ij ≤ n. By the pigeonhole principle, at least two
ordered pairs must be identical. Hence there are p and q such that dp = dq and ip = iq.
If ap < aq, then the sequence ap followed by the increasing subsequence starting at aq

gives an increasing subsequence of length greater than iq — a contradiction. A similar
contradiction on the choice of dp follows if aq < ap. Hence a decreasing or increasing
subsequence of length n+ 1 must exist.

2.2.4 SOLVING COUNTING PROBLEMS USING RECURRENCE RELATIONS

Certain types of counting problems can be solved by modeling the problem using a
recurrence relation (§3.3) and then working with the recurrence relation.
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Facts:

1. The following general procedure is used for solving a counting problem using a
recurrence relation:

• let an be the solution of the counting problem for the parameter n;
• determine a recurrence relation for an, together with the appropriate number of

initial conditions;
• find the particular value of the sequence that solves the original counting problem

by repeated use of the recurrence relation or by finding an explicit formula for
an and evaluating it at n.

2. There are many techniques for solving recurrence relations which may be useful in
the solution of counting problems. Section 3.3 provides general material on recurrence
relations and contains many examples illustrating how counting problems are solved
using recurrence relations.

Examples:

1. Tower of Hanoi: The Tower of Hanoi puzzle consists of three pegs mounted on a
board and n disks of different sizes. Initially the disks are on the first peg in order of
decreasing size. See the following figure, using four disks. The rules allow disks to be
moved one at a time from one peg to another, with no disk ever placed atop a smaller
one. The goal of the puzzle is to move the tower of disks to the second peg, with the
largest on the bottom. How many moves are needed to solve this puzzle for 64 disks?

Let an be the minimum number of moves to solve the Tower of Hanoi puzzle with n
disks. Transferring the n−1 smallest disks from peg 1 to peg 3 requires an−1 moves. One
move is required to transfer the largest disk to peg 2, and transferring the n−1 disks now
on peg 3 to peg 2, placing them atop the largest disk requires an−1 moves. Hence, the
puzzle with n disks can be solved using 2an−1 +1 moves. The puzzle for n disks cannot
be solved in fewer steps, since then the puzzle with n−1 disks could be solved using fewer
than an−1 moves. Hence an = 2an−1+1. The initial condition is a1 = 1. Iterating shows
that an = 2an−1 +1 = 22an−2 +2+1 = · · · = 2n−1a1 +2n−2 + · · ·+22 +2+1 = 2n − 1.
Hence, 264 − 1 moves are required to solve this problem for 64 disks. (§3.3.3 Example 3
and §3.3.4 Example 1 provide alternative methods for solving this recurrence relation.)

2. Reve’s puzzle: The Reve’s puzzle is the variation of the Tower of Hanoi puzzle that
follows the same rules as the Tower of Hanoi puzzle, but uses four pegs.

The minimum number of moves needed to solve the Reve’s puzzle for n disks is not
known, but it is conjectured that this number is R(n) =

∑k
i=1 i2

i−1 −
(k(k+1)

2 −n
)
2k−1

where k is the smallest integer such that n ≤ k(k+1)
2 .

The following recursive algorithm, the Frame-Stewart algorithm, gives a method
for solving the Reve’s puzzle by moving n disks from peg 1 to peg 4 in R(n) moves. If
n = 1, move the single disk from peg 1 to peg 4. If n > 1: recursively move the n − k
smallest disks from peg 1 to peg 2 using the Frame-Stewart algorithm; then move the
k largest disks from peg 1 to peg 4 using the 3-peg algorithm from Example 1 on pegs
1, 3, and 4; and finally recursively move the n − k smallest disks from peg 2 to peg 4
using the Frame-Stewart algorithm.
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3. How many strings of 4 decimal digits contain an even number of 0s? Let an be the
number of strings of n decimal digits that contain an even number of 0s. To obtain such
a string: (1) append a nonzero digit to a string of n− 1 decimal digits that has an even
number of 0s, which can be done in 9an−1 ways; or (2) append a 0 to a string of n− 1
decimal digits that has an odd number of 0s, which can be done in 10n−1 − an−1 ways.
Hence an = 9an−1 + (10n−1 − an−1) = 8an−1 + 10n−1. The initial condition is a1 = 9.
It follows that a2 = 8a1 +10 = 82, a3 = 8a2 +100 = 756, and a4 = 8a3 +1,000 = 7,048.

2.2.5 SOLVING COUNTING PROBLEMS USING GENERATING FUNCTIONS

Some counting problems can be solved by finding a closed form for the function that
represents the problem and then manipulating the closed form to find the relevant
coefficient.

Facts:

1. Use the following procedure for solving a counting problem by using a generating
function:

• let an be the solution of the counting problem for the parameter n;
• find a closed form for the generating function f(x) that has an as the coefficient

of xn in its power series;
• solve the counting problem by computing an by expanding the closed form and

examining the coefficient of xn.

2. Generating functions can be used to solve counting problems that reduce to finding
the number of solutions to an equation of the form x1 + x2 + · · ·+ xn = k, where k is a
positive integer and the xi’s are integers subject to constraints.

3. There are many techniques for manipulating generating functions (§3.2, §3.3.5)
which may be useful in the solution of counting problems. Section 3.2 contains ex-
amples of counting problems solved using generating functions.

Examples:

1. How many ways are there to distribute eight identical cookies to three children if
each child receives at least two and no more than four cookies. Let cn be the number
of ways to distribute n identical cookies in this way. Then cn is the coefficient of xn

in (x2 + x3 + x4)3, since a distribution of n cookies to the three children is equivalent
to a solution of x1 + x2 + x3 = 8 with 2 ≤ xi ≤ 4 for i = 1, 2, 3. Expanding this
product shows that c8, the coefficient of x8, is 6. Hence there are 6 ways to distribute
the cookies.

2. An urn contains colored balls, where each ball is either red, blue, or black, there are
at least ten balls of each color, and balls of the same color are indistinguishable. Find
the number of ways to select ten balls from the urn, so that an odd number of red balls,
an even number of blue balls, and at least five black balls are selected. If x1, x2, and
x3 denote the number of red balls, blue balls, and black balls selected, respectively, the
answer is provided by the number of nonnegative integer solutions of x1 + x2 + x3 = 10
with x1 odd, x2 even, x3 ≥ 5. This is the coefficient of x10 in the generating function
f(x) = (x+ x3 + x5 + x7 + x9 + · · ·)(1 + x2 + x4 + x6 + x8 + x10 + · · ·)(x5 + x6 + x7 +
x8 +x9 +x10 + · · ·). Since the coefficient of x10 in the expansion is 6, there are six ways
to select the balls as specified.
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2.3 PERMUTATIONS AND COMBINATIONS
Permutations count the number of arrangements of objects, and combinations count
the number of ways to select objects from a set. A permutation coefficient counts the
number of ways to arrange a set of objects, whereas a combination coefficient counts
the number of ways to select a subset.

2.3.1 ORDERED SELECTION: FALLING POWERS

Falling powers mathematically model the process of selecting k items from a collection
of n items in circumstances where the ordering of the selection matters and repetition
is not allowed.

Definitions:

An ordered selection of k items from a set S is a nonrepeating list of k items from S.

The falling power xk is the product x(x − 1) . . . (x − k + 1) of k decreasing factors
starting at the real number x.

The number n-factorial, n! (n a nonnegative integer), is defined by the rule 0! = 1,
n! = n(n− 1) . . . 3·2·1 if n ≥ 1.

A permutation of a list is any rearrangement of the list.

A permutation of a set of n items is an arrangement of those items into a list. (Often,
such a list and/or the permutation itself is represented by a string whose entries are in
the list order.)

A k-permutation of a set of n items is an ordered selection of k items from that set.
A k-permutation can be written as a sequence or a string.

The permutation coefficient P (n, k) is the number of ways to choose an ordered
selection of k items from a set of n items; that is, the number of k-permutations.

A derangement of a list is a permutation of the entries such that no entry remains
in the original position.

Facts:

1. The falling power xk is analogous to the ordinary power xk, which is the product
of k constant factors x. The underline in the exponent of the falling power is a reminder
that consecutive factors drop.

2. P (n, k) = nk = n!
(n−k)! .

3. For any integer n, nn = n!.

4. The numbers P (n, k) = nk are given in Table 1.

5. A repetition-free list of length n has approximately n!/e derangements.

Examples:

1. (4.2)3 = 4.2 · 3.2 · 2.2 = 29.568.

2. Dealing a row of playing cards: Suppose that five cards are to be dealt from a deck
of 52 cards and placed face up in a row. There are P (52, 5) = 525 = 52 ·51 ·50 ·49 ·48 =
311,875,200 ways to do this.
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Table 1 Permutation coefficients P (n,k) = nk.

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1
1 1 1
2 1 2 2
3 1 3 6 6
4 1 4 12 24 24
5 1 5 20 60 120 120
6 1 6 30 120 360 720 720
7 1 7 42 210 840 2,520 5,040 5,040
8 1 8 56 336 1,680 6,720 20,160 40,320 40,320
9 1 9 72 504 3,024 15,120 60,480 181,440 362,880 362,880

10 1 10 90 720 5,040 30,240 151,200 604,800 1,814,400 3,628,800 3,628,800

3. Placing distinct balls into distinct bins: k differently-colored balls are to be placed
into n bins (n ≥ k), with at most one ball to a bin. The number of different ways to
arrange the balls is P (n, k) = nk. (Think of the balls as if they were numbered 1 to k,
so that placing ball j into a bin corresponds to placing that bin into the jth position of
the list.)
4. Counting ballots: Each voter is asked to identify 3 top choices from 11 candidates
running for office. A first choice vote is worth 3 points, second choice 2 points, and
third choice 1 point. Since a completed ballot is an ordered selection in this situation,
each voter has P (11, 3) = 113 = 11 · 10 · 9 = 990 distinct ways to cast a vote.
5. License plate combinations: The license plates in a state have three letters (from the
upper-case Roman alphabet of 26 letters) followed by four digits. There are P (26, 3) =
15,600 ways to select the letters and P (10, 4) = 5,040 ways to select the digits. By
the rule of product there are P (26, 3)P (10, 4) = 15,600 · 5,040 = 78,624,000 acceptable
strings.
6. Circular permutations of distinct objects: See Example 8 of §2.2.1. Also see Ex-
ample 3 of §2.7.1 for problems that allow identical objects.
7. Increasing and decreasing subsequences of permutations: Young tableaux (§2.8)
can be used to find the number of permutations of {1, 2, . . . , n} with specified lengths
of their longest increasing subsequences and longest decreasing subsequences.

2.3.2 UNORDERED SELECTION: BINOMIAL COEFFICIENTS

Binomial coefficients mathematically model the process of selecting k items from a
collection of n items in circumstances where the ordering of the selection does not
matter, and repetitions are not allowed.

Definitions:

An unordered selection of k items from a set S is a subset of k items from S.

A k-combination from a set S is an unordered selection of k items.

The combination coefficient C(n, k) is the number of k-combinations of n objects.

The binomial coefficient
(

n
k

)
is the coefficient of xkyn−k in the expansion of (x+y)n.
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The extended binomial coefficient (generalized binomial coefficient)
(
n
k

)
is zero

whenever k is negative. When n is a negative integer and k a nonnegative integer, its
value is (−1)k

(
k−n−1

k

)
.

The multicombination coefficient C(n: k1, k2, . . . , km), where n = k1 +k2 + · · ·+km

denotes the number of ways to partition n items into subsets of sizes k1, k2, . . . , km.

The multinomial coefficient
(

n
k1 k2 ... km

)
is the coefficient of xk1

1 x
k2
2 . . . xkm

m in the
expansion of (x1 + x2 + · · · + xm)n.

The Gaussian binomial coefficient is defined for nonnegative integers n and k by[
n
k

]
= qn−1

q−1 · qn−1−1
q2−1 · qn−2−1

q3−1 · · · qn+1−k−1
qk−1

for 0 < k ≤ n
and

[
n
0

]
= 1, where q is a variable. (See also §2.5.1.)

Facts:
1. C(n, k) = P (n,k)

k! = nk

k! = n!
k!(n−k)! =

(
n
k

)
.

2. Pascal’s recursion:
(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
, where n > 0 and k > 0.

3. Subsets: There are C(n, k) subsets of size k that can be chosen from a set of size n.
4. The numbers C(n, k) =

(
n
k

)
are given in Table 2. Sometimes the entries in Table 2

are arranged into the form called Pascal’s triangle (Table 3), in which each entry is the
sum of the two numbers diagonally above the number (Pascal’s recursion, Fact 2).

Table 2 Combination coefficients (binomial coefficients) C (n,k) =
(

n
k

)
.

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
11 1 11 55 165 330 462 462 330 165 155 11 1
12 1 12 66 220 495 792 924 792 495 220 66 12 1

5. The extended binomial coefficients satisfy Pascal’s recursion. Their definition is
constructed precisely to achieve this purpose.
6. C(n: k1, k2, . . . , km) = n!

k1!k2!...km! =
(

n
k1 k2 ... km

)
. The number of strings of length n

with ki objects of type i (i = 1, 2, . . . ,m) is n!
k1!k2!...km! .

7. C(n, k) = C(n: k, n− k) = C(n, n− k). That is, the number of unordered selections
of k objects chosen from n objects is equal to the number of unordered selections of
n− k objects chosen from n objects.
8. Gaussian binomial coefficient identities:

•
[

n
k

]
=

[
n

n−k

]
;

•
[

n
k

]
+

[
n

k−1

]
qn+1−k =

[
n+1

k

]
.
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Table 3 Pascal’s triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

9. (1 + x)(1 + qx)(1 + q2x) . . . (1 + qn−1x) =
∑n

k=0

[
n
k

]
qk(k−1)/2xk.

10. limq→1

[
n
k

]
=

(
n
k

)
.

11.
[

n
k

]
= a0 + a1q + a2q

2 + · · · + ak(n−k)q
k(n−k) where each ai is an integer and∑k(n−k)

i=0 ai =
(
n
k

)
.

Examples:

1. Subsets: A set with 20 elements has C(20, 4) subsets with four elements. The total
number of subsets of a set with 20 elements is equal to C(20, 0)+C(20, 1)+· · ·+C(20, 20),
which is equal to 220. (See §2.3.4.)

2. Nondistinct balls into distinct bins: k identically colored balls are to be placed
into n bins (n ≥ k), at most one ball to a bin. The number of different ways to do this
is C(n, k) = nk

k! . (This amounts to selecting from the n bins the k bins into which the
balls are placed.)

3. Counting ballots: Each voter is asked to identify 3 choices for trustee from 11
candidates nominated for the position, without specifying any order of preference. Since
a completed ballot is an unordered selection in this situation, each voter has C(11, 3) =
11·10·9

3! = 165 distinct ways to cast a vote.

4. Counting bit strings with exactly k 0s: There are
(
n
k

)
bit strings of length n with

exactly k 0s, since each such bit string is determined by choosing a subset of size k from
the n positions; 0s are placed in these k positions, and 1s in the remaining positions.

5. Counting bit strings with at least k 0s: There are
(
n
k

)
+

(
n

k+1

)
+ · · ·+

(
n
n

)
bit strings

of length n with at least k 0s, since each such bit string is determined by choosing a
subset of size k, k + 1, . . . , or n from the n positions; 0s are placed in these positions,
and 1s in the remaining positions.

6. Counting bit strings with equal numbers of 0s and 1s: For n even, there are
(

n
n/2

)
bit strings of length n with equal numbers of 0s and 1s, since each such bit string is
determined by choosing a subset of size n

2 from the n positions; 0s are placed in these
positions, and 1s in the remaining positions.

7. Counting strings with repeated letters: The word “MISSISSIPPI” has eleven letters,
with “I” and “S” appearing four times each, “P” appearing twice, and “M” once. There
are C(11: 4, 4, 2, 1) = 11!

4!4!2!1! = 34,650 possible different strings obtainable by permuting
the letters. This counting problem is equivalent to partitioning 11 items into subsets of
sizes 4, 4, 2, 1.
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8. Counting circular strings with repeated letters: See §2.7.1.
9. Counting paths: The number of paths in the plane from (0, 0) to a point (m,n)
(m,n ≥ 0) that move one unit upward or one unit to the right at each step is

(
m+n

n

)
.

Using U for “up” and R for “right”, each path can be described by a string of m Rs
and n Us.
10. Playoff series: In a series of playoff games, such as the World Series or Stanley Cup
finals, the winner is the first team to win more that half the maximum number of games
possible, n (odd). The winner must win n+1

2 games. The number of possible win-loss
sequences of such a series is 2C(n, n+1

2 ). For example, in the World Series between
teams A and B, any string of length 7 with exactly 4 As represents a winning sequence
for A. (The string AABABBA means that A won a seven-game series by winning the
first, second, fourth, and seventh games; the string AAAABBB means that A won the
series by winning the first four games.) There are C(7, 4) ways for A to win the World
Series, and C(7, 4) ways for B to win the World Series.
11. Dealing a hand of playing cards: A hand of five cards (where order does not
matter) can be dealt from a deck of 52 cards in C(52, 5) = 525

5! = 2,598,960 ways.
12. Poker hands: Table 4 contains the number of combinations of five cards that form
various poker hands (where an ace can be high or low):
13. Counting partial functions: There are

(
k
0

)
+

(
k
1

)
n +

(
k
2

)
n2 + · · · +

(
k
k

)
nk partial

functions f :A→ B where |A| = k and |B| = n. Each partial function is determined by
choosing a domain of definition for the function, which can be done, for each j = 0, . . . , n,
in

(
k
j

)
ways. Once a domain of definition is determined, there are nj ways to define a

function on that set. (The sum can be simplified to (n+ 1)k.)

14.
[
3
1

]
= q3−1

q−1 = 1 + q + q2.

15.
[
6
2

]
= q6−1

q−1 · q5−1
q2−1 = q6−1

q2−1 ·
q5−1
q−1 = (q4 + q2 +1)(q4 + q3 + q2 + q+1) = 1+ q+2q2 +

2q3 + 3q4 + 2q5 + 2q6 + q7 + q8. The sum of these coefficients is 15 =
(
6
2

)
, as Fact 11

predicts.
16. A particle moves in the plane from (0, 0) to (n − k, k) by moving one unit at a
time in either the positive x or positive y direction. The number of such paths where
the area bounded by the path, the x-axis, and the vertical line x = n − k is i units is
equal to ai, where ai is the coefficient of qi in the expansion of the Gaussian binomial
coefficient

[
n
k

]
in Fact 11.

2.3.3 SELECTION WITH REPETITION

Some problems concerning counting the number of ways to select k objects from a set
of n objects permit choices of objects to be repeated. Some of these situations are also
modeled by binomial coefficients.

Definitions:

An ordered selection with replacement is an ordered selection in which each object
in the selection set can be chosen arbitrarily often.

An ordered selection with specified replacement fixes the number of times each
object is to be chosen.

An unordered selection with replacement is a selection in which each object in
the selection set can be chosen arbitrarily often.
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Table 4 Number of poker hands.

type of hand formula explanation

royal flush (ace, king, queen, 4 choices for a suit, and 1 royal
4

jack, 10 in same suit) flush in each suit

straight flush (5 cards of 5 4 choices for a suit, and in each suit
consecutive ranks, all in 1

(
4
1

)
9 there are 9 ways to get 5 cards in

suit, but not a royal flush) a row

13 choices for a rank, only 1 way
four of a kind (4 cards in 1 (

13
1

)(
48
1

)
to select the 4 cards in that rank,

rank and a fifth card)
and 48 ways to select a fifth card

13 ways to select a rank for the 3-
of-a-kind and

(
4
3

)
ways to choose

full house (3 cards of 1 rank,
13

(
4
3

)
12

(
4
2

)
3 of this rank; 12 ways to select a

2 of another rank)
rank for the pair and

(
4
2

)
ways to

get a pair of this rank

flush (5 cards in 1 suit, but 4 ways to select suit,
(
13
5

)
ways to

neither royal nor straight 4
(
13
5

)
−4·10 choose 5 cards in that suit; sub-

flush) tract royal and straight flushes

10 ways to choose 5 ranks in a row
straight (5 cards in 5 consec-

and 4 ways to choose a card from
utive ranks, but not all of 10·45−4·10

each rank; then subtract royal
the same suit)

and straight flushes

13 ways to select 1 rank,
(
4
3

)
ways

three of a kind (3 cards of 1 to choose 3 cards of that rank;
rank, and 2 cards of 2 dif- 13

(
4
3

)(
12
2

)
42

(
12
2

)
ways to pick 2 other ranks and

ferent ranks) 42ways to pick a card of each of
those 2 ranks(
13
2

)
ways to select 2 ranks and

(
4
2

)
two pairs (2 cards in each of

ways to choose 2 cards in each of
2 different ranks, and a fifth

(
13
2

)(
4
2

)(
4
2

)
44

these ranks, and
(
44
1

)
way to pickcard of a third rank)

a nonmatching fifth card

13 ways to select a rank,
(
4
2

)
ways

one pair (2 cards in 1 rank, to choose 2 cards in that rank;
plus 3 cards from 3 other 13

(
4
2

)(
12
3

)
43

(
12
3

)
ways to pick 3 other ranks,

ranks) and 43 ways to pick 1 card from
each of those ranks

The permutation-with-replacement coefficient PR(n, k) is the number of ways to
choose a possibly repeating list of k items from a set of n items.

The combination-with-replacement coefficient CR(n, k) is the number of ways to
choose a multiset of k items from a set of n items.
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Facts:
1. An ordered selection with replacement can be thought of as obtaining an ordered
list of names, obtained by selecting an object from a set, writing its name, placing it
back in the set, and repeating the process.

2. The number of ways to make an ordered selection with replacement of k items from n
distinct items (with arbitrary repetition) is nk. Thus PR(n, k) = nk.

3. The number of ways to make an ordered selection of n items from a set of q distinct
items, with exactly ki selections of object i, is n!

k1!k2!...kq ! .

4. An unordered selection with replacement can be thought of as obtaining a collection
of names, obtained by selecting an object from a set, writing its name, placing it back
in the set, and repeating the process. The resulting collection is a multiset (§1.2.1).

5. The number of ways to make an unordered selection with replacement of k items
from a set of n items is C(n+ k − 1, k). Thus CR(n, k) = C(n+ k − 1, k).

Combinatorial interpretation: It is sufficient to show that the k-multisets that can be
chosen from a set of n items are in one-to-one correspondence with the bit strings of
length (n + k − 1) with k ones. To indicate that kj copies of item j are selected,
for j = 1, . . . , n, write a string of k1 ones, then a “0”, then a string of k2 ones, then
another “0”, then a string of k3 ones, then another “0”, and so on, until after the
string of kn−1 ones and the last “0”, there appears the final string of kn ones. The
resulting bit string has length n + k − 1 (since it has k ones and n − 1 zeros). Every
such bit string describes a possible selection. Thus the number of possible selections is
C(n+ k − 1, k) = C(n+ k − 1, n− 1).

6. Integer solutions to the equation x1 + x2 + · · · + xn = k:
• The number of nonnegative integer solutions is C(n+k−1, k) = C(n+k − 1, n−1).

[In the combinatorial argument of Fact 5, there are n strings of ones. The first
string of ones can be regarded as the value for x1, the second string of ones as
the value for x2, etc.]

• The number of positive integer solutions is C(k − 1, n− 1).
• The number of nonnegative integer solutions where xi ≥ ai for i = 1, . . . , n is

C(n + k − 1 − (a1 + · · · + an), n − 1) (if a1 + · · · + an ≤ k). [Let xi = yi + ai

for each i, yielding the equation y1 + y2 + · · · + yn = k − (a1 + · · · + an) to be
solved in nonnegative integers.]

• The number of nonnegative integer solutions where xi ≤ ai for i = 1, . . . , n can
be obtained using the inclusion/exclusion principle. See §2.4.2.

Examples:

1. Distinct balls into distinct bins: k differently colored balls are to be placed into
n bins, with arbitrarily many balls to a bin. The number of different ways to do this
is nk. (Apply the rule of product to the number of possible bin choices for each ball.)

2. Binary strings: The number of sequences (bit strings) of length n that can be
constructed from the symbol set {0, 1} is 2n.

3. Colored balls into distinct bins with colors repeated: k balls are colored so that k1
balls have color 1, k2 have color 2, . . . , and kq have color q. The number of ways these k
balls can be placed into n distinct bins (n ≥ k), at most one per bin, is P (n,k)

k1!k2!...kq ! .

Note: This is more general than Fact 2, since n can exceed the sum of all the kis. If n
equals this sum, then P (n, n) = n! and the two formulas agree.
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4. When three dice are rolled, the “outcome” is the number of times each of the num-
bers 1 to 6 appears. For instance, two 3s and a 5 is an outcome. The number of different
possible outcomes is C(6 + 3 − 1, 3) =

(
8
3

)
= 56.

5. Nondistinct balls into distinct bins with multiple balls per bin allowed: The number
of ways that k identical balls can be placed into n distinct bins, with any number of
balls allowed in each bin, is C(n+ k − 1, k).

6. Nondistinct balls into distinct bins with no bin allowed to be empty: The number
of ways that k identical balls can be placed into n distinct bins, with any number of
balls allowed in each bin and no bin allowed to remain empty, is C(k − 1, n− 1).

7. How many ways are there to choose one dozen donuts when there are 7 different
kinds of donuts, with at least 12 of each type available? Order is not important, so a
multiset of size 12 is being constructed from 7 distinct types. Accordingly, there are
C(7 + 12 − 1, 12) = 18,564 ways to choose the dozen donuts.

8. The number of nonnegative integer solutions to the equation x1 +x2 + · · ·+x7 = 12
is C(7 + 12 − 1, 12), since this is a rephrasing of Example 7.

9. The number of nonnegative integer solutions to x1+x2+· · ·+x5 = 36, where x1 ≥ 4,
x3 = 11 and x4 ≥ 7 is C(17, 3). [It is easiest to think of purchasing 36 donuts, where at
least 4 of type 1, exactly 11 of type 3, and at least 7 of type 4 must be purchased. Begin
with an empty bag, and put in 4 of type 1, 11 of type 3, and 7 of type 4. This leaves 14
donuts to be chosen, and they must be of types 1, 2, 4, or 5, which is equivalent to
finding the number of nonnegative integer solutions to x1 + x2 + x4 + x5 = 14.]

2.3.4 BINOMIAL COEFFICIENT IDENTITIES

Facts:

1. Table 5 lists some identities involving binomial coefficients.

2. Combinatorial identities, such as those in Table 5, can be proved using either al-
gebraic proofs using techniques such as substitution, differentiation, or the principle of
mathematical induction (see Facts 4 and 5); they can also be proved by using combina-
torial proofs. (See Fact 3.)

3. The following give combinatorial interpretations of some of the identities involving
binomial coefficients in Table 5.

• Symmetry : In choosing a subset of k items from a set of n items, the number
of ways to select which k items to include must equal the number of ways to
select which n− k items to exclude.

• Pascal’s recursion: In choosing k objects from a list of n distinct objects, the
number of ways that include the last object is

(
n−1
k−1

)
, and the number of ways

that exclude the last object is
(
n−1

k

)
. Their sum is then the total number of

ways to choose k objects from a set of n, namely
(
n
k

)
.

• Binomial theorem: The coefficient of xkyn−k in the expansion (x + y)n = (x +
y)(x+ y) . . . (x+ y) equals the number of ways to choose k factors from among
the n factors (x+ y) in which x contributes to the resultant term.

• Counting all subsets: Summing the numbers of subsets of all possible sizes yields
the total number of different possible subsets.
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Table 5 Binomial coefficient identities.

Factorial expansion
(
n
k

)
= n!

k!(n−k)! , k = 0, 1, 2, . . . , n

Symmetry
(
n
k

)
=

(
n

n−k

)
, k = 0, 1, 2, . . . , n

Monotonicity
(
n
0

)
<

(
n
1

)
< · · · <

(
n


n/2�
)
, n ≥ 0

Pascal’s identity
(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
, k = 0, 1, 2, . . . , n

Binomial theorem (x+ y)n =
∑n

k=0

(
n
k

)
xkyn−k, n ≥ 0

Counting all subsets
∑n

k=0

(
n
k

)
= 2n, n ≥ 0

Even and odd subsets
∑n

k=0(−1)k
(
n
k

)
= 0, n ≥ 0

Sum of squares
∑n

k=0

(
n
k

)2 =
(
2n
n

)
, n ≥ 0

Square of row sums
[∑n

k=0

(
n
k

)]2 =
∑2n

k=0

(
2n
k

)
, n ≥ 0

Absorption/extraction
(
n
k

)
= n

k

(
n−1
k−1

)
, k �= 0

Trinomial revision
(

n
m

)(
m
k

)
=

(
n
k

)(
n−k
m−k

)
, 0 ≤ k ≤ m ≤ n

Parallel summation
∑m

k=0

(
n+k

k

)
=

(
n+m+1

m

)
, m,n ≥ 0

Diagonal summation
∑n−m

k=0

(
m+k

m

)
=

(
n+1
m+1

)
, n ≥ m ≥ 0

Vandermonde convolution
∑r

k=0

(
m
k

)(
n

r−k

)
=

(
m+n

r

)
, m,n, r ≥ 0

Diagonal sums in Pascal’s
∑
n/2�

k=0

(
n−k

k

)
= Fn+1 (Fibonacci numbers), n ≥ 0

triangle (§2.3.2)

Other Common Identities
∑n

k=0 k
(
n
k

)
= n2n−1, n ≥ 0∑n

k=0 k
2
(
n
k

)
= n(n+ 1)2n−2, n ≥ 0∑n

k=0(−1)kk
(
n
k

)
= 0, n ≥ 0∑n

k=0
(n

k)
k+1 = 2n+1−1

n+1 , n ≥ 0∑n
k=0(−1)k (n

k)
k+1 = 1

n+1 , n ≥ 0∑n
k=1(−1)k−1 (n

k)
k = 1 + 1

2 + 1
3 + · · · + 1

n , n > 0∑n−1
k=0

(
n
k

)(
n

k+1

)
=

(
2n

n−1

)
, n > 0∑m

k=0

(
m
k

)(
n

p+k

)
=

(
m+n
m+p

)
, m,n, p ≥ 0, n ≥ p+m

• Sum of squares: Choose a committee of size n from a group of n men and n
women. The left side, rewritten as

(
n
k

)(
n

n−k

)
, describes the process of selecting

committees according to the number of men, k, and the number of women,
n− k, on the committee. The right side gives the total number of committees
possible.

• Absorption/extraction: From a group of n people, choose a committee of size k
and a person on the committee to be its chairperson. Equivalently, first select a
chairperson from the entire group, and then select the remaining k−1 committee
members from the remaining n− 1 people.
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• Trinomial revision: The left side describes the process of choosing a committee
of size m from n people and then a subcommittee of size k. The right side
describes the process where the subcommittee of size k is first chosen from
the n people and then the remaining m − k members of the committee are
selected from the remaining n− k people.

• Vandermonde convolution: Given m men and n women, form committees of
size r. The summands give the numbers of committees broken down by number
of men, k, and number of women, r− k, on the committee; the right side gives
the total number of committees.

4. The formula for counting all subsets can be obtained from the binomial theorem by
substituting 1 for x and 1 for y.

5. The formula for even and odd subsets can be obtained from the binomial theorem
by substituting 1 for x and −1 for y.

6. A set A of size n has 2n−1 subsets with an even number of elements and 2n−1 subsets
with an odd number of elements. (The even and odd subsets identity in Table 5 shows
that

∑(
n
k

)
for k even is equal to

∑(
n
k

)
for k odd. Since the total number of subsets

is 2n, each side must equal 2n−1.)

2.3.5 GENERATING PERMUTATIONS AND COMBINATIONS

There are various systematic ways to generate permutations and combinations of the
set {1, . . . , n}.

Definitions:

A list of strings from an ordered set is in lexicographic order if the strings are sorted
as they would appear in a dictionary.

If the elements in the strings are ordered by a relation <, string a1a2 . . . am precedes
b1b2 . . . bn if any of the following happens: a1 < b1; there is a positive integer k such
that a1 = b1, . . . , ak = bk and ak+1 < bk+1; or m < n and a1 = b1, . . . , am = bm.

Algorithms:
Algorithms 1, 2, and 5 give ways to generate all permutations, k-permutations, and k-
combinations of {1, 2, . . . , n} in lexicographic order. Algorithms 3, 4, and 6 give ways to
randomly generate a permutation, k-permutation, and k-combination of {1, 2, . . . , n}.

Algorithm 1: Generate the permutations of {1, . . . ,n} in lexicographic
order.

a1a2 . . . an := 1 2 . . . n
while a1a2 . . . an �= n n−1 . . . 1
m := the rightmost location such that am is followed by a larger number
a′1a

′
2 . . . a

′
m−1 = a1a2 . . . am−1 {retain everything to the left of am}

a′m := the smallest number larger than am to the right of am

a′m+1a
′
m+2 . . . a

′
n := everything else, in ascending order

a1a2 . . . an := a′1a
′
2 . . . a

′
n

output a1a2 . . . an
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Algorithm 2: Generate the k-permutations of {1, . . . ,n} in lexicographic
order.

a1a2 . . . ak := 1 2 . . . k {k a given positive integer less than or equal to n}
while a1a2 . . . ak �= n n−1 . . . n− (k − 1)
m := the rightmost location such that am is followed by a larger number
a′1a

′
2 . . . a

′
m−1 := a1a2 . . . am−1 {retain everything to the left of am}

a′m := the smallest number larger than am to the right of am

a′m+1a
′
m+2 . . . a

′
k := everything else, in ascending order

a1a2 . . . ak := a′1a
′
2 . . . a

′
k

output a1a2 . . . ak

Algorithm 3: Generate a random permutation of {1, . . . ,n}.
a1a2 . . . an := 1 2 . . . n
for i := 0 to n− 2

interchange an−i and ar(n−i) {r(k) a randomly chosen integer in {1, . . . , k}}
output a1 . . . an {a randomly chosen permutation of {1, . . . , n}}

Algorithm 4: Generate a random k-permutation of {1, . . . ,n}.
a1a2 . . . an := a random permutation of {1, . . . , n} {obtained from Algorithm 3}
output a1 . . . ak {a randomly chosen k-permutation of {1, . . . , n}}

Algorithm 5: Generate k-combinations of {1, . . . ,n} in lexicographic or-
der.

a1a2 . . . ak := 1 2 . . . k {first combination in lexicographic order}
while a1a2 . . . ak �= n−k+1 n−k+2 . . . n
m := the rightmost location among 1, . . . , k such that a number larger than
am but smaller than n is not in the combination

a
′
1a

′
2 . . . a

′
m−1 := a1a2 . . . am−1 {retain everything to the left of am}

a
′
m := am + 1 {increase am by 1}
a

′
m+1 a

′
m+2 . . . a

′

k := am+2 am+3 . . . am+k−m+1 {continue consecutively}
a1a2 . . . ak := a

′
1a

′
2 . . . a

′

k

output a1a2 . . . ak {the members of each k-combination are given in ascending
order}

Algorithm 6: Generate random k-combinations of {1, . . . ,n}.
a1a2 . . . ak := any k-permutation of {1, . . . , n} generated by Algorithm 4
output a1a2 . . . ak {ignoring the order in which elements are written, this is

a random k-combination}

Examples:

1. The lexicographic order for the 3-permutations of {1, 2, 3} is 123, 132, 213, 231, 312,
321.

2. The lexicographic order of the C(5, 3) = 10 3-combinations of {1, 2, 3, 4, 5} is 123,
124, 125, 134, 135, 145, 234, 235, 245, 345.
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3. Generating permutations: What permutation follows 3142765 in the lexicographic
ordering of the permutations of {1, . . . , 7}? Step 1 of the while-loop of Algorithm 1
leads to the fourth digit, namely the digit 2, as the first digit from the right that has
larger digits following it. Steps 2 and 3 show that the next permutation starts with 3145
since 5 is the smallest digit greater than 2 and following it. Finally, step 4 yields 2, 6,
and 7 (in numerical order) as the digits that follow. Thus, the permutation immediately
following 3142765 is 3145267.

4. Generating combinations: What 5-combination follows 12478 in the lexicographic
ordering of 5-combinations of {1, . . . , 8}? Step 1 of the while-loop of Algorithm 2 leads
to the third digit, namely the digit 4, as the first digit from the right that can be safely
increased by 1. Step 2 shows that the next permutation starts with 125 since the 3rd
digit is increased by 1. Finally, step 3 yields 6 and 7 as the following digits (add 1 to
the newly-listed previous digit until the new selection of k digits is complete). Thus,
the combination after 12478 is 12567.

2.4 INCLUSION/EXCLUSION

The principle of inclusion/exclusion is used to count the elements in a non-disjoint union
of finite sets. Many counting problems can be solved by applying this principle to a
well-chosen collection of sets. The techniques involved in this process are best illustrated
with examples.

2.4.1 PRINCIPLE OF INCLUSION/EXCLUSION

The number of elements in the union of two finite sets A and B is |A| + |B|, provided
that the sets have no element in common. In the general case, however, some elements
in common to both sets have been included in the sum twice. The sum is adjusted to
exclude the double-counting of these common elements by subtracting their number:

|A ∪B| = |A| + |B| − |A ∩B| .

A Venn diagram (§1.2.2) for these sets is given in the following figure.

Similarly, the number of elements in the union of three finite sets is

|A ∪B ∪ C| = |A| + |B| + |C| − |A ∩B| − |A ∩ C| − |B ∩ C| + |A ∩B ∩ C|.

See the following figure. These simple equations generalize to the case of n sets.
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Facts:
1. Inclusion/exclusion principle: the number of elements in the union of n finite sets
A1, A2, . . . , An is:

|A1 ∪A2 ∪ · · · ∪An| =
∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj | +
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak|

− · · · + (−1)n+1 |A1 ∩A2 ∩ · · · ∩An|
or, alternatively,

|A1 ∪A2 ∪ · · · ∪An| =
n∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aik
|

Sometimes the inner sum of the alternative formula is denoted Sk.

2. The inclusion/exclusion formula for n sets has 2n − 1 terms, one for each possible
nonempty intersection. The coefficient of a term is −1 if the term corresponds to
intersections of an even number of sets, and +1 otherwise.

3. The principle is often applied to the complement of a set. Let Ai be the subset of
elements in a universal set U that have property Pi . The number of elements that have
properties Pi1 , Pi2 , . . . , Pik

is often written N(Pi1Pi2 . . . Pik
) and the number of elements

that have none of these properties is often written N(P ′
i1
P ′

i2
. . . P ′

ik
). The number of

element in U that have none of the properties is:

N(P ′
1P

′
2 . . . P

′
n) = |U | −

∑
1≤i≤n

N(Pi) +
∑

1≤i<j≤n

N(PiPj) − · · · + (−1)nN(P1P2 . . . Pn).

Examples:

1. Of 70 people surveyed, 37 drink coffee, 23 drink tea, and 25 drink neither. Find
the number who drink both coffee and tea. Using C to represent the set of coffee
drinkers and T to represent the set of tea drinkers, the size of C ∩ T must be found.
Since |T ∪ C| = 25, the Venn diagram in part (a) of the following figure shows that
|C ∪ T | = 45. According to the inclusion/exclusion principle,

|C ∩ T | = |C| + |T | − |C ∪ T | = 37 + 23 − 45 = 15,

illustrated in part (b) of the figure.

T C

45

25

(a)

T C

15

25

(b)

8 22

2. Suppose that 16 high-school juniors enroll in Algebra, 17 in Biology, and 30 in
Chemistry; that 5 students enroll in both Algebra and Biology, 4 in both Algebra and
Chemistry, and 7 in both Biology and Chemistry; that 3 students enroll in all three;
and that every junior takes at least one of these three subjects. Then the total number
of students in the junior class is 16 + 17 + 30 − (5 + 4 + 7) + 3 = 50.
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3. Each of 11 linguists translates at least one of the languages Amharic and Burmese
into English. The numbers who translate only Amharic or Burmese are both odd primes.
More linguists translate Burmese than Amharic. How many can translate Amharic?

Based on experimentation or on an analytic approach, the only possible assignment
of numbers to regions that fits all these facts leads to 6, as shown in the following figure.

5

Amharic

33

Burmese

4. At a party for 28 people, three kinds of pizza were served: anchovy, broccoli, and
cheese. Everyone ate at least one kind. No two of the seven different possible selections
of one or more kinds of pizza were eaten by the same number of partygoers. Each of the
three possible exclusive selections (one kind of pizza only) was eaten by an odd number
of partygoers, and each of the three possible combinations of two kinds of pizza was
eaten by an even number of partygoers. If a total of 18 partygoers ate cheese pizza, how
many ate both anchovy and broccoli?

The answer is 2. Experimentation or an analytic approach leads to the possible
assignments of numbers to regions that fit all these facts, shown in the following figure.

anchovy

2

1

7

broccoli

cheese

3 (or 5) 5 (or 3)

4 (or 6)6 (or 4)

5. To count the number of ways to select a 5-card hand from a standard 52-card deck
so that the hand contains at least one card from each of the four suits, let A1, A2, A3,
and A4 be the subsets of 5-card hands that do not contain a club, diamond, heart, or
spade, respectively. Then

|Ai| =
(
52−13

5

)
=

(
39
5

)
with

(
4
1

)
choices for i

|Ai ∩Aj | =
(
52−26

5

)
=

(
26
5

)
with

(
4
2

)
choices for i and j

|Ai ∩Aj ∩Ak| =
(
52−39

5

)
=

(
13
5

)
with

(
4
3

)
choices for i, j, and k.

There are
(
52
5

)
possible 5-card hands, so by complementation and the principle of inclu-

sion/exclusion, those that contain at least one card from each suit is(
52
5

)
−

(
4
1

)(
39
5

)
+

(
4
2

)(
26
5

)
−

(
4
3

)(
13
5

)
= 685,464.

2.4.2 APPLYING INCLUSION/EXCLUSION TO COUNTING PROBLEMS

Definitions:

A derangement on a set is a permutation that leaves no element fixed. The number
of derangements on a set of cardinality n is denoted Dn.

A rencontre number Dn,k is the number of permutations on a set of n elements that
leave exactly k elements fixed.
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Facts:
1. The number of onto functions from an n-element set to a k-element set (n ≥ k) is∑k

j=0(−1)j
(
k
j

)
(k − j)n.

(See Example 3.)
2. The following binomial coefficient identities can all be derived by combinatorial
arguments using inclusion/exclusion:

•
∑m

k=0(−1)k
(
n
k

)(
n−k
m−k

)
= 0

•
∑n

k=m(−1)k−m
(
n
k

)
=

(
n−1
m−1

)
•

∑n
k=0(−1)k

(
n
k

)
(n−k+r−1

r ) =
(

r−1
n−1

)
.

3. Dn = n!(1 − 1
1! + 1

2! − · · · + (−1)n 1
n! ). (See Example 8.)

4. Dn

n! → e−1 ≈ 0.368 as n→ ∞.
5. Dn = nDn−1 + (−1)n for n ≥ 1.
6. Dn = (n− 1)(Dn−1 +Dn−2) for n ≥ 2.
7. The following table gives some values of Dn:

n Dn n Dn n Dn n Dn

1 0 4 9 7 1,854 10 1,334,961
2 1 5 44 8 14,833 11 14,684,570
3 2 6 265 9 133,496 12 176,214,841

8. Dn,0 = Dn.
9. Dn,k =

(
n
k

)
Dn−k

10. The following table gives some values of Dn,k:

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 1 0 1
3 2 3 0 1
4 9 8 6 0 1
5 44 45 20 10 0 1
6 265 264 135 40 15 0 1
7 1,854 1,855 924 315 70 21 0 1
8 14,833 14,832 7,420 2,464 630 112 28 0 1
9 133,496 133,497 66,744 22,260 5,544 1,134 168 36 0 1

10 1,334,961 1,334,960 667,485 222,480 55,650 11,088 1,890 240 45 0 1

Examples:
1. The inclusion/exclusion principle can be used to establish the binomial coefficient
identity (

n
m

)
=

m∑
k=1

(−1)k+1
(

n−k
m−k

)(
n
k

)
.

Let Ai denote the subset of m-combinations that contain object i. Thus, the k-fold
intersection Ai1 ∩ Ai2 ∩ · · · ∩ Aik

consists of all the m-combinations that contain all
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the objects i1, i2, . . . , ik. Since there are
(

n−k
m−k

)
ways to complete an m-combination in

this intersection, it follows that |Ai1 ∩ Ai2 ∩ · · · ∩ Aik
| =

(
n−k
m−k

)
. Since the k objects

themselves can be specified in
(
n
k

)
ways, it follows that∑

1≤i1<i2<···<ik≤n

|Ai1 ∩Ai2 ∩ · · · ∩Aik
| =

(
n−k
m−k

)(
n
k

)
, k ≤ m.

Since A1 ∪ A2 ∪ · · · ∪ An is the set of all m-combinations selected from 1, 2, . . . , n that
contain at least one of the objects 1, 2, . . . , n, it must be the set of all m-combinations.
2. Sieve of Eratosthenes: The sieve of Eratosthenes (276–194 BCE) is a method for
finding all primes less than or equal to a given positive integer n. Begin with the
list of integers 2 through n, and delete all multiples of the first number in the list, 2,
but not including 2. The first integer remaining after 2 is 3; delete all multiples of 3,
not including 3. The first integer remaining after 3 is 5; delete all multiples of 5, not
including 5. Continue the process. The remaining integers are the primes less than or
equal to n. (See §4.4.2.)

The inclusion/exclusion principle can be used to obtain the number of primes less
than or equal to n. (A number x ≤ n is prime if and only if x has a prime factor less
than or equal to �√n�.) Let Pi be the property: a number is greater than the ith prime
and divisible by the ith prime. Then the number of primes less than or equal to n is
N(P ′

1P
′
2 . . . P

′
k), where there are k primes less than or equal to �√n�. (§2.3.1, Fact 3.)

For example, the number of primes less than or equal to 100 is N(P ′
1P

′
2P

′
3P

′
4) =

99 −
⌊

100
2

⌋
−

⌊
100
3

⌋
−

⌊
100
5

⌋
−

⌊
100
7

⌋
+

⌊
100
2·3

⌋
+

⌊
100
2·5

⌋
+

⌊
100
2·7

⌋
+

⌊
100
3·5

⌋
+

⌊
100
3·7

⌋
+

⌊
100
5·7

⌋
−⌊

100
2·3·5

⌋
−

⌊
100
2·3·7

⌋
−

⌊
100
2·5·7

⌋
−

⌊
100
3·5·7

⌋
+

⌊
100

2·3·5·7
⌋

= 99 − 50 − 33 − 20 − 14 + 16 + 10 + 7 +
6 + 4 + 2 − 3 − 2 − 1 − 0 + 0 = 21.
3. Number of onto functions: The number of onto functions from an n-element set to
a k-element set (n ≥ k) is

∑k
j=0(−1)j

(
k
j

)
(k − j)n. The number of onto functions from

an n-element set to a k-element set equals the number of ways that n different objects
can be distributed among k different boxes with none left empty. Let Ai be the subset
of distributions with box i empty. Then

|Ai| = (k − 1)n with
(
k
1

)
choices for i

|Ai ∩Aj | = (k − 2)n with
(
k
2

)
choices for i and j

...
|Ai1 ∩Ai2 ∩ · · · ∩Aik

| = (k − k)n with
(
k
k

)
choices for i1, i2, . . . , ik.

The number of distributions that leave no box empty is then
∑k

j=0(−1)j
(
k
j

)
(k − j)n.

The number of onto functions from an n-element set to a k-element set for some values
of n and k (n ≥ k) are given in the following table.

n\k 1 2 3 4 5 6 7 8 9

1 1
2 1 2
3 1 6 6
4 1 14 36 24
5 1 30 150 240 120
6 1 62 540 1560 1800 720
7 1 126 1806 8400 16,800 15,120 5,040
8 1 254 5796 40,824 126,000 191,520 141,120 40,320
9 1 510 18,150 186,480 834,120 1,905,120 2,328,480 1,451,520 362,880
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4. There are 584 nonnegative integer solutions to x1 +x2 +x3 +x4 = 20 where x1 ≤ 8,
x2 ≤ 10, and x3 ≤ 5. [Let A1 be the set of solutions where x1 ≥ 9, A2 the set of solutions
where x2 ≥ 11, and A3 the solutions where x3 ≥ 6. The final answer, obtained using
the inclusion/exclusion principle and techniques of the Examples of §2.3.3, is equal to
C(23, 3)−|A1∪A2∪A3| = C(23, 3)−(C(14, 3)+C(12, 3)+C(17, 3)−C(3, 3)−C(8, 3)−
C(6, 3) + 0) = 584.]

5. The permutations
(
1 2 3
2 3 1

)
and

(
1 2 3
3 1 2

)
are derangements of 1, 2, 3, but the permuta-

tions
(
1 2 3
1 2 3

)
,
(
1 2 3
1 3 2

)
,
(
1 2 3
3 2 1

)
, and

(
1 2 3
2 1 3

)
are not.

6. Problème des rencontres: In the problème des rencontres (matching problem) an
urn contains balls numbered 1 through n, and they are drawn out one at a time. A
match occurs if ball i is the ith ball drawn. The probability that no matches occur
when all the balls are drawn is Dn

n! . The problem was studied by Pierre-Rémond de
Montmort (1678–1719) who studied the card game treize, in which matchings of pairs
of cards were counted when two decks of cards were laid out face-up.

7. Problème des ménages: The problème des ménages, first raised by François Lucas
(1842–1891), requires that n married couples be seated around a circular table so that
no men are adjacent, no women are adjacent, and no husband and wife are adjacent.
There are 2n!

∑n
1=0(−1)i(n − i)!

(
2n−i

i

)
2n

2n−i ways to seat the people. (There are 2n!
ways to seat the n women. Regardless of how this is done, by the inclusion/exclusion
principle there are

∑n
1=0(−1)i(n− i)!

(
2n−i

i

)
2n

2n−i ways to seat the n men.)

8. Determining the number Dn of derangements of {1, . . . , n}: Let Ai be the subset
of permutations that fix object i. The permutations in the subset A1 ∪ A2 ∪ · · · ∪ An

are those that fix at least one object. Then
|Ai| = (n− 1)! with

(
n
1

)
choices for i

|Ai ∩Aj | = (n− 2)! with
(
n
2

)
choices for i and j

...
|Ai1 ∩Ai2 ∩ · · · ∩Aik

| = (n− k)! with
(
n
k

)
choices for i1, i2, . . . , ik

Complementation and inclusion/exclusion now yield the formula in Fact 3:

Dn = n! −
∑n

k=1(−1)k+1
(
n
k

)
(n− k)! = n!

∑n
k=0(−1)k 1

k! .

As n becomes large, Dn

n! approaches e−1 ≈ 0.368 very rapidly.

9. Hatcheck problem: The hatchecker at a restaurant neglects to place claim checks
on n hats. Each of the n customers is given a randomly selected hat upon exiting. What
is the probability that no one receives the correct hat?

There are n! possible permutations of the n hats, and there are Dn cases in which
no one gets the correct hat. Thus, by Example 8, the probability is approximately e−1,
regardless of the number of diners.

10. Rook polynomials/Arrangements of objects where there are restrictions on posi-
tions in which the objects can be placed: This describes a family of assignment or
matching problems, such as matching applicants to jobs where some applicants cannot
be assigned to certain jobs, the problème des ménages, and the problème des rencontres.
In terms of matching n applicants to n jobs, set up an n × n “board of possibilities”
where the rows are labeled by the people and the columns are labeled by the jobs.
Square (i, j) is a forbidden square if applicant i cannot perform job j; the remaining
squares are allowable squares. An allowable arrangement is an arrangement where only
allowable squares are chosen, with exactly one square chosen in each row and column.
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These problems can be rephrased in terms of placing rooks on a chessboard: given
a chessboard with some squares forbidden, find the number of ways of placing rooks on
the allowable squares of the chessboard so that no rook can capture any other rook. (In
chess a rook can move any number of squares vertically or horizontally.) For a given
n×n board B, let Ai = the number of ways to place n nontaking rooks on B so that the
rook in row i is on a forbidden square. The total number of ways to place n nontaking
rooks on allowable squares is

n! − |A1 ∪ · · · ∪An| = n! − r1(B)(n− 1)! + r2(B)(n− 2)! − · · · + (−1)nrn(B)0!

where the coefficients ri(B) are the number of ways to place i nontaking rooks on
forbidden squares of B.

A rook polynomial for an n× n board B is a polynomial of the form

R(x,B) = r0(B) + r1(B)x+ r2(B)x2 + · · · + rn(B)xn,

where r0(B) is defined to be 1.

The numbers ri(B) can sometimes be found more easily by using a combination of the
following two reduction techniques:

• R(x,B) = R(x,B1) ·R(x,B2), if all forbidden squares of B appear in two disjoint
sub-boards B1 and B2 (the sub-boards B1 and B2 are disjoint if the row labels
of B are partitioned into two parts S1 and S2, the column labels of B are
partitioned into two parts T1 and T2, and B1 is obtained from S1 × T1 and B2

is obtained from S2 × T2).

• R(x,B) = xR(x,B1)+R(x,B2), where there is a square (i, j) of B, B1 is obtained
from B by removing all squares in row i and all squares in column j, and B2 is
obtained from B by making square (i, j) allowable.

It may be necessary to use these techniques repeatedly to obtain boards that are simple
enough that the rook polynomial coefficients can be easily found.

11. Rook polynomials can be used to find the number of derangements of n objects.
The forbidden squares of the board B are the squares (i, i). The first reduction technique
of Example 10 used repeatedly breaks B into B1, . . . , Bn where Bi consists only of
square (i, i). Then

R(x,B) = R(x,B1)R(x,B2) . . . R(x,Bn) = (1 + x) . . . (1 + x) = (1 + x)n =
∑n

i=0

(
n
i

)
xi.

Therefore, the number of derangements is

n! −
[(

n
1

)
(n− 1)! −

(
n
2

)
(n− 2)! + · · · + (−1)n+1

(
n
n

)
0!

]
= n!

∑n
k=0(−1)k 1

k! .

2.5 PARTITIONS

Each way to write a positive integer n as a sum of positive integers is called a partition
of n. Similarly, each way to decompose a set S into a family of mutually disjoint
nonempty subsets is called a partition of S. In a cyclic partition of a set, the elements
of each subset are arranged into cycles, and two cyclic partitions in the same family of
subsets are distinct if any of the cycle arrangements are different. The main concerns
are counting the number of essentially different partitions of integers and sets, and with
counting cyclic partitions of sets.
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2.5.1 PARTITIONS OF INTEGERS

A positive integer can be decomposed into a sum of positive integers in various ways,
taking into account restrictions on the number of parts or on the properties of the parts.

Definitions:

A partition of a positive integer n is a representation of n as the sum of positive
integers. The parts are usually written in nonascending order, but order is ignored.

A Ferrers diagram of a partition is an array of boxes, nodes, or dots into rows of
nonincreasing size so that each row represents one part of the partition.

The conjugate of a partition is the partition obtained by transposing the rows and
columns of its Ferrers diagram.

A composition is a partition in which the order of the parts is taken into account.

A vector partition is a decomposition of an n-tuple of nonnegative integers into a sum
of nonzero n-tuples of nonnegative integers, where order is ignored

A vector composition is the same as a vector partition, except that order is taken
into account.

Facts:

1. The following table gives the notation for various functions that count partitions:

function type of partitions counted

p(n) number of partitions of n
Q(n) number of partitions of n into distinct parts
O(n) number of partitions of n into odd parts
pm(n) number of partitions of n with at most m parts
qm(n) number of partitions of n with no part larger than m

p(N,M,n) number of partitions of n into at most M parts, with each
part no larger than N

2. p(m,n, n) = qm(n).

3. p(n,m, n) = pm(n).

4. pm(n) = qm(n).

5. O(n) = Q(n).

6. The number of compositions of n into k parts is
(

n−1
n−k

)
=

(
n−1
k−1

)
.

7. The number of compositions of n is 2n−1.

8. The number of compositions of n using no 1s is Fn−1 (Fibonacci numbers F0 = 0,
F1 = 1, F2 = 1, F3 = 2, . . .).

9. The partition function p(n) satisfies these congruences (see [Kn93] for details):
p(5n + 4) ≡ 0 (mod 5)

p(7n + 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).
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10. The partition functions p(n) and pm(n) satisfy these recurrences:

p(n) − p(n− 1) − p(n− 2) + p(n− 5) + p(n− 7) + · · ·
+(−1)kp(n− k

2 (3k − 1)) + (−1)kp(n− k
2 (3k + 1)) + · · · = 0, n > 0

pm(n) = pm(n−m) + pm−1(n).

11. The asymptotic behavior of p(n), Q(n), and pm(n) is as follows (see [An84] Chap-
ters 5 and 6, [HaRa18], or [Kn93] for details):

p(n) ∼ 1
4n

√
3
eπ
√

2n/3 as n→ ∞,

Q(n) ∼ 1
4 · 31/4

n−3/4eπ
√

n/3 as n→ ∞,

pm(n) ∼ nm−1

m!(m− 1)!
as n→ ∞, with m fixed.

12. The following are generating functions for partition functions:

∑
n≥0

p(n)qn =
∞∏

i=1

(1 + qi + qi+i + · · ·) =
∞∏

i=1

( ∞∑
m=0

qmi

)
=

∞∏
i=1

1
1−qi

∑
n≥0

Q(n)qn =
∞∏

i=1

(1 + qi)

∑
n≥0

pm(n)qn =
m∏

i=1

(1 + qi + qi+i + · · ·) =
m∏

i=1

( ∞∑
m=0

qmi

)
=

m∏
i=1

1
1−qi

∑
n≥0

p(N,M,n)qn =
N∏

j=1

(1−qN+M+1−j)
(1−qj) =

∏N+M
j=1 (1 − qj)∏N

j=1(1 − qj)
∏M

j=1(1 − qj)
.

Note: Even though these expressions for p(N,M,n) look like quotients of polynomials
they are actually just polynomials of degree NM . They are called Gaussian polynomials
or q-binomial coefficients. (See Chapters 1 and 2 of [An76], Chapter 19 of [HaWr60], or
[Ma16] for details. Also see §2.3.2.)

13. The following are additional generating functions for partition functions (see Chap-
ter 2 of [An76] or Section 8.10 of [GaRa90] for details):

∞∑
n=1

p(n)qn = 1 +
∞∑

n=1

qn

(1−q)(1−q2)...(1−qn)

= 1 +
∞∑

n=1

qn2

(1−q)2(1−q2)2...(1−qn)2

∞∑
n=1

Q(n)qn = 1 +
∞∑

n=1

qn(n+1)/2

(1−q)(1−q2)...(1−qn)

= 1 + q +
∞∑

n=2
qn(1 + q)(1 + q2) . . . (1 + qn−1)

∞∑
n=1

pm(n)qn = 1 +
∞∑

n=1

(1−qm)(1−qm+1)...(1−qm+n−1)
(1−q)(1−q2)...(1−qn) qn.

14. See [GrKnPa94] for an algorithm for generating partitions.
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15. The following table gives some values of pm(n). More extensive tables appear in
[GuGwMi58].

n\m 0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1
2 0 1 2 2 2 2 2 2 2 2 2
3 0 1 2 3 3 3 3 3 3 3 3
4 0 1 3 4 5 5 5 5 5 5 5
5 0 1 3 5 6 7 7 7 7 7 7
6 0 1 4 7 9 10 11 11 11 11 11
7 0 1 4 8 11 13 14 15 15 15 15
8 0 1 5 10 15 18 20 21 22 22 22
9 0 1 5 12 18 23 26 28 29 30 30

10 0 1 6 14 23 30 35 38 40 41 42

16. The following table gives values for p(n) and Q(n).

n p(n) Q(n) n p(n) Q(n) n p(n) Q(n)

0 1 1 17 297 38 34 12,310 512
1 1 1 18 385 46 35 14,883 585
2 2 1 19 490 54 36 17,977 668
3 3 2 20 627 64 37 21,637 760
4 5 2 21 792 76 38 26,015 864
5 7 3 22 1,002 89 39 31,185 982
6 11 4 23 1,255 104 40 37,338 1,113
7 15 5 24 1,575 122 41 44,583 1,260
8 22 6 25 1,958 142 42 53,174 1,426
9 30 8 26 2,436 165 43 63,261 1,610

10 42 10 27 3,010 192 44 75,175 1,816
11 56 12 28 3,718 222 45 89,134 2,048
12 77 15 29 4,565 256 46 105,558 2,304
13 101 18 30 5,604 296 47 124,754 2,590
14 135 22 31 6,842 340 48 147,273 2,910
15 176 27 32 8,349 390 49 173,525 3,264
16 231 32 33 10,143 448 50 204,226 3,658

Examples:

1. The number 4 has five partitions:
4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1.

2. The number 4 has eight compositions:
4 1+3 3+1 2+2 2+1+1 1+2+1 1+1+2 1+1+1+1.

3. The vector partitions of (2, 1) are:

(2, 1) (2, 0) + (0, 1) (1, 0) + (1, 0) + (0, 1) (1, 0) + (1, 1)
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4. The partition 18 = 5 + 4 + 4 + 2 + 1 + 1 + 1 has the Ferrers diagram in part (a)
of the following figure. Its conjugate is the partition 18 = 7 + 4 + 3 + 3 + 1, with the
Ferrers diagram in part (b) of the figure.

5. Identical balls into identical bins: The number of ways that n identical balls can
be placed into k identical bins, with any number of balls allowed in each bin, is given
by pk(n).

6. Identical balls into identical bins with no bin allowed to be empty: The number
of ways that n identical balls can be placed into k identical bins (n ≥ k), with any
number of balls allowed in each bin and no bin allowed to remain empty, is given by
pk(n) − pk−1(n).

2.5.2 STIRLING COEFFICIENTS

Definitions:

A cyclic partition of a set is a partition of the set (into disjoint subsets whose union
is the entire set) where the elements of each subset are arranged into cycles. Two cyclic
partitions using the same family of subsets distinct if any of the cycle arrangements are
different.

The Stirling cycle number
[n
k

]
is the number of ways to partition n objects into k

nonempty cycles.

The Stirling number of the first kind s(n, k) is the coefficient of xk in the polynomial
x(x− 1)(x− 2) . . . (x− n+ 1). Thus,

n∑
k=0

s(n, k)xk = x(x− 1)(x− 2) . . . (x− n+ 1).

The Stirling subset number
{n
k

}
is the number of ways to partition a set of n objects

into k nonempty subsets.

The Stirling numbers of the second kind S(n, k) are defined implicitly by the
equation

xn =
n∑

k=0

S(n, k)x(x− 1)(x− 2) . . . (x− k + 1).

The Bell number Bn is the number of partitions of a set of n objects. (Eric Temple
Bell, 1883–1960)

Facts:

1. s(n, k)(−1)n−k =
[

n
k

]
.

2. S(n, k) =
{

n
k

}
.
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3. The following table gives Stirling numbers of the first kind, s(n, k):

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 0 −1 1
3 0 2 −3 1
4 0 −6 11 −6 1
5 0 24 −50 35 −10 1
6 0 −120 274 −225 85 −15 1
7 0 720 −1,764 1,624 −735 175 −21 1
8 0 −5,040 13,068 −13,132 6,769 −1,960 322 −28 1
9 0 40,320 −109,584 118,124−67,284 22,449−4,536 546−36 1

10 0−362,880 1,026,576 −1,172,700 723,680 −269,325 63,273 −9,450 870 −45 1

4. The following table gives Stirling subset numbers of the second kind, S(n, k) =
{

n
k

}
:

n\k 0 1 2 3 4 5 6 7 8 9 10

0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1
8 0 1 127 966 1,701 1,050 266 28 1
9 0 1 255 3,035 7,770 6,951 2,646 462 36 1
10 0 1 511 9,330 34,501 42,525 22,827 5,880 750 45 1

5. Bn =
n∑

k=1

{
n
k

}
.

6. The first fifteen Bell numbers are:
B1 = 1 B2 = 2 B3 = 5 B4 = 15
B5 = 52 B6 = 203 B7 = 877 B8 = 4,140
B9 = 21,147 B10 = 115,975 B11 = 678,570 B12 = 4,213,597
B13 = 27,644,437 B14 = 190,899,322 B15 = 1,382,958,545.

7. Table 1 lists some identities involving Stirling numbers.

8. The following give combinatorial interpretations of some of the identities involving
Stirling numbers:

• Stirling cycle number recursion: When partitioning n objects into k cycles, there
are

[
n−1
k−1

]
ways in which the last object has a cycle to itself. Otherwise, there

are
[

n−1
k

]
ways to partition the other n−1 objects into k cycles, and then n−1

choices of a location into which the last object can be inserted.
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Table 1 Stirling number identities.

[
n
k

]
= (n− 1)

[
n−1

k

]
+

[
n−1
k−1

]
, (k > 0) Stirling cycle number

recursion[
n
0

]
=

{
0, if n �= 0
1, if n = 0{

n
k

}
= k

{
n−1

k

}
+

{
n−1
k−1

}
, (k > 0) Stirling subset number

recursion{
n
0

}
=

{
0, if n �= 0
1, if n = 0

∑
k

[
n
k

]{
k
m

}
(−1)n−k =

{
0, if n �= m
1, if n = m

Inversion formulas∑
k

{
n
k

}[
k
m

]
(−1)n−k =

{
0, if n �= m
1, if n = m

{
n
1

}
=

{
n
n

}
= 1{

n
2

}
= 2n−1 − 1{

n
k

}
k! = the number of onto functions

from an n-set to a k-set
n∑

k=0

[
n
k

]
= n!

∞∑
n=0

S(n+ k, k)xn =
1

(1 − x)(1 − 2x) . . . (1 − kx)
∞∑

n=0

s(n, k)xn

n!
=

(log(1 + x))k

k!

∞∑
n=0

S(n, k)xn

n!
=

1
k!

(ex − 1)k

• Stirling subset number recursion: When partitioning n objects into k nonempty
subsets, there are

{
n−1
k−1

}
ways in which the last object has a subset to itself.

Otherwise, there are
{

n−1
k

}
ways to partition the other n − 1 objects into k

subsets, and then k choices of a subset into which the last object can be inserted.

•
∑n

k=0

[
n
k

]
= n! : The partitions into cycles are in a one-to-one correspondence

with the permutations of n objects, since each permutation can be represented
as a composition of disjoint cycles.

Examples:

1. x(x− 1)(x− 2)(x− 3) = x4 − 6x3 +11x2 − 6x, and hence there are
[
4
2

]
= 11 permu-

tations of {1, 2, 3, 4} with 2 cycles: (12)(34), (13)(24), (14)(23), (1)(234), (1)(324),
(2)(134), (2)(314), (3)(124), (3)(214), (4)(123), (4)(213). Also, s(4, 2) = (−1)4−2 ·11.
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2. x4 = x(x−1)(x−2)(x−3)+6x(x−1)(x−2)+7x(x−1)+x, and hence there are exactly{
4
2

}
= 7 set-partitions of {1, 2, 3, 4} into two blocks: {1} & {2, 3, 4}, {2} & {1, 3, 4},

{3} & {1, 2, 4}, {4} & {1, 2, 3}, {1, 2} & {3, 4}, {1, 3} & {2, 4}, {1, 4} & {2, 3}.

2.6 BURNSIDE/PÓLYA COUNTING FORMULA

Burnside’s Lemma and Pólya’s formula are used to count the number of “really different”
configurations, such as tic-tac-toe patterns and placement of beads on a bracelet, in
which various symmetries play a role. One of the scientific applications of Pólya’s
formula is the enumeration of isomers of a chemical compound. From a mathematical
perspective, Burnside/Pólya methods count orbits under a permutation group action.
(See §5.3.1.)

2.6.1 PERMUTATION GROUPS AND CYCLE INDEX POLYNOMIALS

Definitions:

A permutation on a set S is a one-to-one mapping of S onto itself. In this context,
the elements of S are called objects.

A permutation π of a finite set S is cyclic if there is a subcollection of objects that can
be arranged in a cycle (a1a2 . . . an) so that each object aj is mapped by π onto the next
object in the cycle and every object of S not in this cycle is fixed by π, that is, mapped
to itself.

The tabular form of a permutation π on a finite set S is a matrix with two rows. In
the first row, each object from S is listed once. Below the object a is its image π(a), in
this form: (

a1 a2 · · · an

π(a1) π(a2) · · · π(an)

)
.

The cycle decomposition (form) of a permutation π is a concatenation of cyclic per-
mutations whose object subcollections are disjoint and whose product is π. (Sometimes
the 1-cycles are explicitly written and sometimes they are omitted.)

A set P of permutations of a set S is closed under composition if the composition
of each pair of permutations in P is also in P .

A set P of permutations of a set S is closed under inversion if for every permutation
π ∈ P , π−1 ∈ P .

A permutation group G = (P, S) is a nonempty set P of permutations on a set S
such that P is closed under composition and inversion.

The cycle structure of a permutation π is an expression (multivariate polynomial)
of the form xm1

1 xm2
2 . . . xmk

k , where mj is the number of cycles of size j in the cyclic
decomposition of π.
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The cycle index of a permutation group G is the multivariate polynomial that is the
sum of the cycle structures of all the permutations in G, divided by the number of
permutations in G. The cycle index polynomial is written PG(x1, x2, . . . , xn). (The
notation PG honors George Pólya (1887–1985) who greatly advanced the application of
the cycle index polynomial to counting.)

Facts:
1. Every permutation has a tabular form.
2. The tabular form of a permutation is unique up to the order in which the objects
of the permuted set are listed in the first row.
3. Every permutation has a cycle decomposition.
4. The cycle decomposition of a permutation into a product of disjoint cyclic permu-
tations is unique up to the order of the factors.
5. The collection of all permutations on a set S forms a permutation group.

Examples:
1. The permutation

(
a b c d
c d a b

)
has the cycle decomposition (ac)(bd).

2. The symmetric group Σ3 of all 6 possible permutations on {a, b, c} has the following
elements:

(a)(b)(c), (ab)(c), (ac)(b), (a)(bc), (abc), (acb)

with respective cycle structures

x3
1, x1x2, x1x2, x1x2, x3, x3.

Thus, the cycle index polynomial is
PΣ3 = 1

6

(
x3

1 + 3x1x2 + 2x3

)
.

3. The group Σ4 of all 24 permutations on {a, b, c, d} has the following elements:

(a)(b)(c)(d) (ab)(c)(d) (ac)(b)(d) (ad)(b)(c) (a)(bc)(d) (a)(bd)(c)

(a)(b)(cd) (abc)(d) (acb)(d) (abd)(c) (adb)(c) (acd)(b)

(adc)(b) (a)(bcd) (a)(bdc) (ab)(cd) (ac)(bd) (ad)(bc)

(abcd) (abdc) (acbd) (acdb) (adbc) (adcb)

The cycle index polynomial is

PΣ4 = 1
24

[
x4

1 + 6x2
1x2 + 8x1x3 + 3x2

2 + 6x4

]
.

2.6.2 ORBITS AND SYMMETRIES

Definitions:

Given a permutation group G = (P, S), the orbit of a ∈ S is the set {π(a) | π ∈ P }.
A symmetry of a figure (or symmetry motion) is a spatial motion of the figure
onto itself.

Facts:
1. Given a permutation group G = (P, S), the relation R defined by

aRb ⇐⇒ there exists π ∈ P such that π(a) = b

is an equivalence relation (§1.4.2), and the equivalence classes under it are precisely the
orbits.
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2. The set of all symmetries on a figure forms a group.

3. The set of symmetries on a polygon induces a permutation group action on its corner
set and a permutation group action on its edge set.

Examples:

1. Acting on the set {a, b, c, d, e} is the following permutation group:

(a)(b)(c)(d)(e), (ab)(c)(d)(e), (a)(b)(cd)(e), and (ab)(cd)(e).

The orbits of this group are {a, b}, {c, d}, {e}. The cycle index is
1
4

[
x5

1 + 2x3
1x2 + x1x

2
2

]
.

2. A square with corners a, b, c, d (in clockwise order) has eight possible symmetries:
four rotations in the plane around the center of the square and four reflections (which
could also be achieved by 180◦ spatial rotations out of the plane). See the following
figure.

There is only one orbit, {a, b, c, d}, and the cycle index for the group of symmetries of
a square acting on its corner set (the dihedral group D4) is

PD4 = 1
8

[
x4

1 + 2x4 + 3x2
2 + 2x2

1x2

]
.

3. A pentagon has 10 different symmetries — five rotations in the plane around the
center of the pentagon: 0◦ = (a)(b)(c)(d)(e), 72◦ = (abcde), 144◦ = (acebd), 216◦ =
(adbec), and 288◦ = (aedcb), and five reflections (or equivalently, spatial rotations
of 180◦ out of the plane) around axis lines through a corner and the middle of an
opposite side: (a)(be)(cd), (b)(ac)(de), (c)(ae)(bd), (d)(ab(ce), and (e)(ad)(bc). See the
following figure. There is only one orbit, {a, b, c, d, e}, and the associated cycle index is
1
10

[
x5

1 + 4x5 + 5x1x
2
2

]
.

2.6.3 COLOR PATTERNS AND INDUCED PERMUTATIONS

Definitions:

A coloring of a set S from a set of n colors is a function from S to the set {1, . . . , n},
whose elements are regarded as “colors”. The set of all such colorings is denoted C(S, n).

A corner coloring of a (polygonal or polyhedral) geometric figure is a coloring of its
set of corners.

An edge coloring of a geometric figure is a coloring of its set of edges.
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Let c1 and c2 be colorings of the set S and let π be a permutation of S. Write π(c1) = c2
if c1(a) = c2(π(a)) for every a ∈ S. The correspondence c1 �→c1 ◦ π−1 is the map
induced by π on the colorings of S. (The composition c1 ◦ π−1 assigns a color to
every object a ∈ S, namely the color c1(π−1(a)).

Two corner colorings of a figure are equivalent if one can be mapped to the other by
a symmetry. Similar definitions apply to edge colorings and to face colorings.

Two colorings c1 and c2 of a set S are equivalent under a group G = (P, S) if there
is a permutation π ∈ P such that π(c1) = c2.

A corner coloring pattern of a figure with respect to a set of symmetries is
a set of mutually equivalent colorings of the figure.

Facts:

1. Let G = (P, S) be a permutation group. Then the induced action of P on the
set C(S, n) of colorings with n colors is a permutation group action.

2. When P acts on the set C(S, n) of colorings of S, the numbers of permuted objects
and orbits, and the cycle index polynomial, are different from when P acts on S itself.

3. In permuting the set S of corners of a figure, a symmetry of a figure simultaneously
induces a permutation of the set of all its corner colorings. An analogous fact holds for
edge colorings.

Examples:

1. In Example 2 of §2.6.2, a permutation group of 8 elements acts on the four corners
of a square. There is only one orbit, and the cycle index is 1

8

[
x4

1 + 2x4 + 3x2
2 + 2x2

1x2

]
.

The following figure shows what happens when the same group acts on the set of black-
white colorings. The permuted set has 16 colorings, there are 6 orbits, and the cycle
index polynomial is 1

8

[
x16

1 + 2x2
1x2x

3
4 + 3x4

1x
6
2 + 2x8

1x
4
2

]
.

2.6.4 FIXED POINTS AND BURNSIDE’S LEMMA

Definition:

An element a ∈ S is a fixed point of the permutation π if π(a) = a. The set of all
fixed points of π is denoted fix(π).

Facts:

1. The number of fixed points of a permutation π equals the number of 1-cycles in its
cycle decomposition.
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2. Burnside’s Lemma: Let G be a group of permutations acting on a set S. Then the
number of orbits induced on S is given by

1
|G|

∑
π∈G

|fix(π)| where fix(π) = {x ∈ S | π(x) = x }.

Note: The theorem commonly called “Burnside’s Lemma” originated with Georg Frobe-
nius (1848–1917). A widely available book by William Burnside (1852–1927) published
in 1911 stated and proved the same result, without mentioning its prior discovery.

3. Evaluation of the sum in Burnside’s Lemma is simplified by using the cycle index
polynomial and Fact 1. For each term in the polynomial, multiply the coefficient by the
exponent of x1, and then sum these products.

4. Special Burnside’s Lemma (for colorings): Let G be a group of permutations acting
on a set S. Then the number of orbits induced on C(S, n) (the set of colorings of S
from a set of n colors) is given by substituting n for each variable in the cycle index
polynomial.

5. The following table gives information on the number of corner coloring patterns of
selected figures.

figure colors

2 3 4 m

triangle 4 11 20 1
6 [m3 + 3m2 + 2m]

square 6 21 55 1
8 [m4 + 2m3 + 3m2 + 2m]

pentagon 8 39 136 1
10 [m5 + 5m3 + 4m]

hexagon 13 92 430 1
12 [m6 + 3m4 + 4m3 + 2m2 + 2m]

heptagon 18 198 1,300 1
14 [m7 + 7m4 + 6m]

octagon 30 498 4,183 1
16 [m8 + 4m5 + 5m4 + 2m2 + 4m]

nonagon 46 1,219 15,084 1
18 [m9 + 9m5 + 2m3 + 6m]

decagon 78 3,210 53,764 1
20 [m10 + 5m6 + 6m5 + 4m2 + 4m]

tetrahedron 5 15 36 1
12 [m4 + 11m2]

cube 23 333 2914 1
24 [m8 + 17m4 + 6m2]

Examples:

1. In Example 1 of §2.6.2, the permutation group is

{(a)(b)(c)(d)(e), (ab)(c)(d)(e), (a)(b)(cd)(e), (ab)(cd)(e)}.
The cycle index is 1

4

[
x5

1 + 2x3
1x2 + x1x

2
2

]
. By Burnside’s Lemma and Fact 3 there are

1
4 [1 · 5 + 2 · 3 + 1 · 1] = 12

4 = 3 orbits. The orbits are {a, b}, {c, d}, {e}.

2. Example 1 of §2.6.3 shows 16 colorings of the corners of the square with colors
black or white. There are 6 orbits, and the cycle index for the action on the colorings
is 1

8

[
x16

1 + 2x2
1x2x

3
4 + 3x4

1x
6
2 + 2x8

1x
4
2

]
. By Burnside’s Lemma and Fact 3, there are

1
8 [1 · 16 + 2 · 2 + 3 · 4 + 2 · 8] = 48

8 = 6 orbits.
It is simpler to apply Special Burnside’s Lemma to the cycle index for the action

on the square (from Example 2 of §2.6.2), 1
8

[
x4

1 + 2x4 + 3x2
2 + 2x2

1x2

]
, which yields

1
8

[
1 · 24 + 2 · 2 + 3 · 22 + 2 · 22 · 2

]
= 6 orbits.
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3. (Continuing Example 3 of §2.6.2): The cycle index of the group of symmetries
of the pentagon is 1

10

[
x5

1 + 4x5 + 5x1x
2
2

]
. By Special Burnside’s Lemma, the number

of m-colorings of the corners of an unoriented pentagon is 1
10

[
m5 + 4m+ 5m3

]
. For

m = 3, the formula gives 1
10 (243 + 12 + 135) = 39 3-coloring patterns of a pentagon.

4. A cube has 24 rotational symmetries, which act on the corners. The identity symme-
try has cycle structure x8

1. There are three additional classes of symmetries, as follows:
(a) Rotations of 90◦, 180◦, or 270◦ about an axis line through the middles of opposite
faces, for example, through abcd and efgh in part (a) of the following figure. A 90◦

rotation, such as (abcd)(efgh), has cycle structure x2
4. All 270◦ rotations have that

same structure. A 180◦ rotation, such as (ac)(bd)(eg)(fh), has cycle structure x4
2.

There are three pairs of opposite faces, and so the total contribution to the cycle index
of opposite-face rotations is 6x2

4 + 3x4
2.

(b) Rotating 180◦ about an axis line through the middles of opposite edges, for example,
through edges ad and fg in part (b) of the figure. This rotation, (ad)(bh)(ce)(fg), has
cycle structure x4

2. There are six pairs of opposite edges, and so the total contribution
of opposite-edge rotations is 6x4

2.
(c) Rotating 120◦ or 240◦ about an axis line through opposite corners, for example,
about the line through corners a and g in part (c) of the figure. Any 120◦ rotation, such
as (a)(bde)(chf)(g), has cycle structure x2

1x
2
3. A 240◦ rotation has the same structure.

There are four pairs of opposite corners, and so the contribution of opposite-corner
rotations is 8x2

1x
2
3.

Collect terms to obtain the cycle index 1
24

[
x8

1 + 6x2
4 + 9x4

2 + 8x2
1x

2
3

]
. Thus, the number

of m-colorings of the corners of an unoriented cube is 1
24

[
m8 + 6m2 + 9m4 + 8m4

]
. For

m = 2 and 3, the formula gives 23 2-coloring patterns and 333 3-coloring patterns.

2.6.5 PÓLYA’S ENUMERATION FORMULA

Definition:

A pattern inventory is a generating function (§3.2) that enumerates the numbers of
coloring patterns of a given figure.

Facts:

1. Pólya’s enumeration formula: Let G = (P, S) be a permutation group and let
{c1, . . . , cn} be a set of names for n colors for the objects of S. Then the pattern
inventory with respect to G for the set of all n-colorings of S is given by substituting
(cj1 + · · · + cjn) for xj in the cycle index PG(x1, . . . , xm).
Note: This theorem was published in 1937. Essentially the same result was derived by
H. Redfield in 1927.
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2. Pólya’s enumeration formula has many applications in enumerating various families
of graphs. This approach was pioneered by F. Harary. (See [HaPa73].)

3. Pólya’s enumeration formula has many applications in which some practical question
is modeled as a graph coloring problem.

Examples:

1. The pattern inventory of black-white colorings of the corners of a triangle is
1b3 + 1b2w + 1bw2 + 1w3.

This means there is one coloring pattern with all 3 corners black, one with 2 black
corners and 1 white corner, etc.

2. (Continuing Example 2 of §2.6.4): For corner colorings of the square, the cycle
index is

PD4(x1, x2, x3, x4) = 1
8

[
x4

1 + 2x2
1x2 + 3x2

2 + 2x4

]
.

By Pólya’s enumeration formula, the pattern inventory for black-white colorings of the
corners of the square is

PD4 [(b+ w), (b2 + w2), (b3 + w3), (b4 + w4)]

= 1
8

[
(b+ w)4 + 2(b+ w)2(b2 + w2) + 3(b2 + w2)2 + 2(b4 + w4)

]
= 1

8

[
8b4 + 8b3w + 16b2w2 + 8bw3 + 8w4

]
= 1b4 + 1b3w + 2b2w2 + 1bw3 + 1w4.

This pattern inventory may be confirmed by examining the drawing in Example 1
of §2.6.3.

3. (Continuing Example 3 of §2.6.4): For corner colorings of the pentagon, the cycle
index is

PD5(x1, x2, . . . , x5) = 1
10

[
x5

1 + 4x5 + 5x1x
2
2

]
.

By Pólya’s enumeration formula, the pattern inventory for black-white colorings of the
corners of the pentagon (confirmable by drawing pictures) is

PD5((b+ w), (b2 + w2), (b3 + w3), (b4 + w4), (b5 + w5))

= 1
10

[
(b+ w)5 + 4(b5 + w5) + 5(b+ w)(b2 + w2)2

]
= 1

10

[
10b5 + 10b4w + 20b3w2 + 20b2w3 + 10bw4 + 10w5

]
= 1b5 + 1b4w + 2b3w2 + 2b2w3 + 1bw4 + 1w5.

4. (Continuing Example 4 of §2.6.4): For corner colorings of the cube, the cycle index
is

PG(x1, . . . , x4) = 1
24

[
x8

1 + 6x2
4 + 9x4

2 + 8x2
1x

2
3

]
.

By Pólya’s enumeration formula, the pattern inventory for black-white colorings of the
corners of the cube is

PG
(
(b+ w), (b2 + w2), (b3 + w3), (b4 + w4)

)
= 1

24

[
(b+ w)8 + 6(b4 + w4)2 + 9(b2 + w2)4 + 8(b+ w)2(b3 + w3)2

]
= b8 + b7w + 3b6w2 + 3b5w3 + 7b4w4 + 3b3w5 + 3b2w6 + bw7 + w8.
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5. Organic chemistry : Two structurally different compounds with the same chemical
formula are called isomers. For instance, to two of the six carbons (C) in a ring there
might be attached a hydrogen (H), and to each of the four other carbons some other
radical (R), thereby yielding the chemical formula C6H2R4. The number of different
isomers (structurally different arrangements of the radicals) is the same as the number
of coloring patterns of a hexagon when two of the corners are “colored” H and four
“colored” R. The cycle index for the symmetries of a hexagon, in terms of corner
permutations, is

PD6(x1, . . . , x6) = 1
12

[
x6

1 + 2x6 + 2x2
3 + 4x3

2 + 3x2
1x

2
2

]
.

Substituting (Hj + Rj) for xj yields a pattern inventory listing the number of isomers
of C6HiR6−i :

1
12

[
(H +R)6 + 2(H6 +R6) + 2(H3 +R3)2 + 4(H2 +R2)3 + 3(H +R)2(H2 +R2)2

]
= 1

12

[
12H8 + 12H5R+ 36H4R2 + 36H3R3 + 36H2R4 + 12HR5 + 12R6

]
= 1H8 + 1H5R+ 3H4R2 + 3H3R3 + 3H2R4 + 1HR5 + 1R6.

The three possible coloring patterns corresponding to 3H2R4 are shown in the following
figure:

2.7 MÖBIUS INVERSION COUNTING

Möbius inversion is an important tool used to solve a variety of counting problems such
as counting how many numbers are relatively prime to some given number (without
individually checking each smaller number) and counting certain types of circular ar-
rangements. It generalizes the principle of inclusion/exclusion. (Augustus Ferdinand
Möbius, 1790–1868)

2.7.1 MÖBIUS INVERSION

Definitions:

The Kronecker delta function δ(x, y) is defined by the rule

δ(x, y) =
{

1 if x = y
0 otherwise.
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The Möbius function is the function µ from the set of positive integers to the set of
integers where

µ(m) =

{ 1 if m = 1
(−1)k if m = p1p2 . . . pk (the product of k distinct primes)
0 if m is divisible by the square of a prime.

Note: See Chapter 11 for Möbius functions defined on partially ordered sets.

Facts:

1. For the Möbius function µ defined on the set of positive integers:
• µ is multiplicative: if gcd(m,n) = 1, then µ(mn) = µ(m)µ(n);
• µ is not completely multiplicative: µ(mn) = µ(m)µ(n) is not always true;

•
∑
d|n
µ(d) =

{ 1 if n = 1
0 if n > 1

where the sum is taken over all positive divisors of n.

2. Möbius inversion formula: If f(n) and g(n) are defined for all positive integers and
f(n) =

∑
d|n
g(d), then g(n) =

∑
d|n
µ(d)f(n/d).

3. For every positive integer n, n =
∑
d|n
φ(d). (For example, 6 = φ(1) + φ(2) + φ(3) +

φ(6) = 1 + 1 + 2 + 2.)

Examples:

1. Circular permutations with repetitions: Given an alphabet of m letters, how many
circular permutations of length n are possible, if repeated letters are allowed and two
permutations are the same if the second can be obtained from the first by rotation?
The problem was first solved by Percy A. MacMahon in 1892.

A circular permutation of length n has a period d, where d|n. (The period of a
circular permutation, viewed as a circular string, is the length of the shortest substring
that repeats end-to-end to give the entire string.) Let g(d) be the number of length d
circular permutations that have period d. A circular permutation of length n can be
constructed from one of length d (where d|n) by concatenating it with itself n

d times.
For example, the circular permutation aabbaabb (where beginning and end are joined) of
period four can be obtained by taking the circular permutation aabb and opening it up
at one of four spots between the letters, to obtain any of four linear strings aabb, abba,
bbaa, and baab. Join one of these to itself, obtaining aabbaabb, abbaabba, bbaabbaa, and
baabbaab, and then join the beginning and the end to form the circular permutation
aabbaabb.

For any positive integer k, there are dg(d) linear strings of length k obtained by
taking k

d repetitions of the linear strings of length d that have period d, where d|k.
Therefore, the total number of linear strings of length k where the objects are chosen
from m types is

∑
d|k dg(d) = mk. Applying the Möbius inversion formula to mk and g

yields g(k) = 1
k

∑
d|k µ(d)m

k/d. Therefore, the total number of circular permutations of
length n where the elements are chosen from an alphabet of size m is

∑
d|n g(d), which

is equal to ∑
k|n

(
1
k

∑
d|k µ(d)m

k/d
)
.
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2. Circular permutations with repetitions with specified numbers of each type of object:
Suppose there are a total of n objects of t types, with ai of type i (i = 1, . . . , t), where
a1 + · · · + at = n. If a = gcd(a1, . . . , at), these circular permutations can be generated
as in Example 3 by taking a circular permutation of period d (where d|a) with aid

n
objects of type i (i = 1, . . . , t), breaking it open, and laying it end-to-end n

d times.
Let g(k) be the number of such circular permutations of length k that have period k.
Then the total number of linear strings of length n with ai objects of type i is given by∑

d|a dg(d) = n!
a1!...at!

.

By the Möbius inversion formula,

g(k) = 1
k

∑
d|a µ(d)

(k/d)!
(a1/d)!(a2/d)!...(at/d)! .

Summing g(k) over all divisors of a gives the desired total number of circular permuta-
tions: ∑

k|a g(k) =
∑

k|a

(
1
k

∑
d|a µ(d)

(k/d)!
(a1/d)!...(at/d)!

)
.

2.8 YOUNG TABLEAUX

Arrays called Young tableaux were introduced by the Reverend Alfred Young (1873–
1940). These arrays are used in combinatorics and the theories of symmetric functions,
which are the subject of this section. Young tableaux are also used in the analysis
of representations of the symmetric group. They make it possible to approach many
results about representation theory from a concrete combinatorial viewpoint.

2.8.1 TABLEAUX COUNTING FORMULAS

Definitions:

The hook Hi,j of cell (i, j) in the Ferrers diagram for a partition λ is the set

{ (k, j) ∈ λ | k ≥ i } ∪ { (i, k) ∈ λ | k ≥ j },
that is, the set consisting of the cell (i, j), all cells in its row to its right, and all cells in
its column below it.

The hooklength hi,j of cell (i, j) is the number |Hi,j | of cells in its hook.

A Young tableau is an array obtained by replacing each cell of the Ferrers diagram
by a positive integer.

The shape of a Young tableau is the partition corresponding to the underlying Ferrers
diagram. The notation λ ! n indicates that λ partitions the number n.

A Young tableau is semistandard (an SSYT) if the entries in each row are weakly
increasing and the entries in each columns are strictly increasing.

A semistandard Young tableau of shape λ ! n is standard (an SYT) if each number
1, . . . , n occurs exactly once as an entry. The number of SYT of shape λ is denoted fλ.
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If G is a group (see §5.2) then an involution is an element g ∈ G such that g2 is the
identity. The number of involutions in the symmetric group Sn (or Σn) (the group of
all permutations on the set {1, 2, . . . , n}) is denoted inv(n).

The following table summarizes notation for Young tableaux:

notation meaning

λ = (λ1, . . . , λl) partition (with parts λ1 ≥ λ2 ≥ · · · ≥ λl)
λ ! n λ partitions the number n
(i, j) cell in a Ferrers diagram
Hi,j hook of cell (i, j)
hi,j hooklength of hook Hi,j

fλ number of SYT of shape λ
inv(n) number of involutions in Sn

Facts:

1. Frame-Robinson-Thrall hook formula [1954]: The number of SYT of fixed shape λ
is

fλ = n!∏
(i,j)∈λ

hi,j
.

2. Frobenius determinantal formula [1900]: The number of SYT of fixed shape λ =
(λ1, . . . , λl) is the determinant

fλ = n!
∣∣∣ 1
(λi+j−i)!

∣∣∣
1≤i,j≤l

.

3. Summations involving the number of SYT:∑
λ�n

fλ = inv(n)
∑
λ�n

f2
λ = n!.

4. Young tableaux can be used to find the number of permutations with specified
lengths of their longest increasing subsequences and longest decreasing subsequences.
[Be71]

Examples:

1. If λ = (3, 2) then a complete list of SYT is:

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

2. If λ = (2, 2) then a complete list of SSYT with entries at most 3 is:

1 1
2 2

1 1
3 3

2 2
3 3

1 1
2 3

1 2
2 3

1 2
3 3

3. For the partition (3, 2), H1,1 = {(1, 1), (2, 1), (1, 2), (1, 3)}. In the following dia-
gram each cell of (3, 2) is replaced with its hooklength.

4 3 1
2 1

The hook formula (Fact 1) gives the number of SYT of shape (3, 2): f(3,2) = 5!
4·3·2·12 = 5.
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The determinantal formula (Fact 2) gives the same result:

f(3,2) = 5!

∣∣∣∣∣
1
3!

1
4!

1
1!

1
2!

∣∣∣∣∣ = 5.

4. For the partitions of n = 3, f(3) = 1, f(2,1) = 2, f(1,1,1) = 1, so the summation
formulas become: ∑

λ�3

fλ = 4 = inv(3);

∑
λ�3

f2
λ = 6 = 3!.

2.8.2 TABLEAUX ALGORITHMS

Definitions:

An inner corner of a partition λ is a cell (i, j) ∈ λ such that (i+ 1, j), (i, j + 1) �∈λ.
An outer corner of a partition λ is a cell (i, j) �∈λ such that (i− 1, j), (i, j − 1) ∈ λ.

Algorithm 1: Generate at random a standard tableau of given shape.

input: a shape λI such that λI ! n {For a summary of notation, see §2.5.1.}
output: a standard Young tableau of shape λI , uniformly at random

λ := λI

while λ is nonempty
{find an inner corner (i, j) ∈ λ}
choose (with probability 1

|λ| ) any cell (i, j) ∈ λ
while the current cell (i, j) is not an inner corner

choose (with probability 1
hi,j

) a pair (i′, j′) ∈ Hi,j − {(i, j)}
(i, j) := (i′, j′)

assign label n to inner corner (i, j)
λ := λ− {(i, j)}

Examples:

1. The diagrams in the following figure illustrate a plausible sequence of current cells
chosen as the first step of the Greene-Nijenhuis-Wilf algorithm [1979] (Algorithm 1)
finds an inner corner of a tableau of shape λ = (5, 5, 5, 2).
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Algorithm 2: Robinson-Schensted.

input: a permutation π ∈ Sn where π =
(

1 2 · · · n
π1 π2 · · · πn

)
output: a pair (P,Q) of standard Young tableaux of the same shape λ ! n
P0 := ∅; Q0 := ∅
for k := 1 to n
r := 1; c := 1; b := πk; Pk := Pk−1; exit := FALSE
while exit = FALSE
{find next insertion row r in tableau Pk}
while rowr(Pk) �= ∅ and πj > max{rowr(Pk)}
r := r + 1

{find next insertion column c in tableau Pk}
c := 1
while Pk[r, c] �= ∅ and πk < Pk[r, c]
c := c+ 1

{insert b}
if Pk[r, c] = ∅ then
Pk[r, c] := b; exit = TRUE

else
bb := Pk[r, c]; Pk[r, c] := b; b := bb

Qk[r, c] := k
P := Pn; Q := Qn

2. The permutation π =
(

1 2 3 4 5 6 7
6 2 3 1 7 5 4

)
yields this sequence of tableaux

pairs (Pk, Qk) under the Robinson-Schensted algorithm [1938, 1961] (Algorithm 2).
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INTRODUCTION

Sequences of integers occur regularly in combinatorial applications. For example, the
solution to a counting problem that depends on a parameter k can be viewed as the kth
term of a sequence. This chapter provides a guide to particular sequences that arise in
applied settings. Such (infinite) sequences can often frequently be represented in a finite
form. Specifically, sequences can be expressed using generating functions, recurrence
relations, or by an explicit formula for the kth term of the sequence.

GLOSSARY
antidifference (of a function f): any function g such that ∆g = f . It is the discrete

analogue of antidifferentiation.

ascent (in a permutation π): any index i such that πi < πi+1.

asymptotic equality (of functions): the function f(n) is asymptotic to g(n), written
f(n) ∼ g(n), if f(n) �= 0 for sufficiently large n and limn→∞

g(n)
f(n) = 1.

Bernoulli numbers: the numbers Bn produced by the recursive definition B0 = 1,∑n
j=0

(
n+1
j

)
Bj = 0, n ≥ 1.

Bernoulli polynomials: the polynomial Bm(x) =
∑m
k=0

(
m
k

)
Bkx

m−k where Bk is the
kth Bernoulli number.

big-oh (of the function f): the set of all functions that do not grow faster than some
constant multiple of f , written O(f(n)).

big omega (of the function f): the set of all functions that grow at least as fast as
some constant multiple of f , written Ω(f(n)).

big theta (of the function f): the set of all functions that grow roughly as fast as some
constant multiple of f , written Θ(f(n)).

binomial convolution (of the sequences {an} and {bn}): the sequence whose rth
term is formed by summing products of the form

(
r
k

)
akbr−k.

Catalan number: the number Cn = 1
n+1

(
2n
n

)
.

characteristic equation: an equation derived from a linear recurrence relation with
constant coefficients, whose roots are used to construct solutions to the recurrence
relation.

closed form (for a sum): an algebraic expression for the value of a sum with variable
limits, which has a fixed number of terms; hence the time needed to calculate it does
not grow with the size of the set or interval of summation.

convolution (of the sequences {an} and {bn}): the sequence whose rth term is formed
by summing products of the form akbr−k where 0 ≤ k ≤ r.

deBruijn sequence: a circular ordering of letters from a fixed alphabet with p letters
such that each n consecutive letters (wrapping around from the end of the sequence
to the beginning, if necessary) forms a different word.

difference operator: the operator ∆ where ∆f(x) = f(x + 1) − f(x) on integer or
real-valued functions. It is the discrete analogue of the differentiation operator.

difference sequence (for the sequence A = { aj | j = 0, 1, . . . }): the sequence ∆A =
{ aj+1 − aj | j = 0, 1, . . . }.

c© 2000 by CRC Press LLC



difference table (for a function f): a table whose kth row is the kth difference se-
quence for f .

discordant permutation: a permutation that assigns to every element an image dif-
ferent from those assigned by all other members of a given set of permutations.

dissimilar hypergeometric terms: terms in two hypergeometric series such that
their ratio is not a rational function.

divide-and-conquer algorithm: a recursive procedure that solves a given problem by
first breaking it into smaller subproblems (of nearly equal size) and then combining
their respective solutions.

doubly hypergeometric: property of function F (n, k) that F (n+1,k)
F (n,k) and F (n,k+1)

F (n,k)

are rational functions of n and k.

Eulerian number: the number of permutations of {1, 2, . . . , n} with exactly k ascents.

excedance (of a permutation π): any index i such that πi > i.

exponential generating function (for the sequence a0, a1, a2, . . .): the function f(x)
= a0 + a1x+ a2 x

2

2! + · · · or any equivalent closed form expression.

falling power (of x): the product xn = x(x− 1)(x− 2) . . . (x− n+ 1) of n successive
descending factors, starting with x; the discrete analogue of exponentiation.

Fibonacci numbers: the numbers Fn produced by the recursive definition F0 = 0,
F1 = 1, Fn = Fn−1 + Fn−2 if n ≥ 2.

figurate number: the number of cells in an array of cells bounded by some regular
geometrical figure.

first-order linear recurrence relation with constant coefficients: an equation
of the form Cn+1an+1 +Cnan = f(n), n ≥ 0, with Cn+1, Cn nonzero real constants.

generating function (for the sequence a0, a1, a2, . . .): the function f(x) = a0 +a1x+
a2x

2 + · · · or any equivalent closed form expression; sometimes called the ordinary
generating function for the sequence.

geometric series: an infinite series where the ratio between two consecutive terms is
a constant.

Gray code (of size n): a circular ordering of all binary strings of length n in which
adjacent strings differ in exactly one bit.

harmonic number: the sum Hn =
∑n
i=1

1
i , which is the discrete analogue of the

natural logarithm.

homogeneous recurrence relation: a recurrence relation satisfied by the identically
zero sequence.

hypergeometric series: is a series where the ratio of two consecutive terms is a
rational function.

indefinite sum (of the function f): the family of all antidifferences of f .

Lah coefficients: the coefficients resulting from expressing the rising factorial in terms
of the falling factorials.

linear recurrence relation with constant coefficients: an equation of the form
Cn+kan+k+Cn+k−1an+k−1+· · ·+Cnan = f(n), n ≥ 0, where Cn+i are real constants
with Cn+k and Cn nonzero.

little-oh (of the function f): the set of all functions that grow slower than every
constant multiple of f , written o(f(n)).
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little omega (of the function f): the set of all functions that grow faster than every
constant multiple of f , written ω(f(n)).

Lucas numbers: the numbers Ln produced by the recursive definition L0 = 2, L1 = 1,
Ln = Ln−1 + Ln−2 if n ≥ 2.

nonhomogeneous recurrence relation: a recurrence relation that is not homoge-
neous.

polyomino: a connected configuration of regular polygons (for example, triangles,
squares, or hexagons) in the plane, generalizing a domino.

power sum: the sum of the kth powers of the integers 1, 2, . . . , n.

radius of convergence (for the series
∑
anx

n): the number r (0 ≤ r ≤ ∞) such that
the series converges for all |x| < r and diverges for all |x| > r.

Ramsey number: the number R(m,n) defined as the smallest positive integer k with
the following property: if S is a set of size k and the 2-element subsets of S are
partitioned into 2 collections, C1 and C2, then there is a subset of S of size m such
that each of its 2-element subsets belong to C1 or there is a subset of S of size n
such that each of its 2-element sets belong to C2.

recurrence relation: an equation expressing a term of a sequence as a function of
prior terms in the sequence.

rising power (of x): the product xn = x(x+ 1)(x+ 2) . . . (x+ n− 1) of n successive
ascending terms, starting with x.

second-order linear recurrence relation with constant coefficients: an equa-
tion of the form Cn+2an+2 +Cn+1an+1 +Cnan = f(n), n ≥ 0, where Cn+2, Cn+1, Cn
are real constants with Cn+2 and Cn nonzero.

sequence: a function from {0, 1, 2, . . .} to the real numbers (often the integers).

shift operator: the operator E defined by Ef(x) = f(x+1) on integer or real-valued
functions.

similar hypergeometric terms: terms in two hypergeometric series such that their
ratio is a rational function.

standardized form for a sum: a sum over an integer interval, in which the lower limit
of the summation is zero.

Stirling’s approximation formula: the asymptotic estimate
√

2πn(n/e)n for n!.

tangent numbers: numbers generated by the exponential generating function tanx.

3.1 SPECIAL SEQUENCES

3.1.1 REPRESENTATIONS OF SEQUENCES

A given infinite sequence a0, a1, a2, . . . can often be represented in a more useful or more
compact form. Namely, there may be a closed form expression for an as a function of n,
the terms of the sequence may appear as coefficients in a simple generating function,
or the sequence may be specified by a recurrence relation. Each representation has
advantages, in either defining the sequence or establishing information about its terms.
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Definitions:

A sequence { an | n ≥ 0 } is a function from the set of nonnegative integers to the real
numbers (often the integers). The terms of the sequence { an | n ≥ 0 } are the values
a0, a1, a2, . . . .

A closed form for the sequence {an} is an algebraic expression for an as a function
of n.

A recurrence relation is an equation expressing a term of a sequence as a function of
prior terms in the sequence.

A solution of a recurrence relation is a sequence whose terms satisfy the relation.

The generating function for the sequence {an} is the function f(x) =
∞∑
i=0

aix
i or any

equivalent closed form expression.

The exponential generating function for the sequence {an} is the function g(x) =
∞∑
i=0

ai
xi

i! or any equivalent closed form expression.

Facts:
1. An important way in which many sequences are represented is by using a recurrence
relation (§3.3). Although not all sequences can be represented by useful recurrence
relations, many sequences that arise in the solution of counting problems can be so
represented.
2. An important way to study a sequence is by using its generating function (§3.2).
Information about terms of the sequence can often be obtained by manipulating the
generating function.

Examples:
1. The Fibonacci numbers Fn (§3.1.2) arise in many applications and are given by the
sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . . This infinite sequence can be finitely encoded by means
of the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2, with F0 = 0 and F1 = 1.

Alternatively, a closed form expression for this sequence is given by

Fn = 1√
5

[(
1+

√
5

2

)n
−

(
1−

√
5

2

)n]
, n ≥ 0.

The Fibonacci numbers can be represented in a third way, via the generating function
f(x) = x

1−x−x2 . Namely, when this rational function is expanded in powers of x, the
resulting coefficients generate the sequence values Fn:

x
1−x−x2 = 0x0 + 1x1 + 1x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 + · · · .

2. Table 1 gives closed form expressions for the generating functions of several com-
binatorial sequences discussed in this Handbook. In this table, r is any real number.
Generating functions for other sequences can be found in §3.2.1, Tables 1 and 2.
3. Table 2 gives closed form expressions for the exponential generating functions of
several combinatorial sequences discussed in this Handbook. Generating functions for
other sequences can be found in §3.2.2, Table 3.

4. Table 3 gives recurrence relations defining particular combinatorial sequences dis-
cussed in this Handbook.
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Table 1 Generating functions for particular sequences.

sequence notation reference closed form

1, 2, 3, 4, 5, . . . {n} 1
(1−x)2

12, 22, 32, 42, 52, . . . {n2} 1+x
(1−x)3

13, 23, 33, 43, 53, . . . {n3} 1+4x+x2

(1−x)4

1, r, r2, r3, r4, . . . {rn} 1
1−rx

Fibonacci Fn §3.1.2 x
1−x−x2

Lucas Ln §3.1.2 2−x
1−x−x2

Catalan Cn §3.1.3 1−
√

1−4x
2x

Harmonic Hn §3.1.7 1
1−x ln 1

1−x

Binomial
(
m
n

)
§2.3.2 (1 + x)m

Table 2 Exponential generating functions for particular sequences.

sequence notation reference closed form

1, 1, 1, 1, 1, . . . {1} ex

1, r, r2, r3, r4, . . . {rn} erx

Derangements Dn §2.4.2 e−x

1−x

Bernoulli Bn §3.1.4 x
ex−1

Tangent Tn §3.1.7 tanx

Euler En §3.1.7 sechx

Euler |En| §3.1.7 secx

Stirling cycle number
[
n
k

]
§2.5.2 1

k!

[
ln 1

(1−x)

]k
Stirling subset number

{
n
k

}
§2.5.2 1

k! [ex − 1]k

3.1.2 FIBONACCI NUMBERS

Fibonacci numbers form an important sequence encountered in biology, physics, number
theory, computer science, and combinatorics. [BePhHo88], [PhBeHo86], [Va89]

Definitions:

The Fibonacci numbers F0, F1, F2, . . . are produced by the recursive definition F0 = 0,
F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2.

A generalized Fibonacci sequence is any sequence G0, G1, G2, . . . such that Gn =
Gn−1 +Gn−2 for n ≥ 2.

The Lucas numbers L0, L1, L2, . . . are produced by the recursive definition L0 = 2,
L1 = 1, Ln = Ln−1 + Ln−2, n ≥ 2. (François Lucas, 1842–1891)
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Table 3 Recurrence relations for particular sequences.

sequence notation reference recurrence relation

Derangements Dn §2.4.2 Dn = (n− 1)(Dn−1 +Dn−2),
D0 = 1, D1 = 0

Fibonacci Fn §3.1.2 Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1

Lucas Ln §3.1.2 Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1

Catalan Cn §3.1.3 Cn = C0Cn−1 + C1Cn−2 + · · ·
+Cn−1C0, C0 = 1

Bernoulli Bn §3.1.4
n∑
j=0

(
n+1
j

)
Bj = 0, B0 = 1

Eulerian E(n, k) §3.1.5 E(n, k) = (k + 1)E(n− 1, k)

+(n− k)E(n− 1, k − 1),
E(n, 0) = 1, n ≥ 1

Binomial
(
n
k

)
§2.3.2

(
n
k

)
=

(
n−1
k

)
+

(
n−1
k−1

)
,(

n
0

)
= 1, n ≥ 0

Stirling cycle
[
n
k

]
§2.5.2

[
n
k

]
= (n− 1)

[
n−1
k

]
+

[
n−1
k−1

]
,

number
[
0
0

]
= 1;

[
n
0

]
= 0, n ≥ 1

Stirling subset
{
n
k

}
§2.5.2

{
n
k

}
= k

{
n−1
k

}
+

{
n−1
k−1

}
,

number
{

0
0

}
= 1;

{
n
0

}
= 0, n ≥ 1

Facts:
1. The Fibonacci numbers Fn and Lucas numbers Ln for n = 0, 1, 2, . . . , 50 are shown
in Table 4.
2. The Fibonacci numbers were initially studied by Leonardo of Pisa (c. 1170–1250),
who was the son of Bonaccio; consequently these numbers have been called Fibonacci
numbers after Leonardo, the son of Bonaccio (Filius Bonaccii).

3. lim
n→∞

Fn+1
Fn

= lim
n→∞

Ln+1
Ln

= 1
2 (1 +

√
5) ≈ 1.61803, the golden ratio.

4. Fibonacci numbers arise in numerous applications in many different areas. For
example, they occur in models of population growth of rabbits (Example 3), in modeling
plant growth (Example 8), in counting the number of bit strings of length n without
consecutive 0s (Example 13), in counting the number of spanning trees of wheel graphs
of length n (Example 12), and in a vast number of other contexts. See [Va89] or other
books concerning the Fibonacci numbers. There is a journal, the Fibonacci Quarterly ,
devoted to the study of the Fibonacci numbers and related topics. This is a tribute
to how widely the Fibonacci numbers arise in mathematics and its applications to
other areas. There are also a large number of books, available through the Fibonacci
Association, devoted to the Fibonacci numbers and their use. This list can be found on
the World Wide Web at

www.sdstate.edu/∼wcsc/http/fibbooks.html
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Table 4 Fibonacci and Lucas numbers.

n Fn Ln n Fn Ln n Fn Ln

0 0 2 17 55 3571 34 5,702,887 12,752,043
1 1 1 18 89 5778 35 9,227,465 20,633,239
2 1 3 19 144 9349 36 14,930,352 33,385,282
3 2 4 20 233 15127 37 24,157,817 54,018,521
4 3 7 21 377 24476 38 39,088,169 87,403,803
5 5 11 22 610 39603 39 63,245,986 141,422,324
6 8 18 23 987 64,079 40 102,334,155 228,826,127
7 13 29 24 1,597 103,682 41 165,580,141 370,248,451
8 21 47 25 2,584 167,761 42 267,914,296 599,074,578
9 34 76 26 4,181 271,443 43 433,494,437 969,323,029

10 55 123 27 6,765 439,204 44 701,408,733 1,568,397,607
11 89 199 28 10,946 710,647 45 1,134,903,170 2,537,720,636
12 144 322 29 17,711 1,149,851 46 1,836,311,903 4,106,118,243
13 233 521 30 28,657 1,860,498 47 2,971,215,073 6,643,838,879
14 377 843 31 46,368 3,010,349 48 4,807,526,976 10,749,957,122
15 610 1,364 32 75,025 4,870,847 49 7,778,742,049 17,393,796,001
16 987 2,207 33 121,393 7,881,196 50 12,586,269,025 28,143,753,123

5. Many properties of the Fibonacci numbers were derived by F. Lucas, who also is
responsible for naming them the “Fibonacci” numbers.
6. Binet form (Jacques Binet, 1786–1856): If α = 1

2 (1 +
√

5) and β = 1
2 (1 −

√
5) then

Fn = αn−βn

√
5

= αn−βn

α−β , Fn ∼ αn
√

5
.

Also,
Ln = αn + βn, Ln ∼ αn.

7. Fn = 1
2 (Fn−2 + Fn+1) for all n ≥ 2. That is, each Fibonacci number is the average

of the terms occurring two places before and one place after it in the sequence.
8. Ln = 1

2 (Ln−2 + Ln+1) for all n ≥ 2. That is, each Lucas number is the average of
the terms occurring two places before and one place after it in the sequence.
9. F0 + F1 + F2 + · · · + Fn = Fn+2 − 1 for all n ≥ 0.
10. F0 − F1 + F2 − · · · + (−1)nFn = (−1)nFn−1 − 1 for all n ≥ 1.
11. F1 + F3 + F5 + · · · + F2n−1 = F2n for all n ≥ 1.
12. F0 + F2 + F4 + · · · + F2n = F2n+1 − 1 for all n ≥ 0.
13. F 2

0 + F 2
1 + F 2

2 + · · · + F 2
n = FnFn+1 for all n ≥ 0.

14. F1F2 + F2F3 + F3F4 + · · · + F2n−1F2n = F 2
2n for all n ≥ 1.

15. F1F2 + F2F3 + F3F4 + · · · + F2nF2n+1 = F 2
2n+1 − 1 for all n ≥ 1.

16. If k ≥ 1 then Fn+k = FkFn+1 + Fk−1Fn for all n ≥ 0.
17. Cassini’s Identity : Fn+1Fn−1−F 2

n = (−1)n for all n ≥ 1. (Jean Dominique Cassini,
1625–1712)
18. F 2

n+1 + F 2
n = F2n+1 for all n ≥ 0.

19. F 2
n+2 − F 2

n+1 = FnFn+3 for all n ≥ 0.
20. F 2

n+2 − F 2
n = F2n+2 for all n ≥ 0.

21. F 3
n+2 + F 3

n+1 − F 3
n = F3n+3 for all n ≥ 0.
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22. gcd(Fn, Fm) = Fgcd(n,m). This implies that Fn and Fn+1 are relatively prime, and
that Fk divides Fnk.

23. Fibonacci numbers arise as sums of diagonals in Pascal’s triangle (§2.3.2):

Fn+1 =
�n/2�∑
j=0

(
n−j
j

)
for all n ≥ 0.

24. F3n =
n∑
j=0

(
n
j

)
2jFj for all n ≥ 0.

25. The Fibonacci sequence has the generating function x
1−x−x2 . (See §3.1.1.)

26. Fibonacci numbers with negative indices can be defined using the recursive defini-
tion Fn−2 = Fn − Fn−1. Then F−n = (−1)n−1Fn, n ≥ 1.

27. The units digits of the Fibonacci numbers form a sequence that repeats after 60
terms. (Joseph Lagrange, 1736–1813)

28. The number of binary strings of length n that contain no consecutive 0s is counted
by Fn+2. (See §3.3.2, Example 12.)

29. L0 + L1 + L2 + · · · + Ln = Ln+2 − 1 for all n ≥ 0.

30. L2
0 + L2

1 + L2
2 + · · · + L2

n = LnLn+1 + 2 for all n ≥ 0.

31. Ln = Fn−1 + Fn+1, n ≥ 1. Hence, any formula containing Lucas numbers can be
translated into a formula involving Fibonacci numbers.

32. The Lucas sequence L0, L1, L2, . . . has generating function 2−x
1−x−x2 . (See §3.1.1.)

33. Lucas numbers with negative indices can be defined by extending the recursive
definition. Then L−n = (−1)nLn for all n ≥ 1.

34. Fn = Ln−1+Ln+1
5 , n ≥ 1. Hence, any formula involving Fibonacci numbers can be

translated into a formula involving Lucas numbers.

35. If G0, G1, . . . is a sequence of generalized Fibonacci numbers, then Fn = Fn−1G0 +
FnG1 for all n ≥ 1.

Examples:

1. The Fibonacci number F8 can be computed, using the initial values F0 = 0 and
F1 = 1 and the recurrence relation Fn = Fn−1 + Fn−2 repeatedly: F2 = F1 + F0 =
1+0 = 1, F3 = F2+F1 = 1+1 = 2, F4 = F3+F2 = 2+1 = 3, F5 = F4+F3 = 3+2 = 5,
F6 = F5 + F4 = 5 + 3 = 8, F7 = F6 + F5 = 8 + 5 = 13, F8 = F7 + F6 = 13 + 8 = 21.

2. Each male bee (drone) is produced asexually from a female, whereas each female
bee is produced from both a male and female. The ancestral tree for a single male bee
is shown below. This male has one parent, two grandparents, three great grandparents,
and in general Fk+2 kth-order grandparents, k ≥ 0.
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3. Rabbit breeding : This problem was originally posed by Fibonacci. A single pair
of immature rabbits is introduced into a habitat. It takes two months before a pair of
rabbits can breed; each month thereafter each pair of breeding rabbits produces another
pair. At the start of months 1 and 2, only the original pair A is present. In the third
month, A as well as their newly born pair B are present; in the fourth month, A, B
as well as the new pair C (progeny of A) are present; in the fifth month, A, B, C as
well as the new pairs D (progeny of A) and E (progeny of B) are present. If Pn is the
number of pairs present in month n, then P1 = 1, P2 = 1, P3 = 2, P4 = 3, P5 = 5. In
general, Pn equals the number present in the previous month Pn−1 plus the number of
breeding pairs in the previous month (which is Pn−2, the number present two months
earlier). Thus Pn = Fn for n ≥ 1.

4. Let Sn denote the number of subsets of {1, 2, . . . , n} that do not contain consecutive
elements. For example, when n = 3 the allowable subsets are ∅, {1}, {2}, {3}, {1, 3}.
Therefore, S3 = 5. In general, Sn = Fn+2 for n ≥ 1.

5. Draw n dots in a line. If each domino can cover exactly two such dots, in how
many ways can (nonoverlapping) dominoes be placed? The following figure shows the
number of possible solutions for n = 2, 3, 4. To find a general expression for Dn, the
number of possible placements of dominoes with n dots, consider the rightmost dot in
any such placement P . If this dot is not covered by a domino, then P minus the last
dot determines a solution counted by Dn−1. If the last dot is covered by a domino, then
the last two dots in P are covered by this domino. Removing this rightmost domino
then gives a solution counted by Dn−2. Taking into account these two possibilities
Dn = Dn−1 +Dn−2 for n ≥ 3 with D1 = 1, D2 = 2. Thus Dn = Fn+1 for n ≥ 1.

6. Compositions: Let Tn be the number of ordered compositions (§2.5.1) of the positive
integer n into summands that are odd. For example, 4 = 1 + 3 = 3 + 1 = 1 + 1 + 1 + 1
and 5 = 5 = 1 + 1 + 3 = 1 + 3 + 1 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1. Therefore, T4 = 3
and T5 = 5. In general, Tn = Fn for n ≥ 1.

7. Compositions: Let Bn be the number of ordered compositions (§2.5.1) of the positive
integer n into summands that are either 1 or 2. For example, 3 = 1+2 = 2+1 = 1+1+1
and 4 = 2 + 2 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 1 + 1 + 1 + 1. Therefore, B3 = 3
and B4 = 5. In general, Bn = Fn+1 for n ≥ 1.

8. Botany : It has been observed in pine cones (and other botanical structures) that
the number of rows of scales winding in one direction is a Fibonacci number while the
number of rows of scales winding in the other direction is an adjacent Fibonacci number.

9. Continued fractions: The continued fraction 1 + 1
1 = 2

1 , the continued fraction
1+ 1

1+ 1
1

= 3
2 and the continued fraction 1+ 1

1+ 1
1+ 1

1

= 5
3 . In general, a continued fraction

composed entirely of 1s equals the ratio of successive Fibonacci numbers.

10. Independent sets on a path: Consider a path graph on vertices 1, 2, . . . , n , with
edges joining vertices i and i+ 1 for i = 1, 2, . . . , n− 1. An independent set of vertices
(§8.6.3) consists of vertices no two of which are joined by an edge. By an analysis similar
to that in Example 5, the number of independent sets in a path graph on n vertices
equals Fn+2.
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11. Independent sets on a cycle: Consider a cycle graph on vertices 1, 2, . . . , n, with
edges joining vertices i and i+1 for i = 1, 2, . . . , n− 1 as well as vertices n and 1. Then
the number of independent sets (§8.6.3) in a cycle graph on n vertices equals Ln.

12. Spanning trees: The number of spanning trees of the wheel graph Wn (§8.1.3)
equals L2n − 2.

13. If A is the 2 × 2 matrix
(

1 1
1 0

)
, then An =

(
Fn+1 Fn
Fn Fn−1

)
for n ≥ 1.

3.1.3 CATALAN NUMBERS

The sequence of integers called the Catalan numbers arises in counting a variety of
combinatorial structures, such as voting sequences, certain types of binary trees, paths
in the plane, and triangulations of polygons.

Definitions:

The Catalan numbers C0, C1, C2, . . . satisfy the nonlinear recurrence relation Cn =
C0Cn−1+C1Cn−2+· · ·+Cn−1C0, n ≥ 1, with C0 = 1. (See §3.3.1, Example 9.) (Eugène
Catalan, 1814–1894)

Well-formed (or balanced) sequences of parentheses of length 2n are defined
recursively as follows: the empty sequence is well-formed; if sequence A is well-formed
so is (A); if sequences A and B are well-formed so is AB.

Well-parenthesized products of variables are defined recursively as follows: single
variables are well-parenthesized; if A and B are well-parenthesized so is (AB).

Facts:

1. The first 12 Catalan numbers Cn are given in the following table.

n 0 1 2 3 4 5 6 7 8 9 10 11
Cn 1 1 2 5 14 42 132 429 1,430 4,862 16,796 58,786

2. lim
n→∞

Cn+1
Cn

= 4.

3. Catalan numbers arise in a variety of applications, such as when binary trees on n
vertices, triangulations of a convex n-gon, and well-formed sequences of n left and n
right parentheses are counted. See the examples below as well as [MiRo91].

4. Cn = 1
n+1

(
2n
n

)
for all n ≥ 0.

5. The Catalan numbers C0, C1, C2, . . . have the generating function 1−
√

1−4x
2x .

6. Cn ∼ 4n
√
πn3 .

7. Cn =
(
2n
n

)
−

(
2n
n−1

)
=

(
2n−1
n

)
−

(
2n−1
n+1

)
for all n ≥ 1.

8. Cn+1 = 2(2n+1)
n+2 Cn for all n ≥ 0.

Examples:

1. The number of binary trees (§9.1.2) on n vertices is Cn.

2. The number of left-right binary trees (§9.3.3) on 2n+ 1 vertices is Cn.

3. The number of ordered trees (§9.1.2) on n vertices is Cn−1.
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4. Suppose that a coin is tossed 2n times, coming up heads exactly n times and tails
exactly n times. The number of sequences of tosses in which the cumulative number
of heads is always at least as large as the cumulative number of tails is Cn. For exam-
ple, when n = 3 there are C3 = 5 such sequences of 6 tosses: HTHTHT, HTHHTT,
HHTTHT, HHTHTT, HHHTTT.
5. In Example 4, the number of sequences of tosses in which the cumulative number of
heads always exceeds the cumulative number of tails (until the very last toss) is Cn−1.
For example, when n = 3 there are C2 = 2 such sequences of 6 tosses: HHTHTT,
HHHTTT.
6. Triangulations: Let Tn be the number of triangulations of a convex n-gon, using
n−3 nonintersecting diagonals. For instance, the following figure shows the T5 = 5
triangulations of a pentagon. In general, Tn = Cn−2 for n ≥ 3.

7. Suppose that 2n points are placed in fixed positions, evenly distributed on the
circumference of a circle. Then there are Cn ways to join n pairs of the points so that
the resulting chords do not intersect. The following figure shows the C3 = 5 solutions
for n = 3.

8. Well-formed sequences of parentheses: The sequence of parentheses ( ( ) ( ) )
involving three left and three right parentheses is well-formed, whereas the sequence
( ) ) ( ( ) is not syntactically meaningful. There are five such well-formed sequences in
this case:

( ) ( ) ( ), ( ) ( ( ) ), ( ( ) ) ( ), ( ( ) ( ) ), ( ( ( ) ) ).
Notice that if each left parenthesis is replaced by a H and each right parenthesis by a T,
then these five balanced sequences correspond exactly to the five coin tossing sequences
listed in Example 4. In general, the number of balanced sequences involving n left and n
right parentheses is Cn.
9. Consider the following procedure composed of n nested for loops:

count := 0
for i1 := 1 to 1

for i2 := 1 to i1 + 1
for i3 := 1 to i2 + 1

...
for in := 1 to in−1 + 1
count := count+ 1

Then the value of count upon exit from this procedure is Cn.
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10. Well-parenthesized products: The product x1x2x3 (relative to some binary “mul-
tiplication” operation) can be evaluated as either (x1x2)x3 or x1(x2x3). In the former,
x1 and x2 are first combined and then the result is combined with x3. In the latter,
x2 and x3 are first combined and then the result is combined with x1. Let Pn indicate
the number of ways to evaluate the product x1x2 . . . xn of n variables, using a binary
operation. Note that P3 = 2. In general, Pn = Cn−1. This was the problem originally
studied by Catalan. (See §3.3.1, Example 9.)
11. The numbers 1, 2, . . . , 2n are to be placed in the 2n positions of an 2 × n array
A = (aij). Such an arrangement is monotone if the values increase within each row and
within each column. Then there are Cn ways to form a monotone 2×n array containing
the entries 1, 2, . . . , 2n. For instance, the following is one of the C4 = 14 monotone 2×4
arrays:

A =
(

1 3 5 6
2 4 7 8

)
.

3.1.4 BERNOULLI NUMBERS AND POLYNOMIALS

The Bernoulli numbers are important in obtaining closed form expressions for the sums
of powers of integers. These numbers also arise in expansions involving other combina-
torial sequences.

Definitions:

The Bernoulli numbers Bn satisfy the recurrence relation
n∑
j=0

(
n+1
j

)
Bj = 0 for all

n ≥ 1, with B0 = 1. (Jakob Bernoulli, 1654–1705)

The Bernoulli polynomials Bm(x) are given by Bm(x) =
m∑
k=0

(
m
k

)
Bkx

m−k.

Facts:
1. The first 14 Bernoulli numbers Bn are shown in the following table.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Bn 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0 5
66 0 − 691

2730 0

2. B2k+1 = 0 for all k ≥ 1.
3. The nonzero Bernoulli numbers alternate in sign.
4. Bn = Bn(0).

5. The Bernoulli numbers have the exponential generating function
∞∑
n=0

Bn
xn

n! = x
ex−1 .

6. The Bernoulli numbers can be expressed in terms of the Stirling subset numbers

(§2.5.2): Bn =
n∑
j=0

(−1)j
{
n
j

}
j!
j+1 for all n ≥ 0.

7. The Bernoulli numbers appear as coefficients in the Maclaurin expansion of tanx,
cotx, cscx, tanhx, cothx, and cschx.
8. The Bernoulli polynomials can be used to obtain closed form expressions for the
sum of powers of the first n positive integers. (See §3.5.4.)
9. The first 14 Bernoulli polynomials Bm(x) are shown in Table 5.

10.
∫ 1

0
Bm(x) dx = 0 for all m ≥ 1.
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Table 5 Bernoulli polynomials.

n Bn(x)

0 1

1 x− 1
2

2 x2 − x+ 1
6

3 x3 − 3
2x

2 + 1
2x

4 x4 − 2x3 + x2 − 1
30

5 x5 − 5
2x

4 + 5
3x

3 − 1
6x

6 x6 − 3x5 + 5
2x

4 − 1
2x

2 + 1
42

7 x7 − 7
2x

6 + 7
2x

5 − 7
6x

3 + 1
6x

8 x8 − 4x7 + 14
3 x

6 − 7
3x

4 + 2
3x

2 − 1
30

9 x9 − 9
2x

8 + 6x7 − 21
5 x

5 + 2x3 − 3
10x

10 x10 − 5x9 + 15
2 x

8 − 7x6 + 5x4 − 3
2x

2 + 5
66

11 x11 − 11
2 x

10 + 55
6 x

9 − 11x7 + 11x5 − 11
2 x

3 + 5
6x

12 x12 − 6x11 + 11x10 − 33
2 x

8 + 22x6 − 33
2 x

4 + 5x2 − 691
2730

13 x13 − 13
2 x

12 + 13x11 − 143
6 x

9 + 286
7 x

7 − 429
10 x

5 + 65
3 x

3 − 691
210x

11. dBm(x)
dx = mBm−1(x) for all m ≥ 1.

12. Bm+1(x+ 1) −Bm+1(x) = (m+ 1)xm for all m ≥ 0.

13. The Bernoulli polynomials have the following exponential generating function:
∞∑
m=0

Bm(x) t
m

m! = text

et−1 .

3.1.5 EULERIAN NUMBERS

Eulerian numbers are important in counting numbers of permutations with certain
numbers of increases and decreases.

Definitions:
Let π = (π1, π2, . . . , πn) be a permutation of {1, 2, . . . , n}.
An ascent of the permutation π is any index i (1 ≤ i < n) such that πi < πi+1. A
descent of the permutation π is any index i (1 ≤ i < n) such that πi > πi+1.

An excedance of the permutation π is any index i (1 ≤ i ≤ n) such that πi > i. A
weak excedance of the permutation π is any index i (1 ≤ i ≤ n) such that πi ≥ i.
The Eulerian number E(n, k) (also written 〈nk 〉) is the number of permutations of
{1, 2, . . . , n} with exactly k ascents.

Facts:

1. E(n, k) is the number of permutations of {1, 2, . . . , n} with exactly k descents.

2. E(n, k) is the number of permutations of {1, 2, . . . , n} with exactly k excedances.

3. E(n, k) is the number of permutations of {1, 2, . . . , n} with exactly k + 1 weak
excedances.
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4. The Eulerian numbers can be used to obtain closed form expressions for the sum of
powers of the first n positive integers (§3.5.4).

5. Eulerian numbers E(n, k) (1 ≤ n ≤ 10, 0 ≤ k ≤ 8) are given in the following table.

n\k 0 1 2 3 4 5 6 7 8

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1,191 2,416 1,191 120 1
8 1 247 4,293 15,619 15,619 4,293 247 1
9 1 502 14,608 88,234 156,190 88,234 14,608 502 1

10 1 1,013 47,840 455,192 1,310,354 1,310,354 455,192 47,840 1,013

6. E(n, 0) = E(n, n− 1) = 1 for all n ≥ 1.

7. Symmetry : E(n, k) = E(n, n− 1 − k) for all n ≥ 1.

8. E(n, k) = (k + 1)E(n− 1, k) + (n− k)E(n− 1, k − 1) for all n ≥ 2.

9.
n−1∑
k=0

E(n, k) = n! for all n ≥ 1.

10. Worpitzky’s identity : xn =
n−1∑
k=0

E(n, k)
(
x+k
n

)
for all n ≥ 1. (Julius Worpitzky,

1835–1895)

11. E(n, k) =
k∑
j=0

(−1)j
(
n+1
j

)
(k + 1 − j)n for all n ≥ 1.

12. The Bernoulli numbers (§3.1.4) can be expressed as alternating sums of Eulerian

numbers: Bm = m
2m(2m−1)

m−2∑
k=0

(−1)kE(m− 1, k) for m ≥ 2.

13. The Stirling subset numbers (§2.5.2) can be expressed in terms of the Eulerian

numbers:
{
n
m

}
= 1
m!

n−1∑
k=0

E(n, k)
(
k

n−m
)

for n ≥ m and n ≥ 1.

14. The Eulerian numbers have the following (bivariate) generating function in vari-

ables x, t:
∞∑
m=0

∞∑
n=0

E(n,m)xm t
n

n! = 1−x
e(x−1)t−x .

Examples:

1. The permutation π = (π1, π2, π3, π4) = (1, 2, 3, 4) has three ascents since 1 < 2 <
3 < 4 and it is the only permutation in S4 with three ascents; note that E(4, 3) = 1.
There are E(4, 1) = 11 permutations in S4 with one ascent: (1, 4, 3, 2), (2, 1, 4, 3),
(2, 4, 3, 1), (3, 1, 4, 2), (3, 2, 1, 4), (3, 2, 4, 1), (3, 4, 2, 1), (4, 1, 3, 2), (4, 2, 1, 3), (4, 2, 3, 1),
and (4, 3, 1, 2).

2. The permutation π = (2, 4, 3, 1) has two excedances since 2 > 1 and 4 > 2. There
are E(4, 2) = 11 such permutations in S4.
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3. The permutation π = (1, 3, 2) has two weak excedances since 1 ≥ 1 and 3 ≥ 2.
There are E(3, 1) = 4 such permutations in S3: (1, 3, 2), (2, 1, 3), (2, 3, 1), and (3, 2, 1).
4. When n = 3 Worpitzky’s identity (Fact 10) states that

x3 = E(3, 0)
(
x
3

)
+ E(3, 1)

(
x+1
3

)
+ E(3, 2)

(
x+2
3

)
=

(
x
3

)
+ 4

(
x+1
3

)
+

(
x+2
3

)
.

This is verified algebraically since
(
x
3

)
+ 4

(
x+1
3

)
+

(
x+2
3

)
= 1

6

(
x(x− 1)(x− 2) + 4(x+ 1)

x(x− 1) + (x+ 2)(x+ 1)x
)

= x
6

(
x2 − 3x+ 2 + 4x2 − 4 + x2 + 3x+ 2

)
= x

6

(
6x2

)
= x3.

3.1.6 RAMSEY NUMBERS

The Ramsey numbers arise from the work of Frank P. Ramsey (1903–1930), who in 1930
published a paper [Ra30] dealing with set theory that generalized the pigeonhole prin-
ciple. (Also see §8.11.2.) [GrRoSp80], [MiRo91], [Ro84]

Definitions:

The Ramsey number R(m,n) is the smallest positive integer k with the following
property: if S is a set of size k and the 2-element subsets of S are partitioned into 2
collections, C1 and C2, then there is a subset of S of size m such that each of its 2-
element subsets belong to C1 or there is a subset of S of size n such that each of its
2-element sets belong to C2.

The Ramsey number R(m1, . . . ,mn; r) is the smallest positive integer k with the
following property: if S is a set of size k and the r-element subsets of S are partitioned
into n collections C1, . . . , Cn, then for some j there is a subset of S of size mj such that
each of its r-element subsets belong to Cj .

The Schur number S(n) is the smallest integer k with the following property: if
{1, . . . , k} is partitioned into n subsets A1, . . . , An, then there is a subset Ai such that
the equation x+ y = z has a solution where x, y, z ∈ Ai. (Issai Schur, 1875–1941)

Facts:
1. Ramsey’s theorem: The Ramsey numbers R(m,n) and R(m1, . . . ,mn; r) are well-
defined for all m,n ≥ 1 and for all m1, . . . ,mn ≥ 1, r ≥ 1.
2. Ramsey numbers R(m,n) can be phrased in terms of coloring edges of the complete
graphs Kn: the Ramsey number R(m,n) is the smallest positive integer k such that, if
each edge of Kk is colored red or blue, then either the red subgraph contains a copy of
Km or else the blue subgraph contains a copy of Kn. (See §8.11.2.)
3. Symmetry: R(m,n) = R(n,m).
4. R(m, 1) = R(1,m) = 1 for every m ≥ 1.
5. R(m, 2) = R(2,m) = m for every m ≥ 1.
6. The values of few Ramsey numbers are known. What is currently known about
Ramsey numbers R(m,n), for 3 ≤ m ≤ 10 and 3 ≤ n ≤ 10, and bounds on other
Ramsey numbers are displayed in Table 6.
7. If m1 ≤ m2 and n1 ≤ n2, then R(m1, n1) ≤ R(m2, n2).
8. R(m,n) ≤ R(m,n− 1) +R(n− 1,m) for all m,n ≥ 2.
9. If m ≥ 3, n ≥ 3, and if R(m,n − 1) and R(m − 1, n) are even, then R(m,n) ≤
R(m,n− 1) +R(m− 1, n) − 1.
10. R(m,n) ≤

(
m+n−2
m−1

)
. (Erdős and Szekeres, 1935)
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Table 6 Some classical Ramsey numbers.

The entries in the body of this table are R(m,n) (m,n ≤ 10) when known, or the
best known range r1 ≤ R(m,n) ≤ r2 when not known. The Ramsey numbers R(3, 3),
R(3, 4), R(3, 5), and R(4, 4) were found by A. M. Gleason and R. E. Greenwood in 1955;
R(3, 6) was found by J. G. Kalbfleisch in 1966; R(3, 7) was found by J. E. Graver and
J. Yackel in 1968; R(3, 8) was found by B. McKay and Z. Ke Min; R(3, 9) was found
by C. M. Grinstead and S. M. Roberts in 1982; R(4, 5) was found by B. McKay and
S. Radziszowski in 1993.

m\n 3 4 5 6 7 8 9 10

3 6 9 14 18 23 28 36 40-43
4 – 18 25 35-41 49-61 55-84 69-115 80-149
5 – – 43-49 58-87 80-143 95-216 116-316 141-442
6 – – – 102-165 109-298 122-495 153-780 167-1,171
7 – – – – 205-540 216-1,031 227-1,713 238-2,826
8 – – – – – 282-1,870 295-3,583 308-6,090
9 – – – – – – 565-6,625 580-12,715

10 – – – – – – – 798-23,854

Bounds for R(m,n) for m = 3 and 4, with 11 ≤ n ≤ 15:

46 ≤ R(3, 11) ≤ 51 96 ≤ R(4, 11) ≤ 191
52 ≤ R(3, 12) ≤ 60 128 ≤ R(4, 12) ≤ 238
59 ≤ R(3, 13) ≤ 69 131 ≤ R(4, 13) ≤ 291
66 ≤ R(3, 14) ≤ 78 136 ≤ R(4, 14) ≤ 349
73 ≤ R(3, 15) ≤ 89 145 ≤ R(4, 15) ≤ 417

11. The Ramsey numbers R(m,n) satisfy the following asymptotic relationship:√
2
e (1 + o(1))m2m/2 ≤ R(m,m) ≤

(
2m+2
m+1

)
·O((logm)−1).

12. There exist constants c1 and c2 such that c1m lnm ≤ R(3,m) ≤ c2m lnm.
13. The problem of finding the Ramsey numbers R(m1, . . . ,mn; 2) can be phrased in
terms of coloring edges of the complete graphs Kn. R(m1, . . . ,mn; 2) is equal to the
smallest positive integer k with the following property: no matter how the edges of Kk
are colored with the n colors 1, 2, . . . , n, there is some j such thatKk has a subgraphKmj

of color j. (The edges of Kk are the 2-element subsets; Cj is the set of edges of color j.)
14. R(m1,m2; 2) = R(m1,m2).
15. Very little is also known about the numbers R(m1, . . . ,mn; 2) if n ≥ 3.
16. R(2, . . . , 2; 2) = 2.
17. If each mi ≥ 3, the only Ramsey number whose value is known is R(3, 3, 3; 2) = 17.
18. R(m, r, r, . . . , r; r) = m if m ≥ r.
19. R(m1, . . .mn; 1) = m1 + · · · +mn − (n− 1).
20. Ramsey theory is a generalization of the pigeonhole principle. In the terminology
of Ramsey numbers, the fact that R(2, . . . , 2; 1) = n+1 means that n+1 is the smallest
positive integer with the property that if S has size n + 1 and the subsets of S are
partitioned into n sets C1, . . . , Cn, then for some j there is a subset of S of size 2 such
that each of its elements belong to Cj . Hence, some Cj has at least 2 elements. If S
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is a set of n+ 1 pigeons and the subset Cj (j = 1, . . . , n) is the set of pigeons roosting
in pigeonhole j, then some pigeonhole must have at least 2 pigeons in it. The Ramsey
numbers R(2, . . . , 2; 1) give the smallest number of pigeons that force at least 2 to roost
in the same pigeonhole.
21. Schur’s theorem: S(k) ≤ R(3, . . . , 3; 2) (where there are k 3s in the notation for
the Ramsey number).
22. The following Schur numbers are known: S(1) = 2, S(2) = 5, S(3) = 14.
23. The equation x+ y = z in the definition of Schur numbers has been generalized to
equations of the form x1 + · · · + xn−1 = xn, n ≥ 4. [BeBr82].
24. Convex sets: Ramsey numbers play a role in constructing convex polygons. Sup-
pose m is a positive integer and there are n given points, no three of which are collinear.
If n ≥ R(m, 5; 4), then a convex m-gon can be obtained from m of the n points [ErSz35].
This paper provided the impetus for the study of Ramsey numbers and suggested the
possibility of its wide applicability in mathematics.
25. It remains an unsolved problem to find the smallest integer x (which depends onm)
such that if n ≥ x, then a convex m-gon can be obtained from m of the n points.
26. Extensive information on Ramsey number theory, including bounds on Ramsey
numbers, can be found at S. Radziszowski’s web site:

http://www.cs.rit.edu/~spr/homepage.html

Examples:
1. If six people are at a party, then either three of these six are mutual friends or three
are mutual strangers. If six is replaced by five, the result is not true. These facts follow
since R(3, 3) = 6. (See Fact 2. The six people can be regarded as vertices, with a red
edge joining friends and a blue edge joining strangers.)
2. If the set {1, . . . , k} is partitioned into two subsets A1 and A2, then the equation
x+ y = z may or may not have a solution where x, y, z ∈ A1 or x, y, z ∈ A2. If k ≥ 5,
a solution is guaranteed since S(2) = 5. If k < 5, no solution is guaranteed — take
A1 = {1, 4} and A2 = {2, 3}.

3.1.7 OTHER SEQUENCES

Additional sequences that regularly arise in discrete mathematics are described in this
section.

. Euler Polynomials

Definition:

The Euler polynomials En(x) have the exponential generating function
∞∑
n=0

En(x) t
n

n!

= 2ext

et+1 .

Facts:
1. The first 14 Euler polynomials En(x) are shown in Table 7.
2. En(x+ 1) + En(x) = 2xn for all n ≥ 0.
3. The Euler polynomials can be expressed in terms of the Bernoulli numbers (§3.1.4):

En−1(x) = 1
n

n∑
k=1

(2 − 2k+1)
(
n
k

)
Bkx

n−k for all n ≥ 1.
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Table 7 Euler polynomials.

n En(x)

0 1

1 x− 1
2

2 x2 − x
3 x3 − 3

2x
2 + 1

4

4 x4 − 2x3 + x

5 x5 − 5
2x

4 + 5
2x

2 − 1
2

6 x6 − 3x5 + 5x3 − 3x

7 x7 − 7
2x

6 + 35
4 x

4 − 21
2 x

2 + 17
8

8 x8 − 4x7 + 14x5 − 28x3 + 17x

9 x9 − 9
2x

8 + 21x6 − 63x4 + 153
2 x

2 − 31
2

10 x10 − 5x9 + 30x7 − 126x5 + 255x3 − 155x

11 x11 − 11
2 x

10 + 165
4 x

8 − 231x6 + 2805
4 x4 − 1705

2 x2 + 691
4

12 x12 − 6x11 + 55x9 − 396x7 + 1683x5 − 3410x3 + 2073x

13 x13 − 13
2 x

12 + 143
2 x

10 − 1287
2 x8 + 7293

2 x6 − 22165
2 x4 + 26949

2 x2 − 5461
2

4. The alternating sum of powers of the first n integers can be expressed in terms of

the Euler polynomials:
n∑
j=1

(−1)n−jjk = 1
2

[
Ek(n+ 1) + (−1)nEk(0)

]
.

. Euler and Tangent Numbers

Definitions:

The Euler numbers En are given by En = 2nEn( 1
2 ), where En(x) is an Euler polyno-

mial.

The tangent numbers Tn have the exponential generating function tanx:
∞∑
n=0

Tn
xn

n! =

tanx.

Facts:

1. The first twelve Euler numbers En and tangent numbers Tn are shown in the fol-
lowing table.

n 0 1 2 3 4 5 6 7 8 9 10 11

En 1 0 −1 0 5 0 −61 0 1,385 0 −50,521 0
Tn 0 1 0 2 0 16 0 272 0 7,936 0 353,792

2. E2k+1 = T2k = 0 for all k ≥ 0.

3. The nonzero Euler numbers alternate in sign.

c© 2000 by CRC Press LLC



4. The Euler numbers have the exponential generating function 2
et+e−t = sech t.

5. The exponential generating function for |En| is
∑∞
n=0 |En| t

n

n! = sec t.

6. The tangent numbers can be expressed in terms of the Bernoulli numbers (§3.1.4):
T2n−1 = (−1)n−1 4n(4n−1)

2n B2n for all n ≥ 1.

7. The tangent numbers can be expressed as an alternating sum of Eulerian numbers

(§3.1.5): T2n+1 =
2n∑
k=0

(−1)n−kE(2n+ 1, k) for all n ≥ 0.

8. (−1)nE2n counts the number of alternating permutations in S2n: that is, the number
of permutations π = (π1, π2, . . . , π2n) on {1, 2, . . . , 2n} with π1 > π2 < π3 > π4 < · · · >
π2n.

9. T2n+1 counts the number of alternating permutations in S2n+1.

Examples:

1. The permutation π = (π1, π2, π3, π4) = (2, 1, 4, 3) is alternating since 2 > 1 < 4 > 3.
In all there are (−1)2E4 = 5 alternating permutations in S4: (2, 1, 4, 3), (3, 1, 4, 2),
(3, 2, 4, 1), (4, 1, 3, 2), (4, 2, 3, 1).

2. The permutation π = (π1, π2, π3, π4, π5) = (4, 1, 3, 2, 5) is alternating since 4 > 1 <
3 > 2 < 5. In all there are T5 = 16 alternating permutations in S5.

. Harmonic Numbers

Definition:

The harmonic numbers Hn are given by Hn =
∑n
i=1

1
i for n ≥ 0, with H0 = 0.

Facts:

1. Hn is the discrete analogue of the natural logarithm (§3.4.1).

2. The first twelve harmonic numbers Hn are shown in the following table.

n 0 1 2 3 4 5 6 7 8 9 10 11

Hn 0 1 3
2

11
6

25
12

137
60

49
20

363
140

761
280

7,129
2,520

7,381
2,520

83,711
27,720

3. The harmonic numbers can be expressed in terms of the Stirling cycle numbers
(§2.5.2): Hn = 1

n!

[
n+1

2

]
, n ≥ 1.

4.
n∑
i=1

Hi = (n+ 1)
[
Hn+1 − 1

]
for all n ≥ 1.

5.
n∑
i=1

iHi =
(
n+1

2

)[
Hn+1 − 1

2

]
for all n ≥ 1.

6.
n∑
i=1

(
i
k

)
Hi =

(
n+1
k+1

)[
Hn+1 − 1

k+1

]
for all n ≥ 1.

7. Hn → ∞ as n→ ∞.

8. Hn ∼ lnn+ γ + 1
2n − 1

12n2 + 1
120n4 , where γ ≈ 0.57721 56649 01533 denotes Euler’s

constant.

9. The harmonic numbers have the generating function 1
1−x ln 1

1−x .

c© 2000 by CRC Press LLC



Example:
1. Fact 8 yields the approximation H10 ≈ 2.928968257896. The actual value is H10 =
2.928968253968 . . . , so the approximation is accurate to 9 significant digits. The ap-
proximation H20 ≈ 3.597739657206 is accurate to 10 digits, and the approximation
H40 ≈ 4.27854303893 is accurate to 12 digits.

. Gray Codes

Definition:

A Gray code of size n is an ordering Gn = (g1, g2, . . . , g2n) of the 2n binary strings of
length n such that gk and gk+1 differ in exactly one bit, for 1 ≤ k < 2n. Usually it is
required that g2n and g1 also differ in exactly one bit.

Facts:
1. Gray codes exist for all n ≥ 1. Sample Gray codes Gn are shown in this table.

n Gn

1 0 1
2 00 10 11 01
3 000 100 110 010 011 111 101 001
4 0000 1000 1100 0100 0110 1110 1010 0010 0011

1011 1111 0111 0101 1101 1001 0001
5 00000 10000 11000 01000 01100 11100 10100 00100 00110

10110 11110 01110 01010 11010 10010 00010 00011 10011
11011 01011 01111 11111 10111 00111 00101 10101 11101
01101 01001 11001 10001 00001

2. A Gray code of size n ≥ 2 corresponds to a Hamilton cycle in the n-cube (§8.4.4).
3. Gray codes correspond to an ordering of all subsets of {1, 2, . . . , n} such that adja-
cent subsets differ by the insertion or deletion of exactly one element. Each subset A
corresponds to a binary string a1a2 . . . an where ai = 1 if i ∈ A, ai = 0 if i �∈A.
4. A Gray code Gn can be recursively obtained in the following way:

• first half of Gn: Add a 0 to the end of each string in Gn−1.
• second half of Gn: Add a 1 to each string in the reversal of the sequence Gn−1.

. de Bruijn Sequences

Definitions:

A (p, n) deBruijn sequence on the alphabet Σ = {0, 1, . . . , p − 1} is a sequence
(s0, s1, . . . , sL−1) of L = pn elements si ∈ Σ such that each consecutive subsequence
(si, si+1, . . . , si+n−1) of length n is distinct. Here the addition of subscripts is done mod-
ulo L so that the sequence is considered as a circular ordering. (Nicolaas G. de Bruijn,
born 1918)

The deBruijn diagram Dp,n is a directed graph whose vertices correspond to all
possible strings s1s2 . . . sn−1 of n − 1 symbols from Σ. There are p arcs leaving the
vertex s1s2 . . . sn−1, each labeled with a distinct symbol α ∈ Σ and leading to the
adjacent node s2s3 . . . sn−1α.
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Facts:

1. The de Bruijn diagram Dp,n has pn−1 vertices and pn arcs.

2. Dp,n is a strongly connected digraph (§11.3.2).

3. Dp,n is an Eulerian digraph (§11.3.2).

4. Any Euler circuit in Dp,n produces a (p, n) de Bruijn sequence.

5. de Bruijn sequences exist for all p (with n ≥ 1). Sample de Bruijn sequences are
shown in the following table.

(p, n) a de Bruijn sequence

(2, 1) 01
(2, 2) 0110
(2, 3) 01110100
(2, 4) 0101001101111000
(3, 2) 012202110
(3, 3) 012001110100022212202112102
(4, 2) 0113102212033230

6. A de Bruijn sequence can be generated from an alphabet Σ = {0, 1, . . . , p− 1} of p
symbols using Algorithm 1.

Algorithm 1: Generating a (p,n) deBruijn sequence.

1. Start with the sequence S containing n zeros.
2. Append the largest symbol from Σ to S so that the newly formed sequence
S′ of n symbols does not already appear as a subsequence of S. Let S = S′.

3. Repeat Step 2 as long as possible.
4. When Step 2 cannot be applied, remove the last n− 1 symbols from S.

Example:

1. The de Bruijn diagram D2,3 is shown in the following figure. An Eulerian circuit is
obtained by visiting in order the vertices 11, 10, 01, 10, 00, 00, 01, 11, 11. The de Bruijn
sequence 01000111 is obtained by reading off the edge labels α as this circuit is traversed.

. Self-generating Sequences

Definition:

Some unusual sequences defined by simple recurrence relations or rules are informally
called self-generating sequences.
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Examples:

1. Hofstadter G-sequence: This sequence is defined by a(n) = n − a(a(n − 1)), with
initial condition a(0) = 0. The initial terms of this sequence are 0, 1, 1, 2, 3, 3, 4, 4, 5,
6, 7, 8, 8, 9, 9, 10, . . . . It is easy to show this sequence is well-defined. A formula for
the nth term of this sequence is a(n) = �(n+ 1)µ�, where µ = (−1 +

√
5)/2. [Ho79]

2. Variations of the Hofstader G-sequence about which little is known: These include
the sequence defined by a(n) = n−a(a(a(n−1))) with a(0) = 1, whose initial terms are
0, 1, 1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, . . . and the sequence defined by a(n) =
n− a(a(a(a(n− 1))) with a(0) = 1, whose initial terms are 0, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7,
8, 8, 9, 10, 11, 11, 12, 13, 14, . . . .

3. The sequence a(n) = a(n− a(n− 1)) + a(n− a(n− 2)), with a(0) = a(1) = 1, was
also defined by Hofstader. The initial terms of this sequence are 1, 1, 2, 3, 3, 4, 5, 5, 6,
6, 6, 8, 8, 8, 10, 10, 10, 12, . . . .

4. The intertwined sequence F (n) and M(n) are defined by F (n) = n− F (M(n− 1))
and M(n) = n −M(F (n − 1)), with initial conditions F (0) = 1 and M(0) = 0. The
initial terms of the sequence F (n) (sometimes called the “female” sequence of the pair)
begins with the terms 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, . . . and the initial terms of
the sequence M(n) (sometimes called the “male” sequence of the pair) begins with the
terms 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, . . . .

5. Golomb’s self-generating sequence: This sequence is the unique nondecreasing se-
quence a1, a2, a3, . . . with the property that it contains exactly ak occurrences of the
integer k for each integer k. The initial terms of this sequence are 1, 2, 2, 3, 3, 4, 4, 4,
5, 5, 5, 6, 6, 6, 6, . . . .

6. If f(n) is the largest integer m such that am = n where ak is the kth term of
Golomb’s self-generating sequence, then f(n) =

∑n
k=1 ak and f(f(n)) =

∑n
k=1 kak.

3.1.8 MINIGUIDE TO SEQUENCES

This section lists the numerical values of various integer sequences, classified according
to the type of combinatorial structure that produces the terms. This listing supple-
ments many of the tables presented in this Handbook. A comprehensive tabulation of
over 5,400 integer sequences is provided in [SlPl95], arranged in lexicographic order.
(See Fact 4.)

Definitions:

The power sum Sk(n) =
∑n
j=1 j

k is the sum of the kth powers of the first n positive
integers. The sum of the kth powers of the first n odd integers is denoted Ok(n) =∑n
j=1(2j − 1)k.

The associated Stirling number of the first kind d(n, k) is the number of k-cycle
permutations of an n-element set with all cycles of length ≥ 2.

The associated Stirling number of the second kind b(n, k) is the number of k-block
partitions of an n-element set with all blocks of size ≥ 2.

The double factorial n!! is the product n(n − 2) . . . 6 · 4 · 2 if n is an even positive
integer and n(n− 2) . . . 5 · 3 · 1 if n is an odd positive integer.

The Lah coefficients L(n, k) are the coefficients of xk (§3.4.2) resulting from the
expansion of xn (§3.4.2):

xn =
n∑
k=1

L(n, k)xk .
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A permutation π is discordant from a set A of permutations when π(i) �= α(i) for
all i and all α ∈ A. Usually A consists of the identity permutation ι and powers of the
n-cycle σn = (1 2 . . . n) (see §5.3.1).

A necklace with n beads in c colors corresponds to an equivalence class of functions
from an n-set to a c-set, under cyclic or dihedral equivalence.

A figurate number is the number of cells in an array of cells bounded by some regular
geometrical figure.

A polyomino with p polygons (cells) is a connected configuration of p regular polygons
in the plane. The polygons usually considered are either triangles, squares, or hexagons.

Facts:

1. Each entry in the following miniguide lists initial terms of the sequence, provides a
brief description, and gives the reference number used in [SlPl95].

2. On-line sequence server: Sequences can be submitted for identification by e-mail to
sequences@research.att.com

for lookup on N. J. A. Sloane’s The On-Line Encyclopedia of Integer Sequences. Sending
the word lookup followed by several initial terms of the sequence, each separated by a
space but with no commas, will return up to ten matches together with references.

3. A more powerful sequence server is located at superseeker@research.att.com.
It tries several algorithms to explain a sequence not found in the table. Requests are
limited to one per person per hour.

4. World Wide Web page: Sequences can also be accessed and identified using Sloane’s
web page:

http://www.research.att.com/∼njas/sequences
The entire table of sequences is also accessible from this web page.

Examples:

1. The following initial five terms of an unknown sequence were sent to the e-mail
sequence server at sequences@research.att.com

lookup 1 2 6 20 70

In this case one matching sequence M1645 was identified, corresponding to the central
binomial coefficients

(
2n
n

)
.

2. After connecting to the web site in Fact 4 and selecting the option “to look up a
sequence in the table,” a data entry box appears. The initial terms 1 1 2 3 5 8 13 21
were entered into this field and the request was submitted, producing in this case six
matching sequences. One of these was the Fibonacci sequence (M0692), another was
the sequence an =

⌈
e

n−1
2

⌉
(M0693).

Miniguide to Sequences from Discrete Mathematics

The following miniguide contains a selection of important sequences, grouped by func-
tional problem area (such as graph theory, algebra, number theory). The sequences are
listed in a logical, rather than lexicographic, order within each identifiable grouping.
This listing supplements existing tables within the Handbook. References to appropri-
ate sections of the Handbook are also provided. The notation “Mxxxx” is the reference
number used in [SlPl95].
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Powers of Integers (§3.1.1, §3.5.4)
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072

2n [M1129]

1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969
3n [M2807]

1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864
4n [M3518]

1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625
5n [M3937]

1, 6, 36, 216, 1296, 7776, 46656, 279936, 1679616, 10077696, 60466176, 362797056
6n [M4224]

1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801, 40353607, 282475249, 1977326743
7n [M4431]

1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592
8n [M4555]

1, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 3486784401
9n [M4653]

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484
n2 [M3356]

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832
n3 [M4499]

1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 1000014641, 20736, 28561, 38416, 50625, 65536
n4 [M5004]

1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000, 161051, 248832, 371293, 537824
n5 [M5231]

1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1000000, 1771561, 2985984
n6 [M5330]

1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171
n7 [M5392]

1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721, 100000000, 214358881
n8 [M5426]

1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489, 1000000000
n9 [M5459]

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276
S1(n) [M2535]

c© 2000 by CRC Press LLC



1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870
S2(n) [M3844]

1, 9, 36, 100, 225, 441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 11025, 14400, 18496, 23409
S3(n) [M4619]

1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312
S4(n) [M5043]

1, 33, 276, 1300, 4425, 12201, 29008, 61776, 120825, 220825, 381876, 630708, 1002001
S5(n) [M5241]

1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, 1978405, 3749966, 6735950
S6(n) [M5335]

1, 129, 2316, 18700, 96825, 376761, 1200304, 3297456, 8080425, 18080425, 37567596
S7(n) [M5394]

1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 67731333, 167731333, 382090214
S8(n) [M5427]

1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489, 1000000000
S9(n) [M5459]

3, 6, 14, 36, 98, 276, 794, 2316, 6818, 20196, 60074, 179196, 535538, 1602516, 4799354
Sn(3) [M2580]

4, 10, 30, 100, 354, 1300, 4890, 18700, 72354, 282340, 1108650, 4373500, 17312754
Sn(4) [M3397]

5, 15, 55, 225, 979, 4425, 20515, 96825, 462979, 2235465, 10874275, 53201625, 261453379
Sn(5) [M3863]

6, 21, 91, 441, 2275, 12201, 67171, 376761, 2142595, 12313161, 71340451, 415998681
Sn(6) [M4149]

7, 28, 140, 784, 4676, 29008, 184820, 1200304, 7907396, 52666768, 353815700, 2393325424
Sn(7) [M4393]

8, 36, 204, 1296, 8772, 61776, 446964, 3297456, 24684612, 186884496, 1427557524
Sn(8) [M4520]

9, 45, 285, 2025, 15333, 120825, 978405, 8080425, 67731333, 574304985, 4914341925
Sn(9) [M4627]

1, 5, 32, 288, 3413, 50069, 873612, 17650828, 405071317, 10405071317, 295716741928
Sn(n) [M3968]

1, 28, 153, 496, 1225, 2556, 4753, 8128, 13041, 19900, 29161, 41328, 56953, 76636, 101025
O3(n) [M5199]
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1, 82, 707, 3108, 9669, 24310, 52871, 103496, 187017, 317338, 511819, 791660, 1182285
O4(n) [M5359]

1, 244, 3369, 20176, 79225, 240276, 611569, 1370944, 2790801, 5266900, 9351001, 15787344
O5(n) [M5421]

Factorial Numbers
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800

n! [M1675]

1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000
(n!)2 [M3666]

2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400
n! + (n − 1)! [M0890]

1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400
n!!, n even [M1878]

1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, 654729075, 13749310575
n!!, n odd [M3002]

1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000
product of n factorials [M2049]

1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130
product of first n primes [M1691]

Binomial Coefficients (§2.3.2)
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276(

n
2

)
[M2535]

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771(
n
3

)
[M3382]

1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315(
n
4

)
[M3853]

1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349(
n
5

)
[M4142]

1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 54264, 74613(
n
6

)
[M4390]

1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544(
n
7

)
[M4517]

1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770(
n
8

)
[M4626]
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1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190(
n
9

)
[M4712]

1, 11, 66, 286, 1001, 3003, 8008, 19448, 43758, 92378, 184756, 352716, 646646, 1144066(
n
10

)
[M4794]

1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378
central binomial coefficients

(
n

�n/2�
)

[M0769]

1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600, 40116600
central binomial coefficients

(
2n
n

)
[M1645]

1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300(
2n+1

n

)
[M2848]

Stirling Cycle Numbers/Stirling Numbers of the First Kind (§2.5.2)
1, 3, 11, 50, 274, 1764, 13068, 109584, 1026576, 10628640, 120543840, 1486442880[

n
2

]
[M2902]

1, 6, 35, 225, 1624, 13132, 118124, 1172700, 12753576, 150917976, 1931559552 [
n
3

]
[M4218]

1, 10, 85, 735, 6769, 67284, 723680, 8409500, 105258076, 1414014888, 20313753096[
n
4

]
[M4730]

1, 15, 175, 1960, 22449, 269325, 3416930, 45995730, 657206836, 9957703756, 159721605680[
n
5

]
[M4983]

1, 21, 322, 4536, 63273, 902055, 13339535, 206070150, 3336118786, 56663366760[
n
6

]
[M5114]

1, 28, 546, 9450, 157773, 2637558, 44990231, 790943153, 14409322928, 272803210680[
n
7

]
[M5202]

2, 11, 35, 85, 175, 322, 546, 870, 1320, 1925, 2717, 3731, 5005, 6580, 8500, 10812, 13566[
n

n−2

]
[M1998]

6, 50, 225, 735, 1960, 4536, 9450, 18150, 32670, 55770, 91091, 143325, 218400, 323680[
n

n−3

]
[M4258]

24, 274, 1624, 6769, 22449, 63273, 157773, 357423, 749463, 1474473, 2749747, 4899622[
n

n−4

]
[M5155]

Stirling Subset Numbers/Stirling Numbers of the Second Kind (§2.5.2)
1, 6, 25, 90, 301, 966, 3025, 9330, 28501, 86526, 261625, 788970, 2375101, 7141686{

n
3

}
[M4167]

1, 10, 65, 350, 1701, 7770, 34105, 145750, 611501, 2532530, 10391745, 42355950, 171798901{
n
4

}
[M4722]
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1, 15, 140, 1050, 6951, 42525, 246730, 1379400, 7508501, 40075035, 210766920, 1096190550{
n
5

}
[M4981]

1, 21, 266, 2646, 22827, 179487, 1323652, 9321312, 63436373, 420693273, 2734926558{
n
6

}
[M5112]

1, 28, 462, 5880, 63987, 627396, 5715424, 49329280, 408741333, 3281882604, 25708104786{
n
7

}
[M5201]

1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675{
n

n−2

}
[M4385]

1, 15, 90, 350, 1050, 2646, 5880, 11880, 22275, 39325, 66066, 106470, 165620, 249900{
n

n−3

}
[M4974]

1, 31, 301, 1701, 6951, 22827, 63987, 159027, 359502, 752752, 1479478, 2757118, 4910178{
n

n−4

}
[M5222]

1, 1, 3, 7, 25, 90, 350, 1701, 7770, 42525, 246730, 1379400, 9321312, 63436373, 420693273
maxk

{
n
k

}
[M2690]

Associated Stirling Numbers of the First Kind (§3.1.8)
3, 20, 130, 924, 7308, 64224, 623376, 6636960, 76998240, 967524480, 13096736640

d(n,2) [M3075]

15, 210, 2380, 26432, 303660, 3678840, 47324376, 647536032, 9418945536, 145410580224
d(n,3) [M4988]

2, 20, 210, 2520, 34650, 540540, 9459450, 183783600, 3928374450, 91662070500
d(n,n − 3) [M2124]

6, 130, 2380, 44100, 866250, 18288270, 416215800, 10199989800, 268438920750
d(n,n − 4) [M4298]

1, 120, 7308, 303660, 11098780, 389449060, 13642629000, 486591585480, 17856935296200
d(2n,n − 2) [M5382]

1, 24, 924, 26432, 705320, 18858840, 520059540, 14980405440, 453247114320
d(2n + 1,n − 1) [M5169]

Associated Stirling Numbers of the Second Kind (§3.1.8)
3, 10, 25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, 65518, 131053, 262124

b(n,2) [M2836]

15, 105, 490, 1918, 6825, 22935, 74316, 235092, 731731, 2252341, 6879678, 20900922
b(n,3) [M4978]

1, 25, 490, 9450, 190575, 4099095, 94594500, 2343240900
b(2n,n − 1) [M5186]
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1, 56, 1918, 56980, 1636635, 47507460, 1422280860
b(2n + 1,n − 1) [M5315]

Lah Coefficients (§3.1.8)
1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800

L(n,2) [M4225]

1, 12, 120, 1200, 12600, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800
L(n,3) [M4863]

1, 20, 300, 4200, 58800, 846720, 12700800, 199584000, 3293136000, 57081024000
L(n,4) [M5096]

1, 30, 630, 11760, 211680, 3810240, 69854400, 1317254400, 25686460800, 519437318400
L(n,5) [M5213]

1, 42, 1176, 28224, 635040, 13970880, 307359360, 6849722880, 155831195520
L(n,6) [M5279]

Eulerian Numbers (§3.1.5)
1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125

E(n,1) [M3416]

1, 11, 66, 302, 1191, 4293, 14608, 47840, 152637, 478271, 1479726, 4537314, 13824739
E(n,2) [M4795]

1, 26, 302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786
E(n,3) [M5188]

1, 57, 1191, 15619, 156190, 1310354, 9738114, 66318474, 423281535, 2571742175
E(n,4) [M5317]

1, 120, 4293, 88234, 1310354, 15724248, 162512286, 1505621508, 12843262863
E(n,5) [M5379]

1, 247, 14608, 455192, 9738114, 162512286, 2275172004, 27971176092, 311387598411
E(n,6) [M5422]

1, 502, 47840, 2203488, 66318474, 1505621508, 27971176092, 447538817472
E(n,7) [M5457]

Other Special Sequences (§3.1)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6795, 10946, 17711

Fibonacci numbers, n ≥ 1 [M0692]

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127
Lucas numbers, n ≥ 1 [M2341]
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1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845
Catalan numbers, n ≥ 0 [M1459]

1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757
numerators of harmonic numbers, n ≥ 1 [M2885]

1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720
denominators of harmonic numbers, n ≥ 1 [M1589]

1, 1, 1, 1, 1, 5, 691, 7, 3617, 43867, 174611, 854513, 236364091, 8553103, 23749461029
numerators of Bernoulli numbers |B2n|, n ≥ 0 [M4039]

1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322, 510, 6, 1919190, 6, 13530
denominators of Bernoulli numbers |B2n|, n ≥ 0 [M4189]

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, 2404879675441
Euler numbers |E2n|, n ≥ 0 [M4019]

1, 2, 16, 272, 7936, 353792, 22368256, 1903757312, 209865342976, 29088885112832
tangent numbers T2n+1, n ≥ 0 [M2096]

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322
Bell numbers, n ≥ 0 [M1484]

Numbers of Certain Algebraic Structures (§1.4, §5.2)
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3

abelian groups of order n [M0064]

1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2
groups of order n [M0098]

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 60, 61, 67, 71, 73, 79, 83, 89, 97, 101
orders of simple groups [M0651]

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828
orders of noncyclic simple groups [M5318]

1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452
partially ordered sets on n elements [M1495]

1, 2, 13, 171, 3994, 154303, 9415189, 878222530
transitive relations on n elements [M2065]

1, 5, 52, 1522, 145984, 48464496, 56141454464, 229148550030864, 3333310786076963968
relations on n unlabeled points [M4010]

1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377
binary irreducible polynomials of degree n [M0116]
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Permutations (§5.3.1)

by cycles
1, 1, 1, 3, 15, 75, 435, 3045, 24465, 220185, 2200905, 24209955, 290529855, 3776888115

no 2-cycles [M2991]

1, 1, 2, 4, 16, 80, 520, 3640, 29120, 259840, 2598400, 28582400, 343235200, 4462057600
no 3-cycles [M1295]

1, 1, 2, 6, 18, 90, 540, 3780, 31500, 283500, 2835000, 31185000, 372972600, 4848643800
no 4-cycles [M1635]

0, 1, 1, 3, 9, 45, 225, 1575, 11025, 99225, 893025, 9823275, 108056025, 1404728325
no even length cycles [M2824]

discordant (§2.4.2, §3.1.8)
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932

derangements, discordant for ι [M1937]

1, 1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464
menage numbers, discordant for ι and σn [M2062]

0, 1, 2, 20, 144, 1265, 12072, 126565, 1445100, 17875140, 238282730, 3407118041
discordant for ι, σn, σ2

n [M2121]

by order
1, 2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 60, 84, 105, 140, 210, 210, 420, 420, 420, 420, 840, 840

max order [M0537]

1, 2, 3, 4, 6, 12, 15, 20, 30, 60, 84, 105, 140, 210, 420, 840, 1260, 1540, 2310, 2520, 4620, 5460
max order [M0577]

1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256
order a power of 2 [M1293]

0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695, 140151, 568503, 2390479, 10349535, 46206735
order 2 [M2801]

0, 0, 2, 8, 20, 80, 350, 1232, 5768, 31040, 142010, 776600, 4874012, 27027728, 168369110
order 3 [M1833]

0, 0, 0, 6, 30, 180, 840, 5460, 30996, 209160, 1290960, 9753480, 69618120, 571627056
order 4 [M4206]

0, 0, 1, 3, 6, 10, 30, 126, 448, 1296, 4140, 17380, 76296, 296088, 1126216, 4940040, 23904000
odd, order 2 [M2538]

Necklaces (§2.6)
1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, 14602, 27596, 52488

2 colors, n beads [M0564]
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1, 3, 6, 11, 24, 51, 130, 315, 834, 2195, 5934, 16107, 44368, 122643, 341802, 956635, 2690844
3 colors, n beads [M2548]

1, 4, 10, 24, 70, 208, 700, 2344, 8230, 29144, 104968, 381304, 1398500, 5162224, 19175140
4 colors, n beads [M3390]

1, 5, 15, 45, 165, 629, 2635, 11165, 48915, 217045, 976887, 4438925, 20346485, 93900245
5 colors, n beads [M3860]

Number Theory (§4.2, §4.3)
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103

primes [M0652]

0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11
number of primes ≤ n [M0256]

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2
number of distinct primes dividing n [M0056]

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689
Mersenne primes [M0672]

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7
number of ways of factoring n [M0095]

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16
Euler totient function [M0299]

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745
Carmichael numbers [M5462]

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8
number of divisors of n [M0246]

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56
sum of divisors of n [M2329]

6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128
perfect numbers [M4186]

Partitions (§2.5.1)
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255

partitions of n [M0663]

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192
partitions of n into distinct parts [M0281]

1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, 2485, 4167, 6879, 11297, 18334, 29601, 47330
planar partitions of n [M2566]
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Figurate Numbers (§3.1.8)

polygonal
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276

triangular [M2535]

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715
pentagonal [M3818]

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946
hexagonal [M4108]

1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071
heptagonal [M4358]

1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936, 1045, 1160, 1281
octagonal [M4493]

pyramidal
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771

3-dimensional triangular, height n [M3382]

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870
3-dimensional square, height n [M3844]

1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610
3-dimensional pentagonal, height n [M4116]

1, 7, 22, 50, 95, 161, 252, 372, 525, 715, 946, 1222, 1547, 1925, 2360, 2856, 3417, 4047, 4750
3-dimensional hexagonal, height n [M4374]

1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, 2380, 2920, 3536, 4233, 5016, 5890
3-dimensional heptagonal, height n [M4498]

1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315
4-dimensional triangular, height n [M3853]

1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830
4-dimensional square, height n [M4135]

1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675
4-dimensional pentagonal, height n [M4385]

1, 8, 30, 80, 175, 336, 588, 960, 1485, 2200, 3146, 4368, 5915, 7840, 10200, 13056, 16473
4-dimensional hexagonal, height n [M4506]

1, 9, 35, 95, 210, 406, 714, 1170, 1815, 2695, 3861, 5369, 7280, 9660, 12580, 16116, 20349
4-dimensional heptagonal, height n [M4617]
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Polyominoes (§3.1.8)
1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255

squares, n cells [M1425]

1, 1, 1, 3, 4, 12, 24, 66, 160, 448, 1186, 3334, 9235, 26166, 73983, 211297
triangles, n cells [M2374]

1, 1, 3, 7, 22, 82, 333, 1448, 6572, 30490, 143552, 683101
hexagons, n cells [M2682]

1, 1, 2, 8, 29, 166, 1023, 6922, 48311, 346543, 2522572, 18598427
cubes, n cells [M1845]

Trees (§9.3)
1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955

n unlabeled vertices [M0791]

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159
rooted, n unlabeled vertices [M1180]

1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, 100000000, 2357947691, 61917364224
n labeled vertices [M3027]

1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688
rooted, n labeled vertices [M1946]

by diameter
1, 2, 5, 8, 14, 21, 32, 45, 65, 88, 121, 161, 215, 280, 367, 471, 607, 771, 980, 1232, 1551, 1933

diameter 4, n ≥ 5 vertices [M1350]

1, 2, 7, 14, 32, 58, 110, 187, 322, 519, 839, 1302, 2015, 3032, 4542, 6668, 9738, 14006, 20036
diameter 5, n ≥ 6 vertices [M1741]

1, 3, 11, 29, 74, 167, 367, 755, 1515, 2931, 5551, 10263, 18677, 33409, 59024, 102984, 177915
diameter 6, n ≥ 7 vertices [M2887]

1, 3, 14, 42, 128, 334, 850, 2010, 4625, 10201, 21990, 46108, 94912, 191562, 380933, 746338
diameter 7, n ≥ 8 vertices [M2969]

1, 4, 19, 66, 219, 645, 1813, 4802, 12265, 30198, 72396, 169231, 387707, 871989, 1930868
diameter 8, n ≥ 9 vertices [M3552]

by height
1, 3, 8, 18, 38, 76, 147, 277, 509, 924, 1648, 2912, 5088, 8823, 15170, 25935, 44042, 74427

height 3, n ≥ 4 vertices [M2732]

1, 4, 13, 36, 93, 225, 528, 1198, 2666, 5815, 12517, 26587, 55933, 116564, 241151, 495417
height 4, n ≥ 5 vertices [M3461]
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series-reduced
1, 1, 0, 1, 1, 2, 2, 4, 5, 10, 14, 26, 42, 78, 132, 249, 445, 842, 1561, 2988, 5671, 10981, 21209

n vertices [M0320]

1, 1, 0, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540
rooted, n vertices [M0327]

0, 1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, 7546, 15221, 30802, 62620
planted, n vertices [M0768]

Graphs (§8.1, §8.3, §8.4, §8.9)
1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592

n vertices [M1253]

chromatic number
4, 6, 7, 7, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16

surface, connectivity n ≥ 1 [M3265]

4, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21
surface, genus n ≥ 0 [M3292]

genus
0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 16, 18, 20, 23, 26, 29, 32, 35, 39, 43, 46, 50, 55, 59, 63

complete graphs, n vertices [M0503]

connected
1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565, 164059830476

n vertices [M1657]

1, 1, 0, 2, 5, 32, 234, 3638, 106147, 6039504, 633754161, 120131932774, 41036773627286
series-reduced, n vertices [M1548]

1, 1, 3, 5, 12, 30, 79, 227, 710, 2322, 8071, 29503, 112822, 450141
n edges [M2486]

1, 1, 4, 38, 728, 26704, 1866256, 251548592, 66296291072, 34496488594816
n labeled vertices [M3671]

directed
1, 3, 16, 218, 9608, 1540944, 882033440, 1793359192848, 13027956824399552

n vertices [M3032]

1, 3, 9, 33, 139, 718, 4535
transitive, n vertices [M2817]

1, 1, 2, 4, 12, 56, 456, 6880, 191536, 9733056, 903753248, 154108311168, 48542114686912
tournaments, n vertices [M1262]
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1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043
transitive, n labeled vertices [M3631]

various
1, 2, 2, 4, 3, 8, 4, 14, 9, 22, 8, 74, 14, 56, 48, 286, 36, 380, 60, 1214, 240, 816, 188, 15506, 464

transitive, n vertices [M0302]

1, 1, 2, 3, 7, 16, 54, 243, 2038, 33120, 1182004, 87723296, 12886193064, 3633057074584
all degrees even, n vertices [M0846]

1, 0, 1, 1, 4, 8, 37, 184, 1782, 31026, 1148626, 86539128, 12798435868, 3620169692289
Eulerian, n vertices [M3344]

1, 0, 1, 3, 8, 48, 383, 6020
Hamiltonian, n vertices [M2764]

1, 2, 2, 4, 3, 8, 6, 22, 26, 176
regular, n vertices [M0303]

0, 1, 1, 3, 10, 56, 468, 7123, 194066, 9743542, 900969091, 153620333545, 48432939150704
nonseparable, n vertices [M2873]

1, 2, 4, 11, 33, 142, 822, 6910
planar, n vertices [M1252]

3.2 GENERATING FUNCTIONS

Generating functions express an infinite sequence as coefficients arising from a power
series in an auxiliary variable. The closed form of a generating function is a concise way
to represent such an infinite sequence. Properties of the sequence can be explored by
analyzing the closed form of an associated generating function. Two types of generating
functions are discussed in this section—ordinary generating functions and exponential
generating functions. The former arise when counting configurations in which order is
not important, while the latter are appropriate when order matters.

3.2.1 ORDINARY GENERATING FUNCTIONS

Definitions:

The (ordinary) generating function for the sequence a0, a1, a2, . . . of real numbers
is the formal power series f(x) = a0 + a1x+ a2x2 + · · · =

∑∞
i=0 aix

i or any equivalent
closed form expression.

The convolution of the sequence a0, a1, a2, . . . and the sequence b0, b1, b2, . . . is the
sequence c0, c1, c2, . . . in which ct = a0bt + a1bt−1 + a2bt−2 + · · ·+ atb0 =

∑t
k=0 akbt−k.
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Facts:
1. Generating functions are considered as algebraic forms and can be manipulated as
such, without regard to actual convergence of the power series.
2. A rational form (the ratio of two polynomials) is a concise expression for the generat-
ing function of the sequence obtained by carrying out long division on the polynomials.
(See Example 1.)
3. Generating functions are often useful for constructing and verifying identities in-
volving binomial coefficients and other special sequences. (See Example 10.)
4. Generating functions can be used to derive formulas for the sums of powers of
integers. (See Example 17.)
5. Generating functions can be used to solve recurrence relations. (See §3.3.4.)
6. Each sequence {an} defines a unique generating function f(x), and conversely.
7. Related generating functions: Suppose f(x) =

∑∞
k=0 akx

k and g(x) =
∑∞
k=0 bkx

k

are generating functions for the sequences a0, a1, a2, . . . and b0, b1, b2, . . ., respectively.
Table 1 gives some related generating functions.

Table 1 Related generating functions.

generating function sequence

xnf(x) 0, 0, 0, . . . , 0︸ ︷︷ ︸
n

, a0, a1, a2, . . .

f(x) − anxn a0, a1, . . . , an−1, 0, an+1, . . .

a0 + a1x+ · · · + anxn a0, a1, . . . , an, 0, 0, . . .

f(x2) a0, 0, a1, 0, a2, 0, a3, . . .
f(x)−a0
x a1, a2, a3, . . .

f ′(x) a1, 2a2, 3a3, . . . , kak, . . .∫ x
0
f(t) dt 0, a0, a12 ,

a2
3 , . . . ,

ak

k+1 , . . .

f(x)
1−x a0, a0 + a1, a0 + a1 + a2, . . .

rf(x) + sg(x) ra0 + sb0, ra1 + sb1, ra2 + sb2, . . .

f(x)g(x) a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .
(convolution of {an} and {bn})

Examples:
1. The sequence 0, 1, 4, 9, 16, . . . of squares of the nonnegative integers has the gener-
ating function 0 + x+ 4x2 + 9x3 + 16x4 + · · ·. However, this generating function has a
concise closed form expression, namely x+x2

1−3x+3x2−x3 . Verification is obtained by carry-
ing out long division on the indicated polynomials. This concise form can be used to
deduce properties involving the sequence, such as an explicit algebraic expression for
the sum of squares of the first n positive integers. (See Example 17.)
2. The generating function for the sequence 1, 1, 1, 1, 1, . . . is 1+x+x2 +x3 +x4 + · · · =

1
1−x . Differentiating both sides of this expression produces 1 + 2x+ 3x2 + 4x3 + · · · =

1
(1−x)2 . Thus, 1

(1−x)2 is a closed form expression for the generating function of the
sequence 1, 2, 3, 4, . . . . (See Table 2.)
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Table 2 Generating functions for particular sequences.

sequence closed form

1, 1, 1, 1, 1, . . . 1
1−x

1, 1, . . . , 1, 0, 0, . . . (n 1s) 1−xn

1−x

1, 1, . . . , 1, 1, 0, 1, 1, . . . 1
1−x − xn

(0 following n 1s)

1,−1, 1,−1, 1,−1, . . . 1
1+x

1, 0, 1, 0, 1, . . . 1
1−x2

1, 2, 3, 4, 5, . . . 1
(1−x)2

1, 4, 9, 16, 25, . . . 1+x
(1−x)3

1, r, r2, r3, r4, . . . 1
1−rx

0, r, 2r2, 3r3, 4r4, . . . rx
(1−rx)2

0, 1, 1
2 ,

1
3 ,

1
4 ,

1
5 , . . . ln 1

1−x
1
0! ,

1
1! ,

1
2! ,

1
3! ,

1
4! , . . . ex

0, 1,− 1
2 ,

1
3 ,− 1

4 ,
1
5 , . . . ln(1 + x)

F0, F1, F2, F3, F4, . . .
x

1−x−x2

L0, L1, L2, L3, L4, . . .
2−x

1−x−x2

C0, C1, C2, C3, C4, . . .
1−

√
1−4x

2x

H0, H1, H2, H3, H4, . . .
1

1−x ln 1
1−x

3. Table 2 gives closed form expressions for the generating functions of particular se-
quences. In this table, r is an arbitrary real number, Fn is the nth Fibonacci num-
ber (§3.1.2), Ln is the nth Lucas number (§3.1.2), Cn is the nth Catalan number (§3.1.3),
and Hn is the nth harmonic number (§3.1.7).

4. For every positive integer n, the binomial theorem (§2.3.4) states that

(1 + x)n =
(
n
0

)
+

(
n
1

)
x+

(
n
2

)
x2 + · · · +

(
n
n

)
xn =

n∑
k=0

(
n
k

)
xk,

so (1+x)n is a closed form for the generating function of
(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
, 0, 0, 0, . . . .

5. For every positive integer n, the Maclaurin series expansion for (1 + x)−n is

(1 + x)−n = 1 + (−n)x+ (−n)(−n−1)x2

2! + · · ·

= 1 +
∞∑
k=1

(−n)(−n−1)(−n−2)...(−n−k+1)
k! xk.

Consequently, (1+x)−n is the generating function for the sequence
(−n

0

)
,
(−n

1

)
,
(−n

2

)
, . . .,

where
(−n
k

)
is an extended binomial coefficient (§2.3.2).
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Table 3 Examples of binomial-type generating functions.

generating function expansion

(1 + x)n
(
n
0

)
+

(
n
1

)
x+

(
n
2

)
x2 + · · · +

(
n
n

)
xn =

∑n
k=0

(
n
k

)
xk

(1 + rx)n
(
n
0

)
+

(
n
1

)
rx+

(
n
2

)
r2x2 + · · · +

(
n
n

)
rnxn =

∑n
k=0

(
n
k

)
rkxk

(1 + xm)n
(
n
0

)
+

(
n
1

)
xm +

(
n
2

)
x2m + · · · +

(
n
n

)
xnm =

∑n
k=0

(
n
k

)
xkm

(1 + x)−n
(−n

0

)
+

(−n
1

)
x+

(−n
2

)
x2 + · · · =

∑∞
k=0(−1)k

(
n+k−1
k

)
xk

(1 + rx)−n
(−n

0

)
+

(−n
1

)
rx+

(−n
2

)
r2x2 + · · · =

∑∞
k=0(−1)k

(
n+k−1
k

)
rkxk

(1 − x)−n
(−n

0

)
+

(−n
1

)
(−x) +

(−n
2

)
(−x)2 + · · · =

∑∞
k=0

(
n+k−1
k

)
xk

(1 − rx)−n
(−n

0

)
+

(−n
1

)
(−rx) +

(−n
2

)
(−rx)2 + · · · =

∑∞
k=0

(
n+k−1
k

)
rkxk

xn

(1 − x)n+1

(
n
n

)
xn +

(
n+1
n

)
xn+1 +

(
n+2
n

)
xn+2 + · · · =

∑∞
k=n

(
k
n

)
xk

6. Using Example 5, the expansion of f(x) = (1 − 3x)−8 is

(1 − 3x)−8 = (1 + y)−8 =
∞∑
k=0

(−8
k

)
yk =

∞∑
k=0

(−8
k

)
(−3x)k.

So the coefficient of x4 in f(x) is
(−8

4

)
(−3)4 = (−1)4

(
8+4−1

4

)
(81) =

(
11
4

)
(81) = 26,730.

7. Table 3 gives additional examples of generating functions related to binomial ex-
pansions. In this table, m and n are positive integers, and r is any real number.
8. For any real number r, the Maclaurin series expansion for (1 + x)r is

(1 + x)r =
(
r
0

)
1 +

(
r
1

)
x+

(
r
2

)
x2 + · · ·

where
(
r
k

)
= r(r−1)(r−2)...(r−k+1)

k! if k > 0 and
(
r
0

)
= 1.

9. Using Example 8, the expansion of f(x) =
√

1 + x is
√

1 + x = (1 + x)1/2 =
(
1/2
0

)
1 +

(
1/2
1

)
x+

(
1/2
2

)
x2 + · · ·

= 1 + 1
2x+

1
2 ·

−1
2

2! x
2 +

1
2 ·

−1
2 ·−3

2
3! x3 +

1
2 ·

−1
2 ·−3

2 ·−5
2

4! x4 + · · ·
= 1 + 1

2x− 1
8x

2 + 1
16x

3 − 5
128x

4 + · · · .
Thus

√
1 + x is the generating function for the sequence 1, 1

2 ,− 1
8 ,

1
16 ,− 5

128 , . . . .
10. Vandermonde’s convolution identity (§2.3.4) can be obtained from the generating
functions f(x) = (1 + x)m and g(x) = (1 + x)n. First, (1 + x)m(1 + x)n = (1 + x)m+n.
Equating coefficients of xr on both sides of this equation and using Fact 7 produces

m∑
k=0

(
m
k

)(
n
r−k

)
=

(
m+n
r

)
.

11. Twenty identical computer terminals are to be distributed into five distinct rooms
so each room receives at least two terminals. The number of such distributions is the
coefficient of x20 in the expansion of f(x) = (x2+x3+x4+· · ·)5 = x10(1+x+x2+· · ·)5 =
x10

(1−x)5 . Thus the coefficient of x20 in f(x) is the coefficient of x10 in (1 − x)−5, which
from Table 3 is

(
5+10−1

10

)
=

(
14
10

)
= 1001.
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12. Suppose in Example 11 that each room can accommodate at most seven terminals.
Now the generating function is g(x) = (x2 +x3 +x4 +x5 +x6 +x7)5 = x10(1+x+x2 +
x3 +x4 +x5)5 = x10

(
1−x6
1−x

)5
. Consequently, the number of allowable distributions is the

coefficient of x10 in
(

1−x6
1−x

)5 = (1−x6)5(1−x)−5 =
[
1−

(
5
1

)
x6+

(
5
2

)
x12−· · ·−x30

][(−5
0

)
+(−5

1

)
(−x) +

(−5
2

)
(−x)2 + · · ·

]
. This coefficient is

[(−5
10

)
(−1)10 −

(
5
1

)(−5
4

)
(−1)4

]
=

(
14
10

)
−(

5
1

)(
8
4

)
= 651.

13. Unordered selections with replacement: k objects are selected from n distinct
objects, with repetition allowed. For each of the n distinct objects, the power series
1 + x + x2 + · · · represents the possible choices (namely none, one, two, . . .) for that
object. The generating function for all n objects is then

f(x) = (1 + x+ x2 + · · ·)n = ( 1
1−x )

n = (1 − x)−n =
∑∞
k=0

(
n+k−1
k

)
xk.

The number of selections with replacement is the coefficient of xk in f(x), namely(
n+k−1
k

)
.

14. Suppose there are p types of objects, with ni indistinguishable objects of type i.
The number of ways to pick a total of k objects (where the number of selected objects
of type i is at most ni) is the coefficient of xk in the generating function

p∏
i=1

(1 + x+ x2 + · · · + xni).

15. Partitions: Generating functions can be found for p(n), the number of partitions of
the positive integer n (§2.5.1). The number of 1s that appear as summands in a partition
of n is 0 or 1 or 2 or . . ., recorded as the terms in the power series 1+x+x2 +x3 + · · · .
The power series 1 + x2 + x4 + x6 + · · · records the number of 2s that can appear in a
partition of n, and so forth. For example, p(12) is the coefficient of x12 in

(1 + x+ x2 + · · ·)(1 + x2 + x4 + · · ·) . . . (1 + x12 + x24 + · · ·) =
12∏
i=1

1
1−xi ,

or in (1+x+x2 + · · ·+x12)(1+x2 +x4 + · · ·+x12) . . . (1+x12). In general, the function
P (x) =

∏∞
i=1

1
1−xi is the generating function for the sequence p(0), p(1), p(2), . . . , where

p(0) is defined as 1.

16. The function Pd(x) = (1+x)(1+x2)(1+x3) . . . =
∏∞
i=1(1+xi) generates Q(n), the

number of partitions of n into distinct summands (see §2.5.1). The function Po(x) =
1

1−x · 1
1−x3 · 1

1−x5 . . . =
∏∞
j=0(1−x2j+1)−1 is the generating function for O(n), the number

of partitions of n with all summands odd (see §2.5.1). Then
Pd(x) = (1 + x)(1 + x2)(1 + x3)(1 + x4) . . .

= 1−x2
1−x · 1−x4

1−x2 · 1−x6
1−x3 · 1−x8

1−x4 . . . =
1

1−x · 1
1−x3 . . . = Po(x),

so Q(n) = O(n) for every nonnegative integer n.

17. Summation formulas: Generating functions can be used to produce the formula
12+22+· · ·+n2 = 1

6n(n+1)(2n+1). (See §3.5.4 for an extensive tabulation of summation
formulas.) Applying Fact 7 to the expansion (1−x)−1 = 1 +x+x2 +x3 + · · · produces

x ddx
[
x ddx (1 − x)−1

]
= x(1+x)

(1−x)3 = x+ 22x2 + 32x3 + · · · .

So x(1+x)
(1−x)3 is the generating function for the sequence 02, 12, 22, 32, . . . and, by Fact 7,

x(1+x)
(1−x)4 generates the sequence 02, 02+12, 02+12+22, 02+12+22+32, . . . . Consequently,∑n
i=0 i

2 is the coefficient of xn in

(x+ x2)(1 − x)−4 = (x+ x2)
[(−4

0

)
+

(−4
1

)
(−x) +

(−4
2

)
(−x)2 + · · ·

]
.

The answer is then
( −4
n−1

)
(−1)n−1 +

( −4
n−2

)
(−1)n−2 =

(
n+2
n−1

)
+

(
n+1
n−2

)
= 1

6n(n+1)(2n+1).
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Table 4 Related exponential generating functions.

generating function sequence

xf(x) 0, a0, 2a1, 3a2, . . . , (k + 1)ak, . . .

xnf(x) 0, 0, 0, . . . , 0︸ ︷︷ ︸
n

, P (n, n)a0, P (n+ 1, n)a1, P (n+ 2, n)a2, . . . ,

P (n+ k, n)ak, . . .
f ′(x) a1, a2, a3, . . . , ak, . . .∫ x

0
f(t)dt 0, a0, a1, a2, . . .

rf(x) + sg(x) ra0 + sb0, ra1 + sb1, ra2 + sb2, . . .

f(x)g(x)
(
0
0

)
a0b0,

(
1
0

)
a0b1 +

(
1
1

)
a1b0,

(
2
0

)
a0b2 +

(
2
1

)
a1b1 +

(
2
2

)
a2b0, . . .

(binomial convolution of {ak} and {bk})

18. Catalan numbers: The Catalan numbers (§3.1.3) C0, C1, C2, . . . satisfy the recur-
rence relation Cn = C0Cn−1 +C1Cn−2 + · · ·+Cn−1C0, n ≥ 1, with C0 = 1. (See §3.3.1.)
Hence their generating function f(x) =

∑∞
k=0 Ckx

k satisfies xf2(x) = f(x)−1, yielding
f(x) = 1

2x (1 −
√

1 − 4x) = 1
2x (1 − (1 − 4x)1/2). (The negative square root is chosen

since the numbers Ci cannot be negative.) Applying Example 8 to (1 − 4x)1/2 yields
f(x) = 1

2x

[
1 −

∑∞
k=0

(
1/2
k

)
(−4)kxk

]
= 1

2x

[
1 −

∑∞
k=0

−1
2k−1

(
2k
k

)
xk

]
=

∑∞
k=0

1
k+1

(
2k
k

)
xk.

Thus Cn = 1
n+1

(
2n
n

)
.

3.2.2 EXPONENTIAL GENERATING FUNCTIONS

Encoding the terms of a sequence as coefficients of x
k

k! is often helpful in obtaining
information about a sequence, such as in counting permutations of objects (where the
order of listing objects is important). The functions that result are called exponential
generating functions.

Definitions:

The exponential generating function for the sequence a0, a1, a2, . . . of real numbers
is the formal power series f(x) = a0 + a1x+ a2 x

2

2! + · · · =
∑∞
i=0 ai

xi

i! or any equivalent
closed form expression.

The binomial convolution of the sequence a0, a1, a2, . . . and the sequence b0, b1, b2, . . .
is the sequence c0, c1, c2, . . . in which ct =

(
t
0

)
a0bt+

(
t
1

)
a1bt−1+

(
t
2

)
a2bt−2+· · ·+

(
t
t

)
atb0 =∑t

k=0

(
t
k

)
akbt−k.

Facts:

1. Each sequence {an} defines a unique exponential generating function f(x), and
conversely.

2. Related exponential generating functions: Suppose f(x) =
∑∞
k=0 ak

xk

k! and g(x) =∑∞
k=0 bk

xk

k! are exponential generating functions for the sequences a0, a1, a2, . . . and
b0, b1, b2, . . ., respectively. Table 4 gives some related exponential generating functions.
[P (n, k) =

(
n
k

)
k! is the number of k-permutations of a set with n distinct objects. (See

§2.3.1.)]
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Table 5 Exponential generating functions for particular sequences.

sequence closed form

1, 1, 1, 1, 1, . . . ex

1,−1, 1,−1, 1, . . . e−x

1, 0, 1, 0, 1, . . . 1
2 (ex + e−x)

0, 1, 0, 1, 0, . . . 1
2 (ex − e−x)

0, 1, 2, 3, 4, . . . xex

P (n, 0), P (n, 1), . . . , P (n, n), 0, 0, . . . (1 + x)n[
0
n

]
, . . . ,

[
n
n

]
,
[
n+1
n

]
, . . . 1

n!

[
ln 1

(1−x)

]n
{

0
n

}
, . . . ,

{
n
n

}
,
{
n+1
n

}
, . . . 1

n! [ex − 1]n

B0, B1, B2, B3, B4, . . . ee
x−1

D0, D1, D2, D3, D4, . . .
e−x

1−x

Examples:
1. The binomial theorem (§2.3.4) gives

(1 + x)n =
(
n
0

)
+

(
n
1

)
x+

(
n
2

)
x2 +

(
n
3

)
x3 + · · · +

(
n
n

)
xn

= P (n, 0) + P (n, 1)x+ P (n, 2)x
2

2! + P (n, 3)x
3

3! + · · · + P (n, n)x
n

n! .

Hence (1 + x)n is the exponential generating function for the sequence P (n, 0), P (n, 1),
P (n, 2), P (n, 3), . . . , P (n, n), 0, 0, 0, . . . .

2. The Maclaurin series expansion for ex is ex = 1 + x + x2

2! + x3

3! + · · · , so the func-
tion ex is the exponential generating function for the sequence 1, 1, 1, 1, . . . . The func-
tion e−x = 1−x+ x2

2! − x3

3! + · · · is the exponential generating function for the sequence
1,−1, 1,−1, . . . . Consequently,

1
2 (ex + e−x) = 1 + x2

2! + x4

4! + · · ·
is the exponential generating function for 1, 0, 1, 0, 1, 0, . . . , while

1
2 (ex − e−x) = x+ x3

3! + x5

5! + · · ·
is the exponential generating function for 0, 1, 0, 1, 0, 1, . . . .

3. The function f(x) = 1
1−x =

∑∞
i=0x

i =
∑∞
i=0i!

xi

i! is the exponential generating
function for the sequence 0!, 1!, 2!, 3!, . . . .
4. Table 5 gives closed form expressions for the exponential generating functions of
particular sequences. In this table,

[
n
k

]
is a Stirling cycle number,

{
n
k

}
is a Stirling sub-

set number, Bn is the nth Bell number (§2.5.2), and Dn is the number of derangements
of n objects (§2.4.2).
5. The number of ways to permute 5 of the 8 letters in TERMINAL is found using
the exponential generating function f(x) = (1 + x)8. Here each of the 8 letters in
TERMINAL is accounted for by the factor (1 + x), where 1(= x0) indicates the letter
does not occur in the permutation and x(= x1) indicates that it does. The coefficient
of x

5

5! in f(x) is
(
8
5

)
5! = P (8, 5) = 6,720.
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6. The number of ways to permute 5 of the letters in TRANSPORTATION is found as
the coefficient of x

5

5! in the exponential generating function f(x) = (1+x+ x2

2! + x3

3! )(1+
x + x2

2! )
4(1 + x)3. Here the factor 1 + x + x2

2! + x3

3! accounts for the letter T which can
be used 0, 1, 2, or 3 times. The factor 1 + x + x2

2! occurs four times — for each of R,
A, N, and O. The letters S, P, and I produce the factor (1 + x). The coefficient of x5 in
f(x) is found to be 487

3 , so the answer is ( 487
3 )5! = 19,480.

7. The number of ternary sequences (made up of 0s, 1s, and 2s) of length 10 with at
least one 0 and an odd number of 1s can be found using the exponential generating
function

f(x) = (x+ x2

2! + x3

3! + · · ·)(x+ x3

3! + x5

5! + · · ·)(1 + x+ x2

2! + x3

3! + · · ·)
= (ex − 1) 1

2 (ex − e−x)ex = 1
2 (e3x − e2x − ex + 1)

= 1
2

( ∞∑
i=0

(3x)i

i! −
∞∑
i=0

(2x)i

i! −
∞∑
i=0

xi

i! + 1
)
.

The answer is the coefficient of x
10

10! in f(x), which is 1
2 (310 − 210 − 110) = 29,012.

8. Suppose in Example 7 that no symbol may occur exactly two times. The exponential
generating function is then f(x) = (1+x+ x3

3! + x4

4! + · · ·)3 = (ex− x2

2 )3 = e3x− 3
2x

2e2x+
3
4x

4ex− 1
8x

6. The number of ternary sequences is the coefficient of x
10

10! in f(x), namely
310 − 3

2 (10)(9)28 + 3
4 (10)(9)(8)(7)16 = 28,269.

9. Exponential generating functions can be used to count the number of onto functions
ϕ:A→ B where |A| = m and |B| = n. Each such function is specified by the sequence
of m values ϕ(a1), ϕ(a2), . . . , ϕ(am), where each element b ∈ B occurs at least once in
this sequence. Element b contributes a factor (x + x2

2! + x3

3! + · · ·) = (ex − 1) to the
exponential generating function f(x) = (ex − 1)n. The number of onto functions is the
coefficient of x

m

m! in f(x), or n! times the coefficient of x
m

m! in (ex−1)n

n! . From Table 5, the
answer is then n!

{
m
n

}
.

3.3 RECURRENCE RELATIONS

In a number of counting problems, it may be difficult to find the solution directly.
However, it is frequently possible to express the solution to a problem of a given size
in terms of solutions to problems of smaller size. This interdependence of solutions
produces a recurrence relation. Although there is no practical systematic way to solve all
recurrence relations, this section contains methods for solving certain types of recurrence
relations, thereby providing an explicit formula for the original counting problem. The
topic of recurrence relations provides the discrete counterpart to concepts in the study
of ordinary differential equations.

3.3.1 BASIC CONCEPTS

Definitions:

A recurrence relation for the sequence a0, a1, a2, . . . is an equation relating the
term an to certain of the preceding terms ai, i < n, for each n ≥ n0.

c© 2000 by CRC Press LLC



The recurrence relation is linear if it expresses an as a linear function of a fixed number
of preceding terms. Otherwise the relation is nonlinear.

The recurrence relation is kth-order if an can be expressed in terms of an−1, an−2, . . . ,
an−k.

The recurrence relation is homogeneous if the zero sequence a0 = a1 = · · · = 0 satisfies
the relation. Otherwise the relation is nonhomogeneous.

A kth-order linear homogeneous recurrence relation with constant coefficients is an
equation of the form Cnan +Cn−1an−1 + · · ·+Cn−kan−k = 0, n ≥ k, where the Ci are
real constants with Cn �= 0, Cn−k �= 0. Initial conditions for this recurrence relation
specify particular values for k of the ai (typically a0, a1, . . . , ak−1).

Facts:

1. A kth-order linear homogeneous recurrence relation with constant coefficients can
also be written Cn+kan+k + Cn+k−1an+k−1 + · · · + Cnan = 0, n ≥ 0.

2. There are in general an infinite number of solution sequences {an} to a kth-order
linear homogeneous recurrence relation (with constant coefficients).

3. A kth-order linear homogeneous recurrence relation with constant coefficients to-
gether with k initial conditions on consecutive terms a0, a1, . . . , ak−1 uniquely deter-
mines the sequence {an}. This is not necessarily the case for nonlinear relations (see
Example 2) or when nonconsecutive initial conditions are specified (see Example 3).

4. The same recurrence relation can be written in different forms by adjusting the
subscripts. For example, the recurrence relation an = 3an−1, n ≥ 1, can be written as
an+1 = 3an, n ≥ 0.

Examples:

1. The relation an−a2n−1+2an−2 = 0, n ≥ 2 is a nonlinear homogeneous recurrence re-
lation with constant coefficients. If the initial conditions a0 = 0, a1 = 1 are imposed, this
defines a unique sequence {an} whose first few terms are 0, 1, 1,−1,−1, 3, 11, 115, . . . .

2. The first-order (constant coefficient) recurrence relation a2n+1 − an = 3, a0 = 1 is
nonhomogeneous and nonlinear. Even though one initial condition is specified, this does
not uniquely specify a solution sequence. Namely, the two sequences 1,−2, 1, 2, . . . and
1,−2,−1,

√
2, . . . satisfy the recurrence relation and the given initial condition.

3. The second-order relation an+2 − an = 0, n ≥ 0, with nonconsecutive initial condi-
tions a1 = a3 = 0 does not uniquely specify a solution sequence. Both an = (−1)n + 1
and an = 2(−1)n + 2 satisfy the recurrence and the given initial conditions.

4. Compound interest: If an initial investment of P dollars is made at a rate of r per-
cent compounded annually, then the amount an after n years is given by the recurrence
relation an = an−1(1 + r

100 ), where a0 = P . [The amount at the end of the nth year is
equal to the amount at the end of the (n−1)st year, an−1, plus the interest on an−1,
r

100an−1.]

5. Fibonacci sequence: The Fibonacci numbers satisfy the second-order linear homo-
geneous recurrence relation an − an−1 − an−2 = 0.

6. Bit strings: Let an be the number of bit strings of length n. Then a0 = 1 (the
empty string) and an = 2an−1 if n > 0. [Every bit string of length n − 1 gives rise to
two bit strings of length n, by placing a 0 or a 1 at the end of the string of length n−1.]

7. Bit strings with no consecutive 0s: See §3.3.2 Example 23.
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8. Permutations: Let an denote the number of permutations of {1, 2, . . . , n}. Then an
satisfies the first-order linear homogeneous recurrence relation (with nonconstant coef-
ficients) an+1 = (n + 1)an, n ≥ 1, a1 = 1. This follows since any n-permutation π
can be transformed into an (n + 1)-permutation by inserting the element n + 1 into
any of the n + 1 available positions — either at the beginning or end of π, or between
two adjacent elements of π. To solve for an, repeatedly apply the recurrence relation
and its initial condition: an = nan−1 = n(n − 1)an−2 = n(n − 1)(n − 2)an−3 = · · · =
n(n− 1)(n− 2) . . . 2a1 = n!.

9. Catalan numbers: The Catalan numbers (§3.1.3, 3.2.1) satisfy the nonlinear homo-
geneous recurrence relation Cn − C0Cn−1 − C1Cn−2 − · · · − Cn−1C0 = 0, n ≥ 1, with
initial condition C0 = 1. Given the product of n + 1 variables x1x2 . . . xn+1, let Cn
be the number of ways in which the multiplications can be carried out. For exam-
ple, there are five ways to form the product x1x2x3x4: ((x1x2)x3)x4, (x1(x2x3))x4,
(x1x2)(x3x4), x1((x2x3)x4), and x1(x2(x3x4)). No matter how the multiplications are
performed, there will be an outermost product of the form (x1x2 . . . xi)(xi+1 . . . xn+1).
The number of ways in which the product x1x2 . . . xi can be formed is Ci−1 and the
number of ways in which the product xi+1 . . . xn+1 can be formed is Cn−i. Thus,
(x1x2 . . . xi)(xi+1 . . . xn+1) can be obtained in Ci−1Cn−i ways. Summing these over the
values i = 1, 2, . . . , n yields the recurrence relation.

10. Tower of Hanoi: See Example 1 of §2.2.4.

11. Onto functions: The number of onto functions ϕ:A → B can be found by devel-
oping a nonhomogeneous linear recurrence relation based on the size of B. Let |A| = m
and let an be the number of onto functions from A to a set with n elements. Then
an = nm −

(
n
1

)
a1 −

(
n
2

)
a2 − · · · −

(
n
n−1

)
an−1, n ≥ 2, a1 = 1. This follows since the total

number of functions from A to B is nm and the number of functions that map A onto
a proper subset of B with exactly j elements is

(
n
j

)
aj .

For example, ifm = 7 and n = 4, applying this recursion gives a2 = 27−2(1) = 126,
a3 = 37 − 3(1)− 3(126) = 1,806, a4 = 47 − 4(1)− 6(126)− 4(1,806) = 8,400. Thus there
are 8,400 onto functions in this case.

3.3.2 HOMOGENEOUS RECURRENCE RELATIONS

It is assumed throughout this subsection that the recurrence relations are linear with
constant coefficients.

Definitions:

A geometric progression is a sequence a0, a1, a2, . . . for which
a1
a0

=
a2
a1

= · · · =
an+1

an
= · · · = r, the common ratio.

The characteristic equation for the kth-order recurrence relation Cnan+Cn−1an−1+
· · · + Cn−kan−k = 0, n ≥ k, is the equation Cnrk + Cn−1r

k−1 + · · · + Cn−k = 0. The
characteristic roots are the roots of this equation.

The sequences {a(1)n }, {a(2)n }, . . . , {a(k)n } are linearly dependent if there exist constants
t1, t2, . . . , tk, not all zero, such that

∑k
i=1 tia

(i)
n = 0 for all n ≥ 0. Otherwise, they are

linearly independent.
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Facts:
1. General method for solving a linear homogeneous recurrence relation with constant
coefficients: First find the general solution. Then use the initial conditions to find the
particular solution.
2. If the k characteristic roots r1, r2, . . . , rk are distinct, then rn1 , r

n
2 , . . . , r

n
k are linearly

independent solutions of the homogeneous recurrence relation. The general solution is
an = c1rn1 + c2rn2 + · · · + ckrnk , where c1, c2, . . . , ck are arbitrary constants.
3. If a characteristic root r has multiplicity m, then rn, nrn, . . . , nm−1rn are linearly
independent solutions of the homogeneous recurrence relation. The linear combination
c1r

n + c2nrn + · · · + cmnm−1rn is also a solution, where c1, c2, . . . , cm are arbitrary
constants.
4. Facts 2 and 3 can be used together. If there are k characteristic roots r1, r2, . . . , rk,
with respective multiplicities m1,m2, . . . ,mk (where some of the mi can equal 1), the
the general solution is a sum of sums, each of the form appearing in Fact 3.
5. DeMoivre’s theorem: For any positive integer n, (cos θ+ i sin θ)n = cosnθ+ i sinnθ.
This result is used to find solutions of recurrence relations when the characteristic roots
are complex numbers. (See Example 10.)
6. Solving first-order recurrence relations: The solution of the homogeneous recurrence
relation an+1 = dan, n ≥ 0, with initial condition a0 = A, is an = Adn, n ≥ 0.
7. Solving second-order recurrence relations: Let r1, r2 be the characteristic roots asso-
ciated with the second-order homogeneous relation Cnan+Cn−1an−1 +Cn−2an−2 = 0.
There are three possibilities:

• r1, r2 are distinct real numbers: rn1 and rn2 are linearly independent solutions of
the recurrence relation. The general solution has the form

an = c1rn1 + c2rn2 ,
where the constants c1, c2 are found from the values of an for two distinct values
of n (often n = 0, 1).

• r1, r2 form a complex conjugate pair a± bi: The general solution is
an = c1(a+ bi)n + c2(a− bi)n = (

√
a2 + b2)n(k1 cosnθ + k2 sinnθ),

with θ = arctan(b/a). Here (
√
a2 + b2)n cosnθ and (

√
a2 + b2)n sinnθ are lin-

early independent solutions.

• r1, r2 are real and equal: rn1 and nrn1 are linearly independent solutions of the
recurrence relation. The general solution is

an = c1rn1 + c2nrn1 .

Examples:
1. The geometric progression 7, 21, 63, 189, . . . , with common ratio 3, satisfies the first-
order homogeneous recurrence relation an+1 − 3an = 0 for all n ≥ 0.
2. The first-order homogeneous recurrence relation an+1 = 3an, n ≥ 0, does not de-
termine a unique geometric progression. Any geometric sequence with ratio 3 is a
solution; for example the geometric progression in Example 1 (with a0 = 7), as well as
the geometric progression 5, 15, 45, 135, . . . (with a0 = 5).
3. The first-order recurrence relation an+1 = 3an, n ≥ 0, a0 = 7 is easily solved using
Fact 6. The general solution is an = 7(3n) for all n ≥ 0.
4. Compound interest: If interest is compounded quarterly, how long does it take for an
investment of $500 to double when the annual interest rate is 8%? If an denotes the value
of the investment after n quarters have passed, then an+1 = an + 0.02an = (1.02)an,

c© 2000 by CRC Press LLC



n ≥ 0, a0 = 500. [Here the quarterly rate is 0.08/4 = 0.02 = 2%.] By Fact 6, the
solution is an = 500(1.02)n, n ≥ 0. The investment doubles when 1000 = 500(1.02)n, so
n = log 2

log 1.02 ≈ 35.003. Consequently, after 36 quarters (or 9 years) the initial investment
of $500 (more than) doubles.

5. Population growth: The number of bacteria in a culture (approximately) triples
in size every hour. If there are (approximately) 100,000 bacteria in a culture after six
hours, how many were there at the start? Define pn to be the number of bacteria in
the culture after n hours have elapsed. Then pn+1 = 3pn for n ≥ 0. From Fact 5,
pn = p0(3n). So 100,000 = p0(36) and p0 ≈ 137.

6. Fibonacci sequence: The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . arises in varied
applications (§3.1.2). Its terms satisfy the second-order homogeneous recurrence relation
Fn = Fn−1 + Fn−2, n ≥ 2, with initial conditions F0 = 0, F1 = 1.

An explicit formula can be obtained for Fn using Fact 7. The characteristic equation
is r2 − r − 1 = 0, with distinct real roots 1±

√
5

2 . Thus the general solution is

Fn = c1
(

1+
√

5
2

)n
+ c2

(
1−

√
5

2

)n
.

Using the initial conditions F0 = 0, F1 = 1 gives c1 = 1√
5
, c2 = − 1√

5
and the explicit

formula

Fn = 1√
5

[(
1+

√
5

2

)n
−

(
1−

√
5

2

)n ]
, n ≥ 0.

7. Lucas sequence: Related to the sequence of Fibonacci numbers is the sequence of
Lucas numbers 2, 1, 3, 4, 7, 11, 18, . . . (see §3.1.2). The terms of this sequence satisfy the
same second-order homogeneous recurrence relation Ln = Ln−1+Ln−2, n ≥ 2, but with
the different initial conditions L0 = 2, L1 = 1. The formula for Ln is

Ln =
(

1+
√

5
2

)n
+

(
1−

√
5

2

)n
, n ≥ 0.

8. Random walk: A particle undergoes a random walk in one dimension, along the
x-axis. Barriers are placed at positions x = 0 and x = T . At any instant, the particle
moves with probability p one unit to the right; with probability q = 1 − p it moves one
unit to the left. Let an denote the probability that the particle, starting at position
x = n, reaches the barrier x = T before it reaches the barrier x = 0. It can be
shown that an satisfies the second-order recurrence relation an = pan+1 + qan−1 or
pan+1 − an + qan−1 = 0. In this case the two initial conditions are a0 = 0 and aT = 1.
The characteristic equation pr2−r+q = (pr−q)(r−1) = 0 has roots 1, qp . When p �= q,
the roots are distinct and the first case of Fact 7 can be used to determine an; when
p = q, the third case of Fact 7 must be used. (Explicit solutions are given in §7.5.2,
Fact 10.)

9. The second-order relation an + 4an−1 − 21an−2 = 0, n ≥ 2, has the characteristic
equation r2 + 4r − 21 = 0, with distinct real roots 3 and −7. The general solution to
the recurrence relation is

an = c1(3)n + c2(−7)n, n ≥ 0,

where c1, c2 are arbitrary constants.
If the initial conditions specify a0 = 1 and a1 = 1, then solving the equations

1 = a0 = c1 + c2, 1 = a1 = 3c1 − 7c2 gives c1 = 4
5 , c2 = 1

5 . In this case, the unique
solution is

an = 4
53n + 1

5 (−7)n, n ≥ 0.
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10. The second-order relation an − 6an−1 + 58an−2 = 0, n ≥ 2, has the characteristic
equation r2−6r+58 = 0, with complex conjugate roots r = 3±7i. The general solution
is

an = c1(3 + 7i)n + c2(3 − 7i)n, n ≥ 0.

Using Fact 5, (3 + 7i)n = [
√

32 + 72(cos θ+ i sin θ)]n = (
√

58 )n(cosnθ+ i sinnθ), where
θ = arctan 7

3 . Likewise (3 − 7i)n = (
√

58 )n(cosnθ − i sinnθ). This gives the general
solution

an = (
√

58 )n[(c1 + c2) cosnθ + (c1 − c2)i sinnθ] = (
√

58 )n[k1 cosnθ + k2 sinnθ].

If the initial conditions a0 = 1 and a1 = 1 are specified, then 1 = a0 = k1, 1 = a1 =√
58 [cos θ + k2 sin θ], yielding k1 = 1, k2 = − 2

7 . Thus

an = (
√

58 )n[cosnθ − 2
7 sinnθ], n ≥ 0.

11. The second-order relation an+2 − 6an+1 + 9an = 0, n ≥ 0, has the characteristic
equation r2 − 6r + 9 = (r − 3)2 = 0, with the repeated roots 3, 3. The general solution
to this recurrence is

an = c1(3n) + c2n(3n), n ≥ 0.

If the initial conditions are a0 = 2 and a1 = 4, then 2 = a0 = c1, 4 = 2(3) + c2(1)(3),
giving c1 = 2, c2 = − 2

3 . Thus

an = 2(3n) − 2
3n(3

n) = 2(3n − n3n−1), n ≥ 0.

12. For n ≥ 1, let an count the number of binary strings of length n that contain no
consecutive 0s. Here a1 = 2 (for the two strings 0 and 1) and a2 = 3 (for the strings 01,
10, 11). For n ≥ 3, a string counted in an ends in either 1 or 0. If the nth bit is 1, then
the preceding n − 1 bits provide a string counted in an−1; if the nth bit is 0 then the
last two bits are 10, and the preceding n − 2 bits give a string counted in an−2. Thus
an = an−1 + an−2, n ≥ 3, with a1 = 2 and a2 = 3. The solution to this relation is
simply an = Fn+2, the Fibonacci sequence shifted two places. An explicit formula for
an is obtained using the result in Example 6.

13. The third-order recurrence relation an+3 −an+2 − 4an+1 +4an = 0, n ≥ 0, has the
characteristic equation r3 − r2 − 4r + 4 = (r − 2)(r + 2)(r − 1) = 0, with characteristic
roots 2, −2, and 1. The general solution is given by

an = c12n + c2(−2)n + c31n = c12n + c2(−2)n + c3, n ≥ 0.

14. The general solution of the third-order recurrence relation an+3−3an+2−3an+1 +
an = 0, n ≥ 0, is

an = c11n + c2n1n + c3n21n = c1 + c2n+ c3n2, n ≥ 0.
Here the characteristic roots are 1, 1, 1.

15. The fourth-order relation an+4 + 2an+2 + an = 0, n ≥ 0, has the characteristic
equation r4 + 2r2 + 1 = (r2 + 1)2 = 0. Since the characteristic roots are ±i, ±i, the
general solution is

an = c1in + c2(−i)n + c3nin + c4n(−i)n

= k1 cos nπ2 + k2 sin nπ2 + k3n cos nπ2 + k4n sin nπ2 , n ≥ 0.
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3.3.3 NONHOMOGENEOUS RECURRENCE RELATIONS

It is assumed throughout this subsection that the recurrence relations are linear with
constant coefficients.

Definition:

The kth-order nonhomogeneous recurrence relation has the form Cnan+Cn−1an−1 +
· · · + Cn−kan−k = f(n), n ≥ k, where Cn �= 0, Cn−k �= 0, and f(n) �= 0 for at least one
value of n.

Facts:

1. General solution: The general solution of the nonhomogeneous kth-order recurrence
relation has the form

an = a(h)n + a(p)n ,

where a(h)n is the general solution of the homogeneous relation Cnan + Cn−1an−1 +
· · · + Cn−kan−k = 0, n ≥ k, and a(p)n is a particular solution for the given relation
Cnan + Cn−1an−1 + · · · + Cn−kan−k = f(n), n ≥ k.

2. Given a nonhomogeneous first-order relation Cnan + Cn−1an−1 = krn, n ≥ 1,
where r and k are nonzero constants,

• If rn is not a solution of the associated homogeneous relation, then a(p)n = Arn

for A a constant.
• If rn is a solution of the associated homogeneous relation, then a(p)n = Bnrn for
B a constant.

3. Given the nonhomogeneous second-order relation Cnan +Cn−1an−1 +Cn−2an−2 =
krn, n ≥ 2, where r and k are nonzero constants.

• If rn is not a solution of the associated homogeneous relation, then a(p)n = Arn

for A a constant.
• If a(h)n = c1rn + c2rn1 , for r �= r1, then a(p)n = Bnrn for B a constant.

• If a(h)n = c1rn + c2nrn, then a(p)n = Cn2rn for C a constant.

4. Given the kth-order nonhomogeneous recurrence relation Cnan +Cn−1an−1 + · · ·+
Cn−kan−k = f(n). If f(n) is a constant multiple of one of the forms in the first column
of Table 1, then the associated trial solution t(n) is the corresponding entry in the
second column of the table. [Here A,B,A0, A1, . . . , At, r, α are real constants.]

• If no summand of t(n) solves the associated homogeneous relation, then a(p)n =
t(n) is a particular solution.

• If a summand of t(n) solves the associated homogeneous relation, then multiply
t(n) by the smallest (positive integer) power of n — say ns — so that no sum-
mand of the adjusted trial solution nst(n) solves the associated homogeneous
relation. Then a(p)n = nst(n) is a particular solution.

• If f(n) is a sum of constant multiples of the forms in the first column of Table 1,
then (adjusted) trial solutions are formed for each summand using the first two
parts of Fact 4. Adding the resulting trial solutions then provides a particular
solution of the nonhomogeneous relation.
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Table 1 Trial particular solutions for Cnan + · · · + Cn−kan−k = h(n).

h(n) t(n)

c, a constant A

nt (t a positive integer) Atn
t +At−1n

t−1 + · · · +A1n+A0

rn Arn

sinαn A sinαn+B cosαn
cosαn A sinαn+B cosαn
ntrn rn(Atnt +At−1n

t−1 + · · · +A1n+A0)
rn sinαn rn(A sinαn+B cosαn)
rn cosαn rn(A sinαn+B cosαn)

Examples:

1. Consider the nonhomogeneous relation an + 4an−1 − 21an−2 = 5(4n), n ≥ 2. The
solution is an = a(h)n +a(p)n , where a(h)n is the solution of an+4an−1−21an−2 = 0, n ≥ 2.
So

a
(h)
n = c1(3)n + c2(−7)n, n ≥ 0.

From the third entry in Table 1 a(p)n = A(4n) for some constant A. Substituting this
into the given nonhomogeneous relation yields A(4n) + 4A(4n−1)− 21A(4n−2) = 5(4n).
Dividing through by 4n−2 gives 16A+ 16A− 21A = 80, or A = 80/11. Consequently,

an = c1(3)n + c2(−7)n + 80
114n, n ≥ 0.

If the initial conditions are a0 = 1 and a1 = 2, then c1 and c2 are found using 1 =
c1 + c2 + 80/11, 2 = 3c1 − 7c2 + 320/11, yielding

an = − 71
10 (3n) + 91

110 (−7)n + 80
11 (4n), n ≥ 0.

2. Suppose the given recurrence relation is an+ 4an−1 − 21an−2 = 8(3n), n ≥ 2. Then
it is still true that

a
(h)
n = c1(3n) + c2(−7)n, n ≥ 0,

where c1 and c2 are arbitrary constants. By the second part of Fact 3, a particular
solution is a(p)n = An3n. Substituting a(p)n gives An3n+4A(n−1)3n−1−21A(n−2)3n−2 =
8(3n). Dividing by 3n−2 produces 9An+ 12A(n− 1) − 21A(n− 2) = 72, so A = 12/5.
Thus

an = c1(3n) + c2(−7)n + 12
5 n3

n, n ≥ 0.

3. Tower of Hanoi: (See Example 1 of §2.2.4.) If an is the minimum number of moves
needed to transfer the n disks, then an satisfies the first-order nonhomogeneous relation

an = 2an−1 + 1, n ≥ 1,

where a0 = 0. Here a(h)n = c(2n) for an arbitrary constant c, and a(p)n = A, using entry 1
of Table 1. So A = 2A + 1 or A = −1. Hence an = c(2n) − 1 and 0 = a0 = c(20) − 1
implies c = 1, giving

an = 2n − 1, n ≥ 0.

4. How many regions are formed if n lines are drawn in the plane, in general position
(no two parallel and no three intersecting at a point)? If an denotes the number of
regions thus formed, then a1 = 2, a2 = 4, and a3 = 7 are easily determined. A general
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formula can be found by developing a recurrence relation for an. Namely, if line n+ 1
is added to the diagram with an regions formed by n lines, this new line intersects all
the other n lines. These intersection points partition line n + 1 into n + 1 segments,
each of which splits an existing region in two. As a result, an+1 = an + (n+ 1), n ≥ 1,
a first-order nonhomogeneous recurrence relation. Solving this relation with the initial
condition a1 = 1 produces an = 1

2 (n2 + n+ 2).

3.3.4 METHOD OF GENERATING FUNCTIONS

Generating functions (see §3.2.1) can be used to solve individual recurrence relations as
well as simultaneous systems of recurrence relations. This technique is analogous to the
use of Laplace transforms in solving systems of differential equations.

Facts:
1. To solve the kth-order recurrence relation Cn+kan+k + · · · + Cnan = f(n), n ≥ 0,
carry out the following steps:

• multiply both sides of the recurrence equation by xn+k and sum the result;
• take this new equation, rewrite it in terms of the generating function f(x) =∑∞

n=0 anx
n, and solve for f(x);

• expand the expression found for f(x) in terms of powers of x in order that the
coefficient an can be identified.

2. To solve a system of kth-order recurrence relations, carry out the following steps:
• multiply both sides of each recurrence equation by xn+k and sum the results;
• rewrite the system of equations in terms of the generating functions f(x), g(x), . . .

for an, bn, . . ., and solve for these generating functions;
• expand the expressions found for each generating function in terms of powers of x

in order that the coefficients an, bn, . . . can be identified.

Examples:
1. The nonhomogeneous first-order relation an+1 − 2an = 1, n ≥ 0, a0 = 0, arises in
the Tower of Hanoi problem (Example 3 of §3.3.3). Begin by applying the first step of
Fact 1:

an+1x
n+1 − 2anxn+1 = xn+1,

∞∑
n=0

an+1x
n+1 − 2

∞∑
n=0

anx
n+1 =

∞∑
n=0

xn+1.

Then apply the second step of Fact 1:
∞∑
n=0

an+1x
n+1 − 2x

∞∑
n=0

anx
n = x

∞∑
n=0

xn,

(f(x) − a0) − 2xf(x) = x
1−x ,

(f(x) − 0) − 2xf(x) = x
1−x .

Solving for f(x) gives

f(x) = x
(1−x)(1−2x) = 1

1−2x − 1
1−x =

∞∑
n=0

(2x)n −
∞∑
n=0

xn =
∞∑
n=0

(2n − 1)xn.

Since an is the coefficient of xn in f(x), an = 2n − 1, n ≥ 0.
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2. To solve the nonhomogeneous second-order relation an+2 − 2an+1 + an = 2n, n ≥ 0,
a0 = 1, a1 = 2, apply the first step of Fact 1:

an+2x
n+2 − 2an+1x

n+2 + anxn+2 = 2nxn+2,

∞∑
n=0

an+2x
n+2 − 2

∞∑
n=0

an+1x
n+2 +

∞∑
n=0

anx
n+2 =

∞∑
n=0

2nxn+2.

The second step of Fact 1 produces
∞∑
n=0

an+2x
n+2 − 2x

∞∑
n=0

an+1x
n+1 + x2

∞∑
n=0

anx
n = x2

∞∑
n=0

(2x)n,

[f(x) − a0 − a1x] − 2x[f(x) − a0] + x2f(x) = x2

1−2x ,

[f(x) − 1 − 2x] − 2x[f(x) − 1] + x2f(x) = x2

1−2x .

Solving for f(x) gives

f(x) = 1
1−2x =

∞∑
n=0

(2x)n =
∞∑
n=0

2nxn.

Thus an = 2n, n ≥ 0, is the solution of the given recurrence relation.

3. Fact 2 can be used to solve the system of recurrence relations
an+1 = 2an − bn + 2
bn+1 = −an + 2bn − 1

for n ≥ 0, with a0 = 0 and b0 = 1. Multiplying by xn+1 and summing yields
∞∑
n=0

an+1x
n+1 = 2x

∞∑
n=0

anx
n − x

∞∑
n=0

bnx
n + 2x

∞∑
n=0

xn

∞∑
n=0

bn+1x
n+1 = −x

∞∑
n=0

anx
n + 2x

∞∑
n=0

bnx
n − x

∞∑
n=0

xn.

These two equations can be rewritten in terms of the generating functions f(x) =∑∞
n=0 anx

n and g(x) =
∑∞
n=0 bnx

n as

f(x) − a0 = 2xf(x) − xg(x) + 2x 1
1−x

g(x) − b0 = −xf(x) + 2xg(x) − x 1
1−x .

Solving this system (with a0 = 0, b0 = 1) produces

f(x) = x(1−2x)
(1−x)2(1−3x) = −3/4

1−x + 1/2
(1−x)2 + 1/4

(1−3x)

= − 3
4

∞∑
n=0

xn + 1
2

∞∑
n=0

(−2
n

)
xn + 1

4

∞∑
n=0

(3x)n

= − 3
4

∞∑
n=0

xn + 1
2

∞∑
n=0

(
n+1
n

)
xn + 1

4

∞∑
n=0

3nxn

and
g(x) = 1−4x+2x2

(1−x)2(1−3x) = 3/4
1−x + 1/2

(1−x)2 + −1/4
(1−3x)

= 3
4

∞∑
n=0

xn + 1
2

∞∑
n=0

(
n+1
n

)
xn − 1

4

∞∑
n=0

3nxn.

It then follows that
an = − 3

4 + 1
2 (n+ 1) + 1

43n, n ≥ 0

bn = 3
4 + 1

2 (n+ 1) − 1
43n, n ≥ 0.
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3.3.5 DIVIDE-AND-CONQUER RELATIONS

Certain algorithms proceed by breaking up a given problem into subproblems of nearly
equal size; solutions to these subproblems are then combined to produce a solution
to the original problem. Analysis of such “divide-and-conquer” algorithms results in
special types of recurrence relations that can be solved exactly and asymptotically.

Definitions:

The time-complexity function f(n) for an algorithm gives the (maximum) number
of operations required to solve any instance of size n. The function f(n) is monotone
increasing if m < n⇒ f(m) ≤ f(n) where m and n are positive integers.

A recursive divide-and-conquer algorithm splits a given problem of size n = bk

into a subproblems of size n
b each. It requires (at most) h(n) operations to create the

subproblems and subsequently combine their solutions.

Let S = Sb be the set of integers {1, b, b2, . . .} and let Z+ be the set of positive integers.

If f(n) and g(n) are functions on Z+, then g dominates f on S, written f ∈ O(g)
on S, if there are positive constants A ∈ R, k ∈ Z+ such that |f(n)| ≤ A|g(n)| holds
for all n ∈ S with n ≥ k.

Facts:
1. The time-complexity function f(n) of a recursive divide-and-conquer algorithm is
defined for n ∈ S and satisfies the recurrence relation

f(1) = c,

f(n) = af(n/b) + h(n), for n = bk, k ≥ 1,

where a, b, c ∈ Z+ and b ≥ 2.
2. Solving f(n) = af(n/b) + c, f(1) = c:

• If a = 1: f(n) = c(logb n+1) for n ∈ S. Thus f ∈ O(logb n) on S. If, in addition,
f(n) is monotone increasing, then f ∈ O(logb n) on Z+.

• If a ≥ 2: f(n) = c(anlogb a − 1)/(a− 1) for n ∈ S. Thus f ∈ O(nlogb a) on S. If,
in addition, f(n) is monotone increasing, then f ∈ O(nlogb a) on Z+.

3. Let f(n) be any function satisfying the inequality relations
f(1) ≤ c,
f(n) ≤ af(n/b) + c, for n = bk, k ≥ 1,

where a, b, c ∈ Z+ and b ≥ 2.
• If a = 1: f ∈ O(logb n) on S. If, in addition, f(n) is monotone increasing, then
f ∈ O(logb n) on Z+.

• If a ≥ 2: f ∈ O(nlogb a) on S. If, in addition, f(n) is monotone increasing, then
f ∈ O(nlogb a) on Z+.

4. Solving for a monotone increasing f(n) where f(n) = af(n/b)+rnd (n = bk, k ≥ 1),
f(1) = c, where a, b, c, d ∈ Z+, b ≥ 2, and r is a positive real number:

• If a < bd: f ∈ O(nd) on Z+.
• If a = bd: f ∈ O(nd logb n) on Z+.
• If a > bd: f ∈ O(nlogb a) on Z+.

The same asymptotic results hold if inequalities ≤ replace equalities in the given recur-
rence relation.
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Examples:

1. If f(n) satisfies the recurrence relation f(n) = f(n2 ) + 3, n ∈ S2, f(1) = 3, then by
Fact 2 f(n) = 3(log2 n+ 1). Thus f ∈ O(log2 n) on S2.

2. If f(n) satisfies the recurrence relation f(n) = 4f(n3 ) + 7, n ∈ S3, f(1) = 7, then by
Fact 3 f(n) = 7(4nlog3 4 − 1)/3. Thus f ∈ O(nlog3 4) on S3.

3. Binary search: The binary search algorithm (§17.2.3) is a recursive procedure to
search for a specified value in an ordered list of n items. Its complexity function satisfies
f(n) = f(n2 ) + 2, n ∈ S2, f(1) = 2. Since the complexity function f(n) is monotone
increasing in the list size n, Fact 2 shows that f ∈ O(log2 n).

4. Merge sort: The merge sort algorithm (§17.4) is a recursive procedure for sorting
the n elements of a list. It repeatedly divides a given list into two nearly equal sublists,
sorts those sublists, and combines the sorted sublists. Its complexity function satisfies
f(n) = 2f(n2 ) + (n − 1), n ∈ S2, f(1) = 0. Since f(n) is monotone increasing and
satisfies the inequality relation f(n) ≤ 2f(n2 ) + n, Fact 5 gives f ∈ O(n log2 n).

5. Matrix multiplication: The Strassen algorithm is a recursive procedure for multi-
plying two n × n matrices (see §6.3.3). One version of this algorithm requires seven
multiplications of n2 × n

2 matrices and 15 additions of n2 × n
2 matrices. Consequently, its

complexity function satisfies f(n) = 7f(n2 ) + 15n2/4, n ∈ S2, f(1) = 1. From the third
part of Fact 5, f ∈ O(nlog2 7) on Z+. This algorithm requires approximately O(n2.81)
operations to multiply n× n matrices, compared to O(n3) for the standard method.

3.4 FINITE DIFFERENCES

The difference and antidifference operators are the discrete analogues of ordinary differ-
entiation and antidifferentiation. Difference methods can be used for curve-fitting and
for solving recurrence relations.

3.4.1 THE DIFFERENCE OPERATOR

The difference operator plays a role in combinatorial modeling analogous to that of the
derivative operator in continuous analysis.

Definitions:

Let f :N → R.

The difference operator ∆f(x) = f(x + 1) − f(x) is the discrete analogue of the
differentiation operator.

The kth difference of f is the operator ∆kf(x) = ∆k−1f(x+1)−∆k−1f(x), for k ≥ 1,
with ∆0f = f .

The shift operator E is defined by Ef(x) = f(x+ 1).

The harmonic sum Hn =
∑n
i=1

1
i is the discrete analogue of the natural logarithm

(§3.1.7).
Note: Most of the results stated in this subsection are also valid for functions on
non-discrete domains. The functional notation that is used for most of this subsection,
instead of the more usual subscript notation for sequences, makes the results easier to
read and helps underscore the parallels between discrete and ordinary calculus.
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Facts:
1. Linearity : ∆(αf + βg) = α∆f + β∆g, for all constants α and β.
2. Product rule: ∆(f(x)g(x)) = (Ef(x))∆g(x) + (∆f(x))g(x). This is analogous to
the derivative formula for the product of functions.
3. ∆mxn = 0, for m > n, and ∆nxn = n!.

4. ∆nf(x) =
n∑
k=0

(−1)k
(
n
k

)
f(x+ n− k).

5. f(x+ n) =
n∑
k=0

(
n
k

)
∆kf(x).

6. Leibniz’s theorem: ∆n(f(x)g(x)) =
n∑
k=0

(
n
k

)
∆kf(x)∆n−kg(x+ k).

7. Quotient rule: ∆
(
f(x)
g(x)

)
= g(x)∆f(x)−f(x)∆g(x)

g(x)g(x+1) .

8. The shift operator E satisfies ∆f = Ef − f , written equivalently as E = 1 + ∆.
9. Enf(x) = f(x+ n).
10. The equation ∆C(x) = 0 implies that C is periodic with period 1. Moreover, if
the domain is restricted to the integers (e.g., if C(n) is a sequence), then C is constant.

Examples:
1. If f(x) = x3 then ∆f(x) = (x+ 1)3 − x3 = 3x2 + 3x+ 1.
2. The following table gives formulas for the differences of some important functions.
In this table, the notation xn refers to the nth falling power of x (§3.4.2).

f(x) ∆f(x)(
x
n

) (
x
n−1

)
(x+ a)n n(x+ a)n−1

xn
(
n
1

)
xn−1 +

(
n
2

)
xn−2 + · · · + 1

ax (a− 1)ax

Hx x−1 = 1
x+1

sinx 2 sin( 1
2 ) cos(x+ 1

2 )

cosx −2 sin( 1
2 ) sin(x+ 1

2 )

3. ∆2f(x) = f(x+ 2) − 2f(x+ 1) + f(x), from Fact 4.
4. f(x+ 3) = f(x) + 3∆f(x) + 3∆2f(x) + ∆3f(x), from Fact 5.
5. The shift operator can be used to find the exponential generating function (§3.2.2)
for the sequence {ak}, where ak is a polynomial in variable k of degree n.

∞∑
k=0

akx
k

k! =
∞∑
k=0

Ek(a0)x
k

k! =
( ∞∑
k=0

xkEk

k!

)
a0

= exEa0 = ex(1+∆)a0 = exex∆a0

= ex
(
a0 + x∆a0

1! + x2∆2a0
2! + · · · + xn∆na0

n!

)
.

For example, if ak = k2 + 1 then
∞∑
k=0

(k2+1)xk

k! = ex(1 + x+ x2).
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3.4.2 CALCULUS OF DIFFERENCES: FALLING AND RISING POWERS

Falling powers provide a natural analogue between the calculus of finite sums and dif-
ferences and the calculus of integrals and derivatives. Stirling numbers provide a means
of expressing ordinary powers in terms of falling powers and vice versa.

Definitions:

The nth falling power of x, written xn, is the discrete analogue of exponentiation
and is defined by

xn = x(x− 1)(x− 2) . . . (x− n+ 1)

x−n =
1

(x+ 1)(x+ 2) . . . (x+ n)
x0 = 1.

The nth rising power of x, written xn, is defined by
xn = x(x+ 1)(x+ 2) . . . (x+ n− 1),

x−n =
1

(x− n)(x− n+ 1) . . . (x− 1)
,

x0 = 1.

Facts:
1. Conversion between falling and rising powers:

xn = (−1)n(−x)n = (x− n+ 1)n = 1

(x+1)−n
,

xn = (−1)n(−x)n = (x+ n− 1)n = 1

(x−1)
−n ,

x−n = 1

(x+1)n ,

x−n = 1
(x−1)n .

2. Laws of exponents: xm+n = xm(x−m)n ,

xm+n = xm(x+m)n .

3. Binomial theorem: (x+ y)n =
(
n
0

)
xn +

(
n
1

)
xn−1y1 + · · · +

(
n
n

)
yn .

4. The action of the difference operator on falling powers is analogous to the action of
the derivative on ordinary powers: ∆xn = nxn−1 .
5. There is no chain rule for differences, but the binomial theorem implies the rule

∆(x+ a)n = n(x+ a)n−1 .

6. Newton’s theorem: If f(x) is a polynomial of degree n, then

f(x) =
n∑
k=0

∆kf(0)
k! xk .

This is an analogue of Maclaurin’s theorem.
7. If f(x) = xn then ∆kf(0) =

{
n
k

}
· k!.

8. Falling powers can be expressed in terms of ordinary powers using Stirling cycle
numbers (§2.5.2):

xn =
n∑
k=1

[
n
k

]
(−1)n−kxk.
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9. Rising powers can be expressed in terms of ordinary powers using Stirling cycle
numbers (§2.5.2):

xn =
n∑
k=1

[
n
k

]
xk.

10. Ordinary powers can be expressed in terms of falling or rising powers using Stirling
subset numbers (§2.5.2):

xn =
n∑
k=1

{
n
k

}
xk =

n∑
k=1

{
n
k

}
(−1)n−kxk.

Examples:

1. Fact 8 and Table 4 of §2.5.2 give

x0 = x0,

x1 = x1,

x2 = x2 − x1,

x3 = x3 − 3x2 + 2x1,

x4 = x4 − 6x3 + 11x2 − 6x1.

2. Fact 10 and Table 5 of §2.5.2 give

x0 = x0 ,

x1 = x1 ,

x2 = x2 + x1 ,

x3 = x3 + 3x2 + x1 ,

x4 = x4 + 6x3 + 7x2 + x1 .

3.4.3 DIFFERENCE SEQUENCES AND DIFFERENCE TABLES

New sequences can be obtained from a given sequence by repeatedly applying the dif-
ference operator.

Definitions:

The difference sequence for the sequence A = { aj | j = 0, 1, . . . } is the sequence
∆A = { aj+1 − aj | j = 0, 1, . . . }.

The kth difference sequence for f :N → R is given by ∆kf(0),∆kf(1),∆kf(2), . . . .

The difference table for f :N → R is the table Tf whose kth row is the kth difference
sequence for f . That is, Tf [k, l] = ∆kf(l) = ∆k−1f(l + 1) − ∆k−1f(l).

Facts:

1. The leftmost column of a difference table completely determines the entire table,
via Newton’s theorem (Fact 6, §3.4.2).

2. The difference table of an nth degree polynomial consists of n + 1 nonzero rows
followed by all zero rows.
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Examples:

1. If A = 0, 1, 4, 9, 16, 25, . . . is the sequence of squares of integers, then its difference
sequence is ∆A = 1, 3, 5, 7, 9, . . . . Observe that ∆(x2) = 2x+ 1.

2. The difference table for x3 is given by

0 1 2 3 4 5 · · ·
∆0x3 = x3 0 0 0 6 24 60 · · ·
∆1x3 = 3x2 0 0 6 18 36 · · ·
∆2x3 = 6x1 0 6 12 18 · · ·
∆3x3 = 6 6 6 6 · · ·
∆4x3 = 0 0 0 · · ·

3. The difference table for x3 is given by

0 1 2 3 4 5 · · ·
∆0x3 = x3 0 1 8 27 64 125 · · ·
∆1x3 = 3x2 + 3x+ 1 1 7 19 37 61 · · ·
∆2x3 = 6x+ 6 6 12 18 24 · · ·
∆3x3 = 6 6 6 6 · · ·
∆4x3 = 0 0 0 · · ·

4. The difference table for 3x is given by

0 1 2 3 4 5 · · ·
∆03x = 3x 1 3 9 27 81 243 . . .

∆13x = 2 · 3x 2 6 18 54 162 . . .

∆23x = 4 · 3x 4 12 36 108 . . .

∆33x = 8 · 3x 8 24 72 . . .

∆43x = 16 · 3x 16 48 . . .
...

...
∆k3x = 2k3x

5. Application to curve-fitting: Find the polynomial p(x) of smallest degree that
passes through the points: (0, 5), (1, 5), (2, 3), (3, 5), (4, 17), (5, 45). The difference table
for the sequence 5, 5, 3, 5, 17, 45 is

5 5 3 5 17 45 . . .
0 -2 2 12 28 . . .

-2 4 10 16 . . .
6 6 6 . . .
0 0 . . .

Newton’s theorem shows that the polynomial of smallest degree is p(x) = 5−x2 +x3 =
x3 − 4x2 + 3x+ 5.
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3.4.4 DIFFERENCE EQUATIONS

Difference equations are analogous to differential equations and many of the techniques
are as fully developed. Difference equations provide a way to solve recurrence relations.

Definitions:

A difference equation is an equation involving the difference operator and/or higher-
order differences of an unknown function.

An antidifference of the function f is any function g such that ∆g = f . The notation
∆−1f denotes any such function.

Facts:

1. Any recurrence relation (§3.3) can be expressed as a difference equation, and vice
versa, by using Facts 4 and 5 of §3.4.1.

2. The solution to a recurrence relation can sometimes be easily obtained by converting
it to a difference equation and applying difference methods.

Examples:

1. To find an antidifference of 10·3x, use Table 1 (§3.4.1): ∆−1(10·3x) = 5∆−1(2·3x) =
5 · 3x + C. (Also see Table 1 of §3.5.3.)

2. To find an antidifference of 3x, first express x as x1 and then use Table 1 (§3.4.1):
∆−13x = 3∆−1x1 = 3

2x
2 + C = 3

2x(x− 1) + C.

3. To find an antidifference of x2, express x2 as x2 + x1 and then use Table 1 (§3.4.1):
∆−1x2 = ∆−1(x2 + x1) = ∆−1x2 + ∆−1x1 = 1

3x
3 + 1

2x
2 + C = 1

3x(x − 1)(x − 2) +
1
2x(x− 1) + C.

4. The following are examples of difference equations:

∆3f(x) + x4∆2f(x) − f(x) = 0,
∆3f(x) + f(x) = x2.

5. To solve the recurrence relation an+1 = an + 5n, n ≥ 0, a0 = 2, first note that
∆an = 5n. Thus an = ∆−15n = 1

4 (5n) + C. The initial condition a0 = 2 now implies
that an = 1

4 (5n + 7).

6. To solve the equation an+1 = (nan + n)/(n + 1), n ≥ 1, the recurrence relation is
first rewritten as (n + 1)an+1 − nan = n, which is equivalent to ∆(nan) = n. Thus
nan = ∆−1n = 1

2n
2 + C, which implies that an = 1

2 (n− 1) + C( 1
n ).

7. To solve an = 2an−1 − an−2 + 2n−2 + n − 2, n ≥ 2, with a0 = 4, a1 = 5, the
recurrence relation is rewritten as an+2−2an+1 +an = 2n+n, n ≥ 0. Now, by applying
Fact 4 of §3.4.1, the left-hand side may be replaced by ∆2an. If the antidifference
operator is applied twice to the resulting difference equation and the initial conditions
are substituted, the solution obtained is

an = 2n + 1
6n

3 + c1n+ c2 = 2n + 1
6n(n− 1)(n− 2) + 3.

c© 2000 by CRC Press LLC



3.5 FINITE SUMS AND SUMMATION
Finite sums arise frequently in combinatorial mathematics and in the analysis of running
times of algorithms. There are a few basic rules for transforming sums into possibly
more tractable equivalent forms, and there is a calculus for evaluating these standard
forms.

3.5.1 SIGMA NOTATION

A complex form of symbolic representation of discrete sums using the uppercase Greek
letter Σ (sigma) was introduced by Joseph Fourier in 1820 and has evolved into several
variations.

Definitions:

The sigma expression
∑b
i=a f(i) has the value f(a) + f(a+ 1) + · · ·+ f(b− 1) + f(b)

if a ≤ b (a, b ∈ Z), and 0 otherwise. In this expression, i is the index of summation
or summation variable, which ranges from the lower limit a to the upper limit b.
The interval [a, b] is the interval of summation, and f(i) is a term or summand of
the summation.

A sigma expression Sn =
∑n
i=0 f(i) is in standardized form if the lower limit is zero

and the upper limit is an integer-valued expression.

A sigma expression
∑
k∈K g(k) over the set K has as its value the sum of all the

values g(k), where k ∈ K.

A closed form for a sigma expression with an indefinite number of terms is an algebraic
expression with a fixed number of terms, whose value equals the sum.

A partial sum of the (standardized) sigma expression Sn =
∑n
i=0 f(i) is the sigma

expression Sk =
∑k
i=0 f(i), where 0 ≤ k ≤ n.

An iterated sum or multiple sum is an expression with two or more sigmas, as exem-
plified by the double sum

∑d
i=c

∑b
j=a f(i, j). Evaluation proceeds from the innermost

sigma outward.

A lower or upper limit for an inner sum of an iterated sum is dependent if it depends
on an outer variable. Otherwise, that limit is independent.

Examples:

1. The sum f(1) + f(2) + f(3) + f(4) + f(5) may be represented as
∑5
i=1 f(i).

2. Sometimes the summand is written as an expression, such as
∑50
n=1(n

2 + n), which
means the same as

∑50
n=1 f(n), where f(n) = n2 + n. Brackets or parentheses can be

used to distinguish what is in the summand of such an “anonymous function” from
whatever is written to the immediate right of the sigma expression. They may be
omitted when such a summand is very simple.

3. Sometimes the property defining the indexing set is written underneath the Σ, as in
the expressions

∑
1≤k≤n ak or

∑
k∈K bk.

4. The right side of the equation
∑n
j=0 x

j = xn+1−1
x−1 is a closed form for the sigma

expression on the left side.
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5. The operational meaning of the multiple sum with independent limits
∑3
i=1

∑4
j=2

i
j

is first to expand the inner sum, obtaining the single sum
∑3
i=1

[
i
2 + i

3 + i
4

]
. Expansion

of the outer sum then yields
[
1
2 + 1

3 + 1
4

]
+

[
2
2 + 2

3 + 2
4

]
+

[
3
2 + 3

3 + 3
4

]
= 13

2 .

6. The multiple sum with dependent limits
∑3
i=1

∑4
j=i

i
j is evaluated by first expand-

ing the inner sum, obtaining
[
1
1 + 1

2 + 1
3 + 1

4

]
+

[
2
2 + 2

3 + 2
4

]
+

[
3
3 + 3

4

]
= 6.

3.5.2 ELEMENTARY TRANSFORMATION RULES FOR SUMS

Sums can be transformed using a few simple rules. A well-chosen sequence of transfor-
mations often simplifies evaluation.

Facts:

1. Distributivity rule:
∑
k∈K

cak = c
∑
k∈K

ak, for c a constant.

2. Associativity rule:
∑
k∈K

(ak + bk) =
∑
k∈K

ak +
∑
k∈K

bk.

3. Rearrangement rule:
∑
k∈K

ak =
∑
k∈K

aρ(k), where ρ is a permutation of the integers

in K.

4. Telescoping for sequences: For any sequence { aj | j = 0, 1, . . . },
n∑
i=m

(ai+1 − ai) =

an+1 − am.

5. Telescoping for functions: For any function f :N → R,
n∑
i=m

∆f(i) = f(n+1)−f(m).

6. Perturbation method: Given a standardized sum Sn =
∑n
i=0 f(i), form the equation

n∑
i=0

f(i) + f(n+ 1) = f(0) +
n+1∑
i=1

f(i) = f(0) +
n∑
i=0

f(i+ 1).

Algebraic manipulation often leads to a closed form for Sn.

7. Interchanging independent indices of a double sum: When the lower and upper
limits of the inner variable of a double sum are independent of the outer variable, the
order of summation can be changed, simply by swapping the inner sigma, limits and
all, with the outer sigma. That is,

d∑
i=c

b∑
j=a

f(i, j) =
b∑
j=a

d∑
i=c

f(i, j).

8. Interchanging dependent indices of a double sum: When either the lower or upper
limit of the inner variable j of a double sum of an expression f(i, j) is dependent on the
outer variable i, the order of summation can still be changed by swapping the inner sum
with the outer sum. However, the limits of the new inner variable i must be written
as functions of the new outer variable j so that the entire set of pairs (i, j) over which
f(i, j) is summed is the same as before. One particular case of interest is the interchange

n∑
i=1

n∑
j=i

f(i, j) =
n∑
j=1

j∑
i=1

f(i, j).

Examples:

1. The following summation can be evaluated using Fact 4 (telescoping for sequences):
n∑
i=1

1
i(i+1) = −

n∑
i=1

(
1
i+1 − 1

i

)
= 1 − 1

n+1 .
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2. Evaluate Sn =
∑n
i=0 x

i, using the perturbation method.
n∑
i=0

xi + xn+1 = x0 +
n+1∑
i=1

xi = 1 + x
n+1∑
i=1

xi−1,

Sn + xn+1 = 1 + x
n∑
i=0

xi = 1 + xSn,

giving Sn = xn+1−1
x−1 .

3. Evaluate Sn =
∑n
i=0 i2

i, using the perturbation method.
n∑
i=0

i2i + (n+ 1)2n+1 = 0 · 20 +
n+1∑
i=1

i2i =
n∑
i=0

(i+ 1)2i+1,

Sn + (n+ 1)2n+1 = 2
n∑
i=0

i2i + 2
n∑
i=0

2i = 2Sn + 2(2n+1 − 1),

giving Sn = (n+ 1)2n+1 − 2(2n+1 − 1) = (n− 1)2n+1 + 2.

4. Interchange independent indices of a double sum:
3∑
i=1

4∑
j=2

i
j =

4∑
j=2

3∑
i=1

i
j =

4∑
j=2

[
1
j + 2

j + 3
j

]
=

4∑
j=2

6
j = 6

4∑
j=2

1
j = 6

[
1
2 + 1

3 + 1
4

]
= 13

2 .

5. Interchange dependent indices of a double sum:
3∑
i=1

3∑
j=i

i
j =

3∑
j=1

j∑
i=1

i
j =

3∑
j=1

1
j

j∑
i=1

i = 1
1 · 1 + 1

2 · 3 + 1
3 · 6 = 9

2 .

3.5.3 ANTIDIFFERENCES AND SUMMATION FORMULAS

Some standard combinatorial functions analogous to polynomials and exponential func-
tions facilitate the development of a calculus of finite differences, analogous to the
differential calculus of continuous mathematics. The fundamental theorem of discrete
calculus is useful in deriving a number of summation formulas.

Definitions:

An antidifference of the function f is any function g such that ∆g = f , where ∆ is
the difference operator (§3.4.1). The notation ∆−1f denotes any such function.

The indefinite sum of the function f is the infinite family of all antidifferences of f .
The notation

∑
f(x)δx + c is sometimes used for the indefinite sum to emphasize the

analogy with integration.

Facts:

1. Fundamental theorem of discrete calculus:
b∑
k=a

f(k) = ∆−1f(k)
∣∣∣b+1

a
= ∆−1f(b+ 1) − ∆−1f(a).

Note: The upper evaluation point is one more than the upper limit of the sum.

2. Linearity : ∆−1(αf + βg) = α∆−1f + β∆−1g, for any constants α and β.

3. Summation by parts:
b∑
i=a

f(i)∆g(i) = f(b+ 1)g(b+ 1) − f(a)g(a) −
b∑
i=a

g(i+ 1)∆f(i).

This result, which generalizes Fact 5 of §3.5.2, is a direct analogue of integration by
parts in continuous analysis.
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4. Abel’s transformation:
n∑
k=1

f(k)g(k) = f(n+ 1)
n∑
k=1

g(k) −
n∑
k=1

(
∆f(k)

k∑
r=1
g(r)

)
.

5. The following table gives the antidifferences of selected functions. In this table, Hx
indicates the harmonic sum (§3.4.1), xn is the nth falling power of x (§3.4.2), and

{
n
k

}
is a Stirling subset number (§2.5.2).

f(x) ∆−1f(x) f(x) ∆−1f(x)

(
x
n

) (
x
n+1

)
(x+ a)n (x+a)

n+1

n+1 , n �= −1

(x+ a)−1 Hx+a ax ax

(a−1) , a �= 1

ax ax

(a−1) , a �= 1 xax ax

(a−1)

(
x− a

a−1

)
, a �= 1

xn
n∑
k=1

{n
k}
k+1x

k+1 (−1)x 1
2 (−1)x+1

sinx −1
2 sin( 1

2 )
cos(x− 1

2 ) cosx 1
2 sin( 1

2 )
sin(x− 1

2 )

6. The following table gives finite sums of selected functions.

summation formula summation formula

∑n
k=1 k

m (n+1)
m+1

m+1 , m �= −1
∑n
k=1 k

m
m∑
j=1

{m
j }(n+1)

j+1

j+1∑n
k=0 a

k an+1−1
a−1 , a �= 1

∑n
k=1 ka

k (a−1)(n+1)an+1−an+2+a
(a−1)2 , a �= 1

∑n
k=1 sin k sin( n+1

2 ) sin( n
2 )

sin( 1
2 )

∑n
k=1 cos k cos( n+1

2 ) sin( n
2 )

sin( 1
2 )

Examples:

1.
n∑
k=1

k3 =
n∑
k=1

(k1 + 3k2 + k3) =
(
k2

2 + k3 + k4

4

) ∣∣∣n+1

1
= n2(n+1)2

4 .

2. To evaluate
n∑
k=1

k(k + 2)(k + 3), first rewrite its summand:

n∑
k=1

k(k + 2)(k + 3) = ∆−1[(k + 1 − 1)(k + 2)(k + 3)]
∣∣∣n+1

1

=
[
∆−1(k + 3)3 − ∆−1(k + 3)2

]∣∣∣n+1

1

=
[

(k+3)4

4 − (k+3)3

3

] ∣∣∣n+1

1

= (n+4)4

4 − (n+4)3

3 + 2

= (n+4)(n+3)(n+2)(3n−1)+24
12 .

3.
n∑
k=1

k3k = ∆−1(k3k)
∣∣∣n+1

1
= 3k

[
k
2 − 3

4

] ∣∣∣n+1

1
= (2n−1)3n+1+3

4 .
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4. Summation by parts can be used to calculate
∑n
j=0 jx

j , using f(j) = j and ∆g(j) =
xj . Thus g(j) = xj/(x− 1), and Fact 3 yields

n∑
j=0

jxj = (n+1)xn+1

(x−1) − 0 −
n∑
j=0

xj+1

(x−1) = (n+1)xn+1

(x−1) − x
x−1

n∑
j=0

xj

= (n+1)xn+1

(x−1) − x
x−1

xn+1−1
(x−1) = (n+1)(x−1)xn+1−xn+2+x

(x−1)2 .

5. Summation by parts also yields an antiderivative of x3x:

∆−1(x3x) = ∆−1
(
x∆( 1

2 · 3x)
)

= 1
2x3

x − ∆−1( 1
2 · 3x+1 · 1) = 3x

(
x
2 − 3

4

)
.

3.5.4 STANDARD SUMS

Many useful summation formulas are derivable by combinations of elementary manipu-
lation and finite calculus. Such sums can be expressed in various ways, using different
combinatorial coefficients. (See §3.1.8.)

Definition:

The power sum Sk(n) =
∑n
j=1 j

k = 1k + 2k + 3k + · · · + nk is the sum of the kth
powers of the first n positive integers.

Facts:
1. Sk(n) is a polynomial in n of degree k+ 1 with leading coefficient 1

k+1 . The contin-

uous analogue of this fact is the familiar
∫ b
a
xkdx = 1

k+1 (bk+1 − ak+1).

2. The power sum Sk(n) can be expressed using the Bernoulli polynomials (§3.1.4) as

Sk(n) = 1
k+1 [Bk+1(n+ 1) −Bk+1(0)].

3. When Sk(n) is expressed in terms of binomial coefficients with the second entry
fixed at k + 1, the coefficients are the Eulerian numbers (§3.1.5).

Sk(n) =
k−1∑
i=0

E(k, i)
(
n+i+1
k+1

)
.

4. When Sk(n) is expressed in terms of binomial coefficients with the first entry fixed
at n+ 1, the coefficients are products of factorials and Stirling subset numbers (§2.5.2).

Sk(n) =
k∑
i=1

i!
{
k
i

}(
n+1
i+1

)
.

5. Formulas for the power sums described in Facts 1, 3, and 4 are given in Tables 1-3,
respectively, for small values of k.

Examples:
1. To find the third power sum S3(n) =

∑n
j=1 j

3 via Fact 2, use the Bernoulli polyno-
mial B4(x) = x4 − 2x3 + x2 − 1

30 from Table 5 of §3.1.4. Thus

S3(n) = 1
4

[
B4(x)

]∣∣∣n+1

0
= (n+1)4−2(n+1)3+(n+1)2

4 = n2(n+1)2

4 .
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Table 1 Sums of powers of integers.

summation formula

∑n
j=1 j

1
2n(n+ 1)∑n

j=1 j
2 1

6n(n+ 1)(2n+ 1)∑n
j=1 j

3 1
4n

2(n+ 1)2∑n
j=1 j

4 1
30n(n+ 1)(2n+ 1)(3n2 + 3n− 1)∑n

j=1 j
5 1

12n
2(n+ 1)2(2n2 + 2n− 1)∑n

j=1 j
6 1

42n(n+ 1)(2n+ 1)(3n4 + 6n3 − n2 − 3n+ 1)∑n
j=1 j

7 1
24n

2(n+ 1)2(3n4 + 6n3 − n2 − 4n+ 2)∑n
j=1 j

8 1
90n(n+ 1)(2n+ 1)(5n6 + 15n5 + 5n4 − 15n3 − n2 + 9n− 3)∑n

j=1 j
9 1

20n
2(n+ 1)2(2n6 + 6n5 + n4 − 8n3 + n2 + 6n− 3)

Table 2 Sums of powers and Eulerian numbers.

summation formula

∑n
j=1 j

(
n+1

2

)
∑n
j=1 j

2
(
n+1

3

)
+

(
n+2

3

)
∑n
j=1 j

3
(
n+1

4

)
+ 4

(
n+2

4

)
+

(
n+3

4

)
∑n
j=1 j

4
(
n+1

5

)
+ 11

(
n+2

5

)
+ 11

(
n+3

5

)
+

(
n+4

5

)
∑n
j=1 j

5
(
n+1

6

)
+ 26

(
n+2

6

)
+ 66

(
n+3

6

)
+ 26

(
n+4

6

)
+

(
n+5

6

)

Table 3 Sums of powers and Stirling subset numbers.

summation formula

∑n
j=1 j

(
n+1

2

)
∑n
j=1 j

2
(
n+1

2

)
+ 2

(
n+1

3

)
∑n
j=1 j

3
(
n+1

2

)
+ 6

(
n+1

3

)
+ 6

(
n+1

4

)
∑n
j=1 j

4
(
n+1

2

)
+ 14

(
n+1

3

)
+ 36

(
n+1

4

)
+ 24

(
n+1

5

)
∑n
j=1 j

5
(
n+1

2

)
+ 30

(
n+1

3

)
+ 150

(
n+1

4

)
+ 240

(
n+1

5

)
+ 120

(
n+1

6

)
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2. Power sums can be found using antidifferences and Stirling numbers of both types.
For example, to find S3(n) =

∑n
x=1 x

3 first compute

∆−1x3 = ∆−1
({

3
1

}
x1 +

{
3
2

}
x2 +

{
3
3

}
x3

)
= x2

2 + x3 + x4

4 .

Each term xm is then expressed in terms of ordinary powers of x
x2 =

[
2
2

]
x2 −

[
2
1

]
x1 = x2 − x,

x3 =
[
3
3

]
x3 −

[
3
2

]
x2 +

[
3
1

]
x1 = x3 − 3x2 + 2x,

x4 =
[
4
4

]
x4 −

[
4
3

]
x3 +

[
4
2

]
x2 −

[
4
1

]
x1 = x4 − 6x3 + 11x2 − 6x,

so ∆−1x3 = 1
2 (x2 − x) + (x3 − 3x2 + 2x) + 1

4 (x4 − 6x3 + 11x2 − 6x) = 1
4 (x4 − 2x3 + x2).

Evaluating this antidifference between the limits x = 1 and x = n + 1 gives S3(n) =
1
4n

2(n+ 1)2. See §3.5.3, Fact 1.

3.6 ASYMPTOTICS OF SEQUENCES

An exact formula for the terms of a sequence may be unwieldy. For example, it is diffi-
cult to estimate the magnitude of the central binomial coefficient

(
2n
n

)
= (2n)!

(n!)2 from the
definition of the factorial function alone. On the other hand, Stirling’s approximation
formula (§3.6.2) leads to the asymptotic estimate 4n

√
πn

. In applying asymptotic analy-
sis, various “rules of thumb” help bypass tedious derivations. In practice, these rules
almost always lead to correct results that can be proved by more rigorous methods. In
the following discussions of asymptotic properties, the parameter tending to infinity is
denoted by n. Both the subscripted notation an and the functional notation f(n) are
used to denote a sequence. The notation f(n) ∼ g(n) (f is asymptotic to g) means that
f(n) �= 0 for sufficiently large n and limn→∞

g(n)
f(n) = 1.

3.6.1 APPROXIMATE SOLUTIONS TO RECURRENCES

Although recurrences are a natural source of sequences, they often yield only crude
asymptotic information. As a general rule, it helps to derive a summation or a generating
function from the recurrence before obtaining asymptotic estimates.

Facts:

1. Rule of thumb: Suppose that a recurrence for a sequence an can be transformed
into a recurrence for a related sequence bn, so that the transformed sequence is approx-
imately homogeneous and linear with constant coefficients (§3.3). Suppose also that ρ
is the largest positive root of the characteristic equation for the homogeneous constant
coefficient recurrence. Then it is probably true that bn+1

bn
∼ ρ; i.e., bn grows roughly

like ρn.

2. Nonlinear recurrences are not covered by Fact 1.

3. Recurrences without fixed degree such as divide-and conquer recurrences (§3.3.5),
in which the difference between the largest and smallest subscripts is unbounded, are
not covered by Fact 1. See [GrKn90, Ch. 2] for appropriate techniques.
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Examples:

1. Consider the recurrence Dn+1 = n(Dn+Dn−1) for n ≥ 1, and define dn = Dn

n! . Then
dn+1 = n

n+1dn + 1
n+1dn−1, which is quite close to the constant coefficient recurrence

d̂n+1 = d̂n. Since the characteristic root for this latter approximate recurrence is ρ = 1,
Fact 1 suggests that dn+1

dn
∼ 1, which implies that dn is close to constant. Thus, we

expect the original variable Dn to grow like n!. Indeed, if the initial conditions are
D0 = D1 = 1, then Dn = n!. With initial conditions D0 = 1, D1 = 0, then Dn is the
number of derangements of n objects (§2.4.2), in which case Dn is the closest integer
to n!

e for n ≥ 1.

2. The accuracy of Example 1 is unusual. By way of contrast, the number In of
involutions of an n-set (§2.8.1) satisfies the recurrence In+1 = In+nIn−1 for n ≥ 1 with
I0 = I1 = 1. By defining in = In/(n!)1/2, then

in+1 = in
(n+1)1/2 + in−1

(1+1/n)1/2 ,

which is nearly the same as the constant coefficient recurrence în+1 = în−1. The charac-
teristic equation ρ2 = 1 has roots ±1, so Fact 1 suggests that in is nearly constant and
hence that In grows like

√
n!. The approximation in this case is not so good, because

In/
√
n! ∼ e

√
n/(8πen)1/4, which is not a constant.

3.6.2 ANALYTIC METHODS FOR DERIVING ASYMPTOTIC ESTIMATES

Concepts and methods from continuous mathematics can be useful in analyzing the
asymptotic behavior of sequences.

Definitions:

The radius of convergence of the series
∑
anx

n is the number r such that the series
converges for all |x| < r and diverges for all |x| > r, where 0 ≤ r ≤ ∞.

The gamma function is the function Γ(x) =
∫ ∞
0
tx−1e−t dt.

Facts:

1. Stirling’s approximation: n! ∼
√

2πn(ne )
n.

2. Γ(x+ 1) = xΓ(x), Γ(n+ 1) = n!, and Γ(1
2 ) =

√
π.

3. The radius of convergence of
∑
anx

n is given by 1
r = lim supn→∞ |an|1/n.

4. From Fact 3, it follows that |an| tends to behave like r−n. Most analytic methods
are refinements of this idea.

5. The behavior of f(z) near singularities on its circle of convergence determines the
dominant asymptotic behavior of the coefficients of f . Estimates are often based on
Cauchy’s integral formula: an =

∮
f(z)z−n−1 dz.

6. Rule of thumb: Consider the set of values of x for which f(x) =
∑
anx

n is either
infinite or undefined, or involves computing a nonintegral power of 0. The absolute
value of the least such x is normally the radius of convergence of f(x). If there is no
such x, then r = ∞.

7. Rule of thumb: Suppose that 0 < r <∞ is the radius of convergence of f(x), that
g(x) has a larger radius of convergence, and that

f(x) − g(x) ∼ A
(
− ln(1 − x

r )
)b(1 − x

r

)c as x→ r−

for some constants A, b, and c, where it is not the case that both b = 0 and c is a
nonnegative integer. (Often g(x) = 0.) Then it is probably true that
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an ∼
{
A

(
n−c−1
n

)
(lnn)br−n, if c �= 0,

Ab(lnn)b−1/n, if c = 0.

8. Rule of thumb: Let a(x) = d ln f(x)
d ln x and b(x) = da(x)

d ln x . Suppose that a(rn) = n has
a solution with 0 < rn < r and that b(rn) ∈ o(n2). Then it is probably true that

an ∼ f(rn)r−nn√
2πb(rn)

.

Examples:

1. The number Dn of derangements has the exponential generating function f(x) =∑
Dn

xn

n! = e−x

1−x . Since evaluation for x = 1 involves division by 0, it follows that r = 1.

Since e−x

1−x ∼ e−1

1−x as x → 1−, take g(x) = 0, A = e−1, b = 0, and c = −1. Fact 7
suggests that Dn ∼ n!

e , which is correct.

2. The number bn of left-right binary n-leaved trees has the generating function f(x) =
1
2

(
1 −

√
1 − 4x

)
. (See §9.3.3, Facts 1 and 7.) In this case r = 1

4 since f( 1
4 ) requires

computing a fractional power of 0. Take g(x) = 1
2 , A = 1

2 , b = 0, and c = 1
2 to suspect

from Fact 7 that

bn ∼ −1
2

(
n− 3

2

n

)
4n =

−Γ(n− 1
2 )4n

2Γ(n+ 1)Γ(− 1
2 )

∼ 4n−1

√
πn3

,

which is valid. (Facts 1 and 2 have also been used.) This estimate converges rather
rapidly — by the time n = 40, the estimate is less than 0.1% below b40.

3. Since
∑
xn

n! = ex, n! can be estimated by taking a(x) = b(x) = x and rn = n in

Fact 8. This gives
1
n!

∼ enn−n√
2πn

, which is Stirling’s asymptotic formula.

4. The number Bn of partitions of an n-set (§2.5.2) satisfies
∑
Bn

xn

n! = exp(ex − 1).
In this case, r = ∞. Since a(x) = xex and b(x) = x(x + 1)ex, it follows that rn is the
solution to rn exp(rn) = n and that b(rn) = (rn + 1)n ∼ nrn ∈ o(n2). Fact 8 suggests

Bn ∼ n! exp(ern − 1)
rnn

√
2πnrn

=
n! exp(n/rn − 1)
rnn

√
2πnrn

.

This estimate is correct, though the estimate converges quite slowly, as shown in this
table:

n 10 20 100 200

estimate 1.49 × 105 6.33 × 1013 5.44 × 10115 7.01 × 10275

Bn 1.16 × 105 5.17 × 1013 4.76 × 10115 6.25 × 10275

ratio 1.29 1.22 1.14 1.12

Improved asymptotic estimates exist.

5. Analytic methods can sometimes be used to obtain asymptotics when only a func-
tional equation is available. For example, if an is the number of n-leaved rooted trees in
which each non-leaf node has exactly two children (with left and right not distinguished),
the generating function for an satisfies f(x) = x+

(
f(x)2 + f(x2)

)
/2, from which it can

be deduced that an ∼ Cn−3/2r−n, where r = 0.4026975 . . . and C = 0.31877 . . . can
easily be computed to any desired degree of accuracy. See [BeWi91, p. 394] for more
information.
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3.6.3 ASYMPTOTIC ESTIMATES OF MULTIPLY-INDEXED SEQUENCES

Asymptotic estimates for multiply-indexed sequences are considerably more difficult to
obtain. To begin with, the meaning of a formula such as(

n

k

)
∼ 2n exp(−(n− 2k)2/(2n))√

πn/2
must be carefully stated, because both n and k are tending to ∞, and the formula is
valid only when this happens in such a way that |2n− k| ∈ o(n3/4).

Facts:

1. Very little is known about how to obtain asymptotic estimates from multiply-indexed
recurrences.

2. Most estimates of multiple summations are based on summing over one index at a
time.

3. A few analytic results are available in the research literature. (See [Od95].)

3.7 MECHANICAL SUMMATION PROCEDURES

This section describes mechanical procedures that have been developed to evaluate
sums of terms involving binomial coefficients and related factors. These procedures can
not only be used to find explicit formulas for many sums, but can also be used to show
that no simple closed formulas exist for certain sums. The invention of these mechanical
procedures has been a surprising development in combinatorics. The material presented
here is mostly adapted from [PeWiZe96], a comprehensive source for material on this
topic.

3.7.1 HYPERGEOMETRIC SERIES

Definitions:

A geometric series is a series of the form
∑∞
k=0 ak where the ratio between two

consecutive terms is a constant, i.e., where the ratio ak+1
ak

is a constant for all k =
0, 1, 2, . . . .

A hypergeometric series is a series of the form
∑∞
k=0 tk where t0 = 1 and the ratio

of two consecutive terms is a rational function of the summation index k, i.e., the ratio
tk+1
tk

= P (k)
Q(k) where P (k) and Q(k) are polynomials in the integer k. The terms of a

hypergeometric series are called hypergeometric terms.

When the numerator P (k) and denominator Q(k) of this ratio are completely factored
to give

P (k)
Q(k)

=
(k + a1)(k + a2) . . . (k + ap)

(k + b1)(k + b2) . . . (k + bq)(k + 1)
x

where x is a constant, this hypergeometric series is denoted by

pFq =
[
a1 a2 . . . ap
b1 b2 . . . bq

;x
]
.
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Note: If there is no factor k + 1 in the denominator Q(k) when it is factored, by
convention the factor k+1 is added to both the numerator P (k) and denominator Q(k).
Also, a horizontal dash is used to indicate the absence of factors in the numerator or in
the denominator.

The hypergeometric terms sn and tn are similar, denoted sn ∼ tn, if their ratio sn/tn
is a rational function of n. Otherwise, these terms are called dissimilar.

Facts:
1. A geometric series is also a hypergeometric series.
2. If sn is a hypergeometric term, then 1

sn
is also a hypergeometric term. (Equivalently,

if
∑∞
k=0 sn is a hypergeometric series, then

∑∞
k=0

1
sn

also is.)

3. In common usage, instead of stating that the series
∑∞
k=0 sn is a hypergeometric

series, it is stated that sn is a hypergeometric term. This means exactly the same thing.
4. If sn and tn are hypergeometric terms, then sn ·tn is a hypergeometric term. (Equiv-
alently, if

∑∞
k=0 sn and

∑∞
k=0 tn are hypergeometric series, then

∑∞
k=0 sntn is a hyper-

geometric series.)
5. If sn is a hypergeometric term and sn is not a constant, then sn+1 − sn is a hyper-
geometric term similar to sn.
6. If sn and tn are hypergeometric terms and sn + tn �= 0 for all n, then sn + tn is
hypergeometric if and only if sn and tn are similar.

7. If t(1)n , t
(2)
n , . . . , t

(k)
n are hypergeometric terms with

∑k
i=1 t

(i)
n = 0, then t(i)n ∼ t(j)n for

some i and j with 1 ≤ i < j ≤ k.
8. A sum of a fixed number of hypergeometric terms can be expressed as a sum of
pairwise dissimilar hypergeometric terms.
9. The terms of a hypergeometric series can be expressed using rising powers an (also
known as rising factorials and denoted by (a)n) (see §3.4.2) as follows:

pFq =
[
a1 a2 . . . ap
b1 b2 . . . bq

;x
]

=
∞∑
k=0

(a1)k(a2)k . . . (ap)k

(b1)k(b2)k . . . (bq)k
xk

k!
.

10. There are a large number of well-known hypergeometric identities (see Facts 12–
17, for example) that can be used as a starting point when a closed form for a sum of
hypergeometric terms is sought.
11. There are many rules that transform a hypergeometric series with one parameter
set into a different hypergeometric series with a second parameter set. Such transfor-
mation rules can be helpful in constructing closed forms for sums of hypergeometric
terms.

12. 1F1

[ 1
1 ;x

]
= ex.

13. 1F0

[
a
− ;x

]
=

1
(1 − x)a .

14. Gauss’s 2F1 identity : If b is zero or a negative integer or the real part of c− a− b
is positive, then

2F1

[
a b
c

; 1
]

= Γ(c− a− b)Γ(c)
Γ(c− a)Γ(c− b)

where Γ is the gamma function (so Γ(n) = (n− 1)! when n is a positive integer).
15. Kummer’s 2F1 identity : If a− b+ c = 1, then

2F1

[
a b
c

;−1
]

=
Γ( b2 + 1)Γ(b− a+ 1)
Γ(b+ 1)Γ( b2 − a+ 1)
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and when b is a negative integer, this can be expressed as

2F1

[
a b
c

;−1
]

= 2 cos(πb2 ) Γ(|b|)Γ(b− a+ 1)
Γ( |b|2 )Γ( b2 − a+ 1)

.

16. Saalschütz’s 3F2 identity : If d+ e = a+ b+ c+ 1 and c is a negative integer, then

3F2

[
a b c
d e

; 1
]

=
(d− a)|c|(d− b)|c|

d|c|(d− a− b)|c|
17. Dixon’s identity : If 1 + a

2 − b− c > 0, d = a− b+ 1, and e = a− c+ 1, then

3F2

[
a b c
d e

; 1
]

=
(a2 )!(a− b)!(a− c)!(a2 − b− c)!
a!(a2 − b)!(a2 − c)!(a− b− c)! .

The more familiar form of this identity reads∑
k(−1)k

(
a+ b
a+ k

)(
a+ c
c+ k

)(
b+ c
b+ k

)
=

(a+ b+ c)!
a!b!c!

.

18. Clausen’s 4F3 identity : If d is a negative integer or zero and a + b + c − d = 1
2 ,

e = a+ b+ 1
2 , and a+ f = d+ 1 = b+ g, then

4F3

[
a b c d
e f g

; 1
]

= (2a)|d|(a+b)|d|(2b)|d|

(2a+2b)|d|(a)|d|(b)|d|.

Examples:
1. The series

∑∞
k=0 3 · (−5)k is a geometric series. The series

∑∞
k=0 n2

n is not a geo-
metric series.
2. The series

∑∞
k=0 tk is a hypergeometric series when tk equals 2k, (k + 1)2, 1

2k+3 , or
1

(2k+1)(k+3)! , but is not hypergeometric when tk = 2k + 1.

3. The series
∑∞
k=0

3k

k!4 equals 0F3

[ −
1 1 1 ; 3

]
since the ratio of the (k+1)st and kth

terms is 3
(k+1)4 .

4. A closed form for Sn =
∑∞
k=0(−1)k

(
2n
k

)2
can be found by first noting that Sn =

2F1

[−2n −2n
1 ;−1

]
since the ratio between successive terms of the sum is −(k−2n)2

(k+1)2 .

This shows that Kummer’s 2F1 identity can be invoked with a = −2n, b = −2n, and
c = 1, producing the equality Sn = 2(−1)n(2n−1)!

n!(n−1)! = (−1)n
(
2n
n

)
.

5. An example of a transformation rule for hypergeometric functions is provided by

2F1

[
a b
c

;x
]

= (1 − x)c−a−b2F1

[
c− a c− b
c

;x
]
.

3.7.2 ALGORITHMS THAT PRODUCE CLOSED FORMS FOR SUMS OF HYPERGEOMET-
RIC TERMS

Definitions:

A function F (n, k) is called doubly hypergeometric if both F (n+1,k)
F (n,k) and F (n,k+1)

F (n,k)

are rational functions of n and k.

A function F (n, k) is a proper hypergeometric term if it can be expressed as

F (n, k) = P (n, k)
∏G
i=1(ain+ bik + ci)!∏H
i=1(uin+ vik + wi)!

xk

where x is a variable, P (n, k) is a polynomial in n and k, G and H are nonnegative
integers, and all the coefficients ai, bi, ui, and vi are integers.
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A function F (n, k) of the form

F (n, k) = P (n, k)

G∏
i=1

(ain+ bik + ci)!

H∏
i=1

(uin+ vik + wi)!
xk

is said to be well-defined at (n, k) if none of the terms (ain+ bik+ ci) in the product
is a negative integer. The function F (n, k) is defined to have the value 0 if F is well-
defined at (n, k) and there is a term (uin+ vik + wi) in the product that is a negative
integer or P (n, k) = 0.

Facts:
1. If F (n, k) is a proper hypergeometric term, then there exist positive integers L
andM and polynomials ai,j(n) for i = 0, 1, . . . , L and j = 0, 1, . . . ,M , not all zero, such
that

L∑
i=0

M∑
j=0

ai,j(n)F (n− j, k − i) = 0

for all pairs (n, k) with F (n, k) �= 0 and all the values of F (n, k) in this double sum
are well-defined. Moreover, there is such a recurrence with M equal to M ′ =

∑
s |bs| +∑

t |vt| and L equal to L′ = deg(P ) + 1 +M ′(−1 +
∑
s |as|+

∑
t |ut|), where the ai, bi,

ui, vi and P come from an expression of F (n, k) as a hypergeometric term as specified
in the definition.
2. Sister Celine’s algorithm: This algorithm, developed in 1945 by Sister Mary Celine
Fasenmeyer (1906–1996), can be used to find recurrence relations for sums of the form
f(n) =

∑
k F (n, k) where F is a doubly hypergeometric function. The algorithm finds

a recurrence of the form
∑L
i=0

∑M
j=0 ai,j(n)F (n− j, k− i) = 0 by proceeding as follows:

• start with trial values of L and M , such as L = 1, M = 1;
• assume that a recurrence relation of the type sought exists with these values of L

and M , with the coefficients ai,j(n) to be determined, if possible;
• divide each term in the sum of the recurrence by F (n, k), then reduce each fraction
F (n − j, k − i)/F (n, k), simplifying the ratios of factorials so only rational
functions of n and k are left;

• combine the terms in the sum using a common denominator, collecting the nu-
merator into a single polynomial in k;

• solve the system of linear equations for the ai,j(n) that results when the coeffi-
cients of each power of k in the numerator polynomial are equated to zero;

• if these steps fail, repeat the procedure with larger values of L and M ; by Fact 2,
this procedure is guaranteed to eventually work.

3. Gosper’s algorithm: This algorithm, developed by R. W. Gosper, Jr., can be used to
determine, given a hypergeometric term tn, whether there is a hypergeometric term zn
such that zn+1 − zn = tn. When there is such a hypergeometric term zn, the algorithm
also produces such a term.
4. Gosper’s algorithm takes a hypergeometric term tn as input and performs the fol-
lowing general steps (for details see [PeWiZe96]):

• let r(n) = tn+1/tn; this is a rational function of n since t is hypergeometric;
• find polynomials a(n), b(n), and c(n) such that gcd(a(n), b(n+h)) = 1 whenever h

is a nonnegative integer; this is done using the following steps:
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� let r(n) = K · f(n)g(n) where f(n) and g(n) are monic relatively prime polyno-
mials and K is a constant, let R(h) be the resultant of f(n) and g(n + h)
(which is the product of the zeros of g(n+ h) at the zeros of f(n)), and let
S = {h1, h2, . . . , hN} be the set of nonnegative integer zeros of R(h) where
0 ≤ h1 < h2 < · · · < hN ;

� let p0(n) = f(n) and q0(n) = g(n); then for j = 1, 2, . . . , N carry out the
following steps:
sj(n) := gcd(pj−1(n), qj−1(n+ hj))
pj(n) := pj−1(n)/sj(n)
qj(n) := qj−1(n)/sj(n− hj);

• take a(n) := KpN (n); b(n) := qN (n); c(n) :=
∏N
i=1

∏hi

j=1 si(n− j);
• find a nonzero polynomial x(n) such that a(n)x(n + 1) − b(n − 1)x(n) = c(n) if

one exists; such a polynomial can be found using the method of undetermined
coefficients to find a nonzero polynomial of degree d or less, where the degree d
depends on the polynomials a(n), b(n), and c(n). If no such polynomial exists,
then the algorithm fails. The degree d is determined by the following rules:
� when deg a(n) �= deg b(n) or deg a(n) = deg b(n) but the leading coefficients

of a(n) and b(n) differ, then d = deg c(n) − max(deg a(n),deg b(n));
� when deg a(n) = deg b(n) and the leading coefficients of a(n) and b(n) agree,
d = max(deg c(n)−deg a(n)+1, (B−A)/L) where a(n) = Lnk+Ank−1+· · ·
and b(n − 1) = Lnk + Bnk−1 + · · · ; if this d is negative, then no such
polynomial x(n) exists;

• let zn = tn · b(n− 1)x(n)/c(n); it follows that zn+1 − zn = tn.

5. When Gosper’s algorithm fails, this shows that a sum of hypergeometric terms
cannot be expressed as a hypergeometric term plus a constant.

6. Programs in both Maple and Mathematica implementing algorithms described in
this section can be found at the following sites:

http://www.cis.upenn.edu/∼wilf/AeqB.html
http://www.math.temple.edu/∼zeilberg

Examples:
1. The function F (n, k) = 1

5n+2k+2 is a proper hypergeometric term since F (n, k) can

be expressed as F (n, k) = (5n+2k+1)!
(5n+2k+2)! .

2. The function F (n, k) = 1
n2+k3+5 is not a proper hypergeometric term.

3. Sister Celine’s algorithm can be used to find a recurrence relation satisfied by the
function f(n) =

∑
k F (n, k) where F (n, k) = k

(
n
k

)
for n = 0, 1, 2, . . . . The algorithm

proceeds by finding a recurrence relation of the form a(n)F (n, k) + b(n)F (n + 1, k) +
c(n)F (n, k+1)+d(n)F (n+1, k+1) = 0. Since F (n, k) = k

(
n
k

)
, this recurrence relation

simplifies to a(n) + b(n) · n+1
n+1−k + c(n) · n−kk + d(n) · n+1

k = 0. Putting the left side of
this equation over a common denominator and expressing it as a polynomial in k, four
equations in the unknowns a(n), b(n), c(n), and d(n) are produced. These equations
have the following solutions: a(n) = t(−1 − 1

n ), b(n) = 0, c(n) = t(−1 − 1
n ), d = t,

where t is a constant. This produces the recurrence relation (−1 − 1
n )F (n, k) + (−1 −

1
n )F (n, k + 1) + F (n + 1, k + 1) = 0, which can be summed over all integers k and
simplified to produce the recurrence relation f(n + 1) = 2 · n+1

n f(n), with f(1) = 1.
From this it follows that f(n) = n2n−1.
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4. As shown in [PeWiZe96], Sister Celine’s algorithm can be used to find an identity for
f(n) =

∑
k F (n, k) where F (n, k) =

(
n
k

)(
2n
k

)
(−2)n−k. A recurrence for F (n, k) can be

found using her techniques (which can be carried out using either Maple or Mathematica
software, for example). An identity that can be found this way is: −8(n−1)F (n−2, k−
1)−2(2n−1)F (n−1, k−1)+4(n−1)F (n−2, k)+2(2n−1)F (n−1, k)+nF (n, k) = 0. When
this is summed over all integers k, the recurrence relation nf(n)− 4(n− 1)f(n− 2) = 0
is obtained. From the definition of f it follows that f(0) = 1 and f(1) = 0. From the
initial conditions and the recurrence relation for f(n), it follows that f(n) = 0 when n
is odd and f(n) =

(
n
n/2

)
when n is even. (This is known as the Reed-Dawson identity .)

5. Gosper’s algorithm can be used to find a closed form for Sn =
∑n
k=1 k · k!. Let

tn = n · n!. Following Gosper’s algorithm gives r(n) = tn+1
tn

= (n+1)2

n , a(n) = n + 1,
b(n) = 1, and c(n) = n. The polynomial x(n) must satisfy (n+1)x(n+1)−x(n) = n; the
polynomial x(n) = 1 is such a solution. It follows that zn = n! satisfies zn+1 − zn = tn.
Hence sn = zn − z1 = n! − 1 and Sn = sn+1 = (n+ 1)! − 1.

6. Gosper’s algorithm can be used to show that Sn =
∑n
k=0 k! cannot be expressed

as a hypergeometric term plus a constant. Let tn = n!. Following Gosper’s algorithm
gives r(n) = tn+1

tn
= n+ 1, a(n) = n+ 1, b(n) = 1, c(n) = 1. The polynomial x(n) must

satisfy (n+1)x(n+1)−x(n) = 1 and must have a degree less than zero. It follows that
there is no closed form for

∑n
k=0 k! of the type specified.

3.7.3 CERTIFYING THE TRUTH OF COMBINATORIAL IDENTITIES

Definitions:

A pair of functions (F,G) is called a WZ pair (after Wilf and Zeilberger) if F (n +
1, k)−F (n, k) = G(n, k+1)−G(n, k). If (F,G) is a WZ pair, then F is called the WZ
mate of G and vice versa.

A WZ certificate R(n, k) is a function that can be used to verify the hypergeometric
identity

∑
k f(n, k) = r(n) by creating a WZ pair (F,G) with F (n, k) = f(n,k)

r(n) when
r(n) �= 0 and F (n, k) = f(n, k) when r(n) = 0 and G(n, k) = R(n, k)F (n, k). When a
hypergeometric identity is proved using a a WZ certificate, this proof is called a WZ
proof .

Facts:

1. If (F,G) is a WZ pair such that for each integer n ≥ 0, limk→±∞G(n, k) = 0, then∑
k F (n, k) is a constant for n = 0, 1, 2, . . . .

2. If (F,G) is a WZ pair such that for each integer k, the limit fk = limn→∞ F (n, k)
exists and is finite, for every nonnegative integer n it is the case that limk→±∞G(n, k) =
0, and limL→∞

∑
n≥0G(n,−L) = 0, then

∑
n≥0G(n, k) =

∑
j≤k−1(fj − F (0, j)).

3. An identity
∑
k f(n, k) = r(n) can be verified using its WZ certificate R(n, k) as

follows:
• if r(n) �= 0, define F (n, k) by F (n, k) = f(n,k)

r(n) , else define F (n, k) = f(n, k);
define G(n, k) by G(n, k) = R(n, k)F (n, k);

• confirm that (F,G) is a WZ pair, i.e., that F (n+ 1, k)−F (n, k) = G(n, k+ 1)−
G(n, k), by dividing the factorials out and verifying the polynomial identity
that results;

• verify that the original identity holds for a particular value of n.
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4. The WZ certificate of an identity
∑
k f(n, k) = r(n) can be found using the following

steps:
• if r(n) �= 0, define F (n, k) to be F (n, k) = f(n,k)

r(n) , else define F (n, k) to be
F (n, k) = f(n, k);

• let f(k) = F (n+ 1, k) − F (n, k); provide f(k) as input to Gosper’s algorithm;
• if Gosper’s algorithm produces G(n, k) as output, it is the WZ mate of F and the

function R(n, k) = G(n,k)
F (n,k) is the WZ certificate of the identity

∑
k F (n, k) = C

where C is a constant.
If Gosper’s algorithm fails, this algorithm also fails.

Examples:

1. To prove the identity f(n) =
∑
k

(
n
k

)2 =
(
2n
n

)
, express it in the form

∑
k F (n, k) = 1

where F (n, k) =
(
n
k

)2
/
(
2n
n

)
. The identity can be proved by taking the function R(n, k) =

k2(3n−2k+3)
2(2n+1)(n−k+1)2 as its WZ certificate. (This certificate can be obtained using Gosper’s
algorithm.)

2. To prove Gauss’s 2F1 identity via a WZ proof, express it in the form
∑
k F (n, k) = 1

where F (n, k) = (n+k)!(b+k)!(c−n−1)!(c−b−1)!
(c+k)!(n−1)!(c−n−b−1)!(k+1)!(b−1)! . The identity can then be proved by

taking the function R(n, k) = (k+1)(k+c)
n(n+1−c) as its WZ certificate. (This certificate can be

obtained using Gosper’s algorithm.)
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matica implementing algorithms described in §3.7.2.)

http://www.research.att.com/~njas/sequences (N. J. A. Sloane’s web page; a ta-
ble of sequences is accessible from this web page.)

http://www.sdstate.edu/~wcsc/http/fobbooks.html (Contains a list of books that
are available through the Fibonacci Association.)

c© 2000 by CRC Press LLC

http://www.cis.upenn.edu/~wilf/AeqB.html
http://www.cs.rit.edu/~spr/homepage.html
http://www.math.temple.edu/~zeilberg
http://www.research.att.com/~njas/sequences
http://www.sdstate.edu/~wcsc/http/fibbooks.html


4
NUMBER THEORY

4.1 Basic Concepts Kenneth H. Rosen
4.1.1 Numbers
4.1.2 Divisibility
4.1.3 Radix Representations

4.2 Greatest Common Divisors Kenneth H. Rosen
4.2.1 Introduction
4.2.2 The Euclidean Algorithm

4.3 Congruences Kenneth H. Rosen
4.3.1 Introduction
4.3.2 Linear and Polynomial Congruences

4.4 Prime Numbers Jon Grantham and
4.4.1 Basic Concepts Carl Pomerance
4.4.2 Counting Primes
4.4.3 Numbers of Special Form
4.4.4 Pseudoprimes and Primality Testing

4.5 Factorization Jon Grantham and
4.5.1 Factorization Algorithms Carl Pomerance

4.6 Arithmetic Functions Kenneth H. Rosen
4.6.1 Multiplicative and Additive Functions
4.6.2 Euler’s Phi-function
4.6.3 Sum and Number of Divisors Functions
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INTRODUCTION

This chapter covers the basics of number theory. Number theory, a subject with a
long and rich history, has become increasingly important because of its applications to
computer science and cryptography. The core topics of number theory, such as divisibil-
ity, radix representations, greatest common divisors, primes, factorization, congruences,
diophantine equations, and continued fractions are covered here. Algorithms for finding
greatest common divisors, large primes, and factorizations of integers are described.

There are many famous problems in number theory, including some that have
been solved only recently such as Fermat’s Last Theorem, and others that have eluded
resolution, such as the Goldbach conjecture. The status of such problems is described
in this chapter. New discoveries in number theory, such as new large primes, are being
made at an increasingly fast pace. This chapter describes the current state of knowledge
and provides pointers to Internet sources where the latest facts can be found.

GLOSSARY
algebraic number: a root of a polynomial with integer coefficients.

arithmetic function: a function defined for all positive integers.

Bachet’s equation: a diophantine equation of the form y2 = x3 + k, where k is a
given integer.

base: the positive integer b, with b > 1, in the expansion n = akb
k + ak−1b

k−1 + · · ·+
a1b+ a0 where 0 ≤ ai ≤ b− 1 for i = 0, 1, 2, . . . , k.

binary coded decimal expansion: the expansion produced by replacing each deci-
mal digit of an integer by the four-bit binary expansion of that digit.

binary representation of an integer: the base two expansion of this integer.

Carmichael number: a positive integer that is a pseudoprime to all bases.
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Catalan’s equation: the diophantine equation xm−yn = 1 where solutions in integers
greater than 1 are sought for x, y, m, and n.

Chinese remainder theorem: the theorem that states that given a set of congruences
x ≡ ai (mod mi) for i = 1, 2, . . . , n where the integers mi, i = 1, 2, . . . , n, are pairwise
relatively prime, there is a unique simultaneous solution of these congruences modulo
M = m1m2 . . .mn.

complete system of residues modulo m: a set of integers such that every integer
is congruent modulo m to exactly one integer in the set.

composite: a positive integer that has a factor other than 1 and itself.

congruence class of a modulo m: the set of integers congruent to a modulo m.

congruent integers modulo m: two integers with a difference divisible by m.

convergent: a rational fraction obtained by truncating a continued fraction.

continued fraction: a finite or infinite expression of the form a0 +1/(a1 +1/(a2 + · · ·;
usually abbreviated [a0, a1, a2, . . .].

coprime (integers): integers that have no positive common divisor other than 1; see
relatively prime.

Dedekind sum: the sum s(h, k) =
∑k

µ=1

((
hµ
k

))((
µ
k

))
where ((x)) = x− �x� − 1

2 if x
is not an integer and ((x)) = 0 if x is an integer.

diophantine approximation: the approximation of a number by numbers belonging
to a specified set, often the set of rational numbers.

Diophantine equation: an equation together with the restriction that the only solu-
tions of the equation of interest are those belonging to a specified set, often the set
of integers or the set of rational numbers.

Dirichlet’s theorem on primes in arithmetic progressions: the theorem that states
that there are infinitely many primes in each arithmetic progression of the form
an+ b where a and b are relatively prime positive integers.

discrete logarithm of a to the base r modulo m: the integer x such that rx ≡
a (mod m), where r is a primitive root of m and gcd(a,m) = 1.

divides: The integer a divides the integer b, written a | b, if there is an integer c such
that b = ac.

divisor: (1) an integer d such that d divides a for a given integer a, or (2) the positive
integer d that is divided into the integer a to yield a = dq + r where 0 ≤ r < d.

elliptic curve: for prime p > 3, the set of solutions (x, y) to the congruence y2 ≡
x3 +ax+ b (mod p), where 4a3 +27b2 	≡0 (mod p), together with a special point O,
called the point at infinity.

elliptic curve method (ECM): a factoring technique invented by Lenstra that is
based on the theory of elliptic curves.

Euler phi-function: the function φ(n) whose value at the positive integer n is the
number of positive integers not exceeding n relatively prime to n.

Euler’s theorem: the theorem that states that if n is a positive integer and a is an
integer with gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n) where φ(n) is the value of the
Euler phi-function at n.

exactly divides: If p is a prime and n is a positive integer, pr exactly divides n,
written pr||n, if pr divides n, but pr+1 does not divide n.
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factor (of an integer n): an integer that divides n.

factorization algorithm: an algorithm whose input is a positive integer and whose
output is the prime factorization of this integer.

Farey series (of order n): the set of fractions h
k where h and k are relatively prime

nonnegative integers with 0 ≤ h ≤ k ≤ n and k 	= 0.

Fermat equation: the diophantine equation xn+yn = zn where n is an integer greater
than 2 and x, y, and z are nonzero integers.

Fermat number: a number of the form 22n

+ 1 where n is a nonnegative integer.

Fermat prime: a prime Fermat number.

Fermat’s last theorem: the theorem that states that if n is a positive integer greater
than two, then the equation xn + yn = zn has no solutions in integers with xyz 	= 0.

Fermat’s little theorem: the theorem that states that if p is prime and a is an
integer, then ap ≡ a (mod p).

Fibonacci numbers: the sequence of numbers defined by F0 = 0, F1 = 1, and Fn =
Fn−1 + Fn−2 for n = 2, 3, 4, . . . .

fundamental theorem of arithmetic: the theorem that states that every positive
integer has a unique representation as the product of primes written in nondecreasing
order.

Gaussian integers: the set of numbers of the form a+ bi where a and b are integers
and i is

√
−1.

greatest common divisor (gcd) of a set of integers: the largest integer that divides
all integers in the set. The greatest common divisor of the integers a1, a2, . . . , an is
denoted by gcd(a1, a2, . . . , an).

hexadecimal representation (of an integer): the base sixteen representation of this
integer.

index of a to the base r modulo m: the smallest nonnegative integer x, denoted
indra, such that rx ≡ a (mod m), where r is a primitive root of m and gcd(a,m) = 1.

inverse of an integer a modulo m: an integer a such that aa ≡ 1 (mod m). Here
gcd(a,m) = 1.

irrational number: a real number that is not the ratio of two integers.

Jacobi symbol: a generalization of the Legendre symbol. (See §4.7.3.)

Kronecker symbol: a generalization of the Legendre and Jacobi symbols. (See
§4.7.3.)

least common multiple (of a set of integers): the smallest positive integer that is
divisible by all integers in the set.

least positive residue of a modulo m: the remainder when a is divided by m. It
is the smallest positive integer congruent to a modulo m, written amodm.

Legendre symbol: the symbol
(

a
p

)
that has the value 1 if a is a square modulo p

and −1 if a is not a square modulo p. Here p is a prime and a is an integer not
divisible by p.

linear congruential method: a method for generating a sequence of pseudo-random
numbers based on a congruence of the form xn+1 ≡ axn + c (mod m).

Mersenne prime: a prime of the form 2p − 1 where p is a prime.
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Möbius function: the arithmetic function µ(n) where µ(n) = 1 if n = 1, µ(n) = 0
if n has a square factor larger than 1, and µ(n) = (−1)s if n is square-free and is the
product of s different primes.

modulus: the integer m in a congruence a ≡ b (mod m).

multiple of an integer a: an integer b such that a divides b.

multiplicative function: a function f such that f(mn) = f(m)f(n) whenever m
and n are relatively prime positive integers.

mutually relatively prime set of integers: integers with no common factor greater
than 1.

number field sieve: a factoring algorithm, currently the best one known for large
numbers with no small prime factors.

octal representation of an integer: the base eight representation of this integer.

one’s complement expansion: an n bit representation of an integer x with |x| <
2n−1, where n is a specified positive integer, where the leftmost bit is 0 if x ≥ 0
and 1 if x < 0, and the remaining n− 1 bits are those of the binary expansion of x
if x ≥ 0, and the complements of the bits in the expansion of |x| if x < 0.

order of an integer a modulo m: the least positive integer t, denoted by ordma,
such that at ≡ 1 (mod m). Here gcd(a,m) = 1.

pairwise relatively prime: integers with the property that every two of them are
relatively prime.

palindrome: a finite sequence that reads the same forward and backward.

partial quotient: a term ai of a continued fraction.

Pell’s equation: the diophantine equation x2 − dy2 = 1 where d is a positive integer
that is not a perfect square.

perfect number: a positive integer whose sum of positive divisors, other than the
integer itself, equals this integer.

periodic base b expansion: a base b expansion where the terms beyond a certain
point are repetitions of the same block of integers.

powerful integer: an integer n with the property that p2 divides n whenever p is a
prime that divides n

primality test: an algorithm that determines whether a positive integer is prime.

prime: a positive integer greater than 1 that has exactly two factors, 1 and itself.

prime factorization: the factorization of an integer into primes.

prime number theorem: the theorem that states that the number of primes not
exceeding a positive real number x is asymptotic to x

log x (where log x denotes the
natural logarithm of x).

prime-power factorization: the factorization of an integer into powers of distinct
primes.

primitive root of an integer n: an integer r such that the least positive residues
of the powers of r run through all positive integers relatively prime to n and less
than n

probabilistic primality test: an algorithm that determines whether an integer is
prime with a small probability of a false positive result.
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pseudoprime to the base b: a composite positive integer n such that bn ≡ b (mod n).

pseudo-random number generator: a deterministic method to generate numbers
that share many properties with numbers really chosen randomly.

Pythagorean triple: positive integers x, y, and z such that x2 + y2 = z2.

quadratic field: the set of number Q(
√
d) = { a + b

√
d | a, b integers } where d is a

square-free integer.

quadratic irrational: an irrational number that is the root of a quadratic polynomial
with integer coefficients.

quadratic nonresidue (of m): an integer that is not a perfect square modulo m.

quadratic reciprocity : the law that states that given two odd primes p and q, if at
least one of them is of the form 4n+ 1, then p is a quadratic residue of q if and only
if q is a quadratic residue of p and if both primes are of the form 4n+ 3, then p is a
quadratic residue of q if and only if q is a quadratic nonresidue of p.

quadratic residue (of m): an integer that is a perfect square modulo m.

quadratic sieve: a factoring algorithm invented by Pomerance in 1981.

rational cuboid problem: the unsolved problem of constructing a right parallelepi-
ped with height, width, length, face diagonals, and body diagonal all of integer
length.

rational number: a real number that is the ratio of two integers. The set of rational
numbers is denoted by Q.

reduced system of residues modulo m: pairwise incongruent integers modulo m
such that each integer in the set is relatively prime to m and every integer relatively
prime to m is congruent to an integer in the set.

relatively prime (integers): two integers with no common divisor greater than 1; see
coprime.

remainder (of the integer a when divided by the positive integer d): the integer r in
the equation a = dq + r with 0 ≤ r < d, written r = amod d.

root (of a function f modulo m): an integer r such that f(r) ≡ 0 (mod m).

sieve of Eratosthenes: a procedure for finding all primes less than a specified integer.

smooth number: an integer all of whose prime divisors are small.

square root (of a modulo m): an integer r whose square is congruent to a modulo m.

square-free integer: an integer not divisible by any perfect squares other than 1.

ten most wanted numbers: the large integers on a list, maintained by a group
of researchers, whose currently unknown factorizations are actively sought. These
integers are somewhat beyond the realm of numbers that can be factored using
known techniques.

terminating base-b expansion: a base-b expansion with only a finite number of
nonzero coefficients.

totient function: the Euler phi-function.

transcendental number: a complex number that cannot be expressed as the root of
an algebraic equation with integer coefficients.

trial division: a factorization technique that proceeds by dividing an integer by suc-
cessive primes.
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twin primes: a pair of primes that differ by two.

two’s complement expansion: an n bit representation of an integer x, with −2n−1 ≤
x ≤ 2n−1 − 1, for a specified positive integer n, where the leftmost bit is 0 if x ≥ 0
and 1 if x < 0, and the remaining n − 1 bits are those from the binary expansion
of x if x ≥ 0 and are those of the binary expansion of 2n − |x| if x < 0.

ultimately periodic: a sequence (typically a base-k expansion or continued fraction)
(ai)i≥0 that eventually repeats, that is, there exist k and N such that an+k = an for
all n ≥ N .

unit of a quadratic field: a number ε such that ε|1 in the quadratic field.

Waring’s problem: the problem of determining the smallest number g(k) such that
every integer is the sum of g(k) kth powers of integers.

4.1 BASIC CONCEPTS

The basic concepts of number theory include the classification of numbers into different
sets of special importance, the notion of divisibility, and the representation of integers.
For more information about these basic concepts, see introductory number theory texts,
such as [Ro99].

4.1.1 NUMBERS

Definitions:

The integers are the elements of the set Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
The natural numbers are the integers in the set N = {0, 1, 2, 3, . . .}.
The rational numbers are real numbers that can be written as a/b where a and b are
integers with b 	= 0. Numbers that are not rational are called irrational. The set of
rational numbers is denoted by Q.

The algebraic numbers are real numbers that are solutions of equations of the form
anx

n + · · ·+ a1x+ a0 = 0 where ai is an integer, for i = 0, 1, . . . , n. Real numbers that
are not algebraic are called transcendental.

Facts:

1. Table 1 summarizes information and notation about some important types of num-
bers.

2. A real number is rational if and only if its decimal expansion terminates or is peri-
odic. (See §4.1.3).

3. The number N1/m is irrational where N and m are positive integers, unless N is
the mth power of an integer n.

4. The number logb a is irrational, where a and b are positive integers greater than 1,
if there is a prime that divides exactly one of a and b.
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Table 1 Types of numbers.

name definition examples

natural numbers N {0, 1, 2, . . .} 0, 43

integers Z {. . . ,−2,−1, 0, 1, 2, . . .} 0, 43, −314

Gaussian integers Z[i] { a+ bi | a, b ∈ Z } 3, 4 + 3i, 7i

rational numbers Q { a
b | a, b ∈ Z; b 	= 0 } 0, 22

7

quadratic irrationals
irrational root of quadratic equation √

2, 2+
√

5
3a2x

2 + a1x+ a0 = 0; all ai ∈ Q

irrational numbers R−Q
√

2, π, e

root of algebraic equation
algebraic numbers Q anx

n + · · · + a0 = 0, n ≥ 1, i,
√

2, 3

√
3
2

a0, . . . , an ∈ Z

root of monic algebraic equation
algebraic integers A xn + an−1x

n−1 + · · · + a0 = 0, i,
√

2, 1+
√

5
2

n ≥ 1, a0, a1, . . . , an−1 ∈ Z
transcendental numbers C − Q π, e, i ln 2

real numbers R completion of Q 0, 1
3 ,

√
2, π

complex numbers C R or R[i] 3 + 2i, e+ iπ

5. If x is a root of an equation xm + am−1x
m−1 + · · ·+ a0 = 0 where the coefficients ai

(i = 0, 1, . . . ,m− 1) are integers, then x is either an integer or irrational.

6. The set of algebraic numbers is countable (§1.2.3). Hence, almost all real numbers
are transcendental. (However, showing a particular number of interest is transcendental
is usually difficult.)

7. Both e and π are transcendental. The transcendence of e was proven by Hermite in
1873, and π was proven transcendental by Lindemann in 1882. Proofs of the transcen-
dence of e and π can be found in [HaWr89].

8. Gelfond-Schneider theorem: If α and β are algebraic numbers with α not equal to 0
or 1 and β irrational, then αβ is transcendental. (For a proof see [Ba90].)

9. Baker’s linear forms in logarithms: If α1, . . . , αn are nonzero algebraic numbers and
logα1, . . . , logαn are linearly independent over Q, then 1, logα1, . . . , logαn are linearly
independent over Q, where Q is the closure of Q. (Consult [Ba90] for a proof and
applications of this theorem.)

Examples:

1. The numbers 11
17 , − 3345

7 , −1, 578
579 , and 0 are rational.

2. The number log2 10 is irrational.

3. The numbers
√

2, 1 +
√

2, and 1+
√

2
5 are irrational.
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4. The number x = 0.10100100010000 . . . , with a decimal expansion consisting of
blocks where the nth block is a 1 followed by n 0s, is irrational, since this decimal
expansion does not terminate and is not periodic.
5. The decimal expansion of 22

7 is periodic, since 22
7 = 3.142857. However, the decimal

expansion of π neither terminates, nor is periodic, with π = 3.141592653589793 . . . .

6. It is not known whether Euler’s constant γ = lim
n→∞

(∑n
k=1

1
k − log n

)
(where log x

denotes the natural logarithm of x) is rational or irrational.
7. The numbers 2, 1

2 ,
√

17, 3
√

5, and 1 + 6
√

2 are algebraic.

8. By the Gelfond-Schneider theorem (Fact 8),
√

2
√

2
is transcendental.

9. By Baker’s linear forms in logarithms theorem (Fact 9), since log2 10 is irrational,
it is transcendental.

4.1.2 DIVISIBILITY

The notion of the divisibility of one integer by another is the most basic concept in
number theory. Introductory number theory texts, such as [Ro99], [HaWr89], and
[NiZuMo91], are good references for this material.

Definitions:

If a and d are integers with d > 0, then in the equation a = dq + r where 0 ≤ r < d, a
is the dividend, d is the divisor, q is the quotient, and r is the remainder.

Let m and n be integers with m ≥ 1 and n = dm+ r with 0 ≤ r < m. Then nmod m,
the value of the mod m function at n, is r, the remainder when n is divided by m.

If a and b are integers and a 	= 0, then a divides b, written a|b, if there is an integer c
such that b = ac. If a divides b, then a is a factor or divisor of b, and b is a multiple
of a. If a is a positive divisor of b that does not equal b, then a is a proper divisor
of b. The notation a	 |b means that a does not divide b.

A prime is a positive integer divisible by exactly two distinct positive integers, 1 and
itself. A positive integer, other than 1, that is not prime is called composite.

An integer is square-free if it is not divisible by any perfect square other than 1.

An integer n is powerful if whenever a prime p divides n, p2 divides n.

If p is prime and n is a positive integer, then pr exactly divides n, written pr||n, if pr

divides n, but pr+1 does not divide n.

Facts:
1. If a is a nonzero integer, then a|0.
2. If a is an integer, then 1|a.
3. If a and b are positive integers and a|b, then the following statements are true:

• a ≤ b;
• b

a divides b;
• ak divides bk for every positive integer k;
• a divides bc for every integer c.

4. If a, b, and c are integers such that a|b and b|c, then a|c.
5. If a, b, and c are integers such that a|b and a|c, then a|bm + cn for all integers m
and n.
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6. If a and b are integers such that a|b and b|a, then a = ±b.
7. If a and b are integers and m is a nonzero integer, then a|b if and only if ma|mb.
8. Division algorithm: If a and d are integers with d positive, then there are unique
integers q and r such that a = dq + r with 0 ≤ r < d. (Note: The division algorithm
is not an algorithm, in spite of its name.)
9. The quotient q and remainder r when the integer a is divided by the positive integer d
are given by q =

⌊
a
d

⌋
and r = a− d

⌊
a
d

⌋
, respectively.

10. If a and d are positive integers, then there are unique integers q, r, and e such that
a = dq + er where e = ±1 and −d

2 < r ≤ d
2 .

11. There are several divisibility tests that are easily performed using the decimal
expansion of an integer. These include:

• An integer is divisible by 2 if and only if its last digit is even. It is divisible by 4 if
and only if the integer made up of its last two digits is divisible by four. More
generally, it is divisible by 2j if and only if the integer made up of the last j
decimal digits of n is divisible by 2j .

• An integer is divisible by 5 if and only if its last digit is divisible by 5 (which
means it is either 0 or 5). It is divisible by 25 if and only if the integer made
up of the last two digits is divisible by 25. More generally, it is divisible by 5j

if and only if the integer made up of the last j digits of n is divisible by 5j .
• An integer is divisible by 3, or by 9, if and only if the sum of the decimal digits

of n is divisible by 3, or by 9, respectively.
• An integer is divisible by 11 if and only if the integer formed by alternately adding

and subtracting the decimal digits of the integer is divisible by 11.
• An integer is divisible by 7, 11, or 13 if and only if the integer formed by succes-

sively adding and subtracting the three-digit integers formed from successive
blocks of three decimal digits of the original number, where digits are grouped
starting with the rightmost digit, is divisible by 7, 11 , or 13, respectively.

12. If d|b − 1, then n = (ak . . . a1a0)b (this notation is defined in §4.1.3) is divisible
by d if and only if the sum of the base b digits of n, ak + · · ·+ a1 + a0, is divisible by d.
13. If d|b+1, then n = (ak . . . a1a0)b is divisible by d if and only if the alternating sum
of the base b digits of n, (−1)kak + · · · − a1 + a0, is divisible by d.
14. If pr||a and ps||b where p is a prime and a and b are positive integers, then pr+s||ab.
15. If pr||a and ps||b where p is a prime and a and b are positive integers, then
pmin(r,s)||a+ b.
16. There are infinitely many primes. (See §4.4.1.)
17. There are efficient algorithms that can produce large integers that have an ex-
tremely high probability of being prime. (See §4.4.4.)
18. Fundamental theorem of arithmetic: Every positive integer can be written as the
product of primes in exactly one way, where the primes occur in nondecreasing order in
the factorization.
19. Many different algorithms have been devised to find the factorization of a positive
integer into primes. Using some recently invented algorithms and the powerful computer
systems available today, it is feasible to factor integers with over 100 digits. (See §4.5.1.)
20. The relative ease of producing large primes compared with the apparent difficulty
of factoring large integers is the basis for an important cryptosystem called RSA. (See
Chapter 14.)
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Examples:

1. The integers 0 , 3, −12, 21, 342, and −1113 are divisible by 3; the integers −1, 7, 29,
and −1111 are not divisible by 3.

2. The quotient and remainder when 214 is divided by 6 are 35 and 4, respectively
since 214 = 35 · 6 + 4.

3. The quotient and remainder when −114 is divided by 7 are −17 and 5, respectively
since −114 = −17 · 7 + 5.

4. With a = 214 and d = 6, the expansion of Fact 10 is 214 = 36 ·6−2 (so that e = −1
and r = 2).

5. 11 mod 4 = 3, 100 mod 7 = 2, and −22 mod 5 = 3.

6. The following are primes: 2, 3, 17, 101, 641. The following are composites: 4, 9, 91,
111, 1001.

7. The integers 15, 105, and 210 are squarefree; the integers 12, 99, and 270 are not.

8. The integers 72 is powerful since 2 and 3 are the only primes that divide 72 and
22 = 4 and 32 = 9 both divide 72, but 180 is not powerful since 5 divides 180, but 52

does not.

9. The integer 32,688,048 is divisible by 2,4,8, and 16 since 2|8, 4|48, 8|048, and
16|8,048, but it is not divisible by 32 since 32 does not divide 88,048.

10. The integer 723,160,823 is divisible by 11 since the alternating sum of its digits,
3 − 2 + 8 − 0 + 6 − 1 + 3 − 2 + 7 = 22, is divisible by 11.

11. Since 33|216, but 34	 |216, it follows that 33||216.

4.1.3 RADIX REPRESENTATIONS

The representation of numbers in different bases has been important in the development
of mathematics from its earliest days and is extremely important in computer arithmetic.
For further details on this topic, see [Kn81], [Ko93], and [Sc85].

Definitions:

The base b expansion of a positive integer n, where b is an integer greater than 1,
is the unique expansion of n as n = akb

k + ak−1b
k−1 + · · · + a1b + a0 where k is a

nonnegative integer, aj is a nonnegative integer less than b for j = 0, 1, . . . , k and the
initial coefficient ak 	= 0. This expansion is written as (akak−1 . . . a1a0)b.

The integer b in the base b expansion of an integer is called the base or radix of the
expansion.

The coefficients aj in the base b expansion of an integer are called the base b digits of
the expansion.

Base 10 expansions are called decimal expansions. The digits are called decimal
digits.

Base 2 expansions are called binary expansions. The digits are called binary digits
or bits.

Base 8 expansions are called octal expansions.

Base 16 expansions are called hexadecimal expansions. The 16 hexadecimal digits are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (where A, B, C, D, E, F correspond to the decimal
numbers 10, 11, 12, 13, 14, 15, respectively).
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Algorithm 1: Constructing base b expansions.

procedure base b expansion(n: positive integer)
q := n
k := 0
while q 	= 0
begin
ak := q mod b

q :=
⌊

q
b

⌋
k := k + 1

end {the base b expansion of n is (ak−1 . . . a1a0)b}

The binary coded decimal expansion of an integer is the bit string formed by replacing
each digit in the decimal expansion of the integer by the four bit binary expansion of
that digit.

The one’s complement expansion of an integer x with |x| < 2n−1, for a specified
positive integer n, uses n bits, where the leftmost bit is 0 if x ≥ 0 and 1 if x < 0,
and the remaining n−1 bits are those from the binary expansion of x if x ≥ 0 and
are the complements of the bits in the binary expansion of |x| if x < 0. (Note: the
one’s complement representation 11 . . . 1, consisting of n 1s, is usually considered to the
negative representation of the number 0.)

The two’s complement expansion of an integer x with −2n−1 ≤ x ≤ 2n−1−1, for a
specified positive integer n, uses n bits, where the leftmost bit is 0 if x ≥ 0 and 1 if
x < 0, and the remaining n−1 bits are those from the binary expansion of x if x ≥ 0
and are those of the binary expansion of 2n − |x| if x < 0.

The base b expansion (where b is an integer greater than 1) of a real number x with
0 ≤ x < 1 is the unique expansion of x as x =

∑∞
j=1

cj

bj where cj is a nonnegative integer
less than b for j = 1, 2, ... and for every integer N there is a coefficient cn 	= b−1 for
some n > N . This expansion is written as (.c1c2c3 . . .)b.

A base b expansion (.c1c2c3 . . .)b terminates if there is a positive integer n such that
cn = cn+1 = cn+2 = · · · = 0.

A base b expansion (.c1c2c3 . . .)b is periodic if there are positive integers N and k such
that cn+k = cn for all n ≥ N .

The periodic base b expansion (.c1c2 . . . cN−1cN . . . cN+k−1cN . . . cN+k−1cN . . .)b is
denoted by (.c1c2 . . . cN−1cN . . . cN+k−1)b. The part of the periodic base b expansion
preceding the periodic part is the pre-period and the periodic part is the period,
where the period and pre-period are taken to have minimal possible length.

Facts:

1. If b is a positive integer greater than 1, then every positive integer n has a unique
base b expansion.

2. Converting from base 10 to base b: Take the positive integer n and divide it by b to
obtain n = bq0 +a0, 0 ≤ a0 < b. Then divide q0 by b to obtain q0 = bq1 +a1, 0 ≤ a1 < b.
Continue this process, successively dividing the quotients by b, until a quotient of zero
is obtained, after k steps. The base b expansion of n is then (ak−1 . . . a1a0)b. (See
Algorithm 1.)
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3. Converting from base 2 to base 2k: Group the bits in the base 2 expansion into
blocks of k bits, starting from the right, and then convert each block of k bits into a
base 2k digit. For example, converting from binary (base 2) to octal (base 8) is done
by grouping the bits of the binary expansion into blocks of 3 bits starting from the
right and converting each block into an octal digit. Similarly, converting from binary to
hexadecimal (base 16) is done by grouping the bits of the binary expansion into blocks
of 4 bits starting from the right and converting each block into a hex digit.

4. Converting from base 2k to binary (base 2): convert each base 2k digit into a block
of k bits and string together these bits in the order the original digits appear. For
example, to convert from hexadecimal to binary, convert each hex digit into the block
of four bits that represent this hex digit and then string together these blocks of four
bits in the correct order.

5. Every positive integer can be expressed uniquely as the sum of distinct powers of
two. This follows since every positive integer has a unique base two expansion, with the
digits either 0 or 1.

6. There are �logb n�+1 decimal digits in the base b expansion of the positive integer n.

7. The number x with one’s complement representation (an−1an−2 . . . a1a0) can be
found using the equation

x = −an−1(2n−1−1) +
n−2∑
i=0

ai2i.

8. The number x with two’s complement representation (an−1an−2 . . . a1a0) can be
found using the equation

x = −an−1 · 2n−1 +
n−2∑
i=0

ai2i.

9. Two’s complement representations of integers are often used by computers because
addition and subtraction of integers, where these integers may be either positive or
negative, can be performed easily using these representations.

10. Define a function Lgn by the rule

Lgn =
{

1 if n = 0;
1 + � log2 |n| � if n 	= 0.

Then Lgn is the number of bits in the base 2 expansion of n, not counting the sign bit.
(Compare with Fact 6.)

11. The bit operations for the basic operations are given in the following table, adapted
from [BaSh96]. This table displays the number of bit operations used by the stan-
dard, naive algorithms, doing things bit by bit (addition with carries, subtraction with
borrows, standard multiplication by each bit and shifting and adding, and standard
division), and a big-oh estimate for the number of bits required to do the opera-
tions using the algorithm with the currently best known computational complexity.
(The function Lg is defined in Fact 10; the function µ(m,n) is defined by the rule
µ(m,n) = m(Lg n)(Lg Lg n) if m ≥ n and µ(m,n) = n(Lgm)(Lg Lgm) otherwise.)

number of bits for operation best known complexity
operation (following naive algorithm) (sophisticated algorithm)

a± b Lg a+ Lg b O(Lg a+ Lg b)
a · b Lg a · Lg b O(µ(Lg a,Lg b))

a = qb+ r Lg q · Lg b O(µ(Lg q,Lg b))
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12. If b is a positive integer greater than 1 and x is a real number with 0 ≤ x < 1,
then x can be uniquely written as x =

∑∞
j=1

cj

bj where cj is a nonnegative integer less
than b for all j, with the restriction that for every positive integer N there is an integer n
with n > N and cn 	= b− 1 (in other words, it is not the case that from some point on,
all the coefficients are b− 1).
13. A periodic or terminating base b expansion, where b is a positive integer, represents
a rational number.
14. The base b expansion of a rational number, where b is a positive integer, either
terminates or is periodic.
15. If 0 < x < 1, x = r

s where r and s are relatively prime positive integers, and
s = TU where every prime factor of T divides b and gcd(U, b) = 1, then the period
length of the base b expansion of x is ordUb (defined in §4.7.1) and the pre-period
length is the smallest positive integer N such that T divides bN .
16. The period length of the base b expansion of 1

m (b and m positive integers greater
than 1) is m− 1 if and only if m is prime and b is a primitive root of m. (See §4.7.1.)

Examples:
1. The binary (base 2), octal (base 8), and hexadecimal (base 16) expansions of the
integer 2001 are (11111010001)2, (3721)8, and (7D1)16, respectively. The octal and
hexadecimal expansions can be obtained from the binary expansion by grouping to-
gether, from the right, the bits of the binary expansion into groups of 3 bits and 4 bits,
respectively.
2. The hexadecimal expansion 2FB3 can be converted to a binary expansion by re-
placing each hex digit by a block of four bits to give 10111110110011. (The initial two
0s in the four bit expansion of the initial hex digit 2 are omitted.)
3. The binary coded decimal expansion of 729 is 011100101001.
4. The nine-bit one’s complement expansions of 214 and −113 (taking n = 9 in the
definition) are 011010110 and 110001110.
5. The nine-bit two’s complement expansions of 214 and −113 (taking n = 9 in the
definition) are 011010110 and 110001111.
6. By Fact 7 the integer with a nine-bit one’s complement representation of 101110111
equals −1(256 − 1) + 119 = −136.
7. By Fact 8 the integer with a nine-bit two’s complement representation of 101110111
equals −256 + 119 = −137.
8. By Fact 15 the pre-period of the decimal expansion of 5

28 has length 2 and the
period has length 6 since 28 = 4 · 7 and ord710 = 6. This is verified by noting that
5
28 = (.17857142)10.

4.2 GREATEST COMMON DIVISORS
The concept of the greatest common divisor of two integers plays an important role in
number theory. The Euclidean algorithm, an algorithm for computing greatest common
divisors, was known in ancient times and was one of the first algorithms that was studied
for what is now called its computational complexity. The Euclidean algorithm and its
extensions are used extensively in number theory and its applications, including those to
cryptography. For more information about the contents of this section consult [HaWr89],
[NiZuMo91], or [Ro99].

c© 2000 by CRC Press LLC



4.2.1 INTRODUCTION

Definitions:

The greatest common divisor of the integers a and b, not both zero, written gcd(a, b),
is the largest integer that divides both a and b.

The integers a and b are relatively prime (or coprime) if they have no positive
divisors in common other than 1, i.e., if gcd(a, b) = 1.

The greatest common divisor of the integers ai, i = 1, 2, . . . , k, not all zero, written
gcd(a1, a2, . . . , ak), is the largest integer that divides all the integers ai.

The integers a1, a2, . . . , ak are pairwise relatively prime if gcd(ai, aj) = 1 for i 	= j.

The integers a1, a2, . . . , ak are mutually relatively prime if gcd(a1, a2, . . . , ak) = 1.

The least common multiple of nonzero integers a and b, written lcm(a, b), is the
smallest positive integer that is a multiple of both a and b.

The least common multiple of nonzero integers a1, . . . , ak, written lcm(a1, . . . , ak),
is the smallest positive integer that is a multiple of all the integers ai, i = 1, 2, . . . , k.

The Farey series of order n is the set of fractions h
k where h and k are integers,

0 ≤ h ≤ k ≤ n, k 	= 0, and gcd(h, k) = 1, in ascending order, with 0 and 1 included in
the forms 0

1 and 1
1 , respectively.

Facts:

1. If d|a and d|b, then d| gcd(a, b).

2. If a|m and b|m, then lcm(a, b)|m.

3. If a is a positive integer, then gcd(0, a) = a.

4. If a and b are positive integers with a < b, then gcd(a, b) = gcd(b mod a, a).

5. If a and b are integers with gcd(a, b) = d, then gcd(a
d ,

b
d ) = 1.

6. If a, b, and c are integers, then gcd(a+ cb, b) = gcd(a, b).

7. If a, b, and c are integers with not both a and b zero and c 	= 0, then gcd(ac, bc) =
|c| gcd(a, b).

8. If a and b are integers with gcd(a, b) = 1, then gcd(a + b, a − b) = 1 or 2. (This
greatest common divisor is 2 when both a and b are odd.)

9. If a, b, and c are integers with gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1.

10. If a, b, and c are mutually relatively prime nonzero integers, then gcd(a, bc) =
gcd(a, b) · gcd(a, c).

11. If a and b are integers, not both zero, then gcd(a, b) is the least positive integer of
the form ma+ nb where m and n are integers.

12. The probability that two randomly selected integers are relatively prime is 6
π2 .

More precisely, if R(n) equals the number of pairs of integers a, b with 1 ≤ a ≤ n,
1 ≤ b ≤ n, and gcd(a, b) = 1, then R(n)

n2 = 6
π2 +O( log n

n ).

13. If a and b are positive integers, then gcd(2a − 1, 2b − 1) = 2(a,b) − 1.

14. If a, b, and c are integers and a|bc and gcd(a, b) = 1, then a|c.
15. If a, b, and c are integers, a|c, b|c and gcd(a, b) = 1, then ab|c.
16. If a1, a2, . . . , ak are integers, not all zero, then gcd(a1, . . . , ak) is the least positive
integer that is a linear combination with integer coefficients of a1, . . . , ak.
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17. If a1, a2, . . . , ak are integers, not all zero, and d|ai for i = 1, 2, . . . , k, then
d|gcd(a1, a2, . . . , ak).
18. If a1, . . . , an are integers, not all zero, then the greatest common divisor of these n
integers is the same as the greatest common divisor of the set of n − 1 integers made
up of the first n− 2 integers and the greatest common divisor of the last two. That is,
gcd(a1, . . . , an) = gcd(a1, . . . , an−2, gcd(an−1, an)).
19. If a and b are nonzero integers and m is a positive integer, then lcm(ma,mb) =
m · lcm(a, b)
20. If b is a common multiple of the integers a1, a2, . . . , ak, then b is a multiple of
lcm(a1, . . . , ak).
21. The common multiples of the integers a1, . . . , ak are the integers 0, lcm(a1, . . . , ak),
2 · lcm(a1, . . . , ak), . . . .
22. If a1, a2, . . . , an are pairwise relatively prime integers, then lcm(a1, . . . , an) =
a1a2 . . . an.
23. If a1, a2, . . . , an are integers, not all zero, then lcm(a1, a2, . . . , an−1, an) =
lcm(lcm(a1, a2, . . . , an−1), an).
24. If a = p1

a1p2
a2 · · · pn

an and b = p1
b1p2

a2 · · · pn
bn , where the pi are distinct primes

for i = 1, . . . , n, and each exponent is a nonnegative integer, then

gcd(a, b) = p1
min(a1,b1)p2

min(a2,b2) . . . pn
min(an,bn),

where min(x, y) denotes the minimum of x and y, and

lcm(a, b) = p1
max(a1,b1)p2

max(a2,b2) . . . pn
max(an,bn),

where max(x, y) denotes the maximum of x and y.
25. If a and b are positive integers, then ab = gcd(a, b) · lcm(a, b).

26. If a, b, and c are positive integers, then lcm(a, b, c) =
abc · gcd(a, b, c)

gcd(a, b) · gcd(a, c) · gcd(b, c)
.

27. If a, b, and c are positive integers, then gcd(lcm(a, b), lcm(a, c)) = lcm(a, gcd(b, c))
and lcm(gcd(a, b), gcd(a, c)) = gcd(a, lcm(b, c)).
28. If a

b , c
d , and e

f are successive terms of a Farey series, then c
d = a+e

b+f .
29. If a

b and c
d are successive terms of a Farey series, then ad− bc = −1.

30. If a
b and c

d are successive terms of a Farey series of order n, then b+ d > n.
31. Farey series are named after an English geologist who published a note describing
their properties in the Philosophical Magazine in 1816. The eminent French mathemati-
cian Cauchy supplied proofs of the properties stated, but not proved, by Farey. Also,
according to [Di71], these properties had been stated and proved by Haros in 1802.

Examples:
1. gcd(12, 15) = 3, gcd(14, 25) = 1, gcd(0, 100) = 100, and gcd(3, 39) = 3.
2. gcd(27335472113173, 24355272112133) = 24335272112.
3. lcm(27335472113173, 24355272112133) = 27355472113133173.
4. gcd(18, 24, 36) = 6 and gcd(10, 25, 35, 245) = 5.
5. The integers 15, 21, and 35 are mutually relatively prime since gcd(15, 21, 35) = 1.
However, they are not pairwise relatively prime since gcd(15, 35) = 5.
6. The integers 6, 35, and 143 are both mutually relatively prime and pairwise relatively
prime.
7. The Farey series of order 5 is 0

1 , 1
5 , 1

4 , 1
3 , 2

5 , 1
2 , 3

5 , 2
3 , 3

4 , 4
5 , 1

1
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4.2.2 THE EUCLIDEAN ALGORITHM

Finding the greatest common divisor of two integers is one of the most common problems
in number theory and its applications. An algorithm for this task was known in ancient
times by Euclid. His algorithm and its extensions are among the most commonly used
algorithms. For more information about these algorithms see [BaSh96] or [Kn81].

Definition:

The Euclidean algorithm is an algorithm that computes the greatest common divisor
of two integers a and b with a ≤ b, by replacing them with a and b mod a, and repeating
this step until one of the integers reached is zero.

Facts:
1. The Euclidean algorithm: The greatest common divisor of two positive integers can
be computed using the recurrence in §4.2.1 Fact 4, together with §4.1.2 Fact 3. The
resulting algorithm proceeds by successively replacing a pair of positive integers with
a new pair of integers formed from the smaller of the two integers and the remainder
when the larger is divided by the smaller, stopping once a zero remainder is reached.
The last nonzero remainder is the greatest common divisor of the original two integers.
(See Algorithm 1.)

Algorithm 1: The Euclidean algorithm.

procedure gcd(a, b: positive integers)
r0 := a
r1 := b
i := 1
while ri 	= 0
begin
ri+1 := ri−1 mod ri

i := i+ 1
end {gcd(a, b) is ri−1}

2. Lamé’s theorem: The number of divisions needed to find the greatest common
divisor of two positive integers using the Euclidean algorithm does not exceed five times
the number of decimal digits in the smaller of the two integers. (This was proved by
Gabriel Lamé (1795–1870)). (See [BaSh96] or [Ro99] for a proof.)

3. The Euclidean algorithm finds the greatest common divisor of the Fibonacci numbers
(§3.1.2) Fn+1 and Fn+2 (where n is a positive integer) using exactly n division steps.
If the Euclidean algorithm uses exactly n division steps to find the greatest common
divisor of the positive integers a and b (with a < b), then a ≥ Fn+1 and b ≥ Fn+2.

4. The Euclidean algorithm uses O((log b)3) bit operations to find the greatest common
divisor of two integers a and b with a < b.

5. The Euclidean algorithm uses O(Lg a ·Lg b) bit operations to find the greatest com-
mon divisor of two integers a and b.

6. Least remainder Euclidean algorithm: The greatest common divisor of two inte-
gers a and b (with a < b) can be found by replacing a and b with a and the least
remainder of b when divided by a. (The least remainder of b when divided by a is
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Algorithm 2: The extended Euclidean algorithm.

procedure gcdex(a, b: positive integers)
r0 := a
r1 := b
m0 := 1
m1 = 0
n0 := 0
n1 := 1
i := 1
while ri 	= 0
begin
ri+1 := ri−1 mod ri

mi+1 := mi−1 −
⌊ ri−1

ri

⌋
mi

ni+1 := ni−1 −
⌊ ri−1

ri

⌋
ni

i := i+ 1
end {gcd(a, b) is ri−1 and gcd(a, b) = mi−1a+ ni−1b}

the integer of smallest absolute value congruent to b modulo a. It equals b mod a if
b mod a ≤ a

2 , and (b mod a) − a if b mod a > a
2 )). Repeating this procedure until a

remainder of zero is reached produces the great common divisor of a and b as the last
nonzero remainder.

7. The number of divisions used by the least remainder Euclidean algorithm to find
the greatest common divisor of two integers is less than or equal the number of divisions
used by the Euclidean algorithm to find this greatest common divisor.

8. Binary greatest common divisor algorithm: The greatest common divisor of two
integers a and b can also be found using an algorithm known as the binary greatest
common divisor algorithm. It is based on the following reductions: if a and b are both
even, then gcd(a, b) = 2 gcd(a

2 ,
b
2 ); if a is even and b is odd, then gcd(a, b) = gcd(a

2 , b)
(and if a is odd and b is even, switch them); and if a and b are both odd, then gcd(a, b) =
gcd( |a−b|

2 , b). To stop, the algorithm uses the rule that gcd(a, a) = a.

9. Extended Euclidean algorithm: The extended euclidean algorithm finds gcd(a, b)
and expresses it in the form gcd(a, b) = ma+nb for some integers m and n. The two-pass
version proceeds by first working through the steps of the Euclidean algorithm to find
gcd(a, b), and then working backwards through the steps to express gcd(a, b) as a linear
combination of each pair of successive remainders until the original integers a and b
are reached. The one-pass version of this algorithm keeps track of how each successive
remainder can be expressed as a linear combination of successive remainders. When the
last step is reached both gcd(a, b) and integers m and n with gcd(a, b) = ma + nb are
produced. The one-pass version is displayed as Algorithm 2.

Examples:
1. When the Euclidean algorithm is used to find gcd(53, 77), the following steps result:

77 = 1 · 53 + 24,
53 = 2 · 24 + 5,
24 = 4 · 5 + 4,
5 = 1 · 4 + 1,
4 = 4 · 1.
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This shows that gcd(53, 77) = 1. Working backwards through these steps to perform
the two-pass version of the Euclidean algorithm gives

1 = 5 − 1 · 4
= 5 − 1 · (24 − 4 · 5) = 5 · 5 − 1 · 24
= 5 · (53 − 2 · 24) − 1 · 24 = 5 · 53 − 11 · 24
= 5 · 53 − 11 · (77 − 1 · 53) = 16 · 53 − 11 · 77.

2. The steps of the least-remainder algorithm when used to compute gcd(57, 93) are

gcd(57, 93) = gcd(57, 21) = gcd(21, 6) = gcd(6, 3) = 3.

3. The steps of the binary GCD algorithm when used to compute gcd(108, 194) are

gcd(108, 194) = 2 · gcd(54, 97) = 2 · gcd(27, 97) = 2 · gcd(27, 35)

= 2 · gcd(4, 35) = 2 · gcd(2, 35) = 2 · gcd(1, 35) = 2.

4.3 CONGRUENCES

4.3.1 INTRODUCTION

Definitions:

If m is a positive integer and a and b are integers, then a is congruent to b modulo m,
written a ≡ b (mod m), if m divides a − b. If m does not divide a − b, a and b are
incongruent modulo m, written a 	≡b (mod m).

A complete system of residues modulo m is a set of integers such that every integer
is congruent modulo m to exactly one of the integers in the set.

If m is a positive integer and a is an integer with a = bm + r, where 0 ≤ r ≤ m − 1,
then r is the least nonnegative residue of a modulo m. When a is not divisible
by m, r is the least positive residue of a modulo m.

The congruence class of a modulo m is the set of integers congruent to a modulo m
and is written [a]m. Any integer in [a]m is called a representative of this class.

If m is a positive integer and a is an integer relatively prime to m, then a is an in-
verse of a modulo m if aa ≡ 1 (mod m). An inverse of a modulo m is also written
a−1 mod m.

If m is a positive integer, then a reduced residue system modulo m is a set of
integers such that every integer relatively prime to m is congruent modulo m to exactly
one integer in the set.

If m is a positive integer, the set of congruence classes modulo m is written Zm. (See
§5.2.1.)

If m is a positive integer greater than 1, the set of congruence classes of elements
relatively prime to m is written Z�

m; that is, Z�
m = { [a]m ∈ Zm | gcd(a, n) = 1 }. (See

§5.2.1.)
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Facts:

1. If m is a positive integer and a, b, and c are integers, then:
• a ≡ a (mod m);
• a ≡ b (mod m) if and only if b ≡ a (modm);
• if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Consequently, congruence modulo m is an equivalence relation. (See §1.4.2 and §5.2.1.)

2. If m is a positive integer and a is an integer, then m divides a if and only if a ≡
0 (mod m).

3. If m is a positive integer and a and b are integers with a ≡ b (mod m), then
gcd(a,m) = gcd(b,m).

4. If a, b, c, and m are integers with m positive and a ≡ b (mod m), then a + c ≡
b+ c (mod m), a− c ≡ b− c (mod m), and ac ≡ bc (mod m).

5. If m is a positive integer and a, b, c, and d are integers with a ≡ b (mod m) and
c ≡ d (mod m), then ac ≡ bd (mod m).

6. If a, b, c, and m are integers, m is positive, d = gcd(c,m), and ac ≡ bc (modm),
then a ≡ b (mod m

d ).

7. If a, b, c, and m are integers, m is positive, and c and m are relatively prime, and
ac ≡ bc (mod m), then a ≡ b (mod m).

8. If a, b, k and m are integers with k and m positive and a ≡ b (mod m), then
ak ≡ bk (mod m).

9. If a, b, and m are integers with a ≡ b (mod m), then if c is an integer, it does not
necessarily follow that ca ≡ cb (mod m).

10. If f(x1, . . . , xn) is a polynomial with integer coefficients and a1 . . . an, b1, . . . , bn
are integers with ai ≡ bi (mod m) for all i, then f(a1, . . . , an) ≡ f(b1, . . . , bn) (mod m).

11. If a, b, and mi are integers with mi positive and a ≡ b (mod mi) for i = 1, 2, . . . , k,
then a ≡ b (mod lcm(m1,m2, . . . ,mk)).

12. If a and b are integers, mi (i = 1, 2, . . . , k) are pairwise relatively prime positive
integers, and a ≡ b (mod mi) for i = 1, 2, . . . , k, then a ≡ b (mod m1m2 . . .mk).

13. The congruence class [a]m is the set of integers {a, a ± m, a ± 2m, . . .}. If a ≡
b (mod m), then [a]m = [b]m. The congruence classes modulo m are the equivalence
classes of the congruence modulo m equivalence relation. (See §5.2.1.)

14. Addition, subtraction, and multiplication of congruence classes modulo m, where
m is a positive integer, are defined by [a]m + [b]m = [a+ b]m, [a]m − [b]m = [a− b]m,
and [a]m[b]m = [ab]m. Each of these operations is well defined, in the sense that using
representatives of the congruence classes other than a and b does not change the resulting
congruence class.

15. If m is a positive integer, then (Zn,+), where + is the operation of addition of
congruence classes defined in Fact 14 and in §5.2.1, is an abelian group. The identity
element in this group is [0]m and the inverse of [a]m is [−a]m = [m− a]m.

16. If m is a positive integer greater than 1 and a is relatively prime to m, then a has
an inverse modulo m.

17. An inverse of a modulo m, where m is a positive integer and gcd(a,m) = 1, may
be found by using the extended Euclidean algorithm to find integers x and y such that
ax+my = 1, which implies that x is an inverse of a modulo m.
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18. If m is a positive integer, then (Z�
m, ·), where · is the multiplication operation on

congruence classes, is an abelian group. (See §5.2.1.) The identity element of this group
is [1]m and the inverse of the class [a]m is the class [a]m, where a is an inverse of a
modulo m.
19. If ai (i = 1, . . . ,m) is a complete residue system modulo m, where m is a positive
integer, and r and s are integers with gcd(m, r) = 1, then rai + s is a complete system
of residues modulo m.
20. If a and b are integers and m is a positive integer with 0 ≤ a < m and 0 ≤ b < m,
then (a+ b) mod m = a+ b if a+ b < m, and (a+ b) mod m = a+ b−m if a+ b ≥ m.
21. Computing the least positive residue modulo m of powers of integers is important in
cryptology (see Chapter 14). An efficient algorithm for computing bn mod m where n
is a positive integer with binary expansion n = (ak−1 . . . a1a0)2 is to find the least
positive residues of b, b2, b4, . . . , b2

k−1
modulo m by successively squaring and reducing

modulo m, multiplying together the least positive residues modulo m of b2
j

for those j
with aj = 1, reducing modulo m after each multiplication.
22. Wilson’s theorem: If p is prime, then (p− 1)! ≡ −1 (mod p).
23. If n is a positive integer greater than 1 such that (n− 1)! ≡ −1 (mod n) then n is
prime.
24. Fermat’s little theorem: If p is a prime and a is an integer not divisible by p then
ap−1 ≡ 1 (mod p).
25. Euler’s theorem: If m is a positive integer and a is an integer relatively prime to m,
then aφ(m) ≡ 1 (mod m), where φ(m) is the number of positive integers not exceeding m
that are relatively prime to m.
26. If a is an integer and p is a prime that does not divide a, then from Fermat’s little
theorem it follows that ap−2 is an inverse of a modulo p.
27. If a and m are relatively prime integers with m > 1, then aφ(m)−1 is an inverse
of a modulo m. This follows directly from Euler’s theorem.
28. Linear congruential method: One of the most common method used for generating
pseudo-random numbers is the linear congruential method. It starts with integers m,
a, c, and x0 where 2 ≤ a < m, 0 ≤ c < m, and 0 ≤ x0 ≤ m. The sequence of
pseudo-random numbers is defined recursively by

xn+1 = (axn + c)mod m, n = 0, 1, 2, 3, . . . .

Here m is the modulus, a is the multiplier, c is the increment, and x0 is the seed of the
generator.
29. Big-oh estimates for the number of bit operations required to do modular ad-
dition, modular subtraction, modular multiplication, modular inversion, and modular
exponentiation is summarized in the following table.

name operation
number of

bit operations

modular addition (a+ b) mod m O(logm)

modular subtraction (a− b) mod m O(logm)

modular multiplication (a · b) mod m O((logm)2)

modular inversion (a−1) mod m O((logm)2)

modular exponentiation ak mod m, k < m O((logm)3)
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Examples:

1. 23 ≡ 5 (mod 9), −17 ≡ 13 (mod 15), and 99 ≡ 0 (mod 11), but 11 	≡3 (mod 5),
−3 	≡8 (mod 6), and 44 	≡0 (mod 7).

2. To find an inverse of 53 modulo 71, use the extended Euclidean algorithm to obtain
16 · 53 − 11 · 71 = 1 (see Example 1 of 4.2.2). This implies that 16 is an inverse of 53
modulo 71.

3. Since 11 is prime, by Wilson’s theorem it follows that 10! ≡ −1 (mod 11).

4. 5! ≡ 0 (mod 6), which provides an impractical verification that 6 is not prime.

5. To find the least positive residue of 3201 modulo 11, note that by Fermat’s little
theorem 310 ≡ 1 (mod 11). Hence 3201 = (310)20 · 3 ≡ 3 (mod 11).

6. Zeller’s congruence: A congruence can be used to determine the day of the week
of any date in the Gregorian calendar, the calendar used in most of the world. Let w
represent the day of the week, with w = 0, 1, 2, 3, 4, 5, 6 for Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, respectively. Let k represent the day of the
month. Let m represent the month with m = 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 for January,
February, March, April, May, June, July, August, September, October, November, De-
cember, respectively. Let N represent the previous year if the month is January or
February or the current year otherwise, with C the century of N and Y the particular
year of the century of N so that N = 100Y +C. Then the day of the week can be found
using the congruence

w ≡ k + �2.6m− 0.2� − 2C + Y +
⌊

Y
4

⌋
+

⌊
C
4

⌋
(mod 7).

7. January 1, 1900 was a Monday. This follows by Zeller’s congruence with C = 18,
Y = 99, m = 11, and k = 1, noting that to apply this congruence January is considered
the eleventh month of the preceding year.

4.3.2 LINEAR AND POLYNOMIAL CONGRUENCES

Definitions:

A linear congruence in one variable is a congruence of the form ax ≡ b (mod m),
where a, b, and m are integers, m is positive, and x is an unknown.

If f is a polynomial with integer coefficients, an integer r is a solution of the congruence
f(x) ≡ 0 (mod m), or a root of f(x) modulo m, if f(r) ≡ 0 (mod m).

Facts:

1. If a, b, and m are integers, m is positive, and gcd(a,m) = d, then the congruence
ax ≡ b (mod m) has exactly d incongruent solutions modulo m if d|b, and no solutions
if d	 |b.
2. If a, b, and m are integers, m is positive, and gcd(a,m) = 1, then the solutions of
ax ≡ b (mod m) are all integers x with x ≡ ab (mod m).

3. If a and b are positive integers and p is a prime that does not divide a, then the
solutions of ax ≡ b (mod p) are the integers x with x ≡ ap−2b (mod p).

4. Thue’s lemma: If p is a prime and a is an integer not divisible by p, then the
congruence ax ≡ y (mod p) has a solution x0, y0 with 0 < |x0| <

√
p, 0 < |y0| <

√
p.
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5. Chinese remainder theorem: If mi, i = 1, 2, . . . , r, are pairwise relatively prime
positive integers, then the system of simultaneous congruences x ≡ ai (mod mi), i =
1, 2, . . . , r, has a unique solution modulo M = m1m2 . . .mr which is given by x ≡
a1M1y1+a2M2y2+· · ·+arMryr where Mk = M

mk
and yk is an inverse of Mk modulo mk,

k = 1, 2, . . . , r.

6. Problems involving the solution of asystem of simultaneous congruences arose in the
writing of ancient mathematicians, including the Chinese mathematician Sun-Tsu, and
in other works by Indian and Greek mathematicians. (See [Di71] for details.)

7. The system of simultaneous congruences x ≡ ai (modmi), i = 1, 2, . . . , r has a
solution if and only if gcd(mi,mj) divides ai − aj for all pairs of integers (i, j) with
1 ≤ i < j ≤ r. If a solution exists, it is unique modulo lcm(m1,m2, . . . ,mr).

8. If a, b, c, d, e, f, and m are integers with m positive such that gcd(ad − bc,m) = 1,
then the system of congruences ax + by ≡ e (mod m), cx + dy ≡ f (mod m) has a
unique solution given by x ≡ g(de− bf) (mod m), y ≡ g(af − ce) (mod m) where g is
an inverse of ad− bc modulo m.

9. Lagrange’s theorem: If p is prime, then the polynomial f(x) = anx
n + · · ·+a1x+a0

where an 	≡0 (mod p) has at most n roots modulo p.

10. If f(x) = anx
n + · · ·+a1x+a0, where ai (i = 1, . . . , n) is an integer and p is prime,

has more than n roots modulo p, then p divides ai for all i = 1, . . . , n.

11. If m1,m2, . . . ,mr are pairwise relatively prime positive integers with product m =
m1m2 . . .mr, and f is a polynomial with integer coefficients, then f(x) has a root
modulo m if and only if f(x) has a root modulo mi, for all i = 1, 2, . . . , r. Furthermore,
if f(x) has ni incongruent roots modulo mi and n incongruent roots modulo m, then
n = n1n2 . . . nr.

12. If p is prime, k is a positive integer, and s is a root of f(x) modulo pk, then:
• if p 	 |f ′(s), then there is a unique root t of f(x) modulo pk+1 with t ≡ s (mod pk),

namely t = s+pku where u is the unique solution of f ′(s)u ≡ −f(s)/pk (mod p);
• if p|f ′(s) and pk+1|f(s), then there are exactly p incongruent roots of f(x) modulo

pk+1 congruent to s modulo p, given by s+ pki, i = 0, 1, . . . , p− 1;
• if p|f ′(s) and pk+1	 |f(s), then there are no roots of f(x) modulo pk+1 that are

congruent to s modulo pk.

13. Finding roots of a polynomial modulo m, where m is a positive integer: First find
roots of the polynomial modulo pr for each prime power in the prime-power factorization
of m (Fact 14) and then use the Chinese remainder theorem (Fact 5) to find solutions
modulo m.

14. Finding solutions modulo pr reduces to first finding solutions modulo p. In par-
ticular, if there are no roots of f(x) modulo p, there are no roots of f(x) modulo pr.
If f(x) has roots modulo p, choose one, say r with 0 ≤ r < p. By Fact 12, corresponding
to r there are 0, 1, or p roots of f(x) modulo p2.

Examples:

1. There are 3 incongruent solutions of 6x ≡ 9 (mod 15) since gcd(6, 15) = 3 and 3|9.
The solutions are those integers x with x ≡ 4, 9, or 14 (mod 15).

2. The linear congruence 2x ≡ 7 (mod 6) has no solutions since gcd(2, 6) = 2 and 2	 |7.

3. The solutions of the linear congruence 3x ≡ 5 (mod 11) are those integers x with
x ≡ 3 · 5 ≡ 4 · 5 ≡ 9 (mod 11).
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4. It follows from the Chinese remainder theorem (Fact 5) that the solutions of the
systems of simultaneous congruences x ≡ 1 (mod 3), x ≡ 2 (mod 4), and x ≡ 3 (mod 5)
are all integers x with x ≡ 1 · 20 · 2 + 2 · 15 · 3 + 3 · 12 · 3 ≡ 58 (mod 60).
5. The simultaneous congruences x ≡ 4 (mod 9) and x ≡ 7 (mod 15) can be solved
by noting that the first congruence implies that x − 4 = 9t for some integer t, so
that x = 9t + 4. Inserting this expression for x into the second congruence gives
9t + 4 ≡ 7 (mod 15). This implies that 3t ≡ 1 (mod 5), so that t ≡ 2 (mod 5) and
t = 5u+ 2 for some integer u. Hence x = 45u+ 22 for some integer u. The solutions of
the two simultaneous congruences are those integers x with x ≡ 22 (mod 45).

4.4 PRIME NUMBERS

One of the most powerful tools in number theory is the fact that each composite integer
can be decomposed into a product of primes. Primes may be thought of as the building
blocks of the integers in the sense that they can be decomposed only in trivial ways, for
example, 3 = 1×3. Prime numbers, once of only theoretical interest, now are important
in many applications, especially in the area of cryptography were large primes play a
crucial role in the area of public-key cryptosystems (see Chapter 14). From ancient to
modern times, mathematicians have devoted long hours to the study of primes and their
properties. Even so, many questions about primes have only partially been answered
or remain complete mysteries, including questions that ask whether there are infinitely
many primes of certain forms. There have been many recent discoveries concerning
prime numbers, such as the discovery of new Mersenne primes. The current state of
knowledge on some of these questions and the latest discoveries are described in this
section.

Additional information about primes can be found in [CrPo99] and [Ri96] and on
the Web. See the Prime Pages at the website

http://www.utm.edu/research/primes/index.html#lists

4.4.1 BASIC CONCEPTS

Definitions:

A prime is a natural number greater than 1 that is exactly divisible only by 1 and
itself.

A composite is a natural number greater than 1 that is not a prime. That is, a
composite may be factored into the product of two natural numbers both smaller than
itself.

Facts:
1. The number 1 is not considered to be prime.
2. Table 1 lists the primes up to 10,000.
3. Fundamental theorem of arithmetic: Every natural number greater than 1 is either
prime or can be written as a product of prime factors in a unique way, up to the
order of the prime factors. That is, every composite n can be expressed uniquely as
n = p1p2 . . . pk, where p1 ≤ p2 ≤ · · · ≤ pk are primes. This is sometimes also known as
the unique factorization theorem.
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4. The unique factorization of a positive integer n formed by grouping together equal
prime factors produces the unique prime-power factorization n = pa1

1 pa2
2 . . . pak

k .
5. Table 2 lists the prime-power factorization of all positive integers below 2,500. Num-
bers appearing in boldface are prime.

Examples:
1. 6 = 2 × 3.
2. 245 = 5 × 72.
3. 10! = 28 × 34 × 52 × 7.
4. 68,718,821,377 = (217−1) · (219−1) (both factors are Mersenne primes; see §4.4.3).
5. The largest prime known is 23,021,377 − 1. It has 909,526 decimal digits and was
discovered in 1998. It is a Mersenne prime (see Table 3).

4.4.2 COUNTING PRIMES

Definitions:

The value of the prime counting function π(x) at x where x is a positive real number
equals the number of primes less than or equal to x.

The li function is defined by li (x) =
∫ x

0
dt

log t , for x ≥ 2. (The principal value is taken
for the integral at the singularity t = 1.)

Twin primes are primes that differ by exactly 2.

Facts:
1. Euclid (ca. 300 B.C.E.) proved that there are infinitely many primes. He observed
that the product of a finite list of primes, plus one, must be divisible by a prime not on
that list.
2. Leonhard Euler (1707–1783) showed that the sum of the reciprocals of the primes
up to n tends toward infinity as n tends toward infinity, which also implies that there
are infinitely many primes. (There are many other proofs as well.)
3. There is no useful, exact formula known which will produce the nth prime, given n.
It is relatively easy to construct a useless (that is, impractical) one. For example, let α =∑∞

n=1 pn/22n

, where pn is the nth prime. Then the nth prime is �22n

α�−22n−1�22n−1
α�,

where �x� is the greatest integer less than or equal to x.
4. If f(x) is a polynomial with integer coefficients that is not constant, then there are
infinitely many integers n for which |f(n)| is not prime.
5. There are polynomials with integer coefficients with the property that the set of
positive values taken by each of these polynomials as the variables range over the set
of nonnegative integers is the set of prime numbers. The existence of such polynomials
has essentially no practical value for constructing primes. For example, there are poly-
nomials in 26 variables of degree 25, in 42 variables of degree 5, and in 12 variables of
degree 13697, with this property. (See [Ri96].)
6. pn

n log n → 1 as n → ∞. (This follows from the prime number theorem, Fact 10.)
7. An inexact and rough formula for the nth prime is n log n.
8. pn > n log n for all n. (J. B. Rosser)
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Table 1 Table of primes less than 10,000.

The prime number p10n+k is found by looking at the row beginning with n.. and at the
column beginning with ..k.

..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9
2 3 5 7 11 13 17 19 23

1.. 29 31 37 41 43 47 53 59 61 67
2.. 71 73 79 83 89 97 101 103 107 109
3.. 113 127 131 137 139 149 151 157 163 167
4.. 173 179 181 191 193 197 199 211 223 227
5.. 229 233 239 241 251 257 263 269 271 277

6.. 281 283 293 307 311 313 317 331 337 347
7.. 349 353 359 367 373 379 383 389 397 401
8.. 409 419 421 431 433 439 443 449 457 461
9.. 463 467 479 487 491 499 503 509 521 523
10.. 541 547 557 563 569 571 577 587 593 599

11.. 601 607 613 617 619 631 641 643 647 653
12.. 659 661 673 677 683 691 701 709 719 727
13.. 733 739 743 751 757 761 769 773 787 797
14.. 809 811 821 823 827 829 839 853 857 859
15.. 863 877 881 883 887 907 911 919 929 937

16.. 941 947 953 967 971 977 983 991 997 1009
17.. 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063
18.. 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129
19.. 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217
20.. 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289

21.. 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367
22.. 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447
23.. 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499
24.. 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579
25.. 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637

26.. 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723
27.. 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801
28.. 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879
29.. 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979
30.. 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039

31.. 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113
32.. 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207
33.. 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281
34.. 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351
35.. 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417

36.. 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521
37.. 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609
38.. 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683
39.. 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731
40.. 2741 2749 2753 2767 2777 2789 2791 2797 2801 2803
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..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9

41.. 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897
42.. 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971
43.. 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067
44.. 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169
45.. 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253

46.. 3257 3259 3271 3299 3301 3307 3313 3319 3323 3329
47.. 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407
48.. 3413 3433 3449 3457 3461 3463 3467 3469 3491 3499
49.. 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559
50.. 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637

51.. 3643 3659 3671 3673 3677 3691 3697 3701 3709 3719
52.. 3727 3733 3739 3761 3767 3769 3779 3793 3797 3803
53.. 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889
54.. 3907 3911 3917 3919 3923 3929 3931 3943 3947 3967
55.. 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051

56.. 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133
57.. 4139 4153 4157 4159 4177 4201 4211 4217 4219 4229
58.. 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289
59.. 4297 4327 4337 4339 4349 4357 4363 4373 4391 4397
60.. 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483

61.. 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567
62.. 4583 4591 4597 4603 4621 4637 4639 4643 4649 4651
63.. 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733
64.. 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817
65.. 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933

66.. 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999
67.. 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081
68.. 5087 5099 5101 5107 5113 5119 5147 5153 5167 5171
69.. 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273
70.. 5279 5281 5297 5303 5309 5323 5333 5347 5351 5381

71.. 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441
72.. 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519
73.. 5521 5527 5531 5557 5563 5569 5573 5581 5591 5623
74.. 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689
75.. 5693 5701 5711 5717 5737 5741 5743 5749 5779 5783

76.. 5791 5801 5807 5813 5821 5827 5839 5843 5849 5851
77.. 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927
78.. 5939 5953 5981 5987 6007 6011 6029 6037 6043 6047
79.. 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131
80.. 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217
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..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9

81.. 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299
82.. 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361
83.. 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469
84.. 6473 6481 6491 6521 6529 6547 6551 6553 6563 6569
85.. 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661

86.. 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737
87.. 6761 6763 6779 6781 6791 6793 6803 6823 6827 6829
88.. 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911
89.. 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991
90.. 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079

91.. 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193
92.. 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283
93.. 7297 7307 7309 7321 7331 7333 7349 7351 7369 7393
94.. 7411 7417 7433 7451 7457 7459 7477 7481 7487 7489
95.. 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559

96.. 7561 7573 7577 7583 7589 7591 7603 7607 7621 7639
97.. 7643 7649 7669 7673 7681 7687 7691 7699 7703 7717
98.. 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823
99.. 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907
100.. 7919 7927 7933 7937 7949 7951 7963 7993 8009 8011

101.. 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101
102.. 8111 8117 8123 8147 8161 8167 8171 8179 8191 8209
103.. 8219 8221 8231 8233 8237 8243 8263 8269 8273 8287
104.. 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377
105.. 8387 8389 8419 8423 8429 8431 8443 8447 8461 8467

106.. 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581
107.. 8597 8599 8609 8623 8627 8629 8641 8647 8663 8669
108.. 8677 8681 8689 8693 8699 8707 8713 8719 8731 8737
109.. 8741 8747 8753 8761 8779 8783 8803 8807 8819 8821
110.. 8831 8837 8839 8849 8861 8863 8867 8887 8893 8923

111.. 8929 8933 8941 8951 8963 8969 8971 8999 9001 9007
112.. 9011 9013 9029 9041 9043 9049 9059 9067 9091 9103
113.. 9109 9127 9133 9137 9151 9157 9161 9173 9181 9187
114.. 9199 9203 9209 9221 9227 9239 9241 9257 9277 9281
115.. 9283 9293 9311 9319 9323 9337 9341 9343 9349 9371

116.. 9377 9391 9397 9403 9413 9419 9421 9431 9433 9437
117.. 9439 9461 9463 9467 9473 9479 9491 9497 9511 9521
118.. 9533 9539 9547 9551 9587 9601 9613 9619 9623 9629
119.. 9631 9643 9649 9661 9677 9679 9689 9697 9719 9721
120.. 9733 9739 9743 9749 9767 9769 9781 9787 9791 9803

121.. 9811 9817 9829 9833 9839 9851 9857 9859 9871 9883
122.. 9887 9901 9907 9923 9929 9931 9941 9949 9967 9973
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Table 2 Prime power decompositions below 2500.

0 1 2 3 4 5 6 7 8 9

0 2 3 22 5 2·3 7 23 32

1 2·5 11 22·3 13 2·7 3·5 24 17 2·32 19
2 22·5 3·7 2·11 23 23·3 52 2·13 33 22·7 29
3 2·3·5 31 25 3·11 2·17 5·7 22·32 37 2·19 3·13
4 23·5 41 2·3·7 43 22·11 32·5 2·23 47 24·3 72

5 2·52 3·17 22·13 53 2·33 5·11 23·7 3·19 2·29 59
6 22·3·5 61 2·31 32·7 26 5·13 2·3·11 67 22·17 3·23
7 2·5·7 71 23·32 73 2·37 3·52 22·19 7·11 2·3·13 79
8 24·5 34 2·41 83 22·3·7 5·17 2·43 3·29 23·11 89
9 2·32·5 7·13 22·23 3·31 2·47 5·19 25·3 97 2·72 32·11
10 22·52 101 2·3·17 103 23·13 3·5·7 2·53 107 22·33 109
11 2·5·11 3·37 24·7 113 2·3·19 5·23 22·29 32·13 2·59 7·17
12 23·3·5 112 2·61 3·41 22·31 53 2·32·7 127 27 3·43
13 2·5·13 131 22·3·11 7·19 2·67 33·5 23·17 137 2·3·23 139
14 22·5·7 3·47 2·71 11·13 24·32 5·29 2·73 3·72 22·37 149
15 2·3·52 151 23·19 32·17 2·7·11 5·31 22·3·13 157 2·79 3·53
16 25·5 7·23 2·34 163 22·41 3·5·11 2·83 167 23·3·7 132

17 2·5·17 32·19 22·43 173 2·3·29 52·7 24·11 3·59 2·89 179
18 22·32·5 181 2·7·13 3·61 23·23 5·37 2·3·31 11·17 22·47 33·7
19 2·5·19 191 26·3 193 2·97 3·5·13 22·72 197 2·32·11 199
20 23·52 3·67 2·101 7·29 22·3·17 5·41 2·103 32·23 24·13 11·19
21 2·3·5·7 211 22·53 3·71 2·107 5·43 23·33 7·31 2·109 3·73
22 22·5·11 13·17 2·3·37 223 25·7 32·52 2·113 227 22·3·19 229
23 2·5·23 3·7·11 23·29 233 2·32·13 5·47 22·59 3·79 2·7·17 239
24 24·3·5 241 2·112 35 22·61 5·72 2·3·41 13·19 23·31 3·83
25 2·53 251 22·32·7 11·23 2·127 3·5·17 28 257 2·3·43 7·37
26 22·5·13 32·29 2·131 263 23·3·11 5·53 2·7·19 3·89 22·67 269
27 2·33·5 271 24·17 3·7·13 2·137 52·11 22·3·23 277 2·139 32·31
28 23·5·7 281 2·3·47 283 22·71 3·5·19 2·11·13 7·41 25·32 172

29 2·5·29 3·97 22·73 293 2·3·72 5·59 23·37 33·11 2·149 13·23
30 22·3·52 7·43 2·151 3·101 24·19 5·61 2·32·17 307 22·7·11 3·103
31 2·5·31 311 23·3·13 313 2·157 32·5·7 22·79 317 2·3·53 11·29
32 26·5 3·107 2·7·23 17·19 22·34 52·13 2·163 3·109 23·41 7·47
33 2·3·5·11 331 22·83 32·37 2·167 5·67 24·3·7 337 2·132 3·113
34 22·5·17 11·31 2·32·19 73 23·43 3·5·23 2·173 347 22·3·29 349
35 2·52·7 33·13 25·11 353 2·3·59 5·71 22·89 3·7·17 2·179 359
36 23·32·5 192 2·181 3·112 22·7·13 5·73 2·3·61 367 24·23 32·41
37 2·5·37 7·53 22·3·31 373 2·11·17 3·53 23·47 13·29 2·33·7 379
38 22·5·19 3·127 2·191 383 27·3 5·7·11 2·193 32·43 22·97 389
39 2·3·5·13 17·23 23·72 3·131 2·197 5·79 22·32·11 397 2·199 3·7·19
40 24·52 401 2·3·67 13·31 22·101 34·5 2·7·29 11·37 23·3·17 409
41 2·5·41 3·137 22·103 7·59 2·32·23 5·83 25·13 3·139 2·11·19 419
42 22·3·5·7 421 2·211 32·47 23·53 52·17 2·3·71 7·61 22·107 3·11·13
43 2·5·43 431 24·33 433 2·7·31 3·5·29 22·109 19·23 2·3·73 439
44 23·5·11 32·72 2·13·17 443 22·3·37 5·89 2·223 3·149 26·7 449
45 2·32·52 11·41 22·113 3·151 2·227 5·7·13 23·3·19 457 2·229 33·17
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46 22·5·23 461 2·3·7·11 463 24·29 3·5·31 2·233 467 22·32·13 7·67
47 2·5·47 3·157 23·59 11·43 2·3·79 52·19 22·7·17 32·53 2·239 479
48 25·3·5 13·37 2·241 3·7·23 22·112 5·97 2·35 487 23·61 3·163
49 2·5·72 491 22·3·41 17·29 2·13·19 32·5·11 24·31 7·71 2·3·83 499
50 22·53 3·167 2·251 503 23·32·7 5·101 2·11·23 3·132 22·127 509
51 2·3·5·17 7·73 29 33·19 2·257 5·103 22·3·43 11·47 2·7·37 3·173
52 23·5·13 521 2·32·29 523 22·131 3·52·7 2·263 17·31 24·3·11 232

53 2·5·53 32·59 22·7·19 13·41 2·3·89 5·107 23·67 3·179 2·269 72·11
54 22·33·5 541 2·271 3·181 25·17 5·109 2·3·7·13 547 22·137 32·61
55 2·52·11 19·29 23·3·23 7·79 2·277 3·5·37 22·139 557 2·32·31 13·43
56 24·5·73·11·17 2·281 563 22·3·47 5·113 2·283 34·7 23·71 569
57 2·3·5·19 57122·11·13 3·191 2·7·41 52·23 26·32 577 2·172 3·193
58 22·5·29 7·83 2·3·97 11·53 23·73 32·5·13 2·293 587 22·3·72 19·31
59 2·5·59 3·197 24·37 593 2·33·11 5·7·17 22·149 3·199 2·13·23 599
60 23·3·52 601 2·7·43 32·67 22·151 5·112 2·3·101 607 25·19 3·7·29
61 2·5·61 13·47 22·32·17 613 2·307 3·5·41 23·7·11 617 2·3·103 619
62 22·5·31 33·23 2·311 7·89 24·3·13 54 2·3133·11·19 22·157 17·37
63 2·32·5·7 631 23·79 3·211 2·317 5·127 22·3·53 72·13 2·11·29 32·71
64 27·5 641 2·3·107 643 22·7·23 3·5·43 2·17·19 647 23·34 11·59
65 2·52·13 3·7·31 22·163 653 2·3·109 5·131 24·41 32·73 2·7·47 659
66 22·3·5·11 661 2·3313·13·17 23·83 5·7·19 2·32·37 23·29 22·167 3·223
67 2·5·67 11·61 25·3·7 673 2·337 33·52 22·132 677 2·3·113 7·97
68 23·5·17 3·227 2·11·31 683 22·32·19 5·137 2·73 3·229 24·43 13·53
69 2·3·5·23 691 22·173 32·7·11 2·347 5·139 23·3·29 17·41 2·349 3·233
70 22·52·7 701 2·33·13 19·37 26·11 3·5·47 2·353 7·101 22·3·59 709
71 2·5·71 32·79 23·89 23·31 2·3·7·175·11·13 22·179 3·239 2·359 719
72 24·32·5 7·103 2·192 3·241 22·181 52·29 2·3·112 727 23·7·13 36

73 2·5·73 17·43 22·3·61 733 2·367 3·5·72 25·23 11·67 2·32·41 739
74 22·5·373·13·19 2·7·53 743 23·3·31 5·149 2·373 32·83 22·11·17 7·107
75 2·3·53 751 24·47 3·251 2·13·29 5·151 22·33·7 757 2·3793·11·23
76 23·5·19 761 2·3·127 7·109 22·191 32·5·17 2·383 13·59 28·3 769
77 2·5·7·11 3·257 22·193 773 2·32·43 52·31 23·97 3·7·37 2·389 19·41
78 22·3·5·13 11·71 2·17·23 33·29 24·72 5·157 2·3·131 787 22·197 3·263
79 2·5·79 7·113 23·32·11 13·61 2·397 3·5·53 22·199 797 2·3·7·19 17·47
80 25·52 32·89 2·401 11·73 22·3·67 5·7·23 2·13·31 3·269 23·101 809
81 2·34·5 811 22·7·29 3·271 2·11·37 5·163 24·3·17 19·43 2·409 32·7·13
82 22·5·41 821 2·3·137 823 23·103 3·52·11 2·7·59 827 22·32·23 829
83 2·5·83 3·277 26·13 72·17 2·3·139 5·16722·11·19 33·31 2·419 839
84 23·3·5·7 292 2·421 3·281 22·211 5·132 2·32·47 7·112 24·53 3·283
85 2·52·17 23·37 22·3·71 853 2·7·61 32·5·19 23·107 8572·3·11·13 859
86 22·5·43 3·7·41 2·431 863 25·33 5·173 2·433 3·172 22·7·31 11·79
87 2·3·5·29 13·67 23·109 32·97 2·19·23 53·7 22·3·73 877 2·439 3·293
88 24·5·11 881 2·32·72 88322·13·17 3·5·59 2·443 887 23·3·37 7·127
89 2·5·89 34·11 22·223 19·47 2·3·149 5·179 27·73·13·23 2·449 29·31
90 22·32·52 17·53 2·11·41 3·7·43 23·113 5·181 2·3·151 907 22·227 32·101
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91 2·5·7·13 911 24·3·19 11·83 2·457 3·5·61 22·229 7·131 2·33·17 919
92 23·5·23 3·307 2·461 13·7122·3·7·11 52·37 2·463 32·103 25·29 929
93 2·3·5·31 72·19 22·233 3·311 2·467 5·11·17 23·32·13 937 2·7·67 3·313
94 22·5·47 941 2·3·157 23·41 24·59 33·5·7 2·11·43 947 22·3·79 13·73
95 2·52·19 3·317 23·7·17 953 2·32·53 5·191 22·239 3·11·29 2·479 7·137
96 26·3·5 312 2·13·37 32·107 22·241 5·193 2·3·7·23 967 23·1123·17·19
97 2·5·97 971 22·35 7·139 2·487 3·52·13 24·61 977 2·3·163 11·89
98 22·5·72 32·109 2·491 983 23·3·41 5·197 2·17·29 3·7·4722·13·19 23·43
99 2·32·5·11 991 25·31 3·331 2·7·71 5·199 22·3·83 997 2·499 33·37
100 23·537·11·13 2·3·167 17·59 22·251 3·5·67 2·503 19·53 24·32·7 1009
101 2·5·101 3·337 22·11·23 1013 2·3·132 5·7·29 23·127 32·113 2·509 1019
102 22·3·5·17 1021 2·7·733·11·31 210 52·41 2·33·19 13·79 22·257 3·73

103 2·5·103 1031 23·3·43 1033 2·11·47 32·5·23 22·7·37 17·61 2·3·173 1039
104 24·5·13 3·347 2·521 7·149 22·32·29 5·11·19 2·523 3·349 23·131 1049
105 2·3·52·7 1051 22·263 34·13 2·17·31 5·211 25·3·11 7·151 2·232 3·353
106 22·5·53 1061 2·32·59 1063 23·7·19 3·5·71 2·13·41 11·97 22·3·89 1069
107 2·5·10732·7·17 24·67 29·37 2·3·179 52·43 22·269 3·359 2·72·11 13·83
108 23·33·5 23·47 2·541 3·192 22·271 5·7·31 2·3·181 1087 26·17 32·112

109 2·5·109 109122·3·7·13 1093 2·547 3·5·73 23·137 1097 2·32·61 7·157
110 22·52·11 3·367 2·19·29 1103 24·3·23 5·13·17 2·7·79 33·41 22·277 1109
111 2·3·5·37 11·101 23·139 3·7·53 2·557 5·223 22·32·31 1117 2·13·43 3·373
112 25·5·7 19·592·3·11·17 1123 22·281 32·53 2·563 72·23 23·3·47 1129
113 2·5·1133·13·29 22·283 11·103 2·34·7 5·227 24·71 3·379 2·569 17·67
114 22·3·5·19 7·163 2·571 32·127 23·11·13 5·229 2·3·191 31·37 22·7·41 3·383
115 2·52·23 1151 27·32 1153 2·5773·5·7·11 22·172 13·89 2·3·193 19·61
116 23·5·29 33·43 2·7·83 1163 22·3·97 5·233 2·11·53 3·389 24·73 7·167
117 2·32·5·13 1171 22·2933·17·23 2·587 52·47 23·3·72 11·107 2·19·31 32·131
118 22·5·59 1181 2·3·197 7·132 25·37 3·5·79 2·593 118722·33·11 29·41
119 2·5·7·17 3·397 23·149 1193 2·3·199 5·239 22·13·23 32·7·19 2·599 11·109
120 24·3·52 1201 2·601 3·401 22·7·43 5·241 2·32·67 17·71 23·1513·13·31
121 2·5·112 7·173 22·3·101 1213 2·607 35·5 26·19 1217 2·3·7·29 23·53
122 22·5·613·11·37 2·13·47 1223 23·32·17 52·72 2·613 3·409 22·307 1229
123 2·3·5·41 1231 24·7·11 32·137 2·617 5·13·19 22·3·103 1237 2·619 3·7·59
124 23·5·31 17·73 2·33·23 11·113 22·311 3·5·83 2·7·89 29·43 25·3·13 1249
125 2·54 32·139 22·313 7·1792·3·11·19 5·251 23·157 3·419 2·17·37 1259
126 22·32·5·7 13·97 2·631 3·421 24·79 5·11·23 2·3·211 7·181 22·317 33·47
127 2·5·127 31·41 23·3·53 19·67 2·72·13 3·52·17 22·11·29 1277 2·32·71 1279
128 28·5 3·7·61 2·641 1283 22·3·107 5·257 2·64332·11·13 23·7·23 1289
129 2·3·5·43 1291 22·17·19 3·431 2·647 5·7·37 24·34 1297 2·11·59 3·433
130 22·52·13 1301 2·3·7·31 1303 23·163 32·5·29 2·653 130722·3·1097·11·17
131 2·5·1313·19·23 25·41 13·101 2·32·73 5·263 22·7·47 3·439 2·659 1319
132 23·3·5·11 1321 2·661 33·72 22·331 52·532·3·13·17 1327 24·83 3·443
133 2·5·7·19 113 22·32·37 31·43 2·23·29 3·5·89 23·167 7·191 2·3·223 13·103
134 22·5·67 32·149 2·11·61 17·79 26·3·7 5·269 2·673 3·449 22·337 19·71
135 2·33·52 7·193 23·1323·11·41 2·677 5·271 22·3·113 23·59 2·7·97 32·151
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136 24·5·17 1361 2·3·227 29·47 22·11·313·5·7·13 2·683 1367 23·32·19 372

137 2·5·137 3·457 22·73 1373 2·3·229 53·11 25·43 34·17 2·13·53 7·197
138 22·3·5·23 1381 2·691 3·461 23·173 5·277 2·32·7·11 19·73 22·347 3·463
139 2·5·139 13·107 24·3·29 7·199 2·17·41 32·5·31 22·349 11·127 2·3·233 1399
140 23·52·7 3·467 2·701 23·61 22·33·13 5·281 2·19·37 3·7·67 27·11 1409
141 2·3·5·47 17·83 22·353 32·157 2·7·101 5·283 23·3·59 13·109 2·7093·11·43
142 22·5·71 72·29 2·32·79 1423 24·89 3·52·19 2·23·31 1427 22·3·7·17 1429
143 2·5·11·13 33·53 23·179 1433 2·3·239 5·7·41 22·359 3·479 2·719 1439
144 25·32·5 11·131 2·7·103 3·13·37 22·192 5·172 2·3·241 1447 23·181 32·7·23
145 2·52·29 1451 22·3·112 1453 2·727 3·5·97 24·7·13 31·47 2·36 1459
146 22·5·73 3·487 2·17·43 7·11·19 23·3·61 5·293 2·733 32·163 22·367 13·113
147 2·3·5·72 1471 26·23 3·491 2·11·67 52·59 22·32·41 7·211 2·7393·17·29
148 23·5·37 14812·3·13·19 1483 22·7·53 33·5·11 2·743 1487 24·3·31 1489
149 2·5·149 3·7·71 22·373 1493 2·32·83 5·13·23 23·11·17 3·499 2·7·107 1499
150 22·3·53 19·79 2·751 32·167 25·47 5·7·43 2·3·251 11·137 22·13·29 3·503
151 2·5·151 1511 23·33·7 17·89 2·757 3·5·101 22·379 37·412·3·11·23 72·31
152 24·5·19 32·132 2·761 1523 22·3·127 52·61 2·7·109 3·509 23·191 11·139
153 2·32·5·17 1531 22·383 3·7·73 2·13·59 5·307 29·3 29·53 2·769 34·19
154 22·5·7·11 23·67 2·3·257 1543 23·193 3·5·103 2·7737·13·17 22·32·43 1549
155 2·52·313·11·47 24·97 1553 2·3·7·37 5·311 22·389 32·173 2·19·41 1559
156 23·3·5·13 7·223 2·11·71 3·521 22·17·23 5·313 2·33·29 1567 25·72 3·523
157 2·5·157 1571 22·3·131 112·13 2·787 32·52·7 23·197 19·83 2·3·263 1579
158 22·5·793·17·31 2·7·113 1583 24·32·11 5·317 2·13·61 3·232 22·397 7·227
159 2·3·5·53 37·43 23·199 33·59 2·797 5·11·29 22·3·7·19 1597 2·17·473·13·41
160 26·52 1601 2·32·89 7·229 22·401 3·5·107 2·11·73 1607 23·3·67 1609
161 2·5·7·23 32·179 22·13·31 1613 2·3·269 5·17·19 24·101 3·72·11 2·809 1619
162 22·34·5 1621 2·811 3·541 23·7·29 53·13 2·3·271 1627 22·11·37 32·181
163 2·5·163 7·233 25·3·17 23·71 2·19·43 3·5·109 22·409 1637 2·32·7·13 11·149
164 23·5·41 3·547 2·821 31·53 22·3·137 5·7·47 2·823 33·61 24·103 17·97
165 2·3·52·11 13·127 22·7·59 3·19·29 2·827 5·331 23·32·23 1657 2·829 3·7·79
166 22·5·83 11·151 2·3·277 1663 27·13 32·5·37 2·72·17 1667 22·3·139 1669
167 2·5·167 3·557 23·11·19 7·239 2·33·31 52·67 22·4193·13·43 2·839 23·73
168 24·3·5·7 412 2·292 32·11·17 22·421 5·337 2·3·281 7·241 23·211 3·563
169 2·5·132 19·89 22·32·47 1693 2·7·112 3·5·113 25·53 1697 2·3·283 1699
170 22·52·17 35·7 2·23·37 13·131 23·3·71 5·11·31 2·853 3·569 22·7·61 1709
171 2·32·5·19 29·59 24·107 3·571 2·857 5·73 22·3·11·13 17·101 2·859 32·191
172 23·5·43 1721 2·3·7·41 1723 22·431 3·52·23 2·863 11·157 26·33 7·13·19
173 2·5·173 3·577 22·433 1733 2·3·172 5·347 23·7·31 32·193 2·11·79 37·47
174 22·3·5·29 1741 2·13·67 3·7·83 24·109 5·349 2·32·97 1747 22·19·233·11·53
175 2·53·7 17·103 23·3·73 1753 2·877 33·5·13 22·439 7·251 2·3·293 1759
176 25·5·11 3·587 2·881 41·43 22·32·72 5·353 2·8833·19·31 23·13·17 29·61
177 2·3·5·597·11·23 22·443 32·197 2·887 52·71 24·3·37 1777 2·7·127 3·593
178 22·5·89 13·137 2·34·11 1783 23·2233·5·7·17 2·19·47 1787 22·3·149 1789
179 2·5·179 32·199 28·7 11·1632·3·13·23 5·359 22·449 3·599 2·29·31 7·257
180 23·32·52 1801 2·17·53 3·601 22·11·41 5·192 2·3·7·43 13·139 24·113 33·67
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181 2·5·181 1811 22·3·151 72·37 2·907 3·5·112 23·227 23·79 2·32·101 17·107
182 22·5·7·13 3·607 2·911 1823 25·3·19 52·73 2·11·8332·7·29 22·457 31·59
183 2·3·5·61 1831 23·229 3·13·47 2·7·131 5·367 22·33·17 11·167 2·919 3·613
184 24·5·23 7·263 2·3·307 19·97 22·461 32·5·41 2·13·71 184723·3·7·11 432

185 2·52·37 3·617 22·463 17·109 2·32·103 5·7·53 26·29 3·619 2·929 11·132

186 22·3·5·31 1861 2·72·19 34·23 23·233 5·373 2·3·311 1867 22·467 3·7·89
187 2·5·11·17 1871 24·32·13 1873 2·937 3·54 22·7·67 1877 2·3·313 1879
188 23·5·47 32·11·19 2·941 7·269 22·3·157 5·13·29 2·23·413·17·37 25·59 1889
189 2·33·5·7 31·61 22·11·43 3·631 2·947 5·379 23·3·79 7·271 2·13·73 32·211
190 22·52·19 1901 2·3·317 11·173 24·7·17 3·5·127 2·953 1907 22·32·53 23·83
191 2·5·191 3·72·13 23·239 19132·3·11·29 5·383 22·479 33·71 2·7·137 19·101
192 27·3·5 17·113 2·312 3·641 22·13·37 52·7·11 2·32·107 41·47 23·241 3·643
193 2·5·193 193122·3·7·23 1933 2·967 32·5·43 24·112 13·149 2·3·17·19 7·277
194 22·5·97 3·647 2·971 29·67 23·35 5·389 2·7·1393·11·59 22·487 1949
195 2·3·52·13 1951 25·61 32·7·31 2·977 5·17·23 22·3·163 19·103 2·11·89 3·653
196 23·5·72 37·53 2·32·109 13·151 22·491 3·5·131 2·983 7·281 24·3·41 11·179
197 2·5·197 33·73 22·17·29 1973 2·3·7·47 52·79 23·13·19 3·659 2·23·43 1979
198 22·32·5·11 7·283 2·991 3·661 26·31 5·397 2·3·331 1987 22·7·7132·13·17
199 2·5·199 11·181 23·3·83 1993 2·997 3·5·7·19 22·499 1997 2·33·37 1999
200 24·53 3·23·292·7·11·13 2003 22·3·167 5·401 2·17·59 32·223 23·251 72·41
201 2·3·5·67 2011 22·503 3·11·61 2·19·53 5·13·31 25·32·7 2017 2·1009 3·673
202 22·5·101 43·47 2·3·337 7·172 23·11·23 34·52 2·1013 2027 22·3·132 2029
203 2·5·7·29 3·677 24·127 19·107 2·32·113 5·11·37 22·509 3·7·97 2·1019 2039
204 23·3·5·17 13·157 2·1021 32·227 22·7·73 5·4092·3·11·31 23·89 211 3·683
205 2·52·41 7·293 22·33·19 2053 2·13·79 3·5·137 23·257 112·17 2·3·73 29·71
206 22·5·103 32·229 2·1031 2063 24·3·43 5·7·59 2·10333·13·53 22·11·47 2069
207 2·32·5·23 19·109 23·7·37 3·691 2·17·61 52·83 22·3·173 31·67 2·1039 33·7·11
208 25·5·13 2081 2·3·347 2083 22·521 3·5·139 2·7·149 2087 23·32·29 2089
209 2·5·11·19 3·17·41 22·523 7·13·23 2·3·349 5·419 24·131 32·233 2·1049 2099
210 22·3·52·7 11·191 2·1051 3·701 23·263 5·421 2·34·13 72·43 22·17·31 3·19·37
211 2·5·211 2111 26·3·11 2113 2·7·151 32·5·47 22·232 29·73 2·3·353 13·163
212 23·5·53 3·7·101 2·1061 11·193 22·32·59 53·17 2·1063 3·709 24·7·19 2129
213 2·3·5·71 2131 22·13·41 33·79 2·11·97 5·7·61 23·3·89 2137 2·1069 3·23·31
214 22·5·107 21412·32·7·17 2143 25·673·5·11·13 2·29·37 19·113 22·3·179 7·307
215 2·52·43 32·239 23·269 2153 2·3·359 5·431 22·72·11 3·719 2·13·83 17·127
216 24·33·5 2161 2·23·47 3·7·103 22·541 5·433 2·3·192 11·197 23·271 32·241
217 2·5·7·31 13·167 22·3·181 41·53 2·1087 3·52·29 27·17 7·311 2·32·112 2179
218 22·5·109 3·727 2·1091 37·5923·3·7·13 5·19·23 2·1093 37 22·547 11·199
219 2·3·5·73 7·313 24·137 3·17·43 2·1097 5·439 22·32·61 133 2·7·157 3·733
220 23·52·11 31·71 2·3·367 2203 22·19·29 32·5·72 2·1103 2207 25·3·23 472

221 2·5·13·17 3·11·67 22·7·79 2213 2·33·41 5·443 23·277 3·739 2·1109 7·317
222 22·3·5·37 2221 2·11·10132·13·19 24·139 52·89 2·3·7·53 17·131 22·557 3·743
223 2·5·223 23·97 23·32·31 7·11·29 2·1117 3·5·149 22·13·43 2237 2·3·373 2239
224 26·5·7 33·83 2·19·59 224322·3·11·17 5·449 2·1123 3·7·107 23·281 13·173
225 2·32·53 2251 22·563 3·751 2·72·23 5·11·41 24·3·47 37·61 2·1129 32·251
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226 22·5·113 7·17·192·3·13·29 31·73 23·283 3·5·151 2·11·103 2267 22·34·7 2269
227 2·5·227 3·757 25·71 2273 2·3·379 52·7·13 22·56932·11·23 2·17·67 43·53
228 23·3·5·19 2281 2·7·163 3·761 22·571 5·457 2·32·127 2287 24·11·133·7·109
229 2·5·229 29·79 22·3·191 2293 2·31·37 33·5·17 23·7·41 2297 2·3·383 112·19
230 22·52·23 3·13·59 2·1151 72·47 28·32 5·461 2·1153 3·769 22·577 2309
231 2·3·5·7·11 2311 23·172 32·257 2·13·89 5·463 22·3·193 7·331 2·19·61 3·773
232 24·5·29 11·211 2·33·43 23·101 22·7·83 3·52·31 2·1163 13·179 23·3·97 17·137
233 2·5·233 32·7·37 22·11·53 2333 2·3·389 5·467 25·73 3·19·41 2·7·167 2339
234 22·32·5·13 2341 2·11713·11·71 23·293 5·7·672·3·17·23 2347 22·587 34·29
235 2·52·47 2351 24·3·72 13·181 2·11·107 3·5·157 22·19·31 2357 2·32·131 7·337
236 23·5·59 3·787 2·1181 17·139 22·3·197 5·11·43 2·7·132 32·263 26·37 23·103
237 2·3·5·79 2371 22·5933·7·113 2·1187 53·19 23·33·11 2377 2·29·413·13·61
238 22·5·7·17 2381 2·3·397 2383 24·149 32·5·53 2·1193 7·11·31 22·3·199 2389
239 2·5·239 3·797 23·13·23 23932·32·7·19 5·479 22·599 3·17·47 2·11·109 2399
240 25·3·52 74 2·1201 33·89 22·601 5·13·37 2·3·401 29·83 23·7·433·11·73
241 2·5·241 2411 22·32·67 19·127 2·17·71 3·5·7·23 24·151 24172·3·13·31 41·59
242 22·5·112 32·269 2·7·173 2423 23·3·101 52·97 2·1213 3·809 22·607 7·347
243 2·35·511·13·17 27·19 3·811 2·1217 5·487 22·3·7·29 2437 2·23·53 32·271
244 23·5·61 24412·3·11·37 7·349 22·13·47 3·5·163 2·1223 2447 24·32·17 31·79
245 2·52·72 3·19·43 22·613 11·223 2·3·409 5·491 23·307 33·7·13 2·1229 2459
246 22·3·5·41 23·107 2·1231 3·821 25·7·11 5·17·29 2·32·137 2467 22·617 3·823
247 2·5·13·19 7·353 23·3·103 2473 2·123732·52·11 22·619 2477 2·3·7·59 37·67
248 24·5·31 3·827 2·17·73 13·191 22·33·23 5·7·71 2·11·113 3·829 23·311 19·131
249 2·3·5·83 47·53 22·7·89 32·277 2·29·43 5·499 26·3·13 11·227 2·1249 3·72·17

Algorithm 1: Sieve of Eratosthenes.

make a list of the numbers from 2 to N
i := 1
while i ≤

√
N

begin
i := i+ 1
if i is not already crossed out then cross out all proper multiples of i that

are less than or equal to N
end {The numbers not crossed out comprise the primes up to N}

9. The sieve of Eratosthenes: Eratosthenes (3rd century B.C.E.) developed Algo-
rithm 1 for listing all prime numbers less than a fixed bound.

10. Prime number theorem: π(x), when divided by x
log x , tends to 1 as x tends to

infinity. That is, π(x) is asymptotic to x
log x as x → ∞.

11. The prime number theorem was first conjectured by Carl Friedrich Gauss (1777–
1855) in 1792, and was first proved in 1896 independently by Charles de la Vallée Poussin
(1866–1962) and Jacques Hadamard (1865–1963). They proved it in the stronger form
|π(x) − li (x)| < c1xe

−c2

√
log x, where c1 and c2 are positive constants. Their proofs

used functions of a complex variable. The first elementary proofs (not using complex
variables) of the prime number theorem were supplied in 1949 by Paul Erdős (1913–
1996) and Atle Seberg.
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12. Integration by parts shows that li (x) is asymptotic to x
log x as x → ∞.

13. |π(x)−li (x)| < c3xe
−c4(log x)3/5(log log x)−1/5

for certain positive constants c3 and c4.
(I. M. Vinogradov and Nikolai Korobov, 1958.)
14. If the Riemann hypothesis (Open Problem 1) is true, |π(x)− li (x)| is bounded by
c
√
x log x for some positive constant c.

15. J. E. Littlewood (1885–1977) showed that π(x)− li (x) changes sign infinitely often.
However, no explicit number x with π(x)−li (x) > 0 is known. Carter Bays and Richard
H. Hudson have shown that such a number x exists below 1.4 × 10316.
16. The largest exactly computed value of π(x) is π(1020). This value, computed by
M. Deleglise in 1996, is about 2.23 × 108 below li (1020). (See the following table.)

n π(10n) ≈ π(10n) − li (10n)

1 4 −2
2 25 −5
3 168 −10
4 1,229 −17
5 9,592 −38
6 78,498 −130
7 664,579 −339
8 5,761,455 −754
9 50,847,534 −1,701

10 455,052,511 −3,104
11 4,118,054,813 −11,588
12 37,607,912,018 −38,263
13 346,065,536,839 −108,971
14 3,204,941,750,802 −314,890
15 29,844,570,422,669 −1,052,619
16 279,238,341,033,925 −3,214,632
17 2,623,557,157,654,233 −7,956,589
18 24,739,954,287,740,860 −21,949,555
19 234,057,667,276,344,607 −99,877,775
20 2,220,819,602,560,918,840 −223,744,644

17. Dirichlet’s theorem on primes in arithmetic progressions: Given coprime inte-
gers a, b with b positive, there are infinitely many primes p ≡ a (mod b). G. L. Dirichlet
proved this in 1837.
18. The number of primes p less than x such that p ≡ a (mod b) is asymptotic to

1
φ(b)π(x) as x → ∞, if a and b are coprime and b is positive. (φ is the Euler phi-
function; see §4.6.2.)

Open Problems:
1. Riemann hypothesis: The Riemann hypothesis (RH), posed in 1859 by Bernhard
Riemann (1826–1866), is a conjecture about the location of zeros of the Riemann zeta
function, the function of the complex variable s defined by the series ζ(s) =

∑∞
n=1 n

−s

when the real part of s is > 1, and defined by the formula

ζ(s) = s
s−1 − s

∫ ∞
1

(x− �x�)x−s−1dx

in the larger region when the real part of s is > 0, except for the single point s = 1,
where it remains undefined. The Riemann hypothesis asserts that all of the solutions to
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ζ(s) = 0 in this larger region lie on the vertical line in the complex number plane with
imaginary part 1

2 . Its proof would imply a better error estimate for the prime number
theorem. While believed to be true, it has not been proved.
2. Extended Riemann hypothesis: There is a generalized form of the Riemann hy-
pothesis known as the extended Riemann hypothesis (ERH) or the generalized Rie-
mann hypothesis (GRH), which also has important consequences in number theory.
(For example, see §4.4.4.)
3. Hypothesis H : The hypothesis H of Andrzej Schinzel and Waclaw Sierpinski (1882–
1969) asserts that for every collection of irreducible nonconstant polynomials f1(x), . . . ,
fk(x) with integral coefficients and positive leading coefficients, if there is no fixed integer
greater than 1 dividing the product f1(m) . . . fk(m) for all integers m, then there are
infinitely many integers m such that each of the numbers f1(m), . . . , fk(m) is prime. The
case when each of the polynomials is linear was previously conjectured by L. E. Dickson,
and is known as the prime k-tuples conjecture. The only case of Hypothesis H that
has been proved is the case of a single linear polynomial; this is Dirichlet’s theorem
(Fact 17). The case of the two linear polynomials x and x + 2 corresponds to the twin
prime conjecture (Open Problem 4). Among many consequences of hypothesis H is the
assertion that there are infinitely many primes of the form m2 + 1.
4. Twin primes: It has been conjectured that there are infinitely many twin primes,
that is, pairs of primes that differ by 2.
5. Let dn denote the difference between the (n+1)st prime and the nth prime. The
sequence dn is unbounded. The prime number theorem implies that on average dn is
about logn. The twin prime conjecture asks whether dn is 2 infinitely often.
6. The best result known that shows that dn has relatively small values infinitely
often, proved by Helmut Maier in 1988, is that dn < c log n infinitely often, where c is
a constant slightly smaller than 1

4 .

7. It is conjectured that dn can be as big as log2 n infinitely often, but not much
bigger. Roger Baker and Glyn Harman have recently shown that dn < n.535 for all large
numbers n. In the other direction, Erdős and Robert Rankin have shown that dn >
c log n(log log n)(log log log logn)/(log log logn)2 infinitely often. Several improvements
have been made on the constant c, but this ungainly expression has stubbornly resisted
improvement.
8. Christian Goldbach (1690–1764) conjectured that every integer greater than 5 is the
sum of three primes.
9. Goldbach conjecture: Every even integer greater than 2 is a sum of two primes.
(This is equivalent to the conjecture Goldbach made in Open Problem 8.)

• Matti Sinisalo, in 1993, verified the Goldbach conjecture up to 4 × 1011. It
has since been verified up to 1.615 × 1012 by J. M. Deshouillers, G. Effinger,
H. J. J. te Riele, and D. Zinoviev.

• In 1937 Vinogradov proved that every sufficiently large odd number is the sum
of three primes. In 1989 J. R. Chen and T. Z. Wang showed that this is true for
every odd number greater than 1043,001. In 1998 Y. Saouter showed that this is
true for every odd number below 1020. Zinoviev showed in 1996 that it is true
for the remaining odd numbers between 1020 and 1043,001 under the assumption
of the ERH (Open Problem 2).

• In 1966 J. R. Chen proved that every sufficiently large even number is either the
sum of two primes or the sum of a prime and a number that is the product of
two primes.
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Examples:
1. A method for showing that there are infinitely many primes is to note that the
integer n!+1 must have a prime factor greater than n, so there is no largest prime. Note
that n! + 1 is prime for n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, and 427,
but is composite for all numbers less than 427 not listed.
2. Let Q(p) (p a prime) equal one more than the product of the primes not ex-
ceeding p. For example Q(5) = 2 · 3 · 5 + 1 = 31. Then Q(p) is prime for p =
2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649; it is composite for
all p < 11213 not in this list. For example, Q(13) = 2 · 3 · 5 · 7 · 11 · 13 + 1 is composite.
3. There are six primes not exceeding 16, namely 2,3,5,7,11, and 13. Hence π(16) = 6.
4. The expression n2 + 1 is prime for n = 1, 2, 4, 6, 10, . . . , but it is unknown whether
there are infinitely many primes of this form when n is an integer. (See Open Problem 3.)
5. The polynomial f(n) = n2 +n+41 takes on prime values for n = 0, 1, 2, . . . , 39, but
f(40) = 1681 = 412.
6. Applying Dirichlet’s theorem with a = 123 and b = 1,000, there are infinitely many
primes that end in the digits 123. The first such prime is 1,123.
7. The pairs 17, 19 and 191, 193 are twin primes. The largest known twin primes have
11,755 decimal digits. They are 361,700,055 × 239,020 ± 1 and were found in 1999 by
Henri Lifchitz.

4.4.3 NUMBERS OF SPECIAL FORM

Numbers of the form bn ± 1, for b a small number, are often easier to factor or test for
primality than other numbers of the same size. They also have a colorful history.

Definitions:

A Cunningham number is a number of the form bn ± 1, where b and n are natural
numbers, and b is “small” — 2, 3, 5, 6, 7, 10, 11, or 12. They are named after Allan
Cunningham, who, along with H. J. Woodall, published in 1925 a table of factorizations
of many of these numbers.

A Fermat number Fm is a Cunningham number of the form 22m

+ 1. (See Table 4.)

A Fermat prime is a Fermat number that is prime.

A Mersenne number Mn is a Cunningham number of the form 2n − 1.

A Mersenne prime is a Mersenne number that is prime. (See Table 3.)

The cyclotomic polynomials Φk(x) are defined recursively by the equation xn − 1 =∏
d|n Φd(x).

A perfect number is a positive integer that is equal to the sum of all its proper
divisors.

Facts:
1. If Mn is prime, then n is prime, but the converse is not true.
2. If b > 2 or n is composite, then a nontrivial factorization of bn − 1 is given by
bn − 1 =

∏
d|n Φd(b), though the factors Φd(b) are not necessarily primes.

3. The number bn + 1 can be factored as the product of Φd(b), where d runs over the
divisors of 2n that are not divisors of n. When n is not a power of 2 and b ≥ 2, this
factorization is nontrivial.
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Algorithm 2: Lucas-Lehmer test.

p := an odd prime; u := 4; i := 0
while i ≤ p− 2
begin
i := i+ 1
u := u2 − 2 mod 2p − 1

end
{if u = 0 then 2p − 1 is prime, else 2p − 1 is composite}

4. Some numbers of the form bn ± 1 also have so-called Aurifeuillian factorizations,
named after A. Aurifeuille. For more details, see [BrEtal88].

5. The only primes of the form bn − 1 (with n > 1) are Mersenne primes.

6. The only primes of the form 2n + 1 are Fermat primes.

7. Fermat numbers are named after Pierre de Fermat (1601–1695), who observed that
F0, F1, F2, F3 and F4 are prime and stated (incorrectly) that all such numbers are
prime. Euler proved this was false, by showing that F5 = 232 + 1 = 641 × 6,700,417.

8. F4 is the largest known Fermat prime. It is conjectured that all larger Fermat
numbers are composite.

9. The smallest Fermat number that has not yet been completely factored is F12 =
2212

+ 1, which has a 1187-digit composite factor.

10. In 1994 it was shown that F22 is composite. There are 141 values of n > 22 where
a (relatively) small prime factor of Fn is known. In none of these cases do we know
whether the remaining factor of Fn is prime or composite. Currently, F24 is the smallest
Fermat number that has not been proved prime or shown to be composite. For up-to-
date information about the factorization of Fermat numbers (maintained by Wilfrid
Keller) consult http://vamri.xray.ufl.edu/proths/fermat.html#Prime.

11. Pepin’s criterion: For m ≥ 1, Fm is prime if and only if 3(Fm−1)/2 ≡ −1 (mod
Fm).

12. For m ≥ 2, every factor of Fm is of the form 2m+2k + 1.

13. Mersenne numbers are named after Marin Mersenne (1588–1648), who made a list
of what he thought were all the Mersenne primes Mp with p ≤ 257. His list consisted of
the primes p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257. However, it was later shown
that M67 and M257 are composite, while M61, M89, and M107, missing from the list,
are prime.

14. It is not known whether there are infinitely many Mersenne primes, nor whether
infinitely many Mersenne numbers with prime exponent are composite, though it is
conjectured that both are true.

15. Euclid showed that the product of a Mersenne prime 2p − 1 with 2p−1 is perfect.
Euler showed that every even perfect number is of this form. It is not known whether
any odd perfect numbers exist. There are none below 10300, a result of R. P. Brent,
G. L. Cohen and H. J. J. teRiele in 1991.

16. The Lucas-Lehmer test can be used to determine whether a given Mersenne number
is prime or composite. (See Algorithm 2.)

17. Table 3 lists all known Mersenne primes. The largest known Mersenne prime is
26,972,593 − 1. When a new Mersenne prime is found by computer, there may be other
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numbers of the form Mp less than this prime not yet checked for primality. It can take
months, or even years, to do this checking. A new Mersenne prime may even be found
this way, as was the case for the 29th.
18. George Woltman launched the Great Internet Mersenne Prime Search (GIMPS) in
1996. GIMPS provides free software for PCs. GIMPS has played a role in discovering the
last four Mersenne primes. Thousands of people participate in GIMPS over PrimeNet,
a virtual supercomputer of distributed PCs, together running more than 0.7 Teraflops,
the equivalent of more than a dozen of the fastest supercomputers, in the quest for
Mersenne primes. Consult the GIMPS website at http://www.mersenne.org and the
PrimeNet site at http://entropia.com/ips/ for more information about this quest
and how to join it.
19. As of 1999, the two smallest composite Mersenne numbers not completely factored
were 2617 − 1, and 2619 − 1.
20. The best reference for the history of the factorization of Cunningham numbers is
[BrEtal88].
21. The current version of the Cunningham table, maintained by Sam Wagstaff, can
be found at http://www.cs.purdue.edu/homes/ssw/cun/index.html
22. In Table 4, pk indicates a k-digit prime, and ck indicates a k-digit composite. All
other numbers in the right column have been proved prime.

Examples:
1. The Mersenne number M11 = 211 − 1 is not prime since M11 = 23 · 89.
2. To factor 342 = 73 − 1 note that 73 − 1 = (7 − 1)(72 + 7 + 1) = 6 × 57.
3. To factor 37 + 1 note that 37 + 1 = Φ2(3)Φ14(3) = 4 × 547.
4. An example of an Aurifeuillian factorization is given by 24k−2 +1 = (22k−1−2k +1)·
(22k−1 + 2k + 1).
5. Φ1(x) = x− 1 and x3 − 1 = Φ1(x)Φ3(x), so Φ3(x) = (x3 − 1)/Φ1(x) = x2 + x+ 1.

4.4.4 PSEUDOPRIMES AND PRIMALITY TESTING

Definitions:

A pseudoprime to the base b is a composite number n such that bn ≡ b (mod n).

A pseudoprime is a pseudoprime to the base 2.

A Carmichael number is a pseudoprime to all bases.

A strong pseudoprime to the base b is an odd composite number n = 2sd+1, with d
odd, and either bd ≡ 1 (mod n) or b2

rd ≡ −1 (mod n) for some integer r, 0 ≤ r < s.

A witness for an odd composite number n is a base b, with 1 < b < n, to which n is
not a strong pseudoprime. Thus, b is a “witness” to n being composite.

A primality proof is an irrefutable verification that an integer is prime.

Facts:
1. By Fermat’s little theorem (§4.3.3), bp−1 ≡ 1 (mod p) for all primes p and all
integers b that are not multiples of p. Thus, the only numbers n > 1 with bn−1 ≡
1 (mod n) are primes and pseudoprimes to the base b (which are coprime to b). Similarly,
the numbers n which satisfy the strong pseudoprime congruence conditions are the odd
primes not dividing b and the strong pseudoprimes to the base b.
2. The smallest pseudoprime is 341.

c© 2000 by CRC Press LLC

http://www.mersenne.org
http://entropia.com/ips/
http://www.cs.purdue.edu/


Table 3 Mersenne primes.

decimal yearn exponent discoverer(s) (computer used)digits discovered

1 2 1 ancient times
2 3 1 ancient times
3 5 2 ancient times
4 7 3 ancient times
5 13 4 1461 anonymous
6 17 6 1588 Cataldi
7 19 6 1588 Cataldi
8 31 10 1750 Euler
9 61 19 1883 Pervushin

10 89 27 1911 Powers
11 107 33 1913 Fauquembergue
12 127 39 1876 Lucas
13 521 157 1952 Robinson (SWAC)
14 607 183 1952 Robinson (SWAC)
15 1,279 386 1952 Robinson (SWAC)
16 2,203 664 1952 Robinson (SWAC)
17 2,281 687 1952 Robinson (SWAC)
18 3,217 969 1957 Riesel (BESK)
19 4,253 1,281 1961 Hurwitz (IBM 7090)
20 4,423 1,332 1961 Hurwitz (IBM 7090)
21 9,689 2,917 1963 Gillies (ILLIAC 2)
22 9,941 2,993 1963 Gillies (ILLIAC 2)
23 11,213 3,376 1963 Gillies (ILLIAC 2)
24 19,937 6,002 1971 Tuckerman (IBM 360/91)
25 21,701 6,533 1978 Noll and Nickel (Cyber 174)
26 23,209 6,987 1979 Noll (Cyber 174)
27 44,497 13,395 1979 Nelson and Slowinski (Cray 1)
28 86,243 25,962 1982 Slowinski (Cray 1)
29 110,503 33,265 1988 Colquitt and Welsh (NEC SX-W)
30 132,049 39,751 1983 Slowinski (Cray X-MP)
31 216,091 65,050 1985 Slowinski (Cray X-MP)
32 756,839 227,832 1992 Slowinski and Gage (Cray 2)
33 859,433 258,716 1994 Slowinski and Gage (Cray 2)
34 1,257,787 378,632 1996 Slowinski and Gage (Cray T94)
35 1,398,269 420,921 1996 Armengaud, Woltman, and

team (90 MHz Pentium)
36 2,976,221 895,932 1997 Spence, Woltman, and others

(100 MHz Pentium)
37 3,021,377 909,526 1998 Clarkson, Woltman, Kurowski, and

others (200 MHz Pentium)
38 6,972,593 2,098,960 1999 Hajratwala, Woltman, and Kurowski

(350 MHz Pentium)

3. There are infinitely many pseudoprimes; however, Paul Erdős has proved that pseu-
doprimes are rare compared to primes. The same results are true for pseudoprimes to
any fixed base b. (See [Ri96] or [CrPo99] for details.)
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Table 4 Fermat numbers.

m known factorization of Fm

0 3
1 5
2 17
3 257
4 65,537
5 641 × p7

6 274,177 × p14

7 59,649,589,127,497,217 × p22

8 1,238,926,361,552,897 × p62

9 2,424,833 × 7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657
×p99

10 45,592,577 × 6,487,031,809
×4,659,775,785,220,018,543,264,560,743,076,778,192,897 × p252

11 319,489 × 974,849 × 167,988,556,341,760,475,137
×3,560,841,906,445,833,920,513 × p564

12 114,689 × 26,017,793 × 63,766,529 × 190,274,191,361
×1,256,132,134,125,569 × c1,187

13 2,710,954,639,361 × 2,663,848,877,152,141,313
×3,603,109,844,542,291,969 × 319,546,020,820,551,643,220,672,513 × c2,391

14 c4933
15 1,214,251,009 × 2,327,042,503,868,417 × c9840
16 825,753,601 × c19,720

17 31,065,037,602,817 × c39,444

18 13,631,489 × c78,906

19 70,525,124,609 × 646,730,219,521 × c157,804

20 c315,653

21 4,485,296,422,913 × c631,294

22 c1,262,611

4. In 1910, Robert D. Carmichael gave the first examples of Carmichael numbers. The
first 16 Carmichael numbers are

561 = 3 · 11 · 17 1,105 = 5 · 13 · 17 1,729 = 7 · 13 · 19
2,465 = 5 · 17 · 29 2,821 = 7 · 13 · 31 6,601 = 7 · 23 · 41
8,911 = 7 · 19 · 67 10,585 = 5 · 29 · 73 15,841 = 7 · 31 · 73
29,341 = 13 · 37 · 61 41,041 = 7 · 11 · 13 · 41 46,657 = 13 · 37 · 97
52,633 = 7 · 73 · 103 62,745 = 3 · 5 · 47 · 89 63,973 = 7 · 13 · 19 · 37
75,361 = 11 · 17 · 31

5. If n is a Carmichael number, then n is the product of at least three distinct odd
primes with the property that if q is one of these primes, then q−1 divides n−1.
6. There are a finite number of Carmichael numbers that are the product of exactly r
primes with the first r−2 primes specified.
7. If m is a positive integer such that 6m + 1, 12m + 1, and 18m + 1 are all primes,
then (6m+ 1)(12m+ 1)(18m+ 1) is a Carmichael number.
8. In 1994, W. R. Alford (born 1937), Andrew Granville (born 1962), and Carl Pomer-
ance (born 1944) showed that there are infinitely many Carmichael numbers.
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Algorithm 3: Strong probable prime test (to a random base).

input: positive numbers n, d, s, with d odd and n = 2sd+ 1.
b := a random integer such that 1 < b < n
c := bd mod n
if c = 1 or c = n− 1, then declare n a probable prime and stop
compute sequentially c2 mod n, c4 mod n, . . . , c2

s−1
mod n

if one of these is n− 1, then declare n a probable prime and stop
else declare n composite and stop

9. There are infinitely many numbers that are simultaneously strong pseudoprimes to
each base in any given finite set. Each odd composite n, however, can be a strong
pseudoprime to at most one-fourth of the bases b with 1 ≤ b ≤ n− 1.
10. J. L. Selfridge (born 1927) suggested Algorithm 3 (often referred to as the Miller-
Rabin test).
11. A “probable prime” is not necessarily a prime, but the chances are good. The
probability that an odd composite is not declared composite by Algorithm 3 is at most 1

4 ,
so the probability it passes k independent iterations is at most 4−k. Suppose this test is
applied to random odd inputs n with the hope of finding a prime. That is, random odd
numbers n (chosen between two consecutive powers of 2) are tested until one is found
that passes each of k independent iterations of the test. Ronald Burthe showed in 1995
that the probability that the output of this procedure is composite is less than 4−k.
12. Gary Miller proved in 1976 that if the extended Riemann hypothesis (§4.4.2) is
true, then every odd composite n has a witness less than c log2 n, for some constant c.
Eric Bach showed in 1985 that one may take c = 2. Therefore, if an odd number n > 1
passes the strong probable prime test for every base b less than 2 log2 n, and if the
extended Riemann hypothesis is true, then n is prime.
13. In practice, one can test whether numbers under 2.5 × 1010 are prime by a small
number of strong probable prime tests. Pomerance, Selfridge, and Samuel Wagstaff have
verified (1980) that there are no numbers less than this bound that are simultaneously
strong pseudoprimes to the bases 2, 3, 5, 7, and 11. Thus, any number less than
2.5 × 1010 that passes those strong pseudoprime tests is a prime.
14. Gerhard Jaeschke showed in 1993 that the test described in Fact 13 works almost
100 times beyond 2.5 × 1010; the first number for which it fails is 2,152,302,898,747.
15. Only primes pass the strong pseudoprime tests to all the bases 2, 3, 5, 7, 11, 13,
and 17 until the composite number 341,550,071,728,321 is reached.
16. While pseudoprimality tests are usually quite efficient at recognizing composites,
the task of proving that a number is prime can be more difficult.
17. In 1983, Leonard Adleman, Carl Pomerance, and Robert Rumely developed the
APR algorithm, which can prove that a number n is prime in time proportional to
(log n)c log log log n, where c is a positive constant. See [Co93] and [CrPo99] for details.
18. Recently, Oliver Atkin and François Morain developed an algorithm to prove pri-
mality. It is difficult to predict in advance how long it will take, but in practice it has
been fast. One advantage of their algorithm is that, unlike APR, it produces a poly-
nomial time primality proof, though the running time to find the proof may be a bit
longer. An implementation called ECPP (elliptic curve primality proving) is available
via ftp from

ftp.inria.fr
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Algorithm 1: Trial division.

input: an integer n ≥ 2
output: j (smallest prime factor of n) or statement that n is prime

j := 2
while j ≤ √

n
begin

if j|n then print that j a prime factor of n and stop {n is not prime}
j := j + 1

end
if no factor is found then declare n prime

19. In 1986, Adleman and Ming-Deh A. Huang showed that there is a test for primality
that can be executed in random polynomial time. The test, however, is not practical.
20. In 1987, Carl Pomerance showed that every prime p has a primality proof whose
verification involves just c log p multiplications with integers the size of p. It may be
difficult, however, to find such a short primality proof.
21. In 1995, Sergei Konyagin and Carl Pomerance gave a deterministic polynomial time
algorithm which, for each fixed ε > 0 and all sufficiently large x, succeeds in proving
prime at least x1−ε prime inputs below x. The degree of the polynomial in the time
bound depends on the choice of ε.

4.5 FACTORIZATION

Determining the prime factorization of positive integers is a question that has been stud-
ied for many years. Furthermore, in the past two decades, this question has become
relevant for an extremely important application, the security of public key cryptosys-
tems. The question of exactly how to decompose a composite number into the product
of its prime factors is a difficult one that continues to be the subject of much research.

4.5.1 FACTORIZATION ALGORITHMS

Definition:

A smooth number is an integer all of whose prime divisors are small.

Facts:
1. The simplest algorithm for factoring an integer is trial division, Algorithm 1. While
simple, this algorithm is useful only for numbers that have a fairly small prime factor.
It can be modified so that after j = 3, the number j is incremented by 2, and there are
other improvements of this kind.
2. Currently, the fastest algorithm for numbers that are feasible to factor but do not
have a small prime factor is the quadratic sieve (QS), Algorithm 2, invented by Carl
Pomerance in 1981. (For numbers at the far range of feasibility, the number field sieve
is faster; see Fact 9.)
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Algorithm 2: Quadratic sieve.

input: n (an odd composite number that is not a power)
output: g (a nontrivial factor of n)

find a1, . . . , ak such that each ai
2 − n is smooth

find a subset of the numbers a2
i − n whose product is a square, say x2

reduce x modulo n
y := the product of the ai used to form the square
reduce y modulo n
{This gives a congruence x2 ≡ y2 (mod n); equivalently n|(x2 − y2).}
g := gcd(x− y, n)
if g is not a nontrivial factor then find new x and y (if necessary, find more ai)

3. The greatest common divisor calculation may be quickly done via the Euclidean
algorithm. If x 	≡ ±y (mod n), then g will be a nontrivial factor of n. (Among all
solutions to the congruence x2 ≡ y2 (mod n) with xy coprime to n, at least half of
them lead to a nontrivial factorization of n.) Finding the ais is at the heart of the
algorithm and is accomplished using a sieve not unlike the sieve of Eratosthenes, but
applied to the consecutive values of the quadratic polynomial a2−n. If a is chosen near√
n, then a2 − n will be relatively small, and thus more likely to be smooth. So one

sieves the polynomial a2 − n, where a runs over integers near
√
n, for values that are

smooth. When enough smooth values are collected, the subset with product a square
may be found via a linear algebra subroutine applied to a matrix formed out of the
exponents in the prime factorizations of the smooth values. The linear algebra may be
done modulo 2.
4. The current formulation of QS involves many improvements, the most notable of
them the multiple polynomial variation of James Davis and Peter Montgomery.
5. In 1994, QS was used to factor a 129-digit composite that was the product of a
64-digit prime and a 65-digit prime. This number had been proposed as a challenge to
those who would try to crack the famous RSA cryptosystem.
6. In 1985, Hendrik W. Lenstra, Jr. (born 1949) invented the elliptic curve method
(ECM), which has the advantage that, like trial division, the running time is based on
the size of the smallest prime factor. Thus, it can be used to find comparatively small
factors of numbers whose size would be prohibitively large for the quadratic sieve. It can
be best understood by first examining the p−1 method of John Pollard, Algorithm 3.
7. The Pollard algorithm (Algorithm 3) is successful and efficient if p−1 happens to
be smooth for some prime p|n. If the prime factors p of n have the property that p−1
is not smooth, Algorithm 3 will eventually be successful if a high enough bound B is
chosen, but in this case it will not be any more efficient than trial division, Algorithm 1.
ECM gets around this restriction on the numbers that can be efficiently factored by
randomly searching through various mathematical objects called elliptic curve groups,
each of which has p+1−a elements, where |a| < 2

√
p and a depends on the curve. ECM

is successful when a group is encountered such that p+1−a is a smooth number.
8. As of 1998, prime factors as large as 49 digits have been found using ECM. (After
such a factor is discovered it may turn out that the remaining part of the number is a
prime and the factorization is now complete. This last prime may be very large, as with
the tenth and eleventh Fermat numbers — see Table 4. In such cases the success of
ECM is measured by the second largest prime factor in the prime factorization, though
in some sense the method has discovered the largest prime factor as well.)
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Algorithm 3: p -1 factorization method.

input: n (composite number), B (a bound)
output: a nontrivial factor of n

b := 2
{loop on b}
if b | n then stop {b is a prime factor of n}
M := 1
while M ≤ B
begin
g := gcd (blcm (1,2,...,M) − 1, n)
if n > g > 1 then output g and stop {g is a nontrivial factor of n}
else if g = n then choose first prime larger than b and go to beginning of

the b-loop
else M := M + 1

end

9. The number field sieve (NFS), originally suggested by Pollard for numbers of special
form, and developed for general composite numbers by Joseph Buhler, Lenstra, and
Pomerance, is currently the fastest factoring algorithm for very large numbers with no
small prime factors.

10. The number field sieve is similar to QS in that one attempts to assemble two
squares x2 and y2 whose difference is a multiple of n, and this is done via a sieve and
linear algebra modulo 2. However, NFS is much more complicated than QS. Although
faster for very large numbers, the complexity of the method makes it unsuitable for
numbers much smaller than 100 digits. The exact crossover with QS depends a great
deal on the implementations and the hardware employed. The two are roughly within
an order of magnitude of each other for numbers between 100 and 150 digits, with QS
having the edge at the lower end and NFS the edge at the upper end.

11. Part of the NFS algorithm requires expressing a small multiple of the number to be
factored by a polynomial of moderate degree. The running time depends, in part, on the
size of the coefficients of this polynomial. For Cunningham numbers, this polynomial can
be easy to find. (For example, in the notation of §4.4.2, 8F9 = 8(229

+1) = f(2103), where
f(x) = x5+8.) This version is called the special number field sieve (SNFS). The version
for general numbers, the general number field sieve (GNFS), has somewhat greater
complexity. The greatest success of SNFS has been the factorization of a 180-digit
Cunningham number, while the greatest success of GNFS has been the factorization of
a 130-digit number of no special form and with no small prime factor.

12. See [Co93], [CrPo99], [Po90], and [Po94] for fuller descriptions of the factoring
algorithms described here, as well as others, including the continued fraction (CFRAC)
method. Until the advent of QS, this had been the fastest known practical algorithm.

13. The factorization algorithms QS, ECM, SNFS, and GNFS are fast in practice, but
analyses of their running times depend on heuristic arguments and unproved hypotheses.
The fastest algorithm whose running time has been rigorously analyzed is the class group
relations method (CGRM). It, however, is not practical. It is a probabilistic algorithm
whose expected running time is bounded by ec

√
log n log log n, where c tends to 1 as n

tends to infinity through the odd composite numbers that are not powers. This result
was proved in 1992 by Lenstra and Pomerance.
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Table 1 Comparison of various factoring methods.

year greatest running rigorously
algorithm

introduced success time analyzed

trial division antiquity –
√
n yes

CFRAC 1970 63-digit number L
(

1
2 ,

√
3
2

)
no

p− 1 1974 32-digit factor – yes

QS 1981 129-digit number L( 1
2 , 1) no

ECM 1985 47-digit factor L( 1
2 , 1) no

SNFS 1988 180-digit number L
(

1
3 ,

3

√
32
9

)
no

CGRM 1992 – L( 1
2 , 1) yes

GNFS 1993 130-digit number L
(

1
3 ,

3

√
64
9

)
no

14. These algorithms are summarized in Table 1. L(a, b) means that the running time
to factor n is bounded by ec(log n)a(log log n)1−a

, where c tends to b as n tends to infinity
through the odd composite non-powers. Running times are measured in the number of
arithmetic steps with integers at most the size of n.
15. The running time for Trial Division in Table 1 is a worst case estimate, achieved
when n is prime or the product of two primes of the same magnitude. When n is
composite, Trial Division will discover the least prime factor p of n in roughly p steps.
The record for the largest prime factor discovered via Trial Division is not known, nor is
the largest number proved prime by this method, though the feat of Euler of proving that
the Mersenne number 231 − 1 is prime, using only Trial Division and hand calculations,
should certainly be noted. (Euler surely knew, though, that any prime factor of 231 − 1
is 1 mod 31, so only 1 out of every 31 trial divisors needed to be tested.)
16. The running time of the p − 1 method is about B, where B is the least number
such that for some prime factor p of n, p− 1 divides lcm (1, 2, . . . , B).
17. There are variants of CFRAC and GNFS that have smaller heuristic complexity
estimates, but the ones in the table above are for the fastest practical version.
18. The running time bound for ECM is a worst case estimate. It is more appropriate
to measure ECM as a function of the least prime factor p of n. This heuristic complexity
bound is ec

√
log p log log p, where c tends to

√
2 as p tends to infinity.

19. Table 2 was compiled with the assistance of Samuel Wagstaff. It should be re-
marked that there is no firm definition of a “hard number”. What is meant here is that
the number was factored by an algorithm that is not sensitive to any particular form
the number may have, nor sensitive to the size of the prime factors.
20. It is unknown whether there is a polynomial time factorization algorithm. Whether
there are any factorization algorithms that surpass the quadratic sieve, the elliptic curve
method, and the number field sieve in their respective regions of superiority is an area
of much current research.
21. A cooperative effort to factor large numbers called NFSNet has been set up. It
can be found on the Internet at

http://www.dataplex.net/NFSNet
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Table 2 Largest hard number factored as a function of time.

year method digits

1970 CFRAC 39
1979 CFRAC 46
1982 CFRAC 54
1983 QS 67
1986 QS 87
1988 QS 102
1990 QS 116
1994 QS 129
1995 GNFS 130

22. A subjective measurement of progress in factorization can be gained by looking at
the “ten most wanted numbers” to be factored. The list is maintained by Sam Wagstaff
and can be found at http://www.cs.purdue.edu/homes/ssw/cun/index.html. As of
May 1999, “number one” on this list is 2617 − 1.

4.6 ARITHMETIC FUNCTIONS

Functions whose domains are the set of positive integers play an important role in
number theory. Such functions are called arithmetic functions and are the subject of
this section. The information presented here includes definitions and properties of many
important arithmetic functions, asymptotic estimates on the growth of these functions,
and algebraic properties of sets of certain arithmetic functions. For more information
on the topics covered in this section see [Ap76].

4.6.1 MULTIPLICATIVE AND ADDITIVE FUNCTIONS

Definitions:

An arithmetic function is a function that is defined for all positive integers.

An arithmetic function is multiplicative if f(mn) = f(m)f(n) whenever m and n are
relatively prime positive integers.

An arithmetic function is completely multiplicative if f(mn) = f(m)f(n) for all
positive integers m and n.

If f is an arithmetic function, then
∑

d|n f(d), the value of the summatory function

of f at n, is the sum of f(d) over all positive integers d that divide n.

An arithmetic function f is additive if f(mn) = f(m) + f(n) whenever m and n are
relatively prime positive integers.

An arithmetic function f is completely additive if f(m,n) = f(m)+f(n) whenever m
and n are positive integers.
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Facts:
1. If f is a multiplicative function and n = pa1

1 pa2
2 . . . pas

s is the prime-power factoriza-
tion of n, then f(n) = f(pa1

1 )f(pa2
2 ) . . . f(pas

s ).
2. If f is multiplicative, then f(1) = 1.
3. If f is a completely multiplicative function and n = pa1

1 pa2
2 . . . pas

s , then f(n) =
f(p1)a1f(p2)a2 . . . f(ps)as .
4. If f is multiplicative, then the arithmetic function F (n) =

∑
d|n f(d) is multiplica-

tive.
5. If f is an additive function, then f(1) = 0.
6. If f is an additive function and a is a positive real number, then F (n) = af(n) is
multiplicative.
7. If f is a completely additive function and a is a positive real number, then F (n) =
af(n) is completely multiplicative.

Examples:
1. The function f(n) = n2 is multiplicative. Even more, it is completely multiplicative.
2. The function I(n) =

⌊
1
n

⌋
(so that I(1) = 1 and I(n) = 0 if n is a positive integer

greater than 1) is completely multiplicative.
3. The Euler phi-function, the number of divisors function, the sum of divisors function,
and the Möbius function are all multiplicative. None of these functions is completely
multiplicative.

4.6.2 EULER’S PHI-FUNCTION

Definition:

If n is a positive integer then φ(n), the value of the Euler-phi function at n, is the
number of positive integers not exceeding n that are relatively prime to n. The Euler-phi
function is also known as the totient function.

Facts:
1. The Euler φ function is multiplicative, but not completely multiplicative.
2. If p is a prime, then φ(p) = p− 1.
3. If p is a positive integer with φ(p) = p− 1, then p is prime.
4. If p is a prime and a is a positive integer, then φ(pa) = pa − pa−1.

5. If n is a positive integer with prime-power factorization n = pa1

1 pa2
2 . . . pak

k , then
φ(n) = n

∏k
j=1(1 − 1

pj
).

6. If n is a positive integer greater than 2, then φ(n) is even.
7. If n has r distinct odd prime factors, then 2r divides φ(n).

8. If m and n are positive integers and gcd(m,n) = d, then φ(mn) = φ(m)φ(n)d
φ(d) .

9. If m and n are positive integers and m|n, then φ(m)|φ(n).
10. If n is a positive integer, then

∑
d|n φ(d) =

∑
d|n φ(n

d ) = n.

11. If n is a positive integer with n ≥ 5, then φ(n) > n
6 log log n .

12.
∑n

k=1 φ(k) = 3n2

π2 +O(n log n)

13.
∑n

k=1
φ(k)

k = 6n
π2 +O(n log n)
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Examples:
1. Table 1 includes the value of φ(n) for 1 ≤ n ≤ 1000.
2. To see that φ(10) = 4, note that the positive integers not exceeding 10 relatively
prime to 10 are 1, 3, 7, and 9.
3. To find φ(720), note that φ(720) = φ(24325) = 720(1 − 1

2 )(1 − 1
3 )(1 − 1

5 ) = 192.

4.6.3 SUM AND NUMBER OF DIVISORS FUNCTIONS

Definitions:

If n is a positive integer, then σ(n), the value of the sum of divisors function at n,
is the sum of the positive integer divisors of n.

A positive integer n is perfect if and only if it equals the sum of its proper divisors (or
equivalently, if σ(n) = 2n).

A positive integer n is abundant if the sum of the proper divisors of n exceeds n (or
equivalently, if σ(n) > 2n).

A positive integer n is deficient if the sum of the proper divisors of n is less than n (or
equivalently, if σ(n) < 2n).

The positive integers m and n are amicable if σ(m) = σ(n) = m+ n.

If n is a positive integer, then τ(n), the value of the number of divisors function
at n, is the number of positive integer divisors of n.

Facts:
1. The number of divisors function is multiplicative, but not completely multiplicative.
2. The number of divisors function is the summatory function of f(n) = 1; that is,
τ(n) =

∑
d|n 1.

3. The sum of divisors function is multiplicative, but not completely multiplicative.
4. The sum of divisors function is the summatory function of f(n) = n; that is, σ(n) =∑
d|n

d.

5. If n is a positive integer with prime-power factorization n = pa1
1 pa2

2 . . . pak

k , then
σ(n) =

∏k
j=1(p

aj+1
j − 1)/(pj − 1).

6. If n is a positive integer with prime-power factorization n = pa1
1 pa2

2 . . . pak

k , then
τ(n) =

∏k
j=1(aj + 1).

7. If n is a positive integer, then τ(n) is odd if and only if n is a perfect square.
8. If k is an integer greater than 1, then the equation τ(n) = k has infinitely many
solutions.
9. If n is a positive integer, then (

∑
d|n τ(d))

2 =
∑

d|n τ(d)
3.

10. A positive integer n is an even perfect number if and only if n = 2m−1(2m−1)
where m is an integer, m ≥ 2, and 2m−1 is prime (so that it is a Mersenne prime
(§4.4.3)). Hence, the number of known even perfect numbers equals the number of
known Mersenne primes.
11. It is unknown whether there are any odd perfect numbers. However, it is known
that there are no odd perfect numbers less than 10300 and that any odd perfect number
must have at least eight different prime factors.
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Table 1 Values of φ(n), σ(n), τ(n), and µ(n) for 1 ≤ n ≤ 1000.

Using Maple V, the numtheory package commands phi(n), sigma(n), tau(n), and
mobius(n) can be used to calculate these functions.

n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ
1 1 1 1 1 2 1 3 2 -1 3 2 4 2 -1 4 2 7 3 0 5 4 6 2 -1
6 2 12 4 1 7 6 8 2 -1 8 4 15 4 0 9 6 13 3 0 10 4 18 4 1

11 10 12 2 -1 12 4 28 6 0 13 12 14 2 -1 14 6 24 4 1 15 8 24 4 1
16 8 31 5 0 17 16 18 2 -1 18 6 39 6 0 19 18 20 2 -1 20 8 42 6 0
21 12 32 4 1 22 10 36 4 1 23 22 24 2 -1 24 8 60 8 0 25 20 31 3 0
26 12 42 4 1 27 18 40 4 0 28 12 56 6 0 29 28 30 2 -1 30 8 72 8 -1
31 30 32 2 -1 32 16 63 6 0 33 20 48 4 1 34 16 54 4 1 35 24 48 4 1
36 12 91 9 0 37 36 38 2 -1 38 18 60 4 1 39 24 56 4 1 40 16 90 8 0
41 40 42 2 -1 42 12 96 8 -1 43 42 44 2 -1 44 20 84 6 0 45 24 78 6 0
46 22 72 4 1 47 46 48 2 -1 48 16 124 10 0 49 42 57 3 0 50 20 93 6 0
51 32 72 4 1 52 24 98 6 0 53 52 54 2 -1 54 18 120 8 0 55 40 72 4 1
56 24 120 8 0 57 36 80 4 1 58 28 90 4 1 59 58 60 2 -1 60 16 168 12 0
61 60 62 2 -1 62 30 96 4 1 63 36 104 6 0 64 32 127 7 0 65 48 84 4 1
66 20 144 8 -1 67 66 68 2 -1 68 32 126 6 0 69 44 96 4 1 70 24 144 8 -1
71 70 72 2 -1 72 24 195 12 0 73 72 74 2 -1 74 36 114 4 1 75 40 124 6 0
76 36 140 6 0 77 60 96 4 1 78 24 168 8 -1 79 78 80 2 -1 80 32 186 10 0
81 54 121 5 0 82 40 126 4 1 83 82 84 2 -1 84 24 224 12 0 85 64 108 4 1
86 42 132 4 1 87 56 120 4 1 88 40 180 8 0 89 88 90 2 -1 90 24 234 12 0
91 72 112 4 1 92 44 168 6 0 93 60 128 4 1 94 46 144 4 1 95 72 120 4 1
96 32 252 12 0 97 96 98 2 -1 98 42 171 6 0 99 60 156 6 0 100 40 217 9 0

101 100 102 2 -1 102 32 216 8 -1 103 102 104 2 -1 104 48 210 8 0 105 48 192 8 -1
106 52 162 4 1 107 106 108 2 -1 108 36 280 12 0 109 108 110 2 -1 110 40 216 8 -1
111 72 152 4 1 112 48 248 10 0 113 112 114 2 -1 114 36 240 8 -1 115 88 144 4 1
116 56 210 6 0 117 72 182 6 0 118 58 180 4 1 119 96 144 4 1 120 32 360 16 0
121 110 133 3 0 122 60 186 4 1 123 80 168 4 1 124 60 224 6 0 125 100 156 4 0
126 36 312 12 0 127 126 128 2 -1 128 64 255 8 0 129 84 176 4 1 130 48 252 8 -1
131 130 132 2 -1 132 40 336 12 0 133 108 160 4 1 134 66 204 4 1 135 72 240 8 0
136 64 270 8 0 137 136 138 2 -1 138 44 288 8 -1 139 138 140 2 -1 140 48 336 12 0
141 92 192 4 1 142 70 216 4 1 143 120 168 4 1 144 48 403 15 0 145 112 180 4 1
146 72 222 4 1 147 84 228 6 0 148 72 266 6 0 149 148 150 2 -1 150 40 372 12 0
151 150 152 2 -1 152 72 300 8 0 153 96 234 6 0 154 60 288 8 -1 155 120 192 4 1
156 48 392 12 0 157 156 158 2 -1 158 78 240 4 1 159 104 216 4 1 160 64 378 12 0
161 132 192 4 1 162 54 363 10 0 163 162 164 2 -1 164 80 294 6 0 165 80 288 8 -1
166 82 252 4 1 167 166 168 2 -1 168 48 480 16 0 169 156 183 3 0 170 64 324 8 -1
171 108 260 6 0 172 84 308 6 0 173 172 174 2 -1 174 56 360 8 -1 175 120 248 6 0
176 80 372 10 0 177 116 240 4 1 178 88 270 4 1 179 178 180 2 -1 180 48 546 18 0
181 180 182 2 -1 182 72 336 8 -1 183 120 248 4 1 184 88 360 8 0 185 144 228 4 1
186 60 384 8 -1 187 160 216 4 1 188 92 336 6 0 189 108 320 8 0 190 72 360 8 -1
191 190 192 2 -1 192 64 508 14 0 193 192 194 2 -1 194 96 294 4 1 195 96 336 8 -1
196 84 399 9 0 197 196 198 2 -1 198 60 468 12 0 199 198 200 2 -1 200 80 465 12 0
201 132 272 4 1 202 100 306 4 1 203 168 240 4 1 204 64 504 12 0 205 160 252 4 1
206 102 312 4 1 207 132 312 6 0 208 96 434 10 0 209 180 240 4 1 210 48 576 16 1
211 210 212 2 -1 212 104 378 6 0 213 140 288 4 1 214 106 324 4 1 215 168 264 4 1
216 72 600 16 0 217 180 256 4 1 218 108 330 4 1 219 144 296 4 1 220 80 504 12 0
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n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ
221 192 252 4 1 222 72 456 8 -1223 222 224 2 -1224 96 504 12 0 225 120 403 9 0
226 112 342 4 1 227 226 228 2 -1228 72 560 12 0 229 228 230 2 -1 230 88 432 8 -1
231 120 384 8 -1232 112 450 8 0 233 232 234 2 -1234 72 546 12 0 235 184 288 4 1
236 116 420 6 0 237 156 320 4 1 238 96 432 8 -1239 238 240 2 -1 240 64 744 20 0
241 240 242 2 -1242 110 399 6 0 243 162 364 6 0 244 120 434 6 0 245 168 342 6 0
246 80 504 8 -1247 216 280 4 1 248 120 480 8 0 249 164 336 4 1 250 100 468 8 0
251 250 252 2 -1252 72 728 18 0 253 220 288 4 1 254 126 384 4 1 255 128 432 8 -1
256 128 511 9 0 257 256 258 2 -1258 84 528 8 -1259 216 304 4 1 260 96 588 12 0
261 168 390 6 0 262 130 396 4 1 263 262 264 2 -1264 80 720 16 0 265 208 324 4 1
266 108 480 8 -1267 176 360 4 1 268 132 476 6 0 269 268 270 2 -1 270 72 720 16 0
271 270 272 2 -1272 128 558 10 0 273 144 448 8 -1274 136 414 4 1 275 200 372 6 0
276 88 672 12 0 277 276 278 2 -1278 138 420 4 1 279 180 416 6 0 280 96 720 16 0
281 280 282 2 -1282 92 576 8 -1283 282 284 2 -1284 140 504 6 0 285 144 480 8 -1
286 120 504 8 -1287 240 336 4 1 288 96 819 18 0 289 272 307 3 0 290 112 540 8 -1
291 192 392 4 1 292 144 518 6 0 293 292 294 2 -1294 84 684 12 0 295 232 360 4 1
296 144 570 8 0 297 180 480 8 0 298 148 450 4 1 299 264 336 4 1 300 80 868 18 0
301 252 352 4 1 302 150 456 4 1 303 200 408 4 1 304 144 620 10 0 305 240 372 4 1
306 96 702 12 0 307 306 308 2 -1308 120 672 12 0 309 204 416 4 1 310 120 576 8 -1
311 310 312 2 -1312 96 840 16 0 313 312 314 2 -1314 156 474 4 1 315 144 624 12 0
316 156 560 6 0 317 316 318 2 -1318 104 648 8 -1319 280 360 4 1 320 128 762 14 0
321 212 432 4 1 322 132 576 8 -1323 288 360 4 1 324 108 847 15 0 325 240 434 6 0
326 162 492 4 1 327 216 440 4 1 328 160 630 8 0 329 276 384 4 1 330 80 864 16 1
331 330 332 2 -1332 164 588 6 0 333 216 494 6 0 334 166 504 4 1 335 264 408 4 1
336 96 992 20 0 337 336 338 2 -1338 156 549 6 0 339 224 456 4 1 340 128 756 12 0
341 300 384 4 1 342 108 780 12 0 343 294 400 4 0 344 168 660 8 0 345 176 576 8 -1
346 172 522 4 1 347 346 348 2 -1348 112 840 12 0 349 348 350 2 -1 350 120 744 12 0
351 216 560 8 0 352 160 756 12 0 353 352 354 2 -1354 116 720 8 -1 355 280 432 4 1
356 176 630 6 0 357 192 576 8 -1358 178 540 4 1 359 358 360 2 -1 360 96 1170 24 0
361 342 381 3 0 362 180 546 4 1 363 220 532 6 0 364 144 784 12 0 365 288 444 4 1
366 120 744 8 -1367 366 368 2 -1368 176 744 10 0 369 240 546 6 0 370 144 684 8 -1
371 312 432 4 1 372 120 896 12 0 373 372 374 2 -1374 160 648 8 -1 375 200 624 8 0
376 184 720 8 0 377 336 420 4 1 378 108 960 16 0 379 378 380 2 -1 380 144 840 12 0
381 252 512 4 1 382 190 576 4 1 383 382 384 2 -1384 128 1020 16 0 385 240 576 8 -1
386 192 582 4 1 387 252 572 6 0 388 192 686 6 0 389 388 390 2 -1 390 96 1008 16 1
391 352 432 4 1 392 168 855 12 0 393 260 528 4 1 394 196 594 4 1 395 312 480 4 1
396 120 1092 18 0 397 396 398 2 -1398 198 600 4 1 399 216 640 8 -1 400 160 961 15 0
401 400 402 2 -1402 132 816 8 -1403 360 448 4 1 404 200 714 6 0 405 216 726 10 0
406 168 720 8 -1407 360 456 4 1 408 128 1080 16 0 409 408 410 2 -1 410 160 756 8 -1
411 272 552 4 1 412 204 728 6 0 413 348 480 4 1 414 132 936 12 0 415 328 504 4 1
416 192 882 12 0 417 276 560 4 1 418 180 720 8 -1419 418 420 2 -1 420 96 1344 24 0
421 420 422 2 -1422 210 636 4 1 423 276 624 6 0 424 208 810 8 0 425 320 558 6 0
426 140 864 8 -1427 360 496 4 1 428 212 756 6 0 429 240 672 8 -1 430 168 792 8 -1
431 430 432 2 -1432 144 1240 20 0 433 432 434 2 -1434 180 768 8 -1 435 224 720 8 -1
436 216 770 6 0 437 396 480 4 1 438 144 888 8 -1439 438 440 2 -1 440 160 1080 16 0
441 252 741 9 0 442 192 756 8 -1443 442 444 2 -1444 144 1064 12 0 445 352 540 4 1
446 222 672 4 1 447 296 600 4 1 448 192 1016 14 0 449 448 450 2 -1 450 120 1209 18 0
451 400 504 4 1 452 224 798 6 0 453 300 608 4 1 454 226 684 4 1 455 288 672 8 -1
456 144 1200 16 0 457 456 458 2 -1458 228 690 4 1 459 288 720 8 0 460 176 1008 12 0
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n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ
461 460 462 2 -1462 120 1152 16 1 463 462 464 2 -1464 224 930 10 0 465 240 768 8 -1
466 232 702 4 1 467 466 468 2 -1468 144 1274 18 0 469 396 544 4 1 470 184 864 8 -1
471 312 632 4 1 472 232 900 8 0 473 420 528 4 1 474 156 960 8 -1475 360 620 6 0
476 192 1008 12 0 477 312 702 6 0 478 238 720 4 1 479 478 480 2 -1480 128 1512 24 0
481 432 532 4 1 482 240 726 4 1 483 264 768 8 -1484 220 931 9 0 485 384 588 4 1
486 162 1092 12 0 487 486 488 2 -1488 240 930 8 0 489 324 656 4 1 490 168 1026 12 0
491 490 492 2 -1492 160 1176 12 0 493 448 540 4 1 494 216 840 8 -1495 240 936 12 0
496 240 992 10 0 497 420 576 4 1 498 164 1008 8 -1499 498 500 2 -1500 200 1092 12 0
501 332 672 4 1 502 250 756 4 1 503 502 504 2 -1504 1441560 24 0 505 400 612 4 1
506 220 864 8 -1507 312 732 6 0 508 252 896 6 0 509 508 510 2 -1510 128 1296 16 1
511 432 592 4 1 512 256 1023 10 0 513 324 800 8 0 514 256 774 4 1 515 408 624 4 1
516 168 1232 12 0 517 460 576 4 1 518 216 912 8 -1519 344 696 4 1 520 192 1260 16 0
521 520 522 2 -1522 168 1170 12 0 523 522 524 2 -1524 260 924 6 0 525 240 992 12 0
526 262 792 4 1 527 480 576 4 1 528 160 1488 20 0 529 506 553 3 0 530 208 972 8 -1
531 348 780 6 0 532 216 1120 12 0 533 480 588 4 1 534 1761080 8 -1535 424 648 4 1
536 264 1020 8 0 537 356 720 4 1 538 268 810 4 1 539 420 684 6 0 540 144 1680 24 0
541 540 542 2 -1542 270 816 4 1 543 360 728 4 1 544 2561134 12 0 545 432 660 4 1
546 144 1344 16 1 547 546 548 2 -1548 272 966 6 0 549 360 806 6 0 550 200 1116 12 0
551 504 600 4 1 552 176 1440 16 0 553 468 640 4 1 554 276 834 4 1 555 288 912 8 -1
556 276 980 6 0 557 556 558 2 -1558 180 1248 12 0 559 504 616 4 1 560 192 1488 20 0
561 320 864 8 -1562 280 846 4 1 563 562 564 2 -1564 1841344 12 0 565 448 684 4 1
566 282 852 4 1 567 324 968 10 0 568 280 1080 8 0 569 568 570 2 -1570 144 1440 16 1
571 570 572 2 -1572 240 1176 12 0 573 380 768 4 1 574 2401008 8 -1575 440 744 6 0
576 192 1651 21 0 577 576 578 2 -1578 272 921 6 0 579 384 776 4 1 580 224 1260 12 0
581 492 672 4 1 582 192 1176 8 -1583 520 648 4 1 584 2881110 8 0 585 288 1092 12 0
586 292 882 4 1 587 586 588 2 -1588 168 1596 18 0 589 540 640 4 1 590 232 1080 8 -1
591 392 792 4 1 592 288 1178 10 0 593 592 594 2 -1594 1801440 16 0 595 384 864 8 -1
596 296 1050 6 0 597 396 800 4 1 598 264 1008 8 -1599 598 600 2 -1600 160 1860 24 0
601 600 602 2 -1602 252 1056 8 -1603 396 884 6 0 604 3001064 6 0 605 440 798 6 0
606 200 1224 8 -1607 606 608 2 -1608 288 1260 12 0 609 336 960 8 -1610 240 1116 8 -1
611 552 672 4 1 612 192 1638 18 0 613 612 614 2 -1614 306 924 4 1 615 320 1008 8 -1
616 240 1440 16 0 617 616 618 2 -1618 204 1248 8 -1619 618 620 2 -1620 240 1344 12 0
621 396 960 8 0 622 310 936 4 1 623 528 720 4 1 624 1921736 20 0 625 500 781 5 0
626 312 942 4 1 627 360 960 8 -1628 312 1106 6 0 629 576 684 4 1 630 144 1872 24 0
631 630 632 2 -1632 312 1200 8 0 633 420 848 4 1 634 316 954 4 1 635 504 768 4 1
636 208 1512 12 0 637 504 798 6 0 638 280 1080 8 -1639 420 936 6 0 640 256 1530 16 0
641 640 642 2 -1642 212 1296 8 -1643 642 644 2 -1644 2641344 12 0 645 336 1056 8 -1
646 288 1080 8 -1647 646 648 2 -1648 216 1815 20 0 649 580 720 4 1 650 240 1302 12 0
651 360 1024 8 -1652 324 1148 6 0 653 652 654 2 -1654 2161320 8 -1655 520 792 4 1
656 320 1302 10 0 657 432 962 6 0 658 276 1152 8 -1659 658 660 2 -1660 160 2016 24 0
661 660 662 2 -1662 330 996 4 1 663 384 1008 8 -1664 3281260 8 0 665 432 960 8 -1
666 216 1482 12 0 667 616 720 4 1 668 332 1176 6 0 669 444 896 4 1 670 264 1224 8 -1
671 600 744 4 1 672 192 2016 24 0 673 672 674 2 -1674 3361014 4 1 675 360 1240 12 0
676 312 1281 9 0 677 676 678 2 -1678 224 1368 8 -1679 576 784 4 1 680 256 1620 16 0
681 452 912 4 1 682 300 1152 8 -1683 682 684 2 -1684 2161820 18 0 685 544 828 4 1
686 294 1200 8 0 687 456 920 4 1 688 336 1364 10 0 689 624 756 4 1 690 176 1728 16 1
691 690 692 2 -1692 344 1218 6 0 693 360 1248 12 0 694 3461044 4 1 695 552 840 4 1
696 224 1800 16 0 697 640 756 4 1 698 348 1050 4 1 699 464 936 4 1 700 240 1736 18 0
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n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ
701 700 702 2 -1702 216 1680 16 0 703 648 760 4 1 704 320 1524 14 0 705 368 1152 8 -1
706 352 1062 4 1 707 600 816 4 1 708 232 1680 12 0 709 708 710 2 -1710 280 1296 8 -1
711 468 1040 6 0 712 352 1350 8 0 713 660 768 4 1 714 192 1728 16 1 715 480 1008 8 -1
716 356 1260 6 0 717 476 960 4 1 718 358 1080 4 1 719 718 720 2 -1720 192 2418 30 0
721 612 832 4 1 722 342 1143 6 0 723 480 968 4 1 724 360 1274 6 0 725 560 930 6 0
726 220 1596 12 0 727 726 728 2 -1728 288 1680 16 0 729 486 1093 7 0 730 288 1332 8 -1
731 672 792 4 1 732 240 1736 12 0 733 732 734 2 -1734 366 1104 4 1 735 336 1368 12 0
736 352 1512 12 0 737 660 816 4 1 738 240 1638 12 0 739 738 740 2 -1740 288 1596 12 0
741 432 1120 8 -1742 312 1296 8 -1743 742 744 2 -1744 240 1920 16 0 745 592 900 4 1
746 372 1122 4 1 747 492 1092 6 0 748 320 1512 12 0 749 636 864 4 1 750 200 1872 16 0
751 750 752 2 -1752 368 1488 10 0 753 500 1008 4 1 754 336 1260 8 -1755 600 912 4 1
756 216 2240 24 0 757 756 758 2 -1758 378 1140 4 1 759 440 1152 8 -1760 288 1800 16 0
761 760 762 2 -1762 252 1536 8 -1763 648 880 4 1 764 380 1344 6 0 765 384 1404 12 0
766 382 1152 4 1 767 696 840 4 1 768 256 2044 18 0 769 768 770 2 -1770 240 1728 16 1
771 512 1032 4 1 772 384 1358 6 0 773 772 774 2 -1774 252 1716 12 0 775 600 992 6 0
776 384 1470 8 0 777 432 1216 8 -1778 388 1170 4 1 779 720 840 4 1 780 192 2352 24 0
781 700 864 4 1 782 352 1296 8 -1783 504 1200 8 0 784 336 1767 15 0 785 624 948 4 1
786 260 1584 8 -1787 786 788 2 -1788 392 1386 6 0 789 524 1056 4 1 790 312 1440 8 -1
791 672 912 4 1 792 240 2340 24 0 793 720 868 4 1 794 396 1194 4 1 795 416 1296 8 -1
796 396 1400 6 0 797 796 798 2 -1798 216 1920 16 1 799 736 864 4 1 800 320 1953 18 0
801 528 1170 6 0 802 400 1206 4 1 803 720 888 4 1 804 264 1904 12 0 805 528 1152 8 -1
806 360 1344 8 -1807 536 1080 4 1 808 400 1530 8 0 809 808 810 2 -1810 216 2178 20 0
811 810 812 2 -1812 336 1680 12 0 813 540 1088 4 1 814 360 1368 8 -1815 648 984 4 1
816 256 2232 20 0 817 756 880 4 1 818 408 1230 4 1 819 432 1456 12 0 820 320 1764 12 0
821 820 822 2 -1822 272 1656 8 -1823 822 824 2 -1824 408 1560 8 0 825 400 1488 12 0
826 348 1440 8 -1827 826 828 2 -1828 264 2184 18 0 829 828 830 2 -1830 328 1512 8 -1
831 552 1112 4 1 832 384 1778 14 0 833 672 1026 6 0 834 276 1680 8 -1835 664 1008 4 1
836 360 1680 12 0 837 540 1280 8 0 838 418 1260 4 1 839 838 840 2 -1840 192 2880 32 0
841 812 871 3 0 842 420 1266 4 1 843 560 1128 4 1 844 420 1484 6 0 845 624 1098 6 0
846 276 1872 12 0 847 660 1064 6 0 848 416 1674 10 0 849 564 1136 4 1 850 320 1674 12 0
851 792 912 4 1 852 280 2016 12 0 853 852 854 2 -1854 360 1488 8 -1855 432 1560 12 0
856 424 1620 8 0 857 856 858 2 -1858 240 2016 16 1 859 858 860 2 -1860 336 1848 12 0
861 480 1344 8 -1862 430 1296 4 1 863 862 864 2 -1864 288 2520 24 0 865 688 1044 4 1
866 432 1302 4 1 867 544 1228 6 0 868 360 1792 12 0 869 780 960 4 1 870 224 2160 16 1
871 792 952 4 1 872 432 1650 8 0 873 576 1274 6 0 874 396 1440 8 -1875 600 1248 8 0
876 288 2072 12 0 877 876 878 2 -1878 438 1320 4 1 879 584 1176 4 1 880 320 2232 20 0
881 880 882 2 -1882 252 2223 18 0 883 882 884 2 -1884 384 1764 12 0 885 464 1440 8 -1
886 442 1332 4 1 887 886 888 2 -1888 288 2280 16 0 889 756 1024 4 1 890 352 1620 8 -1
891 540 1452 10 0 892 444 1568 6 0 893 828 960 4 1 894 296 1800 8 -1895 712 1080 4 1
896 384 2040 16 0 897 528 1344 8 -1898 448 1350 4 1 899 840 960 4 1 900 240 2821 27 0
901 832 972 4 1 902 400 1512 8 -1903 504 1408 8 -1904 448 1710 8 0 905 720 1092 4 1
906 300 1824 8 -1907 906 908 2 -1908 452 1596 6 0 909 600 1326 6 0 910 288 2016 16 1
911 910 912 2 -1912 288 2480 20 0 913 820 1008 4 1 914 456 1374 4 1 915 480 1488 8 -1
916 456 1610 6 0 917 780 1056 4 1 918 288 2160 16 0 919 918 920 2 -1920 352 2160 16 0
921 612 1232 4 1 922 460 1386 4 1 923 840 1008 4 1 924 240 2688 24 0 925 720 1178 6 0
926 462 1392 4 1 927 612 1352 6 0 928 448 1890 12 0 929 928 930 2 -1930 240 2304 16 1
931 756 1140 6 0 932 464 1638 6 0 933 620 1248 4 1 934 466 1404 4 1 935 640 1296 8 -1
936 288 2730 24 0 937 936 938 2 -1938 396 1632 8 -1939 624 1256 4 1 940 368 2016 12 0
941 940 942 2 -1942 312 1896 8 -1943 880 1008 4 1 944 464 1860 10 0 945 432 1920 16 0
946 420 1584 8 -1947 946 948 2 -1948 312 2240 12 0 949 864 1036 4 1 950 360 1860 12 0
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n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ n φ σ τ µ
951 632 1272 4 1 952 384 2160 16 0 953 952 954 2 -1954 312 2106 12 0 955 760 1152 4 1
956 476 1680 6 0 957 560 1440 8 -1958 478 1440 4 1 959 816 1104 4 1 960 256 3048 28 0
961 930 993 3 0 962 432 1596 8 -1963 636 1404 6 0 964 480 1694 6 0 965 768 1164 4 1
966 264 2304 16 1 967 966 968 2 -1968 440 1995 12 0 969 576 1440 8 -1 970 384 1764 8 -1
971 970 972 2-1972 324 2548 18 0 973 828 1120 4 1 974 486 1464 4 1 975 480 1736 12 0
976 480 1922 10 0 977 976 978 2 -1978 324 1968 8 -1979 880 1080 4 1 980 336 2394 18 0
981 648 1430 6 0 982 490 1476 4 1 983 982 984 2 -1984 320 2520 16 0 985 784 1188 4 1
986 448 1620 8-1987 552 1536 8 -1988 432 1960 12 0 989 924 1056 4 1 990 240 2808 24 0
991 990 992 2-1992 480 2016 12 0 993 660 1328 4 1 994 420 1728 8 -1 995 792 1200 4 1
996 328 2352 12 0 997 996 998 2 -1998 498 1500 4 1 999 648 1520 8 0 1000 400 2340 16 0

12.
∑n

k=1 σ(k) = π2n2

12 +O(n log n)
13.

∑n
k=1 τ(k) = n log n+ (2γ − 1)n+O(

√
n), where γ is Euler’s constant.

14. If m and n are amicable, then m is the sum of the proper divisors of n, and vice
versa.

Examples:
1. Table 1 lists the values of σ(n) and τ(n) for 1 ≤ n ≤ 1000.
2. To find τ(720), note that τ(720) = τ(24 · 32 · 5) = (4 + 1)(2 + 1)(1 + 1) = 30.

3. To find σ(200) note that σ(200) = σ(2352) = 24−1
2−1 · 53−1

5−1 = 15 · 31 = 465.
4. The integers 6 and 28 are perfect; the integers 9 and 16 are deficient; the integers 12
and 945 are abundant.
5. The integers 220 and 284 form the smallest pair of amicable numbers.

4.6.4 THE MÖBIUS FUNCTION AND OTHER IMPORTANT ARITHMETIC FUNCTIONS

Definitions:

If n is a positive integer, µ(n), the value of the Möbius function, is defined by:

µ(n) =




1, if n = 1
0, if n has a square factor larger than 1

(−1)s, if n is squarefree and is the product of s different primes.

If n > 1 is a positive integer, with prime-power factorization pa1
1 pa2

2 . . . pam
m , then λ(n),

the value of Liouville’s function at n, is given by λ(n) = (−1)a1+a2+···+am , with
λ(1) = 1.

If n is a positive integer with prime-power factorization n = p1
a1p2

a2 . . . pm
am , then

the arithmetic functions Ω and ω are defined by Ω(1) = ω(1) = 0 and for n > 1,
Ω(n) =

∑m
i=1 ai and ω(n) = m. That is, Ω(n) is the sum of the exponents in the prime-

power factorization of n and ω(n) is the number of distinct primes in the prime-power
factorization of n.

Facts:
1. The Möbius function is multiplicative, but not completely multiplicative.
2. Möbius inversion formula: If f is an arithmetic function and F (n) =

∑
d|n f(d),

then f(n) =
∑

d|n µ(d)F (n
d ).
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3. If n is a positive integer, then φ(n) =
∑

d|n µ(d)n
d .

4. If f is multiplicative, then
∑

d|n µ(d)f(d) =
∏

p|n(1 − f(p)).

5. If f is multiplicative, then
∑

d|n µ(d)2f(d) =
∏

p|n(1 + f(p)).

6. If n is positive integer then
∑

d|n µ(d) =
{ 1 if n = 1;

0 if n > 1.

7. If n is a positive integer, then
∑

d|n λ(d) =
{

1 if n is a perfect square;
0 if n is not a perfect square.

8. In 1897 Mertens showed that |
∑n

k=1 µ(k)| < √
n for all positive integers n not

exceeding 10,000 and conjectured that this inequality holds for all positive integers n.
However, in 1985 Odlyzko and teRiele disproved this conjecture, which went by the
name Mertens’ conjecture without giving an explicit integer n for which the conjecture
fails. In 1987 Pintz showed that there is at least one counterexample n with n ≤ 1065,
again without giving an explicit counterexample n. Finding such an integer n requires
more computing power than is currently available.

9. Liouville’s function is completely multiplicative.

10. The function ω is additive and the function Ω is completely additive.

Examples:

1. µ(12) = 0 since 22|12 and µ(105) = µ(3 · 5 · 7) = (−1)3 = −1.

2. λ(720) = λ(24 · 32 · 5) = (−1)4+2+1 = (−1)7 = −1.

3. Ω(720) = Ω(24 · 32 · 5) = 4 + 2 + 1 = 7 and ω(720) = ω(24 · 32 · 5) = 3.

4.6.5 DIRICHLET PRODUCTS

Definitions:

If f and g are arithmetic functions, then the Dirichlet product of f and g is the
function f 7 g defined by (f 7 g)(n) =

∑
d|n f(d)g(n

d ).

If f and g are arithmetic functions such that f 7g = g 7f = I, where I(n) =
⌊

1
n

⌋
, then g

is the Dirichlet inverse of f .

Facts:

1. If f and g are arithmetic functions, then f 7 g = g 7 f .

2. If f , g, and h are arithmetic functions, then (f 7 g) 7 h = f 7 (g 7 h).

3. If f , g, and h are arithmetic functions, then f 7 (g + h) = (f 7 g) + (f 7 h).

4. Because of Facts 1–3, the set of arithmetic functions with the operations of Dirichlet
product and ordinary addition of functions forms a ring. (See Chapter 5.)

5. If f is an arithmetic function with f(1) 	= 0, then there is a unique Dirichlet inverse
of f , which is written as f−1. Furthermore, f−1 is given by the recursive formulas
f−1(1) = 1

f(1) and f−1 = − 1
f(1)

∑
d|n
d>n

f(n
d )f−1(d) for n > 1.

6. The set of all arithmetic functions f with f(1) 	= 0 forms an abelian group with
respect to the operation 7, where the identity element is the function I.

7. If f and g are arithmetic functions with f(1) 	= 0 and g(1) 	= 0, then (f ∗ g)−1 =
f−1 7 g−1.
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8. If u is the arithmetic function with u(n) = 1 for all positive integers n, then µ7u = I,
so u = µ−1 and µ = u−1.
9. If f is a multiplicative function, then f is completely multiplicative if and only if
f−1(n) = µ(n)f(n) for all positive integers n.
10. If f and g are multiplicative functions, then f 7 g is also multiplicative.
11. If f and g are arithmetic functions and both f and f 7 g are multiplicative, then g
is also multiplicative.
12. If f is multiplicative, then f−1 exists and is multiplicative.

Examples:
1. The identity φ(n) =

∑
d|n µ(d)n

d (§4.6.4 Fact 3) implies that φ = µ 7 N where N is
the multiplicative function N(n) = n.
2. Since the function N is completely multiplicative, N−1 = µN by Fact 9.
3. From Example 1 and Facts 7 and 8, it follows that φ−1 = µ−1 7µN = µ7µN . Hence
φ−1(n) =

∑
d|n dµ(d).

4.7 PRIMITIVE ROOTS AND QUADRATIC RESIDUES

A primitive root of an integer, when it exists, is an integer whose powers run through
a complete system of residues modulo this integer. When a primitive root exists, it is
possible to use the theory of indices to solve certain congruences. This section provides
the information needed to understand and employ primitive roots.

The question of which integers are perfect squares modulo a prime is one that
has been studied extensively. An integer that is a perfect square modulo n is called
a quadratic residue of n. The law of quadratic reciprocity provides a surprising link
between the answer to the question of whether a prime p is a perfect square modulo a
prime q and the answer to the question of whether q is a perfect square modulo p. This
section provides information that helps determine whether an integer is a quadratic
residue modulo a given integer n.

There are important applications of the topics covered in this section, including
applications to public key cryptography and authentication schemes. (See Chapter 14.)

4.7.1 PRIMITIVE ROOTS

Definitions:

If a and m are relatively prime positive integers, then the order of a modulo m,
denoted ordma, is the least positive integer x such that ax ≡ 1 (mod m).

If r and n are relatively prime integers and n is positive, then r is a primitive root
modulo m if ordnr = φ(n). A primitive root modulo m is also said to be a primitive
root of m and m is said to have a primitive root.

If m is a positive integer, then the minimum universal exponent modulo m is the
smallest positive integer λ(m) for which aλ(m) ≡ 1 (mod m) for all integers a relatively
prime to m.
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Facts:

1. The positive integer n, with n > 1, has a primitive root if and only if n = 2, 4, pt

or 2pt where p is an odd prime and t is a positive integer.

2. There are φ(d) incongruent integers modulo p if p is prime and d is a positive divisor
of p− 1.

3. There are φ(p− 1) primitive roots of p if p is a prime.

4. If the positive integer m has a primitive root, then it has a total of φ(φ(m)) incon-
gruent primitive roots.

5. If r is a primitive root of the odd prime p, then either r or r + p is a primitive root
modulo p2.

6. If r is a primitive root of p2, where p is prime, then r is a primitive root of pk for
all positive integers k.

7. It is an unsettled conjecture (stated by E. Artin) whether 2 is a primitive root of
infinitely many primes. More generally, given any prime p it is unknown whether p is a
primitive root of infinitely many primes.

8. It is known that given any three primes, at least one of these primes is a primitive
root of infinitely many primes. [GuMu84]

9. Given a set of n primes, p1, p2, . . . , pn, there are
∏n

k=1 φ(pk − 1) integers x with
1 < x ≤

∏n
k=1 pk such that x is a primitive root of pk for k = 1, 2, . . . , n. Such an

integer x is a called a common primitive root of the primes p1, . . . , pn.

10. Let gp denote the smallest positive integer that is a primitive root modulo p where p
is a prime. It is known that gp is not always small; in particular it has been shown by
Fridlender and Salié ([Ri96]) that there is a positive constant C such that gp > C log p
for infinitely many primes p.

11. Burgess has shown that gp does not grow too rapidly; in particular he showed that
gp ≤ Cp

1
4+ε for ε > 0, C a constant, p sufficiently large. [Ri96]

12. The minimum universal exponent modulo the powers of 2 are: λ(2) = 1, λ(22) = 2,
and λ(2k) = 2k−2 for k = 3, 4, . . . .

13. If m is a positive integer with prime-power factorization 2kq1
a1 . . . qr

ar where k
is a nonnegative integer, then the least universal exponent of m is given by λ(m) =
lcm(λ(2k), φ(q1a1), . . . , φ(qr

ar )).

14. For every positive integer m, there is an integer a such that ordma = λ(m).

15. There are six positive integers m with λ(m) = 2: m = 3, 4, 6, 8, 12, 24.

16. Table 1 displays the least primitive root of each prime less than 10,000.

Examples:

1. Since 21 ≡ 2, 22 ≡ 4, and 23 ≡ 1 (mod 7), it follows that ord72 = 3.

2. The integers 2, 6, 7, and 8 form a complete set of incongruent primitive roots
modulo 11.

3. The integer 10 is a primitive root of 487, but it is not a primitive root of 4872.

4. There are φ(6)φ(10) = 2 · 4 = 8 common primitive roots of 7 and 11 between 1 and
7 · 11 = 77. They are the integers 17, 19, 24, 40, 52, 61, 68, and 73.

5. From Facts 12 and 13 it follows that the minimum universal exponent of 1200 is
λ(7,200) = λ(25 · 32 · 52) = lcm(23, φ(32), φ(52)) = lcm(8, 6, 20) = 120.
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Table 1 Primes and primitive roots.

For each prime p < 10,000 the least primitive root ω is given.

p ω p ω p ω p ω p ω p ω p ω p ω p ω
3 2 5 2 7 3 11 2 13 2 17 3 19 2 23 5 29 2

31 3 37 2 41 6 43 3 47 5 53 2 59 2 61 2 67 2
71 7 73 5 79 3 83 2 89 3 97 5 101 2 103 5 107 2

109 6 113 3 127 3 131 2 137 3 139 2 149 2 151 6 157 5
163 2 167 5 173 2 179 2 181 2 191 19 193 5 197 2 199 3
211 2 223 3 227 2 229 6 233 3 239 7 241 7 251 6 257 3
263 5 269 2 271 6 277 5 281 3 283 3 293 2 307 5 311 17
313 10 317 2 331 3 337 10 347 2 349 2 353 3 359 7 367 6
373 2 379 2 383 5 389 2 397 5 401 3 409 21 419 2 421 2
431 7 433 5 439 15 443 2 449 3 457 13 461 2 463 3 467 2
479 13 487 3 491 2 499 7 503 5 509 2 521 3 523 2 541 2
547 2 557 2 563 2 569 3 571 3 577 5 587 2 593 3 599 7
601 7 607 3 613 2 617 3 619 2 631 3 641 3 643 11 647 5
653 2 659 2 661 2 673 5 677 2 683 5 691 3 701 2 709 2
719 11 727 5 733 6 739 3 743 5 751 3 757 2 761 6 769 11
773 2 787 2 797 2 809 3 811 3 821 2 823 3 827 2 829 2
839 11 853 2 857 3 859 2 863 5 877 2 881 3 883 2 887 5
907 2 911 17 919 7 929 3 937 5 941 2 947 2 953 3 967 5
971 6 977 3 983 5 991 6 997 7 1009 11 1013 3 1019 2 1021 10

1031 14 1033 5 1039 3 1049 3 1051 7 1061 2 1063 3 1069 6 1087 3
1091 2 1093 5 1097 3 1103 5 1109 2 1117 2 1123 2 1129 11 1151 17
1153 5 1163 5 1171 2 1181 7 1187 2 1193 3 1201 11 1213 2 1217 3
1223 5 1229 2 1231 3 1237 2 1249 7 1259 2 1277 2 1279 3 1283 2
1289 6 1291 2 1297 10 1301 2 1303 6 1307 2 1319 13 1321 13 1327 3
1361 3 1367 5 1373 2 1381 2 1399 13 1409 3 1423 3 1427 2 1429 6
1433 3 1439 7 1447 3 1451 2 1453 2 1459 3 1471 6 1481 3 1483 2
1487 5 1489 14 1493 2 1499 2 1511 11 1523 2 1531 2 1543 5 1549 2
1553 3 1559 19 1567 3 1571 2 1579 3 1583 5 1597 11 1601 3 1607 5
1609 7 1613 3 1619 2 1621 2 1627 3 1637 2 1657 11 1663 3 1667 2
1669 2 1693 2 1697 3 1699 3 1709 3 1721 3 1723 3 1733 2 1741 2
1747 2 1753 7 1759 6 1777 5 1783 10 1787 2 1789 6 1801 11 1811 6
1823 5 1831 3 1847 5 1861 2 1867 2 1871 14 1873 10 1877 2 1879 6
1889 3 1901 2 1907 2 1913 3 1931 2 1933 5 1949 2 1951 3 1973 2
1979 2 1987 2 1993 5 1997 2 1999 3 2003 5 2011 3 2017 5 2027 2
2029 2 2039 7 2053 2 2063 5 2069 2 2081 3 2083 2 2087 5 2089 7
2099 2 2111 7 2113 5 2129 3 2131 2 2137 10 2141 2 2143 3 2153 3
2161 23 2179 7 2203 5 2207 5 2213 2 2221 2 2237 2 2239 3 2243 2
2251 7 2267 2 2269 2 2273 3 2281 7 2287 19 2293 2 2297 5 2309 2
2311 3 2333 2 2339 2 2341 7 2347 3 2351 13 2357 2 2371 2 2377 5
2381 3 2383 5 2389 2 2393 3 2399 11 2411 6 2417 3 2423 5 2437 2
2441 6 2447 5 2459 2 2467 2 2473 5 2477 2 2503 3 2521 17 2531 2
2539 2 2543 5 2549 2 2551 6 2557 2 2579 2 2591 7 2593 7 2609 3
2617 5 2621 2 2633 3 2647 3 2657 3 2659 2 2663 5 2671 7 2677 2
2683 2 2687 5 2689 19 2693 2 2699 2 2707 2 2711 7 2713 5 2719 3
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p ω p ω p ω p ω p ω p ω p ω p ω p ω
2729 3 2731 3 2741 2 2749 6 2753 3 2767 3 2777 3 2789 2 2791 6
2797 2 2801 3 2803 2 2819 2 2833 5 2837 2 2843 2 2851 2 2857 11
2861 2 2879 7 2887 5 2897 3 2903 5 2909 2 2917 5 2927 5 2939 2
2953 13 2957 2 2963 2 2969 3 2971 10 2999 17 3001 14 3011 2 3019 2
3023 5 3037 2 3041 3 3049 11 3061 6 3067 2 3079 6 3083 2 3089 3
3109 6 3119 7 3121 7 3137 3 3163 3 3167 5 3169 7 3181 7 3187 2
3191 11 3203 2 3209 3 3217 5 3221 10 3229 6 3251 6 3253 2 3257 3
3259 3 3271 3 3299 2 3301 6 3307 2 3313 10 3319 6 3323 2 3329 3
3331 3 3343 5 3347 2 3359 11 3361 22 3371 2 3373 5 3389 3 3391 3
3407 5 3413 2 3433 5 3449 3 3457 7 3461 2 3463 3 3467 2 3469 2
3491 2 3499 2 3511 7 3517 2 3527 5 3529 17 3533 2 3539 2 3541 7
3547 2 3557 2 3559 3 3571 2 3581 2 3583 3 3593 3 3607 5 3613 2
3617 3 3623 5 3631 15 3637 2 3643 2 3659 2 3671 13 3673 5 3677 2
3691 2 3697 5 3701 2 3709 2 3719 7 3727 3 3733 2 3739 7 3761 3
3767 5 3769 7 3779 2 3793 5 3797 2 3803 2 3821 3 3823 3 3833 3
3847 5 3851 2 3853 2 3863 5 3877 2 3881 13 3889 11 3907 2 3911 13
3917 2 3919 3 3923 2 3929 3 3931 2 3943 3 3947 2 3967 6 3989 2
4001 3 4003 2 4007 5 4013 2 4019 2 4021 2 4027 3 4049 3 4051 10
4057 5 4073 3 4079 11 4091 2 4093 2 4099 2 4111 12 4127 5 4129 13
4133 2 4139 2 4153 5 4157 2 4159 3 4177 5 4201 11 4211 6 4217 3
4219 2 4229 2 4231 3 4241 3 4243 2 4253 2 4259 2 4261 2 4271 7
4273 5 4283 2 4289 3 4297 5 4327 3 4337 3 4339 10 4349 2 4357 2
4363 2 4373 2 4391 14 4397 2 4409 3 4421 3 4423 3 4441 21 4447 3
4451 2 4457 3 4463 5 4481 3 4483 2 4493 2 4507 2 4513 7 4517 2
4519 3 4523 5 4547 2 4549 6 4561 11 4567 3 4583 5 4591 11 4597 5
4603 2 4621 2 4637 2 4639 3 4643 5 4649 3 4651 3 4657 15 4663 3
4673 3 4679 11 4691 2 4703 5 4721 6 4723 2 4729 17 4733 5 4751 19
4759 3 4783 6 4787 2 4789 2 4793 3 4799 7 4801 7 4813 2 4817 3
4831 3 4861 11 4871 11 4877 2 4889 3 4903 3 4909 6 4919 13 4931 6
4933 2 4937 3 4943 7 4951 6 4957 2 4967 5 4969 11 4973 2 4987 2
4993 5 4999 3 5003 2 5009 3 5011 2 5021 3 5023 3 5039 11 5051 2
5059 2 5077 2 5081 3 5087 5 5099 2 5101 6 5107 2 5113 19 5119 3
5147 2 5153 5 5167 6 5171 2 5179 2 5189 2 5197 7 5209 17 5227 2
5231 7 5233 10 5237 3 5261 2 5273 3 5279 7 5281 7 5297 3 5303 5
5309 2 5323 5 5333 2 5347 3 5351 11 5381 3 5387 2 5393 3 5399 7
5407 3 5413 5 5417 3 5419 3 5431 3 5437 5 5441 3 5443 2 5449 7
5471 7 5477 2 5479 3 5483 2 5501 2 5503 3 5507 2 5519 13 5521 11
5527 5 5531 10 5557 2 5563 2 5569 13 5573 2 5581 6 5591 11 5623 5
5639 7 5641 14 5647 3 5651 2 5653 5 5657 3 5659 2 5669 3 5683 2
5689 11 5693 2 5701 2 5711 19 5717 2 5737 5 5741 2 5743 10 5749 2
5779 2 5783 7 5791 6 5801 3 5807 5 5813 2 5821 6 5827 2 5839 6
5843 2 5849 3 5851 2 5857 7 5861 3 5867 5 5869 2 5879 11 5881 31
5897 3 5903 5 5923 2 5927 5 5939 2 5953 7 5981 3 5987 2 6007 3
6011 2 6029 2 6037 5 6043 5 6047 5 6053 2 6067 2 6073 10 6079 17
6089 3 6091 7 6101 2 6113 3 6121 7 6131 2 6133 5 6143 5 6151 3
6163 3 6173 2 6197 2 6199 3 6203 2 6211 2 6217 5 6221 3 6229 2
6247 5 6257 3 6263 5 6269 2 6271 11 6277 2 6287 7 6299 2 6301 10
6311 7 6317 2 6323 2 6329 3 6337 10 6343 3 6353 3 6359 13 6361 19
6367 3 6373 2 6379 2 6389 2 6397 2 6421 6 6427 3 6449 3 6451 3

c© 2000 by CRC Press LLC



p ω p ω p ω p ω p ω p ω p ω p ω p ω
6469 2 6473 3 6481 7 6491 2 6521 6 6529 7 6547 2 6551 17 6553 10
6563 5 6569 3 6571 3 6577 5 6581 14 6599 13 6607 3 6619 2 6637 2
6653 2 6659 2 6661 6 6673 5 6679 7 6689 3 6691 2 6701 2 6703 5
6709 2 6719 11 6733 2 6737 3 6761 3 6763 2 6779 2 6781 2 6791 7
6793 10 6803 2 6823 3 6827 2 6829 2 6833 3 6841 22 6857 3 6863 5
6869 2 6871 3 6883 2 6899 2 6907 2 6911 7 6917 2 6947 2 6949 2
6959 7 6961 13 6967 5 6971 2 6977 3 6983 5 6991 6 6997 5 7001 3
7013 2 7019 2 7027 2 7039 3 7043 2 7057 5 7069 2 7079 7 7103 5
7109 2 7121 3 7127 5 7129 7 7151 7 7159 3 7177 10 7187 2 7193 3
7207 3 7211 2 7213 5 7219 2 7229 2 7237 2 7243 2 7247 5 7253 2
7283 2 7297 5 7307 2 7309 6 7321 7 7331 2 7333 6 7349 2 7351 6
7369 7 7393 5 7411 2 7417 5 7433 3 7451 2 7457 3 7459 2 7477 2
7481 6 7487 5 7489 7 7499 2 7507 2 7517 2 7523 2 7529 3 7537 7
7541 2 7547 2 7549 2 7559 13 7561 13 7573 2 7577 3 7583 5 7589 2
7591 6 7603 2 7607 5 7621 2 7639 7 7643 2 7649 3 7669 2 7673 3
7681 17 7687 6 7691 2 7699 3 7703 5 7717 2 7723 3 7727 5 7741 7
7753 10 7757 2 7759 3 7789 2 7793 3 7817 3 7823 5 7829 2 7841 12
7853 2 7867 3 7873 5 7877 2 7879 3 7883 2 7901 2 7907 2 7919 7
7927 3 7933 2 7937 3 7949 2 7951 6 7963 5 7993 5 8009 3 8011 14
8017 5 8039 11 8053 2 8059 3 8069 2 8081 3 8087 5 8089 17 8093 2
8101 6 8111 11 8117 2 8123 2 8147 2 8161 7 8167 3 8171 2 8179 2
8191 17 8209 7 8219 2 8221 2 8231 11 8233 10 8237 2 8243 2 8263 3
8269 2 8273 3 8287 3 8291 2 8293 2 8297 3 8311 3 8317 6 8329 7
8353 5 8363 2 8369 3 8377 5 8387 2 8389 6 8419 3 8423 5 8429 2
8431 3 8443 2 8447 5 8461 6 8467 2 8501 7 8513 5 8521 13 8527 5
8537 3 8539 2 8543 5 8563 2 8573 2 8581 6 8597 2 8599 3 8609 3
8623 3 8627 2 8629 6 8641 17 8647 3 8663 5 8669 2 8677 2 8681 15
8689 13 8693 2 8699 2 8707 5 8713 5 8719 3 8731 2 8737 5 8741 2
8747 2 8753 3 8761 23 8779 11 8783 5 8803 2 8807 5 8819 2 8821 2
8831 7 8837 2 8839 3 8849 3 8861 2 8863 3 8867 2 8887 3 8893 5
8923 2 8929 11 8933 2 8941 6 8951 13 8963 2 8969 3 8971 2 8999 7
9001 7 9007 3 9011 2 9013 5 9029 2 9041 3 9043 3 9049 7 9059 2
9067 3 9091 3 9103 6 9109 10 9127 3 9133 6 9137 3 9151 3 9157 6
9161 3 9173 2 9181 2 9187 3 9199 3 9203 2 9209 3 9221 2 9227 2
9239 19 9241 13 9257 3 9277 5 9281 3 9283 2 9293 2 9311 7 9319 3
9323 2 9337 5 9341 2 9343 5 9349 2 9371 2 9377 3 9391 3 9397 2
9403 3 9413 3 9419 2 9421 2 9431 7 9433 5 9437 2 9439 22 9461 3
9463 3 9467 2 9473 3 9479 7 9491 2 9497 3 9511 3 9521 3 9533 2
9539 2 9547 2 9551 11 9587 2 9601 13 9613 2 9619 2 9623 5 9629 2
9631 3 9643 2 9649 7 9661 2 9677 2 9679 3 9689 3 9697 10 9719 17
9721 7 9733 2 9739 3 9743 5 9749 2 9767 5 9769 13 9781 6 9787 3
9791 11 9803 2 9811 3 9817 5 9829 10 9833 3 9839 7 9851 2 9857 5
9859 2 9871 3 9883 2 9887 5 9901 2 9907 2 9923 2 9929 3 9931 10
9941 2 9949 2 9967 3 9973 11
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4.7.2 INDEX ARITHMETIC

Definition:

If m is a positive integer with primitive root r and a is an integer relatively prime to m,
then the unique nonnegative integer x not exceeding φ(m) with rx ≡ a (mod m) is the
index of a to the base r modulo m, or the discrete logarithm of a to the base r
modulo m.

The index is denoted indra (where the modulus m is fixed).

Facts:

1. Table 2 displays, for each prime less than 100, the indices of all numbers not ex-
ceeding the prime using the least primitive root of the prime as the base.

Table 2 Indices for primes less than 100.

For each prime p < 100 two tables are given. Let g be least primitive element of the
group F ∗

p and assume gx = y.

The table on the left has a y in position x, while the one on the right has an x in
position y.

3: N 0 1 2 3 4 5 6 7 8 9
0 2 1

I 0 1 2 3 4 5 6 7 8 9
0 1 2 1

5: N 0 1 2 3 4 5 6 7 8 9
0 4 1 3 2

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 3 1

7: N 0 1 2 3 4 5 6 7 8 9
0 6 2 1 4 5 3

I 0 1 2 3 4 5 6 7 8 9
0 1 3 2 6 4 5 1

11:
N 0 1 2 3 4 5 6 7 8 9
0 10 1 8 2 4 9 7 3 6
1 5

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 5 10 9 7 3 6
1 1

13:
N 0 1 2 3 4 5 6 7 8 9
0 12 1 4 2 9 5 11 3 8
1 10 7 6

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 3 6 12 11 9 5
1 10 7 1

17:
N 0 1 2 3 4 5 6 7 8 9
0 16 14 1 12 5 15 11 10 2
1 3 7 13 4 9 6 8

I 0 1 2 3 4 5 6 7 8 9
0 1 3 9 10 13 5 15 11 16 14
1 8 7 4 12 2 6 1

19:
N 0 1 2 3 4 5 6 7 8 9
0 18 1 13 2 16 14 6 3 8
1 17 12 15 5 7 11 4 10 9

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 13 7 14 9 18
1 17 15 11 3 6 12 5 10 1

c© 2000 by CRC Press LLC



23:

N 0 1 2 3 4 5 6 7 8 9
0 22 2 16 4 1 18 19 6 10
1 3 9 20 14 21 17 8 7 12 15
2 5 13 11

I 0 1 2 3 4 5 6 7 8 9
0 1 5 2 10 4 20 8 17 16 11
1 9 22 18 21 13 19 3 15 6 7
2 12 14 1

29:

N 0 1 2 3 4 5 6 7 8 9
0 28 1 5 2 22 6 12 3 10
1 23 25 7 18 13 27 4 21 11 9
2 24 17 26 20 8 16 19 15 14

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 3 6 12 24 19
1 9 18 7 14 28 27 25 21 13 126
2 23 17 5 10 20 11 22 15 1

31:

N 0 1 2 3 4 5 6 7 8 9
0 30 24 1 18 20 25 28 12 2
1 14 23 19 11 22 21 6 7 26 4
2 8 29 17 27 13 10 5 3 16 9
3 15

I 0 1 2 3 4 5 6 7 8 9
0 1 3 9 27 19 26 16 17 20 29
1 25 13 8 24 10 30 28 22 4 12
2 5 15 14 11 2 6 18 23 7 21
3 1

37:

N 0 1 2 3 4 5 6 7 8 9
0 36 1 26 2 23 27 32 3 16
1 24 30 28 11 33 13 4 7 17 35
2 25 22 31 15 29 10 12 6 34 21
3 14 9 5 20 8 19 18

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 32 27 17 34 31
1 25 13 26 15 30 23 9 18 36 35
2 33 29 21 5 10 20 3 6 12 26
3 11 22 7 14 28 19 1

41:

N 0 1 2 3 4 5 6 7 8 9
0 40 26 15 12 22 1 39 38 30
1 8 3 27 31 25 37 24 33 16 9
2 34 14 29 36 13 4 17 5 11 7
3 23 28 10 18 19 21 2 32 35 6
4 20

I 0 1 2 3 4 5 6 7 8 9
0 1 6 36 11 25 27 39 29 10 19
1 32 28 4 24 21 3 18 26 33 34
2 40 35 5 30 16 14 2 12 31 22
3 9 13 37 17 20 38 23 15 8 7
4 1

43:

N 0 1 2 3 4 5 6 7 8 9
0 42 27 1 12 25 28 35 39 2
1 10 30 13 32 20 26 24 38 29 19
2 37 36 15 16 40 8 17 3 5 41
3 11 34 9 31 23 18 14 7 4 33
4 22 6 21

I 0 1 2 3 4 5 6 7 8 9
0 1 3 9 27 38 28 41 37 25 32
1 10 30 4 12 36 22 23 26 35 19
2 14 42 40 34 16 5 15 2 6 18
3 11 33 13 39 31 7 21 20 17 8
4 24 29 1

47:

N 0 1 2 3 4 5 6 7 8 9
0 46 18 20 36 1 38 32 8 40
1 19 7 10 11 4 21 26 16 12 45
2 37 6 25 5 28 2 29 14 22 35
3 39 3 44 27 34 33 30 42 17 31
4 9 15 24 13 43 41 23

I 0 1 2 3 4 5 6 7 8 9
0 1 5 25 31 14 23 21 11 8 40
1 12 13 18 43 27 41 17 38 2 10
2 3 15 28 46 42 22 16 33 24 26
3 36 39 7 35 34 29 4 20 6 30
4 9 45 37 44 32 19 1

53:

N 0 1 2 3 4 5 6 7 8 9
0 52 1 17 2 47 18 14 3 34
1 48 6 19 24 15 12 4 10 35 37
2 49 31 7 39 20 42 25 51 16 46
3 13 33 5 23 11 9 36 30 38 41
4 50 45 32 22 8 29 40 44 21 28
5 43 27 26

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 32 11 22 44 35
1 17 34 15 30 7 14 28 3 6 12
2 24 48 43 33 13 26 52 51 49 45
3 37 21 42 31 9 18 36 19 38 23
4 46 39 25 50 47 41 29 5 10 20
5 40 27 1
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59:

N 0 1 2 3 4 5 6 7 8 9
0 58 1 50 2 6 51 18 3 42
1 7 25 52 45 19 56 4 40 43 38
2 8 10 26 15 53 12 46 34 20 28
3 57 49 5 17 41 24 44 55 39 37
4 9 14 11 33 27 48 16 23 54 36
5 13 32 47 22 35 31 21 30 29

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 32 5 10 20 40
1 21 42 25 50 41 23 46 33 7 14
2 28 56 53 47 35 11 22 44 29 58
3 57 55 51 43 27 54 49 39 19 38
4 17 34 9 18 36 13 26 52 45 31
5 3 6 12 24 48 37 15 30 1

61:

N 0 1 2 3 4 5 6 7 8 9
0 60 1 6 2 22 7 49 3 12
1 23 15 8 40 50 28 4 47 13 26
2 24 55 16 57 9 44 41 18 51 35
3 29 59 5 21 48 11 14 39 27 46
4 25 54 56 43 17 34 58 20 10 38
5 45 53 42 33 19 37 52 32 36 31
6 30

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 32 3 6 12 24
1 48 35 9 18 36 11 22 44 27 54
2 47 33 5 10 20 40 19 38 15 30
3 60 59 57 53 45 29 58 55 49 37
4 13 26 52 43 25 50 39 17 34 7
5 14 28 56 51 41 21 42 23 46 31
6 1

67:

N 0 1 2 3 4 5 6 7 8 9
0 66 1 39 2 15 40 23 3 12
1 16 59 41 19 24 54 4 64 13 10
2 17 62 60 28 42 30 20 51 25 44
3 55 47 5 32 65 38 14 22 11 58
4 18 53 63 9 61 27 29 50 43 46
5 31 37 21 57 52 8 26 49 45 36
6 56 7 48 35 6 34 33

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 32 64 61 55 43
1 19 38 9 18 36 5 10 20 40 13
2 26 52 37 7 14 28 56 45 23 46
3 25 50 33 66 65 63 59 51 35 3
4 6 12 24 48 29 58 49 31 62 57
5 47 27 54 41 15 30 60 53 39 11
6 22 44 21 42 17 34 1

71:

N 0 1 2 3 4 5 6 7 8 9
0 70 6 26 12 28 32 1 18 52
1 34 31 38 39 7 54 24 49 58 16
2 40 27 37 15 44 56 45 8 13 68
3 60 11 30 57 55 29 64 20 22 65
4 46 25 33 48 43 10 21 9 50 2
5 62 5 51 23 14 59 19 42 4 3
6 66 69 17 53 36 67 63 47 61 41
7 35

I 0 1 2 3 4 5 6 7 8 9
0 1 7 49 59 58 51 2 14 27 47
1 45 31 4 28 54 23 19 62 8 56
2 37 46 38 53 16 41 3 21 5 35
3 32 11 6 42 10 70 64 22 12 13
4 20 69 57 44 24 26 40 67 43 17
5 48 52 9 63 15 34 25 33 18 55
6 30 68 50 66 36 39 60 65 29 61
7 1

73:

N 0 1 2 3 4 5 6 7 8 9
0 72 8 6 16 1 14 33 24 12
1 9 55 22 59 41 7 32 21 20 62
2 17 39 63 46 30 2 67 18 49 35
3 15 11 40 61 29 34 28 64 70 65
4 25 4 47 51 71 13 54 31 38 66
5 10 27 3 53 26 56 57 68 43 5
6 23 58 19 45 48 60 69 50 37 52
7 42 44 36

I 0 1 2 3 4 5 6 7 8 9
0 1 5 25 52 41 59 3 15 2 10
1 50 31 9 45 6 30 4 20 27 62
2 18 17 12 60 8 40 54 51 36 34
3 24 47 16 7 35 29 72 68 48 21
4 32 14 70 58 71 63 23 42 64 28
5 67 43 69 53 46 11 55 56 61 13
6 65 33 19 22 37 39 49 26 57 66
7 38 44 1
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79:

N 0 1 2 3 4 5 6 7 8 9
0 78 4 1 8 62 5 53 12 2
1 66 68 9 34 57 63 16 21 6 32
2 70 54 72 26 13 46 38 3 61 11
3 67 56 20 69 25 37 10 19 36 35
4 74 75 58 49 76 64 30 59 17 28
5 50 22 42 77 7 52 65 33 15 31
6 71 45 60 55 24 18 73 48 29 27
7 41 51 14 44 23 47 40 43 39

I 0 1 2 3 4 5 6 7 8 9
0 1 3 9 27 2 6 18 54 4 12
1 36 29 8 24 72 58 16 48 65 37
2 32 17 51 74 64 34 23 69 49 68
3 46 59 19 57 13 39 38 35 26 78
4 76 70 52 77 73 61 25 75 67 43
5 50 71 55 7 21 63 31 14 42 47
6 62 28 5 15 45 56 10 30 11 33
7 20 60 22 66 40 41 44 53 1

83:

N 0 1 2 3 4 5 6 7 8 9
0 82 1 72 2 27 73 8 3 62
1 28 24 74 77 9 17 4 56 63 47
2 29 80 25 60 75 54 78 52 10 12
3 18 38 5 14 57 35 64 20 48 67
4 30 40 81 71 26 7 61 23 76 16
5 55 46 79 59 53 51 11 37 13 34
6 19 66 39 70 6 22 15 45 58 50
7 36 33 65 69 21 44 49 32 68 43
8 31 42 41

I 0 1 2 3 4 5 6 7 8 9
0 1 2 4 8 16 32 64 45 7 14
1 28 56 29 58 33 66 49 15 30 60
2 37 74 65 47 11 22 44 5 10 20
3 40 80 77 71 59 35 70 57 31 62
4 41 82 81 79 75 67 51 19 38 76
5 69 55 27 54 25 50 17 34 68 53
6 23 46 9 18 36 72 61 39 78 73
7 63 43 3 6 12 24 48 13 26 52
8 21 42 1

89:

N 0 1 2 3 4 5 6 7 8 9
0 88 16 1 32 70 17 81 48 2
1 86 84 33 23 9 71 64 6 18 35
2 14 82 12 57 49 52 39 3 25 59
3 87 31 80 85 22 63 34 11 51 24
4 30 21 10 29 28 72 73 54 65 74
5 68 7 55 78 19 66 41 36 75 43
6 15 69 47 83 8 5 13 56 38 58
7 79 62 50 20 27 53 67 77 40 42
8 46 4 37 61 26 76 45 60 44

I 0 1 2 3 4 5 6 7 8 9
0 1 3 9 27 81 65 17 51 64 14
1 42 37 22 66 20 60 2 6 18 54
2 73 41 34 13 39 28 84 74 44 43
3 40 31 4 12 36 19 57 82 68 26
4 78 56 79 59 88 86 80 62 8 24
5 72 38 25 75 47 52 67 23 69 29
6 87 83 71 35 16 48 55 76 50 61
7 5 15 45 46 49 58 85 77 53 70
8 32 7 21 63 11 33 10 30 1

97:

N 0 1 2 3 4 5 6 7 8 9
0 96 34 70 68 1 8 31 6 44
1 35 86 42 25 65 71 40 89 78 81
2 69 5 24 77 76 2 59 18 3 13
3 9 46 74 60 27 32 16 91 19 95
4 7 85 39 4 58 45 15 84 14 62
5 36 63 93 10 52 87 37 55 47 67
6 43 64 80 75 12 26 94 57 61 51
7 66 11 50 28 29 72 53 21 33 30
8 41 88 23 17 73 90 38 83 92 54
9 79 56 49 20 22 82 48

I 0 1 2 3 4 5 6 7 8 9
0 1 5 25 28 43 21 8 40 6 30
1 53 71 64 29 48 46 36 83 27 38
2 93 77 94 82 22 13 65 34 73 74
3 79 7 35 78 2 10 50 56 86 42
4 16 80 12 60 9 45 31 58 96 92
5 72 69 54 76 89 57 91 67 44 26
6 33 68 49 51 61 14 70 59 4 20
7 3 15 75 84 32 63 24 23 18 90
8 62 19 95 87 47 41 11 55 81 17
9 85 37 88 52 66 39 1

2. If m is a positive integer with primitive root r and a is a positive integer relatively
prime to m, then a ≡ rindra (mod m).

3. If m is a positive integer with primitive root r, then indr1 = 0 and indrr = 1.

4. If m > 2 is an integer with primitive root r, then indr(−1) = φ(m)
2 .
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5. If m is a positive integer with primitive root r, and a and b are integers relatively
prime to m, then:

• indr1 ≡ 0 (mod φ(m));
• indr(ab) ≡ indra+ indrb (mod φ(m));
• indra

k ≡ k · indra (mod φ(m)) if k is a positive integer.

6. If m is a positive integer and r and s are both primitive roots modulo m, then
indra ≡ indsa · indrs (mod φ(m)).

7. If m is a positive integer with primitive root r, and a and b are integers both
relatively prime to m, then the exponential congruence ax ≡ b (mod m) has a solution
if and only if d|indrb. Furthermore, if there is a solution to this exponential congruence,
then there are exactly gcd(indra, φ(m)) incongruent solutions.

8. There is a wide variety of algorithms for computing discrete logarithms, includ-
ing those known as the baby-step, giant-step algorithm, the Pollard rho algorithm,
the Pollig-Hellman algorithm, and the index-calculus algorithm. (See [MevaVa96] for
details.)

9. The fastest algorithms known for computing discrete logarithms, relative to a fixed
primitive root, of a given prime p are index-calculus algorithms, which have subexponen-
tial computational complexity. In particular, there is an algorithm based on the number
field sieve that runs using Lp( 1

3 , 1.923) = O(exp((1.923 + o(1))(log p)
1
3 (log log p)

2
3 )) bit

operations. (See [MevaVa96].)

10. Many cryptographic methods rely on intractability of finding discrete logarithms
of integers relative to a fixed primitive root r of a fixed prime p.

Examples:

1. To solve 3x30 ≡ 4 (mod 37) take indices to the base 2 (2 is the smallest primitive root
of 37) to obtain ind2(3x30) ≡ ind24 = 2 (mod 36). Since ind2(3x30) ≡ ind23+30·ind2x =
26 + 30 · ind2x (mod 36), it follows that 30 · ind2x ≡ 12(mod 36). The solutions to this
congruence are those x such that ind2(x) ≡ 4, 10, 16, 22, 28, 34(mod 36). From the Table
of Indices (Table 2), the solutions are those x with x ≡ 16, 25, 9, 21, 12, 28 (mod 37).

2. To solve 7x ≡ 6 (mod 17) take indices to the base 3 (3 is the smallest primitive
root of 17) to obtain ind3(7x) ≡ ind36 = 15 (mod 16). Since ind3(7x) ≡ x · ind37 ≡
11x (mod 16), it follows that 11x ≡ 15 (mod 16). Since all the steps in this computation
are reversible, it follows that the solutions of the original congruence are the solutions
of this linear congruence, namely those x with x ≡ 13 (mod 16).

4.7.3 QUADRATIC RESIDUES

Definitions:

If m and k are positive integers and a is an integer relatively prime to m, then a is
a kth power residue of m if the congruence xk ≡ a (mod m) has a solution.

If a and m are relatively prime integers and m is positive, then a is a quadratic
residue of m if the congruence x2 ≡ a (modm) has a solution. If x2 ≡ a (mod m) has
no solution, then a is a quadratic nonresidue of m.

If p is an odd prime and p does not divide a, then the Legendre symbol
(

a
p

)
is 1 if a

is a quadratic residue of p and −1 if a is a quadratic nonresidue of p. This symbol is
named after the French mathematician Adrien-Marie Legendre (1752–1833).
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If n is an odd positive integer with prime-power factorization n = p1
t1p2

t2 . . . pm
tm and

a is an integer relatively prime to n, then the Jacobi symbol
(

a
n

)
is defined by

(
a
n

)
=

m∏
i=1

(
a
pi

)ti ,

where the symbols on the right-hand side of the equality are Legendre symbols. This
symbol is named after the German mathematician Karl Gustav Jacob Jacobi (1804–
1851).

Let a be a positive integer that is not a perfect square and such that a ≡ 0 or 1 (mod 4).
The Kronecker symbol (named after the German mathematician Leopold Kronecker
(1823–1891)), which is a generalization of the Legendre symbol, is defined as:

•
(

a
2

)
=

{
1 if a ≡ 1 (mod 8)

−1 if a ≡ 5 (mod 8)

•
(

a
p

)
= the Legendre symbol

(
a
p

)
if p is an odd prime such that p does not divide a

•
(

a
n

)
=

r∏
j=1

(
a
pj

)tj if gcd(a, n) = 1 and n =
r∏

j=1

pj
tj is the prime factorization of n.

Facts:
1. If p is an odd prime, then there are an equal number of quadratic residues modulo p
and quadratic non-residues modulo p among the integers 1, 2, . . . , p − 1. In particular,
there are p−1

2 integers of each type in this set.
2. Euler’s criterion: If p is an odd prime and a is a positive integer not divisible by p,
then

(
a
p

)
≡ a(p−1)/2 (mod p).

3. If p is an odd prime and a and b are integers not divisible by p with a ≡ b (mod p),
then

(
a
p

)
=

(
b
p

)
.

4. If p is an odd prime and a and b are integers not divisible by p, then
(

a
p

)(
b
p

)
=

(
ab
p

)
.

5. If p is an odd prime and a and b are integers not divisible by p, then
(

a2

p

)
= 1.

6. If p is an odd prime, then
(−1

p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ −1 (mod 4).
7. If p is an odd prime, then −1 is a quadratic residue of p if p ≡ 1 (mod 4) and a
quadratic nonresidue of p if p ≡ −1 (mod 4). (This is a direct consequence of Fact 6.)
8. Gauss’ lemma: If p is an odd prime, a is an integer with gcd(a, p) = 1, and s is the
number of least positive residues of a, 2a, . . . , p−1

2 a greater than p
2 , then

(
a
p

)
= (−1)s.

9. If p is an odd prime, then
(

2
p

)
= (−1)(p

2−1)/8.

10. The integer 2 is a quadratic residue of all primes p with p ≡ ±1 (mod 8) and a
quadratic nonresidue of all primes p ≡ ±3 (mod 8). (This is a direct consequence of
Fact 9.)
11. Law of quadratic reciprocity : If p and q are odd primes, then(

p
q

)(
q
p

)
= (−1)

p−1
2 · q−1

2 .

This law was first proved by Carl Friedrich Gauss (1777–1855).
12. Many different proofs of the law of quadratic reciprocity have been discovered. By
one count, there are more than 150 different proofs. Gauss published eight different
proofs himself.
13. The law of quadratic reciprocity implies that if p and q are odd primes, then(

p
q

)
=

(
q
p

)
if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4), and

(
p
q

)
= −

(
q
p

)
if p ≡ q ≡ 3 (mod 4).
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14. If m is an odd positive integer and a and b are integers relatively prime to m with
a ≡ b (mod m), then

(
a
m

)
=

(
b
m

)
.

15. If m is an odd positive integer and a and b are integers relatively prime to m, then(
ab
m

)
=

(
a
m

)(
b
m

)
.

16. If m is an odd positive integer and a is an integer relatively prime to m, then(
a2

m

)
= 1.

17. If m and n are relatively prime odd positive integers and a is an integer relatively
prime to m and n, then

(
a

mn

)
=

(
a
m

)(
a
n

)
.

18. If m is an odd positive integer, then the value of the Jacobi symbol
(

a
m

)
does not

determine whether a is a perfect square modulo m.

19. If m is an odd positive integer, then
(−1

m

)
= (−1)

m−1
2 .

20. If m is an odd positive integer, then
(

2
m

)
= (−1)

m2−1
8 .

21. Reciprocity law for Jacobi symbols: If m and n are relatively prime odd positive
integers, then (

m
n

)(
n
m

)
= (−1)

m−1
2

n−1
2 .

22. The number of integers in a reduced set of residues modulo n with
(

k
n

)
= 1 equals

the number with
(

k
n

)
= −1.

23. The Legendre symbol
(

a
p

)
, where p is prime and 0 ≤ a < p, can be evaluated using

O((log2 p)2) bit operations.

24. The Jacobi symbol
(

a
n

)
, where n is a positive integer and 0 ≤ a < n, can be

evaluated using O((log2 n)2) bit operations.

25. Let p be an odd prime. Even though half the integers x with 1 ≤ x < p are
quadratic non-residues of p, there is no known polynomial-time deterministic algorithm
for finding such an integer. However, picking integers at random produces a probabilistic
algorithm that has 2 as the expected number of iterations done before a non-residue is
found.

26. Let m be a positive integer with a primitive root. If k is a positive integer and a
is an integer relatively prime to m, then a is a kth power residue of m if and only if
aφ(m)/d ≡ 1 (mod m) where d = gcd(k, φ(m)). Moreover, if a is a kth power residue
of m, then there are exactly d incongruent solutions modulo m of the congruence xk ≡
a (mod m).

27. If p is a prime, k is a positive integer, and a is an integer with gcd(a, p) = 1, then a
is a kth power residue of p if and only if a(p−1)/d ≡ 1 (mod p), where d = gcd(k, p− 1).

28. The kth roots of a kth power residue modulo p, where p is a prime, can be computed
using a primitive root and indices to this primitive root. This is only practical for small
primes p. (See §4.7.1.)

Examples:

1. The integers 1, 3, 4, 5, and 9 are quadratic residues of 11; the integers 2, 6, 7, 8,
and 10 are quadratic nonresidues of 11. Hence

(
1
11

)
=

(
3
11

)
=

(
4
11

)
=

(
5
11

)
=

(
9
11

)
= 1

and
(

2
11

)
=

(
6
11

)
=

(
7
11

)
=

(
8
11

)
=

(
10
11

)
= −1.

2. To determine whether 11 is a quadratic residue of 19, note that using the law of
quadratic reciprocity (Fact 12) and Facts 3, 4, and 10 it follows that

(
11
19

)
= −

(
19
11

)
=

−
(

8
11

)
= −

(
2
11

)3 = −(−1)3 = 1.
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3. To evaluate the Jacobi symbol
(

2
45

)
note that

(
2
45

)
=

(
2

32·5
)

=
(

2
3

)2 ·
(

2
5

)
=

(−1)2(−1) = −1.
4. The Jacobi symbol

(
5
21

)
= 1, but 5 is not a quadratic residue of 21.

5. The integer 6 is a fifth power residue of 101 since 6(101−1)/5 = 620 ≡ 1 (mod 101).
6. From Example 5 it follows that 6 is a fifth power residue of 101. The solutions
of the congruence x5 ≡ 6 (mod 101), the fifth roots of 6, can be found by taking
indices to the primitive root 2 modulo 101. Since ind26 = 70, this gives ind2x

5 =
5 · ind2x ≡ 70 (mod 100). The solutions of this congruence are the integers x with
ind2x ≡ 14 (mod 20). This implies that the fifth roots of 6 are the integers with
ind2x = 14, 34, 54, 74, and 94. These are the integers x with x ≡ 22, 70, 85, 96, and 30
(mod 101).

7. The integer 5 is not a sixth power residue of 17 since 5
16

gcd(6,16) = 58 ≡ −1 (mod 17).

4.7.4 MODULAR SQUARE ROOTS

Definition:

If m is a positive integer and a is an integer, then r is a square root of a modulo m
if r2 ≡ a (mod m).

Facts:
1. If p is a prime of the form 4n+ 3 and a is a perfect square modulo p, then the two
square roots of a modulo p are ±a(p+1)/4.
2. If p is a prime of the form 8n + 5 and a is a perfect square modulo p, then the
two square roots of a modulo p are x ≡ ±a(p+3)/8(mod p) if a(p−1)/4 ≡ 1 (mod p) and
x ≡ ±2(p−1)/4a(p+3)/8(mod p) if a(p−1)/4 ≡ −1 (mod p).
3. If n is a positive integer that is the product of two distinct primes p and q and a
is a perfect square modulo n, then there are four distinct square roots of a modulo n.
These square roots can be found by finding the two square roots of a modulo p and the
two square roots of a modulo q and then using the Chinese remainder theorem to find
the four square roots of a modulo n.
4. A square root of an integer a that is a square modulo p, where p is an odd prime,
can be found by an algorithm that uses an average of O((log2 p)3) bit operations. (See
[MevaVa96].)
5. If n is an odd integer with r distinct prime factors, a is a perfect square modulo n,
and gcd(a, n) = 1, then a has exactly 2r incongruent square roots modulo n.

Examples:
1. Using Legendre symbols it can be shown that 11 is a perfect square modulo 19. Using
Fact 1 it follows that the square roots of 11 modulo 19 are given by x ≡ ±11(19+1)/4 =
±115 ≡ ±7 (mod 19).
2. There are four incongruent square roots of 860 modulo 11021 = 103 · 107. To find
these solutions, first note that x2 ≡ 860 = 36 (mod 103) so that x ≡ ±6 (mod 103) and
x2 ≡ 860 = 4 (mod 107) so that x ≡ ±2 (mod 107). The Chinese remainder theorem
can be used to find these square roots. They are x ≡ −212,−109, 109, 212 (mod 11021).
3. The square roots of 121 modulo 315 are 11, 74, 101, 151, 164, 214, 241, and 304.
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4.8 DIOPHANTINE EQUATIONS

An important area of number theory is devoted to finding solutions of equations where
the solutions are restricted to belong to the set of integers, or some other specified
set, such as the set of rational numbers. An equation with the added proviso that the
solutions must be integers (or must belong to some other specified countable set, such
as the set of rational numbers) is called a diophantine equation. This name comes from
the ancient Greek mathematician Diophantus (ca. 250 A.D.), who wrote extensively on
such equations.

Diophantine equations have both practical and theoretical importance. Their prac-
tical importance arises when variables in an equation represent quantities of objects, for
example. Fermat’s last theorem, which states that there are no nontrivial solutions in
integers n > 2, x, y, and z to the diophantine equation xn +yn = zn has long interested
mathematicians and non-mathematicians alike. This theorem was proved only in the
mid-1990s, even though many brilliant scholars sought a proof during the last three
centuries.

More information about diophantine equations can be found in [Di71], [Gu94], and
[Mo69].

4.8.1 LINEAR DIOPHANTINE EQUATIONS

Definition:

A linear diophantine equation is an equation of the form a1x1+a2x2+· · ·+anxn = c,
where c, a1, . . . , an are integers and where integer solutions are sought for the unknowns
x1, x2, . . . , xn.

Facts:
1. Let a and b be integers with gcd(a, b) = d. The linear diophantine equation ax+by =
c has no solutions if d	 |c. If d|c, then there are infinitely many solutions in integers.
Moreover, if x = x0, y = y0 is a particular solution, then all solutions are given by
x = x0 + b

dn, y = y0 − a
dn, where n is an integer.

2. A linear diophantine equation a1x1 +a2x2 + · · ·+anxn = c has solutions in integers
if and only if gcd(a1, a2, . . . , an)|c. In that case, there are infinitely many solutions.
3. A solution (x0, y0) of the linear diophantine equation ax+ by = c where gcd(a, b)|c
can be found by first expressing gcd(a, b) as a linear combination of a and b and then
multiplying by c/ gcd(a, b). (See §4.1.2.)
4. A linear diophantine equation a1x1 + a2x2 + · · · + anxn = c in n variables can be
solved by a reduction method. To find a particular solution, first let b = gcd(a2, . . . , an)
and let (x1, y) be a solution of the diophantine equation a1x1 + by = c. Iterate this
procedure on the diophantine equation in n− 1 variables, a2x2 + a3x3 + · · ·+ anxn = y
until an equation in two variables is obtained.
5. The solution to a system of r linear diophantine equations in n variables is obtained
by using Gaussian elimination (§6.5.1) to reduce to a single diophantine equation in two
or more variables.
6. If a and b are relatively prime positive integers and n is a positive integer, then the
diophantine equation ax+by = n has a nonnegative integer solution if n ≥ (a−1)(b−1).
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7. If a and b are relatively prime positive integers, then there are exactly (a−1)(b−1)/2
nonnegative integers n less than ab − a − b such that the equation ax + by = n has a
nonnegative solution.

8. If a and b are relatively prime positive integers, then there are no nonnegative
solutions of ax+ by = ab− a− b.

Examples:

1. To solve the linear diophantine equation 17x + 13y = 100, express gcd(17, 13) = 1
as a linear combination of 17 and 13. Using the steps of the Euclidean algorithm, it
follows that 4 · 13− 3 · 17 = 1. Multiplying by 100 yields 100 = 400 · 13− 300 · 417. All
solutions are given by x = 400 + 17t, y = −300 − 13t, where t ranges over the set of
integers.

2. A traveller has exactly $510 in travelers checks where each check is either a $20 or
a $50 check. How many checks of each denomination can there be?

The solution to this question is given by the set of solutions in nonnegative integers
to the linear diophantine equation 20x+50y = 510. There are infinitely many solutions
in integers, which can be shown to be given by x = −102 + 5n, y = 51 − 2n. Since
both x and y must be nonnegative, it follows that n = 21, 22, 23, 24, or 25. Therefore
there are 3 $20 checks and 9 $50 checks, 8 $20 checks and 7 $50 checks, 13 $20 checks
and 5 $50 checks, 18 $20 checks and 3 $50 checks, or 23 $20 checks and 1 $50 check.

3. To find a particular solution of the linear diophantine equation 12x1 +21x2 +9x3 +
15x4 = 9, which has infinitely many solutions since gcd(12, 21, 9, 15) = 3, which di-
vides 9, first divide both sides of the equation by 3 to get 4x1 + 7x2 + 3x3 + 5x4 = 3.
Now 1 = gcd(7, 3, 5), so solve 4x1 + 1y = 3, as in Example 1, to get x1 = 1, y = −1.
Next solve 7x2 + 3x3 + 5x4 = −1. Since 1 = gcd(3, 5), solve 7x2 + 1z = −1 to get
x2 = 1, z = −8. Finally, solve 3x3 + 5x4 = −8 to get x3 = −1, x4 = −1.

4. To solve the following system of linear diophantine equations in integers:
x+ y + z + w = 100

x+ 2y + 3z + 4w = 300
x+ 4y + 9z + 16w = 1000,

first reduce the system by elimination to:
x+ y + z + w = 100
y + 2z + 3w = 200

2z + 6w = 300.
The solution to the last equation is z = 150 + 3t, w = −t, where t is an integer.
Back-substitution gives

y = 200 − 2(150 + 3t) − 3(−t) = −100 − 3t
x = 100 − (−100 − 3t) − (150 + 3t) − (−t) = 50 + t.

4.8.2 PYTHAGOREAN TRIPLES

Definitions:

A Pythagorean triple is a solution (x, y, z) of the equation x2 + y2 = z2 where x, y,
and z are positive integers.

A Pythagorean triple is primitive if gcd(x, y, z) = 1.
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Facts:
1. Pythagorean triples represent the lengths of sides of right triangles.
2. All primitive Pythagorean triples are given by

x = 2mn, y = m2 − n2, z = m2 + n2

where m and n are relatively prime positive integers of opposite parity with m > n.

3. All Pythagorean triples can be found by taking
x = 2mnt, y = (m2 − n2)t, z = (m2 + n2)t

where t is a positive integer and m and n are as in Fact 2.

4. Given a Pythagorean triple (x, y, z) with y odd, then m and n from Fact 2 can be

found by taking m =
√

z+y
2 and n =

√
z−y
2 .

5. The following table lists all Pythagorean triples with z ≤ 100.

m n x = 2mn y = m2 − n2 z = m2 + n2

2 1 4 3 5
3 1 6 8 10
3 2 12 5 13
4 1 8 15 17
4 2 16 12 20

4 3 24 7 25
5 1 10 24 26
5 2 20 21 29
5 3 30 16 34
5 4 40 9 41

6 1 12 35 37
6 2 24 32 40
6 3 36 27 45
6 4 48 20 52
6 5 60 11 61

7 1 14 48 50
7 2 28 45 53
7 3 42 40 58
7 4 56 33 65
7 5 70 24 74

7 6 84 13 85
8 1 16 63 65
8 2 32 60 68
8 3 48 55 73
8 4 64 48 80

8 5 80 39 89
8 6 96 28 100
9 1 18 80 82
9 2 36 77 85
9 3 54 72 90
9 4 72 65 97
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6. The solutions of the diophantine equation x2 + y2 = 2z2 can be obtained by trans-
forming this equation into

(
x+y

2

)2 +
(

x−y
2

)2 = z2, which shows that (x+y
2 , x−y

2 , z)
is a Pythagorean triple. All solutions are given by x = (m2 − n2 + 2mn)t, y =
(m2 − n2 − 2mn)t, z = (m2 + n2)t where m, n, and t are integers.
7. The solutions of the diophantine equation x2+2y2 = z2 are given by x = (m2−2n2)t,
y = 2mnt, z = m2 + 2n2 where m, n, and t are positive integers.
8. The solutions of the diophantine equation x2 + y2 + z2 = w2 where y and z are
even are given by x = m2+n2−r2

r , y = 2m, z = 2n, w = m2+n2+r2

r , where m and n are
positive integers and r runs through the divisors of m2 + n2 less than (m2 + n2)1/2.
9. The solutions of the diophantine equation x2 + y2 = z2 +w2, with x > z, are given
by x = ms+nr

2 , y = ns−mr
2 , z = ms−nr

2 , w = ns+mr
2 , where if m and n are both odd,

then r and s are either both odd or both even.

4.8.3 FERMAT’S LAST THEOREM

Definitions:

The Fermat equation is the diophantine equation xn + yn = zn where x, y, z are
integers and n is a positive integer greater than 2.

A nontrivial solution to the Fermat equation xn+yn = zn is a solution in integers x, y,
and z where none of x, y, and z are zero.

Let p be an odd prime and let K = Q(ω) be the degree-p cyclotomic extension of the
rational numbers (§5.6.2). If p does not divide the class number of K (see [Co93]), then p
is said to be regular. Otherwise p is irregular.

Facts:
1. Fermat’s last theorem: The statement that the diophantine equation xn + yn = zn

has no nontrivial solutions in the positive integers for n ≥ 3, is called Fermat’s last
theorem. The statement was made more than 300 years ago by Pierre de Fermat (1601–
1665) and resisted proof until recently.
2. Fermat wrote in the margin of his copy of the works of Diophantus, next to the
discussion of the equation x2 + y2 = z2, the following: “However, it is impossible to
write a cube as the sum of two cubes, a fourth power as the sum of two fourth powers and
in general any power the sum of two similar powers. For this I have discovered a truly
wonderful proof, but the margin is too small to contain it.” In spite of this quotation,
no proof was found of this statement until 1994, even though many mathematicians
actively worked on finding such a proof. Most mathematicians would find it shocking if
Fermat actually had found a proof.
3. Fermat’s last theorem was finally proved in 1995 by Andrew Wiles [Wi95]. Wiles
collected the Wolfskehl Prize, worth approximately $50,000 in 1997 for this proof.
4. That there are no nontrivial solutions of the Fermat equation for n = 4 was demon-
strated by Fermat with an elementary proof using the method of infinite descent. This
method proceeds by showing that for every solution in positive integers, there is a so-
lution such that the values of each of the integers x, y, and z is smaller, contradicting
the well-ordering property of the set of integers.
5. The method of infinite descent invented by Fermat can be used to show that the more
general diophantine equation x4 + y4 = z2 has no nontrivial solutions in integers x, y,
and z.
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6. The diophantine equation x4 − y4 = z2 has no nontrivial solutions, as can be shown
using the method of infinite descent.

7. The sum of two cubes may equal the sum of two other cubes. That is, there are
nontrivial solution of the diophantine equation x3 +y3 = z3 +w3. The smallest solution
is x = 1, y = 12, z = 9, w = 10.

8. The sum of three cubes may also be a cube. In fact, the solutions of x3+y3+z3 = w3

are given by x = 3a2+5b(a−b), y = 4a(a−b)+6b2, z = 5a(a−b)−3b2, w = 6a2−4b(a+b)
where a and b are integers.

9. Euler conjectured that there were four fourth powers of positive integers whose sum
is also the fourth power of an integer. In other words, he conjectured that there are
nontrivial solutions to the diophantine equation v4 +w4 + x4 + y4 = z4. The first such
example was found in 1911 when it was discovered (by R. Norrie) that 304 + 1204 +
2724 + 3154 = 3534.

10. Euler also conjectured that the sum of the fourth powers of three positive integers
can never be the fourth power of an integer and that the sum of fifth powers of four
positive integers can never be the fifth power of an integer, and so on. In other words,
he conjectured that there were no nontrivial solutions to the Diophantine equations
w4 + x4 + y4 = z4, v5 + w5 + x5 + y5 = z5, and so on. He was mistaken. The
smallest counterexamples known are 95,8004 + 217,5194 + 414,5604 = 422,4814 and
275 + 845 + 1105 + 1335 = 1445.

11. If n = mp for some integer m and p is prime, then the Fermat equation can be
rewritten as (xm)p + (ym)p = (zm)p. Since the only positive integers greater than 2
without an odd prime factor are powers of 2 and x4+y4 = z4 has no nontrivial solutions
in integers, Fermat’s last theorem can be demonstrated by showing that xp + yp = zp

has no nontrivial solutions in integers x, y, and z when p is an odd prime.

12. An odd prime p is regular if and only if it does not divide the numerator of any of
the numbers B2, B4, . . . , Bp−3, where Bk is the kth Bernoulli number. (See §3.1.4.)

13. There is a relatively simple proof of Fermat’s last theorem for exponents that are
regular primes.

14. The smallest irregular primes are 37, 59, 67, 101, 103, 149, and 157.

15. Wiles’ proof of Fermat’s last theorem is based on the theory of elliptic curves.
The proof is based on relating to integers a, b, c, and n that supposedly satisfy the
Fermat equation an + bn = cn the elliptic curve y2 = x(x + an)(x − bn) (called the
associated Frey curve) and deriving a contradiction using sophisticated results from
the theory of elliptic curves. (See Wiles’ original proof [Wi95], the popular account
[Si97],and http://www.best.com/cgd/home/flt/flt01.htm (The Mathematics of
Fermat’s Last Theorem) and http://www.pbs.org/wgbh/nova/proof/ (NOVA Online
| The Proof) for more details.)

4.8.4 PELL’S, BACHET’S, AND CATALAN’S EQUATIONS

Definitions:

Pell’s equation is a diophantine equation of the form x2−dy2 = 1, where d is a square-
free positive integer. This diophantine equation is named after John Pell (1611–1685).

Bachet’s equation is a diophantine equation of the form y2 = x3+k. This diophantine
equation is named after Claude Gaspar Bachet (1587–1638).
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Catalan’s equation is the diophantine equation xm − yn = 1, where a solution is
sought with integers x > 0, y > 0, m > 1, and n > 1. This diophantine equation is
named after Eugène Charles Catalan (1814–1894).

Facts:
1. If x, y is a solution to the diophantine equation x2 − dy2 = n with d squarefree and
n2 < d, then the rational number x

y is a convergent of the simple continued fraction for√
d. (See §4.9.2.)

2. An equation of the form ax′2 + bx′ + c = y′2 can be transformed by means of the
relations x = 2ax′ + b and y = 2y′ into an equation of the form x2 − dy2 = n, where
n = b2 − 4ac and d = a.
3. It is ironic that John Pell apparently had little to do with finding the solutions to
the diophantine equation x2 − dy2 = 1. Euler gave this equation its name following a
mistaken reference. Fermat conjectured an infinite number of solutions to this equation
in 1657; this was eventually proved by Lagrange in 1768.
4. Let x, y be the least positive solution to x2−dy2 = 1, with d squarefree. Then every
positive solution is given by

xk + yk

√
d = (x+ y

√
d)k

where k ranges over the positive integers.
5. Table 1 gives the smallest positive solutions to Pell’s equation x2 − dy2 = 1 with d
a squarefree positive integer less than 100.
6. If k = 0, then the formulae x = t2, y = t3 give an infinite number of solutions to the
Bachet equation y2 = x3 + k.
7. There are no solutions to Bachet’s equation for the following values of k: −144,
−105, −78, −69, −42, −34, −33, −31, −24, −14, −5, 7, 11, 23, 34, 45, 58, 70.
8. The following table lists solutions to Bachet’s equation for various values of k:

k x

0 t2 (t any integer)
1 0,−1, 2

17 −1,−2, 2, 4, 8, 43, 52, 5334
−2 3
−4 2, 5
−7 2, 32

−15 1

9. If k < 0, k is squarefree, k ≡ 2 or 3 (mod 4), and the class number of the field
Q(

√
−k) is not a multiple of 3, then the only solution of the Bachet equation y2 = x3+k

for x is given by whichever of −(4k ± 1)/3 is an integer. The first few values of such k
are 1, 2, 5, 6, 10, 13, 14, 17, 21, and 22.
10. Solutions to the Catalan equation give consecutive integers that are powers of
integers.
11. The Catalan equation has the solution x = 3, y = 2, m = 2, n = 3, so 8 = 23 and
9 = 32 are consecutive powers of integers. The Catalan conjecture is that this is the
only solution.
12. Levi ben Gerson showed in the 14th century that 8 and 9 are the only consecutive
powers of 2 and 3, so that the only solution in positive integers of 3m − 2n = ±1 is
m = 2 and n = 3.
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Table 1 Smallest positive solutions to Pell’s equation x2 -dy2 =1 with d
squarefree, d<100.

d x y d x y

2 3 2 51 50 7
3 2 1 53 66,249 9,100
5 9 4 55 89 12
6 5 2 57 151 20
7 8 3 58 19,603 2,574

10 19 6 59 530 69
11 10 3 61 1,766,319,049 226,153,980
13 649 180 62 63 8
14 15 4 65 129 16
15 4 1 66 65 8

17 33 8 67 48,842 5,967
19 170 39 69 7,775 936
21 55 12 70 251 30
22 197 42 71 3,480 413
23 24 5 73 2,281,249 267,000

26 51 10 74 3,699 430
29 9,801 1,820 77 351 40
30 11 2 78 53 6
31 1,520 273 79 80 9
33 23 4 82 163 18

34 35 6 83 82 9
35 6 1 85 285,769 30,996
37 73 12 86 10,405 1,122
38 37 6 87 28 3
39 25 4 89 500,001 53,000

41 2,049 320 91 1,574 165
42 13 2 93 12,151 1,260
43 3,482 531 94 2,143,295 221,064
46 24,335 3,588 95 39 4
47 48 7 97 62,809,633 6,377,352

13. Euler proved that the only solution in positive integers of x3 − y2 = ±1 is x = 2
and y = 3.
14. Lebesgue showed in 1850 that xm − y2 = 1 has no solutions in positive integers
when m is an integer greater than 3.
15. The diophantine equations x3−yn = 1 and xm−y3 = 1 with m > 2 were shown to
have no solutions in positive integers in 1921, and in 1964 it was shown that x2−yn = 1
has no solutions in positive integers.
16. R. Tijdeman showed in 1976 that there are only finitely many solutions in integers
to the Catalan equation xm − yn = 1 by showing that there is a computable constant C
such that for every solution, xm < C and yn < C. However, the enormous size of the
constant C makes it infeasible to establish the Catalan conjecture using computers.
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Examples:

1. To solve the diophantine equation x2−13y2 = 1, note that the simple continued frac-
tion for

√
13 is [3; 1, 1, 1, 1, 6 ], with convergents 3, 4, 7

2 ,
11
3 ,

18
5 ,

119
33 ,

137
38 ,

256
71 ,

393
109 ,

649
180 , . . . .

The smallest positive solution to the equation is x = 649, y = 180. A second solution is
given by (649 + 180

√
13)2 = 842,401 + 233,640

√
13, that is, x = 842,401, y = 233,640.

2. Congruence considerations can be used to show that there are no solutions of Ba-
chet’s equation for k = 7. Modulo 8, every square is congruent to 0, 1, or 4; therefore
if x is even, then y2 ≡ 7 (mod 8), a contradiction. Likewise if x ≡ 3 (mod 4), then
y2 ≡ 2 (mod 8), also impossible. So assume that x ≡ 1 (mod 4). Add one to both sides
and factor to get y2 + 1 = x3 + 8 = (x+ 2)(x2 − 2x+ 4). Now x2 − 2x+ 4 ≡ 3 (mod 4),
so it must have a prime divisor p ≡ 3 (mod 4). Then y2 ≡ −1 (mod p), which implies
that −1 is a quadratic residue modulo p. (See §4.4.5.) But p ≡ 3 (mod 4), so −1 cannot
be a quadratic residue modulo p. Therefore, there are no solutions when k = 7

4.8.5 SUMS OF SQUARES AND WARING’S PROBLEM

Definitions:

If k is a positive integer, then g(k) is the smallest positive integer such that every
positive integer can be written as a sum of g(k) kth powers.

If k is a positive integer, then G(k) is the smallest positive integer such that every
sufficiently large positive integer can be written as a sum of G(k) kth powers.

The determination of g(k) is called Waring’s problem. (Edward Waring, 1741–1793)

Facts:

1. A positive integer n is the sum of two squares if and only if each prime factor of n
of the form 4k + 3 appears to an even power in the prime factorization of n.

2. If m = a2 + b2 and n = c2 + d2, then the number mn can be expressed as the sum
of two squares as follows: mn = (ac+ bd)2 + (ad− bc)2.

3. If n is representable as the sum of two squares, then it is representable in 4(d1 − d2)
ways (where the order of the squares and their signs matter), where d1 is the number of
divisors of n of the form 4k+1 and d3 is the number of divisors of n of the form 4k+3.

4. An integer n is the sum of three squares if and only if n is not of the form 4m(8k+7),
where m is a nonnegative integer.

5. The positive integers less than 100 that are not the sum of three squares are
7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71, 79, 87, 92, and 95.

6. Lagrange’s four-square theorem: Every positive integer is the sum of 4 squares,
some of which may be zero. (Joseph Lagrange, 1736–1813)

7. A useful lemma due to Lagrange is the following. If m = a2 + b2 + c2 + d2 and
n = e2 + f2 + g2 + h2, then mn can be expressed as the sum of four squares as follows:
mn = (ae+bf+cg+dh)2+(af−be+ch−dg)2+(ag−ce+df−bh)2+(ah−de+bg−cf)2.

8. The number of ways n can be written as the sum of four squares is 8(s−s4), where s
is the sum of the divisors of n and s4 is the sum of the divisors of n that are divisible
by 4.

9. It is known that g(k) always exists.
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10. For 6 ≤ k ≤ 471,600,000 the following formula holds except possibly for a finite
number of positive integers k: g(k) =

⌊
( 3
2 )k

⌋
+ 2k − 2 where �x� represents the floor

(greatest integer) function.
11. The exact value of G(k) is known only for two values of k, G(2) = 4 and G(4) = 16.
12. From Lagrange’s results above it follows that G(2) = g(2) = 4.
13. If k is an integer with k ≥ 2, then G(k) ≤ g(k).
14. If k is an integer with k ≥ 2, then G(k) ≥ k + 1.
15. Hardy and Littlewood showed that G(k) ≤ (k − 2)2k−1 + 5 and conjectured that
G(k) < 2k + 1 when k is not a power of 2 and G(k) < 4k when k is a power of 2.
16. The best upper bound known for G(k) is G(k) < ck ln k for some constant c.
17. The known values and established estimates for g(k) and G(k) for 2 ≤ k ≤ 8 are
given in the following table.

g(2) = 4 G(2) = 4
g(3) = 9 4 ≤ G(3) ≤ 7
g(4) = 19 G(4) = 16
g(5) = 37 6 ≤ G(5) ≤ 18
g(6) = 73 9 ≤ G(6) ≤ 27

143 ≤ g(7) ≤ 3,806 8 ≤ G(7) ≤ 36
279 ≤ g(8) ≤ 36,119 32 ≤ G(8) ≤ 42

18. There are many related diophantine equations concerning sums and differences of
powers. For instance x = 1, y = 12, z = 9, and w = 10 is the smallest solution to
x3 + y3 = z3 + w3.

4.9 DIOPHANTINE APPROXIMATION

Diophantine approximation is the study of how closely a number θ can be approximated
by numbers of some particular kind. Usually θ is an irrational (real) number, and the
goal is to approximate θ using rational numbers p

q .

4.9.1 CONTINUED FRACTIONS

Definitions:

A continued fraction is a (finite or infinite) expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1
. . .

The terms a0, a1, . . . are called the partial quotients. If the partial quotients are all
integers, and ai ≥ 1 for i ≥ 1, then the continued fraction is said to be simple. For
convenience, the above expression is usually abbreviated as [a0, a1, a2, a3, . . .].
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Algorithm 1: The continued fraction algorithm.

procedure CFA(x: real number)
i := 0
x0 := x
a0 := �x0�
output(a0)
while (xi 	= ai)
begin
xi+1 := 1

xi−ai

i := i+ 1
ai := �xi�
output(ai)

end
{returns finite or infinite sequence (a0, a1, . . .)}

A continued fraction that has an expansion with a block that repeats after some point
is called ultimately periodic. The ultimately periodic continued fraction expan-
sion [a0, a1, . . . , aN , aN+1, . . . , aN+k, aN+1, . . . , aN+k, aN+1, . . .] is often abbreviated as
[a0, a1, . . . , aN , aN+1, . . . , aN+k]. The terms a0, a1, . . . , aN are called the pre-period
and the terms aN+1, aN+2, . . . , aN+k are called the period.

Facts:
1. Every irrational number has a unique expansion as a simple continued fraction.
2. Every rational number has exactly two simple continued fraction expansion, one
with an odd number of terms and one with an even number of terms. Of these, the one
with the larger number of terms ends with 1.
3. The simple continued fraction for a real number r is finite if and only if r is rational.
4. The simple continued fraction for a real number r is infinite and ultimately periodic
if and only if r is a quadratic irrational.
5. The simple continued fraction for

√
d, where d a positive integer that is not a

square, is as follows:
√
d = [a0, a1, a2, . . . , an, 2a0 ], where the sequence (a1, a2, . . . , an)

is a palindrome.
6. The following table illustrates the three types of continued fractions.

type kind of number example

finite rational 355
113 = [3, 7, 16]

ultimately periodic quadratic irrational
√

2 = [1, 2, 2, 2, . . .]

infinite, but not ulti- neither rational nor
π = [3, 7, 15, 1, 292 . . .]mately periodic quadratic irrational

7. The continued fraction for a real number can be computed by Algorithm 1.
8. Continued fractions for

√
d, for 2 ≤ d ≤ 100, are given in Table 1.

9. Continued fraction expansions for certain quadratic irrationals are given in Table 2.
10. Continued fraction expansions for some famous numbers are given in Table 3.
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Table 1 Continued fractions for
√

d , 2 ≤ d ≤ 100.

d
√
d d

√
d

2 [1, 2 ] 53 [7, 3, 1, 1, 3, 14 ]
3 [1, 1, 2 ] 54 [7, 2, 1, 6, 1, 2, 14 ]
5 [2, 4 ] 55 [7, 2, 2, 2, 14 ]
6 [2, 2, 4 ] 56 [7, 2, 14 ]
7 [2, 1, 1, 1, 4 ] 57 [7, 1, 1, 4, 1, 1, 14 ]
8 [2, 1, 4 ] 58 [7, 1, 1, 1, 1, 1, 1, 14 ]
10 [3, 6 ] 59 [7, 1, 2, 7, 2, 1, 14 ]
11 [3, 3, 6 ] 60 [7, 1, 2, 1, 14 ]
12 [3, 2, 6 ] 61 [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14 ]
13 [3, 1, 1, 1, 1, 6 ] 62 [7, 1, 6, 1, 14 ]
14 [3, 1, 2, 1, 6 ] 63 [7, 1, 14 ]
15 [3, 1, 6 ] 65 [8, 16 ]
17 [4, 8 ] 66 [8, 8, 16 ]
18 [4, 4, 8 ] 67 [8, 5, 2, 1, 1, 7, 1, 1, 2, 5, 16 ]
19 [4, 2, 1, 3, 1, 2, 8 ] 68 [8, 4, 16 ]
20 [4, 2, 8 ] 69 [8, 3, 3, 1, 4, 1, 3, 3, 16 ]
21 [4, 1, 1, 2, 1, 1, 8 ] 70 [8, 2, 1, 2, 1, 2, 16 ]
22 [4, 1, 2, 4, 2, 1, 8 ] 71 [8, 2, 2, 1, 7, 1, 2, 2, 16 ]
23 [4, 1, 3, 1, 8 ] 72 [8, 2, 16 ]
24 [4, 1, 8 ] 73 [8, 1, 1, 5, 5, 1, 1, 16 ]
26 [5, 10 ] 74 [8, 1, 1, 1, 1, 16 ]
27 [5, 5, 10 ] 75 [8, 1, 1, 1, 16 ]
28 [5, 3, 2, 3, 10 ] 76 [8, 1, 2, 1, 1, 5, 4, 5, 1, 1, 2, 1, 16 ]
29 [5, 2, 1, 1, 2, 10 ] 77 [8, 1, 3, 2, 3, 1, 16 ]
30 [5, 2, 10 ] 78 [8, 1, 4, 1, 16]
31 [5, 1, 1, 3, 5, 3, 1, 1, 10 ] 79 [8, 1, 7, 1, 16 ]
32 [5, 1, 1, 1, 10 ] 80 [8, 1, 16 ]
33 [5, 1, 2, 1, 10 ] 82 [9, 18 ]
34 [5, 1, 4, 1, 10v] 83 [9, 9, 18v]
35 [5, 1, 10 ] 84 [9, 6, 18 ]
37 [6, 12 ] 85 [9, 4, 1, 1, 4, 18 ]
38 [6, 6, 12 ] 86 [9, 3, 1, 1, 1, 8, 1, 1, 1, 3, 18 ]
39 [6, 4, 12 ] 87 [9, 3, 18 ]
40 [6, 3, 12 ] 88 [9, 2, 1, 1, 1, 2, 18 ]
41 [6, 2, 2, 12 ] 89 [9, 2, 3, 3, 2, 18 ]
42 [6, 2, 12 ] 90 [9, 2, 18 ]
43 [6, 1, 1, 3, 1, 5, 1, 3, 1, 1, 12 ] 91 [9, 1, 1, 5, 1, 5, 1, 1, 18 ]
44 [6, 1, 1, 1, 2, 1, 1, 1, 12 ] 92 [9, 1, 1, 2, 4, 2, 1, 1, 18 ]
45 [6, 1, 2, 2, 2, 1, 12 ] 93 [9, 1, 1, 1, 4, 6, 4, 1, 1, 1, 18 ]
46 [6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12 ] 94 [9, 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18 ]
47 [6, 1, 5, 1, 12 ] 95 [9, 1, 2, 1, 18 ]
48 [6, 1, 12 ] 96 [9, 1, 3, 1, 18 ]
50 [7, 14 ] 97 [9, 1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18 ]
51 [7, 7, 14 ] 98 [9, 1, 8, 1, 18 ]
52 [7, 4, 1, 2, 1, 4, 14 ] 99 [9, 1, 18 ]
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Table 2 Continued fractions for some special quadratic irrationals.

d continued fraction expansion for
√
d

√
n2 − 1 [n− 1, 1, 2n− 2 ]√
n2 − 2 [n− 1, 1, n− 2, 1, 2n− 2 ]√
n2 + 1 [n, 2n ]√
n2 + 2 [n, n, 2n ]√
n2 − n [n− 1, 2, 2n− 2 ]√
n2 + n [n, 2, 2n ]√
4n2 + 4 [ 2n, n, 4n ]√
4n2 − n [ 2n− 1, 1, 2, 1, 4n− 2 ]√
4n2 + n [ 2n, 4, 4n ]√
9n2 + 2n [ 3n, 3, 6n ]

Table 3 Continued fractions for some famous numbers. (See [Pe54].)

number continued fraction expansion

π [ 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, . . . ]

γ [ 0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, . . . ]
3
√

2 [ 1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, . . . ]

log 2 [ 0, 1, 2, 3, 1, 6, 3, 1, 1, 2, 1, 1, 1, 1, 3, 10, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 13, 7, . . . ]

e [ 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . . ]

e
1
n [ 1, n− 1, 1, 1, 3n− 1, 1, 1, 5n− 1, 1, 1, 7n− 1, . . . ]

e
2

2n+1 [ 1, (6n+ 3)k + n, (24n+ 12)k + 12n+ 6, (6n+ 3)k + 5n+ 2, 1, 1k≥0 ]

tanh 1
n [ 0, n, 3n, 5n, 7n, . . . ]

tan 1
n [ 0, n− 1, 1, 3n− 2, 1, 5n− 2, 1, 7n− 2, 1, 9n− 2, . . . ]

1+
√

5
2 [ 1, 1, 1, 1, . . . ]

Examples:

1. To find the continued fraction representation of 62
23 , apply Algorithm 1 to obtain

62
23 = 2 + 1

23
16

, 23
16 = 1 + 1

16
7

, 16
7 = 2 + 1

7
2
, 7

2 = 3 + 1
2 .

Combining these equations shows that 62
23 = [2, 1, 2, 3, 2]. Since 2 = 1+ 1

1 , it also follows
that 62

23 = [2, 1, 2, 3, 1, 1].

2. Applying Algorithm 1 to find the continued fraction of
√

6, it follows that

a0 =
⌊√

6
⌋

= 2, a1 =
⌊√

6+2
2

⌋
= 2, a2 =

⌊√
6 + 2

⌋
= 4, a3 = a1, a4 = a2, . . . .

Hence
√

6 = [ 2, 2, 4 ].

3. The continued fraction expansion of e is e = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . .]. This expansion
is often abbreviated as [ 2, 1, 2k, 1k≥1 ]. (See [Pe54].)
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4.9.2 CONVERGENTS

Definition:

Define p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0, and pn = anpn−1 + pn−2 and qn =
anqn−1 + qn−2 for n ≥ 0. Then pn

qn
= [a0, a1, . . . , an]. The fraction pn

qn
is called the nth

convergent.

Facts:

1. pnqn−1 − pn−1qn = (−1)n+1 for n ≥ 0.

2. Let θ = [ a0, a1, a2, . . . ] be an irrational number. Then
∣∣θ − pn

qn

∣∣ < 1
an+1q2

n
.

3. If n > 1, 0 < q ≤ qn, and p
q 	= pn

qn
, then

∣∣θ − p
q

∣∣ > ∣∣θ − pn

qn

∣∣.
4. [ . . . , a, b, 0, c, d, . . . ] = [ . . . , a, b+ c, d, . . . ].

5. Almost all real numbers have unbounded partial quotients.

6. For almost all real numbers, the frequency with which the partial quotient k occurs
is log2

(
1 + 1

k(k+2)

)
. Hence, the partial quotient 1 occurs about 41.5% of the time, the

partial quotient 2 occurs about 17.0% of the time, etc.

7. For almost all real numbers,

lim
n→∞

(a1a2 . . . an)
1
n = K ≈ 2.68545.

K is called Khintchine’s constant.

8. Lévy’s law : For almost all real numbers,

lim
n→∞

(pn)
1
n = lim

n→∞
(qn)

1
n = e

π2
12 log 2 .

Examples:

1. Compute the first eight convergents to π:

n = −2 −1 0 1 2 3 4 5 6 7 8
an = 3 7 15 1 292 1 1 1 2
pn = 0 1 3 22 333 355 103,993 104,348 208,341 312,689 833,719
qn = 1 0 1 7 106 113 33,102 33,215 66,317 99,532 265,381

2. Find a rational fraction p
q in lowest terms that approximates e to within 10−6.

Compute the convergents qn until an+1(qn)2 < 10−6:

n = −2 −1 0 1 2 3 4 5 6 7 8 9 10
an = 2 1 2 1 1 4 1 1 6 1 1
pn = 0 1 2 3 8 11 19 87 106 193 1,264 1,457 2,721
qn = 1 0 1 1 3 4 7 32 39 71 465 536 1,001

Hence, 2721
1001 ≈ 2.71828171 is the desired fraction.
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4.9.3 APPROXIMATION THEOREMS

Facts:

1. Dirichlet’s theorem: If θ is irrational, then∣∣θ − p
q

∣∣ < 1
q2

for infinitely many p, q.

2. Dirichlet’s theorem in d dimensions: If θ1, θ2, . . . , θd are real numbers with at least
one θi irrational, then ∣∣θi − pi

q

∣∣ < 1

q
1+ 1

d

for infinitely many p1, p2, . . . , pd, q.

3. Hurwitz’s theorem: If θ is an irrational number, then∣∣θ − p
q

∣∣ < 1√
5q2

for infinitely many p, q. The constant
√

5 is best possible.

4. Liouville’s theorem: Let θ be an irrational algebraic number of degree n. Then
there exists a constant c (depending on θ) such that∣∣θ − p

q

∣∣ > c
qn

for all rationals p
q with q > 0. The number θ is called a Liouville number if

∣∣θ− p
q

∣∣ < q−n

has a solution for all n ≥ 0. An example of a Liouville number is
∑

k≥1 2−k!.

5. Roth’s theorem: Let θ be an irrational algebraic number, and let ε be any positive
number. Then ∣∣θ − p

q

∣∣ > 1
q2+ε

for all but finitely many rationals p
q with q > 0.

4.9.4 IRRATIONALITY MEASURES

Definition:

Let θ be a real irrational number. Then the real number µ is said to be an irrationality
measure for θ if for every ε > 0 there exists a positive real q0 = q0(ε) such that
|θ − p

q | > q−(µ+ε) for all integers p, q with q > q0.

Fact:

1. Here are the best irrationality measures known for some important numbers.

number θ measure µ discoverer

π 8.0161 Hata (1993)

π2 5.4413 Rhin and Viola (1995)

ζ(3) 8.8303 Hata (1990)

ln 2 3.8914 Rukhadze (1987); Hata (1990)
π√
3

4.6016 Hata (1993)
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4.10 QUADRATIC FIELDS

4.10.1 BASICS

Definitions:

A complex number α is an algeraic number if it is a root of a polynomial with integer
coefficients.

An algebraic number α is an algebraic integer if it is a root of a monic polynomial
with integer coefficients. (A monic polynomial is a polynomial with leading coefficient
equal to 1.)

An algebraic number α is of degree n if it is a root of a polynomial with integer
coefficients of degree n but is not a root of any polynomial with integer coefficients of
degree less than n.

An algebraic number field is a subfield of the field of algebraic numbers.

If α is an algebraic number with minimal polynomial f(x) of degree n, then the n − 1
other roots of f(x) are called the conjugates of α.

The integers of an algebraic number field are the algebraic integers that belong to this
field.

If d is a squarefree integer, then Q(
√
d) = { a + b

√
d | a and b are rational numbers }

is called a quadratic field. If d > 0, then Q(
√
d) is called a real quadratic field; if

d < 0, then Q(
√
d) is called an imaginary quadratic field.

A number α in Q(
√
d) is a quadratic integer (or an integer when the context is

clear) if α is an algebraic integer.

If α and β are quadratic integers in Q(
√
d) and there is a quadratic integer γ in Q(

√
d)

such that αγ = β, then α divides β, written α|β.

The integers of Q(
√
−1) are called the Gaussian integers. (These are the numbers in

Z[i] = { a+ bi | a, b are integers }. See §5.4.2.)

If α = a + b
√
d belongs to Q(

√
d), then its conjugate, denoted by α, is the number

a− b
√
d.

If α belongs to Q(
√
d), then the norm of α is the number N(α) = αα.

An algebraic integer ε in Q(
√
d) is a unit if ε | 1.

Facts:

1. The integers of the field Q(
√
d), where d is a squarefree integer, are the numbers

a + b
√
d when d ≡ 2 or 3 (mod 4) and the numbers a+b

√
d

2 , where a and b are integers
which are either both even or both odd.

2. If d < 0, d 	= −1, d 	= −3, then there are exactly two units, ±1, in Q(
√
d). There

are exactly four units in Q(
√
−1), namely ±1 and ±i. There are exactly six units in

Q(
√
−3): ±1, ±−1+

√
−3

2 , ±−1−
√
−3

2 .

3. If d > 0, there are infinitely many units in Q(
√
d). Furthermore, there is a unit ε0,

called the fundamental unit of Q(
√
d) such that all units are of the form ±εn0 where n

is an integer.
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Examples:

1. The conjugate of −2 + 3i in the ring of Gaussian integers is −2− 3i. Consequently,
N(−2 + 3i) = (−2 − 3i)(−2 + 3i) = 13.

2. The number 1 +
√

2 is a fundamental unit of Q(
√

2). Therefore, all units are of the
form ±(1 +

√
2)n where n = 0,±1,±2, . . . .

4.10.2 PRIMES AND UNIQUE FACTORIZATION

Definitions:

An integer π in Q(
√
d), not zero or a unit, is prime in Q(

√
d) if whenever π = αβ

where α and β are integers in Q(
√
d), either α or β is a unit.

If α and β are nonzero integers in Q(
√
d) and α = βε where ε is a unit, then β is called

an associate of α.

A quadratic field Q(
√
d) is a Euclidean field if, given integers α and β in Q(

√
d)

where β is not zero, there are integers δ and γ in Q(
√
d) such that α = γβ + δ and

|N(δ)| < |N(β)|.
A quadratic field Q(

√
d) has the unique factorization property if whenever α is

a nonzero, non-unit, integer in Q(
√
d) with two factorizations α = επ1π2 . . . πr =

ε′π′
1π

′
2 . . . π

′
s where ε and ε′ are units, then r = s and the primes πi and π′

j can be
paired off into pairs of associates.

Facts:

1. If α is an integer in Q(
√
d) and N(α) is an integer that is prime, then α is a prime.

2. The integers of Q(
√
d) are a unique factorization domain if and only if whenever a

prime π|αβ where α and β are integers of Q(
√
d), then π|α or π|β.

3. A Euclidean quadratic field has the unique factorization property.

4. The quadratic field Q(
√
d) is Euclidean if and only if d is one of the following

integers: −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

5. If d < 0, then the imaginary quadratic field Q(
√
d) has the unique factorization

property if and only if d = −1,−2,−3,−7,−11,−19,−43,−67, or −163. This theorem
was stated as a conjecture by Gauss in the 19th century and proved in the 1960s by
Harold Stark and Roger Baker independently.

6. It is unknown whether infinitely many real quadratic fields Q(
√
d) have the unique

factorization property.

7. Of the 60 real quadratic fields Q(
√
d) with 2 ≤ d ≤ 100, exactly 38 have the unique

factorization property, namely those with d = 2, 3, 5, 6, 7, 11, 13 14, 17, 19, 21, 22, 23,
29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83, 86, 89, 93, 94,
and 97.

Examples:
1. The number 2+i is a prime Gaussian integer. This follows since its norm N(2+i) =
(2 + i)(2 − i) = 5 is a prime integer. Its associates are itself and the three Gaussian
integers (−1)(2 + i) = −2 − i, i(2 + i) = −1 + 2i, and −i(2 + i) = 1 − 2i.
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2. The integers of Q(
√
−5) are the numbers of the form a + b

√
−5 where a and b are

integers. The field Q(
√
−5) is not a unique factorization domain. To see this, note

that 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5) and each of 2, 3, 1 +

√
−5, and 1 −

√
−5 are

primes in this quadratic field. For example, to see that 1 +
√
−5 is prime, suppose that

1 +
√
−5 = (a + b

√
−5)(c + d

√
−5). This implies that 6 = (a2 + 5b2)(c2 + 5d2), which

is impossible unless a = ±1, b = 0 or c = ±1, d = 0. Consequently, one of the factors
must be a unit.
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INTRODUCTION

Many of the most common mathematical systems, including the integers, the rational
numbers, and the real numbers, have an underlying algebraic structure. This chapter
examines the structure and properties of various types of algebraic objects. These
objects arise in a variety of settings and occur in many different applications, including
counting techniques, coding theory, information theory, engineering, and circuit design.

GLOSSARY
abelian group: a group in which a � b = b � a for all a, b in the group.

absorption laws: in a lattice a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a.

algebraic element (over a field): given a field F , an element α ∈ K (extension of F )
such that there exists p(x) ∈ F [x] (p(x) �= 0) such that p(α) = 0. Otherwise α is
transcendental over F .

algebraic extension (of a field): given a field F , a field K such that F is a subfield
of K and all elements of K are algebraic over F .

algebraic integer: an algebraic number that is a zero of a monic polynomial with
coefficients in Z.

algebraic number: a complex number that is algebraic over Q.

algebraic structure: (S, �1, �2, . . . , �n) where S is a nonempty set and �1, . . . , �n are
binary or monadic operations defined on S.

alternating group (on n elements): the subgroup An of all even permutations in Sn.

associative property : the property of a binary operator � that (a� b)� c = a� (b � c).

atom: an element a in a bounded lattice such that 0 < a and there is no element b
such that 0 < b < a.

automorphism: an isomorphism of an algebraic structure onto itself.

automorphism ϕ fixes set S elementwise: ϕ(a) = a for all a ∈ S.

binary operation (on a set S): a function �:S × S → S.

Boolean algebra: a bounded, distributive, complemented lattice. Equivalent defini-
tion: (B,+, ·,′ , 0, 1) where B is a set with two binary operations, + (addition) and ·
(multiplication), one monadic operation, ′ (complement), and two distinct elements,
0 and 1, that satisfy the commutative laws (a+ b = b+a, ab = ba), distributive laws
(a(b+ c) = (ab) + (ac), a+ (bc) = (a+ b)(a+ c)), identity laws (a+ 0 = a, a1 = a),
and complement laws (a+ a′ = 1, aa′ = 0).

Boolean function of degree n: a function f : {0, 1}n = {0, 1}× · · ·×{0, 1} → {0, 1}.
bounded lattice: a lattice having elements 0 (lower bound) and 1 (upper bound)

such that 0 ≤ a and a ≤ 1 for all a.

cancellation properties: if ab = ac and a �= 0, then b = c (left cancellation
property); if ba = ca and a �= 0, then b = c (right cancellation property).

characteristic (of a field): the smallest positive integer n such that 1+1+· · ·+1 = 0 (n
summands). If no such n exists, the field has characteristic 0 (or characteristic ∞).

closure property : a set S is closed under an operation � if the range of � is a subset
of S.

commutative property : the property of an operation � that a � b = b � a.
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commutative ring : a ring in which multiplication is commutative.

complemented lattice: a bounded lattice such that for each element a there is an
element b such that a ∨ b = 1 and a ∧ b = 0.

conjunctive normal form (CNF) (of a Boolean function): a Boolean function writ-
ten as a product of maxterms.

coset: For subgroup H of group G and a ∈ G, a left coset is aH = {ah | h ∈ H}; a
right coset is Ha = {ha | h ∈ H }.

cycle of length n: a permutation on a set S that moves elements only in a single
orbit of size n.

cyclic group: a group G with an element a ∈ G such that G = { an | n ∈ Z }.
cyclic subgroup (generated by a): { an | n ∈ Z } = {. . . , a−2, a−1, e, a, a2, . . .}, often

written (a), 〈a〉, or [a]. The element a is a generator of the subgroup.

degree (of field K over field F ): [K:F ] = the dimension of K as a vector space over F .

degree (of a permutation group): the size of the set on which the permutations are
defined.

dihedral group: the group Dn of symmetries (rotations and reflections) of a regular
n-gon.

disjunctive normal form (DNF) (of a Boolean function): a Boolean function writ-
ten as a sum of minterms.

distributive lattice: a lattice that satisfies a∧(b∨c) = (a∧b)∨(a∧c) and a∨(b∧c) =
(a ∨ b) ∧ (a ∨ c) for all a, b, c in the lattice.

division ring : a nontrivial ring in which every nonzero element is a unit.

dual (of an expression in a Boolean algebra): the expression obtained by interchang-
ing the operations + and · and interchanging the elements 0 and 1 in the original
expression.

duality principle: the principle stating that an identity between Boolean expressions
remains valid when the duals of the expressions are taken.

Euclidean domain: an integral domain with a Euclidean norm defined on it.

Euclidean norm (on an integral domain): given an integral domain I, a function
δ: I − {0} → N such that for all a, b ∈ I, δ(a) ≤ δ(ab); and for all a, d ∈ I (d �= 0)
there are q, r ∈ I such that a = dq + r, where either r = 0 or δ(r) < δ(d).

even permutation: a permutation that can be written as a product of an even number
of transpositions.

extension field (of field F ): field K such that F is a subfield of K.

field: an algebraic structure (F,+, ·) where F is a set closed under two binary oper-
ations + and ·, (F,+) is an abelian group, the nonzero elements form an abelian
group under multiplication, and the distributive law a · (b+ c) = a · b+ a · c holds.

finite field: a field with a finite number of elements.

finitely generated group: a group with a finite set of generators.

fixed field (of a set of automorphisms of a field): given a set Φ of automorphisms of
a field F , the set { a ∈ F | aϕ = a for all ϕ ∈ Φ }.

free monoid (generated by a set): given a set S, the monoid consisting of all words
on S under concatenation.
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functionally complete: property of a set of operators in a Boolean algebra that every
Boolean function can be written using only these operators.

Galois extension (of a field F ): a field K that is a normal, separable extension of F .

Galois field: GF (pn) = the algebraic extension Zp[x]/(f(x)) of the finite field Zp

where p is a prime and f(x) is an irreducible polynomial over Zp of degree n.

Galois group (of K over F ): the group of automorphisms G(K/F ) of field K that fix
field F elementwise.

group: an algebraic structure (G, �), where G is a set closed under the binary opera-
tion �, the operation � is associative, G has an identity element, and every element
of G has an inverse in G.

homomorphism of groups: a function ϕ:S → T , where (S, �1) and (T, �2) are
groups, such that ϕ(a �1 b) = ϕ(a) �2 ϕ(b) for all a, b ∈ S.

homomorphism of rings: a function ϕ:S → T , where (S,+1 , ·1) and (T,+2 , ·2) are
rings such that ϕ(a+1 b) = ϕ(a) +2 ϕ(b) and ϕ(a ·1 b) = ϕ(a) ·2 ϕ(b) for all a, b ∈ S.

ideal: a subring of a ring that is closed under left and right multiplication by elements
of the ring.

identity : an element e in an algebraic structure S such that e � a = a � e = a for all
a ∈ S.

improper subgroups (of G): the subgroups G and {e}.
index of H in G: the number of left (or tight) cosets of H in G.

integral domain: a commutative ring with unity that has no zero divisors.

inverse of an element a: an element a′ such that a � a′ = a′ � a = e.

involution: a function that is the identity when it is composed with itself.

irreducible element in a ring : a noninvertible element that cannot be written as
the product of noninvertible elements.

irreducible polynomial: a polynomial p(x) of degree n > 0 over a field that cannot
be written as p1(x) ·p2(x) where p1(x) and p2(x) are polynomials of smaller degrees.
Otherwise p(x) is reducible.

isomorphic: property of algebraic structures of the same type, G and H, that there
is an isomorphism from G onto H, written G ∼= H.

isomorphism: a one-to-one and onto function between two algebraic structures that
preserves the operations on the structures.

isomorphism of groups: for groups (G1, �1) and (G2, �2), a function ϕ:G1 → G2

that is one-to-one, onto G2, and satisfies the property ϕ(a �1 b) = ϕ(a) �2 ϕ(b).

isomorphism of permutation groups: for permutation groups (G,X) and (H,Y ),
a pair of functions (α:G→H, f :Y→Y ) such that α is a group isomorphism and f is
a bijection.

isomorphism of rings: for rings (R1,+1 , ·1) and (R2,+2 , ·2), a function ϕ:R1 → R2

that is one-to-one, onto R2, and satisfies the properties ϕ(a+1 b) = ϕ(a)+2 ϕ(b) and
ϕ(a ·1 b) = ϕ(a) ·2 ϕ(b).

kernel (of a group homomorphism): given a group homomorphism ϕ, the set ϕ−1(e) =
{x | ϕ(x) = e }, where e is the group identity.

kernel (of a ring homomorphism): given a ring homomorphism ϕ, the set ϕ−1(0) =
{x | ϕ(x) = 0 }.
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Klein four-group: the group under composition of the four rigid motions of a rect-
angle that leave the rectangle in its original location.

lattice: a nonempty partially ordered set in which inf{a, b} and sup{a, b} exist for all
a, b. (a∨ b = sup{a, b}, a∧ b = inf{a, b}.) Equivalently, a nonempty set closed under
two binary operations ∨ and ∧ that satisfy the associative laws, the commutative
laws, and the absorption laws (a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a).

left divisor of zero: a �= 0 with b �= 0 such that ab = 0.

literal: a Boolean variable or its complement.

maximal ideal: an ideal in a ring R that is not properly contained in any ideal of R
except R itself.

maxterm of the Boolean variables x1, . . . , xn: a sum of the form y1 + · · · + yn
where for each i, yi is equal to xi or x′i.

minimal polynomial (of an element with respect to a field): given a field F and
α ∈ F , the monic irreducible polynomial f(x) ∈ F [x] of smallest degree such that
f(α) = 0.

minterm of the Boolean variables x1, . . . , xn: a product of the form y1 · · · · · yn
where for each i, yi is equal to xi or x′i.

monadic operation: a function from a set into itself.

monoid: an algebraic structure (S, �) such that � is associative and S has an identity.

normal extension of F : a field K such that K/F is algebraic and every irreducible
polynomial in F [x] with a root in K has all its roots in K (splits in K).

normal subgroup (of a group): given a group G, a subgroup H ⊆ G such that
aH = Ha for all a ∈ G.

octic group: See dihedral group.

odd permutation: a permutation that can be written as a product of an odd number
of transpositions.

orbit (of an object a ∈ S under permutation σ): {. . . , aσ−2, aσ−1, a, aσ, aσ2, . . .}.
order (of an algebraic structure): the number of elements in the underlying set.

order (of a group element): for an element a ∈ G, the smallest positive integer n such
that an = e (na = 0 if G is written additively). If there is no such integer, then a
has infinite order.

p-group: for prime p, a group such that every element has a power of p as its order.

permutation: a one-to-one and onto function σ:S → S, where S is any nonempty set.

permutation group: a collection of permutations on a set of objects that form a
group under composition.

polynomial (in the variable x over a ring): an expression of the form p(x) = anx
n +

an−1x
n−1 + · · · + a1x1 + a0x0 where an, . . . , a0 are elements of the ring. For a

polynomial p(x), the largest integer k such that ak �= 0 is the degree of p(x).
The constant polynomial p(x) = a0 has degree 0, if a0 �= 0. If p(x) = 0 (zero
polynomial), the degree of p(x) is undefined (or −∞).

polynomial ring (over a ring R): R[x] = {p(x) | p(x) is a polynomial in x over R}
with the usual definitions of addition and multiplication.

prime ideal (of a ring R): an ideal I �= R with property that ab ∈ I implies that a ∈ I
or b ∈ I.
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proper subgroup (of a group G): any subgroup of G except G and {e}.
quotient group (factor group): for normal subgroup H of G, the group G/H =
{ aH | a ∈ G }, where aH · bH = (ab)H.

quotient ring : for I an ideal in a ring R, the ring R/I = { a + I | a ∈ R }, where
(a+ I) + (b+ I) = (a+ b) + I and (a+ I) · (b+ I) = (ab) + I.

reducible (polynomial): a polynomial that is not irreducible.

right divisor of zero: b �= 0 with a �= 0 such that ab = 0.

ring : an algebraic structure (R,+, ·) where R is a set closed under two binary op-
erations + and · , (R,+) is an abelian group, R satisfies the associative law for
multiplication, and R satisfies the left and right distributive laws for multiplication
over addition.

ring with unity : a ring with an identity for multiplication.

root field: a splitting field.

semigroup: an algebraic structure (S, �) where S is a nonempty set that is closed
under the associative binary operation �.

separable extension (of field F ): a field K such that every element of K is the root
of a separable polynomial in F [x].

separable polynomial: a polynomial p(x) ∈ F [x] of degree n that has n distinct
roots in its splitting field.

sign (of a permutation): the value +1 if the permutation has an even number of trans-
positions when the permutation is written as a product of transpositions, and −1
otherwise.

simple group: a group whose only normal subgroups are {e} and G.

skew field: a division ring.

splitting field (for nonconstant p(x) ∈ F [x]): the field K = F (α1, . . . , αn) where
p(x) = α(x− α1) . . . (x− αn), α ∈ F .

subfield (of a field K): a subset F ⊆ K that is a field using the same operations used
in K.

subgroup (of a group G): a subset H ⊆ G such that H is a group using the same
group operation used in G.

subgroup generated by { ai | i ∈ S }: for a given group G where ai ∈ G for all i
in S, the smallest subgroup of G containing { ai | i ∈ S }.

subring (of a ring R): a subset S ⊆ R that is a ring using the same operations used
in R.

Sylow p-subgroup (of G): a subgroup of G that is a p-group and is not properly
contained in any p-group of G.

symmetric group: the group of all permutations on {1, 2, . . . , n} under the operation
of composition.

transcendental element (over a field F ): given a field F and an extension field K,
an element of K that is not a root of any nonzero polynomial in F [x].

transposition: a cycle of length 2.

unary operation: See monadic operation.

unit (in a ring): an element with a multiplicative inverse in the ring.
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unity (in a ring): a multiplicative identity not equal to 0.

word (on a set): a finite sequence of elements of the set.

zero (of a polynomial f): an element a such that f(a) = 0.

5.1 ALGEBRAIC MODELS

5.1.1 DOMAINS AND OPERATIONS

Definitions:

An n-ary operation on a set S is a function �:S×S×· · ·×S → S, where the domain
is the product of n factors.

A binary operation on a set S is a function �:S × S → S.

A monadic operation (or unary operation) on a set S is a function �:S → S.

An algebraic structure (S, �1, �2, . . . , �n) consists of a nonempty set S (the domain)
with one or more n-ary operations �i defined on S.

A binary operation can have some of the following properties:

• associative property : a � (b � c) = (a � b) � c for all a, b, c ∈ S;
• existence of an identity element: there is an element e ∈ S such that
e � a = a � e = a for all a ∈ S (e is an identity for S);

• existence of inverses: for each element a ∈ S there is an element a′ ∈ S such
that a′ � a = a � a′ = e (a′ is an inverse of a);

• commutative property : a � b = b � a for all a, b ∈ S.

Examples:
1. The most important types of algebraic structures with one binary operation are
listed in the following table. A checkmark means that the property holds.

closed associative commutative
existence
of identity

existence
of inverses

semigroup
√ √

monoid
√ √

group
√ √ √ √

abelian group
√ √ √ √ √

5.1.2 SEMIGROUPS AND MONOIDS

Definitions:

A semigroup (S, �) consists of a nonempty set S and an associative binary operation �
on S.

A monoid (S, �) consists of a nonempty set S and an associative binary operation �
on S such that S has an identity.
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A nonempty subset T of a semigroup (S, �) is a subsemigroup of S if T is closed
under �.

A subset T of a monoid (S, �) with identity e is a submonoid of S if T is closed under �
and e ∈ T .

Two semigroups [monoids] (S1, �1) and (S2, �2) are isomorphic if there is a function
ϕ:S1 → S2 that is one-to-one, onto S2, and such that ϕ(a �1 b) = ϕ(a) �2 ϕ(b) for
all a, b ∈ S1.

A word on a set S (the alphabet) is a finite sequence of elements of S.

The free monoid [free semigroup] generated by S is the monoid [semigroup] (S∗, �)
where S∗ is the set of all words on a set S and the operation � is defined on S∗ by
concatenation: x1x2 . . . xm � y1y2 . . . yn = x1x2 . . . xmy1y2 . . . yn. (S∗, �) is also called
the free monoid [free semigroup] on S∗.

Facts:

1. Every monoid is a semigroup.

2. Every semigroup (S, �) is isomorphic to a subsemigroup of some semigroup of trans-
formations on some set. Hence, every semigroup can be regarded as a semigroup of
transformations. An analogous result is true for monoids.

Examples:

1. Free semigroups and monoids: The free monoid generated by S is a monoid with
the empty word e = λ (the sequence consisting of zero elements) as the identity.

2. The possible input tapes to a computer form a free monoid on the set of symbols
(such as the ASCII symbols) in the computer alphabet.

3. Semigroup and monoid of transformations on a set S: Let S be a nonempty set and
let F be the set of all functions f :S → S. With the operation � defined by composition,
(f � g)(x) = f(g(x)), (F , �) is the semigroup [monoid] of transformations on S. The
identity of F is the identity transformation e:S → S where e(x) = x for all x ∈ S.

4. The set of closed walks based at a fixed vertex v in a graph forms a monoid under
the operation of concatenation. The null walk is the identity. (§8.2.1.)

5. For a fixed positive integer n, the set of all n×n matrices with elements in any ring
with unity (§5.4.1) where � is matrix multiplication (using the operations in the ring)
is a semigroup and a monoid. The identity is the identity matrix.

6. The sets
N = {0, 1, 2, 3, . . .} (natural numbers),
Z = {. . . ,−2,−1, 0, 1, 2, . . .} (integers),
Q (the set of rational numbers),
R (the set of real numbers),
C (the set of complex numbers),

where � is either addition or multiplication, are all semigroups and monoids. Using
either addition or multiplication, each semigroup is a subsemigroup of each of those
following it in this list. Likewise, using either addition or multiplication, each monoid
is a submonoid of each of those following it in this list. For example, (Q,+) is a
subsemigroup and submonoid of (R,+) and (C,+). Under addition, e = 0; under
multiplication, e = 1.
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5.2 GROUPS

5.2.1 BASIC CONCEPTS

Definitions:

A group (G, �) consists of a set G with a binary operator � defined on G such that �
has the following properties:
• associative property : a � (b � c) = (a � b) � c for all a, b, c ∈ G;
• identity property : G has an element e (identity of G) that satisfies e � a =
a � e = a for all a ∈ G;

• inverse property : for each element a ∈ G there is an element a−1 ∈ G (inverse
of a) such that a−1 � a = a � a−1 = e.

If a�b = b�a for all a, b ∈ G, the group G is commutative or abelian. (Niels H. Abel,
1802–1829)

The order of a finite group G, denoted |G|, is the number of elements in the group.

The (external) direct product of groups (G1, �1) and (G2, �2) is the group G1 ×
G2 = { (a1, a2) | a1 ∈ G1, a2 ∈ G2 } where multiplication � is defined by the rule
(a1, a2) � (b1, b2) = (a1 �1 b1, a2 �2 b2). The direct product can be extended to n groups:
G1 × G2 × · · · × Gn. The direct product is also called the direct sum and written
G1 ⊕G2 ⊕ · · · ⊕Gn, especially if the groups are abelian. If Gi = G for all i, the direct
product can be written Gn.

The group G is finitely generated if there are a1, a2, . . . , an ∈ G such that every
element of G can be written as aε1

k1
aε2

k2
. . . a

εj

kj
where ki ∈ {1, . . . , n} and εi ∈ {1,−1},

for some j ≥ 0; where the empty product is defined to be e.

Note: Frequently the operation � is multiplication or addition. If the operation is
addition, the group (G,+) is an additive group. If the operation is multiplication, the
group (G, ·) is a multiplicative group.

operation ∗ identity e inverse a−1

additive group a+ b 0 −a
multiplicative group a · b or ab 1 or e a−1

Facts:
1. Every group has exactly one identity element.
2. In every group every element has exactly one inverse.
3. Cancellation laws: In all groups,
• if ab = ac then b = c (left cancellation law);
• if ba = ca, then b = c (right cancellation law).

4. (a−1)−1 = a.
5. (ab)−1 = b−1a−1. More generally, (a1a2 . . . ak)−1 = a−1

k a
−1
k−1 . . . a

−1
1 .

6. If a and b are elements of a group G, the equations ax = b and xa = b have unique
solutions in G. The solutions are x = a−1b and x = ba−1, respectively.
7. The direct product G1 × · · · ×Gn is abelian when each group Gi is abelian.
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8. |G1 × · · · ×Gn| = |G1| · · · · · |Gn|.
9. The identity for G1 × · · · × Gn is (e1, . . . , en) where ei is the identity of Gi. The
inverse of (a1, . . . , an) is (a1, . . . , an)−1 = (a−1

1 , . . . , a
−1
n ).

10. The structure of a group can be determined by a single rule (see Example 2) or by
a group table listing all products (see Examples 2 and 3).

Examples:
1. Table 1 displays information on several common groups. All groups listed have
infinite order, except for the following: the group of complex nth roots of unity has
order n, the group of all bijections f :S → S where |S| = n has order n!, Zn has
order n, Z∗

n has order φ(n) (Euler phi-function), Sn has order n!, An has order n!/2, Dn

has order 2n, and the quaternion group has order 8. All groups listed in the table are
abelian except for: the group of bijections, GL(n,R), Sn, An, Dn, and Q.
2. The groups Zn and Z∗

n (see Table 1): In the groups Zn and Z∗
n an element a can be

viewed as the equivalence class { b ∈ Z | b mod n = a mod n }, which can be written a
or [a]. To find the inverse a−1 of a ∈ Z∗

n, use the extended Euclidean algorithm to find
integers a−1 and k such that aa−1 + nk = gcd(a, n) = 1. The following are the group
tables for Z2 = {0, 1} and Z3 = {0, 1, 2}:

+ 0 1
0 0 1
1 1 0

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

3. Quaternion group: Q = {1,−1, i,−i, j,−j, k,−k} where multiplication is defined
by the following relations:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j
where 1 is the identity. These relations yield the following multiplication table:

· 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

Inverses: 1−1 = 1, (−1)−1 = −1, x and −x are inverses for x = i, j, k. The group is
nonabelian.

The quaternion group Q can also be defined as the following group of 8 matrices:(
1 0
0 1

)
,
(
−1 0
0 −1

)
,
(
−i 0
0 i

)
,
(
i 0
0 −i

)
,

(
0 1
−1 0

)
,
(

0 −1
1 0

)
,
(

0 i
i 0

)
,
(

0 −i
−i 0

)
,

where i is the complex number such that i2 = −1 and the group operation is matrix
multiplication.
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Table 1 Examples of groups.

set operation identity inverses

Z, Q, R, C addition 0 −a
Zn, n a positive integer coordinatewise (0, . . . , 0) −(a1, . . . , an) =

(also Qn, Rn, Cn) addition (−a1, . . . ,−an)

the set of all complex num-
bers of modulus 1 = {eiθ= multiplication ei0 = 1 (eiθ)−1 = e−iθ

cos θ+i sin θ | 0 ≤ θ < 2π}
the complex nth roots of 1 (e2πik/n)−1 =
unity (solutions to zn = 1) multiplication e2πi(n−k)/n

{e2πik/n | k = 0, 1, . . . , n− 1}
R−{0}, Q−{0}, C−{0} multiplication 1 1/a

R∗ (positive real numbers) multiplication 1 1/a

all rotations of the plane
around the origin; rα = composition:
counterclockwise rotation rα2 ◦ rα1 = r0 (the 0◦ r−1

α = r−α

through an angle of α◦: rα1+α2 rotation)
rα(x, y) = (x cosα− y sinα,

x sinα+ y sinα)

all 1–1, onto functions (bijec- composition i:S → S f−1(y) = x if and
tions) f :S → S where S is of functions where i(x) = x only if f(x) = y
any nonempty set for all x ∈ S
Mm×n = all m× n matrices matrix Om×n (zero −A
with entries in R addition matrix)

GL(n,R) = all n× n invert-
ible, or nonsingular, matrices matrix In (identity A−1

with entries in R; (the gene- multiplication matrix)
ral linear group)

Zn = {0, 1, . . . , n− 1} (a+ b) mod n 0 n− a (a �= 0)
−0 = 0

Z∗
n = {k | k ∈ Zn, k relative- ab mod n 1 see Example 2

ly prime to n}, n > 1

Sn = all permutations of composition of identity inverse
{1, 2, . . . , n}; (symmetric permutations permutation permutation
group) (See §5.3.)

An = all even permutations composition of identity inverse
of {1, 2, . . . , n}; (alternating permutations permutation permutation
group) (See §5.3.)

Dn = symmetries (rotations composition of rotation r−1
α = r−α;

and reflections) of a regular functions through 0◦ reflections are
n-gon; (dihedral group) their own inverses

Q = quaternion group (see
Example 3)
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4. The set {a, b, c, d} with either of the following multiplication tables is not a group. In
the first case there is an identity, a, and each element has an inverse, but the associative
law fails: (bc)d �= b(cd). In the second case there is no identity (hence inverses are not
defined) and the associative law fails.

· a b c d
a a b c d
b b d a c
c c a b d
d d c b a

· a b c d
a a c b d
b d b a c
c b d c a
d c a d b

5.2.2 GROUP ISOMORPHISM AND HOMOMORPHISM

Definitions:

For groups G and H, a function ϕ:G→ H such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G
is a homomorphism. The notation aϕ is sometimes used instead of ϕ(a).

For groups G and H, a function ϕ:G → H is an isomorphism from G to H if ϕ
is a homomorphism that is 1–1 and onto H. In this case G is isomorphic to H,
written G ∼= H.

An isomorphism ϕ:G→ G is an automorphism.

The kernel of ϕ is the set { g ∈ G | ϕ(g) = e }, where e is the identity of the group G.

Facts:

1. If ϕ is an isomorphism, ϕ−1 is an isomorphism.

2. Isomorphism is an equivalence relation: G ∼= G (reflexive); if G ∼= H, then H ∼= G
(symmetric); if G ∼= H and H ∼= K, then G ∼= K (transitive).

3. If ϕ:G→ H is a homomorphism, then ϕ(G) is a group (a subgroup of H).

4. If ϕ:G→ H is a homomorphism, then the kernel of ϕ is a group (a subgroup of G).

5. If p is prime there is only one group of order p (up to isomorphism), the group (Zp,+).

6. Cayley’s theorem: If G is a finite group of order n, then G is isomorphic to a
subgroup of the group Sn of permutations on n objects. (Arthur Cayley, 1821–1895)
The isomorphism is obtained by associating with each a ∈ G the map πa:G→G with
the rule πa(g) = ga for all g ∈ G.

7. Zm ×Zn is isomorphic to Zmn if and only if m and n are relatively prime.

8. If n = n1n2 . . . nk where the ni are powers of distinct primes, then Zn is isomorphic
to Zn1 ×Zn2 × · · · × Znk

.

9. Fundamental theorem of finite abelian groups: Every finite abelian group G (order
≥ 2) is isomorphic to a direct product of cyclic groups where each cyclic group has order
a power of a prime. That is, G is isomorphic to Zn1 ×Zn2 ×· · ·×Znk

where each cyclic
order ni is a power of some prime. In addition, the set {n1, . . . , nk} is unique.

10. Every finite abelian group is isomorphic to a subgroup of Z∗
n for some n.

11. Fundamental theorem of finitely generated abelian groups: If G is a finitely gen-
erated abelian group, then there are unique integers n ≥ 0, n1, n2, . . . , nk ≥ 2 where
ni+1 |ni for i = 1, 2, . . . , k− 1 such that G is isomorphic to Zn×Zn1 ×Zn2 × · · ·×Znk

.
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Table 2 Numbers of groups and abelian groups.

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
groups 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1 5

abelian 1 1 1 2 1 1 1 3 2 1 1 2 1 1 1 5 1 2 1 2

order 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
groups 2 2 1 15 2 2 5 4 1 4 1 51 1 2 1 14 1 2 2 14

abelian 1 1 1 3 2 1 3 2 1 1 1 7 1 1 1 4 1 1 1 3

order 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
groups 1 6 1 4 2 2 1 52 2 5 1 5 1 15 2 13 2 2 1 13

abelian 1 1 1 2 2 1 1 5 2 2 1 2 1 3 1 3 1 1 1 2

Examples:
1. Table 2 lists the number of nonisomorphic groups and abelian groups of all orders
from 1 to 60.
2. All groups of order 12 or less are listed by order in Table 3.

5.2.3 SUBGROUPS

Definitions:

A subgroup of a group (G, �) is a subset H ⊆ G such that (H, �) is a group (with the
same group operation as in G). Write H ≤ G if H is a subgroup of G.

If a ∈ G, the set (a) = {. . . , a−2 = (a−1)2, a−1, a0 = e, a, a2, . . .} = { an | n ∈ Z } is the
cyclic subgroup generated by a. The element a is a generator of G.

G and {e} are improper subgroups of G. All other subgroups of G are proper
subgroups of G.

Facts:
1. If G is a group, then {e} and G are subgroups of G.
2. If G is a group and a ∈ G, the set (a) is a subgroup of G.
3. Every subgroup of an abelian group is abelian.
4. If H is a subgroup of a group G, then the identity element of H is the identity
element of G; the inverse (in the subgroup H) of an element a in H is the inverse (in
the group G) of a.
5. Lagrange’s theorem: Let G be a finite group. If H is any subgroup of G, then the
order of H is a divisor of the order of G. (Joseph-Louis Lagrange, 1736–1813)
6. If d is a divisor of the order of a group G, there may be no subgroup of order d.
(The group A4, of order 12, has no subgroup of order 6. See §5.3.3.)
7. If G is a finite abelian group, then the converse of Lagrange’s theorem is true for G.
8. If G is finite (not necessarily abelian) and p is a prime that divides the order of G,
then G has a subgroup of order p.
9. If G has order pmn where p is prime and p does not divide n, then G has a subgroup
of order pm, called a Sylow subgroup or Sylow p-subgroup. See §5.2.6.
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Table 3 All groups of order 12 or less.

order groups

1 {e}
2 Z2

3 Z3

4 Z4, if there is an element of order 4 (group is cyclic)
Z2 ×Z2

∼= Klein four-group, if no element has order 4 (§5.3.2)

5 Z5

6 Z6, if there is an element of order 6 (group is cyclic)
S3
∼= D3, if there is no element of order 6 (§5.3.1, 5.3.2)

7 Z7

8 Z8, if there is an element of order 8 (group is cyclic)
Z2 ×Z4, if there is an element a of order 4, but none of order 8, and

if there is an element b �∈(a) such that ab = ba and b2 = e
Z2 ×Z2 ×Z2, if every element has order 1 or 2
D4, if there is an element a of order 4, but none of order 8, and if

there is an element b �∈(a) such that ba = a3b and b2 = e
Quaternion group, if there is an element a of order 4, none of order 8,

and an element b �∈(a) such that ba = a3b and b2 = a2 (§5.2.2)

9 Z9, if there is an element of order 9 (group is cyclic)
Z3 ×Z3, if there is no element of order 9

10 Z10, if there is an element of order 10 (group is cyclic)
D5, if there is no element of order 10

11 Z11

12 Z12
∼= Z3 ×Z4, if there is an element of order 12 (group is cyclic)

Z2 ×Z6
∼= Z2 ×Z2 ×Z3, if group is abelian but noncyclic

D6, if group is nonabelian and has an element of order 6 but none of
order 4

A4, if group is nonabelian and has no element of order 6
The group generated by a and b, where a has order 4, b has order 3,

and ab = b2a

10. A subset H of a group G is a subgroup of G if and only if the following are all
true: H �= ∅; a, b ∈ H implies ab ∈ H; and a ∈ H implies a−1 ∈ H.

11. A subset H of a group G is a subgroup of G if and only if H �= ∅ and a, b ∈ H
implies that ab−1 ∈ H.

12. If H is a nonempty finite subset of a group G with the property that a, b ∈ H
implies that ab ∈ H, then H is a subgroup of G.

13. The intersection of any collection of subgroups of a group G is a subgroup of G.

14. The union of subgroups is not necessarily a subgroup. See Example 12.

c© 2000 by CRC Press LLC



Examples:

1. Additive subgroups: Each of the following can be viewed as a subgroup of all the
groups listed after it: (Z,+), (Q,+), (R,+), (C,+).

2. For n any positive integer, the set nZ = {nz | z ∈ Z} is a subgroup of Z.

3. Z2 is not a subgroup of Z4 (the group operations are not the same).

4. The set of odd integers under addition is not a subgroup of (Z,+) (the set of odd
integers is not closed under addition).

5. (N ,+) is not a subgroup of (Z,+) (N does not contain its inverses).

6. The group Z6 has the following four subgroups: {0}, {0, 3}, {0, 2, 4}, Z6.

7. Multiplicative subgroups: Each of the following can be viewed as a subgroup of all
the groups listed after it: (Q− {0}, ·), (R− {0}, ·), (C − {0}, ·).
8. The set of n complex nth roots of unity can be viewed as a subgroup of the set of all
complex numbers of modulus 1 under multiplication, which is a subgroup of (C−{0}, ·).
9. If nd = 360 (n and d positive integers) and rk is the counterclockwise rotation of the
plane about the origin through an angle of k◦, then { rk | k = 0, d, 2d, 3d, . . . , (n− 1)d }
is a subgroup of the group of all rotations of the plane around the origin.

10. The set of all n×n nonsingular diagonal matrices is a subgroup of the set of all n×n
nonsingular matrices under multiplication.

11. If n = mk, then {0,m, 2m, . . . , (k − 1)m} is a subgroup of (Zn,+) isomorphic
to Zk.

12. The union of subgroups need not be a subgroup: { 2n | n ∈ Z } and { 3n | n ∈ Z }
are subgroups of Z, but their union is not a subgroup of Z since 2 + 3 = 5 /∈ { 2n | n ∈
Z } ∪ { 3n | n ∈ Z }.

5.2.4 COSETS AND QUOTIENT GROUPS

Definitions:

If H is a subgroup of a group G and a ∈ G, then the set aH = {ah | h ∈ H} is a left
coset of H in G. The set Ha = {ha | h ∈ H } is a right coset of H in G. (If G is
written additively, the cosets are written a+H and H + a.)

The index of a subgroup H in a group G, written (G:H) or [G:H], is the number of
left (or right) cosets of H in G.

A normal subgroup of a group G is a subgroup H of G such that aH = Ha for all
a ∈ G. The notation H 2 G means that H is a normal subgroup of G.

If H is a normal subgroup of G, the quotient group (or factor group of G mod-
ulo H) is the group G/H = { aH | a ∈ G }, where aH · bH = (ab)H.

If G is a group and a ∈ G, an element b ∈ G is a conjugate of a if b = gag−1 for
some g ∈ G.

If G is a group and a ∈ G, the set {x | x ∈ G, ax = xa } is the centralizer (or
normalizer) of a.

If G is a group, the set {x | x ∈ G, gx = xg for all g ∈ G } is the center of G.

If H is a subgroup of group G, the set {x | x ∈ G, xHx−1 = H } is the normalizer
of H.
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Facts:
1. If H is a subgroup of a group G, then the following are equivalent:
• H is a normal subgroup of G;
• aHa−1 = a−1Ha = H for all a ∈ G;
• a−1ha ∈ H for all a ∈ G, h ∈ H;
• for all a ∈ G and h1 ∈ H, there is h2 ∈ H such that ah1 = h2a.

2. If group G is abelian, then every subgroup H of G is normal. If G is not abelian, it
may happen that H is not normal.
3. If group G is finite, then (G:H) = |G|/|H|.
4. {e} and G are normal subgroups of group G.
5. In the group G/H, the identity is eH = H and the inverse of aH is a−1H.
6. Fundamental homomorphism theorem: If ϕ:G → H is a homomorphism and has
kernel K, then K is a normal subgroup of G and G/K is isomorphic to ϕ(G).
7. If H is a normal subgroup of a group G and ϕ:G→ G/H is defined by ϕ(g) = gH,
then ϕ is a homomorphism onto G/H with kernel H.
8. If H is a normal subgroup of a finite group G, then G/H has |G|/|H| cosets.
9. If H and K are normal subgroups of a group G, then H ∩K is a normal subgroup
of G.
10. For all a ∈ G, the centralizer of a is a subgroup of G.
11. The center of a group is a subgroup of the group.
12. The normalizer of a subgroup of group G is a subgroup of G.
13. The index of the centralizer of a ∈ G is equal to the number of distinct conjugates
of a in G.
14. If a group G contains normal subgroups H and K such that H ∩ K = {e} and
{hk | h ∈ H, k ∈ K} = G, then G is isomorphic to H ×K.
15. If G is a group such that |G| = ab where a and b are relatively prime, and if G
contains normal subgroups H of order a and K of order b, then G is isomorphic to
H ×K.

Examples:
1. Z/nZ is isomorphic to Zn, since ϕ:Z → Zn defined by ϕ(g) = g mod n has kernel
nZ.
2. The left cosets of the subgroup H = {0, 4} in Z8 are H+0 = {0, 4}, H+1 = {1, 5},
H + 2 = {2, 6}, H + 3 = {3, 7}. The index of H in Z8 is (Z8, H) = 4.
3. {(1), (12)} is not a normal subgroup of the symmetric group S3 (§5.3.1).

5.2.5 CYCLIC GROUPS AND ORDER

Definitions:

A group (G, ·) is cyclic if there is a ∈ G such that G = { an | n ∈ Z }, where a0 = e and
a−n = (a−1)n for all positive integers n. If G is written additively, G = {na | n ∈ Z },
where 0a = 0 and if n > 0, na = a+a+a+ · · ·+a (n terms) and −na = (−a)+ (−a)+
· · ·+ (−a) (n terms).

The element a is called a generator of G and the group (G, ·) is written ((a), ·), (a),
or 〈a〉.
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The order of an element a ∈ G, written |(a)| or ord(a), is the smallest positive
integer n such that an = e (na = 0 if G is written additively). If there is no such
integer, then a has infinite order.

A subgroup H of a group (G, ·) is a cyclic subgroup if there is a ∈ H such that
H = { an | n ∈ Z }.

Facts:

1. The order of an element a is equal to the number of elements in (a).

2. Every group of prime order is cyclic.

3. Every cyclic group is abelian. However, not every abelian group is cyclic; for example
(R,+) and the Klein four-group.

4. If G is an infinite cyclic group, then G ∼= (Z,+).

5. If G is a finite cyclic group of order n, then G ∼= (Zn,+).

6. If G is a group of order n, then the order of every element of G is a divisor of n.

7. Cauchy’s theorem: If G is a group of order n and p is a prime that divides n, then G
contains an element of order p. (Augustin-Louis Cauchy, 1789–1857)

8. If G is a cyclic group of order n generated by a, then G = {a, a2, a3, . . . , an} and
an = e. If k and n are relatively prime, then ak is also a generator of G, and conversely.

9. If G is a group and a ∈ G, then (a) is a cyclic subgroup of G.

10. Every subgroup of a cyclic group is cyclic.

11. If G is a group of order n and there is an element a ∈ G of order n, then G is cyclic
and G = (a).

Examples:

1. (Z,+) is cyclic and is generated by each of 1 and −1.

2. (Zn,+) is cyclic and is generated by each element of Zn that is relatively prime
to n. If a ∈ Zn, then a has order n/gcd(a, n).

3. (Zp,+), p prime, is a cyclic group generated by each of the elements 1, 2, . . . , p− 1.
If a �= 0, a has order p.

4. (Z∗
n, ·) is cyclic if and only if n = 2, 4, pk, or 2pk, where k ≥ 1 and p is an odd

prime.

5.2.6 SYLOW THEORY

The Sylow theorems are used to help classify the nonisomorphic groups of a given order
by guaranteeing the existence of subgroups of certain orders. (Peter Ludvig Mejdell
Sylow, 1832–1918)

Definitions:

For prime p, a group G is a p-group if every element of G has order pn for some positive
integer n.

For prime p, a Sylow p-subgroup (Sylow subgroup) of G is a subgroup of G that
is a p-group and is not properly contained in any p-group in G.
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Facts:
1. Sylow theorem: If G is a group of order pm · q where p is a prime, m ≥ 1, and p|/q,
then:
• G contains subgroups of orders p, p2, . . . , pm (hence, if prime p divides the order

of a finite group G, then G contains an element of order p);
• if H and K are Sylow p-subgroups of G, there is g ∈ G such that K = gHg−1

(K is conjugate to H);
• the number of Sylow p-subgroups of G is kp + 1 for some integer k such that

(kp+ 1) | q.
2. If G is a group of order pq where p and q are primes and p < q, then G contains a
normal subgroup of order q.
3. If G is a group of order pq where p and q are primes, p < q, and p|/(q − 1), then G
is cyclic.

Examples:
1. Every group of order 15 is cyclic (by Fact 3).
2. Every group of order 21 contains a normal subgroup of order 7 (by Fact 2).

5.2.7 SIMPLE GROUPS

Simple groups arise as a fundamental part of the study of finite groups and the structure
of their subgroups. An extensive, lengthy search by many mathematicians for all finite
simple groups ended in 1980 when, as the result of hundreds of articles written by over
one hundred mathematicians, the classification of all finite simple groups was completed.
See [As86] and [Go82] for details.

Definitions:

A group G �= {e} is simple if its only normal subgroups are {e} and G.

A composition series for a group G is a finite sequence of subgroups H1 = G, H2, . . . ,
Hn−1, Hn = {e} such that Hi+1 is a normal subgroup of Hi and Hi/Hi+1 is simple, for
i = 1, . . . , n− 1.

A finite group G is solvable if it has a sequence of subgroups H1 = G, H2, . . . , Hn−1,
Hn = {e} such that Hi+1 is a normal subgroup of Hi and Hi/Hi+1 is abelian, for
i = 1, . . . , n− 1.

A sporadic group is one of 26 nonabelian finite simple groups that is not an alternating
group or a group of Lie type [Go82].

Facts:
1. Every finite group has a composition series. Thus, simple groups (the quotient
groups in the series) can be regarded as the building blocks of finite groups.
2. Some infinite groups, such as (Z,+), do not have composition series.
3. Every abelian group is solvable.
4. An abelian group G is simple if and only if G ∼= Zp where p is prime.
5. If G is a nonabelian solvable group, then G is not simple.
6. Every group of prime order is simple.
7. Every group of order pn (p prime) is solvable.
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8. Every group of order pnqm (p, q primes) is solvable.
9. If G is a solvable, simple finite group, then G is either {e} or Zp (p prime).
10. If G is a simple group of odd order, then G ∼= Zp for some prime p.
11. There is no infinite simple, solvable group.
12. Burnside conjecture/Feit-Thompson theorem: In 1911 William Burnside conjec-
tured that all groups of odd order are solvable. This conjecture was proved in 1963 by
Walter Feit and John Thompson. (See Fact 13.)
13. Every nonabelian simple group has even order. (This follows from the Feit-
Thompson theorem.)
14. The proof of the Burnside conjecture provided the impetus for a massive program
to classify all finite simple groups. This program, organized by Daniel Gorenstein, led
to hundreds of journal articles and concluded in 1980 when the classification problem
was finally solved (Fact 15). [GoLySo94]
15. Classification theorem for finite simple groups: Every finite simple group is of one
of the following types:
• abelian: Zp where p is prime (§5.2.1);
• nonabelian:
$ alternating groups An (n �= 4) (§5.3.2);
$ groups of Lie type, which fall into 6 classes of classical groups and 10 classes

of exceptional simple groups [Ca72];
$ sporadic groups. There are 26 sporadic groups, listed here from smallest to

largest order. The letters in the names of the groups reflect the names of
some of the people who conjectured the existence of the groups or proved
the groups simple. M11 (order 7,920), M12, M22, M23, M24, J1, J2, J3,
J4, HS, Mc, Suz, Ru, He, Ly, ON , .1, .2, .3, M(22), M(23), M(24)′, F5,
F3, F2, F1 (the monster or Fischer-Griess group of order ≈ 1054).

5.2.8 GROUP PRESENTATIONS

Definitions:

The balanced alphabet on the set X = {x1, . . . , xn} is the set {x1, x
−1
1 , . . . , xn, x

−1
n },

whose elements are often called symbols.

Symbols xj and x−1
j of a balanced alphabet are inverses of each other. A double

inverse (x−1
j )−1 is understood as the identity operator.

A word in X is a string s1s2 . . . sn of symbols from the balanced alphabet on X.

The inverse of a word s = s1s2 . . . sn is the word s−1 = s−1
n . . . s−1

2 s
−1
1 .

The free semigroup W (X) has the set of words in X as its domain and string con-
catenation as its product operation.

A trivial relator in the set X = {x1, . . . , xn} is a word of the form xjx
−1
j or x−1

j xj .

A word u is freely equivalent to a word v, denoted u ∼ v, if v can be obtained from u
by iteratively inserting and deleting trivial relators, in the usual sense of those string
operations. This is an equivalence relation, whose classes are called free equivalence
classes.

A reduced word is a word containing no instances of a trivial relator as a substring.
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The free group F [X] has the set of free equivalence classes of words in X as its domain
and class concatenation as its product operation.

A group presentation is a pair (X:R), where X is an alphabet and R is a set of words
in X called relators. A group presentation is finite if X and R are both finite.

A word u is R-equivalent to a word v under the group presentation (X:R), denoted
u ∼R v, if v can be obtained from u by iteratively inserting and deleting relators
from R or trivial relators. This is an equivalence relation, whose classes are called
R-equivalence classes.

The group G(X:R) presented by the group presentation (X:R) has the set of R-
equivalence classes as its domain and class concatenation as its product operation.
Moreover, any group G isomorphic to G(X:R) is said to be presented by the group
presentation (X:R).

The group G is finitely presentable if it has a presentation whose alphabet and relator
set are both finite.

The commutator of the words u and v is the word u−1v−1uv. Any word of this form
is called a commutator.

A conjugate of the word v is any word of the form u−1vu.

Facts:
1. Max Dehn (1911) formulated three fundamental decision problems for finite presen-
tations:
• word problem: Given an arbitrary presentation (X:R) and an arbitrary word
w, decide whether w is equivalent to the empty word (i.e., the group identity).

• conjugacy problem: Given an arbitrary presentation (X:R) and two arbitrary
words w1 and w2, decide whether w1 is equivalent to a conjugate of w2.

• isomorphism problem: Given two arbitrary presentations (X:R) and (Y :S),
decide whether they present isomorphic groups.

2. W. W. Boone (1955) and P. S. Novikov (1955) constructed presentations in which
the word problem is recursively unsolvable. This implies that there is no single finite
procedure that works for all finite presentations, thereby negatively solving Dehn’s word
problem and conjugacy problem.
3. M. O. Rabin (1958) proved that it is impossible to decide even whether a presentation
presents the trivial group, which immediately implies that Dehn’s isomorphism problem
is recursively unsolvable.
4. The word problem is recursively solvable in various special classes of group pre-
sentations, including the following: presentations with no relators (i.e., free groups),
presentations with only one relator, presentations in which the relator set includes the
commutator of each pair of generators (i.e., abelian groups).
5. The group presentation G(X:R) is the quotient of the free group F [X] by the nor-
malizer of the relator set R.
6. More information on group presentations can be found in [CoMo72], [CrFo63], and
[MaKaSo65].

Examples:
1. The cyclic group Zk has the presentation (x:xk).
2. The direct sum Zr ⊕Zs has the presentation (x, y:xr, ys, x−1y−1xy).
3. The dihedral group Dq has the presentation (x, y:xq, y2, y−1xyx).
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5.3 PERMUTATION GROUPS
Permutations, as arrangements, are important tools used extensively in combinatorics
(§2.3 and §2.7). The set of permutations on a given set forms a group, and it is this
algebraic structure that is examined in this section.

5.3.1 BASIC CONCEPTS

Definitions:

A permutation is a one-to-one and onto function σ:S → S, where S is any nonempty
set. If S = {a1, a2, . . . , an}, a permutation σ is sometimes written as the 2× n matrix

σ =
(
a1 a2 . . . an

a1σ a2σ . . . anσ

)

where aiσ means σ(ai).

A permutation σ:S → S is a cycle of length n if there is a subset of S of size n,
{a1, a2, . . . , an}, such that a1σ = a2, a2σ = a3, . . . , anσ = a1, and aσ = a for all other
elements of S. Write σ = (a1 a2 . . . an). A transposition is a cycle of length 2.

A permutation group (G,X) is a collection G of permutations on a nonempty set X
(whose elements are called objects) such that these permutations form a group under
composition. That is, if σ and τ are permutations in G, στ is the permutation in G
defined by the rule a(στ) = (aσ)τ . The order of the permutation group is |G|. The
degree of the permutation group is |X|.
The symmetric group on n elements is the group Sn of all permutations on the set
{1, 2, . . . , n} under composition. (See Fact 1.)

An isomorphism from a permutation group (G,X) to a permutation group (H,Y ) is
a pair of functions (α:G→H, f :X→Y ) such that α is a group isomorphism and f is
one-to-one and onto Y .

If σ1 = (ai1 ai2 . . . aim
) and σ2 = (aj1 aj2 . . . ajn

) are cycles on S, then σ1 and σ2 are
disjoint cycles if the sets {ai1 , ai2 , . . . , aim} and {aj1 , aj2 , . . . , ajn} are disjoint.

An even permutation [odd permutation] is a permutation that can be written as
a product of an even [odd] number of transpositions.

The sign of a permutation (where the permutation is written as a product of transpo-
sitions) is +1 if it has an even number of transpositions and −1 if it has an odd number
of transpositions.

The identity permutation on S is the permutation ι:S → S such that xι = x for all
x ∈ S.

An involution is a permutation σ such that σ2 = ι (the identity permutation).

The orbit of a ∈ S under σ is the set {. . . , aσ−2, aσ−1, a, aσ, aσ2, . . .}.

Facts:
1. Symmetric group of degree n: The set of permutations on a nonempty set X is a
group, where the group operation is composition of permutations: σ1σ2 is defined by
x(σ1σ2) = (xσ1)σ2. The identity is the identity permutation ι. The inverse of σ is the
permutation σ−1, where xσ−1 = y if and only if yσ = x. If |X| = n, the group of
permutations is written Sn, the symmetric group of degree n.
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2. Multiplication of permutations is not commutative. (See Examples 1 and 4.)
3. A permutation π is an involution if and only if π = π−1.
4. The number of involutions in Sn, denoted inv(n), is equal to the number of Young
tableaux that can be formed from the set {1, 2, . . . , n}. (See §2.8.)
5. Permutations can be used to find determinants of matrices. (See §6.3.)
6. Every permutation on a finite set can be written as a product of disjoint cycles.
7. Cycle notation is not unique: for example, (1 4 7 5) = (4 7 5 1) = (7 5 1 4) = (5 1 4 7).
8. Every permutation is either even or odd, and no permutation is both even and odd.
Hence, every permutation has a unique sign.
9. Each cycle of length k can be written as a product of k − 1 transpositions:

(x1 x2 x3 . . . xk) = (x1 x2)(x1 x3)(x1 x4) . . . (x1 xk).

10. Sn has order n!.
11. Sn is not abelian for n ≥ 3. For example, (1 2)(1 3) �= (1 3)(1 2).
12. The order of a permutation that is a single cycle is the length of the cycle. For
example, (1 5 4) has order 3.
13. The order of a permutation that is written as a product of disjoint cycles is equal
to the least common multiple of the lengths of the cycles.
14. Cayley’s theorem: If G is a finite group of order n, then G is isomorphic to a
subgroup of Sn. (See §5.2.2.)
15. Let G be a group of permutations on a set X (such a group is said to act on X).
Then G induces an equivalence relation R on the set X by the following rule: for
a, b ∈ X, aRb if and only if there is a permutation σ ∈ G such that aσ = b.

Examples:

1. If σ =
(

1 2 3 4 5
5 1 2 4 3

)
, τ =

(
1 2 3 4 5
4 5 1 3 2

)
, then στ =

(
1 2 3 4 5
2 4 5 3 1

)

and τσ =
(

1 2 3 4 5
4 3 5 2 1

)
. Note that στ �= τσ.

2. All elements of Sn can be written in cycle notation. For example,

σ =
(

1 2 3 4 5 6 7
4 6 3 7 1 2 5

)
= (1 4 7 5)(2 6)(3).

Each cycle describes the orbit of the elements in that cycle. For example, (1 4 7 5)
is a cycle of length 4, and indicates that 1σ = 4, 4σ = 7, 7σ = 5, and 5σ = 1. The
cycle (3) indicates that 3σ = 3. If a cycle has length 1, that cycle can be omitted when
a permutation is written as a product of cycles: (1 4 7 5)(2 6)(3) = (1 4 7 5)(2 6).
3. Multiplication of permutations written in cycle notation can be performed easily.
For example: if σ = (1 5 3 2) and τ = (1 4 3)(2 5), then στ = (1 5 3 2)(1 4 3)(2 5) =
(1 2 4 3 5). (Moving from left to right through the product of cycles, trace the orbit of
each element. For example, 3σ = 2 and 2τ = 5; therefore 3στ = 5.)
4. Multiplication of cycles need not be commutative. For example, (1 2)(1 3) = (1 2 3),
(1 3)(1 2) = (1 3 2), but (1 2 3) �= (1 3 2). However, disjoint cycles commute.
5. If the group of permutations G = {ι, (1 2), (3 5)} acts on the set S = {1, 2, 3, 4, 5},
then the partition of S resulting from the equivalence relation induced by G is {{1, 2},
{3, 5}, {4}}. (See Fact 15.)
6. Let group G = {ι, (1 2)} act on X = {1, 2} and group H = {ι, (1 2)(3)} act on
Y = {1, 2, 3}. The permutation groups (G,X) and (H,Y ) are not isomorphic since
there is no bijection between X and Y (even though G and H are isomorphic groups).
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5.3.2 EXAMPLES OF PERMUTATION GROUPS

Definitions:

The alternating group on n elements (n ≥ 2) is the subgroup An of Sn consisting of
all even permutations.

The dihedral group (octic group) Dn is the group of rigid motions (rotations and
reflections) of a regular polygon with n sides under composition.

The Klein four-group (or Viergruppe or the group of the rectangle) is the group
under composition of the four rigid motions of a rectangle that leave the rectangle in
its original location. (Felix Klein, 1849–1925)

Given a permutation σ:S → S, the induced pair permutation is the permutation σ(2)

on unordered pairs of elements of S given by the rule σ(2)({x, y}) = {σ(x), σ(y)}.
Given a permutation group G acting on a set S, the induced pair-action group G(2)

is the group of induced pair-permutations {σ(2) | σ ∈ G } under composition.

Given a permutation σ:S → S, the ordered pair-permutation is the permutation σ[2]

on the set S × S given by the rule σ[2]((x, y)) = (σ(x), σ(y)).

Given a permutation group G acting on a set S, the ordered pair-action group G[2]

is the group of ordered pair-permutations {σ[2] | σ ∈ G } under composition.

Facts:

1. Some common subgroups of Sn are listed in the following table.

subgroup order description

symmetric group Sn n! all permutations of {1, 2, . . . , n}

alternating group An n!/2 all even permutations of {1, 2, . . . , n}

dihedral group Dn 2n rigid motions of regular n-gon in
3-dimensional space (Example 2)

Klein 4-group 4 rigid motions of rectangle in
(subgroup of S4) 3-dimensional space (Example 3)

identity 1 consists only of identity permutation

2. The group An is abelian if n = 2 or 3, and is nonabelian if n ≥ 4.

3. The group Dn has order 2n. The elements consist of the n rotations and n re-
flections of a regular polygon with n sides. The n rotations are the counterclockwise
rotations about the center through angles of 360k

n degrees (k = 0, 1, . . . , n− 1). (Clock-
wise rotations can be written in terms of counterclockwise rotations.) If n is odd, the
n reflections are reflections in lines through a vertex and the center; if n is even, the
reflections are reflections in lines joining opposite vertices and in lines joining midpoints
of opposite sides.
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4. The elements ofDn can be written as permutations of {1, 2, . . . , n}. See the following
figure for the rigid motions in D4 (the rigid motions of the square) and the following
table for the group multiplication table for D4.

1

4

e = 0° CCW
rotation

(1)

2

3

4

3

90° CCW
rotation

(1 2 3 4)

1

2

3

2

180° CCW
rotation

(1 3)(2 4)

4

1

2

1

270° CCW
rotation

(1 4 3 2)

3

4

2

4

reflection in
vertical line

(1 2)(3 4)

1

3

4

1

reflection in
horizontal line

(1 4)(2 3)

3

2

1

2

reflection in
1-3 diagonal

(2 4)

4

3

3

4

reflection in
2-4 diagonal

(1 3)

2

1

· (1) (1234) (13)(24) (1432) (12)(34) (14)(23) (24) (13)

(1) (1) (1234) (13)(24) (1432) (12)(34) (14)(23) (24) (13)

(1234) (1234) (13)(24) (1432) (1) (24) (13) (14)(23) (12)(34)

(13)(24) (13)(24) (1432) (1) (1234) (14)(23) (12)(34) (13) (24)

(1432) (1432) (1) (1234) (13)(24) (13) (24) (12)(34) (14)(23)

(12)(34) (12)(34) (13) (14)(23) (24) (1) (13)(24) (1432) (1234)

(14)(23) (14)(23) (24) (12)(34) (13) (13)(24) (1) (1234) (1432)

(24) (24) (21)(34) (13) (14)(23) (1234) (1432) (1) (13)(24)

(13) (13) (14)(23) (24) (12)(34) (1432) (1234) (13)(24) (1)

5. The Klein four-group consists of the following four rigid motions of a rectangle: the
rotations about the center through 0◦ or 180◦, and reflections through the horizontal
or vertical lines through its center, as illustrated in the following figure. The following
table is the multiplication table for the Klein four-group.

2

3

1

4

e = 0° CCW
rotation

(1)

4

1

3

2

180° CCW
rotation

(1 3)(2 4)

1

4

2

3

reflection in
vertical line

(1 2)(3 4)

3

2

4

1

reflection in
horizontal line

(1 4)(2 3)

· (1) (13)(24) (12)(34) (14)(23)

(1) (1) (13)(24) (12)(34) (14)(23)

(13)(24) (13)(24) (1) (14)(23) (12)(34)

(12)(34) (12)(34) (14)(23) (1) (13)(24)

(14)(23) (14)(23) (12)(34) (13)(24) (1)
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6. The Klein four-group is isomorphic to Z∗
8 .

7. The induced permutation group S(2)
n and the ordered-pair-action group S[2]

n are used
in enumerative graph theory. (See §8.9.1.)

8. The induced permutation group S(2)
n has

(
n
2

)
objects and n! permutations.

9. The ordered-pair-action permutation group S[2]
n has n2 objects and n! permutations.

5.4 RINGS

5.4.1 BASIC CONCEPTS

Definitions:

A ring (R,+, ·) consists of a set R closed under binary operations + and · such that:
• (R,+) is an abelian group; i.e., (R,+) satisfies:
$ associative property : a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R;
$ identity property: R has an identity element, 0, that satisfies 0 + a =

a+ 0 = a for all a ∈ R;
$ inverse property: for each a ∈ R there is an additive inverse element −a ∈ R

(the negative of a) such that −a+ a = a+ (−a) = 0;
$ commutative law: a+ b = b+ a for all a, b ∈ R;

• the operation · is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ R;
• the distributive properties for multiplication over addition hold for all a, b, c ∈ R:

$ left distributive property: a · (b+ c) = a · b+ a · c;
$ right distributive property: (a+ b) · c = a · c+ b · c.

A ring R is commutative if the multiplication operation is commutative: a · b = b · a
for all a, b ∈ R.

A ring R is a ring with unity if there is an identity, 1 (�= 0), for multiplication; i.e.,
1 · a = a · 1 = a for all a ∈ R. The multiplicative identity is the unity of R.

An element x in a ring R with unity is a unit if x has a multiplicative inverse; i.e., there
is x−1 ∈ R such that x · x−1 = x−1 · x = 1.

Subtraction in a ring is defined by the rule a− b = a+ (−b).

Facts:
1. Multiplication, a · b, is often written ab or a× b.
2. The order of precedence of operations in a ring follows that for real numbers: multi-
plication is to be done before addition. That is, a+bc means a+(bc) rather than (a+b)c.
3. In all rings, a0 = 0a = 0.
4. Properties of subtraction:
−(−a) = a (−a)(−b) = ab a(b− c) = ab− ac (a− b)c = ac− bc

a(−b) = (−a)b = −(ab) (−1)a = −a (if the ring has unity).

5. The set of all units of a ring is a group under the multiplication defined on the ring.
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Examples:

1. Table 1 gives several examples of rings.

2. Polynomial rings: For a ring R, the set
R[x] = { anx

n + · · ·+ a1x+ a0 | a0, a1, . . . , an ∈ R }
forms a ring, where the elements are added and multiplied using the “usual” rules for
addition and multiplication of polynomials. The additive identity, 0, is the constant
polynomial p(x) = 0; the unity is the constant polynomial p(x) = 1 if R has a unity 1.
(See §5.5.)

3. Product rings: For rings R and S, the set R × S = { (r, s) | r ∈ R, s ∈ S } forms a
ring, where

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2);

(r1, s1) · (r2, s2) = (r1r2, s1s2).
The additive identity is (0, 0). Unity is (1, 1) if R and S each have unity 1. Product
rings can have more than two factors: R1 ×R2 × · · · ×Rk or Rn = R× · · · ×R.

5.4.2 SUBRINGS AND IDEALS

Definitions:

A subset S of a ring (R,+, ·) is a subring of R if (S,+, ·) is a ring using the same
operations + and · that are used in R.

A subset I of a ring (R,+, ·) is an ideal of R if:
• (I,+, ·) is a subring of (R,+, ·);
• I is closed under left and right multiplication by elements of R: if x ∈ I and
r ∈ R, then rx ∈ I and xr ∈ I.

In a commutative ring R, an ideal I is principal if there is r ∈ R such that I = Rr =
{xr | x ∈ R }. I is the principal ideal generated by r, written I = (r).

In a commutative ring R, an ideal I �= R is maximal if the only ideal properly con-
taining I is R.

In a commutative ring R, an ideal I �= R is prime if ab ∈ I implies that a ∈ I or b ∈ I.

Facts:

1. If S is a nonempty subset of a ring (R,+, ·), then S is a subring of R if and only
if S is closed under subtraction and multiplication.

2. An ideal in a ring (R,+, ·) is a subgroup of the group (R,+), but not necessarily
conversely.

3. The intersection of ideals in a ring is an ideal.

4. If R is any ring, R and {0} are ideals, called trivial ideals.

5. In a commutative ring with unity, every maximal ideal is a prime ideal.

6. Every ideal I in the ring Z is a principal ideal. I = (r) where r is the smallest
positive integer in I.

7. If R is a commutative ring with unity, then R is a field (see §5.6) if and only if the
only ideals of R are R and {0}.
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Table 1 Examples of rings.

set and addition and multiplication operations 0 1

{0}, usual addition and multiplication; (trivial ring) 0 none

Z, Q, R, C, with usual + and · 0 1

Zn={0, 1, . . . , n− 1} (n a positive integer), a+b = 0 1
(a+b) mod n, a·b = (ab) mod n; (modular ring)

Z[
√

2]={ a+b
√

2 | a, b ∈ Z }, (a+b
√

2)+(c+d
√

2)=
(a+c)+(b+d)

√
2, (a+b

√
2)·(c+d

√
2)=(ac+2bd)+ 0+0

√
2 1+0

√
2

(ad+bc)
√

2 [Similar rings can be constructed using√
n (n an integer) if

√
n not an integer.]

Z[i] = { a+ bi | a, b ∈ Z }; (Gaussian integers; 0+0i 1+0i
see §5.4.2, Example 2.)

Mn×n(R) = all n× n matrices with entries in a On In
ring R with unity, matrix addition and multipli- (zero (identity
cation; (matrix ring) matrix) matrix)

R = {f | f :A→B} (A any nonempty set and B f such that f such that
any ring), (f+g)(x) = f(x)+g(x), (f ·g)(x) = f(x)=0 for f(x)=1 for
f(x)·g(x); (ring of functions) all x∈A all x∈A (if

B has unity)

P(S) = all subsets of a set S, A+B = A∆B =
(A∪B)− (A∩B) (symmetric difference), A·B = ∅ S
A∩B; (Boolean ring)

{a+bi+cj+dk | a, b, c, d ∈ R}, i, j, k in
quaternion group, elements are added and 0+0i+0j+0k 1+0i+0l+0k
multiplied like polynomials using ij = k, etc.;
(ring of real quaternions, §5.2.2)

8. An ideal in a ring is the analogue of a normal subgroup in a group.

9. The second condition in the definition of ideal can be stated as rI ⊆ I (I is a left
ideal) and Ir ⊆ I (I is a right ideal). (If A is a subset of a ring R and r ∈ R, then
rA = { ra | a ∈ A } and Ar = { ar | a ∈ A }.)

Examples:

1. With the usual definitions of + and · , each of the following rings can be viewed as
a subring of all the rings listed after it: Z, Q, R, C.
2. Gaussian integers: Z[i] = { a+ bi | a, b ∈ Z } using the addition and multiplication
of C is a subring of the ring of complex numbers.

3. The ring Z is a subring of Z[
√

2] and Z[
√

2] is a subring of R.

4. Each set nZ (n an integer) is a principal ideal in the ring Z.
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5.4.3 RING HOMOMORPHISM AND ISOMORPHISM

Definitions:

If R and S are rings, a function ϕ:R→ S is a ring homomorphism if for all a, b ∈ R:
• ϕ(a+ b) = ϕ(a) + ϕ(b) (ϕ preserves addition)
• ϕ(ab) = ϕ(a)ϕ(b). (ϕ preserves multiplication)

Note: ϕ(a) is sometimes written aϕ.

If a ring homomorphism ϕ is also one-to-one and onto S, then ϕ is a ring isomorphism
and R and S are isomorphic, written R ∼= S.

A ring endomorphism is a ring homomorphism ϕ:R→ R.

A ring automorphism is a ring isomorphism ϕ:R→ R.

The kernel of a ring homomorphism ϕ:R→ S is ϕ−1(0) = {x ∈ R | ϕ(x) = 0 }.

Facts:

1. If ϕ is a ring isomorphism, then ϕ−1 is a ring isomorphism.

2. The kernel of a ring homomorphism from R to S is an ideal of the ring R.

3. If ϕ:R→ S is a ring homomorphism, ϕ(R) is a subring of S.

4. If ϕ:R → S is a ring homomorphism and R has unity, either ϕ(1) = 0 or ϕ(1) is
unity for ϕ(R).

5. If ϕ is a ring homomorphism, then ϕ(0) = 0 and ϕ(−a) = −ϕ(a).

6. A ring homomorphism is a ring isomorphism between R and ϕ(R) if and only if the
kernel of ϕ is {0}.
7. Homomorphisms preserve subrings: Let ϕ:R → S be a ring homomorphism. If A
is a subring of R, then ϕ(A) is a subring of S. If B is a subring of S, then ϕ−1(B) is a
subring of R.

8. Homomorphisms preserve ideals: Let ϕ:R → S be a ring homomorphism. If A is
an ideal of R, then ϕ(A) is an ideal of S. If B is an ideal of S, then ϕ−1(B) is an ideal
of R.

Examples:

1. The function ϕ:Z → Zn defined by the rule ϕ(a) = a mod n is a ring homomor-
phism.

2. If R and S are rings, then the function ϕ:R → S defined by the rule ϕ(a) = 0 for
all a ∈ R is a ring homomorphism.

3. The function ϕ:Z → R (R any ring with unity) defined by the rule ϕ(x) = x · 1 is a
ring homomorphism. The kernel of ϕ is the subring nZ for some nonnegative integer n,
called the characteristic of R.

4. Let P(S) be the ring of all subsets of a set S (see Table 1). If |S| = 1, then
P(S) ∼= Z2 with the ring isomorphism ϕ where ϕ(∅) = 0 and ϕ(S) = 1. More generally,
if |S| = n, then P(S) ∼= Zn

2 = Z2 × · · · × Z2.

5. Zn
∼= Z/(n) for all positive integers n. (See §5.4.4.)

6. Zm ×Zn
∼= Zmn, if m and n are relatively prime.
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5.4.4 QUOTIENT RINGS

Definitions:

If I is an ideal in a ring R and a ∈ R, then the set a+ I = { a+ x | x ∈ I } is a coset
of I in R.

The set of all cosets, R/I = { a+ I | a ∈ R }, is a ring, called the quotient ring , where
addition and multiplication are defined by the rules:
• (a+ I) + (b+ I) = (a+ b) + I;
• (a+ I) · (b+ I) = (ab) + I.

Facts:
1. If R is commutative, then R/I is commutative.
2. If R has unity 1, then R/I has the coset 1 + I as unity.
3. If I is an ideal in ring R, the function ϕ:R→ R/I defined by the rule ϕ(x) = x+ I
is a ring homomorphism, called the natural map. The kernel of ϕ is I.
4. Fundamental homomorphism theorem for rings: If ϕ is a ring homomorphism andK
is the kernel of ϕ, then ϕ(R) ∼= R/K.
5. If R is a commutative ring with unity and I is an ideal in R, then I is a maximal
ideal if and only if R/I is a field (see §5.6).

Examples:
1. For each integer n, Z/nZ is a quotient ring, isomorphic to Zn.
2. See §5.6.1 for Galois rings.

5.4.5 RINGS WITH ADDITIONAL PROPERTIES

Beginning with rings, as additional requirements are added, the following hierarchy of
sets of algebraic structures is obtained:

rings ⊃
commutative

rings with
unity

⊃ integral
domains

⊃ Euclidean
domains

⊃
principal

ideal
domains

Definitions:

The cancellation properties in a ring R state that for all a, b, c ∈ R:
if ab = ac and a �= 0, then b = c (left cancellation property)
if ba = ca and a �= 0, then b = c (right cancellation property).

Let R be a ring and let a, b ∈ R where a �= 0, b �= 0. If ab = 0, then a is a left divisor
of zero and b is a right divisor of zero.

An integral domain is a commutative ring with unity that has no zero divisors.

A principal ideal domain (PID) is an integral domain in which every ideal is a
principal ideal.

A division ring is a ring with unity in which every nonzero element is a unit (i.e.,
every nonzero element has a multiplicative inverse).

A field is a commutative ring with unity such that each nonzero element has a multi-
plicative inverse. (See §5.6.)
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A Euclidean norm on an integral domain R is a function δ:R − {0} → {0, 1, 2, . . .}
such that:
• δ(a) ≤ δ(ab) for all a, b ∈ R− {0};
• the following generalization of the division algorithm for integers holds: for all
a, d ∈ R where d �= 0, there are elements q, r ∈ R such that a = dq + r, where
either r = 0 or δ(r) < δ(d).

A Euclidean domain is an integral domain with a Euclidean norm defined on it.

Facts:

1. The cancellation properties hold in an integral domain.

2. Every finite integral domain is a field.

3. Every integral domain can be imbedded in a field. Given an integral domain R,
there is a field F and a ring homomorphism ϕ:R→ F such that ϕ(1) = 1.

4. A ring with unity is a division ring if and only if the nonzero elements form a group
under the multiplication defined on the ring.

5. Wedderburn’s theorem: Every finite division ring is a field. (J. H. M. Wedderburn,
1882–1948)

6. Every commutative division ring is a field.

7. In a Euclidean domain, if b �= 0 is not a unit, then δ(ab) > δ(a) for all a �= 0. For
b �= 0, b is a unit in R if and only if δ(b) = δ(1).

8. In every Euclidean domain, a Euclidean algorithm for finding the gcd can be carried
out.

Examples:

1. Some common Euclidean domains are given in the following table.

set Euclidean norm

Z δ(a) = |a|

Z[i] (Gaussian integers) δ(a+ bi) = a2 + b2

F (any field) δ(a) = 1

polynomial ring F [x] (F any field) δ(p(x)) = degree of p(x)

2. The following table gives examples of rings with additional properties.

commuta- integral principal Euclidean division
ring tive ring domain ideal domain ring field

with unity domain

Z yes yes yes yes no no
Q, R, C yes yes yes yes yes yes
Zp (p prime) yes yes yes yes yes yes
Zn (n composite) yes no no no no no
real quaternions no no no no yes no

Z[x] yes no no no no no
Mn×n no no no no no no
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5.5 POLYNOMIAL RINGS

5.5.1 BASIC CONCEPTS

Definitions:

A polynomial in the variable x over a ring R is an expression of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x1 + a0x0

where an, . . . , a0 ∈ R.

For a polynomial f(x) �= 0, the largest integer k such that ak �= 0 is the degree of f(x),
written deg f(x).

A constant polynomial is a polynomial f(x) = a0. If a0 �= 0, f(x) has degree 0. If
f(x) = 0 (the zero polynomial), the degree of f(x) is undefined. (The degree of the
zero polynomial is also said to be −∞.)

The polynomial ring (in one variable x) over a ring R consists of the set

R[x] = { f(x) | f(x) is a polynomial over R in the variable x }
with addition and multiplication defined by the rules:

(anx
n + · · ·+ a1x1 + a0x0) + (bmxm + · · ·+ b1x1 + b0x0)

= anx
n + · · ·+am+1x

m+1+(an +bn)xn + · · ·+(a1+b1)x1+(a0+b0)x0

if n ≥ m, and

(anx
n + · · ·+ a1x1 + a0x0)(bmxm + · · ·+ b1x1 + b0x0)

= cn+mx
n+m + · · ·+ c1x1 + c0x0

where ci = a0bi + a1bi−1 + · · ·+ aib0 for i = 0, 1, . . . ,m+ n.

A polynomial f(x) ∈ R[x] of degree n is monic if an = 1.

The value of a polynomial f(x) = anx
n + an−1x

n−1 + · · ·+ a1x1 + a0x0 at c ∈ R is the
element f(c) = anc

n + an−1c
n−1 + · · ·+ a1c+ a0 ∈ R.

An element c ∈ R is a zero of the polynomial f(x) if f(c) = 0.

If R is a subring of a commutative ring S, an element a ∈ S is algebraic over R if
there is a nonzero f(x) ∈ R[x] such that f(a) = 0.

If p(x) is not algebraic over R, then p(x) is transcendental over R.

A polynomial f(x) ∈ R[x] of degree n is irreducible over R if f(x) cannot be written
as f1(x)f2(x) (factors of f(x)) where f1(x) and f2(x) are polynomials over R of degrees
less than n. Otherwise f(x) is reducible over R.

The polynomial ring (in the variables x1, x2, . . . , xn with n > 1) over a ring R is
defined by the rule R[x1, x2, . . . , xn] = (R[x1, x2, . . . , xn−1])[xn].

Facts:

1. Polynomials over an arbitrary ring R generalize polynomials with coefficients in R
or C. The notation and terminology follow the usual conventions for polynomials with
real (or complex) coefficients:
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• the elements an, . . . , a0 are coefficients;
• subtraction notation can be used: aix

i + (−aj)xj = aix
i − ajx

j ;
• the term 1xi can be written as xi;
• the term x1 can be written x;
• the term x0 can be written 1;
• terms 0xi can be omitted.

2. There is a distinction between a polynomial f(x) ∈ R[x] and the function it defines
using the rule f(c) = anc

n + an−1c
n−1 + · · · + a1c + a0 for c ∈ R. The same function

might be defined by infinitely many polynomials. For example, the polynomials f1(x) =
x ∈ Z2[x] and f2(x) = x2 ∈ Z2[x] define the same function: f1(0) = f2(0) = 0 and
f1(1) = f2(1) = 1.
3. If R is a ring, R[x] is a ring.
4. If R is a commutative ring, then R[x] is a commutative ring.
5. If R is a ring with unity, then R[x] has the constant polynomial f(x) = 1 as unity.
6. If R is an integral domain, then R[x] is an integral domain. If f1(x) has degree m
and f2(x) has degree n, then the degree of f1(x)f2(x) is m+ n.
7. If ring R is not an integral domain, then R[x] is not an integral domain. If f1(x)
has degree m and f2(x) has degree n, then the degree of f1(x)f2(x) can be smaller than
m+ n. (For example, in Z6[x], (3x2)(2x3) = 0.)
8. Factor theorem: If R is a commutative ring with unity and f(x) ∈ R[x] has de-
gree ≥ 1, then f(a) = 0 if and only if x− a is a factor of f(x).
9. If R is an integral domain and p(x) ∈ R[x] has degree n, then p(x) has at most n
zeros in R. If R is not an integral domain, then a polynomial may have more zeros than
its degree; for example, x2 + x ∈ Z6[x] has four zeros — 0, 2, 3, 5.

5.5.2 POLYNOMIALS OVER A FIELD

Facts:
1. Even though F is a field (§5.6.1), F [x] is never a field. (The polynomial f(x) = x
has no multiplicative inverse in F [x].)
2. If f(x) has degree n, then f(x) has at most n distinct zeros.
3. Irreducibility over a finite field: If F is a finite field and n is a positive integer, then
there is an irreducible polynomial over F of degree n.
4. Unique factorization theorem: If f(x) is a polynomial over a field F and is not the
zero polynomial, then f(x) can be uniquely factored (ignoring the order in which the
factors are written) as af1(x) · · · fk(x) where a ∈ F and each fi(x) is a monic polynomial
that is irreducible over F .
5. Eisenstein’s irreducibility criterion: If f(x) ∈ Z[x] has degree n > 0, if there is
a prime p such that p divides every coefficient of f(x) except an, and if p2 does not
divide a0, then f(x) is irreducible over Q. (F. G. M. Eisenstein, 1823–1852)
6. Division algorithm for polynomials: If F is a field with a(x), d(x) ∈ F [x] and d(x)
is not the zero polynomial, then there are unique polynomials q(x) (quotient) and r(x)
(remainder) in F [x] such that a(x) = d(x)q(x) + r(x) where deg r(x) < deg d(x) or
r(x) = 0. If d(x) is monic, then the division algorithm for polynomials can be extended
to all rings with unity.
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7. Irreducibility over the real numbers R: If f(x) ∈ R[x] has degree at least 3, then
f(x) is reducible. The only irreducible polynomials in R[x] are of degree 1 or 2; for
example x2 + 1 is irreducible over R.

8. Fundamental theorem of algebra (irreducibility over the complex numbers C): If
f(x) ∈ C[x] has degree n ≥ 1, then f(x) can be completely factored:

f(x) = c(x− c1)(x− c2) . . . (x− cn)
where c, c1, . . . , cn ∈ C.
9. If F is a field and f(x) ∈ F [x] has degree 1 (i.e., f(x) is linear), then f(x) is
irreducible.

10. If F is a field and f(x) ∈ F [x] has degree ≥ 2 and has a zero, then f(x) is
reducible. (If f(x) has a as a zero, then f(x) can be written as (x − a)f1(x) where
deg f1(x) = deg f(x) − 1. The converse is false: a polynomial may have no zeros, but
still be reducible. (See Example 2.)

11. If F is a field and f(x) ∈ F [x] has degree 2 or 3, then f(x) is irreducible if and
only if f(x) has no zeros.

Examples:

1. In Z5[x], if a(x) = 3x4 + 2x3 + 2x+ 1 and d(x) = x2 + 2, then q(x) = 3x2 + 2x+ 4
and r(x) = 3x+ 3. To obtain q(x) and r(x), use the same format as for long division of
natural numbers, with arithmetic operations carried out in Z5:

3x2 + 2x + 4
x2 + 2

)
3x4 + 2x3 + 0x2 + 2x+ 1
3x4 + x2

2x3 + 4x2 [−x2 = 4x2 over Z5]
2x3 + 4x

4x2 + 3x [2x− 4x = −2x = 3x over Z5]
4x2 + 3

3x+ 3

2. Polynomials can have no zeros, but be reducible. The polynomial f(x) = x4 + x2 +
1 ∈ Z2[x] has no zeros (since f(0) = f(1) = 1), but f(x) can be factored as (x2+x+1)2.
Similarly, x4 + 2x2 + 1 = (x2 + 1)2 ∈ R[x].

5.6 FIELDS

5.6.1 BASIC CONCEPTS

Definitions:

A field (F,+, ·) consists of a set F together with two binary operations, + and ·, such
that:
• (F,+, ·) is a ring;
• (F − {0}, ·) is a commutative group.
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A subfield F of field (K,+, ·) is a subset of K that is a field using the same operations
as those in K.

If F is a subfield of K, then K is called an extension field of F . Write K/F to indicate
that K is an extension field of F .

For K an extension field of F , the degree of K over F is [K:F ] = the dimension of K
as a vector space over F . (See §6.1.3.)

A field isomorphism is a function ϕ:F1 → F2, where F1 and F2 are fields, such that ϕ
is one-to-one, onto F2, and satisfies the following for all a, b ∈ F1:
• ϕ(a+ b) = ϕ(a) + ϕ(b);
• ϕ(ab) = ϕ(a)ϕ(b).

A field automorphism is an isomorphism ϕ:F → F , where F is a field. The set of
all automorphisms of F is denoted Aut(F ).

The characteristic of a field F is the smallest positive integer n such that 1+· · ·+1 = 0,
where there are n summands. If there is no such integer, F has characteristic 0 (also
called characteristic ∞).

Facts:

1. Every field is a commutative ring with unity. A field satisfies all properties of
a commutative ring with unity, and has the additional property that every nonzero
element has a multiplicative inverse.

2. Every finite integral domain is a field.

3. A field is a commutative division ring.

4. If F is a field and a, b ∈ F where a �= 0, then ax+ b = 0 has a unique solution in F .

5. If F is a field, every ideal in F [x] is a principal ideal.

6. If p is a prime and n is any positive integer, then there is exactly one field (up to
isomorphism) with pn elements, the Galois field GF (pn). (§5.6.2)

7. If ϕ:F → F is a field automorphism, then:
• −ϕ(a) = ϕ(−a)
• ϕ(a−1) = ϕ(a)−1

for all a �= 0.

8. The intersection of all subfields of a field F is a field, called the prime field of F .

9. If F is a field, Aut(F ) is a group under composition of functions.

10. The characteristic of a field is either 0 or prime.

11. Every field of characteristic 0 is isomorphic to a field that is an extension of Q and
has Q as its prime field.

12. Every field of characteristic p > 0 is isomorphic to a field that is an extension of Zp

and has Zp as its prime field.

13. If field F has characteristic p > 0, then (a+ b)p = ap + bp for all a, b ∈ F .

14. If field F has characteristic p > 0, f(x) ∈ Zp[x], and α ∈ F is a zero of f(x), then
αp, αp2

, αp3
, . . . are also zeros of f(x).

15. If p is not a prime, then Zp is not a field since Zp−{0} will fail to be closed under
multiplication. For example, Z6 is not a field since 2 ∈ Z6 − {0} and 3 ∈ Z6 − {0}, but
2 · 3 = 0 /∈ Z6 − {0}.
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Examples:

1. The following table gives several examples of fields.

set and operations −a a−1 charac- order
teristic

Q, R, C, with usual addition −a 1/a 0 infinite
and multiplication

Zp = {0, 1, . . . , p−1} (p prime) p− a a−1 = b, where
prime), addition and multipli- (−0 = 0) ab mod p = 1 p p
cation mod p

F [x]/(f(x)), f(x) irreducible −[a+(f(x))]= [a+(f(x))]−1=
over field F , coset addition and −a+(f(x)) a−1+(f(x)) varies varies
multiplication (Example 2)

GF (pn)=Zp[x]/(f(x)), f(x) of
degree n irreducible over Zp (p −[a+(f(x))]= [a+(f(x))]−1= p pn

prime), addition and multipli- −a+(f(x)) a−1+(f(x))
cation of cosets (Galois field)

2. The field F [x]/(f(x)): If F is any field and f(x) ∈ F [x] of degree n is irreducible
over F , the quotient ring structure F [x]/(f(x)) is a field. The elements of F [x]/(f(x))
are cosets of polynomials in F [x] modulo f(x), where (f(x)) is the principal ideal gen-
erated by f(x). Polynomials f1(x) and f2(x) lie in the same coset if and only if f(x) is
a factor of f1(x)− f2(x).

Using the division algorithm for polynomials, any polynomial g(x) ∈ F [x] can be
written as g(x) = f(x)q(x) + r(x) where q(x) and r(x) are unique polynomials in F [x]
and r(x) has degree < n. The equivalence class g(x)+ (f(x)) can be identified with the
polynomial r(x), and thus F [x]/(f(x)) can be regarded as the field of all polynomials
in F [x] of degree < n.

5.6.2 EXTENSION FIELDS AND GALOIS THEORY

Throughout this subsection assume that field K is an extension of field F .

Definitions:

For α ∈ K, F (α) is the smallest field containing α and F , called the field extension
of F by α.

For α1, . . . , αn ∈ K, F (α1, . . . , αn) is the smallest field containing α1, . . . , αn and F ,
called the field extension of F by α1, . . . , αn.

If K is an extension field of F and α ∈ K, then α is algebraic over F if α is a root of
a nonzero polynomial in F [x]. If α is not the root of any nonzero polynomial in F [x],
then α is transcendental over F .

A complex number is an algebraic number if it is algebraic over Q.

An algebraic integer is an algebraic number α that is a zero of a polynomial of the
form xn + an−1x

n−1 + · · ·+ a1x+ a0 where each ai ∈ Z.

An extension field K of F is an algebraic extension of F if every element of K is
algebraic over F . Otherwise K is a transcendental extension of F .
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An extension field K of F is a finite extension of F if K is finite-dimensional as a
vector space over F (see Fact 11). The dimension of K over F is written [K:F ].

Let α be algebraic over a field F . The minimal polynomial of α with respect to F
is the monic irreducible polynomial f(x) ∈ F [x] of smallest degree such that f(α) = 0.

A polynomial f(x) ∈ F [x] splits over K if f(x) = α(x− α1) . . . (x− αn) where α, α1,
. . . , αn ∈ K.

K is a splitting field (root field) of a nonconstant f(x) ∈ F [x] if f(x) splits over K
and K is the smallest field with this property.

A polynomial f(x) ∈ F [x] of degree n is separable if f(x) has n distinct roots in its
splitting field.

K is a separable extension of F if every element of K is the root of a separable
polynomial in F [x].

K is a normal extension of F if K/F is algebraic and every irreducible polynomial
in F [x] with a root in K has all its roots in K (i.e., splits in K).

K is a Galois extension of F if K is a normal, separable extension of F .

A field automorphism ϕ fixes set S elementwise if ϕ(x) = x for all x ∈ S.

The fixed field of a subset A ⊆ Aut(F ) is FA = {x ∈ F | ϕ(x) = x for all ϕ ∈ A }.
The Galois group of K over F is the group of automorphisms G(K/F ) of K that
fix F elementwise. If K is a splitting field of f(x) ∈ F [x], G(K/F ) is also known as the
Galois group of f(x). (Évariste Galois, 1811–1832)

Facts:
1. The elements of K that are algebraic over F form a subfield of K.
2. The algebraic numbers in C form a field; the algebraic integers form a subring of C,
called the ring of algebraic integers.
3. Every nonconstant polynomial has a unique splitting field, up to isomorphism.
4. If f(x) ∈ F [x] splits as α(x − α1) . . . (x − αn), then the splitting field for f(x) is
F (α1, . . . , αn).
5. If F is a field and p(x) ∈ F [x] is a nonconstant polynomial, then there is an extension
field K of F and α ∈ K such that p(α) = 0.
6. If f(x) is irreducible over F , then the ring F [x]/(f(x)) is an algebraic extension of F
and contains a root of f(x).
7. The field F is isomorphic to a subfield of any algebraic extension F [x]/(f(x)). The
element 0 ∈ F corresponds to the coset of the zero polynomial; all other elements of F
appear in F [x]/(f(x)) as cosets of the constant polynomials.
8. Every minimal polynomial is irreducible.
9. If K is a field extension of F and α ∈ K is a root of an irreducible polynomial
f(x) ∈ F [x] of degree n ≥ 1, then F (α) = {cn−1α

n−1 + · · ·+ c1α+ c0 | ci ∈ F for all i}.
10. If K is an extension field of F and α ∈ K is algebraic over F , then:
• there is a unique monic irreducible polynomial f(x) ∈ F [x] of smallest degree

(the minimum polynomial) such that f(α) = 0;
• F (α) ∼= F [x]/(f(x));
• if the degree of α over F is n, then K = { a0 + a1α + a2α2 + · · · + an−1α

n−1 |
a0, a1, . . . , an−1 ∈ F }; in fact, K is an n-dimensional vector space over F , with
basis 1, α, α2, . . . , αn−1.
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11. If K is an extension field of F and x ∈ K is transcendental over F , then F (α) ∼=
the field of all fractions f(x)/g(x) where f(x), g(x) ∈ F [x] and g(x) is not the zero
polynomial.

12. K is a splitting field of some polynomial f(x)∈F [x] if and only if K is a Galois
extension of F .

13. If K is a splitting field for separable f(x) ∈ F [x] of degree n, then G(K,F ) is
isomorphic to a subgroup of the symmetric group Sn.

14. If K is a splitting field of f(x) ∈ F [x], then:
• every element ofG(K/F ) permutes the roots of f(x) and is completely determined

by its effect on the roots of f(x);
• G(K/F ) is isomorphic to a group of permutations of the roots of f(x).

15. If K is a splitting field for separable f(x) ∈ F [x], then |G(K/F )| = [K:F ].

16. For [K:F ] finite, K is a normal extension of F if and only if K is a splitting field
of some polynomial in F [x].

17. The Fundamental theorem of Galois theory : IfK is a normal extension of F , where
F is either finite or has characteristic 0, then there is a one-to-one correspondence Φ
between the lattice of all fieldsK ′, where F ⊆ K ′ ⊆ K, and the lattice of all subgroupsH
of the Galois group G(K/F ):

Φ(K ′) = G(K/K ′) and Φ−1(H) = KH .

The correspondence Φ has the following properties:

• for fields K ′ and K ′′ where F ⊆ K ′ ⊆ K and F ⊆ K ′′ ⊆ K
K ′ ⊆ K ′′ ←→ Φ(K ′′) ⊆ Φ(K ′);

that is, G(K/K ′′) ⊆ G(K/K ′).

• Φ interchanges the operations meet and join for the lattice of subfields and the
lattice of subgroups:

Φ(K ′ ∧K ′′) = G(K/K ′) ∨G(K/K ′′)
Φ(K ′ ∨K ′′) = G(K/K ′) ∧G(K/K ′′);

(Note: In the lattice of fields [groups], A ∧B = A ∩B and A ∨B is the smallest
field [group] containing A and B.)

• K ′ is a normal extension of F if and only if G(K/K ′) is a normal subgroup of
G(K/F ).

18. Formulas for solving polynomial equations of degrees 2, 3, or 4:

• second-degree (quadratic) equation ax2 +bx+c = 0: the quadratic formula gives

the solutions
−b±

√
b2 − 4ac

2a
;

• third-degree (cubic) equation a3x
3 + a2x2 + a1x+ a0 = 0:

(1) divide by a3 to obtain x3 + b2x2 + b1x+ b0 = 0,
(2) make the substitution x = y − b2

3 to obtain an equation of the form y3 +

cy + d = 0, with solutions y = 3

√
−d
2 +

√
d2

4 + c3

27 + 3

√
−d
2 −

√
d2

4 + c3

27 ,

(3) use the substitution x = y − b2
3 to obtain the solutions to the original

equation;
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• fourth-degree (quartic) equation a4x
4 + a3x3 + a2x2 + a1x+ a0 = 0:

(1) divide by a4 to obtain x4 + ax3 + bx2 + cx+ d = 0,
(2) solve the resolvent equation y3 − bys + (ac− 4d)y + (−a2d+ 4bd− c2) = 0

to obtain a root z,
(3) solve the pair of quadratic equations:

x2 + a
2x+ z

2 = ±
√(

a2

4 − b+ z
)
x2 +

(
a
2z − c

)
x+

(
z2

4 − d
)

to obtain the solutions to the original equation.

19. A general method for solving cubic equations algebraically was given by Nicolo
Fontana (1500–1557), also called Tartaglia. The method is often referred to as Cardano’s
method because Girolamo Cardano (1501–1576) published the method. Ludovico Fer-
rari (1522–1565), a student of Cardano, discovered a general method for solving quartic
equations algebraically.

20. Equations of degree 5 or more: In 1824 Abel proved that the general quintic
polynomial equation a5x5 + · · · + a1x + a0 = 0 (and those of higher degree) are not
solvable by radicals; that is, there can be no formula for writing the roots of such equa-
tions using only the basic arithmetic operations and the taking of nth roots. Évariste
Galois (1811–1832) demonstrated the existence of such equations that are not solvable
by radicals and related solvability by radicals of polynomial equations to determining
whether the associated permutation group (the Galois group) of roots is solvable. (See
Application 1.)

Examples:

1. C as an algebraic extension of R: Let f(x) = x2 + 1 ∈ R[x] and α = x + (x2 +
1) ∈ R[x]/(x2 + 1). Then α2 = −1. Thus, α behaves like i (since i2 = −1). Hence
R[x]/(x2 + 1) = { c1α+ c0 | c1, c0 ∈ R} ∼= { c1i+ c0 | c0, c1 ∈ R} = C.
2. Algebraic extensions of Zp: If f(x) ∈ Zp is an irreducible polynomial of degree n,
then the algebraic extension Zp[x]/(f(x)) is a Galois field.

3. If f(x) = x4 − 2x2 − 3 ∈ Q[x], its splitting field is

Q(
√

3, i) = { a+ b
√

3 + ci+ di
√

3 | a, b, c, d ∈ Q}.
There are three intermediate fields: Q(

√
3), Q(i), and Q(i

√
3), as illustrated in Figure 1.

The Galois group G(Q(
√

3, i)/Q) = {e, φ1, φ2, φ3} where:

φ1(a+ b
√

3 + ci+ di
√

3) = a+ b
√

3− ci− di
√

3,

φ2(a+ b
√

3 + ci+ di
√

3) = a− b
√

3 + ci− di
√

3,

φ3(a+ b
√

3 + ci+ di
√

3) = a− b
√

3− ci+ di
√

3 = φ2φ1 = φ1φ2,

e(a+ b
√

3 + ci+ di
√

3) = a+ b
√

3 + ci+ di
√

3.

G(Q(
√

3, i),Q) has the following subgroups:

G = G(Q(
√

3, i),Q) = {e, φ1, φ2, φ3},
H1 = G(Q(

√
3, i),Q(

√
3)) = {e, φ1},

H2 = G(Q(
√

3, i),Q(i)) = {e, φ2},
H3 = G(Q(

√
3, i),Q(i

√
3)) = {e, φ3},

{e} = G(Q(
√

3, i),Q(
√

3, i)).
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The correspondence between fields and Galois groups is shown in the following table
and figure.

field Galois group

Q(
√

3, i) {e}
Q(
√

3) H1

Q(i
√

3) H3

Q(i) H2

Q G

4. Cyclotomic extensions: The nth roots of unity are the solutions to xn − 1 = 0:
1, ω, ω2, . . . , ωn−1, where ω = e2πi/n. The extension field Q(ω) is a cyclotomic extension
of Q. If p > 2 is prime, then G(Q(ω),Q) is a cyclic group of order p−1 and is isomorphic
to Z∗

p (the multiplicative group of nonzero elements of Zp).

Applications:

1. Solvability by radicals: A polynomial equation f(x) = 0 is solvable by radicals if
each root can be expressed in terms of the coefficients of the polynomial, using only
the operations of addition, subtraction, multiplication, division, and the taking of nth
roots.

If F is a field of characteristic 0 and f(x) ∈ F [x] has K as splitting field, then
f(x) = 0 is solvable by radicals if and only if G(K,F ) is a solvable group. Since there
are polynomials whose Galois groups are not solvable, there are polynomials whose
roots cannot be found by elementary algebraic methods. For example, the polynomial
x5 − 36x + 2 has the symmetric group S5 as its Galois group, which is not solvable.
Hence, the roots of x5− 36x+2 = 0 cannot be found by elementary algebraic methods.
This example shows that there can be no algebraic formula for solving all fifth-degree
equations.

2. Straightedge and compass constructibility: Using only a straightedge (unmarked
ruler) and a compass, there is no general method for:
• trisecting angles (given an angle whose measure is α, to construct an angle with

measure α
3 );

• duplicating the cube (given the side of a cube C1, to construct the side of a
cube C2 that has double the volume of C1);

• squaring the circle (given a circle of area A, to construct a square with area A);
• constructing a regular n-gon for all n ≥ 3.

Straightedge and compass constructions yield only lengths that can be obtained by
addition, subtraction, multiplication, division, and taking square roots. Beginning with
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lengths that are rational numbers, each of these operations yields field extensions Q(a)
and Q(b) where a and b are coordinates of a point constructed from points in Q × Q.
These operations force [Q(a):Q] and [Q(b):Q] to be powers of 2. However, trisecting
angles, duplicating cubes, and squaring circles all yield extensions of Q such that the
degrees of the extensions are not powers of 2. Hence these three types of constructions
are not possible with straightedge and compass.

5.6.3 FINITE FIELDS

Finite fields have a wide range of applications in various areas of computer science
and engineering applications: coding theory, combinatorics, computer algebra, cryptol-
ogy, the generation of pseudorandom numbers, switching circuit theory, and symbolic
computation.

Throughout this subsection assume that F is a finite field.

Definitions:

A finite field is a field with a finite number of elements.

The Galois field GF (pn) is the algebraic extension Zp[x]/(f(x)) of the finite field Zp

where p is a prime and f(x) is an irreducible polynomial over Zp of degree n. (See
Fact 1.)

A primitive element of GF (pn) is a generator of the cyclic group of nonzero elements
of GF (pn) under multiplication.

Let α be a primitive element of GF (pn). The discrete exponential function (with
base α) is the function expα: {0, 1, 2, . . . , pn−2} → GF (pn)∗ defined by the rule expαk =
αk.

Let α be a primitive element of GF (pn). The discrete logarithm or index function
(with base α) is the function indα:GF (pn)∗ → {0, 1, 2, . . . , pn − 2} where indα(x) = k
if and only if x = αk.

Let α be a primitive element of GF (pn). The Zech logarithm (Jacobi logarithm) is
the function Z: {1, . . . , pn−1} → {0, . . . , pn−2} such that αZ(k) = 1+αk; if 1+αk = 0,
then Z(k) = 0.

Facts:

1. Existence of finite fields: For each prime p and positive integer n there is exactly
one field (up to isomorphism) with pn elements — the field GF (pn), also written Fpn .

2. Construction of finite fields: Given an irreducible polynomial f(x) ∈ Zp[x] of de-
gree n and a zero α of f(x),

GF (pn) ∼= Zp[x]/(f(x)) ∼= { cn−1α
n−1 + · · ·+ c1α+ c0 | ci ∈ Zp for all i }.

3. If F is a finite field, then:
• F has pn elements for some prime p and positive integer n;
• F has characteristic p for some prime p;
• F is an extension of Zp.

4. [GF (pn):Zp] = n.

5. GF (pn) = the field of the pn roots of xpn − x ∈ Zp[x].

c© 2000 by CRC Press LLC



6. The minimal polynomial of α ∈ GF (pn) with respect to Zp is

f(x) = (x− α)(x− αp)(x− αp2
) . . . (x− αpi

)

where i is the smallest positive integer such that αpi+1
= α.

7. If a field F has order pn, then every subfield of F has order pk for some k that
divides n.
8. The multiplicative group of nonzero elements of a finite field F is a cyclic group.
9. If a field F has m elements, then the multiplicative order of each nonzero element
of F is a divisor of m− 1.
10. If a field F has m elements and d is a divisor of m − 1, then there is an element
of F of order d.
11. Each discrete logarithm function has the following properties:

indα(xy) ≡ indαx+ indαy (mod pn − 1);
indα(xy−1) ≡ indαx− indαy (mod pn − 1);
indα(xk) ≡ k indαx (mod pn − 1).

12. The discrete logarithm function indα is the inverse of the discrete exponential
function expα. That is, indαx = y if and only if expαy = x.
13. A discrete logarithm function can be used to facilitate multiplication and division
of elements of GF (pn).
14. The Zech logarithm facilitates the addition of elements αi and αj (i > j) inGF (pn),
since αi + αj = αj(αi−j + 1) = αj · αZ(i−j) = αj+Z(i−j). (Note that the values of the
Zech logarithm function depend on the primitive element used.)

15. There are 1
k

∏
d|k
µ(k

d )pnd irreducible polynomials of degree k over GF (pn), where µ

is the Möbius function (§2.7).

Examples:

1. If p is prime, Zp is a finite field and Zp
∼= GF (p).

2. The field Z2 = F2:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

3. The field Z3 = F3:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

4. Construction of GF (22) = F4:

GF (22) = Z2[x]/(x2 + x+ 1) = { c1α+ c0 | c1, c0 ∈ Z2 } = {0, 1, α, α+ 1}
where α is a zero of x2 + x+ 1; i.e., α2 + α + 1 = 0. The nonzero elements of GF (pn)
can also be written as powers of α as α, α2 = −α− 1 = α+1, α3 = α ·α2 = α(α+1) =
α2 + α = (α+ 1) + α = 2α+ 1 = 1.
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Thus, GF (22) = {0, 1, α, α2} has the following addition and multiplication tables:

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

· 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

5. Construction of GF (23) = F8: Let f(x) = x3 + x+ 1 ∈ Z2[x] and let α be a root
of f(x). Then GF (23) = { c2α2 + c1α+ c0 | c0, c1, c2 ∈ Z2 } where α3 + α+ 1 = 0.
The elements of GF (23) (using α as generator) are:

0, α, α2, α3 = α+ 1
α4 = α2 + α, α5 = α2 + α+ 1, α6 = α2 + 1, 1 (= α7).

Multiplication is carried out using the ordinary rules of exponents and the fact that
α7 = 1. The following Zech logarithm values can be used to construct the table for
addition: Z(1) = 3, Z(2) = 6, Z(3) = 1, Z(4) = 5, Z(5) = 4, Z(6) = 2, Z(7) = 0. For
example α3 + α5 = α3 · αZ(5−3) = α3 · α6 = α9 = α2.

Using strings of 0s and 1s to represent the elements, 0 = 000, 1 = 001, α = 010,
α + 1 = 011, α2 = 100, α2 + α = 110, α2 + 1 = 101, α2 + α + 1 = 111, yields the
following tables for addition and multiplication:

+ 000 001 010 011 100 101 110 111
000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

· 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011

The same field can be constructed using g(x) = x3 + x2 + 1 instead of f(x) =
x3 +x+1 and β as a root of g(x) (β3 +β2 +1 = 0). The elements (using β as generator)
are: 0, β, β2, β3 = β2 + 1, β4 = β2 + β + 1, β5 = β + 1, β6 = β2 + β, 1 (= β7).

The polynomial g(x) yields the following Zech logarithm values, which can be used
to construct the table for addition: Z(1) = 5, Z(2) = 3, Z(3) = 2, Z(4) = 6, Z(5) =
1, Z(6) = 4, Z(7) = 0. This field is isomorphic to the field defined using f(x) = x3+x+1.

6. Table 1 lists the irreducible polynomials of degree at most 8 in Z2[x]. For more
extensive tables of irreducible polynomials over certain finite fields, see [LiNi94].
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Table 1 Irreducible polynomials in Z2[x] of degree at most 8.

Each polynomial is represented by the string of its coefficients, beginning with the
highest power. For example, x3 + x+ 1 is represented by 1011.

degree 1: 10 11
degree 2: 111
degree 3: 1011 1101
degree 4: 10011 11001 11111
degree 5: 100101 101001 101111 110111 111011 111101
degree 6: 1000011 1001001 1010111 1011011 1100001 1100111

1101101 1110011 1110101
degree 7: 10000011 10001001 10001111 10010001 10011101 10100111

10101011 10111001 10111111 11000001 11001011 11010011
11010101 11100101 11101111 11110001 11110111 11111101

degree 8: 100011011 100011101 100101011 100101101 100111001 100111111
101001101 101011111 101100011 101100101 101101001 101110001
101110111 101111011 110000111 110001011 110001101 110011111
110100011 110101001 110110001 110111101 111000011 111001111
111010111 111011101 111100111 111110011 111110101 111111001

5.7 LATTICES

5.7.1 BASIC CONCEPTS

Definitions:

A lattice (L,∨,∧) is a nonempty set L closed under two binary operations ∨ (join)
and ∧ (meet) such that the following laws are satisfied for all a, b, c ∈ L:

• associative laws: a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c
• commutative laws: a ∨ b = b ∨ a a ∧ b = b ∧ a
• absorption laws: a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a.

Lattices L1 and L2 are isomorphic (as lattices) if there is a function ϕ:L1 → L2

that is one-to-one and onto L2 and preserves ∨ and ∧: ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) and
ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) for all a, b ∈ L1.

L1 is a sublattice of lattice L if L1 ⊆ L and L1 is a lattice using the same operations
as those used in L.

The dual of a statement in a lattice is the statement obtained by interchanging the
operations ∨ and ∧ and interchanging the elements 0 (lower bound) and 1 (upper
bound). (See §5.7.2.)

An order relation ≤ can be defined on a lattice so that a ≤ b means that a ∨ b = b,
or, equivalently, that a ∧ b = a. Write a < b if a ≤ b and a �= b. (See §2.7.1.)
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Facts:
1. If L is a lattice and a, b ∈ L, then a ∧ b and a ∨ b are unique.
2. Lattices as partially ordered sets: Every lattice is a partially ordered set using the
order relation ≤. (See §1.4.3; also see Chapter 11 for extended coverage.)
3. Every partially ordered set L in which glb {a, b} and lub {a, b} exist for all a, b ∈ L
can be regarded as a lattice by defining a ∨ b = lub {a, b} and a ∧ b = glb {a, b}.
4. The duality principle holds in all lattices: If a theorem is the consequence of the
definition of lattice, then the dual of the statement is also a theorem.
5. Lattice diagrams: Every finite lattice can be pictured in a poset diagram (Hasse
diagram), called a lattice diagram.
6. Idempotent laws: a ∨ a = a and a ∧ a = a for all a ∈ L.

Example:
1. The following table gives examples of lattices.

set ∨ (join) ∧ (meet)

N a ∨ b = lcm {a, b} a ∧ b = gcd{a, b}

N a ∨ b = max {a, b} a ∧ b = min {a, b}

Zn
2 (a1, . . . , an) ∨ (b1, . . . , bn) = (a1, . . . , an) ∨ (b1, . . . , bn) =

(max (a1, b1), . . . ,max (an, bn)) (min (a1, b1), . . . ,min (an, bn))

all subgroups H1 ∨H2 = the intersection of
of a group G all subgroups of G containing H1 ∧H2 = H1 ∩H2

H1 and H2

all subsets of set S A1 ∨A2 = A1 ∪A2 A1 ∧A2 = A1 ∩A2

5.7.2 SPECIALIZED LATTICES

Definitions:

A lattice L is distributive if the following are true for all a, b, c ∈ L:
• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

A lower bound (smallest element, least element) in a lattice L is an element 0 ∈ L
such that 0 ∧ a = 0 (equivalently, 0 ≤ a) for all a ∈ L.

An upper bound (largest element, greatest element) in a lattice L is an element
1 ∈ L such that 1 ∨ a = 1 (equivalently, a ≤ 1) for all a ∈ L.

A lattice L is bounded if L contains a lower bound 0 and an upper bound 1.

A lattice L is complemented if:
• L is bounded;
• for each a ∈ L there is an element b ∈ L (called a complement of a) such that
a ∨ b = 1 and a ∧ b = 0.

An element a in a bounded lattice L is an atom if 0 < a and there is no element b ∈ L
such that 0 < b < a.
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Facts:

1. Each of the distributive properties in a lattice implies the other.

2. Not every lattice is distributive. (See Example 1.)

3. If a lattice is not distributive, it must contain a sublattice isomorphic to one of the
two lattices in the following figure.

4. Every finite lattice is bounded: if L = {a1, . . . , an}, then

1 = a1 ∨ · · · ∨ an

and
0 = a1 ∧ · · · ∧ an.

5. Some infinite lattices are bounded, while others are not. (See Examples 2 and 3.)

6. In a complemented lattice, complements are not necessarily unique. See the lattice
in Example 4.

7. If L is a finite, complemented, distributive lattice and a ∈ L, then there is exactly
one set of atoms {a1, . . . , ak} such that a = a1 ∨ · · · ∨ ak.

Examples:

1. Neither lattice in Fact 3 is distributive. For example, in lattice L1,

d ∨ (b ∧ c) = d, but (d ∨ b) ∧ (d ∨ c) = b
and in L2,

d ∨ (b ∧ c) = d, but (d ∨ b) ∧ (d ∨ c) = a.

2. The lattice (N ,∨,∧) where a∨ b = max (a, b) and a∧ b = min (a, b) is not bounded;
there is a lower bound (the integer 0), but there is no upper bound.

3. The following infinite lattice is bounded. The element 1 is an upper bound and the
element 0 is a lower bound.

4. The lattice in Example 3 is complemented, but complements are not unique in that
lattice. For example, the element a1 has a2, a3, . . . as complements.

5. In lattice L1 of Fact 3, b and c are atoms. In the lattice of all subsets of a set S (see
Example 1), the atoms are the subsets of S of size 1.

c© 2000 by CRC Press LLC



5.8 BOOLEAN ALGEBRAS

Boolean algebra is a generalization of the algebra of sets and the algebra of logical
propositions. It forms an abstract model of the design of circuits.

5.8.1 BASIC CONCEPTS

Definition:

A Boolean algebra (B,+, ·, ′, 0, 1) consists of a set B closed under two binary opera-
tions, + (addition) and · (multiplication), and one monadic operation, ′ (complementa-
tion), and having two distinct elements, 0 and 1, such that the following laws are true
for all a, b, c ∈ B:
• commutative laws: a+ b = b+ a a · b = b · a
• distributive laws: a · (b+ c) = (a · b) + (a · c) a+ (b · c) = (a+ b) · (a+ c)
• identity laws: a+ 0 = a a · 1 = a
• complement laws: a+ a′ = 1 a · a′ = 0.

(George Boole, 1813–1864)

Notes: It is common practice to omit the “ · ” symbol in a Boolean algebra, writing ab
instead of a · b. The complement operation is also written using an overline: x′ = x.
By convention, complementation is done first, then multiplication, and finally addition.
For example, a+ bc′ means a+ (b(c′)).

The dual of a statement in a Boolean algebra is the statement obtained by interchanging
the operations + and · and interchanging the elements 0 and 1 in the original statement.

Boolean algebras B1 and B2 are isomorphic (as Boolean algebras) if there is a function
ϕ:B1 → B2 that is one-to-one and onto B2 such that for all a, b ∈ B1:
• ϕ(a+ b) = ϕ(a) + ϕ(b);
• ϕ(ab) = ϕ(a)ϕ(b);
• ϕ(a′) = ϕ(a)′.

An element a �= 0 in a Boolean algebra is an atom if the following holds: if xa = x,
then either x = 0 or x = a; that is, if x ≤ a, then either x = 0 or x = a (see Fact 1).

The binary operation NAND, written | , is defined by a | b = (ab)′.

The binary operation NOR, written ↓ , is defined by a ↓ b = (a+ b)′.

The binary operation XOR, written ⊕ , is defined by a⊕ b = ab′ + a′b.

Facts:

1. Every Boolean algebra is a bounded, distributive, complemented lattice where a∨b =
a + b and a ∧ b = ab. Hence, every Boolean algebra is a partially ordered set (where
a ≤ b if and only if a+ b = b, or, equivalently, ab = a or a′ + b = 1 or ab′ = 0).

2. The duality principle holds in all Boolean algebras: if a theorem is the consequence
of the definition of Boolean algebra, then the dual of the theorem is also a theorem.
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3. Structure of Boolean algebras: Every finite Boolean algebra is isomorphic to {0, 1}n
for some positive integer n. Hence every finite Boolean algebra has 2n elements. The
atoms are the n n-tuples of 0s and 1s with a 1 in exactly one position.

4. If B is a finite Boolean algebra and b ∈ B (b �= 0), there is exactly one set of atoms
a1, . . . , ak such that b = a1 + · · ·+ ak.

5. If a Boolean algebra B has n atoms, then B has 2n elements.

6. The following laws are true in all Boolean algebras B, for all a, b, c ∈ B:
• associative laws: a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c

(Hence there is no ambiguity in writing a+ b+ c and abc.)
• idempotent laws: a+ a = a, aa = a
• absorption laws: a(a+ b) = a, a+ ab = a
• domination (boundedness) laws: a+ 1 = 1, a0 = 0
• double complement (involution) law : (a′)′ = a
• DeMorgan’s laws: (a+ b)′ = a′b′, (ab)′ = a′ + b′

• uniqueness of complement: if a+ b = 1 and ab = 0, then b = a′.

7. Since every Boolean algebra is a lattice, every finite Boolean algebra can be pictured
using a partially ordered set diagram. (§11.1)

Examples:

1. {0, 1} is a Boolean algebra, where addition, multiplication, and complementation
are defined in the following tables:

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

x x′

0 1
1 0

2. If S is any set, then P(S) (the set of all subsets of S) is a Boolean algebra where
A1 +A2 = A1 ∪A2, A1 ·A2 = A1 ∩A2, A′ = A

and 0 = ∅ and 1 = S.

3. Given n variables, the set of all compound propositions in these variables (identified
with their truth tables) is a Boolean algebra where

p+ q = p ∨ q, p · q = p ∧ q, p = ¬p
and 0 is a contradiction (the truth table with only values F ) and 1 is a tautology (the
truth table with only values T ).

4. If B is any Boolean algebra, then Bn = { (a1, . . . , an) | ai ∈ B for all i } is a Boolean
algebra, where the operations are performed coordinatewise:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn);
(a1, . . . , an) · (b1, . . . , bn) = (a1 · b1, . . . , an · bn);
(a1, . . . , an)′ = (a′1, . . . , a

′
n).

In this Boolean algebra 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

5. The statements in each of the following pairs are duals of each other:
a+ b = cd, ab = c+ d;
a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c;
a+ 1 = 1, a0 = 0.

c© 2000 by CRC Press LLC



5.8.2 BOOLEAN FUNCTIONS

Definitions:

A Boolean expression in the variables x1, . . . , xn is an expression defined recursively
by:
• 0, 1, and all variables xi are Boolean expressions in x1, . . . , xn;
• if E and F are Boolean expressions in the variables x1, . . . , xn, then (EF ), (E+F ),

and E′ are Boolean expressions in the variables x1, . . . , xn.

A Boolean function of degree n is a function f : {0, 1}n → {0, 1}.
A literal is a Boolean variable or its complement.

A minterm of the Boolean variables x1, . . . , xn is a product of the form y1 . . . yn where
for each i, yi is equal to xi or x′i.

A maxterm of the Boolean variables x1, . . . , xn is a sum of the form y1 + · · ·+yn where
for each i, yi is equal to xi or x′i.

A Boolean function of degree n is in disjunctive normal form (DNF) (or sum-of-
products expansion) if it is written as a sum of distinct minterms in the variables
x1, . . . , xn. (Note: disjunctive normal form is sometimes called full disjunctive normal
form.)

A Boolean function is in conjunctive normal form (CNF) (or product-of-sums
expansion) if it is written as a product of distinct maxterms.

A set of operators in a Boolean algebra is functionally complete if every Boolean
function can be written using only these operators.

Facts:

1. Every Boolean function can be written as a Boolean expression.

2. There are 22n

Boolean functions of degree n. Examples of the 16 different Boolean
functions with two variables, x and y, are given in the following table.

x y 1 x+ y x+ y′ x′ + y x|y x y x⊕ y (x⊕ y)′ y′ x′ xy xy′ x′y x ↓ y 0
1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0
1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0
0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0
0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0

3. Every Boolean function (not identically 0) can be written in disjunctive normal
form. Either of the following two methods can be used:

(a) Rewrite the expression for the function so that no parentheses remain. For each
term that does not have a literal for a variable xi, multiply that term by xi +x′i.
Multiply out so that no parentheses remain. Use the idempotent law to remove
any duplicate terms or duplicate factors.

(b) Make a table of values for the function. For each row where the function has the
value 1, form a minterm that yields 1 in only that row. Form the sum of these
minterms.

4. Every Boolean function (not identically 1) can be written in conjunctive normal
form. Any of the following three methods can be used:
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(a) Write the negation of the expression in disjunctive normal form. Use DeMorgan’s
laws to take the negation of this expression.

(b) Make a table of values for the function. For each row where the function has the
value 0, form a minterm that yields 1 in only that row. Form the sum of these
minterms. Use DeMorgan’s laws to take the complement of this sum.

(c) Make a table of values for the function. For each row where the function has the
value 0, form a maxterm that yields 0 in only that row. Form the product of
these maxterms.

5. The following are examples of functionally complete sets, with explanations showing
how any Boolean function can be written using only these operations:

• {+ , · , ′ } disjunctive normal form uses only the operators +, · , and ′

• {+, ′ } DeMorgan’s law (a · b)′ = a′ + b′ allows the replacement of any
occurrence of a · b with an expression that does not use ·

• { · , ′ } DeMorgan’s law a+ b = (a′ · b′)′ allows the replacement of any
occurrence of a+ b with an expression that does not use +

• { | } write the expression for any function in DNF; use a′ = a | a,
a+ b = (a | a) | (b | b), and a · b = (a | b) | (a | b) to replace each
occurrence of ′ , + , and · with |

• { ↓ } write the expression for any function in DNF; use a′ = a ↓ a,
a+ b = (a ↓ b) ↓ (a ↓ b), and a · b = (a ↓ a) ↓ (b ↓ b) to replace
each occurrence of ′ , + , and · with ↓ .

6. The set {+ , · } is not functionally complete.

Examples:
1. The function f : {0, 1}3 → {0, 1} defined by f(x, y, z) = x(z′ + y′z) + x′ is a Boolean
function in the Boolean variables x, y, z. Multiplying out the expression for this function
yields f(x, y, z) = xz′ + xy′z + x′. In this form the second term, xy′z, is a minterm in
the three variables x, y, z. The first and third terms are not minterms: the first term,
xz′, does not use a literal for y, and the third term, x′, does not use literals for y and z.
2. Writing a Boolean function in disjunctive normal form: To write the function f
from Example 1 in DNF using Fact 3(a), replace the terms xz′ and x′ with equivalent
minterms by multiplying these terms by 1 (= a+ a′) for each missing variable a:

xz′ = xz′ · 1 = xz′(y + y′) = xyz′ + xy′z′;
x′ = x′ · 1 · 1 = x′(y + y′)(z + z′) = x′yz + x′yz′ + xy′z + xy′z′.

Therefore,
f(x, y, z) = x(z′ + y′z) + x′

= xz′ + xy′z + x′

= xyz′ + xy′z′ + xy′z + x′yz + x′yz′ + x′y′z + xy′z′

Alternatively, using Fact 3(b), the table of values for f yields 1 in all rows except
the row in which x = y = z = 1. Therefore minterms are obtained for the other rows,
yielding the same sum of seven minterms.
3. Writing a Boolean function in conjunctive normal form: Using Fact 4(a) to write
the function f(x, y) = xy′+x′y in CNF, first rewrite the negation of f in DNF, obtaining
f ′(x, y) = xy + x′y′. The negation of f ′ is f ′′(x, y) = f(x, y) = (x′ + y′)(x+ y).

Alternatively, using Fact 4(c), the function f has value 0 only when x = y = 1 and
x = y = 0. The maxterms that yield 0 in exactly one of these rows are x′ +y′ and x+y.
Therefore, in CNF f(x, y) = (x′ + y′)(x+ y).
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5.8.3 LOGIC GATES

Boolean algebra can be used to model circuitry, with 0s and 1s as inputs and outputs.
The elements of these circuits are gates that implement the Boolean operations.

Facts:
1. The following figure gives representations for the three standard Boolean operators,
+ , · , and ′ , together with representations for three related operators. (For example,
the AND gate takes two inputs, x and y, and produces one output, xy.)

2. Gates can be extended to include cases where there are more than two inputs. The
figure of Fact 1 also shows an AND gate and an OR gate with multiple inputs. These
correspond to x1x2 . . . xn and x1 + x2 + · · · + xn. (Since both operations satisfy the
associative laws, no parentheses are needed.)

Examples:
1. The gate diagram for a half-adder: A half-adder is a Boolean circuit that adds two
bits, x and y, producing two outputs:

a sum bit s = (x+ y)(xy)′ (s = 0 if x = y = 0 or x = y = 1; s = 1 otherwise);
a carry bit c = xy (c = 1 if and only if x = y = 1).

The gate diagram for a half-adder is given in the following figure. This circuit is an
example of a multiple output circuit since there is more than one output.
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2. The gate diagram for a full-adder: A full-adder is a Boolean circuit that adds three
bits (x, y, and a carry bit c) and produces two outputs (a sum bit s and a carry bit c′).
The full-adder gate diagram is given in the following figure.

5.8.4 MINIMIZATION OF CIRCUITS

Boolean expressions that appear to be different can yield the same combinatorial circuit.
For example, xyz+xyz′+x′y and y (as functions of x and y) have the same table of values
and hence yield the same circuit. (The first expression can be simplified to give the
second: xyz+xyz′+x′y = xy(z+z′)+x′y = xy ·1+x′y = xy+x′y = (x+x′)y = 1y = y.)

Definitions:

A Boolean expression is minimal (as a sum-of-products) if among all equivalent sum-
of-products expressions it has the fewest number of summands, and among all sum-
of-products expressions with that number of summands it uses the smallest number of
literals in the products.

A Karnaugh map for a Boolean expression written in disjunctive normal form is a
diagram (constructed using the following algorithm) that displays the minterms in the
Boolean expression.

Facts:

1. Minimization of circuits is an NP-hard problem.

2. Don’t care conditions: In some circuits, it may be known that some elements of the
input set for the Boolean function will never be used. Consequently, the values of the
expression for these elements is irrelevant. The values of the circuit function for these
unused elements of the input set are called don’t care conditions, and the values can be
arbitrarily chosen to be 0 or 1. The blocks in the Karnaugh map where the function
values are irrelevant are marked with d. In the simplification process of the Karnaugh
map, 1s can be substituted for any or all of the ds in order to cover larger blocks of
boxes and achieve a simpler equivalent expression.

Algorithm:
There is an algorithm for minimizing Boolean expressions by systematically grouping
terms together. When carried out visually, the method uses a Karnaugh map (Maurice
Karnaugh, born 1924). When carried out numerically using bit strings, the method is
called the Quine-McCluskey method (Willard Quine, born 1908, Edward McCluskey,
born 1929).

1. Karnaugh map: To minimize a Boolean expression:

(a) Write the Boolean expression in disjunctive normal form.

(b) Obtain the Karnaugh map for this Boolean expression. The layout of the table
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depends on the number of variables under consideration.
The grids for Boolean expressions with two variables (x and y), three variables

(x, y, and z), and four variables (w, x, y, and z) are shown in the following figure.
Each square in each grid corresponds to exactly one minterm — the product of the row
heading and the column heading. For example, the upper right box in the grid of part
(a) of the figure represents the minterm xy′; the lower right box in the grid of part (c)
of the figure represents w′xyz′.

The headings are placed in a certain order — adjacent squares in any row (or
column) differ in exactly one literal in their row headings (or column headings). The
first and last squares in any row (or column) are to be regarded as adjacent. (The
variable names can be permuted; for example, in part (b) of the figure, the row headings
can be y and y′ and the column headings can be xz, xz′, x′z′, and x′z. The column
headings could also have been written in order as yz, y′z, y′z′, yz′ or y′z, y′z′, yz′, yz.)

The Karnaugh map for the Boolean expression is obtained by placing a checkmark
in each square corresponding to a minterm in the expression.

(c) Find the best covering. A geometric version of the distributive law is used to “cover”
groups of the adjacent marked squares, with every marked square covered at least once
and each group covered being as large as possible. The possible ways of covering squares
depends on the number of variables.

(For example, working with two variables and using the distributive law, x′y+x′y′ =
x′(y+ y′) = x′1 = x′. This corresponds to covering the two boxes in the bottom row of
the first 2 × 2 grid in the following figure and noting that the only literal common to
both boxes is x′.
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Similarly, working with three variables, xyz′ +xy′z′ +x′yz′ +x′y′z′ = xz′(y+y′)+
x′z′(y + y′) = xz′ + x′z′ = (x+ x′)z′ = z′. This corresponds to covering the four boxes
in the second and third columns of the third 2× 4 grid in the second row of the figure
and noting that z′ is the only common literal.)

The following table shows what groups of boxes can be covered, for expressions
with 2, 3, and 4 variables. These are the combinations whose expressions can be simpli-
fied to a single minterm. Examples for 2, 3, and 4 variables are shown in the previous
figure. (The method is awkward to use when there are more than 4 variables.)

# variables groups of boxes that can be covered

2 1×1, 1×2, 2×1, 2×2
3 1×1, 1×2, 1×4, 2×1, 2×2, 2×4
4 1×1, 1×2, 1×4, 2×1, 2×2, 2×4, 4×1, 4×2, 4×4

To obtain the minimization, cover boxes according to the following rules:
• cover all marked boxes at least once
• cover the largest possible blocks of marked boxes
• do not cover any unmarked box
• use the fewest blocks possible.

(d) Find the product of common literals for each of the blocks and form the sum of
these products to obtain the minimization.

2. Quine-McCluskey method:

(a) Write the Boolean expression in disjunctive normal form, and in each summand list
the variables in alphabetical order. Identify with each term a bit string, using a 1 if the
literal is not a complement and 0 if the literal is a complement. (For example, v′wx′yz
is represented by 01011.)

(b) Form a table with the following columns:
column 1: Make a numbered list of the terms and their bit strings, beginning with

the terms with the largest number of uncomplemented variables. (For example,
wxy′z precedes wx′yz′.)

column 2: Make a list of pairs of terms from column 1 where the literals in the
two terms differ in exactly one position. Use a distributive law to add and
simplify the two terms and write the numbers of these terms and the sum of
the terms in the second column, along with its bit string, using “−” in place of
the variable that no longer appears in the sum. (For example, xyz′ and xy′z′

can be combined to yield xz′ with bit string 1− 0.)
columns 3, 4, etc.: To obtain column 3 combine the terms in column 2 in pairs

according to the same procedure as that used to construct column 2. Repeat
this process until no more terms can be combined.

(c) Form a table with a row for each of the terms that cannot be used to form terms with
fewer variables and a column for each of the original terms in the disjunctive normal
form of the original expression. Mark the square in the ij-position if the minterm in
column j could be a summand for the term in row i.

(d) Find a set of rows, with as few rows as possible, such that every column has been
marked at least once in at least one row. The sum of the products labeling these rows
minimizes the original expression.
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Examples:

1. Simplify w′x′y + w′z(xy + x′y′) + w′x′z′ + w′xyz′ + wx′y′z′ (an expression in four
variables) using a Karnaugh map.

First write the expression in disjunctive normal form:

w′x′y + w′z(xy + x′y′) + w′x′z′ + w′xyz′ + wx′y′z′ =
w′x′yz + w′x′yz′ + w′xyz + w′x′y′z + w′x′y′z′ + w′xyz′ + wx′y′z′

Next, draw its Karnaugh map. See part (a) of the following figure. A covering is
given in part (b) of the figure. Note that in order to use larger blocks, some squares
have been covered more than once. Also note that w′x′yz, w′xyz, w′x′yz′, and w′xyz′

are covered with one 2× 2 block rather than with two 1× 2 blocks. In the three blocks
the common literals are: w′x′, w′y, and x′y′z′.

Finally, form the sum of these products: w′x′ + w′y + x′y′z′.

2. Minimize w′xy′z+wxyz′+wx′yz′+w′x′yz+wxyz+w′x′y′z+w′xyz (an expression
in four variables) using the Quine-McCluskey method.

Step (b) of the Quine-McCluskey method yields the following table.

1 wxyz 1111 1, 2 wxy 111− 3, 5, 6, 7 w′z 0−−1
2 wxyz′ 1110 1, 3 xyz −111
3 w′xyz 0111 2, 4 wyz′ 1−10
4 wx′yz′ 1010 3, 5 w′yz 0−11
5 w′x′yz 0011 3, 6 w′xz 01−1
6 w′xy′z 0101 5, 7 w′x′z 00−1
7 w′x′y′z 0001 6, 7 w′y′z 0−01

The four terms w′z, wxy, xyz, wyz′ were not used in combining terms, so they become
the names of the rows in the following table.

wxyz wxyz′ w′xyz wx′yz′ w′x′yz w′xy′z w′x′y′z
w′x

√ √ √ √

wxy
√ √

xyz
√ √

wyz′
√ √

There are two ways to cover the seven minterms:
w′x, wxy, wyz′ or w′x, xyz, wyz′.

This yields two ways to minimize the original expression:
w′x+ wxy + wyz′ and w′z + xyz + wyz′.
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INTRODUCTION

Concepts from linear algebra play an important role in various applications of discrete
mathematics, as in coding theory, computer graphics, generation of pseudo-random
numbers, graph theory, and combinatorial designs. This chapter discusses fundamental
concepts of linear algebra, computational aspects, and various applications.

GLOSSARY
access (of a class): The class Ci of vertices has access to class Cj if either i = j or

there is a path from a vertex in Ci to a vertex in Cj .

adjoint: See Hermitian adjoint.

algebraic multiplicity : given an eigenvalue, the multiplicity of the eigenvalue as a
root of the characteristic equation.

augmented matrix (of a linear system): the matrix obtained by appending the right-
hand side vector to the coefficient matrix as its rightmost column.

back substitution: a procedure for solving an upper triangular linear system.

basic class (of a matrix): a class such that the Perron root of the corresponding
principal submatrix equals that of the entire matrix.

basis: an independent spanning set of vectors in a vector space.

characteristic equation: for a square matrix A, the equation pA(λ) = 0, where pA(λ)
is the characteristic polynomial of A.

characteristic polynomial: for a square matrix A, the polynomial (in the indefinite
symbol λ) given by pA(λ) = det(λI −A).

Cholesky decomposition: expressing a matrix A as A = LLT , where L is lower
triangular and every entry on the main diagonal of L is positive.

circulant: a matrix in which every row is obtained by a single cyclic shift of the
previous row.

class (of a matrix): a maximal set of row indices such that the corresponding vertices
have mutual access in the directed graph of the matrix.

complete pivoting : an implementation of Gaussian elimination in which a pivot of
largest magnitude is selected at each step.

condition number: given a matrix A, the number κ(A) = ‖A‖ ‖A−1‖.
conjugate sequence (of a sequence): the sequence whose nth term is the number of

terms not less than n in the given sequence.

dependent set: a set of vectors in a vector space that are not independent.

determinant: given an n× n matrix A, detA =
∑

σ∈Sn
sgn(σ) a1σ(1)a2σ(2) . . . anσ(n),

where Sn is the symmetric group on n elements and the coefficient sgn(σ) is the
sign of the permutation σ: 1 if σ is an even permutation and −1 if σ is an odd
permutation.

diagonal matrix: a square matrix with nonzero elements only on the main diagonal.

diagonalizable matrix: a square matrix that is similar to a diagonal matrix.

difference (of matrices of the same dimensions): the matrix each of whose elements
is the difference between corresponding elements of the original matrices.
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dimension: for a vector space V , the number of vectors in any basis for V .

directed graph (of a matrix A): the graph G(A) with vertices corresponding to the
rows of A and an edge from i to j whenever aij is nonzero.

direct sum (of subspaces): given subspaces U and W , the sum of subspaces in which
U and W have only the zero vector in common.

distance (between vectors): given vectors v and w, the length of the vector v − w.

dominant eigenvalue: given a matrix, an eigenvalue of the matrix of maximum mod-
ulus.

dot product (of real vectors): given real vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),

the number x · y =
n∑

i=1

xiyi.

doubly stochastic matrix: a matrix with all entries nonnegative and with all row
and column sums equal to 1.

eigenvalue: given a square matrix A, a scalar λ such that Ax = λx for some nonzero
vector x.

eigenvector: given a square matrix A, a nonzero vector x such that the vector Ax is
a scalar multiple of x.

eigenspace: given a square matrix A, the vector space {x | Ax = λx } for some
scalar λ.

exponent (of a matrix): given a matrix A, the least positive integer m, if it exists,
such that Am has all positive entries.

fill: in Gaussian elimination, those nonzero entries created in the triangular factors of
a matrix corresponding to zero entries in the original matrix.

final class: given a matrix, a class of the matrix with access to no other class.

flop: a multiply-add operation involving a single multiplication followed by a single
addition.

forward substitution: a procedure for solving a lower triangular linear system.

fully indecomposable matrix: a matrix that is not partly decomposable.

Gaussian elimination: a solution procedure that at each step uses one equation to
eliminate one variable from the system of equations.

geometric multiplicity : the dimension of the eigenspace.

Geršgorin discs: regions in the complex plane that collectively are guaranteed to
contain all the eigenvalues of a given matrix.

growth factor: a ratio that measures how large the entries of a matrix become during
Gaussian elimination.

Hermitian adjoint: given a matrix A, the matrix A∗ obtained from the transpose AT

by replacing each entry by its complex conjugate.

Hermitian matrix: a complex matrix whose transpose is its (elementwise) complex
conjugate.

idempotent matrix: a matrix A such that A2 = A.

identity matrix: a diagonal matrix in which each diagonal element is 1.

ill-conditioned system: a linear system Ax = b whose solution x is extremely sensi-
tive to errors in the data A and b.
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independent set: a set of vectors in a vector space that is not dependent.

index of cyclicity : for a matrix, the number of eigenvalues with maximum modulus.

inner product: a field-valued function of two vector variables used to define a notion
of orthogonality (that is, perpendicularity). In real or complex vector spaces it is
also used to introduce length, distance, and convergence.

inverse: given a square matrix A, the square matrix A−1 whose product with the
original matrix is the identity matrix.

invertible matrix: a matrix that has an inverse.

irreducible matrix: a matrix that is not reducible.

isomorphic (vector spaces): vector spaces that are structurally identical.

kernel (of a linear transformation): the set of all vectors that are mapped to the zero
vector by the linear transformation.

length (of a vector): the square root of the inner product of the vector with itself.

linear combination (of vectors): given vectors v1, v2, . . . , vt, a vector of the form
a1v1 + a2v2 + · · ·+ atvt, where the ai are scalars.

linear operator: a linear transformation from a vector space to itself.

linear system: a set of m linear equations in n variables x, represented by Ax = b;
here A is the coefficient matrix and b is the right-hand side vector.

linear transformation: a function T from one vector space over F to another vector
space over F satisfying T (au+v) = aT (u)+T (v) for all vectors u, v and all scalars a.

lower triangular matrix: a matrix in which all nonzero elements occur either on or
below the diagonal.

LU decomposition: expressing a matrix A as the product A = LU , where L is unit
lower triangular and U is upper triangular.

Markowitz pivoting : a simple greedy strategy for reducing the number of nonzero
entries introduced during the LU decomposition of a sparse matrix.

matrix (of a linear transformation): given a linear transformation T , a matrix associ-
ated with T that represents T with respect to a fixed basis.

minimal polynomial: for a matrix A, the monic polynomial q(·) of minimum degree
such that q(A) = 0.

minimum degree algorithm: a version of the Markowitz pivoting strategy for sym-
metric coefficient matrices.

minor: the determinant of a square submatrix of a given matrix.

modulus: the absolute value of a complex number.

nilpotent matrix: a matrix A such that Ak = 0 for some positive integer k.

nonnegative matrix: a matrix with each entry nonnegative.

nonsingular matrix: a matrix that has an inverse.

normal matrix: a matrix A such that AA∗ = A∗A (A∗ is the Hermitian adjoint of A).

nullity (of a linear transformation): the dimension of the kernel of the linear transfor-
mation.

nullity (of a matrix): the dimension of the null space of the matrix.

null space (of a matrix A): the set of all vectors x for which Ax = 0.
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numerically stable algorithm: an algorithm whose accuracy is not greatly harmed
by roundoff errors.

numerically unstable algorithm: an algorithm that can return an inaccurate solu-
tion even when the solution is relatively insensitive to errors in the data.

orthogonal matrix: a real square matrix whose inverse is its transpose.

orthogonal set (of vectors): a set of vectors in which any two distinct vectors have
inner product zero.

orthonormal set (of vectors): a set of unit length orthogonal vectors.

partial pivoting : an implementation of Gaussian elimination which at step k selects
the pivot of largest magnitude in column k.

partly decomposable (matrix): an n× n matrix containing a zero submatrix of size
k × (n− k) for some 1 ≤ k ≤ n− 1.

permanent (of an n×n matrix A): per(A) =
∑

σ∈Sn
a1σ(1)a2σ(2) . . . anσ(n), where Sn

is the symmetric group on n elements.

permutation matrix: a square 0-1 matrix in which the entry 1 occurs exactly once
in each row and exactly once in each column.

Perron root: the spectral radius of a nonnegative matrix.

pivot: the coefficient of the eliminated variable in the equation used to eliminate it.

positive definite matrix: a Hermitian matrix A such that x∗Ax > 0 for all x 
= 0.

positive matrix: a matrix with each entry positive.

positive semidefinite matrix: a Hermitian matrix A such that x∗Ax ≥ 0 for all x.

power (of a square matrix): the square matrix obtained by multiplying the matrix by
itself the required number of times.

primitive matrix: a matrix with a finite exponent.

principal minor (of a matrix): the determinant of a principal submatrix of the matrix.

principal submatrix (of a matrix A): the matrix obtained from A by deleting all but
a specified set of rows and the same set of columns.

product (of matrices): for an m × n matrix A and an n × p matrix B, the m × p
matrix AB whose ij-entry is the scalar product of row i of A and column j of B.

range (of a linear transformation T ): the set of all vectors w for which T (v) = w has
a solution.

rank (of a linear transformation T ): the dimension of the range of T .

rank (of a matrix): the maximum number of linearly independent rows (or columns)
in the matrix.

reducible matrix: a matrix A with aij = 0 for all i ∈ S, j 
∈S, for some set S.

roundoff errors: the errors associated with storing and computing numbers in finite
precision arithmetic on a digital computer.

row stochastic matrix: a matrix with all entries nonnegative and row sums 1.

scalar: an element of a field.

scalar multiple (of a matrix): the matrix obtained by multiplying each element of
the original matrix by the scalar.

scalar product: See dot product.

c© 2000 by CRC Press LLC



similar matrices: square matrices A and B satisfying the equation P−1BP = A for
some invertible matrix P .

singular matrix: a matrix that has no inverse.

singular values (of a matrix A): the positive square roots of the eigenvalues of AA∗,
where A∗ is the Hermitian adjoint of A.

skew-Hermitian matrix: a matrix equal to the negative of its Hermitian adjoint.

skew-symmetric matrix: a matrix equal to the negative of its transpose.

span (of a set of vectors): all vectors obtainable as linear combinations of the given
vectors.

spanning set: a set of vectors in a vector space V whose span equals V .

sparse matrix: a matrix that has relatively few nonzero entries.

spectral radius (of a matrix): the maximum modulus of an eigenvalue of the matrix.

square matrix: a matrix having the same number of rows and columns.

strictly diagonally dominant matrix: a square matrix each of whose diagonal ele-
ments exceeds in modulus the sum of the moduli of all other elements in that row.

strictly totally positive matrix: a matrix with all minors positive.

submatrix (of a matrix A): the matrix obtained from A by deleting all but a certain
set of rows and a certain set of columns.

subspace: a vector space within a vector space.

sum (of matrices): for two matrices of the same dimensions, the matrix each of whose
elements is the sum of the corresponding elements of the original matrices.

sum (of subspaces): given subspaces U and W , the subspace consisting of all possible
sums u+ w where u ∈ U and w ∈W .

symmetric matrix: a matrix that equals its transpose.

term rank (of a 0-1 matrix): the maximum number of 1s such that no two are in the
same row or column.

trace: given a square matrix, the sum of the diagonal elements of the matrix.

transpose (of a matrix): for a matrix A, the matrix AT whose columns are the rows
of the original matrix.

tridiagonal matrix: a matrix whose nonzero entries are either on the main diagonal
or immediately above or below the main diagonal.

unitary matrix: a square matrix whose inverse is its Hermitian adjoint.

unit triangular matrix: a (lower or upper) triangular matrix having all diagonal
entries 1.

upper triangular matrix: a matrix in which all nonzero elements occur either on or
above the main diagonal.

vector: an individual object of a vector space.
vector space: a collection of objects that can be added and multiplied by scalars,

always yielding another object in the collection.

well-conditioned system: a linear system Ax = b whose solution x is relatively
insensitive to errors in the data A and b.

0-1 matrix: a matrix with each entry either 0 or 1.
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6.1 VECTOR SPACES

The concept of a “vector” comes initially from the physical world, where a vector is a
quantity having both magnitude and direction (for example, force and velocity). The
mathematical concept of a vector space generalizes these ideas, with applications in
coding theory, finite geometry, cryptography, and other areas of discrete mathematics.

6.1.1 BASIC CONCEPTS

Definitions:

A vector space over a field F (§5.6.1) is a triple (V,⊕, ·) consisting of a set V and two
operations, ⊕ (vector addition) and · (scalar multiplication), such that:

• (V,⊕) is an abelian group (§5.2.1); i.e., ⊕ is a function (u, v)→ u⊕v from V ×V
to V such that:

(u⊕ v)⊕ w = u⊕ (v ⊕ w) for all u, v, w ∈ V ;
there is a vector 0 such that v ⊕ 0 = v for all v ∈ V ;
for each v ∈ V there is −v ∈ V such that v ⊕ (−v) = 0;
u⊕ v = v ⊕ u for all u, v ∈ V ;

• the operation · is a function (a, v)→ a·v from F×V to V such that for all a, b ∈ F
and u, v ∈ V the following properties hold:

a · (b · v) = (ab) · v;
(a+ b) · v = (a · v)⊕ (b · v);
a · (u⊕ v) = (a · u)⊕ (a · v);
1 · v = v.

Here, ab and a+ b represent multiplication and addition of elements a, b ∈ F .

The scalars are the elements of F , the vectors are the elements of V , and the set V
itself is often also called the vector space.

The difference of two vectors u and v is the vector u− v = u⊕ (−v) where −v is the
negative of v in the abelian group (V,⊕).

Notation: While vector addition ⊕ and field addition + can be quite different, it is
customary to use the same notation + for both. It is also customary to write av instead
of a · v, and to use the symbol 0 for the additive identities of the vector space V and
the field F .

Facts:
Assume that V is a vector space over F .

1. a0 = 0 and 0v = 0 for all a ∈ F and v ∈ V .

2. (−1)v = −v for all v ∈ V .

3. If av = 0 for a ∈ F and v ∈ V , then either a = 0 or v = 0.

4. Cancellation property : For all u, v, w ∈ V , if u+ v = w + v, then u = w.

5. a(u− v) = au− av for all a ∈ F and u, v ∈ V .
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Examples:
1. Force vectors: Forces in the plane can be represented by geometric vectors such as F1

and F2 in part (a) of the following figure; addition of these vectors is carried out using
the so-called parallelogram law. By introducing a coordinate system and locating the
initial point of each directed line segment at the origin (0, 0), each geometric vector can
be named by its terminal point. Thus, a vector in the plane becomes a pair (x, y) ∈ R2 of
real numbers. The parallelogram law of addition translates into componentwise addition
(part (c) of the figure), while stretching (respectively, shrinking, negating) translates to
componentwise multiplication by a real number r > 1 (respectively, 0 < r < 1, r = −1).
Three-dimensional force vectors are similarly represented using triples (x, y, z) ∈ R3.

2. Euclidean space: Generalizing Example 1, n-dimensional Euclidean space consists
of all n-tuples of real numbers Rn = { (x1, x2, . . . , xn) | xi ∈ R}.
3. If F is any field, then Fn = { (x1, x2, . . . , xn) | xi ∈ F } is a vector space, where
addition and scalar multiplication are componentwise:

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)
a(x1, x2, . . . , xn) = (ax1, ax2, . . . , axn)

where a ∈ F . When F = R, these are the vectors mentioned in Examples 1 and 2.
4. A vector space over Z2: V consists of the 128 subsets of the set {1, 2, . . . , 7}
as represented by binary 7-tuples; for example, the subset {1, 4, 5, 7} corresponds to
(1, 0, 0, 1, 1, 0, 1) and the subset {1, 2, 3, 4} to (1, 1, 1, 1, 0, 0, 0). The operations on V are
componentwise addition and scalar multiplication mod 2. In this vector space, the sum
of two members of V corresponds to the symmetric difference (§1.2.2) of the associated
sets. (This example is a special case of Example 3.)
5. A finite affine plane over Z5: V consists of all pairs (x, y) where x, y ∈ Z5 and
where addition and scalar multiplication are componentwise modulo 5. This special
case of Example 3 arises in finite geometry where the 25 members of V are thought
of as “points” and the sets of solutions to equations of the form ax + by = c (where
a, b, c ∈ Z5 with one of a or b 
= 0) are viewed as “lines”.
6. Infinite binary sequences: V consists of all infinite binary sequences { (s1, s2, . . .) |
si ∈ Z2 } where addition and multiplication are componentwise mod 2. As in Example 4,
each s ∈ V may be viewed of as a subset of the positive integers, but each s may also
be viewed as a potential “message” or “data” stream; for example, each group of 7
consecutive members of s could represent a letter in the 7-bit ASCII code.
7. V = Fm×n, the set of all m × n matrices over F , is a vector space, where vector
addition is the usual matrix addition and scalar multiplication is the usual scalar-by-
matrix multiplication (§6.3.2). When m = 1, this reduces to Example 3.
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8. Let V = E be a field and F a subfield. Then V is a vector space over F where
vector addition and scalar multiplication are the addition and multiplication of E. In
particular, the finite field Fq of prime power order q = pn is a vector space over the
subfield Fp.
9. Let V = F [x], the set of all polynomials (§5.5.2) over F in an indeterminate x.
Then V is a vector space over F , where addition is ordinary polynomial addition and
scalar multiplication is the usual scalar-by-polynomial multiplication.
10. For a nonempty set X and a given vector space U over F , let V denote the set of
all functions from X to U . The sum f + g of two vectors (functions) f, g ∈ V is defined
by (f + g)(x) = f(x) + g(x) for all x ∈ X and the scalar multiplication af of a ∈ F by
f ∈ V is defined by (af)(x) = af(x). (For specific cases of this general vector space,
see §6.1.2, Examples 13–15.)

6.1.2 SUBSPACES

Definitions:

A subspace of a vector space V is a nonempty subset W of V that is a vector space
under the addition and scalar multiplication operations inherited from V .

The sum of two subspaces U,W ⊆ V is the set {u+w | u ∈ U, w ∈W }. If U∩W = {0},
their sum is called the direct sum, denoted U ⊕W .

If A is an m× n matrix over F , the null space NS(A) of A is {x ∈ Fn×1 | Ax = 0 }.
The null space of A is also called the right null space when contrasted with the left
null space LNS(A) defined by { y ∈ F 1×m | yA = 0 }.

Facts: Assume that V is a vector space over F .
1. W ⊆ V is a subspace of V if and only if W 
= ∅ and for all a, b ∈ F and u, v ∈ W ,
au+ bv ∈W .
2. W ⊆ V is a subspace of V if and only if W 
= ∅ and for all a ∈ F and u, v ∈ W ,
u+ v ∈W and au ∈W .
3. Every subspace of V contains 0, the zero vector.
4. The sets {0} and V are subspaces of V .
5. The intersection of any collection of subspaces of V is a subspace of V .
6. The sum of any collection of subspaces of V is a subspace of V .
7. Each member of U ⊕W can be expressed as a sum u+w for a unique u ∈ U and a
unique w ∈W .
8. The set of solutions to a homogeneous linear equation in the unknowns x1, x2, . . . , xn

is a subspace of Fn. Namely, for any fixed (a1, a2, . . . , an) ∈ Fn, the set W = {x ∈
Fn | a1x1 + a2x2 + · · ·+ anxn = 0 } is a subspace of Fn.
9. The set of solutions to any collection of homogeneous linear equations in the un-
knowns x1, x2, . . . , xn is a subspace of Fn. In particular, if W is a subspace of Fn then
the set of all x = (x1, x2, . . . , xn) ∈ Fn satisfying a1x1 + a2x2 + · · · + anxn = 0 for all
(a1, a2, . . . , an) ∈ W is a subspace of V called the orthogonal complement of W and
denoted W⊥.
10. The null space NS(A) of an m× n matrix A over F is a subspace of Fn×1.
11. The left null space LNS(A) of an m × n matrix A is a subspace of F 1×m and
equals (NS(AT ))T where T denotes transpose.
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Examples:
1. The set of all 3-tuples of real numbers of the form (a, b, 2a+ 3b) where a, b ∈ R is a
subspace of R3. This subspace can also be described as the set of solutions (x, y, z) to
the homogeneous linear equation 2x+ 3y − z = 0.
2. The set of all 4-tuples of real numbers of the form (a,−a, 0, b) where a, b ∈ R is a sub-
space of R4. This subspace can also be described as the set of solutions (x1, x2, x3, x4)
to the pair of equations x1 + x2 = 0 and x3 = 0.
3. For V = Z2

5 , the set of all solutions to the equation x+ 2y = 0 forms a subspace. It
consists of the finite set {(0, 0), (3, 1), (1, 2), (4, 3), (2, 4)} and can also be described as
the set of all pairs in V of the form (3a, a). The set S of solutions to x+2y = 1, namely
{(1, 0), (4, 1), (2, 2), (0, 3), (3, 4)}, is not a subspace of V since for example (1, 0)+(4, 1) =
(0, 1) 
∈S. However S is a “line” in the affine plane described in Example 5 of §6.1.1.
4. In the vector space V = Z7

2 , the set of 7-tuples with an even number of 1s is a
subspace. This subspace can also be described as the collection of all members of V
whose components sum to 0.
5. Coding theory : In the vector space Fn over the finite field F = GF (q), a linear code
(§14.2) is simply any subspace of Fn. In particular, an (n, k) code is a k-dimensional
subspace of Fn.
6. Binary codes: A linear binary code is any subspace of the vector space Fn where F
is the finite field on two elements, GF (2). Generalizing Example 4, the set of all binary
n-tuples with an even number of 1s is a subspace of Fn and so is a linear binary code.
7. Consider the undirected graph (§8.1) in the following figure, where the edges have
been labeled with the integers {1, 2, . . . , 7}. Associate with this graph the vector space
V = Z7

2 where, as in Example 4 (§6.1.1), each binary 7-tuple is identified with a subset
of edges. One subspace W of V , called the cycle space of the graph, corresponds to the
(edge-disjoint) union of cycles in the graph. For example, (1, 1, 0, 1, 0, 1, 1) ∈ W as it
corresponds to the cycle 1, 2, 6, 7, 4, and so is (1, 1, 1, 0, 1, 1, 1) which corresponds to the
edge-disjoint union of cycles 1, 2, 3 and 5, 6, 7. The sum of these two members of W is
(0, 0, 1, 1, 1, 0, 0) which corresponds to the cycle 3, 4, 5.

8. The set of n× n symmetric matrices (§6.3.1) over a field F is a subspace of Fn×n,
and so is the set of n× n upper triangular matrices (§6.3.1) over F .
9. For an m×m matrix A over F and λ ∈ F , the setW = {X ∈ Fm×n | AX = λX } is
a subspace of Fm×n. (This space is related to the eigenspaces of A discussed in §6.5.2.)
10. For a given n × n matrix A over F , the set W = {X ∈ Fn×n | XA = AX } is a
subspace of Fn×n. (This is the space of matrices that commute with A.)
11. Let field E be a vector space over subfield F , and let K denote the set of all
elements α ∈ E that satisfy a polynomial equation of the form f(α) = 0 for some
nonzero f(x) ∈ F [x]. Then K is a subfield of E containing F (the field of algebraic
elements of E over F ) and consequently is a subspace of E over F . (See §5.6.2.)
12. For each fixed n ≥ 1, the set of all polynomials of degree ≤ n is a subspace of F [x].
(See §6.1.1 Example 9.)
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13. In §6.1.1 Example 10, take X = [a, b] where a, b ∈ R with a < b, and take U = R
as a vector space over itself. The resulting V , the set of all real-valued functions on
[a, b], is a vector space. The set C[a, b] of continuous real-valued functions on [a, b] is a
subspace of V .

14. In §6.1.1 Example 10, take X = {1, 2, . . . , 7} and take U = Z2 as a vector space
over itself. The resulting V , the set of all functions from {1, 2, . . . , 7} to Z2, can be
thought of as the vector space of binary 7-tuples V = Z7

2 .

15. In §6.1.1 Example 10, take both X and U to be vector spaces over F . Then V is
the vector space of all functions from X to U . The collection of those T ∈ V satisfying
T (aα + bβ) = aT (α) + bT (β) for all a, b ∈ F and α, β ∈ X is a subspace of V . (This
space is the space of linear transformations considered in §6.2.)

6.1.3 LINEAR COMBINATIONS, INDEPENDENCE, BASIS, AND DIMENSION

Definitions:

If v1, v2, . . . , vt are vectors from a vector space V over F , then a vector w ∈ V is a
linear combination of v1, v2, . . . , vt if w = a1v1 + a2v2 + · · · + atvt for some scalars
ai ∈ F . The zero vector is considered a linear combination of ∅.
For S ⊆ V , the span of S, denoted Span(S), is the set of all (finite) linear combinations
of members of S; that is, Span(S) consists of all finite sums a1v1 + a2v2 + · · · + atvt

where vi ∈ S and ai ∈ F . (The span of the empty set is taken to be {0}.) Span(S) is
also called the space generated or spanned by S. (See Fact 1.)

The row space RS(A) of an m× n matrix A over F (§6.3.1) is Span(R1, R2, . . . , Rm),
where R1, R2, . . . , Rm are the rows of A viewed as vectors in F 1×n.

The column space CS(A) of A is Span(C1, C2, . . . , Cn), where C1, C2, . . . , Cn are the
columns of A.

A subset S ⊆ V is called a spanning set for V if Span(S) = V .

A subset S ⊆ V is (linearly) independent if every finite subset {v1, v2, . . . , vt} of S
has the property that the only scalars a1, a2, . . . , at satisfying a1v1+a2v2+· · ·+atvt = 0
are a1 = a2 = · · · = at = 0.

A subset S ⊆ V is (linearly) dependent if it is not independent.

A basis for V is an independent spanning set.

A vector space V is finite dimensional if it has a finite basis; otherwise, V is infinite
dimensional.

The dimension, dimV , of a vector space V is the cardinality of any basis for V . (See
Fact 8.)

If B = (v1, v2, . . . , vn) is an ordered basis for V , then the coordinates of v with respect
to B are the scalars a1, a2, . . . , an such that v = a1v1 +a2v2 + · · ·+anvn. (See Fact 14.)
The coordinate vector [v]B of v with respect to B (written as a column) is [v]B =
(a1, a2, . . . , an)T where T denotes transpose (§6.3.1).
Note: Some writers distinguish between the coordinates written as a row and as a
column, calling the row (a1, a2, . . . , an) the coordinate vector of v with respect to B and
the column (a1, a2, . . . , an)T the coordinate matrix of v with respect to B.
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The row rank of a matrix A over F is dimRS(A), and the column rank of A is
dimCS(A). The rank of A is the size of the largest square submatrix of A with
nonzero determinant (§6.3.4); that is, rank A = r if there exists an r × r submatrix
of A whose determinant is nonzero, and every t× t submatrix of A with t > r has zero
determinant.

The nullity of a matrix A is dimNS(A).

Two vector spaces V and U over the same field F are isomorphic if there exists a
bijective mapping T :V → U such that T (v+w) = T (v) + T (w) and T (av) = aT (v) for
all v, w ∈ V and a ∈ F . The mapping T is called an isomorphism.

Facts:

1. Span(S) is a subspace of V . In particular, RS(A) is a subspace of F 1×n and CS(A)
is a subspace of Fm×1.

2. Span(S) is the intersection of all subspaces of V that contain S; thus, Span(S)
is the smallest subspace of V containing S in that it lies inside every subspace of V
containing S.

3. A set {v} consisting of a single vector from V is dependent if and only if v = 0.

4. A set of two or more vectors is dependent if and only if some vector in the set is a
linear combination of the remaining vectors in the set.

5. Any superset of a dependent set is dependent, and any subset of an independent set
is independent. (The empty set is independent.)

6. If V has a basis of n elements, then every subset of V with more than n elements is
dependent.

7. If W is a subspace of V then dimW ≤ dimV .

8. Every vector space V has a basis, and every two bases for V have the same number
of elements (cardinality). For infinite-dimensional vector spaces, this fact relies on the
axiom of choice (§1.2.4).

9. Every independent subset of V can be extended to a basis for V . More generally, if S
is an independent set, then every maximal independent set containing S is a basis for
V containing S. For infinite-dimensional vector spaces, this fact relies on the axiom of
choice. (An independent set is maximal if every set properly containing it is dependent.)

10. Every spanning set contains a basis for V . More generally, if S is a spanning set,
then every minimal spanning subset of S is a basis for V . For infinite-dimensional vector
spaces, this fact relies on the axiom of choice. (A spanning set is minimal if it contains
no proper subset that spans V .)

11. Rank-nullity theorem: If A is an m× n matrix over F , then:
• dimRS(A) + dimNS(A) = n;
• dimCS(A) + dimNS(A) = n;
• dimRS(A) + dimLNS(A) = m;
• dimCS(A) + dimLNS(A) = m.

12. For every matrix A, row rank A = column rank A = rank A. Thus, the (maxi-
mum) number of independent rows of A equals the (maximum) number of independent
columns.

13. The set of solutions to the m homogeneous linear equations
∑n

j=1 aijxj = 0 in n
unknowns has dimension n− r, where r is the rank of the m × n coefficient matrix
A = (aij).
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14. If B is a basis for a vector space V (finite or infinite), then each v ∈ V can
be expressed as v = a1v1 + a2v2 + · · · + atvt, where ai ∈ F and vi ∈ B. If v =
b1v1 + b2v2 + · · · + btvt is another expression for v in terms of elements of B (where
possibly some zero coefficients have been inserted to make the two expressions have
equal length), then ai = bi for i = 1, 2, . . . , t. (If B is finite, this justifies the definition
of the coordinate vector [v]B.)

15. If B = (v1, v2, . . . , vn) is an ordered basis for V , then the function T :V → Fn×1

defined by T (v) = [v]B is an isomorphism, so V is isomorphic to Fn×1.

16. Two vector spaces over F are isomorphic if and only if they have the same dimen-
sion.

Examples:

1. The vector space Fn has dimension n. The standard basis is the ordered basis
(e1, e2, . . . , en) where ei is the vector with 1 in position i and 0s elsewhere. (The spaces
Fn, F 1×n, and Fn×1 are isomorphic and are often identified and used interchangeably.)

2. The vector space Fm×n of m× n matrices over F has dimension mn; the standard
basis is {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n } where Eij is the m × n matrix with a 1 in
position (i, j) and 0s elsewhere. It is isomorphic to Fmn.

3. The subspace of R3 containing all 3-tuples of the form (a, b, 2a + 3b) has dimen-
sion 2. One basis for this subspace is B1 = ((1, 0, 2), (0, 1, 3)) and another is B2 =
((1, 1, 5), (1,−1,−1)). The vector w = (5,−1, 7) is in the subspace since w = 5(1, 0, 2)+
(−1)(0, 1, 3) = 2(1, 1, 5) + 3(1,−1,−1). The coordinate vector of w with respect to B1

is (5,−1)T and the coordinate vector of w with respect to B2 is (2, 3)T .

4. IfW is the subspace of V = Z5
2 containing all members of V whose components sum

to 0, then W has dimension 4. In fact W = { (a, b, c, d, a+ b+ c+ d) | a, b, c, d ∈ Z2 }.
One ordered basis for this space is ((1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 0, 1), (0, 0, 0, 1, 1)).

5. Binary codes: More generally, consider the set of all binary n-tuples with an even
number of 1s; this is the linear binary code mentioned in Example 6, §6.1.2. These
vectors form a subspace W of V = Zn

2 of dimension n−1. A basis for W consists of the
following n− 1 vectors, each of which has exactly two 1s: (1, 0, . . . , 1), (0, 1, . . . , 1), . . . ,
(0, 0, . . . , 1, 1). Consequently there are 2n−1 vectors in the code W .

6. The field C of complex numbers is two-dimensional as a vector space over R; it has
the ordered basis (1, i), where i =

√
−1. Any two complex numbers, neither of which is

a real multiple of the other, form a basis.

7. Both C and R are infinite-dimensional vector spaces over the rational field Q.

8. The vector space F [x] is an infinite-dimensional space over F ; (1, x, x2, x3, . . .) is
an ordered basis. The subspace of all polynomials of degree ≤ n has dimension n + 1;
(1, x, x2, . . . , xn) is an ordered basis.

6.1.4 INNER PRODUCTS, LENGTH, AND ORTHOGONALITY

By imposing additional structure on real and complex vector spaces, the concepts of
length, distance, and orthogonality can be introduced. These concepts are motivated
by the corresponding geometric notions for physical vectors. Also, for real vector spaces
the geometric idea of angle can be formulated analytically.
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Definitions:

An inner product on a vector space V over R is a function 〈·, ·〉:V × V → R such
that for all u, v, w ∈ V and a, b ∈ R the following hold:

• 〈u, v〉 = 〈v, u〉;
• 〈u, u〉 ≥ 0 with equality if and only if u = 0;
• 〈au+ bv, w〉 = a〈u,w〉+ b〈v, w〉.

An inner product on a vector space V over C is a function 〈·, ·〉:V ×V → C such that
for all u, v, w ∈ V and a, b ∈ C the following hold:

• 〈u, v〉 = 〈v, u〉 (where bar denotes complex conjugation);
• 〈u, u〉 ≥ 0 with equality if and only if u = 0;
• 〈au+ bv, w〉 = a〈u,w〉+ b〈v, w〉.

Note: The first property implies that 〈u, u〉 is real, so the second property makes sense.

An inner product space is a vector space over R or C on which an inner product is
defined. Such a space is called a real or complex inner product space, depending on its
scalar field.

The norm (length) of a vector v ∈ V is ‖v‖ =
√
〈v, v〉.

A vector v ∈ V is a unit vector if and only if ‖v‖ = 1.

The distance d(v, w) from v to w is d(v, w) = ‖v − w‖.
In a real inner product space, the angle between nonzero vectors v and w is the real

number θ, 0 ≤ θ ≤ π, such that cos θ =
〈v, w〉
‖v‖ · ‖w‖ .

Two vectors v and w are orthogonal if and only if 〈v, w〉 = 0.

A subset S ⊆ V is an orthogonal set if 〈v, w〉 = 0 for all v, w ∈ S with v 
= w.

A subset S ⊆ V is an orthonormal set if S is an orthogonal set and ‖v‖ = 1 for all
v ∈ S.

If W is a subspace of an inner product space V , then the orthogonal complement
W⊥ = { v ∈ V | 〈v, w〉 = 0 for all w ∈W }.

Facts:

1. Standard inner product on Rn: The real-valued function defined by 〈x, y〉 = x1y1 +
x2y2 + · · ·+ xnyn is an inner product on V = Rn.

2. Standard inner product on Cn: The complex-valued function defined by 〈x, y〉 =
x1y1 + x2y2 + · · ·+ xnyn is an inner product on V = Cn.

3. If A is an n × n real positive definite matrix (§6.3.2), then the function defined by
〈x, y〉 = xTAy is an inner product on Rn. (Here xT denotes the transpose of x.)

4. If H is an n×n complex positive definite matrix (§6.3.2), then the function defined
by 〈x, y〉 = y∗Hx is an inner product on Cn. (y∗ is the conjugate-transpose of y.)

5. The function 〈f, g〉 =
∫ b

a
f(x)g(x)dx is an inner product on the vector space C[a, b]

of continuous real-valued functions on the interval [a, b].

6. The inner product 〈·, ·〉 on an inner product space V is an inner product on any
subspace W of V .

7. IfW is a subspace of an inner product space V , then the orthogonal complementW⊥

is a subspace of V and V = W ⊕W⊥.
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8. The norm function satisfies the following properties for all scalars a and all vectors
v, w ∈ V :

• ‖v‖ ≥ 0 with equality if and only if v = 0;
• ‖av‖ = |a| · ‖v‖, where |a| denotes the absolute value of a;
• |〈v, w〉| ≤ ‖v‖ · ‖w‖ (Cauchy-Schwarz inequality);
• ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality);

• if v 
= 0, then
1
‖v‖ v is a unit vector (the normalization of v).

9. The distance function on a vector space V satisfies the following properties for all
v, w, z ∈ V :

• d(v, w) ≥ 0 with equality if and only if v = w;
• d(v, w) = d(w, v);
• d(v, z) ≤ d(v, w) + d(w, z) (triangle inequality).

10. For real inner product spaces, two nonzero vectors are orthogonal if and only if the
angle between them is θ = π

2 .

11. An orthogonal set S of nonzero vectors can be converted to an orthonormal set by
normalizing each vector in S.

12. An orthogonal set of nonzero vectors is independent. An orthonormal set is inde-
pendent.

13. If V is an n-dimensional inner product space, any orthonormal set contains at
most n vectors, and any orthonormal set of n vectors is a basis for V .

14. Every subspace W of an n-dimensional space V has an orthonormal (orthogonal)
basis.

15. Gram-Schmidt orthogonalization: From any ordered basis (w1, w2, . . . , wm) for
a subspace W , an orthonormal basis (u1, u2, . . . , um) for W can be constructed using
Algorithm 1. (Jörgen Gram, 1850–1916; Erhardt Schmidt, 1876–1959)

Algorithm 1: Gram-Schmidt orthogonalization process.

input: an ordered basis (w1, w2, . . . , wm)
output: an orthonormal basis (u1, u2, . . . , um)

u1 :=
1
a1
w1, where a1 := ‖w1‖

for j := 2 to m

aj := ‖wj −
j−1∑
i=1

〈wj , ui〉ui‖

uj :=
1
aj

(
wj −

j−1∑
i=1

〈wj , ui〉ui

)

16. The standard basis is orthonormal with respect to the standard inner product.

17. If (u1, u2, . . . , um) is an orthonormal basis for a subspace W of V and w ∈W , then
w = 〈w, u1〉u1 + 〈w, u2〉u2 + · · ·+ 〈w, um〉um.
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18. Projection vector: Let W be a subspace of a vector space V and let v be a vector
in V .

• There is a unique vector p ∈ W nearest to v; that is, the vector p minimizes
‖v − w‖ over all w ∈ W . This vector p is called the projection of v onto W ,
written p = proj

W
(v).

• If (u1, u2, . . . , um) is any orthonormal basis forW , then the projection of v ontoW
is given by proj

W
(v) = 〈v, u1〉u1 + 〈v, u2〉u2 + · · ·+ 〈v, um〉um.

• The vector proj
W

(v) is the unique vector w ∈ W such that v − w is orthogonal
to every vector in W .

19. Projection matrix: If V = Rn is equipped with the standard inner product and
(u1, u2, . . . , um) is an orthonormal basis for a subspace W , then the projection of each
x ∈ Rn onto W is given by proj

W
(x) = Ax, where A = GGT with G = (u1, u2, . . . , um)

the n×m matrix with the ui as columns.

20. The projection matrix A is symmetric and satisfies A2 = A.

Examples:
Consider the vector space R4 with the standard inner product 〈x, y〉 = xT y, and let W
be the subspace spanned by the three vectors w1 = (1, 1, 1, 1)T , w2 = (3, 1, 3, 1)T ,
w3 = (3, 1, 1, 1)T .

1. 〈w1, w2〉 = 8 and ‖w1‖ = 2.

2. The angle θ between w1 and w2 satisfies cos θ = 8
2
√

20
= 2√

5
(so θ ≈ 0.4636 radians).

3. The distance from w1 to w2 is d(w1, w2) = ‖w1 − w2‖ = ‖(−2, 0,−2, 0)T ‖ = 2
√

2.

4. The orthogonal complement W⊥ of W is the set of vectors of the form (0, a, 0,−a).
5. The Gram-Schmidt process applied to (w1, w2, w3) yields:

u1 = 1
a1
w1 = ( 1

2 ,
1
2 ,

1
2 ,

1
2 )T ,where a1 = ‖w1‖ = 2;

u2 = 1
a2

(w2 − 〈w2, u1〉u1) = 1
a2

((3, 1, 3, 1)T − 4( 1
2 ,

1
2 ,

1
2 ,

1
2 )T )

= 1
a2

(1,−1, 1,−1)T = ( 1
2 ,− 1

2 ,
1
2 ,− 1

2 )T ,where a2 = ‖(1,−1, 1,−1)T ‖ = 2;

u3 = 1
a3

(w3 − 〈w3, u1〉u1 − 〈w3, u2〉u2)

= 1
a3

(
(3, 1, 1, 1)T − 3( 1

2 ,
1
2 ,

1
2 ,

1
2 )T − 1( 1

2 ,− 1
2 ,

1
2 ,− 1

2 )T
)

= 1
a3

(1, 0,−1, 0)T = ( 1√
2
, 0,− 1√

2
, 0)T ,where a3 = ‖(1, 0,−1, 0)T ‖ =

√
2.

6. The vector in W that is nearest to v = (3, 6, 3, 4)T is p = proj
W

(v) = 〈v, u1〉u1 +
〈v, u2〉u2 + 〈v, u3〉u3 = 8u1 +(−2)u2 +0u3 = (3, 5, 3, 5)T . Further, v− p = (0, 1, 0,−1)T

is orthogonal to every vector in W , and if u4 = (0, 1√
2
, 0,− 1√

2
)T is the normalization of

v − p, then (u1, u2, u3, u4) is an orthonormal basis for R4.

7. The projection of any x ∈ R4 onto W is given by proj
W

(x) = Ax, where

A = GGT = (u1, u2, u3)(u1, u2, u3)T =


1 0 0 0
0 1

2 0 1
2

0 0 1 0
0 1

2 0 1
2

 .

Thus, if x = (3, 6, 3, 4)T , its projection onto W is computed as Ax = (3, 5, 3, 5)T ,
consistent with the answer found in Example 6.
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6.2 LINEAR TRANSFORMATIONS
Linear transformations are special types of functions that map one vector space to
another. They are called “linear” because of their effect on the lines of a vector space,
where by a “line” is meant a set of vectors w of the form w = au+ v where u 
= 0 and v
are fixed vectors in the space and a varies over all values in the scalar field. Linear
transformations carry lines in one vector space to lines or points in the other.

6.2.1 LINEAR TRANSFORMATIONS, RANGE, AND KERNEL

Definitions:

Let V and W be vector spaces over the same field F . A linear transformation is a
function T :V →W satisfying T (au+ v) = aT (u) + T (v) for all u, v ∈ V and a ∈ F .

The range RT of a linear transformation T is RT = {T (v) | v ∈ V }.
The kernel kerT of a linear transformation T is kerT = { v ∈ V | T (v) = 0 }.
The rank of T is the dimension of RT . (RT is a subspace of W by Fact 5.)

The nullity of T is the dimension of kerT . (kerT is a subspace of V by Fact 5.)

A linear operator on V is a linear transformation from V to V .

Facts:
1. For any vector spaces V and W over F , the zero function Z:V → W defined by
Z(v) = 0 for all v ∈ V is a linear transformation from V to W .
2. For any vector space V over F , the identity function I:V → V defined by I(v) = v
for all v ∈ V is a linear operator on V .
3. The following four statements are equivalent for a function T :V →W :

• T is a linear transformation;
• T (u+ v) = T (u) + T (v) and T (au) = aT (u) for all u, v ∈ V and a ∈ F ;
• T (au+ bv) = aT (u) + bT (v) for all u, v ∈ V and a, b ∈ F ;
• T (

∑t
i=1 aivi) =

∑t
i=1 aiT (vi) for all finite subsets {v1, v2, . . . , vt} ⊆ V and scalars

ai ∈ F .

4. If T :V →W is a linear transformation, then:
• T (0) = 0;
• T (−v) = −T (v) for all v ∈ V ;
• T (u− v) = T (u)− T (v) for all u, v ∈ V .

5. If T :V → W is a linear transformation, then RT is a subspace of W and kerT is a
subspace of V .
6. If T :V → W is a linear transformation, then the rank of T plus the nullity of T
equals the dimension of its domain: dimRT + dim (kerT ) = dimV .
7. If T :V → W is a linear transformation and if the vectors {v1, v2, . . . , vn} span V ,
then {T (v1), T (v2), . . . , T (vn)} span RT .
8. If T :V → W is a linear transformation, then T is completely determined by its
action on a basis for V . That is, if B is a basis for V and f is any function from B to W ,
then there exists a unique linear transformation T such that T (v) = f(v) for all v ∈ B.
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9. A linear transformation T :V →W is one-to-one if and only if kerT = {0}.
10. A linear transformation T :V → W is onto if and only if for every basis B of V ,
the set {T (v) | v ∈ B } spans W .

11. A linear transformation T :V →W is onto if and only if for some basis B of V , the
set {T (v) | v ∈ B } spans W .

12. If T :V → W is a bijective linear transformation, then its inverse T−1:W → V is
also a bijective linear transformation.

13. For each fixed m× n matrix A over F , the function T :Fn×1 → Fm×1 defined by
T (x) = Ax is a linear transformation.

14. Every linear transformation T :Fn×1 → Fm×1 has the form T (x) = Ax for some
unique m× n matrix A over F .

15. The range RT of the linear transformation T (x) = Ax is equal to the column space
of A, and kerT is equal to the null space of A. (See §6.1.2, §6.1.3.)

16. If T is a linear transformation from V to W and if T (v0) = w0 ∈ RT , then the
solution set S to the equation T (v) = w0 is S = { v0 + u | u ∈ kerT }.

Examples:

1. The function T :R2×1 → R2×1 given by T
(
x1

x2

)
=

(
x1 − 3x2

−2x1 + 6x2

)
is a linear

transformation. It has the form T (x) = Ax, where A =
(

1 −3
−2 6

)
. The kernel of T

is { (3a, a)T | a ∈ R} and the range of T is { (b,−2b)T | b ∈ R}.

2. For each fixed matrix A ∈ Fn×n the function T :Fn×n → Fn×n defined by T (X) =
AX − XA is a linear transformation whose kernel is the set of matrices commuting

with A. Specifically, let n = 2, F = R, and A =
(

1 −3
−2 6

)
. Then dimR2×2 = 4,

and by computation T
[(

1 0
0 0

)]
=

(
0 3
−2 0

)
, T

[(
0 1
0 0

)]
=

(
2 −5
0 −2

)
. Thus,

dimRT ≥ 2. Since both the identity matrix I and A itself are in kerT , dim (kerT ) ≥ 2.
By Fact 6, it follows that dimRT = 2 and dim (kerT ) = 2. Therefore (I, A) forms a

basis for kerT , and the matrices
(

0 3
−2 0

)
and

(
2 −5
0 −2

)
are a basis for RT . From

Fact 16, the solutions to T (x) =
(

0 3
−2 0

)
are precisely the set of matrices of the form(

1 0
0 0

)
+ a

(
1 0
0 1

)
+ b

(
1 −3
−2 6

)
with a, b ∈ R.

3. The function E(x1, x2, x3, x4) = (x1, x2, x3, x4, x1+x3+x4, x1+x2+x4, x1+x2+x3),
where xi ∈ Z2, is a linear transformation important in coding theory. It represents an
“encoding” of 4-bit binary vectors into 7-bit binary vectors (“codewords”) before being
sent over a “noisy” channel (§14.2). The kernel of the transformation consists of only
the zero vector 0 = (0, 0, 0, 0), and so the transformation is one-to-one. The collection
of codewords (that is, the range of E), is a 16-member, 4-dimensional subspace of Z7

2

having the special property that any two of its distinct members differ in at least three
components. This means that if, during transmission of a codeword, an error is made in
any single one of its components, then the error can be detected and corrected as there
will be a unique codeword that differs from the received vector in a single component.

c© 2000 by CRC Press LLC



4. Continuing with Example 3, the linear transformation D(z1, z2, z3, z4, z5, z6, z7) =
(z1+z3+z4+z5, z1+z2+z4+z6, z1+z2+z3+z7) is used in decoding the (binary) received
vector z. This transformation has the special property that its kernel is precisely the
set of codewords defined in Example 3. Thus, if D(z) 
= 0, then a transmission error
has been made.

5. For C as a vector space over R and any z0 ∈ C, the function T : C → C defined by
T (z) = z0z is a linear operator; in particular, if z0 = cos θ+ i sin θ, then T is a rotation
by the angle θ. (T (z) is also a linear operator on C as a vector space over itself.)

6. For any fixed real-valued continuous function g on the interval [a, b], the function T
from the space C[a, b] of continuous functions on [a, b] to the space D[a, b] of contin-
uously differentiable functions on [a, b] given by T (f)(x) =

∫ x

a
g(t)f(t)dt is a linear

transformation.

7. For the vector space V of functions p:R → R with continuous derivatives of all
orders, the mapping T :V → V defined by T (p) = p′′−3p′ +2p (where p′ and p′′ are the
first and second derivatives of p) is a linear transformation. Its kernel is the solution set
to the homogeneous differential equation p′′−3p′ +2p = 0: namely, p(x) = Aex +Be2x,
where A,B ∈ R. Since T (x2) = 2−6x+2x2, the set of all solutions to T (p) = 2−6x+2x2

is x2 +Aex +Be2x (by Fact 16).

8. If v0 is a fixed vector in a real inner product space V , then T :V → R given by
T (v) = 〈v, v0〉 is a linear transformation.

9. For W a subspace of the inner product space V , the projection proj
W

of V onto W
is a linear transformation. (See §6.1.4.)

6.2.2 VECTOR SPACES OF LINEAR TRANSFORMATIONS

Definitions:

If S and T are linear transformations from V to W , the sum (addition) of S and T is
the function S + T defined by (S + T )(v) = S(v) + T (v) for all v ∈ V .

If T is a linear transformation from V to W , the scalar product (scalar multiplica-
tion) of a ∈ F by T is the function aT defined by (aT )(v) = aT (v) for all v ∈ V .

If T :V → W and S:W → U are linear transformations, then the product (multipli-
cation, composition) of S and T is the function S ◦T defined by (S ◦T )(v) = S(T (v)).
Note: Some writers use the notation vT to denote the image of v under the transfor-
mation T , in which case T ◦ S is used instead of S ◦ T to denote the product; that is,
v(T ◦ S) = (vT )S.

Facts:

1. The sum of two linear transformations from V to W is a linear transformation from
V to W .

2. The product of a scalar and a linear transformation is a linear transformation.

3. If T :V →W and S:W → U are linear transformations, then their product S ◦ T is
a linear transformation from V to U .

4. The set of linear transformations from V to W with the operations of addition and
scalar multiplication forms a vector space over F . This vector space is denoted L(V,W ).
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5. The set L(V, V ) of linear operators on V with the operations of addition, scalar mul-
tiplication, and multiplication forms an algebra with identity over F . Namely, L(V, V )
is a vector space over F and is a ring with identity under the addition and multiplication
operations. In addition, a(S ◦ T ) = (aS) ◦ T = S ◦ (aT ) holds for all scalars a ∈ F and
all S, T ∈ L(V, V ). The identity mapping is the multiplicative identity of the algebra.

6. If dimV = n and dimW = m, then dimL(V,W ) = nm.

Examples:

1. Consider L(Fn×1, Fm×1). If T and S are in L(Fn×1, Fm×1), then T (x) = Ax and
S(x) = Bx for unique m× n matrices A and B over F . Then (T + S)(x) = (A+B)x,
(aT )(x) = aAx, and in case m = n, (T ◦ S)(x) = ABx.

2. Let V = C[a, b] be the space of real-valued continuous functions on the interval [a, b],
and let T and S be linear operators defined by T (f)(x) =

∫ x

a
e−tf(t)dt and S(f)(x) =∫ x

a
etf(t)dt. Then (T +S)(f)(x) =

∫ x

a
(e−t + et)f(t)dt, (cT )(f)(x) =

∫ x

a
ce−tf(t)dt, and

(T ◦ S)(f)(x) =
∫ x

a

∫ t

a
es−tf(s)dsdt.

3. Let V be the real vector space of all functions p:R → R with continuous derivatives
of all orders, and let D be the derivative function. Then D:V → V is a linear operator
on V and so is a function such as T = D2 − 3D + 2I where D2 = D ◦D and I is the
identity operator on V . The action of T on p ∈ V is given by T (p) = p′′ − 3p′ + 2p.

6.2.3 MATRICES OF LINEAR TRANSFORMATIONS

Definitions:

If T :V → W is a linear transformation where dimV = n, dimW = m, and if B =
(v1, v2, . . . , vn) and B′ = (v′1, v

′
2, . . . , v

′
m) are ordered bases for V and W , respectively,

then the matrix of T with respect to B and B′ is the m× n matrix [T ]B,B′ whose
jth column is [T (vj)]B′ , the coordinate vector (§6.1.3) of T (vj) with respect to B′.
If T :V → V is a linear operator on V , then the matrix of T with respect to B is
the n× n matrix [T ]B,B denoted simply as [T ]B.

Facts:
Assume that T and S are linear transformations from V to W , B and B′ are respective
bases for V and W , and A and B are the matrices defined by A = [T ]B,B′ and B =
[S]B,B′ .

1. [T (v)]B′ = [T ]B,B′ [v]B for all v ∈ V ; that is, if y = [T (v)]B′ and x = [v]B, then
y = Ax.

2. kerT = {x1v1 + x2v2 + · · · + xnvn | (x1, x2, . . . , xn)T ∈ NS(A) }, where B =
(v1, v2, . . . , vn).

3. T is one-to-one if and only if NS(A) = {0}.
4. RT = { y1v′1 + y2v

′
2 + · · · + ymv

′
m | (y1, y2, . . . , ym)T ∈ CS(A) }, where B′ =

(v′1, v
′
2, . . . , v

′
m).

5. T is onto if and only if CS(A) = Fm×1.

6. T is bijective if and only if m = n and A is invertible. In this case, [T−1]B′,B = A−1.
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7. [T +S]B,B′ = A+B, [aT ]B,B′ = aA for all a ∈ F , and the mapping f from L(V,W )
to Fm×n defined by f(T ) = [T ]B,B′ is an isomorphism.
8. If U is a vector space over F , B′′ is a basis for U , and R:W → U is a linear
transformation, then [R ◦ T ]B,B′′ = CA where C = [R]B′,B′′ ; that is, [R ◦ T ]B,B′′ =
[R]B′,B′′ [T ]B,B′ .
9. The algebra L(V, V ) is isomorphic to the matrix algebra Fn×n.
10. If I:V → V is the identity mapping, then [I]B,B = [I]B equals the identity matrix
for any basis B.
11. If A is an m× n matrix over F with B and B′ being arbitrary bases for V and W ,
respectively, then there exists a unique linear transformation T :V → W such that
A = [T ]B,B′ .
12. Linear transformations are used extensively in computer graphics. (See Exam-
ple 5.) Further information can be found in [PoGe89].

Examples:

1. Consider T :R2×1 → R2×1 given by T
(
x1

x2

)
=

(
x1 − 3x2

−2x1 + 6x2

)
and the bases

B = (v1, v2) and B′ = (v′1, v
′
2), where v1 = (1, 0)T , v2 = (0, 1)T and v′1 = (1, 1)T ,

v′2 = (2, 1)T . Since

T (v1) = (1,−2)T = (−5)v′1 + 3v′2,

T (v2) = (−3, 6)T = 15v′1 + (−9)v′2,

it follows that [T (v1)]B′ = (−5, 3)T and [T (v2)]B′ = (15,−9)T ; hence, the matrix of T

relative to B and B′ is [T ]B,B′ =
(
−5 15

3 −9

)
. Similarly, [T ]B,B = [T ]B =

(
1 −3
−2 6

)
,

and [T ]B′,B′ = [T ]B′ =
(

10 5
−6 −3

)
.

2. Consider T of Example 1 where A = [T ]B,B′ =
(
−5 15

3 −9

)
. Since NS(A) =

{ (3a, a)T | a ∈ R} and CS(A) = { (−5b, 3b)T | b ∈ R}, Fact 2 gives kerT = { 3av1 +
av2 = (3a, a)T | a ∈ R} and Fact 4 gives RT = { (−5b)v′1 + 3bv′2 = (b,−2b)T | b ∈ R}.
T is not one-to-one since NS(A) 
= {0} and is not onto since CS(A) 
= R2×1. (Any one
of the three matrices found in Example 1 could have been used to determine kerT and
RT and to reach these same conclusions.)
3. Consider the linear operator on R2×2 defined by T (X) = AX − XA where A =(

1 −3
−2 6

)
, and let B = (E11, E12, E21, E22) be the standard basis. (Here, Eij has a 1

in position (i, j) and 0s elsewhere.) Then

T (E11) = AE11 − E11A =
(

0 3
−2 0

)
= 0E11 + 3E12 + (−2)E21 + 0E22,

so (0, 3,−2, 0)T is the first column of [T ]B. Similar calculations yield

[T ]B =


0 2 −3 0
3 −5 0 −3
−2 0 5 2

0 −2 3 0

 .

The null space of this 4 × 4 matrix is { (5a + b, 3a, 2a, b)T | a, b ∈ R}, so that those

matrices X commuting with A (that is, in kerT ) have the form X =
(

5a+ b 3a
2a b

)
.

c© 2000 by CRC Press LLC



4. Consider C as a vector space over R and the rotation operator of §6.2.1 Example 5;
namely, T (z) = z0z where z0 = cos θ+ i sin θ. If B is the standard basis, B = (1, i), then

the matrix of T relative to B is [T ]B =
(

cos θ − sin θ
sin θ cos θ

)
.

5. Computer graphics: The polygon in part (a) of the following figure can be rotated
by applying the transformation T in Example 4 to its vertices (−2,−2), (1,−1), (2, 1),
(−1, 3). The matrix of vertex coordinates is

X =
(
−2 1 2 −1
−2 −1 1 3

)
.

For a rotation of π
3 , the matrix of T is

A =

(
1
2 −

√
3

2√
3

2
1
2

)
and

AX ≈
(

0.732 1.366 0.134 −3.098
−2.732 0.366 2.232 0.634

)
,

giving the rotated polygon shown in part (b) of the following figure. To perform a
“zoom in” operation, the original polygon can be rescaled by 50% by applying the

transformation S
(
x
y

)
=

(
1.5x
1.5y

)
. Since the matrix for S relative to the standard

basis is D =
(

1.5 0
0 1.5

)
, the vertex coordinates X are transformed into DX =(

−3 1.5 3 −1.5
−3 −1.5 1.5 4.5

)
; see part (c) of the figure. Reflection through the x-axis

would involve the transformation R
(
x
y

)
=

(
x
−y

)
, represented by the diagonal ma-

trix C =
(

1 0
0 −1

)
. In computer graphics, the vertices of an object are actually given

(x, y, z) coordinates and three-dimensional versions of the above transformations can
be applied to move and reshape the object as well as render the scene when the user’s
viewpoint is changed.
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6.2.4 CHANGE OF BASIS

Definitions:

Let B = (v1, v2, . . . , vn) and B′ = (v′1, v
′
2, . . . , v

′
n) be two ordered bases for V , and let I

denote the identity mapping from V to V . The matrix P = [I]B,B′ is the transition
matrix from B to B′. It is also called the change of basis matrix from basis B to
basis B′.
If A and B are two n×n matrices over a field F , then B is similar to A if there exists
an invertible n× n matrix P over F such that P−1BP = A.

Facts:

1. The transition matrix P = [I]B,B′ is invertible; its inverse is P−1 = [I]B′,B.

2. If x = [v]B and y = [v]B′ , then y = Px where P = [I]B,B′ .

3. When B = B′, the transition matrix P = [I]B,B = [I]B is the n× n identity matrix.

4. If T is a linear operator on V with A and B the matrices of T relative to bases B
and B′, respectively, then B is similar to A. Specifically, P−1BP = A where P = [I]B,B′ .

5. If A and B are similar n × n matrices, then A and B represent the same linear
operator T relative to suitably chosen bases. More specifically, suppose P−1BP = A,
B = (v1, v2, . . . , vn) is any basis for V , and T is the unique linear transformation with
A = [T ]B. Then B = [T ]B′ where B′ = (v′1, v

′
2, . . . , v

′
n) is the basis for V given by

v′j =
∑n

i=1 p
−1
ij vi.

Examples:

1. Consider the R2×1 bases B = (v1, v2) and B′ = (v′1, v
′
2), where v1 = (1, 0)T , v2 =

(0, 1)T and v′1 = (1, 1)T , v′2 = (2, 1)T . Since v1 = (−1)v′1 + v′2 and v2 = 2v′1 + (−1)v′2,

the transition matrix from B to B′ is P = [I]B,B′ =
(
−1 2

1 −1

)
, and its inverse P−1 =(

1 2
1 1

)
is the transition matrix [I]B′,B. If v = x1v1 + x2v2 where xi ∈ R, then by

Fact 2, v = y1v
′
1 + y2v′2 where y1 = (−1)x1 + 2x2 and y2 = x1 + (−1)x2.

2. Consider T :R2×1 → R2×1 given by T
(
x1

x2

)
=

(
x1 − 3x2

−2x1 + 6x2

)
, and the same

bases B and B′ specified in Example 1. The matrix of T with respect to B is [T ]B =

A =
(

1 −3
−2 6

)
and the matrix of T with respect to B′ is [T ]B′ = B =

(
10 5
−6 −3

)
.

Moreover, A and B are similar; indeed, as Fact 4 shows, A = P−1BP where P =(
−1 2

1 −1

)
is determined in Example 1.

6.3 MATRIX ALGEBRA
Matrices naturally arise in the analysis of linear systems and in representing discrete
structures. This section studies important types of matrices, their properties, and meth-
ods for efficient matrix computation.
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6.3.1 BASIC CONCEPTS AND SPECIAL MATRICES

Definitions:

The m× n matrix A = (aij) is a rectangular array of mn real or complex numbers aij ,
arranged into m rows and n columns.

The ith row of A, denoted A(i, :), is the array ai1 ai2 . . . ain. The elements in the ith
row can be regarded as a row vector (ai1, ai2, . . . , ain) in Rn or Cn. The jth column
of A, denoted A(:, j), is the array

a1j

a2j

...
amj

which can be identified with the column vector (a1j , a2j , . . . , amj)T (where the expo-
nent T indicates the transpose).

A matrix is sparse if it has relatively few nonzero entries.

A submatrix of the matrix A contains the elements occurring in rows i1 < i2 < · · · < ik
and columns j1 < j2 < · · · < jr of A. A principal submatrix of the matrix A contains
the elements occurring in rows i1 < i2 < · · · < ik and columns i1 < i2 < · · · < ik of A.
This principal submatrix has order k and is written A[i1, i2, . . . , ik].

Two matrices A and B are equal if they are both m× n matrices with aij = bij for all
i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

The transpose of the m×n matrix A = (aij) is the n×m matrix AT = (bij) in which
bij = aji.

The Hermitian adjoint of the m×n matrix A = (aij) is the n×m matrix A∗ = (bij)
in which bij is the complex conjugate of aji.

If m = n, the matrix A = (aij) is square with diagonal elements a11, a22, . . . , ann.
The main diagonal contains the diagonal elements of A. An off-diagonal element is
any aij with i 
= j. The trace of A, trA, is the sum of the diagonal elements of A.

Table 1 defines special types of square matrices.

Facts:

1. Triangular matrices arise in the solution of systems of linear equations (§6.4).

2. A tridiagonal matrix can be represented as follows, where the diagonal lines represent
the (possibly) nonzero entries.

3. Tridiagonal matrices are particular types of sparse matrices. Such matrices arise in
discretized versions of continuous problems, the solution of difference equations (§3.3,
§3.4.4), and the solution of eigenvalue problems (§6.5).

c© 2000 by CRC Press LLC



Table 1 Special types of square matrices.

matrix definition

identity In = (eij) where eij =
{

1 if i = j
0 if i 
= j

(n× n matrix; each

diagonal entry is 1; each off-diagonal entry is 0)
diagonal D = (dij) where dij = 0 if i 
= j (nonzero entries occur only

on the main diagonal)
lower triangular L = (lij) where lij = 0 if j > i (nonzero entries occur only on

or below the diagonal)
upper triangular U = (uij) where uij = 0 if j < i (nonzero entries occur only

on or above the diagonal)
unit triangular triangular matrix with all diagonal entries 1

tridiagonal A = (aij) where aij = 0 if |i− j| > 1 (nonzero entries occur
only on or immediately above or below the diagonal)

symmetric real matrix A for which A = AT

skew-symmetric real matrix A for which A = −AT

Hermitian complex matrix A for which A = A∗

skew-Hermitian complex matrix A for which A = −A∗

4. Sparse matrices frequently arise in the solution of large systems of linear equations
(§6.4), since in many physical models a given variable typically interacts with relatively
few others. Linear systems derived from sparse matrices require less storage space and
can be solved more efficiently than those derived from a “dense” matrix.

5. Forming the transpose of a square matrix corresponds to “reflecting” the matrix
elements with respect to the main diagonal.

6. Any skew-symmetric matrix A must have aii = 0 for all i.

7. Any Hermitian matrix A must have aii real for all i.

8. If A is real then A∗ = AT .

9. The columns of the identity matrix In are the standard basis vectors for Rn (§6.1.3).

10. Viewed as a linear transformation (§6.2), the identity matrix represents the identity
transformation; that is, it leaves all vectors unchanged.

11. Viewed as linear transformations, diagonal matrices with positive diagonal entries
leave the directions of the basis vectors unchanged, but alter the relative scale of the
basis vectors.

Examples:

1. The 2× 2 and 3× 3 identity matrices are I2 =
(

1 0
0 1

)
and I3 =

 1 0 0
0 1 0
0 0 1

.

2. The matrix A =

 6 0 1
0 2 4
1 4 3

 is symmetric.

3. The matrix A =
(

1 2− 3i
2 + 3i −4

)
is Hermitian.
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4. A 2×2 diagonal matrix transforms the unit square in R2 into a rectangle with sides
parallel to the coordinate axes. The following figure shows the effect of the diagonal

matrix
(

3 0
0 2

)
on certain vectors and on the unit square in R2. The standard basis

vectors {(1, 0)T , (0, 1)T } have been transformed to {(3, 0)T , (0, 2)T }.

5. A 3× 3 diagonal matrix transforms the unit cube into a rectangular parallelepiped.

6. The standard basis vectors are all eigenvectors of a diagonal matrix with the corre-
sponding diagonal elements as their associated eigenvalues (§6.5).

6.3.2 OPERATIONS OF MATRIX ALGEBRA

Definitions:

The scalar product (dot product) of real vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) is the number x · y =

∑n
i=1 xiyi.

The n× n matrix A is nonsingular (invertible) if there exists an n× n matrix A−1

such that AA−1 = A−1A = I. Any such matrix A−1 is an inverse of A.

An orthogonal matrix is a real square matrix A such that ATA = I.

A unitary matrix is a complex square matrix A such that A∗A = I, where A∗ is the
Hermitian adjoint of A (§6.3.1).

A positive definite matrix is a real symmetric (or complex Hermitian) matrix A such
that x∗Ax > 0 for all x 
= 0.

The nonnegative powers of a square matrix A are given by A0 = I, An = AAn−1. If
A is nonsingular then A−n = (A−1)n.

The following table defines various operations defined on matrices A = (aij) and B =
(bij). (See Facts 1, 2, 5, 6 for restrictions on the sizes of the matrices.)

operation definition

sum A+B A+B = (cij) where cij = aij + bij
difference A−B A−B = (cij) where cij = aij − bij

scalar multiple αA αA = (cij) where cij = αaij

product AB AB = (cij) where cij =
∑

k aikbkj
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Facts:

1. Matrices of different dimensions cannot be added or subtracted.

2. Square matrices of the same dimension can be multiplied.

3. Real or complex matrix addition satisfies the following properties:
• commutative: A+B = B +A;
• associative: A+ (B + C) = (A+B) + C, A(BC) = (AB)C;
• distributive: A(B + C) = AB +AC, (A+B)C = AC +BC;
• α(A+B) = αA+ αB, α(AB) = (αA)B = A(αB) for all scalars α.

4. Matrix multiplication is not, in general, commutative — even when both products
are defined. (See Example 3.)

5. The product AB is defined if and only if the number of columns of A equals the
number of rows of B. That is, A must be an m × n matrix and B must be an n × p
matrix.

6. The ijth element of the product C = AB is the scalar product of row i of A and
column j of B:

7. Multiplication by identity matrices of the appropriate dimension leaves a matrix
unchanged: if A is m× n, then ImA = AIn = A.

8. Multiplication by diagonal matrices has the effect of scaling the rows or columns of
a matrix. Pre-multiplication by a diagonal matrix scales the rows:

d11 0 · · · 0
0 d22 · · · 0
...

...
...

0 0 · · · dnn



a11 · · · a1p

a21 · · · a2p

...
...

an1 · · · anp

 =


d11a11 · · · d11a1p

d22a21 · · · d22a2p

...
...

dnnan1 · · · dnnanp

 .

Post-multiplication by a diagonal matrix scales the columns:
a11 · · · a1n

a21 · · · a2n
...

...
am1 · · · amn



d11 0 · · · 0
0 d22 · · · 0
...

...
...

0 0 · · · dnn

 =


d11a11 · · · dnna1n

d11a21 · · · dnna2n
...

...
d11am1 · · · dnnamn

 .

9. Any Hermitian matrix can be expressed as A+ iB where A is symmetric and B is
skew-symmetric.

10. The inverse of a (nonsingular) matrix is unique.

11. If A is nonsingular, the solution of the system of linear equations (§6.4) Ax = b is
given by (but almost never computed by) x = A−1b.
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12. The product of nonsingular matrices A and B is nonsingular, with (AB)−1 =
B−1A−1. Conversely, if A and B are square matrices with AB nonsingular, then A
and B are nonsingular.

13. For a nonsingular matrix regarded as a linear transformation (§6.2), the inverse
matrix represents the inverse transformation.

14. Sums of lower (upper) triangular matrices are lower (upper) triangular.

15. Products of lower (upper) triangular matrices are lower (upper) triangular.

16. A triangular matrix A is nonsingular if and only if aii 
= 0 for all i.

17. If a lower (upper) triangular matrix is nonsingular then its inverse is lower (upper)
triangular.

18. Properties of transpose:
• (AT )T = A;
• (A+B)T = AT +BT ;
• (AB)T = BTAT ;
• AAT and ATA are symmetric;
• if A is nonsingular then so is AT ; moreover (AT )−1 = (A−1)T .

19. Properties of Hermitian adjoint:
• (A∗)∗ = A;
• (A+B)∗ = A∗ +B∗;
• (AB)∗ = B∗A∗;
• AA∗ and A∗A are Hermitian;
• if A is nonsingular, then so is A∗; moreover (A∗)−1 = (A−1)∗.

20. If A is orthogonal, then A is nonsingular and A−1 = AT .

21. The rows (columns) of an orthogonal matrix are orthonormal with respect to the
standard inner product on Rn (§6.1.4).

22. Products of orthogonal matrices are orthogonal.

23. If A is unitary, then A is nonsingular and A−1 = A∗.

24. The rows (columns) of a unitary matrix are orthonormal with respect to the stan-
dard inner product on Cn (§6.1.4).

25. Products of unitary matrices are unitary.

26. Positive definite matrices are nonsingular.

27. All eigenvalues (§6.5) of a positive definite matrix are positive.

28. Powers of a positive definite matrix are positive definite.

29. If A is skew-symmetric, then I +A is positive definite.

30. If A is nonsingular, then ATA is positive definite.

Examples:

1. Let A =
(

1 2 3
4 5 6

)
and B =

(
7 8 9
0 1 2

)
. Then A + B =

(
8 10 12
4 6 8

)
and

A−B =
(
−6 −6 −6

4 4 4

)
.

2. The scalar product of the vectors a = (1, 0,−1) and b = (4, 3, 2) is a · b = (1)(4) +
(0)(3) + (−1)(2) = 2.
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3. Let A =
(

1 0
1 1

)
, B =

(
2 3
4 1

)
, and C =

(
1 1 2
0 2 3

)
. Then AB and BA are both

defined with AB =
(

1 0
1 1

) (
2 3
4 1

)
=

(
2 3
6 4

)
, whereas BA =

(
2 3
4 1

) (
1 0
1 1

)
=(

5 3
5 1

)
. Also, AC is defined but CA is not defined.

4. The matrices A,B of Example 1 cannot be multiplied since A has 3 columns and
B has 2 rows; see Fact 5. However, all the products ATB, ABT , BTA, BAT exist:

ATB =

 1 4
2 5
3 6

 (
7 8 9
0 1 2

)
=

 7 12 17
14 21 28
21 30 39

, ABT =
(

1 2 3
4 5 6

)  7 0
8 1
9 2

 =

(
50 8

122 17

)
, BTA =

 7 14 21
12 21 30
17 28 39

, BAT =
(

50 122
8 17

)
. Note that (BTA)T =

ATB, as guaranteed by Fact 18.

5. Multiplication by a diagonal matrix:
(

3 0
0 2

) (
1 2 3
4 5 6

)
=

(
3 6 9
8 10 12

)
and(

1 2 3
4 5 6

)  2 0 0
0 3 0
0 0 1

 =
(

2 6 3
8 15 6

)
.

6. The 2 × 2 matrix A =
(
a b
c d

)
is nonsingular if ∆ = ad − bc 
= 0; in this case

A−1 =
1
∆

(
d −b
−c a

)
.

7. The matrix A = 1
9

 4 8 1
7 −4 4
−4 1 8

 is orthogonal.

8. If A = 1
2

 1 −i −1 + i
i 1 1 + i

1 + i −1 + i 0

 then A∗ = 1
2

 1 −i 1− i
i 1 −1− i

−1− i 1− i 0

.

Since A∗A = I the matrix A is unitary.

9. Every 2× 2 orthogonal matrix Q can be written as Q =
(

cos θ − sin θ
sin θ cos θ

)
for some

real θ. Geometrically, the matrix Q effects a counterclockwise rotation by the angle θ.

10. For the matrix Q in Example 9, Q2 =
(

cos2 θ − sin2 θ −2 sin θ cos θ
2 sin θ cos θ cos2 θ − sin2 θ

)
. Since

this must be the same as a rotation by an angle of 2θ, then Q2 =
(

cos 2θ − sin 2θ
sin 2θ cos 2θ

)
.

Equating these two expressions for Q2 gives the double angle formulas of trigonometry.

11. The matrix

 4 2i −3 + i
−2i −8 6 + 3i
−3− i 6− 3i 5

 is Hermitian. It can be written as A +

Bi =

 4 0 −3
0 −8 6
−3 6 5

 +

 0 2i i
−2i 0 3i
−i −3i 0

 where A is symmetric and B is skew-

symmetric. (See Fact 9.)
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Algorithm 1: Basic matrix multiplication.

input: m× n matrix A, n× p matrix B
output: m× p matrix C = AB

for i := 1 to m do
for j := 1 to p do
C(i, j) := 0
for k := 1 to n do
C(i, j) := C(i, j) +A(i, k)B(k, j)

6.3.3 FAST MULTIPLICATION OF MATRICES

A variety of methods have been devised to multiply matrices more efficiently than by
simply using the definition in §6.3.2. This section presents alternative methods for
carrying out matrix multiplication.

Definitions:

The shift left operation shL(A(i, :), k) rotates elements of row i in matrix A exactly k
places to the left, where data shifted off the left side of the matrix are wrapped around
to the right side.

The shift up operation shU(B(:, j), k) rotates elements of column j in matrix B
exactly k places up, where data shifted off the top of the matrix are wrapped around
to the bottom.

These operations can also be applied simultaneously to every row of A or every column
of B, denoted shL(A, k) and shU(B, k) respectively.

Facts:

1. The basic definition given in §6.3.2 can be used to multiply the m × n matrix A
and the n × p matrix B. The associated algorithm (Algorithm 1) requires O(mnp)
operations (additions and multiplications of individual elements).

2. Matrix multiplication in scalar product form: Algorithm 1 can be rewritten in terms
of the scalar product operation, giving Algorithm 2.

3. Algorithm 2 is well-suited for fast multiplication on computers designed for efficient
scalar product operations. It requires O(mp) scalar products.

4. Matrix multiplication in linear combination form: Algorithm 3 carries out matrix
multiplication by taking a linear combination of columns of A to obtain each column of
the product.

5. The inner loop of Algorithm 3 performs a “vector + scalar × vector” operation,
well-suited to a vector computer using efficiently pipelined arithmetic processing.
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Algorithm 2: Scalar product form of matrix multiplication.

input: m× n matrix A, n× p matrix B
output: m× p matrix C = AB

for i := 1 to m do
for j := 1 to p do
C(i, j) := A(i, :) ·B(:, j)

Algorithm 3: Column linear combination form of matrix multiplication.

input: m× n matrix A, n× p matrix B
output: m× p matrix C = AB

for j := 1 to p do
C(:, j) := 0
for k := 1 to n do
C(:, j) := C(:, j) +B(k, j)A(:, k)

6. Algorithm 3 is often used for fast general matrix multiplication on vector machines
since it is based on a natural vector operation. If these vector operations can be per-
formed on all elements simultaneously, then O(np) vector operations are needed.

7. Access to matrix elements in Algorithm 3 is by column. There are other rearrange-
ments of the algorithm which access matrix information by row.

8. Fast multiplication on array processors: Algorithm 4 multiplies two n×n (or smaller
dimension) matrices on a computer with an n × n array of processors. It uses various
shift operations on the arrays and the array-multiplication operation (∗) of elementwise
multiplication.

9. At each step Algorithm 4 shifts A one place to the left and shifts B one place up
so that components of the array product are correct new terms for the corresponding
elements of C = AB. Each matrix is preshifted so the first step complies with this
requirement.

10. Two n×n matrices can be multiplied in O(n) time using Algorithm 4 on an array
processor.

11. The Strassen algorithm: Algorithm 5 recursively carries out matrix multiplica-
tion for n × n matrices A and B where n = 2k. The basis of Strassen’s algorithm is
partitioning the two factors into square blocks with dimension half that of the original
matrices.
12. Strassen’s algorithm ultimately requires the fast multiplication of 2 × 2 matrices
(Algorithm 6).
13. Algorithm 6 multiplies two 2 × 2 matrices using only 7 multiplications and 18
additions instead of the normal 8 multiplications and 4 additions. For most modern
computers saving one multiplication at the cost of 14 extra additions would not represent
a gain.
14. Strassen’s algorithm can be extended to n × n matrices where n is not a power
of 2. The general algorithm requires O(nlog2 7) ≈ O(n2.807) multiplications. Details of
this algorithm and its efficiency can be found in [GoVa96].
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Algorithm 4: Array processor matrix multiplication.

input: n× n matrices A,B
output: n× n matrix C = AB

{Preshift the matrix arrays}
for i := 1 to n do

shL(A(i, :), i− 1) {Shift ith row i− 1 places left}
shU(B(:, i), i− 1) {Shift ith column i− 1 places up}

C := 0 {Initialize product array}
for k := 1 to n do
C := C +A ∗B
shL(A, 1)
shU(B, 1)

Algorithm 5: Strassen’s algorithm for 2k×2k matrices.

procedure Strassen(A,B)

input: 2k × 2k matrices A,B
output: 2k × 2k matrix C = AB

if k = 1 then use Algorithm 6
else

partition A, B into 4 2k−1×2k−1 blocks A =
(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
P := Strassen((A11 +A22), (B11 +B22))
Q := Strassen((A21 +A22), B11); R := Strassen(A11, (B12 −B22))
S := Strassen(A22, (B21 −B11)); T := Strassen((A11 +A12), B22)
U := Strassen((A21 −A11), (B11 +B12))
V := Strassen((A12 −A22), (B21 +B22))
C11 := P+S−T+V ; C12 := R+T ; C21 := Q+S; C22 := P−Q+R+U

end

C :=
(
C11 C12

C21 C22

)

Algorithm 6: Strassen’s algorithm for 2×2 matrices.

input: 2× 2 matrices A,B
output: 2× 2 matrix C = AB

p := (a11 + a22)(b11 + b22); q := (a21 + a22)b11; r := a11(b12 − b22)
s := a22(b21 − b11); t := (a11 + a12)b22; u := (a21 − a11)(b11 + b12)
v := (a12 − a22)(b21 + b22)
c11 := p+ s− t+ v; c12 := r + t; c21 := q + s; c22 := p− q + r + u

c© 2000 by CRC Press LLC



Examples:

1. This example illustrates Algorithm 4 for 4 × 4 array matrix multiplication. The
preshift and the first array multiplication yield the arrays:

a11 a12 a13 a14

a22 a23 a24 a21

a33 a34 a31 a32

a44 a41 a42 a43

b11 b22 b33 b44
b21 b32 b43 b14
b31 b42 b13 b24
b41 b12 b23 b34

a11b11 a12b22 a13b33 a14b44
a22b21 a23b32 a24b43 a21b14
a33b31 a34b42 a31b13 a32b24
a44b41 a41b12 a42b23 a43b34

The next shifts and multiply-accumulate operation produce:
a12 a13 a14 a11

a23 a24 a21 a22

a34 a31 a32 a33

a41 a42 a43 a44

b21 b32 b43 b14
b31 b42 b13 b24
b41 b12 b23 b34
b11 b22 b33 b44

a11b11 + a12b21 a12b22 + a13b32 a13b33 + a14b43 a14b44 + a11b14
a22b21 + a23b31 a23b32 + a24b42 a24b43 + a21b13 a21b14 + a22b24
a33b31 + a34b41 a34b42 + a31b12 a31b13 + a32b23 a32b24 + a33b34
a44b41 + a41b11 a41b12 + a42b22 a42b23 + a43b33 a43b34 + a44b44

At subsequent stages the remaining terms get added in to the appropriate elements
of the product matrix. The total cost of matrix multiplication is therefore reduced to
n parallel multiply-accumulate operations plus some communication costs which for a
typical distributed memory array processor are generally small.

2. Algorithm 6 is illustrated using the matrices A =
(

3 4
−1 2

)
, B =

(
7 3
1 −3

)
. Then

p = 5 · 4 = 20, q = 1 · 7 = 7, r = 3 · 6 = 18, s = 3 · (−6) = −12,
t = 7 · (−3) = −21, u = (−4) · 10 = −40, v = 2 · (−2) = −4,

giving the following elements of C = AB: c11 = 20−12+21−4 = 25, c12 = 18−21 = −3,
c21 = 7− 12 = −5, c22 = 20− 7 + 18− 40 = −9.

6.3.4 DETERMINANTS

Definitions:

For an n × n matrix A with n > 1, Aij denotes the (n − 1) × (n − 1) matrix obtained
by deleting row i and column j from A.

The determinant detA of an n× n matrix A can be defined recursively:
• if A = ( a ) is a 1× 1 matrix, then detA = a;
• if n > 1, then detA =

∑n
j=1(−1)j+1a1j detA1j .

A minor of a matrix is the determinant of a square submatrix of the given matrix. A
principal minor is the determinant of a principal submatrix.

Notation: The determinant of A = (aij) is commonly written using vertical bars:

detA = |A| =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣.
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Facts:
1. Laplace expansion: For any r,

detA =
n∑

j=1

(−1)r+jarj detArj =
n∑

i=1

(−1)i+rair detAir.

2. If A = (aij) is n× n, then detA =
∑

σ∈Sn
sgn(σ) a1σ(1)a2σ(2) . . . anσ(n). Here Sn is

the set of all permutations on {1, 2, . . . , n}, and sgn(σ) equals 1 if σ is even and −1 if
σ is odd (§5.3.1).

3. det
(
a b
c d

)
=

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc.

4. det

 a b c
d e f
g h i

 =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− afh− bdi− ceg.

5. detAB = detA detB = detBA for all n× n matrices A, B.
6. detAT = detA for all n× n matrices A.
7. detαA = αn detA for all n× n matrices A and all scalars α.
8. det I = 1.
9. If A has two identical rows (or two identical columns), then detA = 0.
10. Interchanging two rows (or two columns) of a matrix changes the sign of the de-
terminant.
11. Multiplying one row (or column) of a matrix by a scalar multiplies its determinant
by that same scalar.
12. Adding a multiple of one row (column) to another row (column) leaves the value
of the determinant unchanged.
13. If D = (dij) is an n× n diagonal matrix, then detD = d11d22 . . . dnn.
14. If T = (tij) is an n× n triangular matrix, then detT = t11t22 . . . tnn.

15. If A andD are square matrices, then det
(
A B
0 D

)
= detA detD = det

(
A 0
C D

)
.

16. A is nonsingular if and only if detA 
= 0.

17. If A is nonsingular then det(A−1) =
1

detA
.

18. If A and D are nonsingular, then det
(
A B
C D

)
= detA det(D − CA−1B) =

detD det(A−BD−1C).
19. The determinant of a Hermitian matrix (§6.3.1) is real.
20. The determinant of a skew-symmetric matrix (§6.3.1) of odd size is zero.
21. The determinant of an orthogonal matrix (§6.3.1) is ±1.
22. The n×n symmetric (or Hermitian) matrix A is positive definite if and only if all its
leading principal submatrices A[1], A[1, 2], . . . , A[1, 2, . . . , n] have positive determinant.
23. The n× n Vandermonde matrix

1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

...
...

...
1 xn . . . xn−1

n


has determinant

∏
i<j(xj − xi).
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24. If the n × n matrix A = (aij) has diagonal elements aii = x and off-diagonal
elements aij = y, then detA = (x− y)n−1(x− y + ny).
25. The equation of the straight line through points (a1, b1) and (a2, b2) is given by∣∣∣∣∣∣

x y 1
a1 b1 1
a2 b2 1

∣∣∣∣∣∣ = 0.

26. The equation of the circle through points (a1, b1), (a2, b2), (a3, b3) is given by∣∣∣∣∣∣∣
x2 + y2 x y 1
a2
1 + b21 a1 b1 1
a2
2 + b22 a2 b2 1
a2
3 + b23 a3 b3 1

∣∣∣∣∣∣∣ = 0.

27. If the three points (a1, b1), (a2, b2), (a3, b3) are listed in counterclockwise order,
then the area of the triangle they form is given by

1
2

∣∣∣∣∣∣
a1 b1 1
a2 b2 1
a3 b3 1

∣∣∣∣∣∣ .
28. The parallelepiped P = {α1a1 + α2a2 + · · ·+ αnan | 0 ≤ αi ≤ 1 } spanned by the
vectors a1, a2, . . . , an has volume |detA |, where A has columns a1, a2, . . . , an.
29. Computation: The determinant is (almost) never computed from the definition
or from Fact 2. Instead it is calculated using Facts 12 and 14. (See Example 1.)

Examples:
1. Determinants can be calculated by using row operations to create a triangular ma-
trix, and then applying Fact 14:

det

−1 2 1
0 5 2
3 4 3

 = det

−1 2 1
0 5 2
0 10 6

 = det

−1 2 1
0 5 2
0 0 2

 = −10.

Here the second matrix is obtained from the first by adding 3 times row 1 to row 3; the
third matrix is obtained from the second by adding −2 times row 2 to row 3.
2. Determinants can be calculated by using row and column interchanges to obtain a
form with exploitable zeros:

det


4 5 1 6
0 6 0 3
0 5 0 2
3 3 2 4

 = −det


4 1 5 6
0 0 6 3
0 0 5 2
3 2 3 4

 = det


4 1 5 6
3 2 3 4
0 0 5 2
0 0 6 3

.

Here the second matrix is obtained from the first by interchanging columns 2 and 3;
the third matrix is obtained from the second by interchanging rows 2 and 4. The third

matrix has block triangular form, with diagonal blocks A =
(

4 1
3 2

)
and D =

(
5 2
6 3

)
.

By Fact 15, the original determinant equals detA detD = 5 · 3 = 15.

3. The symmetric matrix A =

 3 1 0
1 5 3
0 3 4

 is positive definite, since its leading prin-

cipal minors (Fact 22) are positive: det ( 3 ) = 3 > 0, det
(

3 1
1 5

)
= 14 > 0, and (by

Fact 1) detA = 3 det
(

5 3
3 4

)
− det

(
1 3
0 4

)
= 3 · 11− 4 = 29 > 0.
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4. The equation of the line through points (1, 3) and (4, 5) can be found using Fact 25:∣∣∣∣∣∣
x y 1
1 3 1
4 5 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x y 1
1 3 1
0 −7 −3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x y − 7

3 1
1 2

3 1
0 0 −3

∣∣∣∣∣∣ = ( 2
3x− y + 7

3 )(−3) = 0,

giving 2
3x− y + 7

3 = 0 or y = 2
3x+ 7

3 .

5. By Fact 27, the area of the triangle formed by the points (0, 0), (1, 3), and (4, 5) is

1
2

∣∣∣∣∣∣
0 0 1
4 5 1
1 3 1

∣∣∣∣∣∣ = 1
2

∣∣∣∣ 4 5
1 3

∣∣∣∣ = 7
2 .

6. Cayley’s formula: The determinant of the (n− 1)× (n− 1) matrix

Tn =


n− 1 −1 . . . −1
−1 n− 1 . . . −1
...

...
...

−1 −1 . . . n− 1


counts the number of spanning trees of a complete graph. (See §9.2.2.) Using Fact 24,
detTn = nn−2[n− (n− 1)] = nn−2.

6.3.5 RANK

Definition:

The rank of an m × n matrix A, written rankA, is the size of the largest square
nonsingular submatrix of A.

Facts:

1. rankA = rankAT .

2. The rank of A equals the maximum number of linearly independent rows or linearly
independent columns in A.

3. rank (A+B) ≤ rankA + rankB.

4. rankAB ≤ min{rankA, rankB}.
5. If A is nonsingular then rankAB = rankB and rankCA = rankC.

6. rankA = dimCS(A), where CS(A) is the column space of A and dimV denotes the
dimension of the vector space V . (See §6.1.3.)

7. rankA = dimRS(A), where RS(A) is the row space of A. (See §6.1.3.)

8. An n× n matrix A is nonsingular if and only if rankA = n.

9. Every matrix of rank r can be written as a sum of r matrices of rank 1.

10. If a and b are nonzero n× 1 vectors, then abT is an n× n matrix of rank 1.

11. The rank of a matrix is not always easy to compute. In the absence of severe
roundoff errors, it can be obtained by counting the number of nonzero rows at the end
of the Gaussian elimination procedure (§6.4.2).
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12. The rank of a matrix is not always easy to compute. In the absence of severe
roundoff errors, it can be obtained by counting the number of nonzero rows at the end
of the Gaussian elimination procedure (§6.4.2).
13. System of linear equations: Consider the system Ax = b, where A is m× n. Let
Ab = (A : b) denote the m× (n+1) matrix whose (n+1)st column is the vector b. Then
the system Ax = b has

• a unique solution ⇔ rankA = rankAb = n;
• infinitely many solutions ⇔ rankA = rankAb < n;
• no solution ⇔ rankA < rankAb.

Examples:

1. The matrix A =

 1 −1 2
3 4 −1
5 2 3

 is singular since detA = 0. However, the sub-

matrix A[1, 2] =
(

1 −1
3 4

)
has determinant 7 and so is nonsingular, showing that

rankA = 2. The matrix A has two linearly independent rows: row 3 = 2 × (row 1) +
(row 2). Likewise, it has two linearly independent columns: column 3 = (column 1) −
(column 2). This again confirms (by Fact 2) that rankA = 2.

2. Consider the system of equations Ax = b, where A is the matrix in Example 1 and
b = (0, 7, 7)T . Since rankA = rankAb = 2 < 3, this system has infinitely many solutions
x. In fact, the set of solutions is given by { (1− α, 1 + α, α)T | α ∈ R}.

3. The matrix A =

 1 x x2

x x2 x3

x2 x3 x4

 can be expressed as the product aaT where a is

the column vector (1, x, x2)T . By Fact 10, A has rank 1.

6.3.6 IDENTITIES OF MATRIX ALGEBRA

Facts:
1. Cauchy-Binet formula: If C is m × m and C = AB where A is m × n and B is
n×m, then the determinant of C is given by the sum of all products of order m minors
of A and the corresponding order m minors of B:

detC =
∑

1≤s1<s2<···<sm≤n

∣∣∣∣∣∣∣∣
a1s1 a1s2 · · · a1sm

a2s1 a2s2 · · · a2sm

...
...

...
ams1 ams2 · · · amsm

∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
bs11 bs12 · · · bs1m

bs21 bs22 · · · bs2m

...
...

...
bsm1 bsm2 · · · bsmm

∣∣∣∣∣∣∣∣
• if m = n there is only one possible selection; the Cauchy-Binet formula for this

case reduces to detC = detA detB; (see Fact 5, §6.3.4)
• if m > n no possible selections exist (the sum is empty), so detC = 0.

2. Courant-Fischer minimax identity: If the eigenvalues (§6.5) of an n× n Hermitian

matrix A are ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn, then λk = max
dim V = k

min
0�=x∈V

xTAx

xTx
where V is a linear subspace of Cn.
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3. Hadamard’s inequality : This gives an upper bound for the determinant of an n×n
matrix A in terms of the l2 norms (§6.4.5) of its rows (or columns):

• in terms of rows: (detA)2 ≤
n∏

i=1

(
n∑

j=1

|aij |2
)

=
n∏

i=1

||A(i, :)||2

• in terms of columns: (detA)2 ≤
n∏

j=1

(
n∑

i=1

|aij |2
)

=
n∏

j=1

||A(:, j)||2.

4. Sherman-Morrison identity: If A is a nonsingular n×n matrix and u, v ∈ Rn, then

(A− uvT )−1 = A−1 +
1

1− vTA−1u
(A−1uvTA−1).

5. Woodbury identity: If A is nonsingular, then

(A− UV T )−1 = A−1 +A−1U(I − V TA−1U)−1V TA−1.

6. Suppose A is a nonsingular n×n matrix, with S a set of k indices i1 < i2 < · · · < ik
and S the set of remaining indices in {1, 2, . . . , n}. Then the principal minors of A−1

are related to the principal minors of A via

detA−1[S] =
1

detA
detA[S].

7. Jacobi’s identity : If the n × n system of linear differential equations
dx

dt
= P (t)x

has the linearly independent family of solutions X(:, j)(t) for j = 1, 2, . . . , n, then the
determinant of the (variable) matrix X(t) whose columns are the X(:, j)(t) is given by

detX(t1) = c exp
(∫ t1

t0
trP (t)dt

)
,

where c is a constant and trP (t) = p11(t) + p22(t) + · · · + pnn(t) is the trace of the
matrix P (t).

6.4 LINEAR SYSTEMS

The need to find solutions of linear systems arises in numerous branches of science and
engineering (physics, biology, chemistry, structural engineering, electrical engineering,
civil engineering) as well as statistics and applied mathematics. This section discusses
various techniques for the efficient solution of such systems, especially important when
these systems are large and sparse.

6.4.1 BASIC CONCEPTS

This subsection is concerned with representing and solving a system of m linear equa-
tions in n unknowns. Throughout, the focus will be on systems whose data are real
numbers. The extension to linear systems with complex data is straightforward.
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Algorithm 1: Forward substitution.

input: n× n nonsingular matrix L, n× 1 vector b
output: n× 1 vector x = L−1b

x1 :=
b1
l11

for i := 2 to n do

xi :=
1
lii

(
bi −

i−1∑
j=1

lijxj

)

Definitions:

A linear equation in unknowns x1, x2, . . . , xn is an equation of the form
∑n

j=1 ajxj = b,
where the coefficients aj ∈ R and the right-hand side b ∈ R. A solution of this
equation is any set of values x1, x2, . . . , xn satisfying the given equation.

A system of linear equations in unknowns x1, x2, . . . , xn is a collection ofm equations∑n
j=1 aijxj = bi, i = 1, 2, . . . ,m where all aij ∈ R and all bi ∈ R. A solution of

this system is any set of values x1, x2, . . . , xn satisfying (simultaneously) the m given
equations. The coefficient matrix of this system is the m× n matrix A = (aij), and
the augmented matrix is the m× (n+ 1) matrix Ab = (A : b).

A homogeneous system has right-hand sides bi = 0 for all i = 1, 2, . . . ,m; otherwise
the system is nonhomogeneous.

Back substitution is a simple and efficient iterative procedure for solving an upper
triangular linear system Ux = b, one unknown at a time.

Forward substitution is a simple and efficient iterative procedure for solving a lower
triangular linear system Lx = b, one unknown at a time.

Facts:

1. A system ofm linear equations in the unknowns x1, x2, . . . , xn can be represented by
the linear system Ax = b where A is the m×n coefficient matrix, x = (x1, x2, . . . , xn)T

is the column vector of unknowns, and b = (b1, b2, . . . , bm)T is the column vector of
right-hand sides.

2. Given the linear system Ax = b, where A is m× n,
• the system has no solution when rankA < rankAb;
• the system has a unique solution when rankA = rankAb = n;
• the system has infinitely many solutions when rankA = rankAb < n; in this case

the set of solutions is an affine subspace of dimension n− rankA (§6.1.3).

3. If the square matrix A is nonsingular (§6.3.2), then Ax = b has the unique solution
vector x = A−1b.

4. If the square matrix L = (lij) is lower triangular, then Lx = b has a unique solu-
tion whenever lii 
= 0 for all i. In this case the solution can be found using forward
substitution (Algorithm 1).

5. If the square matrix U = (uij) is upper triangular, then Ux = b has a unique
solution whenever uii 
= 0 for all i. In this case the solution can be found using back
substitution (Algorithm 2).
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Algorithm 2: Back substitution.

input: n× n nonsingular matrix U , n× 1 vector b
output: n× 1 vector x = U−1b

xn :=
bn
unn

for i := n− 1 down to 1 do

xi :=
1
uii

(
bi −

n∑
j=i+1

uijxj

)

Examples:

1. The system of linear equations
x1 + 3x2 + 4x3 = 1

3x1 + 5x2 + 0x3 = 7

corresponds to the linear system Ax = b, where A =
(

1 3 4
3 5 0

)
and b =

(
1
7

)
. Since

rankA = rankAb = 2 < 3 the system has an infinite number of solutions. In fact the
set of solutions can be expressed as { (4+5a,−1−3a, a)T | a ∈ R}. Equivalently, it can
be expressed as the affine subspace { (4,−1, 0)T + a(5,−3, 1)T | a ∈ R} of dimension
n− rankA = 3− 2 = 1.

2. The system of linear equations
5x1 − 3x2 + 4x3 = 4

−x2 + 5x3 = 7
3x3 = 6

has the upper triangular coefficient matrix U =

 5 −3 4
0 −1 5
0 0 3

. Using Algorithm 2, the

unique solution is x3 = 6
3 = 2, x2 = 1

−1 (7− 5 · 2) = 3, x1 = 1
5 (4− (−3) · 3− 4 · 2) = 1.

6.4.2 GAUSSIAN ELIMINATION

Solving a system of linear equations via Gaussian elimination is one of the most common
computations performed by scientists and engineers. Gaussian elimination successively
eliminates variables from the original system, creating a triangular system that is easily
solved (§6.4.1).
Note: This subsection deals only with linear systems Ax = b, where A is a nonsingular
n× n real matrix and b ∈ Rn.

Definitions:

Gaussian elimination is a method for solving systems of linear equations; at each
step one equation is used to eliminate one variable from the rest of the equations. The
coefficient of the eliminated variable in the eliminated equation is the pivot.
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Algorithm 3: Gaussian elimination and back substitution.

input: n× n nonsingular matrix A, n× 1 vector b
output: n× 1 vector x = A−1b

{Gaussian elimination}
for j := 1 to n− 1 do
{ajj is the pivot}
for i := j + 1 to n do
{eliminate xj from equation i}
compute multiplier m := −aij/ajj

add m× row j to row i

{Back substitution}
use Algorithm 2 on resulting upper triangular matrix to obtain the values
xn, xn−1, . . . , x1

A flop is a multiply-add operation of the form t = s + ab, especially when performed
in floating point arithmetic on a digital computer.

Roundoff errors are the errors associated with storing and computing numbers in
finite precision arithmetic on a digital computer.

A numerically stable algorithm is a method whose accuracy is not greatly harmed
by roundoff errors.

A numerically unstable algorithm is a method that may return an inaccurate solu-
tion even when the solution is relatively insensitive to errors in the data.

Facts:

1. Gaussian elimination is easily extended to linear systems for which the data A and b
are complex. Extension to rectangular m × n linear systems is more involved, but not
difficult [GoVa96].

2. In Gaussian elimination, the coefficient of a variable in one of the equations can be
used as a pivot if and only if its value is nonzero.

3. In practice, careful choice of pivots is needed to ensure accuracy or improve efficiency
or both. (See Example 2.)

4. Assume freedom at each step to choose any available nonzero pivot. Then Gaussian
elimination succeeds (using exact arithmetic) if and only if A is nonsingular.

5. Gaussian elimination transforms the initial linear system into a second linear system
such that

• the solutions of the two systems are identical;
• the solution of the second system is easily obtained by back substitution.

6. Ax = b can be solved by Gaussian elimination and back substitution (Algorithm 3),
assuming that at each step there is a nonzero pivot on the main diagonal.

7. Algorithm 3, implemented to take advantage of created 0s, requires 1
3n

3 + O(n2)
flops.

8. To solve Ax = b by computing the inverse and then forming the product A−1b
requires n3 +O(n2) flops.
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9. Cramer’s rule: This method for solving Ax = b expresses each entry of the solution
x = (x1, x2, . . . , xn)T as the ratio of two determinants:

x1 =
detA1

detA
, x2 =

detA2

detA
, . . . , xn =

detAn

detA
,

where Ai is obtained from A by substituting column vector b for the ith column of A.
(Gabriel Cramer, 1704–1752)

10. Cramer’s rule is of extremely limited use numerically because
• it requires far more flops than Gaussian elimination and back substitution;
• it is numerically unstable.

Examples:
1. The following system is solved by first applying Gaussian elimination:

x1 + x2 + 2x3 + x4 = 1
2x1 + 4x2 + 5x3 + 4x4 = 5 (− 2

1 × equation 1)
x1 + 7x2 + 7x3 + 6x4 = 6 (− 1

1 × equation 1)
2x1 + 4x2 + 9x3 + 5x4 = 3 (− 2

1 × equation 1)

x1 + x2 + 2x3 + x4 = 1
2x2 + x3 + 2x4 = 3

6x2 + 5x3 + 5x4 = 5 (− 6
2 × equation 2)

2x2 + 5x3 + 3x4 = 1 (− 2
2 × equation 2)

x1 + x2 + 2x3 + x4 = 1
2x2 + x3 + 2x4 = 3

2x3 − x4 = −4
4x3 + x4 = −2 (− 4

2 × equation 3)

x1 + x2 + 2x3 + x4 = 1
2x2 + x3 + 2x4 = 3

2x3 − x4 = −4
3x4 = 6

The solution is then obtained by back substitution:
x4 = 6/3 = 2,
x3 = [−4 + 1 · 2]/2 = −1,

x2 = [3− 1 · (−1)− 2 · 2]
/
2 = 0,

x1 = [1− 1 · 0− 2 · (−1)− 1 · 2]
/
1 = 1.

2. Suppose the following system is solved, rounding all results to three significant digits:

0.0001x1 + x2 = 1
0.5x1 + 0.5x2 = 1 (− 0.5

0.0001 × equation 1)

0.0001x1 + x2 = 1
−5000x2 = −5000
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Using back substitution produces x2 = 1 and x1 = 0. However, the correct solution to
this simple linear system is x1 = 10000

9999 and x2 = 9998
9999 , which to three significant digits

becomes x1 = 1 and x2 = 1. Consequently, simply choosing any nonzero pivot can
produce inaccurate results.

6.4.3 LU DECOMPOSITION

Gaussian elimination can be formulated as LU decomposition of the coefficient matrix.

Definitions:

An LU decomposition of a square matrix A expresses A = LU , where L = (lij) is
unit lower triangular and U = (uij) is upper triangular.

A permutation matrix is a square matrix with entries 0 or 1, where the entry 1 occurs
precisely once in each row and once in each column.

Facts:

1. A square matrix has an LU decomposition if and only if every principal submatrix
(§6.3.1) is nonsingular.

2. If P is a permutation matrix, then the product PA rearranges the rows of A and
the product AP rearranges the columns of A.

3. The matrix A is nonsingular if and only if there exists a permutation matrix P such
that PA has an LU decomposition. The LU decomposition of PA is unique.

4. It may be necessary to rearrange the rows of A to avoid a zero pivot.

5. Assume A has an LU decomposition, and consider Gaussian elimination applied
to Ax = b with pivots on the main diagonal. The following statements express LU
decomposition as a reformulation of Gaussian elimination:

• the entry uij (1 ≤ i ≤ j ≤ n) is the coefficient of xj in equation i after Gaussian
elimination has been completed;

• to eliminate xj from equation i, i > j, Gaussian elimination adds −lij× equation
j to equation i.

6. If A has an LU decomposition, then the linear system Ax = b can be solved as
follows (see Algorithm 4):

• compute the decomposition A = LU ;
• solve Ly = b; that is, perform forward substitution;
• solve Ux = y; that is, perform back substitution.

7. It is inefficient to solve a nontrivial sequence of linear systems Ax1 = b1, Ax2 = b2,
. . ., Axp = bp by repeating Gaussian elimination for each system. Only one LU de-
composition is needed, followed by p forward substitution steps and p back substitution
steps.

8. An LU decomposition of an n× n matrix requires n2 +O(n) storage locations and
1
3n

3 +O(n2) flops.
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Algorithm 4: LU decomposition with forward and back substitution.

input: n× n nonsingular matrix A, n× 1 vector b
output: n× 1 vector x = A−1b

{Compute A = LU}
for k := 1 to n− 1 do
ukk := akk

for i := k + 1 to n do
lik := aik/akk; uki := aki

for j := k + 1 to n do
for i := k + 1 to n do
aij := aij − likukj

{Solve Ly = b; that is, perform forward substitution}
for i := 1 to n do

yi := bi −
i−1∑
j=1

lijyj

{Solve Ux = y; that is, perform back substitution}
for i := n down to 1 do

xi :=
1
uii

(
yi −

n∑
j=i+1

uijxj

)

Examples:

1. The following matrix A has no LU decomposition because a11 = 0 (see Fact 1):

A =
(

0 1
2 3

)
.

However, rearranging the rows of A (Fact 4) produces

PA =
(

0 1
1 0

) (
0 1
2 3

)
=

(
2 3
0 1

)
=

(
1 0
0 1

) (
2 3
0 1

)
= LU.

2. The unique LU decomposition of the matrix A in Example 1, §6.4.2 is
1 1 2 1
2 4 5 4
1 7 7 6
2 4 9 5

 =


1 0 0 0
2 1 0 0
1 3 1 0
2 1 2 1




1 1 2 1
0 2 1 2
0 0 2 −1
0 0 0 3

 .

6.4.4 CHOLESKY DECOMPOSITION

For symmetric positive definite linear systems, Cholesky decomposition (which exploits
symmetry in the coefficient matrix) is roughly twice as efficient as LU decomposition.

Definition:

A Cholesky decomposition of A expresses A = LLT , where L is lower triangular and
every entry on the main diagonal of L is positive.
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Facts:

1. A matrix has a Cholesky decomposition if and only if it is symmetric and positive
definite.

2. When A is symmetric and positive definite, the linear system Ax = b can be solved
as follows:

• compute a Cholesky decomposition A = LLT ;
• solve Ly = b; i.e., perform forward substitution;
• solve LTx = y; i.e., perform back substitution.

3. A simple symmetric variant of the standard LU decomposition algorithm is used to
compute Cholesky decomposition [GoVa96, St88].

4. Cholesky decomposition requires 1
2n

2 + O(n) storage locations and 1
6n

3 + O(n2)
flops, in contrast to the n2 +O(n) storage locations and 1

3n
3 +O(n2) flops required by

LU decomposition.

Example:

1. The matrix A =

 1 −1 3
−1 2 −1

3 −1 14

 is clearly symmetric. It is positive definite since

its principal submatrices ( 1 ),
(

1 −1
−1 2

)
, and A have positive determinants. (See

§6.3.4 Fact 22.) Matrix A can be written as A = LLT , where L is the lower triangular

matrix

 1 0 0
−1 1 0

3 2 1

. To solve the linear system Ax = b, with b = (1, 0, 6)T , first

solve the lower triangular system Ly = b, yielding y = (1, 1, 1)T . Then solve the upper
triangular system LTx = y, yielding x = (−3,−1, 1)T .

6.4.5 CONDITIONING OF LINEAR SYSTEMS

Errors in the data A and b lead to errors in the solution x. The condition number of A
can be used to bound relative error in the solution in terms of relative errors in the
data.

Definitions:

A (generalized) vector norm on Rn is a real-valued function ‖ · ‖ satisfying the
following properties for all real scalars a and all vectors x, y ∈ Rn:

• ‖x‖ ≥ 0 with equality if and only if x = 0;
• ‖ax‖ = |a| · ‖x‖, where |a| denotes the absolute value of a;
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The matrix norm induced by the vector norm ‖ · ‖ is defined by ‖A‖ = max
‖x‖=1

‖Ax‖.

The condition number of a nonsingular matrix A is the number κ(A) = ‖A‖ ‖A−1‖.
The larger the condition number of a matrix, the more ill conditioned it is; the smaller
the condition number of a matrix, the more well conditioned it is.
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Facts:

1. The definition of a vector norm given here generalizes that of a vector norm derived
from an inner product space (§6.1.4).

2. The matrix norm induced by a vector norm satisfies:
• ‖X‖ ≥ 0 with equality if and only if X = 0;
• ‖aX‖ = |a| · ‖X‖, where |a| denotes the absolute value of a;
• ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖;
• ‖XY ‖ ≤ ‖X‖‖Y ‖.

3. κ(A) ≥ 1.

4. Consider the linear system Ax = b 
= 0, where A is nonsingular. Suppose that
changing from A to A+ ∆A and b to b+ ∆b changes the solution from x to x+ ∆x. If
‖(∆A)‖ ‖A−1‖ < 1, the relative error in x can be bounded in terms of relative errors in
the data:

‖∆x‖
‖x‖ ≤

(
κ(A)

1− ‖(∆A)‖ ‖A−1‖

)(‖∆b‖
‖b‖ +

‖∆A‖
‖A‖

)
.

5. The following are consequences of Fact 4:
• for an ill-conditioned linear system Ax = b, some small errors in A or b can

potentially be amplified into large errors in x;
• for a well-conditioned linear system Ax = b, where 1 − ‖(∆A)‖ ‖A−1‖ is not

approximately zero, all small errors in A or b result in no more than modest
errors in x.

6. Assume A is nonsingular, let Ax = b 
= 0, and view x̂ as an approximation to the
solution x. Then the residual r = Ax̂− b and the error x̂− x satisfy:

‖x̂− x‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ .

7. Whenever A is ill conditioned, a small relative residual ‖r‖/‖b‖ may not imply a
small relative error ‖x̂− x‖/‖x‖.

Examples:

1. The standard Euclidean norm (§6.1.4) on Rn defined by ‖x‖2 = (
n∑

i=1

x2
i )

1/2 is a

(generalized) vector norm.

2. The l1 norm on Rn defined by ‖x‖1 =
n∑

i=1

|xi| is a (generalized) vector norm.

3. In coding theory (§14.1), the Hamming distance between two codewords x, y ∈ Zn
2

is just ‖x− y‖1.
4. The l∞ norm on Rn defined by ‖x‖∞ = max

1≤i≤n
|xi| is a (generalized) vector norm.

5. The matrix norm induced by ‖x‖1 is given by ‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |.

6. The matrix norm induced by ‖x‖∞ is given by ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

7. The matrix norm induced by ‖x‖2, also called the spectral norm, is given by ‖A‖2 =
max{

√
λ | λ an eigenvalue of ATA }.
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8. Consider the linear system Ax = b, where A =
(

1 2
2.001 4

)
and b =

(
2
4

)
. Then

‖A‖∞ = 6.001 and ‖A−1‖∞ = 3000, so κ(A) = 18,003. The solution of Ax = b is

x = (0, 1)T whereas the solution of the slightly perturbed system with b̂ =
(

2
4.001

)
is x = (1, 0.5)T . Even though the change in the right-hand side is small, the large
condition number allows for radical changes in the solution vector, as seen here.

6.4.6 PIVOTING FOR STABILITY

Gaussian elimination can be numerically unstable. Numerical stability can be vastly
improved by the addition of pivoting strategies that select large pivots.

Definitions:

Let a(k)
ij denote the ij-entry of the current matrix after step k of Gaussian elimination

(or LU decomposition). The growth factor is defined by
max
i,j,k
|a(k)

ij |
max

i,j
|aij | .

Partial pivoting is a solution strategy which at step k of Gaussian elimination ex-
changes row k with the row i ≥ k having the entry of largest magnitude in column k.

Complete pivoting is a solution strategy which at step k of Gaussian elimination
exchanges row k and column k with, respectively, the row i ≥ k and the column j ≥ k
containing the entry of largest magnitude.

Facts:

1. For general coefficient matrices, Gaussian elimination (that is, LU decomposition)
without pivoting is numerically unstable.

2. To improve the numerical stability of Gaussian elimination, it suffices to introduce
a pivoting strategy that keeps the growth factor small.

3. For Gaussian elimination with complete pivoting the growth factor is bounded above
by

n1/2
(
2131/241/3 . . . n1/(n−1)

)1/2,
which is a relatively slow-growing function of n; hence, Gaussian elimination with com-
plete pivoting is numerically stable.

4. For Gaussian elimination with partial pivoting, the growth factor is bounded above
by 2n−1, and moreover there are contrived examples for which the growth factor is 2n−1.
Hence, Gaussian elimination with partial pivoting can be numerically unstable.

5. In practice, partial pivoting is preferred over complete pivoting for the following two
reasons:

• despite contrived examples having an exponential growth factor, partial pivoting
limits the growth factor in practice almost as well as complete pivoting;

• partial pivoting is significantly more efficient than complete pivoting; it compares
1
2n

2 +O(n) pairs of potential pivots, while complete pivoting compares 1
3n

3 +
O(n2) pairs.
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Example:
1. LU decomposition applied to the following matrix shows that partial pivoting can
produce a growth factor of 2n−1 (see Fact 4). Observe that maxi,j |aij | = 1 and
maxi,j,k |a(k)

ij | = unn = 2n−1; hence the growth factor is 2n−1:

1 0 0 · · · 0 1
−1 1 0 · · · 0 1
−1 −1 1 · · · 0 1...

...
...

...
...

−1 −1 −1 · · · 0 1
−1 −1 −1 · · · 1 1
−1 −1 −1 · · · −1 1



6.4.7 PIVOTING TO PRESERVE SPARSITY

Many, if not most, linear systems that arise in practice have relatively few nonzero
entries in the coefficient matrix. Some pivoting strategies aim to preserve many zero
entries in the triangular factors; the LU decomposition algorithm can then save time
and space by leaving zero entries out of the computation.

Definitions:

A matrix is sparse if it has relatively few nonzero entries. The number of nonzero
entries of matrix A is denoted |A|. The ith row of A is denoted A(i, :) and the jth
column of A is denoted A(:, j). (See §6.3.1.)

Fill refers to nonzero entries in the triangular factors whose corresponding positions in
the coefficient matrix are occupied by zeros.

The upper bandwidth and lower bandwidth of a matrix A are given respectively
by ub(A) = max{ (j − i) | aij 
= 0, i < j }, lb(A) = max{ (i− j) | aij 
= 0, i > j }.
A banded LU decomposition algorithm stores and computes all entries of L and U
within the band defined by lb(A) and ub(A).

A general sparse LU decomposition algorithm stores and computes only the nonzero
entries in the triangular factors, irrespective of the banded structure.

The Markowitz pivoting strategy for Gaussian elimination chooses at step k from
among all available pivots one that minimizes the product

(
|L(:, k)| − 1

)(
|U(k, :)| − 1

)
.

The minimum degree algorithm is a restricted version of the Markowitz pivoting
strategy; it assumes (and preserves) symmetry in the coefficient matrix. At step k
of Gaussian elimination, this algorithm chooses from among the entries on the main
diagonal a pivot that minimizes |L(:, k)|.
Note: The realistic “no-cancellation” assumption will be made throughout. Namely,
once an entry becomes nonzero during a triangular decomposition, it will be nonzero
upon termination.

Facts:
1. The amount of fill in triangular factors often varies greatly with the choice of pivots.
2. Under the no-cancellation assumption, bandwidth reduction and fill reduction be-
come combinatorial optimization problems.
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3. The following problems are provably intractable (i.e., NP-hard; see §16.5):
• for a symmetric matrix A, find a permutation matrix P that minimizes the

bandwidth lb(PAPT );
• for a nonsingular matrix A, find permutation matrices P and Q such that the

LU decomposition PAQ = LU exists and |L|+ |U | is minimum;
• for a symmetric positive definite matrix A, find a permutation matrix P that

minimizes |L|, where L is the Cholesky factor of PAPT .

4. In view of Fact 3, various heuristics are used to reduce bandwidth or to reduce fill.

5. Assume that A has an LU decomposition. Then lb(L) = lb(A) and ub(U) = ub(A).

6. The chief advantage of a banded LU decomposition algorithm over a general sparse
LU decomposition algorithm is its simplicity. The same advantage holds for profile and
skyline methods, both of which are generalizations of the banded approach [GeLi81].

7. For most problems encountered in practice, a banded LU decomposition algorithm,
even if A has been permuted so that lb(A) and ub(A) are minimum, requires much more
space and work than a general sparse LU decomposition algorithm coupled with the
Markowitz pivoting strategy. The same comment applies to profile and skyline methods.

8. Let A be a symmetric positive definite matrix, and let P be a permutation matrix
with the same number of rows and columns.

• the Cholesky decomposition of PAPT exists and is numerically stable;
• the undirected graph (§8.1) G of the Cholesky factor of PAPT is a chordal graph

and P defines a perfect elimination ordering of G [GeLi81].

9. General sparse Cholesky decomposition can be handled in a clean, modular fashion:
• using only the positions of nonzeros in A as input, compute a permutation P to

reduce fill in the Cholesky factor of PAPT (using, for example, the minimum
degree algorithm);

• construct data structures to contain the nonzeros of the Cholesky factor;
• after putting the nonzero entries of PAPT into the data structures, compute the

Cholesky factor of PAPT in the provided data structures;
• perform forward and back substitutions to solve the linear system.

10. For symmetric positive definite matrices arising from two-dimensional and three-
dimensional partial differential equations, the nested dissection algorithm often com-
putes a more effective fill-reducing permutation than does the minimum degree algo-
rithm [GeLi81].

11. The interplay between pivoting for stability and pivoting for sparsity complicates
general sparse LU factorization. The best approach is not yet certain.

12. A number of robust and well-tested software packages are available for solving
linear systems, including:

• LINPACK : a collection of Fortran routines for relatively small dense systems; see
http://www.netlib.org

• LAPACK/CLAPACK : supersedes LINPACK , contains Fortran and C routines
for dense and banded problems, ideal for shared-memory vector and parallel
processors; see
http://www.netlib.org

• NAG: Fortran and C libraries for dense and sparse systems; see
http://www.nag.com
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• IMSL: Fortran and C libraries for dense and sparse systems; see
http://www.vni.com/products/imsl

• MATLAB: high-level language for dense and sparse systems; see
http://www.mathworks.com

Examples:
1. For any “arrowhead” matrix there is a pivot sequence that completely fills the matrix
and another that creates no fill, making it the canonical example used to illustrate Fact 1.
The following is a 4×4 arrowhead matrix that fills in completely. (> occupies a position
that is nonzero in A, • is a fill entry in L or U , and a space is a zero.)

A =


> > > >
> >
> >
> >

 , A = LU =


>
> >
> • >
> • • >



> > > >
> • •
> •
>

 .

Reversing the pivot sequence, however, results in no fill:

Â = PAPT =


1

1
1

1



> > > >
> >
> >
> >




1
1

1
1

 =


> >
> >
> >

> > > >

 ,

Â = L̂Û =


>
>
>

> > > >



> >
> >
> >
>

 .

2. The following table illustrates how Fact 7 typically manifests itself in practice. The
four problems arise in finite element modeling of actual structures. The table records
data for two distinct methods:

• a profile-reducing permutation from the reverse Cuthill-McKee algorithm [GeLi81]
in tandem with a profile factorization algorithm;

• a fill-reducing permutation from the minimum degree algorithm [GeLi81] in tan-
dem with a general sparse factorization algorithm.

Recorded for each method are the number of nonzero entries in the Cholesky factor
(expressed in millions) and the number of flops needed to compute the factor (expressed
in millions).

|L|(×10−6) No. flops (×10−6)

profile general profile generalproblem n |A| reduction sparse reduction sparse

coliseum 1,806 63,454 0.190 0.112 11.803 4.952

winter sports
arena 3,562 159,910 0.538 0.279 44.245 16.352

nuclear power
station 11,948 149,090 5.908 0.663 2,135.163 70.779

76 story
skyscraper 15,439 252,241 2.637 1.417 232.791 142.567
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6.5 EIGENANALYSIS

Identifying the eigenvalues and eigenvectors of a matrix facilitates the study of com-
plicated systems and the analysis of their behavior over time. A basis consisting of
eigenvectors yields a particularly simple representation of a linear transformation (§6.2).
Eigenvalues can also provide useful information about discrete structures (§8.10.1).

6.5.1 EIGENVALUES AND CHARACTERISTIC POLYNOMIAL

Definitions:

A complex number λ is an eigenvalue of the n× n complex matrix A if there exists a
nonzero vector x ∈ Cn (an eigenvector of A corresponding to λ) such that Ax = λx.

The characteristic polynomial of the square matrix A is the polynomial pA(λ) =
det(λI −A).

The characteristic equation of A is the equation pA(λ) = 0.

A nilpotent matrix is a square matrix A such that Ak = 0 for some positive integer k.

An idempotent matrix is a square matrix A such that A2 = A.

Let Sk(A) denote the sum of all order k principal minors of the matrix A.

Facts:

1. The characteristic polynomial pA(λ) of an n× n matrix A is a monic polynomial of
degree n in λ.

2. The coefficient of λn−1 in pA(λ) is −trA.

3. The constant term in pA(λ) is (−1)n detA.

4. pA(λ) =
∑n

k=0(−1)kSk(A)λn−k.

5. Similar matrices (§6.2.4) have the same characteristic polynomial.

6. The roots of the characteristic equation are the eigenvalues of A.

7. Cayley-Hamilton theorem: If pA(·) is the characteristic polynomial of A then pA(A)
is the zero matrix.

8. An n× n matrix has n (not necessarily distinct) eigenvalues.

9. The matrix A is singular if and only if 0 is an eigenvalue of A.

10. The characteristic equation of A =
(
a b
c d

)
is pA(λ) = λ2 − (a+ d)λ+ (ad− bc).

11. The eigenvalues of A =
(
a b
c d

)
are given by

a+ d±
√

(a− d)2 + 4bc
2

.

12. If the n× n matrix A has eigenvalues λ1, λ2, . . . , λn then
•

∑n
i=1λi = trA;

•
∏n

i=1λi = detA;

• the k-th elementary symmetric function
∑

i1<···<ik
λi1 . . . λik

equals Sk(A).
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13. The eigenvalues are continuous functions of the entries of a matrix. More precisely,
given an n × n matrix A with eigenvalues λ1, λ2, . . . , λn and ε > 0, there exists δ >
0 such that for any n × n matrix B, with eigenvalues µ1, µ2, . . . , µn and satisfying
maxi,j |aij−bij | < δ, there exists a permutation τ of 1, 2, . . . , n such that |λi−µτ(i)| < ε,
i = 1, 2, . . . , n.

14. The following table gives the eigenvalues of certain specialized matrices A, whose
eigenvalues are λ1, λ2, . . . , λn. In this table k is any positive integer.

matrix eigenvalues

diagonal matrix diagonal elements
upper (or lower) triangular matrix diagonal elements

AT eigenvalues of A
A∗ complex conjugates of the

eigenvalues of A

Ak λk
1 , . . . , λ

k
n

A−k, A nonsingular λ−k
1 , . . . , λ−k

n

q(A), where q(·) is a polynomial q(λ1), . . . , q(λn)

SAS−1, S nonsingular eigenvalues of A
AB, where A is m× n, B is n×m, eigenvalues of BA; and 0
m ≥ n (m− n times)

(a− b)In + bJn, where Jn is the n× n a+ (n− 1)b; and a− b
matrix of all 1s (n− 1 times)

A n× n nilpotent 0 (n times)

A n× n idempotent of rank r 1 (r times); and 0 (n− r times)

Examples:

1. The characteristic polynomial for A =
(

1 4
2 3

)
is pA(λ) =

∣∣∣∣λ− 1 −4
−2 λ− 3

∣∣∣∣ = λ2 −

4λ−5 = (λ+1)(λ−5), so the eigenvalues are λ = −1 and λ = 5. The vector x = (2,−1)T

is an eigenvector for λ = −1 since Ax = (−2, 1)T = −x. The vector x = (1, 1)T is an
eigenvector for λ = 5 since Ax = (5, 5)T = 5x.

2. For the matrix in Example 1,

pA(A) = A2 − 4A− 5I =
(

9 16
8 17

)
−

(
4 16
8 12

)
−

(
5 0
0 5

)
=

(
0 0
0 0

)
,

as required by Fact 7.

3. The characteristic polynomial of the matrix A =

 3 0 2
4 1 4
2 0 3

 can be calculated by

using Facts 1-4. Since trA = 7, detA = 5, and S2(A) =
∣∣∣∣ 1 4
0 3

∣∣∣∣+ ∣∣∣∣ 3 2
2 3

∣∣∣∣+ ∣∣∣∣ 3 0
4 1

∣∣∣∣ = 11,

it follows that pA(λ) = λ3 − 7λ2 + 11λ − 5. Thus pA(5) = 0, showing that λ = 5 is
an eigenvalue of A. An eigenvector corresponding to λ = 5 is x = (1, 2, 1)T since
Ax = (5, 10, 5)T = 5x.
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4. The matrix A in Example 3 is nonsingular since pA(0) 
= 0, so 0 is not an eigenvalue
of A (Fact 9). The inverse of A can be calculated using the Cayley-Hamilton theorem:
A3 − 7A2 + 11A − 5I = 0, so 5I = A3 − 7A2 + 11A = A(A2 − 7A + 11I) and I =

A[ 15 (A2 − 7A+ 11I)]. Consequently, A−1 = 1
5 (A2 − 7A+ 11I) = 1

5

 3 0 −2
−4 5 −4
−2 0 3

.

6.5.2 EIGENVECTORS AND DIAGONALIZATION

Definitions:

Let λ be an eigenvalue of the n× n (complex) matrix A. The algebraic multiplicity
of λ is its multiplicity as a root of the characteristic polynomial.

The eigenspace of A corresponding to λ is the vector space {x ∈ Cn | Ax = λx }.
The geometric multiplicity of λ is the dimension of the eigenspace of A corresponding
to λ.

The square matrix A is diagonalizable if there exists a nonsingular matrix P such
that P−1AP is a diagonal matrix.

The minimal polynomial of the square matrix A is the monic polynomial q(·) of
minimum degree such that q(A) = 0.

The square matrix A is normal if AA∗ = A∗A.

The singular values of an n × n matrix A are the (positive) square roots of the
eigenvalues of AA∗, written σ1(A) ≤ σ2(A) ≤ · · · ≤ σn(A).

A row stochastic matrix is a matrix with all entries nonnegative and row sums 1.

Facts:
1. The eigenspace corresponding to λ is a subspace of the vector space Cn. Specifically,
it is the null space (§6.1.2) of the matrix A− λI.
2. Eigenvectors corresponding to distinct eigenvalues are linearly independent.

3. If λ, µ are distinct eigenvalues of A and if Ax = λx and A∗y = µy, then x, y are
orthogonal.

4. The algebraic multiplicity is never less than the geometric multiplicity, but some-
times it is greater. (See Example 3.)

5. The minimal polynomial is unique.

6. If A can be diagonalized to a diagonal matrix D, then the eigenvalues of A appear
along the diagonal of D.

7. The following conditions are equivalent for an n× n matrix A:
• A is diagonalizable;
• A has n linearly independent eigenvectors;
• the minimal polynomial of A has distinct linear factors;
• the algebraic multiplicity of each eigenvalue of A equals its geometric multiplicity.

8. If the n× n matrix A has n distinct eigenvalues then A is diagonalizable.

9. If the n× n matrix A has n linearly independent eigenvectors v1, v2, . . . , vn then A
is diagonalizable using the matrix P whose columns are the vectors v1, v2, . . . , vn.
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10. Hermitian, skew-Hermitian and unitary matrices are normal matrices.

11. Spectral theorem for normal matrices: If A is an n × n normal matrix, then it
can be diagonalized by a unitary matrix. That is, there exists an n× n unitary matrix
U such that U∗AU = diag(λ1, λ2, . . . , λn), the diagonal matrix with the eigenvalues
λ1, λ2, . . . , λn of A along its diagonal.

12. If A is normal, then it has a spectral decomposition A =
∑n

i=1 λiuiu
∗
i , where

{u1, u2, . . . , un} is an orthonormal basis for Cn.

13. Diagonalization results for special types of normal matrices are given in the fol-
lowing table:

matrix A eigenvalues diagonalization result

Hermitian real Fact 11

real symmetric real there exists a real orthogonal P such
that PTAP is diagonal

skew-Hermitian purely imaginary Fact 11

real skew-symmetric purely imaginary there exists a real orthogonal Q such
that QTAQ is a direct sum of mat-
rices, each of which is a 2× 2 real
skew-symmetric or null matrix

unitary all with modulus 1 Fact 11

14. If A,B are normal and commute, they can be simultaneously diagonalized. Namely,
there exists a unitary U such that U∗AU and U∗BU are both diagonal.

15. For any square matrix A, the rank of A is never less than the number of nonzero
eigenvalues (counting multiplicities) of A.

16. If A is normal then its rank equals the number of nonzero eigenvalues.

17. Schur’s triangularization theorem: If A is a square matrix, then there exists a
unitary U such that U∗AU is upper triangular with the eigenvalues of A on its diagonal.

18. If A,B are square matrices that commute then there exists a unitary U such that
U∗AU and U∗BU are both upper triangular.

19. Jordan canonical form: Let A be an n × n matrix with distinct eigenvalues
λ1, λ2, . . . , λk having (algebraic) multiplicities r1, r2, . . . , rk respectively. Then there
exists a nonsingular matrix P such that P−1AP = diag(Λ1,Λ2, . . . ,Λk), where

Λi =


λi ∗ 0 · · · 0 0
0 λi ∗ · · · 0 0
...

...
...

...
0 0 0 · · · λi ∗
0 0 0 · · · 0 λi


is an ri × ri matrix and each ∗ is either 0 or 1. Furthermore, the number of 1s is ri
minus the geometric multiplicity of λi.

20. The rank of a square matrix equals the number of nonzero singular values.

21. If A is a square matrix and if U and V are unitary, then A and UAV have the
same singular values.
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22. Singular value decomposition: If A is an n × n matrix then there exist n × n
unitary matrices U, V such that UAV is diagonal with σ1(A), σ2(A), . . . , σn(A) on the
diagonal.

23. QR factorization: If A is an n × n matrix then there exists a unitary matrix Q
and an upper triangular matrix R such that A = QR.

24. The QR factorization of a matrix can be calculated using Gram-Schmidt orthogo-
nalization (§6.1.4).

Examples:

1. Let x, y be vectors of size n × 1 and let A = xyT . Then the eigenvalues of A are
given by (see §6.5.1, Table 1) yTx and 0, the latter with multiplicity n− 1.

2. The matrix of §6.5.1 Example 3 has the characteristic polynomial pA(λ) = λ3 −
7λ2 +11λ− 5 = (λ− 1)2(λ− 5). The eigenvalues are λ = 1 with algebraic multiplicity 2
and λ = 5 with algebraic multiplicity 1.

For λ = 1 the eigenspace is the null space of A − λI =

 2 0 2
4 0 4
2 0 2

. It consists

of all vectors of the form (a, b,−a)T and so is spanned by the linearly independent
eigenvectors (1, 0,−1)T and (0, 1, 0)T . Thus the geometric multiplicity of λ = 1 is 2,
the same as its algebraic multiplicity 1.

The eigenvalue λ = 5 has the eigenvector (1, 2, 1)T (see §6.5.1 Example 3), linearly

independent of the previous two eigenvectors (Fact 2). If P =

 1 0 1
0 1 2
−1 0 1

 is the

matrix containing these eigenvectors then P−1AP = diag(1, 1, 5), thereby diagonalizing
A (Fact 9).

3. By using Maple, the characteristic polynomial of the matrix

A =


7 2 4 0 3
0 6 0 0 0
0 −2 4 0 0
3 2 4 4 3
3 0 2 0 7


is found to be λ5− 28λ4 + 300λ3− 1552λ2 + 3904λ− 3840 = (λ− 4)3(λ− 6)(λ− 10), so
the eigenvalue λ = 4 of A has algebraic multiplicity 3. The eigenspace for λ = 4 is the
null space of

A− λI =


3 2 4 0 3
0 2 0 0 0
0 −2 0 0 0
3 2 4 0 3
3 0 2 0 3

 ,

which is spanned by (1, 0, 0,−1)T and (0, 0, 0, 1, 0)T . So λ = 4 has geometric mul-
tiplicity 2. By Fact 7, A is not diagonalizable. The minimal polynomial of A is
(λ− 4)2(λ− 6)(λ− 10), which has the repeated linear factor λ− 4.

4. The conclusion of Fact 16 need not hold if A is not normal. For example, the matrix(
0 1
0 0

)
has rank 1 but has no nonzero eigenvalues.
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5. Matrix powers: The matrix A =
( 1

2
1
2

3
4

1
4

)
is a row stochastic matrix and the

powers An of such matrices are important in the analysis of Markov chains (§7.7). The
eigenvalues of A are λ = 1 and λ = − 1

4 , with corresponding eigenvectors (1, 1)T and

(2,−3)T . Thus P−1AP = D = diag(1,− 1
4 ), where P =

(
1 2
1 −3

)
. Consequently

A = PDP−1, A2 = PDP−1PDP−1 = PD2P−1, and in general An = PDnP−1.
Since Dn = diag(1n, (− 1

4 )n) = diag(1, αn), the nth power of A can be computed as

An = 1
5

(
3 + 2αn 2− 2αn

3− 3αn 2 + 3αn

)
. Since |α| < 1, An →

( 3
5

2
5

3
5

2
5

)
as n→∞.

6.5.3 LOCALIZATION

Since analytic computation of eigenvalues can be complicated, there are several simple
methods available for (geometrically) estimating the eigenvalues of a matrix. These
methods can be informative in cases when only the approximate location of eigenvalues
is needed.

Definitions:

The spectral radius of A, ρ(A), is the maximum modulus of an eigenvalue of A.

Let A be an n× n matrix and let αi =
∑
j�=i

|aij |, i = 1, 2, . . . , n.

The Geršgorin discs associated with A are the discs

{ z ∈ C
∣∣ |z − aii| ≤ αi }, i = 1, 2, . . . , n.

The ovals of Cassini associated with A are the ellipses

{ z ∈ C
∣∣ |z − aii||z − ajj | ≤ αiαj }, i 
= j.

A strictly diagonally dominant matrix is a square matrix A satisfying |aii| > αi for
i = 1, 2, . . . , n.

Facts:

1. ρ(A) is the radius of the smallest disc, centered at the origin of the complex plane,
enclosing all of the eigenvalues of A.

2. ρ(A) ≤ min {max
i

∑
j |aij |,max

j

∑
i |aij |}.

3. The spectral radius of a row stochastic matrix is 1.

4. All the eigenvalues of A are contained in the union of the associated Geršgorin discs.

5. A connected region formed by precisely k ≤ n Geršgorin discs contains exactly k
eigenvalues of A.

6. All the eigenvalues of A are contained in the union of the n(n−1)
2 ovals of Cassini

associated with A.
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Examples:
1. By Fact 2, the spectral radius of the symmetric matrix

A =


8 −2 1 1
−2 −8 −2 −1

1 −2 7 1
1 −1 1 8


is bounded by the maximum absolute row (column) sum 13. Since the eigenvalues of
a real symmetric matrix are real, the spectral radius bound gives the interval [−13, 13]
enclosing all eigenvalues. The Geršgorin discs are the intervals

8± 4 = [4, 12], −8± 5 = [−13,−3], 7± 4 = [3, 11], and 8± 3 = [5, 11].
The second interval is disjoint from the others, so one eigenvalue is localized in the
interval [−13,−3] while the other three are in the interval [3, 12]. The actual eigenvalues
of A are (approximately) −8.51, 6.31, 7.03, 10.2, consistent with the above intervals.
Also, 0 is not in any of the four Geršgorin discs so 0 is not an eigenvalue and A is
nonsingular. Since the eigenvalues of A−1 are the reciprocals of the eigenvalues of
A (Table 1, §6.5.1), it follows that the eigenvalues of the symmetric matrix A−1 are
localized to the intervals [− 1

3 ,− 1
13 ] and [ 1

12 ,
1
3 ].

2. Using Fact 4, the eigenvalues of the matrix A =

 2 1 −1
0 6 2
1 −1 8

 are located in the

union of the discs
D1 = { z | |z − 2| ≤ 2 }, D2 = { z | |z − 6| ≤ 2 }, D3 = { z | |z − 8| ≤ 2 }.

Since A and AT have the same eigenvalues, an alternative set of disks can be formed
based on the absolute column sums of A: namely

D̂1 = { z | |z − 2| ≤ 1 }, D̂2 = { z | |z − 6| ≤ 2 }, D̂3 = { z | |z − 8| ≤ 3 }.
Here D̂1 is disjoint from both D̂2 and D̂3, and so one eigenvalue of A is localized to D̂1,
and the other two to D̂2 ∪ D̂3. In fact, the eigenvalues of A are 2.24 and 6.88 ± 0.91i,
approximately.

3. The row stochastic matrix A =
( 1

2
1
2

3
4

1
4

)
has Geršgorin discs

D1 = { z | |z − 1
2 | ≤ 1

2 } and D2 = { z | |z − 1
4 | ≤ 3

4 }.
Since D1 ⊆ D2 all eigenvalues must lie in D2. As seen in §6.5.2 Example 5, the
eigenvalues of A are 1 and − 1

4 .

4. Suppose A is strictly diagonally dominant. Then all Geršgorin discs for A reside
in the positive right-half plane so all the eigenvalues must have positive real part. In
particular, 0 is not an eigenvalue and A must be nonsingular.

5. If the n×n matrix A satisfies aiiajj > αiαj for all i 
= j then A must be nonsingular,
since by Fact 6 zero is not an eigenvalue of A. The matrix of Example 2 satisfies this
condition since aiiajj ≥ 12 > 4 = αiαj for all i 
= j, and so it must be nonsingular.

6.5.4 COMPUTATION OF EIGENVALUES

The eigenvalues of a matrix can be obtained, in theory, by forming the characteristic
equation and finding its roots. Since this is not a practical solution method for problems
of realistic size, a variety of iterative techniques have been developed.
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Algorithm 1: Power method.

input: n× n nonsingular matrix A
output: approximations xk to an eigenvector of A

{Initialization}
choose any vector x0 ∈ Cn with ‖x0‖ = 1
{Iterative step}
for k := 1 to . . . do

xk :=
Axk−1

‖Axk−1‖

Algorithm 2: QR method.

input: n× n matrix A
output: n× n matrices Ak

{Initialization}
A := Q0R0 (a QR factorization of A)
{Iterative step}
for k := 1 to . . . do
Ak := Rk−1Qk−1

obtain a QR factorization Ak = QkRk

Definitions:

A dominant eigenvalue of a matrix is an eigenvalue with the maximum modulus.

Let U(θ; i, j) be the n × n matrix obtained by replacing the 2× 2 principal submatrix
of the identity matrix, corresponding to rows i and j, with the rotation matrix(

cos θ sin θ
− sin θ cos θ

)
.

Facts:

1. Power method: The power method (Algorithm 1) is a simple technique for finding
the dominant eigenvalue and an associated eigenvector of a nonsingular matrix A having
a unique dominant eigenvalue.

2. In Algorithm 1, the kth estimate xk =
Akx0

‖Akx0‖
.

3. The sequence xk converges to an eigenvector of A.

4. The sequence ‖Axk‖ approaches the dominant eigenvalue.

5. The power method is best suited for large sparse matrices.

6. The rate of convergence of the power method is dictated by the ratio of the largest
to the second largest (in modulus) eigenvalue of A. The larger this ratio (the more
separated these two eigenvalues in modulus), the faster the convergence of the method.

7. QR method: This method (Algorithm 2) calculates the eigenvalues of a given n×n
matrix A.
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Algorithm 3: Jacobi method.

input: n× n real symmetric matrix A
output: n× n matrices Ak

{Initialization}
A1 = (a(1)

ij ) := A

{Iterative step}
for k := 1 to . . . do

choose r, s (r < s) with |a(k)
rs | as large as possible

define θ by cot 2θ =
a
(k)
rr − a(k)

ss

2a(k)
rs

Ak+1 = (a(k+1)
ij ) := U(θ; r, s)TAk U(θ; r, s)

8. The QR factorization in Algorithm 2 produces a unitary matrix Qk and an upper
triangular matrix Rk. (See §6.5.2 Fact 23.)

9. Under certain conditions (for example, if the eigenvalues of A have distinct moduli)
the sequence Ak in Algorithm 2 converges to an upper triangular matrix whose diagonal
entries are the eigenvalues of A.

10. If A is real then its QR factors are real and can be calculated using real arithmetic.
In this case, if A has nonreal eigenvalues then under certain conditions, the limiting
matrix is block triangular with 1× 1 and 2× 2 diagonal blocks.

11. The QR method is not well suited for large sparse matrices since the factors Q,R
can quickly fill with nonzeros.

12. Often as a preparatory step for the QR method the matrix is first reduced to
Hessenberg form (upper triangular form in which there may be one nonzero diagonal
below the main diagonal) by using Householder transformations [Da95].

13. The convergence of the QR method can be very slow if the matrix has two eigen-
values that are close in moduli.

14. More effective versions of the QR method are available which make use of certain
shift strategies [GoVa96].

15. Jacobi method: This method (Algorithm 3) finds the eigenvalues of a real sym-
metric n× n matrix A having at least one nonzero off-diagonal entry.

16. The sequence Ak in Algorithm 3 converges to a real diagonal matrix with the
eigenvalues of A on the diagonal.

17. The orthogonal matrix U(θ; r, s) represents a (clockwise) plane rotation by the
angle θ.

18. The Jacobi method is particularly appropriate when A is nearly diagonal, although
in general the QR method exhibits faster convergence.

19. A variant of the Jacobi method, the serial Jacobi method, uses plane rotation pairs
cyclically — for example, (1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (2, n), . . . .

20. For further information on numerical computation of eigenvalues, see [GoVa96,
Da95].
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21. A number of robust and well-tested software packages are available for carrying
out eigensystem analysis, including:

• EISPACK : a collection of Fortran routines for analyzing eigenvalues and eigen-
vectors of several classes of matrices; see
http://www.netlib.org

• LAPACK/CLAPACK : supersedes EISPACK , contains Fortran and C routines
for dense and banded problems, ideal for shared-memory vector and parallel
processors; see
http://www.netlib.org

• NAG: Fortran and C libraries for eigenanalysis of dense and sparse matrices; see
http://www.nag.com

• IMSL: contains Fortran and C libraries for eigenanalysis of dense and banded
problems; see
http://www.vni.com/products/imsl

• MATLAB: high-level language for eigenanalysis of dense and sparse matrices,
calculation of characteristic polynomials; see
http://www.mathworks.com

Examples:

1. The power method, when applied to the matrix in Example 3 of §6.5.1, produces
the following sequence of vectors xk and scalars ‖Axk‖:

k 0 1 2 3 4 5

xk

 1
0
0

  0.557
0.743
0.371

  0.436
0.805
0.403

  0.414
0.814
0.407

  0.409
0.816
0.408

  0.409
0.816
0.408


‖Axk‖ 5.385 5.537 5.107 5.021 5.004 5.001

The scalars ‖Axk‖ approach the dominant eigenvalue 5 and the vectors xk approach a
multiple of the eigenvector (1, 2, 1)T . (See Example 3, §6.5.1.)

2. The eigenvalues of the matrix A =
(

1 4
2 3

)
can be approximated using the QR

method. A = Q0R0 with Q0 =
(
−0.447 −0.894
−0.894 0.447

)
and R0 =

(
−2.236 −4.472

0 −2.236

)
.

Then A1 = R0Q0 =
(

5 0
2 −1

)
. Continuing this process produces

A2 =
(

4.862 2.345
0.345 −0.862

)
, A3 =

(
5.023 −1.927
0.073 −1.023

)
, A4 =

(
4.995 2.014
0.014 −0.995

)
.

The sequence Ak approaches an upper triangular matrix with the eigenvalues 5 and −1
on its diagonal.

3. The eigenvalues of the matrix A =

 0 1 1
1 4 −3
1 −3 4

 can be approximated using the

Jacobi method. The largest off-diagonal |ars| of A1 = A occurs for r = 2, s = 3 giving

θ = π
4 = 0.7854. Applying the matrix U(θ; 2, 3) =

 1 0 0
0 0.7071 0.7071
0 −0.7071 0.7071

 produces
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A2 = U(θ; 2, 3)TA1 U(θ; 2, 3) =

 0 0 1.4142
0 7 0

1.4142 0 1

. The largest magnitude off-

diagonal entry of A2 is |a13|, giving θ = 0.6155, U(θ; 1, 3) =

 0.8165 0 0.5774
0 1 0

−0.5774 0 0.8165


and A3 = U(θ; 1, 3)TA2 U(θ; 1, 3) =

−1 0 0
0 7 0
0 0 2

. So the eigenvalues of A are −1, 2, 7.

6.5.5 SPECIAL CLASSES

This section discusses eigenvalues and eigenvectors of specially structured matrices, such
as Hermitian, positive definite, nonnegative, totally positive, and circulant matrices.

Definitions:

If x, y ∈ Rn, then x majorizes y if
∑n

i=1 xi =
∑n

i=1 yi and for k = 1, 2, . . . , n − 1 the
sum of the k largest components of x is at least as large as the sum of the k largest
components of y. A similar definition holds for infinite sequences with finitely many
nonzero terms.

A Hermitian n× n matrix A is positive definite if x∗Ax > 0 for all nonzero x ∈ Cn.
It is positive semidefinite if x∗Ax ≥ 0 for all x ∈ Cn.

If A and B are n × n Hermitian matrices then A dominates B in Löwner order if
A−B is positive semidefinite, written A # B.

A matrix is nonnegative [positive] if each of its entries is nonnegative [positive].

The n × n matrix A is reducible if either it is the 1× 1 zero matrix or there exists a

permutation matrix P such that PAPT is of the form
(
B 0
C D

)
, where B and D are

square. A matrix is irreducible if it is not reducible.

A strictly totally positive matrix has all of its minors positive.

A circulant matrix has the form
a0 a1 a2 · · · an

an a0 a1 · · · an−1

an−1 an a0 · · · an−2

...
...

...
...

a1 a2 a3 · · · a0

 .

Notation: Let λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) be the eigenvalues of an n× n Hermitian
matrix A.

Facts:

1. Cauchy interlacing theorem: Let A be an n × n Hermitian matrix and let B be a
principal submatrix of A of order n−1. Then

λi(A) ≤ λi(B) ≤ λi+1(A), i = 1, 2, . . . , n−1.
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2. Weyl’s theorem: Let A,B be n × n Hermitian matrices and let j, k be integers
satisfying 1 ≤ j, k ≤ n.

• If j + k ≥ n+ 1, then λj+k−n(A+B) ≤ λj(A) + λk(B);
• If j + k ≤ n+ 1, then λj(A) + λk(B) ≤ λj+k−1(A+B).

3. Interpretations of the kth smallest eigenvalue of a Hermitian matrix are given in the
following table:

eigenvalue variational characterization

λ1(A) min(x∗Ax), minimum over all unit vectors x

λn(A) max(x∗Ax), maximum over all unit vectors x

λk(A), min(x∗Ax), minimum over all unit vectors x orthogonal
k = 2, . . . , n to the eigenspaces of λ1, . . . , λk−1

λn−k(A), max(x∗Ax), maximum over all unit vectors x orthogonal
k = 1, . . . , n− 1 to the eigenspaces of λn−k+1, . . . , λn

4. Schur’s majorization theorem: If A is an n×n Hermitian matrix, then (λ1(A), λ2(A),
. . . , λn(A)) majorizes (a11, a22, . . . , ann). Specifically, if a11 ≥ a22 ≥ · · · ≥ ann then

k∑
i=1

λn−i+1(A) ≥
k∑

i=1

aii, k = 1, 2, . . . , n.

5. Hoffman-Wielandt theorem: If A,B are n× n Hermitian matrices, then
n∑

i=1

(λi(A+B)− λi(A))2 ≤
n∑

i,j=1

|bij |2.

6. Sylvester’s law of inertia: If A is an n×n Hermitian matrix and if X is a nonsingular
n× n matrix, then A and XTAX have the same number of positive eigenvalues as well
as the same number of negative eigenvalues.

7. A Hermitian matrix is positive definite (positive semidefinite) if and only if all its
eigenvalues are positive (nonnegative).

8. If A,B are n × n positive semidefinite matrices and A # B, then λi(A) ≥ λi(B),
i = 1, 2, . . . , n.

9. If A, B are n × n positive semidefinite matrices, then λi+j−n(AB) ≤ λi(A)λj(B)
holds for 1 ≤ i, j ≤ n and i+ j ≥ n+ 1.

10. If A,B are n× n positive semidefinite matrices, then
k∏

i=1

λi(AB) ≥
k∏

i=1

λi(A)λi(B), k = 1, 2, . . . , n.

11. Kantorovich inequality: If A is an n× n positive definite matrix and if x ∈ Cn is
a unit vector, then

(x∗Ax)(x∗A−1x) ≤ (λ1(A) + λn(A))2

4λ1(A)λn(A)
.

12. Perron-Frobenius theorem: If A is an irreducible nonnegative square matrix, then
the spectral radius of A (the Perron root of A) is an eigenvalue of A with algebraic
multiplicity 1 and it has an associated positive eigenvector. If A is positive then the
spectral radius exceeds the modulus of any other eigenvalue.
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13. If A is a nonnegative square matrix, then the spectral radius of A is an eigenvalue
of A and it has an associated nonnegative eigenvector.

14. Let A be an n×n strictly totally positive matrix. Then the eigenvalues of A are dis-
tinct and positive: λ1(A) < λ2(A) < · · · < λn(A). The real eigenvector corresponding
to λn−k has exactly k variations in sign.

15. If A is an n × n strictly totally positive matrix, then (λ1(A), λ2(A), . . . , λn(A))
majorizes (a11, a22, . . . , ann).

16. An (n + 1) × (n + 1) circulant matrix has eigenvalues λj = a0 + a1ω
j + a2ω

2j +
· · · + anω

nj , j = 0, 1, . . . , n with (1, ωj , ω2j , . . . , ωnj), j = 0, 1, . . . , n the corresponding
eigenvectors, where ω = e

2πi
n+1 .

Examples:

1. The matrix A =

 0 1 1
1 4 −3
1 −3 4

 has eigenvalues −1, 2, and 7 (§6.5.4, Example 3).

The principal submatrix A[1, 2] =
(

0 1
1 4

)
has eigenvalues 2±

√
5, which are approxi-

mately equal to −0.2361 and 4.2361. As required by Fact 1, these latter two eigenvalues
interlace those of A: −1 ≤ −0.2361 ≤ 2 ≤ 4.2361 ≤ 7. Similarly, the principal subma-

trix A[2, 3] =
(

4 −3
−3 4

)
has eigenvalues 1 and 7, which interlace those of A.

2. The matrix in Example 1 has the eigenvalue sequence (−1, 2, 7). This sequence
majorizes (see Fact 4) the sequence (0, 4, 4) of diagonal elements: 7 ≥ 4, 7 + 2 ≥ 4 + 4,
and 7 + 2− 1 ≥ 4 + 4 + 0.

3. The irreducible matrix A in §6.5.3 Example 3 is positive with eigenvalues 1 and − 1
4 .

Thus ρ(A) = 1 and it exceeds the modulus of any other eigenvalue. As required by
Fact 12, there is a positive eigenvector associated with λ = 1, namely (1, 1)T .

4. The matrix A =

 2 0 3
1 4 5
2 0 1

 is nonnegative with eigenvalues −1 (algebraic multi-

plicity 1) and 4 (algebraic multiplicity 2). So the spectral radius is 4 and (see Fact 13)
λ = 4 must be an eigenvalue. In addition, there is a nonnegative eigenvector associated
with λ = 4, namely (0, 1, 0)T .

6.6 COMBINATORIAL MATRIX THEORY

Matrices and graphs represent two different ways of viewing certain discrete structures.
At times a matrix perspective can lend insight into graphical or combinatorial structures.
At other times the graph associated with a matrix can provide useful information about
matrix properties.
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6.6.1 MATRICES OF ZEROS AND ONES

Definitions:

A 0-1 matrix is a matrix with each entry either 0 or 1.

The term rank of a 0-1 matrix is the maximum number of 1s such that no two are in
the same row or column.

An n × n 0-1 matrix is partly decomposable if it has a k × (n − k) zero submatrix
for some 1 ≤ k ≤ n− 1; otherwise A is fully indecomposable.

Let {xn} be a sequence of nonnegative integers with finitely many nonzero terms. The
conjugate sequence of {xn} is the sequence {zn} in which zn, n ≥ 1, is the number
of terms in {xn} that are not less than n.

Facts:

1. König’s theorem: The term rank of a 0-1 matrix equals the minimum number of
rows and columns required to cover all 1s in the matrix.

2. Frobenius-König theorem: Let A be an n×n 0-1 matrix. Then the term rank of A
is less than n if and only if A has a zero submatrix of size r × s with r + s = n+ 1.

3. Let A be an n×n 0-1 matrix each of whose row sums and column sums is k. Then A
can be expressed as a sum of k permutation matrices (§6.4.3).

4. Let A be a square 0-1 matrix and let B be the matrix obtained from A by replacing
each 0 entry on the main diagonal of A by 1. Then A is irreducible (§6.5.5) if and only
if B is fully indecomposable.

5. Let A,B be n × n fully indecomposable matrices. Then the matrix obtained by
replacing every nonzero entry in AB by 1 is fully indecomposable.

6. Gale-Ryser theorem: Let x1, x2, . . . , xm; y1, y2, . . . , yn be nonnegative integers and
let {zn} be the conjugate sequence of x1, x2, . . . , xm, 0, 0, . . . . There exists an m×n 0-1
matrix with row sums x1, x2, . . . , xm and column sums y1, y2, . . . , yn if and only if {zn}
majorizes y1, y2, . . . , yn, 0, 0, . . . .

Examples:

1. The following matrix contains a 2 × 4 zero submatrix, occurring in rows 1, 3 and
columns 1, 2, 4, 5. By Fact 2, this means that the matrix must have term rank less
than 5. In fact, the matrix has term rank 3. Namely, the starred entries represent a
set of 3 entries, no two of which are in the same row or column, and 3 is the largest
number with this property. Rows 2, 4 and column 3 cover all the 1s in the matrix, and
no smaller number suffices, as guaranteed by Fact 1.

0 0 1∗ 0 0
1∗ 1 1 0 1
0 0 1 0 0
1 0 1 1 1∗

0 0 1 0 0

 .

2. The matrix

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


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has all row and column sums equal to 3. By Fact 3, it can be expressed as the sum of
three permutation matrices. For example

A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 +


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 +


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

3. Assignment problem: There are n applicants for n vacant jobs. Each applicant is
qualified for exactly k ≥ 1 jobs and for each job there are exactly k qualified applicants.
Is it possible to assign each applicant to a (distinct) job for which the applicant is
qualified? To answer this question form the 0-1 matrix A where aij = 1 if applicant i
is qualified for job j, otherwise aij = 0. All row and column sums of A equal k, so (by
Fact 3) A can be expressed as the sum of k ≥ 1 permutation matrices. Select any one
of these permutation matrices and use it to define an assignment of applicants to jobs.
Thus it is possible in this case to fill each job with a different qualified applicant.

4. In the matrix 
0 1 1 0 1 1 1 1
1 0 1 1 0 1 1 0
0 0 1 1 0 1 0 1
1 0 1 0 1 1 0 1
0 1 0 1 1 1 1 0


the conjugate sequence of the row sum sequence 6, 5, 4, 5, 5 is 5, 5, 5, 5, 4, 1, 0, 0, . . . and
it majorizes the sequence 2, 2, 4, 3, 3, 5, 3, 3, 0, 0, . . . obtained by appending zeros to the
sequence of column sums (Fact 6).

6.6.2 NONNEGATIVE MATRICES

This subsection discusses nonnegative matrices and special classes of nonnegative ma-
trices such as primitive and doubly stochastic matrices. Certain results highlight the
relationship between the Perron root (§6.5.5, Fact 12) and the directed graph of a ma-
trix.

Definitions:

The directed graph G(A) of an n× n matrix A consists of n vertices 1, 2, . . . , n with
an edge from i to j if and only if aij 
= 0.

Vertices i and j of G(A) are equivalent if i = j or if there is a path in G(A) from i to j
and a path from j to i. The corresponding equivalence classes (§1.4.2) of this relation
are the classes of A.

Class Ci has access to class Cj if i = j or if there is a path in G(A) from a vertex in Ci

to a vertex in Cj . A class is final if it has access to no other class. Class Ci is basic
if ρ(A[Ci]) = ρ(A), where ρ(·) is the spectral radius (§6.5.3) and A[Ci] is the principal
submatrix of A defined by indices in class Ci.

Let A be an n × n nonnegative irreducible matrix. The number h of eigenvalues of A
of modulus ρ(A) is called the index of cyclicity of A. The matrix A is primitive if
h = 1.

c© 2000 by CRC Press LLC



The exponent of A, written exp(A), is the least positive integer m with Am > 0.

A square matrix is doubly stochastic if it is nonnegative and all row and column sums
are 1.

If A is an n× n matrix and σ ∈ Sn, the symmetric group on n elements (§5.3.1), then
the set {a1σ(1), a2σ(2) . . . , anσ(n)} is the diagonal of A corresponding to σ.

A diagonal of A is positive if each entry in it is positive.

Matrices A and B of the same size have the same pattern if the following condition
holds: aij = 0 if and only if bij = 0.

A matrix A has doubly stochastic pattern if there exists a doubly stochastic matrix B
such that A and B have the same pattern.

Facts:

1. The matrix A is irreducible if and only if G(A) is strongly connected (§8.3.2).

2. Frobenius normal form: If the n × n matrix A has k classes, then there exists a
permutation matrix P such that

PAPT =


A11 0 · · · 0
A21 A22 · · · 0
...

...
...

Ak1 Ak2 · · · Akk


where each Aii, 1 ≤ i ≤ k, is either irreducible or a 1× 1 zero matrix.

3. The classes of a nonnegative n× n matrix A are in one-to-one correspondence with
the strong components (§8.3.2) of G(A) and hence can be found in linear time.

4. Let A be an n×n nonnegative matrix. There is a positive eigenvector corresponding
to ρ(A) if and only if the basic classes of A are the same as its final classes.

5. Let A be an n×n nonnegative matrix with eigenvalue λ. There exists a nonnegative
eigenvector for λ if and only if there exists a class Ci satisfying both of the following:

• ρ(A[Ci]) = λ;

• if Cj (j 
= i) is any class that has access to Ci, then ρ(A[Cj ]) < ρ(A[Ci]).

6. The n× n nonnegative matrix A is primitive if and only if exp(A) <∞.

7. A nonnegative irreducible matrix with positive trace is primitive.

8. Suppose A is an n × n nonnegative irreducible matrix. Let Si be the set of all the
lengths of cycles in G(A) passing through vertex i, and let hi be the greatest common
divisor of all the elements of Si. Then h1 = h2 = · · · = hn and this common value
equals the index of cyclicity of A.

9. Let A be a nonnegative irreducible n × n matrix with p ≥ 1 nonzero elements on
the main diagonal. Then A is primitive and exp(A) ≤ 2n− p− 1.

10. Let A be a primitive n × n matrix, and let s be the smallest length of a directed
cycle in G(A). Then exp(A) ≤ n+ s(n− 2).

11. Let A be an n × n primitive 0-1 matrix, n ≥ 2. Then exp(A) ≤ (n − 1)2 + 1.
Equality holds if and only if there exists a permutation matrix P such that
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PAPT =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
1 0 0 · · · 1
1 0 0 · · · 0

 .

12. The set Ωn of n× n doubly stochastic matrices is a compact convex set.

13. Birkhoff-von Neumann theorem: Every A ∈ Ωn can be expressed as a convex
combination of n × n permutation matrices: namely, A = c1P1 + c2P2 + · · · + ctPt for
some permutation matrices P1, P2, . . . , Pt and some positive real numbers c1, c2, . . . , ct
with c1 + c2 + · · ·+ ct = 1.

14. The following conditions are equivalent for an n× n matrix A:
• A has doubly stochastic pattern;
• there exist permutation matrices P,Q such that PAQ is a direct sum of fully

indecomposable matrices;
• every nonzero entry of A is contained in a positive diagonal.

15. Let A be an n× n nonnegative idempotent matrix of rank k. Then there exists a
permutation matrix P such that

PAPT =


J JU 0 0
0 0 0 0
V J V JU 0 0
0 0 0 0

 ,

where J is a direct sum of k positive idempotent matrices of rank 1.

16. A nonnegative symmetric matrix A of rank k is idempotent if and only if there
exists a permutation matrix P such that

PAPT =
(
J 0
0 0

)
,

where J is a direct sum of k positive symmetric rank one idempotent matrices.

Examples:

1. The following nonnegative matrix is in Frobenius normal form

5 0 0 0 0 0 0
0 1 1 0 0 0 0
0 2 0 0 0 0 0
2 4 1 0 3 0 0
1 2 0 2 1 0 0
0 1 1 0 0 3 2
0 2 1 0 0 2 3


with four classes C1 = {1}, C2 = {2, 3}, C3 = {4, 5} and C4 = {6, 7}. Class C3 has
access to C1 and C2 while class C4 has access to C2. Classes C1 and C2 are final since
they have access to no other classes. The eigenvalues of A are −2, −1, 1, 2, 3, 5, 5 so
ρ(A) = 5. Classes C1 and C4 are basic since ρ(A[C1]) = ρ(A[C4]) = 5. Since no class
has access to C3, Fact 5 shows there is a nonnegative eigenvector of A for the eigenvalue
ρ(A[C3]) = 3, namely (0, 0, 0, 1, 1, 0, 0)T . However there is no nonnegative eigenvector
of A for ρ(A[C2]) = 2 since class C3 has access to class C2 and ρ(A[C3]) ≥ ρ(A[C2]).
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2. The directed graph of the matrix

A =


0 1 7 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
1 0 0 0 0


is the union of the cycles 1, 2, 5, 1 and 1, 3, 4, 1. The greatest common divisor of the
lengths of all cycles passing through vertex 1 is 3, which by Fact 8 must be the index of
cyclicity. In fact, A has eigenvalues 2, −1± i

√
3, 0, 0 and thus there are 3 eigenvalues

with modulus ρ(A) = 2.

3. By Fact 13 every doubly stochastic matrix is a convex combination of permutation
matrices. For example, the doubly stochastic matrix

.4 .3 .3 0

.5 0 .4 .1

.1 .6 0 .3
0 .1 .3 .6


can be expressed as

.2


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 + .3


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 + .1


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 + .4


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

6.6.3 PERMANENTS

The permanent of a matrix is defined as a sum of terms, each corresponding to the
product of elements along a diagonal of the matrix. Permanents arise in the study of
systems of distinct representatives and in other combinatorial problems.

Definition:

The permanent of the n × n matrix A is per(A) =
∑

σ∈Sn
a1σ(1)a2σ(2) . . . anσ(n),

where Sn is the symmetric group on n elements. (See §5.3.1.)

Facts:

1. The permanent of A is an unsigned version of the determinant of A. (See §6.3.4
Fact 2.)

2. Computing the permanent of a square 0-1 matrix is #P-complete.

3. Laplace expansion: Suppose A is an n × n matrix and Aij is the submatrix of A
obtained by deleting the ith row and the jth column. Then for i = 1, 2, . . . , n

per(A) =
n∑

j=1

aij per(Aij).

A similar expansion holds with respect to any column.

4. per(AT ) = per(A).

5. Interchanging two rows (or two columns) of A does not change per(A).

6. Multiplying any row (or column) of A by the scalar α multiplies per(A) by α.
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7. Unlike the determinant, the permanent is not multiplicative with respect to matrix
multiplication. (See Example 2.)

8. The permanent of a triangular matrix (§6.3.1) is equal to the product of its diagonal
entries.

9. The permanent of a block diagonal matrix is equal to the product of the permanents
of its diagonal blocks.

10. For each positive integer n the permanent of the n× n matrix
0 1 · · · 1
1 0 · · · 1
...

...
...

1 1 · · · 0


is n!

n∑
r=0

(−1)r 1
r! and it represents the number of derangements (§2.4.2) of order n.

11. The permanent of an n×n 0-1 matrix A counts the number of assignments (n×n
permutation submatrices) consistent with the 1 entries of A.

12. Minc-Bŕegman inequality : Let A be an n×n 0-1 matrix with row sums r1, r2, . . . ,
rn. Then

per(A) ≤
n∏

i=1

(ri!)1/ri .

13. If A is a nonnegative n × n matrix with row sums r1, r2, . . . , rn then per(A) ≤
r1r2 . . . rn.

14. Let A be a fully indecomposable nonnegative integral n × n matrix and let s(A)
denote the sum of the entries in A. Then

s(A)− 2n+ 2 ≤ per(A) ≤ 2s(A)−2n + 1.

15. Alexandroff inequality: Let A be a nonnegative n × n matrix and let Ai be the
ith column of A, i = 1, 2, . . . , n. Then

(per(A))2 ≥ per(A1, . . . , An−2, An−1, An−1) per(A1, . . . , An−2, An, An).

16. The definition of the permanent can be extended to m × n matrices with m ≤ n
by summing over all permutations in Sm.

17. If A is an m× n 0-1 matrix, then per(A) > 0 if and only if A has term rank m.

18. van der Waerden-Egorychev-Falikman inequality: If A is a doubly stochastic n×n
matrix then per(A) ≥ n!

nn , and equality holds if and only if A = Jn, the matrix with
each entry 1

n .

Note: This result was first conjectured by B. L. van der Waerden in 1926. Despite re-
peated attempts to prove it, the conjecture remained unresolved until finally estab-
lished in 1980 by G. P. Egorychev. The conjecture was also proved independently by
D. I. Falikman in 1981, apart from establishing the uniqueness of the minimizing ma-
trix A. A self-contained exposition of Egorychev’s proof is given in [Kn81].

19. Let A be the m × n incidence matrix of m subsets of a given n-set X: namely,
aij = 1 if j ∈ Xi and aij = 0 otherwise. Then per(A) counts the number of SDRs
(systems of distinct representatives, §1.2.2) selected from the sets X1, X2, . . . , Xm.
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Examples:

1. For the matrix

A =

 1 0 2
3 1 1
1 5 2

 ,

evaluation of per(A) by the definition gives per(A) = 1·1·2+2·3·5+2·1·1+1·1·5 = 39.

Using the Laplace expansion on row 1 gives per(A) = 1 ·per
(

1 1
5 2

)
+2 ·per

(
3 1
1 5

)
=

1 · 7 + 2 · 16 = 39.

2. If A =
(

1 1
0 1

)
and B =

(
1 0
1 1

)
, then C = AB =

(
2 1
1 1

)
. Notice that

per(AB) = 3 
= 1 · 1 = per(A) per(B).

3. Assignments: Suppose there are 4 applicants for 4 jobs, where the qualifications of
each applicant i for each job j is specified by the 0-1 matrix

A =


0 1 0 1
1 1 0 1
0 0 1 1
1 1 1 0

 .

Then the number of different assignments of jobs to qualified applicants (see §6.6.1,
Example 3) equals per(A) = 4. In fact, these are given by those permutations σ where
{(σ(1), σ(2), σ(3), σ(4))} = {(2, 1, 4, 3), (2, 4, 3, 1), (4, 1, 3, 2), (4, 2, 3, 1)}.

4. Ménage problem: Suppose that 5 wives are seated around a circular table, leaving
one vacant space between consecutive women. Find the number of ways to seat in these
vacant spots their 5 husbands so that no man is seated next to his wife. Suppose that
the wives occupy positionsW1,W2, . . . ,W5 listed in a clockwise fashion around the table
and that Xi is the vacant position to the right of Wi. Let A be the 5 × 5 0-1 matrix
where aij = 1 if and only if husband Hi can be assigned to position Xi without violating
the requirements of the problem. Then

A =


0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

 .

By Fact 11, the number of possible assignments for each fixed placement of wives is
per(A) = 13. (Also see §2.4.2, Example 7.)

5. Count the number of nontaking rooks on a chessboard with restricted positions
(§2.4.2). Specifically, suppose that positions (1, 1), (2, 3), (3, 1), (4, 2), (4, 3) of a 4 × 4
chessboard cannot be occupied by rooks. In the remaining positions, 4 rooks are to be
placed so they are nontaking: no two are in the same row or in the same column. This
can be solved (see Fact 11) by finding all permutations consistent with the 1s in the
matrix

A =


0 1 1 1
1 1 0 1
0 1 1 1
1 0 0 1

 .

Here per(A) = 6 is easily found using the Laplace expansion on the first column of A,
so there are 6 placements of nontaking rooks.
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INTRODUCTION

This chapter discusses aspects of discrete probability that are relevant to mathematics,
computer science, engineering, and other disciplines. Topics covered include random
variables, important discrete probability distributions, random walks, Markov chains,
and queues. Various applications to genetics, telephone network performance and reli-
ability, average-case algorithm analysis, and combinatorics are presented.

GLOSSARY
absorbing boundary : a boundary that stops the motion of a random walk whose

trajectory comes into contact with it.

all-terminal reliability : the probability that a given network is connected.

antithetic variates: a variance reduction technique, based on negatively correlated
variates, used in the simulation analysis of a given system.

aperiodic state: a state of a Markov chain that is not periodic.

arrival process: the statistical description of the time between successive arrivals to
a queueing system.

average-case complexity (of an algorithm): the average number of operations re-
quired by the algorithm, taken over all problem instances of a given size.

Bernoulli random variable: the discrete random variable X ∈ {0, 1} with probabil-
ity distribution Pr(X = 0) = 1− p and Pr(X = 1) = p, for some 0 < p < 1.

binomial random variable: the discrete random variable X ∈ {0, 1, . . . , n} with
probability distribution Pr(X = k) =

(
n
k

)
pk(1− p)n−k, for some 0 < p < 1.

Bose-Einstein model: a probability model in which k indistinguishable balls are
randomly placed into n distinguishable urns; several balls are allowed to occupy the
same urn.

boundary : a point or set of points restricting the trajectory of a random walk.

branching process: a special type of Markov chain used to model the growth, and
possible extinction, of populations.

closed class: a communicating class of states of a Markov chain in which transitions
from these states never lead to states outside the class.

coherent system: a system of components for which increasing the number of oper-
ating components will not degrade the performance of the system.

common random numbers: a variance reduction technique in which alternative
system configurations are analyzed using the same set of random numbers.

communicating class: a maximal set of states in a Markov chain that are reachable
from one another by a finite number of transitions.

conditional probability : the probability that one event, A, occurs, given that an-
other event, B, has occurred, written Pr(A|B).

cutset: a minimal set of edges in a graph the removal of which disconnects the graph.

density function: a nonnegative real-valued function f(x) that determines the distri-
bution of a continuous random variable X via Pr(a < X < b) =

∫ b

a
f(x) dx.

dependent (events): events that are not independent.
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discrete-event simulation: a simulation of a time-evolving stochastic process in
which changes to the state of the system can only occur at discrete instants.

discrete-time Markov chain: a probabilistic model of a randomly evolving system
whose future is independent of the past if the present state is known.

distribution (of a random variable): a probability measure associated with the values
attained by the random variable.

elastic boundary : a boundary that could be absorbing or reflecting, usually depend-
ing on some given probability.

event: a subset of the sample space.

expected value (of a random variable): the average value taken on by the random
variable.

experiment: any physically or mentally conceivable action having a measurable result.

extinction probability : the probability in a branching process that the population
eventually dies out.

Fermi-Dirac model: a probability model in which k indistinguishable balls are ran-
domly placed into n distinguishable urns; at most one ball can occupy each urn.

first passage time: the time to first visit a given set of states in a Markov chain.

floating-point arithmetic: the “real number” arithmetic of computers.

flop: a unit for floating-point computations that is useful in assessing the complexity
of an algorithm.

gambler’s ruin: a one-dimensional random walk in which a gambler wins or loses
one unit at each play of a game, with the game terminating whenever the gambler
amasses a known amount or loses his entire initial stake.

geometric random variable: the discrete random variable X ∈ {1, 2, . . .} with prob-
ability distribution Pr(X = k) = (1− p)k−1p, for some 0 < p < 1.

hypergeometric random variable: the discrete random variable that counts the
number of red balls obtained when randomly selecting a fixed number of balls from
an urn containing a specified number of red and black balls.

independent events: events in which knowledge of whether one of the events did or
did not occur does not alter the probability of occurrence of any of the other events.

independent random variables: random variables whose joint distribution is the
product of their individual distributions.

irreducible chain: a Markov chain that can visit any state from any other state in a
finite number of steps.

irrelevant edge: an edge of a two-terminal network not appearing on any simple path
joining the two terminals of the network.

K-cutset: a minimal set of edges in a graph, the removal of which disconnects some
pair of vertices in K.

K-tree: a minimal set of edges in a graph that connects all vertices in K.

machine unit: a measure of the precision of floating-point arithmetic.

Maxwell-Boltzmann model: a probability model in which k distinguishable balls
are randomly placed into n distinguishable urns; several balls can occupy the same
urn.
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mincut: a minimal set of components in a coherent system such that the system fails
whenever these specified components fail.

minpath: a minimal set of components in a coherent system such that the system
operates whenever these specified components operate.

Monte Carlo simulation: a simulation used to study both deterministic and stochas-
tic phenomenon in which the passage of time is not material.

overflow : the result of a floating-point arithmetic operation that exceeds the available
range of numbers.

parallel system: a system of components that fails only when all components fail.

periodic state: a state of a Markov chain that can only be revisited at multiples of a
certain number d > 1 (the period of the state).

Poisson random variable: the discrete random variable X ∈ {0, 1, . . .} with proba-
bility distribution Pr(X = k) = e−λλk

k! , for some λ > 0.

probability : a numerical value between 0 and 1 measuring the likelihood of occurrence
of an event; the larger the number, the more likely the event.

pseudo-random numbers: numbers generated in a predictable fashion, but that
appear to behave like independent and identically distributed random numbers.

purely multiplicative linear congruential generator: a widely used method of
producing a stream of pseudo-random numbers.

queue capacity : the maximum number of customers allowed at any time in a queueing
system, either waiting or being served.

queue discipline: the protocol according to which customers are selected for service
from among those waiting for service.

queueing system: a stochastic process in which customers arrive, await service, and
are served.

queue-length process: a stochastic process describing the number of customers in
the queueing system.

random numbers: real numbers generated uniformly over the interval (0, 1).

random variable: a function that assigns a real number to each outcome in the sample
space.

random walk: a stochastic process based on the problem of determining the probable
location of a point subject to random motions.

recurrent state: a state of a Markov chain from which the probability of return to
itself is 1.

recurrent walk: a random walk that returns to its starting location with probability 1.

reflecting boundary : a boundary that redirects the motion of a random walk whose
trajectory comes into contact with it.

relative error: the (percent) error in a computation relative to the true value.

reliability : the probability that a given system functions at a random instant of time.

roundoff error: the error resulting from abbreviating a number to the precision of
the machine.

sample size: the number of possible outcomes of an experiment.

sample space: the set of all possible outcomes of an experiment.
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series system: a system of components that operates only when all components op-
erate.

service-time distribution: the statistical distribution of time required to serve a
customer in a queueing system.

simple path: a path containing no repeated vertices.

simulation: a technique for studying numerically the behavior of complex stochastic
systems and estimating their performance.

single-station queueing system: a system in which customers arrive, wait for ser-
vice, and depart after service completion.

s-t cutset: a minimal set of edges in a graph the removal of which leaves no s-t path.

stability condition: the set of parameter values for which the queue-length process
(or the waiting-time process) has a steady-state distribution.

steady-state distribution: in a queueing system, the limiting probability distribution
of the number of customers in the system.

stochastic process: a collection of random variables, typically indexed by time (dis-
crete or continuous).

structure function: a binary-valued function defined on all subsets of components;
its value indicates whether or not the system operates when the specified components
all operate.

traffic intensity : in a queueing system, the ratio of the maximum arrival rate to the
maximum service rate.

trajectory : the successive positions traced out by a particle undergoing a random
walk.

transient state: a state in a Markov chain from which the probability of return to
itself is less than 1.

transient walk: a random walk that is not recurrent.

transition probability : the probability of reaching a specified state in a Markov
chain by a single transition (step) from a given state.

transition probability matrix: the matrix of one-step transition probabilities for a
Markov chain.

two-terminal network: a network in which two vertices (or terminals) are specified.

two-terminal reliability : the probability that the specified vertices of a two-terminal
network are connected by a path of operating edges.

underflow : the result of a floating-point operation that is smaller than the smallest
representable number.

uniform random variable: the continuous random variable X ∈ (α, β) with density
function f(x) = 1

β−α .

variance (of a random variable): a measure of dispersion of the random variable, equal
to the average square of the deviation of the random variable from its expected value.

variance reduction techniques: methods for obtaining greater precision for a fixed
amount of sampling.

waiting-time process: a stochastic process describing the time spent in the system
by the customers.
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7.1 FUNDAMENTAL CONCEPTS

Definitions:

An experiment is any physically or mentally conceivable undertaking that results in
a measurable outcome.

The sample space is the set Ω of all possible outcomes of an experiment.

The sample size of an experiment is the number of possible outcomes of the experiment.

An event in the sample space Ω is a subset of Ω.

For a family of events {Aj | j ∈ J }, the union
⋃
j∈J

Aj is the set of outcomes belonging

to at least one Aj ; the intersection
⋂
j∈J

Aj is the set of all outcomes belonging to

every Aj .

The complement A of an event A is the set of outcomes in the sample space not
belonging to A.

The events A and B are disjoint if A∩B = ∅. The events A1, A2, A3, . . . are pairwise
disjoint if every pair Ai, Aj of distinct events are disjoint.

A probability measure on the sample space Ω is a function Pr from the set of subsets
of Ω into the interval [0, 1] satisfying:

• Pr(Ω) = 1;

• Pr(
∞⋃
k=1

Ak) =
∞∑
k=1

Pr(Ak), if the events {Ak} are pairwise disjoint.

A fair (unbiased) coin is a coin that is just as likely to land Heads (H) as it is to land
Tails (T ).

A red/blue spinner is a disk consisting of two sectors, one red with area r and one
blue with area b.

Facts:

1. Pr(∅) = 0.

2. Pr(A) has the interpretation of the long-run proportion of time that the event A
occurs in repeated trials of the experiment.

3. Pr(
n⋃

k=1

Ak) =
n∑

k=1

Pr(Ak), if the n events {Ak} are pairwise disjoint.

4. If all outcomes are equally likely and the sample space has k elements, where k is a
positive integer, then the probability of event A is the number of elements of A divided

by the size of the sample space; that is, Pr(A) =
|A|
k

.

5. Principle of inclusion-exclusion (simple form): For events A and B,

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

6. Principle of inclusion-exclusion (general form): For any events A1, A2, . . . , An,

Pr(
n⋃

r=1
Ar) =

∑
i

Pr(Ai)−
∑
i<j

Pr(Ai ∩Aj) +
∑

i<j<k

Pr(Ai ∩Aj ∩Ak)−

· · ·+ (−1)n+1Pr(A1 ∩A2 ∩ · · · ∩An).
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7. Sieve principle: If A1, A2, . . . , An are events, then

Pr(exactly k of the Aj occur) =
n∑

r=k

(−1)r+k
(
r
k

) ∑
j1<j2<···<jr

Pr(Aj1 ∩Aj2 ∩ · · · ∩Ajr ).

8. Boole’s inequality : If A1, A2, . . . , An are events, then

Pr(
n⋃

k=1

Ak) ≤
n∑

k=1

Pr(Ak).

If A1, A2, . . . is an infinite sequence of events, then

Pr(
∞⋃
k=1

Ak) ≤
∞∑
k=1

Pr(Ak).

(George Boole, 1815–1864.)

9. Bonferroni’s inequality: If A1, A2, . . . , An are events,

Pr(
n⋃

k=1

Ak) ≥
n∑

k=1

Pr(Ak)−
∑
k<j

Pr(Ak ∩Aj).

10. Pr(A) = 1− Pr(A).

11. Monotonicity : If A ⊆ B, then Pr(A) ≤ Pr(B).

12. If A1 ⊆ A2 ⊆ A3 ⊆ · · · is an increasing sequence of events, then

lim
n→∞

Pr(An) = Pr(
∞⋃
n=1

An).

13. If A1 ⊇ A2 ⊇ A3 ⊇ · · · is a decreasing sequence of events, then

lim
n→∞

Pr(An) = Pr(
∞⋂
n=1

An).

14. Web-based notes on basic probability concepts together with interactive experi-
ments can be found at the site

http://www.math.uah.edu/~stat/

Examples:

1. The following table gives examples of specific experiments, their sample spaces, and
the corresponding sample size:

experiment sample space sample size

toss a coin {H,T} 2

toss a coin n times { (ω1, . . . , ωn) | ωi is H or T } 2n

roll a die {1, 2, 3, 4, 5, 6} 6

roll a pair of dice {(1, 1), (1, 2), . . . , (6, 5), (6, 6)} 36

draw a card from a standard deck {2♣, 2♦, . . . , A♥, A♠} 52

spin a red/blue spinner {red, blue} 2

2. The following are various events defined for the experiment of rolling a pair of dice
(see the table of Example 1):

sum of dice is 9: A = {(3, 6), (4, 5), (5, 4), (6, 3)}
both dice are multiples of 3: B = {(3, 3), (3, 6), (6, 3), (6, 6)}
sum of dice ≤ 4: C = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.

c© 2000 by CRC Press LLC

http://www.math.uah.edu/


3. The events A = {sum of dice = 9} and C = {sum of dice ≤ 4} are disjoint. The
events Ai = {sum of the dice is i}, 2 ≤ i ≤ 12, are pairwise disjoint.

4. Random selection of an integer: Let Ω = {1, 2, 3, . . . , n} be the sample space
corresponding to the experiment of randomly selecting an integer between 1 and n, and
define Pr(j) = Pr({j}) = 1

n . By Fact 4, Pr(3 ≤ j ≤ n) = Pr({3 ≤ j ≤ n}) = n−2
n .

5. For a red/blue spinner, the sample space is Ω = {red, blue}. If the spinner is equally
likely to land at any location, then Pr(red) = r

r+b and Pr(blue) = b
r+b .

6. Toss a fair coin n times and interpret Heads as 1 and Tails as 0. The sample space
Ω = { (ω1, ω2, . . . , ωn) | ωj ∈ {0, 1} } consists of all possible 0 -1 sequences of length n.
Since |Ω| = 2n, each probability Pr((ω1, ω2, . . . , ωn)) is assigned the value 1

2n . By
Fact 4, Pr(A) = |A|

2n holds for all A ⊆ Ω.
For example, the probability of no tails appearing in four coin tosses is the prob-

ability of event A = {(1, 1, 1, 1)}, so Pr(A) = 1
16 . The probability of exactly one

tail is the probability of event B = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)}; hence
Pr(B) = 4

16 = 1
4 . The probability of at least two tails is, using Fact 10, 1 − Pr(A) −

Pr(B) = 1− 5
16 = 11

16 .

7. Derangements: Let Dn be the set of derangements (§2.4.2) on the n elements
{1, 2, . . . , n} and define Aj to be the set of all permutations fixing j. For any permuta-
tion σ, Pr(σ) = 1

n! . Also, for j1 < j2 < · · · < jk, Pr(Aj1 ∩Aj2 ∩ · · · ∩Ajk
) = (n−k)!

n! and∑
j1<j2<···<jk

Pr(Aj1 ∩ Aj2 ∩ · · · ∩ Ajk
) =

(
n
k

) (n−k)!
n! = 1

k! . By Fact 6, Pr(
⋃n

r=1 Ar) =∑
i Pr(Ai)−

∑
i<j Pr(Ai∩Aj)+

∑
i<j<k Pr(Ai∩Aj ∩Ak)−· · ·+(−1)n+1Pr(A1∩A2∩

· · ·∩An) = 1− 1
2! +

1
3!−· · ·+(−1)n+1 1

n! . Hence, Pr(Dn) = 1−1+ 1
2!− 1

3!−· · ·+
(−1)n

n! ≈
e−1 ≈ 0.36788.

8. 5-card stud poker: Five cards are drawn from a well-shuffled deck of 52 playing
cards. The sample space consists of the

(
52
5

)
= 2,598,960 possible five-card hands.

The approximate probabilities of various events are displayed in the following table.
(See §2.3.2 Example 12 for further details.) As seen from the probabilities given in
the table, obtaining a five-card hand containing three of a kind is approximately ten
times more likely than obtaining a five-card hand containing a flush, which in turn is
approximately ten times more likely than obtaining a five-card hand containing four of
a kind.

type of hand example hand enumeration probability

one pair 7♥, 7♦,K♣, J♠, 2♥
(
13
1

)(
4
2

)(
12
3

)
43 0.42

two pairs 7♠, 7♥,K♦,K♠, 3♣
(
13
2

)(
4
2

)(
4
2

)
44 0.048

three of a kind 7♣, 7♥, 7♦, 3♦, 5♠
(
13
1

)(
4
3

)(
12
2

)
42 0.021

straight 7♣, 8♠, 9♦, 10♣, J♥ 10(45 − 4) 0.0039

flush 3♦, 6♦, 7♦, J♦,K♦ 4
((

13
5

)
− 10

)
0.0020

full house 3♥, 3♦, 3♠, 7♣, 7♥ 13 · 12 ·
(
4
3

)(
4
2

)
0.0014

four of a kind A♣, A♦, A♥, A♠, 7♠ 13 · 48 0.00024

straight flush 7♦, 8♦, 9♦, 10♦, J♦
(
4
1

)
9 0.000014

royal flush 10♥, J♥, Q♥,K♥, A♥ 4 0.0000015
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7.2 INDEPENDENCE AND DEPENDENCE

Sequences of independent events are often encountered when an experiment is repeated
(without changes). Independent events correspond, intuitively, to events that do not af-
fect the outcome of one another. The treatment of dependent events requires conditional
probabilities.

7.2.1 BASIC CONCEPTS

Definitions:

Two events A and B are independent if Pr(A ∩B) = Pr(A)Pr(B).

The n events A1, A2, . . . , An are independent if for all k (2 ≤ k ≤ n) and j1, j2, . . . , jk
(1 ≤ j1 < j2 < · · · < jk ≤ n),

Pr(Aj1 ∩Aj2 ∩ · · · ∩Ajk
) = Pr(Aj1)Pr(Aj2) . . . P r(Ajk

).

The infinite collection of events {An | n ≥ 1 } is independent if for all finite k ≥ 2 the
events A1, A2, . . . , Ak are independent.

Let B be an event with Pr(B) > 0. The conditional probability of A given B is

Pr(A|B) =
Pr(A ∩B)
Pr(B)

.

Facts:
1. If events A and B are independent, then so are A and B, A and B, and A and B.

2. If A1, A2, . . . are independent events, then Pr(
∞⋂
k=1

Ak) =
∞∏
k=1

Pr(Ak).

3. The function φB :A→ Pr(A|B) is a probability measure (§7.1).
4. Pr(A ∩B) = Pr(A|B)Pr(B).
5. If A and B are independent, then Pr(A|B) = Pr(A). This equation captures the
notion that for independent events A and B the knowledge that one of the events has
occurred does not affect the probability of the other occurring.
6. Pairwise independence of a collection of events does not necessarily imply that all
events are independent (see Example 3).
7. Law of total probabilities: For any event A and any partition of Ω into events
B1, B2, . . . , Bn,

Pr(A) =
n∑
i=1

Pr(A ∩Bi) =
n∑
i=1

Pr(A|Bi)Pr(Bi).

8. Bayes’ formula: For any event A and any partition of Ω into events B1, B2, . . . , Bn,

Pr(B1|A) =
Pr(B1 ∩A)

Pr(A)
=

Pr(A|B1)Pr(B1)
n∑
i=1

Pr(A|Bi)Pr(Bi)
.

(Thomas Bayes, 1702–1761.)

9. Chain rule: For any events A1, A2, . . . , An satisfying Pr(
n−1⋂
k=1

Ak) > 0,

Pr(A1 ∩A2 ∩ · · · ∩An) = Pr(A1)Pr(A2|A1)Pr(A3|A1 ∩A2) . . . P r(An |
n−1⋂
k=1

Ak).

c© 2000 by CRC Press LLC



Examples:

1. Tossing two fair coins: The sample space for this experiment consists of the four
outcomes HH,HT, TH, TT . For example, the outcome HT means that the first coin
turns up Heads and the second Tails. Because both coins are fair, all four outcomes are
equally likely and in particular Pr(HT ) = 1

4 . Since Pr(H) = Pr(T ) = 1
2 , Pr(HT ) =

1
4 = 1

2 · 1
2 = Pr(H)Pr(T ). Thus, the events “Heads on the first coin” and “Tails on the

second coin” are independent.

2. Tossing a fair coin n times: As in Example 6 of §7.1, let 1 stand for Heads and 0
for Tails. For each 1 ≤ i ≤ n select εi ∈ {0, 1} and define Ai = {εi occurs on the
ith toss}. Since all outcomes are equally likely, Pr(A1 ∩ A2 ∩ · · · ∩ An) = ( 1

2 )n =
1
2 × 1

2 × · · · × 1
2 = Pr(A1)Pr(A2) . . . P r(An). Also, for all j1, j2, . . . , jk (2 ≤ k ≤ n),

Pr(Aj1 ∩ Aj2 ∩ · · · ∩ Ajk
) = ( 1

2 )k = 1
2 × 1

2 × · · · × 1
2 = Pr(Aj1)Pr(Aj2) . . . P r(Ajk

).
Therefore the events A1, A2, . . . , An are independent.

3. Let Ω = {a, b, c, d} be a sample space with equiprobable outcomes. Let A = {a, b},
B = {a, c}, and C = {a, d}. Here Pr(A) = Pr(B) = Pr(C) = 1

2 . Also Pr(A ∩ B) =
1
4 = 1

2 · 1
2 = Pr(A)Pr(B), Pr(A ∩ C) = 1

4 = 1
2 · 1

2 = Pr(A)Pr(C), and Pr(B ∩ C) =
1
4 = 1

2 · 1
2 = Pr(B)Pr(C). Yet Pr(A ∩B ∩C) = 1

4 �= 1
2 · 1

2 · 1
2 = Pr(A)Pr(B)Pr(C). In

this example, any two of the events are independent, but all three are not.

4. Gambler’s fallacy : Suppose that a fair coin is tossed five times, turning up Heads
on all five tosses. What is the probability that the next (sixth) toss turns up Tails? A
common fallacy is to believe that a Tail is more likely to turn up next, since in the long
run 50% of the coins should turn up Tails (and 50% Heads).

The appropriate sample space consists of 26 = 64 equiprobable outcomes, represent-
ing any sequence of six Heads and/or Tails. The required probability is Pr(A|B), where
A = {(H,H,H,H,H, T )} and B = {(H,H,H,H,H,H), (H,H,H,H,H, T )}. Then
Pr(A|B) = Pr(A∩B)

Pr(B) = Pr(A)
Pr(B) = 1

2 . Consequently, a Tail turning up next is just as likely
as a Head.

5. An urn contains 7 blue marbles and 5 red marbles. An experiment consists of draw-
ing (without replacement) a marble at random, observing its color, and then drawing
a second marble at random. Let Bi be the event “the ith marble drawn is blue” and
let Ri be the event “the ith marble drawn is red”, where i ∈ {1, 2}. Then Pr(B1) = 7

12 ,
Pr(R2|B1) = 5

11 , Pr(B1 ∩R2) = Pr(R2|B1)Pr(B1) = 5
11 · 7

12 = 35
132 . By Fact 7:

Pr(R2) = Pr(R2|R1)Pr(R1) + Pr(R2|B1)Pr(B1) = 4
11 · 5

12 + 5
11 · 7

12 = 55
132 .

By Fact 8:

Pr(B1|R2) =
Pr(R2|B1)Pr(B1)

Pr(R2|R1)Pr(R1) + Pr(R2|B1)Pr(B1)
=

5
11 · 7

12
4
11 · 5

12 + 5
11 · 7

12

= 7
11 .

6. A particular family is known to have two children (one 9 years old, the other 10
years old). When a census taker comes to the house, a girl answers the doorbell. What
is the probability that the other child is also a girl?

To answer this question, construct the sample space Ω = {(b, b), (b, g), (g, b), (g, g)},
where, for example, the ordered pair (b, g) means that the younger child is a boy and the
older child is a girl. Assume that all four outcomes in the sample space are equiprobable.
The required probability is Pr(A|B), where A = {(g, g)} and B = {(b, g), (g, b), (g, g)}.
Then

Pr(A|B) =
Pr(A ∩B)
Pr(B)

=
Pr({(g, g)})

Pr({(b, g), (g, b), (g, g)}) =
1
4
3
4

= 1
3 .
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7. Genetics: Genes are responsible for physical traits of all living things. Each gene
is composed of two alleles. Dominant alleles are represented with capital letters and
recessive alleles with lower case letters. The basic discoveries concerning genetics were
made by Gregor Mendel (1822–1884). One of the genes that is responsible for eye color
exhibits two alleles — a dominant one B, for brown eyes, and a recessive one b, for blue
eyes. In a certain population the genotype probabilities are

Pr(an individual has genotype BB) = 0.2
Pr(an individual has genotype Bb) = 0.5
Pr(an individual has genotype bb) = 0.3.

Let Eb be the event that an offspring receives a b allele from its mother, and let Fb
be the event that it receives a b allele from its father. Conditioning on the genotype
(BB,Bb, bb) of the offspring produces

Pr(Eb) = Pr(Eb|BB)Pr(BB) + Pr(Eb|Bb)Pr(Bb) + Pr(Eb|bb)Pr(bb)
= 0× 0.2 + 0.5× 0.5 + 1× 0.3 = 0.55;

similarly Pr(Fb) = 0.55.

Let C be the event that the offspring has blue eyes (that is, has genotype bb). By
independence,

Pr(C) = Pr(Eb ∩ Fb) = Pr(Eb)Pr(Fb) = (0.55)2 = 0.3025.

8. In Example 7, let A be the event that the father has blue eyes (i.e., has genotype bb).
If the father has blue eyes, then the offspring will have blue eyes (event C) if and only
if it receives a b allele from its mother, and so Pr(C|A) = Pr(Eb) = 0.55. Also,
Pr(C|father is Bb) = Pr(C and mother is Bb|father is Bb) + Pr(C and mother is bb|
father is Bb) = 0.25× 0.5 + 0.5× 0.3 = 0.275 and Pr(C|father is BB) = 0.

The conditional probability that the father has blue eyes if the offspring has blue eyes
is obtained from Fact 8 (interchanging phenotype with genotype when convenient):

Pr(A|C) =
Pr(C|father has bb)Pr(father has bb)

Pr(C|bb)Pr(bb) + Pr(C|Bb)Pr(Bb) + Pr(C|BB)Pr(BB)

=
0.55× 0.3

0.55× 0.3 + 0.275× 0.5 + 0
≈ 0.545.

9. Let’s Make a Deal: A game show contestant is told there is a fabulous prize hidden
behind one of three doors (A, B, or C). The contestant guesses that the prize is behind
door A. At this point the game show host (who knows what is behind each door, and in
particular knows that the prize is not behind door B) opens door B, revealing that the
prize is not there. The contestant is then offered the opportunity to change her guess.
Should she? Intuition might suggest that nothing is to be gained by changing the guess
(the prize, it is argued, is now equally likely to be behind either door A or door C).
Using conditional probabilities, however, shows that it is definitely worthwhile to now
guess that the prize is behind door C, assuming that the host is known to always open
a door with no prize and to choose randomly if both remaining doors do not hide the
prize.

It is reasonable to assume that the prize is equally likely to be hidden behind
each of the doors. Thus, if HX denotes the event in which the prize is hidden behind
door X, then Pr(HA) = Pr(HB) = Pr(HC) = 1

3 . If OX denotes the event that
door X is opened, then Pr(OB |HA) = Pr(OC |HA) = 1

2 , whereas Pr(OB |HB) = 0 and
Pr(OB |HC) = 1. By Fact 8,

c© 2000 by CRC Press LLC



Pr(HA|OB) =
Pr(HA ∩ OB)

Pr(OB)

=
Pr(HA)Pr(OB |HA)

Pr(HA)Pr(OB |HA) + Pr(HB)Pr(OB |HB) + Pr(HC)Pr(OB |HC)

=
1
3 · 1

2
1
3 · 1

2 + 0 + 1
3 · 1

= 1
3 .

Similarly Pr(HC |OB) = 2
3 , so it is twice as likely for the prize to be hidden behind

door C as behind door A, given that door B is shown to contain no prize. A web-based
simulation of this situation, in which prizes are randomly hidden behind doors, enables
one to verify experimentally this conclusion; see the following World Wide Web site:

http://www.intergalact.com/threedoor/threedoor.html.

7.2.2 URN MODELS

Several applications can be viewed as the result of placing balls into urns.

Definitions:

In the following models, k balls are randomly placed in n distinguishable urns labeled 1
through n.

• Model 1 (Maxwell-Boltzmann): The balls are distinguishable and multiple oc-
cupancy is permitted.

• Model 2: The balls are distinguishable and multiple occupancy is not permitted.
• Model 3 (Fermi-Dirac): The balls are indistinguishable and multiple occupancy

is not permitted.
• Model 4 (Bose-Einstein): The balls are indistinguishable and multiple occupancy

is permitted.
• Model 5: The balls are distinguishable, no urn is allowed to remain empty, and

multiple occupancy is permitted.

Facts:
1. The following table shows, for different urn models, the probability of the event
(k1, k2, . . . , kn), in which k1 balls are in urn 1, k2 balls are in urn 2, . . . , kn balls are
in urn n, with the restrictions

∑n
j=1 kj = k, kj ≥ 0. In model 2, nk is a falling power

(see §3.4.2). In models 2 and 3, every kj ∈ {0, 1} and the models are meaningful only if
k ≤ n. In model 5, every kj ≥ 1, k ≥ n, and { kn} is a Stirling subset number (§2.5.2).

model sample size enumeration of (k1, . . . , kn) probability of (k1, . . . , kn)

1 nk
(

k
k1 k2 ... kn

) (
k

k1 k2 ... kn

)
n−k

2 nk k!
(
n
k

)−1

3
(
n
k

)
1

(
n
k

)−1

4
(
n+k−1

k

)
1

(
n+k−1

k

)−1

5 n!{ kn}
(

k
k1 k2 ... kn

) (
k

k1 k2 ... kn

)/(
n!{ kn}

)
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2. The Maxwell-Boltzmann model was originally proposed to explain the distribution
of k subatomic particles into n different energy states. It has been replaced by the
Bose-Einstein model (appropriate for particles with integer “spin”, such as photons and
pi mesons) and by the Fermi-Dirac model (appropriate for particles with half-integer
“spin”, such as protons and neutrons).

3. Pólya’s urn scheme (George Pólya, 1887–1985): In this model, an urn contains b
black and r red balls. At each step one ball is drawn and replaced, and c additional
balls of the same color are placed in that urn. This scheme models the spread of a
contagious disease where an infected person infects c other persons.

4. The case c = 0 in Pólya’s urn scheme corresponds to sampling balls with replace-
ment.

5. The case c = −1 in Pólya’s urn scheme corresponds to sampling balls without
replacement.

6. The following table shows how to calculate several types of probabilities using
Pólya’s urn scheme, where b is the number of black balls, r is the number of red balls,
and c is the number of additional balls added each time:

event probability

drawing a black b
b+r

drawing a black then red br
(b+r)(b+r+c)

drawing in order black, red, black br(b+c)
(b+r)(b+r+c)(b+r+2c)

drawing k black and n− k red balls b(b+c)...(b+(k−1)c)r(r+c)...(r+(n−k−1)c)
(b+r)(b+r+c)(b+r+2c)...(b+r+(n−1)c)

in a prescribed order

drawing k black balls in n drawings; (−b/c
k )(−r/c

n−k )
(−(b+r)/c

n )
the order of drawing does not matter

Examples:

1. Partial derivatives: For analytic functions f , the order in which derivatives is taken
does not matter. As an example, the mixed second partial derivatives fxy and fyx
are equal, as are fxxy and fxyx. Consequently, the number of different third-order
partial derivatives of a function of n variables is the number of ways to distribute k = 3
indistinguishable balls into n urns (variables). Each such distribution corresponds to
selecting the number of times each variable occurs in forming the partial derivative.
Using the entry for Model 4 in the table for Fact 1, there are

(
n+2

3

)
third-order partial

derivatives of f . When n = 3 this gives
(
5
3

)
= 10 different third-order partial derivatives

of f(x, y, z): namely, fxxx, fyyy, fzzz, fxxy, fxxz, fxyy, fyyz, fxzz, fyzz, fxyz. In general,
there are

(
n+k−1

k

)
different kth-order partial derivatives of f .

2. Model 3 provides a model for the occurrence of misprints on the pages of a book.
Here the n urns correspond to the n symbols printed sequentially in the book and k
is the number of misprints. Each symbol is either correct or a misprint, so multiple
occupancy does not occur.

Also, assuming that the misprints are not generated in a systematic fashion, the k
balls can be considered indistinguishable, with misprints equally likely to occur at any
location on the page.
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3. Lottery odds: A lottery is conducted by selecting five different numbers from
1, 2, . . . , 9. This can be viewed using urn model 3, in which the five selected num-
bers correspond to k = 5 identical balls placed into n = 9 distinguished urns. The
number of such selections, by the table of Fact 1, is

(
9
5

)
= 126. Only one of these 126

selections matches all the five winning numbers, so Pr(match 5) = 1
126 .

To match exactly four of the five winning numbers, select the matching numbers
in

(
5
4

)
= 5 ways and select the (single) nonmatching number in

(
4
1

)
= 4 ways, giving

Pr(match 4) = 5·4
126 = 20

126 .
To match exactly three of the winning numbers, select the matching numbers

in
(
5
3

)
= 10 ways and select the two nonmatching numbers in

(
4
2

)
= 6 ways, giving

Pr(match 3) = 10·6
126 = 60

126 .

4. In a number of state lotteries, k = 6 numbers are drawn from 1, 2, . . . , n. The
following table gives the probability of matching exactly six, exactly five, and exactly
four of the six winning numbers, for various values of n.

n match 6 match 5 match 4

35 1/1,623,160 87/811,580 87/23,188
36 1/1,947,792 15/162,316 2,175/649,264
37 1/2,324,784 31/387,464 2,325/774,928
38 1/2,760,681 64/920,227 2,480/920,227
39 1/3,262,623 66/1,087,541 2,640/1,087,541
40 1/3,838,380 17/319,865 561/255,892
41 1/4,496,388 35/749,398 2,975/1,498,796
42 1/5,245,786 108/2,622,893 675/374,699
43 1/6,096,454 111/3,048,227 4,995/3,048,227
44 1/7,059,052 57/1,764,763 10,545/7,059,052
45 1/8,145,060 39/1,357,510 741/543,004
46 1/9,366,819 80/3,122,273 3,900/3,122,273
47 1/10,737,573 82/3,579,191 4,100/3,579,191
48 1/12,271,512 21/1,022,626 4,305/4,090,504
49 1/13,983,816 43/2,330,636 645/665,896
50 1/15,890,700 22/1,324,225 473/529,690
51 1/18,009,460 27/1,800,946 1,485/1,800,946
52 1/20,358,520 69/5,089,630 3,105/4,071,704
53 1/22,957,480 141/11,478,740 3,243/4,591,496
54 1/25,827,165 32/2,869,685 376/573,937
55 1/28,989,675 98/9,663,225 392/644,215
56 1/32,468,436 25/2,705,703 875/1,546,116
57 1/36,288,252 17/2,016,014 2,125/4,032,028
58 1/40,475,358 52/6,745,893 1,105/2,248,631
59 1/45,057,474 53/7,509,579 3,445/7,509,579
60 1/50,063,860 81/12,515,965 4,293/10,012,772

5. Let an urn contain c = 1 red ball and b = 9 black balls. In Pólya’s urn scheme with
c = 1, the probability of obtaining the sequence RRB (two red balls and then a black
ball) is found using conditional probabilities as

Pr(RRB) = Pr(B|RR)Pr(R|R)Pr(R) = 9
12 · 2

11 · 1
10 .
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Likewise,
Pr(BRR) = Pr(R|BR)Pr(R|B)Pr(B) = 2

12 · 1
11 · 9

10 ,
and

Pr(RBR) = Pr(R|RB)Pr(B|R)Pr(R) = 2
12 · 9

11 · 1
10 .

Thus,
Pr(RRB) = Pr(BRR) = Pr(RBR) = 3

220 ,
agreeing with the value obtained using the table of Fact 6, with k = 1 and n = 3.

The probability of obtaining two red balls and one black ball in some order is then
Pr(RRB) + Pr(BRR) + Pr(RBR) = 9

220 . Using the extended binomial coefficients
(§2.3.2), the corresponding entry in the table of Fact 6 can be verified for this case,
where k = 1 and n = 3:

Pr(exactly one black ball) = (−9
1 )(−1

2 )
(−10

3 ) =
(−1)1(9

1)(−1)2(2
2)

(−1)3(12
3 ) = 9

220 ,

agreeing with the value already found.

7.3 RANDOM VARIABLES

7.3.1 DISTRIBUTIONS

Definitions:

A random variable X is a real-valued function on a probability space Ω.

The random variable X: Ω → R is discrete if the range of X is finite or countable.

The real-valued function f :R → R is a density function if
• f(x) ≥ 0 for all x ∈ R;
•

∫ ∞
−∞ f(x) dx = 1.

The random variable X is (absolutely) continuous if there exists a density function f

such that Pr(a < X < b) =
∫ b

a
f(x) dx for all a < b.

The distribution µX of the random variable X is given by µX(B) = Pr(X ∈ B) for
every interval B.

The cumulative distribution function of a random variable X is given by F (x) =
Pr(X ≤ x).

A random vector is a function X = (X1, . . . , Xk): Ω→ Rk.

The joint distribution µX1,...,Xk
of the random vector (X1, . . . , Xk) is defined by

µX1,...,Xk
(B1, . . . , Bk) = Pr(X1 ∈ B1, . . . , Xk ∈ Bk) for any k intervals B1, . . . , Bk.

The random variables X1, . . . , Xn are independent if for any intervals B1, . . . , Bn

Pr(X1 ∈ B1, . . . , Xn ∈ Bn) = Pr(X1 ∈ B1) . . . P r(Xn ∈ Bn).

Facts:
1. The cumulative distribution function F (x) is a nondecreasing function of x.
2. limx→∞ F (x) = 1, limx→−∞ F (x) = 0.
3. Pr(a < X ≤ b) = F (b)− F (a) for a < b.

c© 2000 by CRC Press LLC



4. If X is a discrete random variable, then
∑

k Pr(X = k) = 1.
5. If X is a continuous random variable, then d

dxF (x) = f(x).
6. If X1 and X2 are independent binomial random variables (see Table 1) with param-
eters n1, p and n2, p respectively, then X1 +X2 is also a binomial random variable with
parameters n1 + n2, p.
7. If X1 and X2 are independent Poisson random variables (see Table 1) with pa-
rameters λ1 and λ2 respectively, then X1 + X2 is also a Poisson random variable with
parameter λ1 + λ2.
8. If X1 and X2 are independent normal random variables (see Table 2) with parame-
ters µ1, σ

2
1 and µ2, σ

2
2 respectively, then X1 +X2 is also a normal random variable with

parameters µ1 + µ2, σ
2
1 + σ2

2 .

Examples:
1. A spinner has three sectors — red, white, and blue — with sector areas 0.2, 0.7,
and 0.1, respectively. Define a random variable X according to the rule X = 1 if the
spinner points on red, X = 2 if it points on white, and X = 3 if it points on blue. The
distribution of the discrete random variable X is displayed in the following table.

event i Pr(X = i)

red 1 0.2
white 2 0.7
blue 3 0.1

2. Bernoulli random variable: Let A ⊂ Ω be a fixed subset, with Pr(A) = p for some
0 < p < 1. Define the random variable X by X(ω) = 1 for ω ∈ A and X(ω) = 0
for ω /∈ A. Often it is said that a success occurs whenever ω ∈ A and a failure
occurs otherwise. Then X is a Bernoulli random variable with Pr(X = 1) = p and
Pr(X = 0) = 1− p. (Jakob Bernoulli, 1654–1705)
3. Binomial random variable: Suppose that a die is thrown and that the occurrence
of either a one or a six results in a “success”. A single roll of the die constitutes a
Bernoulli trial (Example 2) with probability of success p = 1

3 . The number of successes
in 10 successive independent trials is a binomial random variable X with parameters
n = 10 and p = 1

3 . In general, the number of successes X is a discrete random variable
with possible values 0, 1, 2, . . . , n and its distribution is given in Table 1.
4. A dart is thrown at a circular target of radius 1. Assume that the target is never
missed and that any point on the target is as equally likely to be hit as any other
point. Let X be the dart’s distance from the center of the target. Since X can assume
any value between 0 and 1, X is a continuous random variable. For 0 ≤ a < b ≤ 1,
Pr(a < X < b) = Pr(the dart lands in the annulus with radii a and b)= 1

π×(the area
of the annulus with radii a and b)= 1

π (πb2 − πa2) = b2 − a2.
5. Hypergeometric random variable: A total of n balls are selected from an urn
containing N balls, of which m are red and N − m are black. Let X be the number
of red balls selected. Then X is a discrete random variable having the distribution

Pr(X = k) = (m
k )(N−m

n−k )
(N

n) , for 0 ≤ k ≤ m.

6. Multinomial random variable: Cast n identical balls into N labeled boxes in such a
way that the probability that a ball ends up in box j is pj , where

∑N
j=1 pj = 1. Let Xj

denote the number of balls in box j (1 ≤ j ≤ N). For a vector (x1, x2, . . . , xN ) with
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Table 1 Discrete random variables.

distribution description of event (X = k) range of X Pr(X = k)

Bernoulli B(1, p) k = 0 indicates a failure, 0, 1 q
k = 1 indicates a success p

binomial B(n, p) k successes in n trials, each with 0, 1, . . . , n
(
n
k

)
pkqn−k

probability p of success
Poisson P (λ) k arrivals to a counter over a unit 0, 1, 2, . . . e−λλk

k!
period of time, at average rate λ

geometric G(p) k trials before first success occurs 1, 2, . . . qk−1p

Pascal NB(r, p) k trials before rth success occurs r, r + 1, . . .
(
k−1
r−1

)
qk−rpr

hypergeometric sample n items from N items, where 0, 1, . . . , n (m
k )(N−m

n−k )
(N

n)(N,m, n) m are defective and N −m are not;
k = number of defectives selected

∑N
j=1 xj = n, the probability that box 1 contains x1 balls, box 2 contains x2 balls,. . . ,

box N contains xN balls is given by

Pr(X1 = x1, X2 = x2, . . . , XN = xN ) = n!
x1!x2!...xN !p

x1
1 px2

2 . . . pxN

N

=
(

n
x1 x2 ... xN

)
px1
1 px2

2 . . . pxN

N ,

expressed using the multinomial coefficients (§2.3.2).
7. Joint distribution: Two fair coins are tossed once, resulting in four equally likely
outcomes {(T, T ), (T,H), (H,T ), (H,H)}. Let the random variable X be the total num-
ber of heads observed, and let the random variable Y be the number of heads on the
first coin minus the number of heads on the second coin. The joint probability dis-
tribution µX,Y is given by Pr(X = 0, Y = 0) = Pr(X = 1, Y = −1) = Pr(X =
1, Y = 1) = Pr(X = 2, Y = 0) = 1

4 . Thus Pr(X = 0) = Pr(X = 2) = 1
4 ,

Pr(X = 1) = 1
2 and Pr(Y = 1) = Pr(Y = −1) = 1

4 , Pr(Y = 0) = 1
2 . Since

Pr(X = 0, Y = 0) = 1
4 �= 1

8 = Pr(X = 0)Pr(Y = 0), the variables X and Y are not
independent.
8. Some important discrete random variables are described in Table 1. Here q = 1− p.
9. Some important continuous random variables are described in Table 2. Here it is
understood that the density function f(x) = 0 outside the specified range.

7.3.2 MEAN, VARIANCE, AND HIGHER MOMENTS

Definitions:

The mean (expected value) EX of a discrete random variable X is given by EX =∑
k

kPr(X = k).

The mean of a continuous random variable X with density function f is given by
EX =

∫ ∞
−∞ xf(x) dx.

The variance Var(X) of a random variable X is Var(X) = E((X − EX)2).

The standard deviation of X is
√

Var(X).
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Table 2 Continuous random variables.

distribution range of X density function f(x)

uniform (α, β) (α, β) 1
β−α , α < β

exponential (λ) [0,∞) λe−λx, λ > 0

standard normal (0, 1) (−∞,∞) 1√
2π
e−x2/2

normal (µ, σ2) (−∞,∞) 1
σ
√

2π
e−

1
2 ( x−µ

σ )2 , σ > 0

gamma Γ(n, λ) [0,∞) λnxn−1e−λx

Γ(n) , Γ(n) =
∫ ∞
0

tn−1e−t dt

Cauchy (α) (−∞,∞) α
π(α2+x2) , α > 0

beta (p, q) [0, 1] Γ(p+q)
Γ(p)Γ(q)x

p−1(1− x)q−1, p, q > 0

chi square χ2(r) [0,∞) 1
2r/2Γ(r/2)

x
r
2−1e−

x
2 , r > 0

F -distribution Fm,n [0,∞) Γ((m+n)/2)
Γ(m/2)Γ(n/2)

(
m
n

)m/2 x(m−2)/2

(1+(m/n)x)(m+n)/2

t-distribution tk (−∞,∞) Γ((k+1)/2)
Γ(k/2)

1√
kπ

1
(1+x2/k)(k+1)/2

Rayleigh R(σ) [0,∞) xe−x2/2σ2

σ2 , σ > 0

The covariance Cov(X,Y ) of two random variables X and Y is given by Cov(X,Y ) =
E((X − EX)(Y − EY )).

The correlation ρX,Y of two random variables X and Y is ρX,Y =
Cov(X,Y )√

Var(X)Var(Y )
.

The kth moment of a random variable X is E(Xk).

Facts:

1. The expected value EX of a random variable X measures the “weighted average”
of X or the “center of gravity” of its distribution.

2. E(X + Y ) = EX + EY .

3. E(cX) = cEX for all constants c.

4. E(c) = c for all constants c.

5. If X is a nonnegative integer random variable, then EX =
∞∑
n=0

Pr(X > n).

6. If X is a nonnegative continuous random variable, then EX =
∞∫
0

Pr(X > x) dx.

7. If X and Y are independent, then E(XY ) = (EX)(EY ).

8. If g is a real-valued function and X is a discrete random variable, then E(g(X)) =∑
k

g(k)Pr(X = k).

9. If g is an integrable real-valued function and X is continuous with density f(x),
then E(g(X)) =

∫
g(t)f(t) dt.

10. The variance Var(X) of a random variable X measures the “dispersion” of X about
its expected value EX.

11. Var(X) ≥ 0; Var(X) = 0 if and only if for some constant c, Pr(X = c) = 1.
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12. Var(cX) = c2Var(X) for all constants c.
13. Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).
14. Var(X + Y ) = Var(X) + Var(Y ) if X and Y are independent.
15. Var(X) = E(X2)− (EX)2.
16. Cov(X,Y ) = 0 if X and Y are independent. The converse is false. (Example 4.)
17. Cov(X,Y ) = E(XY )− (EX)(EY ).
18. The correlation ρX,Y is a scale-invariant measure of the degree of linear relationship
between two random variables X and Y . Specifically, ρX,Y = 1 only when Y = aX + b
for some constants a > 0 and b. Similarly, ρX,Y = −1 only when Y = aX + b for some
constants a < 0 and b.
19. |ρX,Y | ≤ 1.

20. Bienaymé-Chebyshev’s inequality : Pr(|X − EX| ≥ t) ≤ Var(X)
t2 , for any value

t > 0. (Irénée-Jules Bienaymé, 1796–1878 and Pafnuty Lvovich Chebyshev, 1821–1894.)
21. Kolmogorov’s inequality : Suppose X1, X2, . . . , Xn are independent random vari-
ables, and let Sk = X1 + X2 + · · · + Xk for 1 ≤ k ≤ n. Then for any value t > 0
the probability that |Sk − ESk| < t holds for all k = 1, 2, . . . , n is at least 1 − Var(Sn)

t2 .
(Andrey Nikolayevich Kolmogorov, 1903–1987.)

Examples:
1. The random variable X is the number of heads obtained in three tosses of a fair
coin. It follows a binomial distribution (Table 1, §7.3.1), with n = 3 and p = 1

2 . Thus
Pr(X = 0) = 1

8 , Pr(X = 1) = 3
8 , Pr(X = 2) = 3

8 , and Pr(X = 3) = 1
8 . Using the

definition of expected value, EX =
∑

k kPr(X = k) = 0 · 1
8 + 1 · 3

8 + 2 · 3
8 + 3 · 1

8 = 3
2 .

In general, the mean of a binomial distribution with parameters n and p is np; see the
corresponding entry in Table 3 of §7.3.3.
2. The variance of the discrete random variable X in Example 1 can be found using
Var(X) = E((X − EX)2) = E((X − 3

2 )2) = (0− 3
2 )2 · 1

8 + (1− 3
2 )2 · 3

8 + (2− 3
2 )2 · 3

8 +
(3− 3

2 )2 · 1
8 · = 3

4 . In general, the variance of a binomial distribution with parameters n
and p is np(1− p); see the corresponding entry in Table 3 of §7.3.3.
3. Suppose X is a Bernoulli random variable with parameter p, so Pr(X = 0) = 1− p
and Pr(X = 1) = p. Then EX = 0 · (1 − p) + 1 · p = p and Var(X) = E((X − p)2) =
(0 − p)2 · (1 − p) + (1 − p)2 · p = p2(1 − p) + p(1 − p)2 = p(1 − p). Also, E(X2) =
02 · (1−p)+12 ·p = p and using Fact 15 Var(X) = E(X2)− (EX)2 = p−p2 = p(1−p),
as before.
4. Covariance and independence: In Example 7 of §7.3.1, EX = 0 · 1

4 +1 · 1
2 +2 · 1

4 = 1
and EY = −1 · 1

4 +0 · 1
2 +1 · 1

4 = 0. Also, E(XY ) = −1 · 1
4 +0 · 1

2 +1 · 1
4 = 0. By Fact 17,

Cov(X,Y ) = E(XY )− (EX)(EY ) = 0− 1 · 0 = 0. In this example, variables X and Y
have zero covariance (and zero correlation); however (see Example 7, §7.3.1) they are
not independent random variables.
5. The moments of the normal random variable X with parameters µ = 0 and σ = 1
are E(X2k) = 1 · 3 · · · (2k − 1) and E(x2k−1) = 0 for k ≥ 1.
6. A manufacturing plant produces ball bearings with an average diameter of 50 mm
and a variance of 11 mm2. Without any further information about the shape of the
distribution of the diameters X, Fact 20 shows that the probability Pr(|X − 50| ≥ 8)
of exceeding the nominal diameter by more than 8 mm is no more than Var(X)

82 = 11
64 =

0.172. Thus, no more than 17.2% of the ball bearings produced can exceed the stated
tolerance.
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7. Average-case algorithm analysis: A simple algorithm for locating an item in an
(unordered) list A = [a1, a2, . . . , an] is called a linear search; it sequentially examines
each entry of list A and compares the given item key with each ak until a match is
found, or until the entire list is searched, in which case key is known not to be in
the list. To obtain the average case complexity of this algorithm, suppose that key is
known to occur in A and that it is equally likely (with probability 1

n ) to be at each of
the n positions of A. If key is in fact located at position k of A, then k comparisons
are required by the algorithm. The expected number of comparisons needed is thus
EX =

∑n
k=1 kPr(X = k) =

∑n
k=1 k · 1

n = 1
n

∑n
k=1 k = 1

n
n(n+1)

2 = (n+1)
2 . Consequently,

the average-case complexity of linear search is O(n); see §1.3.3.

7.3.3 GENERATING FUNCTIONS

Definitions:

The probability generating function of a discrete random variable X is the function
φ(t) = E(tX) =

∑
k

Pr(X = k)tk, defined for |t| ≤ 1.

The moment generating function of a discrete random variable X is the function
ψ(t) = E(etX) =

∑
k

etkPr(X = k), defined for all t such that ψ(t) converges.

The moment generating function of a continuous random variable X with density f
is the function ψ(t) = E(etX) =

∫
etxf(x) dx, defined for all t such that ψ(t) converges.

The characteristic function (Fourier transform) of a discrete random variable X is
χ(t) = E(eitX) =

∑
k

eitkPr(X = k), defined for all t ∈ R.

The characteristic function of a continuous random variable X with density f is
χ(t) = E(eitX) =

∫
eitxf(x) dx, defined for all t ∈ R.

Facts:
1. The expected value of a random variable X can be expressed in terms of the first
derivative of its generating function: EX = φ′(1) = ψ′(0) = −iχ′(0).
2. The variance of a random variable X can be expressed in terms of the first and
second derivatives of its generating function: Var(X) = φ′′(1) + φ′(1) − [φ′(1)]2 =
ψ′′(0)− [ψ′(0)]2 = [χ′(0)]2 − χ′′(0).

3. dk

dtk
φ(1) = E(X(X − 1)(X − 2) . . . (X − k + 1)).

4. dk

dtk
ψ(0) = E(Xk).

5. dk

dtk
χ(0) = ikE(Xk).

6. For any of the three types of generating functions defined, the generating function of
the sum of independent random variables is the product of their respective generating
functions.

Examples:
1. The binomial random variable with parameters n and p is the sum of n independent
Bernoulli random variables with parameter p. The probability generating function for
a Bernoulli random variable is φ(t) = E(tX) = t0(1 − p) + t1p = q + pt, where q =
1− p. By Fact 6 the probability generating function for a binomial random variable is
[φ(t)]n = (q + pt)n.
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Table 3 Moments and generating functions for discrete distributions.

distribution mean variance φ(t) ψ(t) χ(t)

Bernoulli B(1, p) p pq q + pt q + pet q + peit

Binomial B(n, p) np npq (q + pt)n (q + pet)n (q + peit)n

Poisson P (λ) λ λ eλ(t−1) eλ(et−1) eλ(eit−1)

geometric G(p) 1
p

q
p2

pt
1−qt

pet

1−qet
peit

1−qeit

Pascal NB(r, p) r
p

rq
p2 ( pt

1−qt )
r ( pet

1−qet )r ( peit

1−qeit )r

hypergeometric mn
N

m(N−m)n(N−n)
N2(N−1) ∗ ∗ ∗

(N,m, n)

Table 4 Moments and generating functions for continuous distributions.

distribution mean variance ψ(t) χ(t)

uniform (α, β) α+β
2

(β−α)2

12
eβt−eαt

t(β−α)
eiβt−eiαt

it(β−α)

exponential (λ) 1
λ

1
λ2

λ
λ−t

λ
λ−it

standard normal (0, 1) 0 1 et
2/2 e−t2/2

normal (µ, σ2) µ σ2 eµt+
σ2t2

2 eiµt−
σ2t2

2

gamma Γ(n, λ) n
λ

n
λ2 ( λ

λ−t )
n ( λ

λ−it )
n

Cauchy (α) ∞ ∞ ∞ 1
α2 e

−α|t|

beta (p, q) p
p+q

pq
(p+q)2(p+q+1) ∗ ∗

chi square χ2(r) r 2r (1− 2t)−r/2 (1− 2it)−r/2

F -distribution Fm,n
n

n−2
2n2(m+n−2)
m(n−2)2(n−4) ∗ ∗

t-distribution tk 0 k
k−2 ∗ ∗

Rayleigh R(σ)
√

π
2σ 2(1− π

4 )σ2 ∗ ∗

2. Table 3 shows the mean, variance, probability generating function, moment gener-
ating function, and characteristic function of several important discrete distributions.
Here q = 1− p. An asterisk (∗) signifies that the entry is not available in simple form.

3. Table 4 shows the mean, variance, moment generating function, and characteristic
function of several important continuous distributions. An asterisk (∗) indicates that
the entry is not available.

4. The moments of a binomial random variable X can be found from its moment
generating function ψ(t) = (q + pet)n. For example, ψ′(t) = n(q + pet)n−1(pet) and by
Fact 1 EX = ψ′(0) = n(q + p)n−1p = np.

5. From Table 4 the moment generating function for the exponential distribution with
parameter λ is ψ(t) = λ

λ−t . Then ψ′(t) = λ
(λ−t)2 and ψ′′(t) = 2λ

(λ−t)3 , giving ψ′(0) =
λ
λ2 = 1

λ and ψ′′(0) = 2λ
λ3 = 2

λ2 . By Facts 1 and 2, EX = ψ′(0) = 1
λ and Var(X) =

ψ′′(0)− [ψ′(0)]2 = 2
λ2 − ( 1

λ )2 = 1
λ2 .
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7.4 DISCRETE PROBABILITY COMPUTATIONS

Many discrete probability computations are much less straightforward than may at first
be imagined because of difficulties arising from the finiteness of computer arithmetic
systems. Good algorithm design can usually avoid such problems.

7.4.1 INTEGER COMPUTATIONS

Enumeration of combinatorial objects, such as permutations and combinations, requires
the computation of integer factorials. In practice, these factorials can only be computed
as integers for small values. Since in most cases the factorials are not themselves the
primary objective of the computation, potential numerical difficulties can be overcome
by carefully designed recursive algorithms.

Definitions:

The N -bit binary representation of the positive integer n is (bN−1bN−2 . . . b1b0)2
where bi ∈ {0, 1} and n =

∑N−1
i=0 bi2i. (See §4.1.3.) Each bi is a binary digit (bit).

The two’s complement representation of the signed integer n is (bN−1bN−2 . . . b1b0)2′

where n = −bN−12N−1 +
∑N−2

i=0 bi2i.

Integer wraparound is the phenomenon of adding 1 to the largest representable integer
and obtaining the smallest representable integer.

Facts:

1. Signed integers are usually represented in a computer as two’s complement binary
words of a fixed wordlength; commonly 8, 16, or 32 bits are used.

2. A two’s complement integer using N -bit words is interpreted by treating the most
significant bit as a coefficient of 2N−1.

3. The range of representable integers in N -bit two’s complement is from −2N−1 =
(10 . . . 00)2′ to 2N−1 − 1 = (01 . . . 11)2′ . Arithmetic operations can generate no carries
beyond this range.

4. Integer wraparound is a consequence of Fact 3 since (in regular binary arithmetic)
(01 . . . 11)2 + (00 . . . 01)2 = (10 . . . 00)2. Some systems have integer range checking
available to avoid the effect of wraparound.

5. Permutations and combinations (§2.3) are usually expressed in terms of integer
factorials.

6. Binomial coefficients (§2.3.2) can be computed using integer arithmetic provided
the result is within the range being used. Algorithm 1 breaks the computation of a
binomial coefficient into a recursive loop using

(
n
k

)
= n!

k!(n−k)! = n(n−1)...(n−k+1)
k(k−1)...1 =(

n
1

) (
n−1

2

)
. . .

(
n+1−k

k

)
and the result

(
n
k

)
=

(
n

n−k

)
. (See §2.3.2, Fact 7.)

7. By doing the multiplication before the integer division in Algorithm 1, the numerator
necessarily has the appropriate factors to ensure an exact integer result.
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Algorithm 1: Integer computation of binomial coefficients.

input: positive integers n, k
output: b =

(
n
k

)
if 2k > n then k := n− k
b := 1
for i := 1 to k do
b := [b · (n+ 1− i)] div i

Examples:
1. For N = 8, 16, and 32 bits, the two’s complement binary integer ranges are given
in the following table:

N minimum value maximum value

8 −128 127
16 −32768 32767
32 −2147483648 2147483647

2. For N = 8, the integer 86 has the two’s complement representation (01010110)2′

and the integer −86 has the two’s complement representation −128+42 = (10101010)2′ .
3. For 8-bit integers, the effect of integer wraparound is shown by 127 + 1 = −128.
Similarly, we would have 64× 2 = −128.
4. For 8-bit two’s complement integers, only 1!, 2!, 3!, 4!, 5! can be computed correctly.
Subsequent factorials would generate integer answers—but wrong ones. In particular, 6!
would evaluate to −48. Namely, the 8-bit two’s complement representation of 5! = 120
is 01111000 and 6 = 00000110 so that, with no carries to the left of the 8th bit, 6! = 6×5!
is represented by the sum of 11100000 and 11110000 (which are respectively 01111000
shifted 2 and 1 places left.) This sum (again without carries to the left of the leading
bit) is 11010000, which represents (−128) + 64 + 16 = −48.
5. Using 16-bit integers with wraparound, the binomial coefficient

(
12
8

)
cannot be com-

puted directly from its definition since neither 12! nor 8! can be computed correctly.
Thus Algorithm 1 finds instead

(
12
4

)
=

(
12
8

)
since 2 × 8 > 12. This is computed as(

12
1

) (
11
2

) (
10
3

) (
9
4

)
, with each multiplication being performed before its associated divi-

sion: (12/1) is multiplied by 11, divided by 2, multiplied by 10, divided by 3, multiplied
by 9, and divided by 4. This produces the intermediate results 12, 132, 66, 660, 220,
1980, 495, so that the correct final result is obtained without any intermediate compu-
tation exceeding the integer range.

7.4.2 FLOATING-POINT COMPUTATIONS

To compute discrete probabilities (e.g., binomial probabilities), careful attention must
be given to the underlying floating-point computation model and its properties.

Definitions:

Let F be the set of numbers representable in a particular floating-point system, with Ω
the largest positive number in F and ω the smallest positive number in F .

The floating-point arithmetic operations in F are denoted by ⊕,�,⊗, when it is
necessary to distinguish them from their real counterparts +,−,×, /.

c© 2000 by CRC Press LLC



The number x is represented in the computer in binary floating-point form by the
approximation x ≈ ±f × 2E where the fraction or mantissa f is a binary fraction
of fixed length and the exponent E is an integer within a fixed range. Usually the
floating point representation is normalized so that f ∈ [1, 2).

Floating-point arithmetic is subject to roundoff error, the error introduced by abbre-
viating the representation of a number or an arithmetic result to a finite wordlength.

The usual measure of error for floating-point computation is relative error, which is

given for an approximation x∗ to a quantity x by
|x∗ − x|
|x| ≈ |x∗ − x|

|x∗| .

A floating-point operation (or flop) is any arithmetic operation performed using
floating-point arithmetic.

Overflow results from a floating-point operation where the magnitude of the result is
too large for the available range of the floating-point system being used.

Underflow results from a floating-point operation where the magnitude of the result
is too small for the available range of the floating-point system being used.

The machine unit µ of a floating-point system is the smallest positive number that
can be added to 1 and produce a result recognized in the machine as greater than 1:
namely, µ = min{x ∈ F | 1⊕ x > 1 }.

Facts:

1. Roundoff errors are propagated in subsequent computations.

2. The two expressions given for relative error are often used interchangeably.

3. Overflow and underflow result from the finite range of available exponents. The
limits of these ranges and the details of the implementation vary with both the hardware
and software being used. See [IE85] for the most common implementations.

4. Usually an overflow condition terminates a program, while underflow results are
normally replaced by 0.

5. Because of the finite mantissa length (and independent of the rounding rule), most
axioms of the real number system fail for floating-point arithmetic [St74]. Table 1
summarizes similarities and differences between the real numbers R and the floating-
point system F . The second column of the table describes the property, assuming
a, b, c ∈ R. If the property fails in F , a brief reason for the failure is also given.

6. In Table 1, most of the properties that fail in F hold approximately — at least
for arguments of the same sign. These failures are not critical to most computations,
but they can be important for computations such as summing sets of numbers and
evaluating binomial probabilities.

7. The existence of the machine unit µ ensures that some of the order properties of R
will not carry over to F .

8. The machine unit µ is not the same as the smallest representable positive number ω
in F .

9. The relative error in subtraction is essentially unbounded due to cancellation.

10. IEEE arithmetic is required to deliver the same result as if rounding were performed
on the infinite precision computation assuming that the data are exact.

11. A sum of terms of the same sign should generally be summed from smallest to
largest.

c© 2000 by CRC Press LLC



Table 1 Properties of R and F .

property description in R valid in F?

closure + a+ b ∈ R NO: overflow
closure × a× b ∈ R NO: overflow
commutativity a+ b = b+ a, a× b = b× a YES
associativity + (a+ b) + c = a+ (b+ c) NO: a = 1, b = c = µ

2
special case (a+ b)− a = b NO: a = 1, b = µ

2
associativity × (a× b)× c = a× (b× c) NO: roundoff, overflow,

or underflow
distributive law a× (b+ c) = (a× b) + (a× c) NO: roundoff, overflow,

or underflow
existence of zero (∃ 0) a+ 0 = a YES
unique negative ∃! (−a) a+ (−a) = 0 NO: [− (1⊕ µ)⊗ a]⊕ a

= 0 if µ× a < ω
existence of one (∃ 1) a× 1 = a YES
zero divisors a× b = 0⇒ a = 0 or b = 0 NO: a⊗ b = 0⇒

a <
√
ω or b <

√
ω

total ordering a < b or a = b or a > b YES
order-preservation a > b⇒ a+ c > b+ c NO: roundoff

special case x > 0⇒ 1 + x > 1 NO: x < µ

Algorithm 2: Recursive computation of binomial probabilities.

input: positive integers N, k; real number p
output: s = B(N, p ; k)

q := 1− p
t := qN

s := t
for i := 1 to k do
t := t ∗

(
p
q

)
∗ (N+1−i)

i

s := s+ t

12. Improved accuracy in computing a summation is possible by regarding the partial
sums as members of a (reduced) list of summands and always adding the two smallest
terms in the current list. However, the overhead would be prohibitive in most cases.

13. Special care must be taken in computing a summation if its terms are computed
recursively, since the smallest term can underflow.

14. There is no completely reliable method for summing terms of mixed sign.

15. For alternating series, special transformations such as Euler’s method can be used
([BuTu92], Chapter 1).

16. Algorithm 2 computes the cumulative sum of binomial probabilities (§7.3.1) using
the definition B(N, p ; k) =

∑k
i=0

(
N
i

)
pi(1− p)N−i.

17. Algorithm 2 will only work for small values of N .

18. If k is not too large, Algorithm 2 does in fact sum terms from smallest to largest.
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Algorithm 3: Logarithmic computation of binomial probability terms.

input: positive integers N, r; real number p
output: b =

(
N
r

)
pr(1− p)N−r

q := 1− p
t := r ∗ ln p+ (N − r) ln q
for i := 1 to r do
t := t+ ln (N + 1− i)− ln i

b := et

19. To compute B(N, p ; k) for large values of k, use the fact that B(N, p ; k) = 1 −
B(N, 1− p ;N − k − 1) and then apply Algorithm 2.

20. If qN underflows to 0, then Algorithm 2 returns 0 for all values of k.

21. Algorithm 3 gives an alternative way to calculate the individual binomial proba-
bility term

(
N
r

)
pr(1− p)N−r. It computes the logarithm of each factor recursively and

then exponentiates this at the end.

22. Algorithm 3 must be safeguarded to ensure that et underflows to 0 for large negative
arguments t.

23. Using logarithms is a frequently applied technique for computing products of many
factors with widely varying magnitudes. It is one step along the way toward using the
symmetric level-index scheme for number representation and arithmetic [ClOlTu89].

Examples:

1. Summations: If the first 224 terms of the harmonic series are summed using IEEE
single precision floating-point arithmetic, both forward and backward, then the sums
differ by approximately 11%. Specifically,

(
· · ·

((
1⊕ 1

2

)
⊕ 1

3

)
⊕ · · · ⊕ 2−24

)
≈ 15.40,

while summing the same terms from right-to-left yields 17.23.

2. Binomial probabilities: The computation of binomial probabilities is thoroughly
discussed in Section 2.6 of [St74] with reference to the specific case where N = 2000,
k = 200, and p = 0.1. Using Algorithm 2 in this case gives the initial value t =
0 and therefore the final result is s = 0. The true value of the final probability is
approximately 0.5.

3. If the final term in Example 2 is computed in IEEE single precision, the binomial
coefficient itself would overflow. It is certainly greater than 10200. Also, both (0.1)200

and (0.9)1800 would underflow. However the true value of this term is around 0.03.

7.5 RANDOM WALKS

Random walks are special stochastic processes whose applications include models for
particle motion, crystallography, gambling, stock markets, biology, genetics, and as-
tronomy. This section examines random walks whose trajectories are generated by the
summation of independent and identically distributed discrete random variables.
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7.5.1 GENERAL CONCEPTS

Definitions:

A stochastic process is a collection of random variables, typically indexed by time
(discrete or continuous).

A d-dimensional random walk is a stochastic process on the integer lattice Zd

whose trajectories are defined by an initial position S0 = a and the sequence of sums
Sn = a+X1+X2+· · ·+Xn, n ≥ 1, where the displacements X1, X2, . . . are independent
and identically distributed random variables on Zd.

A random walk is simple if the values Xi are restricted to the 2d points of Zd of
unit Euclidean distance from the origin. (That is, the random walk proceeds at each
time step to a point one unit from the current point along some coordinate axis.) A
symmetric random walk is a simple walk in which the 2d values of Xi have the same
probability.

Random walks that return to the initial position with probability 1 are recurrent;
otherwise they are transient.

An absorbing boundary is a point or a set of points on the lattice that stops the
motion of a random walk whose trajectory comes into contact with it. A reflecting
boundary is a point or a set of points that redirects the motion of a random walk. Both
are special cases of an elastic boundary, which stops or redirects the motion depending
on some given probability.

The gambler’s ruin problem is a simple one-dimensional random walk with absorbing
boundaries at values 0 and b. It colorfully illustrates the fortunes of a gambler, who
starts with a dollars and who at each play of a game has a fixed probability of winning
one dollar. The game ends once the gambler has either amassed the amount Sn = b or
goes broke Sn = 0.

For k ∈ Zd, the first passage time Tk into point k is the first time at which the
random walk reaches the point k: namely, Tk = min{i ≥ 1 | Si = k}. More generally,
the hitting time TA for entering set A ⊆ Zd is the first time at which the random
walk reaches some point in set A: namely, TA = min{i ≥ 1 | Si ∈ A}.
The following is the basic initial problem of random walks:

• For k∈Zd, find Pr(Sn = k), the probability that a “particle”, executing the
random walk and starting at point a at time 0, will be at point k at time n.

The following are first passage time problems:
• Find the probability Pr(Tk =n) that, starting at point a at time 0, the first visit

to point k occurs at time n.
• Find the probability Pr(TA =n) that, starting at point a at time 0, the first visit

to A occurs at time n; characterize STA
, the point at which A is first visited.

Other classical problems in random walks include:
• Range problem: Find or approximate the probability distribution and/or the

mean of the number of distinct points visited by a random walk up to time n.
• Occupancy problem: Find or approximate the probability distribution and/or the

mean of the number of times a given point or a set of points has been visited
up to time n.

• Boundary problem: Address all previous problems under absorbing, reflecting,
and/or elastic boundary conditions.
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Examples:

1. Coin tossing : Tossing a coin n times can be viewed as a one-dimensional random
walk (d = 1) on the integers Z. This walk begins at the origin (a = 0) with Xi = 1 if
the result of the ith toss is a Head and Xi = −1 if the result of the ith toss is a Tail.
Since each step Xi is of unit length, this is a simple one-dimensional random walk. If
the tosses are independent events, then Pr(Xi = 1) = p and Pr(Xi = −1) = 1−p holds
for all i, where 0 < p < 1. The random variable Sn is the cumulative number of Heads
minus the cumulative number of Tails in n tosses. The walk is symmetric if p = 1

2 . A
return to the origin means that Sn = 0: that is, the number of Heads and Tails have
equalized after n tosses.

2. Gambler’s ruin: A gambler repeatedly plays a game of chance, in which a dollar
is won at each turn with probability p and a dollar is lost with probability 1 − p. For
example, suppose the gambler starts with 90 dollars, and stops whenever his current
fortune is 0 (a ruin) or 100 (a positive net gain of 10 dollars). What is the gambler’s
ultimate probability of being ruined? Of success? On average how many expected plays
does it take for the game to be over? What is the expected net gain for the gambler?
If p = 0.5 the answers are 0.1, 0.9, 900, and 0 respectively. If p = 0.45 they are 0.866,
0.134, 765.6, and −76.6 respectively. (See §7.5.2, Example 4.)

7.5.2 ONE-DIMENSIONAL SIMPLE RANDOM WALKS

A number of results are known for random walks in one dimension that take a succession
of unit steps (in either the positive or negative direction).

Definitions:

The one-dimensional simple random walk (see §7.5.1) corresponds to a particle
moving randomly on the set Z of integers. It begins at the origin at time 0 and at each
time 1, 2, . . . thereafter, moves either one step up (right) with probability p, or one step
down (left) with probability 1− p. This random walk is symmetric when p = 1

2 .

The trajectory of a one-dimensional simple random walk is described by S0 = 0 and
Sn = X1 + X2 + · · · + Xn, n ≥ 1, where the Xi are independent and have a Bernoulli
distribution (§7.3.1), with Pr(Xi = 1) = p and Pr(Xi = −1) = q = 1− p for p ∈ (0, 1).

Suppose a trajectory is graphically represented by plotting Sn as a function of n, so
that the point (n, k) corresponds to Sn = k. Linking successive points with straight
lines produces a path between points. Define N(n, k) to be the number of paths from
(0, 0) to (n, k).

In a random walk starting at S0 = a > 0 with absorbing boundaries at 0 and b > a:
• qa is the probability that the random walk will be absorbed at 0;
• pa is the probability that the random walk will be absorbed at b;
• Da is the time until absorption.

Facts:

1. Reflection principle: Let n2 > n1 ≥ 0, k1 > 0, k2 > 0. The number of paths
from (n1, k1) to (n2, k2) that touch or cross the x-axis equals the number of paths from
(n1,−k1) to (n2, k2).

2. N(n, k) =
(

n
(n+k)/2

)
, if n+k

2 is an integer in {0, 1, . . . , n}; N(n, k) = 0 otherwise.

3. If n ≥ 1 is fixed and −n ≤ k ≤ n, then Pr(Sn = k) = N(n, k)p
1
2 (n+k)q

1
2 (n−k).
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4. Ballot theorem: For k > 0, the number of paths from (0, 0) to (n, k) that do not
return to or cross the x-axis is k

nN(n, k).
5. For n ≥ 1, the first return time T0 to the origin satisfies:

• Pr(T0 > n) = E( |Sn|
n );

• Pr(T0 = 2n) = 1
2n−1

(
2n
n

)
pnqn;

• Pr(T0 > 2n) = Pr(S2n = 0) =
(
2n
n

)
2−2n, if the walk is symmetric.

6. Recurrent walks: Pr(T0 <∞) = 1 (the walk is recurrent) if and only if p = q = 1
2 .

In this case E(T0) =∞.

7. For k �= 0 and n > 0, Pr(Tk = n) = |k|
n Pr(Sn = k).

8. For k > 0 and n > 0, the maximum value Mn = max{S0, S1, . . . , Sn} satisfies
• Mn ≥ k if and only if Tk ≤ n;
• Pr(Mn ≥ k) = Pr(Sn = k) +

∑
i≥k+1

[1 + ( qp )i−k]Pr(Sn = i);

• Pr(Mn = k) = Pr(Sn = k) + Pr(Sn = k + 1), if the walk is symmetric.

9. Arc sine laws: Let Wn be the number of times among among {0, 1, . . . , n} at which
a random walk is positive and let Ln be the time of the last visit to 0 up to time n. For
a symmetric random walk:

• Pr(W2n = 2k) = Pr(L2n = 2k) = Pr(S2k = 0)Pr(S2n−2k = 0);
• as n→∞, Pr(W2n

2n ≤ x) ≈ 2
π arcsin

√
x, for x ∈ [0, 1].

10. Gambler’s ruin problem: In this random walk with absorbing boundaries (§7.5.1),
qa is the probability of the gambler (having an initial capital of a) being ruined and pa
is the probability of eventually winning (achieving a total of b). Facts 11–17 refer to
the gambler’s ruin problem.

11. If p �= q, qa = (q/p)b−(q/p)a

(q/p)b−1
and pa = 1− qa.

12. If p = q = 1
2 , qa = 1− a

b and pa = a
b .

13. The expected gain in the gambler’s ruin problem is b(1− qa)− a, which is 0 if and
only if p = q = 1

2 .

14. Pr(Da = n) = b−12np(n−a)/2q(n+a)/2
b−1∑
k=1

cosn−1 πk
b sin πk

b sin πak
b .

15. If p �= q, E(Da) = a
q−p − b

q−p
1−(q/p)a

1−(q/p)b .

16. If p = q = 1
2 , E(Da) = a(b− a).

17. Limiting case of the gambler’s ruin problem: When b =∞:
• qa = ( qp )a if p > q, and qa = 1 otherwise;

• Pr(Da = n) = 2np(n−a)/2q(n+a)/2
∫ 1

0
; cosn−1 πx sinπx sinπax dx

= a
n

(
n

(n+a)/2

)
p

1
2 (n−a)q

1
2 (n+a);

• if p < q, E(Da) = a
q−p ;

• if p = q = 1
2 , E(Da) =∞.

18. Random walks with one reflecting boundary: Consider a random walk starting at
S0 = a ≥ 0 with a reflecting boundary at 0.

• The position at time n ≥ 1 is given by Sn = max{0, Sn−1 +Xn}.
• When p < q and as n → ∞, there is a stationary distribution for the random

walk, coinciding with the distribution of M = supi≥0 Si, and given by Pr(M =
k) = (1− p

q )(pq )k for all k ≥ 0.
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Examples:

1. A graphical representation of the trajectory for a one-dimensional simple random
walk is shown in the following figure. Here T0 = 2 and T2 = 4; M3 = 1 and M4 = 2;
W7 = 4; and L7 = 6.

2. The ballot theorem takes its name from the following problem. Suppose that, in
a ballot, candidate A scores x votes and candidate B scores y votes, x > y. What is
the probability that, during the ballot, A is always ahead of B? By Fact 4, the answer
is x−y

x+y . As an illustration, if x
x+y = 0.52, this probability is 0.04.

3. How much time does a symmetric random walk spend to the left of the origin?
Contrary to intuition, with large probability, the fraction of time spent to the left (or
to the right) of the origin is near 0 or 1, but not near 1

2 .
For example, when n is large, Fact 9 shows that the probability a symmetric random

walk spends at least 97.6% of the time to the left of the origin is approximately 0.1 =
2
π arcsin

√
0.024. Symmetrically, there is a 0.1 probability that it spends at least 97.6%

of the time to the right of the origin. Altogether, with probability 0.2 a symmetric
random walk spends at least 97.6% of the time entirely on one side of the origin.

4. Gambler’s ruin: Suppose that the probability of winning one dollar is p = 0.45, so
q = 0.55. A gambler begins with an initial stake of a = 90 and will quit whenever the
current winnings reach b = 100. Using Fact 11, the probability of ruin (i.e., losing the
entire original stake) is

qa =
(11/9)100 − (11/9)90

(11/9)100 − 1
≈ 0.866.

The expected net gain is, by Fact 13, b(1 − qa) − a = 100(0.134) − 90 = −76.6. The
average duration (number of plays of the game) is found from Fact 15 to be 765.6 plays.
Surprisingly, even though the probability p of winning is only slightly less than 0.5 and
the gambler starts within close reach of the desired goal, the gambler can expect to be
ruined with high probability and the average number of plays of the game is large.

5. The average duration of a fair game in the gambler’s ruin problem is considerably
longer than would be naively expected. When one player has one dollar and the adver-
sary 1000 dollars, Fact 16 shows that the average duration is 1000 trials.

7.5.3 GENERALIZED RANDOM WALKS

Two generalizations of one-dimensional random walks are covered here. In the first
case, a one-dimensional walk is now allowed to be based on an arbitrary (as opposed to
Bernoulli) distribution. In the second case, a symmetric random walk is considered in
higher dimensions.
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Definitions:

In a one-dimensional random walk on Z with S0 = a, let ua be the probability that the
particle arrives at a position ≤ 0 before reaching any position ≥ b, where b > 0.

Let Rn be the number of distinct points visited by a random walk up to time n.

Facts:
1. If X1, X2, . . . are arbitrarily distributed independent random variables, many basic
qualitative laws are preserved for one-dimensional walks.

• In the case of two absorbing boundaries, the particle will reach one of them with
probability 1.

• In the case of a single absorbing boundary at 0, if E(Xi) ≤ 0 then the particle
will reach 0 with probability 1.

• an unrestricted walk with E(Xi) = 0 and Var(Xi) < ∞ will return to its initial
position with probability 1, and the expected return time is infinite.

2. General ruin problem: Assume that at each step the particle has probability pk to
move from any point i to i+ k, where k ∈ Z. The particle starts from position a.

• ua = 1 if a ≤ 0, and ua = 0 if a ≥ b.
• For 0 < a < b, ua =

∑
i∈Z

uipi−a. This corresponds to a system of b − 1 linear

equations in b− 1 unknowns that has a unique solution.

3. Local central limit theorem: For a d-dimensional symmetric (simple) random walk:

• |Pr(Sn = k)− 2( d
2πn )d/2e−

d|k|2
2n | ≤ O(n−(d+2)/2);

• |Pr(Sn = k)− 2( d
2πn )d/2e−

d|k|2
2n | ≤ |k|−2O(n−d/2).

4. Pólya’s theorem: For the symmetric random walks in 1 or 2 dimensions, there
is probability 1 that the walk will eventually return to its initial position (recurrent
random walk). In dimension d ≥ 3 this probability is strictly less than 1. (George
Pólya, 1887–1985.)
5. For symmetric random walks in d = 3 dimensions, the probability of an eventual
return to the initial position is approximately 0.34 and the expected number of returns
is approximately 0.53. The following table gives the approximate return probabilities
Pr(T0 <∞) for dimensions d ≤ 10.

d Pr(T0 <∞)

3 0.341
4 0.193
5 0.135
6 0.105
7 0.0858
8 0.0729
9 0.0634

10 0.0562

6. Range problems: As n→∞:

• if d = 1, E(Rn) ≈ (
8n
π

)1/2;

• if d = 2, E(Rn) ≈ πn

log n
;

• if d ≥ 3, E(Rn) ≈ cdn for some constant cd.
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Example:

1. Absorbing boundaries: A particle starts at position a ∈ {0, 1, 2, 3, 4} on a line and
with equal probabilities moves one or two positions, either to the right or left. Upon
reaching a position x ≤ 0 or x ≥ 4, the particle is stopped. This is a form of the general
ruin problem with p−2 = p−1 = p1 = p2 = 1

4 . We are interested in the probability ua of
absorption at position x ≤ 0, given that the particle starts at position a. Using Fact 2,
u0 = 1, u4 = 0 and u1, u2, u3 satisfy the following equations:

u1 = 1
2 + 1

4u2 + 1
4u3

u2 = 1
4 + 1

4u1 + 1
4u3

u3 = 1
4u1 + 1

4u2.

Solving this linear system produces the unique solution u1 = 7
10 , u2 = 1

2 , u3 = 3
10 .

Intuitively, these are reasonable values since starting at the middle position a = 2 it
should be equally likely for the particle to be absorbed at either boundary; starting
at position a = 1 there should be a greater chance of absorption at the left boundary
(probability 7

10 ) than at the right boundary (probability 1− 7
10 = 3

10 ).

7.5.4 APPLICATIONS OF RANDOM WALKS

Random walk methodology is central to a number of diverse problem settings. This
section describes several important applications. Additional examples are found in
[BaNi70], [Be93], and [We94].

Examples:

1. Biological migration: The name “random walk” first appears in a query sent by
Karl Pearson (1857–1936) to the journal Nature in 1905. Pearson’s problem refers to
a walk in the plane, with successive steps of length l1, l2, . . . at angles Θ1,Θ2, . . . with
respect to the x-axis, the Θi chosen randomly. The problem is to find, after some fixed
time, the probability distribution of the distance from the initial position. The question
was motivated by a theory of biological migration which Pearson developed at that
time, but soon discarded. Nevertheless, Pearson’s random walk was born and it has
since been applied to many biological models.

2. Biology : Other, more recent, examples of random walk applications include DNA
sequencing in genetics, bacterial migration in porous media, and molecular diffusion.
In the latter example, diffusion of molecules occurs as a result of the thermal energy of
the molecules. The motion of the molecules, perturbed through interactions with other
molecules, is then modeled as a random walk. See [Be93] for further details.

3. Physical sciences: There are many applications in the physical sciences, including
the classical Scher-Montroll model of electrical transport in amorphous semiconductors
(a continuous-time random walk model), models of diffusion on tenuously connected
structures such as percolation clusters, inference of molecular structure from data col-
lected in x-ray scattering experiments, configurational statistics of polymers, and reac-
tion kinetics in confined geometries. Details can be found in [BaNi70] and [We94].

4. Sequential sampling : A major application of random walks in statistics is in con-
nection with Wald’s theory of sequential sampling. In this context, the Xi represent
certain characteristics of samples or observations. Measurements are taken as long as
the random walk remains within a given region. Termination with acceptance or rejec-
tion of the appropriate hypothesis occurs depending on which part of the boundary is
reached.

c© 2000 by CRC Press LLC



5. Stock prices: One of the early applications of computers in economics was to analyze
economic time series and, in particular, the behavior of stock market prices over time.
It first came as a surprise when Kendall found in 1953 that he could not identify any
predictable patterns in stock prices. However, it soon became apparent that random
price movements indicated a well-functioning or efficient market and that a random
walk could be used as a model for the underlying market. See [Ma90]. In fact, at the
beginning of this century, Bachelier had already developed a diffusion model for the
stock market. Other macroeconomic time series have also been modeled using random
walks.

6. Astronomy : The problem of the mean motion of a planet in the presence of pertur-
bations due to other planets has a very long history (Lagrange). Statistical properties
of perturbed orbits can be analyzed with the help of Pearson’s random walk model.
The escape of comets from the solar system has also been modeled as a random walk
among energy states. Details are provided in [BaNi70].

7.6 SYSTEM RELIABILITY

System reliability involves the study of the overall performance of systems of intercon-
nected components. Examples of such systems are communication, transportation, and
electrical power distribution systems, as well as computer networks.

7.6.1 GENERAL CONCEPTS

Definitions:

Suppose a given system is composed of a set N = {1, 2, . . . , n} of failure-prone compo-
nents. At any instant of time, each component is found in one of two states: either
operating or failed.

The reliability of component i is the probability pi that component i is operating at
a given instant of time. The unreliability (or failure probability) of component i is
qi = 1− pi.

At any instant of time, the system is found in one of two states: operating or failed.

The structure function φ is a binary-valued function defined on all subsets S ⊆ N .
Specifically, φ(S) = 1 if the system operates when all components in S operate and all
components of N − S fail; otherwise φ(S) = 0.

The structure function φ is monotone if S ⊆ T ⇒ φ(S) ≤ φ(T ). In words, monotonic-
ity means that the addition of more operating components to an already functioning
system cannot result in system failure.

The structure function φ is nontrivial if φ(∅) = 0 and φ(N) = 1.

A coherent system (N,φ) has a structure function φ that is monotone and nontrivial.

The dual of the system (N,φ) is the system (N,φD), defined by φD(S) = 1−φ(N−S).

The reliability RN,φ of the system (N,φ) is the probability that the system functions
at a random instant of time: RN,φ = Pr(φ(S) = 1).

The unreliability UN,φ of the system is given by UN,φ = Pr(φ(S) = 0) = 1−RN,φ.
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Facts:

1. If the state of any component is statistically independent of the state of any other
component, then the probability that S ⊆ N is precisely the set of operating components
is given by prob(S) =

∏
i∈S

pi
∏
j 
∈S

qj .

2. The dual of the dual of a system (N,φ) is the original system (N,φ).

Examples:

1. Consider a system built from the set of components N = {1, 2, 3, 4}. Associate with
each component a known weight: w1 = 5, w2 = 7, w3 = 4, w4 = 8. If S ⊆ N is the
set of operating components, then the system is considered to operate if

∑
i∈S wi > 12.

Thus φ(S) = 1 for precisely the following sets S:

{1, 4}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.
In all other cases φ(S) = 0. This structure function is nontrivial and monotone, so that
(N,φ) is a coherent system. The reliability of the system is then

RN,φ = p1q2q3p4 + q1p2q3p4 + p1p2p3q4 + p1p2q3p4 + p1q2p3p4 + q1p2p3p4 + p1p2p3p4.

The dual system (N,φD) has the structure function φD, where φD(T ) = 0 for precisely
the following component sets T :

∅, {1}, {2}, {3}, {4}, {1, 3}, {2, 3}.
In all other cases φD(T ) = 1. For example, φD({1, 3}) = 1− φ({2, 4}) = 1− 1 = 0.

2. For critical financial transactions, calculations are carried out simultaneously by
three separate microprocessors. The three results are compared and the result is ac-
cepted if any two of the processors agree (or all three agree). Here the system has
components {1, 2, 3} corresponding to the three microprocessors. A component fails
if it gives the wrong answer, and the system fails if this “majority rule” produces an
incorrect (or inconclusive) answer. Thus, φ(S) = 1 if and only if S is {1, 2}, {1, 3},
{2, 3}, or {1, 2, 3}.

This structure function is nontrivial and monotone, so the system is coherent. If
the microprocessors are identical and each operates independently with probability p,
then Pr(exactly two components work) = 3p2(1 − p), Pr(all components work) = p3,
and

RN,φ = 3p2(1− p) + p3 = 3p2 − 2p3.

For example, if p = 0.95 then RN,φ = 0.99275. In this case, even though any single
microprocessor has a 5% failure rate, the system as a whole has only a 0.7% failure rate.

3. Telephone network: The components of this system are individual communication
links (or trunk lines) joining nearby locations. Any telephone call that is placed between
two distant locations in this system needs to be routed along available communication
links.

However, as a result of hardware or software malfunctions, or as a result of over-
loaded circuits, certain links may be unavailable at a given instant of time. Thus, a
telephone network can be modeled as a system whose components are subject to failure
at random times.

The reliability of the entire system is the probability that the system functions at a
random instant of time; that is, that at any random point in time users can successfully
complete their calls.
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7.6.2 COHERENT SYSTEMS

It is assumed throughout this subsection that the system (N,φ) is coherent.

Definitions:

A minpath P is a minimal set of components such that φ(P ) = 1: i.e., φ(P ) = 1 and
φ(S) = 0 for all proper subsets S ⊂ P . The collection of all minpaths for (N,φ) is
denoted P.

A mincut C is a minimal set of components such that φ(N−C) = 0: i.e., φ(N−C) = 0
and φ(N −S) = 1 for all proper subsets S ⊂ C. The collection of all mincuts for (N,φ)
is denoted C.
Let G = (V,E) be an undirected graph with vertex set V and edge set E (§8.1.1).

• A simple path in G is a path that contains no repeated vertices.
• An s-t cutset of G is a minimal set of edges, the removal of which leaves no s-t

path in G.
• A cutset of G is a minimal set of edges, the removal of which disconnects G.

If K ⊆ V , a K-tree is a minimal set F of edges in G such that every two vertices of K
are joined by a path in F .

If K ⊆ V , a K-cutset is a minimal set of edges in G, the removal of which disconnects
some pair of vertices in K.

Facts:

1. The dual of a coherent system is itself coherent.

2. The structure function of a coherent system (N,φ) can be completely described
using its minpaths P or using its mincuts C. Specifically:

• φ(S) = 1 if and only if S contains some minpath P ;
• φ(S) = 0 if and only if N − S contains some mincut C.

3. The minpaths of (N,φ) are the mincuts of the dual (N,φD), and conversely.

4. The mincuts of (N,φ) are the minpaths of the dual (N,φD), and conversely.

5. Every minpath of (N,φ) and every mincut of (N,φ) have nonempty intersection.

6. If P is a minimal set of components that has nonempty intersection with every
mincut of (N,φ), then P is a minpath of (N,φ).

7. If C is a minimal set of components that has nonempty intersection with every
minpath of (N,φ), then C is a mincut of (N,φ).

8. A K-tree has the topology of a tree (§9.1.1) whose leaf vertices are in K.

Examples:
1. Series system: This system (N,φ) operates only when all components of N operate.
See the following figure. General characteristics are listed in Table 1.
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Table 1 Characteristics of series and parallel systems.

series parallel

structure φ(S) = 0, if S ⊂ N φ(S) = 1, if S �= ∅
function φ(N) = 1 φ(∅) = 0

minpaths P1 = N P1 = {1}, P2 = {2}, . . . , Pn = {n}
mincuts C1 = {1}, C2 = {2}, . . . , Cn = {n} C1 = N

reliability p1p2 . . . pn 1− (1− p1)(1− p2) . . . (1− pn)
unreliability 1− p1p2 . . . pn (1− p1)(1− p2) . . . (1− pn)
dual parallel, n components series, n components

Table 2 Characteristics of k-out-of-n systems.

k-out-of-n success k-out-of-n failure

structure φ(S) = 1 if |S| ≥ k φ(S) = 0 if |S| ≤ n− k

function φ(S) = 0 if |S| < k φ(S) = 1 if |S| > n− k

minpaths S ⊆ N with |S| = k S ⊆ N with |S| = n− k + 1

mincuts S ⊆ N with |S| = n− k + 1 S ⊆ N with |S| = k

reliability
∑
{prob(S) | |S| ≥ k }

∑
{prob(N − S) | |S| < k }

unreliability
∑
{prob(S) | |S| < k }

∑
{prob(N − S) | |S| ≥ k }

dual k-out-of-n failure k-out-of-n success

2. Parallel system: This system (N,φ) fails only when all components of N fail. See
the following figure. General characteristics are listed in Table 1.

3. k-out-of-n success system: This system (N,φ) operates only when at least k out of
the n components operate. The following figure illustrates a 2-out-of-3 success system.
General characteristics are listed in Table 2. The special case k = 1 gives a parallel
system; k = n gives a series system.

4. k-out-of-n failure system: This system (N,φ) fails only when at least k out of the n
components fail. This is the same as an (n − k + 1)-out-of-n success system. General
characteristics are listed in Table 2. The special case k = 1 gives a series system; k = n
gives a parallel system.
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5. Two-terminal network: Two vertices s, t of an undirected graph G = (V,E) are
specified and a message is to be sent from vertex s to vertex t. Assume that only the
edges are failure-prone, so N = E. The system operates when there exists some path
of operating edges joining s to t in the graph.

• structure function: φ(S) = 1 if there exists a path from s to t in the subgraph
defined by edges S; φ(S) = 0 otherwise;

• minpaths: all simple s-t paths of G;
• mincuts: all s-t cutsets of G;
• reliability : RN,φ = the probability that a message sent from s will arrive at t =∑

{prob(S) | S contains some simple s-t path };
• unreliability: UN,φ =

∑
{prob(N − S) | S contains some s-t cutset }.

6. All-terminal network: A message is to be disseminated among all vertices V in the
undirected graph G = (V,E). The system operates when the operating edges in the
graph allow all vertices to mutually communicate.

• structure function: φ(S) = 1 if the subgraph defined by vertices V and edges S
is connected; φ(S) = 0 otherwise;

• minpaths: all spanning trees (§9.2) of G;
• mincuts: all cutsets of G;
• reliability : RN,φ = probability that G is connected =

∑
{prob(S) | S contains

some spanning tree of G };
• unreliability: UN,φ =

∑
{prob(N − S) | S contains some cutset of G }.

7. K-terminal network: A message is to be disseminated among a fixed subset K of
vertices in the undirected graph G = (V,E). The system operates when the operating
edges of the graph allow all vertices in K to mutually communicate.

• structure function: φ(S) = 1 if the subgraph defined by vertices K and edges S
is connected; φ(S) = 0 otherwise;

• minpaths: all K-trees of G;
• mincuts: all K-cutsets of G;
• reliability : RN,φ = probability that K is connected =

∑
{prob(S) | S contains

some K-tree of G };
• unreliability: UN,φ =

∑
{prob(N − S) | S contains some K-cutset of G };

• special cases: K = {s, t} gives the two-terminal network problem; K = V gives
the all-terminal network problem.

8. Examples 5-7 are defined in terms of undirected networks. The two-terminal, all-
terminal, and K-terminal reliability problems described in these examples can also be
defined for directed networks.

9. Consider the coherent system (N,φ) on components N = {1, 2, 3, 4, 5} with min-
paths P1 = {1, 2}, P2 = {1, 5}, P3 = {3, 5}, P4 = {2, 3, 4}. To illustrate Fact 2, notice
that φ({3, 5}) = 1 and φ({2, 3, 5}) = 1 since P3 is a minpath. Also, φ({2, 5}) = 0 since
{2, 5} contains no minpath. By Fact 7, C1 = {1, 3} is a mincut for this system since
C1 has nonempty intersection with each of P1, P2, . . . , P4 and since neither {1} nor {3}
has this property. Likewise, C2 = {2, 5} and C3 = {1, 4, 5} are mincuts for this system.
Fact 4 shows that the dual (N,φD) has as its minpaths the mincuts of (N,φ): namely,
{1, 3}, {2, 5}, and {1, 4, 5}. This means φD({1, 3, 4}) = 1 since {1, 3, 4} contains the min-
path {1, 3}. Alternatively, from the definition φD({1, 3, 4}) = 1−φ({2, 5}) = 1− 0 = 1.
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7.6.3 CALCULATING SYSTEM RELIABILITY

Four general approaches can be used to calculate the reliability RN,φ of a coherent sys-
tem (N,φ). These are state-space enumeration, inclusion-exclusion, disjoint products,
and factoring.

Notation:

Let P = {P1, P2, . . . , Pm} be the minpaths and C = {C1, C2, . . . , Cr} be the mincuts of
the coherent system (N,φ).

• Ei is the event that all components of minpath Pi operate (with no stipulation
as to the states of the other components);

• Fi is the event that all components of Ci fail (with no stipulation as to the states
of the other components);

• EiEj denotes the event that both Ei and Ej occur;
• (N,φ+i) is the system derived from (N,φ) in which component i always works;
• (N,φ−i) is the system derived from (N,φ) in which component i always fails.

Facts:

1. Calculation of the reliability RN,φ is in general quite difficult; it is a #P-complete
problem.

2. RN,φ =
∑
{prob(S) | φ(S) = 1 }.

3. RN,φ =
∑
{prob(S) | S contains some P ∈ P }.

4. RN,φ = 1− UN,φ = 1−
∑
{prob(N − S) | S contains some C ∈ C }.

5. State-space enumeration: System reliability can be found by enumerating all oper-
ating (or all failed) states of the system, using Facts 2–4.

6. RN,φ = Pr(E1 ∪ E2 ∪ · · · ∪Em).

7. UN,φ = Pr(F1 ∪ F2 ∪ · · · ∪ Fr).
8. Applying the inclusion-exclusion principle (§2.4) to Fact 6 produces

RN,φ =
∑

i Pr(Ei)−
∑

i<j Pr(EiEj) + · · ·+ (−1)m+1Pr(E1E2 . . . Em).

9. Applying the inclusion-exclusion principle (§2.4) to Fact 7 produces

UN,φ =
∑

i Pr(Fi)−
∑

i<j Pr(FiFj) + · · ·+ (−1)r+1Pr(F1F2 . . . Fr).

10. Inclusion-exclusion: This approach calculates system reliability using Facts 8-9.

11. RN,φ = Pr(E1) + Pr(E1E2) + · · ·+ Pr(E1E2 . . . Em−1Em).

12. UN,φ = Pr(F1) + Pr(F 1F2) + · · ·+ Pr(F 1F 2 . . . F r−1Fr).

13. Disjoint products: This approach calculates system reliability using the law of
total probabilities (§7.2.1). (See Facts 11-12.)

14. RN,φ = piRN,φ+i
+ (1− pi)RN,φ−i

.

15. Factoring : Rather than requiring an enumeration of the minpaths or mincuts of
the system, this method (based on Fact 14) concentrates on the state of an individual
component i: it is either operating (with probability pi) or failed (with probability
qi = 1− pi).

16. The factoring method is applied most productively when the system (N,φ) has
additional structure. For example, this approach can be used to determine the reliability
of k-out-of-n systems and two-terminal networks. (See §7.6.4.)
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Examples:

1. State-space enumeration: Consider the coherent system (N,φ) with N = {1, 2, 3, 4}
and minpaths P1 = {2, 3}, P2 = {1, 2, 4}, P3 = {1, 3, 4}. By Fact 2 of §7.6.2, the oper-
ating states of the system are {2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, and {1, 2, 3, 4}.
By Fact 3, RN,φ = q1p2p3q4 + p1p2p3q4 + p1p2q3p4 + p1q2p3p4 + q1p2p3p4 + p1p2p3p4.

2. Inclusion-exclusion: Consider the coherent system on N = {1, 2, 3, 4} with minpaths
P1 = {1, 2}, P2 = {2, 4}, P3 = {1, 3, 4}. Event E1 has probability p1p2, event E1E2 has
probability p1p2p4, etc. Fact 8 gives

RN,φ = p1p2 + p2p4 + p1p3p4 − p1p2p4 − p1p2p3p4 − p1p2p3p4 + p1p2p3p4

= p1p2 + p2p4 + p1p3p4 − p1p2p4 − p1p2p3p4.

3. Disjoint products: Fact 11 is applied to the coherent system on N = {1, 2, 3, 4, 5, 6}
with minpaths P1 = {1, 5}, P2 = {1, 3, 6}, P3 = {2, 4, 5}, P4 = {2, 6}. For simplicity
of notation, let the event {e operates} be denoted by e, and let the event {e fails} be
denoted by ē. Identities of set theory (Table 1, §1.2.2) can then be used to obtain

Pr(E1) = p1p5;

Pr(E1E2) = Pr((1̄ ∪ 5̄)136) = Pr(5̄136) = p1p3q5p6;

Pr(E1E2E3) = Pr((1̄ ∪ 5̄)(1̄ ∪ 3̄ ∪ 6̄)245) = Pr(1̄(1̄ ∪ 3̄ ∪ 6̄)245)
= Pr(1̄245) = q1p2p4p5;

Pr(E1E2E3E4) = Pr((1̄ ∪ 5̄)(1̄ ∪ 3̄ ∪ 6̄)(2̄ ∪ 4̄ ∪ 5̄)26)
= Pr((1̄ ∪ 5̄)(1̄ ∪ 3̄)(4̄ ∪ 5̄)26)
= Pr((1̄ ∪ 3̄5̄)(4̄ ∪ 5̄)26)
= Pr((1̄4̄ ∪ 1̄5̄ ∪ 3̄5̄)26).

Since the events 1̄4̄, 1̄5̄, and 3̄5̄ above are not disjoint, Fact 11 can be reapplied to this
new union of events, yielding

Pr(E1E2E3E4) = Pr((1̄4̄ ∪ 41̄5̄ ∪ 13̄5̄)26)
= Pr(1̄4̄26 ∪ 41̄5̄26 ∪ 13̄5̄26)
= q1p2q4p6 + q1p2p4q5p6 + p1p2q3q5p6.

The final expression for system reliability is then
RN,φ = p1p5 + p1p3q5p6 + q1p2p4p5 + q1p2q4p6 + q1p2p4q5p6 + p1p2q3q5p6.

7.6.4 SPECIALIZED ALGORITHMS FOR CALCULATING RELIABILITY

The general methods for calculating system reliability discussed in §7.6.3 can often be
streamlined when the system has a special structure. This section describes algorithms
for calculating the reliability of series-parallel, k-out-of-n, and certain network systems.

Definitions:

The two-terminal reliability of a network G is the probability Rst(G) that vertices s
and t are connected in G.

The all-terminal reliability of a network G is the probability RV (G) that G is con-
nected.
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Algorithm 1: Two-terminal reliability for undirected networks.

procedure Rst(G)

perform series and parallel reductions on G, producing network H
if H consists of the single edge (s, t) then return the reliability of (s, t)
else

select an edge e from H
let pe be the reliability of e in H
return peRst(H/e) + (1− pe)Rst(H − e)

If G is a two-terminal network with specified vertices s and t, then an irrelevant edge
is one not appearing in any simple s-t path of G.

Let GS = (VS , ES) be the subgraph of a directed graph G = (V,E) induced by edges
S ⊆ E. If GS is acyclic and has no irrelevant edges, the domination of GS is dS =
(−1)|ES |−|VS |+1; in all other cases, define dS = 0.

Define fk(n) to be the reliability of a k-out-of-n success system having the components
N = {1, 2, . . . , n} and corresponding reliabilities p1, p2, . . . , pn.

Facts:

1. A parallel system has reliability f1(n) = 1− (1− p1)(1− p2) . . . (1− pn).

2. A series system has reliability fn(n) = p1p2 . . . pn.

3. Series-parallel system: If a system is constructed from series and parallel subsystems
(with no component appearing in more than one subsystem), then the reliability of the
overall system is calculated by successively applying Facts 1 and 2.

4. Applying the factoring approach of §7.6.3 to a k-out-of-n success system gives
fk(n) = pnfk−1(n− 1) + (1− pn)fk(n− 1).

5. k-out-of-n system: Repeated application of Facts 1, 2, and 4 produces the reliability
of any k-out-of-n success system. Since a k-out-of-n failure system is the same as an
(n − k + 1)-out-of-n success system, the reliability of any k-out-of-n failure system is
found in a similar way.

6. For a two-terminal undirected network G, the system (N,φ−e) corresponds to the
two-terminal network G− e with edge e deleted.

7. For a two-terminal undirected network G, the system (N,φ+e) corresponds to the
two-terminal network G/e in which edge e is contracted.

8. Two-terminal undirected network: Algorithm 1 is a recursive procedure that cal-
culates Rst(G). Based on the factoring approach of §7.6.3, it splits the initial reliability
calculation for G into calculations for the smaller networks G− e and G/e.

9. For the sake of efficiency, Algorithm 1 carries out any applicable series and parallel
reductions before selecting an edge on which to factor.

10. To avoid redundant calculations in Algorithm 1, edge e should be chosen from H
so that H/e and H − e do not contain irrelevant edges.

11. If G is a two-terminal directed network, then Rst(G) =
∑

S dS
∏

i∈S pi.

12. The expression in Fact 11 is obtained by using the inclusion-exclusion expansion
(§7.6.3 Fact 8) applied to the simple s-t paths of G. Remarkably, a number of terms in
this expansion cancel one another and the remaining coefficients are either +1 or −1.
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Algorithm 2: All-terminal reliability for undirected networks.

input: undirected network G
output: RV (G)

let T1, T2, . . . , Tm be the spanning trees of G, listed in lexicographic order
for k := 1 to m do
Sk := Tk
Fk := ∅
for j := 1 to k − 1 do
Fk := Fk ∪min{ r | r ∈ Tj − Tk }

gk :=
∏

i∈Sk
pi

∏
i∈Fk

qi

RV (G) :=
∑m

k=1 gk

13. In an undirected network G = (V,E), the minpaths for the all-terminal problem
are the spanning trees of G.
14. All-terminal reliability: Algorithm 2 calculates RV (G) using the disjoint-products
expansion (§7.6.3 Fact 11), applied to the spanning trees in lexicographic (dictionary)
order. Here each term of the expansion reduces to a single product involving pi and
qi = 1− pi.

Examples:
1. A system on four components is built up from series and parallel subsystems.
Subsystem A has components 1 and 2 in series and subsystem B consists of com-
ponent 3. Subsystem C has these two subsystems in parallel and its reliability is
1 − (1 − p1p2)(1 − p3) = p1p2 + p3 − p1p2p3. The entire system is constructed from
subsystem D (component 4 alone) in series with subsystem C, so it has reliability
p4(p1p2 + p3 − p1p2p3) = p1p2p4 + p3p4 − p1p2p3p4.

2. To calculate the reliability of a 2-out-of-3 success system with components 1, 2, 3,
Facts 1 and 2 are first used to obtain

f1(2) = 1− (1− p1)(1− p2) = p1 + p2 − p1p2, f2(2) = p1p2.
Fact 4 then gives the system reliability

RN,φ = f2(3) = p3f1(2) + (1− p3)f2(2) = p1p2 + p1p3 + p2p3 − 2p1p2p3.

3. The two-terminal bridge network G is shown in the following figure, with s = a and
t = d.

No series or parallel reductions can be performed on G, so factoring with respect to
edge e = 3 produces the networks G1 = G/e and G2 = G− e shown in this figure:

c© 2000 by CRC Press LLC



Since both G1 and G2 are series-parallel networks,
Rst(G1) = [1− (1− p1)(1− p2)][1− (1− p4)(1− p5)]

= (p1 + p2 − p1p2)(p4 + p5 − p4p5),

Rst(G2) = [1− (1− p1p4)(1− p2p5)] = p1p4 + p2p5 − p1p2p4p5.

Algorithm 1 then produces

Rst(G) = p3(p1 + p2 − p1p2)(p4 + p5 − p4p5) + (1− p3)(p1p4 + p2p5 − p1p2p4p5)
= p1p4 + p2p5 + p1p3p5 + p2p3p4 − p1p3p4p5 − p2p3p4p5 − p1p2p3p4

− p1p2p3p5 − p1p2p4p5 + 2p1p2p3p4p5.

4. Consider a directed version of the two-terminal network in the figure of Example 3,
in which there are oppositely directed edges 3 = (b, c) and 6 = (c, b). Edges 1 and 2
are directed out of s = a, while edges 4 and 5 are directed into t = d. The cyclic
subgraph defined by edges S = {1, 2, 3, 4, 5, 6} has dS = 0. Also the subgraph defined by
S = {1, 2, 3, 4} has the irrelevant edges 2 and 3, so that dS = 0. On the other hand, S =
{1, 2, 3, 5} defines an acyclic network without irrelevant edges, giving dS = (−1)4−4+1 =
−1 and the term −p1p2p3p5. Similarly, S = {1, 4} produces dS = (−1)2−3+1 = +1 and
the term +p1p4.

After generating all acyclic networks without irrelevant edges, Fact 11 is applied to
obtain

Rst(G) = p1p4 + p2p5 + p1p3p5 + p2p4p6 − p1p2p4p5 − p1p3p4p5

− p1p2p4p6 − p1p2p3p5 − p2p4p5p6 + p1p2p3p4p5 + p1p2p4p5p6.

5. The bridge network G in Example 3 has eight spanning trees, given in lexicographic
order by T1 = {1, 2, 4}, T2 = {1, 2, 5}, T3 = {1, 3, 4}, T4 = {1, 3, 5}, T5 = {1, 4, 5},
T6 = {2, 3, 4}, T7 = {2, 3, 5}, T8 = {2, 4, 5}. Applying Algorithm 2 gives:

S1 = {1, 2, 4}, F1 = ∅, g1 = p1p2p4

S2 = {1, 2, 5}, F2 = {4}, g2 = p1p2q4p5

S3 = {1, 3, 4}, F3 = {2}, g3 = p1q2p3p4

S4 = {1, 3, 5}, F4 = {2, 4}, g4 = p1q2p3q4p5
...

...
...

S8 = {2, 4, 5}, F8 = {1, 3}, g8 = q1p2q3p4p5

Summing these eight terms then yields

RV (G) = p1p2p4 + p1p2q4p5 + p1q2p3p4 + p1q2p3q4p5 + · · ·+ q1p2q3p4p5.

7.7 DISCRETE-TIME MARKOV CHAINS

Many physical systems evolve randomly in time, e.g., the population of a country, the
value of a company’s stock, the number of customers waiting at a checkout counter,
and the functional state of a machine subject to failures and repairs. A discrete-time
Markov chain can be used to model such situations when the set of possible states of
the system is finite (or countable) and the system changes state at discrete time points.
Such Markov chain models find applications in diverse fields, such as biology, inventory,
production, queueing systems, and demography. In addition, many recursive algorithms
can be viewed as a manifestation of an underlying discrete-time Markov chain.
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7.7.1 MARKOV CHAINS

Definitions:

A sequence of random variables {Xn | n ≥ 0 } is a (discrete-time) Markov chain
(DTMC) on a (countable) state-space S if Xn ∈ S for all n ≥ 0 and Xn+1 depends
(probabilistically) on the previous states of the system only via Xn:

Pr(Xn+1 = j | Xn = i,Xn−1 = in−1, ..., X0 = i0) = Pr(Xn+1 = j | Xn = i),

for all i0, i1, ..., in−1, i, j ∈ S.

A Markov chain {Xn | n ≥ 0 } is time-homogeneous if

Pr(Xn+1 = j | Xn = i) = pij , for all n ≥ 0.

Note: Only time-homogeneous discrete-time Markov chains will be considered in this
and later sections.

The matrix P = (pij) is the (one-step) transition probability matrix of the
discrete-time Markov chain.

The initial distribution for a DTMC is the vector a = (ai), where ai = Pr(X0 = i)
for i ∈ S.

The transition diagram of a DTMC is the directed graph (§8.3.1) G = (V,E), where
V = S is the state-space and E = { (i, j) ∈ S × S | pij > 0 }.
A stochastic matrix M = (mij) has mij ≥ 0 for all i, j and

∑
j mij = 1 for all i.

Facts:

1. The first systematic study of Markov chains was carried out by Andrei Andreevich
Markov (1856–1922); this work initiated the study of stochastic processes (sequences of
random variables).

2. A DTMC on state-space S is completely described by the initial distribution a and
the transition probability matrix P .

3. The transition probability matrix P is a stochastic matrix.

Examples:

1. Consider a DTMC on the set S = {1, 2, 3, 4, 5, 6} with the following transition
probability matrix

P =




0.4 0.6 0 0 0 0
0.7 0.3 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0

0.1 0.1 0.1 0.1 0.1 0.5


.

To completely describe this DTMC, it is also necessary to specify the initial distribution.
For example, a = (0, 0, 0, 0, 0, 1) means that the system starts off in state 6.

2. Simple random walk with absorbing states: This is a DTMC on S = {0, 1, 2, ..., N}
with transition probabilities pi,i+1 = p, pi,i−1 = 1 − p = q, 1 ≤ i ≤ N − 1, where
0 ≤ p ≤ 1 is a given number. Also, p0,0 = pN,N = 1, meaning that states 0 and N are
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absorbing — once the DTMC visits these states it cannot leave them. The transition
diagram of this DTMC is given in the following figure.

This Markov model is also (more colorfully) known as the gambler’s ruin problem
(§7.5.1, Example 2).

3. Simple random walk with reflecting states: This is a variant of Example 2, in which
the boundary states 0 and N are reflecting: namely, p0,1 = pN,N−1 = 1. The transition
diagram of this DTMC is given here.

4. Weather: A simplified model of the daily weather results in a DTMC. Suppose
that each day is either sunny (0) or rainy (1) and that tomorrow’s weather depends
only on today’s weather. Specifically, suppose that a rainy day follows a sunny day
with probability 0.3 and a sunny day follows a rainy day with probability 0.4. This is
a DTMC with state-space S = {0, 1} and transition probability matrix

P =
(

0.7 0.3
0.4 0.6

)
.

5. Urns: Urn B contains 9 black and 1 white ball, while Urn R contains 6 red and 4
white balls. Balls are successively drawn with replacement from an urn. If the ball
drawn is colored, the drawing continues from the same urn. If the ball drawn is white,
the drawing continues from the other urn. Define the state of the system to be the urn
being sampled, so S = {B, R}. This is a DTMC with transition probabilities pBB = 0.9,
pBR = 0.1, pRR = 0.6, pRB = 0.4.
6. Ehrenfest diffusion model: Suppose that there are M molecules in a vessel, sep-
arated into two chambers by a membrane, across which molecules can pass. A state
of the system at any instant is given by (k1, k2), where there are k1 molecules in the
first chamber and k2 = M − k1 in the second chamber. Transitions from the current
state (k1, k2) occur by the movement of a single molecule from the first chamber to
the second, resulting in state (k1 − 1, k2 + 1), or from the second chamber to the first,
resulting in state (k1 + 1, k2 − 1).

In the Ehrenfest model of this process, the probability of transition from (k1, k2)
to (k1−1, k2 +1) is given by k1

M , whereas the probability of transition to (k1 +1, k2−1)
is k2

M = 1 − k1
M . This quantifies the idea that if more molecules are present in (say)

chamber 1, then it is more likely for some molecule to transfer next from chamber 1 to
chamber 2. This is a DTMC with state-space S = {(0,M), (1,M − 1), . . . , (M, 0)} and
the transition probabilities specified.
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7.7.2 TRANSIENT ANALYSIS

Transient analysis of a DTMC involves the computation of Pr(Xn = j), the probability
of the Markov chain being in state j after n steps.

Definitions:
For i, j ∈ S the n-step transition probability p

(n)
ij is the probability of being in state j

after n ≥ 0 steps, if the Markov chain starts in state i: p(n)
ij = Pr(Xn = j | X0 = i).

The n-step transition probability matrix is given by P (n) = (p(n)
ij ).

Facts:
1. Pr(Xn = j) =

∑
i∈S

Pr(X0 = i)Pr(Xn = j | X0 = i) =
∑
i∈S

aip
(n)
ij .

2. Chapman-Kolmogorov equations: P (n+m) = P (n)P (m) = P (m)P (n) for all m,n ≥ 0.
3. If Pn denotes the nth power of P , then P (n) = Pn, n ≥ 0.
4. If a is the initial distribution of a DTMC, the (absolute) probabilities Pr(Xn = j)
are the entries of the vector aPn.

Examples:
1. For §7.7.1 Example 4, the two-step transition probability matrix is

P (2) = P 2 =
(

0.7 0.3
0.4 0.6

) (
0.7 0.3
0.4 0.6

)
=

(
0.61 0.39
0.52 0.48

)
.

Note that P (2) is again a stochastic matrix. To illustrate, if Friday is sunny then the
conditional probability that Sunday is sunny is given by p

(2)
00 = 0.61.

2. A general two-state DTMC on S = {0, 1} can be represented by the stochastic
transition probability matrix

P =
(

1− p p
q 1− q

)
.

Direct calculation gives the two-step transition probability matrix

P (2) =
(

(1− p)2 + pq p(2− p− q)
q(2− p− q) (1− q)2 + pq

)
,

which can be rewritten as

P (2) = 1
p+q

(
q + p(1− p− q)2 p− p(1− p− q)2

q − q(1− p− q)2 p+ q(1− p− q)2

)
.

In general,

P (n) = 1
p+q

(
q + p(1− p− q)n p− p(1− p− q)n

q − q(1− p− q)n p+ q(1− p− q)n

)
.

3. Limiting probabilities: Suppose in Example 2 that 0 < p < 1 and 0 < q < 1, so that
|1 − p − q| < 1. From the final expression obtained in Example 2, it is seen that P (n)

tends to the limiting matrix
1

p+q

(
q p
q p

)
.

Consequently, if a = (a1, a2) is any initial distribution, then the limiting probabili-
ties aPn approach

1
p+q ( a1 a2 )

(
q p
q p

)
= 1

p+q

(
q p
q p

)
since a1 + a2 = 1. For example, the limiting probability of being in state 0 is q

p+q ,
independent of the initial state of the DTMC. (See §7.7.4.)
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7.7.3 CLASSIFICATION OF STATES

Definitions:

State j ∈ S is accessible from state i ∈ S (written i → j) if it is possible to make a
sequence of transitions leading from state i to state j: that is, p(n)

ij > 0 for some n ≥ 0.

States i, j ∈ S communicate (written i↔ j) if they are mutually accessible from one
another: i→ j and j → i.

Set C ⊆ S is a (maximal) communicating class if
• i, j ∈ C ⇒ i↔ j;
• i ∈ C, i↔ j ⇒ j ∈ C.

A communicating class C is closed if transitions from the states of C never lead to
states outside C: i ∈ C, j /∈ C ⇒ j is not accessible from i.

A DTMC is irreducible if i↔ j for all i, j ∈ S; otherwise it is reducible.
For j ∈ S define:

• Tj = min{n > 0 | Xn = j };
• fj = Pr(Tj <∞ | X0 = j);
• fj(n) = Pr(Tj = n | X0 = j);
• mj = E(Tj | X0 = j).

State j ∈ S is recurrent if return to that state is certain: fj = 1; if fj < 1 then state j
is transient. A recurrent state j ∈ S is positive recurrent if mj < ∞ and null
recurrent if mj =∞.

A recurrent state j has period d if d is the largest integer satisfying
∑∞

n=0 fj(nd) = 1.
If d = 1 state j is aperiodic.

Facts:
1. Generally, all classes that are not closed can be lumped into a single set T of tran-
sient states. Thus, the state-space of a DTMC can be partitioned into closed classes
C1, C2, . . . , CK and the set T .
2. State j is accessible from state i if and only if there is a directed path from vertex i
to vertex j in the transition diagram of the DTMC.
3. A set of states C is a communicating class if and only if the corresponding set of
vertices forms a strongly connected component (§8.3.2) in the transition diagram.
4. Tarjan [Ta72] describes an algorithm to find the strongly connected components,
which runs in time linear in the number of arcs in the transition diagram (i.e., the
number of nonzero entries of P ).
5. Transience, positive recurrence, and null recurrence are class properties:

• if i is transient and i↔ j then j is transient;
• if i is positive recurrent and i↔ j then j is positive recurrent;
• if i is null recurrent and i↔ j then j is null recurrent.

In other words, states in a communicating class are all simultaneously transient or null
recurrent or positive recurrent.
6. By Fact 5, a communicating class or an irreducible DTMC can be termed positive
recurrent, null recurrent, or transient if all of its states are positive recurrent, null
recurrent, or transient.
7. A finite communicating class is positive recurrent if it is closed, and transient oth-
erwise.
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8. A finite state irreducible DTMC is positive recurrent.
9. Null recurrent states do not occur in a finite state DTMC.
10. Establishing recurrence or transience in an infinite state DTMC is a difficult task
and has to be done on a case-by-case basis.
11. We have not defined period for a transient state since for such a state the concept
is not needed. Some references do however define period for all states.
12. The period of state j is the greatest common divisor of all integers n ≥ 0 such that
p
(n)
jj > 0.

13. The period of state j is the greatest common divisor of all the lengths of the
directed cycles in the transition diagram that contain state j.
14. Periodicity is a class property: if i has period d and i↔ j, then j has period d.
15. The period of a state in a finite irreducible DTMC is at most equal to the number
of states in the DTMC.
16. By Fact 14, a recurrent communicating class or a recurrent irreducible DTMC can
be termed periodic if all states in it are periodic with d > 1, else it is termed aperiodic.

Examples:
1. For the DTMC in §7.7.1 Example 1, it is seen that 1 → 2, 2 → 1, and 1 ↔ 2.
However, 3 is not accessible from 1. The communicating classes are C1 = {1, 2}, C2 =
{3, 4}, C3 = {5}, C4 = {6}. This DTMC is reducible. Classes C1, C2, C3 are closed,
but C4 is not. States 1, 2, 3, 4, 5 are positive recurrent and state 6 is transient. Classes
C1, C2, C3 are positive recurrent.
2. Consider the random walk in §7.7.1 Example 2 with 0 < p < 1. There are three
communicating classes: C1 = {0}, C2 = {1, 2, ..., N − 1}, and C3 = {N}. This DTMC
is reducible. Here C1 and C3 are closed, while C2 is not. States 0 and N are positive
recurrent. The rest are transient.
3. For the DTMC in §7.7.1 Example 1, states 3 and 4 have period 2; states 1, 2, and 5
are aperiodic. A period is not associated with state 6 since it is transient. Classes {1, 2}
and {5} are aperiodic, while the class {3, 4} is periodic with period 2.
4. For the DTMC in §7.7.1 Example 2, states 0 and N are aperiodic. Period is not
defined for the rest of the states as they are transient.
5. §7.7.1 Example 3 is an irreducible chain. All states are positive recurrent and have
period 2.

7.7.4 LIMITING BEHAVIOR

To establish possible equilibrium configurations of DTMCs, it is necessary to study the
behavior of the n-step transition probabilities Pr(Xn = j | X0 = i) as n→∞.

Facts:
1. Let {Xn | n ≥ 0 } be an irreducible DTMC with transition probability matrix P
and finite state-space S. Then there exists a unique solution π = (πj) to the equations

π = πP,
∑
j∈S

πj = 1.

2. The long run fraction of the visits to state j is given by πj , regardless of the initial
state. Also, mj , the expected time between two consecutive visits to state j, is 1

πj
.

3. If the DTMC is aperiodic, then limn→∞ Pr(Xn = j | X0 = i) = πj for all i ∈ S.
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4. Let {Xn | n ≥ 0 } be a finite state reducible DTMC with K closed communicating
classes C1, C2, . . . , CK and the set of transient states T . Then limn→∞ Pr(Xn = j |
X0 = i) = πij , where {πij} are the following:

(a) If j ∈ T , then πij = 0.
(b) If i and j belong to different closed classes, then πij = 0.
(c) If i and j belong to the same closed class Cr, then πij = πj , where {πj} are

the limiting probabilities calculated by using Fact 1 for the irreducible DTMC
formed by the states in Cr.

(d) if i ∈ T and j ∈ Cr, then πij = αirπj , where {πj} are as in (c) and αir is the
probability that the DTMC eventually visits the class Cr starting from state i.

5. In Fact 4(c), if Cr is periodic then limiting probabilities do not exist and πj is
interpreted as the long run fraction of the time the DTMC spends in state j starting
from state i.

6. The {αir} in Fact 4(d) are given by the unique solution to
αir =

∑
j∈Cr

pij +
∑
j∈T

pijαjr.

Examples:

1. The DTMC in §7.7.1 Example 3 is irreducible and periodic with d = 2. Using Fact 1,
its limiting behavior is described by the equations

π0 = qπ1

π1 = π0 + qπ2

πi = pπi−1 + qπi+1 for 2 ≤ i ≤ N − 2
πN−1 = pπN−2 + πN

πN = pπN−1

and
∑N

j=0 πj = 1. Solving these equations gives πj = ρj

c , where

ρ0 = 1

ρj =
(pq )j

p
for 1 ≤ j ≤ N − 1

ρN =
(p
q

)N−1

and the normalizing constant is c =
∑N

j=0 ρj . This DTMC is periodic and hence
these πj represent the long run fraction of the time the DTMC spends in state j.
Here limn→∞ Pr(Xn = j | X0 = i) does not exist since the probabilities under question
keep oscillating with period 2.

2. For the DTMC in §7.7.1 Example 1, C1 = {1, 2}, C2 = {3, 4}, C3 = {5}, and
T = {6}. Therefore, π1 = 7

13 , π2 = 6
13 , π3 = 1

2 , π4 = 1
2 , π5 = 1, α61 = 2

5 , α62 = 2
5 ,

α63 = 1
5 . By Fact 4 the limiting matrix (πij) is given by




7
13

6
13 0 0 0 0

7
13

6
13 0 0 0 0

0 0 1
2

1
2 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1 0
14
65

12
65

1
5

1
5

1
5 0



.
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States 3 and 4 are periodic, and hence the third and fourth columns need to be inter-
preted as the long run fraction of the time the discrete-time Markov chain spends in
those states.

3. The Ehrenfest diffusion model (§7.7.1 Example 6) is an irreducible DTMC with
period 2. The solution π (Fact 1) is given by πj =

(
M
j

)
2−M (0≤ j≤M). The binomial

distribution (§7.3.1) describes the long run fraction of time the system spends in each
state.

7.7.5 FIRST PASSAGE TIMES

Definitions:

Let {Xn | n ≥ 0 } be a DTMC on state-space S with transition probability matrix P .
Let A ⊆ S be a given subset of states.

The first passage time TA into set A is the first time at which the Markov chain
reaches some state in set A; i.e., TA = min{n ≥ 0 | Xn ∈ A }.
For i ∈ S, let αi = Pr(TA <∞ | X0 = i) and let τi = E(TA | X0 = i).

Facts:

1. The {αi} are given by the unique solution to
αi =

∑
j∈S

pijαj

with the boundary conditions αi = 1 if i ∈ A and αi = 0 if no state in A is accessible
from i.

2. If αi = 1 for all i ∈ S, then {τi} are given by the unique solution to
τi = 1 +

∑
j∈S

pijτj

with the boundary condition τi = 0 if i ∈ A.

Examples:

1. Consider the DTMC in §7.7.1 Example 2 with A = {0}. The equations of Fact 1 are
αi = qαi−1 + pαi+1, 1 ≤ i ≤ N − 1 with the boundary conditions α0 = 1 and αN = 0.
If q �= p, the solution is given by

αi =
( q

p )i−( q
p )N

1−( q
p )N , 0 ≤ i ≤ N .

If q = p, the solution is αi = 1− i
N .

2. Consider the DTMC in §7.7.1 Example 2 with A = {0, N}. In this case αi = 1 for
all i. The equations of Fact 2 are τi = 1 + qτi−1 + pτi+1, 1 ≤ i ≤ N − 1, with the
boundary conditions τ0 = 0 and τN = 0. If q �= p, the solution is given by

τi = i
q−p − N

q−p

1−( q
p )i

1−( q
p )N , 0 ≤ i ≤ N .

If q = p, the solution is given by τi = i(N − i).
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7.7.6 BRANCHING PROCESSES

Branching processes are a special type of Markov chain used to study the growth (and
possible extinction) of populations in biology and sociology as well as particles in physics.

Definitions:

Suppose {Yni | n, i ≥ 1 } are independent and identically distributed random variables
having common probability distribution function pk = Pr(Yni = k), k ≥ 0, with mean m
and variance σ2. Then the DTMC {Xn | n ≥ 0 } is a branching process if X0 = 1,

Xn+1 =
Xn∑
i=1

Yni.

A branching process is stable if m < 1, critical if m = 1, and unstable if m > 1.

The extinction probability of a branching process is the probability that the popu-
lation becomes extinct, where X0 = 1.

Facts:

1. It is convenient to think of the random variable Xn as the number of individuals in
the nth generation and the random variable Yni as the number of offspring of the ith
individual in the nth generation.

2. The transient behavior of the branching process is given by:

E(Xn) = mn,

Var(Xn) =

{
nσ2, if m = 1

σ2mn−1m
n − 1

m− 1
, if m �= 1.

3. State 0 is absorbing for a branching process. Absorption in state 0 is certain if and
only if m ≤ 1, while the expected time until extinction (i.e., absorption in state 0) is
finite if and only if m < 1.

4. The probability of extinction ρ in an unstable branching process is given by the
unique solution in (0, 1) to the equation

ρ =
∞∑
n=0

pnρ
n.

5. The expected total number of individuals ever born in a stable branching process
until it becomes extinct is given by

E(
∞∑
n=0

Xn) =
1

1−m
.

6. There is no simple expression for the expected time until absorption for a general
stable branching process.

Examples:

1. The branching process with p0 = 1
2 , p1 = 1

8 , p2 = 3
8 has mean m = 7

8 < 1 and is
stable. With probability 1, the population will die out.

2. The branching process with p0 = 1
4 , p1 = 1

4 , p2 = 1
2 has mean m = 5

4 > 1 and is
unstable. The probability of extinction, ρ0, is found as the smallest positive root of the
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equation ρ = 1
4 + 1

4ρ + 1
2ρ

2. The roots of this equation are 1
2 and 1, so the probability

of extinction is ρ0 = 1
2 .

If the initial population is X0 = 10 instead of X0 = 1, then the probability that
the initial population eventually becomes extinct is ρ10

0 = 1
1024 .

7.8 QUEUEING THEORY
Queueing theory provides a set of tools for the analysis of systems in which customers
arrive at a service facility. It has its origins in the works of A. K. Erlang (starting
in 1908) in telephony. Since then it has found many applications in diverse areas such
as manufacturing, inventory systems, computer science, analysis of algorithms, and
telecommunications. Although queueing theory uses the terminology of servers pro-
viding service to customers, in actual applications the customers may be people, jobs,
computational steps, or messages, and the servers may be human beings, machines,
telephone circuits, communication channels, or computers.

7.8.1 SINGLE-STATION QUEUES

The simplest queueing system is a single-station queue in which customers arrive, wait
for service, and depart after service completion. In this and subsequent sections we
restrict ourselves to single-station queues.

Definitions:

A queueing system consists of a set of customers, who arrive at a service facility
according to a specified arrival process. If a server is available then the customer is
served immediately, with the length of time required to carry out the service determined
by a service-time distribution. If a server is not free, the customer joins the queue
and is later served according to a service discipline, which specifies the order in which
customers are selected for service from the queue. Throughout, the service discipline is
assumed to be First-Come-First-Served (FCFS). Alternative service disciplines include
Last-Come-First-Served, randomly, or according to a tiered priority scheme.

The queue capacity is the maximum number of customers allowed in the system,
either being served or awaiting service. Unless otherwise specified, the queue capacity
is assumed to be infinite.

In a single-station queueing system, customers arrive, wait for service, and depart
after service completion.

An exponential distribution with parameter λ is a density function (§7.3.1) having
the form f(x) = λe−λx for x ≥ 0.

An arrival process is Poisson if the interarrival times (times between successive arrivals)
are independent and identically distributed exponential random variables.

A random variable has an Erlang distribution with phase parameter k if it is the sum
of k ≥ 1 independent and identically distributed exponential random variables.

Facts:
1. If the random variable X has an exponential distribution with parameter λ, then
E(X) = 1

λ and Var(X) = 1
λ2 .
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2. If the arrival process is Poisson with parameter λ, then the number of customers
arriving in an interval of time of length x is a Poisson random variable (§7.3.1) with
parameter λx.

3. The Erlang distribution is a special type of gamma distribution (§7.3.1).

4. Kendall’s notation: A single-station queueing system is described by the 5-tuple:
interarrival-time distribution/service-time distribution/number of servers/waiting room
capacity/service discipline.

5. The following symbols are standard in describing queueing systems according to the
scheme in Fact 4:

• M — exponential (M for Memoryless);
• Ek — Erlang with phase parameter k;
• D — deterministic (constant);
• G — general.

6. More complicated queueing systems can consist of networks of queues, multiple types
of customers, and priority schemes.

7. A World Wide Web site that provides a list of over 100 books on queueing theory
can be found at the site:

http://supernova.uwindsor.ca/people/hlynka/qbook.html

8. A compilation of queueing theory software can be found at the site:
http://supernova.uwindsor.ca/people/hlynka/qsoft.html

Examples:
1. A single-station queueing system is depicted by the schematic diagram in the follow-
ing figure. Here customers randomly join the system (according to the arrival process),
wait for service in the waiting room, are served (which takes a random amount of time),
and then depart from the system.

2. An M/G/3/10/LCFS system has Poisson arrivals (exponential interarrival times),
general service times, three servers, room for ten customers (including those in service),
and Last-Come-First-Served service discipline.

3. An M/M/1 queue has Poisson arrivals, exponential service times, a single server,
infinite waiting room, and FCFS service discipline.

4. Airplane landings: The landing of aircraft at an airport can be viewed as a queueing
system in which the aircraft are the customers and the runways are the servers. Aircraft
arrive according to a certain stochastic arrival process, and the length of time to land
follows a certain service-time distribution. Those aircraft that are unable to land must
join the queue of circling aircraft, awaiting service (normally according to a FCFS
discipline, except in the case of an emergency landing, which would be a type of priority
scheme).
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5. Communication network: Messages arrive according to a Poisson process at rate λ
per second and are to be transmitted over a particular data link. The time required to
transmit a single message is exponentially distributed, with average duration 1

µ seconds.
Messages waiting to be sent are stored in an input buffer. If the buffer has infinite
capacity, then this system is an M/M/1 queue. If the input buffer has finite capacity c,
then this system is an M/M/1/c queue.
6. Banking : Customers arriving at a bank form a single common queue and are served
by the s available tellers in FCFS order. If arrivals are Poisson and the length of time
to service a customer is exponential, this system can be modeled as an M/M/s queue.
7. Remote computing : A computer center has c dial-up telephone lines. Users can
dial into the central computer from their remote devices using any of the lines. (Calls
roll over to an available line if one is free.) If arrivals are Poisson and the length of time
spent online follows an arbitrary distribution, then this is an M/G/c/c queue. It is also
known as a loss system, since any calls to the central computer receive a busy signal
when all servers (lines) are occupied, and hence these calls are “lost” to the system.

7.8.2 GENERAL SYSTEMS

This section presents results applicable to single-station queues with general arrival
patterns, service-time distributions, and queue disciplines.

Definitions:
For a single-station queueing system, define:

• An = the arrival time of the nth customer to the system;
• Sn = the service time of the nth customer;
• Dn = the departure time of the nth customer;
• A(t) = the total number of arrivals up to and including time t;
• D(t) = the total number of departures up to and including time t;
• X(t) = the total number of customers waiting in the system at time t.

The stochastic process {X(t) | t ≥ 0 } is the queue-length process.

The state distribution following an arbitrary departure is πj = lim
n→∞

Pr(X(D+
n ) = j),

for j ≥ 0.

The state distribution prior to an arbitrary arrival is π∗
j = lim

n→∞
Pr(X(A−

n ) = j), for
j ≥ 0.

The state distribution at an arbitrary time point, or steady-state distribution, is
pj = lim

t→∞
Pr(X(t) = j), for j ≥ 0.

The queue-length process (or the queueing system) is stable if the steady-state distri-

bution { pj | j ≥ 0 } exists and
∞∑
j=0

pj = 1.

The waiting time of the nth customer is Wn = Dn −An; it includes the service time.

The steady-state expected waiting time is W = lim
n→∞

1
n

n∑
k=1

Wk, if the limit exists.

The long-run arrival rate is λ = lim
n→∞

n
An

, if the limit exists.

The steady-state expected number in the system is L = lim
t→∞

1
t

∫ t

0
X(u) du, if the

limit exists.
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Facts:
1. The number of customers in the system at any time equals the total number of
arrivals up to that time minus the number of departures up to that time: that is,
X(t) = A(t)−D(t) for t ≥ 0.
2. A sample path of the queue-length process {X(t) | t ≥ 0 } is piecewise constant,
with upward jumps at points of arrival and downward jumps at points of departure.
3. Suppose all the jumps in the sample paths of {X(t) | t ≥ 0 } are of size ±1, with
probability 1. If either πj or π∗

j exists, then πj = π∗
j for all j ≥ 0.

4. PASTA (Poisson Arrivals See Time Averages): If {A(t) | t ≥ 0 } is Poisson and,
for every s ≥ 0, {A(t) | t ≥ s } is independent of {X(u) | 0 ≤ u < s }, then pj = π∗

j for
all j ≥ 0.
5. Little’s Law (J. D. C. Little, 1961): L = λW .

Examples:
1. Suppose arrivals to a system occur deterministically, every 3 minutes, and service
times are deterministic, each taking 2 minutes. Since every arriving customer is served
immediately, either X(t) = 0 (no customers) or X(t) = 1 (a single customer). Every
arrival finds an empty system and every departure leaves an empty system: π0 = 1 = π∗

0 ,
π1 = 0 = π∗

1 , as required by Fact 3. (The steady-state distribution does not exist.)
2. On average λ = 24 customers per hour arrive at a copy shop. Typically, there are
L = 9 customers in the store at any time. Using Little’s law, W = L

λ = 0.375 hour so
that each customer spends on average 0.375 hours (or 22.5 minutes) in the shop.
3. The steady-state queue length or waiting time in a queueing system can be reduced
by increasing the service rate. Suppose the long-run arrival rate doubles, but the service
rate is increased so that the steady-state expected waiting time remains the same. Then
by Little’s law the steady-state expected queue length will also double.
4. Machine repair: A single machine is either working or being repaired. Suppose that
the average time between breakdowns is exponentially distributed with mean 1

λ and the
time to repair the machine is is exponentially distributed with mean 1

µ . This is then
an M/M/1/1 queueing system with a single customer, corresponding to a broken down
machine. X(t) = 0 signifies that the machine is working, and X(t) = 1 signifies that the
machine is being repaired. A sample path of this system is shown in the following figure,
with the machine initially working. Over a long period of time, after N breakdowns and
subsequent repairs, the machine is working for N( 1

λ ) units of time and is being repaired
for N( 1

µ ) units of time. The long run proportion of time the machine is working is then
N( 1

λ )
N( 1

λ ) +N( 1
µ )

=
µ

λ+ µ
.

This value also turns out to be the steady-state probability of finding the system in
state 0, with the machine working.
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7.8.3 SPECIAL QUEUEING SYSTEMS

This section summarizes analytical results about special types of single-station queues.

Notation:

• 1
λ = expected interarrival time;

• Ã(·) = Laplace transform of the interarrival-time density;

• 1
µ = expected service time;

• B̃(·) = Laplace transform of the service-time density;

• σ2 = variance of the service time;

• s = number of servers;

• ρ = λ
sµ = traffic intensity.

The probability generating function (§7.3.3) for the steady-state distribution {pj} of a

queueing system is φ(z) =
∞∑
j=0

pjz
j , |z| < 1.

The Laplace transform for the waiting-time distribution f(w) of a queueing system is
ψ(s) =

∫ ∞
0

e−swf(w) dw, Re(s) > 0.

Facts:

1. The M/M/1 queue is stable if ρ < 1. The following results hold when the queue is
stable:

pj = (1− ρ)ρj = πj = π∗
j

L = ρ
1−ρ

W = 1
µ−λ .

2. The M/M/1/K queue is always stable. Assume ρ �= 1.

pj = 1−ρ
1−ρK+1 ρ

j , 0 ≤ j ≤ K

π∗
j = pj

1−pK
= πj , 0 ≤ j ≤ K − 1

L = ρ
1−ρ

(
1−ρK

1−ρK+1 −KpK

)
W = 1

µ−λ

(
1−ρK

1−ρK+1 −KpK

)
.

If ρ = 1, the above formulas reduce to:

pj = 1
K+1 , 0 ≤ j ≤ K

π∗
j = πj = 1

K , 0 ≤ j ≤ K − 1

L = K
2

W = K
2µ .
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3. The M/M/s queue is stable if ρ < 1. The following results hold when the queue is
stable:

p0 =
(
s−1∑
n=0

(sρ)n

n! + ss

s!
ρs

1−ρ

)−1

pj =

{
(sρ)j

j! p0, 0 ≤ j < s
ss

s! ρ
jp0, j ≥ s

πj = π∗
j = pj , j ≥ 0

L = ρ
(
s+ ps

(1−ρ)2

)
W = 1

sµ

(
s+ ps

(1−ρ)2

)
E(number of busy servers) = ρ.

4. The M/M/∞ queue is always stable:

pj = e−(λ/µ) (λ/µ)j

j! , j ≥ 0

πj = π∗
j = pj , j ≥ 0

L = λ
µ

W = 1
µ .

5. The M/G/1 queue is stable if ρ < 1. The following results hold when the queue is
stable:

p0 = 1− ρ,

πj = π∗
j = pj

φ(z) = (1− ρ) (1−z)B̃(λ(1−z))

B̃(λ(1−z))−z

ψ(s) = (1− ρ) sB̃(s)

s−λ(1−B̃(s))

L = ρ+ ρ2+λ2σ2

2(1−ρ)

W = 1
µ + λ((1/µ)2+σ2)

2(1−ρ) .

The last four equations are the various forms of the Pollaczek-Khintchine formula. No
closed form results are available for M/G/c queues for 2 ≤ c <∞.

6. The M/G/c/c queue, also called a loss system, is always stable. The main result is:

pj = ρj/j!
c∑

n=0

ρn/n!

, 0 ≤ j ≤ c.

7. The M/G/∞ queue is always stable:

pj = e−(λ/µ) (λ/µ)j

j! , j ≥ 0

πj = π∗
j = pj , j ≥ 0

L = λ
µ

W = 1
µ .
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8. The G/M/1 queue is stable if ρ < 1. When the queue is stable there is a unique
solution α ∈ (0, 1) to α = Ã(µ(1 − α)). The following results hold when the queue is
stable:

π∗
j = (1− α)αj = πj , j ≥ 0

p0 = 1− ρ

pj = ρπ∗
j−1, j ≥ 1

L = ρ
1−α

W = 1
µ

1
(1−α) .

The G/M/c queue can be analytically solved, but the results are complicated.

9. The G/M/∞ queue is always stable:
L = λ

µ

variance of number in system = λ
µ (1− λ

µ ) + λ/µ
2

Ã(µ)

1−Ã(µ)
.

Examples:

1. At a drop-in legal clinic, the lawyer sees four clients during a typical (eight hour)
day. Each client’s case requires on average 1.5 hours of the lawyer’s time. If arrivals are
Poisson and service times are exponentially distributed, then this is an M/M/1 queue
with λ = 4

8 = 1
2 customers per hour and 1

µ = 3
2 . Here ρ = λ

µ = 3
4 < 1, so the queue is

stable. Using Fact 1, p0 = 1 − ρ = 1
4 , so there is probability 1

4 that the lawyer is idle.
The expected number of clients in the clinic is L = ρ

1−ρ = 3 and the average wait of a
client is W = 1

µ−λ = 6 hours.

2. Customers arrive at a service station according to a Poisson process with rate 10
per hour. The manager has two options: (a) employ a single fast server who can service
a customer in 5 minutes on average, or (b) employ two slow servers each taking 10
minutes on average to serve a customer. Assume that the service times are exponential.
Which option should the manager implement to minimize the expected waiting time in
steady state?

Under (a) the system is an M/M/1 queue with λ = 10, µ = 12. Since ρ = 10
12 < 1,

the system is stable. By Fact 1, W = 1
12−10 = 0.5 hours. Under (b) the system is an

M/M/2 queue with λ = 10 and µ = 6. The system is stable since ρ = 10
2·6 < 1. From

Fact 3, p0 = 1
11 , p2 = 25

198 , and W = 6
11 = 0.55 hours. Thus option (a) is better. In

general, it is better to employ a few fast servers than many slow servers with the same
overall service capacity.

3. A system manager has the option of using one of three possible servers in a single-
server system. The service times under the first server are exponential with mean of 6
minutes. Under the second server they are uniformly distributed over [4, 8] minutes.
Under the third they are constant, equal to 6 minutes. The customers arrive according
to a Poisson process with rate 8 per hour. Which server should be chosen to minimize
the expected waiting time in steady state?

The mean service time is 6 minutes; i.e., µ = 10 per hour, for all three servers.
However, the variances σ2 are different. This M/G/1 system is stable under all three
servers since ρ = 8

10 < 1. For server one, σ2 = 0.01 (hours)2 and W = 0.5 hours. For
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the second server, σ2 = 1
2700 = 0.000370 (hours)2 and W = 83

270 = 0.31 hours. For the
third server, σ2 = 0.0 (hours)2 and W = 3

10 = 0.3 hours. Thus, it is best to use the
server with constant service times. In general, reducing the variance of the service times
has a beneficial effect on the system.

4. A small business wants to install a telephone system with multiple lines, though
without any capacity for call queueing. This is to be done to ensure that 95% of the
calls made to the business get answered. Suppose that the arrival process is Poisson with
λ = 10 calls per hour, and that the average call lasts 5 minutes. This is an M/G/c/c loss
system (Fact 6), and it is necessary to find the smallest value of c such that pc ≤ 0.05.
Using Fact 6 with ρ = 10

12 = 5
6 and c = 1 gives p1 = ρ

1+ρ = 0.45. Similar calculations
give p2 = 0.16 for c = 2 and p3 = 0.042 for c = 3. Consequently, three lines are needed
to ensure the stipulated grade-of-service requirement.

7.9 SIMULATION

Simulation is a technique for numerically estimating the performance of a complex
stochastic system when analytic solution is not feasible. This section discusses both
discrete-event and Monte Carlo simulation. In discrete-event simulation models, the
passage of time plays a key role, as changes to the state of the system occur only at
certain points in simulated time. For example, queueing and inventory systems can be
studied by discrete-event simulation models. Monte Carlo simulation models do not,
however, require the passage of time. Such models are useful in estimating eigenvalues,
estimating π, and estimating the quantiles of a mathematically intractable test statistic
in hypothesis testing. Simulation has been described [BrEtal87] as “driving a model of
a system with suitable inputs and observing the corresponding outputs.” Accordingly,
the following three subsections discuss input modeling, output analysis, and simulation
programming languages.

7.9.1 INPUT MODELING

This section addresses three key issues in constructing a simulation model:
• determining a source of randomness to drive the probabilistic aspects of the

model;
• input model selection to determine the appropriate probabilistic models to drive

the simulation;
• random variate generation algorithms that transform random numbers to random

variates.

Definitions:

Random numbers are real numbers generated uniformly over the interval (0, 1).

A random number generator is any mechanism or algorithm for generating random
numbers.

Pseudo-random numbers are values generated deterministically, but that appear to
behave like independent and identically distributed random numbers.
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Let m be a large prime integer. A purely multiplicative linear congruential gen-
erator (§4.3.1) produces a stream of pseudo-random numbers { xi

m | i ≥ 1 } based on the
recursive relationship xi+1 = axi mod m, where a is an integer multiplier between 1
and m− 1, and x0 is an integer seed between 1 and m− 1.

An input model characterizes the stochastic elements of a discrete-event simulation
model.

A trace-driven input model generates a process that is identical to the collected data
values without relying on a parametric model.

A random variate is a realization of a random variable.

Facts:
1. Stochastic simulations typically derive their source of randomness from random
numbers. That is, inputs to the simulated system need to be generated according to a
specified probability model, a task that can be accomplished by suitably transforming
(uniform) random numbers.
2. Desirable properties for random number generators include: uniformity, indepen-
dence, speed, minimal memory requirements, ease of implementation, portability across
various computer systems, reproducibility, and multiple stream capability.
3. Although numerous methods have been proposed for generating random numbers,
multiplicative linear congruential generators are typically used to produce a stream of
pseudo-random numbers.
4. Due to the prevalence of 32-bit computer architecture, m is often chosen to be
231 − 1, which is prime.
5. A full period generator, which cycles through all m − 1 possible xi values prior to
repeating, is obtained by selecting a to be a primitive root modulo m. (See §4.7.1.)
6. Software for pseudo-random number generators can be found at the sites:

• http://random.mat.sbg.ac.at/others/#MCSoftware
• http://www.taygeta.com/random.html
• http://www.isye.gatech.edu/informs-sim/#ware

7. Additional information on the theoretical and empirical performance of a variety of
pseudo-random number generators is available at:

• http://random.mat.sbg.ac.at/generators/
8. If the multiplier a is chosen so that it is “modulus-compatible” withm, then potential
overflow can be averted for large values of m. Two values of a that are often used with
m = 231 − 1 are a = 75 = 16807 and a = 48271 [PaMi88].
9. Successful input modeling for a discrete-event simulation requires a close match
between the input model and the true underlying probabilistic mechanism associated
with the system.
10. One of the first steps in determining an appropriate input model for an element of
a discrete-event simulation is to assess whether the observations are independent and
identically distributed.
11. An input model can be specified in several ways: e.g., using a cumulative distribu-
tion function, joint probability density function, hazard function, intensity function, or
variate-generation algorithm.
12. Many input models rely on parametric probabilistic models such as the binomial,
normal, and Weibull distributions. Maximum likelihood is typically used to estimate
parameters of these models.
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Algorithm 1: Inverse transformation method.

input: cumulative distribution function F
output: random variates X from this distribution

generate U uniformly over (0, 1)
X := F−1(U)

13. Bézier curves [FlWi93] offer a unique combination of the parametric and nonpara-
metric approaches. After an initial distribution is fitted to the data set, the modeler
decides whether differences between the empirical and fitted models represent sampling
variability (chance variation) or an aspect of the distribution that should be included
in the input model.
14. Multivariate distributions (e.g., the multivariate normal distribution with mean µ
and variance-covariance matrix Σ) are considered by [Jo87].
15. Once an input model has been chosen, random variate generation algorithms are
used to transform random numbers to variates from the input model.
16. Devroye [De86] gives algorithms for converting random numbers to random variates
associated with input models chosen to drive the simulation.
17. Techniques commonly used for generating random variates from univariate proba-
bility distributions are: inverse transformation, composition, acceptance/rejection, and
special properties.
18. Algorithm 1, which shows the inversion method, is based on the probability integral
transformation. It is assumed that the cumulative distribution function F (x) for the
input model of interest has the inverse F−1(U).
19. Other topics in variate generation include table methods, generating from multi-
variate distributions, random sampling, estimating integrals, and generating processes
correlated in time.

Examples:
1. Suppose that a sequence of arrival times (e.g., of customers at a bank) is collected
over a 24-hour time period. A trace-driven input model for the arrival process is gener-
ated by having arrivals occur at the same times as the observed values.
2. Let t1, t2, . . . , tn be the arrival times to a queue collected on the time interval (0, c].
If the times between arrivals are independent and identically distributed, a parametric
or nonparametric model can be fitted to the data. In the former case, parameters are
often estimated by maximizing the likelihood function [LaKe91]

L(θ) =
n∏
i=1

f(xi, θ),

where xi = ti−ti−1 for i = 1, 2, . . . , n, t0 ≡ 0, θ = (θ1, θ2, . . . , θp) is a vector of unknown
parameters, and f(xi, θ) is the probability density function of the interarrival times.
3. If the interarrival times to a queue (as in Example 2) are not independent and iden-
tically distributed, then a nonstationary point process might be considered, such as a
nonhomogeneous Poisson process, where the arrival rate λ(t; θ) varies over time. One
parametric model is the power law process, with intensity function λ(t;λ, κ) = λκκtκ−1

for t > 0, where λ and κ are positive parameters. The likelihood function for the sin-
gle realization on (0, c] is L(λ, κ) = (

∏n
i=1 λ(ti;λ, κ)) exp

(
−

∫ c

0
λ(t;λ, κ) dt

)
. Maximum

likelihood estimators can be determined by maximizing L(λ, κ) or its logarithm with
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respect to λ and κ. Confidence regions for the unknown parameters can be found by
using asymptotic properties of the likelihood ratio statistic or the observed informa-
tion matrix [LaKe91]. As with all statistical modeling, goodness-of-fit tests should be
performed in order to assess the model adequacy.

4. Weibull distribution: The Weibull distribution has cumulative distribution function
F (x) = 1− e−(λx)κ

for x > 0. The inverse cumulative distribution function is F−1(y) =
[− ln(1− y)]1/κ

λ
for 0 < y < 1. Algorithm 1 can be used to generate a Weibull variate

according to

X :=
[− ln(1− U)]1/κ

λ
.

5. M/M/1 queue: To simulate the operation of a single-server queue (§7.8.1) with
Poisson arrivals at rate λ and exponential service times with mean 1

µ , exponentially
generated variates are needed for the interarrival times {In} and the service times {Sn}.
These are available as a special case of the Weibull distribution (Example 4) with κ = 1

and can be generated using In =
− ln(1− Un)

λ
and Sn =

− ln(1− Vn)
µ

, with the {Un},
{Vn} generated uniformly over (0, 1).

A concrete example is provided in the following table, which shows one simulated
run of an M/M/1 queue with λ = 0.5 and µ = 0.7. The table shows, in successive
columns, the following values for each customer n: the interarrival time In, the arrival
time An, the service time Sn, the beginning time of service Bn, the departure time Dn,
and the waiting time Wn = Dn − An. Notice that customers 1, 4, 7, 8, 9 are served
immediately and incur no waiting time in the queue.

customer In An Sn Bn Dn Wn

1 5.44 5.44 0.78 5.44 6.22 0.78
2 0.61 6.05 2.77 6.22 8.99 2.94
3 0.35 6.40 0.96 8.99 9.95 3.55
4 4.12 10.52 2.42 10.52 12.94 2.42
5 0.54 11.06 0.88 12.94 13.82 2.76
6 2.07 13.13 0.87 13.82 14.69 1.56
7 6.82 19.95 0.86 19.95 20.81 0.86
8 2.19 22.14 0.76 22.14 22.90 0.76
9 4.09 26.23 3.31 26.23 29.54 3.31
10 0.02 26.25 0.01 29.54 29.55 3.30

7.9.2 OUTPUT ANALYSIS

Once a verified and validated simulation model has been developed, a modeler typi-
cally wants to estimate measures of performance associated with outputs of the model.
Although there are often several performance measures of interest, a single measure of
performance θ (e.g., the mean waiting time in a queue) is studied here.

This section discusses using point estimation to compute an estimate for θ, de-
termining a confidence interval for the point estimate, and using variance reduction
techniques to obtain more precise point estimates.
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Definitions:

Suppose {Yi} is the output stochastic process. If the output stochastic process
consists of independent observations obtained from a population with cumulative dis-
tribution function FY , the pth quantile of FY is the value yp such that FY (yp) = p.
The median of FY corresponds to p = 0.5.

The sample mean of the observations Y1, Y2, . . . , Yn is given by Y = 1
n

n∑
i=1

Yi.

If the values Y1, Y2, . . . , Yn are rearranged so that Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) then Y(i) is
the ith order statistic.

The mean µY of the process is the asymptotic mean of the output process {Yi}.
The variance σ2

Y of the process is the asymptotic mean of the output process {(Yi −
Y )2}.
The probability Pr(A) of eventA is the asymptotic mean of the output process {I(A)},
where I is the 0–1 indicator function for event A.

The output process Y1, Y2, . . . is covariance stationary if, for finite mean µ and finite
variance σ2 > 0, E(Yi) = µ, i = 1, 2, . . ., Var(Yi) = σ2, i = 1, 2, . . ., and Cov(Yi, Yi+j) is
independent of i, for j = 1, 2, . . . .

Variance reduction techniques are strategies for obtaining greater precision for a
fixed amount of sampling.

Facts:

1. The two most common measures of performance to be estimated are means and
quantiles.

2. Point estimates for µY , σ2
Y , Pr(A) are typically given by the associated sample

means.

3. A simple estimator of yp = F−1
Y (p) is Y(s), where s = *p(n+1)+. This estimator can

be improved (with respect to bias) by estimating F−1
Y (p) with the linear combination

(1− α)Y(s) + αY(s+1), where α = p(n+ 1)− *p(n+ 1)+.
4. Replication: This is one of the simplest methods of interval estimation, in which
several runs of a simulation model are used. Classical confidence intervals based on the
central limit theorem for the measures of interest can then be applied to the output.

5. The presence of autocorrelation among observations (e.g., the waiting times of adja-
cent customers in a queue) significantly complicates the statistical analysis of simulation
output from a single run.

6. To analyze a single simulation run with autocorrelation present, techniques have
been developed for determining interval estimates whose actual coverage is close to the
stated coverage. For many of these techniques, the output is assumed to be covariance
stationary. These techniques include batch means, overlapping batch means, standard-
ized time series, regeneration, spectral analysis, and autoregression.

7. Common random numbers: This is a variance reduction technique in which two
or more alternative system configurations are analyzed using the same set of random
numbers for particular purposes (e.g., generating service times). Using common random
numbers insures that the output differences are due to the configurations rather than
the sampling variability in the random numbers.
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8. Antithetic variates: This is a second variance reduction technique, applicable to
the analysis of a single system. If the random numbers {Ui} are used for a particular
purpose in one simulation run, then using {1 − Ui} in a second run typically induces
a negative correlation between the outputs of the two runs. Thus, the average of the
output measures from the two runs will have a reduced variance.
9. There are a variety of variance reduction techniques. See Wilson [Wi84] for a detailed
discussion.
10. Other topics in output analysis include initialization bias detection, ranking and
selection, comparing alternative system designs, experimental design, and optimization.

Examples:
1. Confidence intervals for expected waiting times: Let X1, X2, . . . , Xn be the av-
erages of the waiting times of customers in a single-server queue from n independent
replications of a discrete-event simulation model. A 100(1 − α)% confidence interval
for µ, the steady-state mean waiting time, is

X − tα/2,n−1
s√
n
< µ < X + tα/2,n−1

s√
n
,

where X is the sample mean, s is the sample standard deviation, and tα/2,n−1 is the
1− α

2 fractile of the t distribution with n−1 degrees of freedom. The replications must be
“warmed up” to avoid initialization bias. The asymptotic normality of X1, X2, . . . , Xn

is assured by the central limit theorem and independence is based on the use of inde-
pendent random number streams.
2. M/M/1 queue: The simulation of Example 5 of §7.9.1 was executed so that the
first 200 customer wait times were collected. The measure of performance θ for the
system is the steady-state expected customer wait time. The initial conditions for
each replication are an empty system and an idle server. The stopping time for each
replication is when the 200th customer departs. Running this simulation experiment
for n = 100 replications gave X = 4.72 and for n = 500 replications gave X = 4.76.
For this simple queueing system, the steady-state analytical solution is W = 1

µ−λ = 5.0
(§7.8.3, Fact 1). These averages are biased low since the early waiting times have a lower
expected value than the subsequent waiting times as a result of the initial conditions.
To improve these point estimates, the system was permitted to warm up for the first 100
customers and the average waiting time was then calculated for the last 100 customers.
In this case, rerunning the simulation gave the improved estimates X = 5.20 for n = 100
and X = 4.93 for n = 500.
3. Common random numbers: Law and Kelton [LaKe91, pp. 620–621] compare the
M/M/1 and M/M/2 queueing models with a utilization of ρ = 0.9 using the waiting
times in the queue of the first 100 customers. With n = 100 independent replications
of each system, they compare the two models in four ways:

• independent runs (I);
• arrival streams using common random numbers (A);
• service times using common random numbers (S);
• arrival streams and service times using common random numbers (A&S).

Common random numbers is a variance reduction technique that feeds identical in-
terarrival and/or service times into the two different queueing models to increase the
likelihood that observed differences in the waiting times are due to the system configura-
tions (M/M/1 versus M/M/2) rather than sampling error. The mean half-widths of the
confidence intervals (α = 0.10) reported for their example are 0.70(I), 0.49(A), 0.49(S),
and 0.04(A&S).
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7.9.3 SIMULATION LANGUAGES

This section considers the history and features of simulation programming languages
developed over the years.

Facts:

1. The use of a general-purpose simulation programming language (SPL) expedites
model development, input modeling, output analysis, and animation. In addition, SPLs
have accelerated the use of simulation as an analysis tool by bringing down the cost of
developing a simulation model.

2. In a history of the development of SPLs from 1955 to 1986, Nance [Na93] defines
six requirements that a SPL must meet:

• random number generation;
• variate generation;
• list processing capabilities so that objects can be created, altered, and deleted;
• statistical analysis routines;
• summary report generators;
• a timing executive or event calendar to model the passage of time.

3. SPLs may take the form of:
• a set of subprograms in a general purpose language (GPL) such as Fortran or C

that can be called to meet these six requirements;
• a preprocessor that converts statements or symbols to lines of code in a GPL;
• a conventional programming language.

4. The following table shows a division of the historical record into five distinct periods,
including the names of several languages that came into existence in each period.

period characteristics languages

1955–1960 period of search GSP
1961–1965 the advent CLP, CSL, DYNAMO, GASP, GPSS,

MILITRAN, OPS, QUIKSCRIPT,
SIMSCRIPT, SIMULA, SOL

1966–1970 formative period AS, BOSS, Q-GERT, SLANG, SPL
1971–1978 expansion period DRAFT, HOCUS, PBQ, SIMPL
1979–1986 consolidation and INS, SIMAN, SLAM

regeneration

5. The General Purpose System Simulator (GPSS) was first developed on various IBM
computers in the early 1960s. Algol-based SIMULA was also developed in the 1960s
and had features that were ahead of its time. These included abstract data types,
inheritance, the co-routine concept, and quasi-parallel execution.
6. SIMSCRIPT was developed by the RAND Corporation with the purpose of decreas-
ing model and program development times. SIMSCRIPT models are described in terms
of entities, attributes, and sets. The syntax and program organization were influenced
by Fortran.
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7. The Control and Simulation Language (CSL) takes an “activity scanning” approach
to language design, where the activity is the basic descriptive unit.

8. The General Activity Simulation Program (GASP), in common with several other
languages, used flow-chart symbols to bridge the gap between personnel unfamiliar
with programming and programmers unfamiliar with the application area. Although
originally written in Algol, GASP provided Fortran subroutines for list-processing ca-
pabilities (e.g., queue insertion).

9. GASP was a forerunner to both the Simulation Language for Alternative Modeling
(SLAM) and SIMulation ANalysis (SIMAN) languages.

10. SLAM was the first language to include three modeling perspectives in one lan-
guage: network (process orientation), discrete-event, and continuous (state variables).

11. SIMAN was the first major SPL executable on an IBM PC.

12. Simulation software in the 1990s has mushroomed, with numerous packages and
languages available both for general purpose and application-specific simulations. Spe-
cial purpose and integrated packages are widespread and available on desktop comput-
ers. The 1997 survey [SW97] compares 46 products, having a wide range of features
and capabilities, and the 1997 review [II97] compares 65 products.

13. A recent trend has been the addition of animation to intelligently view simulation
output. Surveys of web-based simulations can be found at the sites:

• http://ms.ie.org/websim/survey/survey.html
• http://www.cise.ufl.edu/~fishwick/websim.html

14. Software for carrying out Monte Carlo simulation can be found at the site:
• http://random.mat.sbg.ac.at/others/#MCSoftware

15. A number of commercial and freeware/shareware simulation packages are listed at
the site:

• http://www.isye.gatech.edu/informs-sim/#ware
• http://www.isye.gatech.edu/informs-sim/comm.html
• http://ws3.atv.tuwien.ac.at/eurosim/
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INTRODUCTION

A graph is conceptually a spatial configuration with a finite set of points and a finite
set of lines (possibly curved) joining one point to another (or to itself). Graph theory
has its origins in many disciplines. Graphs are natural mathematical models of physical
situations in which the points represent either objects or locations and the lines repre-
sent connections. Graphs are also used to model sociological and abstract situations in
which each line represents a relationship between the entities represented by the points.
Applications of graphs are wide-ranging — in areas such as circuit design, communi-
cations networks, ecology, engineering, operations research, counting, probability, set
theory, information theory, and sociology.

This chapter contains an extensive treatment of the various properties of graphs.
Further topics in graph theory are covered in Chapter 9 Trees and in Chapter 10 Net-
works and Flows.

GLOSSARY
acyclic digraph: a digraph containing no directed cycles.

acyclic graph: a graph containing no cycles.

adding a crosscap to a surface: an operation that increases the crosscap number
of a nonorientable surface by 1.

adding a handle to a surface: an operation that increases the genus of an orientable
surface by 2.
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adjacency matrix (of a digraph): for a digraph D, the square matrix AD with
AD[i, j] = the number of edges from vertex vi to vertex vj .

adjacency matrix (of a graph): for a graph G, the square matrix AG with AG[i, j] =
the number of edges between vertices vi and vj .

adjacent edges: two edges with a common endpoint.

adjacent vertex (in a digraph) from [to] a vertex u: a vertex v such that there is an
arc from u to v [to u from v].

adjacent vertices: two vertices that are endpoints of the same edge.

admittance matrix: given a graph G, the matrix D − A where D is the diagonal
matrix with the degree sequence of G on the diagonal and where A is the adjacency
matrix; synonym for Laplacian.

algebraic specification (of a graph): a form of specification that uses group elements
(see Chapter 5) in the vertex and edge names and uses the group operation in the
incidence rule; a highly condensed form of specification because a single entry can
specify the endpoints of all the edges in a class as large as the size of the group.

almost every (a. e.) graph has property P : the statement that the probability
that a random n-vertex graph has property P approaches 1 as n →∞.

antichain: a hypergraph in which no edge contains any other edge.

arc: another name for a directed edge of a graph.

articulation point: synonym for cutpoint.

attachment of a bridge of a subgraph: given a bridge B of a subgraph H, a vertex
of B ∩H.

attribute (of the edge-set or vertex-set): any additional feature, such as length, cost,
or color, that enables a graph to model a real problem.

automorphism: given a graph or digraph, an isomorphism from the graph or digraph
to itself.

automorphism group: the collection Aut(G) of all automorphisms of a graph or
digraph G under the operation of composition.

basis (for a digraph): a set of vertices V ′ of the digraph such that every vertex not
in V ′ is reachable from V ′ and no proper subset of V ′ has this property.

bipartite: property of a graph that its vertices can be partitioned into two subsets,
called the “parts”, so that no two vertices within the same part are adjacent.

block: in a graph, a maximal nonseparable subgraph.

bond: a minimal disconnecting set of edges.

boundary (of a region of a graph imbedded in a surface): given a region R of a graph G
imbedded in a surface, the subgraph of G containing all vertices and edges incident
on R; it is denoted ∂R.

bouquet: a graph Bn with one vertex and n self-loops.

branch: synonym for arc (i.e., a directed edge).

bridge (edge): a cut-edge.

bridge (of a subgraph H): a maximal connected subgraph in which no vertex of H
has degree greater than one.

cactus: a connected graph in which every block is either an edge or a cycle.
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cartesian product: given graphs G and H, the graph G×H whose vertex set is the
cartesian product VG × VH and whose edge set is (VG × EH) ∪ (EG × VH).

caterpillar: a tree that contains a path such that every edge has one or both endpoints
in that path.

Cayley graph (or digraph): a graph that depicts a group with a prescribed set of
generators; the vertices represent group elements, and the edges or arcs (often said
to be “color-coded” for the generators) represent the product rule.

cellular imbedding : an imbedding such that every region is equivalent to the interior
of the unit disk (the region { (x, y) | x2 + y2 < 1 } of the plane).

center: in a connected graph, the set of vertices of minimum eccentricity.

chain: a simple hypergraph in which, given any pair of edges, one edge contains the
other.

characteristic polynomial (of a graph): the characteristic polynomial of its adja-
cency matrix.

characteristic value: See eigenvalue.

characteristic vector: See eigenvector.

chromatic index (of a graph or hypergraph): See edge chromatic number.

chromatic number (of a graph): the minimum number χ(G) of colors needed to color
the vertices of a graph G so that no vertex is adjacent to a vertex of the same color;
alternate notation cr(G).

chromatic number (of a hypergraph): the smallest number χ(H) of independent sets
required to partition the vertex set of H.

chromatic number (of a map): the minimum number χ(M) of colors needed to color
the regions of the map M so that no color meets itself across an edge; alternate
notation cr(M).

chromatic number (of a surface): the largest map chromatic number χ(S) taken over
all maps on the surface S; alternate notation cr(S).

chromatically n-critical graph: an n-chromatic graph G such that χ(G−e) = n−1
no matter what edge e is removed.

circuit: synonym for a closed walk, a closed trail, or a cycle, depending on the context.

clique (in a graph): in a graph G, a complete subgraph of G contained in no larger
complete subgraph of G.

clique (in a hypergraph): a simple hypergraph such that every pair of edges has
nonempty intersection.

clique number (of a graph): the number ω(G) of vertices of a largest clique in the
graph G.

clique number (of a hypergraph): the largest number ω(H) of edges of any partial
clique in the hypergraph H.

clique partition number: for a hypergraph H, the smallest number cp(H) of cliques
required to partition the edge set.

closed walk (trail or path): a walk, trail, or path whose origin and terminus are the
same.

n-colorable graph: a graph having a vertex coloring using at most n colors.
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n-colorable map: a map having a coloring using at most n colors.

comparability graph: a graph that admits a transitive orientation.

complement (of a graph): See edge-complement.

complete bipartite graph: a bipartite graph Kr,s whose vertex set has two parts,
of sizes r and s, respectively, such that every vertex in one part is adjacent to every
vertex in the other part.

complete graph: the simple graph Kn with n vertices in which every pair of vertices
is adjacent.

complete hypergraph: the simple n-vertex hypergraph K∗
n in which every subset of

vertices is an edge.

complete multipartite (or k-partite) graph: a k-partite simple graph such that
every pair of vertices from different parts is joined by an edge. Such a graph is
denoted by Kn1,...,nk

, where n1, . . . , nk denote the sizes of the parts.

complete r-uniform hypergraph: the simple n-vertex hypergraph Kr
n in which ev-

ery r-element subset is an edge.

complete set of invariants: a set of invariants that determine a graph or digraph
up to isomorphism.

component: given a graph, a maximal connected subgraph; the number of components
of a graph G is denoted β0(G).

connected: property of a graph that each pair of vertices is joined by a path.

connectivity : See vertex connectivity .

contraction, elementary (of a graph): the operation of shrinking an edge to a point,
so that its endpoints are merged, without otherwise changing the graph.

contraction, elementary (of a simple graph): replacing two adjacent vertices u and v
by one vertex adjacent to all other vertices to which u or v were adjacent.

contraction: for a graph, the composition of a sequence of elementary contractions.

converse: for a digraph, the digraph obtained by reversing the direction of every arc.

crosscap: a subportion of a surface that forms a Möbius band.

crosscap number (of a nonorientable surface): for a nonorientable surface S, the
maximum number γ(S) of disjoint crosscaps one can find on the surface. The nonori-
entable surface of crosscap number k is denoted Nk.

crossing number: for a graph G, the minimum number ν(G) of edge-crossings taken
over all normalized planar drawings of G.

cube graph: See hypercube graph.

cut-edge: given a graph G, an edge e such that G− e has more components than G.

cut-vertex (or cutpoint): given a graph G, a vertex v such that G − v has more
components than G.

cycle: a closed path of positive length. See also k-cycle.

cycle, directed: a closed directed walk in which all the vertices except the first and
last are distinct.

cycle graph: a graph Cn with n vertices and n edges that form a simple circuit.

cycle rank: given a connected graph G, the number β1(G) of edges in the complement
of a spanning tree for G, that is, |EG| − |VG|+ 1.
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DAG: an acronym for directed acyclic graph.

degree (of a vertex in a graph): given a vertex v, the number deg(v) of instances of v
as an endpoint; that is, the number of proper edges incident on v plus twice the
number of loops at v.

degree (of a hypergraph vertex): given a vertex x, the number deg(x) of hypergraph
edges containing x.

degree sequence of a graph: the sequence of the degrees of its vertices, most often
sorted into size order, ascending or descending.

deleting an edge from a graph: given a graph G and an edge e of G, an operation
that results in the subgraph G− e, which contains all the vertices of G and all edges
except e.

deleting a vertex from a graph: given a graph G and a vertex v of G, an operation
that results in the subgraph G− v, which contains all vertices of G except v and all
the edges of G except those incident with v.

diameter: given a connected graph, the maximum distance between two of its vertices.

diconnected digraph: See strongly connected digraph.

digraph (or directed graph): a graph in which every edge is directed.

dipole: the graph Dn with two vertices and a multi-edge of multiplicity n joining them.

directed cycle, path, trail, walk: See cycle, directed, etc.

directed graph: See digraph.

direction (on an edge): a sense of forward progression from one end to the other,
usually marked either by ordering its endpoints or by an arrowhead.

disconnected (digraph): a digraph whose underlying graph is disconnected.

disconnecting set of edges (in a connected graph): a set whose removal yields a
nonconnected graph.

disconnecting set of vertices (in a connected graph): a set whose removal yields a
nonconnected graph.

distance (between two vertices of a connected graph): given two vertices v and w, the
length d(v, w) of a shortest path between them.

distance (between two vertices of a connected digraph): given two vertices v and w,
the length d(v, w) of a shortest directed path between them.

dodecahedral graph: the 1-skeleton of the dodecahedron, which is a 3-dimensional
polyhedron whose 12 faces are all pentagons; this graph has 20 vertices, each of
degree 3, and 30 edges.

downset: a simple hypergraph in which every subset of every edge is also an edge of
the hypergraph.

dual graph imbedding : a new graph imbedding obtained by placing a dual vertex in
the interior of each existing (“primal”) region and by drawing a dual edge through
each existing (“primal”) edge connecting the dual vertices on its opposite sides.

dual (of a hypergraph): given a hypergraph H, the hypergraph H∗ whose incidence
matrix is the transpose of the incidence matrix M(H).

eccentricity (of a vertex): given a vertex v in a connected graph, the greatest distance
from v to another vertex.
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edge: a line, either joining one vertex to another or joining a vertex to itself; an
element of the second constituent set of a graph.

edge chromatic number (of a graph): given a graph G, the smallest number n such
that G is n-edge colorable, written χ1(G) or ecr(G).

edge chromatic number (of a hypergraph): given a hypergraph H, the smallest
number q(H) of matchings required to partition the edge set of H.

n-edge colorable: property of a graph that it has an edge coloring using at most n
colors.

edge coloring : an assignment of colors to the edges of a graph so that adjacent edges
receive different colors. See also n-edge colorable.

edge connectivity : the cardinality κ′(G) of the smallest disconnecting set of edges
in graph G. See also k-edge connected.

edge cut: See disconnecting set.

edge independence number: the cardinality α1(G) of a largest independent set of
edges in graph G.

edge-complement: given a graph G, the graph G with the same vertex set as G, but
in which two vertices are adjacent if and only if they are not adjacent in G.

edge-deleted subgraph: any subgraph obtained from a graph by removing a single
edge.

edge-reconstructible graph: a graph which is uniquely determined by its collection
of edge-deleted subgraphs.

edge-reconstructible invariant: an invariant which is uniquely determined by the
collection of edge-deleted subgraphs of a graph.

eigenvalue (of a matrix): given a matrix A, a number λ such that Ax = λx for some
vector x �= 0.

eigenvector (of a matrix): given a matrix A, a nonzero vector x such that Ax = λx.

embedding : See imbedding .

empty graph: sometimes, a graph with no edges; other times, a graph with no vertices
or edges. See null graph.

endpoints: the vertices that are joined by the edge.

Euler characteristic: given a surface S, an invariant χ(S) of the surface itself, given
by the formula χ(S) = |V | − |E| + |F | where V , E, and F are the vertices, edges
and faces of any cellular drawing of any graph on that surface; equivalently, 2− 2g
for the orientable surface Sg of genus g, and 2− k for the nonorientable surface Nk

of crosscap number k.

Euler tour: a closed Euler trail.

Euler trail: a trail that contains all the edges of the graph.

Eulerian graph: a graph that has an Euler tour.

exterior region: in a planar graph drawing, the region that extends to infinity.

extremal graph: given a set G of graphs and an integer n, an n-vertex graph with
ex(G; n) edges that contains no member of G.

extremal number: given a set G of graphs, the greatest number ex(G; n) of edges in
any n-vertex simple graph that does not contain some member of G as a subgraph.
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face: given an imbedding of a graph in a surface, a region plus its boundary.

forest: any graph without cycles.

four color theorem: the fact that every planar map can be properly colored with at
most four colors, proved in 1976 by Haken and Appel after over a century of active
investigation.

general graph: another name for a graph that might have loops.

generating set (for a group): a subset of group elements such that every group element
is a product of generators. (Note: the identity of a group is the empty product).

genus (of an orientable surface): for a surface S, the maximum number γ(S) of disjoint
handles one can find on the surface; or equivalently, the maximum number of disjoint
closed curves one can cut open without disconnecting the surface. The orientable
surface of genus g is denoted Sg.

genus (of a graph): the minimum genus of a surface in which the graph can be cellularly
imbedded.

girth: given a graph, the number of edges in a shortest cycle, if there is at least one
cycle; undefined if the graph has no cycles.

graph: a set V of vertices and a set E of edges such that all the endpoints of edges
in E are contained in V , written G = (V, E), (VG, EG), or (V (G), E(G)).

graph model: any configuration with underlying graph structure, and possibly some
additional attributes on its edges and/or vertices, such as length, direction, or cost.

graph sum: given graphs G and H, the graph G + H whose vertex set and edge set
are the disjoint unions, respectively, the disjoint union of the vertex sets and edge
sets of G and H.

graphical sequence: a sequence of nonnegative integers such that there is a simple
graph for which it is the degree sequence.

Gray code: a cyclic ordering of all 2k bitstrings of length k, such that each bitstring
differs from the next in exactly one bit entry.

Hamilton cycle: a spanning cycle, that is, a cycle including all the vertices of a graph.

Hamiltonian graph: a graph that contains a Hamiltonian cycle.

Hamilton path: a path that includes all the vertices of a graph.

head (of an arc): the vertex the arc goes to.

Hoffman polynomial (of a graph): a polynomial p(x) of minimum degree such that
p(A) = J , where A is the adjacency matrix and J is the matrix with every entry
equal to 1.

homeomorphic graphs: two graphs that can both be obtained from the same graph
by a sequence of edge subdivisions.

hypercube graph: a graph Qd whose 2d vertices could be labeled bijectively with the
bitstrings of length d, so that two vertices are adjacent if and only if their labels
differ in exactly one bit.

hypergraph: a finite set V of “vertices” together with a finite collection E of “edges”
(sometimes, “hyperedges”), which are arbitrary subsets of V , written H = (V, E).

icosahedral graph: the 1-skeleton of the icosahedron, which is a 3-dimensional poly-
hedron whose 20 faces are triangles; this graph has 12 vertices, each of degree 5, and
30 edges.
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imbedding (of a graph in a surface): a drawing of the graph onto some surface so that
there are no edge-crossings; also embedding .

incidence rule: any rule specifying the endpoints of every edge of a graph.

incidence matrix (of a digraph with no self-loops): given a digraph D with no self-
loops, a matrix MI (or MI,D) with

MI [i, j] =




0, if vertex vi is not an endpoint of arc ej
+1, if vi is the head of arc ej
−1, if vi is the tail of arc ej .

incidence matrix (of a graph): given a graph G, a matrix MI (or MI,G) with

MI [i, j] =




0, if vertex vi is not an endpoint of edge ej
1, if ej is a proper edge with endpoint vi
2, if ej is a loop at vi.

incidence matrix (of a hypergraph): given a hypergraph H = (V, E) with E =
{ e1, e2, . . . , em } and V = {x1, x2, . . . xn }, the matrix [mi,j ] where

mi,j =
{

1, if xj ∈ ei
0, otherwise.

incident edge (from [to] a digraph vertex): given a vertex u in a digraph, a directed
edge e such that u is the tail [head] of e.

incident edge (in a graph): given a vertex u in a graph, an edge e such that u is an
endpoint of e.

incident-edge table (for a graph): a table that lists, for each vertex, the edges having
that vertex as an endpoint.

in-degree: given a vertex v, the number of arcs with head v.

independent subset (in a graph): given a graph G, a subset of either V (G) or E(G)
such that no two elements are adjacent in G.

independent subset (of hypergraph vertices): a set of vertices which does not (com-
pletely) contain any edge of the hypergraph.

independence number (of a graph): the number α(G) of vertices in the largest
independent subset in G.

independence number (of a hypergraph): the maximum number α(H) of vertices
that form an independent set in H.

induced subgraph (on a vertex subset): the subgraph of a graph G containing every
edge of G that joins two vertices of the prescribed vertex subset.

invariant: a parameter or property of graphs that is preserved by isomorphisms.

intersection graph (for a family of subsets): given a family F = {Sj} of subsets of a
set S, the graph whose vertex set is F and such that there is an edge between each
pair of subsets Si and Sj whose intersection is nonempty.

intersection graph (of a hypergraph): given a hypergraph H, the simple graph I(H)
whose vertices are the edges of H, such that two vertices of I(H) are adjacent if and
only if the corresponding edges of H have nonempty intersection.

interval graph: the intersection graph of a family of subintervals of [0, 1].

irreducible tournament: a tournament with no bipartition V1, V2 of the vertices such
that all arcs between V1 and V2 go from V1 to V2.

isolated point: a vertex of a graph that is not the endpoint of any edge.
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isomorphic (pair of graphs): a pair of graphs with identical mathematical structure;
formally, a pair of graphs such that there is an isomorphism from one to the other.

isomorphism (of digraphs): an isomorphism of the underlying graphs of two digraphs
such that the edge correspondence preserves direction.

isomorphism (of graphs): given graphs G and H, a pair of bijections fV : VG → VH
and fE : EG → EH such that for every edge e ∈ EG, the endpoints of e are mapped
onto the endpoints of fE(e); f is usually used for both the vertex function fV and
the edge function fE .

isomorphism (of simple graphs): a one-to-one correspondence between the vertices of
two graphs such that a pair of vertices are adjacent in one graph if and only if the
corresponding pair of vertices are adjacent in the other graph.

isomorphism type: given a graph [digraph] G, the class of all graphs [digraphs]
isomorphic to G.

join: given graphs G and H, the graph G ∗H obtained by adding to the disjoint union
G + H an edge from each vertex in G to each vertex in H.

k-connected: property of a graph G that the smallest size of a disconnecting set of
vertices is at least k; that is, κ(G) ≥ k.

k-cycle: a cycle of length k.

k-edge connected: property of a graph G that κ′(G) ≥ k.

k-partite graph: a graph whose vertex set can be partitioned into at most k parts in
such a way that each edge joins different parts, never the same part. Equivalent to
a k-colorable graph.

k-regular: property of a graph or hypergraph that all its vertices have degree k.

king : a vertex in a digraph that can reach all other vertices by paths of length 1 or 2.

Klein bottle: the nonorientable surface N2 with two crosscaps.

Kuratowski graphs: the complete graph K5 and the complete bipartite graph K3,3.

labeled graph: in applied graph theory, any graph in which the vertices and/or edges
have been assigned labels; in pure graph theory, a graph in which standard labels
v1, v2, . . . , vn have been assigned to the vertices.

Laplacian (of a graph): given a graph G, the matrix D − A where D is the diagonal
matrix with the degree sequence of G on the diagonal and where A is the adjacency
matrix.

length: given a walk, the number of edge-steps in the sequence that specifies the walk.

line: synonym for edge, or refers to what is modeled by an edge.

line graph: given a graph G, the graph L(G) whose vertices correspond to the edges
of G, with two vertices being adjacent in L(G) whenever the corresponding edges
have a common endpoint in G.

linear extension ordering : a consecutive labeling v1, v2, . . . , vn of the vertices of a
digraph such that, if there is an arc from vi to vj , then i < j.

link: See proper edge.

loop (or self-loop): an edge joining a vertex to itself.

map: an imbedding of some graph on a surface.

map chromatic number: See chromatic number of a map.
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map coloring : an assignment of colors to the regions of a map so that adjacent regions
receive different colors.

mapping : given graphs G and H, a vertex function f : VG → VH and an edge func-
tion f : EG → EH that correspond together to a continuous function from a spatial
representation of G in Euclidean space to a spatial representation of H.

matching : a set of pairwise disjoint edges in a graph or hypergraph.

matching number: in a graph, the maximum number of pairwise disjoint edges of
the graph; in a hypergraph H, the maximum number ν(H) of pairwise disjoint edges
of H, that is, the cardinality of the largest partial of H which forms a matching.

mesh (of trees): a graph obtained by construing each row and each column of a 2d×2d

array of vertices as the leaves of a complete binary tree.

minor: given a graph G, any graph that can be obtained from G by a sequence of edge
deletions and contractions.

Möbius band: the surface obtained from a rectangular sheet by pasting the left side
to the right with a half-twist.

multi-arc: two or more arcs, all of which have the same head and all of which have
the same tail.

multi-edge: a set of at least two edges, all of which have the same endpoints.

multi-graph: a graph with multi-edges.

neighbor: given a vertex v, any vertex adjacent to v.

node: a vertex, or refers to what is modeled by a vertex.

nonorientable surface: a surface such that some subportion forms a Möbius band.

nonorientable surface of crosscap number k: the surface Nk obtained by adding k
crosscaps to a sphere.

nonplanar: property of a graph that it cannot be drawn in the plane without crossings.

nonseparable: property of a connected graph that it has no cut-vertices.

normal: property of a hypergraph H that q(H) = ∆(H).

normalized drawing : the usual way a graph is drawn, avoiding pathological con-
trivances such as overloaded crossings (i.e., more than two edges).

null graph: a graph with no vertices or edges.

obstruction to n-coloring : synonym for chromatically (n + 1)-critical graph, since
a chromatically (n + 1)-critical subgraph prevents n-chromaticity.

octahedral graph: the 1-skeleton of the 3-dimensional octahedron, or sometimes, a
generalization of this graph.

1-skeleton (of a polyhedron): the graph whose vertices and edges are, respectively,
the vertices and edges of that polyhedron.

open: property of a walk, trail, or path that its final vertex is different from its initial
vertex.

order (of a graph): given a graph G, the cardinality |VG| of the vertex set.

order (of a hypergraph edge): the number of vertices in the edge.

orientable surface: any surface obtainable from a sphere by adding handles, or (al-
ternatively) any surface that does not contain a Möbius band.
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orientable surface of genus g: the surface Sg obtained by attaching g handles to a
sphere.

orientation: an assignment of a direction to every edge of a graph, making it a digraph.

origin (of a walk): the initial vertex of the walk.

out-degree: given a vertex v, the number of arcs with tail v.

partial: for a hypergraph H = (V, E), a hypergraph H ′ = (V, E′) such that E′ ⊆ E.

path: a trail in which all of its vertices are different, except that the initial and final
vertices may be the same. See also u-v-path.

path, directed: a directed trail in which no vertex is repeated.

perfect graph: a graph such that every induced subgraph has vertex chromatic num-
ber equal to its clique number.

permutation graph: a graph whose vertices represent the objects of a permutation
group and whose edges represent the action of a generating set of permutations.

Petersen graph: a 3-regular 10-vertex graph that looks like a 5-cycle joined by its
vertices to the vertices of a 5-pointed star drawn in its interior.

planar: property of a graph that it can be drawn in the plane without crossings.

Platonic graph: the 1-skeleton of a Platonic solid.

Platonic solid: any of five 3-dimensional polyhedra whose sides are all identical reg-
ular polygons.

polyhedron: a generalization of a polygon to higher dimensions; usually a solid 3-
dimensional figure subtended by planes.

product graph: See cartesian product.

projective plane: the nonorientable surface N1 with one crosscap.

proper edge (or link): an edge with two distinct endpoints.

pseudo-graph: synonym for a graph with loops.

quotient: given a graph G, any graph H such that there exists a graph mapping of G
onto H.

r-partite hypergraph: an r-uniform hypergraph whose vertex set can be partitioned
into r blocks so that each edge intersects each block in exactly one vertex.

r-uniform: property of a uniform hypergraph that r is the common edge-order.

radius: for a connected graph G, the minimum eccentricity among the vertices of G.

Ramsey number, (classical): the number r(m, n), which is the smallest positive
integer k such that every simple graph with k vertices either contains Km as a
subgraph or has a set of n independent vertices.

Ramsey number: the number R(G, H), which is the smallest positive integer k such
that, if the edges of Kk are bipartitioned into red and blue classes, then either the
red subgraph contains a copy of G or else the blue subgraph contains a copy of H.

random graph on n vertices: an n-vertex graph generated by a probability distri-
bution, in which each edge is as likely to occur as any of the others.

reachable vertex (from vertex u): a vertex v such that there is a u, v-path in G.

reconstructible: property of a graph that it is uniquely determined by its collection
of vertex-deleted subgraphs.
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reconstructible invariant: an invariant which is uniquely determined by the collec-
tion of vertex-deleted subgraphs of a graph.

reducible: property of a digraph that its vertex set V can be partitioned into a disjoint
union V1 ∪ V2 so that all arcs joining V1 and V2 go from V1 to V2.

region: given a graph imbedded in a surface, a maximal expanse of surface containing
no vertex and no part of any edge of the graph; i.e., any of the pieces of surface
subtended by the graph.

regular: property of a graph or hypergraph that all its vertices have the same degree.
See also k-regular.

representation (of a graph): a description of the graph, possibly without names for
the vertices and edges.

rotation system (of an imbedding): a list of the cyclic orderings of the incidence of
edges at each vertex.

Schreier graph: a graph that depicts the cosets of a prescribed subgroup of a group,
with a prescribed set of generators; the vertices represent cosets, and the edges (often
said to be “color-coded” for the generators) represent the product rule.

self-complementary : property of a graph that it is isomorphic to its edge-comple-
ment.

self-loop: an edge that joins a vertex to itself; see loop.

simple digraph: See strict digraph.

simple (or simplicial) graph: a graph with no loops or multi-edges.

simple hypergraph: a hypergraph with no repeated edges.

sink: a digraph vertex with out-degree zero.

source: a digraph vertex with in-degree zero.

spanning subgraph: a subgraph of a given graph G that includes all vertices of G.

specification (of a graph): a list of its vertices and a list of its edges, with an unam-
biguous incidence rule for determining the endpoints of every edge.

spectrum (of a graph): the spectrum of its adjacency matrix.

strict: property of a digraph that it has no self-loops and no pair of arcs with the same
tail and head.

strong component: in a digraph, a maximal subdigraph that is strongly connected.

strong orientation: given a graph, an assignment of a direction to every edge, making
it a strongly connected digraph.

strong tournament: a tournament in which there is a directed path from every vertex
to every other vertex.

strongly connected: property of a digraph that every vertex is reachable from every
other vertex.

strongly regular graph (with parameters (n, k, r, s)): an n-vertex, k-regular graph
in which every adjacent pair of vertices is mutually adjacent to r other vertices, and
in which every pair of nonadjacent vertices is mutually adjacent to s other vertices;
by convention, strongly regular graphs are connected with at least one edge.

subdivision (of an edge): the operation of inserting a new vertex into the interior of
the edge, thereby splitting it into two edges.
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subdivision: given a graph, any new graph obtaining by subdividing one or more
edges of the original graph one or more times.

subgraph: given a graph G, a graph H whose vertices and edges are all in G.

tail (of an arc): the vertex the arc goes from.

terminus (of a walk): the last vertex of the walk.

tetrahedral graph: another name for the complete graph K4, resulting from the
fact that it is equivalent to the 1-skeleton of the 4-sided Platonic solid called a
tetrahedron.

thickness: given a graph G, the minimum number θ(G) of planar subgraphs whose
union is G.

topological sort (or topsort): an algorithm that assigns a linear extension ordering
to a DAG (not quite a sort, in the usual sense of sorting, and not used by topologists,
despite the name).

torus: the surface of a doughnut; the orientable surface S1 of genus 1.

tough graph: a connected graph G such that for every nonempty set S of vertices,
the number of components of the graph G− S does not exceed |S|.

tournament: a digraph with exactly one arc between each pair of distinct vertices.

trail: a walk in which no edge occurs more than once.

trail, directed: a directed walk in which no arc is repeated.

transitive: property of a digraph that whenever it contains an arc from u to v and an
arc from v to w, it also contains an arc from u to w.

transitive orientation: given a graph, an assignment of a direction to every edge,
making it a transitive digraph.

transmitter: in a digraph, a vertex that has an arc to every other vertex.

transversal: in a hypergraph, a set of vertices which has nonempty intersection with
every edge of the hypergraph.

transversal number: the minimum number τ(H) of vertices taken over all transver-
sals of H.

tree: a connected graph without any cycles as subgraphs.

trivial graph: the graph with one vertex and no edges.

Turán graph: the n-vertex k-partite simple graph Tk(n) with the maximum number
of edges.

u,v-path: a path whose origin is the vertex u and whose terminus is the vertex v.

underlying graph: given a digraph, the graph obtained from the digraph by stripping
the directions off all the arcs.

uniform: property of a hypergraph that all edges have the same number of vertices.
See also r-uniform.

unilaterally connected (or unilateral): property of a digraph that for every pair of
vertices u, v, there is either a uv-path or a vu-path.

upset: a simple hypergraph in which every superset of every edge is also an edge of
the hypergraph.

valence: a synonym for degree, adapted from molecular bonds in chemistry.
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vertex: a point; an element of the first constituent set of a graph.

vertex coloring : an assignment of colors to the vertices of a graph so that adjacent
vertices receive different colors.

(vertex) connectivity : the smallest number κ(G) of vertices whose removal discon-
nects the graph; by convention, κ(Kn) = n− 1.

vertex cut: See disconnecting set.

vertex-deleted subgraph: any subgraph obtained from a graph by removing a single
vertex and all of its incident edges.

vertex invariant: a property at a vertex which is preserved by every isomorphism.

walk: an alternating sequence v0, e1, v1, . . . , er, vr of vertices and edges where consec-
utive edges are adjacent, so that each edge ei joins vertices vi−1 and vi.

walk, directed: an alternating sequence of vertices and arcs v0, e1, v1, e2, . . . , en, vn
where the arcs align head to tail, so that each vertex is the head of the preceding
arc and the tail of the subsequent arc.

weakly connected (or weak) digraph: a digraph whose underlying graph is con-
nected.

weighted graph: a graph model in which each edge is assigned a number called the
weight or the cost.

wheel graph: an (n + 1)-vertex graph Wn that “looks like” a wheel whose rim is an
n-cycle and whose hub vertex is joined by spokes to all the vertices on the rim.

8.1 INTRODUCTION TO GRAPHS
Graphs are highly adaptable mathematical structures, and they can be represented on
a computer so that with each new application that arises, existing algorithms can be
reused without rewriting. This section provides some of the basic terminology and
operations needed for the study of graphs and lists several useful families of graphs.

8.1.1 VARIETIES OF GRAPHS AND GRAPH MODELS

Due to the vast breadth of the usefulness of graphs, the terminology varies widely, not
only from one graph variety to another, but also from one application to another. The
table in Fact 1 gives synonyms for several terms.

Definitions:

A vertex is usually conceptualized as a point. Abstractly, it is a member of the first
of two sets that form a graph.

An edge is usually conceptualized as a line, either joining one vertex to another or
joining a vertex to itself. Abstractly, it is a member of the second of two sets that form
a graph.

A proper edge (or link) is an edge that joins one vertex to another.
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A loop (or self-loop) is an edge joining a vertex to itself.

The endpoints of an edge are the vertices that it joins. A loop has only one endpoint.

An incidence rule specifies the endpoints of every edge.

An edge e is incident with a vertex v if v is an endpoint of e.

A graph is a set V of vertices and a set E of edges (both sets finite unless declared
otherwise) such that all the endpoints of edges in E are contained in V . It is often
denoted G = (V, E), or (VG, EG), or (V (G), E(G)). Sometimes, each edge is regarded
as a pair of vertices.

An isolated point of a graph G = (V, E) is a vertex in V that is not the endpoint of
any edge in E.

Vertices u and v are adjacent if there is an edge whose endpoints are u and v.

Two edges are adjacent if they have a common endpoint.

A neighbor of a vertex is any vertex to which it is adjacent.

An attribute of the edge-set or vertex-set is a feature such as length, cost, or color
sometimes attached to graphs.

A graph model is a graph which (quite frequently, in applications) may have addi-
tional attributes on its edges and/or vertices. The vertices and edges of the model may
represent arbitrary objects and relationships from the context of the application.

A weighted graph is a graph model in which each edge is assigned a number called
the weight or the cost.

A node is sometimes a synonym for a vertex and sometimes refers to whatever is
modeled by a vertex in a graph model.

A line is sometimes a synonym for an edge and sometimes refers to whatever is modeled
by an edge in a graph model.

A multi-edge in an undirected graph is a set of more than one edge with the same
endpoints, and in a digraph a set of more than one edge such that each edge in the set
has the same head and each edge in the set has the same tail. A graph with a multi-edge
is also said to have multiple edges or parallel edges.

A multi-edge of multiplicity n is a set of n edges with the same endpoints.

A set of parallel edges is a set of edges with the same endpoints, i.e., a multi-edge. A
pair of anti-parallel arcs is a pair of oppositely directed arcs between the same two
endpoints.

A graph is simple if it has no loops or multi-edges. Topologists often say simplicial,
because such a graph is a special case of a “simplicial complex”.

A multi-graph is another name for a graph with multi-edges but no self-loops, used
for emphasis when the context is largely restricted to simple graphs.

A pseudo-graph (or general graph) is another name for a graph in which loops and
multi-edges are permitted, used for emphasis when the context is largely restricted to
loopless graphs.

A direction on an edge is an ordering for its endpoints so that the edge goes from one
endpoint and to the other. Any edge, including a self-loop, can be directed by giving
it a sense of forward progression, e.g., in a graph drawing, by placing an arrowhead to
show which way is forward, or by ordering the endpoints.

An arc is another name for a directed edge.
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The tail of an arc is the vertex at which the arc originates.

The head of an arc is the vertex at which the arc terminates.

A directed graph or digraph is a graph in which every edge is directed. (See §8.3.)

A strict digraph has no self-loops and no pair of arcs with the same tail and head.

The degree of vertex v, deg(v), is the number of proper edges plus twice the number
of loops incident with v. Thus, in a drawing, it is the number of edge-endings at v.

The valence of a vertex is a synonym for degree adapted from terminology in chemistry.

The degree sequence of a graph is the sequence of the degrees of its vertices, most
often sorted into size order, ascending or descending.

A regular graph is a graph such that all vertices have the same degree. It is called
k-regular if the vertices all have degree k.

A graphical sequence is a sequence of nonnegative integers that is the degree sequence
of some simple graph.

The number of vertices of a graph is sometimes called the order.

The number of edges of a graph is sometimes called the size.

The empty graph is the graph whose vertex set and edge set are both empty. This is
also called the null graph (and is sometimes not considered to be a graph).

The trivial graph is the graph with one vertex and no edges.

Facts:

1. The following table gives lists of some synonymous graph theory terms:

vertex: point, node
edge: line
loop: self-loop
neighbor: adjacent vertex
arc: directed edge
degree: valence
number of vertices: order
number of edges: size
nonsimple graph: pseudograph, general graph
loopless nonsimple graph: multi-graph
empty graph: null graph

2. The following table lists the varieties of graphs:

graph variety loops allowed? multi-edges allowed?

digraph YES YES
general graph YES YES
multi-graph NO YES

pseudo-graph YES YES
simple graph NO NO
strict digraph NO NO*

*at most one arc in each direction between two vertices
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3. In a drawing of a graph, the degree of a vertex v equals the number of edge-ends at v.
The degree of v need not equal the number of edges at v, since each loop contributes
both its ends toward the degree.

4. Euler’s theorem: In every graph, the sum of the degrees equals twice the number of
edges. From this result it follows that in all graphs the sum of the degrees of all vertices
is even.

5. In every graph the number of vertices of odd degree is even.

6. The name handshaking lemma is commonly applied to various elementary results
about the degrees of simple graphs, especially Facts 4 and 5.

7. In every simple graph with at least two vertices, there is a pair of vertices with the
same degree.

8. Havel’s theorem: A sequence is a graphical sequence if and only if the sequence
obtained by deleting the largest entry d and subtracting 1 from each of the d next largest
entries is graphical. (V. Havel, 1955). This operation on a sequence is called Havel’s
reduction.

9. A nonincreasing sequence of nonnegative integers d1, d2, . . . , dn is graphical if and
only if its sum is even, and for k = 1, 2, . . . , n,

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}.

(P. Erdős and T. Gallai, 1960)

10. In a computer, a graph is commonly represented as a structure with variable value.
The empty graph is often used as the initial value of a graph variable, analogous to the
way in which zero is used as the initial value of a numeric variable.

Examples:

1. The following figure gives examples of the various varieties of graphs. (See the table
of Fact 2.)
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2. Computer programming flowchart (always a digraph): Each vertex represents some
programmed operation or decision, and each arc represents the flow of control to the
next operation or decision.

3. Model for social networks (usually undirected): Each vertex represents a person
in the network, and each edge represents a form of interaction between the persons
represented by its endpoints. This is illustrated by the following graph.

4. Model for road networks (most edges undirected): Each vertex represents either an
intersection of two roads or the end of a dead-end street. The absence of an endpoint in
the illustration indicates that the road continues beyond what is shown. Direction on
an edge may be used to indicate a one-way road. Undirected edges are two-way roads.

5. In the following graph with vertex set V = { v1, v2, v3, v4, v5 } and edge set E =
{ e1, e2, e3, e4, e5, e6, e7 }, the vertex v5 is an isolated point, and the degree sequence is
(0, 3, 3, 4, 4). The edge e7 is a loop, and the three edges e4, e5, and e6 form a multi-edge.
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6. Deleting the isolated vertex and the self-loop in Example 5 and then reducing the
multi-edge to a single edge yields the following simple graph, whose degree sequence is
(1, 2, 2, 3).

7. One possible choice of edge directions for the graph of Example 5 yields this digraph.

8. The sequence (1, 2, 2, 3, 4, 5) is not graphical, by Euler’s theorem (Fact 4), because
its sum is odd.

9. Havel’s reduction (Fact 8) of the sequence (2, 2, 2, 3, 4, 5) is (1, 1, 1, 2, 3). Havel’s
reduction of that sequence is (0, 0, 1, 1). Since (0, 0, 1, 1) is the degree sequence of a
graph with four vertices, two of which are isolated and two of which are joined by an
edge, it follows from Havel’s theorem that the sequence (2, 2, 2, 3, 4, 5) is graphical.

8.1.2 GRAPH OPERATIONS

Definitions:

A subgraph of a graph G = (VG, EG) is a graph H = (VH , EH) whose vertex set and
edge set are subsets of VG and EG, respectively, such that for each edge e in EH , the
endpoints of e (as they occur in G) are in VH .

A spanning subgraph of a graph G is a subgraph that contains all the vertices of G.

The induced subgraph on a vertex subset S ⊆ VG of a graph G is the subgraph
whose vertex set is S and whose edge set contains every edge whose endpoints are in S.

An induced subgraph of G is a subgraph H such that every edge of G that joins two
vertices of H is also an edge of H.

Deleting an edge e from a graph G results in the subgraph G − e that contains all
the vertices of G and all the edges of G except for e.

Deleting a subset Y of edges from a graph G results in the subgraph G − Y that
contains all the vertices of G and all the edges of G except for those in Y .

Deleting a vertex v from a graph G results in the subgraph G − v that contains all
the vertices of G except v and all the edges of G except those incident with v.

Deleting a subset S of vertices from a graph G results in the subgraph G− S that
contains all the vertices of G except those in S and all the edges of G except those
incident with vertices in S.
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Contracting an edge e in a graph G means shrinking the edge to a point, so that its
endpoints are merged, without changing the rest of the graph. The resulting graph is
denoted G ↓ e (or G · e or G/e). To construct G ↓ e from G, delete the edge e from the
edge set and replace all instances of its endpoints in the vertex set and incidence rule
by a new vertex.

A minor of a graph G is any graph that can be obtained from G by a sequence of edge
deletions and contractions.

The graph union G∪H has as its vertices and edges those vertices and edges, respec-
tively, that are either in G or in H.

The graph intersection G ∩H has as its vertices and edges those vertices and edges,
respectively, that are both in G and in H.

The graph sum (or disjoint union) G + H has as its vertices and edges, respectively,
the disjoint union of the vertex sets and the disjoint union of the edge sets of the
graphs G and H.

The iterated graph sum nG is the union of n disjoint copies of G.

The join G ∗H is obtained by adding to G + H an edge from each vertex in G to each
vertex in H.

The (cartesian) product G×H has as its vertices the cartesian product VG×VH and
as its edges this union of two products: (VG ×EH) ∪ (EG × VH). The endpoints of the
edge (u, d) are the vertices (u, x) and (u, y), where x and y are the endpoints of d in H.
The endpoints of the edge (e, w) are (u, w) and (v, w), where u and v are the endpoints
of e.

An isomorphism f : G → H (of graphs) is a relationship between graphs that estab-
lishes their structural equivalence. It is given by a pair of set bijections fV : VG → VH and
fE : EG → EH such that if u and v are the endpoints of edge e in graph G, then fV (u)
and fV (v) are the endpoints of fE(e) in graph H. The vertex function and the edge
function can both be denoted f without the subscript. (See §8.5.)

Two graphs are isomorphic if there is an isomorphism between them. This means that
they are essentially the same graph except for the names of their vertices and edges.

A graph mapping f : G → H (of graphs) is a pair of set functions fV : VG → VH and
fE : EG → EH such that if u and v are the endpoints of edge e in G, then f(u) and f(v)
are the endpoints of f(e) in H. Such a pair of functions is said to preserve incidence.
The vertex function and the edge function can both be denoted f without the subscript.

A quotient of a graph G is a graph H such that there is a graph mapping from G
onto H.

An automorphism of a graph G is an isomorphism of G to itself.

The automorphism group Aut(G) is the group of all automorphisms of graph G.

Subdivision of an edge e is the operation of inserting a new vertex in the interior of
an edge. Combinatorially, this is achieved by joining a new vertex to the endpoints of
edge e and then deleting e.

Two graphs are homeomorphic if there is a graph from which they can both be
obtained by a sequence of edge subdivisions.

The edge-complement G of a simple graph G (often, complement) has the same
vertex set as G, with every two distinct vertices being adjacent in G if and only if they
are not adjacent in G.
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A self-complementary graph is a graph that is isomorphic to its complement.

The line graph L(G) of a graph G has vertices corresponding to the edges of G, with
two vertices being adjacent in L(G) whenever the corresponding edges are adjacent in G.

Facts:
1. If a graph J is isomorphic to a subgraph of a graph G, then it is commonly said
that J “is” a subgraph of G, even though VJ and EJ might not be subsets of VG and EG,
respectively.
2. A graph is a subgraph of its union with any other graph.
3. The intersection of two graphs is a subgraph of both of them.
4. A graph mapping is the combinatorial counterpart of what is topologically a con-
tinuous function from one graph to the other.
5. A graph isomorphism is a graph mapping such that both the vertex function and
the edge function are bijections.
6. There is a self-complementary graph of order n if and only if n ≡ 0 or 1 (mod 4).
7. The automorphism group Aut(G) of any simple graph is isomorphic to the auto-
morphism group Aut(G) of its edge-complement.
8. A connected graph G is isomorphic to its line graph if and only if G is a cycle
(§8.1.3).
9. If two connected graphs have isomorphic line graphs, then they are either isomorphic
to each other or they are K3 and K1,3 (§8.1.3).
10. Aut(Kn) is isomorphic to the symmetric group Sn (§5.3.1).
11. Aut(Cn) is isomorphic to the dihedral group Dn (§5.3.2).

Examples:
1. The dark subgraph spans the following graph, because it contains every vertex.

2. The cartesian product C4 ×K2 (§8.1.3) is illustrated as follows:

3. The join K2 ∗ P3 (§8.1.3) is illustrated as follows:
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4. The following two graphs are homeomorphic, but not isomorphic.

5. The graphs K3,3 and K3 + K3 (§8.1.3) are edge-complements of each other.

6. The cycle graph C5 (§8.1.3) is self-complementary.

7. The line graph L(K4) (§8.1.3) is isomorphic to the octahedral graph O3.

8.1.3 SPECIAL GRAPHS AND GRAPH FAMILIES

Definitions:

Note: Many of the following graphs are drawn in Figures 1 and 2.

A graph is null (sometimes, empty) if both its vertex set and edge set are empty.

The bouquet of n loops, denoted Bn, is a graph with one vertex and n self-loops.

The dipole Dn is the graph with two vertices and a multi-edge of multiplicity n joining
them.

The complete graph Kn is a simple graph with n vertices in which every pair of
vertices is adjacent.

The n-path Pn is a graph that “looks like” a path n − 1 edges long. It consists of a
sequence of n vertices V = {v1, v2 . . . , vn} and a sequence of n−1 edges joining successive
vertices in the sequence, that is, the n− 1 edges are {v1, v2}, {v2, v3}, . . . , {vn−1, vn}.
A path is a graph that is an n-path for some n ≥ 0.

The n-cycle Cn is a graph that “looks like” a cycle. It has a “wraparound” sequence
of vertices V = {v1, v2, . . . , vn} and a sequence of edges joining successive vertices in
the sequence, i.e., the n edges are {v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}.
A cycle is a graph which is an n-cycle, for any n > 0.

The n-wheel is the join of K1 and the n-cycle.

A graph is bipartite if its vertices can be partitioned into two subsets (the parts, or
partite sets) so that no two vertices in the same part are adjacent.

The complete bipartite graph Kr,s is the simple bipartite graph in which the two
parts have respective cardinalities r and s, such that every vertex in one part is adjacent
to every vertex in the other part.

The complete r-partite graph Kn1,n2,...,nr has r disjoint subsets of vertices of orders
n1, n2, . . . , nr, with two vertices adjacent if and only if they lie in different subsets. If
the r sets all have t vertices, this graph is sometimes denoted Kr(t).

The d-dimensional hypercube graph Qd is a graph with 2d vertices that can be
labeled with the 2d bitstrings of length d so that two vertices are adjacent if and only
if their labels differ in exactly one bit.

A graph G is connected if for each pair of vertices in G, there is a path in G that
contains them both.

A tree is a connected graph without any cycles as subgraphs. (See Chapter 9.)

A forest is a graph without any cycles as subgraphs.
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The Kuratowski graphs are the graphs K5 and K3,3.

The Petersen graph is the graph constructed from two disjoint 5-cycles u0, u1, u2,
u3, u4 and v0, v1, v2, v3, v4 by adding an edge from uj to v2jmod 5, for j = 0, 1, 2, 3, 4.
It is usually drawn to look like a 5-pointed star inside a pentagon, so that each point of
the star is joined to a corner of the pentagon. (See Figure 3.)

A polyhedron is the generalization of a polygon to higher dimensions. Whereas a
polygon is the intersection in R2 of several half-planes, an n-dimensional polyhedron is
the intersection in Rn of several half-spaces of dimension n.

A Platonic solid is a regular 3-dimensional polyhedron.

The 1-skeleton of a polyhedron is the graph that has as its vertices and edges the
vertices and edges, respectively, of that polyhedron.

The tetrahedral graph is the 1-skeleton of the 4-sided Platonic solid called a tetrahe-
dron. The faces of the tetrahedron are triangles.

The cube graph is the 1-skeleton of the 6-sided Platonic solid called a cube. The faces
of the cube are squares.

The octahedral graph is the 1-skeleton of the 8-sided Platonic solid called an octahe-
dron. The faces of the octahedron are triangles.

The generalized octahedral graph On is the graph that can be obtained from the
complete graph K2n by removing n mutually nonadjacent edges.

The dodecahedral graph is the 1-skeleton of the 12-sided Platonic solid called a
dodecahedron. It has 20 vertices, each of degree 3, and 30 edges. The dodecahedron
has 12 regular pentagons as its faces.

The icosahedral graph is the 1-skeleton of the 20-sided Platonic solid called an icosa-
hedron. It has 12 vertices, each of degree 5, and 30 edges. The icosahedron has 20
equilateral triangles as its faces.

A Platonic graph is any graph isomorphic to the 1-skeleton of any Platonic solid.

The intersection graph for a collection F = {Sj} of subsets of the same set has as
its nodes the subsets themselves. There is an edge between each pair of subsets whose
intersection is not empty.

An interval graph is any graph isomorphic to the intersection graph for a collection
of intervals of the real line.

Facts:

1. In a computer program, the null graph is used as the initial value of a graph-valued
variable, rather like the way that an integer-valued variable is initialized to zero. As the
program runs, the graph-valued variable can be modified by adding vertices and edges.

2. Bouquets and dipoles are fundamental building blocks for graphs constructed by
topological techniques.

3. The path graph Pn is a tree.

4. A graph is bipartite if and only if it has no cycles of odd length.

5. Trees are bipartite.

6. The hypercube graphs Qn can be defined recursively as follows: Q0 = K1, Qn =
K2 ×Qn−1 for n > 0.

7. The hypercube graph Qn is bipartite and is isomorphic to the lattice of subsets of
a set of n elements. (See §13.2.)
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8. The octahedral graphs On can be defined recursively as follows: O0 = K2, On =
K2 ∗ On−1 for n > 0.

9. There are exactly five Platonic solids: the tetrahedron, the cube, the octahedron, the
dodecahedron, and the icosahedron. Their 1-skeletons are K4, Q3,O4, the dodecahedral
graph, and the icosahedral graph.

Examples:

1. Figure 1 shows some of the classes of graphs that occur most often in general con-
structions.

2. Figure 2 shows some of the graphs that occur most often as special examples.

8.1.4 GRAPH REPRESENTATION AND COMPUTATION

To apply a computer to graph-theoretic computations, it is necessary to specify the
underlying graph completely and without ambiguity. Programming system designers
use specifications that are efficient for practical computation and that can be reused in
additional applications.

Definitions:

A specification of a graph is a list of its vertices, a list of its edges, and an unambiguous
description of the incidence rule for determining the endpoints of every edge.

An endpoint table for a graph is a tabular description of the incidence rule, that gives
the endpoints of every edge. In a digraph or partially directed graph, the tail and head
of each directed edge are distinguished, for instance, by marking the head, or by always
giving the tail first.

An incident-edge table for a graph is a tabular description of the incidence rule, that
gives for each vertex v, a list of the edges having v as an endpoint. If the graph is
directed, this list is partitioned into two sublists, according to whether v is tail or head.

A representation of a graph G is a graph description, such as a drawing, from which
a formal specification could be constructed and labeled with the vertex names and edge
names from G, so as to obtain a graph that conforms to the incidence rule for G.

The incidence matrix of a graph (without loops) G with vertices v1, v2, . . . , vn and
edges e1, e2, . . . , em is the n×m matrix MI (or MI,G, in the context of more than one
graph) with

MI [i, j] =




0 if vi is not an endpoint of ej
1 if ej is a proper edge and vi is an endpoint of ej
2 if ej is a loop at vi.

(Sometimes an incidence matrix is written with MI [i, j] = 1 for a loop, even though
this violates the properties that every column-sum equals 2 and every row-sum equals
the degree of the corresponding vertex.)

The adjacency matrix of a loopless graph G with vertices v1, v2, . . . , vn and edges
e1, e2, . . . , em is the n× n matrix AG with

AG[i, j] = the number of edges between vi and vj if i �= j.

If there are self-loops, then AG[i, i] is usually defined to be the number of loops at vi.
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Figure 1 Some fundamental infinite classes of graphs.
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Figure 2 Some special graphs.
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A Cayley graph [Cayley digraph] for a group A with generating set x1, . . . , xr has
as its vertices the elements of the group. For each group element b and each prescribed
generator xj , there is an edge between the vertices b and bxj [from b to bxj ].

A Schreier graph [Schreier digraph] for a group A with generating set x1, . . . , xr
and subgroup B has as its vertices the cosets of B in A. For each coset Bb and each
prescribed generator xj , there is an edge between the vertices Bb and Bbxj [from Bb to
Bbxj ].

A permutation graph [permutation digraph] for a permutation group Π with gen-
erating permutations π1, . . . , πr and object set B has as its vertices the object set B. For
each object b and each prescribed generator permutation πj , there is an edge between
the vertices b and πj(b) [from b to πj(b)].

An algebraic specification of a graph is a generalization of Cayley graphs and per-
mutation graphs. It uses elements of a group or the objects of a permutation group
as all or part of the names of the vertices and edges. It uses the group operation or
permutation action in the incidence rule.

A voltage graph is a form of algebraic specification in which the vertices and edges are
specified as a set of one or more symbols with subscripts, ranging over group elements
or permuted objects. Its usual form is a digraph drawing with vertex labels and edge
labels.

A normalized drawing of a graph represents each vertex as a distinct point in the
plane and each edge as a possibly curved line between endpoints, obeying the following
rules:

• the interior of an edge may not cross through any vertex;
• at most two edges cross at any point of the plane;
• two edges cross each other at most once;
• each edge crossing is normal, not a tangency.

A complete set of operations on graphs is a set from which all other operations can
be constructed.

The operations in a complete set are primitive if none can be derived from the other
operations in the set.

A graph computation package is a computer software system that represents graphs
and includes a complete set of operations.

A display operation in a graph computation package manipulates the appearance of
a graph image on a computer screen or in a drawing.

Facts:
1. Despite the redundancy of information, an incident-edge table is often used in com-
bination with an endpoint table in computer software, because it facilitates the use of
fast searching techniques at the cost of relatively little space.

2. If a graph is simple, then its edges can be represented as endpoint pairs uv. Thus,
the graph can be specified as a list of endpoint pairs and a list of isolated vertices.

3. If a graph is simple, then its incident-edge table can be represented as a table that
gives the list of neighbors of every vertex.

4. If A = AG is the adjacency matrix of graph G, then the (i, j)-entry of Ak is the
number of walks (§8.4.1) of length k from vi to vj in G.
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5. Matrix-tree theorem (Kirchoff, 1847): Let G be a graph, and let A be its adjacency
matrix and D the diagonal matrix of the degrees of its vertices. Then the value of
every cofactor of D−A equals the number of spanning trees of G. (Gustav R. Kirchoff,
1824–1887)

6. Given the incidence matrix MI,G, it is possible to obtain the incidence matrix MI,H

for a subgraph H of G by deleting all rows and columns corresponding to vertices and
edges, respectively, that are not in the subgraph.

7. Algebraic specification is useful when the graph is highly symmetric. It replaces an
arbitrarily large table of endpoints by a concise algebraic rule.

8. Algebraic specification can be used to specify the graph model for a parallel archi-
tecture for a computer.

9. Every regular graph of even degree can be specified as a Schreier graph or as a
permutation graph. (J. Gross, 1977)

10. The graph specified by a voltage graph drawing is topologically a covering space
of the voltage graph. (J. Gross, 1974) Thus, its relationship to the voltage graph is
exactly like the relationship of a Riemann surface to the complex plane.

11. The most commonly used complete set of operations is adding a vertex, deleting a
vertex, adding an edge, and deleting an edge.

12. Graph computation packages are built into mathematical computation systems
such as Maple and Mathematica.

13. Graph computation packages often include display operations.

Examples:

1. The following normalized drawing, endpoint table, incident-edge table, incidence
matrix and adjacency matrix all specify the same graph G.

endpoint table
e1 e2 e3 e4 e5 e6 e7

v1 v2 v2 v3 v3 v3 v1

v2 v3 v4 v4 v4 v4

incident-edge table
v1 e1 e7

v2 e1 e2 e3

v3 e2 e4 e5 e6

v4 e3 e4 e5 e6

v5

MI,G =




e1 e2 e3 e4 e5 e6 e7

v1 1 0 0 0 0 0 2
v2 1 1 1 0 0 0 0
v3 0 1 0 1 1 1 0
v4 0 0 1 1 1 1 0
v5 0 0 0 0 0 0 0


 AG =




v1 v2 v3 v4 v5

v1 1 1 0 0 0
v2 1 0 1 1 0
v3 0 1 0 3 0
v4 0 1 3 0 0
v5 0 0 0 0 0



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2. The following normalized drawing, list of endpoint pairs, lists-of-neighbors table,
incidence matrix and adjacency matrix all specify the same simple graph H. It is a
spanning subgraph of the graph G of Example 1, but it is not an induced subgraph.
Compare the incidence matrix to Example 1 to see how the rows and columns are
deleted.

endpoint pairs:
v1v2, v2v3, v2v4, v3v4

lists-of-neighbors
v1 : v2

v2 : v1 v3 v4

v3 : v2 v4

v4 : v2 v3

MI,H =




e1 e2 e3 e4

v1 1 0 0 0
v2 1 1 1 0
v3 0 1 0 1
v4 0 0 1 1


 AH =




v1 v2 v3 v4

v1 0 1 0 0
v2 1 0 1 1
v3 0 1 0 1
v4 0 1 1 0




3. Squaring and cubing the adjacency matrix of Example 2 provides an illustration of
Fact 4.

A2
H =




v1 v2 v3 v4

v1 1 0 1 1
v2 0 3 1 1
v3 1 1 2 1
v4 1 1 1 2


 A3

H =




v1 v2 v3 v4

v1 0 3 1 1
v2 3 2 4 4
v3 1 4 2 3
v4 1 4 3 2




For instance, the three walks of length 3 from v4 to v3 are as follows:
< v4, e3, v2, e3, v4, e4, v3 >, < v4, e4, v3, e4, v4, e4, v3 >, < v4, e4, v3, e2, v2, e2, v3 >.

4. As an illustration of the Kirchoff matrix-tree theorem of Fact 5, observe that the
graph of Example 2 has the following three spanning trees.

The value of the (2,2)-cofactor of the matrix D −A is also equal to 3:

D −A =




v1 v2 v3 v4

v1 1 −1 0 0
v2 −1 3 −1 −1
v3 0 −1 2 −1
v4 0 −1 −1 2


 cofactor =

∣∣∣∣∣∣
1 0 0
0 2 −1
0 −1 2

∣∣∣∣∣∣ = 3.
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5. (a) The following normalized graph drawing and algebraic specification using the
group Z5 of integers mod 5 both specify the same graph:

algebraic specification using group Z5 with generators x = 1 and y = 2:
vertex set V = { vj | j ∈ Z5 };
edge set E={xj joining vj and v(j+1)mod 5, yj joining vj and v(j+2)mod 5 | j ∈Z5}.

(b) The following voltage graph (see [GrTu87]) provides a highly compact visual form
of algebraic specification of the same graph as in part (a).

6. The Petersen graph has the following algebraic specification:
V = {uj , vj | j = 0, 1, 2, 3, 4 };
E = {xj (uj→u(j+1)mod 5), yj (vj→ v(j+2)mod 5), zj (uj→ vj) | j = 0, 1, 2, 3, 4 }.

With appropriate labeling, the Petersen graph (left) corresponds to the following voltage
graph specification (right).

7. The Petersen graph as depicted in Example 6 is also an example of a permutation
graph on the object set V = {uj , vj | j = 0, 1, 2, 3, 4 } with the two permutations:

(u0, u1, u2, u3, u4)(v0, v2, v4, v1, v3) (u0, v0)(u1, v1)(u2, v2)(u3, v3)(u4, v4).

8.2 GRAPH MODELS

Modeling with graphs is one of the main ways in which discrete mathematics has
been applied to real world problems. This section gives a list of some of the ways
in which graphs are used as mathematical models. Further information can be found in
[HaNoCa65] and [Ro76].

c© 2000 by CRC Press LLC



8.2.1 ATTRIBUTES OF A GRAPH MODEL

Definitions:

A mathematical representation of a physical or behavioral phenomenon is a corre-
spondence between the parts and processes of that phenomenon and a mathematical
system of objects and functions.

A model of a physical or behavioral phenomenon is the mathematical object or function
assigned to that phenomenon under a mathematical representation.

Modeling is the mathematical activity of designing models and comprehensive math-
ematical representations of physical and behavioral phenomena.

A graph model is a mathematical representation that involves a graph.

Examples:

1. Table 1 gives many examples of graph models. Each example states what the vertices
and edges (or arcs) represent and where in the Handbook details on the application can
be found.

8.3 DIRECTED GRAPHS

Assigning directions to the edges of a graph greatly enhances modeling capability, and is
natural whenever order is important, e.g., in a hierarchical structure or a one-way road
system. Also, any graph may be viewed as a digraph, by replacing each edge with two
directed edges, one in each direction. Many graph problems are best solved as special
cases of digraph problems, for instance, finding shortest paths, maximum flows, and
connectivity.

8.3.1 DIGRAPH MODELS AND REPRESENTATIONS

Most graph terminology applies equally well to digraphs, e.g., subgraph, self-loop, bi-
partite, isomorphic, empty. The definitions below are special to digraphs or take on
a somewhat different meaning for digraphs. In context, where it is clear that only di-
graphs are being discussed, “directedness” is often an implicit attribute of an “edge”,
“path”, and other terms.

Definitions:

A directed graph, or digraph, consists of:
• a set V , whose elements are called vertices,
• a set E, whose elements are called directed edges or arcs, and
• an incidence function that assigns to each edge a tail and a head.

The tail of an arc is the vertex it leaves, and the head is the vertex it enters.

A strict digraph has no self-loops or multi-arcs.

The underlying graph of a digraph is the graph obtained from the digraph by
replacing every directed edge by an undirected edge.
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Table 1 Directory of graph models.

subject area vertex attributes and meaning
reference

and application edge/arc attributes and meaning

computer programming vertex labels are program steps §8.1.1
flowcharts edge directions show flow

social organization vertices are persons §8.1.1
social networks edges represent interactions

civil engineering vertices are road intersections §8.1.1,
road networks edges are roads §8.3.1

operations research vertices are activities §8.3.1
scheduling arcs show operational precedence

sociology vertices are individuals §8.3.1
hierarchical dominance arcs show who reports to whom

computer programming vertices are subprograms §8.3.1
subprogram calling diagram arcs show calling direction

ecology vertices are species §8.3.1
food webs arcs show who eats whom

operations research vertices are activities to be scheduled §8.3.1,
scheduling edges are activity conflicts §8.6.1

genealogy vertices are family members §8.3.1
“family trees” arcs show parenthood

set theory vertices are elements §8.3.1
binary relations arcs show relatedness

probabilistic analysis vertices are process states §8.3.2
Markov models edges are state transitions

traffic control vertices are intersection §8.3.3
assigning one-way streets edges are streets

partially ordered sets vertices are elements §8.3.4
Hasse diagrams arcs show covering relation

computer engineering vertices are computational nodes §8.4.2
communications networks arcs are communications links

operations research vertices are supply and demand nodes §8.4.2
transportation networks arcs are supply lines

walking tours vertices are land masses §8.4.3
Seven Bridges of Königsberg edges are bridges

postal delivery routing vertices are street intersections §8.4.3
Chinese Postman Problem edges are streets

information theory vertices are binary strings §8.4.4
Gray codes edges are single-bit changes

radio broadcasting vertices are broadcast stations §8.6.1
assignment of frequencies edges are potential interference

chemistry vertices are chemicals §8.6.1
preventing explosions edges are co-combustibility
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subject area vertex attributes and meaning
reference

and application edge/arc attributes and meaning

cartography regions are countries §8.6.4
map-coloring edges are borders

highway construction vertices are road intersections §8.7.1
avoiding overcrossings edges are roads

electrical network boards vertices are circuit components §8.7.1
avoiding insulation edges are wires

VLSI computer chips vertices are circuit components §8.7.4
minimizing layering edges are wires

information management vertices are data records §17.1.4
binary search trees edges are decisions

computer operating systems vertices are prioritized jobs §17.1.5
priority trees edges are priority relations

physical chemistry vertices are atoms §9.3.2
counting isomers edges are molecular bonds

network optimization edges are connections §10.1.1
min-cost spanning trees edge-labels are costs

bipartite matching parts are people and jobs §10.2.2
personnel assignment edges are job-capabilities

network optimization vertices are locations §10.3.1
shortest path edge-labels are distances

traveling salesman routing vertices are locations §10.7.1
shortest complete tour edge-labels are distances

The out-degree of vertex v, denoted δ+(v), is the number of arcs with tail at v.

The in-degree of vertex v, denoted δ−(v), is the number of arcs with head at v.

A digraph D is transitive if whenever it contains an arc from u to v and an arc from v
to w, it also contains an arc from u to w.

The adjacency matrix AD of a digraph D is
AD = [aij ], where aij = number of arcs from vi to vj .

The incidence matrix MD of a digraph D with no self-loops is MD = [bij ], where

bij =

{+1, if vi is the tail of ej but not the head
−1, if vi is the head of ej but not the tail

0, otherwise.
There is no standard convention for self-loops.

Facts:

1. Strict-digraph terminology: In a context focusing primarily on strict digraphs, there
is often a different terminological convention:

• “digraph” refers to a strict digraph;
• a directed graph with multi-arcs is called a multidigraph;
• a directed graph with self-loops is called a pseudodigraph;
• an arc with tail u and head v is designated uv.
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2. Alternative “path” terminology: There is an alternative convention in which a
(directed) “path” may use vertices and arcs more than once, but an “elementary path”
does not repeat arcs, and a “simple path” does not repeat vertices (and, hence, does
not repeat arcs either). See §8.3.2.

3. The incidence structure of a digraph is frequently represented by an arc list, in which
each arc is represented by an ordered pair uv, where u is its tail and v is its head. For
each arc with tail u and head v, there is a separate entry, so that uv occurs as often as
the number of such arcs. A list of the isolated vertices plus such an arc list completely
specifies a digraph.

4. Another common specification of a digraph is the lists-of-neighbors representation.
For each vertex u, there is a corresponding row, which has as an entry the head of each
arc whose tail is u. Thus a vertex v occurs in that row as many times as there are arcs
from u to v.

5. The incidence matrix is another common way to represent a digraph. Since all but
one or two of the entries in every column are zero, the incidence matrix is a highly
inefficient form of representation.

6. The adjacency matrix is also a common way to specify a digraph in some contexts
when there is no reason to identify the arcs by name.

7. A digraph can be represented by a 2×|E| incidence table in which the tail and head
of each arc e appear in column e. Direction on an arc can be indicated by a convention
as to whether tail or head appears in the first row, which requires swapping the two
column entries if the direction is changed. Alternatively, direction can be indicated by
marking one of the two entries in each column as the head, and then moving the marker
if the direction changes.

8. A row-sum in a directed adjacency matrix equals the out-degree of the corresponding
vertex. A column-sum equals the in-degree.

9. In any digraph, the sum of the in-degrees, the sum of the out-degrees, and the
number of edges are all equal to each other; i.e.,

∑
v∈V δ−(v) =

∑
v∈V δ+(v) = |E|.

Examples:

1. The following arc list, incidence table, list-of-neighbors, and adjacency matrix all
represent the digraph G.

arc list:
uv, vv, vw, xw, xw, ux, xu

incidence table:
e1 e2 e3 e4 e5 e6 e7

u v v x x u x
v v w w w x u

c© 2000 by CRC Press LLC



lists-of-neighbors:




u : v, x

v : v, w

w : ∅
x : w, w, u




adjacency matrix:




u v w x

u 0 1 0 1
v 0 1 1 0
w 0 0 0 0
x 1 0 2 0




2. Civil Engineering: A road network in which at least some of the roads are one-
way can be modeled by a digraph. The nodes are road junctures; each two-way road
is represented by a pair of arcs, one in each direction. Loops are allowed, and they
may represent “circles” that occur in housing developments and in industrial parks.
Similarly, multiarcs may occur.

3. Operations Research: A large project consists of many smaller tasks with a prece-
dence relation — some tasks must be completed before certain others can begin. The
vertices represent tasks, and there is an arc from u to v if task u must be completed
before v can begin. For instance, in the following figure it is necessary both that food
is loaded and the cabin is cleaned before passengers are loaded.

4. Sociology and Sociobiology: A business (or army, or society, or ant colony) has a
hierarchical dominance structure. The nodes are the employees (soldiers, citizens, ants)
and there is an arc from u to v if u dominates v. If the chain of command is unique,
with a single leader, and if only arcs representing immediate authority are included,
then the result is a rooted tree. (See §9.1.2.)

5. Computer Software Design: A large program consists of many subprograms, some
of which can invoke others. Let the nodes of D be the subprograms, and let there be
an arc from u to v if subprogram u can invoke subprogram v. Then the call graph D
encapsulates all possible ways control can flow within the program. Directed cycles
represent indirect recursion, and serve as a warning to the designer to ensure against
infinite loops. See the following figure, where subprogram 2 can call itself indirectly.
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6. Ecology : A food web is a strict digraph in which nodes represent species and in
which there is an arc from u to v if species u eats species v. The following figure shows
a small food web.

7. Operations Research: A sequence of books must be printed and bound, using one
press and one binding machine. Suppose that book i requires time pi for printing and
time bi for binding. It is desired to print the books in such an order that the binding
machine is never idle: when it finishes one book, the next book should already be
printed. The vertices of a digraph D can represent the books. There is an arc from
book i to book j if pj ≤ bi. Then any path through all the vertices corresponds to a
permissible ordering.

8. Genealogy : A “family tree” is a digraph where the orientation is traditionally given
not by arrows but by the direction down for later generations. Despite the name, a family
tree is usually not a tree, since people commonly marry distant cousins, knowingly or
unknowingly.

9. Binary relations: To any binary relation R on a set V (see §12.1) a digraph D(V, R)
can be associated: the vertices are the elements of V , and there is an arc from u to v if
(u, v) ∈ R. Conversely, every digraph without multiple arcs defines a binary relation on
its vertices. The relation R is transitive (see §12.1.2) if and only if the digraph D(V, R)
is transitive.

8.3.2 PATHS, CYCLES, AND CONNECTEDNESS

Definitions:

A directed walk is a sequence of arcs such that the head of one arc is the tail of the
next arc.

The length of a directed walk is the number of arcs in the sequence.

A closed directed walk is a directed walk that begins and ends at the same vertex.

A directed trail is a directed walk in which no arc is repeated.

A directed path is a directed trail in which no vertex is repeated.

A directed cycle is a closed directed trail in which no vertices are repeated, except
the starting and stopping vertex.

Vertex v is reachable from vertex u if there is a directed path from u to v.

A basis for a digraph is a set of vertices V ′ such that every vertex not in V ′ is
reachable from V ′ and such that no proper subset of V ′ has this property.

The distance from a vertex u to a vertex v in a digraph D is the length of the shortest
directed path from u to v.

A digraph is strongly connected (or diconnected, or strong) if every vertex is
reachable from every other vertex.
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A digraph is unilaterally connected (or unilateral) if for every pair of vertices u
and v, there is either a uv-path or a vu-path.

A digraph D is weakly connected (or weak) if the underlying graph is connected.

The digraph D is disconnected if the underlying graph is disconnected.

A strong component of a digraph is a maximal subgraph that is strongly connected.

A digraph D(V, E) is reducible if the vertex set V may be partitioned into a disjoint
union V1 ∪ V2 so that all arcs joining V1 and V2 go from V1 to V2.

The condensation D∗ of a digraph D is the strict digraph whose nodes are the strong
components {V1, V2, . . . , Vk} of D, with an arc ViVj ∈ ED∗ if and only if there is an
arc vv′ in D such that v ∈ Vi and v′ ∈ Vj .

The converse of a digraph D is obtained by reversing the directions of all the arcs
of D.

The directional dual of a theorem about digraphs is the statement obtained by re-
placing each property in the theorem statement by its converse.

Facts:

1. Using a pencil on a drawing of a digraph, a directed walk can be traversed by
following the arrows without lifting the pencil from the graph.

2. Distance in digraphs need not be symmetric. That is, the distance from u to v might
be different from the distance from v to u.

3. If A is the adjacency matrix of D, then the ij entry of An is the number of n-arc
walks from vi to vj .

4. Let δ+ be the smallest out-degree of a strict digraph D. If δ+ > 0, then D has a
cycle of length at least δ+ + 1.

5. Let δ− be the smallest in-degree of a strict digraph D. If δ− > 0, then D has a
cycle of length at least δ− + 1.

6. The directional dual of a theorem about digraphs is a theorem about digraphs.

7. Fact 5 is the directional dual of Fact 4.

8. A digraph D is Eulerian (§8.4.3) if and only if the underlying graph is connected
and in-degree equals out-degree at every vertex.

9. A digraph D has an Euler uv-trail (where u �= v) if the following conditions hold:
• the out-degree of vertex u exceeds the in-degree by one;
• the in-degree of v exceeds the out-degree by one;
• at every other vertex, the in-degree equals the out-degree.

That is,
• d+(u) = d−(u) + 1;
• d−(v) = d+(v) + 1;
• (∀w �= u, v) [d−(w) = d+(w)].

Other Euler-type results for graphs generalize to digraphs as well.

10. Let δ be the minimum of all in- and out-degrees of D. If D is strict and δ ≥ |V |
2 > 1,

then D contains a Hamilton cycle (§8.4.4).

11. Hamilton theory is much harder and less complete than Euler theory, for digraphs
as for graphs.
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12. The strong components of a digraph D partition the vertices of D, but not the arcs,
since some arcs go from one component to another. However, the maximal unilateral
subgraphs do partition the arcs. If V1, V2 are the vertex sets of two strong components
of D, then all arcs between V1 and V2 face the same way — either all are from V1 or all
are to V1. See the following figure.

13. The condensation of any digraph is an acyclic digraph (§8.3.4). See the figure for
Fact 12.

14. A digraph is reducible if and only if its condensation has at least two vertices.

15. A digraph is unilateral if and only if its condensation is a path.

16. A set V ′ is a basis of a digraph D if and only if V ′ consists of one vertex from each
strong component of D that has in-degree 0 in D∗. Thus, every basis of a digraph has
the same number of vertices.

17. The eigenvalues of a digraph D are the union (counting multiplicities) of the eigen-
values of its strong components. (See §8.9.3.)

Examples:
1. Let u, v be vertices of an n-vertex digraph D with adjacency matrix A. If v is
reachable from u, then some uv-path has length ≤ n− 1. Thus, D is strong if and only

if every entry of
n−1∑
k=0

Ak is positive. There are more computationally efficient tests for

diconnectivity: Warshall’s algorithm (§14.2) and directed depth first search (§13.3.2).

2. Let M be an arbitrary square matrix. Computation of the eigenvalues of M can
sometimes be speeded up as follows. Create matrix A by replacing each nonzero entry
of M by a ‘1’, and then let D be the digraph with adjacency matrix A. The eigenvalues
of M are the union of the eigenvalues of the minors of M indexed by the strong com-
ponents of D. (If one component has vertices v1, v3, v7, then one minor has rows and
columns 1, 3, 7 of M .) If M is sparse (few nonzeros), then digraph D will usually have
many small components and this approach will be efficient.

3. Markov models: Let V represent a set of states and E the possible transitions of
a Markov process (§7.7). Then walks through D represent “histories” that the process
can follow.

c© 2000 by CRC Press LLC



8.3.3 ORIENTATION

There are many natural questions concerning when the edges of an undirected graph
could be assigned directions so as to obtain a certain sort of digraph. For instance,
when can a graph be oriented to obtain a strong digraph? An application of this last
question is to determine when a set of roads could all be made one-way, while keeping
all points reachable from all others.

Definitions:

An orientation of a graph is an assignment of directions to its edges, thereby making
it a digraph.

An orientation of a graph is strong if, for each pair of vertices u, v, there is a directed
path from u to v and a directed path from v to u.

An orientation of a graph is transitive if, whenever there is an arc from u to v and an
arc from v to w, there is also an arc from u to w.

A graph that admits a transitive orientation is called a comparability graph.

A cut-edge (or bridge) of a graph is an edge whose removal would increase the number
of components (§8.4.1).

A 2-edge-connected graph G is connected and has no cut-edge.

A generalized circuit in a graph is a closed walk (§8.4.1) that uses each edge at most
once in each direction.

A triangular chord for a closed walk (§8.4.1) u1, u2, . . . , uk, u1 is a proper edge that
joins two vertices exactly two apart on the walk.

Facts:

1. Let χ(G) be the chromatic number (§8.6.1) of graph G. Then every orientation of
G has a path of length at least χ(G)− 1.

2. A graph G has a strong orientation if and only if G is 2-edge-connected. (H. Robbins,
1939)

3. A graph G is a comparability graph if and only if every generalized circuit of G of
odd length > 3 has a triangular chord.

4. Algorithms 1 and 2 give ways of creating a strong orientation in a 2-edge-connected
graph.

Examples:

1. In the figure below the digraph D is a weak transitive orientation of the graph G
and D′ is a strong nontransitive orientation.
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Algorithm 1: Naive algorithm for creating a strong orientation.

{This algorithm is good to use by hand for small graphs.}
input: a 2-edge-connected graph G
output: a strong orientation of G

H := any cycle in G
direct H
while some vertex of G is not in directed subgraph H

v := a vertex not in H
find two edge-disjoint paths from v to H
{Two such paths exist because G is 2-edge-connected}

direct one path from v to H and the other from H to v
H := H with these two subgraph added

orient any remaining edges arbitrarily

Algorithm 2: Better algorithm for creating a strong orientation.

{A good algorithm for large graphs or for computer implementation.}
input: a 2-edge-connected graph
output: a strong orientation

select an arbitrary vertex as root
construct the Depth-First-Search spanning tree from that root {See §9.2.2.}
orient the tree edges downward from the root
orient all back edges upward toward the root
orient all cross edges arbitrarily

2. The following graph is not transitively orientable, and x, u, v, y, v, w, z, w, u, x are
the vertices of a generalized circuit without a triangular chord.

3. Traffic control: The flow of traffic on crowded city streets can sometimes be im-
proved by making streets one-way. When this is done, it is necessary that a car can
travel legally between any two locations. Assigning directions to the edges of the graph
representing the street grid is an orientation of this graph, and cars can travel legally
between any two points if and only this graph has a strong orientation. Consequently,
by Robbins’ theorem (Fact 2), to make all the streets one-way without losing mutual
accessibility of locations, it is necessary and sufficient that the grid of streets be 2-edge-
connected.
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Algorithm 3: Naive topological sort.

{Construct a linear extension ordering for a DAG.}
input: a DAG D
output: a numbering of the vertices in a topsort order

H := D; k := 1
while VH �= ∅

vk := a vertex of H of in-degree 0 {This exists. See Fact 1.}
H := H − vk {Remaining graph is still a DAG.}
k := k + 1

8.3.4 DIRECTED ACYCLIC GRAPHS

Definitions:

A digraph is acyclic if it has no directed cycles. A directed acyclic graph is sometimes
called a DAG.

A source of a digraph is a vertex of in-degree zero.

A sink of a digraph is a vertex of out-degree zero.

A linear extension ordering of the n vertices of a digraph is a consecutive labeling
v1, v2, . . . , vn so that, if there is an arc from vi to vj , then i < j. (See also §11.2.5.)

A topological sort, or topsort, is an algorithm that assigns a linear extension ordering
to a DAG. This traditional name belies the facts that it is not quite a sort, in the usual
sense of sorting, and that its relation to topology (in the sense understood by topologists)
is obscure.

Facts:

1. Every DAG has at least one source, and by duality, at least one sink.

2. Every DAG has a unique basis (§8.3.2), namely, the set of all its sources.

3. Topsort yields a linear ordering for the vertices that makes the adjacency matrix of
a DAG upper-triangular.

4. Doing a preliminary topsort permits many optimization problems about paths to
be solved subsequently by a single algorithmic pass through the vertices in the topsort
order; see §15.2.2 (dynamic programming) and §15.5 (critical paths). See Algorithm 3.

Examples:

1. In the following digraph vertex w is a source and vertex z is a sink. It is a DAG,
even though the underling graph has cycles. Labeling the vertices either in the order
w, x, y, z or w, y, x, z is a linear extension ordering.
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2. Consider any digraph whose vertices represent discrete events, and whose arcs go
from earlier events to later events. Any such digraph is acyclic. Conversely, any digraph
whose vertices represent procedural steps and whose arcs represent required precedence
can be scheduled (using a topological sort) so that arcs do in fact go forward in time.

3. The Hasse diagram of a poset (§12.3.5) is a DAG, as is the entire graph of a poset
(arc from u to v if and only if u ≥ v).

8.3.5 TOURNAMENTS

Definitions:

A tournament is a digraph with exactly one arc between each pair of distinct vertices.
An n-tournament has n vertices.

The score vector of a tournament is the sequence of out-degrees of the vertices (number
of arcs leaving each vertex), usually in ascending order.

A tournament T is regular if every vertex has the same outdegree.

A tournament T is strong if there is a directed path between each pair of vertices in
both directions.

A tournament T is transitive if, whenever there is an arc from u to v and from v to w,
there is also an arc from u to w.

A tournament T is irreducible if there is no bipartition V1, V2 of the vertices such that
all arcs between V1 and V2 go from V1 to V2.

Vertex u of a tournament dominates vertex v if there is an arc from u to v.

A transmitter in a digraph is a vertex that has an arc to every other vertex.

A king in a digraph is a vertex from which there is a path of length 1 or 2 to all other
vertices.

A single-elimination competition is a contest from which a competitor is eliminated
after the first loss.

Facts:

1. Every tournament has a Hamilton path (§8.4.4), in fact an odd number of them.

2. The following statements are equivalent for any n-tournament T :
• T is strong;
• T is irreducible;
• T has a Hamilton cycle (§8.4.4);
• T has cycles of all lengths 3, 4, . . . , n.;
• Every vertex of T is on cycles of all lengths 3, 4, . . . , n.

3. Almost all tournaments are strong, in the sense that, as n → ∞, the fraction of
labeled n-tournaments that are strong approaches 1.

4. The following are equivalent for a tournament:
• the tournament is transitive;
• the tournament contains no cycles;
• the tournament contains no 3-cycles;
• the tournament is a total (i.e. linear) order;
• the tournament has a unique Hamilton path.

5. Every tournament has a king.
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6. The king of a tournament is unique if and only if it is a transmitter. Otherwise,
there are at least three kings.
7. In a large tournament, almost every vertex is a king, for as n →∞, the fraction of
n-tournaments in which every vertex is a king approaches 1.
8. Score vector characterizations: A nondecreasing sequence S of nonnegative integers
s1, s2, . . . , sn is the score vector of an n-tournament if and only if

k∑
i=1

si ≥
(
k
2

)
, for k = 1, 2, . . . , n−1, and

n∑
i=1

si =
(
n
2

)
,

or equivalently, if and only if
the sequence S′ obtained by deleting any one si and reducing the largest re-
maining n− si − 1 terms by 1 is a score vector of an (n−1)-tournament.

9. The second characterization of Fact 8 leads to a recursive algorithm to construct a
tournament having a specified score vector. See Example 4.
10. A nonnegative integer sequence s1 ≤ s2 ≤ . . . ≤ sn is the score vector of a strong
n-tournament if and only if

k∑
i=1

si >
(
k
2

)
, for k = 1, 2, . . . , n−1, and

n∑
i=1

si =
(
n
2

)
.

11. There are 2(n
2) distinct labeled tournaments, because for each pair of vertices {u, v},

there are two choices which way to direct the edge. If cn is the numbered of distinct
unlabeled n-tournaments, then

cn >
2(n

2)

n!
and lim

n→∞
cn

2(n
2)/n!

= 1.

The distinction between labeled and unlabeled tournaments is the same as between
labeled and unlabeled graphs; see §8.9.1. The two tournaments in the following figure
are isomorphic as unlabeled tournaments, but distinct as labeled tournaments.

12. Ranking real tournaments: When a tournament models a competition, there is
an obvious desire to rank the teams, or at least to pick a clear winner. Many ranking
methods have been proposed, and continue to be proposed.
13. When a tournament is acyclic, it corresponds to a unique total ordering (Fact 4),
so the ranking is unequivocal. However, almost all tournaments are strong (Fact 3).
Moreover, in a large tournament, almost every vertex is a king (Fact 7). These are
reasons why it is considered difficult to give a satisfactory general method to rank
tournaments.
14. Scheduling tournaments: To speed up the play of an n-tournament, games can be
scheduled in parallel. If n is even, then at most n

2 of the n(n−1)
2 games may be played

at once, so at least n− 1 rounds are needed. However, if n is odd, then only n−1
2 games

can be played at once, so at least n rounds are needed. In fact, this minimum number
of rounds can be obtained, and several methods of scheduling tournaments, subject to
various additional conditions, have been devised. See [Mo68].
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Examples:
1. A round-robin sports tournament in which there are no ties is a tournament in
the mathematical sense defined above. However, a single-elimination competition (e.g.,
most tennis tournaments) is not a tournament as defined above.
2. It has been observed that in every small flock of hens, every pair of hens establish
a dominance relation — the weaker of the two allows the stronger to peck her. Thus,
this pecking order is a tournament.
3. In a “paired comparison experiment”, a subject is asked to state a preference in
each pair chosen from n items. This amounts to a tournament, where there is an arc ij
if item i is preferred to item j.
4. Is there a tournament on vertices (a, b, c, d, e) with respective scores (1, 2, 2, 2, 3)?
Deleting e according to the second part of Fact 8 leaves vertices (a, b, c, d) with scores
(1, 2, 2, 1). Next deleting d leaves (a, b, c) with scores (1, 1, 1). The obvious tournament
with such a score vector is a 3-cycle. Next reinsert vertex d, making it dominate vertex a
only. Then reinsert vertex e, making it dominate a, b, c. This 5-tournament has the
specified score vector (1, 2, 2, 2, 3).
5. Ranking real tournaments: Ranking teams by their order along a Hamilton path (see
Fact 1) is rarely satisfactory, because that order is unique only for transitive tournaments
(Fact 4); in most cases, there are a great many Hamilton paths. Ranking by score vector
usually creates ties, and a team with few wins may deserve a better rank if those teams
it beats have many wins. So one may consider the second-order score vector, where
each team’s score is the sum of the out-degrees of the teams it beats. This can be
continued to nth-order score vectors. There is a limit ranking obtained this way (often
quite satisfactory), related to the eigenvalues of the digraph. See [Mo68] for more detail
and references.

8.4 DISTANCE, CONNECTIVITY, TRAVERSABILITY
Movement from one node to another in the network corresponds to the graph-theoretic
notion of a walk. Graphs often serve as models for transportation and communication
network problems. The capability for any two nodes in a network to communicate
corresponds to connectedness. The connectivity of a graph is a measure of resistance to
a communications cutoff.

8.4.1 WALKS, DISTANCE, AND CYCLE RANK

Definitions:

A walk in a graph is an alternating sequence v0, e1, v1, . . . , er, vr of vertices and edges
in which each edge ei joins vertices vi−1 and vi. Such a walk is also called a v0, vr-walk.

The length of a walk is the number of occurrences of edges in it. An edge that occurs
more than once is counted each time it occurs.

A trail is a walk in which all of the edges are different.

A path is a trail in which all the vertices are different, except that the initial and final
vertices may be the same. A path from v0 to vr is called a v0, vr-path.

A walk, trail, or path is open if its final vertex is different from its initial vertex.
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A walk, trail, or path is closed if its final vertex is the same as its initial vertex.

A graph is connected if each pair of vertices are joined by a path.

A component of a graph is a maximal connected subgraph of the graph.

The vertex v is reachable from vertex u in a graph if there is a u, v-path in the graph.

An isolated vertex of a graph is a vertex with no incident edges.

The distance d(v, w) between two vertices v and w of a graph is the length of a shortest
path between them, with d(v, v) = 0 and d(v, w) = ∞ if there is no path between v
and w.

The diameter of a connected graph is the maximum distance between two of its ver-
tices.

The eccentricity of a vertex v of a connected graph is the greatest distance from v to
another vertex.

The radius of a connected graph is the minimum eccentricity among all the vertices of
the graph.

The center of a connected graph is the set of vertices of minimum eccentricity.

A cycle is a closed path of positive length. (The word “cycle” also refers to a type of
graph; see §8.1.3.)

The cycle rank (or first Betti number), denoted by β1(G), of a connected graph
G = (V, E) is |E| − |V |+ 1.

Facts:

1. Alternative terminology : Sometimes “path” is used to mean what is here called a
trail, in which case “simple path” is used to mean a path.

2. In a simple graph, a walk may be represented as a string of vertices v0v1 . . . vr,
without mentioning the edges.

3. The distance function on the vertex set of any connected graph G is a metric; i.e.,
the following rules hold for all vertices u, v, and w in G:

• d(v, w) ≥ 0, with equality if and only if v = w;
• d(w, v) = d(v, w);
• d(u, w) ≤ d(u, v) + d(v, w), with equality if and only if v is on a shortest path

from u to w.

4. There are polynomial-time algorithms for finding a shortest path between vertices.
(See §10.2.)

5. A graph is connected if and only if it has a spanning tree.

6. The graph G is nonconnected if and only if there is a partition of its vertex set into
nonempty sets A and B so that no edge has one end in A and the other in B.

7. The relation “is reachable from” is an equivalence relation on the vertex set. The
equivalence classes of this relation induce the components.

8. The graph G is connected if every vertex is reachable from every other vertex.

9. In a simple graph, the minimum length of a cycle is at least 3. In a general graph,
a self-loop is a 1-cycle, and a 2-cycle is formed by a pair of vertices joined by a pair of
parallel edges (§8.1.1).

10. The cycle rank β1(G) of a connected graph G is best conceptualized as the number
of edges remaining in the complement of a spanning tree for G, and not as an abstract
formula.
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11. The cycle rank β1(G) of a connected graph G is equal to the rank of a vector space
over Z2 whose domain is the set of cycles of G.
12. The cycle rank of a connected planar graph G equals the number of regions in a
plane drawing of G, minus the exterior region.
13. The following table gives the cycle rank of some infinite families of graphs.

graph cycle rank

bouquet Bn n

dipole Dn n− 1

complete graph Kn
(n−2)(n−1)

2

complete bipartite graph Km,n (m− 1) (n− 1)
cycle graph Cn 1

wheel Wn n

hypercube Qn (n− 2) 2n + 1
any tree 0

Example:
1. The following connected graph has diameter 3 and radius 2. The vertices in its
center are indicated by solid dots.

2. The cycle rank of the following connected graph is three. Observe that there are
three edges in the complement of the indicated spanning tree.

3. The following nonconnected graph has three components, one of which is an isolated
vertex.

8.4.2 CONNECTIVITY

Definitions:

A cut-vertex of a graph G (or cut-point or articulation point) is a vertex v such
that G− v has more components than G. (In topological analysis of nonsimple graphs,
sometimes a vertex attached to a self-loop is also considered to be a cut vertex.)

A nonseparable graph is a connected graph with no cut-vertices.
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A block of a graph is a maximal nonseparable subgraph.

An cut-edge of a graph G is an edge e such that G− e has more components than G
(in which case there is just one more).

A disconnecting set of vertices in a connected graph is a set of vertices whose
removal yields a nonconnected graph.

A disconnecting set of edges in a connected graph is a set of edges whose removal
yields a nonconnected graph.

The zeroth Betti number β0(G) of a graph G is the number of components in G.
Elsewhere this is sometimes is denoted by c(G) or ω(G).

The (vertex) connectivity κ(G) is the number of vertices in the smallest disconnecting
set of vertices. By convention, κ(Kn) = n− 1.

The edge connectivity κ′(G) is the number of edges in the smallest disconnecting set
of edges.

A graph is k-connected if κ(G) ≥ k.

A graph is k-edge-connected if κ′(G) ≥ k.

Facts:
1. A vertex is a cut-vertex if and only if it lies on all paths between two other vertices.
2. Every nontrivial graph has at least two vertices that are not cut-vertices.
3. An edge is a cut-edge if and only if it is not contained in any cycle.
4. For any edge e of a graph G, β0(G) + 1 ≥ β0(G− e) ≥ β0(G).
5. For any vertex v of a graph G, β0(G − v) ≥ β0(G); however, β0(G − v) may be
arbitrarily greater than β0(G).
6. Let G be a 2-connected graph. Then for any two vertices, there is a cycle containing
those vertices.
7. Let G be a 2-connected graph. Then for any two edges, there is a cycle containing
those edges.
8. The following statements are equivalent for a connected graph G with at least three
vertices:

• G is nonseparable;
• every pair of vertices lie on a cycle;
• every pair of edges lie on a cycle;
• given any three vertices u, v, and w, there is a path from u to w containing v;
• given any three vertices u, v, and w, there is a path from u to w not containing v.

9. Menger’s theorem (for vertex connectivity): A graph with at least k + 1 vertices is
k-connected if and only if every pair of vertices is joined by k paths which are internally
disjoint (i.e., disjoint except for their origin and terminus). (Menger, 1927)
10. Menger’s theorem (for edge connectivity): A graph is k-edge-connected if and
only if every pair of vertices is joined by k edge-disjoint paths. (Ford and Fulkerson,
1956; also Elias, Feinstein, and Shannon, 1956)
11. For any graph G, the vertex connectivity is no more than the edge connectivity, and
the edge connectivity is no more than the minimum degree. That is, κ(G) ≤ κ′(G) ≤
δmin(G), where δmin(G) denotes the minimum degree.
12. Furthermore, for any positive integers a ≥ b ≥ c, there exists a simple graph G for
which δmin(G) = a, κ′(G) = b, and κ(G) = c. (Chartrand and Harary, 1968)
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13. The following table gives the vertex connectivity and edge connectivity of some
infinite families of graphs.

graph κ κ′

complete graph Kn n− 1 n− 1
complete bipartite graph Km,n min(m, n) min(m, n)

cycle graph Cn 2 2
wheel Wn 3 3

hypercube Qn n n

any nontrivial tree 1 1

Examples:
1. The following graph G has cut-vertices u and v. The blocks are illustrated at the
right.

2. In the following graph, vertices u and v form a disconnecting set.

3. Communication networks: A communication network can be modeled as a graph
with vertices representing the nodes and with undirected edges representing direct two-
way communications links between nodes. In order that all pairs of nodes be in com-
munication, the graph must be connected. Vertex connectivity and edge connectivity
are measures of network reliability.

4. Transportation networks: Low connectivity in transportation networks results in
“bottlenecks”, in which many different shipments must all past through a small number
of vertices. High connectivity implies (by Menger’s theorem) several alternative routes
between nodes.
5. Menger’s theorem implies that a 2-connected graph has two disjoint paths between
each pair of vertices. It does not imply that for any path between two vertices, there
must be a second such path disjoint from the first, as indicated in the following graph.
There are two disjoint paths from the leftmost vertex to the rightmost, but there is no
such path disjoint from the one indicated by thick edges.
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6. The following shows a graph G with κ(G) = 2 and κ′(G) = 3. On the left there
are the two internally-disjoint paths between the upper-left vertex and the lower-right
vertex, and on the right there are three edge-disjoint paths.

7. The following graph illustrates Fact 12, with κ = 2, κ′ = 3, δmin = 4.

8.4.3 EULER TRAILS AND TOURS

Definitions:

An Euler trail in a graph [digraph] is a trail that contains all the edges [arcs] of the
graph.

An Euler tour or Euler circuit in a graph or digraph is a closed Euler trail.

A graph or digraph is Eulerian if it has an Euler tour.

Facts:

1. Seven bridges of Königsberg problem: In Kaliningrad, Russia, two branches of the
River Pregel meet and flow past an island into the Baltic Sea. In 1736, when this was
the town of Königsberg in East Prussia, there were seven bridges joining the banks of
the river, the headland, and the island, as illustrated below at the left. The celebrated
Swiss mathematician Leonhard Euler (1707–1783) was invited by Emperor Frederick
the Great to decide whether it was possible to cross all seven bridges without recrossing
any of them. In the earliest known paper on graph theory, Euler proved it is impossible,
because the graph at the right has no Euler trail.

2. Euler’s work on the seven bridges of Köningsberg problem is commonly described
as the founding of graph theory and also as the founding of topology.
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3. A connected graph is Eulerian if and only every vertex has even degree. The tour
may begin/end at any vertex.

4. A connected digraph has a directed Euler tour if and only if the in-degree of every
vertex v equals its out-degree.

5. A connected graph has an Euler trail between distinct vertices u and v if and only
if u and v are the only vertices of odd degree.

6. A connected graph (digraph) is Eulerian if and only if there exists a collection of
cycles (directed cycles) whose edges partition the edge set of the graph.

7. A connected planar (§8.7.1) graph is Eulerian if and only if its dual (§8.8.2) is
bipartite.

8. A graph G can be oriented to have a directed Euler tour if and only if it is an
Eulerian graph. (Traversing an Euler tour provides an orientation.)

9. The following table tells which members of several infinite families of graphs are
Eulerian.

graph Eulerian?

bouquet Bn for all n

dipole Dn for even n

complete graph Kn for odd n

complete bipartite graph Km,n for m and n both even
cycle graph Cn for all n

wheel Wn never
hypercube Qn for even n

tree only if trivial

10. Algorithm 1 gives a recursive method for finding an Eulerian tour on an Eulerian
graph.

11. Fleury’s algorithm for finding an Euler tour or trail is given in Algorithm 2.

Examples:

1. The following is an Eulerian graph and one of its Euler tours.

2. Chinese postman problem (due to Guan Meigu, 1962): A letter carrier begins at
the post office, traverses every street in his territory at least once, and then returns
to the post office. His objective is to walk as little as possible. Each edge of a graph
representing the street configuration is labeled with the length of the corresponding
block. If the graph is Eulerian, then an Euler tour gives an optimal solution. Otherwise,
some edges must be retraced. Polynomial-time algorithms to solve this problem are
known. See §10.2.3.
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Algorithm 1: Recursive algorithm for finding an Eulerian tour.

input: a connected graph G, all of whose vertices have even degree
output: an Euler tour of G

C := a cycle in the graph G; place C on the cycle-queue Q
partition the edge-complement G− E(C) into components H1, H2, . . . , Hk

recursively run this algorithm on each component Hi

{So far, EG has been completely partitioned into the cycles on Q}
merge the elements of Q into an Euler tour for G, by traversing the cycle C

and splicing in the tours found for the components Hi whenever possible

Algorithm 2: Fleury’s algorithm for finding an Euler tour/trail.

input: a connected graph G, an initial vertex v, and a final vertex w; if v �= w,
then every vertex except v and w must have even degree (if v = w, then all
degrees must be even)

output: an Euler trail whose origin is v and whose terminus is w

{find trail edge with origin v }
if deg(v) > 1 then e := any edge incident at v which is not a cut-edge
else { deg(v) = 1 }

e := the unique edge incident at v
u := the other endpoint of e

recursively find an Euler trail from u to w in G− e
prepend the edge e to the trail found in the recursive step
{This yields the required Euler trail of G. }

3. For every letter in an arbitrary n-letter alphabet A, there is a string starting and
ending with that letter, in which every possible substring of two letters appears con-
secutively exactly once. To see this, consider the digraph D with the letters of A as
vertices and one arc for each ordered pair. The digraph D is connected and, at each
of the n vertices, in-degree = out-degree = n, which implies that it is Eulerian. Thus,
the sequence of vertices encountered on a closed Euler tour from any vertex to itself
yields the specified string. See the following figure, where e1, e2, . . . , e9 are the arcs of
an Euler cycle and the associated string is the sequence of vertices, aabbccacba. This
result generalizes to substrings of any fixed length, also using Euler tours.
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8.4.4 HAMILTON CYCLES AND PATHS

Definitions:

A Hamilton cycle in a graph [digraph] is a cycle [directed cycle] that includes all
vertices of the graph.

A graph or digraph is Hamiltonian if it contains a Hamilton cycle.

A Hamilton path in a graph [digraph] is a path [directed path] that includes all vertices
of the graph.

A theta graph is a subdivision of the complete bipartite graph K2,3. Thus, the graph
comprises three internally disjoint paths joining the two 3-valent vertices.

A Gray code is a cyclic ordering of all 2k length-k bitstrings, such that each bitstring
differs from the next in exactly one bit entry.

A tough graph is a connected graph G such that no matter what nonempty, proper
vertex subset S is removed, the resulting number of components of G − S is no more
than |S|.

Facts:

1. The concept of a Hamilton cycle first arose in a puzzle within the Icosian Game,
invented by Sir William Rowan Hamilton (1805–1865), an Irish mathematician. This
puzzle involved a dodecahedron whose 20 vertices were labeled with world capitals. It
required finding a complete tour of these 20 capitals.

2. The recognition problem for Hamiltonian graphs is NP-complete. Thus, unlike the
case with Eulerian graphs, there is no easy test to decide whether a graph is Hamiltonian
(unless P = NP). However, many of the following facts provide criteria that are often
helpful in deciding.

3. A Hamiltonian graph has no cutpoint. (Thus, it is 2-connected.)

4. The previous fact has this generalization: Let G be a Hamiltonian graph and let
S ⊆ VG. Then the graph G− S has at most |S| components.

5. Bipartite Hamiltonian graphs have an equal number of vertices in the two parts of
the bipartition.

6. If a simple graph has n ≥ 3 vertices and minimum degree at least n
2 , then it is

Hamiltonian. (Dirac, 1952)

7. If a simple graph has n ≥ 3 vertices, and if every pair of nonadjacent vertices u
and v satisfies the inequality deg(u) + deg(v) ≥ n, then it is Hamiltonian. (Ore, 1960)

8. Suppose that a simple graph with n ≥ 3 vertices has degree sequence d1 ≤ d2 ≤
· · · ≤ dn, and that for every i with 1 ≤ i ≤ n

2 either di > i or dn−i ≥ n − i. Then the
graph is Hamiltonian.

9. Every simple graph with n ≥ 3 vertices and at least (n2 − 3n + 6)/2 edges is
Hamiltonian.

10. Every graph with at least three vertices whose connectivity (κ) is at least as large
as its independence number (α) is a Hamiltonian graph.

11. Every 4-connected planar graph is Hamiltonian.

12. If the edges of the complete graph Kn are assigned directions, then the resulting
digraph always has a Hamilton directed path.
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13. The edges of the complete graph K2n+1 can be partitioned into n Hamilton cycles.
14. A theta graph looks like a subdivided copy of the Greek letter theta (θ).
15. Theta graphs are non-Hamiltonian.
16. Every nonHamiltonian graph contains a theta subgraph.
17. A graph G is non-Hamiltonian if there is a subset of mutually nonadjacent vertices
containing more than half the vertices of G.
18. Hamiltonian graphs are tough.
19. “Almost all” graphs are Hamiltonian. That is, of the exactly 2n(n−1)/2 simple
graphs on n (labeled) vertices, the proportion that are Hamiltonian tends to 1 as n →∞.
20. Suppose that a simple graph is constructed by the following process: start with n
vertices and no edges; until the minimum degree is 2, a possible edge is chosen uniformly
at random from among the edges not already in the graph, and added to the graph.
With probability tending to 1 as n →∞, the resulting graph is Hamiltonian.
21. The following table tells which members of several infinite families of graphs are
Hamiltonian.

graph Hamiltonian?

bouquet Bn for all n ≥ 1
dipole Dn for all n ≥ 2

complete graph Kn for all n ≥ 3
complete bipartite graph Km,n when m = n

cycle graph Cn for all n ≥ 1
wheel Wn for all n ≥ 2

hypercube Qn for all n ≥ 2
any tree if |V | = 1

Examples:
1. Finding a Hamilton cycle in the dodecahedral graph (see §8.2.3), as illustrated below,
is equivalent to solving Hamilton’s Icosian Game puzzle. An example of a Hamilton cycle
in this graph is: RSTV WXHJKLMNPCDFGBZQR.

2. The following graph has the Hamilton cycle acefdba.
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3. The following graph is non-Hamiltonian, by Fact 17, since the vertices u, v, w, and x
are mutually nonadjacent.

4. The 10-cycle C10 (§8.1.3 Figure 1) is an example of a graph that satisfies none of the
sufficient conditions in Facts 7-9 above for Hamiltonicity, but is nonetheless Hamiltonian.

5. The traveling salesman problem (§10.7.1) is to find a minimum-cost Hamilton cycle
in a complete graph whose edges are labeled with costs.

6. Information theory — Gray codes: In information theory, a cyclic ordering of the 2n

length-n bitstrings such that each bitstring differs from its predecessor in exactly one
bit is called a Gray code. This corresponds to a Hamilton cycle in the k-dimensional
hypercube.

The following figure shows a Hamilton cycle in the 3-cube giving the Gray code
000→ 001→ 011→ 111→ 101→ 100→ 110→ 010→ 000.

7. The Petersen graph (§8.1.3 Figure 2) is tough but not Hamiltonian.

8. The following graph is tough but not Hamiltonian.

8.5 GRAPH INVARIANTS AND ISOMORPHISM

Deciding whether two graph descriptions actually specify structurally identical graphs
is called isomorphism testing. Polynomial-time algorithms for isomorphism testing are
known only for certain special classes of graphs. However, there are heuristic algorithms
to test isomorphism of reasonable-sized graphs. The related problem of reconstructing
a graph from its vertex-deleted subgraphs is also still unsettled.
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8.5.1 ISOMORPHISM INVARIANTS

Definitions:

For simple graphs only, a graph isomorphism between two graphs G and H can be
defined as a bijection f : VG → VH that such that a pair of vertices u, v is adjacent in VG
if and only if the image pair f(u), f(v) is adjacent in VH .

In full generality, a graph isomorphism f : G → H is a pair of bijections fV : VG → VH
and fE : EG → EH such that for every edge e ∈ EG, the endpoints of e are mapped onto
the endpoints of fE(e).
Note: Except when confusion will result, the same notation f can be used for both the
vertex function fV and the edge function fE .

A digraph isomorphism is an isomorphism of the underlying graphs such that the
edge correspondence preserves all edge directions.

Two graphs are isomorphic if there is an isomorphism from one to the other, or
informally, if their mathematical structures are identical.

The isomorphism type of a graph [digraph] G is the class of all graphs [digraphs]
isomorphic to G.

A graph invariant is a property of graphs such that every two isomorphic graphs have
the same value with regard to this property.

A complete set of invariants is a set of graph invariants that distinguishes any graph
from any different graph, in the sense that no two nonisomorphic graphs have the same
set of invariant values.

A vertex invariant is a property of a vertex which is preserved by isomorphism, in
the following sense: if v is any vertex and f is any isomorphism, then the vertex f(v)
has the same value as v with regard to the property.

An automorphism is an isomorphism from a graph to itself.

The automorphism group Aut(G) of a graph G is the collection of all automorphisms
of G, with functional composition as the group operation.

Facts:

1. Two graphs G and H are isomorphic if there is a bijection f : VG → VH such that
for every vertex pair u, v ∈ VG the number of edges joining u and v equals the number
joining their images f(u), f(v) ∈ VH .

2. Graph invariants are used to distinguish between nonisomorphic graphs.

3. Most graph invariants are either too tedious to compute or not strong enough at
distinguishing similar but nonisomorphic graphs.

4. No good complete set of invariants is known, in the sense that each invariant value
is easily computed and easily compared.

5. Vertex invariants are often used to organize the vertices of a graph into equivalence
classes under graph automorphism, in order to discover the automorphism group of the
graph.
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6. Graphs have many different kinds of isomorphism invariants, including the following
invariants:

• elementary (ascertainable by counting):
number of vertices,
number of edges,
sequence of vertex degrees;

• structural invariants (concerning connectivity or cycles):
cycle rank (§8.4.1),
girth (§8.4.1),
connectivity (§8.4.2),
edge connectivity (§8.4.2);

• topological invariants (concerning placement on surfaces):
genus (§8.8.4),
crosscap number (§8.8.4),
crossing number (§8.7.4),
thickness (§8.7.4);

• chromatic invariants (concerning colorings):
chromatic number (§8.6.1),
edge-chromatic number (§8.6.2),
chromatic polynomial (§8.6.1);

• algebraic invariants (concerning groups or vector spaces):
eigenvalues (§8.10.1),
automorphism group (§8.10.2).

Examples:

1. The following figure illustrates an isomorphism f of simple graphs.

2. The following figure illustrates an isomorphism f of nonsimple graphs.

3. The following two digraphs are not isomorphic. Even though there are six different
isomorphisms of their underlying graphs, none of them preserves the direction of all the
edges.
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4. The following three graph drawings all look different. The table below shows some
of their isomorphism invariants, from which it may be concluded that graph B cannot
be isomorphic to either graph A or graph C, but that A and C might be isomorphic.

A B C

#vertices 6 6 6
#edges 9 9 9
degree seq. 3,3,3,3,3,3 3,3,3,3,3,3 3,3,3,3,3,3
connectivity 3 3 3
girth 4 3 4
genus 1 0 1
chromatic # 2 3 2

To construct an isomorphism between graphs A and C, assign labels 0, 1, 2, 3, 4, 5
cyclically to the vertices of A. Then assign labels 0, 2, and 4 to the top three vertices
of C, and 1, 3, and 5 to the bottom three.

8.5.2 ISOMORPHISM TESTING

Various concepts for isomorphism testing have been proposed. Some exploit or refine
algebraic invariants, such as the automorphism group or the set of eigenvalues. Others
exploit a decomposition into planar subgraphs or a refinement of a topological invari-
ant, such as the average genus. Others are combinatorial and employ enumerative
techniques, partitioning and the like. Some are a mixture of algebraic, topological, and
combinatorial approaches.

Definitions:

An isomorphism test for graphs is an algorithm that accepts two graphs as input
and outputs “yes” to indicate the decision that they are isomorphic or “no” to indicate
that they are nonisomorphic. Unless the context explicitly mentions the possibility of
error, it is implicitly understood that the decision is correct.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. (See §11.9
and §6.5.)

The average genus of a graph is the average genus of the imbedding surface, taken
over all cellular imbeddings of that graph. (See §8.8.3.)

An equitable partition for a graph G is a partition V1, . . . , Vn of its vertex set and
a set of numbers {d i,j | 1 ≤ i, j ≤ n } such that every vertex in Vi is adjacent to
exactly di,j vertices in Vj .

A devil’s pair for an isomorphism-testing approach is a pair of nonisomorphic graphs
that the approach fails to distinguish.

A probabilistic isomorphism test is an isomorphism test such that no matter what
pair of graphs is supplied as input, there is probability 1.0 of a correct decision.
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Facts:

1. No polynomial-time isomorphism testing algorithm is known. Moreover, it is not
known whether isomorphism testing is an NP-complete problem.

2. On an n-vertex simple graph, the naive graph isomorphism-testing algorithm below
has worst-case time O(n2· n!).

3. It is easy to design an algorithm decide correctly with probability 1.0 whether two
randomly selected graphs are isomorphic: they aren’t. With probability 1.0, two ran-
domly selected graphs will not have the same number of vertices or edges. This observa-
tion explains why the concept of probabilistic isomorphism testing is defined so that it
must be able to decide correctly with probability 1.0 for all pairs, not just for randomly
selected pairs.

4. If it were possible to quickly calculate the size of the automorphism group of a graph,
such an algorithm could be a subprogram of a quick test for isomorphism of graph pairs,
as follows:

if |Aut(G)| �= |Aut(H)| then G and H are not isomorphic
else

if |Aut(G ∪H)| = 2|Aut(G)|2 then G and H are isomorphic
else G and H are not isomorphic

5. Another algebraic approach to isomorphism testing is based on eigenvalues. A devil’s
pair for simply comparing eigenvalues appears in Example 4.

6. One topological approach to isomorphism testing dissects each graph into planar
components (§8.7) and combines known efficient tests for isomorphism of planar graphs
with careful study of possible interconnections.

7. Another topological approach to isomorphism testing is based on the genus dis-
tribution (§8.8.3), taken over all cellular imbeddings. Although calculating the genus
distribution by brute force would be tedious, one can estimate it by random sampling.
Any pair of trees is a trivial devil’s pair, but trees are easily tested by another isomor-
phism algorithm.

8. The best known practical isomorphism algorithm is “NAUTY” (an acronym for No
AUTomorphisms, Yes?) by B. D. McKay. This backtrack algorithm repeatedly refines
an initial vertex partition. At each stage of the refinement, a part of size greater than 1
is broken into two parts, one a single vertex, and the coarsest equitable partition is
found. The discrete partitions generated in this way correspond to labelings of the
graph, organized so as to determine the automorphism group. A complicated scheme is
used to pick one of these labelings as the “canonical” one used for isomorphism testing.
This algorithm can very quickly check isomorphism for most graphs, although it has no
good theoretical bound.

9. To certify that two graphs are isomorphic, one can give a vertex bijection that
realizes the isomorphism. Deciding whether a bijection between the vertex sets of two
graphs is the vertex function of a graph isomorphism can be achieved in polynomial
time.

10. Graph isomorphism is in NP, by the previous fact, but is not known to be in P.
The computational complexity of the problem of deciding whether or not two graphs
are isomorphic is unknown.

11. If graph isomorphism is NP-complete, then the complexity hierarchy between P
and NP collapses, which is considered unlikely.
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Algorithm 1: Naive graph isomorphism-testing algorithm.

input: simple graphs G, H

if |VG| �= |VH | then print “NO” and stop
if |EG| �= |EH | then print “NO” and stop
for each bijection f : VG → VH

for each pair u, v ∈ VG
if u, v adjacent and f(u), f(v) not adjacent then print “NO” and stop
if u, v not adjacent and f(u), f(v) adjacent then print “NO” and stop

print “YES” and stop

12. The following table shows the best known time bounds for checking isomorphism
in various classes of graphs. Almost all of these bounds have been achieved using an
algebraic approach.

class of graphs (on n vertices) time bound

graphs exp
√

cn log n

trees O(n)
planar graphs O(n)

graphs of genus g nO(g)

cubic graphs O(n3 log n)

graphs with max degree ≤ d nO(d)

tournaments nO(log n)

13. Algorithm 1 gives a naive method for testing whether or not two graphs are iso-
morphic.

Examples:

1. The labeling of these two isomorphic graphs indicates the correspondence between
vertices. This is the famous Petersen graph.

2. One devil’s pair for isomorphism testing by degree sequence is
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3. Another devil’s pair for isomorphism testing by degree sequence is

4. The following graphs are a devil’s pair for isomorphism testing by simple comparison
of eigenvalues. They both have characteristic polynomial λ6− 7λ4− 4λ3 +7λ2 +4λ− 1.
Yet they cannot be isomorphic because their degree sequences are different.

5. A 3-connected devil’s pair for simply comparing average genus is shown below.
Both graphs shown have the genus distribution 8, 536, 3416, 1224, that is, 8 imbeddings
of genus 0, 536 of genus 1, 3416 of genus 2 and 1224 of genus 3.

8.5.3 GRAPH RECONSTRUCTION

The question of whether a graph is reconstructible from its subgraphs is one of the most
beguiling unsolved problems in graph theory.

Definitions:
A vertex-deleted subgraph of a graph G is a subgraph G− v obtained by removing
a single vertex v and all of its incident edges.

An edge-deleted subgraph of a graph G is a subgraph G − e obtained by removing
a single edge e.

The vertex-deleted subgraph collection of a graph G is the multi-set of all vertex-
deleted subgraphs G− v. The number of times a graph appears in the collection equals
the number of different vertices whose removal yields that graph. Thus, the cardinality
of the collection equals the number of vertices of G.

The edge-deleted subgraph collection of a graph G is the multi-set of all edge-
deleted subgraphs G− e. The number of times a graph appears in the collection equals
the number of different edges whose removal yields that graph. Thus, the cardinality of
the collection equals the number of edges of G.

A reconstructible graph is a graph G such that no other graph has the same vertex-
deleted subgraph collection as G.

An edge-reconstructible graph is a graph G such that no other graph has the same
edge-deleted subgraph collection as G.

A reconstructible invariant is a graph invariant such that all graphs with the same
vertex-deleted subgraph collection have the same value with respect to this invariant.

An edge-reconstructible invariant is a graph invariant such that all graphs with
the same edge-deleted subgraph collection have the same value with respect to this
invariant.
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Conjectures:
1. The graph reconstruction conjecture (P. Kelly and S. Ulam, 1941): Every graph
with more than two vertices is reconstructible.
2. The edge reconstruction conjecture: Every graph with at least four edges is edge
reconstructible.
3. Halin’s conjecture: If two (possibly infinite) graphs with more than two vertices
have the same vertex-deleted subgraph collection, then each graph is a subgraph of the
other.

Facts:
1. The graph reconstruction conjecture implies the edge reconstruction conjecture, and
both are implied by Halin’s conjecture.
2. The graph reconstruction conjecture does not hold for graphs on two vertices, be-
cause K2 and K2 have identical sets of deleted subgraphs.
3. The edge reconstruction conjecture does not hold for graphs on four edges, because
K3 + K1 (disjoint union) and K1,3 have identical collections of edge-deleted subgraphs.
4. Computer search has verified the reconstruction conjecture for graphs with nine or
fewer vertices.
5. The following table lists some invariants and types of graphs which are known to be
reconstructible.

both edge-reconstructible and reconstructible other edge-reconstructible
invariants graphs graphs

number of vertices regular more edges than non-edges
number of edges disconnected only two vertex degrees
degree sequence trees no induced K1,3 subgraph

connectivity outerplanar large with Hamilton path
characteristic polynomial cacti 2 log2(2 max deg) ≤ avg deg

6. If graph F has fewer vertices than graph G then the number of subgraphs of G
isomorphic to F is reconstructible.
7. The reconstruction conjecture is not true for directed graphs in general, because
nonreconstructible tournaments of arbitrarily large size are known.
8. Infinite graphs are not reconstructible in general, but Halin’s conjecture holds for
all known nonreconstructible infinite pairs.
9. Almost every graph is uniquely determined by any three vertex-deleted subgraphs.

Example:

1. The following figure shows a graph (at the left) and its collection of vertex-deleted
subgraphs.
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8.6 GRAPH AND MAP COLORING

The vertex set of a simple graph can be colored so that adjacent vertices are colored
differently. Similarly, the edges of a graph without self-loops can be colored so that
adjacent edges are colored differently. If a graph is imbedded in a surface so that there
are no self-adjacent regions, then the regions can be colored so that adjacent regions
receive different colors. These entertaining concepts have many important applications,
including assignment and scheduling problems.

8.6.1 VERTEX COLORINGS

Definitions:

A (proper) vertex k-coloring (or k-coloring) of a simple graph G is a function
f : VG → {1, . . . , k} such that adjacent vertices are assigned different numbers. Quite
often, the set {1, . . . , k} is regarded as a set of colors.

A coloring of a graph is a k-coloring for some integer k.

An improper coloring of a graph permits two adjacent vertices to be colored the
same.

A graph is k-vertex colorable (or k-colorable) if it has a vertex k-coloring.

The vertex chromatic number or (chromatic number) χ(G) (or χV (G)) of a
graph G is the minimum number k such that G is k-vertex colorable; that is, χ(G)
is the smallest number of colors needed to color the vertices of G so that no adjacent
vertices have the same color.

A graph G is k-chromatic if χ(G) = k.

A graph G is chromatically k-critical if G is k-chromatic and if χ(G− e) = k− 1 for
each edge of G.

An obstruction to (or for) k-coloring is a chromatically (k +1)-critical graph, when
that graph is regarded as a subgraph of other graphs, and thereby prevents them from
having chromatic number k.

A (complete) obstruction set for k-coloring is a set of chromatically (k+1)-critical
graphs such that every graph that is not k-colorable contains at least one of them as a
subgraph.

An elementary contraction of a simple graph G on the edge e, denoted G ↓ e (or
G · e), is obtained by replacing the edge e and its two endpoints by one vertex adjacent
to all the other vertices to which the endpoints were adjacent.

A graph G is (combinatorially) contractible to a subgraph H if H can be obtained
from G by a sequence of elementary contractions. (The modifier “combinatorially”
distinguishes this kind of contractibility used for graph colorings from topological con-
tractibility.)

The chromatic polynomial of the graph G is the function πG(t) whose value at the
integer t is the number of different functions VG → {1, . . . , t} that are proper colorings
of G.
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Algorithm 1: Greedy coloring algorithm.

input: a graph G with vertex list v1, v2, . . . , vn

c := 0 {Initialize color at “color 0”.}
while some vertex still has no color

c := c + 1 {Get the next unused color.}
for i := 1 to n {Assign the new color to as many vertices as possible.}

if vi is uncolored and no neighbor of vi has color c then assign color c to vi

Facts:
1. A direct way to calculate the chromatic number of a reasonably small graph is in two
steps. First derive an upper bound for the number of colors needed, either by finding a
coloring by trial and error or by using the greedy coloring algorithm. Then prove that
one fewer colors would be insufficient. This could be achieved by an exponential-time
exhaustion algorithm, or by finding an insightful proof for the particular graph.
2. Alternative notation: In a topological context, where χ(S) means Euler character-
istic (§8.8), cr(G) can be used for the chromatic number of a graph.
3. Unlike a topological contraction along an edge, this operation of “elementary con-
traction” of two vertices of a simple graph always yields a simple graph.
4. χ(G) = 1 if and only if the graph G is edgeless.
5. χ(G) = 2 if and only if the graph is bipartite and its edgeset is nonempty.
6. The four color theorem (Appel and Haken, 1976): If G is planar, then χ(G) ≤ 4.
That is, every planar graph has a proper coloring of its vertices with 4 or fewer colors.
7. {K2} is a complete obstruction set for 1-coloring.
8. The set of odd cycles is a complete obstruction set to 2-coloring.
9. The odd wheels W2n+1, n ≥ 1, are obstructions to 3-coloring.
10. Brooks’ theorem: If G is a connected graph which is neither an odd cycle nor a
complete graph, then χ(G) ≤ ∆max(G), where ∆max denotes maximum degree. (The
subscript “max” is often omitted.)
11. χ(G) ≤ 1 + ∆max(G).
12. χ(G) ≤ 1 + max δmin(G′), where δmin denotes minimum degree, and where the
maximum is taken over all induced subgraphs G′ of G.
13. χ(G) ≤ diam(G), where the diameter diam(G) is the length of a longest path in G.
14. Hadwiger’s conjecture: If G is a connected graph with χ(G) = n, then G is
contractible to Kn; it is known to be true for n ≤ 5.
15. Nordhaus-Gaddum inequalities: If G is a graph with |V (G)| = p and G is its
edge-complement, then

• 2
√

p ≤ χ(G) + χ(G) ≤ p + 1;

• p ≤ χ(G) · χ(G) ≤
(
p+1
2

)2
.

16. The greedy coloring algorithm (Algorithm 1) produces a vertex coloring of a graph
G, whose vertices are ordered. (It is called “greedy” because once a color is assigned, it
is never changed.) The number of colors it assigns depends on the vertex ordering, and
it is not necessarily the minimum possible.
17. At least one ordering of the vertices of a graph G yields χ(G) under the greedy
algorithm.
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18. The number of colors used by the greedy coloring algorithm depends on the order-
ing in which the vertices of G are listed. At least one of the orderings of the vertices
of G yields χ(G).

19. The number of colors used by the greedy coloring algorithm can exceed χ(G) by
an arbitrarily large number.

20. There is no known polynomial-time algorithm for finding χ(G) exactly. Deciding
whether a graph has a particular chromatic number is NP-complete, if that number is
at least 3.

21. The following table gives the chromatic numbers and edge-chromatic numbers
(§8.6.2) of the graphs in some common families.

graph G χ(G) χ1(G)

path graph Pn, n ≥ 3 2 2

cycle graph Cn, n even, n ≥ 2 2 2

cycle graph Cn, n odd, n ≥ 3 3 3

wheel Wn, n even, n ≥ 4 3 n

wheel Wn, n odd, n ≥ 3 4 n

complete graph Kn, n even, n ≥ 2 n n− 1

complete graph Kn, n odd, n ≥ 3 n n

complete bipartite graph Km,n, m, n ≥ 1 2 max{m, n}
bipartite G, at least one edge 2 ∆max(G)

Petersen graph 3 4

complete k-partite Km1,...,mk
, mi ≥ 1 k max{m1, . . . , mk}

22. For every edge e of a simple graph G, πG(t) = πG−e(t)− πG·e(t).

23. The chromatic polynomial πG(t) of a graph with n ≥ 1 vertices and m edges is a
polynomial in t of degree n, whose leading term is tn, whose next term is −mtn−1, and
whose constant term is 0.

24. The following table gives the chromatic polynomials of some graphs.

graph πG(t)

n-vertex tree t(t− 1)n−1

cycle graph Cn (t− 1)n + (−1)n(t− 1)
wheel Wn t(t− 2)n−1 + (−1)n−1t(t− 2)

complete graph Kn tn = t(t− 1)(t− 2) . . . (t− n + 1)

Examples:

1. Time scheduling : Let classes at a school be modeled by the vertices of a simple
graph G, with two vertices adjacent if and only if there is at least one student in both
of the corresponding classes. Then χ(G) gives the minimum number of time periods for
scheduling the classes so as to accommodate all the students.
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2. Assignment of radio frequencies: If the vertices of a graph G represent radio stations,
with two stations adjacent precisely when their broadcast areas overlap, then χ(G)
determines the minimum number of transmission frequencies required to avoid broadcast
interference.
3. Separating combustible chemical combinations: Let the vertices of graph G repre-
sent different kinds of chemicals needed in some manufacturing process. An edge joins
each pair of chemicals that might explode if they are combined. The chromatic number
of this graph is the number of different storage areas required so that no two chemicals
that mix explosively are stored together.
4. Proceeding in the direct way, as described in Fact 1, to color the graph in the
following figure quickly yields its chromatic number. Applying the greedy coloring
algorithm, with the vertices considered in cyclic order around the 8-cycle, yields a 3-
coloring. Since this graph contains an odd cycle (a 5-cycle), it cannot be 2-colored.
Thus, χ = 3.

5. In the following figure vertex colorings are indicated for the cycle graphs C3, C4,
and C5; in each case three colors are used. Note that χ(C3) = χ(C5) = 3, whereas
χ(C4) = 2 (since the vertex colored “3” could have been colored “1”).

6. The following figure shows three chromatically 4-critical graphs.

7. A 3-coloring of graph A in the figure of Example 6 would necessarily give some color
to three different vertices. Two of these vertices would have to be adjacent (because
the edge-complement contains no 3-cycle). Thus, a 3-coloring could not be proper, and
hence χ = 4.
8. A 3-coloring of graph B in the figure of Example 6 would need three different colors
on the outer 5-cycle. These would force the use of three different colors on the points
of the central 5-star. This would force the use of a fourth color on the central vertex.
Thus, χ = 4.
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8.6.2 EDGE COLORINGS

Definitions:

An edge coloring of a graph is an assignment of colors to its edges such that adjacent
edges receive different colors.

A graph G is k-edge colorable if there is an edge coloring of G using at most k colors.

The edge chromatic number χ1(G) (or χE(G)) of a graph G is the minimum k such
that G is k-edge colorable. If χ1(G) = k, then G is edge k-chromatic.

Chromatic index is a synonym for edge chromatic number.

A graph is edge-chromatically k-critical if it is edge k-chromatic and χ1(G − e) =
χ1(G)− 1 for every edge e of G.

For a graph G, the line graph L(G) has as vertices the edges of G, with two vertices
adjacent in L(G) if and only if the corresponding edges are adjacent in G.

Facts:
1. Alternative notation: In a topological context where χ is used for Euler character-
istic, the notation for edge-chromatic number is often ecr(G).
2. Every edge coloring of a graph G can be interpreted as a vertex coloring of the
associated line graph L(G). Thus, χ1(G) = χ(L(G)).
3. ∆max(G) ≤ χ1(G).
4. Vizing’s theorem: If G is a simple graph, then χ1(G) ≤ ∆max(G) + 1.
5. Vizing’s general theorem: If G is a general graph whose maximum edge multiplicity
is µ, then χ1(G) ≤ ∆max(G) + µ.
6. Either χ1(G) = ∆max(G) (G is of class one) or χ1(G) = ∆max(G) + 1 (G is of class
two).
7. χ1(Km,n) = χ(L(Km,n)) = χ(Km ×Kn) = max{m, n}, if m, n ≥ 1.
8. If G is bipartite, then χ1(G) = ∆max(G).
9. χ1(Kn) = n if n is odd (n �= 1); χ1(Kn) = n− 1 if n is even.
10. If G is planar and ∆max(G) ≥ 8, then χ1(G) = ∆max(G).
11. If G is 3-regular and Hamiltonian, then χ1(G) = ∆max(G).
12. If G is regular with |VG| odd and |EG| > 0, then χ1(G) = ∆max(G) + 1.
13. The greedy edge-coloring algorithm (Algorithm 2) produces an edge-coloring of a
graph G, whose vertices are ordered. The number of colors it assigns depends on the
vertex ordering, and it is not necessarily the minimum possible. (It is equivalent to
applying the greedy vertex-coloring algorithm to the line graph.)

Examples:
1. The following three graphs are all edge 3-chromatic. None of them is edge-chromati-
cally 3-critical. Since each graph has a vertex of degree three, no 2-edge-coloring is
possible.
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Algorithm 2: Greedy edge-coloring algorithm.

input: a graph G with edge list e1, e2, . . . , en

c := 0 {Initialize color at “color 0”.}
while some edge still has no color

c := c + 1 {Get the next unused color.}
for i := 1 to n
{Assign the new color to as many edges as possible.}
if ei is uncolored and no neighbor of ei has color c then assign color c to ei

2. The following graph is 5-edge-chromatic. Since there are 14 edges, a 4-edge-coloring
would have to give the same color to four of them. For this edge-coloring to be proper,
these four edges would have to have no endpoints in common. That is impossible,
because the graph has only seven vertices.

3. The Petersen graph is edge-chromatically 4-critical.

4. Exam scheduling : Suppose that each student at a university is to be examined
orally by each of his or her professors at the end of the term. Then the minimum
number of examination periods required is the edge chromatic number of the bipartite
graph with vertices representing students and professors, and edges connecting students
with their professors.

5. Wiring electrical network boards: A number of relays, switches, and other elec-
tronic devices D1, D2, . . . , Dn on a relay panel are to be connected into a network.
The connecting wires are twisted into a cable, with those connected to D1 emerging at
one point, those connected to D2 at another, and so forth. The wires emerging from
the same point must be colored differently, so that they can be distinguished. The
least number of colors required to color the wires is the edge chromatic number of the
associated network.

6. The following nonsimple graph illustrates Vizing’s general theorem. Its highest edge
multiplicity is 3, its maximum degree is 6, and its edge chromatic number is 9.
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8.6.3 CLIQUES AND INDEPENDENCE

Definitions:

A clique of a graph G is a complete subgraph of G which is contained in no larger
complete subgraph of G.

The clique number ω(G) of a graph G is the order (i.e., number of vertices) of a
largest clique of G.

A subset W of V (G) (or D of E(G)) is independent if no two elements of W (respec-
tively D) are adjacent.

The vertex independence number α(G) of G is the order of a largest independent
set of vertices in G.

The edge independence number α1(G) of a graph G is the size of a largest inde-
pendent set of edges in G.

A graph G is perfect if, for every induced subgraph H of G, the chromatic number
equals the clique number, that is, χ(H) = ω(H).

A graph G is weakly γ-perfect if χ(G) = ω(G).

Facts:

1. The independence number of a graph is equal to the clique number of its edge-
complement, and vice versa. That is, α(G) = ω(G) and ω(G) = α(G).

2. The chromatic number of a graph is at least as large as the clique number: χ(G) ≥
ω(G).

3. For each positive integer n, there is a graph G with chromatic number n and clique
number equal to 2; that is, G contains no triangles.

4. If no induced subgraph of a graph is isomorphic to P4, then its chromatic number
equals its clique number and the greedy algorithm (§8.6.1 Algorithm 1) always produces
a coloring with the minimum number of colors.

5. Lovasz’s perfect graph theorem: A graph G is perfect if and only if its edge-
complement G is perfect.

6.
|V (G)|
α(G)

≤ χ(G) ≤ |V (G)|+ 1− α(G).

7. If |E(G)| > ∆max(G)× α1(G), then χ1(G) = ∆max(G) + 1.

Examples:

1. The following graph has three cliques — of sizes 2, 3, and 4. Thus, its clique number
is 4.

2. If 1 ≤ m ≤ n, then ω(Km,n) = 2, α(Km,n) = n, and α1(Km,n) = m.

3. Define Kn(m) to be the graph whose edge complement is nKm, the disjoint union
of n copies of Km. Then ω(Kn(m)) = n, α(Kn(m)) = m, and α1(Kn(m)) =

⌊
mn
2

⌋
.
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8.6.4 MAP COLORINGS

Definitions:

An orientable surface S is a surface homeomorphic to a sphere with g ≥ 0 handles
attached and is denoted by Sg.

A nonorientable surface S is a surface homeomorphic to a sphere with k ≥ 1 crosscaps
attached and is denoted by Nk. (See §11.7.1.)

The Euler characteristic of a surface S is χ(S), where

χ(S) =
{

2− 2g if S is homeomorphic to Sg
2− k if S is homeomorphic to Nk.

The most usual notation for Euler characteristic throughout mathematics is χ(S). How-
ever, ad hoc notation such as eu(S) is sometimes used in chromatic graph theory.

A map on a surface is an imbedding of a graph on that surface. (See §8.7.)

A map coloring is an assignment of colors to the regions of a map so that adjacent
regions (those sharing a one-dimensional boundary portion) receive different colors.

A map M is n-colorable if there is a map coloring of M using at most n colors.

The chromatic number χ(M) (or cr(M) or χR(M)) of a map M is the minimum n
such that M is n-colorable.

The chromatic number χ(S) (or cr(S)) of a surface S is the largest chromatic num-
ber χ(M) for all maps M on S.

The (empire) chromatic number χ(S, c) for a surface S is the largest χ(M) for all
maps M on S, where now a country has at most c ≥ 1 components (regions) and all
components of a fixed country are colored alike, but adjacent components of different
countries must receive different colors. (Thus χ(S) = χ(S, 1).)

Facts:

1. A region coloring can be regarded as a vertex coloring of the dual graph (§11.7).
From this perspective, χ is the largest value of χ(G) for all graphs G imbeddable on S.

2. By stereographic projection (§11.6.5), χ(S0) gives the chromatic number of the
plane.

3. Let G be a planar cubic block; then χ1(G) = 3.

4. Let M be a plane map whose graph G is connected and bridgeless. Then χ(M) = 2
if and only if G is Eulerian.

5. Let M be a plane map for a cubic connected bridgeless graph G; then χ(M) = 3 if
and only if the dual graph is Eulerian.

6. If G is a plane graph without triangles, then χ(G) = 3. (Grötzsch, 1958)

7. The four color theorem (Appel and Haken, 1976): χ(S0) = 4. That is, every map
on a sphere or plane can be colored with 4 or fewer colors.

8. The Heawood map coloring theorem (Ringel and Youngs, 1968): For g > 0,

χ(Sg) =
⌊

7 +
√

1 + 48g

2

⌋
.
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9. The nonorientable Heawood map coloring theorem (Ringel, 1954): For k > 0,

χ(Nk) =
⌊

7 +
√

1 + 24k

2

⌋
.

except that χ(N2) = 6.

10. χ(S, c) ≤
⌊

6c + 1 +
√

(6c + 1)2 − 24eu(S)
2

⌋
.

11. χ(S0, c) = 6c for c ≥ 2.

12. χ(N1, c) = 6c for c ≥ 1.

13. χ(S1, c) = 6c + 1 for c ≥ 1.

14. History of the four color problem: In 1852, Francis Guthrie first asked whether
four colors suffice to color every planar map, and his brother Frederick communicated
the question to Augustus De Morgan. Arthur Cayley in 1878 was first to mention the
problem in print. In 1879, A. B. Kempe, a London barrister, published a “proof” of
the four color conjecture: every planar map is 4-colorable. In 1890 Percy Heawood
(1861–1955) found an error in Kempe’s argument. A correct proof was established by
Kenneth Appel and Wolfgang Haken in 1977.

15. Concepts in the Haken-Appel proof of the four color theorem: Appel and Haken
found an “unavoidable” set with 1476 graphs, which means that at least one of these
graphs must be a subgraph of any minimum counterexample to the four color conjecture.
A method called “discharging”, due to Heinrich Heesch, is used to find an unavoidable
set. Using a computer, they proved that each of these graphs is “reducible”, which
means that it cannot be a subgraph of a minimum counterexample.

16. A simplified proof of the four color theorem can be found in [Th98] or at the
following Web site:

http://www.math.gatech.edu/~thomas/FC/ftpinfo.html

17. History of the Heawood map coloring problem: In 1890, Percy Heawood estab-
lished the upper bound

χ(M) ≤
⌊

7 +
√

49− 24eu(S)
2

⌋

for χ(M) for all maps M on all closed surfaces other than S0. Heawood showed that
his bound was exact for the torus, by the example of the dual of K7 on S1, and he
asserted without proof that similar “verification figures” existed for all other cases. In
1934, Philip Franklin showed that Heawood’s assertion was wrong for N2 (the “Klein
bottle”). For all other nonorientable surfaces, Gerhard Ringel provided the necessary
figures in 1952. In 1968, Ringel and J. W. T. Youngs completed the verification for all
orientable surfaces other than the sphere.

Examples:

1. Let M be the tetrahedral map, i.e., an imbedding of K4 in S0. By Fact 4, χ(M) �= 2,
since K4 is not Eulerian. By Fact 5, χ(M) �= 3, since the dual graph (isomorphic to K4)
is also not Eulerian. Thus, χ(M) = 4 = χ(S0).

2. Cartography : If countries on Earth are allowed two components, but no more, then
by Fact 11 a map might require twelve colors, but no more.
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3. By Fact 8, χ(S1) = 7. The dual map of the following figure imbeds K7 in the torus.
To obtain the torus, paste the left side of the rectangular sheet directly to the right
side, and then paste the top to the bottom with a 2

7 twist.

8.6.5 GRAPH MULTICOLORING

This subsection deals with the proper coloring of the vertices of a graph where each
vertex is assigned more than one color (or label). Multicoloring of graphs has many
applications to assignment and scheduling problems. See [MiRo91].

Definitions:

A (proper) k-tuple coloring (or k-multicoloring) of a graph is an assignment of
a set of k distinct colors to each vertex of a graph so that whenever two vertices are
adjacent, their sets of assigned colors are disjoint.

A (proper) multicoloring of a graph is a k-multicoloring for some k.

The k-tuple chromatic number χk(G) of a graph G is the smallest number of colors
such that G has a k-tuple coloring.

A (proper) set coloring of a graph is an assignment of a set of colors to each vertex
of G such that whenever two vertices are adjacent, the sets of colors assigned to the two
vertices are disjoint. Note: The sets can have different sizes.

Facts:

1. χk(G) ≤ kχ(G).

2. If the clique number ω(G) (§8.6.3) of G is equal to χ(G) (i.e., G is weakly γ-perfect),
then χk(G) = kχ(G).

3. Set colorings generalize multicolorings since the sets of assigned colors in a set col-
oring can have different sizes.

4. Every set coloring of G where all sets assigned to the vertices are all k-sets is a
k-tuple coloring of G.

5. χk(Kn) = nk.

6. If G is bipartite (with at least one edge), then χk(G) = 2k.

Examples:
1. Multiple channel assignment: Several cities each need to have four broadcast fre-
quencies assigned to them (a generalization of §8.6.1, Example 7). The 4-tuple chro-
matic number χ4(G) is the minimum number of frequencies needed so that there is no
broadcast interference.
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2. χ2(C5) = 5, as illustrated in the following figure.

3. Exam scheduling : Each final exam at a school is given in two parts, with each
part requiring one final exam period. If a graph G is constructed by using the courses
as vertices, with an edge joining v and w if there is a student taking courses v and w,
then χ2(G) gives the minimum number of periods required to schedule all the exams so
no student has a conflict.

4. Suppose that in the previous example the number of periods required for the final
exams in courses varies. The problem of scheduling the final exams in the fewest number
of periods is a set coloring problem.

8.7 PLANAR DRAWINGS

Planarity is an important consideration in physical networks of any kind, because it
is usually less expensive to produce a planar network. For instance, overpasses are a
costly feature in highway design. Also, it is less complicated to manufacture a planar
electrical network than a nonplanar network.

8.7.1 CHARACTERIZING PLANAR GRAPHS

A graph cannot be drawn without edge-crossings in the plane if it “contains” either the
graph K5 or the graph K3,3. Conversely, every graph that “contains” neither of those
two graphs can be drawn without crossings.

Definitions:

A graph imbedding (or embedding) is a drawing with no crossings at all.

A graph is planar if it has an imbedding in the plane.

A graph is nonplanar if no imbedding in the plane is possible.

A drawing of a graph is normalized if there are no crossings, or if each crossing is a
point where the interior of one edge crosses the interior of one other edge. (Edges may
be drawn either straight or with curves.)

The graphs K5 and K3,3 are called the Kuratowski graphs, after the Polish mathe-
matician Kazimierz Kuratowski (1896–1980).

c© 2000 by CRC Press LLC



Facts:

1. The graphs K5 and K3,3 are both nonplanar. See Examples 4 and 5 for proofs that
they are not planar.

2. Kuratowski planarity theorem: A graph is planar if and only if it has no subgraph
homeomorphic (§8.1.2) to K5 or to K3,3.

Examples:

1. The drawings of Q3, K5, and K3,3 in the following figure all have crossings. However,
the graph Q3 is planar, because it can be redrawn without any crossings.

Q3 K5 K3,3

2. The drawings of Q3 and K5 in the figure of Example 1 are normalized, but the
drawing of K3,3 is not normalized, because three lines go through the same point.

3. The Petersen graph (§8.1) does not contain K3,3 itself as a subgraph. However, if
the two edges depicted by broken lines in the following figure are discarded, then the
resulting graph is homeomorphic to K3,3, so the Petersen graph is not planar.

4. Nonplanarity of K5: To draw the complete graph on the vertices v1, v2, v3, v4, v5 in
the plane, one might as well start by drawing the 4-cycle v1, v2, v3, v4, which separates
the plane. Next draw the edges between v1 and v3 and between v2 and v4. To avoid
crossing each other, one of these edges must go inside the 4-cycle and the other outside,
as shown in the following figure. The net result so far is that there are four 3-sided
regions, each with three vertices on its boundary. Thus, no matter which region is to
contain the vertex v5, that vertex cannot be joined to more than three other vertices
without crossing the boundary.

5. Nonplanarity of K3,3: To form a planar drawing of the complete bipartite graph
on the parts {v1, v3, v5} and {v2, v4, v6}, one might as well start by drawing the 6-cycle
v1, v2, v3, v4, v5, v6, which separates the plane. Next draw the edges between v1 and v4
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and between v2 and v5. To avoid crossing each other, one of these edges must go inside
the 6-cycle and the other outside. The net result so far is shown in the following figure.
It is now clear that v3 and v6 cannot be joined without crossing some other edge.

6. Civil engineering : Suppose that a number of towns are to be joined by a network
of highways. If the network is planar, then the cost of bridges for underpasses and
overpasses can be avoided.

7. Electrical networks: A planar electrical network with bare wires joining the nodes
can be placed directly onto a flat board. Otherwise, insulation would be needed to
prevent short circuits at wire crossings.

8.7.2 NUMERICAL PLANARITY CRITERIA

Certain numerical relationships are true of all planar graphs. One way to show that a
graph is nonplanar is to show that it does not satisfy one of these relations.

Definitions:

A region of an imbedded graph is, informally, a piece of what results when the surface
is cut open along all the edges. From a formal topological viewpoint, it is a maximal
subsurface containing no vertex and no part of any edge of the graph.

The boundary of a region R of an imbedded graph is the subgraph containing all
vertices and edges incident on R. It is denoted ∂R.

A face of an imbedded graph is a region plus its boundary.

The exterior region of a planar graph drawing is the region that extends to infinity.

The girth of a graph is the number of edges in a shortest cycle. The girth is undefined
if the graph has no cycles.

Facts:

1. Euler polyhedral equation: Let G = (V, E) be a connected graph imbedded in the
plane with face set F . Then |V | − |E|+ |F | = 2.

2. Edge-face inequality : Let G = (V, E) be a simple, connected graph imbedded in a
surface with face set F . Then 2|E| ≥ 3|F |.
3. Edge-face inequality (strong version): Let G = (V, E) be a connected graph, but
not a tree, imbedded in a surface with face set F . Then 2|E| ≥ girth(G) · |F |.
4. Let G = (V, E) be a simple, connected graph. If G is planar then 3|V | − |E| ≥ 6.

5. Let G = (V, E) be a connected graph that is not a tree. If G is planar then
(|V | − 2) · girth(G) ≥ |E| · (girth(G)− 2).

6. Let G = (V, E) be a simple, connected, bipartite graph that is not a tree. If G is
planar then |E| ≤ 2 · |V | − 4.
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Examples:
1. In the planar imbedding of the following figure, |V | = 4, |E| = 6, and |F | = 4. Thus,
|V | − |E|+ |F | = 4− 6 + 4 = 2. (The “exterior” region counts as a face.)

2. Fact 4 implies that K5 is nonplanar.
3. Fact 5 implies that the Petersen graph, whose girth equals 5, is nonplanar.
4. Fact 6 implies that K3,3 is nonplanar.

8.7.3 PLANARITY ALGORITHM

Definitions:

A bridge of a subgraph H in a graph G is a maximal connected subgraph of G in
which no vertex of H has degree greater than 1.

An attachment of a bridge B of a subgraph H in a graph G is a vertex of B ∩H.
(That is, an attachment is a vertex in which the bridge meets the rest of the graph.)

Facts:
1. Call two edges in the complement of a subgraph H of a graph G “related” if they
are both contained in a path in G that has no vertices of H in its interior. Then the
bridges of H are the induced subgraphs on the equivalence classes of edges under this
relation.
2. Informally, a bridge is a subgraph obtained from one of the “pieces” that result by
deleting H from G by reattaching the endpoints to the edges that attach to H. See
Example 1.
3. The time needed to test planarity by searching directly for subdivided copies of K5

and K3,3 is an exponential function of the number of vertices.
4. J. Hopcroft and R. Tarjan [1974] have developed a planarity-testing algorithm that
can be executed in time proportional to the number of vertices (“linear time”).
5. Algorithm 1 can be implemented to run in time approximately proportional to the
square of the number of vertices (“quadratic time”).
6. None of the linear-time planarity algorithms is easy to describe and implement.
However, Algorithm 1 is easily implemented, and its running time is satisfactory for
reasonably large graphs.

Example:
1. The following figure shows a subgraph and its three bridges: B1, B2, and B3. The
subgraph H is the dark cycle. The attachments of the bridges are the vertices along
the dark cycle.

B2

B1

B3

H

c© 2000 by CRC Press LLC



Algorithm 1: Easy planarity-testing for graph G.

input: a simple, connected graph G

G0 := an arbitrary cycle in G; draw G0 in the plane; j := 0
{Grow a sequence of nested subgraphs G0, G1, . . . until all of G has been drawn

in the plane; if this does not happen, then G is nonplanar}
while Gj �= G {this possible exit implies G is planar} and

(
∀B ∈bridges (Gj)

)(
∀v ∈ attachments (B)

)(
∃ region R of Gj in plane

)
v ∈ ∂R {this possible

exit implies G is nonplanar} do
{While-loop body says how to grow subgraph Gj+1}
if

(
∃B ∈bridges (Gj)

)(
∀v ∈ attachments (B)

)(
∃! region R of Gj

) [
v ∈ ∂R

]
then {case 1 — a forced move exists}

select a path P between two attachments of B
obtain subgraph Gj+1 by drawing path P in region R

else {case 2 — no forced move exists}
select any bridge, and find two regions for its attachments
select any path between two attachments of that bridge
draw that path into either region to obtain Gj+1

j := j + 1

2. Suppose that the figure in Example 1 occurred in the execution of Algorithm 1. At
the next iteration of the while-loop body, suppose that bridge B2 is selected, and suppose
that a path in B2 is drawn outside the dark cycle. Then, on the following iteration of
the while-loop body, bridge B3 would be a forced choice, and a path from B3 would
have to be drawn inside the dark cycle. Eventually, bridge B1 would have to be drawn
outside the dark cycle, thereby yielding a planar drawing of the entire graph.

8.7.4 CROSSING NUMBER AND THICKNESS

Definitions:

The crossing number of graph G, denoted ν(G), is the minimum number of edge-
crossings possible in a normalized drawing of G in the plane.

The thickness of graph G, denoted θ(G), is the minimum number of planar graphs
whose union is G.

Facts:

1. ν(Kn) ≤ 1
4 ·

⌊
n
2

⌋
·
⌊
n−1

2

⌋
·
⌊
n−2

2

⌋
·
⌊
n−3

2

⌋
.

2. For all integers n ≤ 10, ν(Kn) = 1
4 ·

⌊
n
2

⌋
·
⌊
n−1

2

⌋
·
⌊
n−2

2

⌋
·
⌊
n−3

2

⌋
.

3. R. Guy has conjectured that the equation of Fact 2 holds for all positive integers.

4. ν(Km,n) ≤
⌊
m
2

⌋
·
⌊
m−1

2

⌋
·
⌊
n
2

⌋
·
⌊
n−1

2

⌋
.

5. For all integers m and n such that min(m, n) ≤ 6, D. Kleitman proved that ν(Kn) =⌊
m
2

⌋
·
⌊
m−1

2

⌋
·
⌊
n
2

⌋
·
⌊
n−1

2

⌋
.
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6. Zarankiewicz’s conjecture: The equation of Fact 5 holds for all positive integers m
and n.

7. θ(Kn) ≥
⌊
n+7

6

⌋
.

8. θ(Qn) =
⌊
n+1

4

⌋
.

9. θ(G) ≥
⌊

|E|
3|V |−6

⌋
for all simple graphs.

Examples:

1. Fact 1 implies that ν(K6) ≤ 3. Thus, it is possible to draw K6 with at most three
crossings.

2. Computer engineering : Facts 7 and 8 yield lower bounds for the minimum number
of layers needed for a multi-layer layout of an electronic interconnection network whose
architecture is a complete graph or a hypercube graph, respectively.

8.7.5 STEREOGRAPHIC PROJECTION

Definitions:

A continuous one-to-one function from one subset of Euclidean space onto another is
a topological equivalence if its inverse is continuous. (Informally, this means that
either subset could be reshaped into the other without tearing, but only by compressing,
stretching, and twisting.)

The stereographic projection (due to Bernhard Riemann, 1826–1866) adds a single
point to a plane and thereby closes the “hole at infinity” and converts it into a sphere,
as follows:

• start with a sphere in 3-space, tangent at its south pole S to the plane z = 0 at
the origin (0, 0, 0), as shown in the following figure;

• through each point x of the sphere draw a ray from the north pole N , extending
to the point f(x) at which it meets the plane.

Facts:

1. The correspondence x→ f(x) from the sphere minus its north pole onto the plane is
a topological equivalence. In other words, the sphere minus a point could be stretched
apart at the missing point and flattened out so that it covers the plane.

2. Any planar imbedding can be transformed into an imbedding in the sphere, which
is a closed surface, by using the inverse of stereographic projection and closing up the
pinhole. This eliminates the inelegant nuisance of having one “special” region with a
hole.
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8.7.6 GEOMETRIC DRAWINGS

Geometric drawing of graphs is a topic in computational geometry. Unlike ordinarily
planarity and topological graph theory, its concerns include the exact coordinates in the
plane of the images of the vertices and the edges.

Definitions:

A straight-line drawing of a graph is a drawing in which each edge is represented by
a single straight line segment.

An orthogonal drawing of a graph is a drawing in which each edge is represented by
a chain of horizontal and vertical line segments.

A polyline drawing of a graph is a drawing in which each edge is represented by a
polygonal path, that is, by a chain of line segments with arbitrary slope.

A bend in a polyline drawing is a junction point of two line segments belonging to the
same edge.

A grid drawing of a graph is a polyline drawing in which vertices, crossings, and bends
have integer coordinates.

The area of a graph drawing is the area of the convex hull of the drawing.

A distance-ranked partition of a graph G with respect to a nonempty vertex subset S
has cells Cj for j = 0, 1, . . . . Vertex v is in cell Cj if and only if its shortest path to
every vertex of S has length j.

A distance-ranked drawing of a graph G with respect to a nonempty vertex subset S
has the cells of its distance-ranked partition organized into columns from left to right
according to ascending distance from S.

Facts:

1. Straight-line and orthogonal drawings are special cases of polyline drawings.

2. Polyline drawings can approximate drawings with curved edges.

3. Computer programmed systems that support general polyline drawings are more
complicated than systems that support only straight-line drawings.

4. Many graph drawing problems involve a trade-off between competing objectives,
such as the desire to minimize both the area and the number of edge-crossings.

5. The area required for a planar polyline grid drawing of an n-vertex planar graph
is O(n2).

6. The area required for a planar orthogonal grid drawing of an n-vertex planar graph
is O(n2).

7. The area required for a planar straight line grid drawing of an n-vertex planar graph
is O(n2).

8. Every planar graph of maximum degree 4 has an orthogonal planar drawing whose
total number of bends is at most 2n + 2.

9. Every planar graph of maximum degree 4 has an orthogonal planar drawing such
that the maximum number of bends in an edge is at most 2.
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Examples:

1. The following figure shows a nonplanar straight line drawing of the planar graph
K6 − 3K2 and a planar polyline drawing of that same graph.

2. The following figure shows two orthogonal grid drawings of the graph K6 − 3K2.
Whereas the lefthand drawing has two edges with three bends, the maximum number
of bends in any edge of the middle drawing is two. The righthand drawing has the
smallest total number of bends and the smallest area of the three drawings.

3. The following figure shows a distance-ranked drawing of the cube graph Q3 with
respect to the vertex 000.

8.8 TOPOLOGICAL GRAPH THEORY

Topological graph theory mainly involves placing graphs on closed surfaces. Special
emphasis is given to placements that are minimum with respect to some kind of cost
or that are highly symmetric. Minimization helps to control the cost of manufacturing
networks, and symmetry facilitates the task of routing information through a network.

8.8.1 CLOSED SURFACES

Holes in any surface can be closed off by operations like stereographic projection (§8.7.5).
This enables topological graph theory to focus on drawings in closed surfaces.
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Definitions:

Adding a handle to a surface is accomplished in two steps (illustrated in Example 1):
• punch two disk-like holes into the surface;
• reclose the surface by installing a tube that runs from one hole to the other.

An orientable surface is defined recursively to be either the sphere S0, or a surface
that is obtained from an orientable surface by adding a handle. (See Example 2 for the
construction.)

The genus of an orientable surface is the number of handles one must add to the
sphere to obtain it. Thus, the surface obtained by adding g handles to S0 has genus g.
It is denoted Sg.

The torus is the surface S1 of genus 1.

A Möbius band is the surface obtained by pasting the left side of a rectangular sheet
to the right with a half-twist. A paper ring with a half-twist is a commonplace model
of the Möbius band. (See Example 3.) (Augustus Ferdinand Möbius, 1790–1868)

Adding a crosscap to a surface is accomplished by the following two steps:
• punch one disk-like hole into the surface;
• reclose the hole by matching its boundary to the boundary of a Möbius band.

The nonorientable surface Nk is obtained by adding k crosscaps to the sphere. The
sphere is sometimes regarded as the “surface with crosscap number 0” and denoted N0,
even though it is orientable. (See Example 4.)

The subscript k is called the crosscap number of the surface Nk.

The surfaces N1 and N2 are called the projective plane and the Klein bottle, re-
spectively. (Felix Klein, 1849–1925)

Facts:

1. Classification of closed surfaces: Every closed surface is equivalent to exactly one
of the surfaces Sg (g ≥ 0) or Nk (k ≥ 1).

2. Adding a handle to the nonorientable surface Nk is equivalent to adding two cross-
caps. That is, the resulting surface is Nk+2.

3. If a loop is drawn around each handle of Sg and if these g loops are then cut open,
the result is a (non-closed) surface that can be stretched and flattened out into a subset
of the plane.

4. The subscript g equals the maximum number of closed curves on Sg that can be cut
open without disconnecting that surface.

5. The subscript k equals the maximum number of closed curves on Nk that can be
cut open without disconnecting that surface.

6. No nonorientable surface can be imbedded in R3.

7. Network layouts: The surfaces actually used for computer interconnection network
layouts and other practical purposes rarely have graceful curved shapes, because among
other reasons, that would obstruct miniaturization and ease of manufacture. Moreover,
such surfaces usually have holes. However, the classification theorem and the closing of
holes reduce the topology of the layout problems to placing graphs on closed surfaces.
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Examples:

1. Adding a handle is achieved by punching two holes and connecting them with a
tube, as illustrated.

2. To construct the sequence of all orientable surfaces from the sphere S0, each succes-
sive handle is added at the right of the previous surface.

3. The Möbius band is constructed by giving a half-twist to a rectangular strip and
then pasting the ends together.

4. To construct the sequence of all nonorientable surfaces from the projective plane N1,
each successive crosscap is added at the right of the previous surface.

8.8.2 DRAWING GRAPHS ON SURFACES

Definitions:

A flat polygon representation of a surface S is a drawing of a flat polygon with
markings to match the sides into pairs such that when the sides are pasted together as
the markings indicate, the resulting surface S is obtained. (Certain special flat polygon
representations are called fundamental polygon representations.) (See Example 1.)

An imbedding (or embedding) of a graph is a drawing with no edge-crossings.

A face of an imbedding means a region plus its boundary. The set of all faces is
denoted F .

The Euler characteristic of an imbedding of a graph G = (V, E) is the number
|V | − |E|+ |F |.
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A flat-polygon drawing of a graph on a surface has some graph edges drawn in two
or more segments, so that one segment runs from one endpoint of an edge to a side of
the flat polygon and another segment runs from the other endpoint to the corresponding
position on the matched side of the flat polygon. Sometimes there are also some interior
edge segments running between polygon sides. (Flat-polygon drawings are best used
for small graphs.)

Imbedding modification (or “surgery”) on a surface means adding handles and cross-
caps to the surface and then drawing one or more edges that traverse the new handles
and crosscaps.

Henri Poincarè (1854–1912) introduced a duality construction (see Example 3) as
follows:

• insert into the interior of each (primal) face f a single dual vertex f∗;
• through each primal edge e draw a dual edge e∗; if edge e lies on the intersection

of two primal faces f and f ′ (possibly f = f ′), then the dual edge e∗ joins the
dual vertices f∗ and f ′∗;

• the dual graph is the graph G∗ =
(
{ f∗ | f ∈ F }, { e∗ | e ∈ E }

)
;

• the dual imbedding is the resulting imbedding G∗ → S.

Facts:

1. Every closed surface has a flat polygon representation. This makes it possible to
draw pictures of graph imbeddings in any surface.

2. Euler polyhedral equation for orientable surfaces: Let G = (V, E) be a connected
graph, cellularly imbedded (§8.8.3) into the surface Sg with face set F . Then

|V | − |E|+ |F | = 2− 2g = χ(Sg).

3. Euler polyhedral equation for nonorientable surfaces: Let G = (V, E) be a connected
graph, cellularly imbedded into the surface Nk with face set F . Then

|V | − |E|+ |F | = 2− k = χ(Nk).

4. Edge-face inequality : Let G = (V, E) be a simple, connected graph imbedded in a
surface with face set F . Then

2|E| ≥ 3|F |.

5. Edge-face inequality, strong version: Let G = (V, E) be a connected graph, but not
a tree, imbedded in a surface with face set F . Then

2|E| ≥ girth(G) · |F |.

Examples:

1. Flat polygon representations of the double-torus and the torus are illustrated as
follows:

2

2

1 1N2S2

2

2
1

1
4

4

3 3
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2. In the imbedding K5 → S1 illustrated below, edges c and d cross through flat polygon
sides 2 and 1, respectively. The “outer region” is actually 8-sided, with boundary circuit
〈a, d, b, c, f, d, e, c〉. Two pairs of sides of this region are pasted together. The appearance
of this single region as four subregions at the corners of the flat polygon is a side-effect
of the particular representation and not a true feature of the imbedding.

3. The Poincare duality construction is illustrated below.

8.8.3 COMBINATORIAL REPRESENTATION OF GRAPH IMBEDDINGS

Definitions:

The rotation (in “edge-format”) at v is obtained from a flat-polygon drawing of a
graph by the following sequence of steps:

• label one end of each edge + and the other end −, or put an arrow on each edge
so that the head faces the + end;

• at each vertex, traverse a small circle centered at that vertex, and record the
cyclically ordered list of edge-ends encountered; this list is the rotation.

The vertex-format of a rotation is obtained by replacing each edge-end in the edge-
format by the vertex at the other end of that edge. The vertex format is used only for
simple graphs.

A rotation system is a complete list of rotations, that is, one for every vertex. If the
surface is orientable, it is assumed that the traversals of the small circles around the
vertices are in a consistent direction, that is, all clockwise or else all counterclockwise.

An imbedding is cellular (or a “2-cell imbedding”) if every region is planar and has
connected boundary.

Facts:

1. Two cellular imbeddings of a graph are equivalent if and only if they have the same
rotation system.

2. If a cellular graph imbedding is represented as a rotation system, then the regions
can be reconstructed algorithmically.
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Example:
1. An imbedding K4 → S1 and both formats of its rotation system.

2

2

1 1

V1

V2

V3

V4

d e

c

ba

f

edge - format vortex - format

V1. a - b - c -

V2. a + d - e -

V3. c + f + e +

V4. b + f - d +

V1.

V2.

V3.

V4.

V2

V1

V1

V1

V4

V4

V4

V3

V3

V3

V2

V2

8.8.4 FORMULAS FOR GENUS AND CROSSCAP NUMBER

Definitions:

The genus γmin(G) of a connected graph G is the minimum integer g such that there
is an imbedding of G into the surface Sg.

The crosscap number γmin(G) is the minimum integer k such that there is an imbed-
ding of G into Nk. Thus, a planar graph has crosscap number zero.

Facts:

1. The genus of any planar graph is 0.

2. γmin(G) ≥ |E| − 3|V |+ 6
6

if G is simple.

3. γmin(G) ≥ |E| − 2|V |+ 4
4

if G is simple and bipartite.

4. γmin(Kn) =
⌈

(n− 3)(n− 4)
12

⌉
. (Ringel and Youngs, 1968)

5. γmin(Km,n) =
⌈

(m− 2)(n− 2)
4

⌉
. (Ringel, 1965)

6. γmin(Qn) =
⌈

(m− 2)(n− 2)
4

⌉
. (Ringel, 1955)

7. γmin(G) ≥
⌈ |E| − 3|V |+ 6

3

⌉
for every simple graph G.

8. γmin(G) ≥
⌈ |E| − 2|V |+ 4

2

⌉
for every simple bipartite graph G.

9. γmin(Kn) =
⌈

(n− 3)(n− 4)
6

⌉
, except that γmin(K7) = 3. (Ringel, 1959)

10. Many genus and crosscap number formulas can be derived by using voltage graphs
or current graphs (§8.1.4). [GrTu87]
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8.9 ENUMERATING GRAPHS

It is often valuable to know how many graphs there are with some desired property.
Computer scientists can use such numbers in analyzing the time or space requirements
of their algorithms, and chemists can make use of these numbers in organizing and
cataloging lists of chemical molecules with various shapes. Many of the techniques for
counting graphs were developed in the 1930s by the mathematician George Pólya.

8.9.1 COUNTING GRAPHS AND MULTIGRAPHS

Definitions:

A labeled graph is a graph with standard labels (commonly v1, v2, . . . , vn) assigned
to the vertices. Two labeled graphs with the same set of labels are considered the same
only if there is an isomorphism from one to the other that preserves the labels.

The pair-permutation γ(2) induced by a permutation γ on a set S is the permutation
on the set of all subsets of S of size 2 defined by the rule γ(2): {x, y} $→ {γ(x), γ(y)}.
The pair-action group Γ(2) induced by a permutation group Γ on a set S is the group
{ γ(2) | γ ∈ Γ }.
The ordered-pair-permutation γ[2] induced by a permutation γ on a set S is the
permutation on the set S × S defined by the rule γ[2]: (x, y) $→(γ(x), γ(y)).

The pair-action group Γ(2) induced by a permutation group Γ on a set S is the group
{ γ[2] | γ ∈ Γ }.

Facts:
1. The number of labeled simple graphs with n vertices and m edges is the binomial

coefficient
((

n
2

)
m

)
.

2. For m >
(n
2)
2 , the number of labeled simple graphs with n vertices and m edges is

the same as the number of labeled graphs with n vertices and
(
n
2

)
−m edges.

3. The total number of labeled simple graphs with n vertices is 2
(n
2). See Table 1.

4. The number Cn of connected labeled simple graphs with n vertices can be deter-
mined from the following recurrence system. See Table 2.

C1 = 1, Cn = 2
(n
2) − 1

n

n−1∑
i=1

i
(
n
i

)
2
(n−i

2 )
Ci for n > 1.

5. Most (unlabeled) graphical structures are counted with generating functions, using
Burnside-Pólya enumeration (§2.6). In particular, the generating function for graphs
with n vertices has the form

gn(x) =
(n
2)∑
i=0

Gn,i · xi

where Gn,m denotes the number of graphs with n vertices and m edges.
6. Pólya enumeration involves permutations (j) of the set Xn = {1, 2, . . . , n}; jk de-
notes the number of k-cycles in (j), for k = 1, . . . , n. For example, if (j) = (12)(34)(567),
then j2 = 2, j3 = 1, and j1 = j4 = j5 = j6 = j7 = 0.
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Table 1 Labeled graphs with n vertices and m edges.

m
∖

n 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1
1 1 3 6 10 15 21 28
2 3 15 45 105 210 378
3 1 20 120 455 1,330 3,276
4 15 210 1,365 5,985 20,475
5 6 252 3,003 20,349 98,280
6 1 210 5,005 54,264 376,740
7 120 6,435 116,280 1,184,040
8 45 6,435 203,490 3,108,105
9 10 5,005 293,930 6,906,900

10 1 3,003 352,716 13,123,110
11 1,365 352,716 21,474,180
12 455 293,930 30,421,755
13 105 203,490 37,442,160
14 15 116,280 40,116,600

total 1 2 8 64 1,024 32,768 2,097,152 268,435,456

Table 2 Connected labeled graphs with n vertices.

n 1 2 3 4 5 6 7 8

Cn 1 1 4 38 728 26,704 1,866,256 251,548,592

7. The cycle index polynomial Z(S(2)
n ) used for counting simple graphs is

Z(S(2)
n ) =

1
n!

∑
(j)∈Sn

n!∏
k

k
jk jk!

∏
k

a
k(jk

2 )
k (akak−1

2k )j2ka
kj2k+1
2k+1

∏
r<s

a
gcd(r,s)jrjs
lcm(r,s) .

Here lcm(r, s) and gcd(r, s) are the least common multiple and greatest common divisor
of r and s, respectively. The following lists explicit formulas for Z(S(2)

n ) for small values
of n:

Z
(
S

(2)
1

)
= 1

Z
(
S

(2)
2

)
= a1

Z
(
S

(2)
3

)
=

1
3!

(
a3
1 + 3a1a2 + 2a3

)
Z

(
S

(2)
4

)
=

1
4!

(
a6
1 + 9a2

1a2
2 + 8a2

3 + 6a2a4

)
Z

(
S

(2)
5

)
=

1
5!

(
a10
1 + 10a4

1a3
2 + 20a1a3

3 + 15a2
1a4

2 + 30a2a2
4 + 20a1a3a6 + 24a2

5

)
Z

(
S

(2)
6

)
=

1
6!

(
a15
1 + 15a7

1a4
2 + 40a3

1a4
3 + 60a3

1a6
2 + 180a1a2a3

4 + 120a1a2a2
3a6

+ 144a3
5 + 40a5

3 + 120a3a2
6

)
.
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Table 3 Graphs with n vertices and m edges.

m
∖

n 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 4 5 5 5
4 2 6 9 10 11
5 1 6 15 21 24
6 1 6 21 41 56
7 4 24 65 115
8 2 24 97 221
9 1 21 131 402

10 1 15 148 663
11 9 148 980
12 5 131 1,312
13 2 97 1,557
14 1 65 1,646

total 1 2 4 11 34 156 1,044 12,346

Table 4 Multigraphs with n vertices and m edges.

m
∖

n 1 2 3 4 5 6

0 1 1 1 1 1 1
1 1 1 1 1 1
2 1 2 3 3 3
3 1 3 6 7 8
4 1 4 11 17 21
5 1 5 18 35 52
6 1 7 32 76 132
7 1 8 48 149 313
8 1 10 75 291 741
9 1 12 111 539 1,684

10 1 14 160 974 3,711

8. The generating function gn(x) for counting n-vertex graphs by number of edges is
obtained from the cycle index Z(S(2)

n ) by replacing each variable ai with 1 + xi. See
Table 3.

9. The total number Gn of graphs with n vertices is obtained from the cycle in-
dex Z(S(2)

n ) by replacing each variable ai with the number 2.

10. Asymptotically, the number Gn of n-vertex graphs satisfies Gn ∼ 2
(n
2)
n! .

11. The generating function mn(x) =
∑
i

Mn,i xi for counting n-vertex multigraphs

according to their number of edges is obtained from the cycle index Z(S(2)
n ) by replacing

each variable ai with the infinite series 1 + xi + x2i + x3i + · · · . See Table 4.
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Examples:

1. The three different simple graphs with 4 vertices and 3 edges are given in the fol-
lowing figure. There are 4 essentially different ways to label each of the first two and 12
ways to label the third. Thus, there are 20 different labeled graphs with 4 vertices and 3
edges. The second and third graphs in this figure are connected.

2. There are six different multigraphs with 4 vertices and 3 edges, namely, the three
graphs displayed in the previous figure plus the three additional multigraphs displayed
in the following figure.

8.9.2 COUNTING DIGRAPHS AND TOURNAMENTS

Definitions:

A digraph (or directed graph) consists of a set V of vertices and a set A of arcs.
When counting digraphs, two digraphs are considered the same if they are isomorphic.

A labeled digraph is a digraph in which standard labels such as v1, v2, . . . , vn have
been assigned to the vertices. Two labeled digraphs are considered the same only if
there is an isomorphism from one to the other that preserves the labels.

A tournament is a digraph such that for each pair u, v of vertices, either there is an
arc from u to v or an arc from v to u, but not both.

A tournament is strong (or strongly connected) if for each pair u, v of vertices,
there exist directed paths from u to v and from v to u.

Facts:

1. The number of labeled digraphs with no loops that have n vertices and m arcs is(
n(n−1)
m

)
.

2. For m > n(n− 1), the number of labeled digraphs with n vertices and m arcs is the
same as the number of labeled digraphs with n vertices and n(n− 1)−m arcs.

3. The total number of labeled digraphs with n vertices is 2n(n−1). See Table 5.

4. The number of labeled tournaments with n vertices is 2
(n
2), the same as the number

of graphs with n vertices.

5. Like graphical structures, most (unlabeled) digraphical structures are counted with
generating functions, using Burnside-Pólya enumeration. In particular, the generating
function for digraphs with n vertices has the form

dn(x) =
n(n−1)∑
i=0

Dn,i xi

where Dn,m denotes the number of digraphs with n vertices and m arcs.
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Table 5 Labeled digraphs with n vertices and m arcs.

m
∖

n 1 2 3 4 5

0 1 1 1 1 1
1 2 6 12 20
2 1 15 66 190
3 20 220 1,140
4 15 495 4,845
5 6 792 15,504
6 1 924 38,760
7 792 77,520
8 495 125,970
9 220 167,960

10 66 184,756

total 1 4 64 4,096 1,048,576

6. The cycle index Z(S[2]
n ) for counting digraphs is

Z(S[2]
n ) =

1
n!

∑
(j)∈Sn

n!∏
k

k
jk jk!

∏
k

a
(k−1)jk+2k(jk

2 )
k

∏
r<s

a
2 gcd(r,s)jrjs
lcm(r,s) .

The following lists explicit formulas for Z(S[2]
n ) for small values of n:

Z
(
S

[2]
1

)
= 1

Z
(
S

[2]
2

)
=

1
2!

(
a2
1 + a2

)
Z

(
S

[2]
3

)
=

1
3!

(
a6
1 + 3a3

2 + 2a2
3

)
Z

(
S

[2]
4

)
=

1
4!

(
a12
1 + 6a2

1a5
2 + 8a4

3 + 3a6
2 + 6a3

4

)
Z

(
S

[2]
5

)
=

1
5!

(
a20
1 + 10a6

1a7
2 + 20a2

1a6
3 + 15a10

2 + 30a5
4 + 20a2a2

3a2
6 + 24a4

5

)
Z

(
S

[2]
6

)
=

1
6!

(
a30
1 + 15a12

1 a9
2 + 40a6

1a8
3 + 45a2

1a14
2 + 90a2

1a7
4 + 120a3

2a4
3a2

6

+ 144a6
5 + 15a15

2 + 90a2a7
4 + 40a10

3 + 120a5
6

)
.

7. The generating function dn(x) for counting n-vertex digraphs by number of arcs is
obtained from the cycle index Z(S[2]

n ) by replacing each variable ai with 1 + xi. See
Table 6.

8. The total number Dn of digraphs with n vertices is obtained from the cycle in-
dex Z(S[2]

n ) by replacing each variable ai with the number 2.

9. Asymptotically, Dn satisfies Dn ∼
2n(n−1)

n!
.
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Table 6 Digraphs with n vertices and m arcs.

m
∖

n 1 2 3 4 5

0 1 1 1 1 1
1 1 1 1 1
2 1 4 5 5
3 4 13 16
4 4 27 61
5 1 38 154
6 1 48 379
7 38 707
8 27 1,155
9 13 1,490

10 5 1,670

total 1 3 16 218 9,608

Table 7 Tournaments and strong tournaments with n vertices.

n tournaments strong tournaments

1 1 1
2 1 0
3 2 1
4 4 1
5 12 6
6 56 35
7 456 353
8 6,880 6,008
9 191,536 178,133

10 9,733,056 9,355,949
11 903,753,248 884,464,590
12 154,108,311,168 152,310,149,735

10. The number Tn of tournaments on n vertices is given by the formula

Tn =
1
n!

∑′

(j)

n!∏
k

k
jk jk!

2D(j),

where the sum is over all permutations (j) of Xn whose cycles are all of odd size, and
where

D(j) =
1
2

(
n∑
r=1

n∑
s=1

gcd(r, s)jrjs −
n∑
k=1

jk

)
.

See Table 7.

11. Let T (x) = x + x2 + 2x3 + 4x4 + 12x5 + 56x6 + · · · be the generating function
for tournaments, from the formula of Fact 10. Then the generating function S(x) =
x+x3 +x4 +6x5 +35x6 + · · · for strong tournaments can be computed from the relation
S(x) = T (x)

1+T (x) . See Table 7. Note that there are no strong tournaments with exactly
two vertices.
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Examples:

1. The four digraphs with 3 vertices and 3 arcs are displayed in the following figure.
The first three digraphs can each be labeled in six essentially different ways, while the
fourth digraph can only be labeled in two essentially different ways. Thus there are 20
different labeled digraphs with 3 vertices and 3 arcs.

2. The four tournaments with 4 vertices are displayed in the following figure. Only the
last tournament is strong.

8.10 ALGEBRAIC GRAPH THEORY

8.10.1 SPECTRAL GRAPH THEORY

Definitions:

The characteristic polynomial of a graph G is the characteristic polynomial p(x)
of its adjacency matrix AG, that is, p(x) = det(xI −AG).

An eigenvector (or characteristic vector) of a matrix A is a nonzero vector x
such that Ax = λx, for some value λ.

An eigenvalue (or characteristic value) of a matrix A is a number λ such that
Ax = λx, for some vector x �= 0.

An eigenvector of a graph is an eigenvector of its adjacency matrix.

An eigenvalue of a graph is an eigenvalue of its adjacency matrix.

The spectrum of a graph is the spectrum of its adjacency matrix, i.e., the multiset
of eigenvalues.

The Laplacian (or admittance matrix) of a graph G is the matrix DG − AG,
where DG is the diagonal matrix with the degree sequence of G on the diagonal and AG

is the adjacency matrix.

A graph G is strongly regular with parameters (n, k, r, s) if:
• |VG| = n;
• G is k-regular;
• every adjacent pair of vertices is mutually adjacent to r other vertices;
• every pair of nonadjacent vertices is mutually adjacent to s other vertices.

By convention, strongly regular graphs are connected with at least one edge.
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The Hoffman polynomial of a graph is a polynomial p(x) of minimum degree such
that p(AG) = J , where AG is the adjacency matrix and where J is the square matrix
with every entry equal to 1.

A cospectral pair of graphs is a pair of nonisomorphic graphs that have the same
spectrum.

Facts:
1. The eigenvalues of a graph are independent of the particular labeling of the vertices;
thus, two isomorphic graphs have the same spectrum.
2. All the eigenvalues of a graph are real. This is a special case of the well-known linear
algebra result that the eigenvalues of any Hermitian matrix are real.
3. From linear algebra, it follows that the characteristic polynomial of a graph G sat-
isfies the equation p(x) =

∏n
i=1(x− λi), where λ1, . . . , λn are the eigenvalues of G.

4. If a graph is connected, then its largest eigenvalue has multiplicity 1. This eigen-
value has a corresponding eigenvector with all positive entries, and it is the only such
eigenvector.
5. If λ is the largest eigenvalue of a graph and µ is another eigenvalue, then λ ≥ |µ|;
moreover, −λ is an eigenvalue if and only if the graph is bipartite.
6. A graph is bipartite if and only if its spectrum is symmetric with respect to 0, that
is, λ is an eigenvalue if and only if −λ is also an eigenvalue.
7. The largest eigenvalue of a k-regular graph is k, and it has multiplicity equal to
the number of connected components. The sum of the coordinates of an eigenvector
corresponding to any other eigenvalue is 0.
8. The (i, j)th entry of the kth power Ak

G of the adjacency matrix of a graph G is the
number of walks of length k starting at vertex vi and terminating at vj .
9. If λ1, λ2, . . . , λn are the eigenvalues of a graph G, then

∑n
i=1 λ2

i = 2|EG| where EG

is the edge-set of G. Also,
∑n

i=1 λ3
i = 6T where T is the number of triangles in G.

10. If p(x) = xn+an−1xn−1+an−2xn−2+· · ·+a1x+a0 is the characteristic polynomial
of a graph G, then an−1 = 0, −an−2 is the number of edges, and −an−3 is the twice
number of triangles.
11. The set of eigenvalues of the disjoint sum G + H is the union of the sets of eigen-
values of G and H. The multiplicity of λ as an eigenvalue of G + H is the sum of the
multiplicity of λ as an eigenvalue of G and the multiplicity of λ as an eigenvalue of H.
12. The eigenvalues of the cartesian product G × H are {λi + λj | λi an eigenvalue
of G and λj an eigenvalue of H }. The multiplicity of λi + λj as an eigenvalue of G×H
is the product of the multiplicity of λi as an eigenvalue of G and λj as an eigenvalue
of H.
13. If G is a k-regular graph and G is its complement, then λ < k is an eigenvalue of G
if and only if −λ − 1 is an eigenvalue of G. In this case λ and −λ − 1 have the same
multiplicities.
14. If λ is an eigenvalue of G with multiplicity m, then −λ − 1 is an eigenvalue of G
with multiplicity m− 1, m, or m + 1.
15. If G has n vertices and λ1 ≥ λ2 ≥ · · · ≥ λn as eigenvalues, and H is an induced
subgraph with n − 1 vertices and eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn−1, then λ1 ≥ µ1 ≥
λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn.
16. The eigenvalues of a line graph L(G) are greater than or equal to −2. Equality
is attained unless every connected component of G is a tree or has exactly one circuit,
that circuit being odd.
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17. If G is a k-regular graph with λ > −k as an eigenvalue, then λ + k − 2 is an
eigenvalue of L(G).
18. A graph has a Hoffman polynomial if and only if it is regular and connected.
19. A regular connected graph has exactly three distinct eigenvalues if and only if it is
strongly regular.
20. Matrix-tree theorem: If Mi is formed by deleting the i-th row and column from
the Laplacian of G, then det(Mi) is independent of the choice of i and is equal to the
number of spanning trees of G.

Examples:
1. The edgeless graph Nn on n vertices has one eigenvalue, namely 0 with multiplicity n.
2. The eigenvalues of the complete graph Kn are n− 1 and −1 with respective multi-
plicities of 1 and n− 1. For instance, the characteristic polynomial of K4 is∣∣∣∣∣∣∣

x −1 −1 −1
−1 x −1 −1
−1 −1 x −1
−1 −1 −1 x

∣∣∣∣∣∣∣ = (x + 1)3 (x− 3).

3. The eigenvalues of the complete bipartite graph Km,n are
√

mn, 0, and −√mn, with
respective multiplicities of 1, mn− 2, and 1.
4. The eigenvalues of the Petersen graph are 3, 1, and −2, with respective multiplici-
ties 1, 5, and 4.
5. The eigenvalues of the n-path Pn are { 2 cos kπ

n+1 | k = 1, 2, . . . , n }, each with mul-
tiplicity 1.
6. The eigenvalues of the n-cycle Cn, are { 2 cos 2kπ

n | k = 1, 2, . . . , n }. The eigen-
value 2, and the eigenvalue −2 when n is even, have multiplicity 1; all other eigenvalues
have multiplicity 2.
7. The eigenvalues of the hypercube Qd are d, d−2, d−4, . . . ,−d+2,−d, with respective
multiplicities

(
d
0

)
,
(
d
1

)
,
(
d
2

)
, . . . ,

(
d

d−1

)
,
(
d
d

)
.

8. The eigenvalues of the line graph L(Kn) are 2n− 4, n− 4, and −2, with respective
multiplicities 1, n− 1, and n(n−3)

2 .
9. The eigenvalues of the line graph L(Km,n) are m + n − 2, m − 2, n − 2, and −2,
with respective multiplicities 1, n− 1, m− 1, and (m− 1)(n− 1).
10. If G is strongly regular with parameters (n, k, r, s), then its eigenvalues are k and
1
2

(
r − s±

√
(r − s)2 − 4(s− k)

)
.

11. The smallest pair of cospectral graphs is K1,4 and C4 + K1, each of which has
spectrum {−2, 0, 0, 0, 2}. See the following figure. Observe that K1,4 is connected and
that C4 + K1 is not, and that the two graphs have different degree sequences. This
implies that connectedness and degree sequences cannot be determined from spectral
properties alone.
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8.10.2 AUTOMORPHISMS OF GRAPHS

Definitions:

The automorphism group Aut(G) of a graph G is the set of all automorphisms of
graph G, under the operation of functional composition

A generating subset for a group Γ is a subset Σ of group elements such that every
group element is a product of elements of Σ. (Note: The group identity is the empty
product.)

The Cayley digraph for group Γ and generating set Σ has as vertices the elements
of Γ, with an arc σγ from the vertex γ to the vertex γ′ if and only if γσ = γ′.

The Cayley graph for group Γ and generating set Σ is the graph obtained by
removing all arc directions from the Cayley digraph.

The Cayley graph for group Γ and generating set Σ (alternative definition) is
the graph obtained by removing all arc directions from the Cayley digraph, and by
collapsing each pair of arcs corresponding to a generator of order two to a single edge.

Facts:

1. A simple graph G and its edge-complement G have the same automorphism group.

2. An automorphism ϕ of a graph G induces an automorphism ϕ on the line graph
L(G).

3. If G is a connected simple graph with at least 4 vertices, then G and its line
graph L(G) have isomorphic automorphism groups.

4. If the G graph has adjacency matrix A, and if the permutation ϕ of VG has per-
mutation matrix P , then ϕ is the vertex map of an automorphism of G if and only if
PA = AP .

5. If all eigenvalues of a graph G have multiplicity 1, then every automorphism has
order at most 2.

6. Frucht’s theorem: Let Γ be any finite group. Then there exists a graph G whose
automorphism group is isomorphic to Γ. It can be constructed by modifying a Cayley
digraph for Γ.

Examples:

1. The n-vertex edgeless graph Nn and the complete graph Kn both have the symmetric
group Sn as their automorphism group. They are the only n-vertex graphs with this
automorphism group.

2. The automorphism group of the complete bipartite graph Km,n is Sn×Sm if n �= m
and is the wreath product [Ro88] Sn ' S2 if m = n.

3. The automorphism group of the n-path graph Pn (with n > 1) is isomorphic to S2.

4. The automorphism group of the n-cycle graph Cn is the dihedral group Dn of
order 2n. For instance, the 4-cycle C4 with vertices a, b, c, and d (in cyclic order), has
the following vertex automorphisms:

(a)(b)(c)(d) (a b c d) (a c)(b d) (a d c b)
(a b)(c d) (a d)(b c) (a)(c)(b d) (b)(d)(a c).
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5. The Cayley digraph of the group S3 with generating set {(1 2 3), (1 2)} is illustrated
in the following figure.

8.11 ANALYTIC GRAPH THEORY

Analytic graph theory involves three different perspectives on the properties of graphs
that are sufficiently “dense”. One analysis is what must happen in a simple n-vertex
graph when the number of edges is sufficiently large. A second analysis is what must
happen in at least one of the parts of a partition of the edges of a graph. The third
analysis is what happens with a high probability when a graph is randomly chosen
according to some distribution.

8.11.1 EXTREMAL GRAPH THEORY

Extremal graph theory is the analysis of the number of edges an n−vertex simple graph
must have in order to guarantee that it contains a certain graph or type of graph. Else-
where, it is sometimes taken to be the study of graph-theoretic inequalities in general.

Definitions:

The extremal number ex(G; n) for a set G of graphs is the greatest number of edges in
any simple graph with n vertices that does not contain some member of G as a subgraph.
Notation: The notation ex(G; n) is used when G consists of just one graph G.

An extremal graph for a set G of graphs and an integer n is a graph with n vertices
and ex(G; n) edges that contains no member of G.

The Turán graph Tk(n) is the n-vertex k-partite simple graph with the maximum
number of edges.

The Turán number tk(n) is the number of edges in the Turán graph Tk(n).

Facts:
1. If ex(G; n) =

(
n
2

)
, then no graph with n vertices contains any member of G.

2. The Turán graph Tk(n) is the unique complete k-partite graph with the property
that the numbers of vertices in any two of its parts differ by at most 1. In the special
case k = 2, T2(n) = K	n/2
,�n/2�. More generally, if n = tk + r, where 0 ≤ r < k, then
there are r parts of size t + 1 and k − r parts of size t.

3. The Turán number tk(n) equals
(
n
2

)
+1− t(p−k+r)

2 , where n = tk+r, with 0 ≤ r < k.
If k = 2, this greatly simplifies: t2(n) = (n2 )*n2 + = (n2

4 ).
4. Turán’s theorem: ex(Kk; n) = tk−1(n); furthermore, Tk−1(n) is the only extremal
graph for Kk and n.
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5. Let χ = χ(G) (chromatic number of G, §8.6), p = |G|, c = 2− 1
p . Then ex(G; n) =(

1− 1
χ−1

) (
n
2

)
+ O(nc). Furthermore, all the extremal graphs differ from the Turán

graph Tχ−1(n) by adding and deleting O(nc) edges, and the minimum degree of all such
graphs is (1− 1

χ−1 )n + O(nc). (Erdős, Simonovits)

6. Fact 5 is also true for ex(G; n), where χ is the smallest chromatic number among
the members of G, p is the smallest order among these members, and c = 2− 1

p .

7. ex(G; n) = O(n) if and only if G contains a (tree or) forest.

8. There exists a number t0 such that, for t > t0, every tree T of order t satisfies the
inequality ex(T ; n) ≤ n(t−2)

2 for every n ≥ t + 1.

9. ex(C4; n) = 1
2 (n3/2) + O(n4/3). (The exponent 4

3 can be slightly improved.)

10. ex(C2m; n) = O(n1+1/k). This is known to be sharp only for 2m = 4, 6, 10, but is
conjectured to be sharp for all m.

11. The ratio ex(G;n)

(n
2)

is monotone nonincreasing; that is, for every set G and for all

m ≤ n, ex(G;m)

(m
2 ) ≥ ex(G;n)

(n
2)

.

12. The following table summarizes many other facts that apply as the number of edges
grows:

# edges
what must occur, but not what must occur if n is

for smaller # edges large enough

n some cycle⌊
3n−1

2

⌋
some even cycle

3n− 5 two disjoint cycles

t2(n) + 1 =
⌊
n2

4

⌋
+ 1 some odd cycle (i.e., χ ≥ 3),

Ks,s + e for fixed s
C3, . . . , C	(n+3)/2


m
⌊
n
2

⌋
copies of C3, for fixed s

t2(n) + m, m fixed Ks,s plus m extra edges

tk(n) + 1 Kk; also, χ ≥ k

tk(n) + m, m fixed for fixed s, Ks;n plus m
extra edges(

n
2

)
− n + 3 a Hamilton cycle

Examples:

1. ex(K2; n) = 0. The extremal graph is the edgeless graph.

2. ex(P2; n) =
⌊
n
2

⌋
. The extremal graph is the maximum matching.

3. ex(K1,r; n) =
⌊ (r−1)n

2

⌋
. If (r − 1)n is even, then any (r − 1)-regular graph is an

extremal graph. If (r − 1)n is odd, then any graph with one vertex of degree r − 2 and
all the others of degree r − 1 is extremal.

4. ex(K3; n) =
⌊
n2

4

⌋
. The Turán graph T2(n) is the only extremal graph.

5. The Turán graph T3(10) is the 3-partite graph K3,3,4. It has 33 edges, which is more
than any other 3-partite graph on 10 vertices. Thus, ex(K4; 10) = 33.
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8.11.2 RAMSEY THEORY FOR GRAPHS

If the edges of a “dense” graph are partitioned into two parts, then at least one of the
parts must still be fairly dense. Ramsey theory, which can also be studied in connection
with many mathematical objects other than graphs, relies on this idea. (Also see §3.1.6.)

Definitions:

The (classical) Ramsey number r(m, n) is the smallest positive integer k such that
every k-vertex graph contains either the complete graph Km or n mutually nonadjacent
vertices.

The Ramsey number r(G, H) is the smallest positive integer k such that, if the
edges of Kk are bipartitioned into red and blue classes, then either the red subgraph
contains a copy of G or else the blue subgraph contains a copy of H. Sometimes r(G)
denotes r(G, G).

The Ramsey number r(G1, . . . , Gs) is the smallest number k such that in any s-fold
partition of the edgeset of Kk, there is an index j such that the jth part contains the
graph Gj .

A k-canonical coloring of a complete graph is an edge-coloring in which the vertices
can be partitioned into k or fewer parts, such that the color of each edge depends only
on the two parts to which its endpoints belong.

The arrows notation F→(G, H) (“F arrows (G, H)”) means that if the edges of
the graph F are partitioned into two chromatic classes, e.g., into red edges and blue
edges, then either the red subgraph contains a copy of G or else the blue subgraph
contains a copy of H. When G = H, the notation F→G is often used. The notation
F→(G1, . . . , Gk) means that k edge colors are involved.

Facts:
1. r(Km, Kn) = r(m, n) for all m, n ≥ 1.
2. r(G, H) = r(H, G). That is, Ramsey numbers are symmetric.
3. r(Kn, K1) = r(K1, Kn) = 1 for every n ≥ 1.
4. r(Kn, K2) = r(K2, Kn) = n for every n ≥ 1.
5. r(Km, Kn) ≤ r(Km, Kn−1) + r(Km−1, Kn) for all m, n ≥ 2.
6. r(Km, Kn) ≤

(
m+n−2
m−1

)
. (Erdős and Szekeres, 1935)

7. If n ≥ 3, then 2n/2 ≤ r(Kn, Kn) ≤
(
2n+2
n+1

)
< 4n+1.

8.
√

2
e (1 + o(1))n2n/2 ≤ r(Kn, Kn) ≤

(
2n+2
n+1

)
·O((log n)−1).

9. There exist constants c1 and c2 such that c1n ln n ≤ r(K3, Kn) ≤ c2n ln n.
10. A 1-canonical coloring assigns every edge the same color.
11. A 2-canonical coloring consists of two complete edge-monochromatic subgraphs,
such that all edges joining them are of the same color.
12. If χ(G) = χ and |VH | = n, then r(G, H) ≥ (χ − 1)(n − 1) + 1. This fact is based
on a (χ− 1)-canonical coloring.
13. If T is an n-vertex tree, then r(Km, T ) = (m− 1)(n− 1) + 1. In other words, the
lower bound in the immediately preceding fact determines the Ramsey number.
14. Except for r(C3, C3) = r(C4, C4) = 6, r(Cm, Cn) and r(Pm, Cn) are determined by
the best possible 2-canonical colorings, which are easy to find.
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15. For every choice of graphs G1, G2, . . . , Gk, there exists a graph F for which F→
(G1, . . . , Gk). In particular, the Ramsey number r(G1, . . . , Gk) is well-defined.
16. If m, n ≥ 3, the values of only nine Ramsey numbers are known:

r(3, 3) = 6 r(3, 4) = 9 r(3, 5) = 14
r(3, 6) = 18 r(3, 7) = 23 r(3, 8) = 28
r(3, 9) = 36 r(4, 4) = 18 r(4, 5) = 25.

Estimates on some other Ramsey numbers are given in §3.1.6. In addition to the nine
exact results, only one other nontrivial Ramsey number for complete graphs is known:

r(K3, K3, K3) = 17.

8.11.3 PROBABILISTIC GRAPH THEORY

Probabilistic graph theory takes two basic directions. It studies random graphs for
themselves, and it uses random graphs in deriving graph-theoretical results that are not
themselves probabilistic.

Definitions:

In Model 1, the random graph Gn,p has n distinctly labeled vertices v1, . . . , vn, and
the probability of any pair of vertices being joined by an edge is p, where all these edge
probabilities are mutually independent.

In Model 2, the random graph Gn,e has n distinctly labeled vertices v1, . . . , vn, and
exactly e edges, and each such labeled graphs occurs with the same probability 1/

(
N
e

)
,

where N =
(
n
2

)
.

Almost every (a. e.) graph has a given property P under either Model 1 or Model 2,
if the probability that a random graph has property P approaches 1 as n →∞, where
the probability p stays constant under Model 1, but where one must specify how e varies
with n under Model 2. If neither model is explicitly specified, then Model 1 with p = 1

2

is implicit, so that all labeled graphs on n vertices have the same probability 2−(n
2).

Facts:
1. The number of labeled graphs in the probability space for Model 1 is 2(

n
2).

2. While Model 2 is sometimes considered to be more natural and easier to define, it
is, in practice, usually easier to work with Model 1. Fortunately, Model 1 with p = e

N
behaves very similarly to Model 2 in most cases, so that facts about Model 1 usually
lead easily to facts about Model 2 as well.

3. In Model 1, a graph with e edges occurs with probability pe(1− p)(
n
2)−e. If p = 1

2 ,

then every labeled graph on n vertices has the same probability 2−(n
2).

4. Random graphs can be used to prove theorems about graphs, especially existence
theorems. (See Example 1.)
5. Let b = 1

p and d = 2 logb
en

2 logb n
= 1, where e = 2.718 . . . , not the number of edges.

Then for every positive ε < 1
2 the clique number of a. e. graph is either (d− ε) or (d+ ε),

where these two values are usually the same when ε is small. This means that the clique
number is determined for a. e. graph, unless d is close to an integer, in which case there
are two possible values.
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Algorithm 1: Generate random graph Gn,p (per Model 1).

initialize graph G with vertex list v1, v2, . . . , vn
for i := 1 to n− 1

for j := i + 1 to n
join vertices vi and vj with probability p

Algorithm 2: Generate random graph Gn,e (per Model 2).

initialize graph G with vertex list v1, v2, . . . , vn

generate random integer r ∈
{

1, . . . ,
(

(n
2)
e

)}
convert r to an e-combination C in

{
1, . . . ,

(
n
2

)}
convert e-combination C to e edges in Gn,e

6. Almost every graph satisfies χ ≈ n
2 log2 n

.

7. In connection with the fact immediately preceding, it can be shown that if p = n−α

for fixed α > 5
6 , then in Model 1, there exists an f(n, p) so that for almost every graph,

f(n, p) ≤ χ ≤ f(n, p) + 3. That is, the chromatic number χ takes on one of only four
possible values.

8. Almost every graph in Model 1 has its connectivity and its edge connectivity equal
to its minimum degree. Furthermore, the common value of these three parameters is
pn− (2p(1− p)n log n)

1
2 + o(n log n)

1
2 .

9. Generating a random graph Gn,p under Model 1 is straightforward, as indicated by
Algorithm 1.

10. To generate a random graph Gn,e under Model 2, the possible edges are placed
in bijective correspondence with the integers 1, . . . ,

(
n
2

)
according to the rule f(i, j) =(

n
2

)
−

(
n−i+1

2

)
+ j. Also, the e-combinations of the integers 1, . . . ,

(
n
2

)
are placed in

bijective correspondence with the integers 1, . . . ,
((n

2)
e

)
according to the lexicographic

ordering of those e-combinations (§2.2.5). These bijections facilitate the formulation of
Algorithm 2.

11. For every fixed s, almost every graph contains the complete graph Ks. Moreover,
for every fixed graph H, almost every graph contains H.

Table 1 Properties of almost every n-vertex graph.

p under Model 1 e under Model 2 property of almost every graph

o( 1
n ) o(n) no cycles

2c
n , 0 < c < 1

2 cn, 0 < c < 1
2

cycles are possible, and the largest
component has order ≈ ln n

1
n

n
2

some cycle exists, and the largest
component has order Θ(n2/3)

2c
n , c > 1

2 cn, c > 1
2 the largest component has order c′n

c lnn
n , c < 1 c

2n ln n, c < 1 the graph is disconnected
c lnn
n , c > 1 c

2n ln n, c > 1 the graph is connected and Hamiltonian
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Example:

1. Using random graphs to prove theorems: Here is a proof that the Ramsey number
r(Kn, Kn) is greater than 2n/2 for all n ≥ 3. Consider a random red-blue edge-coloring
of KN for some N > n with p(red) = 1

2 . The probability that any given Kn occur-

ring within this 2-colored KN is entirely red is 2
−(n

2). Of course, the probability that
it is colored blue is the same. Thus, the probability that the given subgraph Kn is

monochromatic in either color is 2
1−(n

2). Since there are
(
N
n

)
different copies of Kn in

the colored KN , the expected number of monochromatic Kn is
(
N
n

)
· 2

1−(n
2).

With the choice of N = (2n/2), this expectation is
(
N
n

)
· 2

1−(n
2)

< 21+n/2

n! · Nn

2n2/2 < 1,
i.e., less than 1. Therefore there must be some coloring with no monochromatic Kn at
all. This completes the proof.

8.12 HYPERGRAPHS

In ordinary graph theory, an edge of a simple graph can be regarded as a pair of vertices.
In hypergraph theory, an “edge” can be regarded as an arbitrary subset of vertices. In
this sense, hypergraphs are a natural generalization of graphs. Their systematic study
was initiated by C. Berge. They have evolved into a unifying combinatorial concept.

8.12.1 HYPERGRAPHS AS A GENERALIZATION OF GRAPHS

Definitions:

A hypergraph H = (V, E) is a finite set V of “vertices” together with a finite multiset E
of “edges” (sometimes, “hyperedges”), which are arbitrary subsets of V .

The order of a hypergraph edge is its cardinality.

A partial hypergraph (or simply a partial) of the hypergraph H = (V, E) is a
hypergraph H ′ = (V, E′) such that E′ ⊆ E. This generalizes a spanning subgraph.

A hypergraph H = (V, E) is simple if E has no repeated edges.

The incidence matrix of a hypergraph H = (V, E) with E = { e1, e2, . . . , em } and
V = {x1, x2, . . . , xn } is the m× n matrix M(H) = [mi,j ] with

mi,j =
{ 1 if xj ∈ ei

0 otherwise.
The dual hypergraph of the hypergraph H is the hypergraph H∗ whose incidence
matrix is the transpose of the incidence matrix M(H). This concept of duality from
block design theory differs from the Poincaré dual of graph theory.

The degree deg(x) of a hypergraph vertex x is the number of hypergraph edges con-
taining x.

A hypergraph is regular if all vertices have the same degree. If t is the common value
of the degrees, then the hypergraph is t-regular.
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A hypergraph is uniform if all edges have the same number of vertices. If r is the
common value, then the hypergraph is r-uniform.

The complete hypergraph K∗
n has all subsets of n vertices as edges, so that it has 2n

edges.

The complete r-uniform hypergraph Kr
n is the simple hypergraph of order n with

all r-element subsets as edges, so that it has
(
n
r

)
edges.

The intersection graph I(H) of the hypergraph H is a simple graph whose vertices
are the edges of H. Two vertices of I(H) are adjacent if and only if the corresponding
edges of H have nonempty intersection.

An independent set of vertices in a hypergraph is a set of vertices that does not
(completely) contain any edge of the hypergraph.

Facts:

1. How to draw a hypergraph: First draw the vertices and the hyperedges of order 2, as
if they were vertices and edges, respectively, of a graph. Then shade triangular regions
corresponding to hyperedges of order 3. Higher order hyperedges and hyperedges of
order 1 can be indicated by drawing enclosures around their vertices.

2. Every hypergraph satisfies the generalized Euler equation for degree-sum:∑
x∈V

deg(x) =
∑
e∈E

|e|.

3. Every simple graph is a 2-uniform simple hypergraph.

4. The intersection graph of a hypergraph generalizes the line graph L(G) of a graph G.
(See §11.1.)

5. Every graph is the intersection graph of some hypergraph.

6. Every graph of order n is isomorphic to the intersection graph of a hypergraph of
order at most

⌊
n2

4

⌋
.

7. When a graph G is regarded as a hypergraph, its dual is a hypergraph whose inter-
section graph is G.

Examples:

1. The hypergraph H = (V, E) with V = { a, b, c, d } and E = { ab, bc, bd, acd, c } can
be illustrated as follows:

2. The hypergraph of Example 1 has the following incidence matrix:
a b c d

ab 1 1 0 0
acd 1 0 1 1
bc 0 1 1 0
bd 0 1 0 1
c 0 0 1 0
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3. The dual of the hypergraph of Example 1 has the following incidence matrix:

v (ab) v (acd) v (bc) v (bd) v (c)
e (a) 1 1 0 0 0
e (b) 1 0 1 1 0
e (c) 0 1 1 0 1
e (d) 0 1 0 1 0

This dual hypergraph may be illustrated as follows:

4. The hypergraph of Example 1 has the following intersection graph:

8.12.2 HYPERGRAPHS AS GENERAL COMBINATORIAL STRUCTURES

Definitions:

A transversal (or cover or blocking set) in a hypergraph is a set of vertices that has
nonempty intersection with every edge of the hypergraph.

A system of distinct representatives (SDR) in a hypergraph H = (V, E) with
E = { e1, e2, . . . , em } is a transversal of m distinct vertices x1, x2, . . . , xm such that
xi ∈ ei for i = 1, . . . , m.

Hall’s condition on a hypergraph is that, for each t = 1, . . . , m the union of every
subset of t edges have at least t vertices. Thus, each partial must have at least as many
vertices as edges.

A matching in a hypergraph is a set of pairwise disjoint edges.

An antichain is a hypergraph in which no edge contains any other edge.

A chain is a simple hypergraph in which, given any pair of edges, one edge contains
the other.

A symmetric chain in an n-vertex hypergraph H is a chain with edges of order
n
2 − t, . . . , n2 + t for some t ≥ 0.

A downset (or ideal) is a simple hypergraph in which every subset of every edge is
also an edge of the hypergraph.

An upset (or filter) is a simple hypergraph in which every superset of every edge is
also an edge of the hypergraph.
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A hypergraph clique is a simple hypergraph such that every pair of edges has
nonempty intersection.

An r-partite hypergraph is an r-uniform hypergraph whose vertex set can be parti-
tioned into r blocks such that each edge intersects each block in exactly one vertex.

A hypergraph is unimodular if the determinant of every square submatrix of its inci-
dence matrix is equal to 0, 1, or −1.

An n-vertex hypergraph is an interval hypergraph if its vertices can be labeled
1, 2, . . . , n so that each edge is labeled by consecutive numbers.

Facts:

1. Hall’s condition is necessary and sufficient for the existence of an SDR in a hyper-
graph.

2. Sperner’s lemma: If the hypergraph H with n vertices and m edges is an antichain,
then m ≤

(
n

	n
2 


)
.

3. If the hypergraph H with mi edges of order i for i = 1, . . . , n is an antichain, then
n∑
i=0

mi

(
n
i

)−1 ≤ 1.

4. The complete hypergraph K∗
n can be partitioned into symmetric chains.

5. Kleitman’s lemma: Let D and U be hypergraphs on the same n vertices. Let D
be a d-edge downset and U a u-edge upset. And let D and U have m common edges.
Then du ≥ 2nm.

6. An n-vertex hypergraph clique has at most 2n−1 edges.

7. An r-uniform n-vertex hypergraph clique n has at most
(
n−1
r−1

)
edges if n ≥ 2r.

8. In any r-uniform hypergraph H, the maximum size r-partite partial hypergraph
contains at least r!

rr of the edges of H.

9. Let H be an n-vertex, m-edge hypergraph clique, such that each pair of distinct
edges intersect in exactly one vertex. Then m ≤ n. (de Bruijn and Erdős)

10. Fisher’s inequality : Let H be an n-vertex, m-edge hypergraph clique such that
each pair of edges intersect in λ vertices. Then m ≤ n.

11. Modular intersection theorem: Let L be a set of s integers, and let p be a prime
number. Let H be an r-uniform hypergraph such that r /∈ L mod p and that the
intersection size for each pair of distinct edges is in L mod p. Then m ≤

(
n
s

)
.

Examples:

1. The Fano plane (§12.1.1) is the hypergraph with (using mod 7 arithmetic):

V = {1, 2, . . . , 7} and E = { { 1 + i, 2 + i, 4 + i } | 1 ≤ i ≤ 7 }.
2. A block design is a regular, uniform hypergraph such that each pair of vertices is
contained in precisely λ edges. Block designs often provide extremal examples in various
extremal problems of hypergraph theory.

3. A matroid (§12.4.1) can be regarded as a hypergraph such that under every non-
negative weighting of the vertices, a greedy algorithm could find an edge of maximum
weight.
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8.12.3 NUMERICAL INVARIANTS OF HYPERGRAPHS

Calculating formulas for the values of some standard numerical invariants of hyper-
graphs tends to be quite difficult, even for complete hypergraphs. Two famous examples
are Lovász’s proof of the Kneser conjecture and Baranyai’s proof of the factorization
theorem.

Definitions:

The maxdegree ∆(H) is the largest degree of any vertex in the hypergraph H.

The chromatic number χ(H) is the smallest number of independent sets required to
partition the vertex set of H. To ensure the existence of such partitions it is assumed
that H does not contain any edges with just one vertex.

The independence number α(H) is the maximum number of vertices which form an
independent set in H.

The chromatic index q(H) is the smallest number of matchings required to partition
the edges of H.

A hypergraph H is normal if q(H) = ∆(H).

The transversal number τ(H) is the minimum cardinality (i.e., number of vertices),
taken over all transversals of H.

The matching number ν(H) is the maximum number of pairwise disjoint edges of H,
i.e., the cardinality of the largest partial of H which forms a matching.

The clique partition number cp(H) is the smallest number of cliques required to
partition the edge set of H.

The clique number ω(H) is the largest number of edges of any partial clique in the
hypergraph H.

Facts:

1. Many hypergraph invariants are representable as graph invariants. In particular,
ω(H) = ω(I(H)), ν(H) = α(I(H)), q(H) = χ(I(H)), cp(H) = χ(I(H))

where G denotes the edge-complement of a graph G.

2. Every hypergraph H satisfies the following two min ≥ max relations:
q(H) ≥ cp(H) ≥ ∆(H) τ(H) ≥ cp(H) ≥ ν(H)

3. A hypergraph H is normal if and only if τ(H ′) = ν(H ′) for all partials H ′ of H.
(Lovász, 1972)

4. The following relations hold in every n-vertex hypergraph H:
τ(H) = n− α(H), χ(H) ≥ n

α(H) , χ(H) + α(H) ≤ n + 1.

5. The parameters χ(H) and τ(H) can be approximated by greedy algorithms.

6. The Kneser conjecture that cp(Kr
2r+k) = k + 2 was proved by topological methods.

(Lovász and Bárány, 1978)

7. The factorization theorem that q(Kr
kr) =

(
kr−1
r−1

)
was proved by using network flows.

(Baranyai, 1975)

8. Hypergraphs in the following classes are known to be bicolorable (i.e., χ(H) = 2):
normal hypergraphs (including unimodular hypergraphs), r-uniform hypergraphs with
size at most 2r−1, r-uniform hypergraphs in which each edge intersects at most 2r−3

other edges (proved by probabilistic methods), finite planes of order at least three.
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Examples:

1. Consider the hypergraph H of §8.11.1 Example 1 with V = { a, b, c, d } and E =
{ ab, bc, bd, acd, c }. The maximum degree ∆(H) is 3, since vertex c has degree 3. The
chromatic number χ(H) is 4, since every pair of vertices lies in some edge, so all four
vertices must get different colors. The independence number α(H) is 1, since every pair
of vertices lies in some edge. The chromatic index q(H) is 4, using the matching c, ab.

The hypergraph H is not normal, since q(H) = 4, but ∆(H) = 3. The transversal
number τ(H) is 2, using the transversal b, c. The matching number ν(H) is 2, using the
matching ab, c.

2. The Fano plane (§8.12.2 Example 1) has the following parameters: ω = q = 7,
∆ = τ = χ = 3, α = 4, ν = cp = 1.
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INTRODUCTION

A tree is a connected graph containing no cycles. Trees have applications in a wide
variety of disciplines, particularly computer science. For example, they can be used to
construct searching algorithms for finding a particular item in a list, to store data, to
model decisions and their outcomes, or to design networks.

GLOSSARY
ancestor (of a vertex v in a rooted tree): any vertex on a path to v from the root.

m-ary tree: a rooted tree in which every internal vertex has at most m children.

backtrack: a pair of successive edges in a walk where the second edge is the same as
the first, but traversed in the opposite direction.

balanced tree: a rooted m-ary tree of height h such that all leaves of the tree have
height h or h−1.

bihomogeneous tree: a tree (usually infinite) in which there are exactly two values
for the vertex degrees.

binary search tree: a type of binary tree used to represent a table of data, which is
efficiently accessed by storage and retrieval algorithms, abbreviated BST.

binary tree: an ordered rooted tree in which each vertex has at most two children,
that is, a possible “left child” and a possible “right child”; an only child must be
designated either as a left child or a right child (this usage is normative for computer
science); in pure graph theory, an m-ary tree in which m = 2.

bounded tree: a (possibly infinite) tree of finite diameter.

breadth-first search: a method for visiting all the vertices of a graph in a sequence,
based on their proximity to a designated starting vertex.

caterpillar: a tree that contains a path such that every edge has one or both endpoints
in that path.

center (of a tree): the set of vertices of minimum eccentricity.

child (of a vertex v in a rooted tree): a vertex such that v is its immediate ancestor.

chord: for a graph G with a spanning tree T , an edge e of G such that e �∈T .

complete binary tree: a binary tree where every parent has two children and all
leaves are at the same depth.

decision tree: a rooted tree in which every internal vertex represents a decision and
each path from the root to a leaf represents a cumulative choice.

dense graph: a graph in which the number of edges far exceeds the number of vertices.

depth (of a vertex in a rooted tree): the number of edges in the unique path from the
root to that vertex.

depth-first search: a method for visiting every vertex of a graph by progressing as
far as possible from the most recently visited vertex, before doing any backtracking.

descendant (of a vertex v in a rooted tree): a vertex that follows v on a path from
the root.

diameter (of a tree): the maximum distance between two distinct vertices in the tree.

distance (between two vertices in a tree): the number of edges in the unique simple
path between these vertices.
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eccentricity (of a vertex in a connected graph): the length of the longest simple path
beginning at that vertex.

finite tree: a tree with a finite number of vertices and edges.

forest: a graph with no cycles.

full m-ary tree: a rooted tree in which every internal vertex has exactly m children.

fundamental cycle of a connected graph G: the unique cycle created by adding
the edge e ∈ EG not in T to a spanning tree T .

fundamental edge-cut of a connected graph G: the partition-cut 〈X1, X2〉 where
X1 and X2 are the vertex-sets of the two components of T − e, where e is an edge
of a spanning tree T for G.

fundamental system of cycles of a connected graph G: the set of fundamental
cycles corresponding to the various edges of G−T , where T is a spanning tree for G.

fundamental system of edge-cuts of a connected graph G: the set of fundamen-
tal edge-cuts that result from removal of an edge from a spanning tree T for G.

geodesic (between two vertices in a tree): the unique simple path between these ver-
tices.

heap: a representation of a priority tree as an array.

height (of a rooted tree): the maximum of the levels of its vertices.

homogeneous: property of a tree (usually infinite) that every vertex has the same
degree.

d-homogeneous: property of a tree (usually infinite) that every vertex has degree d.

infinite tree: a tree with an infinite number of vertices and edges.

inorder traversal (of an ordered rooted tree): a recursive listing of all vertices starting
with the vertices of the first subtree of the root, next the root vertex itself, and then
the vertices of the other subtrees as they occur from left to right.

internal vertex (of a rooted tree): a vertex with children.

isomorphism (of trees): for trees X and Y , a pair of bijections fV :VX → VY and
fE :EX → EY such that if u and v are the endpoints of an edge e in the tree X,
then fV (u) and fV (v) are the endpoints of the edge fE(e) in the tree Y (see §8.1).

isomorphism (of rooted trees): for rooted trees (T1, r1) and (T2, r2), a tree isomor-
phism f :T1 → T2 that takes r1 to r2.

labeled tree: a tree with labels such as v1, v2, . . . , vn assigned to its vertices.

leaf : in a rooted tree, a vertex that has no children.

left child (of a node in an ordered, rooted binary tree): the first child of that node.

left subtree (of an ordered, rooted binary tree): the tree rooted at a left child.

left-complete binary tree: a binary tree where each level except possibly the deepest
is filled and the bottom level has no gaps as one traverses left to right.

left-right tree: a binary tree in which each vertex is a parent to either no children or
to both a left and a right child.

level (of a vertex in a rooted tree): the length of the unique path from the root to this
vertex.

locally finite tree: a tree in which the degree of every vertex is finite.
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maximal tree (in a graph): a spanning tree.

mesh (of trees): a graph obtained by construing each row and each column of a 2d×2d

array of vertices as the leaves of a complete binary tree.

minimum spanning tree (of a graph whose edges have weights assigned to them): a
spanning tree with minimum total edge-weight.

nth level (of a rooted tree): the set of all vertices at depth n.

order (of a finite tree): the number of vertices in the tree.

ordered tree: a rooted tree in which the children of each internal vertex are linearly
ordered.

parent (of a vertex v, other than the root, in a rooted tree): a vertex that is the
immediate predecessor of v on the unique path from the root to v.

partition-cut of a graph: given a partition of the set of vertices of G into X1 and X2,
the set 〈X1, X2〉 of edges of G that have one endpoint in X1 and the other in X2.

postorder traversal: a recursive listing of the vertices in an ordered rooted tree
starting with the vertices of subtrees as they occur from left to right, followed by
the root.

preorder traversal: a recursive listing of the vertices in an ordered rooted tree start-
ing with the root, then the vertices of the first subtree, followed by the vertices of
other subtrees as they occur from left to right.

priority tree: a left-complete binary tree whose vertices have labels (from an ordered
set) called “priorities”, such that no vertex has higher priority than its parent.

reduced tree: a tree with no vertices of degree 2.

reduced walk: a walk in a graph without backtracking.

regular: Synonym for homogeneous.

d-regular: Synonym for d-homogeneous.

right child (of a node in an ordered rooted binary tree): the second child of that node.

right subtree (of an ordered, rooted binary tree): the tree rooted at the right child.

rooted tree: a tree in which one vertex is designated as the “root”.

semi-homogeneous tree: a bihomogeneous tree (usually infinite) with a partition of
the vertices into two sets, those of degree m and those of degree n, where each vertex
of degree m is adjacent to one of degree n.

siblings (in a rooted tree): vertices with the same parent.

simplicial notation: notation for a tree or other simple graph in which each edge is
specified by its endpoints and each path is specified by its vertex sequence.

spanning tree (of a connected graph): a tree that contains all the vertices of the
graph.

subtree: a subgraph of a tree that is also a tree.

terminal vertex (of a tree): a vertex of degree 1.

tree: a connected graph with no cycles.

tree edge: for a graph G with a spanning tree T , an edge e of G such that e ∈ T .

tree traversal: a walk that visits all the vertices of a tree.
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9.1 CHARACTERIZATIONS AND TYPES OF TREES

9.1.1 PROPERTIES OF TREES

For trees, as with other graphs, there is a wide variety of terminology in use from one
application or specialty to another.

Definitions:

A graph is acyclic is it contains no subgraph isomorphic to a cycle Cn (§8.1.3).

A forest is an acyclic graph.

A tree is an acyclic connected graph. (Note: Unless stated otherwise, all trees are
assumed to be finite, i.e., to have a finite number of vertices.)

The eccentricity of a vertex is the length of the longest simple path beginning at that
vertex.

A center of a tree T is a vertex v with minimum eccentricity.

An end vertex of a tree is a vertex of degree 1.

A caterpillar is a tree that contains a path such that every edge has one or both
endpoints in that path.

Facts:

1. A (finite) tree with at least two vertices has at least two end vertices.
2. A connected graph with n vertices is a tree if and only if has exactly n− 1 edges.
3. A graph is a tree if and only if there is a unique simple path between any two
vertices.
4. A graph is a forest if and only if every edge is a cut-edge (§8.3.3).
5. Trees are bipartite. Hence, every tree can be colored using two colors.
6. The center of a tree consists of either only one vertex or two adjacent vertices.

Examples:

1. A tree:

2. A forest:
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3. A tree with two adjacent vertices a and b in its center:

4. A caterpillar:

5. Neither of the graphs shown is a tree. One contains a 3-cycle, and the other contains
a 1-cycle (i.e., a self-loop).

9.1.2 ROOTS AND ORDERINGS

Adding some extra structure to trees adapts them to applications in many disciplines,
especially computer science.

Definitions:

A rooted tree (T, r) is a tree T with a distinguished vertex r (the root), in which all
edges are implicitly directed away from the root.

Two rooted trees (T1, r1) and (T2, r2) are isomorphic as rooted trees if there is an
isomorphism f :T1 → T2 (§8.1.2) that takes r1 to r2.

A child of a vertex v in a rooted tree is a vertex that is the immediate successor of v
on a path from the root.

A descendant of a vertex v in a rooted tree is v itself or any vertex that is a successor
of v on a path from the root.

A proper descendant of a vertex v in a rooted tree is any descendant except v itself.

The parent of a vertex v in a rooted tree is a vertex that is the immediate predecessor
of v on a path to v from the root.

The parent function of a rooted tree T maps the root of T to the empty set and maps
every other vertex to its parent.

An ancestor of a vertex v in a rooted tree is v itself or any vertex that is the predecessor
of v on a path to v from the root.

A proper ancestor of a vertex v in a rooted tree is any ancestor except v itself.

c© 2000 by CRC Press LLC



Siblings in a rooted tree are vertices with the same parent.

An internal vertex in a rooted tree is a vertex with children.

A leaf in a rooted tree is a vertex that has no children.

The depth of a vertex in a rooted tree is the number of edges in the unique path from
the root to that vertex.

The nth level in a rooted tree is the set of all vertices at depth n.

The height of a rooted tree is the maximum depth of any vertex.

An ordered tree is a rooted tree in which the children of each internal vertex are
linearly ordered.

A left sibling of a vertex v in an ordered tree is a sibling that precedes v in the ordering
of v and its siblings.

A right sibling of a vertex v in an ordered tree is a sibling that follows v in the ordering
of v and its siblings.

A plane tree is a drawing of an ordered tree such that the left-to-right order of the
children of each node in the drawing is consistent with the linear ordering of the corre-
sponding vertices in the tree.

In the level ordering of the vertices of an ordered tree, u precedes v under any of
these circumstances:

• if the depth of u is less than the depth of v;
• if u is a left sibling of v;
• if the parent of u precedes the parent of v.

Two ordered trees (T1, r1) and (T2, r2) are isomorphic as ordered trees if there is a
rooted tree isomorphism f :T1 → T2 that preserves the ordering at every vertex.

An m-ary tree is a rooted tree such that every internal vertex has at most m children.

A full m-ary tree is a rooted tree such that every internal vertex has exactly m
children.

A (pure) binary tree is a rooted tree such that every internal vertex has at most two
children. This meaning of “binary tree” occurs commonly in pure graph theory.

A binary tree is a 2-ary tree such that every child, even an only child, is distinguished
as left child or right child. This meaning of “binary tree” occurs commonly in
computer science and in permutation groups.

The principal subtree at a vertex v of a rooted tree comprises all descendants of v
and all edges incident to these descendants. It has v designated as its root.

The left subtree of a vertex v in a binary tree is the principal subtree at the left child.
The right subtree of v is the principal subtree at the right child.

A balanced tree of height h is a rooted m-ary tree in which all leaves are of height h
or h−1.

A complete binary tree is a binary tree in which every parent has two children and
all leaves are at the same depth.

A complete m-ary tree is an m-ary tree in which every parent has two children and
all leaves are at the same depth.
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Algorithm 1: Find a Huffman code.

input: the probabilities Pr(x1), . . . , P r(xn) on a set X
output: a Huffman code for (X,Pr)

initialize F to be a forest of isolated vertices, labeled x1, . . . , xn, each to be
regarded as a rooted tree

assign weight Pr(xj) to the rooted tree xj , for j = 1, . . . , n
repeat until forest F is a single tree

choose two rooted trees, T and T ′, of smallest weights in forest F
replace trees T and T ′ in forest F by a tree with a new root whose left subtree

is T and whose right subtree is T ′

label the new edge to T with a 0 and the new edge to T ′ with a 1
assign weight w(T ) + w(T ′) to the new tree

return tree F
{The Huffman code word for xi is the concatenation of the labels on the unique

path from the root to xi.}

A decision tree a rooted tree in which every internal vertex represents a decision and
each path from the root to a leaf represents a cumulative choice.

A prefix code for a finite set X = {x1, . . . , xn} is a set {c1, . . . , cn} of binary strings
in X (called codewords) such that no codeword is a prefix of any other codeword.

A Huffman code for a set X with a probability measure Pr (see §7.1) is a prefix

code {c1, . . . , cn} such that
n∑

j=1

len(cj)Pr(xj) is minimum among all prefix codes, where

len(cj) measures the length of cj in bits.

A Huffman tree for a set X with a probability measure Pr is a tree constructed by
Huffman’s algorithm to produce a Huffman code for (X,Pr).

Facts:
1. Plane trees are usually drawn so that vertices of the same level in the corresponding
ordered tree are represented at the same vertical position in the plane.
2. A rooted tree can be represented by its vertex set plus its parent function.
3. The concept of finite binary tree also has the following recursive definition: (basis
clause) an ordered tree with only one vertex is a binary tree; (recursion clause) an
ordered tree with more than one vertex is a binary tree if the root has two children and
if both its principal subtrees are binary trees.
4. A full m-ary tree with k internal vertices has mk+1 vertices and (m−1)k+1 leaves.

5. A full m-ary tree with k vertices has
k − 1
m

internal vertices and
(m− 1)k + 1

m
leaves.

6. There are at most mh leaves in any m-ary tree of height h.
7. A binary search tree is a special kind of binary tree used to implement a random
access table with O(n) maintenance and retrieval algorithms. (See Chapter 17.)
8. A balanced binary tree can be used to implement a priority queue with O(n) enqueue
and dequeue algorithms. (See §17.2.4.)
9. Algorithm 1, due to D. Huffman in 1951, constructs a Huffman tree.
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Examples:

1. A rooted tree (T, r):

2. A rooted tree and its parent function:

vertex a b c d e f g
parent d d d ∅ c b c

3. A 2-ary tree of height 4:

4. A balanced binary tree:

5. The following tree is rooted at vertex r. Vertices d and e are children of vertex b.
Vertex f is a descendant of f , d, b, and r, but f is not a descendant of vertex a. Vertex a
is the parent of c, which is the only proper descendant of vertex a. Vertices d and e are
siblings, but c is not a sibling of d or of e.
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6. The leaves of the following rooted tree are the vertices c, d, f, g, and h. The internal
vertices are a, b, e, and s.

7. The following two rooted trees are isomorphic as graphs, but they are considered
to be different as rooted trees, because there is no graph isomorphism from one to the
other that maps root to root.

8. The following two plane trees are isomorphic as rooted trees, but they are not
isomorphic as ordered rooted trees, because there is no rooted tree isomorphism from
one to the other that preserves the child ordering at every vertex.

9. A complete binary tree of height 2.

10. A complete 3-ary tree of height 2.

11. The iterative construction of a Huffman tree for the set X = {u, v, w, x, y, z} with
respective probabilities {0.08, 0.10, 0.12, 0.15, 0.20, 0.35} would proceed as follows:
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The codes are 000 for a, 001 for b, 100 for c, 101 for d, 01 for e, and 11 for f . Thus, the
most frequently used objects in the set are represented by the shortest binary codes.

9.1.3 TREE TRAVERSAL

Ordered rooted trees can be used to store data or arithmetic expressions involving
numbers, variables and operations. A tree traversal algorithm gives a systematic method
for accessing the information stored in the tree.

Definitions:

A boundary walk of a plane tree is a walk around the boundary of the single region
of the given plane imbedding of the tree, starting at the root.

A backtrack along a walk in a graph is an instance . . . , u, e, v, e, u, . . . of two consecutive
edge-steps in which an edge-step traverses the same edge as its predecessor, but in the
opposite direction.

A reduced walk is a walk without backtracking.

A preorder traversal of an ordered rooted tree T lists the vertices of T (or their
labels) so that each vertex v is followed by all the vertices, in preorder, in its principal
subtrees, respecting their left-to-right order.

A postorder traversal of an ordered rooted tree T lists the vertices of T (or their
labels) so that each vertex v is preceded by all the vertices, in postorder, in its principal
subtrees, respecting their left-to-right order.

An inorder traversal of an ordered rooted tree T lists the vertices of T (or their
labels) so that each vertex v is preceded by all the vertices, in inorder, in its first
principal subtree and so that v is followed by the vertices, in inorder, of its other
principal subtrees, respecting their left-to-right order.
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Algorithm 2: Parent-finder for the postorder of a plane tree.

input: the postorder vp(1), . . . , vp(n) of a plane tree with sorted vertex labels and
a vertex vj

output: the parent of vj

scan the postorder until vj is encountered
continue scanning until some vertex vi is encountered such that i < j
return (vi)

Prefix (or Polish) notation is the form of an arithmetic expression obtained from a
preorder traversal of a binary tree representing this expression.

Postfix (or reverse Polish) notation is the form of an arithmetic expression obtained
from a postorder traversal of a binary tree representing this expression.

Infix notation is the form of an arithmetic expression obtained from an inorder traver-
sal of a binary tree representing this expression. A left parenthesis is written immedi-
ately before writing the left principal subtree of each vertex, and a right parenthesis is
written immediately after writing the right principal subtree.

The universal address system of an ordered rooted tree is a labeling in which the
root is labeled 0 and in which for each vertex with label x, its m children are labeled
x.1, x.2, . . . , x.m, from left to right.

In the level order of the vertices of an ordered tree T , vertex u precedes vertex v if u
is nearer the root, or if u and v are at the same level and u and v have ancestors u′

and v′ that are siblings and u′ precedes v′ in the ordering of T .

A bijective assignment of labels from an ordered set (such as alphabetic strings or the
integers) to the vertices of an ordered tree is sorted if the level order of these labels is
either ascending or descending.

Facts:

1. The preorder traversal of a plane tree is obtained by a counterclockwise traversal of
the boundary walk of the plane region, that is, starting downward toward the left. As
each vertex of the tree is encountered for the first time along this walk, it is recorded
in the preorder.

2. The postorder traversal of a plane tree is obtained by a counterclockwise traversal
of the boundary walk of the plane region, that is, starting downward toward the left.
As each vertex of the tree is encountered for the last time along this walk, it is recorded
in the postorder.

3. The inorder traversal of a plane tree is obtained by a counterclockwise traversal of
the boundary walk of the plane region, that is, starting downward toward the left. As
each interior vertex of the tree is encountered for the second time along this walk, it is
recorded in the inorder. An end vertex is recorded whenever it is encountered for the
only time.

4. Two nonisomorphic ordered trees with sorted vertex labels can have the same pre-
order but not the same postorder.
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Examples:

1. A plane tree with pre-order a b e f h c d g i j k, post-order e h f b c i j k g d a, and in-
order e b h f a c i g j k d.

2. A binary tree representing the arithmetic expression (x+y)/(x−2), with infix form
x + y / x− 2, prefix form / + x y − x 2, and postfix form x y + x 2 − /.

9.1.4 INFINITE TREES

Definitions:

An infinite tree is a tree with an infinite number of vertices or edges.

The diameter of a tree is the maximum distance between two distinct vertices in the
tree.

A bounded tree is a tree of finite diameter.

A locally finite tree is a tree in which the degree of every vertex is finite.

A homogeneous tree is a tree in which every vertex has the same degree.

An n-homogeneous tree is a tree in which every vertex has degree n.

A bihomogeneous tree is a nonhomogeneous tree with a partition of the vertices into
two subsets, such that all vertices in the same subset have the same degree.

A semi-homogeneous tree is a bihomogeneous tree such that each vertex of one of
the two realized degrees is adjacent to a vertex of the other realized degree.

Examples:

1. Suppose that two finite bitstrings are considered adjacent if one bitstring can be
obtained from the other by appending a 0 or a 1 at the right. The resulting graph is
the infinite bihomogeneous tree, in which the empty string λ has degree 2 and all other
finite bitstrings have degree 3.
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2. Consider the set of all finite strings on the alphabet {a, a−1, b, b−1} containing no
instances of the substrings aa−1 a−1a, bb−1, or b−1b. Suppose that two such strings are
considered to be adjacent if and only if one of them can be obtained from the other
by appending one of the alphabet symbols at the right. Then the resulting graph is a
4-homogeneous tree.

3. Consider as vertices the set of infinite bitstrings with at most two 1s. Suppose two
such bitstrings are regarded as adjacent if they differ in only one bit, and that bit is a
rightmost 1 for one of the two bitstrings. This graph is a bounded tree of diameter four.

9.2 SPANNING TREES

A spanning tree of a graph G is a subgraph of G that is a tree and contains every
vertex of G. Spanning trees are very useful in searching the vertices of a graph and in
communicating from any given node to the other nodes. Minimum spanning trees are
covered in §10.1.

9.2.1 DEPTH-FIRST AND BREADTH-FIRST SPANNING TREES

Definitions:

A spanning tree of a graph G is a tree that is a subgraph of G and that contains every
vertex of G.

A tree edge of a graph G with a spanning tree T is an edge e such that e ∈ T .

A chord of a graph G with a spanning tree T is an edge e such that e �∈T .

A back edge of a digraph G with a spanning tree T is a chord e that joins one of its
endpoints to an ancestor in T .

A forward edge of a digraph G with a spanning tree T is a chord e that joins one of
its endpoints to a descendent in T .

A cross edge of a digraph G with a spanning tree T is a chord e that is neither a back
edge nor a forward edge.

The fundamental cycle of a chord e with respect to a given spanning tree T of a
graph G consists of the edge e and the unique path in T joining the endpoints of e.

A depth-first search (DFS) of a graph G is a way to traverse every vertex of a
connected graph by constructing a spanning tree, rooted at a given vertex r. Each
stage of the DFS traversal seeks to move to an unvisited neighbor of the most recently
visited vertex, and backtracks only if there is none available. See Algorithm 1.

A depth-first-search tree is the spanning tree constructed during a depth-first search.

Backtracking during a depth-first search means retreating from a vertex with no
unvisited neighbors back to its parent in the dfs-tree.

A breadth-first search (BFS) of a graph G is a way to traverse every vertex of a
connected graph by constructing a spanning tree, rooted at a given vertex r. After
the BFS traversal visits a vertex v, all of the previously unvisited neighbors of v are
enqueued, and then the traversal removes from the queue whatever vertex is at the front
of the queue, and visits that vertex. See Algorithm 2.
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Algorithm 1: Depth-first search spanning tree.

input: a connected locally ordered n-vertex graph G and a starting vertex r
output: the edgeset ET of a spanning tree and an array X[1..n] listing VG in

DFS-order

initialize all vertices as unvisited and all edges as unused
ET := ∅; loc := 1
dfs(r)

procedure dfs(u)

mark u as visited
X[loc] := u
loc := loc + 1
while vertex u has any unused edges

e := next unused edge at u
mark e as used
w := the other endpoint of edge e
if w is unvisited then

add e to ET

dfs(w)

A breadth-first-search tree is the spanning tree constructed during a breadth-first
search.

The fundamental cycle of a connected graph G associated with a spanning tree T
and an edge e ∈ EG not in T is the unique cycle created by adding the edge e to the
tree T .

The fundamental system of cycles of a connected graph G associated with a span-
ning tree T is the set of fundamental cycles corresponding to the various edges of G−T .

Given two vertex sets X1 and X2 that partition the vertex set of a graph G, the
partition-cut 〈X1, X2〉 is the set of edges of G that have one endpoint in X1 and
the other in X2.

The fundamental edge-cut of a connected graph G associated with removal of an
edge e from a spanning tree T is the partition-cut 〈X1, X2〉 where X1 and X2 are the
vertex-sets of the two components of T − e.

The fundamental system of edge-cuts of a connected graph G associated with a
spanning tree T is the set of fundamental edge-cuts that result from removal of an edge
from the tree T .

Facts:

1. Every connected graph has at least one spanning tree.

2. A connected graph G has k edge-disjoint spanning trees if and only if for every
partition of VG into m nonempty subsets, there are at least k(m− 1) edges connecting
vertices in different subsets.

3. Let T and T ′ be spanning trees of a graph G and e ∈ T − T ′. Then there exists an
edge e′ ∈ T ′ − T such that both T − e ∪ {e′} and T ′ − e′ ∪ {e} are spanning trees of G.
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Algorithm 2: Breadth-first search spanning tree.

input: a connected locally n-vertex ordered graph G and a starting vertex r.
output: the edgeset ET of a spanning tree and an array X[1..n] listing VG in

BFS-order

initialize all vertices as unvisited and all edges as unused
ET := ∅; loc := 1; Q := r {Q is a queue}
while Q �= ∅

x := front(Q)
remove x from Q
bfs(r)

procedure: bfs(u)
mark u as visited
X[loc] := u
loc := loc + 1
while vertex u has any unused edges

e := next unused edge at u
mark e as used
w := the other endpoint of edge e
if w is unvisited then

add e to ET

add w to the end of Q

4. In the column vector space of the incidence matrix of G over GF (2), every edge set
can be represented as a sum of column vectors. Let T be a spanning tree of G. Then
each cycle C can be written in a unique way as a linear combination of the fundamental
cycles of whatever chords of T occur in C.

5. Depth-first search on an n-vertex, m-edge graph runs in O(m) time.

6. DFS-trees are used to find the components, cutpoints, blocks, and cut-edges of a
graph.

7. The unique path in the BFS-tree T of a graph G from its root r to a vertex v is a
shortest path in G from r to v.

8. Breadth-first search on an n-vertex, m-edge graph runs in O(m) time.

9. A BFS-tree in a simple graph has no back edges.

10. Dijkstra’s algorithm (§10.3.2) constructs a spanning tree T in an edge-weighted
graph such that for each vertex v, the unique path in T from a specified root r to v
is a minimum-cost path in the graph from r to v. When all edges have unit weights,
Dijkstra’s algorithm produces the BFS tree.

11. The level order of the vertices of an ordered tree is the order in which they would
be traversed in a breadth-first search of the tree.

12. The fundamental cycle of an edge e with respect to a spanning tree T such that
e /∈ T consists of edge e and those edges of T whose fundamental edge-cuts contain e.

13. The fundamental edge-cut with respect to removal of edge e from a spanning tree T
consists of edge e and those edges of EG − ET whose fundamental cycles contain e.

c© 2000 by CRC Press LLC



Examples:

1. Consider the following graph and spanning tree and a digraph on the same vertex
and edge set. The tree edges are a, b, c, e, f, h, k, l, and the chords are d, g, i, j. Chord d
is a forward edge, chord i is a back edge, and chords g and j are cross edges.

2. In the graph of Example 1, the fundamental cycles of the chords d, g, i, and j
are {d, b, e}, {g, f, c, a, b, e}, {i, h, l}, and {j, f, h, l}, respectively. The non-fundamental
cycle {a, d, g, c, f} is the sum (mod 2) of the fundamental cycles of chords d and g.

3. A spanning tree and its fundamental system of cycles.

4. A spanning tree and its fundamental system of edge-cuts.

5. Suppose for the graph of Example 1, that the local order of adjacencies at each
vertex is the alphabetic order of the edge labels. Then the construction of the DFS-tree
is as follows:
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6. Suppose for the graph of Example 1, that the local order of adjacencies at each
vertex is the alphabetic order of the edge labels. Then the construction of the BFS-tree
is as follows:

9.2.2 ENUMERATION OF SPANNING TREES

Definitions:

The number of spanning trees τ(G) of a graph G counts two spanning trees T1

and T2 as different if their edgesets are different, even if there is an automorphism of G
mapping T1 onto T2.

The degree matrix D(G) of an n-vertex graph G whose vertex degree sequence
d1, . . . , dn is the n × n diagonal matrix in which the elements of the main diagonal
are the degrees d1, . . . , dn (and the off-diagonal elements are 0s).

Facts:
1. Cayley’s formula: τ(Kn) = nn−2, where Kn is the complete graph.
2. τ(Km,n) = mn−1nm−1, where Km,n is the complete bipartite graph.

3. τ(Is + Kn−s) = nn−2
(
1 − s

n

)s−1, where Is is the edgeless graph on n vertices
and “+” denotes the join (§8.1.2).

4. τ(Wn) =
(

3+
√

5
2

)n

+
(

3−
√

5
2

)n

−2, where Wn denotes the wheel with n rim vertices.

5. Matrix-tree theorem: For each s and t, τ(G) equals (−1)s+t times the determinant
of the matrix obtained by deleting row s and column t from D(G)−A(G), where A(G)
is the adjacency matrix for G.
6. For each edge e of a graph G, τ(G) = τ(G− e) + τ(G/e), where “−e” denotes edge
deletion and “/e” denotes edge contraction.
7. The number of spanning trees of Kn with degrees d1, . . . , dn is

(
n−2

d1−1,...,dn−1

)
(§2.3.2).

In this formula, the vertices are distinguishable (labeled) and are given their degrees in
advance, and the only question is how to realize them with edges.
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Examples:

1. τ(K3) = 33−2 = 3. Each of the three spanning trees is a path on two edges, as
illustrated below. Also, τ(K4) = 44−2 = 16.

2. τ(K2,n) = n2n−1. To confirm this, let X = {x1, x2} and |Y | = n. The spanning tree
contains a path of length 2 joining x1 to x2, whose middle vertex in Y can be chosen
in n ways. For each of the remaining n− 1 vertices of Y , there is a choice as to which
of x1 and x2 is its neighbor (not both, since that would create a cycle).

3. τ(I3 + K2) = 53
(
1 − 3

5

)2 = 20.

4. τ(W4) =
(

3+
√

5
2

)4

+
(

3−
√

5
2

)4

− 2 = 45.

5. To illustrate the matrix-tree theorem, consider the following graph G.

Then

D(G) −A(G) =




3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


.

Deleting row 2 and column 3, for example, yields

τ(G) = (−1)2+3

∣∣∣∣∣∣
3 −1 −1

−1 −1 −1
−1 0 2

∣∣∣∣∣∣ = 8.

The 8 spanning trees of G are:

6. The recursive formula τ(G) = τ(G−e)+τ(G/e) is illustrated with the same graph G
of the previous example and with e = v1v3. In the computation G is drawn instead of
writing τ(G), and similarly with the other graphs. This yields

1 2

3 4

=

1 2

3 4

+

3
1⋅4

2
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7. Let the vertices of K5 be v0, v1, v2, v3, v4. The number of spanning trees of K5 in
which the degrees of v0, v1, v2, v3, v4 are 3, 2, 1, 1, 1, respectively, is given by the multi-
nomial coefficient

(
5−2

3−1,2−1,1−1,1−1,1−1

)
= 3!

2!·1!·0!·0!·0! = 6
2·1·1·1·1 = 3. The three trees in

question are:

9.3 ENUMERATING TREES

Tree counting began with Arthur Cayley in 1889, who wanted to enumerate the satu-
rated hydrocarbons. George Pólya developed an extensive theory in 1937 for counting
families of organic chemicals, which was used by Richard Otter in 1948 in his solution
of the specific problem of counting saturated hydrocarbons. Tree counting formulas are
used in computer science to estimate running times in the design of algorithms.

9.3.1 COUNTING GENERIC TREES

Definitions:

A tree is a connected graph with no cycles. Two trees are considered the “same”, for
counting purposes, if they are isomorphic.

A labeled tree is a tree in which distinct labels such as v1, v2, . . . , vn have been assigned
to the vertices. Two labeled trees with the same set of labels are considered the same
only if there is an isomorphism from one tree to the other such that each vertex is
mapped to the vertex with the same label.

A rooted tree is a tree in which one vertex, the root, is distinguished. Two rooted
trees are considered the same if there is an isomorphism from one to the other that
maps the root of the first to the root of the second.

A reduced tree, sometimes called a homeomorphically reduced or series reduced tree,
is a tree with no vertices of degree 2.

Facts:
1. Cayley’s formula: The number of labeled trees with n vertices equals nn−2. See
Table 1.
2. The number of rooted labeled trees with n vertices equals nn−1. See Table 1.
3. Rooted trees and most other tree structures can be counted by using generating
functions.
4. The generating function r(x) for the number Rn of rooted trees with n vertices (see

Table 2) is r(x) =
∞∑

n=1
Rnx

n = x + x2 + 2x3 + 4x4 + 9x5 + 20x6 + · · · .

5. The coefficients Rn of the generating function r(x) for rooted trees can be determined
from the recurrence relation
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Table 1 Labeled trees and rooted labeled trees with n vertices.

n labeled trees rooted labeled trees

1 1 1
2 1 2
3 3 9
4 16 64
5 125 625
6 1,296 7,776
7 16,807 117,649
8 262,144 2,097,152
9 4,782,969 43,046,721

10 100,000,000 1,000,000,000
11 2,357,947,691 25,937,424,601
12 61,917,364,224 743,008,370,688
13 1,792,160,394,037 23,298,085,122,481
14 56,693,912,375,296 793,714,773,254,144
15 1,946,195,068,359,375 29,192,926,025,390,625
16 72,057,594,037,927,936 1,152,921,504,606,846,980

r(x) = x
∞∏

i=1

(1 − xi)−Ri .

An alternative defining expression for this generating function is

r(x) = x exp
( ∞∑

i=1

r(xi)
i

)
.

6. The generating function t(x) =
∞∑

n=1
Tn · xn = x + x2 + x3 + 2x4 + 3x5 + 6x6 + · · ·

for counting trees (see Table 2) is obtained from that for rooted trees by using Otter’s
formula

t(x) = r(x) − 1
2

(
r(x)2 − r(x2)

)
.

7. The generating function h(x) =
∞∑

n=1
Hn ·xn = x+x2 +x4 +x5 +2x6 +2x7 +4x8 + · · ·

for counting reduced trees (see Table 2) is based on another function f(x) determined
by the equation

f(x) = x
1+x

∞∏
i=1

(1 − xi)−Fi = x
1+x exp

( ∞∑
i=1

f(xi)
i

)
.

Then
h(x) = (1 + x)f(x) − 1+x

2 f(x)2 + 1−x
2 f(x2).

Note that there are no reduced trees with exactly 3 vertices.

Examples:

1. There are exactly three trees with five vertices:
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Table 2 Rooted trees, trees, and reduced trees with n vertices.

n Rn (rooted trees) Tn (trees) Hn (reduced trees)

1 1 1 1
2 1 1 1
3 2 1 0
4 4 2 1
5 9 3 1
6 20 6 2
7 48 11 2
8 115 23 4
9 286 47 5

10 719 106 10
11 1,842 235 14
12 4,766 551 26
13 12,486 1,301 42
14 32,973 3,159 78
15 87,811 7,741 132
16 235,381 19,320 249
17 634,847 48,629 445
18 1,721,159 123,867 842
19 4,688,676 317,955 1,561
20 12,826,228 823,065 2,988
21 35,221,832 2,144,505 5,671
22 97,055,181 5,623,756 10,981
23 268,282,855 14,828,074 21,209
24 743,724,984 39,299,897 41,472
25 2,067,174,645 104,636,890 81,181
26 5,759,636,510 279,793,450 160,176
27 16,083,734,329 751,065,460 316,749
28 45,007,066,269 2,023,443,032 629,933
29 126,186,554,308 5,469,566,585 1,256,070
30 354,426,847,597 14,830,871,802 2,515,169
31 997,171,512,998 40,330,829,030 5,049,816
32 2,809,934,352,700 109,972,410,221 10,172,638
33 7,929,819,784,355 300,628,862,480 20,543,579
34 22,409,533,673,568 823,779,631,721 41,602,425
35 63,411,730,258,053 2,262,366,343,746 84,440,886
36 179,655,930,440,464 6,226,306,037,178 171 794,492
37 509,588,049,810,620 17,169,677,490,714 350,238,175
38 1,447,023,384,581,029 47,436,313,524,262 715,497,037
39 4,113,254,119,923,150 131,290,543,779,126 1,464,407,113
40 11,703,780,079,612,453 363,990,257,783,343 3,002,638,286

2. The first two trees in the figure of Example 1 can each be labeled in 60 essentially
different ways, while the third tree can only be labeled in 5 essentially different ways.
Thus, there are 125 different labeled trees with 5 vertices.
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3. The first tree in the figure of Example 1 can be rooted in 3 essentially different ways,
and thus corresponds to 3 different rooted trees. The second and third trees in that
figure represent 4 and 2 different rooted trees, respectively. Thus there are 9 different
rooted trees with 5 vertices.

4. The third tree in the figure of Example 1 is the only reduced tree with 5 vertices.

9.3.2 COUNTING TREES IN CHEMISTRY

Definitions:

A 1-4 tree is a tree in which each vertex has degree 1 or 4.

A 1-rooted 1-4 tree is a 1-4 tree rooted at a vertex of degree 1.

Facts:

1. Saturated hydrocarbons, also called alkanes, are compounds with the chemical for-
mula CnH2n+2; they consist of n carbon atoms of valence 4 and 2n+ 2 hydrogen atoms
of valence 1. The molecular structure of alkanes is modeled by the 1-4 trees.
Note: It is convenient when counting alkanes to include the hydrogen molecule H2,
which has no carbon atoms and 2 hydrogen atoms, as an honorary alkane.

2. A monosubstituted hydrocarbon has n carbon atom, 2n + 1 hydrogen atoms, and
an OH group. They have the chemical formula CnH2n+1OH; they include the familiar
alcohols.
Note: It is convenient when counting alcohols to include the water molecule HOH as
an honorary alcohol.

3. The number An (see Table 3) of 1-rooted 1-4 trees (alcohols) with n 4-valent vertices
(carbon atoms), 2n+1 non-root 1-valent vertices (hydrogen atoms), and a 1-valent root
(the OH group) has the generating function

a(x) =
∞∑

n=0
Anx

n = 1 + x + x2 + 2x3 + 4x4 + 8x5 + 17x6 + · · ·

whose coefficients can be determined from the recurrence relation

a(x) = 1 + x
6

(
a(x)3 + 3a(x)a(x2) + 2a(x3)

)
4. In counting unrooted 1-4 trees, a preliminary step is to count the number Gn of 1-4
trees rooted at a vertex of degree 4. The coefficients of the corresponding generating
function

g(x) =
∞∑

n=1
Gnxn = x + x2 + 2x3 + 4x4 + 9x5 + 18x6 + · · ·

are determined by the equation
g(x) = x

24

(
a(x)4 + 6a(x)2a(x2) + 8a(x)a(x3) + 3a(x2)2 + 6a(x4)

)
.

5. The number Bn (see Table 3) of 1-4 trees (alkanes) with n 4-valent vertices (carbon
atoms) and 2n + 2 1-valent vertices (hydrogen atoms) has the generating function

b(x) =
∞∑

n=0
Bn · xn = 1 + x + x2 + x3 + 2x4 + 3x5 + 5x6 + · · ·
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Table 3 1-Rooted 1-4 trees and 1-4 trees with n vertices of degree 4.

An: 1-rooted 1-4 trees Bn: 1-4 trees
n (alcohols) (alkanes)

1 1 1
2 1 1
3 2 1
4 4 2
5 8 3
6 17 5
7 39 9
8 89 18
9 211 35

10 507 75
11 1,238 159
12 3,057 355
13 7,639 802
14 19,241 1,858
15 48,865 4,347
16 124,906 10,359
17 321,198 24,894
18 830,219 60,523
19 2,156,010 148,284
20 5,622,109 366,319
21 14,715,813 910,726
22 38,649,152 2,278,658
23 101,821,927 5,731,580
24 269,010,485 14,490,245
25 712,566,567 36,797,588
26 1,891,993,344 93,839,412
27 5,034,704,828 240,215,803
28 13,425,117,806 617,105,614
29 35,866,550,869 1,590,507,121
30 95,991,365,288 4,111,846,763
31 257,332,864,506 10,660,307,791
32 690,928,354,105 27,711,253,769
33 1,857,821,351,559 72,214,088,660
34 5,002,305,607,153 188,626,236,139
35 13,486,440,075,669 493,782,952,902
36 36,404,382,430,278 1,295,297,588,128
37 98,380,779,170,283 3,404,490,780,161
38 266,158,552,000,477 8,964,747,474,595
39 720,807,976,831,447 23,647,478,933,969
40 1,954,002,050,661,819 62,481,801,147,341

which can be determined from the equation
b(x) = g(s) + a(x) − 1

2

(
a(x)2 − a(x2)

)
.
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Examples:

1. The three different 1-4 trees with 5 vertices of degree 4 are:

2. The first 1-4 tree in the figure of Example 1 can be rooted at a vertex of degree 1
in 3 essentially different way, the second in 4 essentially different ways, and the third in
only 1 essential way. Thus there are 8 different 1-rooted 1-4 trees with 5 vertices.

9.3.3 COUNTING TREES IN COMPUTER SCIENCE

Definitions:

A binary tree is a rooted tree in which each vertex has at most two children, and such
that each child is designated either a left child or a right child. An only child may
be either a left child or a right child.

A left-right tree is a binary tree in which each vertex is a parent either to no children
or to both a left child and a right child.

An ordered tree is a tree in which the children of every vertex are linearly ordered.

Facts:

1. Binary trees are counted by the Catalan numbers Cn (§3.1.3): the number of binary
trees with n vertices is Cn.

2. Each principal subtree of a left-right tree is a left-right tree.

3. Left-right trees are frequently used to represent arithmetic expressions, in which
the leaves of the tree correspond to numbers and the other vertices represent binary
operations such as + , − , × , or ÷ .

4. There is an obvious one-to-one correspondence between binary trees with n vertices
and left-right trees with 2n+1 vertices: delete all the leaves of a left-right tree to obtain
a binary tree.

5. The number of left-right trees with n internal vertices and n + 1 leaves is also Cn.
This follows from Fact 4.

6. Ordered trees can represent structures such as family trees, showing all descendants
of the person represented by the root. The children of each person in the tree would be
represented as children of the corresponding vertex, ordered according to birth date.

7. The number of ordered trees with n vertices is Cn−1.
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Examples:

1. The 5 binary trees with 3 vertices:

2. The 5 left-right trees with 7 vertices:

3. The 5 ordered trees with 4 vertices:
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INTRODUCTION

The vertices and edges of a graph often have quantitative information associated with
them, such as supplies and demands (for vertices), and distance, length, capacity, and
cost (for edges). Relative to such networks, a number of discrete optimization problems
arise in a variety of disciplines: statistics, electrical engineering, operations research,
combinatorics, and computer science. Typical applications include designing least cost
telecommunication systems, maximizing throughput in a manufacturing system, finding
a minimum cost route or set of routes for delivery vehicles, and distributing electricity
from a set of supply points to meet customer demands at minimum cost. In this chapter,
a number of classical network optimization problems are studied and algorithms are
described for their exact or approximate solution.

GLOSSARY
adjacency matrix: a 0-1 matrix whose (i, j) entry indicates the absence or presence,

respectively, of an arc joining vertex i to vertex j in a graph.

adjacency set: the set of arcs emanating from a specified vertex.

alternating path (in a matching): a path with edges that are alternately free and
matched.

arc list: a list of the arcs of a graph, presented in no particular order.

assignment (from a set S to a set T ): a bijective function from S onto T .

augmenting path (in a flow network): a directed path between two specified vertices
in which each arc has a positive residual capacity.

augmenting path (in a matching): an alternating path between two free vertices.

backbone network: a collection of devices that interconnect vertices at which mes-
sage exchanges occur in a communication network.

blossom: an odd length cycle formed by adding an edge joining two even vertices on
an alternating path.

capacitated concentrator location problem: a network design problem in which
a minimum cost configuration of concentrators and their connections to terminals is
sought so that each concentrator’s total capacity is not exceeded.

capacitated minimum spanning tree: a minimum cost collection of subtrees joined
to a specified root vertex, in which the total amount of demand generated by each
subtree is bounded above by a constant.

capacitated network: a network in which arc is assigned a capacity.

capacity (of an arc): the maximum amount of material that can flow along the arc.

capacity (of a cut): for a cut [S, S], the sum of the capacities of arcs (i, j) with i ∈ S
and j ∈ S.

capacity (of a path): the smallest capacity of any arc on the path.

capacity assignment problem: a network design problem in which links of different
capacities are to be installed at minimum cost to support a number of point-to-point
communication demands.

complete matching : in a bipartite graph G = (X ∪ Y,E), a matching M in which
each vertex of X is incident with an edge of M .
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composite (hybrid) method: a heuristic algorithm that combines elements of both
construction methods and improvement methods.

construction method: a heuristic algorithm that builds a feasible solution, starting
with a trivial configuration.

cost (of a flow):
∑

(i,j) cijxij , where cij is the cost and xij is the flow on arc (i, j).

cut (in a graph): the set of edges [S, S] in the graph joining vertices in S to vertices
in the complementary set S.

directed network: a vertex set V and an arc set E, where each directed arc has an
associated cost, length, weight, or capacity.

directed out-tree: a tree rooted at vertex s such that the unique path in the tree
from vertex s to every other vertex is a directed path.

distance label: an estimate (in particular, an upper bound) on the shortest path
length from the source vertex to each network vertex.

even vertex (in an alternating path): given an alternating path P , a vertex on P that
is reached using an even number of edges of P , starting from the origin vertex of P .

exact algorithm: a procedure that produces a verifiable optimal solution to every
problem instance.

flow : a feasible assignment of material that satisfies flow conservation and arc capacity
restrictions.

forward star: a compact representation of a graph in which information about arcs
leaving a vertex is stored using consecutive locations of an array.

free edge (in a matching): an edge that does not appear in the matching.

free vertex (in a matching): a vertex that is incident with no matched edges.

heuristic algorithm: a procedure that produces a feasible, though not necessarily
optimal, solution to every problem instance.

improvement method: a heuristic algorithm that starts with a suboptimal solution
(often randomly generated) and attempts to improve it.

length (of a path): the sum of all costs appearing on the arcs of the path.

linear assignment problem (LAP): an optimization problem in which an assign-
ment is sought that minimizes an appropriate set-up cost.

link capacity : an upper bound on the amount of traffic that a communication link
can carry at any one time.

linked adjacency list: a collection of singly-linked lists used to represent a graph.

local access network: a network used to transfer traffic between the backbone net-
work and the end users.

matched edge (in a matching): an edge that appears in the matching.

matched vertex (in a matching): a vertex that is incident with a matched edge.

matching (in a graph): a set of pairwise nonadjacent edges in the graph.

mate (of a matched vertex): in a matching, the other endpoint of the matched edge
incident with the given vertex.

maximum flow (in a network): a flow in the network having maximum value.

maximum size matching : a matching having the largest size.
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maximum spanning tree (of a network): a spanning tree of the network with max-
imum cost.

maximum weight matching : a matching having the largest weight.

metaheuristic: a general-purpose heuristic procedure (such as tabu search, simulated
annealing, genetic algorithms, or neural networks) for solving difficult optimization
problems.

minimum cost flow (in a network): a flow in the network having minimum cost.

minimum cut (in a network): a cut in the network having minimum capacity.

minimum spanning tree (of a network): a spanning tree of the network with mini-
mum cost.

negative cycle: a directed cycle of negative cost (or length).

odd vertex (in an alternating path): given an alternating path P , a vertex on P that
is reached using an odd number of edges of the path P , starting from the origin
vertex of P .

perfect matching : a matching in a graph in which each vertex of the graph is incident
with exactly one edge of the matching.

predecessor: relative to a rooted tree, the vertex preceding a given vertex on the
unique path from the root to the given vertex.

preflow : a relaxation of flow where inflow into a vertex can be greater than its outflow.

pseudoflow : a relaxation of flow where inflow into a vertex need not be equal to its
outflow.

quadratic assignment problem (QAP): an optimization problem in which an as-
signment is sought that minimizes the sum of set-up and interaction costs.

reduced cost of arc (i, j): relative to given vertex potentials π, the quantity cπij =
cij − π(i) + π(j).

residual capacity (of an arc): the maximum additional flow (with respect to a given
flow) that can be sent on an arc.

residual network: a network consisting of arcs with positive residual capacity.

s-t cut: a cut [S, S] in which s ∈ S and t ∈ S.

savings: the reduction in cost from joining two vertices directly compared to joining
both to a central vertex.

shortest path: a directed path between specified vertices having minimum total cost
(or length).

size (of a matching): the number of edges in the matching.

survivable network: a network that can survive failures in some of its vertices or
edges and still transfer a prespecified amount of traffic.

traveling salesman problem (TSP): an optimization problem in which a fixed set
of cities must be visited in some order at minimum total cost.

two-phase method: a heuristic algorithm that implements a cluster first/route sec-
ond philosophy.

undirected network: a vertex set V and an edge set E, where each undirected edge
has an associated cost, length, weight, or capacity.

value of a flow: the total flow leaving the source vertex.
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vehicle routing problem (VRP): an optimization problem in which a given set of
customers must be serviced at minimum total cost, using a fleet of vehicles having
fixed capacity.

vertex potential: a quantity π(i) associated with each vertex i of a network.

weight (of a matching): the sum of the weights of edges in the matching.

10.1 MINIMUM SPANNING TREES

In an undirected network, the minimum spanning tree problem is the problem of iden-
tifying a spanning tree of the network that has the smallest possible sum of edge costs.
This problem arises in a number of applications, both as a stand-alone problem and as
a subproblem in more complex problem settings. It is assumed throughout this section
that the network is connected.

10.1.1 BASIC CONCEPTS

Definitions:

An undirected network is a weighted graph (§8.1.1) G = (V,E), where V is the set
of vertices, E is the set of undirected edges, and each edge (i, j) ∈ E has an associated
cost (or weight, length) cij . Let n = |V | and m = |E|.
If T = (V, F ) is a spanning tree (§9.2) of G = (V,E), then every edge in F ⊆ E is a
tree edge and every edge in E − F is a nontree edge (or chord).

A minimum spanning tree (MST) of G is a spanning tree of G for which the sum
of the edge costs is minimum.

A maximum spanning tree of G is a spanning tree of G for which the sum of the
edge costs is maximum.

A cut of G = (V,E) is a partition of the vertex set V into two parts, S and S = V −S.
Each cut defines the set of edges [S, S] ⊆ E having one endpoint in S and the other
endpoint in S.

Facts:
1. Every spanning tree T of a network G with n vertices contains exactly n− 1 edges,
and every two vertices of T are connected by a unique path.
2. Adding an edge to a spanning tree ofG produces a unique cycle, called a fundamental
cycle (§9.2.1).
3. Every cut [S, S] is a disconnecting set of edges (§8.4.2). However, not every discon-
necting set of edges can be represented as a cut [S, S]; see Example 2.
4. Removing an edge from a spanning tree of G produces two subtrees, on vertex sets S
and S, respectively. The associated cut [S, S] is called a fundamental cut.
5. Path optimality conditions: A spanning tree T ∗ is a minimum spanning tree of G
if and only if for each nontree edge (k, l) of G, cij ≤ ckl holds for all tree edges (i, j) in
the fundamental cycle determined by edge (k, l).
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6. Cut optimality conditions: A spanning tree T ∗ is a minimum spanning tree of G if
and only if for each tree edge (i, j) ∈ T ∗, cij ≤ ckl holds for all nontree edges (k, l) in
the fundamental cut determined by edge (i, j).
7. If all edge costs are different, then the minimum spanning tree is unique.
8. The minimum spanning tree can be unique even if some of the edge costs are equal;
see Example 1.
9. Adding a constant to all edge costs of an undirected network does not change the
minimum spanning tree(s) of the network. Thus, it is sufficient to have an algorithm
that works when all edge costs are positive.
10. Multiplying each edge cost of an undirected network by −1 converts a maximum
spanning tree into a minimum spanning tree, and vice versa. Thus, it is sufficient to
have algorithms to find a minimum spanning tree.

Examples:
1. Part (a) of the following figure shows an undirected network G, with costs indicated
on each edge. Part (b) shows a spanning tree T ∗ of G. Adding the nontree edge (3, 5)
to T ∗ produces the fundamental cycle [3, 1, 2, 5, 3]; see part (c). Since each tree edge
in this cycle has cost no more than that of the nontree edge (3, 5), the path optimality
condition is satisfied by edge (3, 5). Similarly, it can be verified that the other nontree
edges, namely (2, 3), (4, 5), and (5, 6), satisfy the path optimality conditions, estab-
lishing by Fact 5 that T ∗ is a minimum spanning tree. By Fact 7 this is the unique
minimum spanning tree.

2. For the tree edge (1, 2) in part (b) of the figure of Example 1, the fundamental cut
[S, S] formed by deleting edge (1, 2) has S = {1, 3} and S = {2, 4, 5, 6}; see part (d) of
the figure. This cut contains two nontree edges, (2, 3) and (3, 5). Since each such nontree
edge has cost greater than or equal to that of the tree edge (1, 2), the cut optimality
condition is satisfied for edge (1, 2). Similarly, it can be verified that the other tree edges,
namely (1, 3), (2, 4), (2, 5), and (4, 6), satisfy the cut optimality conditions, establishing
by Fact 6 that T ∗ is a minimum spanning tree.
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3. The undirected network of part (a) of the following figure has 4 vertices and 5 edges,
with the edge cost shown beside each edge. This network contains 8 spanning trees,
which are listed in the table in part (b) of the figure. The spanning tree T5 achieves the
minimum cost 7 among all the spanning trees and so is a minimum spanning tree. In
fact, T5 is the unique minimum spanning tree, even though the edge costs are not all
distinct. See Fact 8.

4. The set of edges F = {(2, 3), (2, 4), (3, 4)} is a disconnecting set in the network G of
Example 3, since removal of these edges disconnects G. However, there is no partition
of the vertex set of G into nonempty sets S and S for which F = [S, S].

10.1.2 ALGORITHMS FOR MINIMUM SPANNING TREES

There are several greedy algorithms for constructing minimum spanning trees, based on
the optimality conditions in §10.1.1, Facts 5 and 6. Each of these algorithms myopically
(greedily) adds an edge to the current configuration based on only local information;
nonetheless, these procedures are guaranteed to produce a minimum spanning tree.

Definitions:

The nearest neighbor operation takes as input a tree T ∗ having vertex set S and
produces a minimum cost edge (i, j) in the cut [S, S ]. That is, cij = min{ cab | a ∈
S, b /∈ S }.
The merge operation takes as input an edge (i, j) whose two endpoints i and j belong
to disjoint trees Ti and Tj and combines the trees into Ti ∪ Tj ∪ {(i, j)}.
The graph G = (V,E) is assumed connected and has n vertices and m edges.

Facts:

1. Kruskal’s algorithm: This greedy algorithm (Algorithm 1) is based on the path
optimality conditions (§10.1.1) and builds a minimum spanning tree by examining edges
of E one by one in nondecreasing order of their costs. The edge being examined is added
to the current forest if its addition does not create a cycle. (J. B. Kruskal, born 1928)

2. Kruskal’s algorithm can be terminated once n− 1 edges have been added to T ∗.

3. Computer code (in Fortran) that implements Kruskal’s algorithm can be found at
the site:

http://www.mat.uc.pt/~eqvm/cientificos/fortran/codigos.html
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Algorithm 1: Kruskal’s algorithm.

input: connected undirected network G
output: minimum spanning tree T ∗

order the edges (i1, j1), (i2, j2), . . . , (im, jm) so that ci1j1 ≤ ci2j2 ≤ · · · ≤ cimjm
T ∗ := ∅
for k := 1 to m do

if T ∗ ∪ {(ik, jk)} does not contain a cycle then T ∗ := T ∗ ∪ {(ik, jk)}

Algorithm 2: Prim’s algorithm.

input: connected undirected network G, vertex i0
output: minimum spanning tree T ∗

T ∗ := the tree consisting of vertex i0
while |T ∗| < n− 1 do

(i, j) := nearest neighbor(T ∗)
T ∗ := T ∗ ∪ {(i, j)}

4. Kruskal’s algorithm can be implemented using several data structures yielding dif-
ferent time bounds:

• [AhMaOr93] describes an implementation that runs in O(m+ n log n) time plus
the time needed for sorting the m edges;

• [Ta83] describes an improved implementation that runs in O(ma(n,m)) time plus
the time needed for sorting the m edges; here a(n,m) is the inverse Ackermann
function which for all practical purposes is less than 5.

5. Algorithm 1 was independently discovered by Kruskal (1956) and by H. Loberman
and A. Weinberger (1957).

6. Prim’s algorithm: This algorithm (Algorithm 2) is based on the cut optimality
conditions (§10.1.1). It maintains a single tree T ∗, which initially consists of an arbitrary
vertex i0. At each iteration, the algorithm adds the least cost edge emanating from T ∗

until a spanning tree is obtained. (R. C. Prim, born 1921)
7. Algorithm 2 was first proposed in 1930 by V. Jarńık. Later it was independently
discovered by Prim (1957) and by E. W. Dijkstra (1959).
8. Running times of several implementations of Prim’s algorithm are shown in the
following table. See [AhMaOr93] for a discussion of these implementations.

data structure running time

binary heap O(m log n)
d-heap O(m logd n), with d = max{2, �mn �}

Fibonacci heap O(m+ n log n)

9. A modification of Prim’s algorithm has running time O(m log b(m,n)), where the
function b(m,n) grows very slowly (for all practical purposes is less than 5) [GaEtal86].
This is currently the theoretically fastest algorithm for solving the minimum spanning
tree problem.
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Algorithm 3: Sollin’s algorithm.

input: connected undirected network G
output: minimum spanning tree T ∗

T ∗ := forest of all vertices of G, but no edges
while |T ∗| < n− 1

let T1, T2, . . . , Tp be the trees in the forest T ∗

for k := 1 to p
(ik, jk) := nearest neighbor(Tk)

for k := 1 to p
if ik and jk belong to different trees then

merge(ik, jk)
T ∗ := T ∗ ∪ {(ik, jk)}

10. Computer codes (in Fortran) implementing Prim’s algorithm can be found at the
following three sites:

http://www.netlib.org/toms/479

http://www.netlib.org/toms/613

http://www.mat.uc.pt/~eqvm/cientificos/fortran/codigos.html

11. Sollin’s algorithm: This greedy algorithm (Algorithm 3) is also based on the cut
optimality conditions (§10.1.1). It starts with a forest of n trees, each consisting of a
single vertex, and builds a minimum spanning tree by repeatedly adding edges to the
current forest. At each iteration a least cost edge emanating from each tree is added,
leading to the merging of certain trees.
12. Each iteration of Algorithm 3 reduces the number of trees in the forest T ∗ by at
least half.

13. Sollin’s algorithm performs O(log n) iterations and can be implemented to run in
O(m log n) time; see [AhMaOr93].

14. A variation of Sollin’s algorithm that runs in time O(m log log n) can be found in
[Ya75].

15. The origins of Algorithm 3 can be traced to O. Boruvka (1926), who first formulated
the minimum spanning tree problem in the context of electric power networks. This
algorithm was independently proposed in 1938 by G. Choquet for points in a metric
space and by G. Sollin in 1961 for arbitrary networks.

16. Sollin’s algorithm lends itself to a parallel implementation (see §10.1.3), though
care must be taken when edge costs are not distinct in order to ensure that no cycles
are produced.

17. Computational studies have found that the Prim and Sollin algorithms consistently
outperform Kruskal’s algorithm. Prim’s algorithm is faster when the network is dense,
whereas Sollin’s algorithm is faster when the network is sparse.

18. An excellent discussion of the history of the minimum spanning tree problem is
provided in [GrHe85].

19. An important variant of the minimum spanning tree problem places constraints
on the number of edges incident with a vertex in a candidate spanning tree. Such
degree-constrained minimum spanning trees are investigated in [GlKl75] and [Vo89].
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20. Another variant is the capacitated minimum spanning tree problem, which arises
in the design of local access telecommunication networks. In this problem, a feasible
spanning tree is one rooted at a specified central vertex such that the total traffic
(number of calls) generated by each subtree connected to the central vertex does not
exceed a known capacity. A feasible spanning tree having minimum total cost is then
sought. (See §10.6.1 for further details.)

Examples:
1. For the network shown in part (a) of the following figure, ordering edges by nonde-
creasing cost produces the following sequence of edges: (2, 4), (3, 5), (3, 4), (2, 3), (4, 5),
(1, 2), (1, 3). Kruskal’s algorithm adds the edges (2, 4), (3, 5), (3, 4) to T ∗; discards the
edges (2, 3) and (4, 5); then adds the edge (1, 2) to T ∗ and terminates. Part (b) of the
figure shows the resulting minimum spanning tree, having total cost 80.

2. Prim’s algorithm (Algorithm 2) is applied to the network of part (a) of the figure
of Example 1, starting with the initial vertex i0 = 3. The minimum cost edge out of
vertex 3 is (3, 5), so T ∗ = {(3, 5)}. Next, the minimum cost edge emanating from T ∗

is (3, 4), giving T ∗ = {(3, 5), (3, 4)}. Subsequent iterations add the edges (2, 4) and (1, 2),
producing the minimum spanning tree T ∗ = {(3, 5), (3, 4), (2, 4), (1, 2)}. Starting from
any other initial vertex i0 would give the same result.

3. To apply Sollin’s algorithm (Algorithm 3) to the network of part (a) of the figure of
Example 1, begin with a forest containing five trees, each consisting of a single vertex.
Part (a) of the following figure shows the least cost edge emanating from each of these
trees. One iteration of Algorithm 3 produces the two trees shown in part (b) of the
following figure. The least cost edge emanating from either of these two trees is (3, 4).
Adding this edge completes the minimum spanning tree shown in part (c) of this figure.

10.1.3 PARALLEL ALGORITHMS

Sollin’s algorithm (§10.1.2) can be easily parallelized in EREW (exclusive-read, exclu-
sive-write) PRAM (parallel random-access machine). (See §16.1.4.) This algorithm
assigns a processor to each edge and each vertex of the network [KiLe88].
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Facts:

1. Sollin’s algorithm performs O(log n) iterations.

2. In each iteration, every component finds a least cost edge emanating from it in
O(log n) time. To do this, each vertex finds a least cost edge emanating from it to a
vertex in a different component. Next, a minimization is done over all vertices of the
given component.

3. In each iteration, components that are connected by the newly found edges are
merged using a procedure called recursive doubling. This operation can also be done
in O(log n) time.

4. Overall the running time of the resulting algorithm is O(log2 n) using O(m) proces-
sors.

5. The most work-efficient parallel algorithm currently known for solving the minimum
spanning tree problem is given in [CoKeTa94].

10.1.4 APPLICATIONS

Minimum spanning tree problems arise both directly and indirectly. For direct appli-
cations, the points in a given set are to be connected using the least cost collection of
edges. For indirect applications, creative modeling of the original problem recasts it as
a minimum spanning tree problem.

Applications:

1. Designing physical systems: A minimum cost network is to be designed to connect
geographically dispersed system components. Each component is represented by a ver-
tex, with potential network connections between vertices represented by edges. A cost
is associated with each edge.

2. Examples of Application 1 occur in the following:

• Connect terminals in cabling the panels of electrical equipment in order to use
the least total cost of wire.

• Construct a pipeline network to connect a number of towns using the smallest
possible total cost of pipeline.

• Link isolated villages in a remote region, which are connected by roads but not
yet by telephone service. The problem is to determine along which stretches of
roads to place telephone lines to link every pair of villages, using the minimum
total miles of installed lines.

• Construct a digital computer system, composed of high-frequency circuitry, when
it is important to minimize the length of wires between different components
to reduce both capacitance and delay line effects.

• Connect a number of computer sites by high-speed lines. Each line is available for
leasing at a certain monthly cost, and a configuration is required that connects
all the sites at minimum overall cost.

• Design a backbone network of high-capacity links that connect switching devices
to support internet traffic. A minimum cost backbone network that maintains
acceptable throughput is required.
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3. Clustering : Objects having k measurable characteristics are to be clustered into
groups of “similar” objects. First, construct an undirected network, where each object
is represented by a vertex and every two distinct vertices are joined by an edge. The
cost of edge (i, j) is the distance (in k-dimensional space) between the k-vectors for
objects i and j. Applying Kruskal’s algorithm to this network then yields a hierarchy of
partitions of the vertex set; each partition is defined by the trees comprising the forest
obtained at each iteration of Kruskal’s algorithm. This hierarchy is then used to define
clusters of the original objects.

4. Computation of minimum spanning trees sometimes arises as a subproblem in a
larger optimization problem. For example, one heuristic approach to the traveling
salesman problem (§10.7.1) involves the calculation of minimum spanning trees.

5. Optimal message passing : An intelligence service has agents operating in a non-
friendly country. Each agent knows some of the other agents and has in place procedures
for arranging a rendezvous with someone he knows. For each such possible rendezvous,
say between agent i and agent j, any message passed between these agents will fall
into hostile hands with a certain probability pij . The group leader wants to transmit
a confidential message among all the agents while maximizing the probability that no
message is intercepted.

If the agents are represented by vertices and each possible rendezvous by an edge,
then in the resulting graph G a spanning tree T is required that maximizes the prob-
ability that no message is intercepted, given by Π(i,j)∈T (1 − pij). Such a tree can be
found by defining the cost of each edge (i, j) as log(1 − pij) and solving a maximum
spanning tree problem.

6. All-pairs minimax path problem: In this variant of the shortest path problem
(see §10.3.1), the value of a path P is the maximum cost edge in P . The all-pairs
minimax path problem is to determine a minimum value path between every pair of
vertices in a network G. It can be shown that if T ∗ is a minimum spanning tree of G,
then the unique path in T ∗ between any pair of vertices is also a minimax path between
that pair of vertices.

7. Examples of Application 6 arise in the following contexts:

• Determine the trajectory of a spacecraft that keeps the maximum temperature
of the surface as small as possible.

• When traveling through a desert, select a route that minimizes the length of the
longest stretch between rest areas.

• A person traveling in a wheelchair desires a route that minimizes the maximum
ascent along the path segments of the route.

8. Measuring homogeneity of bimetallic objects: In this application minimum spanning
trees are used to determine the degree to which a bimetallic object is homogenous
in composition. First, the composition of the bimetallic object is measured at a set
of sample points. A network is then constructed with vertices corresponding to the
sample points and with an edge connecting physically adjacent sample points. The cost
of edge (i, j) is the product of the physical (Euclidean) distance between sample points i
and j, and a homogeneity factor between 0 and 1. The homogeneity factor is 0 if the
composition of the corresponding samples is identical, and is 1 if the composition is very
different. This cost structure gives greater weight to two points if they have different
compositions and are far apart. Then the cost of the minimum spanning tree provides
an overall measure of the homogeneity of the object.
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9. Additional applications, with reference sources, are given in the following table.

application references

two-dimensional storage schemes [AhMaOr93], [AhEtal95]
chemical physics [AhMaOr93]
manufacturing [EvMi92]
network design [AhMaOr93]
network reliability [AhEtal95]
pattern classification [GrHe85], [AhMaOr93]
picture processing [GrHe85], [AhMaOr93]
automatic speech recognition [GrHe85]
numerical taxonomy [GrHe85]

10.2 MATCHINGS
In an undirected network, the maximum matching problem is to find a set of nonadjacent
edges that has the largest total size or weight. This discrete optimization problem arises
in a number of applications, often involving the optimal pairing of a set of objects.

10.2.1 BASIC CONCEPTS

Definitions:

Let G = (V,E) be an undirected network with vertex set V and edge set E (see §10.1.1).
Assume that G contains neither loops nor multiple edges. Each edge e = (i, j) ∈ E has
an associated weight we = wij . Let n = |V | and m = |E|.
The degree of vertex v ∈ V in G is the number of edges in G that are incident with v,
written deg(v). (See §8.1.1.)

A matching in G = (V,E) is a set M ⊆ E of pairwise nonadjacent edges (§8.1.1).

A perfect matching in G = (V,E) is a matching M in which each vertex of V is
incident with exactly one edge of M .

The size (cardinality) of a matching M is the number of edges in M , written |M |.
The weight of a matching M is wt(M) =

∑
e∈M we.

A maximum size matching of G is a matching M having the largest size |M |.
A maximum weight matching of G is a matching M having the largest weight wt(M).

Relative to a matching M in G = (V,E), edges e ∈M are matched edges, while edges
e ∈ E −M are free edges. Vertex v is matched if it is incident with a matched edge;
otherwise vertex v is free.

Every matched vertex v has a mate, the other endpoint of the matched edge incident
with v.

With respect to a matching M , the weight wt(P ) of path P is the sum of the weights
of the free edges in P minus the sum of the weights of the matched edges in P .

An alternating path has edges that are alternately free and matched. An augmenting
path is an alternating path that starts and ends at a free vertex.
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Facts:
1. Matchings are useful in a wide variety of applications, such as assigning personnel
to jobs, target tracking, crew scheduling, snowplowing streets, scheduling on parallel
machines, among others (see §10.2.4).
2. In a matching M , each vertex of G has degree 0 or 1 relative to the edges in M . In
a perfect matching M , each vertex of G has degree 1 relative to the edges in M .
3. If M is any matching in G, then |M | ≤

⌈
n
2

⌉
.

4. Every augmenting path has an odd number of edges.
5. If M is a matching and P is an augmenting path with respect to M , then the
symmetric difference (§1.2.2) M∆P is a matching of size |M | + 1.
6. If M is a matching and P is an augmenting path with respect to M , then wt(M∆P )
= wt(M) + wt(P ).
7. Augmenting path theorem: M is a maximum size matching if and only if there is
no augmenting path with respect to M .
8. Fact 7 was obtained independently by C. Berge (1957) and by R. Z. Norman and
M. O. Rabin (1959). This result was also recognized in an 1891 paper of J. Petersen.
9. Suppose M is a matching having maximum weight among all matchings of a fixed
size k. If P is an augmenting path of maximum weight, thenM∆P is a matching having
maximum weight among all matchings of size k + 1.
10. Suppose paths P1, P2, . . . , Pk are obtained as in Fact 9 by augmenting along a
maximum weight path. Then wt(P1) ≥ wt(P2) ≥ · · · ≥ wt(Pk).
11. The number of perfect matchings of the complete graph (§8.1.3) K2n on 2n vertices
is (2n− 1)! ! = 1 · 3 · 5 . . . (2n− 1).
12. An historical perspective on the theory of matchings is found in [Pl92].

Examples:
1. Part (a) of the following figure displays a network G with the weight we shown next
to each edge e.

The matching M1 = {(1, 2), (3, 5)} of size 2 is also shown, with the matched edges
highlighted. The mate of vertex 1 is vertex 2, and the mate of vertex 5 is ver-
tex 3. The weight of M1 is wt(M1) = 7. Relative to the matching M1, vertices 4
and 6 are free vertices, and an augmenting path P from 4 to 6 is given by the set
of edges P = {(1, 4), (1, 2), (2, 3), (3, 5), (5, 6)}. Here wt(P ) = 1 + 4 + 3 − 2 − 5 = 1
and (as guaranteed by Fact 4) path P has an odd number of edges. The matching
M2 = M1∆P = {(1, 2), (3, 5)}∆ {(1, 4), (1, 2), (2, 3), (3, 5), (5, 6)} = {(1, 4), (2, 3), (5, 6)}
is a perfect matching and is highlighted in part (b) of the figure. There are no free ver-
tices relative to matching M2 and no augmenting paths, so M2 is a maximum size
matching of G. There are other maximum size matchings, such as {(1, 4), (2, 5), (3, 6)}
and {(1, 2), (4, 5), (3, 6)}.
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2. Part (a) of the following figure shows a matching M1 of size 1, with wt(M1) = 7.
Since edge (2, 5) has maximum weight among all edges, M1 is a maximum weight
matching of size 1. Relative to M1 the augmenting path P1 = {(1, 5), (2, 5), (2, 3)}
has weight 6 + 4 − 7 = 3, whereas the augmenting path {(3, 6)} has weight 1. It can
be verified that P1 is a maximum weight augmenting path relative to M1. By Fact 9,
M2 = M1∆P1 = {(1, 5), (2, 3)} is a maximum weight matching of size 2 in the network,
with wt(M2) = 10; see part (b) of the figure.

Relative to M2 there are several augmenting paths between the free vertices 4 and 6:
Q1 = {(1, 4), (1, 5), (5, 6)}, wt(Q1) = 1 + 3 − 6 = −2,

Q2 = {(1, 4), (1, 5), (2, 5), (2, 3), (3, 6)}, wt(Q2) = 1 + 7 + 1 − 6 − 4 = −1,

Q3 = {(4, 5), (1, 5), (1, 2), (2, 3), (3, 6)}, wt(Q3) = 5 + 2 + 1 − 6 − 4 = −2.

The maximum weight augmenting path is Q2 and so (by Fact 9) M3 = M2∆Q2 =
{(1, 4), (2, 5), (3, 6)} is a maximum weight matching of size 3 in the network with
wt(M3) = 9. Overall, the maximum weight matching in G is M2, as expected since
all augmenting paths relative to M2 have negative weight (see Fact 10).

10.2.2 MATCHINGS IN BIPARTITE NETWORKS

In this section, algorithms are described for finding maximum size and maximum weight
matchings in bipartite networks (§8.1.3). Bipartite networks arise in a number of appli-
cations, such as in assigning personnel to jobs or tracking objects over time. Moreover,
the algorithms developed for the case of bipartite networks are considerably simpler
than those needed for the case of general networks (§10.2.3).

Definitions:

Let G = (X ∪ Y,E) be a bipartite network with n vertices and m edges, and edge
weights wxy.

If S ⊆ X then Γ(S) = { y ∈ Y | (x, y) ∈ E for some x ∈ X } is the set of vertices in Y
adjacent to some vertex of X.

A complete matching from X to Y in G = (X ∪Y,E) is a matching M in which each
vertex of X is incident with an edge of M .

The directed two-terminal flow network G′ associated with G = (X ∪ Y,E) is
defined by adding new vertices s and t, as well as arcs (s, x) for each x ∈ X and
arcs (y, t) for each y ∈ Y . All other arcs (x, y) of G′ correspond to edges (x, y) of G
where x ∈ X and y ∈ Y . Every arc of G′ has capacity 1.
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Algorithm 1: Bipartite matching algorithm.

input: undirected bipartite network G = (X ∪ Y,E)
output: maximum size matching M
M := ∅
while true do

let S1 consist of all free vertices of X
mark all vertices of S1 as seen
while there are unseen vertices of G do
S2 := { y | (x, y) ∈ E, x ∈ S1, y unseen }
if some y ∈ S2 is free then

an augmenting path to y has been found
mark all remaining vertices of G as seen

else mark all vertices of S2 as seen
S1 := {x | (y, x) ∈M, y ∈ S2, x unseen }
mark all vertices of S1 as seen

if an augmenting path P has been found then M := M∆P
else terminate with matching M

Facts:
1. Hall’s theorem: G = (X ∪ Y,E) has a complete matching from X to Y if and only
if |Γ(S)| ≥ |S| holds for every S ⊆ X. In words, a complete matching exists precisely
when every set of vertices in X is adjacent to at least an equal number of vertices in Y .
(Philip Hall, 1904–1982.)
2. Sufficient condition for a complete matching : Suppose there exists some k such
that deg(x) ≥ k ≥ deg(y) holds in G = (X ∪ Y,E) for all x ∈ X and y ∈ Y . Then G
has a complete matching from X to Y .
3. There is a one-to-one correspondence between matchings of size k in G and integral
flows (§10.4.1) of value k in the associated two-terminal flow network G′.
4. A maximum flow in G′, and thereby a maximum size matching of G, can be found
in O(m

√
n) time.

5. Suppose that costs are added to the two-terminal flow network G′, using cij = 0 if
i = s or j = t, and cij = −wij otherwise. By starting with the flow (§10.5.1) x = 0,
the successive shortest path algorithm (§10.5.2) can be repeatedly applied to G′ until a
shortest augmenting path has negative cost. The resulting minimum cost flow will yield
(via Fact 3) a matching with maximum weight.
6. Bipartite matching algorithm: This method (Algorithm 1), based on §10.2.1 Fact 7,
produces a maximum size matching of the bipartite network G = (X ∪ Y,E). Each
iteration involves a modified breadth first search of G, starting with the free vertices in
the set X. All vertices of G are structured into levels that alternate between free and
matched edges.
7. Algorithm 1 can be implemented to run in O(nm) time.
8. Bipartite weighted matching algorithm: This method (Algorithm 2), based on
§10.2.1 Facts 9 and 10, produces a maximum weight matching of G = (X ∪Y,E). Each
iteration develops a longest path tree in G, rooted at the set of free vertices in X. The
tentative largest weight of a path from a free vertex in X to vertex j is maintained in
the label d(j).
9. Algorithm 2 can be implemented to run in O(nm) time.
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Algorithm 2: Bipartite weighted matching algorithm.

input: undirected bipartite network G = (X ∪ Y,E), weights we
output: maximum weight matching M

M := ∅
while true do

let S1 consist of all free vertices of X
d(j) := 0 for j ∈ S1, d(j) := −∞ otherwise
while S1 �= ∅ do
S2 := ∅
for (x, y) ∈ E −M with x ∈ S1 do

if d(x) + wxy > d(y) then
d(y) := d(x) + wxy, S2 := S2 ∪ {y}

S1 := ∅
for (y, x) ∈M with y ∈ S2 do

if d(y) − wyx > d(x) then
d(x) := d(y) − wyx, S1 := S1 ∪ {x}

y := a free vertex with maximum label d(y)
P := the associated augmenting path
if d(y) > 0 then M := M∆P
else terminate with matching M

10. Stable marriage problem: A variation of the bipartite matching problem is the
stable marriage problem, defined for a set X of n men and n women. Each person has
a strict ranking of the n people of the opposite sex. A perfect matching is stable if it
is impossible to find a man and a woman who are not matched to each other, yet each
of these two prefers one another to their respective mates. For every set of rankings, a
stable matching exists and can be found using a greedy algorithm [AhMaOr93].

Examples:
1. Drug testing : A drug company is testing n antibiotics on n volunteer patients
in a hospital. Some of the patients have known allergic reactions to certain of these
antibiotics. To determine whether there is a feasible assignment of the n different
antibiotics to n different patients, construct the bipartite network G = (X ∪ Y,E),
where X is the set of antibiotics and Y is the set of patients. An edge (i, j) ∈ E exists
when patient j is not allergic to antibiotic i. A complete matching of G is then sought.
2. Part (a) of the following figure shows a bipartite graph G with X = {1, 2, 3, 4} and
Y = {a, b, c, d}.

Using Fact 1, there cannot be a complete matching from X to Y : if S = {1, 2, 4} then
Γ(S) = {a, c} and |Γ(S)| < |S|. There is, however, a (maximum) matching of size 3: for
example, {(1, c), (2, a), (3, d)}.
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3. Part (b) of the figure of Example 2 shows a bipartite graph G with X = {1, 2, 3}
and Y = {a, b, c, d}. Since deg(x) ≥ 2 ≥ deg(y) holds for all x ∈ X and y ∈ Y , there
must exist a complete matching from X to Y . One such complete matching is given by
{(1, a), (2, c), (3, b)}.

4. Algorithm 1 is used to find a maximum size matching in the bipartite graph of
part (a) of the following figure.

Relative to the initial empty matching, all vertices of X are free so S1 = {1, 2, 3, 4},
giving S2 = {a, b, c}. In particular, vertex a ∈ S2 is free and an augmenting path to a is
P = {(1, a)}. The resulting matching is M = {(1, a)}, shown in part (b) of the figure.

The second iteration of Algorithm 1 starts with S1 = {2, 3, 4}, giving S2 = {a, b, c}.
An augmenting path to the free vertex b is P = {(2, b)}, resulting in M = {(1, a), (2, b)};
see part (c) of the figure.

At the next iteration, S1 = {3, 4} and S2 = {a, b}. Since both vertices of S2 are
matched, the algorithm continues with S1 = {1, 2} and S2 = {c}. Since c ∈ S2 is
free, with augmenting path P = {(3, a), (a, 1), (1, c)}, the new matching produced is
M = {(1, c), (2, b), (3, a)}; see part (d) of the figure.

The fourth iteration produces S1 = {4}, S2 = {b}; S1 = {2}, S2 = {a, c}; and
finally S1 = {1, 3}, S2 = ∅. No further augmenting paths are found, and the algorithm
terminates with the maximum size matching M = {(1, c), (2, b), (3, a)}.

5. Algorithm 2 is used to find a maximum weight matching in the bipartite network of
part (a) of the following figure.

Relative to the initial empty matching, all vertices of X are free so S1 = {1, 2, 3}, with
d(1) = d(2) = d(3) = 0. The labels on vertices a, b, c are updated to d(a) = 6, d(b) = 4,
d(c) = 5, giving S2 = {a, b, c}. Since M = ∅ no further updates occur. The free
vertex a has maximum label, and the associated path P1 = {(3, a)} has wt(P1) = 6.
The resulting matching M = {(3, a)} is shown in part (b) of the following figure; it
represents the largest weight matching of size 1, with wt(M) = 6.
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The second iteration starts with S1 = {1, 2}. The labels on vertices a, b, c are
then updated to d(a) = 4, d(b) = 4, d(c) = 5, so S2 = {a, b, c}. Using the matched
edge (a, 3), vertex 3 has its label updated to d(3) = −2 and S1 = {3}. No further
updates occur, and free vertex c with maximum label d(c) = 5 is selected. This label
corresponds to the augmenting path P2 = {(2, c)}, with wt(P2) = 5. The new matching
is M = {(2, c), (3, a)}, with wt(M) = 11; see part (c).

At the third iteration, S1 = {1} and vertices a, b receive updated labels d(a) = 4,
d(b) = 1.

Subsequently, updates are made to produce d(3) = −2, d(c) = 3, d(2) = −2,
d(b) = 2.

Finally, the free vertex b is selected with d(b) = 2, corresponding to the augmenting
path P3 = {(1, a), (a, 3), (3, c), (c, 2), (2, b)} with wt(P3) = 2. This produces the max-
imum weight matching M = {(1, a), (2, b), (3, c)}, with wt(M) = 13; see part (d). As
predicted by Fact 10 of §10.2.1, the weights of the augmenting paths are nonincreasing:
wt(P1) ≥ wt(P2) ≥ wt(P3).

10.2.3 MATCHINGS IN NONBIPARTITE NETWORKS

This section covers matchings in more general (nonbipartite) networks. Algorithms
for constructing maximum size and maximum weight matchings are considerably more
intricate than for bipartite networks. The important new concept is that of a “blossom”
in a network.

Definitions:

Suppose P is an alternating path from a free vertex s in network G = (V,E). Then a
vertex v on P is even (outer) if the subpath Psv of P joining s to v has even length.
Vertex v on P is odd (inner) if Psv has odd length.

Suppose P is an alternating path from a free vertex s to an even vertex v and edge
(v, w) ∈ E joins v to another even vertex w on P . Then P ∪ {(v, w)} contains a unique
cycle, called a blossom.

A shrunken blossom results when a blossom B is collapsed into a single vertex b,
whereby every edge (x, y) with x �∈B and y ∈ B is transformed into the edge (x, b).
The reverse of this process gives an expanded blossom.

Facts:

1. Every blossom B has odd length 2k + 1 and contains k matched edges, for some
k ≥ 1.

2. A bipartite network contains no blossoms.

3. Edmonds’ theorem: Suppose networkGB is formed fromG by collapsing blossom B.
Then GB contains an augmenting path if and only if G does. (J. Edmonds, 1965.)

4. General matching algorithm: This method (Algorithm 3), based on Fact 7 of §10.2.1,
produces a maximum size matching of G. At each iteration, a forest of trees is grown,
rooted at the free vertices of G, to find an augmenting path. As encountered, blossoms B
are shrunk, with the search continued in the resulting network GB .
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Algorithm 3: General matching algorithm.

input: undirected network G = (V,E)
output: maximum size matching M

M := ∅
{Start iteration}
mark all free vertices as even
mark all matched vertices as unreached
mark all free edges as unexamined
while there are unexamined edges (v, w) and no augmenting path is found

mark (v, w) as examined

{Case 1}
if v is even and w is unreached then

mark w as odd and its mate z as even
extend the forest by (v, w) and the matched edge (w, z)

{Case 2}
if v, w are even and they belong to different subtrees then

an augmenting path has been found

{Case 3}
if v, w are even and they belong to the same subtree then

a blossom B has been found
shrink B to an even vertex b

if an augmenting path P has been found then
M := M∆P
go to {Start iteration}

else terminate with matching M

5. Algorithm 3 was initially proposed by Edmonds [Ed65a] with a time bound of O(n4).

6. An improved implementation of Algorithm 3 runs in O(nm) time.

7. There are other algorithms for maximum size matchings in nonbipartite networks:
• an algorithm of Gabow [Ga76], which runs in time O(n3);
• an algorithm of Micali and Vazirani [MiVa80], that runs in O(m

√
n) time.

Computer codes for these algorithms (in C, Pascal, and Fortran) can be found at these
sites:

ftp://dimacs.rutgers.edu/pub/netflow/matching/

ftp://ftp.zib.de/pub/Packages/mathprog/matching/

8. General weighted matching algorithms: More complicated algorithms are required
for solving weighted matching problems. The first such algorithm, also involving blos-
soms, was developed by Edmonds [Ed65b] and has a time bound of O(n4).

9. Improved algorithms exist for the weighted matching problem, with running times
O(n3) and O(nm log n) respectively. Code (in C) for the first of these algorithms can
be found at these sites:

ftp://dimacs.rutgers.edu/pub/netflow/matching/

ftp://ftp.zib.de/pub/Packages/mathprog/matching/
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Examples:

1. In part (a) of the following figure, P = {(1, 2), (2, 3), (3, 4), (4, 5)} is an alternating
but not augmenting path, relative to the matching M = {(2, 3), (4, 5)}.

Relative to this path, vertices 1, 3, 5 are even while vertices 2, 4 are odd. Since (3, 5)
is an edge joining two even vertices on P , the blossom B = {(3, 4), (4, 5), (5, 3)} is
formed. On the other hand, Q = {(1, 2), (2, 3), (3, 5), (5, 4), (4, 6)} is an augmenting
path relative to M so that M∆P = {(1, 2), (3, 5), (4, 6)} is a matching of larger size —
in fact a matching of maximum size. Notice that relative to path Q, vertices 1, 3, 4 are
even while vertices 2, 5, 6 are odd.

2. Shrinking the blossom B relative to path P in part (a) of the figure of Exam-
ple 1 produces the network GB shown in part (b) of that figure. The path PB =
{(1, 2), (2, b), (b, 6)} is now augmenting in GB . By expanding PB so that (2, 3) remains
matched and (4, 6) remains free, the augmenting path Q = {(1, 2), (2, 3), (3, 5), (5, 4),
(4, 6)} in G is obtained.

3. Algorithm 3 is applied to the nonbipartite network shown in part (a) of the following
figure. Suppose the matching M = {(3, 4), (6, 8)} of size 2 is already available.

Iteration 1: The free vertices 1, 2, 5, 7 are marked as even, and the matched vertices 3, 4,
6, 8 are marked as unreached. The initial forest consists of the isolated vertices 1, 2, 5, 7.

• If the free edge (2, 3) is examined, then Case 1 applies, so vertex 3 is marked odd
and vertex 4 even; the free edge (2, 3) and the matched edge (3, 4) are added
to the forest.
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• If the free edge (4, 7) is examined, then Case 2 applies, and the augmenting
path P = {(2, 3), (3, 4), (4, 7)} is found. Using P the new matching M =
{(2, 3), (4, 7), (6, 8)} of size 3 is obtained; see part (b) of the figure.

Iteration 2: The forest is initialized with the free (even) vertices 1, 5.
• If the free edge (1, 2) is examined, then Case 1 applies, so vertex 2 is marked odd

and vertex 3 even; edges (1, 2) and (2, 3) are added to the forest.
• Examining in turn the free edges (3, 4) and (7, 6) makes 4, 6 odd vertices and 7, 8

even. Edges (3, 4), (4, 7), (7, 6), (6, 8) are then added to the subtree rooted at 1.
• If edge (7, 8) is examined, Case 3 applies and the blossom B = {(7, 6), (6, 8), (8, 7)}

is detected and shrunk; part (c) of the figure shows the resulting GB . The
current subtree rooted at 1 now becomes {(1, 2), (2, 3), (3, 4), (4, b)}.

• If the free edge (b, 5) is examined, then Case 2 applies and the augmenting path
{(1, 2), (2, 3), (3, 4), (4, b), (b, 5)} is found in GB . The corresponding augment-
ing path in G is P = {(1, 2), (2, 3), (3, 4), (4, 7), (7, 8), (8, 6), (6, 5)}. Forming
M∆P produces the new matching {(1, 2), (3, 4), (7, 8), (5, 6)}, a maximum size
matching; see part (d) of the figure.

10.2.4 APPLICATIONS

Matching problems, in both bipartite and nonbipartite networks, are useful models in a
number of applied areas. This subsection presents some representative applications of
matchings.

Applications:

1. Linear assignment problem: There are n applicants to be assigned to n jobs, with
each job being filled with exactly one applicant. The weight wij measures the suitability
of applicant i for job j. Finding a valid assignment with the best overall weight is a
weighted matching problem on the bipartite network G = (X ∪ Y,E), where X is the
set of applicants and Y is the set of jobs.

2. Personnel assignment: Pairs of pilots are to be assigned to a fleet of aircraft serving
international routes. Pilots i and j are considered compatible if they are fluent in a
common language and have comparable flight training. Form the network G whose
vertices represent the pilots and with edges between compatible pairs of pilots. The
problem of flying the largest number of aircraft with compatible pilots can then be
solved as a maximum size matching problem on G.

3. Other examples of Application 2 occur in assigning police officers sharing beats,
matching pairs of compatible roommates, and assigning pairs of employees with com-
plementary skills to specific projects.

4. Pruned chessboards: Several squares (2k in all) are removed from an n× n chess-
board, yielding the pruned chessboard P. Is it then possible to cover the squares of P
using nonoverlapping dominoes, with no squares left uncovered? This can be formulated
as a matching problem on the bipartite network G = (R ∪ B,E), where R is the set
of red squares and B is the set of black squares in P. An edge joins r ∈ R to b ∈ B
if squares r and b share a common side. Each set of nonoverlapping dominoes on P
corresponds to a matching in G.
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All squares of P can be covered using nonoverlapping dominoes if and only if the
maximum size matching in G has size n2

2 − k. More generally, the maximum size
matching in G explicitly provides a way to cover the maximum number of squares of P
using nonoverlapping dominoes.

5. Target tracking : The movements of n objects (such as submarines or missiles) are to
be followed over time. The locations of the set of objects are known at two distinct times,
though without identification of the individual objects. Suppose X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn} represent the spatial coordinates of the objects detected at
times t and t + ∆t. If ∆t is sufficiently small, then the Euclidean distance between a
given object’s position at these two times should be relatively small. To aid in identifying
the objects (as well as their velocities and directions of travel), a pairing between set X
and set Y is desired that minimizes the sum of Euclidean distances.

This can be formulated as a maximum weight matching problem on the complete
bipartite network G = (X∪Y,E), where the edge (i, j) indicates pairing position xi with
position yj . The weight of this edge is the negative of the Euclidean distance between xi
and yj . A maximum weight matching of size n in G then provides an optimal (minimum
distance) pairing of observations at the two times t and t+ ∆t.

6. Crew scheduling : Bus drivers are hired to work two four-hour shifts each day.
Union rules require a certain minimum amount of time between the shifts that a driver
can work. There are also costs associated with getting the driver between the ending
location of the first shift and the starting location of the second shift.

The problem of optimally combining pairs of shifts that satisfy union regulations
and incur minimum total cost can be formulated as a maximum weight matching prob-
lem. Namely, define the network G with vertices representing each shift that must be
covered and edges between pairs of compatible shifts (satisfying union regulations). The
weight of edge (i, j) is the negative of the cost of assigning a single driver to shifts i
and j. It is convenient also to add edges (i, i) to G to represent the possibility of needing
a part-time driver to cover a single shift; edge (i, i) is given a sufficiently large negative
weight to discourage single-shift assignments unless absolutely necessary.

A maximum weight matching in the network G then provides a minimum cost
pairing of shifts for the bus drivers.

7. Snowplowing streets: The streets of an area of a city are to be plowed by a single
snowplow. Let G be the network representing the street system of the city, with vertices
representing street intersections and edges representing streets. Associated with each
street (i, j) is its length cij .

If all vertices of G have even degree, then G is an Eulerian graph (§8.4.3) and a
circuit that traverses each edge (street) exactly once can be found using the algorithms
in §8.4.3.

Otherwise, a closed walk of G that covers each street at least once is needed, and
one with minimum total length

∑
cij is desired. Let N be the set of vertices of G

having odd degree; by Fact 4 of §8.1.1, |N | is an even integer 2k. Form the complete
network H = (N,E) in which the weight of edge (i, j) is the negative of the shortest
path distance (§10.3.1) between vertices i and j in G. Determine a maximum weight
(perfect) matching M of size k in H. For each (i, j) in M , add the edges of the shortest
path between i and j to the network G, forming the network G′. Every vertex of G′

now has even degree, and an Euler circuit of G′ provides the required minimum cost
traversal of the city streets.

This problem is known as the (undirected) Chinese postman problem. A directed
version of the problem is discusses in §10.5.3, Application 4.
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8. Additional applications, with reference sources, are given in the following table.

application references

medical residents assignment [AhMaOr93]
school bus driver assignment [AhMaOr93]
oil well drilling [LoPu86], [AhMaOr93], [Ge95]
chemical bonds [AhMaOr93]
inventory depletion [AhMaOr93]
scheduling on machines [LoPu86], [AhMaOr93]
ranks of matrices [AhMaOr93]
doubly stochastic matrices [LoPu86]
nonnegative matrices [LoPu86]
basketball conference scheduling [EvMi92]
major league umpire scheduling [EvMi92]
project scheduling [Ge95]
plotting street maps [Ge95]

10.3 SHORTEST PATHS
The shortest path problem requires finding paths of minimum cost (or length) from
a specified source vertex to every other vertex in a directed network. Shortest path
problems lie at the heart of network flows (§10.4–10.5). They are important both to
researchers and to practitioners because:

• they arise frequently in application settings where material is to be sent between
specified points as quickly, as cheaply, or as reliably as possible;

• they arise as subproblems when solving many combinatorial and network opti-
mization problems;

• they can be solved very efficiently.

10.3.1 BASIC CONCEPTS

Definitions:

A directed network is a weighted graph G = (V,E), where V is the set of vertices
and E is the set of arcs (directed edges). Each arc (i, j) ∈ E has an associated cost (or
weight, length) cij . It is possible that certain of the cij are negative. Let n = |V | and
m = |E|.
The adjacency set A(i) for vertex i is the set of all arcs incident from i, written
A(i) = { (i, j) | (i, j) ∈ E }.
A directed path (§8.3.2) P has length Σ(i,j)∈P cij .

A directed cycle (§8.3.2) W for which Σ(i,j)∈W cij < 0 is called a negative cycle.
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A shortest path from vertex s to vertex j is a directed path from s to j having
minimum length.

A directed out-tree is a tree rooted at vertex s in which all arcs are directed away
from the root s.

A shortest path tree is an out-tree T ∗ rooted at vertex s with the property that the
directed path in T ∗ from s to any other vertex j is a shortest s-j path.

A vector d(·) is called a vector of distance labels if for every vertex j ∈ V , d(j) is the
length of some directed path from the source vertex s to vertex j, with d(s) = 0. If these
labels are the lengths of shortest s-j paths, they are called shortest path distances.

The directed path P = [i0, i1, . . . , ir] from vertex i0 to vertex ir can be represented
using predecessor indices: pred(i1) = i0, pred(i2) = i1, . . . , pred(ir) = ir−1.

Facts:

1. Shortest paths are useful in a wide variety of applications, such as in efficient rout-
ing of messages and distribution of goods, developing optimal investment strategies,
scheduling personnel, and approximating piecewise linear functions (see §10.3.5).

2. If P = [s, i1, . . . , ir] is a shortest path from s to ir then Q = [s, i1, . . . , ik] is a shortest
path from s to ik for each 1 ≤ k < r.

3. Shortest path optimality conditions: The vector d(·) of distance labels represents
shortest path distances if and only if d(j) ≤ d(i) + cij for all (i, j) ∈ E.

4. If the network contains a negative cycle accessible from vertex s, then distance labels
satisfying the conditions in Fact 3 do not exist.

5. If the network does not contain any negative cycle, then (unique) distance labels
satisfying the conditions in Fact 3 always exist. Furthermore, there is a shortest path
tree T ∗ realizing these shortest path distances.

Examples:

1. In the directed network of the following figure, arc costs are shown along each arc.
Part (b) lists the nine paths from vertex 1 to vertex 6, together with their lengths.
Path P4, with length 10, is the (unique) shortest path joining these two vertices. This
path can be represented using the predecessor indices: pred(6) = 4, pred(4) = 3,
pred(3) = 2, pred(2) = 1. By Fact 2, the subpath Q = [1, 2, 3, 4] of P4 is a shortest path
from vertex 1 to vertex 4.
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2. In the directed network of the following figure, arc costs are shown along each arc
and a set of distance labels are shown at each vertex. Part (b) gives paths from vertex
s = 1 whose lengths equal the corresponding distance labels. These distance labels do
not satisfy the optimality conditions of Fact 3 because for the arc (3, 5), d(5) > d(3)+c35.
The out-tree T in this figure defined by predecessor indices pred(2) = 5, pred(3) = 1,
pred(4) = 2 and pred(5) = 3 has distance labels d = (0, 5, 5, 25, 0). It is a shortest path
tree rooted at vertex 1 since the optimality conditions of Fact 3 are satisfied: namely

5 ≤ 0 + 10 for arc (1, 2), 5 ≤ 5 + 10 for arc (2, 3), 0 ≤ 25 + 15 for arc (4, 5).

10.3.2 ALGORITHMS FOR SINGLE-SOURCE SHORTEST PATHS

This subsection discusses algorithms for finding shortest path trees from a given source
vertex s in a directed network G with n vertices and m arcs.

Facts:
1. Label-correcting algorithm: A general label-correcting algorithm (Algorithm 1) is
based on the shortest path optimality conditions (§10.3.1 Fact 3) and is a very popular
algorithm to solve shortest path problems with arbitrary arc costs (L. R. Ford, 1956 and
R. E. Bellman, 1958).
2. Algorithm 1 maintains a list, LIST, of vertices with the property that if an arc (i, j)
violates the optimality condition, then LIST must contain vertex i. If LIST is empty,
then the current distance labels are optimal. Otherwise some vertex i is removed
from LIST and the arcs of A(i) are scanned. If an arc (i, j) ∈ A(i) violates the op-
timality condition, then d(j) is updated appropriately.
3. When Algorithm 1 terminates, the nonzero predecessor indices define a shortest
path tree T ∗ rooted at the source vertex: namely, T ∗ = { (pred(i), i) | i ∈ V − {s} }.
4. Convergence: In Algorithm 1, vertices in LIST can be selected in any order and
the algorithm still converges finitely. If all arc costs are integers whose magnitudes are
bounded by a constant C, then the algorithm performs O(n2C) iterations and can be
implemented to run in O(nmC) time, regardless of the order in which vertices from
LIST are selected.
5. Queue implementation: Suppose in Algorithm 1 that LIST is maintained as a queue
(§17.1.2); that is, vertices in LIST are examined in a first-in-first-out (FIFO) order. This
specific implementation examines no vertex more than n− 1 times and runs in O(nm)
time. This is the best strongly polynomial-time algorithm to solve the shortest path
problem with arbitrary arc costs.
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Algorithm 1: Label-correcting algorithm.

input: directed network G, source vertex s
output: shortest path tree T ∗ rooted at s

d(s) := 0
pred(s) := 0
d(j) := ∞ for all j ∈ V − {s}
LIST := {s}
while LIST �= ∅

remove a vertex i from LIST
for each (i, j) ∈ A(i)

if d(j) > d(i) + cij then
d(j) := d(i) + cij
pred(j) := i
if j /∈ LIST then add j to LIST

6. Dequeue implementation: Suppose in Algorithm 1 that LIST is maintained as a
dequeue (§17.1.2). Specifically, vertices are removed from the front of the dequeue, but
vertices are added either at the front or at the rear. If the vertex has been in LIST
earlier, the algorithm adds it to the front; otherwise, it adds the vertex to the rear.
Empirical studies have found that the dequeue implementation is one of the most effi-
cient algorithms to solve the shortest path problem in practice even though it is not a
polynomial-time algorithm.

7. Negative cycle detection: The queue implementation (Fact 5) of the label-correcting
algorithm can be used to detect the presence of a negative cycle. To do so, record the
number of times that the algorithm examines each vertex. If the algorithm examines
a vertex more than n − 1 times, there must exist a negative cycle. In this case, the
subgraph formed by the arcs (pred(i), i) will contain a negative cycle.

8. A variety of computer codes (in Fortran) that implement the label-correcting algo-
rithm for shortest paths can be found at the following sites:

http://www.netlib.org/toms/562

ftp://ftp.zib.de/pub/Packages/mathprog/netopt-bertsekas/

http://www.mat.uc.pt/~eqvm/cientificos/fortran/codigos.html

http://www.neci.nj.nec.com/homepages/avg/soft/soft.html

9. Dijkstra’s algorithm (1959): Dijkstra’s algorithm (Algorithm 2) is a popular al-
gorithm for solving shortest path problems with nonnegative arc costs (E. W. Dijkstra,
born 1930).

10. Algorithm 2 performs two steps repeatedly: vertex selection and distance update.
The vertex selection step chooses a vertex i with smallest distance label in LIST for
examination. The distance update step scans each arc (i, j) ∈ A(i) and updates the
distance label d(j), if necessary, to restore the optimality condition for arc (i, j).

11. Whenever a vertex is selected for examination in Algorithm 2, its distance label is
the shortest path distance from s; consequently, each vertex is examined only once.

12. Using a simple array or linked list representation of LIST, vertex selections take a
total ofO(n2) time and distance updates take a total ofO(m) time. This implementation
of Algorithm 2 runs in O(n2) time.
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Algorithm 2: Dijkstra’s algorithm.

input: directed network G with cij ≥ 0, source vertex s
output: shortest path tree T ∗ rooted at s

d(s) := 0
pred(s) := 0
d(j) := ∞ for all j ∈ V − {s}
LIST := V

while LIST �= ∅
{Vertex selection}
let i ∈ LIST be a vertex for which d(i) = min{ d(j) | j ∈ LIST }
remove vertex i from LIST
{Distance update}
for each (i, j) ∈ A(i)

if d(j) > d(i) + cij then
d(j) := d(i) + cij
pred(j) := i

13. By using more sophisticated data structures, the efficiency of Dijkstra’s algorithm
can be improved. Currently, two of the best implementations:

• use Fibonacci heaps, giving O(m+ n log n) running time [FrTa84];
• use radix heaps, giving O(m+ n(logC)1/2) running time [AhEtal90].

14. Empirically, the fastest implementation of Dijkstra’s algorithm is due to R. Dial
[Di69], and it runs in O(m+ nC) time.

15. A comprehensive discussion of several implementations of Dijkstra’s algorithm and
the label-correcting algorithm is presented in [AhMaOr93].

16. A variety of computer codes (in C, Pascal, and Fortran) that implement Dijkstra’s
algorithm for shortest paths can be found at the following sites:

ftp://ftp.zib.de/pub/Packages/mathprog/netopt-bertsekas/

http://www.mat.uc.pt/~eqvm/cientificos/fortran/codigos.html

http://orly1.snu.ac.kr/software/

http://www.neci.nj.nec.com/homepages/avg/soft/soft.html

17. A useful extension of the shortest path problem involves finding the k shortest
paths in a network. The case k = 1 corresponds to a shortest path. More generally,
the kth shortest path is one having the kth smallest length among all paths from s to t.
Several algorithms for solving the problem of finding the k shortest paths are discussed
in [EvMi92].

Examples:

1. The following figure illustrates three iterations of the label-correcting algorithm
applied to Example 2 of §10.3.1. LIST is maintained as a queue.

In the first iteration, the source vertex s = 1 is examined, and the distance labels
of vertices 2 and 3 are decreased to 10 and 5, respectively. At this point, LIST = [2, 3].
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In the second iteration, vertex 2 is removed from LIST and examined. The distance
label of vertex 4 decreases to 30, while the distance label of vertex 3 remains unchanged,
giving LIST = [3, 4].

Next, vertex 3 is removed from LIST and examined, triggering a reduction of the
distance label of vertex 5 to 0. At this point the current out-tree, defined by the
predecessor indices pred(·), consists of arcs (1, 2), (2, 4), (1, 3), and (3, 5).

2. Part (b) of the following figure shows the application of Dijkstra’s algorithm to the
directed network drawn in part (a) with nonnegative arc costs and s = 1. Shown at each
iteration are the current distance labels, the vertex selected, and the resulting distance
updates. Upon termination, the shortest path lengths d = (0, 6, 4, 9, 7) are realized by
the optimal tree T ∗ having arcs (1, 3), (3, 2), (2, 4), and (2, 5).
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10.3.3 ALGORITHMS FOR ALL-PAIRS SHORTEST PATHS

This section discusses algorithms for finding shortest path distances between every pair
of vertices in a directed network with n vertices and m arcs.

Definitions:

Suppose G = (V,E) is a directed network with vertex set V and arc set E, and let cij
be the cost of arc (i, j) ∈ E.

The n× n arc length matrix U = (uij) is defined as follows:

uij =




0 if i = j
cij if (i, j) ∈ E
∞ if i �= j and (i, j) /∈ E.

Let dij be the length of a shortest path from vertex i to vertex j, with dii = 0.

Define the n × n matrix Dk = (dkij), where dkij is the length of a shortest path from
vertex i to vertex j subject to the condition that the path contains no more than k arcs.

Define minsum matrix multiplication C = A ⊗ B by cij = min1≤p≤n{aip + bpj}.
Also, define A⊗k = A⊗A⊗ · · · ⊗A (k times).

In the directed path [i0, i1, . . . , ir] from i0 to ir, the vertices i1, i2, . . . , ir−1 are called
internal vertices. Let dk[i, j] be the length of a shortest path from vertex i to vertex j
subject to the condition that this path uses only 1, 2, . . . , k − 1 as internal vertices.
The n× n matrix D[k] contains the entries dk[i, j].

Facts:

1. The length of a shortest path containing at most k arcs can be expressed in terms
of shortest path lengths involving at most k − 1 arcs. Namely, for all vertices i and j

• d1
ij = uij ;

• dkij = min
1≤p≤n

{dk−1
ip + upj} for 2 ≤ k ≤ n− 1;

• if there is no negative cycle, then dn−1
ij = dij .

2. Dk = U⊗k for all 1 ≤ k ≤ n− 1.

3. For any pair of vertices i and j, the following conditions hold:
• d1[i, j] = uij ;
• dk+1[i, j] = min{dk[i, j], dk[i, k] + dk[k, j]}, 1 ≤ k ≤ n;
• if there is no negative cycle then dn+1[i, j] = dij .

4. The all-pairs shortest path problem can be solved by applying n times either Algo-
rithm 1 or Algorithm 2 of §10.3.2, considering each vertex once as a source.

5. Specialized algorithms are available to solve the all-pairs shortest path problem: the
matrix multiplication algorithm (Fact 6) and the Floyd-Warshall algorithm (Fact 8).

6. Matrix multiplication algorithm: This algorithm (Algorithm 3), based on Facts 1
and 2, computes the shortest path distances between all vertex pairs by multiplying two
matrices repeatedly, using minsum matrix multiplication.

7. If there is no negative cycle, then Algorithm 3 finds all shortest path distances using
O(log n) matrix multiplications, each of which takes O(n3) time. Hence this algorithm
runs in O(n3 log n) time and requires O(n2) space.
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Algorithm 3: Matrix multiplication algorithm.

input: directed network G on n vertices
output: shortest distance matrix D = (dij)

form the n× n arc length matrix U
compute D := U⊗(n−1)

Algorithm 4: Floyd-Warshall algorithm.

input: directed network G on n vertices
output: shortest distance matrix D = (d[i, j])

for all (i, j) ∈ V × V d[i, j] := ∞
for all i ∈ V d[i, i] := 0
for all (i, j) ∈ E d[i, j] := cij
for k := 1 to n

for (i, j) ∈ V × V
if d[i, j] > d[i, k] + d[k, j] then d[i, j] := d[i, k] + d[k, j]

8. Floyd-Warshall algorithm: This approach (Algorithm 4) to calculating all-pairs
shortest path distances in a directed network G is based on computing conditional
shortest path lengths d[i, j].
9. If there is no negative cycle, the Floyd-Warshall algorithm correctly computes the
matrix of shortest path distances. A single n × n array D is used to implement the
algorithm.
10. Algorithm 4 can be used to detect (and identify) negative cycles by monitoring
whenever d[i, i] < 0 occurs for some vertex i.
11. Algorithm 4 runs in O(n3) time and requires O(n2) space.
12. If the underlying network is dense, that is, m = Ω(n2), then the O(n3) time bound
for Algorithm 4 is as good as any other discussed in §10.3.2 or §10.3.3.
13. Algorithm 4 was first discovered by B. Roy in 1959 in the context of determining
the transitive closure of a graph; this same algorithm was independently discovered by
S. Warshall in 1962. The method was generalized to computing all shortest paths by
R. W. Floyd, also in 1962.
14. Computer codes (in C, Pascal, and Fortran) that implement the Floyd-Warshall
algorithm can be found at the site:

http://orly1.snu.ac.kr/software/

Examples:
1. The matrix multiplication algorithm is applied to the directed network in the fol-
lowing figure.
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By Facts 1 and 2, the matrix D4 is the matrix of shortest path distances.

D1 =




0 4 5 ∞ ∞
∞ 0 6 3 10
∞ ∞ 0 4 ∞
∞ ∞ 3 0 6
∞ ∞ ∞ 4 0


 D2 =




0 4 5 7 14
∞ 0 6 3 9
∞ ∞ 0 4 10
∞ ∞ 3 0 6
∞ ∞ 7 4 0




D4 =




0 4 5 7 13
∞ 0 6 3 9
∞ ∞ 0 4 10
∞ ∞ 3 0 6
∞ ∞ 7 4 0


 .

2. Algorithm 4 is illustrated with the network of the figure of Example 1.

D[1] =




0 4 5 ∞ ∞
∞ 0 6 3 10
∞ ∞ 0 4 ∞
∞ ∞ 3 0 6
∞ ∞ ∞ 4 0


 D[3] =




0 4 5 7 14
∞ 0 6 3 10
∞ ∞ 0 4 ∞
∞ ∞ 3 0 6
∞ ∞ ∞ 4 0




D[5] =




0 4 5 7 13
∞ 0 6 3 9
∞ ∞ 0 4 10
∞ ∞ 3 0 6
∞ ∞ 7 4 0


 .

It can be verified that D[2] = D[1], D[4] = D[3], and D[6] = D[5]. Consequently, the
matrix D[5] above gives all shortest path distances.

10.3.4 PARALLEL ALGORITHMS

Parallel implementations of certain shortest path algorithms are described are described
here relative to an EREW (exclusive-read, exclusive-write) PRAM (parallel random-
access machine). For details of EREW PRAM, see §16.2.

Facts:
1. Label-correcting algorithm: The parallel implementation of the label-correcting
algorithm (§10.3.2) associates a processor with each arc and with each vertex of the
network. This algorithm maintains a distance label for each vertex, appropriately ini-
tialized. Suppose the distance labels are d(i) at the beginning of an iteration. During
the iteration, the processor attached to each arc (i, j) computes a temporary label
d′(i, j) = d(i) + cij in O(1) time. Then the processor associated with vertex j examines
incoming arcs at vertex j and sets d(j) := min{ d′(i, j) | 1 ≤ i ≤ n }.
2. Using a parallel prefix operation, the distance labels can be updated in O(log n)
time. The label-correcting algorithm performs O(n) iterations and so its running time
is O(n log n) using O(m) processors.
3. Matrix multiplication algorithm: The matrix multiplication algorithm of §10.3.3
solves the all-pairs shortest path problem by performing O(log n) matrix multiplications.
4. Unlike a sequential computer, where matrix multiplication takes O(n3) time, a par-
allel computer can perform matrix multiplication in O(log n) time using O(n3) proces-
sors [Le92]. Consequently, this all-pairs shortest path algorithm runs in O(log2 n) time
using O(n3) processors.
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10.3.5 APPLICATIONS

Shortest path problems arise in a variety of applications, both as stand-alone models
and as subproblems in more complex problem settings. Shortest path problems also
arise in surprising ways that on the surface might not appear to involve networks at all.
This subsection presents several models based on determining shortest paths.

Applications:

1. Distribution: Material needs to be shipped by truck from a central warehouse
to various retailers at minimum cost. The underlying network is an undirected road
network, with edges representing the roads joining various cities (vertices). The cost of
an edge is the per unit shipping cost. Solving the single-source shortest path problem
provides a least-cost shipping pattern for the material.
2. Telephone routing : A call is to be routed from a specified origin to a specified
destination. Here the underlying network is the telephone system, with vertices repre-
senting individual users (or switching centers). Since a direct connection between the
origin vertex s and the destination vertex t may not be available, one practice is to route
the call along a path having the minimum number of arcs (i.e., involving the smallest
number of switching centers). This means finding a shortest path with unit lengths on
all arcs. Alternatively, each arc can be provided with a measure of delay, and routing
can take place along a timewise shortest path from s to t.
3. Salesperson routing : A salesperson is to travel by air from city A to city B. The
commission obtained by visiting each city along the way can be estimated. An optimal
itinerary can be found by solving a shortest path problem on the underlying airline
network, represented as a directed network of nonstop routes (arcs) connecting cities
(vertices). Each arc (i, j) is given the net cost cij = fij − rj , where fij is the cost of
the flight from city i to city j and rj is the commission obtained by visiting city j. A
shortest path from A to B identifies an optimal itinerary.
4. Investment strategy : An investor has a fixed amount to invest at the beginning of
the year. A variety of different financial opportunities are available for investing during
the year, with each such opportunity assumed to be available only at the start of each
month. Construct the directed network having a vertex for each month as well as a
final vertex t = 13. The arc (i, j) corresponds to an investment opportunity beginning
in month i and maturing at the start of month j, with its weight cij being the negative
of the profit earned for the duration of the investment. An optimal investment strategy
is identified by a shortest path from vertex 1 to vertex t.
5. Equipment replacement: A job shop must periodically replace its capital equipment
because of machine wear. As the machine ages, it breaks down more frequently and so
becomes more expensive to operate. Also, as a machine ages its salvage value decreases.
Let cij denote the cost of buying a particularly important machine at the beginning of
period i, plus the cost of operating the machine over the periods i, i+1, . . . , j−1, minus
the salvage cost of the machine at the beginning of period j. The problem is to design a
replacement plan that minimizes the cost of buying, selling, and operating the machine
over a planning horizon of n years, assuming that the job shop must have exactly one
machine in service at all times.

This problem can be formulated as a shortest path problem on a network G with
vertices i = 1, 2, . . . , n+ 1; G contains an arc (i, j) with cost cij for all i < j. There is a
one-to-one correspondence between directed paths in G from vertex 1 to vertex n+1 and
equipment replacement plans. The following figure gives a sample network with n = 5.
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The path [1, 3, 6] corresponds to buying the equipment at the beginning of periods 1
and 3. A shortest path from vertex 1 to vertex n+ 1 identifies an optimal replacement
plan.

6. Paragraph problem: The document processing program TEX uses an optimization
procedure to decompose a paragraph into several lines so that when lines are left- and
right-justified, the appearance of the paragraph will be the most attractive. Suppose
that a paragraph consists of words i = 1, 2, . . . , n. Let cij denote the attractiveness of
a line if it begins with the word i and ends with the word j − 1. The program TEX
uses formulas to compute the value of each cij . Given the cij , the decision problem is
to decompose the paragraph into several lines of text in order to maximize the total
attractiveness (of all lines). This problem can be formulated as a shortest path problem
in a manner similar to Application 5.

7. Tramp steamer problem: A ship travels from port to port carrying cargo and
passengers. A voyage of the steamer from port i to port j earns pij units of profit and
requires tij ≥ 0 units of time. Here it is assumed that

∑
(i,j)∈W tij > 0 for every directed

cycle W in G. The captain of the ship would like to know whether there exists a tour
(directed cycle)W for which the daily profit is greater than a specified threshold µ0; that
is,

∑
(i,j)∈W pij/

∑
(i,j)∈W tij > µ0. By writing this inequality as

∑
(i,j)∈W (µ0tij−pij) <

0, it is seen that there is a tour W with mean daily profit exceeding µ0 if and only if G
contains a negative cost directed cycle W . The shortest path label-correcting algorithm
can be used to detect the presence (or absence) of negative cycles (see §10.3.2, Fact 7).

8. System of difference constraints: In some linear programming applications (§15.1)
with constraints of the form Ax ≤ b, the m × n constraint matrix A contains one +1
and one −1 in each row, with all other entries being zero. Suppose that the kth row
has a +1 entry in column jk and a −1 entry in column ik; entries in the vector b have
arbitrary signs. This linear program defines the following set of m difference constraints
in n variables x = (x(1), x(2), . . . , x(n)): x(jk) − x(ik) ≤ b(k) for each k = 1, 2, . . . ,m.
The problem is to determine whether this system of difference constraints has a feasible
solution, and if so, to obtain one.

Associate a graph G with this system of difference constraints; G has n vertices
corresponding to the n variables, and the arc (ik, jk) of length b(k) results from the
constraint x(jk) − x(ik) ≤ b(k). These constraints are identical with the optimality
conditions for the shortest path problem in G, and they can be satisfied if and only if G
contains no negative cycle. In this case the shortest path distances give a solution x
satisfying the constraints.

9. Examples of Application 8 occur in telephone operator scheduling, just-in-time
scheduling, analyzing the consistency of measurements, and the scaling of data.

10. Maximin paths: In a network with capacities (that is, upper bounds on the amount
of material that can be sent on each arc), the capacity of a path is the smallest capacity
on any of its constituent arcs. A common problem in such networks is to find a path
from vertex s to vertex t having the maximum capacity. This represents a path along
which the maximum amount of material can flow. Such a maximin path can be found
efficiently by adapting Dijkstra’s shortest path algorithm.

c© 2000 by CRC Press LLC



11. Additional applications, with reference sources, are given in the following table.

application references

approximating piecewise linear functions [AhMaOr93], [AhEtal95]
DNA sequence alignment [AhEtal95]
molecular confirmation [AhMaOr93], [AhEtal95]
robot design [AhMaOr93], [AhEtal95]
scaling of matrices [AhMaOr93], [AhEtal95]
knapsack problems [EvMi92], [AhMaOr93], [AhEtal95]
compact book storage [AhMaOr93], [AhEtal95]
personnel planning [AhMaOr93]
routing snow removal vehicles [EvMi92]
production lot sizing [EvMi92]
transportation planning [EvMi92]
single-crew scheduling [AhMaOr93]
dynamic facility location [AhMaOr93]

10.4 MAXIMUM FLOWS

The maximum flow problem involves sending the maximum amount of material from a
specified source vertex s to another specified sink vertex t, subject to capacity restric-
tions on the amount of material that can flow along each arc. A closely related problem
is the minimum cut problem, which is to find a set of arcs with smallest total capacity
whose removal separates s and t.

10.4.1 BASIC CONCEPTS

Definitions:

Let G = (V,E) be a directed network with vertex set V and arc set E (see §10.3.1).
Each arc (i, j) ∈ E has an associated capacity uij ≥ 0. Such a network is called a
capacitated network. Let n = |V | and m = |E|.
Suppose s is a specified source vertex and t is a specified sink vertex. A (feasible)
flow is a function x = (xij) defined on arcs (i, j) ∈ E satisfying:

• mass balance constraints:
∑

{j|(i,j)∈E}
xij =

∑
{j|(j,i)∈E}

xji for all i ∈ V − {s, t};

• capacity constraints: 0 ≤ xij ≤ uij for all (i, j) ∈ E.

The arc (i, j) is saturated in flow x if xij = uij .

The value of flow x is v =
∑

{j|(s,j)∈E}
xsj , the total flow leaving the source vertex.

A maximum flow is a flow having maximum value.
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A cut [S, S] partitions the vertex set V into two subsets S and S = V −S, and consists
of all arcs with one endpoint in S and the other in S. Arcs directed from S to S are
forward arcs, and the set of forward arcs is denoted by (S, S). Arcs directed from S
to S are backward arcs, and the set of backward arcs is denoted by (S, S).

The cut [S, S] is an s-t cut if s ∈ S and t ∈ S. The capacity of the s-t cut [S, S] is
u[S, S] =

∑
(i,j)∈(S,S)

uij .

A minimum cut is an s-t cut having minimum capacity.

Facts:

1. The flow xij on arc (i, j) can represent the number of cars (per hour) traveling
along a highway segment, the rate at which oil is pumped through a section of pipe in
a distribution system, or the number of messages per unit time that can be sent along
a data link in a communication system.

2. The mass balance constraints ensure that for all vertices i (other than the source or
sink), the total flow out of i equals the total flow into i.

3. The capacity constraints ensure that the flow on an arc does not exceed its stated
capacity.

4. Maximum flows arise in a variety of practical problems involving the flow of goods,
vehicles, and messages in a network. Maximum flows can also be used to study the
connectivity of graphs, the covering of chessboards, the selection of representatives,
winning records in tournaments, matrix rounding, and staff scheduling (see §10.4.3).

5. For any s-t flow x, the flow out of s equals the flow into t; that is,∑
{j|(s,j)∈E}

xsj = v =
∑

{j|(j,t)∈E}
xjt.

6. Removal of the arcs in the s-t cut Z = [S, S] from G separates vertex s from vertex t:
namely, there is no s-t path in G− Z.

7. Let [S, S] be any s-t cut in the network. Then the value of the flow x is given by
v =

∑
(i,j)∈(S,S)

xij −
∑

(j,i)∈(S,S)

xji.

That is, the net flow across each s-t cut is the same and equals v.

8. Weak duality theorem: The value of every s-t flow is less than or equal to the
capacity of every s-t cut in the network.

9. If x is some s-t flow whose value equals the capacity of some s-t cut [S, S], then x
is a maximum flow and [S, S] is a minimum cut.

10. Max-flow min-cut theorem: The maximum value of the flow from vertex s to
vertex t in a capacitated network equals the minimum capacity among all s-t cuts.
(L. R. Ford and D. R. Fulkerson, 1956.)

11. A systematic study [FoFu62] of flows in networks was first carried out by Ford and
Fulkerson, motivated by a simplified model of railway traffic flow.

Examples:

1. Part (a) of the following figure shows a flow network with s = 1 and t = 6; capacities
are indicated along each arc. The function x given in part (b) satisfies the mass balance
constraints and the capacity constraints, and hence is a feasible flow. Relative to this
flow, arc (1, 2) is not saturated since x12 = 6 < 7 = u12; on the other hand, arc (3, 5)
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is saturated since x35 = 3 = u35. The flow has value v = x12 + x13 = 6 + 2 = 8.
Here the flow into vertex 6 is x46 + x56 = 5 + 3 = 8 = v, as guaranteed by Fact 5.
The flow value across the s-t cut [S, S] with S = {1, 3} is x12 + x34 + x35 − x23 =
6 + 3 + 3− 4 = 8. Similarly, the flow value across the s-t cut [S, S] with S = {1, 2, 3, 5}
is x24 + x34 + x56 − x45 = 2 + 3 + 3 − 0 = 8. (See Fact 7.) This flow is not, however, a
maximum flow.

2. In Example 1, the s-t cut [S, S] with S = {1, 2, 3, 5} has capacity u24 + u34 + u56 =
5+3+9 = 17. Thus the value of any flow in the network is bounded above (see Fact 8)
by 17. The s-t cut [S, S] with S = {1, 3} has capacity u12 + u34 + u35 = 7 + 3 + 3 = 13.
This cut capacity 13 provides an improved upper bound on the value of a flow. In
particular, the flow defined in part (b) has value v = 8 ≤ 13.

3. The following figure shows another feasible flow x′ in the network of Example 1.
For x′, the flow value across the s-t cut [S, S] with S = {1, 2, 3} is v = x24 +x34 +x35 =
5+3+3 = 11, which equals the s-t cut capacity u[S, S] = u24+u34+u35 = 5+3+3 = 11.
By Fact 9, x′ is a maximum flow and S = {1, 2, 3} defines a minimum cut [S, S].

10.4.2 ALGORITHMS FOR MAXIMUM FLOWS

There are two main classes of maximum flow algorithms: augmenting path algorithms
and preflow-push algorithms. Both types of algorithms work on an auxiliary network
(called the residual network) associated with the current solution.

Definitions:

Let G = (V,E) be a directed network with n = |V | and m = |E|. Let s and t be the
specified source and sink, and let U be the largest of the arc capacities uij in G.

Let x = (xij) be a function defined on the arcs (i, j) of G. Relative to x, the outflow
from vertex i and inflow to vertex i are given, respectively, by

out(i) =
∑

{j|(i,j)∈E}
xij , in(i) =

∑
{j|(j,i)∈E}

xji.

The excess of vertex i is e(i) = in(i) − out(i).
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Algorithm 1: Augmenting path algorithm.

input: directed network G, source vertex s, sink vertex t
output: maximum flow x

x := 0
while G(x) contains a directed path from s to t

identify an augmenting path P in G(x)
δ := min{ rij | (i, j) ∈ P }
augment δ units of flow along P and update G(x)

recover an optimal flow x from the final residual network G(x)

A preflow is any x = (xij) satisfying
• relaxed mass balance constraints: e(i) ≥ 0 for all i ∈ V − {s, t};
• capacity constraints: 0 ≤ xij ≤ uij for all (i, j) ∈ E.

Vertex i is active if e(i) > 0.

Given a flow (or a preflow) x, the residual capacity rij of the arc (i, j) ∈ E is the
maximum additional flow that can be sent from i to j using arcs (i, j) and (j, i).

The residual network G(x) with respect to flow x consists of those arcs of G having
positive residual capacity.

An augmenting path is a directed path from vertex s to vertex t in G(x).

The capacity of a directed path is the minimum arc capacity appearing on the path.

A set of distance labels with respect to a preflow (or flow) x is a function d:V →
{0, 1, 2, . . .} satisfying

• d(t) = 0;
• d(i) ≤ d(j) + 1 for every arc (i, j) in the residual network G(x).

An arc (i, j) in the residual network G(x) is admissible with respect to the distance
labels d(·) if d(i) = d(j) + 1.

Facts:
1. The maximum flow problem on an undirected network can be converted to a maxi-
mum flow problem on a directed network. Namely, replace every undirected edge (i, j)
of capacity uij by two oppositely directed arcs (i, j) and (j, i), each with capacity uij .
2. The residual capacity rij = (uij − xij) + xji. The first term uij − xij represents
the unused capacity of arc (i, j); the second term xji represents the amount of flow on
arc (j, i) that can be canceled to increase flow from vertex i to vertex j.
3. The capacity of an augmenting path is always positive.
4. Augmenting path property: A flow x is a maximum flow if and only if the residual
network G(x) contains no augmenting path.
5. Augmenting path algorithm: A general augmenting path algorithm (Algorithm 1)
is based on Fact 4. It identifies augmenting paths and sends flows on these paths until
the residual network contains no such path.
6. Integrality property: For networks with integer capacities, Algorithm 1 starts with
the zero flow and augments by an integral flow at each iteration. Hence the maximum
flow problem with integral capacities always has an optimal integer flow.
7. An augmenting path in G(x) can be identified by any search procedure that starts
at vertex s and identifies all vertices reachable from s by directed paths (§9.2.1).
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Algorithm 2: Preflow-push algorithm.

input: directed network G, source vertex s, sink vertex t
output: maximum flow x

compute the shortest path lengths d(·) to vertex t
d(s) := n; x := 0; xsj := usj for all arcs (s, j) ∈ E
while the network contains an active vertex

select an active vertex i and push relabel(i)
recover an optimal flow x from the final residual network G(x)

procedure push relabel(i)
if the network contains an admissible arc (i, j) then

push δ := min{e(i), rij} units of flow from i to j
else d(i) := min{ d(j) + 1 | (i, j) ∈ E and rij > 0 }

8. Augmenting the flow along P by δ decreases the residual capacities of arcs in P by δ
and increases the residual capacities of the reversals of arcs in P by δ.
9. At the last iteration of Algorithm 1, let S be the set of vertices reachable from s.
Then t ∈ S and [S, S] is a minimum cut.
10. Upon termination of Algorithm 1, an optimal flow x can be reconstructed from the
final G(x) using Fact 2. Specifically, let (i, j) ∈ E. If uij−rij ≥ 0 then set xij = uij−rij
and xji = 0; otherwise, set xji = rij − uij and xij = 0.
11. Algorithm 1 was independently discovered by L. R. Ford and D. R. Fulkerson (1956)
and by P. Elias, A. Feinstein, and C. E. Shannon (1956).
12. The distance label d(i) is a lower bound on the length (number of arcs) of the
shortest (directed) path from vertex i to vertex t in the residual network.
13. If some vertex j satisfies d(j) ≥ n, then vertex j is separated from the sink vertex
in the residual network.
14. Algorithm 1 runs in pseudopolynomial time O(nmU) for networks with integer (or
rational) arc capacities. The algorithm may not terminate finitely for networks with
irrational capacities.
15. Two specific implementations of Algorithm 1 run in polynomial time:

• by augmenting flow along a shortest path, the number of augmentations can be
reduced to O(nm), and using very sophisticated data structures this algorithm
can be implemented to run in O(nm log n) time;

• by augmenting flow along a path with maximum residual capacity, the number
of augmentations is O(m logU) and this algorithm can be implemented to run
in O(nm logU) time.

16. Preflow-push algorithm: The preflow-push algorithm (Algorithm 2) maintains a
preflow at every step and pushes flow on individual arcs instead of along augmenting
paths. The basic operation is to select an active vertex and try to remove its excess by
pushing flow to neighbors that are “closer” to the sink.
17. The shortest path lengths calculated in Algorithm 2 represent the minimum num-
ber of arcs in a path to vertex t and can be efficiently found by carrying out a breadth-
first search relative to t (§9.2.1).
18. In Algorithm 2, if the active vertex currently being examined has an admissible
arc (i, j), then increasing the flow on (i, j) by δ decreases rij by δ and increases rji by δ.
Also, e(i) is decreased by δ and e(j) is increased by δ.
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19. In Algorithm 2, if the active vertex currently being examined has no admissible
arc, then after its distance label is increased, at least one admissible arc is created.

20. The preflow-push algorithm can be implemented to run in O(n2m) time. Variations
of this algorithm with improved worst-case complexity are described in [AhOrTa89].

21. The highest-label preflow-push algorithm [GoTa86] is a specific implementation
of Algorithm 2 that always examines vertices with the largest distance label. This
O(n2

√
m) implementation is currently the fastest algorithm to solve the maximum flow

problem in practice.

22. Algorithm 2 can be implemented to run in O(nm log(n2/m)) time using a dynamic
tree data structure. This algorithm currently achieves the best strongly polynomial-time
bound to solve the maximum flow problem, but is not as efficient in practice as its more
straightforward implementation.

23. The books [AhMaOr93] and [CoLeRi90] discuss additional versions of augment-
ing and preflow-push algorithms, as well as specializations of these algorithms to unit
capacity networks, bipartite networks, and planar networks.

24. Preflow-push algorithms are more general, more powerful, and more flexible than
augmenting path algorithms for solving the maximum flow problem.

25. The best preflow-push algorithms currently outperform the best augmenting path
algorithms in theory as well as in practice.

26. Computer codes (in C, Pascal, and Fortran) for solving maximum flow and mini-
mum cut problems can be found at the sites:

ftp://dimacs.rutgers.edu/pub/netflow/maxflow/

ftp://ftp.zib.de/pub/Packages/mathprog/netopt-bertsekas/

http://www.neci.nj.nec.com/homepages/avg/soft/soft.html

http://orly1.snu.ac.kr/software/

ftp://ftp.zib.de/pub/Packages/mathprog/mincut/

Examples:

1. Part (a) of the following figure illustrates a network G with capacities shown next
to each arc.
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A feasible flow from vertex s = 1 to vertex t = 4 is displayed in part (b); this flow has
value v = x12 + x13 = 3. Every path in G from s to t contains a saturated arc: paths
[1, 2, 4] and [1, 2, 3, 4] have the saturated arc (1, 2), and path [1, 3, 4] has the saturated
arc (3, 4). Consequently, no additional flow can be pushed in the “forward” direction
from s to t. Yet, the current flow x is not a maximum flow.

To find additional flow from s to t, the residual network G(x) is constructed; see
part (c) of the figure. An augmenting path in part (c) is P = [1, 3, 2, 4] with (residual)
capacity δ = 1. Adding the flow on P to that in part (b) produces the new flow x′ in
part (d); notice that the flow on arc (2, 3) in x has been canceled in this process. The
resulting flow x′ has flow value v = 4. Since the s-t cut [S, S] with S = {1, 2, 3} has
capacity u24 + u34 = 4 = v, the flow x′ is a maximum flow and S = {1, 2, 3} defines a
cut having minimum capacity.

2. The following figure illustrates three iterations of the augmenting path algorithm
(Algorithm 1).

Part (a) of the figure shows a network with capacities indicated on each arc. Here s = 1
and t = 6. Initially the flow x = 0, so the residual network is identical to the original
network with rij = uij for every arc (i, j).

Suppose that the algorithm identifies path P 1 = [1, 2, 4, 6] as the augmenting path.
The algorithm augments δ = min{r12, r24, r46} = min{7, 5, 6} = 5 units of flow along P 1.
This augmentation changes the residual capacities only of arcs in P 1 (or their reverse
arcs), yielding the new residual network in part (b).

In the second iteration, suppose the algorithm identifies path P 2 = [1, 3, 5, 6] as the
next augmenting path. Then flow is increased by δ = min{8, 3, 9} = 3 units along P 2;
part (c) shows the residual network after the second augmentation.

A third augmentation with δ = 1 occurs along path P 3 = [1, 3, 4, 6] in part (c),
giving the residual network shown in part (d).

3. The following figure illustrates three iterations of the preflow-push algorithm on the
flow network with capacities given in part (a). Here s = 1 and t = 4; in addition,
the pair (e(i), d(i)) is shown beside each vertex i. Part (b) of the figure gives G(x)
corresponding to the initial preflow with x12 = 2 and x13 = 4.
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Suppose that the algorithm selects vertex 2 for the push/relabel operation. Then
arc (2, 4) is the only admissible arc and the algorithm pushes δ = min{e(2), r24} =
min{2, 1} = 1 unit along this arc; part (c) gives the residual network at this stage.

Suppose that the algorithm again selects vertex 2. Since no admissible arc emanates
from this vertex, the algorithm performs a relabel operation and gives vertex 2 a new
distance label: d(2) = min{d(3) + 1, d(1) + 1} = min{2, 5} = 2. The new residual
network is the same as the one shown in part (c) except that d(2) = 2 instead of 1.

In the third iteration, suppose that vertex 3 is selected. Then δ = min{e(3), r34} =
min{4, 5} = 4 units are pushed along the arc (3, 4); part (d) gives the residual network
at the end of this iteration.

10.4.3 APPLICATIONS

A variety of applied problems can be modeled using maximum flows or minimum cuts.
The max-flow min-cut theorem (§10.4.1, Fact 10) can also be used to deduce a number
of min-max duality results in combinatorial theory. This section discusses a number of
such applications.

Applications:

1. Distribution network: Oil needs to be shipped from a refinery to a storage facility
using the pipelines of an underlying distribution network. Here the refinery corresponds
to a particular vertex s in the distribution network, and the storage facility corresponds
to another vertex t. The capacity of each arc is the maximum amount of oil per unit
time that can flow along it. The maximum flow rate from the source vertex s to the
sink vertex t is determined by the value of a maximum s-t flow.
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2. Other examples of Application 1 occur in transportation networks, electrical power
networks, and telecommunication networks.

3. System of distinct representatives: Given is a collection of sets X1, X2, . . . , Xm
which are subsets of a given n-set X. A system of distinct representatives (§1.2.2) for
the collection is sought, if one exists.

To solve this problem, set up the bipartite network (V1 ∪ V2, E) in which there is a
vertex of V1 for each set Xi and a vertex of V2 for each element of X. An arc (i, j) of
infinite capacity joins i ∈ V1 to j ∈ V2 if j ∈ Xi. Add a source vertex s joined by arcs of
unit capacity to each i ∈ V1, and a sink vertex t with arcs of unit capacity joining each
j ∈ V2 to t. Then a system of distinct representatives exists if and only if the maximum
flow in this constructed network has value m. In this case, those arcs (i, j), with i ∈ V1

and j ∈ V2, having flow xij = 1 identify a system of distinct representatives selected
from the m sets.

4. Feasible flow problem: This problem involves finding a flow x in G = (V,E) so that
the net flow at each vertex is a specified value b(i), where

∑
i∈V b(i) = 0. That is, a

flow x on the arcs of network G is required, satisfying:

• mass balance constraints:
∑

{j|(i,j)∈E}
xij −

∑
{j|(j,i)∈E}

xji = b(i) for all i ∈ V ;

• capacity constraints: 0 ≤ xij ≤ uij for all (i, j) ∈ E.

This can be modeled as a maximum flow problem. Construct the augmented net-
work G′ by adding a source vertex s and a sink vertex t to G. For each vertex i with
b(i) > 0, an arc (s, i) is added to E with capacity b(i); for each vertex i with b(i) < 0,
an arc (i, t) is added to E with capacity −b(i). Then solve a maximum flow problem
from vertex s to vertex t in G′. It can be proved that the feasible flow problem for G
has a solution if and only if the maximum flow in G′ saturates all arcs emanating from
vertex s in G′.

5. Application 4 frequently arises in distribution problems. For example, a known
amount of merchandise is available at certain ports and is required at other ports in
known quantities. Also the maximum quantity of merchandise that can be shipped on
a particular sea route is specified. Determining whether it is possible to satisfy all of
the demands by using the available supplies is a feasible flow problem.

6. Graph connectivity : In a directed graph G, the arc connectivity κ′ij of vertices i
and j is the minimum number of arcs whose removal from G leaves no directed path
from i to j. The arc connectivity κ′(G) is the minimum number of arcs whose removal
from G separates some pair of vertices (see §8.4.2). The arc connectivity of a graph is
an important measure of the graph’s reliability or stability. Since κ′(G) = min{κ′ij |
(i, j) ∈ V × V, i �= j }, the arc connectivity of a graph can be computed by determining
the arc connectivity of n(n−1) pairs of vertices. As a matter of fact, the arc connectivity
of G can be found by determining only n− 1 arc connectivities.

The arc connectivity κ′ij can be found by applying the max-flow min-cut theorem
(§10.4.1) to the network obtained fromG by setting the capacity of each arc (i, j) to 1. In
such a unit capacity network, the maximum i-j flow value equals the maximum number
of arc-disjoint paths from vertex i to vertex j, and the minimum i-j cut capacity equals
the minimum number of arcs required to separate vertex i and vertex j. This shows
that the maximum number of arc-disjoint paths from vertex i to vertex j equals the
minimum number of arcs whose removal disconnects all paths from vertex i to vertex j.
(This result is a variation of Menger’s theorem in §8.4.2; it was independently discovered
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by Ford and Fulkerson and by Elias, Feinstein, and Shannon.) Consequently, κ′ij equals
the maximum i-j flow value in the network, and the arc connectivity κ′(G) can be
determined by solving n− 1 maximum flow problems in a unit capacity network.

7. Tournaments: Consider a round-robin tournament between n teams, assuming each
team plays against every other team c times and no game ends in a draw. It is claimed
that αi for 1 ≤ i ≤ n is the number of victories accrued by the ith team at the end of
the tournament. Verifying whether the nonnegative integers α1, α2, . . . , αn are possible
winning records for the n teams can be modeled as a feasible flow problem.

Define a directed network G = (V,E) with vertex set V = {1, 2, . . . , n} and arc set
E = { (i, j) ∈ V × V | i < j }. Let xij , i < j, represent the number of times team i
defeats team j. The total number of times team i defeats teams i + 1, i + 2, . . . , n is∑

{j|(i,j)∈E}xij . Since the number of times team i defeats a team j < i is c − xji,
it follows that the total number of times that team i defeats teams 1, 2, . . . , i − 1 is
(i− 1) c−

∑
{j|(j,i)∈E}xji. However, there are two constraints:

• the total number of wins αi of team i must equal the total number of times it
defeats teams 1, 2, . . . , n, giving∑

{j|(i,j)∈E}
xij −

∑
{j|(j,i)∈E}

xji = αi − (i− 1)c for all i ∈ V ;

• a possible winning record must also satisfy

0 ≤ xij ≤ c for all (i, j) ∈ E.

Consequently, {αi} define a possible winning record if these two constraints have a
feasible solution x. Let b(i) = αi − (i − 1)c. Since

∑
i∈V αi and

∑
i∈V (i − 1)c are

both equal to cn(n−1)
2 , the total number of games played, it follows that

∑
i∈V b(i) = 0.

The problem of finding a feasible solution to the two constraints is then a feasible flow
problem.

8. Matchings and covers: The max-flow min-cut theorem can also be used to prove
a min-max result concerning matchings and covers in a directed bipartite graph G =
(V1 ∪ V2, E). (See §8.1.3.) The subset E′ ⊆ E is a matching (§10.2.1) if no two arcs
in E′ are incident with the same vertex. The subset V ′ ⊆ V1 ∪ V2 is a vertex cover if
every arc in E is incident to at least one vertex in V ′. Create the network G′ from G
by adding vertices s and t, as well as arcs (s, i) with capacity 1 for all i ∈ V1 and
arcs (j, t) with capacity 1 for all j ∈ V2. All other arcs of G′ correspond to arcs
of G and have infinite capacity. Then each matching of cardinality v defines a flow of
value v in G′, and each s-t cut of capacity v induces a corresponding vertex cover with v
vertices. Application of the max-flow min-cut theorem establishes the desired result: In
a bipartite graph G = (V1 ∪ V2, E), the maximum cardinality of any matching equals
the minimum cardinality of any vertex cover of G.

9. 0-1 matrices: Suppose A = (aij) is a 0-1 matrix. Associate with A the directed
bipartite graph G = (V1 ∪ V2, E), where V1 is the set of row indices and V2 is the set
of column indices. There is an arc (i, j) ∈ E whenever aij = 1. A matching in G now
corresponds to a set of “independent” 1s in the matrix A: i.e., no two of these 1s are
in the same row or the same column. Also, a vertex cover of G corresponds to a set of
rows and columns in A that collectively cover all the 1s in the matrix. Applying the
result in Application 8 shows that the maximum number of independent 1s in A equals
the minimum number of lines (rows and/or columns) needed to cover all the 1s in A.
This result is known as König’s theorem (§6.6.1).
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10. Additional applications, with reference sources, are given in the following table.

application references

matrix rounding [AhMaOr93], [AhEtal95]
distributed computing [AhMaOr93], [AhEtal95]
network reliability [AhMaOr93], [AhEtal95]
open pit mining [AhMaOr93], [AhEtal95]
building evacuation [AhMaOr93]
covering sports events [AhEtal95]
nurse staff scheduling [AhMaOr93], [AhEtal95]
bus scheduling [AhEtal95]
machine scheduling [AhMaOr93], [AhEtal95]
tanker scheduling [AhMaOr93], [AhEtal95]
bottleneck assignment [FoFu62]
selecting freight-handling terminals [AhEtal95]
site selection [EvMi92]
material-handling systems [EvMi92]
decompositions of partial orders [FoFu62]
matrices with prescribed row/column sums [FoFu62]

10.5 MINIMUM COST FLOWS

The minimum cost flow problem involves determining the least cost shipment of a
commodity through a capacitated network in order to satisfy demands at certain vertices
using supplies available at other vertices. This problem generalizes both the shortest
path problem (§10.3) and the maximum flow problem (§10.4).

10.5.1 BASIC CONCEPTS

Definitions:

Let G = (V,E) be a directed network with vertex set V and arc set E (see §10.3.1).
Each arc (i, j) ∈ E has an associated cost cij and a capacity uij ≥ 0. Let n = |V | and
m = |E|.
Each vertex i ∈ V has an associated supply/demand b(i). If b(i) > 0, then vertex i is a
supply vertex; if b(i) < 0, then vertex i is a demand vertex.

A (feasible) flow is a function x = (xij) defined on arcs (i, j) ∈ E satisfying:
• mass balance constraints:

∑
{j|(i,j)∈E}

xij −
∑

{j|(j,i)∈E}
xji = b(i) for all i ∈ V ,

• capacity constraints: 0 ≤ xij ≤ uij for all (i, j) ∈ E,
where

∑
i∈V

b(i) = 0.
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The cost of flow x is
∑

(i,j)∈E
cijxij .

A minimum cost flow is a flow having minimum cost.

A pseudoflow is a function x = (xij) satisfying the arc capacity constraints; it may
violate the mass balance constraints.

The residual network G(x) corresponding to a flow (or pseudoflow) x is defined in
the following manner. Replace each arc (i, j) ∈ E by two arcs (i, j) and (j, i). Arc (i, j)
has cost cij and residual capacity rij = uij − xij , and arc (j, i) has cost −cij and
residual capacity rji = xij . The residual network consists only of arcs with positive
residual capacity.

The potential of vertex i is a quantity π(i) associated with the mass balance constraint
at vertex i. With respect to a given set of vertex potentials, the reduced cost of an
arc (i, j) in the residual network G(x) is cπij = cij − π(i) + π(j).

The cost of path P in G(x) is c(P ) =
∑

(i,j)∈P
cij ; its reduced cost is cπ(P ) =

∑
(i,j)∈P

cπij .

A negative cycle is a directed cycle W in G(x) for which c(W ) < 0.

Facts:

1. The mass balance constraints ensure that the net flow out of each vertex i is equal
to b(i). Thus, if there is excess flow out of vertex i, then b(i) > 0 and i is a supply
vertex. If b(i) < 0, then more flow enters i than leaves i, meaning that vertex i is a
demand vertex.

2. Minimum cost flows arise in practical problems involving the least cost routing of
goods, vehicles, and messages in a network. Minimum cost flows can also be used
in models of warehouse layout, production and inventory problems, scheduling of per-
sonnel, automatic classification of chromosomes, and racial balancing of schools. (See
§10.5.3.)

3. Let {π(i) | i ∈ V } be any set of vertex potentials.
• If P is a path from i to j in G(x), then cπ(P ) = c(P ) − π(i) + π(j).
• If W is a cycle in G(x), then cπ(W ) = c(W ).

4. Negative cycle optimality conditions: A feasible flow x is a minimum cost flow if
and only if the residual network G(x) contains no negative cycle.

5. Reduced cost optimality conditions: A feasible flow x is a minimum cost flow if
and only if some set of vertex potentials π satisfies cπij ≥ 0 for every arc (i, j) in G(x).

6. Complementary slackness optimality conditions: A feasible flow x is a minimum
cost flow if and only if there exist vertex potentials π such that for every arc (i, j) ∈ E:

• if cπij > 0, then xij = 0;

• if cπij < 0, then xij = uij ;

• if 0 < xij < uij , then cπij = 0.

Examples:

1. In the flow network of part (a) of the following figure, b(i) is shown next to each
vertex i and (cij , uij) is shown next to each arc (i, j).
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The function x = (xij) given in part (b) satisfies the mass balance constraints for each
vertex. For example, the flow out of vertex 2 is x24 = 6 and the flow into vertex 2 is
x12 + x32 = 5, so that flow out minus flow in equals 6− 5 = 1 = b(2). Also the capacity
constraints for all arcs are satisfied: e.g., x12 = 4 ≤ 5 = u12. Thus x is a feasible
flow, with cost 163. The residual network G(x) corresponding to the flow x is shown in
part (c). Selected arcs of G(x) are labeled with their cost and residual capacity. The
directed cycle W = [1, 2, 3, 1] in G(x) has cost 11− 9− 10 = −8 and so W is a negative
cycle. By Fact 4, this flow x is not a minimum cost flow.

2. Part (a) of the following figure shows another feasible flow x′ for the network in
Example 1, with cost 155.

The corresponding residual network G(x′) is given in part (b), in which each arc
is labeled with its cost and its residual capacity. Using the vertex potentials π =
(0,−14,−10,−22), the reduced cost of arc (2, 1) in the residual network is cπ21 =
−11 − (−14) + 0 = 3; likewise cπ32 = 9 − (−10) − 14 = 5. The remaining reduced
costs are found to be zero, so cπij ≥ 0 for all arcs (i, j) in G(x). By Fact 5, x′ is a
minimum cost flow for the given network.

3. Alternatively, the optimality of the flow x′ in part (a) of the figure of Example 2
can be verified using Fact 6. As in Example 2, let π = (0,−14,−10,−22). Arc (3, 2)
of the original network G in part (a) of the figure of Example 1 has positive reduced
cost cπ32 = 9 − (−10) − 14 = 5 and x′32 = 0. Arc (1, 2) has cπ12 = 11 − 0 − 14 = −3 < 0
and x′12 = u12. The remaining arcs (1, 3), (2, 4), and (3, 4) have zero reduced cost.
Consequently, the complementary slackness optimality conditions are satisfied and the
flow x′ achieves the minimum cost.
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Algorithm 1: Cycle-canceling algorithm.

input: directed network G
output: minimum cost flow x

establish a feasible flow x in the network
while G(x) contains a negative cycle do

identify a negative cycle W
δ := min{ rij | (i, j) ∈W }
augment δ units of flow along W and update G(x)

recover an optimal flow x from the final residual network G(x)

10.5.2 ALGORITHMS FOR MINIMUM COST FLOWS

A variety of algorithms are available to solve the minimum cost flow problem. Three
algorithms are described in this section: the cycle-canceling algorithm, the successive
shortest path algorithm, and the network simplex algorithm.

Definitions:

Let G = (V,E) be a directed network with n = |V | and m = |E|; let U denote the
largest arc capacity and C denote the largest arc cost (in absolute value) in G.

For a given pseudoflow x = (xij), the imbalance of vertex i ∈ V is e(i) = b(i) +∑
{j|(j,i)∈E}

xji −
∑

{j|(i,j)∈E}
xij .

An excess vertex is one with a positive imbalance, and a deficit vertex is one with
a negative imbalance.

A spanning tree solution x = (xij) consists of a spanning tree T of G = (V,E) in
which each nontree arc (i, j) has either xij = 0 or xij = uij .

A spanning tree solution is feasible if the mass balance constraints and capacity con-
straints are satisfied.

Facts:

1. Cycle-canceling algorithm: The cycle-canceling algorithm (Algorithm 1) is based
on the negative cycle optimality conditions (§10.5.1, Fact 4). It starts with a feasible
flow and successively augments flow along negative cycles in the residual network until
there is no negative cycle.

2. As shown in §10.4.3, an initial feasible flow can be found by solving a maximum
flow problem.

3. Integrality property: For problems with integer arc capacities and integer vertex
supplies/demands, Algorithm 1 starts with an integer flow, at each iteration augments
by an integral amount of flow, and thus produces an optimal flow that is integer. Thus
any minimum cost flow problem with integer supplies, demands, and capacities always
has an optimal solution that is integer.

4. A negative cycle W in the residual network can be identified in O(nm) time by using
a queue implementation of the label-correcting algorithm (§10.3.2, Fact 5).
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Algorithm 2: Successive shortest path algorithm.

input: directed network G
output: minimum cost flow x

x := 0
e(i) := b(i) for all i ∈ V
initialize V + := { i | e(i) > 0 } and V − := { i | e(i) < 0 }
while V + �= ∅ do

select a vertex k ∈ V + and a vertex l ∈ V −

identify a shortest path P in G(x) from vertex k to vertex l
δ := min{e(k),−e(l),min{ rij | (i, j) ∈ P }}
augment δ units of flow along P
update e, G(x), V +, and V −

recover an optimal flow x from the final residual network G(x)

5. Augmenting the flow along W by δ decreases the residual capacities of arcs in W
by δ and increases the residual capacities of the reversals of arcs in W by δ.

6. Upon termination of Algorithm 1, an optimal flow x can be reconstructed from the
final G(x); see §10.4.2 Fact 10.

7. For problems with integer supplies, demands, and arc capacities, the cycle-canceling
algorithm runs in pseudopolynomial time O(nm2CU).

8. If flow is augmented along a negative cycle W in G(x) that minimizes the ratio
1

|W |
∑

(i,j)∈W cij among all directed cycles in G(x), then this implementation runs in
polynomial time [GoTa88].

9. Successive shortest path algorithm: The successive shortest path algorithm (Algo-
rithm 2) starts with the pseudoflow x = 0. It proceeds by selecting an excess vertex k
and a deficit vertex l, and augmenting flow along a minimum cost path from vertex k
to vertex l in G(x).

10. If in Algorithm 2 reduced costs cπij are used instead of arc costs cij , then Dijkstra’s
algorithm (§10.3.2, Algorithm 2) can be applied to determine a shortest path P in the
residual network.

11. Augmenting the flow along P by δ decreases the residual capacities of arcs in P
by δ and increases the residual capacities of the reversals of arcs in P by δ. It also
decreases e(k) by δ and increases e(l) by δ.

12. The solution maintained by the successive shortest path algorithm always satisfies
the reduced cost optimality conditions (§10.5.1, Fact 5). The final solution is in addition
feasible, and so is an optimal solution of the minimum cost flow problem.

13. For problems with integer supplies, demands, and arc capacities, the shortest aug-
menting path algorithm runs in pseudopolynomial time.

14. Several implementations of the shortest augmenting path algorithm run in polyno-
mial or even strongly polynomial time. [Or88] describes an implementation running in
O(m log n(m+ n log n)) time, currently the fastest strongly polynomial-time algorithm
to solve the minimum cost flow problem.

15. If a minimum cost flow problem has an optimal solution, then it has an optimal
spanning tree solution.
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Algorithm 3: Network simplex algorithm.

input: directed network G
output: minimum cost flow x

determine an initial spanning tree solution with associated tree T
let x be the flow and π the corresponding vertex potentials
while some nontree arc violates the complementary slackness optimality con-

ditions do
select an entering arc (k, l) violating its optimality condition
add arc (k, l) to T , augment the maximum possible flow in the cycle thus

created, and determine the leaving arc (p, q)
update the tree T , the flow x, and the vertex potentials π

16. Given a spanning tree solution x, with flows on nontree arcs (i, j) specified (at
either 0 or uij), the flows on the tree arcs are uniquely determined by the mass balance
constraints.

17. Given a spanning tree solution x, vertex potentials π can be determined such that:
• π(1) = 0;
• cπij = 0 for all tree arcs (i, j).

18. Complementary slackness optimality conditions: Suppose x is a feasible spanning
tree solution with vertex potentials determined as in Fact 17. Then x is a minimum
cost flow if:

• cπij ≥ 0 for all nontree arcs (i, j) with xij = 0;

• cπij ≤ 0 for all nontree arcs (i, j) with xij = uij .

19. Network simplex algorithm: The network simplex algorithm (Algorithm 3) is a
specialized version of the well-known linear programming simplex method (§15.1.3). It
maintains a spanning tree solution and at each iteration transforms the current spanning
tree solution into an improved spanning tree solution until optimality is reached.

20. Using appropriate data structures, the network simplex algorithm can be imple-
mented very efficiently. The network simplex algorithm is one of the fastest algorithms
to solve the minimum cost flow problem in practice.

21. The network simplex algorithm has a exponential worst-case time bound. [Or97]
provides the first polynomial-time implementations of the (generic) network simplex
algorithm.

22. Detailed descriptions of Algorithms 1-3, as well as several other algorithms for
finding minimum cost flows, can be found in [AhMaOr93].

23. Computer codes (in C, Pascal, and Fortran) for solving the minimum cost flow
problem can be found at the following sites:

ftp://dimacs.rutgers.edu/pub/netflow/mincost/

http://www.zib.de/Optimization/Software/Mcf/

ftp://ftp.zib.de/pub/Packages/mathprog/netopt-bertsekas/

http://www.neci.nj.nec.com/homepages/avg/soft/soft.html

http://orly1.snu.ac.kr/software/
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Examples:

1. The following figure illustrates the cycle-canceling algorithm.

Part (a) of this figure depicts the given flow network, with b(i) shown for each vertex i
and (cij , uij) for each arc (i, j). Part (b) shows the residual network corresponding to
the flow x12 = x24 = 3 and x13 = x34 = 1.

In the first iteration, suppose the algorithm selects the negative cycle [2, 3, 4, 2] with
cost −1. Then δ = min{r23, r34, r42} = min{2, 4, 3} = 2 units of flow are augmented
along this cycle. Part (c) shows the modified residual network.

In the next iteration, the algorithm selects the cycle [1, 3, 4, 2, 1] with cost −2 and
augments δ = 1 unit of flow. Part (d) depicts the updated residual network which
contains no negative cycle, so the algorithm terminates. From part (d), an optimal flow
pattern is deduced: x12 = x13 = x23 = 2 and x34 = 4.

2. The successive shortest path algorithm is illustrated using the flow network in
part (a) of the figure for Example 1. The initial residual network G(x) for x = 0 is
the same as that of part (a). Initially, the imbalances are e = (4, 0, 0,−4), so that
V + = {1} and V − = {4}, giving k = 1 and l = 4. The shortest path from vertex 1 to 4
in G(x) is [1, 3, 4], and the algorithm augments δ = 2 units of flow along this path.

The following figure shows the residual network after this augmentation, as well as
the updated imbalance at each vertex.
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The sets V + and V − do not change, so again k = 1 and l = 4. The shortest path from
vertex 1 to vertex 4 is now [1, 2, 3, 4], and the algorithm augments δ = 2 units of flow
along this path.

Part (b) of that figure shows the resulting residual network. Now V + = V − = ∅
and the algorithm terminates.

3. The following figure illustrates the network simplex algorithm.

Part (a) of this figure depicts the given flow network, with b(i) shown for each vertex i
and (cij , uij) for each arc (i, j).

A feasible spanning tree solution is shown in part (b) of the figure; each nontree
arc (dashed line) has flow at either its lower or upper bound. The unique flows on the
tree arcs (solid lines) are determined by the mass balance constraints. A set of vertex
potentials (obtained using Fact 17) are also shown in part (b). Relative to the these
potentials π, the reduced costs for the nontree arcs are given by cπ23 = 2− (−3)− 2 = 3,
cπ35 = 4 − (−2) − 5 = 1, cπ54 = 5 − (−5) − 8 = 2, and cπ46 = 3 − (−8) − 9 = 2. Since
arc (3, 5), with flow at its upper bound, violates the optimality conditions of Fact 18, it
is added to the current tree producing the cycle [1, 2, 5, 3, 1]. The maximum flow that
can be sent along this cycle without violating the capacity constraints is 1 unit, which
forces the flow on arc (2, 5) to its upper bound. Arc (2, 5) is then removed from the
current tree and arc (3, 5) is added to the current tree.

Part (c) of the figure gives the new flow as well as the new vertex potentials. Since
cπ46 = 3 − (−8) − 10 = 1, arc (4, 6) is added to the spanning tree, forming the cycle
[1, 3, 5, 6, 4, 2, 1]. The maximum flow that can be sent along this cycle without violating
the capacity constraints is 1 unit, which forces arc (3, 5) out of the tree.

Part (d) gives the new flow as well as the new vertex potentials. Since the comple-
mentary slackness optimality conditions are satisfied, the current flow is optimal.
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10.5.3 APPLICATIONS

Minimum cost flow problems arise in many industrial settings and scientific domains,
often in the form of distribution or routing problems. The minimum cost flow problem
also has less transparent applications, several of which are presented in this section.

Applications:

1. Distribution: A common application of the minimum cost flow problem involves
the distribution at minimum cost of a product from manufacturing plants (with known
supplies) to warehouses (with known demands). A similar scenario applies to the dis-
tribution of goods from warehouses to retailers as well as the flow of raw materials and
intermediate goods through various machining stations in a production line.

2. Routing : The routing of cars through an urban street network and the routing
of calls through a telephone system can be modeled using minimum cost flows. In
either case, the items (cars, calls) must be sent from certain specified origins to other
specified destinations, with capacity constraints on the total flow on each arc (road,
communication link). This is done to minimize total (or average) delay in the system.

3. Directed Chinese postman problem: Leaving from the post office, a mail carrier
needs to visit all houses on a postal route, delivering and collecting letters, and then
return to the post office. The carrier would like to cover this route by traveling the
minimum possible distance. (See also §8.4.3.) In this variation, known as the directed
Chinese postman problem, each street is assumed to be directed, so the problem is de-
fined on a directed network G = (V,E) whose arcs (i, j) have an associated nonnegative
length cij . It is desired to find a directed walk (§8.3.2) of minimum length that starts
at some vertex (the post office), visits each arc of the network at least once, and returns
to the starting vertex. In an optimal walk, some arcs may be traversed more than once.
If xij represents the number of times arc (i, j) is traversed, then this problem can be
formulated as:

minimize:
∑

(i,j)∈E
cijxij ,

subject to:
∑

{j|(i,j)∈E}
xij −

∑
{j|(j,i)∈E}

xji = 0 for all i ∈ V ,

xij ≥ 1 for all (i, j) ∈ E.

This problem is a minor variant of the minimum cost flow problem where each arc has
a lower bound of one unit of flow. From an optimal flow x∗ for this problem, an optimal
tour can be constructed in the following manner. First, replace each arc (i, j) with x∗ij
copies of the arc, each carrying a unit flow. Next, decompose the resulting network into
a set of directed cycles. Finally, connect the directed cycles to form a closed walk.

4. Optimal loading of a hopping airplane: A small commuter airline uses a plane with
capacity of at most p passengers on a “hopping flight”, as shown in part (a) of the
following figure. The flight visits the cities 1, 2, 3, . . . , n in a fixed sequence. The plane
can pick up passengers at any city and drop them off at any other city. Let bij denote the
number of passengers available at city i who want to go to city j, and let fij denote the
fare per passenger from city i to city j. The airline would like to determine the number
of passengers that the plane should carry between various origins and destinations in
order to maximize the total fare per trip while never exceeding the capacity of the plane.

Part (b) of the following figure shows a minimum cost flow formulation of this
hopping plane flight problem. The network displays data only for those arcs with
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nonzero cost or finite capacity. Any arc without a displayed cost has zero cost; any
arc without a displayed capacity has infinite capacity. For example, three types of
passengers are available at vertex 1: those whose destination is vertex 2, vertex 3, or
vertex 4. These three types of passengers are represented by the vertices 1-2, 1-3, and
1-4 with supplies b12, b13, and b14. A passenger available at any such vertex, say 1-3,
either boards the plane at its origin vertex by flowing through the arc (1-3, 1), and thus
incurring a cost of −f13 units, or never boards the plane, represented by flowing through
the arc (1-3, 3).

5. Leveling mountainous terrain: In building road networks through hilly or moun-
tainous terrain, civil engineers must determine how to distribute earth from high points
to low points of the terrain to produce a leveled roadbed. To model this, construct a
terrain graph, an undirected graph G whose vertices represent locations with a demand
for earth (low points) or locations with a supply of earth (high points). An edge of G in-
dicates an available route for distributing the earth, and the cost of this edge is the cost
per truckload of moving earth between the corresponding two locations. The following
figure shows a portion of a sample terrain graph. A leveling plan for a terrain graph
is a flow (set of truckloads) that meets the demands at vertices (levels the low points)
by the available supplies (earth obtained from high points) at minimum trucking cost.
This can be solved as a minimum cost flow problem on the terrain graph.
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6. Additional applications, with reference sources, are given in the following table.

application references

medical tomography [AhMaOr93], [AhEtal95]
automatic chromosome classification [AhMaOr93], [AhEtal95]
racial balancing of schools [AhMaOr93], [AhEtal95]
controlled matrix rounding [AhMaOr93], [AhEtal95]
building evacuation [AhMaOr93], [AhEtal95]
just-in-time scheduling [AhMaOr93], [AhEtal95]
telephone operator scheduling [AhMaOr93], [AhEtal95]
nurse staff scheduling [AhMaOr93]
machine scheduling [AhMaOr93]
production scheduling [EvMi92]
equipment replacement [AhMaOr93]
microdata file merging [EvMi92], [AhEtal95]
warehouse layout [AhMaOr93], [AhEtal95]
facility location [AhMaOr93], [AhEtal95]
determining service districts [EvMi92], [AhMaOr93], [AhEtal95]
capacity expansion [AhMaOr93]
vehicle fleet planning [AhMaOr93]

10.6 COMMUNICATION NETWORKS

Modern communication networks consist of two main components. Using high-capacity
links, the backbone network interconnects switching centers and gateway vertices that
carry and direct traffic through the communication system. Local access networks
transfer traffic between the backbone network and the end users. This section presents
several optimization models used in the design of communication networks.

10.6.1 CAPACITATED MINIMUM SPANNING TREE PROBLEM

The capacitated minimum spanning tree problem arises in the design of local access
tree networks in which end users generate and retrieve data from other sources, always
through a specified control center (e.g., a communication switch of the backbone net-
work). In this problem, user sites are to be interconnected at minimum cost by means
of subtrees, which are in turn connected to the control center. The total traffic in each
subtree is limited by a capacity constraint.

Definitions:

Let N = {1, 2, . . . , n} be a set of terminals and let 0 denote a specified control center.
The complete undirected graph G = (V,E) has vertex set V = N ∪ {0} and contains
all possible edges between distinct vertices of V (§8.1.3).

The cost of connecting distinct vertices i, j ∈ V is cij = ce, where e = (i, j) ∈ E.

c© 2000 by CRC Press LLC



The demand wi at vertex i ∈ N is the amount of traffic to be transmitted to the
control center.

Relative to a spanning tree T (§9.2.1) of G, vertex j is a root vertex if it is adjacent to
vertex 0. Vertex i is assigned to root vertex j if j is on the unique path in T joining i
to the control center. The set of all vertices assigned to j defines the subtree Tj of T .
This subtree has demand D(Tj) =

∑
i∈Tj

wi.

A capacitated minimum spanning tree (CMST) is a spanning tree T of G com-
posed of subtrees Tj1 , Tj2 , . . . , Tjr such that:

•
∑
e∈T

ce is minimum;

• the demand in each Tj is at most Q, a specified capacity.

Let i, j ∈ N and define

yj =
{ 1 if vertex j is a root vertex

0 otherwise

xij =
{ 1 if vertex i is assigned to root vertex j

0 otherwise
and for i �= j

zij =
{

1 if (i, j) ∈ T
0 otherwise.

Given a vector z, the subgraph G(N,Ez) of G induced by z has vertex set N and
edges e ∈ Ez if ze > 0. Similarly, given a vector (z, y), the subgraph induced by (z, y),
written G(V,Ezy), has vertex set V ; it contains every edge of Ez plus each edge from j
to 0 where yj > 0.

Relative to a given vector z, C(i, j) denotes the set of all i-j cuts [S, S] in the graph
G(N,Ez). (See §10.4.1.)

If S ⊆ V , then E(S) = { (i, j) ∈ E | i, j ∈ S } contains all edges between vertices of S.

For I ⊂ N , let b(I) be the minimum number of subtrees needed to pack all terminals
in I. That is, b(I) is the optimal solution to the bin packing problem (§15.3.2) with
bins of capacity Q and items of size wi for every i ∈ I.
A set S ⊂ N is a cover if

∑
i∈S wi > Q. If also (

∑
i∈S wi) − wk ≤ Q for all k ∈ S,

then S is a minimal cover.

Facts:

1. The CMST problem has the following 0-1 integer linear programming formulation
(§15.1.8):

min
{
n−1∑
i=1

n∑
j=i+1

cijzij +
n∑
j=1

c0jyj

}
subject to:

n∑
j=1

xij = 1, for all i ∈ {1, 2, . . . , n}

n∑
i=1

wixij ≤ Qyj , for all j ∈ {1, 2, . . . , n}

xij ≤ yj , for all i, j ∈ {1, 2, . . . , n}
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Algorithm 1: Savings heuristic.

input: undirected network G, control center 0, capacity limit Q
output: an approximate capacitated minimum spanning tree T ∗

U := {1, 2, . . . , n}
Tu := {u} for u ∈ U
while true

for u ∈ U
compute fu, the minimum cost of connecting the control center 0 to com-

ponent Tu
S := ∅
for u, v ∈ U (u �= v)

if D(Tu ∪ Tv) ≤ Q then
compute suv, the difference between max{fu, fv} and the minimum cost

of connecting Tu to Tv
if suv > 0 then S := S ∪ {(u, v)}

if S = ∅ then return
else

choose u0, v0 such that su0v0 = max{ suv | (u, v) ∈ S }
merge Tu0 and Tv0 , creating a new subtree indexed by min{u0, v0}, and

update U appropriately

xij ≤
∑
e∈K

ze, for all i, j ∈ {1, 2, . . . , n} (i �= j) and for all K ∈ C(i, j)

∑
e
ze +

∑
j

yj = n

xij ∈ {0, 1}, for all i, j ∈ {1, 2, . . . , n}
yj ∈ {0, 1}, for all j ∈ {1, 2, . . . , n}
zij ∈ {0, 1}, for all i, j ∈ {1, 2, . . . , n} (i �= j).

2. In Fact 1:
• the first set of constraints ensures that each vertex is assigned to a root vertex;
• the second set of constraints ensures that the flow through any root vertex is no

more than the capacity Q;
• third set of constraints ensures that vertex i can be assigned to vertex j only if j

is a root vertex;
• the fourth set of constraints ensures that if vertex i is assigned to root vertex j,

then there must be a path between i and j;
• the fifth set of constraints guarantees that G(V,Ezy) is a tree.

3. Savings heuristic: This greedy heuristic (Algorithm 1) begins with n components,
each a single vertex, and successively merges pairs of components to reduce the total
cost by the largest amount.

4. The quantity suv computed in Algorithm 1 represents the savings in joining sub-
trees Tu and Tv to one another, compared to joining both to vertex 0.

5. The savings heuristic, developed by Esau and Williams [EsWi66], was one of the
first heuristics developed for the CMST problem. It is surprisingly effective in practice.
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Algorithm 2: Optimal tour partitioning heuristic.

input: undirected network G, control center 0, capacity limit Q
output: an approximate capacitated minimum spanning tree T ∗

find a traveling salesman tour on the vertex set V = N ∪ {0}
let 0 = x(0), x(1), . . . , x(n) be an ordering of the vertices on the tour
construct the directed graph H with vertex set V and arc costs Cjk:

if j < k and
∑k
i=j+1 wx(i) ≤ Q then Cjk := cx(0),x(j+1) +

∑k−1
i=j+1 cx(i),x(i+1)

else Cjk := ∞
find a shortest path P from x(0) to x(n) in H
use P = [x(0), x(u), x(v), . . . , x(t), x(n)] to define T ∗ via the subtrees
{x(0), x(1), x(2), . . . , x(u)}, {x(0), x(u+1), x(u+2), . . . , x(v)}, . . . ,

{x(0), x(t+1), x(t+2), . . . , x(n)}

6. Optimal tour partitioning heuristic: This heuristic (Algorithm 2), developed by
Altinkemer and Gavish [AlGa88], is based on finding a traveling salesman tour (§10.7.1)
in a certain derived graph.

7. In Algorithm 2, every path from x(0) to x(n) in the directed graph H generates a
collection of subtrees satisfying the capacity restriction.

8. The performance of Algorithm 2 depends on the initial traveling salesman tour
chosen. If an optimal traveling salesman tour is used, then the worst-case relative error
bound of the algorithm is 4 − 4

Q . That is, Ẑ/Z∗ ≤ 4 − 4
Q , where Ẑ is the cost of the

heuristic solution generated and Z∗ is the cost of the optimal design.
9. Exact algorithms: A number of exact algorithms are based on mathematical pro-
gramming approaches:

• Gavish [Ga85] develops a Lagrangian relaxation based algorithm and uses it to
solve problems with homogeneous (unit) demands;

• Araque, Hall, and Magnanti [ArHaMa90] derive valid inequalities and facets for
the CMST problem;

• Hall [Ha96] and Bienstock, Deng, and Simchi-Levi [BiDeSi94] develop valid in-
equalities and facets and use them in a branch-and-cut algorithm.

10. The CMST formulation given in Fact 1 can be improved by adding the various
inequalities listed in Facts 11-14.
11. Knapsack inequalities: Let S be a minimal cover. For every l ∈ N , the inequality∑

i∈S
xil ≤ (|S| − 1)yl

is valid for the CMST problem.
12. Subtour elimination inequalities: For any I ⊂ N , let P = {S1, S2, . . . , S|I|} be a
partition of N − I into |I| subsets, some of which may be empty. For every i ∈ I, let Si
be the unique subset from P associated with it. Then∑

e∈E(I)

ze +
∑
j∈I

yj +
∑
i∈I

∑
j∈Si

xij ≤
∑
i∈I

∑
j∈N

xij

is valid for the CMST problem.
13. Generalized subtour elimination inequalities: For any I ⊂ N , the inequality∑

e∈E(I)

ze ≤ |I| − b(I)

is valid for the CMST problem.
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14. Cluster inequalities: Consider p sets of vertices S1, S2, . . . , Sp ⊂ N with p ≥ 3. If
the conditions:

• S0 =
p⋂
i=1

Si �= ∅, and Si − S0 �= ∅ for i = 1, 2, . . . , p

•
∑

i∈Sk∪Sl

wi > Q for all 1 ≤ k < l ≤ p

are satisfied, then
p∑
i=1

∑
e∈E(Si)

ze ≤
p∑
i=1

|Si| − 2p+ 1

is valid for the CMST problem.

Examples:
1. The following figure presents data for a problem involving n = 5 terminals and a
control center 0. Part (a) gives the cost cij of constructing each edge (i, j) as well as
the demand wi at each vertex i. The objective is to construct a minimum cost set of
subtrees connected to vertex 0, in which the demand generated by any subtree is at most
Q = 150. Part (b) shows a feasible capacitated spanning tree T , which contains two
root vertices (at 2 and 3). The total demand in subtree T2 is w2 + w4 + w5 = 150 ≤ Q
and the total demand in subtree T3 is w1 + w3 = 95 ≤ Q. The spanning tree T has
total cost 21, the sum of the displayed edge costs cij .

2. Algorithm 1 is applied to the problem data of the figure of Example 1. To begin, five
subtrees are selected, each a single vertex and each joined to the control center 0. Thus,
f1 = 8, f2 = 5, f3 = 7, f4 = 6, and f5 = 6. Then s12 = 8 − 2 = 6, s13 = 8 − 4 = 4, . . . ,
s35 = 7 − 5 = 2, and s45 = 6 − 4 = 2. The largest savings occurs for (1, 2) so T1

and T2 are merged, giving the new tree T1 with root vertex 2 and the single edge (1, 2).
Next, the fu and suv are updated. For example, f1 = min{8, 5} = 5, f3 = 7, and
s13 = 7−min{c13, c23} = 7−4 = 3. The largest savings is found to be s14, so T1 and T4

are merged, giving the new tree T1 with root vertex 2 and edges (1, 2) and (2, 4). At
the next stage T3 and T5 are merged, giving the new tree T3 with root vertex 5 and
the single edge (3, 5). Since no further merging can take place (without violating the
capacity constraint), the savings heuristic terminates with the spanning tree shown in
the following figure, having total cost 20.
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10.6.2 CAPACITATED CONCENTRATOR LOCATION PROBLEM

The capacitated concentrator location problem is frequently used to locate concentrators
in local access networks and switching centers in the backbone network. In either case,
concentrators of fixed capacity are to be located at a subset of possible sites. Each
given terminal of the network is to be connected to exactly one concentrator, so that
the concentrator’s capacity is not exceeded. A feasible configuration having minimum
total cost is then sought.

Definitions:

N = {1, 2, . . . , n} is a specified set of terminals, where terminal i uses wi units of
capacity. M = {1, 2, . . . ,m} is a given set of possible sites for concentrators, each of
fixed capacity Q.

If a concentrator is located at site j, the set-up cost is vj , for j ∈M . The connection
cost of connecting terminal i to a concentrator at site j is cij , for i ∈ N and j ∈M .

The capacitated concentrator location problem (CCLP) involves finding loca-
tions for concentrators and an assignment of terminals to concentrators such that:

• the sum of set-up and connection costs is minimum;
• the total capacity required by the terminals assigned to each concentrator is at

most Q.

Define

yj =
{ 1 if a concentrator is located at site j

0 otherwise
and

xij =
{ 1 if terminal i is connected to a concentrator at site j

0 otherwise.

Facts:
1. The CCLP has the following 0-1 integer linear programming formulation (§15.1.8):

min
{
n∑
i=1

m∑
j=1

cijxij +
m∑
j=1

vjyj

}
subject to

m∑
j=1

xij = 1 for all i ∈ N

n∑
i=1

wixij ≤ Qyj for all j ∈M

xij ≤ yj for all i ∈ N, j ∈M
xij ∈ {0, 1} for all i ∈ N, j ∈M
yj ∈ {0, 1} for all j ∈M .

2. In Fact 1:
• the first set of constraints ensures that each terminal is connected to exactly one

concentrator;
• the second set of constraints ensures that the concentrator’s capacity is not ex-

ceeded;
• third set of constraints ensures that terminal i can be assigned to a concentrator

at site j only if a concentrator is located at site j.
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3. A number of algorithms have been proposed for this problem, most of which are
based on a Lagrangian relaxation approach, while some are based on polyhedral analysis
[NeWo88].

Example:

1. The following figure shows the data for a problem with four terminals i and three
possible sites j for locating concentrators. Let the capacity of any concentrator be
Q = 30. One feasible configuration is to connect terminals 2, 3, and 4 to a concentrator
at site 2, and to connect terminal 1 to a concentrator at site 3. The concentrator at
site 2 has total capacity w2 + w3 + w4 = 29 ≤ 30 and the concentrator at site 3 has
total capacity w1 = 11 ≤ 30. The connection cost is c22 + c32 + c42 + c13 = 15 and the
set-up cost is v2 +v3 = 15, giving a total cost of 30. Another feasible configuration is to
connect terminals 2 and 4 to a concentrator at site 1, and to connect terminals 1 and 3
to a concentrator at site 3. The connection cost is 12 and the set-up cost is 17, giving
the smaller total cost 29.

10.6.3 CAPACITY ASSIGNMENT PROBLEM

Fiber-optic and opto-electronic cable technologies, together with traditional copper ca-
bles, provide many possible choices for link capacities and offer economies of scale. In
the capacity assignment problem, a point-to-point communication demand is given be-
tween various pairs of vertices of the (typically, backbone) network. The objective is to
install links of several types (capacities) to transfer all communication demand without
violating link capacities and to do so at minimum total cost. The special case involving
two types of transmission media is discussed here.

Definitions:

Let G = (V,E) be an undirected graph with vertex set V and edge set E.

Each communication demand is represented by a commodity k ∈ K, where K is the
set of commodities. Commodity k ∈ K has a required flow in G of dk units between its
origin vertex O(k) and its destination vertex D(k).

Two types of cables can be installed: low capacity cables have capacity L, and high
capacity cables have capacity H. Let ae (be) be the installation cost for each low
capacity (high capacity) cable on edge e ∈ E.

The capacity assignment problem (CAP) involves finding a mix of low and high
capacity cables for each edge of G such that:

• the total installation cost is minimum;
• all communication demands dk are met;
• the flow on each edge does not exceed its installed capacity.
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Let xe = xij (ye = yij) be the number of low capacity (high capacity) cables installed
on edge e = (i, j).

Let fkij be the amount of commodity k that flows from i to j on edge (i, j).

Facts:
1. The CAP has the following mixed-integer linear programming formulation (§15.1.8):

min
{ ∑
e∈E

(aexe + beye)
}

subject to ∑
j∈V

fkj,O(k) −
∑
j∈V

fkO(k),j = −dk for all k ∈ K
∑
j∈V

fkj,D(k) −
∑
j∈V

fkD(k),j = dk for all k ∈ K
∑
j∈V

fkji −
∑
j∈V

fkij = 0 for all k ∈ K and for all i ∈ V − {O(k), D(k)}
∑
k∈K

(fkij + fkji) ≤ Lxij +Hyij for all (i, j) ∈ E

xe, ye ≥ 0 integer for all e ∈ E
fkij , f

k
ji ≥ 0 for all (i, j) ∈ E and for all k ∈ K.

2. In Fact 1:
• the first three sets of constraints are the standard mass balance constraints

(§10.4.1);
• the next set of constraints enforces the capacity constraint on the total flow

through edge e = (i, j).

3. Various models and algorithms for capacity assignment problems are discussed in
[MaMiVa95] and [BiGu95].

Example:
1. In the network G of the following figure, the costs (ae, be) are shown for each edge e;
here L = 2 and H = 5. There are k = 3 communication demands (commodities):
d1 = 12 between vertices 1 and 4, d2 = 10 between vertices 2 and 5, and d3 = 9 between
vertices 1 and 5. A feasible assignment of flows and capacities to edges is displayed in
part (b) of the following figure. For instance, edge (1, 3) carries 7 units of commodity 1
and 9 units of commodity 3, for a total flow of 16 units. There are 3 high capacity cables
and 1 low capacity cable installed on this edge giving a total capacity of 3H + L = 17,
at a cost of 3 · 5 + 1 · 3 = 18. The total installation cost for this assignment is 114.
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10.6.4 MODELS FOR SURVIVABLE NETWORKS

The introduction of fiber-optic technology has provided high capacity links and makes
it possible to design communication networks with low-cost sparse topologies. Unfortu-
nately, sparse networks are very vulnerable; a failure in one edge or vertex can disconnect
many users from the rest of the network. This is the prime motivation for studying the
design of survivable networks.

Definitions:

Let G = (V,E) be an undirected graph with vertex set V and edge set E.

The cost of establishing edge e ∈ E is given by ce. The cost of a subnetwork H = (V, F )
of G is

∑
e∈F

ce.

Associated with every vertex s ∈ V is a corresponding number rs, indicating a desired
level of redundancy.

A spanning subnetwork H = (V, F ) of G is said to satisfy the edge (vertex) connec-
tivity requirement if for every distinct pair s, t ∈ V there are at least rst = min{rs, rt}
edge-disjoint (vertex-disjoint) paths between s and t in H.

Define xe, for e = (i, j), to be the number of edges connecting vertex i to vertex j.

Facts:

1. The problem of designing a minimum cost subnetwork that satisfies all edge connec-
tivity requirements has the following integer linear programming formulation (§15.1.8):

min
{ ∑
e∈E

cexe

}
subject to ∑

e∈[S,S]

xe ≥ max
(i,j)∈[S,S]

rij , for all S ⊂ V , S �= ∅

xe ≥ 0 integer, for all e ∈ E.

2. The model in Fact 1, analyzed by Goemans and Bertsimas [GoBe93], allows multiple
edges connecting the same two vertices.

3. Grötschel, Monma, and Stoer [GrMoSt92] analyze a related survivability model in
which multiple edges are forbidden. In this case, xe is restricted to be 0 or 1 in the
formulation of Fact 1.

Examples:

1. Part (a) of the following figure shows a network G having four vertices and six edges;
the cost ce of each edge e is also displayed.
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Suppose that the specified redundancies are r1 = 1 and r2 = r3 = r4 = 2. The spanning
subnetwork H shown in part (b), with cost 22, satisfies the vertex connectivity require-
ment. For example, there are min{r3, r4} = 2 vertex-disjoint paths joining vertices 3
and 4 in H: namely, [3, 2, 4] and [3, 1, 4]. Also, there are min{r2, r4} = 2 vertex-disjoint
paths joining vertices 2 and 4: [2, 4] and [2, 3, 1, 4].

2. Part (c) of the figure for Example 1 shows another spanning subnetwork H ′ of
cost 20 that satisfies the stated vertex connectivity requirement. For example, there are
min{r2, r4} = 2 vertex-disjoint paths joining vertices 2 and 4 in H ′: [2, 4] and [2, 3, 4].
Notice that there is min{r1, r3} = 1 path joining 1 and 3 in H ′, but not two such
vertex-disjoint paths.

10.7 DIFFICULT ROUTING AND ASSIGNMENT PROBLEMS

An exact algorithm for a combinatorial optimization problem is a procedure that pro-
duces a verifiable optimal solution to every instance of this problem. A heuristic algo-
rithm produces a feasible (although not necessarily optimal) solution to each problem
instance. This section discusses exact and heuristic approaches to three classical com-
binatorial optimization problems: the traveling salesman problem, the vehicle routing
problem, and the quadratic assignment problem. These three problems have in com-
mon the goal of minimizing the cost of movement or travel, generally of people or of
materials.

10.7.1 TRAVELING SALESMAN PROBLEM

In the traveling salesman problem, a salesman starts out from a home city and is to
visit in some order a specified set of cities, returning home at the end. This journey
is to be designed to incur the minimum total cost (or distance). While the traveling
salesman problem has attracted the attention of many mathematicians and computer
scientists, it has resisted attempts to develop an efficient solution algorithm.

Definitions:

Let G = (V,E) be a complete graph (§8.1.3) with V = {1, 2, . . . , n} the set of vertices
and E the set of all edges joining pairs of distinct vertices.

Each edge (i, j) ∈ E has an associated cost or distance cij .

The distance between set S ⊆ V and vertex j �∈S is dS(j) = min{ cij | i ∈ S }.
A Hamilton cycle or tour in G is a cycle passing through each vertex i ∈ V exactly
once. (See §8.4.4.)

The cost of a cycle C is
∑

(i,j)∈C
cij .

The traveling salesman problem (TSP) requires finding a Hamilton cycle in G of
minimum total cost.

The costs (distances) satisfy the triangle inequality if cij ≤ cik + ckj holds for all
distinct i, j, k ∈ V .
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In a Euclidean TSP, each vertex i corresponds to a point xi in R2 and cij is the
distance between xi and xj , relative to the standard real inner product (§6.1.4).

Tour construction procedures generate an approximately optimal TSP tour from the
costs cij .

Tour improvement procedures attempt to find a smaller cost tour given an initial
(often random) tour.

Composite (hybrid) procedures construct a starting tour from one of the tour con-
struction procedures and then attempt to find a smaller cost tour using one or more of
the tour improvement procedures.

A k-change or k-opt exchange of a given tour is obtained by deleting k edges from
the tour and adding k other edges to form a new tour. A tour is k-optimal (k-opt) if
it is not possible to improve the tour via a k-change.

Metaheuristics are general-purpose procedures (such as tabu search, simulated an-
nealing, genetic algorithms, or neural networks) for heuristically solving difficult opti-
mization problems; these general methodologies for searching complex solution spaces
can be specialized to handle specific types of optimization problems.

Facts:

1. The TSP is possibly the most well-known network optimization problem, and it
serves as a prototype for difficult combinatorial optimization problems in the theory of
algorithmic complexity (§16.5.2).

2. The first use of the term “traveling salesman problem” in a mathematical context
appears to have occurred in 1931–1932.

3. There are numerous applications of the TSP: drilling of printed circuit boards, clus-
ter analysis, sequencing of jobs, x-ray crystallography, archaeology, cutting stock prob-
lems, robotics, and order-picking in a warehouse (see Examples 7-11).

4. There are (n−1)!
2 different Hamilton cycles in the complete graph G. This means

that brute force enumeration of all Hamilton cycles to solve the TSP is not practical.
(See Example 1.)

5. The TSP is an NP-hard optimization problem (§16.5.2). This remains true even
when the distances satisfy the triangle inequality or represent Euclidean distances.

6. If certain edges (i, j) of G are missing, then cij can be assigned a sufficiently large
value M — for example, M greater than the sum of the n largest edge costs. The TSP
can then be solved on the complete graph G. If the (exact) solution obtained has any
edges with cost M , then there is no Hamilton cycle in the original graph.

7. Asymmetric traveling salesman problem: Certain applications require finding a
minimum cost directed Hamilton cycle in a directed network H; here it is not required
that cij = cji holds for all arcs (i, j) of H. This asymmetric (directed) TSP can be
transformed into a TSP problem on an undirected network; see [JüReRi95].

8. A seminal paper of G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson (1954) solved
a 49-city TSP to optimality by adding cutting planes (§15.1.8) to a linear programming
relaxation of the problem.

9. Although ingenious exact algorithms for the TSP have been proposed by numerous
authors, most encounter problems with storage and/or running time for cases with more
than five hundred vertices.
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Algorithm 1: Nearest neighbor heuristic.

input: undirected network G = (V,E)
output: a traveling salesman tour

i0 := any vertex of G {the starting vertex}
W := V − {i0}
P := ∅
v := i0
while W �= ∅

let k ∈W be such that cvk = min{ cvj | j ∈W }
add (v, k) to P
W := W − {k}
v := k

add (k, i0) to the path P to produce a tour

10. Exact approaches to the TSP are computationally intensive, especially for large
networks. Thus a large number of heuristic approaches have been developed to produce
useful, but not necessarily optimal, solutions to the TSP.

11. The wealth of TSP heuristics can be categorized into four broad classes — tour con-
struction procedures, tour improvement procedures, composite procedures, and meta-
heuristics.

12. Nearest neighbor heuristic: This construction method (Algorithm 1) builds up a
tour by successively adding new vertices that are closest to a growing path.

13. Using appropriate data structures, Algorithm 1 can be implemented to run inO(n2)
time.

14. Suppose zNN is the cost of a tour constructed by the nearest neighbor heuristic
and zOPT is the cost of an optimal TSP tour. Then there are examples for which zNN

zOPT

is Θ(log n). This means that the cost of the tour produced by Algorithm 1 cannot be
bounded above by a constant times the cost of an optimal TSP tour.

15. Nearest insertion heuristic: This construction method (Algorithm 2) builds up a
tour from smaller cycles by successively adding a vertex that is closest to the current
cycle C. The new vertex is inserted between two successive vertices in the cycle, in the
best possible way.

16. Using appropriate data structures, Algorithm 2 can be implemented to run inO(n2)
time.

17. Suppose zNI is the cost of a tour constructed by the nearest insertion heuristic
and that zOPT is the cost of an optimal TSP tour. If the values cij satisfy the triangle
inequality, then zNI

zOPT
≤ 2 holds for all TSP instances.

18. Clarke and Wright savings heuristic: This construction method (Algorithm 3)
builds up a tour by successively adding an edge (i, j) having the largest savings sij , the
benefit from directly connecting vertices i and j compared with joining each directly to
a central vertex.

19. Using appropriate data structures, Algorithm 3 can be implemented to run in
O(n2 log n) time.
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Algorithm 2: Nearest insertion heuristic.

input: undirected network G = (V,E)
output: a traveling salesman tour

i := any vertex of G {the starting vertex}
j := subscript such that cij = min{ cir | r ∈ V − {i} }
S := {i, j}
C := {(i, j), (j, i)}
while S �= V

let k be such that dS(k) = min{ dS(r) | r ∈ V − S }
S := S ∪ {k}
find an edge (u, v) ∈ C so cuk + ckv − cuv = min{ cxk + cky − cxy | (x, y) ∈ C }
add (u, k) and (k, v) to C, and remove (u, v) from C

Algorithm 3: Clarke and Wright savings heuristic.

input: undirected network G
output: a traveling salesman tour

select any vertex (for example, 1) as the starting vertex
compute sij = c1i + c1j − cij for distinct i, j ∈ V − {1}
order the savings si1j1 ≥ si2j2 ≥ · · · ≥ sitjt
P := ∅
k := 0
while |P | < n− 2
k := k + 1
if P ∪ {(ik, jk)} is a vertex-disjoint union of paths then add (ik, jk) to P

connect the endpoints of P to vertex 1, forming a tour

Algorithm 4: Christofides’ heuristic.

input: undirected network G
output: a traveling salesman tour

T := minimum spanning tree of G (see §10.1)
let S contain all odd-degree vertices in T
find a minimum cost perfect matching M (§10.2) relative to vertices S of G and

using the costs cij
obtain a closed trail C by adding M to the edges of T
remove all edges but two incident with vertices of degree greater than 2 by ex-

ploiting the triangle inequality, transforming C into a tour

20. Christofides’ heuristic: This construction method (Algorithm 4) builds up a tour
from a minimum spanning tree to which are added certain other small cost edges. It is
assumed that the costs satisfy the triangle inequality.

21. Using appropriate data structures, Algorithm 4 can be implemented to run inO(n3)
time.
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Algorithm 5: General edge-exchange heuristic.

input: undirected network G, initial tour
output: a traveling salesman tour

repeat improve the tour using an allowable edge exchange
until no additional improvement can be made

22. Suppose zC is the cost of a tour constructed by Christofides’ heuristic and zOPT is
the cost of an optimal TSP tour. If the cij satisfy the triangle inequality, then zC

zOPT
≤ 3

2

holds for all TSP instances.

23. The following table [JüReRi95] compares several of the most popular tour con-
struction procedures on a set of 30 Euclidean TSPs from the literature with known
optimal solutions. These problems range in size from 105 to 2392 vertices. Surprisingly,
the savings heuristic is the best tour construction heuristic of those tested. These results
are consistent with those of other studies.

heuristic average percent above optimality

nearest neighbor 24.2
nearest insertion 20.0

Christofides 19.5
modified nearest neighbor 18.6

cheapest insertion 16.8
random insertion 11.1
farthest insertion 9.9

savings 9.8
modified savings 9.6

24. The best known tour improvement heuristics for the TSP involve edge exchanges
(Algorithm 5). Often the initial tour is chosen randomly from the set of all possible
tours.

25. Specialized versions of Algorithm 5 typically use 2-opt exchanges, 3-opt exchanges,
and more complicated Lin-Kernighan [JüReRi95] edge exchanges. Such exchange tech-
niques have been used to generate excellent solutions to large-scale TSPs in a reasonable
amount of time.

26. Edge-exchange procedures are typically more expensive computationally than tour
construction procedures.

27. Tour improvement procedures typically require a “downhill move” (i.e., a strict
reduction in cost) in order for edge exchanges to be made. As a result, they terminate
with a local minimum solution.

28. Since the 2-opt exchange procedure is weaker than the 3-opt procedure, Algo-
rithm 5 will generally terminate at an inferior local optimum using 2-opt exchanges
instead of 3-opt exchanges. The Lin-Kernighan procedure will generally terminate with
a better local optimum than will a 3-opt exchange procedure.
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29. In practice, it often makes sense to apply a composite procedure. The strategy is
to get a good initial solution rapidly (by tour construction), which is then improved by
an edge-exchange procedure.

30. The following table [JüReRi95] compares several composite procedures on the same
sample problems described in Fact 23. In each case, the initial tour is constructed using
the nearest neighbor heuristic (Algorithm 1). The improvement procedures include
2-opt, 3-opt, two variants of Lin-Kernighan, and iterated Lin-Kernighan. Iterated Lin-
Kernighan is the most computationally burdensome of the edge-exchange procedures,
but it consistently obtains results that are within 1% of optimality.

heuristic average percent above optimality

2-opt 8.3
3-opt 3.8

Lin-Kernighan (variant 1) 1.9
Lin-Kernighan (variant 2) 1.5
Iterated Lin-Kernighan 0.6

31. Metaheuristics: Unlike Algorithm 5 (which permits only downhill moves), meta-
heuristics [OsKe95] allow the possibility of nonimproving moves. For example, uphill
moves can be accepted either randomly (simulated annealing) or based upon deter-
ministic rules (threshold accepting). Memory can be incorporated in order to prevent
revisiting local minima already evaluated and to encourage discovering new ones (tabu
search).

Other metaheuristics such as evolutionary strategies, genetic algorithms, and neural
networks have also been applied to the TSP. To date, neural networks and tabu search
have been less successful than the other approaches.

32. For a detailed history of the traveling salesman problem see the first chapter of
[LaEtal85].

33. Software, research papers, and other heuristic approaches for the traveling salesman
and related problems are described on the web pages:

http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB home.html

http://www.netlib.org/toms/750

34. A library of sample problems, with their best known solutions, is available at:

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft
/TSPLIB95/TSPLIB.html

Examples:

1. Brute force enumeration: Suppose that a TSP solution is required for the complete
graph G on n = 25 cities. By Fact 4, there are 24!

2 ≈ 3.1 × 1023 Hamilton tours in the
graph G. Even with a supercomputer that is capable of finding and evaluating each
such tour in one nanosecond (10−9 seconds), it would take over 9.8 million years of
uninterrupted computations to determine an optimal TSP tour.

This example illustrates how quickly brute force enumeration of Hamilton tours
becomes impractical.
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2. Part (a) of the following figure shows the costs cij for a five city TSP. An initial tour
can be constructed using the nearest neighbor heuristic (Algorithm 1). Let the initial
vertex be i0 = 1, so W = {2, 3, 4, 5}. The closest vertex of W to 1 is 2, with c12 = 1,
so edge (1, 2) is added to the current path. A closest vertex of W = {3, 4, 5} to 2 is 5,
so edge (2, 5) is added to the path. Continuing in this way, edges (5, 3) and edge (3, 4)
are added, giving the path P = [1, 2, 5, 3, 4] and the tour [1, 2, 5, 3, 4, 1] with total cost
1 + 3 + 2 + 3 + 5 = 14. This tour is displayed in part (b).

3. Suppose that the nearest insertion heuristic (Algorithm 2) is applied to the problem
data in part (a) of the figure for Example 2, starting with the initial vertex i = 1. The
nearest vertex to i is j = 2, giving the initial cycle C = {(1, 2), (2, 1)}. The closest vertex
to this cycle is k = 3, producing the new cycle C = { (1, 2), (2, 3), (3, 1)}. Relative to
S = {1, 2, 3}, dS(4) = 3 and dS(5) = 2, so vertex 5 will next be added to the cycle.
Since c15 + c52− c12 = 6, c25 + c53− c23 = 2, and c15 + c53− c13 = 4, vertex 5 is inserted
between vertices 2 and 3 in the current cycle, giving C = {(1, 2), (2, 5), (5, 3), (3, 1)}.
Finally, vertex 4 is added between vertices 2 and 5, producing the tour C = {(1, 2),
(2, 4), (4, 5), (5, 3), (3, 1)} with total cost 12.

4. The savings heuristic (Algorithm 3) can alternatively be applied to the problem
specified in part (a) of the figure of Example 2. The savings s23 = c12 + c13 − c23 =
1 + 2 − 3 = 0. Similarly, s24 = 2, s25 = 2, s34 = 4, s35 = 4, and s45 = 6. This produces
the ordered list of edges [(4, 5), (3, 4), (3, 5), (2, 4), (2, 5), (2, 3)]. Considering edges in
turn from this list gives the path P = [3, 4, 5, 2]. Adding edges from the endpoints of P
to vertex 1 produces the tour [1, 3, 4, 5, 2, 1] with total cost 12.

5. Christofides’ heuristic (Algorithm 4) is now applied to the problem given in part (a)
of the figure of Example 1. A minimum spanning tree T consists of the following edges:
(1, 2), (1, 3), (3, 5), (3, 4); see part (a) of the following figure. Vertices 2, 3, 4, 5 have
odd degree and {(2, 4), (3, 5)} constitutes a minimum cost perfect matching on these
vertices. Adding these edges to those of T produces the multi-graph in part (b) of the
following figure. Replacing edges (4, 3) and (3, 5) having aggregate cost 5 by the single
edge (4, 5) of cost 3 produces the tour in part (c), having total cost 12.
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6. To illustrate edge exchanges, consider the tour of cost 14 in part (b) of the figure
of Example 2. Removal of edges (1, 4) and (3, 5) disconnects the cycle into two disjoint
paths. Join the endpoints of one path to the endpoints of the other with edges (1, 3)
and (4, 5) to create a new tour [1, 2, 5, 4, 3, 1] of smaller cost 12. No further pairwise
exchanges reduce the cost of this tour, so this tour is a 2-opt local minimum solution.

7. Delivery routes: A delivery truck must visit a set of customers in a city and then
return to the central garage after completing the route. Determining an optimal (i.e.,
shortest time) delivery route can be modeled as a traveling salesman problem on a city
street network. Here the vertices represent the customer locations and the cost cij of
edge (i, j) is the driving time between locations i and j.

8. Printed circuit boards: One application of the TSP occurs in fabricating printed
circuit boards. Holes at a number of fixed locations have to be drilled through the
board. The objective is to minimize the total time needed to move the drilling head
from position to position. Here the vertices i correspond to the locations of the holes
as well as the starting position of the drill. The cost cij represents the time required to
move the drilling head from i and reposition it at j. A minimum cost traveling salesman
tour gives an optimal way of sequencing the drilling of the holes.

9. Order-picking : In a warehouse, a customer order requires a certain subset of the
items stored there. A vehicle must be sent to pick up these items and then return to
the central dispatch location. Here the vertices are the locations of the items as well
as the central dispatch location. The costs are the times needed to move the vehicle
from one location to the other. A minimum cost traveling salesman tour then gives an
optimal order in which to retrieve items from the warehouse.

10. Job sequencing : In a factory, materials must be processed by a series of operations
on a machine. The set-up time between operations varies depending on the order in
which the operations are scheduled. Determining an optimal ordering that minimizes
the total set-up time can be formulated as a traveling salesman problem.

11. Additional applications, with reference sources, are given in the following table.

application references

dating archaeological finds [AhEtal95]
DNA mapping [AhEtal95]
x-ray crystallography [JüReRi95]
engine design [AhEtal95]
robotics [JüReRi95]
clustering [LaEtal85], [AhEtal95]
cutting stock problems [HoPa96]
aircraft route assignment [HoPa96]
computer wiring [LaEtal85], [EvMi92], [JüReRi95]

10.7.2 VEHICLE ROUTING PROBLEM

Private firms and public organizations that distribute goods or provide services to cus-
tomer locations rely on a fleet of vehicles. Given demands for service at numerous
points in a transportation network, the vehicle routing problem requires determining
which customers are to be serviced by each vehicle and the order in which customers
on a route are to be visited.
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Definitions:

Let G = (V,E) be a complete graph with V = {1, 2, . . . , n} the set of vertices and E
the set of all edges joining pairs of distinct vertices (§8.1.3).

Vertex 1 is the central depot, whereas the other vertices represent customer loca-
tions. Customer location i has a known demand wi.

Each edge (i, j) ∈ E has an associated distance or cost cij .

There are also available a number of vehicles, each having the same capacity Q.

A route is sequence of customers visited by a vehicle that starts and ends at the central
depot.

The vehicle routing problem (VRP) requires partitioning the set of customers into
a set of delivery routes such that:

• the total distance traveled by all vehicles is minimum;
• the total demand generated by the customers assigned to each route is ≤ Q.

In a construction heuristic for the VRP, subtours are joined as long as the resulting
subtour does not violate the vehicle capacity.

An improvement heuristic employs successive edge exchanges that reduce the total
distance without violating any vehicle capacity constraint.

A two-phase heuristic implements a cluster first-route second philosophy, in which
customers are first partitioned into groups Gk with

∑
i∈Gk

wi ≤ Q, after which a minimum

distance sequencing of customers is found within each group.

Facts:

1. The TSP (§10.7.1) is a special case of the VRP in which there is a single vehicle
with unlimited capacity.

2. The VRP is an NP-hard optimization problem (§16.5.2).

3. VRPs with more than 50 vertices are difficult to solve to optimality.

4. Most solution strategies for large VRPs are heuristic in nature, involving construc-
tion, improvement, and two-phase methods as well as metaheuristics.

5. In 1959 G. B. Dantzig and J. H. Ramser first formulated the general vehicle routing
problem and developed a heuristic solution procedure. This solution technique was
applied to a problem involving the delivery of gasoline to service stations.

6. The Clarke and Wright savings heuristic (§10.7.1) is a construction approach, orig-
inally proposed for the VRP. Algorithm 6 outlines this heuristic, which begins with
each customer served by a different vehicle and successively combines routes in order of
nonincreasing savings sij = c1i + c1j − cij to form a smaller set of feasible routes.

7. In two-phase methods, a minimum distance ordering of customers within each spec-
ified cluster of vertices can be found by solving a TSP (§10.7.1).

8. In recent years, metaheuristics such as simulated annealing and tabu search have
been applied quite successfully to VRPs. In particular, on the twelve benchmark prob-
lems in the literature, which range in size from 50 to 199 vertices, tabu search heuristics
currently outperform the competition [GeHeLa94].
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Algorithm 6: Clarke and Wright savings heuristic.

input: undirected network G, capacity limit Q
output: a set of delivery routes

Ri := route consisting of edges (1, i) and (i, 1) for i ∈ V − {1}
compute sij = c1i + c1j − cij for distinct i, j ∈ V − {1}
order the savings si1j1 ≥ si2j2 ≥ · · · ≥ sitjt
for k := 1 to t

if Rik and Rjk have combined demand at most Q then merge Rik and Rjk

9. Extensions to the basic VRP include modifications for asymmetric distances (cij
need not equal cji), differing vehicle capacities, constraints on the total distance traveled,
multiple depots, and constraints on the time intervals for visiting customers.

10. A survey of 20 commercial software products for vehicle routing problems is avail-
able in [HaPa97]. This survey discusses interfaces with geographic information systems,
computer platforms supported, extensions to the basic VRP that are incorporated, and
significant installations of the product for industrial customers.

11. Data sets, software, and research papers on vehicle routing problems are available
on the web page:

http://www.geocities.com/ResearchTriangle/7279/vrp.html

12. Data sets and software for vehicle routing problems with time windows are available
on the web page:

http://dmawww.epfl.ch/~rochat/rochat data/solomon.html

Examples:

1. The following table gives the data for a VRP involving six customers in which vehicle
capacity is 820. The route [1, 2, 4, 6, 1] is not feasible since the total demand of customers
on this route is w2 + w4 + w6 = 486 + 326 + 24 = 836 > 820. Since

∑7
i=2 wi = 1967,

at least �1967/820� = 3 routes will be needed to service all demands. The routes
[1, 5, 2, 6, 1], [1, 3, 1], and [1, 4, 7, 1] constitute a feasible set of routes with (respective)
demands 800, 541, and 626. In this feasible solution, the total distance traveled by the
first vehicle is c15 + c52 + c26 + c61 = 131, by the second is c13 + c31 = 114, and by the
third is c14 + c47 + c71 = 181, for a total distance of 426.

customer 2 3 4 5 6 7

demand 486 541 326 290 24 300

cij 2 3 4 5 6 7

1 19 57 51 49 4 92
2 51 10 53 25 53
3 49 18 30 47
4 50 11 38
5 68 9
6 94

c© 2000 by CRC Press LLC

http://j.simicka.home.att.net/vrp.html
http://dmawww.epfl.ch/


2. The Clarke and Wright heuristic is applied to the problem specified in the table of
Example 1. For instance, s35 = c13 + c15 − c35 = 57 + 49− 18 = 88. The largest savings
occurs for s57 = 132 and w5 + w7 = 590 ≤ 820, so the initial routes [1, 5, 1] and [1, 7, 1]
are merged to produce the feasible route [1, 5, 7, 1] with distance 150. The next largest
savings occur for s47 = 105, s37 = 102, and s35 = 88; however, neither customer 3
nor customer 4 can be inserted into the route [1, 5, 7, 1] without exceeding the vehicle
capacity. The next largest savings is s24 = 60, giving the new feasible route [1, 2, 4, 1]
with demand 812 and distance 80. Continuing in this fashion eventually finds s36 = 31
and constructs the route [1, 3, 6, 1] with demand 565 and distance 91. This feasible set
of three routes has total distance 150+80+91 = 321, smaller than that for the feasible
solution given in Example 1.

10.7.3 QUADRATIC ASSIGNMENT PROBLEM

The quadratic assignment problem deals with the relative location of facilities that
interact with one another in some manner. The objective is to minimize the total cost
of interactions between facilities, with distance often used as a surrogate for measures
such as dollar cost, fatigue, or inconvenience.

Definitions:

There are n facilities to be assigned to n predefined locations, where each location
can accommodate any one facility.

The fixed cost cij is the cost of assigning facility i to location j.

The flow fij is the level of interaction between facilities i and j.

The distance dij between locations i and j is the per unit cost of interaction between
the two locations. Typically, it is measured using the rectilinear or Euclidean distance
between the locations.

An assignment is a bijection ρ from the set of facilities onto the set of locations.

The linear assignment problem (LAP) is the problem of finding an assignment ρ
that minimizes

∑
i ci,ρ(i).

The quadratic assignment problem (QAP) is the problem of finding an assign-
ment ρ that gives the minimum value zQAP of

∑
i ci,ρ(i) +

∑
i,p fipdρ(i),ρ(p).

In some partial assignment for the QAP, let F be the set of facilities (possibly empty)
that have already been assigned and L be the set of locations having assigned facilities.

Facts:

1. The following table gives a variety of situations that can be formulated using the
QAP model.

facilities interaction

departments in a manufacturing plant flow of materials
departments in an office building flow of information, movement of people
departments in a hospital movement of patients and medical staff
buildings on a campus movement of students and staff
electronic component boards connections
typewriter/computer keyboard keys movement of fingers
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2. The interdependence of facilities due to interactions between them leads to the
quadratic nature of the objective function in the QAP.

3. If the facilities are independent of each other (there are no interactions between
them), the QAP reduces to the LAP, which can be solved in polynomial time (§10.2.2).

4. The TSP is a special case of the QAP (see Example 4).

5. The QAP is an NP -hard optimization problem (§16.5.2).

6. Exact solution of the QAP is limited to fairly small problems, generally of size 16
or smaller.

7. A lower bound on completions of a partial assignment for the QAP is given by

min
∑
i∈F

ci,ρ(i) +
∑
i∈F

∑
p∈F

fipdρ(i),ρ(p)

+
∑
i∈F

∑
p/∈F

(
fipdρ(i),ρ(p) + fpidρ(p),ρ(i)

)
+

∑
i/∈F

ci,ρ(i) +
∑
i/∈F

∑
p/∈F

fipdρ(i),ρ(p).

The first two terms above are the known fixed and interaction costs of assignments
already made; the third term captures the interaction costs between assigned facilities
and those yet to be assigned; and the last two terms represent the fixed and interaction
costs of assignments not yet made.

8. A minimum value z∗ can be calculated for the last three terms in the lower bound
expression of Fact 7 by solving a LAP such that each cost term is a lower bound on the
incremental costs that would be incurred if facility i /∈ F is assigned to location j /∈ L.

9. Gilmore-Lawler lower bound: This lower bound for z
QAP

is given by∑
i∈F

ci,ρ(i) +
∑
i∈F

∑
p∈F

fipdρ(i),ρ(p) + z∗,

where z∗ is found as in Fact 8.

10. The Gilmore-Lawler lower bound allows the QAP to be solved using a branch-and-
bound (implicit enumeration) technique (§15.1.8).

11. Alternative tighter bounds are available. However, considering the quality of these
bounds and the effort involved in computing them, the Gilmore-Lawler lower bound
still seems to be the most effective bound to use within a branch-and-bound scheme.

12. There are several ways to linearize the QAP by defining additional variables and
constraints. However, none of the linearizations proposed so far has proved to be com-
putationally effective.

13. Heuristic methods for solving the QAP can be classified as limited enumeration,
construction methods, improvement methods, hybrid methods, and metaheuristics. A
survey of exact and heuristic solution methods for the QAP is found in [KuHe87];
experimental comparisons of heuristic approaches appear in [BuSt78] and [Li81].

14. Limited enumeration: There are two distinct approaches for limiting the search for
an optimal QAP solution using a branch-and-bound approach:

• The search can be curtailed by placing a limit on the computation time or the
number of subproblems examined. Since an optimal solution is often found
fairly early in a branch-and-bound procedure, especially if a good branching
rule is available, this approach may find an optimal (or a near-optimal) solution
while saving on the significant cost of proving optimality.
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• The gap between the lower and upper bound is largest at higher levels of a branch-
and-bound tree. Thus a relatively large gap can be used to fathom subproblems
at higher levels, and this gap can be decreased gradually as the search reaches
lower levels of the tree.

15. Construction methods: These heuristics start with an empty assignment and add
assignments one at a time until a complete solution is obtained. The rule used to choose
the next assignment can employ:

• a local view : select a facility having the maximum interaction with a facility
already assigned; locate it to minimize the cost of interaction between facilities;

• a global view : take into account assignments already made as well as future
assignments to be made.

16. Suppose that k assignments have already been made. Using statistical properties,
the expected value for the completion of the partial assignment is given by the following
expression, whose terms are analogous to those in Fact 7:

EV =
∑
i∈F

ci,ρ(i) +
∑
i∈F

∑
p∈F

fipdρ(i),ρ(p)

+

∑
i∈F

∑
p/∈F

∑
j /∈L

(
fipdρ(i),j + fpidj,ρ(i)

)
n− k

+

∑
i/∈F

∑
j /∈L

cij

n− k +

∑
i,p/∈F

fip
( ∑
j,q /∈L

djq
)

(n− k) (n− k − 1)
.

The low computational requirements of computing EV make this a good choice to guide
a construction heuristic [GrWh70].
17. Improvement methods: These heuristics start with a suboptimal solution (often
randomly generated) and attempt to improve it through partial changes in the assign-
ments. Several important issues arise in designing an improvement heuristic:

• type of exchange: The choices are pairwise, triple, or higher-order exchanges.
The use of pairwise exchanges has been found to be the most effective in terms
of solution quality and computational burden. Higher-order exchanges can be
beneficial but are generally used in a limited way because of the significant
increase in computation time.

• scope of exchange: The procedure can use a local approach that considers only the
exchange of adjacent facilities, or a global approach that considers all possible
exchanges. Current computing capabilities allow the use of a global approach,
which has been found to be more effective.

• choice of exchange: The procedure can effect an exchange as soon as an improving
move is found, or can evaluate all possible exchanges and choose the best. The
first improvement option is more common.

• order of evaluation: The possible exchanges can be evaluated in a random or some
predetermined order. This is relevant only if the “first improvement” approach
is used, as is often the case. One simple but effective solution is to consider
facilities in the fixed order of decreasing total interactions, so that exchanges
with potentially large savings are evaluated first.

18. Hybrid methods: Unlike improvement procedures, which tend to get trapped at
local minima, hybrid methods use multiple restarts from a set of diversified solutions.
Hybrid procedures combine the power of improvement routines with diversified solutions
obtained through construction methods.
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19. Metaheuristics: In recent years, metaheuristics such as simulated annealing, tabu
search, and genetic algorithms have been developed to help improvement procedures
avoid the trap of local minima and have been applied with success to the QAP. Meta-
heuristics have been able to find the best known solutions for the commonly used bench-
mark problems in the literature and remain an active area of research on the QAP.
20. Computer codes (in Fortran and C) for heuristically solving the QAP can be found
at the sites:

http://www.netlib.org/toms/608

http://www.netlib.org/toms/754

http://www.netlib.org/toms/769

http://rtm.science.unitn.it/~battiti/archive/code/rts qap/

Examples:
1. The following table gives the data cij , fij for a QAP with four facilities and four
locations.

cij 1 2 3 4

1 1 3 2 1
2 2 1 4 3
3 4 2 4 4
4 3 1 2 2

fij 1 2 3 4

1 0 1 3 4
2 1 0 2 1
3 3 2 0 3
4 4 1 3 0

The fixed locations 1, 2, 3, 4 occur at equally spaced points along a line, with unit dis-
tances between successive points, so that dij = |i−j|. For the assignment ρ specified by
ρ(1) = 1, ρ(2) = 4, ρ(3) = 2, ρ(4) = 3 the fixed cost is c11 + c24 + c32 + c43 = 8. Because
the flows and distances are symmetric, the interaction cost is 2(f12d14+f13d12+f14d13+
f23d42 + f24d43 + f34d23) = 44. The total cost of assignment ρ is then 8 + 44 = 52.
2. The assignment in Example 1 can be improved by a pairwise exchange. Namely,
instead of assigning facilities 1 and 2 (respectively) to locations 1 and 4, they are assigned
to the interchanged locations 4 and 1. This gives σ(1) = 4, σ(2) = 1, σ(3) = 2, σ(4) = 3.
Then the fixed cost incurred is c14 + c21 + c32 + c43 = 7 and the interaction cost is
2(f12d41 + f13d42 + f14d43 + f23d12 + f24d13 + f34d23) = 40. The total cost 47 is lower
than that for the assignment ρ in Example 1. In fact σ is an optimal QAP assignment.
3. The QAP arises in designing the layout of a manufacturing facility. A number of
products are to be made in this facility and different products require different operations
in given sequences for completion. These operations are performed by n departments:
e.g., turning, milling, drilling, heat treatment, and assembly. Knowing the sequence of
operations and the volume of each product to be produced, it is possible to calculate the
flow fij from any department i to another department j. There are n physical locations,
with distance dij between locations i and j. The fixed cost of assigning department i
to location j is cij , representing the cost of building foundations and installing support
equipment (cables, pipes) for the machines. Then the objective is to assign departments
to locations in order to minimize the sum of fixed and interaction costs.
4. The TSP (§10.7.1) can be formulated as a special case of the QAP, where the n cities
correspond to locations and a position number (facility) in the tour is to be associated
with each city. Let f12 = f23 = · · · = fn1 = 1 and fij = 0 otherwise. The distance dij
represents the cost of traveling between cities i and j, and let all fixed costs cij be zero.
Then a solution to this QAP gives an optimal labeling of cities with their positions in
an optimal TSP tour.
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10.8 NETWORK REPRESENTATIONS AND DATA STRUCTURES
To carry out network optimization algorithms efficiently, careful attention needs to paid
to the design of the data structures supporting these algorithms. There are alternative
ways to represent a network — differing in their storage requirements and their efficacy
in executing certain fundamental operations. These representations need to incorpo-
rate both the topology of the underlying graph and also any quantitative information
present in the network (such as cost, length, capacity, demand, or supply). Standard
representations of networks, and trees in particular, are discussed in this section.

10.8.1 NETWORK REPRESENTATIONS

There are various ways to represent networks, just as there are various ways to rep-
resent graphs (§8.1.4, §8.3.1). In addition it is necessary to incorporate quantitative
information associated with the vertices and edges (or arcs) of the network. While the
description here concentrates on directed networks, extensions to undirected networks
are also indicated.

Definitions:

Let G = (V,E) be a directed graph (§8.3.1) with vertex set V = {1, 2, . . . , n} and arc
set E. Define m = |E| to be the number of arcs in G.

The adjacency set A(i) = { (i, j) | (i, j) ∈ E } for vertex i is the set of arcs emanating
from i. (See §10.3.1.)

The adjacency matrix for G is the 0-1 matrix AG = (aij) having aij = 1 if (i, j) ∈ E
and aij = 0 if (i, j) �∈E. (See also §8.3.1.)

The arc list for G (see §8.3.1) can be implemented using two arc-length arrays FROM
and TO:

• For each arc (i, j) ∈ E there is a unique 1 ≤ k ≤ m satisfying FROM(k) = i and
TO(k) = j.

• Arcs are listed sequentially in the FROM and TO arrays in no particular order.

The linked adjacency list for G is given by a vertex-length array START and a
singly-linked list ARCLIST of arc records:

• START(i) points to the first record for vertex i in this list, corresponding to a
specified first element of A(i).

• Each arc (i, j) ∈ A(i) has an associated arc record, which contains the fields
TO and NEXT. Specifically, ARCLIST.TO gives the adjacent vertex j, and
ARCLIST.NEXT points to the next arc record in A(i). If there is no such
following record, ARCLIST.NEXT = null.

The forward star for G is given by a vertex-length array START and an arc-length
array TO, with the latter in one-to-one correspondence with arcs (i, j) ∈ E:

• START(i) gives the position in array TO of the first arc leaving vertex i.
• The arcs of A(i) are found in the consecutive positions START(i), START(i)+1,

. . . , START(i + 1) − 1 of array TO. If arc (i, j) corresponds to position k of
TO, then TO(k) = j.

• By convention, an additional dummy vertex n+1 is added, with START(n+1) =
m+ 1.
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Facts:

1. An undirected graph can be represented by replacing each undirected edge (i, j) by
two oppositely directed arcs (i, j) and (j, i).

2. The adjacency matrix, the arc list, the linked adjacency list, and the forward star
are four standard representations of a directed (or undirected) graph.

3. The linked adjacency list and forward star structures are commonly used implemen-
tations of the lists-of-neighbors representation (§8.3.1).

4. The following table shows the (worst-case) computational effort required to carry
out certain fundamental operations on G: finding an arc, deleting an arc (once found),
adding an arc, and scanning the adjacency set of an arbitrary vertex i. Here αi =
|A(i)| ≤ n.

representation find arc delete arc add arc scan A(i)

adjacency matrix O(1) O(1) O(1) O(n)
arc list O(m) O(1) O(1) O(m)
linked adjacency list O(αi) O(1) O(1) O(αi)
forward star O(αi) O(n+m) O(n+m) O(αi)

5. The storage requirements of the four representations are given in the following ta-
ble for both directed and undirected graphs. For the last two representations, each
undirected edge appears twice: once in each direction.

storage storage exploit
representation (directed) (undirected) sparsity?

adjacency matrix n2 n2

2 no

arc list 2m 2m yes

linked adjacency list n+ 2m n+ 4m yes

forward star n+m n+ 2m yes

6. As seen in the table of Example 5, all representations other than the adjacency
matrix representation can exploit sparsity in the graph G. That is, the storage require-
ments are sensitive to the actual number of arcs and the computations will generally
proceed more rapidly when G has relatively few arcs.

7. Quantitative data for network vertices (such as supply and demand) can be stored
in an associated vertex-length array, thus supplementing the standard graph represen-
tations.

8. Quantitative data for network arcs (such as cost, length, capacity, and flow) can be
accommodated as follows:

• For the adjacency matrix representation, costs (or lengths) cij can be imbedded in
the matrix AG itself. Namely, redefine AG = (aij) so that aij = cij if (i, j) ∈ E,
whereas aij is an appropriate special value if (i, j) �∈E. For instance, in the
shortest path problem (§10.3.1), aij = ∞ can be used to signify that (i, j) �∈E.
Additional n × n arrays would be needed however to represent more than one
type of arc data.
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• For the arc list representation, additional arrays parallel to the arrays FROM
and TO can be used to store quantitative arc data.

• For the linked adjacency list representation, additional fields within the arc record
can be used to store quantitative arc data.

• For the forward star representation, additional arrays parallel to the array TO
can be used to store quantitative arc data.

9. The arc list representation is best suited for arc-based processing of a network, such
as occurs in Kruskal’s minimum spanning tree algorithm (§10.1.2).

10. The arc list representation is a convenient form for the input of a network to
an optimization algorithm. Often this external representation is converted within the
algorithm to a more suitable internal representation (linked adjacency list or forward
star) before executing the steps of the optimization algorithm.

11. The linked adjacency list and forward star representations are best suited to car-
rying out vertex-based explorations of a graph, such as a breadth-first search or a
depth-first search (§9.2.1). It is also ideal for carrying out Prim’s minimum spanning
tree algorithm (§10.1.2) as well as most shortest path algorithms (§10.3.2).

12. Especially in the case of undirected graphs, the linked adjacency list and forward
star representations can be enhanced by use of an additional arc-length array MIRROR.
The array MIRROR allows one to move from the location of arc (i, j) to the location
of arc (j, i) in constant time.

13. The linked adjacency list is typically used when the structure of the graph can
dynamically change (as by addition/deletion of arcs or vertices). On the other hand,
the forward star representation is appropriate for static graphs, in which the graph
structure does not change.

Examples:

1. A directed graph G with 5 vertices and 8 arcs is shown in the following figure.

The 5 × 5 adjacency matrix for G is given by

AG =




1 2 3 4 5
1 0 1 1 0 0
2 0 0 1 1 0
3 0 0 0 0 0
4 1 0 1 0 1
5 0 0 1 0 0



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2. An arc list representation of the directed graph in the figure of Example 1 is given
in the following table:

FROM 1 2 1 4 2 4 4 5
TO 2 4 3 1 3 5 3 3

3. The following figure shows a linked adjacency list representation of the directed
graph of Example 1. The symbol � is used to indicate a null pointer.

4. The following figure shows a forward star representation of the directed graph in Ex-
ample 1. SinceA(3) = ∅, it is necessary to set START(3) = START(4) = 5. For example,
the arcs in A(4) are associated with positions [START(4), . . . ,START(5)− 1] = [5, 6, 7]
of the TO array. Similarly, the single arc emanating from vertex 5 is associated with
position [START(5), . . . ,START(6)− 1] = [8] of the TO array.

10.8.2 TREE DATA STRUCTURES

Since trees are important objects in optimization problems, as well as useful data struc-
tures in their own right (see §9.1), additional representations and features of trees are
given here.

Definitions:

If T is a rooted tree with root r (§9.1.2), then the predecessor function pred:V → V
is defined by pred(r) = 0, and pred(j) = i if vertex i is the parent of j in T . (See
§10.3.1.)
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The principal subtree Tj rooted at vertex j is the subgraph of T induced by all
descendants of j (including j). (See §9.1.2.)

The cardinality card(j) of vertex j in a rooted tree T is the number of vertices in its
principal subtree Tj .

The least common ancestor least(i, j) of vertices i and j in a rooted tree is the vertex
of largest depth (§9.1.2) that is an ancestor of both i and j.

Facts:

1. A rooted tree is uniquely specified by the mapping pred(·).

2. In a rooted tree with root r, depth(r) = 0 and depth(j) = 1 + depth(pred(j)) for
j �= r.

3. In a rooted tree, height(i) = 0 if i is a leaf. If i is not a leaf, then height(i) =
1 + max{height(j) | j a child of i }.

4. In a rooted tree, card(i) = 1 if i is a leaf. If i is not a leaf, card(i) = 1+
∑

{ card(j) |
j a child of i }.

5. The predecessor, depth, height, and cardinality of a rooted tree T can all be calcu-
lated while carrying out a preorder or postorder traversal (§9.1.3) of T :

• The predecessor and depth can be calculated while advancing from the current
vertex to an unvisited vertex.

• The height and cardinality can be updated when retreating from a vertex all of
whose children have been visited.

6. The depth of a vertex is a monotone increasing function on each path from the root.

7. The height and cardinality are monotone decreasing functions on each path from
the root.

Examples:

1. The following figure shows a tree T rooted at vertex 1. The vertices have been num-
bered according to a preorder traversal of T . The following table gives the predecessor,
depth, height, and cardinality of each vertex of T .
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Algorithm 1: Least common ancestor.

input: rooted tree T , vertices i and j
output: least common ancestor of i and j

procedure least(i, j)

while i �= j do
if depth(i) > depth(j) then i := pred(i)
else if depth(i) < depth(j) then j := pred(j)
else i := pred(i), j := pred(j)

return i

vertex 1 2 3 4 5 6 7 8 9

pred 0 1 2 2 1 5 6 6 1
depth 0 1 2 2 1 2 3 3 1
height 3 1 0 0 2 1 0 0 0
card 9 3 1 1 4 3 1 1 1

2. Certain applications (such as cycle detection in the network simplex algorithm,
§10.5.2) require finding the least common ancestor least(i, j) of vertices i and j in a
rooted tree.

3. The calculation of least(i, j) can be carried out efficiently, in O(n) time, by using
Algorithm 1.

4. Algorithm 1 is based on Fact 6 and employs two auxiliary data structures, the
predecessor and depth functions. It repeatedly backs up from a vertex of larger depth
until the least common ancestor is found.
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Web Resources:

ftp://dimacs.rutgers.edu/pub/netflow/matching/ (Computer code in C for an
algorithm for the weighted matching problem; computer code in C, Pascal, and
Fortran for algorithms for maximum size matchings in nonbipartite networks.)

ftp://dimacs.rutgers.edu/pub/netflow/maxflow/ (Computer code in Fortran for
solving maximum flow and minimum cut problems.)
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ftp://dimacs.rutgers.edu/pub/netflow/mincost/ (Computer code in Fortran for
solving the minimum cost flow problem.)

ftp://ftp.zib.de/pub/Packages/mathprog/matching/ (Computer code in C for an
algorithm for the weighted matching problem; computer code in C and Fortran for
algorithms for maximum size matchings in nonbipartite networks.)

ftp://ftp.zib.de/pub/Packages/mathprog/mincut/ (Computer code in C for solv-
ing minimum cut problems.)

ftp://ftp.zib.de/pub/Packages/mathprog/netopt-bertsekas/ (Computer code in
Fortran for implementing the label-correcting algorithm and Dijkstra’s algorithm for
shortest paths; computer code in Fortran for solving maximum flow, minimum cut,
and minimum cost flow problems.)

http://dmawww.epfl.ch/~rochat/rochat data/solomon.html (Data sets and soft-
ware for vehicle routing problems with time windows.)

http://orly1.snu.ac.kr/software/ (Computer code in C, Pascal, and Fortran for
implementing Dijkstra’s algorithm for shortest paths and the Floyd-Warshall algo-
rithm; computer code in C, Pascal, and Fortran for solving maximum flow, minimum
cut, and minimum cost flow problems.)

http://rtm.science.unitn.it/~battiti/archive/code/rts qap/ (Computer code
in Fortran and C for heuristically solving the QAP.)

http://www.cs.sunysb.edu/~algorith/ (The Stony Brook Algorithm Repository;
see Sections 1.4 and 1.5 on Graph Problems.)

http://www.geocities.com/ResearchTriangle/7279/vrp.html (Data sets, soft-
ware, and research papers on vehicle routing problems.)

http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB home.html (Software, research pa-
pers, and other heuristic approaches for the traveling salesman and related prob-
lems.)

http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html (A
library of sample problems related to the traveling salesman problem, with their best
known solutions.)

http://www.mat.uc.pt/~eqvm/cientificos/fortran/codigos.html (Fortran code
for implementing Kruskal’s algorithm and Prim’s algorithm for minimum spanning
trees; Fortran code for implementing the label-correcting algorithm and Dijkstra’s
algorithm for shortest paths.)

http://www.neci.nj.nec.com/homepages/avg/soft/soft.html (Computer code for
implementing the label-correcting algorithm and Dijkstra’s algorithm for shortest
paths; computer code for solving maximum flow, minimum cut, and minimum cost
flow problems.)

http://www.netlib.org/toms/479 (Fortran code for implementing Prim’s algorithm.)

http://www.netlib.org/toms/562 (Fortran code for implementing the label-correct-
ing algorithm for shortest paths.)
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http://www.netlib.org/toms/608 (Fortran code for heuristically solving the QAP.)

http://www.netlib.org/toms/613 (Fortran code for implementing Prim’s algorithm.)

http://www.netlib.org/toms/750 (Fortran code for solving the TSP.)

http://www.netlib.org/toms/754 (Fortran code for heuristically solving the QAP.)

http://www.netlib.org/toms/769 (Fortran code for heuristically solving the QAP.)

http://www.zib.de/Optimization/Software/Mcf/ (Computer code for solving the
minimum cost flow problem.)
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INTRODUCTION

Partially ordered sets play important roles in a wide variety of applications, includ-
ing the design of sorting and searching methods, the scheduling of tasks, the study of
social choice, and the study of lattices. This chapter covers the basic concepts involv-
ing partially ordered sets, the various types of partially ordered sets, the fundamental
properties of these sets, and their important applications.

A table of notation used in the study of posets is given following the glossary.

GLOSSARY
antichain: a subset of a poset in which no two distinct elements are comparable.

atom: in a poset, an element of height 1.

atomic lattice: a lattice such that every element is a join of atoms (or equivalently,
such that the atoms are the only join-irreducible elements).

auxiliary graph (of a simple graph G): the graph G′ whose vertices are the edges
of G, with vertex e1 adjacent to vertex e2 in G′ if and only if e1 and e2 are adjacent
edges in G, but do not lie on a 3-cycle in G.

biorder representation (on a digraph D): a pair of real-valued functions f, g on the
vertex set VD such that u → v is an arc if and only if f(u) > g(v).

bipartite poset: a poset of height at most 2.

Boolean algebra: the poset whose domain is all subsets of a given set, partially
ordered by inclusion.

Borda consensus function (on a set of social choice profiles): the consensus function
that ranks the alternatives by their Borda count.

Borda count (of an alternative social choice x): the sum, over all individual rankings,
of the number of alternatives x “beats”.

bounded poset: a poset with both a unique minimal element and a unique maximal
element.

u,v-bypass (in a directed graph): a u,v-path of length at least two such that there is
also an arc from u to v.

Cartesian product (of two posets P = (X,R) and P ′ = (X ′, R′)): the poset P ×P =
(X ×X ′, S), such that (x, x′)S(y, y′) if and only if xRy and x′R′y′.

chain: a subset of a poset in which every two elements are comparable.

k-chain: a chain of size k, i.e., a chain on k elements.

chain-product: the Cartesian product of a collection of chains.

comparability digraph (of a poset (X,R)): the simple digraph whose vertex set is
the domain X and which has an arc from x to y if and only if x ≤ y.

comparability graph (of a poset (X,R)): the simple graph whose vertex set is the
domain X and which has an edge joining distinct vertices x and y if x ≤ y.

comparability invariant (for posets): an invariant f such that f(P ) = f(Q) when-
ever posets P and Q have the same comparability graph.

c© 2000 by CRC Press LLC



comparable elements (in a poset (X,R)): elements x and y such that either (x, y) ∈
R or (y, x) ∈ R.

consecutive chain (in a ranked poset): a chain whose elements belong to consecutive
ranks.

consensus function (on a set of social choice profiles): a function that assigns to
each possible profile P = {Pi | i ∈ I } on a set of alternatives a linear ordering (ties
allowed) of those alternatives.

consensus ranking (on a set of social choice profiles): the linear ordering of the
alternatives assigned by the consensus function.

cover graph (of a poset (X,R)): the graph with vertex set X and edge set consisting
of the pairs satisfying the cover relation.

cover relation (of a poset (X,R)): the relation on X consisting of the pairs (x, y) such
that x > y in R and such that there is no “intermediate” element z with x > z > y.

cover diagram: a synonym for the Hasse diagram.

critical pair (in a poset): an ordered incomparable pair that cannot be made compa-
rable by adding any other single incomparable pair as a relation.

dependent edge (in an acyclic directed graph): an arc from u to v such that the
graph contains a u,v-bypass.

dimension (of a poset): the minimum number of chains in a realizer of the poset.

distributive lattice: a lattice in which the meet operator distributes over the join
operator, so that x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z.

divisor lattice: the poset D(n) of divisors of n, in which x ≤ y means that y is an
integer multiple of x.

down-set (in a poset): a subposet I such that if x ∈ I and if y < x, then y ∈ I, also
called an ideal.

dual (of a poset P = (X,R)): the poset P ∗ = (X,S) such that x ≤ y in S if and only
if y ≤ x in R.

extension (of a poset P = (X,R)): a poset Q = (X,S) such that R ⊆ S; meaning
that xRy implies xSy.

k-family (in a poset): a subposet containing no chain of size k + 1.

Ferrers digraph: a digraph having a biorder representation.

filter (generated by an element x in a poset P ): the up-set U [x] = { y ∈ P | y ≥ x }.
filter (generated by a subset in a poset P ): given a subset A of P , the up-set U [A] =⋃

x∈A U [x].

filter (in a poset): a subposet whose domain is the set-theoretic complement of the
domain of an ideal.

forbidden subposet description (of a class of posets): a characterization of that
class as the class of all posets that does not contain any of the posets in a specified
collection.

geometric lattice: an atomic, upper semimodular lattice of finite height.

greatest lower bound (of elements x and y in a poset): a common lower bound z
such that every other common lower bound z′ satisfies the inequality z ≥ z′. Such
an element, if it exists, is denoted x ∧ y.
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graded poset: a poset in which all maximal chains have the same length.

Hasse diagram (of a poset): a straight-line drawing of the cover graph in the plane
so that the lesser element of each adjacent pair is below the greater.

height (of a poset): the maximum size of a chain in that poset.

height (of an element x of a poset): the maximum length h(x) of a chain that has x
as its maximal element.

ideal (generated by an element x in a poset P ): the down-set D[x] = { y ∈ P | y ≤ x }.
ideal (generated by a subset A in a poset P ): the down-set D[A] =

⋃
x∈A D[x].

ideal (in a poset): a subposet I such that if x ∈ I and if y < x, then y ∈ I.

incomparability graph (of a poset P ): the edge-complement of the comparability
graph G(P ).

incomparable pair (in a poset (X,R)): a pair x, y ∈ X such that neither x ≤ y nor
y ≤ x in R.

integer partition: a nonincreasing nonnegative integer sequence having finitely many
nonzero terms, with trailing zeros added as needed for comparison.

intersecting family : a collection of subsets of a set such that every pair of members
has nonempty intersection.

intersection (of partial orderings P = (X,R) and Q = (X,S) on the set X): the
poset (X,R ∩ S) that includes the comparisons in both.

intersection (of posets (X,R) and (X,S)): the poset (X,R ∩ S).

interval (in a poset): the subposet which contains all elements z such that x ≤ z ≤ y.

interval order: a poset in which there is an assignment to its members of real intervals,
such that x < y if and only if the interval for y is totally to the right of the interval
for x.

interval representation (of a poset P ): a collection of real intervals corresponding
to an interval order for P .

isomorphic (posets): posets P = (X,R) and Q = (Y, S) such that there is a poset
isomorphism P → Q.

isomorphism (of lattices): an order-preserving bijection from one lattice to another
that also preserves greatest lower bounds and least upper bounds of pairs.

isomorphism (of posets): a bijection from one poset to another that preserves the
order relation.

join: given {x, y}, another name for the least upper bound x ∨ y.

join-irreducible element (in a lattice): a nonzero element that cannot be expressed
as the join of two other elements.

Jordan-Dedekind chain condition: the condition for a poset that every interval has
finite length.

lattice: a poset in which every pair of elements has both a greatest lower bound and
a least upper bound.

lattice (of bounded sequences): the set L(m,n) of length-m real sequences a1, . . . , an

such that 0 ≤ a1 ≤ . . . ≤ an ≤ n.

lattice (of order ideals in a poset P = (X,R)): the set J(P ) of order ideals of P ,
ordered by inclusion.
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least upper bound (of elements x and y in a poset): a common upper bound z such
that every other common upper bound z′ satisfies the inequality z′ ≥ z. Such an
element, if it exists, is denoted x ∨ y.

length (of a chain): the number of cover relations in the chain; in other words, one
less than the number of elements in the chain.

length (of a poset): the length of a longest chain, which is one less than the height of
that poset. (Sometimes height is used synonymously with length.)

lexicographic ordering (of the Cartesian product of posets): the ordering for the
Cartesian product of the domains in which (x1, x2) ≤ (y1, y2) if and only if x1 < y1

or x1 = y1 and x2 ≤ y2; this is not the usual ordering of the Cartesian product of
posets.

linear extension (of a poset): an extension of the poset that is a chain.

linear order: See total order.

linearly ordered set: a poset in which every pair of elements is comparable.

linear sum (of two disjoint posets P and P ′): the poset in which all the elements of
poset P lie “below” all those of poset P ′.

locally finite poset: a poset in which every interval is finite.

lower bound (of elements x and y in a poset): an element z such that x ≥ z and
y ≥ z.

lower semimodular lattice: a lattice whose dual is upper semimodular.

majority rule property (for a consensus function): the property that it prefers x
to y if and only if a majority of the individuals prefer x to y.

maximal element (in a poset): an element such that no other element is greater.

meet (of elements x and y): another name for the greatest lower bound x ∧ y.

meet-irreducible element (of a lattice): a nonzero element that cannot be expressed
as the meet of two other elements.

minimal element (in a poset): an element such that no other element is less.

minimum realizer encoding (of a poset): a poset that lists for each element its
position on each extension in a minimum realizer.

modular lattice: a lattice in which x ∧ (y ∨ z) = (x ∧ y) ∨ z for all x, y, z such that
z ≤ x.

module (in a graph G): a vertex subset U ⊆ VG such that each vertex outside U is
adjacent to all or none of the vertices in U .

k-norm (of a sequence a = {ai}): the sum
∑

min{k, ai}, whose value is commonly
denoted mk(a).

k-norm of a chain partition: the k-norm of its sequence of chain sizes.

normalized matching property (for a graded poset): the property that for every
rank k and every subset A of rank Pk, the set A∗ of elements in the rank Pk+1 that
are comparable to at least one element of A satisfies the inequality |A∗|

Nk+1
≥ |A|

Nk
.

order module in a poset: a set S of elements such that every element outside S is
above all of S, below all of S, or incomparable to all of S.

order-preserving mapping (from poset P = (X,R) to poset Q = (Y, S)): a function
f :X → Y such that f(x) ≤ f(y) whenever x ≤ y in P .
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order relation (on a set X): a relation R such that (X,R) is a partially ordered set.

partially ordered set: a pair P = (X,R) consisting of a set X and a relation R that
is reflexive, antisymmetric, and transitive.

partition lattice: the poset Πn of partitions of the set [n] = {1, . . . , n}, where π < σ
if π is a refinement of σ.

permutation graph: a graph whose vertices can be placed in 1-1 correspondence with
the elements of a permutation of [n] = {1, . . . , n}, such that vi is adjacent to vj if
and only if the larger of {i, j} comes first in the permutation.

planar poset: a poset with a Hasse diagram that has no edge-crossings.

plurality consensus function (on a set of social choice profiles): the consensus func-
tion in which the winner(s) is(are) the alternative(s) appearing in the greatest num-
ber of top ranks, after which the winner(s) is(are) deleted and the procedure is
repeated to select the next rank of the consensus ranking, etc.

poset: a partially ordered set.

profile (on a set of alternative social choices): a set P = {Pi | i ∈ I } of linear rankings
(ties allowed) of the alternatives, one for each member of a set I of “individuals”
participating in the decision process.

quasi-transitive orientation (on a simple graph G): an assignment of directions to
the edges of G so that whenever there is an xy-arc and a yz-arc, there is also an arc
between x and z.

rank (of a graded poset): the length of any maximal chain in the poset.

rank function (on a poset): an integer-valued function r on the elements of the poset
so that “y covers x” implies that r(y) = r(x) + 1.

ranked poset: a poset having a rank function.

kth rank of a ranked poset: the subset Pk of elements for which r(x) = k.

rank parameters (of a subset F of elements in a ranked poset P ): the numbers
fk = |F ∩ Pk|.

ranking : a poset P whose elements are partitioned into ranks P1, . . . , Pk such that
two elements are incomparable in the poset if and only if they belong to the same
rank.

realizer (of a poset P ): a set of linear extensions of P whose intersection is P .

refinement (of a set partition σ): replacement of each block B ∈ σ by some partition
of B.

regular covering (of a poset by chains): a multiset of maximal chains such that for
each element x the fraction of the chains containing x is 1

Nr(x)
, where Nr(x) is a

Whitney number.

self-dual poset: a poset isomorphic to its dual.

semimodular lattice: an upper semimodular lattice.

semiorder: a poset on which there is a real-valued function f and a real number δ > 0
such that x < y if and only if f(y) − f(x) > δ.

shadow (of a family of sets F): the collection of sets containing every set that is
obtainable by selecting a set in F and deleting one of its elements.

size (of a finite poset): the number of elements.
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Sperner property (for a graded poset): the property that some single rank is a
maximum antichain.

k-Sperner property (for a graded poset): the property that the poset has a maximum
k-family consisting of k ranks.

standard k-chain: the poset {1, . . . , n}, under the usual ordering of the integers,
written k.

standard example of an n-dimensional poset: the subposet Sn of the Boolean
algebra 2n induced by the singletons and their complements.

strict Sperner property : the property of a graded poset that all maximum antichains
are single ranks.

strong Sperner property : the property that a graded poset is k-Sperner for all
k ≤ r(P ).

Steinitz exchange axiom: for a closure operator σ: 2E → 2E , the rule that p /∈ σ(A)
and p ∈ σ(A ∪ q) imply q ∈ σ(A ∪ p).

sublattice (of a lattice): a subposet that contains the meet and join of every pair of
its elements.

submodular height function (in a lattice): a height function h such that h(x∧ y)+
h(x ∨ y) ≤ h(x) + h(y) for all x, y.

subposet (of a poset (X,R)): a poset (Y, S) such that Y ⊆ X and S = R ∩ (Y × Y ).

subset lattice: the Boolean algebra 2n, that is, the Cartesian product of n copies of
the standard 2-chain.

subspace lattice: the set Ln(q) of subspaces of an n-dimensional vector space over a
q-element field, partially ordered by set inclusion.

symmetric chain (in a ranked poset P ): a chain that has an element of rank r(P )−k
whenever it has an element of rank k.

symmetric chain decomposition (of a ranked poset): a partition of that poset into
symmetric consecutive chains.

symmetric chain order: a poset with a symmetric chain decomposition.

topological ordering (of an acyclic digraph): a linear extension of the poset it rep-
resents.

topological sort: an algorithm that arranges the elements of a partially ordered set
into a total ordering that is compatible with the original partial ordering.

total order (of a set): an order relation in which each pair of distinct elements is
comparable.

transitive orientation (on a simple graph): an assignment of directions to the edges
of a simple graph G so that whenever there is an xy-arc and a yz-arc, there is also
a xz-arc.

triangular chord (for a walk x1, . . . , xk in an undirected graph): an edge between
vertices xi−1 and xi+1, two apart on the walk.

upper bound (of elements x and y in a poset): an element z such that x ≤ z and
y ≤ z.

upper semimodular lattice: a lattice in which whenever x covers x ∧ y, it is also
true that x ∨ y covers y.

up-set (in a poset): a filter.
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weak order: a ranking, i.e., a poset P whose elements are partitioned into ranks
P1, . . . , Pk such that two elements are incomparable if and only if they belong to the
same rank.

kth Whitney number (of a ranked poset P ): the cardinality |Pk| of the kth rank;
written Nk(P ).

width (of a poset): the maximum size of an antichain in the poset.

Young lattice: the lattice of integer partitions under component-wise ordering.

poset notation

notation meaning

y ≥ x x ≤ y
x < y x ≤ y and x �= y
x||y x �≤y and y �≤x
0 minimal element in a bounded poset
1 maximal element in a bounded poset

[x, y] the interval { z | x ≤ z ≤ y }
k standard k-chain

P1 + P2 disjoint union of posets
P1 ⊕ P2 linear sum of two posets
P1 × P2 Cartesian product of two posets
Pn iterated Cartesian product of copies of P
P ∗ dual of poset P
D(n) divisibility poset of the integer n
r(P ) rank of a graded poset P
Nk(P ) kth Whitney number (= cardinality of kth rank) of P
w(P ) width of P (= maximum size of an antichain)
D[x] down-set (ideal) { y | y ≤ x }
D(x) down-set (ideal) { y | y < x }
U [x] up-set (filter) { y | y ≥ x }
U(x) up-set (filter) { y | y > x }
x ∨ y lub of x and y
x ∧ y glb of x and y

11.1 BASIC POSET CONCEPTS

11.1.1 COMPARABILITY

The integers and real numbers are totally ordered sets, since every pair of distinct
elements can be compared. In a partially ordered set, some pairs of elements may be
incomparable. For example, under the containment relation, the sets {1, 2} and {1, 3}
are incomparable.
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Definitions:

A partial ordering (or order relation) R on a set X is a binary relation that is:
• reflexive: for all x ∈ S, xRx;
• antisymmetric: for all x, y ∈ S, if xRy and yRx, then x = y;
• transitive: for all x, y, z ∈ S, if xRy and yRz, then xRz.

Note: x ≤ y or x ≤P y are often written in place of xRy or (x, y) ∈ R. Also, y ≥ x
means x ≤ y. The notation � is sometimes used in place of ≤. See the table following
the Glossary for further poset notation.

A partially ordered set (or poset) P = (X,R) is a pair consisting of a set X, called
the domain, and a partial ordering R on X. Writing x ∈ P means that x ∈ X. The
notation (X,≤) is often used instead of (X,R) to designate a poset.

The size of a finite poset P is the number of elements in the domain.

A totally ordered set (or linearly ordered set) is a poset in which every element
is comparable to every other element.

The elements x and y are comparable (related) in P if either x ≤ y or y ≤ x (or
both, in which case x = y).

The elements x and y are incomparable (unrelated) if they are not comparable.
Writing x ‖ y indicates incomparability.

Element x is less than element y, written x < y, if x ≤ y and x �= y. (The notation ≺
is sometimes used in place of <.)

Element x is greater than element y, written x > y, if x ≥ y and x �= y.

An element x of a poset is minimal if the poset has no element less than x.

An element x of a poset is maximal if the poset has no element greater than x.

A poset is bounded if it has both a unique minimal element (denoted “0”) and a unique
maximal element (denoted “1”).

The comparability digraph D(P ) of a poset P = (X,R) is the digraph with vertex
set X, such that there is an arc from x to y if and only if x ≤ y.

The comparability graph G(P ) of a poset P = (X,R) is the simple graph with vertex
set X, such that xy ∈ EG if and only if x and y are comparable in P , where x �= y.

The incomparability graph of a poset P is the edge-complement of the comparability
graph G(P ).

The induced poset of an acyclic digraph D is the poset whose elements are the vertices
of D and such that x ≤ y if and only if there is a directed path from x to y.

The element y covers the element x in a poset if x < y and there is no intermediate
element z such that x < z < y.

The cover graph of poset P is the graph with vertex set X such that x and y are
adjacent if and only if one of them covers the other in P .

A Hasse diagram (or cover diagram or diagram) of poset P is a straight-line draw-
ing of the cover graph in the plane such that the lesser element of each pair satisfying
the cover relation is lower in the drawing.

A poset is planar if it has a Hasse diagram without edge-crossings.
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A subposet of P = (X,≤) is a subset Y ⊆ X with the relation x ≤ y in Y if and only
if x ≤ y in X.

The interval [x, y] in poset P is the subposet that contains all elements z such that
x ≤ z ≤ y.

A poset P is locally finite if every interval in P has finitely many elements.

An order-preserving mapping from poset P = (X,≤P ) to poset Q = (Y,≤Q) is a
function f :X → Y such that x ≤P x′ implies f(x) ≤Q f(x′).

An isomorphism of posets P = (X,R) and Q = (Y, S) is a bijection f :X → Y that
preserves the order relation: whenever x1 ≤P x2, then f(x1) ≤Q f(x2).

Isomorphic posets are posets P = (X,R) and Q = (Y, S) such that there is a poset
isomorphism P → Q. This is sometimes indicated informally by writing P = Q.

Poset Q = (Y, S) is contained in (or imbeds in) poset P = (X,R) if Q is isomorphic
to a subposet of P .

A poset P is Q-free if P does not contain a poset isomorphic to Q.

Facts:

1. Every finite nonempty poset has a minimal element and a maximal element.

2. The comparability digraph D(P ) of a poset P is an acyclic digraph.

3. The minimal elements of a poset P induced by a digraph D are the sources of D;
that is, they are the vertices at which every arc points outward.

4. The maximal elements of a poset P induced by a digraph D are the sinks of D; that
is, they are the vertices at which every arc points inward.

5. The element y covers the element x in a poset P induced by a digraph D if and only
if there is an arc in digraph D from x to y and there is no other directed path from x
to y.

6. Suppose that the poset P is induced from an acyclic digraph D. Then the compa-
rability digraph of P is the transitive closure of D.

7. Two different posets cannot have the same Hasse diagram, but they may have the
same cover graph or the same comparability graph.

8. There is a polynomial-time algorithm to check whether a graph G is a comparability
graph, but the problem of deciding whether there exists a poset for which G is the cover
graph is NP-complete.

Examples:

1. Any collection of subsets of the same set forms a poset when the subsets are partially
ordered by the usual inclusion relation X ⊆ Y .

2. Boolean algebra: The Boolean algebra on a set X is the poset consisting of all the
subsets of X, ordered by inclusion.
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3. The Boolean algebra on the set {a, b, c} has the following Hasse diagram. The only
maximal element is {a, b, c}. The only minimal element is ∅.

4. There are five different isomorphism types of posets of size three, whose Hasse
diagrams are as follows.

5. There are 16 different isomorphism types of posets of size four, whose Hasse diagrams
are as follows.

6. Divisibility poset: The divisibility poset on the set I of positive integers, de-
noted D(I), has the relation x ≤ y if y is an integer multiple of x. A number y
covers a number x if and only if the quotient y

x is prime.

7. The set D(n) of divisors of n forms a subposet of D(I), for any positive integer n.
The set D(n) is identical to the interval [1, n] in D(I). For instance, the following figure
is the Hasse diagram of D(24) = [1, 24].

8. The interval [3, 30] in D(I) has domain {3, 6, 12, 15, 30}. The interval [2, 24] has
domain {2, 4, 6, 8, 12, 24}.
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9. The poset D(I) is infinite, but locally finite.

10. The Boolean algebra of all subsets of an infinite set is not a finite poset. Nor is it
locally finite, since each interval from a finite set to an infinite superset is infinite.

11. The poset D(6) is isomorphic to the poset of subsets of {a, b}:

12. To generalize Example 11, if p1, . . . , pn are distinct primes, then the divisibility
poset D(p1 . . . pn) is isomorphic to the poset of subsets of a set of n objects.

13. The partitions of a set form a poset under refinement, as illustrated for the set
{a, b, c, d}. A notation such as ab-c-d means a partition of the set {a, b, c, d} into the
subsets {a, b}, {c}, {d}.

14. The 6-cycle is the comparability graph of exactly one (isomorphism type of) poset,
which has the following Hasse diagram:

15. The 6-cycle is the cover graph of seven posets, all of which are planar. They have
the following Hasse diagrams:
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11.1.2 CHAINS, ANTICHAINS, POSET OPERATIONS

Definitions:

A chain is a subset S of mutually comparable elements of a poset P , or sometimes the
subposet of P formed by such a subset.

The length of a finite chain C is |C|−1, i.e., the number of edges in the Hasse diagram
of that chain, regarded as a poset.

A k-chain is a chain of size k, i.e., a chain on k elements.

The standard k-chain k is a fixed k-chain, presumed to be disjoint from other objects
in the universe of discourse.

The height of a poset P is the maximum size of a chain in P .

The height of an element x in a poset P is the maximum length h(x) of a chain in P
that has x as its maximal element.

A bipartite poset is a poset of height at most 2.

A chain-product (or grid) is the Cartesian product of a collection of chains.

An antichain (or clutter or Sperner family) is a subset S of pairwise incomparable
elements of a poset P , or sometimes the subposet of P formed by such a subset.

A chain or antichain is maximal if it is contained in no other chain or antichain.

A chain or antichain in a finite poset is a maximum chain or antichain if it is one of
maximum size.

The disjoint union of two posets P = (X,R) and P ′ = (X ′, R′) with X ∩X ′ = ∅ is
the poset (X ∪X ′, R ∪R′), denoted P + P ′.

The linear sum of two posets P = (X,R) and P ′ = (X ′, R′) with X ∩X ′ = ∅ is the
poset (X ∪X ′, R ∪R′ ∪ (X ×X ′)), denoted P ⊕ P ′. (This puts all of poset P “below”
poset P ′).

The Cartesian product P × P ′ (or direct product or product) of two posets P =
(X,R) and P ′ = (X ′, R′) is the poset (X ×X ′, S), such that (x, x′)S(y, y′) if and only
if xRy and x′R′y′.

The iterated Cartesian product of n copies of a poset P = (X,≤), written Pn, is the
set of n-tuples in P , such that (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if either xj ≤ yj ,
for j = 1, . . . , n.

The lexicographic ordering of the Cartesian product P1 × P2 of the domains of two
posets is the partial ordering in which (x1, x2) ≤ (y1, y2) if and only if x1 < y1, or
x1 = y1 and x2 ≤ y2.

The dual of a poset P , denoted P ∗, is the poset on the elements of P defined by the
relation y ≤P∗ x if and only if x ≤P y.

A self-dual poset is a poset that is isomorphic to its dual.

Facts:

1. Every k-chain is isomorphic to the linear sum 1 ⊕ 1 ⊕ · · · ⊕ 1 of k copies of 1.

2. Every antichain of size k is isomorphic to the disjoint union 1+1+ · · ·+1 of k copies
of 1.

3. The chains are characterizable as the class of (1 + 1)-free posets.

c© 2000 by CRC Press LLC



4. The cover graph of a chain is a path.

5. The comparability graph of a chain of size n is the complete graph Kn.

6. The antichains are the class of 2-free posets;

7. The comparability graph of an antichain has no edges.

8. The maximum size of a chain in a finite poset P equals the minimum number of
antichains needed to cover the elements of P , that is, the minimum number of antichains
whose union equals the domain of poset P .

9. The bipartite posets are precisely the 3-free posets.

10. The bipartite posets are the posets whose comparability graph and cover graph
are the same.

11. Every maximal chain of a finite poset P extends from a minimal element of P
to a maximal element of P , and successive pairs on a maximal chain satisfy the cover
relation of P .

12. The Cartesian product of two posets is a poset.

13. A poset and its dual have the same comparability graph and the same cover graph.

14. The Hasse diagram of the dual of a poset P can be obtained from the Hasse diagram
of P either by reflecting through the horizontal axis or by rotating 180 degrees.

15. The set of order-preserving maps from a poset P to a poset Q forms a poset,
denoted by QP , under “coordinate-wise ordering”: f ≤ g in QP if and only if f(x) ≤Q

g(x) for all x ∈ P .

Examples:

1. The following figure shows: (A) a 3-chain, (B) an antichain of width 4, and (C) a
bipartite poset.

2. The poset 23 is not planar, even though it has a planar cover graph. However,
deleting its minimal element or maximal element leaves a planar subposet.

3. The cover graph of the poset 2n is isomorphic to the n-dimensional cube, whose
vertices are the bitstrings of length n, with bitstrings adjacent if they differ in one
position. Each bit encodes the possible presence of an element of the set of which Bn

is the Boolean algebra (§5.8.1).

4. The interval in the Boolean algebra 2n between an element of rank k and an element
of rank l ≥ k is isomorphic to the poset 2l−k.

5. Every maximal chain in the Boolean algebra 2n has size n + 1 and length n, and
there are n! such chains. There are maximal antichains as small as 1 element.
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6. In general, the poset D(n) is isomorphic to a chain product, one factor for each prime
divisor of n. The elements of D(n) can be encoded as integer vectors { a1, . . . , an | 0 ≤
ai < ei }, where n is a product of distinct primes with powers e1, . . . , en, and a ≤ b if
and only if ai ≤ bi for all i.

7. The Hasse diagrams for two possible partial orderings on the Cartesian product of
the domains of two posets is shown in the following figure:

8. The two posets M5 = 1⊕ (1+1+1)⊕1 and N5 = 1⊕ (2+1)⊕1 are used in §11.1.4
in a forbidden subposet description.

9. The following posets are self-dual:

11.1.3 RANK, IDEALS, AND FILTERS

Definitions:

A graded poset is a poset in which all maximal chains have the same length.

The rank r(P ) of a graded poset P is the length of any maximal chain.

A rank function r on a poset P is an assignment of integers to the elements so that
the relation y covers x implies that r(y) = r(x) + 1.

A ranked poset is a poset having a rank function.

The kth rank of a ranked poset P is the subset Pk of elements for which r(x) = k.

The kth rank parameter of a subset of elements F in a ranked poset P is the cardi-
nality |F ∩ Pk| of the number of elements of F in the kth rank of P .

The kth Whitney number Nk(P ) of a ranked poset P is the cardinality |Pk| of the kth
rank.
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The length of a poset P is the length of a longest chain in P , which is one less than
the height of P . Note: Sometimes “height” is used synonymously with length.

The Jordan-Dedekind chain condition for a poset is that every interval has finite
length.

The width of a poset P , denoted w(P ), is the maximum size of an antichain in P .

An ideal (or down-set, order ideal, or hereditary family) in a poset P is a sub-
poset I such that if x ∈ I and y < x, then y ∈ I.

A filter (or up-set or dual ideal) in a poset P is a subposet F whose domain is the
set-theoretic complement of the domain of an ideal.

The ideal generated by an element x in a poset P is the down-set D[x] = { y ∈ P |
y ≤ x }. The related notation D(x) means the down-set { y ∈ P | y < x }.
The ideal generated by a subset A in a poset P is the down-set D[A] =

⋃
x∈A D[x].

The related notation D(A) means the down-set
⋃

x∈A D(x).

The filter generated by an element x in a poset P is the up-set U [x] = { y ∈ P |
y ≥ x }. The related notation U(x) means the up-set { y ∈ P | y > x }.
The filter generated by a subset A in a poset P is the up-set U [A] =

⋃
x∈A U [x].

The related notation U(A) means the up-set
⋃

x∈A U(x).

A forbidden subposet description of a class of posets is a characterization of that
class as the class of all posets that does not contain any of the posets in a specified
collection. (This generalizes the concept of Q-free.)

Facts:

1. A graded poset has a rank function, in which the rank of each element is defined to
be its height.

2. If posets P1, P2 have rank functions r1, r2, then the Cartesian product P = P1 ×P2

is ranked, so that the element x = (x1, x2) has rank r(x) = r1(x1) + r2(x2).

3. In a Cartesian product of finite ranked posets P1 and P2, the Whitney numbers for
the Cartesian product P = P1 × P2 satisfy the equation Nk(P ) =

∑
i Ni(P1)Nk−i(P2).

4. The Boolean algebra on a set X of cardinality n is isomorphic to 2n, the Cartesian
product of n copies of 2. This poset isomorphism type is often denoted Bn.

5. The Boolean algebra on a set X of cardinality n is a graded poset, with rank function
r(S) = |S|, and with Whitney numbers Nk(2n) =

(
n
k

)
.

6. The sequence of Whitney numbers on the Boolean algebra on a set X of cardinal-
ity n is symmetric, since

(
n
k

)
=

(
n

n−k

)
. It is also unimodal, since the sequence rises

monotonically to the maximum and then falls monotonically.

7. Sperner’s theorem: The only maximum antichains in the Boolean algebra 2n are
the middle ranks (one such rank if n is even, two if n is odd). Thus the width of 2n is(

n
�n/2�

)
.

8. The maximal elements of an ideal form an antichain, as do the minimal elements of
a dual ideal; these yield natural bijections between the set of antichains in a poset P
and the sets of ideals or dual ideals of P .

9. The divisibility poset D(I) on the integers satisfies the Jordan-Dedekind chain con-
dition.
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Examples:

1. In the poset P of partitions of {a, b, c, d} under inverse refinement, illustrated below,
the Whitney numbers are N1(P ) = 1, N2(P ) = 6, N3(P ) = 7, and N4(P ) = 1.

2. In the poset of partitions of {a, b, c, d} under inverse refinement, the ideal D[ac-bd] is
the set {ac-bd, a-c-bd, ac-b-d, a-b-c-d}, and the ideal D(ac-bd) is the set {a-c-bd, ac-b-d,
a-b-c-d}.
3. In the poset of partitions of {a, b, c, d} under inverse refinement, the filter U [a-c-bd]
is the set {ac-bd, abd-c, a-bcd, abcd}, and the filter U(a-c-bd) is the set {abd-c, a-bcd,
abcd}.
4. In the graded poset D(n) of divisors of n, the rank r(x) is the sum of the exponents
in the prime power factorization of x. The Whitney numbers of D(n) are symmetric
because the divisors x and n

x have “complementary” ranks. If n is a product of k distinct
primes, then D(n) ∼= 2k.

5. The following Hasse diagram corresponds to an ungraded poset, because the lengths
of its maximum chains differ, i.e., they are length 2 and length 3.

6. In the divisibility poset D(I), the subposet D(n) of divisors of n is a finite ideal, and
the non-multiples of n form an infinite ideal, whose complement is the infinite filter U(n)
of numbers that are divisible by n.

11.1.4 LATTICES

Lattices are posets with additional properties that capture some aspects of the inter-
section and the union of sets and (more generally) of the greatest common divisor and
least common multiple of positive integers. (See also §5.7.)

Definitions:

A (common) upper bound for elements x, y in a poset is an element z such that
x ≤ z and y ≤ z.

A least upper bound (or lub, pronounced “lub”) for elements x, y in a poset is a
common upper bound z such that every other common upper bound z′ satisfies the
inequality z ≤ z′. Such an element, if it exists, is denoted x ∨ y.
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The join of x and y is the lub x ∨ y.

A (common) lower bound for elements x, y in a poset is an element z such that
x ≥ z and y ≥ z.

A greatest lower bound (or glb, pronounced “glub”) for elements x, y in a poset is
a common lower bound z such that every other common lower bound z′ satisfies the
inequality z ≥ z′. Such an element, if it exists, is denoted x ∧ y.

The meet of x and y is the glb x ∧ y.

A lattice is a poset in which every pair of elements has both a lub and a glb.

A lattice is bounded if it has both a unique minimal element (denoted “0”) and a
unique maximal element (denoted “1”).

A nonzero element of a lattice L is join-irreducible (or simply irreducible) if it
cannot be expressed as the lub of two other elements. The subposet formed by the
join-irreducible elements of L is denoted by P (L).

A nonzero element of a lattice L is meet-irreducible if it cannot be expressed as a
glb of two other elements. The subposet formed by the meet-irreducible elements of L
is denoted by Q(L).

A complement of an element x of a lattice is an element x such that x ∨ x = 1 and
x ∧ x = 0.

A complemented lattice is a lattice in which every element has a complement.

A lattice isomorphism is an order-preserving bijection from one lattice to another
that also preserves glbs and lubs.

An atom of a poset is an element of height 1.

A lattice is atomic if every element is a lub of atoms (or equivalently, if the atoms are
the only join-irreducible elements).

A sublattice of a lattice L is a subposet P such that x∧ y and x∨ y are in P for all x
and y ∈ P .

The divisor lattice is the poset D(n) of the positive integer divisors of n, in which
x ≤ y means that y is an integer multiple of x.

The subset lattice is the Boolean algebra 2n, that is, the Cartesian product of n copies
of the standard 2-chain.

The subspace lattice Ln(q) is the set of subspaces of an n-dimensional vector space
over a q-element field, partially ordered by set inclusion.

The lattice of (order) ideals J(P ), for any poset P = (X,R), is the set of order ideals
of P , ordered by inclusion.

The lattice of bounded sequences L(m,n) has as members the length-m real se-
quences a1, . . . , an such that 0 ≤ a1 ≤ · · · ≤ am ≤ n.

An integer partition is a nonincreasing nonnegative integer sequence having finitely
many nonzero terms, with trailing zeros added as needed for comparison.

The Young lattice is the lattice of integer partitions under component-wise ordering.

A refinement of a set partition σ replaces each block B ∈ σ by some partition of B.

The partition lattice is the poset Πn of partitions of the set [n] = {1, . . . , n}, where
π < σ if π is a refinement of σ.
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Facts:

1. If z ≤ x in a lattice, then x ∧ (y ∨ z) ≥ (x ∧ y) ∨ z.

2. 4-point lemma: If each of the elements z, w is less than or equal to each of the
elements x, y in a lattice, then z ∨ w ≤ x ∧ y.

3. An element z is a least upper bound for x and y if and only if it is a unique minimal
element among their common upper bounds.

4. Every finite lattice is bounded.

5. Every chain-product is a lattice.

6. If a locally finite poset P with a unique maximal element 1 also has a well-defined glb
operation, then P is a lattice.

7. Not all lattices are ranked. In particular, the lattice of integer partitions under
dominance ordering is unranked.

8. Every interval in a lattice is a sublattice, but not every sublattice is an interval.

9. In the subspace lattice Ln(q), the Whitney numbers (§11.1.3) satisfy the equation
Nk(Ln(q)) = (qn−1)(qn−1−1)...(qn−k+1−1)

(qk−1)(qk−1−1)...(q1−1)
.

10. In the subspace lattice Ln(q), the Whitney number Nk(Ln(q)) equals the Gaussian
coefficient [n

k ]q (§2.3.2), which appears in algebraic identities and in analogues of results
on subsets.

11. The Whitney number Nk(Πn) of partitions of the set [n] into n − k blocks is the
Stirling subset number

{
n

n−k

}
(§2.5.2). This has no closed formula, but the inclusion-

exclusion principle yields
{

n
t

}
=

∑t
i=0(−1)i (t−i)n

t! .

Examples:

1. The poset specified by the following Hasse diagram is a lattice.

2. The poset specified by the following Hasse diagram is not a lattice. Although every
pair of elements has a common upper bound, none of the three common upper bounds
for the elements c and d is a least upper bound.
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3. Two 5-element lattices that occur as subposets of 23 but not as sublattices of 23 are
M5 = 1 ⊕ (1 + 1 + 1) ⊕ 1 and N5 = 1 ⊕ (2 + 1) ⊕ 1.
4. In the divisor lattice D(n), a ∧ b = gcd(a, b) and a ∨ b = lcm(a, b).
5. The join-irreducible elements of the divisibility lattice D(I) are the powers of primes.
6. In the subset lattice 2n, a ∧ b = a ∩ b and a ∨ b = a ∪ b.
7. The join-irreducible elements of the subset lattice 2n are the singleton sets.
8. The subspace lattice Ln(q) is a graded lattice, with rank r(U) = dimU .
9. In the subspace lattice Ln(q), the meet of subspaces U and V is their intersection
U ∩ V , and the join is the unique minimal subspace containing their union.
10. In the lattice of order ideals J(P ), glb and lub are given by intersection and union.
Hence J(P ) is a sublattice of the Boolean lattice 2|P |; equality holds if and only if P is
an antichain.
11. The lattice J(P ) of ideals of a poset P = (X,R) is finite, with 1J(P ) = X and
0J(P ) = ∅. It is graded, with rank function r(I) = |I|.
12. By the correspondence between ideals of a poset P = (X,R) and their antichains
of maximal elements, the lattice J(P ) of ideals is also a lattice on the antichains of P .
The corresponding ordering on antichains is A ≤ B if every element of A is less than or
equal to some element of B.
13. The lattice L(m,n) of bounded sequences is a sublattice of n + 1m, and L(m,n) =
J(m × n) = L(n,m). The natural isomorphism maps a sequence a ∈ L(m,n) to the
order ideal of m× n generated by { (m + 1 − i, ai) | ai > 0 }.
14. The lattice L(m,n) is a sublattice of the Young lattice.
15. In the partition lattice Πn, 13|4|2|5 < 123|45; the order of the blocks and the order
of elements within each block are irrelevant.
16. The partition lattice Πn is a graded poset, with 1Πn

= [n] and 0Πn
= 1|2| · · · |n.

The common refinement of π and σ with the fewest blocks is the greatest lower bound
(meet) of π and σ.
17. The lattice Π3 is isomorphic to the lattice M5.
18. In the ordering on antichains of a poset P defined by A ≤ B if every element of A
is less than or equal to some element of B, the maximum antichains of P induce a
sublattice.

11.1.5 DISTRIBUTIVE AND MODULAR LATTICES

Definitions:

A lattice L is distributive if glb distributes over lub in L, that is, if x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ L.

A lattice L is modular if x ∧ (y ∨ z) = (x ∧ y) ∨ z for all x, y, z ∈ L such that z ≤ x.

A lattice L is (upper) semimodular if for all x, y ∈ L, “x covers x∧ y” implies “x∨ y
covers y”.

A lattice L is lower semimodular if the reverse implication holds (equivalently, if the
dual lattice L∗ is semimodular).

The height function h of a lattice L is a submodular height function if h(x ∧ y) +
h(x ∨ y) ≤ h(x) + h(y) for all x, y ∈ L.
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A lattice is geometric if it is atomic and semimodular has finite height.

A closure operator on the subsets of a set E is a function σ: 2E → 2E that maps
each set to a superset of itself, is order-preserving with respect to set inclusion, and is
“idempotent”: σ(σ(A)) = σ(A).

The closed subsets of a set E, with respect to a closure operator σ: 2E → 2E , are the
sets with σ(A) = A.

The Steinitz exchange axiom for a closure operator σ: 2E → 2E is the rule that
p /∈ σ(A) and p ∈ σ(A ∪ q) imply q ∈ σ(A ∪ p).

Facts:

1. The smallest nondistributive lattices are M5 = 1 ⊕ (1 + 1 + 1) ⊕ 1 and N5 =
1 ⊕ (2 + 1) ⊕ 1, which are illustrated in §11.1.1, Example 18.

2. A lattice is distributive if and only if it occurs as a sublattice of 2n for some n.

3. Every sublattice of a distributive lattice is a distributive lattice.

4. The product of distributive lattices L1 and L2 is a distributive lattice, with (x1, x2)∧
(y1, y2) = (x1 ∧ y1, x2 ∧ y2) and (x1, x2) ∨ (y1, y2) = (x1 ∨ y1, x2 ∨ y2).

5. In a lattice L, distributivity and the dual property that x∨ (y∧z) = (x∨y)∧ (x∨z)
for all x, y, z ∈ L are equivalent. Hence the dual of a distributive lattice is a distributive
lattice.

6. A lattice L is modular if and only if c ∈ [a∧b, a] implies a∧(b∨c) = c for all a, b ∈ L
(equivalently, if c ∈ [b, b ∨ d] implies b ∨ (c ∧ d) = d for all b, d ∈ L).

7. Let µa:L → L be the operation “take the glb with a”, and let νb:L → L be the
operation “take the lub with b”. A lattice L is modular if and only if for all a, b ∈ L, the
intervals [a∧b, a] and [b, a∨b] are isomorphic sublattices of L, with lattice isomorphisms
given by νb and µa.

8. If y covers x in a semimodular lattice L, then for all z ∈ L, x∨ z = y ∨ z or x∨ z is
covered by y ∨ z.

9. A lattice L with a lower bound is semimodular if and only if the following is true:
the height function of L is submodular and in each interval the maximal chains all have
the same length.

10. A lattice is modular if and only if it does not have N5 as a sublattice.

11. Every distributive lattice is modular, because in a distributive lattice x ∧ (y ∨ z)
= (x ∧ y) ∨ (x ∧ z) = (x ∧ y) ∨ z if z ≤ x.

12. A modular lattice is distributive if and only if it does not have M5 as a sublattice.

13. Given a closure operator, the closed sets form a lattice under inclusion with meet
and lub given by intersection and closure of the union, respectively.

14. If a closure operator σ satisfies the Steinitz exchange axiom, then the lattice of
closed sets is semimodular.

15. The lattice Ln(q) is semimodular. (This follows from the previous fact.)

16. A poset is a geometric lattice if and only if it is the lattice of closed sets of a matroid,
ordered by inclusion (§12.4). (The span operator in a matroid, which adds to X every
element whose addition to X does not increase the rank, is a closure operator that
satisfies the Steinitz exchange axiom.)
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17. A geometric lattice is distributive if and only if it has the form 2n, and the corre-
sponding matroid is the free matroid, in which all subsets of the elements are indepen-
dent.

18. A complemented distributive lattice is a Boolean algebra.

Examples:

1. Among nondistributive lattices, the lattice M5 is modular, and the lattice N5 is not
(which explains the notation).

2. The subspace lattices Ln(q) are not distributive.

3. The partition lattice Πn is semimodular but not modular for n > 3. The lat-
tice Ln(q) is semimodular.

4. The partition lattice Πn is geometric, and it is the lattice of closed sets of the cycle
matroid of the complete graph Kn.

5. For n ≥ 3, the lattice Π(n) is not distributive.

6. The Boolean lattice 2n, the divisor lattice D(N), the lattice J(P ) of order ideals of
a poset, and the bounded sequence lattice L(m,n) are distributive.

11.2 POSET PROPERTIES

11.2.1 POSET PARTITIONS

Definitions:

A chain partition of a poset is a partition of the domain of that poset into chains.

The k-norm of a sequence x = {xi} of real numbers is the sum
∑

i min{k, xi}, whose
value is commonly denoted mk(x).

The k-norm of a chain partition C of a poset, denoted mk(C), means the k-norm
of the sequence of sizes of the chains in the partition.

A k-family in a poset P is a subposet containing no chain of size k + 1. The size of a
maximum k-family in P is denoted by dk(P ).

A partition of a poset P into chains is k-saturated if mk(C) = dk(P ).

A chain in a ranked poset is symmetric if it has an element of rank r(P )−k whenever
it has an element of rank k.

A chain is consecutive if its elements belong to consecutive ranks.

A symmetric chain decomposition of P is a partition of P into symmetric consec-
utive chains.

A symmetric chain order is a poset with a symmetric chain decomposition.

A graded poset has the Sperner property if some single rank is a maximum antichain.

A graded poset has the strict Sperner property if all maximum antichains are single
ranks.
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A poset P has the k-Sperner property if it has a maximum k-family consisting of k
ranks.

A poset has the strong Sperner property if it is k-Sperner for all k ≤ r(P ).

A graded poset P satisfies the normalized matching property if for every k and
every subset A of Pk, the set A∗ of elements in Pk+1 that are comparable to at least
one element of A satisfies the inequality |A∗|

Nk+1
≥ |A|

Nk
, where Nk and Nk+1 are Whitney

numbers.

A regular covering by chains is a multiset of maximal chains such that for each
x ∈ P the fraction of the chains containing x is 1

Nr(x)
.

To obtain the bracket representation of a subset S of [n] = {1, . . . , n}, first represent
the subset S as a length-n “parenthesis-vector”, in which the jth bit is a right parenthesis
if j ∈ S and a left parenthesis if j �∈S. Then wherever possible, recursively, match a left
parenthesis to the nearest unmatched right parenthesis that is separated from it only
by previously matched entries.

An on-line partitioning algorithm processes the elements of a poset as they are “re-
vealed”. Once an element is assigned to a cell, it remains there; there is no backtracking
to change earlier decisions.

Facts:
1. Dilworth’s theorem: If P is a finite poset, then the width of P equals the minimum
number of chains needed to cover the elements of P .
2. Dilworth’s theorem also holds for infinite posets of finite width.
3. The 1-families are the antichains.
4. Every k-family is a union of k antichains.
5. A k-family in P can be transformed into an antichain in P ×k of the same size, and
vice versa, and hence dk(P ) = w(P × k).
6. The discussion of saturated partitions is generally restricted to finite posets.
7. If αk is the number of chains of size at least k in a k-saturated chain partition of P ,
then ∆k(P ) ≥ αk ≥ ∆k+1(P ), where ∆k(P ) = dk(P ) − dk−1(P ) for k ≥ 1.
8. Littlewood-Offord problem: Let A = {a1, . . . , an} be a set of vectors in Rd, with
each vector having length at least 1. Let R1, . . . , Rk be regions in Rd of diameter at
most 1. Then of the 2n subsets of A = {ai}, the number whose sum lies in

⋃
i Ri is at

most dk(2n).
9. Greene-Kleitman (GK) theorem: For every finite poset P and every k ≥ 0, there
is a chain partition of P that is both k-saturated and (k + 1)-saturated.
10. The GK theorem is best possible, since there are infinitely many posets for which
no chain partition is both k-saturated and l-saturated for any nonconsecutive nontrivial
values for k, l; the smallest has 6 elements (illustration). The GK theorem extends in
various ways to directed graphs.
11. Dilworth’s theorem is the special case of the GK theorem for k = 0 (every chain
partition is 0-saturated).
12. Every product of symmetric chain orders is a symmetric chain order.
13. The lattice of bounded sequences L(m,n) (§11.1.4) has a symmetric chain decom-
position if min{m,n} ≤ 4. It is not known whether L(m,n) in general has a symmetric
chain decomposition.
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14. The lattice L(m,n) has the Sperner property.

15. The partition lattice Π(n) fails to satisfy the Sperner property if n is sufficiently
large.

16. The Boolean lattice 2n and the subspace lattice Ln(q) satisfy the strict Sperner
property.

17. Every symmetric chain order has the strong Sperner property, and a symmetric
chain decomposition is k-saturated for all k.

18. The class of graded posets that have the strong Sperner property and a symmetric
unimodal sequence of Whitney numbers is closed under Cartesian product.

19. When Nk ≤ Nk+1, the normalized matching property implies Hall’s condition for
the existence of a matching saturating Pk in the bipartite graph of the relations between
the two levels.

20. Two subsets of the Boolean lattice in [n] are on the same chain of the “bracket-
ing decomposition” if and only if they have the same bracketing representation. This
provides an explicit symmetric chain decomposition of 2n. This generalizes for multi-
sets (D(N)).

21. Dedekind’s problem: This is the problem of computing the total number of an-
tichains in the Boolean algebra 2n. By using the bracketing decomposition, this number
is calculated to be at most 3( n

�n/2�). Asymptotically, for even n, the number is

2( n
n/2)e(

n
n/2−1)[2−n/2 + n22−n−5 − n2−n−4(1 + o(1))].

The exact values for n ≤ 7 are 3, 6, 20, 168, 7581, 7828354, and 2,414,682,040,998, with
the estimate giving 7996118 for n = 6.

22. Universal set sequences: A universal set sequence on a set S is a sequence that
contains every subset of S as a consecutive subsequence. The bracketing decomposition
yields a universal set sequence on [n] of length asymptotic to 2

π 2n.

23. If two sets, x and y, are chosen independently according to a probability distri-
bution on the Boolean lattice 2n, then the probability that x is contained in y is at
least

(
n

�n/2�
)−1.

24. There is an on-line algorithm that partitions posets of height k into
(
k+1
2

)
an-

tichains. This is best possible, even for 2-dimensional posets.

25. There is an on-line algorithm that partitions posets of width k into 5k−1
4 chains.

26. It is impossible to design an on-line algorithm partitions every poset of width k
into fewer than

(
k+1
2

)
chains.

27. There is an on-line algorithm to partition every poset of width 2 into 5 chains, and
this is best possible.

Examples:

1. This is a symmetric chain decomposition of the Boolean lattice 23:
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2. This is a regular chain covering of the Boolean lattice 23:

3. The poset 3×4 has a regular covering by six chains, using two chains twice and two
other chains once each:

4. The poset 3 × 4 satisfies the Sperner property but not the strict Sperner property,
since it has a maximum antichain (size three) that is not confined to a single rank.

11.2.2 LYM PROPERTY

Definitions:

The LYM inequality for a family F in a ranked poset P is the inequality
∑

x∈F

1
Nr(x)

≤ 1,

where Nr(x) is a Whitney number.

A poset P is an LYM order (or satisfies the LYM property) if every antichain F ⊆ P
satisfies the LYM inequality.

Facts:

1. The LYM property was discovered independently for 2n by Lubell, Yamamoto, and
Meshalkin.

2. The LYM property, the normalized matching property, and the existence of a regular
covering by chains are equivalent.

3. The LYM property implies the Sperner property and also implies the strong Sperner
property (but not the strict Sperner property).

4. Every LYM order that has symmetric unimodal Whitney numbers has a symmetric
chain decomposition. In particular, Ln(q) is a symmetric chain order.

5. It is not known whether every LYM poset has a chain decomposition that is k-
saturated for all k.

6. A product of LYM orders may fail the LYM property.

7. A product of LYM orders whose sequence of Whitney numbers is log-concave is
an LYM order with a log-concave sequence of Whitney numbers. (A sequence {an} is
log-concave if a2

n ≥ an−1an+1 for all n.)

8. The divisor lattice D(N) is an LYM order, which follows from the previous fact.

9. The partition lattice Π(n) if an LYM order if and only if n < 20.
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10. The Boolean lattice 2n and the subspace lattice Ln(q) have regular coverings by
chains and hence are LYM orders.

11. If {λx} is an assignment of real-valued weights to the elements of an LYM poset P ,
then for every subset G ⊂ P and every regular covering C of P ,

∑

x∈G

λx

Nr(x)
≤ max

C∈C
{

∑

y∈C∩G

λy}.

Example:

1. The lattice L(m,n) of bounded sequences is an LYM order if and only if min{m,n} ≤
2 or (m,n) = (3, 3).

11.2.3 RANKINGS, SEMIORDERS, AND INTERVAL ORDERS

A chain names the “better” of any pair according to a single scale. Realistically, some
comparisons may yield indifference. Several families of “chain-like” partial orders suc-
cessively relax the requirements on indifference.

Definitions:

A poset P is a ranking or weak order if its elements are partitioned into ranks
P1, . . . , Pk such that two elements are incomparable if and only if they belong to the
same rank.

A poset P is a semiorder if there is a real-valued function f and a fixed real number
δ > 0 (δ may be taken to be 1) such that x < y if and only if f(y) − f(x) > δ. The
pair (f, δ) is a semiorder representation of the poset P .

A poset P is an interval order if there is an assignment of real intervals to its members
such that x < y if and only if the interval for y is totally to the right of the interval
for x. The collection of intervals is called an interval representation of the poset P .

A biorder representation on a digraph D is a pair of real-valued functions f , g on
the vertex set VD such that u → v is an arc if and only if f(u) > g(v).

A Ferrers digraph (or Ferrers relation or biorder) is a digraph having a biorder
representation. (Also see §2.5.1.)

Facts:

1. Rankings model a single criterion of comparison with “ties” allowed, as in voting.

2. A poset is a ranking if and only if its comparability graph is a complete multipartite
graph.

3. A ranking assigns a score f(z) to each element z such that x < y if and only if
f(x) < f(y).

4. The forbidden subposet characterization of a ranking is 1 + 2.

5. Semiorders were introduced to model intransitivity of indifference; a difference of a
few grains of sugar in a coffee cup or a few dollars in the price of a house is not likely to
affect one’s attitude, but pounds of sugar or thousands of dollars will. The threshold δ
in a semiorder representation indicates a “just-noticeable difference”.
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6. A poset is a semiorder if and only if its incomparability graph is a unit interval
graph, that is, an interval graph (§8.1.3) such that all intervals are of unit length.

7. An interval representation of a semiorder P with semiorder representation (f, δ) is
obtained by setting Ix = [f(x) − δ

2 + ε, f(x) + δ
2 − ε].

8. Scott-Suppes theorem: The forbidden subposet characterization of a semiorder is
{1 + 3, 2 + 2}.
9. The number of nonisomorphic semiorders on an n-element set is the Catalan number
Cn = 1

n+1

(
2n
n

)
(§3.1.3).

10. Interval orders model a situation where the value assigned to an element is impre-
cise.

11. The incomparability graph of an interval order is an interval graph.

12. Every poset whose incomparability graph is an interval graph is an interval order.
This follows from the forbidden subposet characterization of interval orders.

13. The forbidden subposet characterization of an interval order is 2 + 2.

14. A poset P is an interval order if and only if both the collections of “upper holdings”
U(x) = { y ∈ P | y > x } and “lower holdings” D(x) = { y ∈ P | y < x } form chains
under inclusion, in which case the number of distinct nonempty upper holding sets and
distinct nonempty lower holding sets is the same. Construction of these chains yields a
fast algorithm to compute a representation for an interval order or semiorder.

15. The strict comparability digraph of an interval order is a Ferrers digraph, with f(x)
and g(x) denoting the left and right endpoints of the interval assigned to x. This is
the strict comparability digraph of a poset because f(x) ≤ g(x) for all x. The “upper
holdings” and “lower holdings” for an interval order become predecessor and successor
sets for a Ferrers digraph.

16. For a digraph D with adjacency matrix A(D), the following are equivalent:
• D has a biorder representation (and is a Ferrers digraph);
• A(D) has no 2 by 2 submatrix that is a permutation matrix;
• the successor sets of D are ordered by inclusion;
• the predecessor sets of D are ordered by inclusion;
• the rows and columns of A(D) can be permuted independently so that to the left

of a 1 is a 1.

17. The greedy algorithm is an optimal on-line algorithm for partitioning an interval
order into the minimum number of antichains. It uses at most 2h − 1 antichains to
recursively partition an interval order of height h, and this is best possible.

18. There is an on-line algorithm to partition every interval order of width k into 3k−2
chains, and this is best possible. Equivalently, the maximum number of colors needed
for on-line coloring of interval graphs with clique size k is 3k − 2.

19. No on-line partitioning algorithm colors all trees with a bounded number of colors.

20. “Universal” interval orders: Since the ordering of the interval endpoints is all
that matters, interval representations may be restricted to have integer endpoints. The
poset I[0, n] or In denotes the interval order whose interval representation consists of
all intervals with integer endpoints in {0, . . . , n}.
21. Every finite interval order is a subposet of some I[0, n].
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Examples:

1. This Hasse diagram represents a poset that is a ranking. Its three ranks are indicated
by the levels in the diagram.

2. This Hasse diagram represents a poset that is a semiorder: for instance, with δ = 1,
define f(a) = 2, f(b) = 1.3, f(c) = 0.8, and f(d) = 0. It is not a ranking, by Fact 4,
because 1 + 2 is a subposet. The interval representation of its incomparability graph is
at the right.

3. This Hasse diagram represents a poset that is an interval order. The interval repre-
sentation of its incomparability graph is at the right. By Fact 8, it is not a semi-order.

4. The skill of a tennis player may vary from day to day, leading to use of an inter-
val [ax, bx] to represent player x. In this case player x always beats player y if ax > by.

5. The interval order I[0, 3] is not a semiorder.

11.2.4 APPLICATION TO SOCIAL CHOICE

When there are more than two candidates for a public office, it is not obvious what
is the “best” way to select a winner. Any rule has its pluses and minuses, from the
standpoint of public policy. Social choice theory analyzes the effect of various rules for
deciding the outcomes of preferential rankings.

Definitions:

A profile on a set A of “alternatives” (e.g., candidates for a public office) is a set
P = {Pi | i ∈ I } of linear rankings (ties allowed) of A, one for each member of a set I
of “individuals” (e.g., voters).

A consensus function (or social choice function) is a function φ that assigns to
each possible profile P = {Pi | i ∈ I } on a set A of alternatives a linear order (ties
allowed) of A called the consensus ranking for P .

A consensus function upholds majority rule provided that it prefers x to y if and only
if a majority of the individuals prefer x to y.

Plurality is the consensus function in which the winner(s) is(are) the alternative(s)
appearing in the greatest number of top ranks, after which the winner(s) is(are) deleted
and the procedure is repeated to select the next rank of the consensus ranking, etc.
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The Borda count of an alternative x is the sum, over individual rankings, of the
number of alternatives x “beats”. The resulting Borda consensus function ranks
the alternatives by their Borda count.

Facts:

1. Plurality can elect some ranked last by a majority.

2. Condorcet’s paradox: Some profiles have no decisive consensus (i.e., producing a
single winner) that upholds majority rule.

3. The Borda count is subject to abuse.

4. Arrow’s impossibility theorem: No consensus function exists that satisfies the fol-
lowing four axioms, which were formulated in an attempt to develop a consensus function
φ that avoids the difficulties cited in the facts above:

• monotonicity : If a > b in φ(P ) and if profile P ′ agrees with profile P except for
moving alternative a upward in some or all rankings, then a > b in φ(P ′).

• independence of irrelevant alternatives: If profiles P and P ′ agree within a set
A′ ⊆ A, then φ(P ) and φ(P ′) have the same restriction to A′. This axiom
implies that votes for extraneous alternatives do not affect the determination
of the consensus ranking among the alternatives within the subset A′.

• nondegeneracy : Given a, b ∈ A, there is a profile P such that a > b in φ(P ). This
axiom implies that the structure of the outcome is independent of renaming the
alternatives.

• nondictatorship: There is no i ∈ I such that a > b in Pi implies a > b in φ(P ).

Examples:

1. Suppose that A = {a, b, c } is the set of alternatives, and suppose that the profile
consists of the three rankings a > b > c, c > a > b, and b > c > a. Then for each
alternative, there is another alternative that is preferred by 2

3 of the population.

2. The U. S. presidential election of 1912 had three candidates: Wilson (W), Roo-
sevelt (R), and Taft (T). It is estimated that 45% of the voters ranked W > R > T ,
that 30% ranked R > T > W , and that 25% ranked T > R > W . Wilson won the
election, garnering a plurality of the popular vote, but a majority of the population
preferred Roosevelt to Wilson. Moreover, 55% regarded Wilson as the least desirable
candidate.

3. Consider a close election, with four individuals preferring x to y to all other alter-
natives. A fifth individual prefers y to x. If there are enough other alternatives, the
fifth individual can throw a Borda-count election to y by placing x at the bottom.

11.2.5 LINEAR EXTENSIONS AND DIMENSION

By adding additional comparison pairs to a partial ordering on a set, ultimately a total
ordering is obtained. Each of the many ways to do this is called an extension of the
original partial ordering.

Definitions:

An extension of a poset P = (X,R) is a poset Q = (X,S) such that R ⊆ S (i.e., xRy
implies xSy).

A linear extension of a poset P is an extension of P that is a chain.
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A topological sort is an algorithm that accepts a finite poset as input and produces
a linear extension of that poset as output.

A topological ordering of an acyclic digraph is a linear extension of the poset arising
from it.

The intersection of two partial orderings P = (X,R) and Q = (X,S) on the same
set X is the poset (X,R ∩ S) that includes the relations common to both.

A realizer of a poset P is a set of linear extensions of P whose intersection is P .

The order dimension (or dimension) of P , written dim(P ), is the minimum cardi-
nality of a realizer of P .

The standard example Sn of an n-dimensional poset is the subposet of 2n induced
by the singletons and their complements.

An alternating k-cycle in a poset P is a sequence of ordered incomparable pairs
{(xi, yi)}k

i=1 such that yi ≤ xi+1, where subscripts are taken modulo k.

A critical pair (or unforced pair) in a poset P is an ordered incomparable pair that
cannot be made comparable by adding any other single incomparable pair as a relation.

A linear extension L of a poset P puts Y over X, where X and Y are disjoint subposets,
if y is above x in L whenever (x, y) is an incomparable pair with x ∈ X, y ∈ Y .

Given a subposet Q ⊆ P , an upper extension of Q is a linear extension of P that
puts P −Q over Q.

Given a subposet Q ⊆ P , a lower extension of Q is a linear extension of P that puts
P −Q below Q.

The minimum realizer encoding of a poset lists for each element its position on each
extension in a minimum realizer.

The probability space on the set of all linear extensions of a (finite) poset P is
obtained by taking each linear extension to be equally likely. The notation Pr(x < y)
denotes the proportion of linear extensions in which element x comes below element y.

Facts:

1. Every poset is the intersection of all its linear extensions, from which it follows that
the concept of dimension is well-defined.

2. Given incomparable elements x and y in a poset P , there is a linear extension of P
in which x appears above y.

3. The chains are the only posets of dimension 1.

4. Every antichain has dimension 2, because the intersection of a linear order and its
dual is an antichain.

5. Topological sort is used to organize activities with a precedent ordering into a se-
quential schedule.

6. The list of minimal forbidden subposets for dimension 2 consists of 10 isolated
examples and 7 one-parameter families.

7. If Q is a subposet of P , then dim(Q) ≤ dim(P ).

8. The dimension of a product of k chains (each of size at least 2) is k.

9. A poset has dimension at most k if and only if it imbeds in a product of k chains.

10. The dimension of a poset P equals the minimum integer n such that P is a subposet
of Rn.

c© 2000 by CRC Press LLC



Algorithm 1: Topological sort.

input: a finite poset (X = {x1, . . . , xn},≤)
output: a compatible total ordering A = x1 ≤x2 ≤ · · · ≤xn of the elements of X

for j := 1 to n
xj := a minimal element of X
X := X − {xj}

11. The standard example Sn is a bipartite poset whose comparability graph is ob-
tained from the complete bipartite graph Kn,n by deleting a complete matching.
12. The minimum realizer encoding of an n-element poset of dimension k takes only
O(kn log n) bits, instead of the O(n2) bits of the order relation. Thus, posets of small
dimension have concise representations.
13. In the sense of Fact 12, the dimension of a poset may be regarded measure of its
“space complexity”.
14. The dimension of a poset P equals the minimum number of linear extensions
containing all the critical pairs of P .
15. The dimension of a poset P is equal to the chromatic number of the hypergraph
whose vertex set is the set of critical pairs and whose edges are the sets of critical pairs
forming minimal alternating cycles.
16. The cover graph of the standard example Sn (of an n-dimensional poset) is Kn,n-
(1-factor).
17. If X and Y are disjoint subposets of a poset P , then P has a linear extension L
putting Y over X if and only if P contains no 2 + 2 with minimal elements in Y and
maximal elements in X.
18. dim(P ) ≤ w(P ). A realizer of size w(P ) can be formed by taking upper extensions
of the chains in a partition of P into w(P ) chains.

19. dim(P ) ≤ |P |
2 . The standard example Sn shows that this bound is the best possible.

20. One-point removal theorem: For every x ∈ P , dim(P ) ≤ 1 + dim(P − x).
21. For every poset P , there exist four elements {x, y, z, w} such that dim(P ) ≤ 2 +
dim(P −{x, y, z, w}). It is conjectured that, for every poset P , there exist two elements
{x, y} such that dim(P ) ≤ 1 + dim(P − {x, y}).
22. A poset has dimension 2 if and only if the complement of its comparability graph is
also a comparability graph; thus there is a polynomial time algorithm to decide whether
a poset has dimension 2. However, recognizing posets of dimension k is NP-complete
for every fixed k at least 3.
23. If P is a finite poset that is not a chain, then P has a pair of elements x, y such
that

0.2764 � 1
2 − 1

2
√

5
≤ Pr(x < y) ≤ 1

2 + 1
2
√

5
� 0.7236.

24. The 1
3 - 2

3 conjecture: This conjecture states that there is always a pair of ele-
ments, x and y, such that 1

3 ≤ Pr(x < y) ≤ 2
3 .

25. The traditional name topological sort (Algorithm 1) is commonly used in applica-
tions. However, a topological sort is not a sort in the standard meaning of that word.
Nor is it directly related to what mathematicians call topology .
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Examples:

1. The following poset has the linear extensions abc and acb and it is the intersection
of these extensions. Thus its dimension is 2.

2. The following poset has six linear extensions: abcd, acbd, acdb, cad, and cdab. Since
it is the intersection of abcd and cdab, its dimension is 2.

3. The bipartite poset S3 whose comparability graph and cover graph is the 6-cycle
1, 2, 3, 1, 2, 3 has dimension 3. The realizer {231123, 132213, 123312} establishes the
upper bound. Every realizer must have an extension with 1 below 1, one with 2 below 2,
and one with 3 below 3. No two of these can occur in the same linear extension, so the
dimension is at least three.

4. More generally, for the elements i ∈ [n] of the standard example Sn, a realizer
must include distinct linear extensions in which the singleton {i} appears above its
complement, and any n such extensions suffice.

5. For the standard example Sn of dimension n, the critical pairs are {̄i, i}; this reflects
the fact that, in a realizer, the extensions need to put i above ī, for each i. Each pair
of critical pairs forms a minimal alternating cycle. Viewing the minimal alternating
cycles as edges creates a hypergraph, namely the complete graph Kn, with chromatic
number n.

6. Let N be the bipartite poset with minimal elements a and b and maximal elements c
and d, in which a lies below c, and b lies below c and d. This poset has five linear
extensions, namely a < b < c < d, a < b < d < c, b < a < c < d, b < a < d < c, and
b < d < a < c. Thus Pr(a < b) = 2

5 .

7. Application of posets to sorting : The objective of a sort is to arrange the elements
of a set X into a sequence by posing sequential queries of the form: “is x < y true?”.
At any time, the state of cumulative knowledge is representable by a poset P = (X,R),
such that the linear extensions of P are remaining candidates for the final sequence
order. A desirable query substantially reduces the number of candidates for extensions
no matter whether the answer is yes or no, most especially finding a pair, x and y, such
that Pr(x < y) is close to 1

2 . Thus, Fact 22 shows that the worst case time to sort, in
the presence of partial information given by a poset P , is Ω(logP ).

8. Application of posets to searching : The objective of searching a poset P in which
item s(x) is stored at location x is to determine whether a target item α is present in P .
Each step of the search probes a location and compares its value against the target item.
The worst case requires determining for each x ∈ P whether the item at location x is
greater or less than α, so the searching problem is the problem of identifying the downset
Dα = {x ∈ P | s(x) < α }. A probe of location x splits the remaining possible downsets
into those that contain x and those that do not. The former remain as candidates if
s(x) < α; the latter remain if s(x) > α. A hypothetical adversary would arrange the
value s(x) so that the response would leave the larger portion of the ideals. Thus, the
number c(P ) of probes required in the worst case is at least �log2 i(P )�, where i(P )
denotes the number of ideals in poset P .
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11.2.6 POSETS AND GRAPHS

From the graph-theoretic viewpoint, a comparability graph is by definition a simple
graph (§8.6.3) that has a transitive orientation. Comparability graphs are perfect
graphs, which motivates most study of comparability graphs.

Definitions:

A transitive orientation on a simple graph G is an assignment of directions to the
edges so that whenever there is an xy-arc and a yz-arc, there is also an xz-arc.

A quasi-transitive orientation on a simple graph G is an assignment of directions
to the edges so that whenever there is an xy-arc and a yz-arc, there is also an arc
between x and z.

A triangular chord for a walk x1, . . . , xk in an undirected graph G is an edge between
vertices xi−1 and xi+1, two apart on the walk.

The auxiliary graph for a simple graph G is the graph G′ whose vertices are the
edges of G, with vertex e1 adjacent to vertex e2 in G′ if and only if edges e1 and e2 are
adjacent in graph G but do not lie on a cycle.

A module in a graph G is a vertex subset U such that each vertex outside U is adjacent
to all or none of the vertices in U .

An order module in a poset P (or autonomous set) is a set S of elements such that
every element outside S is above all of S, below all of S, or incomparable to all of S.

A comparability invariant for posets is an invariant f such that f(P ) = f(Q) when-
ever posets P and Q have the same comparability graph.

A permutation graph is a graph whose vertices can be placed in 1-1 correspondence
with the elements of a permutation of [n] = {1, . . . , n} such that vi is adjacent to vj if
and only if the larger of i and j comes first in the permutation.

A u,v-bypass in a directed graph is a u,v-path of length at least two such that there
is also an arc from u to v. v

A dependent edge in an acyclic directed graph is an arc from u to v such that the
graph contains a u,v-bypass.

Facts:

1. For a simple graph G, the following are equivalent:
• G has a transitive orientation;
• G has a quasi-transitive orientation;
• every closed odd walk of G has a triangular chord;
• the auxiliary graph G′ is bipartite.

The implications from top to bottom are straightforward, as is the proof that if the
auxiliary graph G′ is bipartite then G has a quasi-transitive orientation. The proof
that if G has a quasi-transitive orientation then G has a transitive orientation takes
more work. The last characterization gives an algorithm to decide whether G is a
comparability graph in O(n3) time, where n is the number of vertices. The proof is
constructive, so a transitive orientation can also be obtained.
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2. In any graph, the set of all vertices, the singleton sets of vertices, and the empty set
are always modules.

3. Modules yield a forbidden subgraph characterization of comparability graphs. The
minimal forbidden induced subgraphs consist of eight infinite families and ten special
examples.

4. If two partial orders have the same comparability graph, then one can be transformed
into the other by a sequence of moves involving reversing all the relations inside an order
module S, i.e., by replacing the partial order induced on S by its dual, and preserving
all relations between S and its complement.

5. Let f be a poset invariant such that f(P ) = f(P ∗) for all posets P , and such that, if
poset Q is obtained from P by replacing a module in P with another module having the
same value of f , then f(Q) = f(P ). Then the invariant f is a comparability invariant.

6. Height, width, dimension, and number of linear extensions are all comparability
invariants.

7. A graph is the complement of a comparability graph if and only if it is the inter-
section graph of the curves representing a collection of continuous real-valued functions
on [0, 1].

8. The following conditions are equivalent for a graph G:
• G is a permutation graph (adjacency representing the inversions of a permuta-

tion);
• G is the comparability graph of a 2-dimensional partial order;
• G and G are comparability graphs.

9. Isomorphism of permutation graphs be tested in O(n2) time. Some NP-complete
scheduling problems become polynomial when the poset of precedence constraints is
2-dimensional.

10. A directed graph corresponds to the diagram of some partial order if and only if
it contains no cycles or bypasses.

11. Every graph that is the cover graph of some poset is triangle-free.

12. If a graph has chromatic number less than its girth, then it is the cover graph
of some poset. In particular, a 3-chromatic graph is a cover graph if and only if it is
triangle-free.

13. It is NP-complete to decide whether a 4-chromatic graph is a covering graph.

14. The smallest triangle-free graph that is not a cover graph is the 4-chromatic
Grötzsch graph with 11 vertices.

15. The maximum number of dependent edges among the orientations of a graph G is
equal to the cycle rank β(G) = |E| − |V | + 1.

16. If a graph G has chromatic number less than its girth (§8.7.2), then for all i such
that 0 ≤ i ≤ β(G), the graph has an acyclic orientation with exactly i dependent edges.

17. The cover graph of a modular lattice is bipartite.

18. A modular lattice is distributive if and only if its cover graph does not contain the
complete bipartite graph K2,3.

19. The subgraph of the cover graph of 22k+1 induced by the k-sets and k + 1-sets is
a vertex-transitive k + 1-regular bipartite graph. The graph is known to contain cycles
using more than 80% of its vertices. The Erdős revolving door conjecture asserts that
this graph is Hamiltonian.
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20. Gallai-Milgram theorem: The vertices of a digraph D can be covered using at
most α(D) disjoint paths, where α(D) is the maximum size of an independent set in D.
21. Dilworth’s theorem (§11.2.1) is the special case of the Gallai-Milgram theorem for
comparability digraphs.

Examples:
1. A transitive orientation for a bipartite graph can be obtained by assigning all the
edge directions from one part to the other, as shown here for K3,3:

2. An odd cycle of length ≥ 5 has no quasi-transitive orientation (see Fact 1).
3. Inserting a triangular chord into a 5-cycle permits the resulting graph to have a
transitive orientation, as shown in the following figure:

4. The following figure shows a graph and its auxiliary graph:

5. Any subset of either part of a complete bipartite graph is a module, since the other
vertices in its part are not adjacent to any vertex in the module, and the vertices in the
other part of the bipartition are each adjacent to all the vertices in the module.
6. Deleting a 1-factor from Kn,n, for n ≥ 3, yields a graph with no module other than
the complete set of vertices, the singletons, and the empty set.
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INTRODUCTION

In broad terms, the study of combinatorial designs is the study of the structure of
collections of subsets of a finite set when these collections of subsets satisfy certain
prescribed properties. In particular, a block design has the property that every one of
these subsets has the same size k and every pair of points in the set is in exactly the
same number of these subsets. Latin squares are also fundamental in this area and can
be thought of in this context, but they are commonly thought of as n × n arrays with
the property that each cell contains one element from an n-set and each row and each
column contain each element exactly once. Some of the questions of general interest
include: existence of designs, enumeration of nonisomorphic designs, and the study of
subdesigns of designs.

Matroids generalize a variety of combinatorial objects, such as matrices and graphs.
These structures arise naturally in a variety of combinatorial contexts and provide a
framework for the study of many problems in combinatorial optimization and graph
theory.

Much of the information in §12.1–12.3 is condensed from [CoDi96], which provides
a comprehensive treatment of combinatorial designs. The main source for material
in §12.4 is [Ox92].

GLOSSARY

affine plane: a set of points and a set of subsets of points (called lines) such that every
two points lie on exactly one line, if a point does not lie on a line L there is exactly
one line through the point that does not intersect L, and there are three points that
are not collinear.

affine space (of dimension n): the set AG(n, q) of all cosets of subspaces of an n-
dimensional vector space over a field of order q.

automorphism (a design D): an isomorphism from D onto D.

balanced incomplete block design (BIBD): given a finite set X (of points), a
collection of subsets (called blocks) of X of the same size such that every point
belongs to the same number of blocks, and each pair of points belongs to the same
number of blocks. The BIBD is described by five parameters: size of X, number of
blocks, number of blocks to which every element of X belongs, size of each block,
and number of blocks to which each pair of distinct points belongs.

basis (for a matroid): a maximal independent set in the matroid.

basis axioms: a set of axioms that specifies the set of bases of a matroid.

binary matroid: a matroid that is isomorphic to a vector matroid of a matrix over
the field GF (2).

biplane: symmetric design in which every pair of distinct points belongs to exactly
two blocks.

block: each of the subsets in a design.
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circuit: a minimal dependent set in a matroid.

circuit axioms: a set of axioms that specifies the set of circuits of a matroid.

closed set: in a matroid, a subset of its ground set that is equal to its closure.

closed under duality : property of a class of matroids that the dual of a matroid in
the class is also in the class.

closure (of a subset of the ground set in a matroid): given a subset X of the ground
set E in a matroid, the set of all points x ∈ E such that the rank of X ∪{x} is equal
to the rank of X.

closure axioms: a set of axioms that specifies the properties that a closure operator
of a matroid must have.

closure operation: the mapping K → B(K), where K is a set of positive integers
and B(K) the set of positive integers v for which there exists a (v,K)-PBD.

cobasis (of a matroid): a basis of the dual of a matroid.

cocircuit (of a matroid): a circuit of the dual of a matroid.

cographic matroid: a matroid isomorphic to the cocyle matroid of a graph.

coindependent set (of a matroid): an independent set of the dual of a matroid.

coloop (of a matroid): a loop of the dual of a matroid.

combinatorial geometry : a simple matroid.

complete set of mutually orthogonal latin squares: a set of n − 1 mutually
orthogonal latin squares of side n.

conjugate: Let L be an n×n latin square on symbol set E3, with rows indexed by the
elements of the n–set E1 and columns indexed by the elements of the n–set E2. Let
T = {(x1, x2, x3) | L(x1, x2) = x3}. Let {a, b, c} = {1, 2, 3}. The (a, b, c)–conjugate
of L, L(a,b,c), has rows indexed by Ea, columns by Eb, and symbols by Ec, and is
defined by L(a,b,c)(xa, xb) = xc for each (x1, x2, x3) ∈ T .

connected: property of a matroid that it cannot be written as the direct sum of two
nonempty matroids.

cycle matroid (of a graph): the matroid on the edge-set of the graph whose circuits
are the cycles of the graph.

t-design: a t-(v, k, λ) design.

t-(v, k, λ) design: a pair (X,A) where X is a set of v elements (points), A is a family
of k-subsets (blocks) of X, and every t-subset of X occurs in exactly λ blocks.

development (of a difference set D): the incidence structure dev(D) whose points are
the elements of G and whose blocks are the translates D + g = { d+ g | d ∈ D }.

dual (of an incidence structure): the incidence structure obtained by interchanging the
roles of points and lines.

dual (of a matroid): given a matroid M , the matroid on the same set as M whose
bases are the complements of the bases of M .

equivalent (latin squares): Two latin squares L and L′ of side n are equivalent if there
are three bijections, from the rows, columns, and symbols of L to the rows, columns,
and symbols, respectively, of L′, that map L to L′.

Fano plane (or projective plane of order 2): the (7, 7, 3, 3, 1) design with point set
X = {0, . . . , 6} and the block set A = {013, 124, 235, 346, 450, 561, 602}.
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flat: closed set.

t-flat: a subspace of projective dimension t of a projective space; a coset of a subspace
of affine dimension t of an affine space.

k-GDD: a group divisible design with λ = 1 and K = {k}.
graphic matroid: a matroid that is isomorphic to the cycle matroid of some graph.

ground set: the set of points of a matroid.

group divisible design (or (K,λ)-GDD): given an integer λ and a set of positive
integers K, a triple (X,G,A) where X is a set (of points), G is a partition of X into
at least two subsets (called groups), A is a family of subsets of X (called blocks)
such that: if A in A, then |A| ∈ K, a group and a block contain at most one common
point, and every pair of points from distinct groups occurs in exactly λ blocks.

group-type (or type): for a group divisible design, the multiset { |G| : G ∈ G }.
Hadamard design: a symmetric (4n− 1, 2n− 1, n− 1) design.

Hadamard matrix: an n× n matrix H with all entries ±1 that satisfies HTH = nI.

hyperplane: a subspace of projective dimension n−1 of projective space of projective
dimension n; a coset of a subspace of affine dimension n−1 of an affine space of affine
dimension n; a maximal nonspanning set of a matroid.

idempotent: property of a latin square (or partial latin square) that for all i, cell (i, i)
is occupied by i.

imbedded latin square: An n×n partial latin square P is imbedded in a latin square
L if the upper n× n left corner of L agrees with P .

incidence matrix (of a (v, b, r, k, λ) design): the b × v matrix with (i, j)-entry equal
to 1 if the ith block contains the jth element, and 0 otherwise.

incidence structure: the structure (V,B, I) consisting of a finite set V of points, a
finite set B of lines, and an incidence relation I between them.

independent set: any set in a special collection of subsets of the ground set in a
matroid.

index: the number of blocks to which each pair of distinct points in a design belongs.

isomorphism (of block designs (V,B) and (W, C)): a bijection ψ: (V,B) → (W, C)
under which ψ(B) occurs as a block in C the same number of times that B occurs
as a block in B.

isomorphism (of matroids): a bijection between the ground sets of two matroids that
preserves independence.

isotopic: equivalent.

Kirkman schoolgirl problem: the problem of arranging 15 schoolgirls in 5 subsets
of size 3 for a walk on each of 7 days so that every pair of girls walk together exactly
once.

Kirkman triple system: a (v, 3, 1) resolvable BIBD, together with a resolution of it.

Kronecker product: for m × p matrix M = (mij) and n × q matrix N = (nij), the
mn× pq matrix given by

M ×N =



m11N m12N · · · m1pN

...
...

...
mm1N mm2N · · · mmpN


.
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latin rectangle: a k × n (k < n) array in which each cell contains a single element
from an n-set such that each element occurs exactly once in each row and at most
once in each column.

latin square: A latin square of side n is an n× n array in which each entry contains
a single element from a set S of size n such that each element occurs exactly once
in each row and exactly once in each column.

line: a subspace of projective dimension 1 of a projective space; a coset of a subspace
of affine dimension 1 of an affine space.

loop: in a matroid, element e of the matroid such that {e} is a circuit.

matroid: an ordered pairM = (E(M), I(M)) where E (the ground set) is a finite set
and I is a collection of subsets (independent sets) of E such that: the empty set is
independent; every subset of an independent set is independent; and if X and Y are
independent and X < Y , then there is an element e in Y −X such that X ∪ {e} is
independent.

matroid representable over a field: a matroid that is isomorphic to the vector
matroid of some matrix over the field F .

multiplier (of a difference set D in a group G): an automorphism ϕ of G such that
ϕ(D) = D + g for some g ∈ G.

mutually orthogonal: property of a set of latin squares that every two are orthogonal.

orthogonal: property of two n × n latin squares A = (aij) and B = (bij) that all n2

ordered pairs (aij , bij) are distinct.

orthogonal array (of size N with k constraints, s levels, and strength t): a k × N
array with entries from a set of s ≥ 2 symbols, having the property that in every
t×N submatrix every t× 1 column vector appears the same number of times.

pairwise balanced design (PBD): for a set K of positive integers, a design (v,K, λ)
consisting of an ordered pair (X,A) where X is a set of size v and A is a collection of
subsets of X with the property that every pair of elements of X occurs in exactly λ
blocks, and for every block A ∈ A, |A| ∈ K; a pairwise balanced design is called a
(v,K)-PBD when λ = 1.

parallel class: a collection of blocks that partition the point set of a design.

parallel elements: in a matroid, two elements that form a circuit.

partial latin square: an n× n array with cells, each of which is either empty or else
contains exactly one symbol, such that no symbol occurs more than once in any row
or column.

partial transversal (of length k): in a latin square, a set of k cells, each from a
different row and each from a different column, such that no two contain the same
symbol.

paving matroid: a matroid such that the number of elements in every circuit is at
least as large as the rank of the matroid.

PBD-closure: for a set K of positive integers, the set B(K) = { v | there exists a
(v,K)-PBD }.

planar: property of a matroid that it is isomorphic to the cycle matroid of a planar
graph.

plane: a subspace of projective dimension 2 of a projective space; a coset of a subspace
of affine dimension 2 of an affine space.
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projective plane: a finite set (of points) and a set of subsets of points (called lines)
such that every two points lie on exactly one line, every two lines intersect in exactly
one point, and there are four points with no three collinear; equivalently, a symmetric
(n2 + n+ 1, n+ 1, 1) design.

projective space (of dimension n): for a field F of order q and an (n+1)-dimensional
vector space S over F , the set PG(n, q) of all subspaces of S.

rank (of a matroid): the rank of the ground set of the matroid.

rank (of a set in a matroid): the cardinality of every maximal independent subset of
the set.

rank axioms: a set of axioms that specifies the properties that a rank function on a
matroid must have.

reduced latin square: a latin square such that the elements in the first row and the
elements in the first column occur in natural order.

regular matroid: a matroid that is representable over all fields.

replication number: the number of blocks to which each point in a design belongs.

representable over a field: property of a matroid that it is isomorphic to a vector
matroid of some matrix over the field.

resolution: a partition of the family of blocks of a balanced incomplete block design
into parallel classes.

resolvable: the property of a balanced incomplete block design that it has at least one
resolution.

simple matroid: a matroid that has no loops or parallel elements.

simple (t-design): a t-design that contains no repeated blocks.

spanning set (of a matroid): for a matroid M , a subset of the ground set E of
rank r(M).

Steiner triple system: a balanced incomplete block design in which each block has 3
elements and each pair of points occurs in exactly 1 block; that is, a (v, 3, 1) design.

subdesign: a collection of points and blocks in a block design that is itself a block
design.

subsquare: for k < n, a latin square of side k whose rows and columns are chosen
from a latin square of side n.

symmetric block design: a (v, b, r, k, λ) design where the number of points (v) equals
the number of blocks (b).

ternary matroid: a matroid that is isomorphic to a vector matroid of a matrix
over GF (3).

transversal design: a k-GDD having k groups of size n and uniform block size k.

transversal matroid: given a family of sets, the matroid whose independent sets are
partial transversals of this family.

traversal: in a latin square of side n, a set of n cells, one from each row and column,
containing each of the n symbols exactly once.

type: See group-type.

uniform matroid: the matroid with 1, 2, . . . , n as ground set, and all subsets of size
less that a specified number as independent sets.
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(v, k, λ) design: a BIBD with parameters (v, b, r, k, λ).

(v, k, λ;n) difference set (of order n = k−λ): a k-subset D of a group G (of order v)
where every nonzero element of G has exactly λ differences d − d′ with elements
from D.

vector matroid: the matroid on the columns of a matrix whose independent sets are
the linearly independent sets of columns.

void design: a BIBD with at most one element.

12.1 BLOCK DESIGNS

12.1.1 BALANCED INCOMPLETE BLOCK DESIGNS

Definitions:

A balanced incomplete block design (BIBD) with parameters (v, b, r, k, λ) is a
pair (X,A), where X is a set, A is a collection of subsets of X, the five parameters
are nonnegative integers, either v ∈ {0, 1} (the void designs) or v > k > 0, and the
parameters represent the following:

• v (order): the size of X (elements of X are points, varieties, or treatments);

• b (block number): the number of elements of A (elements of A are blocks);

• r (replication number): the number of blocks to which every point belongs;

• k (block size): the common size of each block;

• λ (index): the number of blocks to which every pair of distinct points belongs.

Note: A BIBD is often referred to as a design. Different notations are used for balanced
incomplete block designs: (v, b, r, k, λ) BIBD, (v, k, λ) BIBD and Sλ(2, k, v). In this
chapter (v, k, λ) design will be used. See Fact 6.

A Steiner triple system is a (v, v(v−1)
6 , v−1

2 , 3, 1) design, i.e., a BIBD in which each
block has size 3 and each pair of points occurs in exactly one block. A Steiner triple
system is denoted STS(v) or S(2, 3, v). (Jakob Steiner, 1796–1863)

The incidence matrix of a (v, b, r, k, λ) design is the b×v matrix A = (aij) defined by

aij =
{ 1 if the ith block contains the jth point

0 otherwise.

Facts:

1. Balanced incomplete block designs are used in the design of experiments when the
total number (v) of objects to be tested is greater than the number (k) that can be
tested at any one time. They are used to design experiments where the subjects must
be divided into subsets (blocks) of the same size to receive different treatments, such
that each subject is tested the same number of times and every pair of subjects appears
in the same number of subsets.
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2. Designs are useful in many areas, such as coding theory, cryptography, group testing,
and tournament scheduling. Detailed coverage of these and other applications of designs
can be found in Chapter V of [CoDi96].

3. The word “balanced” refers to the fact that λ remains constant. If λ changes
depending on the pair of points chosen, the design is not balanced.

4. The word “incomplete” refers to the fact that k < v, that is, the size of each block
is less than the number of varieties.

5. Necessary conditions for existence: If there is a (v, b, r, k, λ) design for particular v,
b, r, k, and λ, then the parameters must satisfy:

• vr = bk;
• λ(v − 1) = r(k − 1);
• b ≥ v. (Fisher’s inequality, 1940) (Ronald A. Fisher, 1890–1962)

6. If a (v, b, r, k, λ) design exists, r = λ(v−1)
k−1 and b = λv(v−1)

k(k−1) . In view of these
two relationships, (v, b, r, k, λ) designs are commonly referred to simply by the three
parameters — v, k, λ — as a (v, k, λ) design.

7. Necessary conditions for existence: If there is a (v, k, λ) design for particular v, k,
and λ, then:

• λ(v − 1) ≡ 0 (mod k − 1);
• λv(v − 1) ≡ 0 (mod k(k − 1)).

8. Existence of (v, k, λ) designs:

• (v, 3, λ) design: exists for all v satisfying the necessary conditions given in
Fact 5, namely:

� if λ ≡ 2 or 4 (mod 6) and v ≡ 0 or 1 (mod 3)
� if λ ≡ 1 or 5 (mod 6) and v ≡ 1 or 3 (mod 6)
� if λ ≡ 3 (mod 6) and v ≡ 1 (mod 2)
� if λ ≡ 0 (mod 6) and v �= 2;

• (v, 4, λ) design: exists for all v and λ satisfying the necessary conditions
given in Fact 5;

• (v, 5, λ) design: exists for all v satisfying the necessary conditions given in
Fact 5 except for the case v = 15, λ = 2;

• (v, 6, λ) design: exists for all v satisfying the necessary conditions given in
Fact 5, if λ > 1;

• (v, 6, 1) design: exists for all v ≡ 1 or 6 (mod 15), v ≥ 31, v �= 36, with 56
possible exceptions, the largest being 2241. (The first few open cases are 46,
51, 61, 81, and 141.)

9. Existence of Steiner triple systems: A Steiner triple system with v points exists if
and only if v ≡ 1 or 3 (mod 6). (Kirkman)

10. Wilson’s asymptotic existence theorem: Given k and λ, there exists a v0(k, λ) such
that a (v, k, λ) design exists for all v ≥ v0(k, λ) that satisfy the necessary conditions
given in Fact 5 and make b and r integral. It is known that v0(k, λ) < exp(exp(kk2

)).

11. Assume that (V,B) is a (v, k, λ) design. Let B = {V − B | B ∈ B }. Then (V,B)
is a

(
v, v − k, λ (v−k)(v−k−1)

k(k−1)

)
design, the complement of (V,B).
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12. Given two Steiner triple systems with v1 and v2 points, respectively, a Steiner triple
system with v1v2 points can be constructed as follows: Let an STS(v1) be defined on
the point set {x1, . . . , xv1} and an STS(v2) be defined on the point set {y1, . . . , yv2}.
Define an STS(v1v2) on the point set { zij | 1 ≤ i ≤ v1, 1 ≤ j ≤ v2 } where zmnzpqzrs is
a block in STS(v1v2) if and only if one of the following holds:

• m = p = r and ynyqys is a block in STS(v2);
• n = q = s and xmxpxr is a block in STS(v1);
• xmxpxr is a block in STS(v1) and ynyqys is a block in STS(v2).

13. The following table lists different types of block designs and their features.

size ofblock # times othername subsetsize covered propertiescovered

balanced incomplete block design
k 2 λ

BIBD §12.1.1

pairwise balanced design PBD also called a lin-various 2 λ§12.1.6 ear space if λ = 1

Steiner triple system STS §12.1.1, 3 2 1§12.1.5

Kirkman triple system KTS §12.1.4 3 2 1 resolvable

resolvable balanced incomplete
k 2 λ resolvable

block design RBIBD §12.1.4

#points = #blocks
projective plane PG(2, q) §12.2.3 q + 1 2 1 = q2 + q + 1

affine plane AG(2, q) §12.2.3 q 2 1 resolvable

symmetric design SBIBD §12.2.2 k 2 λ #points = #blocks

t-design t-(v, k, λ) §12.1.5 k t ≥ 2 λ

Steiner system S(t, v, k) §12.1.5 k t ≥ 2 1

Examples:

1. The following is a (4, 4, 3, 3, 2) design: X = {a, b, c, d}, blocks {abc, abd, acd, bcd}.
2. Affine plane of order 3 (a (9, 3, 1) design): The point set is X = {0, . . . , 8} and
the block set is A = {012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246}. Also see
§12.2.3. This design is known as AG(2,3). This is a Steiner triple system.

3. Each of the following is a Steiner triple system (a (v, 3, 1) design). In each of the
following a set of base blocks Bi = {bi1, bi2, bi3} in the group Zv is given. To get all the
blocks of the design, take all distinct translates Bi + g = {bi1 + g, bi2 + g, bi3 + g}, for
all g ∈ Zv, for each of the base blocks Bi.

v = 7: {0, 1, 3} (mod 7) [Fano plane]
v = 15: {0, 1, 4} {0, 2, 8} {0, 5, 10} (mod 15) [The last base block has only 5 (= v

3 )
distinct translates. This is a short orbit and occurs for all orders v ≡ 3 (mod 6).]
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v = 19: {0, 1, 4} {0, 2, 9} {0, 5, 11} (mod 19)
v = 21: {0, 1, 3} {0, 4, 12} {0, 5, 11} {0, 7, 14} (mod 21)
v = 25: {0, 1, 3} {0, 4, 11} {0, 5, 13} {0, 6, 15} (mod 25)
v = 27: {0, 1, 3} {0, 4, 11} {0, 5, 15} {0, 6, 14} {0, 9, 18} (mod 27)
v = 31: {0, 1, 3} {0, 4, 11} {0, 5, 15} {0, 6, 18} {0, 8, 17} (mod 31)
v = 33: {0, 1, 3} {0, 4, 10} {0, 5, 18} {0, 7, 19} {0, 8, 17} {0, 11, 22} (mod 33)
v = 37: {0, 1, 3} {0, 4, 9} {0, 6, 21} {0, 7, 18} {0, 8, 25} {0, 10, 24} (mod 37)
v = 39: {0, 1, 3} {0, 4, 9} {0, 6, 20} {0, 7, 18} {0, 8, 23} {0, 10, 22} {0, 13, 26} (mod 39).

4. Fano plane or projective plane of order 2, PG(2, 2): A (7, 7, 3, 3, 1) design with
point set X = {0, . . . , 6} and block set A = {013, 124, 235, 346, 450, 561, 602}, shown in
the following figure. (Often, as here, a block {a, b, c} is written as abc.) Also see §12.2.3.
(Gino Fano, 1871–1952)

The incidence matrix of the Fano plane is



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1




12.1.2 ISOMORPHISM AND AUTOMORPHISM

Definitions:

Two designs (V,B) and (W, C) are isomorphic if there is a bijection ψ:V →W under
which ψ(B) = {ψ(x) | x ∈ B } occurs as a block in C the same number of times that B
occurs as a block in B. Such a bijection is an isomorphism.

An automorphism of a design D is an isomorphism from D onto D.

The automorphism group of a design D is the set of all automorphisms for D with
composition as the group operation.

Facts:
1. Nonisomorphic Steiner triple systems of order v have been enumerated for v ≤ 15.
Up to isomorphism, there are unique designs of order 3, 7, and 9; there are precisely
two nonisomorphic designs of order 13, and 80 of order 15. At that point, an explosion
occurs: the number of nonisomorphic STS(19) exceeds 2,000,000.
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2. The number of nonisomorphic STS(v) is at least (e−5v)v2/6 for large v. (Wilson).

3. Table 1 lists the parameter sets (v, k, λ) that satisfy the necessary conditions for
the existence of a block design, with r ≤ 15 and 3 ≤ k ≤ v

2 . The parameter sets are
ordered lexicographically across the rows of the table by r, k and λ (in this order).
The column N contains the number of pairwise nonisomorphic (v, k, λ) designs or the
best known lower bound for this number. A “?” indicates that no design with these
parameters is known to exist, but that existence has not been ruled out.

12.1.3 SUBDESIGNS

Definition:

Let Y be a subset of w points in a (v, k, λ) design. If every block of the BIBD contains
0, 1, or k of the points in Y , then a (w, k, λ) design is obtained by taking those blocks
that contain k points from Y . This BIBD on w points is a subdesign, called a (w, k, λ)
subdesign.

Facts:

1. If there is a (v, k, 1) design containing a (w, k, 1) subdesign, then v ≥ (k − 1)w +
1. (The parameter lists (v, k, 1) and (w, k, 1) must satisfy the necessary conditions of
§12.1.1 Fact 6.)

2. In the cases k = 3 and k = 4, the necessary conditions of §12.1.1 Fact 5 for the
presence of a subdesign are sufficient. That is, in the case of k = 3, for all v ≥ 2w + 1,
with both v, w ≡ 1 or 3 (mod 6), there exists a (v, 3, 1) design that contains a (w, 3, 1)
subdesign. In the case k = 4, for all v ≥ 3w+1, with both v, w ≡ 1 or 4 (mod 12) there
exists a (v, 4, 1) design that contains a (w, 4, 1) subdesign.

Example:

1. A construction for a Steiner triple system of order 2v+1 given a Steiner triple system
of order v: A variant of this construction dates back at least to Thomas P. Kirkman
in 1847. The original STS(v) is a subdesign of the resulting STS(2v + 1).

Let (X,A) be an STS(v) with X = {x0, x1, . . . , xv−1}. For each i = 0, 1, . . . , v− 1,
let Fi = { {x + i,−x + i} | x ∈ Zv, x �= 0 } ∪ {i,∞}. Then for each i = 0, , . . . , v − 1,
construct the triples {a, b, xi} where {a, b} ∈ Fi. The set of all such triples in addition to
the original triples in A is the desired STS(2v+1) on the point set X ∪{0, 1, . . . , v,∞}.
For v = 7, the following STS(15) is obtained. The last row of triples is an STS(7).
{0,∞, x0} {1, 6, x0} {2, 5, x0} {3, 4, x0}
{1,∞, x1} {2, 0, x1} {3, 6, x1} {4, 5, x1}
{2,∞, x2} {3, 1, x2} {4, 0, x2} {5, 6, x2}
{3,∞, x3} {4, 2, x3} {5, 1, x3} {6, 0, x3}
{4,∞, x4} {5, 3, x4} {6, 2, x4} {0, 1, x4}
{5,∞, x5} {6, 4, x5} {0, 3, x5} {1, 2, x5}
{6,∞, x6} {0, 5, x6} {1, 4, x6} {2, 3, x6}
{x0, x1, x3} {x1, x2, x4} {x2, x3, x5} {x3, x4, x6} {x4, x5, x0} {x5, x6, x1} {x6, x0, x2}.
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Table 1 (v, b, r, k, λ) designs with r ≤ 15.

v k λ N v k λ N v k λ N

7 3 1 1 9 3 1 1 13 4 1 1
6 3 2 1 16 4 1 1 21 5 1 1

11 5 2 1 13 3 1 2 7 3 2 4
10 4 2 3 25 5 1 1 31 6 1 1
16 6 2 3 15 3 1 80 8 4 3 4
15 5 2 0 36 6 1 0 43 7 1 0
22 7 2 0 15 7 3 5 9 3 2 36
25 4 1 18 13 4 2 2,461 9 4 3 11
21 6 2 0 49 7 1 1 57 8 1 1
29 8 2 0 19 3 1 ≥1.1×109 10 3 2 960
7 3 3 10 28 4 1 ≥145 10 5 4 21

46 6 1 ? 16 6 3 18,920 28 7 2 7
64 8 1 1 73 9 1 1 37 9 2 4
25 9 3 78 19 9 4 6 21 3 1 ≥2×106

6 3 4 4 16 4 2 22,859 41 5 1 ≥5
21 5 2 ≥35 11 5 4 4,393 51 6 1 ?
21 7 3 3,809 36 8 2 0 81 9 1 7
91 10 1 4 46 10 2 0 31 10 3 151
12 3 2 ≥106 12 4 3 ≥17,172,470 45 5 1 ≥16
12 6 5 116,034 45 9 2 ≥11 100 10 1 0

111 11 1 0 56 11 2 ≥5 23 11 5 1,102
25 3 1 ≥1014 13 3 2 ≥92,714 9 3 3 22,521
7 3 4 35 37 4 1 ≥3 19 4 2 ≥423

13 4 3 ≥3,702 10 4 4 ≥1,759,613 25 5 2 ≥28
61 6 1 ? 31 6 2 ≥72 21 6 3 ≥1
16 6 4 ≥111 13 6 5 ≥2,572,156 22 8 4 ?
33 9 3 ≥3,375 55 10 2 0 121 11 1 ≥1

133 12 1 ≥1 67 12 2 0 45 12 3 ≥3,752
34 12 4 0 27 3 1 ≥1011 40 4 1 ≥106

66 6 1 ≥1 14 7 6 ≥17,896 27 9 4 ≥8,071
40 10 3 ? 66 11 2 ≥2 144 12 1 ?

157 13 1 ? 79 13 2 ≥2 53 13 3 0
40 13 4 ≥389 27 13 6 208,310 15 3 2 ≥685,521
22 4 2 ≥7,921 8 4 6 2,310 15 5 4 ≥103
36 6 2 ≥5 15 6 5 ≥117 85 7 1 ?
43 7 2 ≥4 29 7 3 ≥1 22 7 4 ≥34
15 7 6 ≥57,810 78 12 2 0 169 13 1 ≥1

183 14 1 ≥1 92 14 2 0 31 3 1 ≥6×1016

16 3 2 ≥1013 11 3 3 ≥436,800 7 3 5 109
6 3 6 6 16 4 3 ≥6×1013 61 5 1 ≥10

31 5 2 ≥1 21 5 3 ≥109 16 5 4 ≥11
13 5 5 ≥30 11 5 6 ≥127 76 6 1 ≥1
26 6 3 ≥1 16 6 5 ≥15 91 7 1 ≥2
16 8 7 ≥9×107 21 9 6 ≥104 136 10 1 ?
46 10 3 ? 28 10 5 ≥3 56 12 3 ≥4
91 13 2 0 196 14 1 0 211 15 1 0

106 15 2 0 71 15 3 ≥8 43 15 5 0
36 15 6 ≥25,634
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12.1.4 RESOLVABLE DESIGNS

Definitions:

A parallel class is a collection of blocks that partition the point set.

A resolution of a BIBD is a partition of the family of blocks into parallel classes. A
resolution contains exactly r parallel classes.

A BIBD is resolvable, denoted RBIBD, if it has at least one resolution.

A (v, 3, 1) RBIBD, together with a resolution of it, is a Kirkman triple system,
written KTS(v).

Facts:

1. Necessary conditions for existence of a (v, k, λ) RBIBD are
• λ(v − 1) ≡ 0 (mod (k − 1));

• v ≡ 0 (mod k).

2. If a (v, k, λ) RBIBD exists, then b ≥ v + r − 1 where b is the number of blocks.
When b = v + r − 1 (or equivalently, r = k + λ) the RBIBD has the property that two
nonparallel lines intersect in exactly k2

v points. (R. C. Bose, 1901–1987)

3. A KTS(v) exists if and only if v ≡ 3 (mod 6).

4. The following table summarizes the current state of knowledge concerning the exis-
tence of resolvable designs.

For the values of k and λ given, the number of parameter sets (v, k, λ) satisfying
all necessary conditions for the existence of a resolvable (v, k, λ) design for which the
existence of a resolvable (v, k, λ) design is not known is given under the column headed
“exceptions”. The column headed “largest possible exception” gives the largest v satis-
fying the necessary conditions for the existence of a resolvable (v, k, λ) design for which
a resolvable (v, k, λ) design is not known.

largest possiblek λ exceptions exception

3 1 none
3 2 6
4 1 none

4 3 none
5 1 4,965
5 2 15 50,722,390

5 4 10 195
6 5 3,042
6 10 none

7 6 14 33,936
8 1 24,480
8 7 2,928
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Example:
1. Kirkman’s schoolgirl problem: In 1850, Kirkman posed the following: fifteen young
ladies in a school walk out three abreast for seven days in succession; it is required to
arrange them daily, so that no two walk twice abreast. (Thomas P. Kirkman, 1806–1895)

This is equivalent to finding a resolution of some (15, 3, 1) design (or a KTS(15)).
The following is a solution to Kirkman’s schoolgirl problem:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

9, 10, 12 10, 11, 13 11, 12, 14 12, 13, 15 13, 14, 9 14, 15, 10 15, 9, 11
15, 8, 1 9, 8, 2 10, 8, 3 11, 8, 4 12, 8, 5 13, 8, 6 14, 8, 7
13, 2, 7 14, 3, 1 15, 4, 2 9, 5, 3 10, 6, 4 11, 7, 5 12, 1, 6
11, 3, 6 12, 4, 7 13, 5, 1 14, 6, 2 15, 7, 3 9, 1, 4 10, 2, 5
14, 4, 5 15, 5, 6 9, 6, 7 10, 7, 1 11, 1, 2 12, 2, 3 13, 3, 4

12.1.5 t-DESIGNS AND STEINER SYSTEMS

Definitions:

A t-(v, k, λ) design (also denoted Sλ(t, k, v) and written t-design) is a pair (X,A)
that satisfies the properties:

• X is a set of v elements (called points);
• A is a family of subsets (blocks) of X, each of cardinality k;
• every t-subset of distinct points occurs in exactly λ blocks.

A t-design is simple if it contains no repeated blocks.

A Steiner system is a t-(v, k, 1) design.

A Steiner triple system, denoted STS(v), is a (v, 3, 1) design. (See §12.1.1.)

A Steiner quadruple system, denoted SQS(v), is a 3-(v, 4, 1) design.

Facts:
1. A (v, k, λ) design (a BIBD) is a 2-(v, k, λ) design.

2. If s < t, then a t-(v, k, λ) design is also an s-(v, k, µ) design, where µ = λ (v−s
t−s)

(k−s
t−s)

.

3. t-(v, k, λ) designs exist for all t. A t-(v, t+1, ((t+ 1)!)2t+1) design exists if v ≥ t+1
and v ≡ t (mod [(t+ 1)!]2t+1). (Teirlinck)
4. If a t-(v, k, λ) design exists, where t = 2s is even, then the number of blocks b ≥

(
v
s

)
.

(This generalizes Fisher’s inequality, §12.1.1, Fact 5.)
5. When λ = 1, t-designs are known only for t ≤ 5. Construction of a 6-(v, k, 1) design
remains one of the outstanding open problems in the study of t-designs.
6. Much less is known about the existence of t-(v, k, λ) designs with t ≥ 3 compared
to BIBDs:

• For t = 3, several infinite families are known.

• For every prime power q and d ≥ 2, there exists a 3-(qd + 1, q + 1, 1) design,
known as an inversive geometry . When d = 2, these designs are known as
inversive planes.

• A 3-(v, 4, 1) design (Steiner quadruple system) exists if and only if v ≡ 2 or
4 (mod 6).
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Examples:

1. The following is a 3-(8, 4, 1) design:

X = {∞, 0, 1, 2, 3, 4, 5, 6}
A = { {0, 1, 3,∞}, {1, 2, 4,∞}, {2, 3, 5,∞}, {3, 4, 6,∞}, {4, 5, 0,∞},

{5, 6, 1,∞}, {6, 0, 2,∞}, {2, 4, 5, 6}, {3, 5, 6, 0}, {4, 6, 0, 1},
{5, 0, 1, 2}, {6, 1, 2, 3}, {0, 2, 3, 4}, {1, 3, 4, 5} }.

2. Simple t-designs (t = 4, 5): For t = 4 or 5 and v ≤ 30, the only t-(v, k, 1) designs
known to exist are those having the following parameters:

4-(11, 5, 1) 5-(12, 6, 1) 4-(23, 7, 1)

5-(24, 8, 1) 4-(27, 6, 1) 5-(28, 7, 1).

3. Simple t-designs (t = 6): For t = 6 and v ≤ 30, the only t-(v, k, λ) designs known
to exist are those having the following parameters:

6-(14, 7, 4) 6-(20, 9, 112) 6-(22, 7, 8) 6-(30, 7, 12).

12.1.6 PAIRWISE BALANCED DESIGNS

Definitions:

Given a set K of positive integers and a positive integer λ, a pairwise balanced
design, written (v,K, λ)-PBD, is an ordered pair (X,A) where X is a set (of points)
of size v and A is a collection of subsets (blocks) of X such that:

• every pair of elements of X occurs together in exactly λ blocks;
• for every block A ∈ A, |A| ∈ K.

When λ = 1, λ can be omitted from the notation and the design is called a (v,K)-PBD
or a finite linear space.

Given a set K of positive integers, let B(K) denote the set of positive integers v for
which there exists a (v,K)-PBD. The mapping K → B(K) is a closure operation on
the set of subsets of the positive integers, as it satisfies the properties:

• K ⊆ B(K);

• K1 ⊆ K2 ⇒ B(K1) ⊆ B(K2);

• B(B(K)) = B(K).

The set B(K) is the closure of the set K.

If K is any set of positive integers, then K is PBD-closed (or closed) if B(K) = K.

If K is a closed set, then there exists a finite subset J ⊆ K such that K = B(J). This
set J is a generating set for the PBD-closed set K.

If J is a generating set for K and if s ∈ J is such that J − {s} is also a generating set
for K, then s is inessential in K; otherwise s is essential.

A basis is a generating set consisting of essential elements.
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Facts:
1. A (v, k, λ) design is a special case of a PBD in which the blocks are only permitted
to be of one size, k.

2. Necessary conditions for existence: The existence of a (v,K)-PBD (with v > 0)
implies:

• v ≡ 1 (mod α(K))
• v(v − 1) ≡ 0 (mod β(K))

where α(K) is the greatest common divisor of the integers { k − 1 | k ∈ K } and β(K)
is the greatest common divisor of the integers { k(k − 1) | k ∈ K }.
3. Asymptotic existence: Given K, there exists a constant ck such that a (v,K)-PBD
exists for all v ≥ ck that satisfy the necessary conditions of Fact 2. The constant ck
is, in general, unspecified. In practice, considerable further work is usually required to
obtain a concrete upper bound on ck.

Examples:
1. The following is a (10, {3, 4})-PBD:

{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 8, 9, 10}, {2, 5, 8}, {2, 6, 9}, {2, 7, 10}
{3, 5, 10}, {3, 6, 8}, {3, 7, 9}, {4, 5, 9}, {4, 6, 10}, {4, 7, 8}

2. Table 2 lists closures of some subsets of {3, 4, . . . , 8}. From Fact 3, for a given set K
there are only a finite number of values of v (satisfying the necessary conditions) for
which there does not exist a (v,K)-PBD. These exceptional cases are listed in this table
for some small sets K. Since 7 ∈ B(3), it is not necessary to include 7 in the list of sets
whose closures are given, when 3 is present. Genuine exceptions (values of v satisfying
the necessary conditions for the existence of a (v,K)-PBD for which it has been proven
that no such design can exist) are shown in boldface, while possible exceptions (neither
existence or nonexistence of a (v,K)-PBD is known) are shown in normal type.

12.1.7 GROUP DIVISIBLE DESIGNS AND TRANSVERSAL DESIGNS

Definitions:

A group divisible design (or (K,λ)-GDD) is a triple (X,G,A) where X is a set (of
points), G is a partition of X into at least two subsets (called groups), A is a family of
subsets of X (called blocks) such that:

• if A in A, then |A| ∈ K;
• a group and a block contain at most one common point;
• every pair of points from distinct groups occurs in exactly λ blocks.

If λ = 1, a (K,λ)-GDD is often denoted by K-GDD. If K = {k}, a K-GDD is written
k-GDD.

The group-type (or type) of a GDD is the multiset { |G| | G ∈ G }. Usually an “ex-
ponential notation” is used to describe the type of a GDD: a GDD of type tu1

1 t
u2
2 . . . t

uk

k

is a GDD where there are ui groups of size ti for 1 ≤ i ≤ k.
A transversal design TD(k, n) is a k-GDD of type nk (that is, one having k groups
of size n and uniform block size k).

Fact:
1. The existence of a TD(k, n) is equivalent to the existence of k−2 mutually orthogonal
latin squares of side n. (§12.3.2.)
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Table 2 Closures of some subsets of {3, 4, . . . , 8}.

necessary
subset K exceptions

conditions

3 1, 3 mod 6 −

3, 4 0, 1 mod 3 −
3, 5 1 mod 2 −
3, 6 0, 1 mod 3 4, 10, 12, 22
3, 8 N (natural 4, 5, 6, 10, 11, 12, 14, 16, 17, 18, 20, 23, 26, 28, 29,

numbers) 30, 34, 35, 36, 38

3, 4, 5 N 6, 8
3, 4, 6 0, 1 mod 3 −
3, 4, 8 N 5, 6, 11, 14, 17
3, 5, 6 N 4, 8, 10, 12, 14, 20, 22
3, 5, 8 N 4, 6, 10, 12, 14, 16, 18, 20, 26, 28, 30, 34
3, 6, 8 N 4, 5, 10, 11, 12, 14, 17, 20, 23

3, 4, 5, 6 N 8
3, 4, 5, 8 N 6
3, 4, 6, 8 N 5, 11, 14, 17
3, 5, 6, 8 N 4, 10, 14, 20

3, 4, 5, 6, 8 N −

4 1, 4 mod 12 −

4, 5 0, 1 mod 4 8, 9, 12
4, 6 0, 1 mod 3 7, 9, 10, 12, 15, 18, 19, 22, 24, 27, 33, 34, 39, 45, 46,

51, 55, 75, 87
4, 7 1 mod 3 10, 19
4, 8 0, 1 mod 4 5, 9, 12, 17, 20, 21, 24, 33, 41, 44, 45, 48, 53, 60, 65,

69, 77, 89, 101, 161, 164, 173

4, 5, 6 N 7, 8, 9, 10, 11, 12, 14, 15, 18, 19, 23, 47
4, 5, 7 N 6, 8, 9, 10, 11, 12, 14, 15, 18, 19, 23, 26, 27, 30, 39,

42, 50, 51, 54, 62, 63, 66, 74, 78
4, 5, 8 0, 1 mod 4 9, 12
4, 6, 7 0, 1 mod 3 5, 9, 10, 12, 15, 19, 24, 27, 33, 45, 75, 87
4, 6, 8 N 5, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 24,

26, 27, 33, 34, 35, 39, 41, 47, 50, 51, 53, 55, 59, 62,
65, 71, 74, 75, 77, 87, 89, 95, 98, 101, 110, 122, 131,
161, 170, 182, 194, 242, 266, 290

4, 7, 8 N 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24,
26, 27, 30, 33, 35, 38, 39, 41, 42, 44, 45, 47, 48, 51,
54, 59, 62, 65, 66, 69, 74, 75, 77, 78, 83, 86, 87, 89,
90, 93, 101, 102, 107, 110, 111, 114, 122, 123, 126,
129, 131, 135, 138, 143, 146, 150, 158, 159, 161, 162,
164, 165, 167, 170, 171, 173, 174, 186, 194, 195, 198
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necessary
subset K exceptions

conditions

4, 5, 6, 7 N 8, 9, 10, 11, 12, 14, 15, 18, 19, 23
4, 5, 6, 8 N 7, 9, 10, 11, 12, 14, 15, 18, 19, 23, 47
4, 5, 7, 8 N 6, 9, 10, 11, 12, 14, 15, 18, 19, 23, 26, 27, 30, 38, 42,

51, 62, 66, 74, 78
4, 6, 7, 8 N 5, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 24, 26,

27, 33, 35, 41, 65, 74, 75, 77, 123, 131, 143

4, 5, 6, 7, 8 N 9, 10, 11, 12, 14, 15, 18, 19, 23

5, 6 0, 1 mod 5 10, 11, 15, 16, 20, 35, 40, 50, 51, 80

12.2 SYMMETRIC DESIGNS AND FINITE GEOMETRIES

12.2.1 FINITE GEOMETRIES

Definitions:

A finite incidence structure (V,B, I) consists of a finite set V of points, a finite set B
of lines, and an incidence relation I between them. (Equivalently, a finite incidence
structure is a pair (V,B), where B = { {v | (v, b) ∈ I} | b ∈ B }. In this case, lines are
sets of points.)

The dual incidence structure is obtained by interchanging the roles of points and lines.

Let F be a finite field, and let S be an (n+1)-dimensional vector space over F . The
set of all subspaces of S is the projective space of projective dimension n over F .
When F is the Galois field GF (q) (see §5.6.3), the projective space of projective dimen-
sion n is denoted PG(n, q).

Subspaces of projective dimensions 0, 1, 2, and n are points, lines, planes, and
hyperplanes, respectively; in general, subspaces of projective dimension t are t-flats.
PGt(n, q) denotes the incidence structure of points and t-flats in PG(n, q) (incidence
is just containment as subspaces). Often, PG1(n, q) is denoted PG(n, q) (taking the
structure of points and lines as the natural geometry of the underlying space).

Let S be an n-dimensional vector space over a finite field F . The set of all cosets of
subspaces of S is the affine space of affine dimension n over F . When F is the
Galois field GF (q), the affine space of affine dimension n is denoted AG(n, q).

Cosets of subspaces of (affine) dimension 0, 1, 2, and n−1 of an affine space of affine
dimension n are points, lines, planes, and hyperplanes, respectively. In general,
cosets of subspaces of affine dimension t are t-flats. AGt(n, q) denotes the incidence
structure of points and t-flats in AG(n, q) (incidence is containment). Often, AG1(n, q)
is denoted AG(n, q) (taking the structure of points and lines as the natural geometry of
the underlying space).

Note: The term finite geometry often just means finite incidence structure. How-
ever, incidence structures are often too unstructured to be of much (geometric) interest.
Hence the term is sometimes reserved to cover only incidence structures satisfying ad-
ditional axioms such as those given in §12.2.3 Fact 3 for projective planes.
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Facts:

1. Projective geometries: For q a prime power and 1 ≤ t < n, PGt(n, q) is a(
qn+1−1

q−1 ,
qt+1−1

q−1 ,
(qn−1−1)(qn−2−1)...(qn−t−1−1)

(qt−1−1)(qt−2−1)...(q−1)

)
design.

2. Affine geometries: For q a prime power and 1 ≤ t < n, AGt(n, q) is a(
qn, qt, (q

n−1−1)(qn−2−1)...(qn−t−1−1)
(qt−1−1)(qt−2−1)...(q−1)

)
design.

12.2.2 SYMMETRIC DESIGNS

Definitions:

A (v, b, r, k, λ) block design is symmetric if the number of points equals the number
of blocks, that is, v = b.

A symmetric design with λ = 2 is a biplane. The parameters of a biplane are v =(
k
2

)
+ 1, k = k, λ = 2.

Facts:
1. In a symmetric (v, k, λ) design, r = k.
2. If a symmetric (v, k, λ) design exists, then:

• if v is even, then k − λ is a perfect square;
• if v is odd, then the Diophantine equation x2 = (k − λ)y2 + (−1)(v−1)/2λz2

has a solution in integers, not all of which are zero. (Bruck-Ryser-Chowla.
The theorem is often referred to as BRC.)

3. For every positive integer k there is a symmetric (2k+2−1, 2k+1−1, 2k−1) block
design.
4. If p is prime and k is a positive integer, there is a symmetric (p2k + pk +1, pk +1, 1)
block design.
5. In a symmetric design any two blocks intersect in exactly λ points.
6. The dual incidence structure obtained by interchanging the roles of points and blocks
is also a BIBD with the same parameters (hence the term symmetric).
7. The dual of a symmetric design need not be isomorphic to the original design.
8. Given a symmetric (v, k, λ) design, and a block A of this design, if the points not
in A are deleted from all blocks which intersect A, the design obtained is the derived
design. Its parameters are (k, v − 1, k − 1, λ, λ− 1).
9. Given a symmetric (v, k, λ) design, and given a block A of this design, delete the
block A, and delete all points in A from all other blocks. The resulting design is the
residual design, and has parameters (v − k, v − 1, k, k − λ, λ). (See Example 1.)
10. Any (v − k, v − 1, k, k − λ, λ) design is a quasi-residual design.
11. Any quasi-residual BIBD with λ = 1 or 2 is residual (Hall-Connor); but for λ = 3,
there are examples of quasi-residual BIBDs that are not residual.
12. If there is a symmetric (v, k, λ) design with n = k−λ, then 4n−1 ≤ v ≤ n2+n+1.
When v = 4n− 1 it is a Hadamard design; when v = n2 +n+ 1 it is a projective plane.
13. The only known biplanes have parameters (7, 4, 2), (11, 5, 2), (16, 6, 2), (37, 9, 2),
(56, 11, 2), and (79, 13, 2).
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14. The only known symmetric designs with λ = 3 have parameters (11, 6, 3), (15, 7, 3),
(25, 9, 3), (31, 10, 3), (45, 12, 3), and (71, 15, 3).
15. Although infinitely many symmetric designs with λ = 1 are known, there is no
other value of λ for which this is known to be true.

Example:
1. In the symmetric (15, 7, 3) design in the following table, if the block b0 is removed
and if all the points in b0 are removed from the blocks b1, . . . , b14, the resulting design
is the residual design. It has parameters (8,4,3) and its blocks are given on the right.

b0: 0 1 2 3 4 5 6
b1: 0 1 2 7 8 9 10
b2: 0 1 2 11 12 13 14
b3: 0 3 4 7 8 11 12
b4: 0 3 4 9 10 13 14
b5: 0 5 6 7 8 13 14
b6: 0 5 6 9 10 11 12
b7: 1 3 5 7 9 11 13
b8: 1 3 6 7 10 12 14
b9: 1 4 5 8 10 11 14
b10: 1 4 6 8 9 12 13
b11: 2 3 5 8 10 12 13
b12: 2 3 6 8 9 11 14
b13: 2 4 5 7 9 12 14
b14: 2 4 6 7 10 11 13

12.2.3 PROJECTIVE AND AFFINE PLANES

Definitions:

A projective plane is a finite set of points and a set of subsets of points (called lines)
such that:

• every two points lie on exactly one line;
• every two lines intersect in exactly one point;
• there are four points with no three collinear.

An affine plane is a set of points and a set of subsets of points (called lines) such that:
• every two points lie on exactly one line;
• if a point does not lie on a line L, there is exactly one line through the point that

does not intersect L;
• there are three points that are not collinear.

Facts:
1. A finite projective plane is a symmetric (n2+n+1, n+1, 1) design, for some positive
integer n, called the order of the projective plane. The projective plane has n2 + n+ 1
points and n2 + n + 1 lines. Each point lies on n + 1 lines and every line contains
exactly n+ 1 points.
2. Principle of duality: Given any statement about finite projective planes that is a
theorem, the dual statement (obtained by interchanging “point” and “line” and inter-
changing “point lying on a line” with “line passing through a point”) is a theorem.
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3. Any symmetric design with λ = 1 is a projective plane.

4. The existence of a projective plane of order n is equivalent to the existence of a set
of n−1 mutually orthogonal latin squares (MOLS) of side n.

5. Existence of projective planes: Very little is known about the existence of projective
planes:

• There exists a projective plane of order pk whenever p is prime and k is a positive
integer. (See Fact 10.)

• There is no projective plane known for any order n that is not a power of a prime.
The smallest open order is 12.

• There is no projective plane of order 10 or any n ≡ 6 (mod 8).
• There are nondesarguesian planes (Fact 9) known for every order q2 and q3 when q

is a prime power. (See Fact 11.)
• There are four nonisomorphic projective planes of order 9, three of which are

nondesarguesian.
• The following table summarizes the known facts about the existence and number

of projective planes of order n, for 1 ≤ n ≤ 12:

order 2 3 4 5 6 7 8 9 10 11 12

number of projective planes 1 1 1 1 0 1 1 4 0 ≥ 1 ?

6. The proof by Lam, Thiel, and Swiercz in 1989 that there is no projective plane of
order 10 involved great amounts of computer power and time. For details, see [CoDi96].

7. The existence of a projective plane of order n is equivalent to the existence of an
affine plane of order n.

8. A finite affine plane is a (n2, n, 1) design, for some positive integer n. The affine
plane has n2 points and n2 + n lines. Each point lies on n + 1 lines and every line
contains exactly n points. The integer n is the order of the affine plane.

9. Any affine plane of order n has the property that the lines can be partitioned into
n+ 1 parallel classes each containing n lines and hence is a resolvable block design.

10. A direct construction of a projective plane of every order q = pk, when p is prime
and k a positive integer: Consider the three-dimensional vector space F3

q over GF(q).

This vector space contains q3−1
q−1 = q2 +q+1 1-dimensional subspaces (lines through the

origin (0, 0, 0)) and an equal number of 2-dimensional subspaces (planes through the
origin). Now construct an incidence structure where the points are the 1-dimensional
subspaces, the lines are the 2-dimensional subspaces and a point is on a line if the
1-dimensional subspace (associated with the point) is contained in the 2-dimensional
subspace (associated with the line). This structure satisfies the axioms and thus is a
projective plane (of order q). Projective planes, such as this, coming from finite fields
via the construction in this example are desarguesian planes.

11. A construction of a projective plane of order n from an affine plane of order n:
To construct the projective plane of order n from the affine plane of order n, use the
fact that the lines of the affine plane can be partitioned into n+ 1 parallel classes each
containing n lines. To each line in the ith parallel class adjoin the new symbol ∞i. Add
one new line, namely {∞1,∞2, . . . ,∞n+1}. Now each line contains n+ 1 points, there
are n2 + n + 1 total points, and each pair of points is on a unique line — this is the
projective plane of order n.
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12. A construction of an affine plane of order n from a projective plane of order n:
The affine plane of order n is the residual design of the projective plane of order n. See
§12.2.2 Fact 9 for the construction.

Examples:

1. The Fano plane (§12.1.1 Example 1) is the projective plane of order 2.

2. The affine plane of order 2 is given in part (a) of the following figure. The set of
points is {1, 2, 3, 4}. The six lines are:

{1, 2} {3, 4} {1, 3} {2, 4} {1, 4} {2, 3}.
The three parallel classes are:

{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}.

1

3

2

4

1 3
2

8

4
5

6

7 9

(b)(a)

3. The affine plane of order 3 is given in part (b) of the figure of Example 2. The set
of points is {1, 2, 3, . . . , 9}. The twelve lines (listed in order in four parallel classes of
three lines each) are:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9} {1, 4, 7}, {2, 5, 8}, {3, 6, 9}

{1, 5, 9}, {6, 2, 7}, {4, 8, 3} {3, 5, 7}, {2, 4, 9}, {8, 6, 1}.

4. Using the construction in Fact 10 on the affine plane of order 3 (Example 3) yields the
projective plane of order 3 with thirteen points {1, 2, 3, 4, 5, 6, 7, 8, 9,∞1,∞2,∞3,∞4}
and thirteen lines:

{1, 2, 3,∞1} {4, 5, 6,∞1} {7, 8, 9,∞1}

{1, 4, 7,∞2} {2, 5, 8,∞2} {3, 6, 9,∞2}

{1, 5, 9,∞3} {6, 2, 7,∞3} {4, 8, 3,∞3}

{3, 5, 7,∞4} {2, 4, 9,∞4} {8, 6, 1,∞4}

{∞1, ,∞2,∞3,∞4}.
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12.2.4 HADAMARD DESIGNS AND MATRICES

Definitions:

A Hadamard matrix H of order n is a square n×n matrix all of whose entries are ±1
that satisfies the property that HtH = nI where I is the n× n identity matrix and Ht

is the transpose of H.

If M = (mij) is a m × p matrix and N = (nij) is an n × q matrix, the Kronecker
product is the mn× pq matrix M ×N given by

M ×N =



m11N m12N · · · m1pN
m21N m22N · · · m2pN

...
...

...
mm1N mm2N · · · mmpN


.

A Hadamard design of order 4n is a symmetric (4n − 1, 2n − 1, n − 1) design. The
dimension of the Hadamard design is n.

Facts:

1. A necessary condition for the existence of a Hadamard matrix of order n is that
n = 1, n = 2, or n ≡ 0 (mod 4).

2. HHt = nI = HtH.

3. The rows [columns] of a Hadamard matrix are pairwise orthogonal [when considered
as vectors of length n].

4. If a row of a Hadamard matrix is multiplied by −1, the result is a Hadamard
matrix. Similarly, if a column of a Hadamard matrix is multiplied by −1, the result is
a Hadamard matrix.

5. By multiplying rows and columns of a Hadamard matrix by −1, a Hadamard matrix
can be obtained where the first row and column consist entirely of +1’s. A Hadamard
matrix of this type is normalized.

6. In a normalized Hadamard matrix of order 4n, every row and column (except the
first) contains +1 and −1 exactly 2n times each.

7. Of all n × n matrices with entries from {−1,+1}, a Hadamard matrix has the
maximal determinant. |detH| = nn/2.

8. The Kronecker product of two Hadamard matrices is a Hadamard matrix. Thus, if
there are Hadamard matrices of order m and n, then there is a Hadamard matrix of
order mn.

9. If there exist Hadamard matrices of orders 4m, 4n, 4p, 4q, then there exists a
Hadamard matrix of order 16mnpq. (Craigen, Seberry, and Zhang)

10. Let q be a positive integer. Then there exists a Hadamard matrix of order 2sq for
every s ≥ �2 log2(q − 3) . (Seberry)
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11. A Hadamard design of order 4n exists if and only if a Hadamard matrix of order 4n
exists. See the construction in Fact 14.

12. Hadamard conjecture: The fundamental question concerning Hadamard matrices
remains the existence question. The Hadamard conjecture is that there exist Hadamard
matrices of order 4n for all n ≥ 1. This remains unproved.

13. Currently the two smallest orders for which the existence of a Hadamard matrix
is open are 428 and 668. Because of Fact 7 and the existence of a Hadamard matrix of
order 2, if q is an odd number and there exists a Hadamard matrix of order 2sq, then
there exists a Hadamard matrix of order 2tq for all t ≥ s.

Thus, to tabulate known existence results, it is only necessary to give the odd
numbers q and the smallest power s of 2 such that a Hadamard matrix of order 2sq
exists.

The following table is given in this manner. The number q is obtained by adding
the indices at the top, left, and bottom of the entry t.

000 100 200 300 400 500 600 700 800 900

00 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2
10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 3 3
20 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2
30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 2 5 2 2 2 2 4 2 4 2 2 2
40 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 4 2 2 2 2 2 2 2 2 3 2
50 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 3 2 2 4 3 2 2 2 2 2 3 2 2 3 2 2 3 2 2
60 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2
70 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2
80 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 2 2 2 2 2 2 2 2
90 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

14. A general construction for Hadamard matrices of order q + 1 when q is an odd
prime power and q ≡ 3 (mod 4):

• construct a q× q matrix C = (cij) indexed by the elements of the field GF(q) by
letting

cij =
{

1, if i− j is a square in GF(q)
−1, if i− j is not a square in GF(q);

• construct a Hadamard matrix H of order q + 1 from C by adding a first column
of all −1s and then a top row of all 1s.

This method is used in Example 1 to construct the Hadamard matrix of order 12.

15. Constructing Hadamard designs from Hadamard matrices, and vice versa: Assume
that there exists a Hadamard matrix of order 4n. Let H be a normalized Hadamard
matrix of this order. Remove the first row and column of H and replace every −1 in
the resulting matrix by a 0. The final (4n − 1) × (4n − 1) matrix can be shown to be
the incidence matrix of a (4n− 1, 2n− 1, n− 1) Hadamard design.

This process can be reversed to construct a Hadamard matrix from a Hadamard
design.
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Example:

1. The smallest examples of Hadamard matrices are the following:

( 1 ),
(

1 1
1 −1

)
,




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


,




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




,




1 1 1 1 1 1 1 1 1 1 1 1
−1 1 1 −1 1 1 1 −1 −1 −1 1 −1
−1 −1 1 1 −1 1 1 1 −1 −1 −1 1
−1 1 −1 1 1 −1 1 1 1 −1 −1 −1
−1 −1 1 −1 1 1 −1 1 1 1 −1 −1
−1 −1 −1 1 −1 1 1 −1 1 1 1 −1
−1 −1 −1 −1 1 −1 1 −1 1 1 1 1
−1 1 −1 −1 −1 1 −1 1 1 −1 1 1
−1 1 1 −1 −1 −1 1 −1 1 1 −1 1
−1 1 1 1 −1 −1 −1 1 −1 1 1 1
−1 −1 1 1 1 −1 −1 −1 1 −1 1 1
−1 1 −1 1 1 1 −1 −1 −1 1 −1 1




.

12.2.5 DIFFERENCE SETS

Note: In this section only difference sets in abelian groups are considered.

Definitions:

Let G be an additively written group of order v. A k-subset D of G is a (v, k, λ;n)
difference set of order n = k − λ if every nonzero element of G has exactly λ
representations as a difference d− d′ (d, d′ ∈ D). The difference set is abelian, cyclic,
etc., if the group G has the respective property.

The development of a difference set D is the incidence structure dev(D) whose points
are the elements of the group G and whose blocks are the translates D + g = { d+ g |
d ∈ D }, g ∈ G.

A multiplier of a difference set D in a group G is an automorphism ϕ of G such that
ϕ(D) = D + g for some g ∈ G. If ϕ is a multiplier and ϕ(h) = th for all h ∈ G, then t
is a numerical multiplier.

Facts:

1. Both the group G itself and G − {g} (for an arbitrary g ∈ G) are (v, v, v; 0) and
(v, v − 1, v − 2; 1) difference sets. In Table 3 these trivial difference sets are excluded.

2. The complement of a (v, k, λ;n) difference set is again a difference set with parame-
ters (v, v−k, v−2k+λ;n). Therefore only k ≤ v

2 (the case k = v
2 is actually impossible)

is considered.
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3. The existence of a (v, k, λ;n) difference set is equivalent to the existence of a sym-
metric (v, k, λ) design D admitting G as a point regular automorphism group; that is,
for any two points p and q, there is a unique group element g which maps p to q. The
design D is isomorphic with dev(D).
4. There are many symmetric designs which do not have difference set representations.
5. Since difference sets can yield symmetric designs, the parameters v, k, and λ must
satisfy the trivial necessary conditions for the existence of a symmetric design (λ(v−1) =
k(k − 1)) and must also satisfy the Bruck-Ryser-Chowla condition (§12.2.2, part 2 of
Fact 2).
6. If ϕ is a multiplier of the difference set D, then there is at least one translate D+ g
of D which is fixed by ϕ.
7. The multiplier theorem: Let D be an abelian (v, k, λ;n) difference set. If p is a
prime that satisfies (p, v) = 1, p|n, and p > λ, then p is a numerical multiplier.
8. The multiplier conjecture: Every prime divisor p of n that is relatively prime to v
is a multiplier of a (v, k, λ;n) difference set; that is, the condition p > λ in Fact 7 is
unnecessary.

Examples:
1. A (11, 5, 2; 3) difference set in the group Z11 is {1, 3, 4, 5, 9}.
2. Table 1 lists abelian difference sets of order n ≤ 15. (See Fact 1.) One difference set
for each abelian group is listed. In general, there will be many more examples. There
are no other groups or parameters with n ≤ 15 for which the existence of a difference
set is undecided.

In the column “group” the decomposition of the group as a product of cyclic sub-
groups is given. If the group is cyclic, the integers modulo the group order are used to
describe the difference set.

12.3 LATIN SQUARES AND ORTHOGONAL ARRAYS

12.3.1 LATIN SQUARES

Definitions:

A latin square of side n is an n×n array in which each entry contains a single element
from an n-set S, such that each element of S occurs exactly once in each row and exactly
once in each column.

A latin square of side n (on the set {1, 2, . . . , n} or on the set {0, 1, . . . , n−1}) is reduced
or in standard form if in the first row and column the elements occur in increasing
order.

Let L be an n×n latin square on symbol set E3, with rows indexed by the elements of the
n–set E1 and columns indexed by the elements of the n–set E2. Let T = { (x1, x2, x3) |
L(x1, x2) = x3 } and {a, b, c} = {1, 2, 3}. The (a, b, c)-conjugate of L, L(a,b,c), has rows
indexed by Ea, columns by Eb, and symbols by Ec, and is defined by L(a,b,c)(xa, xb) = xc

for each (x1, x2, x3) ∈ T .
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Table 1 Abelian difference sets of order n≤15.

n v k λ group difference set

2 7 3 1 (7) 1 2 4
3 13 4 1 (13) 0 1 3 9
3 11 5 2 (11) 1 3 4 5 9
4 21 5 1 (21) 3 6 7 12 14
4 16 6 2 (8)(2) (00) (10) (11) (20) (40) (61)

(4)2 (00) (01) (10) (12) (20) (23)
(4)(2)2 (000) (010) (100) (101) (200) (211)
(2)4 (0000) (0010) (1000) (1001) (1100) (1111)

4 15 7 3 (3)(5) 0 1 2 4 5 8 10
1 2 3 4 5 6
5 31 6 1 (31) 1 5 11 24 25 27
5 19 9 4 (19) 1 4 5 6 7 9 11 16 17
6 23 11 5 (23) 1 2 3 4 6 8 9 12 13 16 18
7 57 8 1 (57) 1 6 7 9 19 38 42 49
7 27 13 6 (3)3 (001) (011) (021) (111) (020) (100) (112) (120) (121)

(122) (201) (202) (220)
8 73 9 1 (73) 1 2 4 8 16 32 37 55 64
8 31 15 7 (31) 1 2 3 4 6 8 12 15 16 17 23 24 27 29 30
9 91 10 1 (91) 0 1 3 9 27 49 56 61 77 81
9 45 12 3 (3)2(5) (000) (001) (002) (003) (010) (020) (101) (112) (123)

(201) (213) (222)
9 40 13 4 (40) 1 2 3 5 6 9 14 15 18 20 25 27 35
9 36 15 6 (4)(3)2 (010) (011) (012) (020) (021) (022) (100) (110) (120)

(200) (211) (222) (300) (312) (321)
(2)2(3)2 (0010) (0011) (0012) (0020) (0021) (0022) (0100) (0110)

(0120) (1000) (1011) (1022) (1100) (1112) (1121)
9 35 17 8 (35) 0 1 3 4 7 9 11 12 13 14 16 17 21 27 28 29 33

11 133 12 1 (133) 1 11 16 40 41 43 52 60 74 78 121 128
11 43 21 10 (43) 1 4 6 9 10 11 13 14 15 16 17 21 23 24 25 31 35 36 38 40 41
12 47 23 11 (47) 1 2 3 4 6 7 8 9 12 14 16 17 18 21 24 25 27 28 32 34 36 37 42
13 183 14 1 (183) 0 2 3 10 26 39 43 61 109 121 130 136 141 155
15 59 29 14 (59) 1 3 4 5 7 9 12 15 16 17 19 20 21 22 25 26 27 28 29 35 36 41

45 46 48 49 51 53 57

The transpose of a latin square L, denoted LT, is the latin square which results from L
when the role of rows and columns are exchanged; that is, LT(i, j) = L(j, i).

A latin square L of side n is symmetric if L(i, j) = L(j, i) for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.
A latin square L of side n is idempotent if L(i, i) = i for all 1 ≤ i ≤ n.
A transversal in a latin square of side n is a set of n cells, one from each row and
column, containing each of the n symbols exactly once.

A partial transversal of length k in a latin square of side n is a set of k cells, each
from a different row and each from a different column, such that no two contain the
same symbol.
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Two latin squares L and L′ of side n are equivalent (or isotopic) if there are three
bijections, from the rows, columns, and symbols of L to the rows, columns, and symbols,
respectively, of L′, that map L to L′.

Two latin squares L and L′ of side n are main class isotopic if L is isotopic to some
conjugate of L′.

Let k < n. If in a latin square L of side n the k2 cells defined by k rows and k columns
form a latin square of side k, then the cells are a latin subsquare of L.

An n by n array L with cells that are either empty or contain exactly one symbol is a
partial latin square if no symbol occurs more than once in any row or column.

A partial latin square is symmetric (or commutative) if whenever cell (i, j) is occu-
pied by x, cell (j, i) is also occupied by x, for every 1 ≤ i ≤ n, 1 ≤ j ≤ n.
A partial latin square is idempotent if cell (i, i) is occupied by i, for all i.

A latin rectangle is a k×n (k < n) array in which each cell contains a single element
from an n-set such that each element occurs exactly once in each row and at most once
in each column.

An n×n partial latin square P is said to be imbedded in a latin square L if the upper
n× n left corner of L agrees with P .

Facts:

1. The multiplication table of any (multiplicative) group is a latin square.

2. For each positive integer k a reduced latin square can be constructed using the
following format:

1 2 3 · · · k−1 k
2 3 4 · · · k 1
3 4 5 · · · 1 2
...

...
...

. . .
...

...
k−1 k 1 · · · k−3 k−2
k 1 2 · · · k−2 k−1

3. Every latin square has 1, 2, 3, or 6 distinct conjugates.

4. A symmetric latin square of even side can never be idempotent.

5. A symmetric idempotent latin square of side n is equivalent to a 1-factorization of
the complete graph on n + 1 points, Kn+1. A latin square of side n is equivalent to a
1-factorization of the complete graph Kn,n.

6. Every idempotent latin square has a transversal (the main diagonal).

7. Some latin squares have no transversals. One such class of latin squares is composed
of the addition tables of Z2n for every n ≥ 1, or in general the addition table of any
group that has a unique element of order 2.

8. Every latin square of side n has a partial transversal of length k where
k ≥ max{n−√

n, n− 15(log n)2}. (P. W. Shor)

9. A latin square of side n with a proper subsquare of side k exists if and only if
k ≤ �n

2  .
10. There exists a latin square of side n with no proper subsquares if n �= 2a3b or if
n = 3, 9, 12, 16, 18, 27, 81, 243.
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11. A partial latin square of side n with at most n − 1 filled cells can always be
completed to a latin square of side n.

12. A k×n (k < n) latin rectangle can always be completed to a latin square of side n.

13. Let L be a partial latin square of order n in which cell (i, j) is filled if and only if
i ≤ r and j ≤ s. Then L can be completed to a latin square of order n if and only if
N(i) ≥ r + s − n for i = 1, 2, . . . , n, where N(i) denotes the number of elements in L
that are equal to i. (H. Ryser)

14. A partial n×n latin square can be imbedded in a t×t latin square for every t ≥ 2n.

15. An n×n partial symmetric latin square can be imbedded in a t× t symmetric latin
square for every even t ≥ 2n.

16. The number of distinct latin squares, the number of main classes, and the number
of equivalence classes of latin squares of side n go to infinity as n → ∞. The number
of main classes and equivalence classes of latin squares of side n ≤ 8 is given in the
following table:

n 1 2 3 4 5 6 7 8

main classes 1 1 1 2 2 12 147 283,657
equivalence classes 1 1 1 2 2 22 563 1,676,257

Examples:

1. A 4×4 latin square on {1, 2, 3, 4}, where 1, 2, 3, 4 represent four brands of tires, gives
a way to test each brand of tire on each of the four wheel positions on each of four cars:
the i, j-entry of the latin square is the brand of tire to be tested on wheel position i of
car j.

2. A latin square of side 8 on the symbols 0, 1, . . . , 7:

0 1 2 3 4 5 6 7
1 0 3 4 5 6 7 2
2 3 5 0 6 7 4 1
3 4 0 7 1 2 5 6
4 5 6 1 7 0 2 3
5 6 7 2 0 3 1 4
6 7 4 5 2 1 3 0
7 2 1 6 3 4 0 5

3. A latin square of side 4 and its six conjugates:

1 4 2 3
2 3 1 4
4 1 3 2
3 2 4 1

(1, 2, 3)−conjugate

1 2 4 3
4 3 1 2
2 1 3 4
3 4 2 1

(2, 1, 3)−conjugate

1 3 2 4
2 4 1 3
4 2 3 1
3 1 4 2

(3, 2, 1)−conjugate

1 2 4 3
3 4 2 1
2 1 3 4
4 3 1 2

(2, 3, 1)−conjugate

1 3 4 2
3 1 2 4
2 4 3 1
4 2 1 3

(1, 3, 2)−conjugate

1 3 2 4
3 1 4 2
4 2 3 1
2 4 1 3

(3, 1, 2)−conjugate
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4. The following gives the main classes of latin squares of sides 4, 5, and 6. No two
latin squares listed are main class isotopic.

n = 4:

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
1 0 3 2
2 3 1 0
3 2 0 1

n = 5:

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0 1 2 3 4
1 0 3 4 2
2 3 4 0 1
3 4 1 2 0
4 2 0 1 3

n = 6:

0 1 2 3 4 5
1 0 3 2 5 4
2 3 4 5 0 1
3 2 5 4 1 0
4 5 0 1 2 3
5 4 1 0 3 2

0 1 2 3 4 5
1 0 3 2 5 4
2 3 4 5 0 1
3 2 5 4 1 0
4 5 0 1 3 2
5 4 1 0 2 3

0 1 2 3 4 5
1 0 3 4 5 2
2 3 0 5 1 4
3 4 5 0 2 1
4 5 1 2 0 3
5 2 4 1 3 0

0 1 2 3 4 5
1 0 3 4 5 2
2 3 0 5 1 4
3 4 5 0 2 1
4 5 1 2 3 0
5 2 4 1 0 3

0 1 2 3 4 5
1 0 3 4 5 2
2 3 1 5 0 4
3 4 5 1 2 0
4 5 0 2 3 1
5 2 4 0 1 3

0 1 2 3 4 5
1 0 3 4 5 2
2 3 4 5 0 1
3 4 5 2 1 0
4 5 0 1 2 3
5 2 1 0 3 4

0 1 2 3 4 5
1 0 3 2 5 4
2 4 0 5 1 3
3 5 1 4 0 2
4 2 5 0 3 1
5 3 4 1 2 0

0 1 2 3 4 5
1 0 3 2 5 4
2 4 0 5 1 3
3 5 1 4 0 2
4 2 5 1 3 0
5 3 4 0 2 1

0 1 2 3 4 5
1 0 3 2 5 4
2 4 0 5 1 3
3 5 1 4 2 0
4 3 5 1 0 2
5 2 4 0 3 1

0 1 2 3 4 5
1 0 3 2 5 4
2 4 0 5 3 1
3 5 4 0 1 2
4 2 5 1 0 3
5 3 1 4 2 0

0 1 2 3 4 5
1 0 3 4 5 2
2 3 1 5 0 4
3 5 4 1 2 0
4 2 5 0 1 3
5 4 0 2 3 1

0 1 2 3 4 5
1 2 0 4 5 3
2 0 1 5 3 4
3 5 4 1 0 2
4 3 5 2 1 0
5 4 3 0 2 1

5. The following are a latin square of side 7 with a subsquare of side 3 (3× 3 square in
upper left corner) and a latin square of order 12 with no proper subsquares.

1 2 3 4 5 6 7
2 3 1 6 4 7 5
3 1 2 7 6 5 4
4 7 5 1 3 2 6
7 5 6 3 2 4 1
6 4 7 5 1 3 2
5 6 4 2 7 1 3

1 2 3 4 5 6 7 8 9 a b c
2 3 4 5 6 1 8 9 a b c 7
3 1 5 2 7 8 4 a 6 c 9 b
4 5 6 7 1 9 b c 8 3 2 a
5 6 2 8 a 7 9 b c 4 1 3
6 c 8 1 3 a 2 7 b 9 4 5
7 8 1 a c b 5 4 2 6 3 9
8 9 b 3 4 c a 6 5 1 7 2
9 b 7 c 2 5 1 3 4 8 a 6
a 7 c b 9 4 6 1 3 2 5 8
b 4 a 9 8 3 c 2 7 5 6 1
c a 9 6 b 2 3 5 1 7 8 4
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6. The partial latin square
1 · 2
· 3 1
4 1 ·

is imbedded in the latin square

1 4 2 3
2 3 1 4
4 1 3 2
3 2 4 1

.

12.3.2 MUTUALLY ORTHOGONAL LATIN SQUARES

Definitions:

Two latin squares A = (aij) and B = (bij) of order n are orthogonal if the n2 ordered
pairs (aij , bij) (1 ≤ i, j ≤ n) are distinct. (The relation of orthogonality is symmetric.)

A set of latin squares {A1, . . . , Ak} is a set of mutually orthogonal latin squares
(MOLS) if Ai and Aj are orthogonal for all i, j ∈ {1, . . . , k} (i �= j). The maximum
number of MOLS of order n is written N(n). It is customary to define N(0) =N(1) =∞.

A set of n−1 MOLS of side n is a complete set of MOLS.

Facts:
1. If n ≥ 2, then N(n) ≤ n−1.
2. If n is a prime power, then N(n) = n−1.
3. N(n) ≥ 2 for all n ≥ 3, except n = 6. (Bose-Parker-Shrikhande)
4. N(n) ≥ 3 for all n ≥ 4 except for n = 6 and possibly n = 10. The following table
gives the best known lower bounds for N(n) for 0 ≤ n ≤ 499. Add the row and column
indices to obtain the order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 ∞ ∞ 1 2 3 4 1 6 7 8 2 10 5 12 3 4 15 16 3 18

20 4 5 3 22 5 24 4 26 5 28 4 30 31 5 4 5 5 36 4 4
40 7 40 5 42 5 6 4 46 6 48 6 5 5 52 5 5 7 7 5 58
60 4 60 4 6 63 7 5 66 5 6 6 70 7 72 5 5 6 6 6 78
80 9 80 8 82 6 6 6 6 7 88 6 7 6 6 6 6 7 96 6 8

100 8 100 6 102 7 7 6 106 6 108 6 6 13 112 6 7 6 8 6 6
120 7 120 6 6 6 124 6 126 127 7 6 130 6 7 6 7 7 136 6 138
140 6 7 6 10 10 7 6 7 6 148 6 150 7 8 8 7 6 156 7 6
160 9 7 6 162 6 7 6 166 7 168 6 8 6 172 6 6 14 9 6 178
180 6 180 6 6 7 8 6 10 6 8 6 190 7 192 6 7 6 196 6 198
200 7 8 6 7 6 8 6 8 14 11 10 210 6 7 6 7 7 8 6 10
220 6 12 6 222 13 8 6 226 6 228 6 7 7 232 6 7 6 7 6 238
240 7 240 6 242 6 7 6 12 7 7 6 250 6 12 9 7 255 256 6 12
260 6 8 8 262 7 8 6 10 6 268 6 270 15 16 6 13 10 276 6 9
280 7 280 6 282 6 12 6 7 15 288 6 6 6 292 6 6 7 10 10 12
300 6 7 6 6 15 15 6 306 6 7 6 310 7 312 6 10 7 316 6 10
320 15 15 6 16 6 12 6 7 7 9 6 330 6 8 6 6 8 336 6 7
340 6 10 10 342 7 7 6 346 6 348 8 12 18 352 6 9 6 9 6 358
360 8 360 6 7 6 10 6 366 15 15 6 15 6 372 6 15 7 13 6 378
380 6 12 6 382 15 15 6 15 6 388 6 16 7 8 6 7 6 396 6 7
400 15 400 7 15 11 7 6 15 8 408 6 13 8 12 10 9 18 15 6 418
420 6 420 6 15 7 16 6 7 6 10 6 430 15 432 6 15 6 18 6 438
440 7 15 6 442 6 13 6 11 15 448 6 15 6 7 6 15 7 456 6 16
460 6 460 6 462 15 15 6 466 6 7 6 15 7 15 10 18 6 15 6 478
480 15 15 6 15 6 7 6 486 7 15 6 490 6 16 6 7 15 15 6 498
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5. N(n) → ∞ as n→ ∞. (Chowla, Erdős, Straus)
6. N(n×m) ≥ min{N(n), N(m)}. (MacNeish)
7. The existence of n−1 MOLS of order n is equivalent to the existence of a projective
plane of order n (an (n2 + n + 1, n + 1, 1) design) and an affine plane of order n (an
(n2, n, 1) design). (§12.2.3)
8. The existence of a set of k − 2 mutually orthogonal latin squares of order n is
equivalent to the existence of a transversal design TD(k, n). (§12.1.7)
9. A set of k − 2 MOLS of order n is equivalent to an OA(n, k) (§12.3.3).
10. Constructing a complete set of MOLS of order q for q a prime power: A complete
set of MOLS of order q for q a prime power can be constructed as follows:

• for each α ∈ GF (q) − {0}, define the latin square Lα(i, j) = i + αj, where
i, j ∈ GF (q) and the algebra is performed in GF (q).

The set of latin squares {Lα | α ∈ GF (q) − {0} } is a set of q − 1 MOLS of side q.
11. Let nk be the largest order for which the existence of k MOLS is unknown. So if
n > nk, then there exist at least k MOLS of order n. See the following table:

k nk k nk k nk k nk k nk

2 6 5 62 8 2,774 11 7,222 14 7,874
3 10 6 75 9 3,678 12 7,286 15 8,360
4 42 7 780 10 5,804 13 7,288

12. Constructing a set of r MOLS of size mn × mn from a set of r MOLS of size
m×m and a set of r MOLS of size n× n: Let A1, . . . , Ar and B1, . . . , Br be two sets
of MOLS, where each Ai = (a(i)xy) is of size m×m and each Bi = (b(i)xy) is of size n× n.
Construct a set C1, . . . , Cr of mn×mn MOLS as follows: for each k = 1, . . . , r, let

Ck =




D
(k)
11 D

(k)
12 · · · D

(k)
1m

D
(k)
21 D

(k)
22 · · · D

(k)
2m

...
...

...

D
(k)
m1 D

(k)
m2 · · · D(k)

mm




where

D
(k)
ij =




(a(k)
ij , b

(k)
11 ) (a(k)

ij , b
(k)
12 ) · · · (a(k)

ij , b
(k)
1n )

(a(k)
ij , b

(k)
21 ) (a(k)

ij , b
(k)
22 ) · · · (a(k)

ij , b
(k)
2n )

...
...

...

(a(k)
ij , b

(k)
n1 ) (a(k)

ij , b
(k)
n2 ) · · · (a(k)

ij , b
(k)
nn )



.

Note:
1. In 1782 Leonhard Euler considered the following problem:

A very curious question, which has exercised for some time the ingenuity of
many people, has involved me in the following studies, which seem to open a
new field of analysis, in particular in the study of combinations. The question
revolves around arranging 36 officers to be drawn from 6 different ranks and
at the same time from 6 different regiments so that they are also arranged in
a square so that in each line (both horizontal and vertical) there are 6 officers
of different ranks and different regiments.
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A solution to Euler’s problem would be equivalent to a pair of orthogonal latin squares
of order 6, the symbol set of the first consisting of the 6 ranks and the symbol set of
the second consisting of the 6 regiments. Euler convinced himself that his problem was
incapable of solution and goes even further:

I have examined a very great number of tables . . . and I do not hesitate to
conclude that one cannot produce an orthogonal pair of order 6 and that the
same impossibility extends to 10, 14, . . . and in general to all the orders which
are unevenly even.

Euler was proven correct in his claim that an orthogonal pair of order 6 does not exist
[G. Tarry, 1900]; however in 1960 Euler was shown to be wrong for all orders greater
than 6. (See the Bose-Parker-Shrikhande theorem, Fact 3.)

Examples:

1. Two mutually orthogonal latin squares of side 3:

1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

2. Three mutually orthogonal latin squares of side 4:

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

3. Two MOLS of order 10:

0 4 1 7 2 9 8 3 6 5
8 1 5 2 7 3 9 4 0 6
9 8 2 6 3 7 4 5 1 0
5 9 8 3 0 4 7 6 2 1
7 6 9 8 4 1 5 0 3 2
6 7 0 9 8 5 2 1 4 3
3 0 7 1 9 8 6 2 5 4
1 2 3 4 5 6 0 7 8 9
2 3 4 5 6 0 1 8 9 7
4 5 6 0 1 2 3 9 7 8

0 7 8 6 9 3 5 4 1 2
6 1 7 8 0 9 4 5 2 3
5 0 2 7 8 1 9 6 3 4
9 6 1 3 7 8 2 0 4 5
3 9 0 2 4 7 8 1 5 6
8 4 9 1 3 5 7 2 6 0
7 8 5 9 2 4 6 3 0 1
4 5 6 0 1 2 3 7 8 9
1 2 3 4 5 6 0 9 7 8
2 3 4 5 6 0 1 8 9 7

12.3.3 ORTHOGONAL ARRAYS

Definition:

An orthogonal array of size N , with k constraints (or of degree k), s levels (or of
order s), and strength t, denoted OA(N, k, s, t), is a k × N array with entries from a
set of s ≥ 2 symbols, having the property that in every t × N submatrix, every t × 1
column vector appears the same number λ = N

st of times. The parameter λ is the index
of the orthogonal array.

Note: An OA(N, k, s, t) is also denoted by OAλ(t, k, s); in this notation, if t is omitted
it is understood to be 2, and if λ is omitted it is understood to be 1.
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Facts:

1. An OAλ(k, v) is equivalent to a transversal design TDλ(k, v).

2. OA1(t, k, s) are known as MDS codes in coding theory.

3. An OAλ(k, n) exists only if k ≤
⌊

λv2−1
v−1

⌋
(Bose-Bush bound). Generally one is

interested in finding the largest k for which there exists an OAλ(k, n) (for a given λ
and n).

The following table gives the best known upper bounds and lower bounds for the
largest k for which there exists a OAλ(k, n). Entries for which the upper and lower
bounds match are shown in boldface.

λ\n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71

3 4 7 13 16 22 25 31 34 40 43 49 52 58 61 67 70 76 79
13 10 13 25 31 13 49 13 25 37 49 25

4 5 9 14 21 25 30 37 41 46 53 57 62 69 73 78 85 89 94
13 10 13 13 37 21 13 61 21 57 21 37 37

5 6 11 17 23 31 36 42 48 56 61 67 73 81 86 92 98 106 111
8 21 16 18 21 21 18 26 21 21 43 81 36 91

6 3 13 20 27 34 43 49 56 63 70 79 85 92 99 106 115 121 128
7 8 8 8 12 9 12 11 12 8 19 9 17 13 23 11 18

7 8 15 23 30 38 46 57 64 72 79 87 95 106 113 121 128 136 144
9 29 12 16 29 29 16 29 37 29 36 38 29 64

8 9 17 26 34 43 52 61 73 81 90 98 107 116 125 137 145 154 162
9 33 9 17 57 22 41 33 33 22 57 57 41 73

9 10 19 29 38 48 58 68 78 91 100 110 119 129 139 149 159 172 181
28 37 19 55 28 73 37 28 109 37 55 55 73 73

10 9 21 32 42 53 64 75 86 97 111 121 132 142 153 164 175 186 197
4 10 12 10 10 20 12 11 12 12 11 28 12 12 12 19 12 30

12.4 MATROIDS

Linearly independent sets of columns in a matrix and acyclic sets of edges in a graph
share many similar properties. Hassler Whitney (1907–1989) aimed to capture these
similarities when he defined matroids in 1935. These structures arise naturally in a
variety of combinatorial contexts. Moreover, they are precisely the hereditary families
of sets for which a greedy strategy produces an optimal set.
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12.4.1 BASIC DEFINITIONS AND EXAMPLES

Definitions:

A matroid M (also written (E, I) or (E(M), I(M)) ) is a finite set E (the ground
set of M) and a collection I of subsets of E (independent sets) such that:

• the empty set is independent;
• every subset of an independent set is independent (I is hereditary);
• if X and Y are independent and |X| < |Y |, then there is e ∈ Y − X such that
X ∪ {e} is independent.

Subsets of E that are not in I are dependent.

A basis of a matroid is a maximal independent set. The collection of bases of M is
denoted B(M).

A circuit of a matroid is a minimal dependent set. The collection of circuits of M is
denoted C(M).

Matroids M1 and M2 are isomorphic (M1
∼= M2) if there is a one-to-one function ϕ

from E(M1) onto E(M2) that preserves independence; that is, a subset X of E(M1) is
in I(M1) if and only if ϕ(X) is in I(M2).

For a matroid M with ground set E and A ⊆ E, all maximal independent subsets of A
have the same cardinality, called the rank of A, written r(A) or rM (A). The rank r(M)
of M is r(E).

A spanning set of a matroid M is a subset of the ground set E of rank r(M).

A hyperplane of a matroid M is a maximal nonspanning set.

The closure cl(X) (or σ(X)) of X is {x ∈ E | r(X ∪ {x}) = r(X) }.
A set X is a closed set or flat if cl(X) = X.

A loop of M is an element e such that {e} is a circuit.

If {f, g} is a circuit, then f and g are parallel elements.

MatroidM is a simple matroid (or combinatorial geometry) if it has no loops and
no parallel elements.

A paving matroid is a matroid M in which all circuits have at least r(M) elements.

Various classes of matroids are defined in Table 1:

Matroid M is in the specified class if M satisfies the indicated condition:

• graphic: M ∼=M(G) for some graph G;
• planar: M ∼=M(G) for some planar graph G;
• representable over F : M ∼=M [A] for some matrix A over the field F ;
• binary : representable over GF (2), the 2-element field;
• ternary : representable over GF (3);
• regular: representable over all fields.
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Table 1 Classes of matroids.

matroid ground set independent bases circuits
M E(M) sets I(M) B(M) C(M)

uniform {I ⊆ E : {B ⊆ E : {C ⊆ E :
matroid, Um,n {1, 2, . . . , n} |I| ≤ m} |B| = m} |C| = m+ 1}

(0 ≤ m ≤ n)

M(G), cycle { I ⊆ E(G) | For connected
E(G), edge- edge-sets of

matroid of I contains G: edge-sets of
set of G cycles

graph G no cycle } spanning trees

M [A], vector { I ⊆ E | I labels labels of max- labels of min-
column

matroid of a linearly indepen- imal linearly imal linearly
labels

matrix A dent multiset of independent dependent multi-
of A

over field F columns } sets of columns sets of columns

transversal partial transvers-
matroid, M(A), als of A: sets maximal partial minimal sets

of family A = E {xi1 , . . . , xik
}, transversals that are not par-

(A1, A2, . . . , Am) i1 < . . . < ik of A tial transversals
where Aj ⊆ E and xij

∈ Aij

Facts:

1. If a matroid M is graphic, then M ∼=M(G) for some connected graph G.

2. Whitney’s 2-isomorphism theorem: Two graphs have isomorphic cycle matroids if
and only if one can be obtained from the other by performing a sequence of the following
operations:

• choose one vertex from each of two components and identify the chosen vertices;
• produce a new graph from which the original can be recovered by applying the

previous operation;
• in a graph that can be obtained from the disjoint union of two graphs G1 and G2

by identifying vertices u1 and v1 of G1 with vertices u2 and v2 of G2, twist the
graph by identifying, instead, u1 with v2 and u2 with v1.

3. If A′ is obtained from the matrix A over the field F by elementary row operations,
deleting or adjoining zero rows, permuting columns, and multiplying columns by nonzero
scalars, then M [A′] ∼= M [A]. The converse of this holds if and only if F is GF (2)
or GF (3).

4. If a matroid M is representable over F and r(M) ≥ 1, then M ∼= M [Ir(M)|D],
where Ir(M)|D consists of an r(M) × r(M) identity matrix followed by some other
matrix D over F .

5. A matroidM is regular if and only ifM can be represented over the real numbers by
a totally unimodular matrix (a matrix for which all subdeterminants are 0, 1, or −1).

6. A matroid M is regular if and only if M is both binary and ternary.

7. The smallest matroids not representable over any field have 8 elements.
8. Conjecture: For all n, more than half of all matroids on {1, 2, . . . , n} are paving.
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9. The following table lists the numbers of nonisomorphic matroids, simple matroids,
and binary matroids with up to 8 elements:

|E(M)| 0 1 2 3 4 5 6 7 8

matroids 1 2 4 8 17 38 98 306 1,724
simple 1 1 1 2 4 9 26 101 950
binary 1 2 4 8 16 32 68 148 342

Examples:

1. LetM be the matroid with E(M) = {1, 2, . . . , 6} and C(M) = {{1}, {5, 6}, {3, 4, 5},
{3, 4, 6}}. Then B = {{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}}. The following
figure shows that M is graphic and binary since M = M(G1) = M(G2) and M =
M [A] with A being interpreted over GF (2). M is regular since M = M [A] when A
is interpreted over any field F . Also M is transversal since M = M(A) where A =
({2}, {3, 4}, {4, 5, 6}).
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2. Fano and non-Fano matroids: Given a finite set E of points in the plane and a
collection of lines (subsets of E with at least three elements), no two of which share
more than one common point, there is a matroid with ground set E whose circuits are
all sets of three collinear points and all sets of four points no three of which are collinear.
Two such matroids are shown in the following figure. Each has ground set {1, 2, . . . , 7}.
On the right is the non-Fano matroid, F−

7 . It differs from the Fano matroid, F7, on the
left by the collinearity of 4, 5, and 6 in the latter.

The matrix in this figure represents F7 over all fields of characteristic 2, and rep-
resents F−

7 over all other fields.
F7 is binary but non-ternary; F−

7 is ternary but non-binary. Both are non-uniform,
non-regular, non-graphic, and non-transversal.

1

3

F7 F7

2

4 5
7

6

1

32

4 5
7

6

1

1

0

0

2

0

1

0

3

0

0

1

4

1

1

0

5

1

0

1

6

0

1

1

7

1

1

1

c© 2000 by CRC Press LLC



12.4.2 ALTERNATIVE AXIOM SYSTEMS

Matroids can be characterized by many different axiom systems. Some examples of
these systems follow. Throughout, E is assumed to be a finite set and 2E stands for the
set of subsets of E.

Definitions:

Circuit axioms: A subset C of 2E is the set of circuits of a matroid on E if and only
if C satisfies:

• ∅ �∈ C;
• no member of C is a proper subset of another;
• circuit elimination: if C1, C2 are distinct members of C and e ∈ C1 ∩C2, then C

has a member C3 such that C3 ⊆ (C1 ∪ C2) − {e}.
Note: The circuit elimination axiom can be strengthened to the following:

• strong circuit elimination: if C1, C2 ∈ C, f ∈ C1 − C2, and e ∈ C1 ∩ C2, then C
has a member C3 such that f ∈ C3 ⊆ (C1 ∪ C2) − {e}.

Basis axioms: A subset B of 2E is the set of bases of a matroid on E if and only if:
• B is nonempty;
• if B1, B2 ∈ B and x ∈ B1 − B2, then there is an element y ∈ B2 − B1 such that

(B1 − {x}) ∪ {y} ∈ B.

Rank axioms: A function, r, from 2E into the nonnegative integers is the rank
function of a matroid on E if and only if, for all subsets X, Y , Z of E:

• 0 ≤ r(X) ≤ |X|;
• if Y ⊆ Z, then r(Y ) ≤ r(Z);
• submodularity : r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Closure axioms: A function, cl, from 2E into 2E is the closure operator of a matroid
on E if and only if, for all subsets X and Y of E:

• X ⊆ cl(X);
• if X ⊆ Y , then cl(X) ⊆ cl(Y );
• cl(cl(X)) = cl(X);
• MacLane-Steinitz exchange: if x ∈ E and y ∈ cl(X ∪ {x}) − cl(X), then x ∈

cl(X ∪ {y}).

Fact:

1. If M is a matroid with ground set E and I ⊆ E, the following statements are
equivalent:

• I is an independent set of M ;
• no circuit of M contains I;
• some basis of M contains I;
• r(I) = |I|;
• for every element e of I, e �∈cl(I − {e}).

c© 2000 by CRC Press LLC



12.4.3 DUALITY

Definitions:

For a matroid M , let B∗(M) = {E(M) − B | B ∈ B(M) }. Then B∗(M) is the set of
bases of a matroid M∗, called the dual of M , whose ground set is also E(M).

Bases, circuits, loops, and independent sets of M∗ are called cobases, cocircuits,
coloops, and coindependent sets of M .

For a graph G, the cocycle matroid (or bond matroid) of G is the dual of M(G)
and is denoted by M∗(G).

A matroid M is cographic if M ∼=M∗(G) for some graph G.

A class of matroids is closed under duality if the dual of every member of the class
is also in the class.

Facts:

1. For all matroids M , (M∗)∗ =M .

2. For all matroids M , the rank function of M∗ is given by r∗(X) = |X| − r(M) +
r(E −X).

3. The cocircuits of every matroid M are the minimal sets having nonempty intersec-
tion with every basis of M .

4. The cocircuits of every matroid M are the minimal nonempty sets C∗ such that
|C∗ ∩ C| �= 1 for every circuit C of M .

5. For every graph G, the circuits of M∗(G) are the minimal edge cuts of G.

6. A graphic matroid is cographic if and only if it is planar.

7. The following classes of matroids are closed under duality: uniform matroids, ma-
troids representable over a fixed field F , planar matroids, and regular matroids. The
classes of graphic and transversal matroids are not closed under duality.

8. The following are special sets and their complements in a matroid M and M∗:

X basis of M independent set of M circuit of M

E −X basis of M∗ spanning set of M∗ hyperplane of M∗

Example:

1. The following are duals of some basic examples:

matroid dual

Um,n Un−m,n

M(G) (G plane) M(G∗), where G∗ is the dual of G

M [Ir|D] ([Ir|D] an r × n matrix) M [−DT |In−r], same order of column
labels as [Ir|D]
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12.4.4 FUNDAMENTAL OPERATIONS

Definitions:

Three basic constructions for matroids M , M1, and M2 are defined in the following
table. M\T and M/T are also written as M |(E−T ) and M.(E−T ) and are called the
restriction and contraction of M to E − T . M\{e} and M/{e} are written as M\e
and M/e.

matroid I C rank

M\T {I ⊆ E(M) − T | {C ⊆ E(M) − T | rM\T (X) =
(deletion of

I ∈ I(M)} C ∈ C(M)} rM (X)
T from M)

M/T {I ⊆ E(M) − T | minimal nonempty rM/T (X) =
(contraction I ∪BT ∈ I(M) for empty members of rM (X ∪ T )−
of T from M) some BT in B(M |T )} {C−T | C ∈ C(M)} rM (T )

M1 ⊕M2 rM1⊕M2(X) =
(direct sum {I1 ∪ I2 | Ij ∈ I(Mj)} C(M1) ∪ C(M2) r1(X ∩ E(M1))+
of M1 and M2) r2(X ∩ E(M2))

Matroid N is a minor of M if N can be obtained from M by a sequence of deletions
and contractions. The minor N is proper if N �=M .

A matroid is connected if it cannot be written as the direct sum of two nonempty
matroids (matroids with nonempty ground sets).

Facts:
In each of the following, M , M1, and M2 are matroids.

1. M\X\Y = M\(X ∪ Y ) = M\Y \X; M/X/Y = M/(X ∪ Y ) = M/Y/X; and
M\X/Y =M/Y \X.

2. M1 ⊕M2 =M2 ⊕M1.

3. (M/T )∗ = M∗\T ; and (M\T )∗ = M∗/T . (Deletion and contraction are dual
operations.)

4. The scum theorem: Every minor of M can be written as M\X/Y for some in-
dependent set Y and coindependent set X. (The name derives from the fact that an
isomorphic copy of every simple minor of a matroid occurs at (that is, floats to) the top
of the lattice.) (D. A. Higgs) [CrRo70]

5. The following are equivalent:
• M is connected;
• M∗ is connected;
• every two distinct elements of M are in a circuit;
• there is no proper nonempty subset T of E(M) such that M\T =M/T ;
• there is no proper nonempty subset T of E(M) such that r(T ) + r(E(M)−T ) =
r(M);

• there is no proper nonempty subset T of E(M) such that r(T ) + r∗(T ) = |T |.
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6. If M is connected, then M is uniquely determined by the set of circuits containing
some fixed element of E(M).

7. If M is connected and e ∈ E(M), then M\e or M/e is connected.

8. F7 ⊕ F−
7 is not representable over any field.

Examples:
1. Um,n\e = Um,n−1 unless m = n when Um,n\e = Um−1,n−1.

2. Um,n/e = Um−1,n−1 unless m = 0 when Um,n/e = Um,n−1.

3. M(G)\e =M(G\e) where G\e is obtained from G by deleting the edge e.

4. M(G)/e =M(G/e) where G/e is obtained from G by contracting the edge e.

5. M [A]\e is the vector matroid of the matrix obtained by deleting column e from A.

6. If e corresponds to a standard basis vector in A, then M [A]/e is the vector matroid
of the matrix obtained by deleting both the column e and the row containing the one
of e.

12.4.5 CHARACTERIZATIONS

Many matroid results characterize various classes of matroids. Some examples of such
results appear below. The Venn diagram in the following figure indicates the relationship
between certain matroid classes.

Graphic

Planar

Cographic

Binary Ternary
Representable

Reg
ula

r

Matroids

Definition:

Let M1 and M2 be two binary matroids such that E(M1)∩E(M2) = T , M1|T =M2|T ,
and no cocircuit of M1 or M2 is contained in T . The 2-sum and 3-sum of M1 and M2

are matroids on (E(M1) ∪ E(M2)) − T whose flats are those sets F − T such that
F ∩ E(Mi) is a flat of Mi for i = 1, 2. The 2-sum occurs when |T | = 1, |E(Mi)| ≥ 3,
and T is not a loop ofMi, and the 3-sum occurs when |E(Mi)| ≥ 7 and T is a 3-element
circuit of Mi.
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Facts:

1. The following are equivalent for a matroid M :
• M is uniform;
• every circuit of M has r(M) + 1 elements;
• every circuit of M meets every cocircuit of M .

2. The following are equivalent for a matroid M :
• M is binary;
• for every circuit C and every cocircuit C∗, |C ∩ C∗| is even;
• for every circuit C and every cocircuit C∗, |C ∩ C∗| �= 3;
• for all C1, C2 ∈ C, (C1 − C2) ∪ (C2 − C1) is a disjoint union of circuits.

3. The class of regular matroids is the class of matroids that can be constructed by
direct sums, 2-sums, and 3-sums from graphic matroids, cographic matroids, and copies
of R10 (the matroid that is represented over GF (2) by the ten 5-tuples with exactly
three ones). (This last fact is the basis of a polynomial-time algorithm to determine
whether a real matrix is totally unimodular.)

4. Excluded-minor theorems: Many classes of matroids are minor-closed; that is, every
minor of a member of the class is also in the class. Such classes can be characterized by
listing their excluded minors (those matroids that are not in the class but have all their
proper minors in the class). Some important examples of such results are given in the
following table. The class of transversal matroids is not minor-closed since a contraction
of a transversal matroid need not be transversal.

class excluded minors class excluded minors

binary U2,4 ternary U2,5, U3,5, F7, F
∗
7

uniform U0,1 ⊕ U1,1 graphic U2,4, F7, F
∗
7 ,M

∗(K5),M∗(K3,3)

paving U0,1 ⊕ U2,2 regular U2,4, F7, F
∗
7

12.4.6 THE GREEDY ALGORITHM

For a finite set E, let I be a subset of 2E satisfying the first two axioms for independent
sets in the definition of matroid (§12.4.1). Let w be a real-valued function on E. For
X ⊆ E, let w(X), the weight of X, be

∑
x∈X w(x), and let w(∅) = 0.

Facts:

1. Matroids have an important relationship to the greedy algorithm, Algorithm 1, that
makes them important in optimization problems.

2. I (a subset of 2E satisfying the first two axioms for independent sets in the definition
of matroid) is the set of independent sets of a matroid on E if and only if, for all real-
valued weight functions w on E, the set BG produced by the greedy algorithm is a
maximal member of I of maximum weight.
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Algorithm 1: The greedy algorithm for (I, w).

X0 := ∅; j := 0
while E −Xj contains an element e such that Xj ∪ {e} ∈ I
ej+1 := an element e of maximum weight such that Xj ∪ {e} ∈ I
Xj+1 := Xj ∪ {ej+1}
j := j + 1

BG := Xj

Example:

1. LetG be a connected graph with each edge e having a cost c(e). Define w(e) = −c(e).
Then the greedy algorithm is just Kruskal’s algorithm (§10.1.2) and BG is the edge-set
of a spanning tree of minimum cost.
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13.8.4 Motion Planning in Robotics
13.8.5 Convex Hull Applications
13.8.6 Nearest Neighbor
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13.8.9 Layout Problems
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INTRODUCTION

This chapter outlines the theory and applications of various concepts arising in two
rapidly growing, interrelated areas of geometry: discrete geometry (which deals with
topics such as space filling, arrangements of geometric objects, and related combinatorial
problems) and computational geometry (which deals with the many aspects of the design
and analysis of geometric algorithms). A more extensive treatment of discrete and
computational geometry can be found in [GoO’R97].

GLOSSARY
anti-aliasing : the filtering out of high-frequency spatial components of a signal, to

prevent artifacts, or aliases, from appearing in the output image.

aperiodic (prototile): a prototile in d-dimensional Euclidean space such that the pro-
totile admits a tiling of the space, yet all such tilings are nonperiodic.

arrangement (of lines in the plane): the planar straight-line graph whose vertices are
the intersection points of the lines and whose edges connect consecutive intersection
points on each line (it is assumed that all lines intersect at a common point at
infinity).

arrangement graph: a graph associated with a Euclidean or projective line arrange-
ment, or a big circle arrangement.

aspect ratio (of a simplex): the ratio of the radius of the circumscribing sphere to the
radius of the inscribing sphere of the simplex; for a triangulation, the largest aspect
ratio of a simplex in the triangulation.
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basis (of a point configuration in Rd): a subset of the point configuration that is a
simplex of the ambient space Rd.

basis (of a vector configuration in Rd): a subset of the vector configuration that is a
basis of the ambient space Rd.

big-circle arrangement: the intersection of a central plane arrangement with the
unit sphere in R3.

boundary (of a polyhedron): the vertices, edges, and higher dimensional facets of the
polyhedron.

cell (of a line arrangement): a connected component of the complement in R2 of the
union of the points on the lines.

centerpoint (of a point configuration P of size n): a point q, not necessarily in P ,
such that for any hyperplane containing q there are at least

⌈
n

d+1

⌉
points in each

semi-space induced by the hyperplane.

central hyperplane arrangement (in Rd): a finite set of central hyperplanes, not
all of them going through the same point.

central plane arrangement (in R3): a finite set of central planes.

chain: a planar straight-line graph with vertices v1, . . . , vn and edges {v1, v2}, {v2, v3},
. . . , {vn−1, vn}.

chirotope: for an ordered point configuration, the set of all signed bases of the con-
figuration; for an ordered vector configuration, the set of all signed bases of the
configuration.

circuit (of a set of labeled vectors V = {v1, . . . , vn}): the signed set C = (C+, C−),
where C+ = { j | αj > 0 } and C− = { j | αj < 0 }, of indices of the non-
null coefficients αj in a minimal linear dependency V ′ = {vi1 , . . . , vik

} of V with∑k
j=1 αjvij = 0.

class library : in an object-oriented computer language, a set of new data types and
operations on them, activated by sending a data item a message.

closed halfspace: the set of all points on a hyperplane and the points on one side of
the same hyperplane.

cluster of rank 3 hyperline sequences (associated with a vector configuration):
the ordered set of stars, one for each point in the configuration.

cluster of stars (associated with a point configuration): the ordered set of stars, one
for each point in the configuration.

cocircuit (of a labeled vector configuration V ): a signed set C = (C+, C−) of the set
{1, 2, . . . , n}, induced by a subset of d− 1 vectors spanning a central hyperplane h.
For an arbitrary orientation of h, C+ is the set of indices of elements in V lying
in h+ and C− is the set of indices of elements in V lying in h−.

computational convexity : the study of high-dimensional convex bodies.

contraction (on element i in a rank d central plane arrangement): the arrangement
obtained by identifying hi with Rd−1 and intersecting it with all the other hyper-
planes to obtain a rank d−1 arrangement with one element less.

convex: property of a subset of a Euclidean space that for every pair of points in the
set the linear segment joining them is contained in the set.

convex body : a closed and bounded convex set with nonempty interior.
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convex d-polyhedron: the intersection of a finite number of closed halfspaces in Rd.

convex decomposition (of a polyhedron): its partition into interior disjoint convex
pieces.

convex hull (of a set of points): the smallest convex set containing the given set of
points.

convex polygon: a polytope in the plane.

convex polyhedron: the intersection of a finite number of half-spaces.

convex polytope: a bounded convex polyhedron.

convex position: property of a set of points that it is the vertex set of a polytope.

convex set: a subset of d-dimensional Euclidean space such that for every pair of
distinct points in the set, the segment with these two points as endpoints is contained
in the set.

covering : a family of convex bodies in d-dimensional Euclidean space such that each
point belongs to at least one of the convex bodies.

cyclic d-polytope: the convex hull of a set of n ≥ d+ 1 points on the moment curve
in Rd. The moment curve in Rd is defined parametrically by x(t) = (t, t2, ..., td).

Davenport-Schinzel sequence (of order s): a sequence of characters over an alpha-
bet of size n such that no two consecutive characters are the same, and for any pair
of characters, a and b, there is no alternating subsequence of length s+2 of the form
. . . a . . . b . . . a . . . b . . . .

deletion: the removal of a point (vector, line, etc.) from a configuration and recording
the oriented matroid (chirotope, circuits, cluster of stars, etc.) only for the remaining
points.

density (of a covering): the common value (if it exists) of the lower density and upper
density of the covering.

density (of a packing): the common value (if it exists) of the lower density and upper
density of the packing.

dual polytopes: two polytopes P and Q such that there exists a one-to-one corre-
spondence δ between the set of faces of P and Q where two faces f1, f2 ∈ P satisfy
f1 ⊂ f2 if and only if δ(f1) ⊃ δ(f2) in Q.

duality transformation: a mapping of points to lines and lines to points that pre-
serves incidences.

Euclidean hyperplane arrangement (in Rd): a finite set of affine hyperplanes, not
all of them going through the same point.

Euclidean line arrangement: a finite set of planar lines, not all of them going
through the same point.

Euclidean pseudoconfiguration of points: a pair consisting of a planar set of points
and a pseudoline arrangement, such that for every pair of distinct points there exists
a unique pseudoline incident with them.

k-face: an open set of dimension k that is part of the boundary of a polyhedron.
(0-faces, 1-faces and (d−1)-faces of a d-polyhedron are called vertices, edges, and
facets.

face vector (of a d-polyhedron): the d-dimensional vector (f0, f1, ..., fd−1), where fi

is the number of i-dimensional faces of the d-polyhedron.
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face-to-face (tiling): a tiling of d-dimensional Euclidean space by convex d-polytopes
such that the intersection of any two tiles is a face of each tile, possibly the (improper)
empty face.

general position: property of a set of vectors that every subset of d elements is a
basis; property of a set of points that every subset of d elements is a simplex.

genus (of a manifold 3-polyhedron): the genus number of its boundary, if the boundary
is a 2-manifold.

geographic information system (GIS): an information system designed to capture,
store, manipulate, analyze, and display spatial or geographically-referenced data.

geometric constraint solving : the problem of locating a set of geometric elements
given a set of constraints between them.

graphical user interface (GUI): a mechanism that allows a user to interactively
control a computer program with a bitmapped display by using a mouse or pointer
to select menu items, move sliders or valuators, etc.

Grassmann-Plücker relations (rank 3): the identities [123][145] − [124][135] +
[125][134] = 0 satisfied by the determinants [ijk] = det(vi, vj , vk), for any five vectors
vi, 1 ≤ i ≤ 5.

half-space: one of the two connected components of the complement of a hyperplane.

ham-sandwich cut: a hyperplane that simultaneously bisects d point configurations
in d-dimensional Euclidean space.

hyperplane: in d dimensions the set of all points on a (d -1)-dimensional plane.

hyperplane arrangement: the partitioning of the Euclidean spaceRd into connected
regions of different dimensions (vertices, edges, etc.) by a finite set of hyperplanes.

isogonal (tiling): a tiling such that the group of symmetries acts transitively on the
vertices of the tiles.

isomorphic (vector or point configurations): configurations having the same order
type, after possibly relabeling their elements.

isotoxal (tiling): a tiling such that the group of symmetries acts transitively on the
edges of the tiles.

lattice (tiling): a tiling of d-dimensional Euclidean space by translates of a tile such
that the corresponding translation vectors form a d-dimensional lattice.

k-level (in a nonvertical arrangement of n lines): the lower boundary of the set of
points in R2 having exactly k lines above and n−k below.

line arrangement: the partitioning of the plane into connected regions (cells, edges
and vertices) induced by a finite set of lines.

lower density (of a covering C): ν(C) = lim inf
R→+∞

∑
Ki∩BR�=∅

Vol(Ki)

Vol(BR) , where each Ki is a
convex body in the covering C of d-dimensional Euclidean space and BR is the closed
ball of radius R centered at the origin.

lower density (of a packing P): δ(P) = lim inf
R→+∞

∑
Ki⊂BR

Vol(Ki)

Vol(BR) where each Ki is a
convex body in the packing P of d-dimensional Euclidean space and BR is the closed
ball of radius R centered at the origin.

lower envelope (of a nonvertical line arrangement): the half-plane intersection of the
half-planes below the lines of the arrangement.
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manifold d-polyhedron: a polyhedron whose boundary is topologically the same as
a (d−1)-manifold; i.e., every point on the boundary of a manifold d-polyhedron has
a small neighborhood that looks like an open d-ball.

mathematical programming : the large-scale-optimization of an objective function
of many variables subject to constraints.

minor (of an oriented matroid given by hyperline sequences): an oriented matroid
obtained by a sequence of deletions and/or contractions.

monohedral (tiling): a tiling T of d-dimensional Euclidean space in which all tiles are
congruent to one fixed set T , the (metrical) prototile of T .

nonconvex polyhedron: the union of a set of convex polyhedra such that the under-
lying space is connected and nonconvex.

non-manifold d-polyhedron: a d-polyhedron that does not have manifold boundary.

nonperiodic (tiling): a tiling such that its group of symmetries contains no translation
other than the identity.

normal (tiling): a tiling of d-dimensional Euclidean space by convex polytopes such
that there exist positive real numbers r andR such that each tile contains a Euclidean
ball of radius r and is contained in a Euclidean ball of radius R.

oracle: an algorithm that gives information about a convex body

order type (of a vector or point configuration): the collection of all semi-spaces of the
configuration.

oriented matroid: a pair M = (n,L), where L, the set of covectors of M, is a subset
of {+,−, 0}n and satisfies the properties: 0 ∈ L; if X ∈ L, then −X ∈ L; if X,Y ∈ L,
then X ◦ Y ∈ L; if X,Y ∈ L and i ∈ S(X,Y ) = {i | Xi = −Yi �= 0}, then there is
Z ∈ L such that Zi = 0; for each j �∈S(X,Y ), Zj = (X ◦ Y )j = (Y ◦X)j .

oriented matroid given by a chirotope: an abstract set of points labeled {1, . . . , n},
together with a function satisfying the chirotope axioms.

packing : a family of convex bodies in d-dimensional Euclidean space such that no two
have an interior point in common.

parallel algorithm: an algorithm that concurrently uses more than one processing
element during its execution.

parallel random access machine (PRAM): a synchronous machine in which each
processor is a sequential RAM, and processors communicate using a shared memory.

parametric search: an algorithmic technique for solving optimization problems.

periodic (tiling): a tiling of d-dimensional Euclidean space such that the group of all
symmetries of the tiling contains translations in d linearly independent directions.

planar straight-line graph: a planar graph such that each edge is a straight line.

point configuration (of dimension d): a finite set of points affinely spanning Rd.

point location problem: the problem of determining which region of a given subdi-
vision of Rd contains a given point.

polar-duality of vectors and central planes (in R3): a mapping associating with
a vector v in R3 an oriented central plane h having v as its normal vector, and vice
versa.

polyhedron: the intersection of a finite number of closed half-spaces in d-dimensional
Euclidean space.
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polytope: a bounded polyhedron.

d-polytope: a convex d-polyhedron for which there exists a d-dimensional cube con-
taining it inside; that is, a bounded convex d-polyhedron.

H-polytope: a polytope defined as the intersection of d half-spaces in d-dimensional
Euclidean space.

V-polytope: a polytope defined as the convex hull of d points in d-dimensional Eu-
clidean space.

projective line arrangement: a finite set of projective lines in the projective plane.

prototile: the single tile used repeatedly in a monohedral tiling.

pseudoline arrangement: a finite collection of simple planar curves that intersect
pairwise in exactly one point, where they cross.

Radon partition (of a set of labeled points P ): a signed set C = (C+, C−) of points
of P such that the convex hull of the points in C+ intersects the convex hull of the
points in C−.

randomized algorithm: an algorithm that makes random choices during its execu-
tion.

range counting problem: the problem of counting the number of points of a given
set of points that lie in a query range.

range emptiness problem: the problem of determining if a query range contains any
points of a given set of points.

range reporting problem: the problem of determining all the points of a given set
of points that lie in a query range.

rank 3 hyperline sequence (associated with a vector v ∈ V ⊆ R3): an alternating
circular sequence of subsets of indices in En obtained by rotating an oriented central
plane in counterclockwise order around the line through v.

ray : a half-line that is directed away from its endpoint.

ray shooting problem: the problem of determining the first object in a set of geo-
metric objects that is hit by a query ray.

real random access machine (real RAM): a model of computation in which values
can be arbitrarily long real numbers, and all standard operations such as +,−,×,
and ÷ can be performed in unit time regardless of operand length.

realizable (pseudoline arrangement): a pseudoline arrangement isomorphic to a line
arrangement.

reflex edges: edges of a nonconvex 3-polyhedron that subtend an inner dihedral angle
greater than 180◦.

regular (polygon): a polygon with all sides congruent and all interior angles equal.

regular (polytope): a d-polytope (d > 0) with all its facets regular (d−1)-polytopes
that are combinatorially equivalent; a regular 0-polytope is a vertex.

regular (tiling): a monohedral tiling of the plane with a regular polygon as prototile.

reorientation (of a vector configuration V = {v1, . . . , vn}): a vector configuration
V ′ = {v′1, . . . , v′n} such that each v′i is equal to vi or −vi.

semiregular (polyhedron): a convex polyhedron with each face a regular polygon, but
where more than one regular polygon can be used as a face.
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semiregular (tiling): a tiling of the plane using n prototiles with the same numbers
of polygons around each vertex.

semi-space (of a configuration induced by a hyperplane): the set of indices of the
configuration lying on one side of the hyperplane.

semi-space (of a vector or point configuration): a semi-space induced by some hyper-
plane.

k-set (of a point configuration): a semi-space of the configuration of size k.

d-dimensional simplex (or d-simplex): a d-polytope with d+ 1 vertices.

simplicial complex: a triangulation of a polyhedron such that for any two simplices
in the triangulation, either the intersection of the simplices is empty or is a face of
both simplices.

simplicial polytope: a polytope in which all faces are simplices.

(standard affine) pseudo polar-duality : the association between an x-monotone
pseudoline arrangement L = {l1, . . . , ln} given in slope order and a pseudo configura-
tion of points (P,L′), P = {p1, . . . , pn}, given in increasing order of the x-coordinates
and with L′ being x-monotone, satisfying the property that the cluster of stars as-
sociated with L and to P are the same.

straight line dual: given the Voronoi diagram of a set {p1, . . . , pn} of points in the
plane, the planar straight-line graph whose vertices are the points in the set, with
two vertices pi and pj adjacent if and only if the regions V (pi) and V (pj) share a
common edge.

strictly convex: the property of a convex set that its boundary contains no line
segment.

symmetry (of a tiling): a Euclidean motion that maps each tile of the tiling onto a
tile of the tiling.

tile: an element of a tiling.

tiling (of Euclidean d-space): a countable family T of closed topological d-cells of Rd

that cover Rd without gaps and overlaps.

triangulation (of a d-polyhedron): a convex decomposition where each convex piece
of the decomposition is a d-simplex.

triangulation (of a simple polygon): an augmentation of the polygon with non-inter-
secting diagonal edges connecting vertices of the polygon such that in the resulting
planar straight-line graph every bounded face is a triangle.

uniform chirotope: a chirotope function that takes nonzero values on all d-tuples.

upper density (of a covering C): ν(C) = lim sup
R→+∞

∑
Ki∩BR�=∅

Vol(Ki)

Vol(BR) , where each Ki is
a convex body in the covering C of d-dimensional Euclidean space and BR is the
closed ball of radius R centered at the origin.

upper density (of a packing P): δ(P) = lim sup
R→+∞

∑
Ki⊂BR

Vol(Ki)

Vol(BR) where each Ki is a
convex body in the packing P of d-dimensional Euclidean space and BR is the closed
ball of radius R centered at the origin.

upper envelope (of a nonvertical line arrangement): the half-plane intersection of the
half-planes above the lines of the arrangement.

vector configuration (of dimension d): a finite set of vectors spanning Rd.
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visibility graph: given n nonintersecting line segments in the plane, the graph whose
vertices are the endpoints of the line segments, with two vertices adjacent if and only
if they are visible from each other.

visibility problem: the problem of finding what is visible, given a configuration of
objects and a viewpoint.

Voronoi cell (with center ci): the convex polyhedral set Vi = {x ∈ Rd : |x − ci| =
minj |x−cj | }, where c1, c2, . . . are centers of unit balls in a packing of d-dimensional
Euclidean space.

Voronoi diagram (of a set of points {p1, . . . , pn} in d-dimensional Euclidean space):
the partition of d-dimensional Euclidean space into convex polytopes V (pi) such that
V (pi) is the locus of points that are closer to pi than to any other point in pj .

zone (of a line in an arrangement): the set of cells of the arrangement intersected by
the line.

zonotope: the vector (Minkowski) sum of a finite number of line segments.

13.1 ARRANGEMENTS OF GEOMETRIC OBJECTS

A wide range of applied fields (statistics, computer graphics, robotics, geographical
databases) depend on solutions to geometric problems: polygon intersection, visibility
computations, range searching, shortest paths among obstacles, just to name a few.

These problems typically start with “consider a finite set of points (or lines, seg-
ments, curves, hyperplanes, polygons, polyhedra, etc.)”. The combinatorial properties
of these sets, or arrangements, of objects (incidence, order, partitioning, separation, con-
vexity) set the foundations for the algorithms developed in the field of computational
geometry.

In this chapter attention is focused on the most studied and best understood ar-
rangements of geometric objects: points, lines and hyperplanes. Introducing the con-
cepts relies on linear algebra. The combinatorial properties studied belong however
to a relatively new field, the theory of oriented matroids, which has sometimes been
described as linear algebra without coordinates.

Several fundamental types of questions are asked about these arrangements. The
most basic is the classification problem, whose goal is to find combinatorial parameters
allowing the partitioning of the (uncountable) set of all possible arrangements of n ob-
jects into a finite number of equivalence classes. Examples of such structures for point
and line arrangements include semi-spaces, Radon partitions, chirotopes, hyperline se-
quences, etc. They satisfy simple properties known as axiomatic systems for oriented
matroids, which lead to the definition of an abstract class of objects generalizing finite
point and vector sets. In dimension 2 oriented matroids can be visualized topologically
as pseudoline arrangements. The numerous definitions needed to introduce arrange-
ments and oriented matroids will be complemented in this section by the most important
facts, such as counting the number of finite point, line and pseudoline arrangements,
deciding when a pseudoline arrangement is equivalent to a line arrangement, and basic
algorithmic results.
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13.1.1 POINT CONFIGURATIONS

The simplest geometric objects are points in some d-dimensional space. Most of the
other objects of interest for applications of computational geometry (sets of segments,
polygons, polyhedra) are built on top of, and inherit, geometric structure from sets of
points.

The setting for computational geometry problems is the Euclidean (affine) spaceRd

and most of its fundamental concepts (convexity, proximity) belong here in a natural
way. However, some standard techniques, such as polarity and duality, as well as the
abstraction to oriented matroids, are better explained in the context of vector spaces.

Several categories of concepts are introduced in this section, and developed and
used in the subsequent subsections: vector and point configurations, hyperplanes and
half-spaces, convexity, and some combinatorial parameters associated with vector or
point configurations, relevant to applications (in statistics, pattern recognition or com-
putational geometry): signed bases, semi-spaces, k-sets, centerpoints.

Definitions:

The (standard) real vector space of dimension d is the vector space Rd = {x | x =
(x1, . . . , xd), xi ∈ R}, with vector addition x + y = {x1 + y1, . . . , xd + yd} and scalar
multiplication αx = {αx1, . . . , αxd}. A vector in Rd is a d-dimensional vector.

A linear combination of a set of vectors {v1, . . . , vn} is a vector of the form
∑n

i=1 αivi,
for coefficients α1, . . . , αn ∈ R.

A linearly independent set of vectors is a set of vectors {v1, . . . , vk} such that
a linear combination of them equals the zero vector (

∑k
i=1 αivi = 0) if and only if

αi = 0 for all i = 1, . . . , k.

A basis of Rd is a maximal set of linearly independent vectors, i.e., one that is no
longer independent if a new element is added.

A basis is an ordered basis if it is given as an ordered set.

The sign of an ordered basis is the sign of the determinant of the d × d matrix with
columns given in order by the vectors of the ordered basis.

A linearly dependent set of vectors V = {v1, . . . , vk} is a set of vectors for which
there exists a linear combination with at least one nonzero coefficient yielding the 0
vector; i.e.,

∑k
i=1 αivi = 0 with some αi �= 0.

The linear space spanned by a set of vectors V = {v1, . . . , vk}, vi ∈ Rd, is the set of
all linear combinations of vectors of V .

A linear k-dimensional subspace of Rd (k ≤ d) is the set of all linear combinations
of k linearly independent vectors v1, . . . , vk in Rd.

A line through v ∈ Rd is the 1-dimensional linear subspace of Rd induced by v �= 0.

Euclidean space of dimension d is Rd seen as an affine space. It is sometimes
identified with the d-dimensional affine hyperplane xd+1 = 1 in Rd+1.

A (d-dimensional) point is an element of Rd seen as a Euclidean space.

An affine combination of a set of points {p1, . . . , pn} is a point of the form
∑n

i=1 αipi,
with αi ∈ R and

∑n
i=1 αi = 0.

An affinely independent set of points is a set of points {p1, . . . , pk} such that no
point is an affine combination of the others.
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A simplex of Rd is a maximal set of affinely independent vectors. It is an ordered
simplex if it is given as an ordered set.

The extended matrix of an ordered simplex {p1, . . . , pd+1} is the (d + 1) × (d + 1)
matrix with its ith column equal to (pi, 1).

The sign of an ordered simplex is the sign of the determinant of the extended matrix
of the simplex.

An affinely dependent set of points P = {p1, . . . , pk} is a set of points such that one
of the points is an affine combination of the others.

The affine space spanned by a set of points P = {p1, . . . , pk}, with pi ∈ Rd, is the set
of all affine combinations of points of P . It is an affine subspace of Rd.

The affine k-dimensional subspace of Rd (k ≤ d) is the set of all affine combinations
of k affinely independent points p1, . . . , pk in Rd.

A linear function is a function h:Rd → R, such that h(x1, . . . , xd) =
∑d

i=1 aixi+ad+1.

A linear function is homogeneous if ad+1 = 0.

The affine hyperplane induced by a linear function h is the set h0 = {x ∈ Rd |
h(x) = 0 }.
An affine hyperplane is a central hyperplane if h is a homogeneous linear function.

An oriented hyperplane is a hyperplane, together with a choice of a positive side for
the hyperplane. This amounts to choosing a (homogeneous or affine) linear function h
to generate it, together with all those of the form αh, α > 0.

An reorientation of an oriented hyperplane is a swapping of the negative and positive
sides of the hyperplane (or, changing the generating linear function h to −h).

The open half-spaces induced by an oriented hyperplane h are h+ = {x | h(x) > 0 }
(the positive side of h0) and h− = {x | h(x) < 0 } (the negative side of h0). The
sets h+, h0, and h− form a partition of Rd: Rd = h+ ∪ h− ∪ h0, and h+, h−, and h0

are pairwise disjoint.

The closed half-spaces induced by h are h+ ∪ h0 and h− ∪ h0.

A convex combination of a set of points {p1, . . . , pn} is a point of the form
∑n

i=1 αipi

with αi ∈ R, αi > 0, and
∑n

i=1 αi = 1.

The segment with endpoints p1 �= p2 is the set of all convex combinations of p1 and p2.

A set of points {p1, . . . , pk} is convexly independent if no point is a convex combi-
nation of the others. The points are also said to be in convex position.

A convex set in Rd is a set S ⊆ Rd such that if p1 and p2 are distinct points in S,
then the segment with endpoints p1 and p2 is contained in S.

The convex hull of a finite set of points P is the set of all convex combinations of
points of P .

A convex polytope is the convex hull of a finite set of points. Its boundary consists
of faces of dimension 0 (vertices), 1 (edges), . . . , d− 1 (facets).

The face description of a convex polytope is a data structure storing information
about all the faces and their incidences.

A convex polygon is the convex hull of a finite set of points in R2.

A vector configuration [point configuration] of dimension d is a finite set of n
vectors {v1, . . . , vn} (vi ∈ Rd) spanning Rd [points {p1, . . . , pn} (pi ∈ Rd) affinely
spanning Rd].
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A configuration is labeled if its elements are given as an ordered set. (It may be given
as the set of columns of a d× n matrix with real entries.)

The rank of a vector configuration [point configuration] in Rd is the number d [d+ 1].

A set of vectors [points] in Rd is in general position if every subset of d elements is a
basis [simplex].

An affine configuration (or acyclic vector configuration) is a configuration with
a central hyperplane containing all the vectors of the configuration on one side.

A reorientation of a vector configuration V = {v1, . . . , vn} is a vector configuration
V ′ = {v′1, . . . , v′n} with each v′i equal to either vi or −vi.

A reorientation class is the set of all labeled vector configurations which are reorien-
tation equivalent.

A point configuration P ⊂ Rd induced by an acyclic vector configuration
V ⊂ Rd+1 contained in a half-space h+ is the set of all points p obtained as follows:
take the affine plane h′ in h+ parallel to h and tangent to the unit sphere Sd in Rd+1;
the intersection of the line through vector v ∈ V with the plane h′ is a point p ∈ h′. Rd

is identified with the affine plane h′.

A semi-space of a vector configuration [point configuration] V induced by an oriented
central hyperplane [affine hyperplane] h is the set of indices of the elements in V lying
on one side of the hyperplane.

A semi-space of a vector configuration [point configuration] V is a semi-space
induced by some hyperplane h.

The order type of a vector or point configuration V is the collection of all semi-spaces
of V .

Isomorphic vector or point configurations are configurations having the same order
type, after possibly relabeling their elements.

A k-set of a point configuration P is a semi-space of P of size k (0 ≤ k ≤ n).

A centerpoint of a point configuration P of size n is a point q, not necessarily in P ,
such that if h is a hyperplane containing q there are at least

⌈
n

d+1

⌉
points in each

semi-space induced by h.

A ham-sandwich cut is a hyperplane that simultaneously bisects d point configura-
tions P1, P2, . . . , Pd in Rd.

Facts:

1. A basis of the vector space Rd has d elements and a simplex of the affine space Rd

has d+ 1 elements.

2. The rank of the d× n matrix associated with an n-vector configuration in Rd is d;
the rank of the matrix associated with a point configuration in Rd, extended with a row
of 1s, is d+ 1.

3. The determinant of a d× d matrix whose columns are a basis of Rd and the deter-
minant of the (d+1)× (d+1) extended matrix of a simplex in Rd are nonnull.

4. If {v1, . . . , vd} is a basis, then for any vector vd+1, {v1, . . . , vd, vd+1} is linearly
dependent.

5. The intersection of linear subspaces [affine subspaces, convex subspaces] of Rd is
linear [affine, convex].
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6. The intersection of k central hyperplanes [affine hyperplanes] in Rd (k ≤ d) is a
linear subspace [affine subspace]. Its dimension is at least d− k.
7. Every affine subspace of Rd is a convex set.
8. Carathéodory’s theorem: Each point in the convex hull of a set of points P ⊂ Rd

lies in the convex hull of a subset of P with at most d+ 1 points.
9. Radon’s theorem: Each set of at least d + 2 points in Rd can be partitioned into
two disjoint sets whose convex hulls intersect in a nonempty set.
10. Helly’s theorem: Let S be a finite family of n convex sets in Rd (n ≥ d + 1). If
every subfamily of d + 1 sets in S has a nonempty intersection, then there is a point
common to all the sets in S.
11. Every point configuration admits a centerpoint.
12. For every d configurations of points in Rd, there exists a ham-sandwich cut.
13. Upper bound theorem: The number of facets of the convex hull of an n-point
configuration in Rd is O(n�d/2�). This bound is obtained for configurations of points on
the moment curve P = { p(t) | t ∈ {t1, . . . , tn} ⊆ R}, where p(t) = (t, t2, . . . , td) ∈ Rd.
14. The number of semi-spaces of a rank d + 1 vector or point configuration of n
elements is O(nd). The maximum is attained for points in general position.
15. For d = 2, let ek(n) be the maximum number of k-sets of any planar n-point
configuration. Then Ω(n log k) ≤ ek(n) ≤ O(nk

1
3 ).

16. Erdős-Szekeres problem: If c(k) is the maximum number of planar points in general
position such that no k are in convex position, then 2k−2 ≤ c(k) ≤

(
2n−4
n−2

)
.

17. The face description of the convex hull of a point set of size n in Rd can be
computed optimally in O(n log n) time if d = 2 or d = 3, and O(n� d

2 �) for d > 3.

18. A ham-sandwich cut in dimension 2 can be found in linear time.

Examples:
1. The configuration of points in the following figure is given by the columns of the

matrix
(

0 −1 3 1 2
0 1 0 1 2

)
. It is not in general position: the three points 1, 4, and 5 are

collinear. The extended matrix is


 0 −1 3 1 2

0 1 0 1 2
1 1 1 1 1


. Because det


 0 −1 3

0 1 0
1 1 1


 < 0,

the simplex 123 is negative. Some semi-sets are: {3} (1-set), {2, 5} (2-set), {1, 3, 4}
(3-set), etc. The convex hull is {1, 3, 5, 2}.

3

4

(-1,1)

1

2

5

(0,0)

(0,1)

(2,2)

(3,0)
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2. The two configurations of points from the figure of Example 1 and part (a) of the
following figure are isomorphic, but those in parts (a) and (b) of the following figure
are not. This can be seen because, for example, they have different numbers of points
on their convex hulls.

5

2

3
1

4

(a)

5

2

3
1

4

(b)

3. The grey point in the following figure is a centerpoint of the point configuration of
black points. Some of the separating lines have been shown: they have at least 1

3 of the
points on each side.

4. The line in the following figure is a ham-sandwich cut: it simultaneously bisects the
black and the white points.
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13.1.2 LINE AND HYPERPLANE ARRANGEMENTS

Line arrangements and affine point configurations in the plane are related via polar-
duality, a transformation which is better understood in terms of 3-dimensional vectors
and central planes or using the projective and spherical models. Several types of com-
binatorial data can be directly translated from the primal setting to the polar. As a
consequence, theorems and algorithms on line arrangements follow directly from their
counterparts on point configurations, and vice versa. This powerful tool has been used
successfully in computational geometry for the design of efficient algorithms. It also gen-
eralizes to higher dimensions, where hyperplane arrangements are polar-dual to point
configurations in Rd.

Definitions:

A (Euclidean) line in R2 is an affine subspace of dimension 1. A line is induced
by a linear function l(x, y) = ax + by + c and any of its multiples of the form αl. A
line is oriented if a direction has been chosen for it. Its induced half-spaces are called
half-planes and denoted by l+ and l−.

A nonvertical line is a line given by an equation of the form y = ax + b, where a is
called the slope and b the y-intercept of the line. It is oriented in increasing order of
the x-coordinates of its points and its induced half-planes are above/below it.

A (Euclidean) line arrangement is a set L = {l1, . . . , ln} of planar lines, not all of
them going through the same point; that is,

⋂n
i=1 li = ∅. If the lines are oriented, this

is an arrangement of oriented lines. It is labeled if it is given as an ordered set.

A line arrangement is in general position if no three lines have a point in common.

An x-monotone curve is a curve intersecting each vertical line in exactly one point.

A half-plane intersection is the planar region lying in the intersection of a finite set
of half-planes. It is described by the (circular) list of the lines incident to its boundary.

An upper envelope [lower envelope] of a nonvertical line arrangement is the half-
plane intersection of the half-planes above [below] the lines of the arrangement.

The k-level in a nonvertical arrangement of n lines (1 ≤ k ≤ n) is the lower boundary
of the set of points in R2 having exactly k lines above and n− k below.

The cell of a line arrangement is a connected component of the complement in R2

of the union of the points on the lines.

The zone of a line l in an arrangement L (l /∈ L) is the set of cells of the arrange-
ment L intersected by l.

A central plane arrangement in R3 is a finite set of central planes. The arrangement
is oriented if the planes are oriented.

An acyclic (or affine) central plane arrangement in R3 is a central plane arrange-
ment such that there is a point in R3 that lies on the positive side of all these planes.

The (standard) line arrangement induced by a central plane arrangement is the
arrangement of the lines of intersection of the central planes with an affine plane h
in R3 that is not parallel with any plane of the arrangement. If the central planes are
oriented, an orientation is induced on the lines by keeping the positive side of a line
within the positive side of the corresponding plane.

c© 2000 by CRC Press LLC



A big circle is the intersection of the unit sphere S2 in R3 with a central plane. If the
plane is oriented, the circle is given an orientation so that the positive side of the plane
lies on the left of the circle.

A big-circle arrangement is the intersection of a central plane arrangement with the
unit sphere S2 in R3. It is oriented if the planes are oriented.

The big-circle arrangement induced by a central plane arrangement is the
arrangement of the big circles of intersection of the central planes with the sphere S2

in R3. It is oriented if the planes are oriented.

The projective plane P 2 is the sphere S2 in R3 with the antipodal points identified.

A projective line is the projective curve induced by identifying the antipodal points
of a big circle on S2.

A projective line arrangement is a finite set of projective lines in the projective
plane P 2.

The projective line arrangement induced by a central plane arrangement is
the projective arrangement obtained by the antipodal point identification of the big
circle arrangement on S2 induced by the central plane arrangement.

An arrangement graph is a graph associated with a Euclidean or projective line
arrangement, or a big circle arrangement. Its vertices correspond to intersection points
of lines (or circles) and its edges correspond to line (or arc) segments between two
intersection points. [Note: For the Euclidean case, typically only the bounded line
segments are considered as edges (but by adding extra dummy vertices “at infinity”,
the infinite extremities of each line among the edges can be included). For the Euclidean
or spherical case, if the lines are oriented, the arrangement graph is directed, with the
edges oriented to be compatible with the orientation of the lines or circles.]

Isomorphic arrangements are arrangements having isomorphic arrangement graphs.
(This applies to Euclidean lines, big-circles (oriented or not), and projective lines.)

A polar-duality of vectors and central planes in R3 is a mapping D associating
a vector v ∈ R3 with an oriented central plane having v as its normal vector, and vice
versa.

A polar-duality of points and lines in the affine space R2 is any mapping D asso-
ciating a point p ∈ R2 with an oriented line l in R2 and vice versa, by the following
general procedure: map the points to vectors via some imbedding of R2 as an affine
plane in R3, apply the polar-duality of vectors and central planes, and then intersect
the polar central planes with some affine plane (identified with R2) to get lines.

A (standard) affine polar-duality is a mapping D between nonvertical lines and
points in R2, associating the point (a,−b) with the line y = ax+ b, and vice versa.

A Euclidean hyperplane [central hyperplane] arrangement in Rd is a finite set
H = {h1, . . . , hn} of affine hyperplanes [central hyperplanes], not all of them going
through the same point. If the hyperplanes are oriented, the arrangement is oriented.

The following are generalizations to an arbitrary affine space Rd [vector space Rd+1] of
previously defined concepts in affine dimension 2 [vector space R3]:

• arrangements of big (d-1)-spheres on Sd generalize big-circle arrangements
on S2;

• projective arrangements of hyperplanes in P d generalize projective arrange-
ments of lines in P 2;
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• the polar-duality between vectors and central hyperplanes in Rd+1 associates
with a vector the hyperplane normal to it;

• the face lattice of a hyperplane (central, affine, projective) or sphere arrange-
ment, a data structure storing information on faces and their incidences, gen-
eralizes the arrangement graph, and is used to define isomorphism of arrange-
ments.

• the k-level in an affine arrangement of nonvertical hyperplanes is the lower
boundary of the set of points having exactly k hyperplanes above them.

Facts:

1. A bounded cell in a Euclidean line arrangement is a convex polygon.

2. The k-level of a nonvertical line arrangement is an x-monotone piecewise linear curve
incident with vertices and lines of the arrangement.

3. The upper envelope is the 0-level of an arrangement of nonvertical lines.

4. In a simple big-circle arrangement, every pair of big circles intersect in exactly two
points, which are antipodal on the sphere.

5. The arrangement graphs of planar line arrangements or spherical big-circle arrange-
ments are planar imbedded graphs. The arrangement graph of a projective line ar-
rangement is projective-planar. The faces or cells of these graphs are the connected
components of the complement of the union of lines or circles.

6. The association among central plane arrangements, big-circle arrangements, and
projective arrangements preserves isomorphisms. The standard association of an affine
line arrangement and big-circle arrangement to an acyclic plane arrangement preserves
isomorphisms.

7. In a simple Euclidean arrangement of n lines, the number of vertices is
(
n
2

)
, the

number of segments (bounded or unbounded) is n2, and the number of cells (bounded
or unbounded) is

(
n
2

)
+ n+ 1. No nonsimple arrangement exceeds these values.

8. Zone theorem: The total number of edges (bounded or unbounded) in a zone of an
arrangement of n lines is at most 6n.

9. D(D(v)) = p and D(D(h)) = h, for every vector v and hyperplane h.

10. Incidence preserving : If v ∈ h, then D(h) ∈ D(v), for every vector v and hyper-
plane h.

11. Orientation preserving: If v ∈ h+, then D(h) ∈ D(v)+, for every vector v and
hyperplane h.

12. Basic properties of the standard affine polar-dual transformation:
• polar-duality preserves above/below properties: if a point p is above line l, then

the polar line D(p) is below the polar point D(l);
• the polar-dual of a configuration of points P is an arrangement of nonvertical

lines L = D(P ), and vice versa;
• the polar-dual of a set of points given in increasing order of their x-coordinates

is a set of lines given in increasing order of their slopes;
• the polar-dual of the set of points on the convex hull of P is the set of lines

on the upper and lower envelopes of the polar arrangement D(P ); convex hull
computation dualizes to half-plane intersection;
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• semi-spaces of P dualize to vertices, edges, and cells of the polar arrangement
D(P );

• isomorphic arrangements of lines dualize to isomorphic configurations of points;
• the polar-duals of lines pipj inducing (k−1)-sets and k-sets in a point configuration

P = {p1, . . . , pn} are the vertices li ∩ lj on levels k and n−k of the polar-dual
arrangement L = {l1, . . . , ln}.

13. The polar-dual of an acyclic vector configuration in R3 is an acyclic central plane
arrangement.

14. The upper envelope of a line arrangement can be computed optimally in O(n log n)
time.

15. The arrangement graph of a line arrangement can be computed in O(n2) time and
space.

16. The face incidence lattice of a hyperplane arrangement in Rd can be computed
in O(nd) time and space.

17. The standard polar-duality is ubiquitously used in computational geometry. For
example, it is used to derive algorithms for half-plane intersection from convex hull
algorithms, to translate between line slope and point x-coordinate selection, and to
compute the visibility graph in O(n2) time using the polar-dual arrangement graph.
See [Ed87] (Chapter 12) for a collection of such problems.

18. In computational geometry, k-levels are related to the furthest k-neighbors Voronoi
diagrams via a lifting transformation that reduces the computation of dimension d
Voronoi diagrams to dimension d+ 1 arrangements of hyperplanes.

19. k-levels in arrangements, as polar-duals to k-sets, have an abundance of applica-
tions in statistics.

Examples:

1. The following figure shows a line arrangement in general position. The arrangement
graph has 10 vertices corresponding to the black points (which could be labeled with
pairs of indices of lines such as 12, 13, etc.), 15 edges corresponding to the bounded
line segments such as (12, 13), and 2 × 5 = 10 unbounded edges. The upper envelope
is bounded from below by the 0-level, whose list of lines is {1, 2, 3, 5}. The dashed
piecewise linear curve is the 2-level.

1

upper envelope2

3

4

5

0-level

2-level
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2. The zone of line 3 in the line arrangement {1, 2, 4, 5} from the figure of Example 1
is depicted in the following figure. It has 5 cells (1 bounded, 4 unbounded), whose
boundaries sum up to 12 segments.

1

2

3

4

5

3. The line arrangements in the figure for Example 1 and part (a) of the following figure
are isomorphic. Those in parts (a) and (b) of the following figure are not isomorphic.

1

2

3

4

5

(a)

1

2

3

4

5

(b)

4. The following figure illustrates the standard polar-duality. The arrangement is polar-
dual to the configuration of points in the figure of §13.1.1 Example 1; hence the lines are
given by the equations 1: y = 0, 2: y = −x− 1, 3: y = 3x, 4: y = x− 1 and 5: y = 2x− 2.
In the primal configuration, point 2 is above line 13. In the polar-dual, line 2 is below
the intersection point of lines 1 and 3.

1

2

3

4
5
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13.1.3 PSEUDOLINE ARRANGEMENTS

Pseudoline arrangements represent a natural generalization of line arrangements, retain-
ing incidence and orientation properties, but not straightness. They provide a topolog-
ical representation for rank 3 oriented matroids (see §13.1.4), which in turn abstract
combinatorial properties of vector configurations and oriented line arrangements.

Definitions:

A pseudoline is a planar curve (which may be given an orientation). It is x-monotone
if the curve is x-monotone.

A pseudoline arrangement is a finite collection of simple planar curves that intersect
pairwise in exactly one point, where they cross, and not all of which have a point in
common. It is labeled if the pseudolines are given in a fixed order {l1, . . . , ln}, and
oriented if the pseudolines are oriented.

A pseudoline arrangement is realizable or stretchable if it is isomorphic to a line
arrangement.

Note: The following terms, defined in §13.1.1 and §13.1.2 for line arrangements, have
straightforward generalizations to pseudoline arrangements: open half-planes, general
position, cell, arrangement graph, isomorphism, upper/lower envelope, k-level, zone.

Facts:
1. Every arrangement of pseudolines is isomorphic to an arrangement of x-monotone
piecewise linear pseudolines (a wiring diagram as in the figure of Example 2).
2. The arrangement graph of a pseudoline arrangement in general position has

(
n
2

)
vertices, n2 edges, and

(
n
2

)
+ n+ 1 faces.

3. The number of edges in a zone of a pseudoline in a pseudoline arrangement is at
most 6n.
4. Let ek(n) be the number of edges on the k-level of a pseudoline arrangement. Then
Ω(n log k) ≤ ek(n) ≤ O(nk

1
3 ).

5. The logarithm of the number of isomorphism classes of pseudoline arrangements
is Θ(n2). The same number for line arrangements is Θ(n log n).
6. There exist nonstretchable pseudoline arrangements.
7. It is NP-hard to decide whether a pseudoline arrangement is stretchable.
8. Pseudoline stretchability is decidable in PSPACE.
9. Assume that a predicate is given for deciding when the intersection point of two
pseudolines is above or below a third pseudoline. Then the algorithms for computing the
upper envelopes, half-space intersection, or the arrangement graph of a line arrangement
can be adapted to work for pseudoline arrangements.
10. In computational geometry, some algorithmic solutions can be found by reducing
the problem to structures behaving like pseudolines — for example, computing the
boundary of a union or intersection of unit circles in R2, all having at least one point
in common.
11. It is an open problem whether better algorithms can be devised by making explicit
use of the straightness of the lines in geometric problems. So far, the only problem
where an explicit gap in efficiency between lines and pseudolines has been displayed is
in the number of comparisons needed to sort the x-coordinates of the vertices of line
versus x-monotone pseudoline arrangements.
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Examples:

1. The pseudoline arrangement in this figure is stretchable, because it is isomorphic to
the line arrangement in the figure of §13.1.2, Example 1.

1

2

3

4

5

2. The following figure shows a standard way of representing a pseudoline arrangement
as an x-monotone piecewise linear curve arrangement called a wiring diagram. The
arrangement is the same as in the figure of Example 1.

1

2

3

4

5

3. A nonstretchable pseudoline arrangement: The theorem of Pappus in plane geom-
etry states that if the points 1, 2, 3 and 4, 5, 6 are collinear and in this order on two
lines, then the three intersection points of the pairs of lines 7 = (15, 24), 8 = (16, 34),
and 9 = (26, 35) are also collinear. See the following figure. The perturbed arrange-
ment obtained by replacing the line through 7, 8, 9 with the dashed pseudoline is not
stretchable, since it violates the theorem of Pappus.

1 2
3

4 5

7
9

6

8
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13.1.4 ORIENTED MATROIDS

General oriented matroids are abstractions of vector configurations and oriented hy-
perplane arrangements. Affine oriented matroids model the corresponding situation in
affine spaces. They capture in various types of data structures (semi-spaces, chirotopes,
Radon partitions, arrangement graphs, hyperline sequences) combinatorial information
about n-element configurations. This forms the basis of the classification of all n-point
sets into a finite number of equivalence classes. Each data structure satisfies a set of
simple properties, or axioms, which characterize a wider class of objects collectively
referred to as oriented matroids.

To simplify the exposition, in some cases only the axiomatization corresponding to
points in general position will be presented. Not all oriented matroids arise geometrically
from vector sets, but they do have a topological representation via pseudohyperplane
arrangements. In rank 3, affine oriented matroids are modeled by pseudoline arrange-
ments. Many geometric algorithms working with line arrangements or, by polarity,
point configurations, make use of no more than oriented matroid properties and can be
extended to pseudolines.

As potential applications, oriented matroids lay the foundations for a rigorous the-
ory of geometric program verification and testing.

Definitions:

Notation:
En = {1, . . . , n} and En = {1, . . . , n} ∪ {1, . . . , n}.
Triplets (i, j, k) ∈ E

3

n are denoted ijk.

A signed set X = (X+, X−) is a partition of a finite set X into a positive part X+

and a negative part X−. That is, X = X+ ∪X− and X+ ∩X− = ∅. In En a signed
set may be denoted as a signed sequence of indices, such as 1 2 3 4 for ({1, 3, 4}, {2}).
The complement of a signed set X = (X+, X−) is the set −X = (X−, X+).

The support of a signed set X = (X+, X−) is the unsigned set X.

The size of a signed set X = (X+, X−) is the size of the support of X.

The signed double covering of a finite set X is the set X = X+ ∪ X−, where
X+ = X and X− = {x | x ∈ X } is a signed distinct copy of X (its elements called
negated elements), X+ ∩X− = ∅. If x ∈ X−, then x is the corresponding nonnegated
element in X+.

A basis of a vector configuration [point configuration] V ⊂ Rd is a subset of V , identified
by a d-set of indices, which is a basis [simplex] of the ambient space Rd. A signed basis
is an ordered basis together with its sign.

The chirotope of an ordered vector configuration [point configuration] is the set of all
signed bases of V .

An alternating function is a function f :Ed
n → R such that the sign of f(i1, . . . , id)

is preserved under an even permutation and negated under an odd permutation of the
d-tuple (i1, . . . , id).

An antisymmetric function is a function f :E
d

n → R such that its sign changes when
one of the parameters is negated. [For example, f(i1, i2, . . . , id) = −f(i1, i2, . . . , id).]
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The (rank 3) Grassmann-Plücker relations are the identities

[1 2 3][1 4 5]− [1 2 4][1 3 5] + [1 2 5][1 3 4] = 0

satisfied by the determinants [i j k] = det(vi, vj , vk), for any five vectors vi, 1 ≤ i ≤ 5.

The (rank d) Grassmann-Plücker relations are the identities

[i1 . . . id−21 2][i1 . . . id−23 4]− [i1 . . . id−21 3][i1 . . . id−22 4] +
[i1 . . . id−21 4][i1 . . . id−22 3] = 0

satisfied by the determinants [i1 . . . id−2j k] = det(vi1 , . . . , vid−2 , vj , vk), for any d + 2
vectors vij

(1 ≤ j ≤ d−2) and vi (1 ≤ i ≤ 4).

Chirotope axioms (rank d): A function χ:E
d

n → {−1, 0,+1} is a chirotope of rank d
if it satisfies the following conditions:

• χ is alternating and antisymmetric;
• for any d + 2 generic points i1 . . . id−21 2 3 4, the signs χ(i1 . . . id−2j k) of the six

triplets involved in the Grassmann-Plücker relations are such that equality is
possible.

A uniform chirotope is a chirotope function that takes nonzero values on all d-tuples.

Chirotope axioms (uniform, rank 3): A function χ:E
3

n → {−1,+1} is a uniform
chirotope of rank 3 if it satisfies the following conditions:

• χ is alternating and antisymmetric;
• for any 5 generic points a, b, i, j, k, if χ(a b i) = χ(a b j) = χ(a b k) = +1 and

χ(a i j) = χ(a j k) = +1, then χ(a i k) = +1.
The chirotope χ is affine if, in addition, it satisfies the axiom:

• for any four points i, j, k, l, if χ(i j k) = χ(i k l) = χ(i l j) = +1, then χ(j k l) = +1.

An oriented matroid given by a chirotope is an abstract set of points labeled
{1, . . . , n}, together with a function χ satisfying the chirotope axioms.

The circuit of a set of labeled vectors V = {v1, . . . , vn} is the signed set C = (C+, C−),
where C+ = { j | αj > 0 } and C− = { j | αj < 0 }, of indices of the nonnull coeffi-
cients αj in a minimal linear dependency V ′ = {vi1 , . . . , vik

} of V with
∑k

j=1 αjvij
= 0.

If C is a circuit, its complement −C is also a circuit.

A Radon partition of a set of labeled points P is a signed set C = (C+, C−) of points
of P such that the convex hull of the points in C+ intersects the convex hull of the
points in C−.

A minimal Radon partition (or circuit) is a Radon partition whose support is
minimal with respect to set inclusion.

An oriented matroid of an ordered vector [point] configuration given by its circuits
is the set of all circuits of V .

A set C of signed subsets of En satisfies the circuit axioms if:
• ∅ �∈ C;
• if C ∈ C then −C ∈ C;
• (minimality): if C = (C+, C−) is a circuit, then no subset of the support of C is

the support of another circuit;
• (exchange): if C1 and C2 are two circuits such that C1 �= −C2 and e ∈ C+

1 ∩C−
2 ,

then there exists another circuit D such that e �∈D, D+ ⊂ C+
1 ∪ C+

2 , and
D− ⊂ C−

1 ∪ C−
2 .
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The oriented matroid given by its circuits is an abstract set En together with a
set of signed sets C satisfying the circuit axioms.

A cocircuit of a labeled vector configuration V is a signed set C = (C+, C−) of En,
induced by a subset of d− 1 vectors spanning a central hyperplane h. For an arbitrary
orientation of h, C+ is the set of indices of elements in V lying in h+ and C− is the set
of indices of elements in V lying in h−.

The cocircuit axioms are the conditions obtained from the circuit axioms by replacing
“circuit” with “cocircuit”.

An oriented matroid given by its cocircuits is an abstract set En, together with
a set of signed sets C satisfying the cocircuit axioms.

A circular sequence of period k is a doubly infinite sequence (qi)i∈Z with qi = qi+k

for all i ∈ Z.

A signed permutation of a set S is a permutation of S whose elements are also
assigned a sign; for example, 1 3 4 2, where 3 is negative and 1, 2, and 4 are positive.

An alternating circular sequence is a circular sequence (qi)i∈Z with half-period k,
defined with elements from a signed double covering qi ∈ X and satisfying the property
qi = qi+k for all i ∈ Z.

A representation of an alternating circular sequence can be obtained by any of its
subsequences of k consecutive elements (half period) {q1, . . . , qk}.
A star (or rank 3 hyperline sequence) associated with a point pi ∈ P ⊆ R2 [vector
vi ∈ V ⊆ R3] is an alternating circular sequence of subsets of indices in En obtained
by rotating an oriented line [oriented central plane] in counterclockwise order around pi

[the line through vector vi] and recording the successive positions where it coincides with
lines [central planes] defined by pairs of points (pi, pj) with pj ∈ P \{pi} [vectors (vi, vj),
with vj ∈ V \ {vi}]. If a point pj is encountered by the rotating line in the positive
direction from pi, it will be recorded as a positive index, otherwise it will be recorded
as a negative index. When the points are not in general position, several may become
simultaneously collinear with the rotating line, and they are recorded as one subset Li

j .
The sequence is denoted by a half-period sI = (Li

1, L
i
2, . . . , L

i
ki

), where Li
j ⊂ En \ {i, i}.

A cluster of stars (or rank 3 hyperline sequences) associated with a point (or
vector) configuration P is the ordered set of n stars s1, . . . , sn, one for each point
pi ∈ P .

A uniform cluster of stars is a cluster of stars corresponding to a set of points in
general position. (Each star is a sequence of individual indices.)

An oriented matroid of a vector (or point) set V given by its cluster of stars
is the cluster of stars associated with V .

A star (or rank 3 hyperline sequence) associated with an element ci of a
big-circle arrangement C = {c1, . . . , cn} on S2 is an alternating circular sequence
of subsets of indices in En obtained by traversing the oriented big-circle in its given
direction and recording in order the intersections of ci with the other big-circles cj
(j �= i). Each intersection is recorded as a signed index j: positive if cj crosses ci from
left to right, negative otherwise.

The cluster of stars (or rank 3 hyperline sequences) associated with a big-
circle arrangement is the set of n stars s1, . . . , sn, one for each circle ci ∈ C.
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The cluster of stars associated with an oriented central plane arrangement
in R3 [line arrangement in R2] is the cluster of stars of the big-circle arrangement
associated with the central plane arrangement [to the central plane arrangement induced
by the line arrangement via the imbedding of R2 as the plane z = 1 in R3].

The cluster of stars associated with a pseudoline arrangement [a pseudocon-
figuration of points] is the generalization from straight lines to pseudolines obtained
by recording the order of the vertices of the arrangement along a pseudoline (positive
or negative according to whether the line crossing at that vertex comes from right or
left) [the circular counterclockwise order of the pseudolines incident with a point].

A cluster of star permutations is an ordered set of alternating circular sequences
s1, . . . , sn with the property that the representative half-period of sequence si is a signed
permutation of the set En \ {i}.
A chirotope function associated with a set of cluster of stars permutations
s1, . . . , sn is a function χ:E3

n → {−1,+1} defined by χ(i j k) = +1 if, in the ith se-
quence si and in a half period of it where both j and k occur positively, j occurs
before k. Otherwise χ(i j k) = −1.

A set En, together with an ordered set of alternating circular sequences s1, . . . , sn,
satisfies the cluster of stars axioms (uniform, rank 3) if the set of sequences are
cluster of star permutations whose associated chirotope function is alternating.

A (uniform, rank 3) oriented matroid given by its cluster of stars is a set En

together with n alternating sequences satisfying the cluster of stars axioms.

An abstract set En, together with a set of nd−2 (uniform) alternating sequences (in-
dexed by (d−2)-tuples (i1, . . . , id−2)), is an oriented matroid given by its hyper-
line sequences (uniform, rank d) if the chirotope function χ:Ed

n → {−1,+1}
associated with it is alternating. [The function χ:Ed

n → {−1,+1} is defined by
χ(i1 . . . id−2j k) = +1 if in the star indexed by i1, . . . , id−2 and in a half period where
both j and k occur positively, j occurs before k. Otherwise χ(i1 . . . id−2j k) = −1.]

Deletion is the removal of a point (vector, line, etc.) from a configuration and recording
the oriented matroid (chirotope, circuits, cluster of stars, etc.) only for the remaining
points.

In a rank d central plane arrangement, the contraction on element i is obtained by
identifying hi with Rd−1 and intersecting it with all the other hyperplanes to obtain a
rank d−1 arrangement with one element less.

The oriented matroid obtained by a one-element deletion in the hypersequence
representation is the matroid obtained by removing the element from all the hyperline
sequences of the original oriented matroid, and discarding all hyperline sequences whose
labels contain that element.

The oriented matroid obtained by a one-element contraction in the hyperse-
quence representation is the matroid obtained by retaining only the hyperline sequences
whose labels contain the element, and dropping it from the labels.

A rank 2 contraction of a cluster of stars is one of the stars.

A minor of an oriented matroid given by hyperline sequences is an oriented matroid
obtained by a sequence of deletions and/or contractions.
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A (Euclidean) pseudoconfiguration of points is a pair (P,L) with P = {p1, . . . , pn}
a planar set of points and L = {l1, . . . , lm} a pseudoline arrangement, such that for
every pair of distinct points (pi, pj) there exists a unique pseudoline lij ∈ L incident
with them.

If a pseudoline arrangement is intersected with a vertical line lv (x = −M), for some
very large constant M and all the vertices of the arrangement lie to the right of lv, then
the order in which the pseudolines in L cross vh (decreasing by the y-coordinates of the
crossings) is the (increasing) slope order of the pseudolines.

The (standard affine) pseudo polar-duality is the association between an x-mono-
tone pseudoline arrangement L = {l1, . . . , ln} given in slope order and a pseudo configu-
ration of points (P,L′), P = {p1, . . . , pn}, given in increasing order of the x-coordinates
and with L′ being x-monotone, satisfying the property that the cluster of stars associ-
ated with L and to P are the same.

Facts:
1. Cocircuits correspond to semi-spaces, when the defining hyperplane is incident
with d−1 independent elements of the configuration.
2. In the rank d uniform oriented matroid associated with a vector configuration in
general position in Rd, all the d-tuples are bases, all the (d+1)-tuples are supports of
circuits, and all the (n−d+1)-tuples are supports of cocircuits.
3. The oriented matroid associated with an affine vector configuration V and the affine
oriented matroid associated with the affine point configuration induced by V are the
same.
4. The chirotope function χ associated with the cluster of stars of a vector or point
configuration is an alternating and antisymmetric function.
5. The two given systems of chirotope axioms are equivalent (for the uniform case).
6. The hyperline sequences of a contraction by one element of a central plane arrange-
ment are the induced rank (d−1) contraction by that element of the set of rank d
hyperline sequences of the original arrangement.
7. The induced rank (d−1) contraction of a set of rank d hyperline sequences is a rank
(d−1) set of hyperline sequences.
8. A minor of an oriented matroid (given by its hyperline sequences) is an oriented
matroid.
9. For two labeled vector (or point) configurations V1 and V2, the following statements
are equivalent:

• V1 and V2 have the same chirotope;
• V1 and V2 have the same order type;
• V1 and V2 have the same hyperline sequences;
• V1 and V2 have the same minors.

Moreover, for any reorientation of V1 or V2:
• V1 and V2 have the same oriented matroid given by circuits;
• V1 and V2 have the same oriented matroid given by cocircuits.

This justifies the unique name oriented matroid for the equivalence class of vector con-
figurations with the same chirotope (or clusters, order type, etc.), and for a reorientation
class of an oriented matroid.
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10. For a labeled vector configuration V in Rd+1, the following statements are equiv-
alent:

• V is acyclic (affine);
• there is a labeled point configuration P in Rd whose oriented matroid (or order

type or chirotope) is the same as the oriented matroid of V .

11. Multiplying the elements of a vector configuration by a positive scalar yields a
vector configuration with the same oriented matroid. In particular, for any vector
configuration V in Rd+1, there exists an equivalent vector configuration on the d-sphere.

12. For any vector configuration, there exists a reorientation of some of its vectors
which makes it affine.

13. The set of circuits of an affine (acyclic) vector configuration does not contain the
positive cycle (En, ∅).
14. Two projective line arrangements with the same arrangement graph have polar-
dual configurations of points in the same reorientation class (and this can be generalized
to arbitrary dimension d).

15. If a labeled vector configuration inR3 and a labeled oriented arrangement of central
planes are polar-dual, then they have the same hyperline sequences (and this can be
generalized to arbitrary dimension d).

16. The number of oriented matroids of rank d and size n is 2O(nd−1).

17. The number of realizable oriented matroids of rank d and size n is 2O(n log n).

18. Folkman-Lawrence topological representation theorem: Every oriented matroid of
rank d can be represented as a (d−1)-pseudosphere arrangement on Sd.

19. Every affine oriented matroid of rank 3 can be represented as a pseudoline arrange-
ment and as a (polar-dual) pseudoconfiguration of points.

20. There exist nonrealizable oriented matroids of any rank.

21. Realizable oriented matroids cannot be characterized by a finite set of excluded
minors.

Examples:

1. The function χ(i, j, k) = sign det(vi, vj , vk), for vl ∈ V = {v1, · · · , vn} ⊂ R3 is
alternating antisymmetric.

2. The following figure shows an example of a point configuration in general position,
together with the connecting lines.

1
2

3 4

5
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Its oriented matroid is given by:
• chirotope: 1 2 3−, 1 2 4−, 1 2 5+, 1 3 4+, 1 3 5+, 2 3 4+, 2 3 5+, 3 4 5+. The other

signed triplets are computed by antisymmetry and alternation.
• minimal Radon partitions: 1 2 3 4, 1 2 3 5, 1 2 4 5, 1 3 4 5, 2 3 4 5 and their comple-

ments.
• cocircuits: 3 4 5, 2 4 5, 2 3 5, 2 3 4, 1 4 5, 1 3 5, 1 3 4, 1 2 5, 1 2 4, 1 2 3 and their

complements.
• cluster of stars: 1: 3 4 2 5, 2: 1 5 3 4, 3: 1 4 5 2, 4: 5 2 1 3, and 5: 1 2 3 4. (An arbi-

trary half-period was chosen for the circular sequences.)

3. The oriented matroid given as a cluster of stars for the line arrangement in the
figure of §13.1.2 Example 1 (or for the pseudoline arrangement in the figure of §13.1.3
Example 1) is:

1: 2 3 5 4, 2: 1 3 5 4, 3: 1 2 5 4, 4: 5 1 2 3, 5: 4 1 2 3.
The orientation of the lines is assumed to be in increasing order of the x-coordinates. Its
minor by the deletion of element 3 is: 1: 2 5 4, 2: 1 5 4, 4: 5 1 2, and 5: 4 1 2. Its contraction
on point 3 is 1 2 5 4.

13.2 SPACE FILLING

13.2.1 PACKING

The central notion in the theory of packing is the density of a packing.

Definitions:

A convex body in d-dimensional Euclidean space Rd is a compact convex subset of Rd

with nonempty interior.

A family P = {K1,K2, . . .} of the convex bodies K1,K2, . . . in Rd forms a packing
of Rd if no two of the convex bodies K1,K2, . . . have an interior point in common.

Let P = {K1,K2, . . .} be a packing of Rd and BR the closed ball of radius R centered
at the origin in Rd. The lower density and upper density of P are defined by

δ(P) = lim inf
R→+∞

∑
Ki⊂BR

Vol(Ki)
Vol(BR)

and δ(P) = lim sup
R→+∞

∑
Ki⊂BR

Vol(Ki)
Vol(BR)

.

If δ(P) = δ(P) = δ(P), then δ(P) is called the density of P.

For a convex body K ⊂ Rd, let δ(K) denote the largest (upper) density of packings by
congruent copies of K in Rd. In particular:

δT (K) = the largest (upper) density of packings by translates of K in Rd;
δL(K) = the largest (upper) density of packings by lattice translates of K in Rd.

Let P = {Bd
1 , B

d
2 , . . .} be a packing of unit balls in Rd with centers c1, c2, . . . . The

Voronoi cell with center ci is the convex polyhedral set Vi = {x ∈ Rd
∣∣ |x − ci| =

minj |x− cj | }.
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Facts:
1. There are two major problems concerning density:

• Given a convex body K ⊆ Rd, find efficient packings with congruent copies of K;
i.e., find packings with congruent copies of K in Rd having “relatively high”
density.

• Find a “good” upper bound for δ(K).

2. Sphere packing in n-dimensional space, for n large, is important in designing codes
that are efficient and unlikely to contain errors when data is transmitted.

3. If K is a convex body in Rd,
2ζ(d)(

2d
d

) ≤ δL(K) ≤ δT (K) ≤ δ(K), where ζ(d) =

1 + 1
2d + 1

3d + · · · denotes Riemann’s zeta function.

4. If K is a centrally symmetric convex body in Rd,
ζ(d)
2d−1

≤ δL(K) ≤ δT (K) ≤ δ(K).

5. Facts 3 and 4 have been improved slightly for different classes of convex bodies
and subclasses of centrally symmetric convex bodies. (See [DaRo47], [ElOdRu91], and
[Sc63].)

6. For each d, (d− 1)
ζ(d)
2d−1

≤ δL(Bd) ≤ δT (Bd) = δ(Bd).

7. For every convex domain D, δL(D) = δT (D).
8. For every centrally symmetric convex domain D, δL(D) = δT (D) = δ(D).
9. There exists an ellipsoid C in R3 for which δL(C) < δ(C).
10. The class of convex bodies C ⊆ Rd for which δL(C), δT (C), and δ(C) can be
determined (for a given d) is very small.
11. It is possible to extend some of the above theorems to spherical as well as hyperbolic
spaces. (In short, a space of constant curvature means the corresponding Euclidean
space or spherical space or hyperbolic space.) For example, see Fact 15.
12. Let P = {Bd

1 , B
d
2 , . . .} be a packing of Rd by unit balls with centers c1, c2, . . . . For

a regular simplex of edge length 2 in Rd with a unit ball drawn around each vertex,
let σd be the ratio of the volume of the portion of the simplex covered by balls to the
volume of the whole simplex. For each Voronoi cell Vi (i = 1, 2, . . .) with center ci, let

V̂i =
{
x ∈ Vi

∣∣ |x− ci| ≤
√

2d
d+1

}
. Then

Vol(Bd
i )

Vol(V̂i)
≤ σd for all i = 1, 2, . . . , and hence

δ(P) ≤ σd.

Note: This result is sharp for d = 1 and 2, but has been improved for sufficiently large d
and for d = 3 in Facts 13 and 14.

13. δ(Bd) ≤ 1
2(0.599+o(1))d

as d→∞.

14. δ(B3) ≤ 0.7731.
15. The densest lattice packing of unit balls is determined up to dimension 8. The
following table lists the optimal lattices. (See [CoSl93].)

dimension 1 2 3 4 5 6 7 8

densest lattice packing Z A2 A3 D4 D5 E6 E7 E8

16. Given a set of n (n ≥ 3) nonoverlapping circles of radius r in a plane of constant
curvature, the density of the circles with respect to the outer parallel domain of the
convex hull of their centers at distance r is less than π√

12
= 0.90689 . . . .
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17. The densest packing of circles of radius r in the plane is a hexagonal arrangement,
with each circle tangent to its six neighbors.

18. No packing of spheres in R3 can fill more than 78 percent of the possible volume.

19. A face-centering packing of spheres in R3 fills slightly more than 74 percent of the
total possible volume. (A face-centering packing of spheres consists of first arranging a
layer of spheres so each is tangent to six neighbors. A second layer is added by placing
spheres in the depressions that occur in any triangle formed by three adjacent spheres
in the first layer. This pattern continues, giving a configuration much like a pyramid of
oranges seen in a supermarket produce display.)

20. For numerous other important concepts and results in the field, see [FeKu93].

Open Questions and Conjectures:

1. The major outstanding question is to estimate δL(Bd) and δT (Bd) = δ(Bd) for the
d-dimensional unit ball Bd in Rd.

2. Kepler’s conjecture: δ(B3) ≤ π√
18

= 0.74048 . . . .

3. The dodecahedral conjecture: The volume of any Voronoi cell in a packing of unit
balls in E3 is at least as large as the volume of a regular dodecahedron with inradius 1.

4. It is widely believed, but not proved, that δL(B3) = δ(B3) and δL(Bd) < δ(Bd) for
sufficiently large d.

13.2.2 COVERING

Definitions:

A family C = {Ki | i ∈ I } of convex bodies in Rd forms a covering of Rd (that is,
covers Rd) if each point of Rd belongs to at least one convex body of C.
The lower density and upper density of a covering C are

ν(C) = lim inf
R→+∞

∑
Ki∩BR
=∅ Vol(Ki)

Vol(BR)
and ν(C) = lim sup

R→+∞

∑
Ki∩BR
=∅ Vol(Ki)

Vol(BR)

where BR denotes the closed ball of radius R centered at the origin in Rd.

If ν(C) = ν(C) = ν(C), then ν(C) is called the density of C.
For a convex body K ⊆ Rd, let

ν(K) = the smallest (lower) density of coverings of Rd by congruent copies of K;
νT (K) = the smallest (lower) density of coverings of Rd by translates of K;
νL(K) = the smallest (lower) density of coverings of Rd by lattice translates of K.

Facts:

1. There are two major problems concerning covering:
• Given a convex body K ⊆ Rd, find efficient coverings of Rd with congruent copies

of K; that is, find coverings of Rd by congruent copies of K having “relatively
small” density.

• Find a “good” lower bound for ν(K). (This is a highly nontrivial task for most
of the convex bodies K ⊆ Rd.)
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2. If K is a convex body in Rd, then
ν(K) ≤ νT (K) ≤ d(ln d) + d(ln ln d) + 4d

and
νT (K) ≤ νL(K) ≤ d(log2 log2 d)+c for some constant c.

3. If Bd denotes the d-dimensional closed unit ball in Rd, then

ν(Bd) = νT (Bd) ≤ νL(Bd) ≤ cd(ln d)
1
2 log2(2πe)

for some constant c.

4. Take a regular simplex inscribed in a unit ball in Rd and draw unit balls around
each vertex. Let τd be the ratio of the sum of the volumes of the portions of these balls
lying in the regular simplex to the volume of the regular simplex. Then τd ≤ ν(Bd).

5. τd ∼ d
e3/2 . (Thus, Facts 2 and 3 give strong estimates for ν(Bd). Moreover, for d = 1

and 2, the lower bound τd is sharp.)

6. The thinnest lattice covering of Rd by unit balls has been determined up to dimen-
sion 5 only. The following table lists the optimal lattices. (See [CoSl93].)

dimension 1 2 3 4 5

thinnest lattice covering Z A2 A
∗
3 A

∗
4 A

∗
5

13.2.3 TILING

Only a “diagonal” view of the basic definitions and theorems of this area will be given.
See [GrSh86] for additional material.

Definitions:

A tiling T of Euclidean d-space Rd is a countable family of closed topological d-cells
of Rd, the tiles of T , which cover Rd without gaps and overlaps.

A monohedral tiling is a tiling T of Rd in which all tiles are congruent to one fixed
tile T , the (metrical) prototile of T . In this case, T admits the tiling T .

A regular polygon is a polygon with all sides congruent and all interior angles equal.

A regular tiling is a monohedral tiling of the plane (R2) with a regular polygon as
prototile.

A semiregular tiling is a tiling of the plane using n prototiles with the same numbers
of polygons around each vertex.

A semiregular polyhedron is a convex polyhedron with each face a regular polygon,
but where more than one regular polygon can be used as a face.

A tiling T of Rd by convex polytopes is normal if there exist positive real numbers r
and R such that each tile contains a Euclidean ball of radius r and is contained in a
Euclidean ball of radius R.

A face-to-face tiling is a tiling T by convex d-polytopes such that the intersection of
any two tiles is a face of each tile, possibly the (improper) empty face. When d = 2,
such a tiling is an edge-to-edge tiling.
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A lattice tiling , with lattice L, is a tiling T by translates of a single tile T such that
the corresponding translation vectors form a d-dimensional lattice L in Rd.

A Euclidean motion σ of Rd is a symmetry of a tiling T if σ maps (each tile of) T
onto (a tile of) T . The set of all symmetries of T (a group under composition) is the
symmetry group S(T ) of T .

A periodic tiling is a tiling T of Rd such that S(T ) contains translations in d linearly
independent directions. A tiling T is nonperiodic if S(T ) contains no translation
other than the identity.

An isohedral tiling is a tiling T such that S(T ) acts transitively on the tiles of T .

An isogonal tiling is a tiling T such that S(T ) acts transitively on the vertices of T .

An isotoxal tiling is a tiling T such that S(T ) acts transitively on the edges of T .

Let T and T ′ be tilings of Rd with symmetry groups S(T ) and S(T ′). Let Φ:Rd → Rd

be a homeomorphism that maps T onto T ′. Φ compatible with a symmetry σ of T
if there exists a symmetry σ′ of T ′ such that σ′Φ = Φσ. Φ is compatible with S(T )
if Φ is compatible with each σ in S(T ). The tilings T and T ′ of Rd are homeomeric,
or of the same homeomeric type, if there exists a homeomorphism Φ:Rd → Rd that
maps T onto T ′ such that Φ is compatible with S(T ) and Φ−1 is compatible with S(T ′).

A prototile T in Rd is aperiodic if T admits a tiling of Rd, yet all such tilings are
nonperiodic. In general, a set S of prototiles in Rd is said to be aperiodic if S admits
a tiling of Rd, yet all such tilings are nonperiodic.

Facts:

1. There are three monohedral edge-to-edge tilings of R2 with regular polygons; the
prototile must be a triangle, a square, or a hexagon. See the following figure.

2. There are eight semiregular tilings of R2. These tilings use two or three prototiles.

3. Shapes that are not regular polygons [polyhedra] can be used in monohedral tilings
of R2 [R3].

4. Any triangle can be used in a monohedral tiling of the plane. (Join two to form
a parallelogram and tile a strip using these parallelograms. Repeat this process with
parallel strips to tile the plane.) See the following figure.
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5. Any quadrilateral can be used in a monohedral tiling of the plane. See the following
figure. (Take a second copy of the quadrilateral and rotate it 180 degrees. Join the two
to form a hexagon. Use the hexagons to tile the plane.)

6. Any pentagon with a pair of parallel sides can be used in a monohedral tiling of the
plane.

7. There are at least fourteen types of convex pentagons that can be used in a mono-
hedral tiling of the plane. It is not known if there are more.

8. There are three types of convex hexagons that can be used in a monohedral tiling
of the plane. Assume that the hexagon has vertices a, b, c, d, e, f in clockwise order. See
the following figure. The prototile must be of one of the following forms:

• sum of angles at a, b, c is 360◦; length of {a, f} = length of {c, d};
• sum of angles at a, b, e is 360◦; length of {a, f} = length of {d, e} and length of

{b, c} = length of {e, f};
• angles at a, b, and c are each equal to 120◦; length of {a, b} = length of {a, f},

length of {c, b} = length of {c, d}, and length of {e, d} = length of {e, f}.

9. No convex polygon with more than six sides can be used as prototile in a monohedral
tiling of R2.

10. Of the five regular polyhedra (tetrahedron, hexahedron (cube), octahedron, dodec-
ahedron, icosahedron), only the tetrahedron and cube can be used as a prototile in a
regular tiling of R3.

11. If T is a tiling of Rd with convex tiles, then each tile in T is a convex d-polyhedron.

12. If T is a tiling of Rd with compact convex tiles, then each tile in T is a convex
d-polytope.
13. The following classification results have a long history. (See [GrSh86].)

• There exist precisely 11 distance edge-to-edge isogonal plane tilings, the tiles of
which are convex regular polygons (called Archimedean tilings).

• There exist precisely 81 homeomeric types of normal isohedral plane tilings. Pre-
cisely 47 of these can be realized by a normal isohedral edge-to-edge tiling with
convex polygonal tiles.
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• There exist precisely 91 homeomeric types of normal isogonal plane tilings. Pre-
cisely 63 types can be realized by normal isogonal edge-to-edge tilings with
convex polygonal tiles.

• There exist precisely 26 homeomeric types of normal isotoxal plane tilings. Pre-
cisely 6 types can be realized by a normal isotoxal edge-to-edge tiling with
convex polygonal tiles.

14. Let T be a convex d-polytope. If T tiles Rd by translation, then T admits
(uniquely) a face-to-face lattice tiling of Rd. Such a tile T is called a parallelotope.
This result is not true for nonconvex polytopes.
15. Several aperiodic sets have been found in the plane. Some of them, such as
the Wang tiles and Penrose tiles, possess several highly interesting properties. (See
[GrSh86].)
16. Very recently, considerable progress has been achieved for aperiodic tilings in higher
dimensions via dynamical systems. (See [Ra95].)

Open Questions:
1. Extend the classification problems to higher dimensions. (At present, this looks
hopeless.)
2. Classify all convex d-polytopes which are prototiles of monohedral tilings of Rd.
(This problem is not even solved for the plane.) However, under suitable restrictions
the complexity of the problem changes. (See Fact 4.)
3. For d ≥ 5, determine whether each d-parallelotope is a Voronoi cell (see §9.2) for
some d-lattice. (This is known to be true for 1 ≤ d ≤ 4.)

13.3 COMBINATORIAL GEOMETRY

This section studies geometric results involving combinatorics in the areas of convexity,
incidences, distances, and colorings. In some cases the problems themselves have a
combinatorial flavor, while in other cases their solution requires combinatorial tools.

13.3.1 CONVEXITY

In this subsection, questions of two different kinds are studied. Most of them belong to
geometric transversal theory, a subject originating in Helly’s theorem. Another group
of problems grew out of the Erdős-Szekeres theorem, which turned out to be a starting
point of Ramsey theory.

Definitions:

A subset C of d-dimensional Euclidean space (d-space) Rd is convex if the following is
true: for any pair of points in C, the straight-line segment connecting them is entirely
contained in C.

A convex set is strictly convex if its boundary contains no line segment.

A convex body is a compact (i.e., bounded and closed) convex set with nonempty
interior.
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A polytope is a bounded convex body that can be obtained as the intersection of
finitely many closed half-spaces. (§13.1.1.)

A convex polygon is a polytope in the plane.

A vertex of a polytope P is a point q ∈ P , for which there is a hyperplane (§13.1.1) H
such that H ∩ P = {q}.
A point set is in convex position if it is the vertex set of a polytope.

The convex hull of a set S ⊆ Rd is the smallest convex set containing S.

A family C = {C1, C2, . . .} of sets in d-space is said to be intersecting if all members
of C have a point in common.

A set T ⊆ Rd is a transversal of a family C of sets if T ∩ Ci is nonempty for every i.
If C has a k-element transversal (|T | = k), its members can be pierced by k points.

Two sequences P = {p1, . . . , pn} and Q = {q1, . . . , qn} of points in Rk have the same
order type if, for all 1 ≤ i1 < i2 < · · · < ik+1 ≤ n, the orientations of the sim-
plices induced by {pi1 , . . . , pik+1} and {qi1 , . . . , qik+1} are the same. This order type is
nontrivial if P and Q are not contained in any hyperplane of Rk.

A k-flat (an oriented k-dimensional plane) F intersects a sequence of d-dimensional
convex bodies C = {C1, . . . , Cn} consistently with the above order type if there are
xi ∈ F ∩Ci such that the sequences X = {x1, . . . , xn} and P have the same order type.

Facts:

1. The convex hull of a set S is the intersection of all convex sets containing S.

2. For any set S ⊂ Rd of finitely many points, not all of which lie in the same hyper-
plane, the convex hull of S is a polytope. In particular, if S has d + 1 points, then its
convex hull is a simplex whose vertices are the elements of S.

3. The convex hull of the vertex set of any convex polytope P is identical with P .

4. Helly’s theorem: If a family C of at least d+1 convex bodies in Rd has the property
that every d+ 1 of its members have a point in common, then C is intersecting (i.e., all
its members have a point in common). [He23]

5. Carathéodory’s theorem: If the convex hull of a set S ⊆ Rd contains a point p, then
there exists a subset of S with at most d+ 1 elements whose convex hull contains p.

6. Let S be a compact set in Rd with the property that for every (d+1)-element subset
T ⊂ S, there is a point s ∈ S such that each segment connecting s to an element of T
lies in S. Then S has a point such that every segment connecting it to an element of S
is entirely contained in S. [Kr46]

7. Any set of (k − 1)(d + 1) + 1 points in Rd can be partitioned into k parts whose
convex hulls have a point in common. [Ra21], [Tv66]

8. Let C be any family of convex bodies in Rd with the property that the volume of
the intersection of any 2d of them is at least 1. Then the volume of the intersection of
all members of C is at least a positive constant depending only on d. [BáKaPa82]

9. For any ε > 0 and for any d there is a δ > 0 satisfying the following condition:
if C is a family of n (> d + 1) convex bodies in Rd having at least ε

(
n

d+1

)
intersecting

(d+1)-tuples, then C has at least δn members with a point in common. [Ka84]

10. For any d < q ≤ p, there exists k = k(p, q, d) satisfying the following condition:
if C is a family of convex bodies in Rd such that every subfamily of C of size p contains q
members with a point in common, then C can be pierced by k points. [AlKl92]
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11. A sequence C = {C1, . . . , Cn} of convex bodies in Rd has a hyperplane transversal
if and only if for some 0 ≤ k ≤ d− 1, there is a nontrivial k-dimensional order type of n
points such that every (k+2)-member subfamily of C can be met by a suitable k-flat
consistently with that order type. [PoWe90]

12. If Sk is any family of k-dimensional linear subspaces of Rd with the property that
any

(
k+l

l

)
of them can be intersected by an l-dimensional subspace, then all members

of Sk can be intersected by an l-dimensional subspace. (Two subspaces intersect each
other if they have at least one point in common, different from the origin.)

13. Any set of five points in the plane, no three of which are on a line, has four elements
in convex position.

14. Erdős-Szekeres theorem: For every k > 2, there exists a smallest integer n(k) with
the property that every set of at least n(k) points in the plane, no three of which are
on a line, contains k points in convex position. If k = 3, 4, 5, 6, then n(k) = 2n−2 + 1.
(These are the only known values.) Furthermore, 2k−2 + 1 ≤ n(k) ≤

(
2k−5
k−2

)
. [ErSz35],

[TóVa98]

Examples:

1. Let S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The convex hull of S ⊂ R3 is a triangular
region, which is not a convex body in 3-space because its interior is empty.

2. Let S = {(0, 0), (1, 0), (0, 1)}. The convex hull of S ⊂ R2 is a triangular region,
which is a convex body (polygon) in the plane.

3. Let S = { (x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 } and S′ = { (x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 }.
The family of all axis-parallel unit squares lying in S is intersecting because each of
them contains the point (1, 1). The family of axis parallel unit squares in S′ can be
pierced by four points: (1, 1), (1, 2), (2, 1), (2, 2).

4. In the line, {1, 3, 4, 2} and {0, 4, 25, 3} have the same (1-dimensional) order type.
The 3-dimensional closed unit balls centered at (0, 1, 5), (0, 0, 9.6), (0, 0, 9.4), (1, 0, 7) are
met by the z-axis consistently with the above order type, because these balls contain
the points (0, 0, 5), (0, 0, 9), (0, 0, 10), and (0, 0, 7), respectively, and the order type of
this sequence along the z-axis is the same as the 1-dimensional order type of {1, 3, 4, 2}.

13.3.2 INCIDENCES

This subsection studies the structure (and number) of incidences between a set of points
and a set of lines (or planes, spheres, etc.). The starting point of many investigations
in this field was the Sylvester-Gallai theorem.

Definitions:

Given a point set P and a set L of lines (or k-flats, spheres, etc.) in Euclidean d-
space Rd, a point p ∈ P and a line l ∈ L are incident with each other, if p ∈ l.

Given a set L of lines in the plane, a point incident with precisely two elements of L
is called an ordinary crossing . Given a set of points P ⊆ Rd, a hyperplane passing
through precisely d elements of P is called an ordinary hyperplane (for d = 2, an
ordinary line).

Given a set of points P , a Motzkin hyperplane is a hyperplane h such that all but
one element of h ∩ P lie in a (d−2)-flat.
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A family Γ of curves in the plane has d degrees of freedom if there exists an integer s
such that:

• no two curves in Γ have more than s points in common;
• for any d points, there are at most d curves in Γ passing through all the points.

A family of pseudolines is a family of simple curves in the plane with the property
that every two of them meet precisely once.

A family of pseudocircles is a family of simple closed curves in the plane with the
property that every two of them meet in at most two points.

Facts:

1. Sylvester-Gallai theorem: Every finite set of points in the plane, not all of which
are on a line, determines an ordinary line. In dual version: every finite set of straight
lines in the plane, not all of which pass through the same point, determines an ordinary
crossing.

2. For every finite set of points in Euclidean d-space, not all of which lie on a hyper-
plane, there exists a Motzkin hyperplane. [Ha65], [Ha80]

3. Every set of n points in d-space, not all of which lie on a hyperplane, determine at
least n distinct hyperplanes.

4. In 3-space, every set of n non-coplanar points determines at least 2n
5 Motzkin hy-

perplanes.

5. If n is sufficiently large, then every set of n non-cocircular points in the plane
determines at least

(
n−1

2

)
distinct circles, and this bound is best possible. [El67]

6. Every set of n (>7) noncollinear points in the plane determines at least 6n
13 ordinary

lines. This bound is sharp for n = 13 and false for n = 7. [CsSa93]

7. There is a positive constant c such that every set of n points in the plane, not all
on a line, has an element incident with at least cn connecting lines. Moreover, any set
of n points in the plane, no more than n− k of which are on the same line, determines
at least c′kn distinct connecting lines, for a suitable constant c′ > 0. According to the
d = 2 special case of Fact 4, due to de Bruijn-Erdős, for k = 1 the number of distinct
connecting lines is at least n. For k = 2, the corresponding bound is 2n−4 (for n ≥ 10).
[Be83], [SzTr83]

8. Every set of n noncollinear points in the plane always determines at least 2&n
2 ' lines

of different slopes. Furthermore, every set of n points in the plane, not all on a line,
permits a spanning tree, all of whose n− 1 edges have different slopes. [Un82], [Ja87]

9. The number of incidences between a set P of points and a set L of lines can be
obtained by summing over all l ∈ L the number of points in l belonging to P , or,
equivalently, by summing over all p ∈ P the number of lines in L passing through p.

10. Let Γ be a family of curves in the plane with d degrees of freedom. Then the
maximum number of incidences between n points in the plane and m elements of Γ is

O(nd/(2d−1)m(2d−2)/(2d−1) + n+m). [PaSh98]
From the most important special case, when Γ is the family of all straight lines (d = 2),
it follows that for any set P of n points in the plane, the number of distinct straight lines
containing at least k elements of P is O(n2

k3 + n
k ) [SzTr83]. This bound is asymptotically

tight. The same result holds for pseudolines.
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11. The maximum number of incidences between n points and m spheres in R3 is

O(n
4
7m

9
7β(n,m) + n2),

where β(n,m) = o(log(nm)) is an extremely slowly growing function.
If no three spheres contain the same circle, then the following better bound is

obtained:

O(n
3
4m

3
4 + n+m).

Neither of these estimates is known to be asymptotically tight. [ClEtal90]

12. The maximum number of collinear triples determined by n points in the plane, no
four of which are on a line, is at least n2

6 − O(n). This bound is asymptotically tight.
[BuGrSl79]

13. If M(n) denotes the minimum number of different midpoints of the
(
n
2

)
line seg-

ments determined by n points in convex position in the plane, then(
n
2

)
−

⌊n(n+1)(1−e−1/2)
4

⌋
≤M(n) ≤

(
n
2

)
−

⌊
n2−2n+12

20

⌋
.

[ErFiFü91]

Examples:

1. Let P be a set of 7 points in the plane, consisting of the vertices, the centroid (the
point of intersection of the medians), and the midpoints of all sides of an equilateral
triangle. Then P determines 3 ordinary lines (the lines connecting the midpoints of two
sides).

2. Let P be a 4k-element set in the plane that can be obtained from the vertex set
{v1, v2, . . . , v2k} of a regular 2k-gon by adding the intersection of the line at infinity
with every line vivj . Then the set P determines precisely 2k ordinary lines: every
line connecting some vi to the intersection point of vi−1vi+1 and the line at infinity
(1 ≤ i ≤ 2k, the indices are taken modulo 2k). (It can be achieved by a suitable
projective transformation that no point of P is at infinity, and the number of ordinary
lines remains |P |

2 = 2k.)

3. Let P be a set of n ≥ 4 points lying on two noncoplanar lines in 3-space so that
there are at least two points on each line. Not all points of P are coplanar, but P does
not determine any ordinary plane.

4. The family of all straight lines in the plane and the family of all unit circles both
have 2 degrees of freedom. The family of all circles with arbitrary radii has 3 degrees of
freedom. The family of the graphs of all polynomials of one variable and degree d has d
degrees of freedom.

5. Let P be an n
1
2 × n

1
2 part of the integer grid; i.e.,

P = { (i, j) | 1 ≤ i ≤ n
1
2 , 1 ≤ j ≤ n

1
2 }.

Let k =
(

cm
n1/2

)1/3
> 2, where c > 0 is a sufficiently small constant. For every 1 ≤ s <

r ≤ k and for every 1 ≤ i ≤ r, 1 ≤ j ≤ n1/2

2 , consider the line passing through (i, j)
and (i+ r, j + s). If c is sufficiently small, then the number of these lines is at most m.
There is a constant c′ > 0 such that the total number of incidences between these lines
and the elements of P is at least c′n

2
3m

2
3 . (See the case d = 2 of Fact 10.)
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13.3.3 DISTANCES

The systematic study of the distribution of the
(
n
2

)
distances determined by n points

was initiated by Erdős. Given a set of n points P = {p1, p2, . . . , pn}, let g(P ) denote
the number of distinct distances determined by P , and let f(P ) denote the number of
times that the unit distance occurs between two elements of P . That is, f(P ) is the
number of pairs pipj , i < j, such that |pi−pj | = 1. In [Er46], Erdős raised the following
general questions: What is the minimum of g(P ) and what is the maximum of f(P )
over all n-element subsets of Euclidean d-space or of any other fixed metric space?

Definitions:

For any point set P in a metric space, the unit distance graph of P is the graph G(P )
whose vertex set is P and two points (vertices) are connected by an edge if and only if
their distance is 1.

Let P be a finite set of points in a metric space. If the distance between two points
p, q ∈ P is minimum, then p and q form a closest pair.

A point q ∈ P is a nearest neighbor of p ∈ P , if no point of P is closer to p than q.

A set P in a metric space is a separated set if the minimum distance between the
points of P is at least 1.

The diameter of a finite set of points in a metric space is the maximum distance
between two points of the set.

A point q ∈ P is a farthest neighbor of p ∈ P , if no point of P is farther from p
than q.

A set of points in the plane is said to be in general position if no three are on a line
and no four on a circle.

Facts:
1. f(P ) is equal to the number of edges of G(P ).
2. If p and q form a closest pair in P , then q is a nearest neighbor of p and p is a
nearest neighbor of q.
3. If the distance between p and q is equal to the diameter of P , then q is a farthest
neighbor of p and p is a farthest neighbor of q.
4. The maximum number of times that the unit distance can occur among n points
in the plane is O(n4/3). Conjecture: the asymptotically best bound is O(n1+c/ log log n).
[SpSzTr84]
5. The maximum number of times that the unit distance can occur in a separated set
of n ≤ 3 points is &3n−

√
12n− 3'. [Ha74]

6. The maximum number of times that the unit distance can occur in a set of n points
in the plane with unit diameter is n. [HoPa34]
7. For any set of n > 3 points in the plane, the total number of farthest neighbors of
all elements is at most 3n− 3 if n is even, and at most 3n− 4 if n is odd. These bounds
cannot be improved. [EdSk89]
8. The maximum number of times that the unit distance can occur among n points in
convex position in the plane is O(n log n). For n > 15, the best known lower bound is
2n− 7. [Fü90], [EdHa91].
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9. The minimum number of distinct distances determined by n points in the plane
is Ω(n

4
5 ). It is conjectured that the best bound is Ω

(
n√
log n

)
. [Sz97]

10. The minimum number of distinct distances determined by n > 3 points in convex
position in the plane is

⌊
n
2

⌋
. [Al63]

11. The minimum number of distinct distances determined by n > 3 points in the
plane, no three of which are on a line, is at least

⌈
n−1

3

⌉
. Conjecture: the best possible

bound is
⌊

n
2

⌋
.

12. The minimum number of distinct distances determined by n points in general
position in the plane is O(n1+c/

√
log n), for some positive constant c. However, it is not

known whether this function is superlinear in n. [ErEtal93]

13. There are arbitrarily large noncollinear finite point sets in the plane such that all
distances determined by them are integers, but there exists no infinite set with this
property.

14. In an n-element planar point set, the maximum number of noncollinear triples
that determine the same angle is O(n2 log n), and this bound is asymptotically tight.
[PaSh90]

15. Let f3(n) denote the maximum number of times that the unit distance can occur
among n points in R3. Then

Ω(n
4
3 log log n) ≤ f3(n) ≤ n

3
2 β(n),

where β(n) = o(log logn) is an extremely slowly growing function. [ClEtal90]

16. The maximum number of times that the unit distance can occur in a set of n ≥ 4
points in R3 with unit diameter is 2n− 2. [Gr56]

17. If n is sufficiently large, then for any set of n points in R3, the total number of
farthest neighbors of all elements is at most n2

4 + 3n
2 +3 if n is even, at most n2

4 + 3n
2 + 9

4

if n ≡ 1 (mod 4), and at most n2

4 + 3n
2 + 13

4 if n ≡ 3 (mod 4). These bounds cannot be
improved. [Cs96]

18. Let fd(n) denote the maximum number of times that the unit distance can occur
among n points in Rd. If d ≥ 4 is even, then

fd(n) = n2

2

(
1− 1

� d
2 �

)
+ n−O(d).

If d ≥ 5 is odd, then

fd(n) = n2

2

(
1− 1

� d
2 �

)
+ Θ(n

4
3 ). [Er60], [ErPa90]

19. Let Φd(n) denote the maximum of the total number of farthest neighbors of all
points over all n-element sets in Rd. For every d ≥ 4,

Φd(n) = n2
(
1− 1

� d
2 �

+ o(1)
)
. [ErPa90]

Examples:

1. Let P be the vertex set of a regular n-gon (n > 3) in the plane. Then g(P ), the
number of distinct distances determined by P , is equal to &n

2 '. The number of times
that the diameter of P is realized is equal to n if n is odd, and n

2 if n is even.
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2. Take a regular hexagon of side length k and partition it into 6k2 equilateral triangles
with unit sides. Let P denote the union of the vertex sets of these triangles. Then P is
a separated set, and |P | = n = 3k2 + 3k + 1. The number of times that the minimum
(unit) distance occurs between two elements of P is 9k2 + 3k = 3n−

√
12n− 3.

3. Let P denote an n
1
2 × n

1
2 part of the integer grid; i.e., let P = { (x, y) | 1 ≤

x, y ≤ n
1
2 }. It follows from classical number theoretic results that there exists an

integer k ( n
16 ≤ k ≤ n

8 ) that can be written as the sum of two squares in 2n
c

log log n

different ways, for a constant c > 0. Thus, for every (x, y) ∈ P , the number of points
(x′, y′) ∈ P satisfying (x − x′)2 + (y − y′)2 = k is at least 2n

c
log log n . In other words,

the distance k
1
2 occurs n1+ c

log log n times among the elements. By proper scaling, an
n-element point set P ′ is obtained in which the unit distance occurs n1+ c

log log n times.
That is, f(P ′) = n1+ c

log log n . It can also be shown that the number of distinct distances
determined by P ′ satisfies g(P ′) = g(P ) = c′n√

log n
for a suitable positive constant c′.

4. Lenz’ construction: Let C1, . . . , C� d
2 � be circles of radius 1√

2
centered at the origin

of Rd, and assume that the supporting planes of these circles are mutually orthogonal.
Choose ni points on Ci, where ni =

⌊
n/&d

2'
⌋

or ni =
⌈
n/&d

2'
⌉
, so that

∑
i ni = n. It is

clear that any pair of points belonging to different circles Ci are at unit distance from
each other. Hence, this point system determines at least

n2

2

(
1− 1

� d
2 �

)
+ n−O(d)

unit distances.

5. Let p1, p2, p3, p4 be the vertices of a regular tetrahedron with side length 1 in R3.
The locus of points in 3-space lying at unit distance from both p1 and p2 is a circle
passing through p3 and p4. Choose distinct points p5, p6, . . . , pn on the shorter arc of
this circle between p3 and p4. An n-element point set in R3 is obtained with diameter 1
and in which the diameter occurs 2n− 2 times.

13.3.4 COLORING

One of the oldest problems in graph theory is the Four Color Problem (§8.6.4). This
problem has attracted much interest among professional and amateur mathematicians,
and inspired a lot of research about colorings, including Ramsey theory [GrRoSp90]
and the study of chromatic numbers, polynomials, etc. In this section, some coloring
problems are discussed in a geometric setting.

Definitions:

A coloring of a set with k colors is a partition of the set into k parts. Two points that
belong to the same part are said to have the same color.

The chromatic number of a graph G is the minimum number of colors, χ(G), needed
to color the vertices of G so that no two adjacent vertices have the same color.

The chromatic number of a metric space is the chromatic number of the unit
distance graph of the space; that is, the minimum number of colors needed to color all
points of the space so that no two points of the same color are at unit distance.
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The polychromatic number of a metric space is the minimum number of colors, χ,
needed to color all points of the space so that for each color class Ci (1 ≤ i ≤ χ) there is
a distance di with the property that no two points of this color are at distance di from
each other.

A point set P in Rd is k-Ramsey if for any coloring of Rd with k colors, at least one
of the color classes has a subset congruent to P . If for every k, there exists d(k) such
that P is k-Ramsey in Rd(k), then P is called Ramsey .

A point set P ′ is called a homothetic copy (or a homothet) of P , if P and P ′ are
similar to each other and they are in parallel position.

Facts:

1. The minimum number of colors needed for coloring the plane so that no two points
at unit distance receive the same color is at least 4 and at most 7. That is, the chromatic
number of the plane is between 4 and 7. [JeTo95]

2. The following table contains the best known upper and lower bounds on the chro-
matic numbers of various metric spaces. (Sd−1(r) denotes the sphere of radius r in
d-space, where the distance between two points is the length of the chord connecting
them.)

space lower bound upper bound

line 2 2
plane 4 7
rational points of plane 2 2
3-space 5 21
rational points of R3 2 2

S2(r), 1
2 ≤ r ≤

√
3−

√
3

2 3 4

S2(r),
√

3−
√

3
2 ≤ r ≤ 1√

3
3 5

S2(r), r ≥ 1√
3

4 7

S2
(

1√
2

)
4 4

rational points of R4 4 4
rational points of R5 6 <∞
Rd (1 + o(1))(1.2)d (3 + o(1))d

Sd−1(r), r ≥ 1
2 d <∞

3. The polychromatic number of the plane is at least 4 and at most 6. [So94]

4. For any finite d-dimensional point configuration P and for any coloring of d-space
with finitely many colors, at least one of the color classes will contain a homothetic copy
of P . The corresponding statement is false if “homothetic copy of P” is replaced by
“translate of P”.

5. A necessary condition for a finite set P to be Ramsey is that it be spherical; i.e., all
its points lie on a sphere. [GrRoSp90]
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6. The following conditions are sufficient for a finite set P to be Ramsey:
• P is the vertex set of a right parallelepiped;
• P is the set of points in d-space with exactly k (k < d) nonzero coordinates having

values x1, . . . , xk in this order, where x1, . . . , xk is an arbitrary sequence of
nonzero reals;

• P is the vertex set of a regular n-gon;
• P is a subset of a Ramsey set;
• P is the cartesian product of two Ramsey sets. [FrRö86], [FrRö90]

7. It follows from the first two and the last two conditions of Fact 6 that all “triangles”
are Ramsey. Moreover, given any nondegenerate point configuration (“simplex”) S,
there is a constant c(S) > 1 such that for every k < cd(S), S is k-Ramsey in d-space.

Examples:

1. Let G be a graph on the vertex set {v1, . . . , v7}, whose edges are v1v2, v1v3, v1v4,
v1v5, v2v3, v2v6, v3v6, v4v5, v4v7, v5v7, and v6v7. The chromatic number of G is 4.

2. The graph G of Example 1 can be embedded in the plane so that if two of its
vertices are connected by an edge, then the corresponding points in the plane are at
unit distance. In other words, G is a subgraph of the unit distance graph of the plane.
(In every such imbedding, the points corresponding to {v1, v2, v3, v6} and {v1, v4, v5, v7}
form two rhombi of side length 1 that share a vertex.) Hence, the chromatic number of
the plane is at least 4.

3. Let P be a 2-element point set in Euclidean space. For every positive integer k, P
is k-Ramsey in k-space. (To see this, consider a regular simplex in k-space, whose side
length is equal to the distance between the elements of P . Any coloring of Rk induces a
coloring of the vertices of this simplex, and, by the pigeonhole principle, one can always
find two vertices that get the same color. They form a 2-element set congruent to P .
Thus, P is Ramsey.)

13.4 POLYHEDRA

This section presents basic properties of polyhedra, commonly known as (planar) solids.
Any application such as geometric modeling that models the three-dimensional world
of objects must deal with polyhedra. Basic geometric and combinatorial properties of
polyhedra as well as their convex decompositions and triangulations are discussed.

13.4.1 GEOMETRIC PROPERTIES OF POLYHEDRA

Definitions:

A (d-1)-dimensional plane is the solution set of the linear equation a1x1 + a2x2 +
· · ·+ adxd = ad+1, where a1, a2, . . . , ad+1 are constants and x1, . . . , xd are d variables.

A hyperplane in d-dimensional Euclidean space Rd is the set of all points on a (d−1)-
dimensional plane.
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A closed halfspace in Rd is the set of all points on the hyperplane together with the
points on one side of the same hyperplane.

A convex d-polyhedron is the intersection of a finite number of closed halfspaces
in Rd.

A nonconvex polyhedron is the union of a set of convex polyhedra such that the
underlying space is connected and nonconvex.

A k-face, part of the boundary of a polyhedron, lies on at least d − k hyperplanes
forming the boundary. In particular, 0-faces, 1-faces and (d−1)-faces of a d-polyhedron
are vertices, edges, and facets, respectively.

A polytope (d-polytope) is a convex d-polyhedron that is contained in the interior
of some d-dimensional cube; that is, a bounded convex d-polyhedron.

A d-polytope is regular if all its facets are regular (d−1)-polytopes that are combina-
torially equivalent. A vertex is a regular 0-polytope.

Two polytopes P and Q are dual polytopes if there exists a one-to-one correspon-
dence δ between the set of faces of P and Q such that two faces f1, f2 ∈ P satisfy
f1 ⊂ f2 if and only if δ(f1) ⊃ δ(f2) in Q.

A manifold (d-manifold) is a topological space that is locally homeomorphic to Rd

everywhere.

A manifold d-polyhedron is a polyhedron whose boundary is topologically the same
as a (d−1)-manifold. That is, every point on the boundary of a manifold d-polyhedron
has a small neighborhood that looks like Rd.

A non-manifold d-polyhedron is a d-polyhedron whose boundary is not a manifold.

A manifold 3-polyhedron has genus g if its boundary is a 2-manifold with genus g. A
2-manifold surface has genus g if every set of g + 1 circular cuts separate the surface,
but not all sets of g circular cuts do.

Edges in a 3-polyhedron are reflex edges if the inner angle subtended by two faces
meeting at that edge is greater than 180◦.

Facts:

1. Every polytope has a dual polytope.

2. Every polytope is the convex hull of its vertices.

3. A k-face is an open set of dimension k.

4. Curvature: The curvature κv of a manifold 3-polyhedron at a vertex v is

κv =
2π−

∑
i
θi

2π ,

where θi is the angle between two consecutive edges incident with v. Intuitively, curva-
ture at a vertex measures its “sharpness”.

5. Gauss-Bonnet theorem:
∑
v
κv = 2− 2g.

6. Angle sums: Let f be a face of a polytope P and p an interior point of f . The angle
at f is measured as the fraction of P covered by a sufficiently small (d−1)-dimensional
sphere centered at p. If αk is the sum of angles at all k-dimensional faces, then

d−1∑
k=0

(−1)kαk = (−1)d−1. (Gram’s formula)

[Gr67].

7. A 3-polyhedron is convex if and only if it does not have any reflex edges.
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Examples:

1. Tetrahedra and cubes are manifold 3-polyhedra with genus 0. See the following
figure.

2. Two cubes meeting at a single edge, or two tetrahedra meeting at a single vertex,
form non-manifold 3-polyhedra. See the following figure.

3. A cube has genus 0, but a cube with a cubical through-hole is a manifold 3-
polyhedron with genus 1. See the following figure.

4. A cube and a octahedron (bipyramid) are dual to each other; a tetrahedron is dual
to itself.

5. There are five regular polytopes in three dimensions: tetrahedron, cube (hexahe-
dron), octahedron, dodecahedron, icosahedron. They are also called Platonic solids.
See the following figure.

6. There is a circular cut for a toroidal surface that does not separate it, though any
two circular cuts always separate it.
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13.4.2 TRIANGULATIONS

A complex domain is decomposed into simple parts for computational simplicity in many
applications. For example, in finite element methods often a domain is triangulated into
simplices.

Definitions:

A simplex (d-dimensional simplex or d-simplex) is a d-polytope with d+1 vertices.

A triangulation of a d-polyhedron is a convex decomposition where each convex piece
of the decomposition is a d-simplex.

A polyhedron is triangulated with Steiner points if the vertex set of simplices in
the triangulation is strictly a superset of the set of vertices of the polyhedron. This
type of triangulation uses extra points (other than the vertices of the polyhedron) as
vertices.

A triangulation of a polyhedron is a simplicial complex if for every two simplices σ1, σ2

in the triangulation, σ1 ∩ σ2 is either empty or a face of both simplices.

A convex decomposition of a polyhedron is its partition into convex pieces that have
disjoint interiors.

The aspect ratio of a simplex is the ratio of the radius of the circumscribing sphere
to the radius of the inscribing sphere of the simplex.

The aspect ratio of a triangulation is the largest aspect ratio of a simplex in the
triangulation.

Facts:

1. Every d-polytope can be triangulated without Steiner points.

2. Every d-polytope with n faces can be triangulated into O(n) simplices in O(n) time
and space.

3. There are nonconvex 3-polyhedra that can’t be triangulated without Steiner points.

4. The problem of deciding if a nonconvex 3-polyhedron can be triangulated without
Steiner points or not is NP-complete. [RuSe92]

5. The problem of decomposing a polyhedron into the minimum number of convex
pieces is NP-hard.

6. Every polyhedron can be decomposed into disjoint convex pieces by repeatedly slic-
ing the polyhedron through reflex edges. [BaDe92] and [Ch84]

7. There is a class of polyhedra with n edges, of which r are reflex, that require at
least Ω(n + r2) convex pieces for its decomposition. These polyhedra have two sets
of parallel edges which are created as reflex edges. Two such sets are placed on two
hyperbolic paraboloids with an angle of almost 90◦ between them. These polyhedra
require at least Ω(n+ r2) convex pieces for its decomposition. [Ch84]

8. Every manifold 3-polyhedron can be triangulated into O(n+r2) tetrahedra in O((n+
r2) log r) time. [ChPa90]

9. There exists a polynomial time algorithm that produces a triangulation of any 3-
polyhedron with an aspect ratio and size that are within a constant factor of the optimal.
[MiVa92]
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Examples:
1. A triangle is a 2-simplex; a tetrahedron is a 3-simplex.
2. Part (a) of the following figure shows a tetrahedron with a bad aspect ratio; part (b)
shows a tetrahedron with a good aspect ratio.

(a) (b)

3. The Schönhardt polyhedron is a nonconvex 3-polyhedron that cannot be triangu-
lated without Steiner points. This polyhedron can be constructed out of a prism whose
base and top facets are equilateral triangles. Twist the top triangle, keeping the base
fixed. This destroys the planarity of vertical facets. To maintain the planarity, triangu-
late these facets appropriately. [RuSe92]

13.4.3 FACE NUMBERS

In many cases complexity of algorithms dealing with polyhedra depend on the number
of their faces. Therefore, combinatorial bounds on these numbers play a significant role
in analyzing these algorithms.

Definitions:

A cyclic d-polytope is the convex hull of a set of n (n ≥ d+1) points on the moment
curve in Rd, x(t) = (t, t2, . . . , td).

A face vector of a d-polyhedron P is the d-dimensional vector (f0, f1, . . . , fd−1), where
fi = fi(P ) is the number of i-dimensional faces of P .

A simplicial polytope is a polytope in which all faces are simplices.

Facts:

1. For 2k ≤ d, every k vertices of a cyclic polytope define a (k−1)-face.

2. Euler’s relation: For any d-polytope,
d−1∑
i=0

(−1)ifi = 1− (−1)d.

3. For a manifold 3-polyhedron with genus g,
2∑

i=0

(−1)ifi = 2− 2g.

4. The edges on the boundary of a manifold 3-polyhedron with genus 0 form a planar
graph. By the property of planarity, the number of vertices, edges, and facets of such
polyhedra are within a constant factor of each other.

5. Dehn-Sommerville’s equations: The face-vectors of simplicial polytopes satisfy the
following equations for −1 ≤ k ≤ d− 2 with f−1 = 1:

Ek
d :

d−1∑
j=k

(−1)j
(

j+1
k+1

)
fj = (−1)d−1fk.

In particular, E−1
d is Euler’s relation.
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6. Upper bound theorem: For any d-polytope P with n vertices, fi(P ) = O(n� d
2 �) for

1 ≤ i ≤ d− 1.

7. Optimality of cyclic polytopes: Cyclic polytopes achieve the upper bound since
they have

(
n
k

)
= Ω(nk) (k−1)-faces for 2k ≤ d. This implies that they have Ω(n�d/2�)⌊

d
2

⌋
-faces.

Examples:

1. The 3-dimensional cube (d = 3) has f0 = 8, f1 = 12 and f2 = 6; thus, by Fact 2,
f0 − f1 + f2 = 2.

2. A 3-dimensional cube with a cubical through-hole (g = 1) has f0 = 16, f1 = 24 and
f2 = 10; thus, by Fact 3, f0 − f1 + f2 = 0.

13.5 ALGORITHMS AND COMPLEXITY IN COMPUTATIONAL
GEOMETRY

Computational geometry studies efficient algorithms for solving geometric problems and
has applications in computer graphics, robotics, VLSI design, computer-aided design,
pattern recognition, statistics, and other fields. The study of computational geometry
uses concepts and results from classical geometry, topology, combinatorics, as well as
standard techniques from design and analysis of computer algorithms. See [PrSh85] and
[GoO’R97].

13.5.1 CONVEX HULLS

Finding efficient algorithms for the construction of convex hulls has been a central topic
in computational geometry. Several efficient algorithms for constructing boundaries of
convex hulls of sets of points in the plane have been developed.

Definition:

The convex hull of a set of points in Rd is the smallest convex set containing the
points.

Algorithms:

1. Finding boundaries of convex hulls by rotational sweeping:
• GrahamScan: Given a set S of n points in the plane, Algorithm 1 scans the points
rotationally around a fixed point and eliminates those that are not hull vertices.
The remaining points are the vertices of the boundary of the convex hull of S. The
running time of GrahamScan is O(n log n), which is dominated by the sorting of the
points. The remaining steps take only linear time.

• Jarvis’ March: Given a set S of n points in the plane, Jarvis’ March algorithm
constructs the boundary of the convex hull by “marching around” the outer perimeter
of S. This method is also called “gift-wrapping”. Jarvis’ March runs in time O(hn),
where h is the number of vertices of the convex hull, which, in the worst case is n.
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Algorithm 1: Graham scan.

input: a finite set S of points in the plane
output: the vertices of the boundary of the convex hull of S

p0 := the point in S with the minimum y-coordinate
sort remaining points by polar angle around p0; append the point p0 to the

end of the sorted list; let the resulting list be (p1, p2, . . . , pn), where pn = p0.
H[1] := pn; H[2] := p1; j := 2
for i := 2 to n

while the path {H[j − 1], H[j], pi} does not form a left turn
j := j − 1

j := j + 1
H[j] := pi

{H[1], H[2], . . . , H[j] is the boundary of the convex hull.}

2. Divide-and-conquer algorithms:
• QuickHull: This algorithm recursively constructs a chain on the boundary of
the convex hull, connecting two hull vertices u and v. It first finds a hull vertex w
on the chain (for example, w is the farthest point from the line uv). Then the
subchains connecting u and w, w and v, respectively, are constructed recursively
and are concatenated. [PrSh85]

QuickHull runs practically fast, but in the worst case the running time of Quick-
Hull is O(n2).
• MergeHull: This algorithm first partitions the set S of points into two subsets S1

and S2 of equal size and then recursively constructs the boundaries of the convex
hulls CH(S1) and CH(S2). Finally, CH(S1) and CH(S2) are “merged” into the
convex hull of the set S. [PrSh85]

The boundary of the convex hull for S is the same as the boundary of the convex
hull for the hull vertices of CH(S1) and CH(S2). Thus, to construct the boundary
of CH(S), first sort the hull vertices of CH(S1) and CH(S2) (this sorting can be
done in linear time), then apply the linear scan of GrahamScan to construct CH(S).
Therefore, the boundary of the convex hull CH(S) can be constructed from CH(S1)
and CH(S2) in linear time. The running time of MergeHull is O(n log n).

3. Other methods:
• incremental method: The incremental method for constructing the boundary of
the convex hull of a set of points in the plane adds one point at a time to an already
constructed boundary of a convex hull. This method has time complexity O(n log n)
[PrSh85]. An advantage of this method is that it can be generalized to construct
boundaries of convex hulls in higher dimensions [Ed87].
• An algorithm by Kirkpatrick and Siedel based on the prune-and-search method:
This algorithm partitions a given set of points in the plane into two linearly separable
subsets of equal size, finds the two edges of the boundary of the convex hull that
“bridge” these two subsets, and recursively constructs the subchains on the boundary
of the convex hull between these two bridges. This method has time complexity
O(n log h), where h is the number of vertices on the boundary of the convex hull
[Ya90].
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Facts:

1. The problem of finding convex hulls is at least as hard as sorting. The lower
bound Ω(n log n) of sorting on comparison decision trees also applies to the convex hull
problem. This lower bound Ω(n log n) can be extended to a more general computation
model, the bounded-degree algebraic decision trees.

2. An O(n log n) time algorithm for constructing the boundary of the convex hull of
a set of points in R3 has been developed, which is a generalization of the MergeHull
algorithm.

3. For dimension d > 3, the convex hull of n points in Rd can have up to O(n� d
2 �) faces.

An algorithm based on the incremental method has been proposed to construct the
convex hull for a set of n points in Rd in time O(n� d+1

2 �) [Ya90]. An optimal algorithm
of time O(n� d

2 �) has been developed recently by Chazelle. (See the bibliography of
[Mu94] for a reference.)

Examples:

1. The following figure shows a set S of 7 points in the plane and the convex hull of S.

2. The convex hull of the set {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1),
(1, 1, 0), (1, 1, 1)} in R3 is the surface of the unit cube together with its interior.

13.5.2 TRIANGULATION ALGORITHMS

Triangulation plays an important role in many applications. On a triangulated planar
straight-line graph, many problems can be solved more efficiently. Triangulation of a
set of points arises in numerical interpolation of bivariate data and in the finite element
method.

Definitions:

A planar straight-line graph (PSLG) is a planar graph such that each edge is a
straight line.

A triangulation of a simple polygon P is an augmentation of P with nonintersecting
diagonal edges connecting vertices of P such that in the resulting PSLG, every bounded
face is a triangle.

A triangulation of a PSLG G is an augmentation of G with nonintersecting edges
connecting vertices of G so that every point in the interior of the convex hull of G is
contained in a face that is a triangle. In particular, the PSLG to be triangulated can
be simply n discrete points in the plane.
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A chain is a PSLG with vertices v1, . . . , vn and edges {v1, v2}, {v2, v3}, . . . , {vn−1, vn}.
A chain is monotone if there is a straight line L such that every line perpendicular
to L intersects the chain in at most one point.

A simple polygon is monotone if its boundary can be decomposed into two monotone
chains.

Two vertices v and u in a polygon are visible from each other if the open line segment uv
is entirely in the interior of the polygon.

Facts:

1. Every simple polygon can be triangulated.

2. Every triangulation of a simple polygon with n vertices has n−2 triangles and n−3
diagonals.

3. Given a simple polygon with n vertices, there is a diagonal that divides the polygon
into two polygons that have at most

⌈
2n
3

⌉
+ 1 vertices.

4. For a history of triangulations, see [O’R87].

5. Simple polygons can be triangulated in O(n) time using an algorithm developed by
Chazelle. [Ch91].

6. PSLGs can be triangulated in O(n log n) time. (See the triangulation of a general
PSLG algorithm — item 3 in the following list of algorithms.) This is optimal because
a lower bound Ω(n log n) has been derived for the time complexity of triangulation of
a PSLG.

Algorithms:

1. Triangulation of a monotone polygon: A monotone polygon P can be triangulated in
linear time based on the following greedy method. Observe that the monotone polygon P
is triangulated if nonintersecting edges are added so that no two vertices are visible from
each other.

If necessary, rotate the polygon so that it is monotone with respect to the y-axis.
Sort the vertices of P by decreasing y-coordinate. (This sorting can be done in linear
time by merging the two monotone chains of P .) Move through the sorted list, and for
a vertex v, examine each vertex u lower than v, in the sorted order, and add an edge
between vertices v and u as long as u is visible from v. The edge addition process for
the vertex v stops at a lower vertex that is not visible from v. Then move to the next
vertex and perform the edge addition process. Note that once an edge is added between
vertices v and u, then no vertices between v and u in the sorted list are visible from a
vertex that is lower than u. Therefore, such vertices can be ignored in the later edge
addition process. The edge addition process for all vertices can be performed in linear
time if a stack is used to hold the sorted list.

2. Triangulation of a simple polygon: Given a general simple polygon P , partition P in
time O(n log n) into monotone polygons, then apply the previous linear time algorithm
to triangulate each monotone polygon. This gives a triangulation of a simple polygon
in time O(n log n).

3. Triangulation of a general PSLG: To triangulate a general PSLG G, first add edges
to G so that each face is a simple polygon (no nonconsecutive edges intersect), then
apply Chazelle’s linear time algorithm (Fact 5) to triangulate each face.
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The complexity of Chazelle’s algorithm can be avoided since there is an efficient
algorithm that adds edges to a PSLG so that each face is a monotone polygon. To do
this, observe that in a PSLG G every face is a monotone polygon if and only if each
vertex (except the highest one) has a higher neighbor and each vertex (except the lowest
one) has a lower neighbor. Thus, to make each face of G a monotone polygon, check
each vertex of G and for those that do not have desired neighbors, add proper edges to
them. This process can be accomplished in time O(n log n) using the plane sweeping
method [PrSh85]. Now, the simpler linear time algorithm for triangulating a monotone
polygon (see item 1) is applied to triangulate each face.

Examples:

1. The following figure illustrates a simple polygon and two of its triangulations.

2. In part (a) of the following figure the chain is monotone (with respect to any hori-
zontal line); the chain in part (b) is not monotone.

(a) (b)

13.5.3 VORONOI DIAGRAMS AND DELAUNAY TRIANGULATIONS

Definitions:

Given a set S = {p1, . . . , pn} in Rd, the Voronoi diagram Vor(S) of S is a partition
of Rd into n convex polytopes (Voronoi cells or Dirichlet cells) V (p1), . . . , V (pn)
such that the region V (pi) is the locus of points that are closer to pi than to any other
point in S.

Given the Voronoi diagram Vor(S) of a set S = {p1, . . . , pn} of points in the plane, the
straight line dual D(S) of Vor(S) is a PSLG whose vertices are the points in S and
two vertices pi and pj in D(S) are connected if and only if the regions V (pi) and V (pj)
share a common edge.

The PSLG D(S) is a triangulation of the set S, called the Delaunay triangulation
of S.
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Algorithm 2: Construction of Voronoi diagrams.

input: a set S of points in the plane
output: the Voronoi diagram of S

if |S| < 4 then construct Vor(S) directly and stop
else

partition S into two equal size subsets SL (left subset) and SR (right subset)
separated by a vertical line

construct Vor(SL) and Vor(SR) recursively;
merge Vor(SL) and Vor(SR) into Vor(S);

Facts:
1. The Voronoi diagram of a set of n points in the plane can be constructed in time
O(n log n).
2. The Delaunay triangulation of a set S of points in the plane has the property that
the circuit with the three vertices of a triangle of the triangulation on its boundary
contains no other point of the set S. This property makes the Delaunay triangulation
useful in interpolation applications.
3. The convex hull problem in the plane can be reduced in linear time to the Voronoi
diagram problem in the plane: a point p in a set S is a hull vertex if and only if V (p) is
unbounded, and two hull vertices pi and pj are adjacent if and only if the two unbounded
regions V (pi) and V (pj) share a common edge. Thus, the O(n log n) time algorithm for
constructing Voronoi diagrams (Algorithm 2) is optimal.
4. The Voronoi diagram problem for n points in Rd can be reduced in linear time to
the convex hull problem for n points in Rd+1 [Ed87]. Thus, the Voronoi diagram of a
set of n points in Rd can be constructed in time O(n�(d+1)/2�) based on the optimal
algorithm for constructing the convex hull of a set of n points in Rd+1.

Algorithms:
1. Construction of Voronoi diagrams in the plane: The Voronoi diagram of a set of
points in R2 can be constructed using the divide-and-conquer method of Algorithm 2.

To efficiently partition a set S into a left subset and a right subset of equal size in
each recursive construction, pre-sort the set S by x-coordinate. To merge the Voronoi
diagrams Vor(SL) and Vor(SR) into the Voronoi diagram Vor(S), add the part of Vor(S)
that is missing in Vor(SL) and Vor(SR) and to delete the part of Vor(SL) and Vor(SR)
that does not appear in Vor(S).
2. Voronoi diagrams and geometric optimization problems: AnO(n log n) time optimal
algorithm can be derived via the Voronoi diagram for the problem of finding for each
point in a set S of n points in the plane the nearest point in S. This is so because each
point p in S and its nearest neighbor correspond to two regions in Vor(S) that share a
common edge. This also implies an O(n log n) time optimal algorithm for the problem
of finding the closest pair in a set of n points in the plane.

The Voronoi diagram can be used to design an O(n log n) time optimal algorithm
for constructing a Euclidean minimum spanning tree for a set S of n points in the
plane because edges of any Euclidean minimum spanning tree must be contained in
the Delaunay triangulation D(S) of S. This algorithm implies an O(n log n) time ap-
proximation algorithm for the Euclidean traveling salesman problem which produces a
traveling salesman tour of length at worst twice the optimum.
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Example:

1. The left half of the following figure illustrates a set of 6 points in the plane and the
Voronoi diagram for the set. The right half shows the Delaunay triangulation of the set.

13.5.4 ARRANGEMENTS

Definition:

Given n lines in the plane, the arrangement of the lines in the plane is the PSLG whose
vertices are the intersection points of the lines and whose edges connect consecutive
intersection points on each line (it is assumed that all lines intersect at a common point
at infinity).

Facts:

1. The arrangement of n lines in the plane partitions the plane into a collection of O(n2)
faces, edges, and vertices.

2. The arrangement of n lines can be constructed in O(n2) time (Algorithm 4), which
is optimal.

3. An arrangement can be represented by a doubly-connected-edge-list in which the
edges incident with a vertex can be traversed in clockwise order in constant time per
edge. [PrSh85]

4. Applications of arrangements include finding the smallest-area triangle among n
points, constructing Voronoi diagrams, and half-plane range query.

5. The arrangement of n hyperplanes in Rd can be defined similarly, which parti-
tions Rd into O(nd) faces of dimension at most d.

6. Algorithm 3 can be generalized to construct the arrangement of n hyperplanes in Rd

in O(nd) time, which is optimal. [Ed87]

Algorithm:

1. Constructing the arrangement of a set of lines: Algorithm 3 constructs the arrange-
ment A of a set H of n lines L1, . . . , Ln in the plane by the incremental method.

To traverse the faces of A that intersect the line Li, start from a face F that has the
point pi on its boundary, and traverse the boundary of F until an edge e is encountered
such that e intersects Li at a point q. A new vertex q is introduced in A and the
adjacencies of the two ends of the edge e are updated. Then reverse the traversing
direction on the edge e and start traversing the face that shares the edge e with F , and
so on. The total number of edges traversed in this process in order to insert the line Li

is bounded by O(i). [Mu94]
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Algorithm 3: Incremental method for constructing the arrangement of a
set H of n lines.

input: a set H of n lines L1, L2, . . . , Ln in the plane
output: the arrangement A of the set H

A := L1;
for i := 2 to n

find the intersection point pi of Li and L1

starting from pi, traverse the faces of A that intersect Li and update the vertex
set and edge set of A

Example:

1. The following figure shows an arrangement of four lines in the plane. The graph
has 7 vertices (including the vertex at infinity), 16 edges (of which 8 are unbounded),
and 11 regions (of which 8 are unbounded).

13.5.5 VISIBILITY

Visibility problems are concerned with determining what can be viewed from a given
point (or points) in the plane or three-dimensional space. [O’R87], [O’R93], [Sh92].

Definitions:

The visibility problem is the problem of finding what is visible, given a configuration
of objects and a viewpoint.

Given n nonintersecting line segments in the plane, the visibility graph is the graph
whose vertices are the endpoints of the line segments, with two vertices adjacent if and
only if they are visible from each other; i.e., there is an edge joining a and b if and only
if the open line segment ab does not intersect any other line segments.

A star polygon is a polygon with an interior point p such that each point on the
polygon is visible from p.

Facts:

1. Visibility problems have important applications in computer graphics and robotics
and have served as motivation for research in computational geometry.
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2. Constructing the visibility graph for a set of n nonintersecting line segments is a
critical component of the shortest path problem in the plane. The visibility graph
problem can be solved in optimal time O(n2) [Ya90].
3. Art gallery theorems: Given a simple polygon with n vertices,

• there is a set S of
⌊

n
3

⌋
vertices of the polygon such that each point on or inside

the polygon is visible from a point in S;
• there is a set S of

⌈
n
3

⌉
points on the polygon such that each point on or outside

the polygon is visible from a point in S;
• there is a set S of

⌈
n
2

⌉
vertices of the polygon such that each point on, inside, or

outside the polygon is visible from a point in S.
In each case the number given is the best possible.

Algorithms:
1. Given n line segments in the plane, compute the sequence of subsegments that are
visible from the point y = −∞, that is, by using parallel rays. The problem can be solved
by a modified version of the plane sweeping algorithm for computing all intersection
points of the line segments. The algorithm has worst case time complexity O(n2 log n).
2. An alternative algorithm is based on the divide-and-conquer approach: arbitrarily
partition the set of the n line segments into two equal size halves, solve both subprob-
lems, and merge the results.

Note that the merging step amounts to computing the minimum of two piecewise
(not necessarily continuous) linear functions, which can be easily done in time linear
to the number of pieces if it is recursively assumed that the pieces are sorted by x-
coordinate. For a set of n arbitrary line segments in the plane, in the worst case, the
number of subsegments visible from the point y = −∞ is bounded by O(nα(n)) [Ya90],
where α(n), the inverse of Ackermann’s function (§1.3.2), is a monotonically increasing
function that grows so slowly that for practical purposes it can be treated as a constant.
Therefore, the merging step runs in time O(nα(n)). Consequently, the time complexity
of the algorithm based on the divide-and-conquer method is O(nα(n) log n).
3. Three-dimensional visibility : Given a set of disjoint opaque polyhedra in R3, find
the part of the set that is visible from the viewpoint z = −∞ (that is, with parallel rays).
The problem can be solved in time O(n2 log n) by a modified plane sweeping algorithm
for computing the intersection points of the line segments that are the projections of the
edges of the polyhedra on the xy-plane. Optimal algorithms of time complexity O(n2)
have been developed based on line arrangements. [Do94], [Ya90]

Examples:
1. The following figure shows three line segments and the visibility graph with six
vertices determined by the line segments. The edges of the visibility graph are shown
as dotted lines.
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2. Surveillance problems: A variety of problems require that “guards” be posted at
points of a polygon so that corners and/or edges are visible. (See the art gallery theorems
of Fact 3.)

3. Hidden surface removal: An important problem in computer graphics is the problem
of finding (and removing) the portions of shapes in three-dimensional space that are
hidden from view, when the object is viewed from a given point. (See the Three-
dimensional visibility algorithm.)

13.6 GEOMETRIC DATA STRUCTURES AND SEARCHING

This section describes the use of data structures for searching, or querying, among a
set S of geometric objects. For each of the following problems, there are algorithms
that perform a single search in time proportional to n, the total complexity of all the
geometric objects in S. These single-search algorithms use minimal data structures and
minimal preprocessing time. When the application searches multiple times among the
elements of the same set S, it becomes more efficient to preprocess the objects in S into
a data structure that would allow a faster searching procedure.

This section presents four fundamental searching problems in computational ge-
ometry for which clever data structures reduce the search time to O(logk

2 n), where k
is a small constant (often equal to 1 for problems in the plane and three-dimensional
space). This section covers only the static versions of these problems; that is, S never
changes. The dynamic versions allow deletions from S and/or insertions into S in be-
tween queries. In the dynamic versions of the problem, in addition to polylogarithmic
query time, the goal is to keep the update time polylogarithmic. The dynamic versions
are, as a rule, much more difficult.

13.6.1 POINT LOCATION

Definition:

Let p be a point and S a subdivision of Rd. (S can be a single geometric object, such
as a polytope, or can be a general subdivision of Rd.) The point location problem
is the problem of determining which region of S contains p.

Examples:

1. Locate a point in the subdivision of the space induced by an arrangement of a set
of hyperplanes. (See §13.5.4.)

2. Locate a point in a subdivision all of whose regions are convex (a convex subdivision).
For example, an arrangement of hyperplanes is a convex subdivision.

3. Search for nearest neighbors in Voronoi diagrams. (See §13.5.3.)

4. Range searching. (See §13.6.2.)

5. Ray shooting. (See §13.6.3.)
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Algorithms:

1. Point location in straight-line subdivision using triangulation hierarchy: Given an
n-vertex triangulation R′ = (V ′, T ′), where V ′ is the set of vertices and T ′ is the set
of triangles, an (n+3)-vertex enclosed triangulation R = (V, T ) is the triangulation R′

together with the triangulation of the region between U and the convex hull of R′,
where U = (VU , TU ) is a triangle that contains R′ in its interior. The triangulation-
hierarchy of [Ki83] consists of a sequence of triangulations R = 〈R1, R2, . . . , Rc log2 n〉,
where R1 = R, Rc log2 n = U , and Ri is created from Ri−1 as follows (illustrated in the
following figure):

• remove from Vi−1 − VU a set X of independent (that is, nonadjacent) vertices
and remove from Ti−1 the set Z of all triangles incident with any vertex in X:
Vi = Vi−1 −X, Ti = Ti−1 − Z;

• retriangulate any polygons in Ri = (Vi, Ti).

Part (a) of the following figure shows triangulation R1 (the vertices that are removed
from R1 are circled). Part (b) shows triangulation R2 (dotted lines are edges in re-
triangulation). Part (c) gives a list of the pointers from triangles in R2 to triangles
in R1.

(a)
t5

t6

t13

t12

t11

t10t8
t9

t1

t7

t4

t3

t2

(b)

t4

t3

t2

t16

t14

t15

t1

t18

t17

t14

t15

t16

t17

t18

t8, t10

t8, t9, t10, t11

t5, t12

t5, t6, t7, t12, t13

t7, t13

(c)

Algorithm 1 produces a hierarchy for planar subdivision. With minor modifications
(for example, “triangles” become tetrahedrons), it can be used for subdivisions in R3.
It can be proven that |Tc log2 n| = 1 for some constant c, and that |τ(t)| is a constant for
every t.

This algorithm runs in O(n) time and produces a triangulation hierarchy that
takes O(n) space. Algorithm 2 takes O(log2 n) time.
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Algorithm 1: Computing the triangulation hierarchy.

input: planar straight-line subdivision S
output: triangulation hierarchy of S

compute triangulation R′ of S; compute enclosed triangulation R of R′; choose a
small constant k; R1 := R; i := 1

while |Ti| > 1
i := i+ 1; Ri := Ri−1; mark all vertices in Vi having degree < k
while there exists some marked vertex v
P := (VP , EP ) (polygon consisting of vertices adjacent to v; that is,
VP := { vj | (v, vj , vk) ∈ Ti }; EP := { (vj , vk) | (v, vj , vk) ∈ Ti })

remove v from Vi; remove all the triangles incident with v from Ti; that is
Trem := { (v, vj , vk) | vj ∈ VP }; Ti := Ti − Trem

compute the triangulation RP of P
for each triangle t in RP

τ(t) := the set of triangles in Trem that overlap with t
create a pointer from t to every triangle in τ(t) {See part (c) of figure.}

unmark v and any marked vertices in VP .

Algorithm 2: Performing point location.

input: a point q and a triangulation hierarchy R
output: triangle that contains q

check if Rc log2 n contains q
i := c log2 n− 1; t := U
while i ≥ 1

determine the triangle t′ in τ(t) that contain q using pointers from t to τ(t)
t := t′; i := i− 1.

2. The following table shows the complexity of various point location algorithms. The
number m denotes the number of regions (or cells) in the subdivision S; n denotes the
total combinatorial complexity of S.

query preprocessingdimension subdivision type spacetime time

2 convex subdivision O(log2 n) O(n) O(n)

3 simple polytope O(log2 n) O(n) O(n)

3 convex subdivision O(log2
2 n) O(n log2

2 n) O(n log2
2 n)

arrangement of n
d O(log2 n) O(nd) O(nd)hyperplanes

subdivision of m
(d−1)-simplices O(md−1+ε

d O(log3
2 m) O(md−1+ε + n)with a total of n +n log2 m)

faces, ε > 0
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13.6.2 RANGE SEARCHING

Definitions:

The range counting problem is the problem of counting the number of points in a
given set S ⊆ Rd that lie in a given query range q.

The range reporting problem is the problem of determining all points in a given
set S ⊆ Rd that lie in a given query range q.

The range emptiness problem is the problem of determining if a given query range q
contains any points from a given set S ⊆ Rd.

Facts:

1. The following table gives information on various range searching algorithms. The
integer n is the number of points in S; ε is an arbitrarily small positive constant. When
the query is reporting, the query time has an additive factor of k, which is the size of
the output.

preprocessingdim range type query time space time

2 orthogonal O(log2 n) O(n log2+ε
2 n) O(n log2 n)

2 convex polygon O(
√
n log2 n) O(n) O(n1+ε)

2 convex polytope O(n2/3 log2
2 n) O(n log2 n) O(n1+ε)

d convex polytope O(logd+1
2 n) O(nd) O(nd(log2 n)ε)

for n ≤ m ≤ nd O(n1−1/d) O(n) O(n1+ε)
O((n/m1/d) logd+1

2 n) O(m1+ε) O(m1+ε)

d half-space O(log2 n) O(nd/ logd
2 n) O(nd/ logd−ε

2 n)
for n ≤ m ≤ nd O(n/m1/d) O(m) O(n1+ε+m(log2 n)ε)

2. The following table gives information on various range reporting algorithms.

preprocessingdim range type query time space time

2 half-plane fixed- O(log2 n+ k) O(n) O(n log2 n)
radius circle

2 orthogonal O(log2 n+ k) O(n logε
2 n) O(n log2 n)

3 half-space O(log2 n+ k) O(n log2 n) O(n log3
2 n log2 log2 n)

d half-space O(log2 n+ k) O(n� d
2 �+ε) O(n� d

2 �+ε)
n ≤ m ≤ n� d

2 � O(n1−1/� d
2 �+ε+k) O(n) O(n)

O( n
m1/d log2 n+k) O(m1+ε) O(m1+ε)

d orthogonal O(logd−1
2 n+ k) O(n logd−1

2 n

log2 log2 n ) O(n logd−1
2 n)

O(dn1− 1
d + k) O(dn) O(dn log2 n)
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Examples:
1. Orthogonal range search: The query range q is a cartesian product of intervals on
different coordinates axes.
2. Bounded distance search: The query range q is a sphere in Rd.
3. Other typical search domains are half-spaces and simplices.
4. Machine learning : Points are labelled as positive or negative examples of a concept,
and range query determines the relative number of positive and negative examples in
the range (thus enabling the range to be classified as either positive or negative example
of the concept).
5. Multikey searching in databases: Records identified by a d-tuple of keys can be
viewed as a point in Rd, and the range query on records corresponds to orthogonal
range query.

Algorithm:
1. Orthogonal range searching in R2 using range trees: The range tree is defined
recursively by Algorithm 3. Each node stores a subset of point organized into a threaded
binary search tree by the y-coordinates of the points. The left child contains half the
parent’s points, in particular those with lesser x-coordinates; the right child contains
the other half of the parents’ points with greater x-coordinates. See the following figure.

Each node also stores the range of x-coordinates of its points. For simplicity, all
coordinates of all points are assumed to be distinct. It is also assumed that all points of
S = {(x1, y1), (x2, y2), . . . , (xn, yn)} have been presorted by their x-coordinate so that
x1 < x2 < · · · < xn.

Orthogonal range reporting proceeds as follows down the range tree. If the range
of the current node x is a subset of the x range of the query, then all the points in
the node’s binary search tree with y-coordinate in the y range of the query are output.

c© 2000 by CRC Press LLC



Algorithm 3: Computing the range tree.

procedure RangeTree(S = { (x1, y1), (x2, y2), . . . , (xn, yn) }: set of points,
T : pointer to root of a range tree)

if S = ∅ then return
else store the interval [x1, xn] in T.int

store BinarySearchTree(S) in T.y

RangeTree({(x1, y1), . . . , (xn
2
, yn

2
)}, T.left child)

RangeTree({(xn
2 +1, yn

2 +1), . . . , (xn, yn)}, T.right child)

procedure BinarySearchTree(S′ = { (x1, y1), . . . , (xn, yn) }: set of points)
sort the points of S′ by y-coordinate so that y1 < y2 < · · · < yn

create a threaded balanced binary search tree B for S′:
store point (xi, yi) in the ith leftmost leaf Ci
Ci.next := Ci+1 {connect the leaves into a linked list}
Ci.key := yi

for each node v, v.key := min{ Ci.key | Ci ∈ subtree(v.right child) }

Algorithm 4: Orthogonal range reporting using range trees

procedure OrthoRangeSearching(q = [x1, x2]× [y1, y2]: rectangle in the plane,
T : pointer to root of range tree)

if T = NIL then return
else if T.int ⊆ [x1, x2] then SearchAll(T.y, [y1, y2])
if [x1, x2]∩ ∈ T.left child.int �= ∅ then
OrthoRangeSearching(q, T.left child)

if [x1, x2]∩ ∈ T.right child.int �= ∅ then
OrthoRangeSearching(q, T.right child)

procedure SearchAll(v: pointer to root of binary tree, [y1, y2]: query interval)
while v is not a leaf

if y1 < v.key then v = v.left child
else v := v.right child

if v.key < y1 then v = v.next
while v �= NIL and v.key < y2

output point stored at v
v := v.next

If the x range of the query overlaps the x range of the left child, then the algorithm
proceeds recursively to the left child. If the x range of the query overlaps the x range
of the right child, then the algorithm proceeds recursively to the right child.

The running time of Algorithm 3 is O(n log2
2 n) and the space taken by the range

tree is O(n log2 n). The running time can be improved by a log2 n factor. Essentially
the same procedure can be used to build range trees in any dimension. Algorithm 4
takes O(log2

2 n+ k) time, where k is the number of reported points. This running time
can be improved to O(log2 n+ k).
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13.6.3 RAY SHOOTING AND LINES IN SPACE

Definitions:

A ray r is a half-line that is directed away from its endpoint; that is, it satisfies the
equation r = p+ λFv, λ ≥ 0, where p is the starting point of r and Fv is the direction
of r.

Given a set S of geometric objects in Rd and a query ray r, the ray shooting problem
is the problem of determining the first object in S that is hit by r, that is, the object
s ∈ S whose intersection with r is closer to p than the intersection between r and any
other object in S.

A polyhedron is axis-parallel if each of its edges is parallel to a coordinate axis.

Facts:

1. The following table gives information on various ray shooting algorithms.

query preprocess-dim subdivision type spacetime ing time

2 simple polygon O(log2 n) O(n) O(n)

2 line segments O(log2 n) O(n2α2(n)) O(n2α2(n))
O(
√
n log2 n) O(n log2

2 n) O(n log2
2 n)

3, fix p axis-parallel polyhedra O(log2 n) O(n log2 n) O(n log2 n)

3, fix p polyhedra O(log2 n) O(n2α(n)) O(n2α(n))
for any ε > 0, O(n1+ε/

√
m) O(m1+ε) O(m1+ε)

n ≤ m ≤ n2

3, fix Fv axis-parallel polyhedra O(log2 n × O(n log2 n) Õ(n log2
2 n)

(log2 log2 n)2)
for any ε > 0 O(log2 n) O(n1+ε) O(n1+ε)

3, fix Fv polyhedra O(log2 n) O(n3+ε) O(n3+ε)
for any ε > 0, O(n1+ε/m1/3) O(m1+ε) O(m1+ε)
n ≤ m ≤ n3

3 axis-parallel polyhedra O(log2 n) O(n2+ε) O(n2+ε)

3 polyhedra O(log2 n) O(n4+ε) Õ(n4+ε)

2. Applications of ray shooting include hidden surface removal, visibility questions and
ray tracing in computer graphics, and computing shortest paths in presence of obstacles
in robotics.

Examples:

1. S can be a single object, such as a simple polygon in the plane.

2. S can be a collection of objects, such as a set of polyhedra in three-dimensional
space.
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Algorithm:

1. Ray shooting from a fixed point among planar nonintersecting segments: For sim-
plicity, assume that the fixed point p in the plane is at the origin. Define two relations
using the same notation: for two points qj and qk, qj ≺ qk if qj makes a smaller polar
angle with respect to the origin than does qk; for two nonintersecting segments sj and
sk, sj ≺ sk if for every ray r that starts at the origin and crosses both sj and sk, r
crosses sj before crossing sk. Segment (qj , qk) starts at qj and ends at qk if qj ≺ qk. A
null segment is denoted s∞; that is, a query ray hitting s∞ does not intersect any of
the given segments.

Algorithm 5, VisibilityMap, creates an array I of nonoverlapping angle intervals,
sorted by their polar angle, with the property that consecutive entries in I have different
“smallest” segments according to “≺” relation.

This algorithm uses a technique called sweep-plane: the algorithm sweeps the polar
coordinates originating at p with a ray, stopping the sweep-ray at all the angles where the
sweep-ray intersects a segment endpoint. The set S′ stores all the segments intersected
by the current sweep-ray; S′ is organized as a binary search tree ordered by the “≺”
relation on the segments. When the sweep-ray encounters a segment endpoint that
starts a segment, the segment is added to S′; when the sweep-ray encounters a segment
endpoint that ends a segment, the segment is removed from S′. At every stop of the
sweep-ray, if the smallest (under the “≺” relation) segment of S′ is different from the
sweep-ray’s last stop, a new interval is added to I. See the following figure.

The thick lines in this figure are the segments in S and the thin lines are the
boundaries between intervals in the visibility map for S. The intervals are labeled by
their names.

I[5]=s2 I[4]=s3
I[6]=s4

I[7]=s2

I[8]=s∞

I[9]=s6

I[10]=s8

I[11]=s6

s7

s6
s8

s5

s4 s3

s2

I[15]=s10

I[3]=s2

I[1]=s1

I[2]=s∞

s1

s10

s11

s12

p

s9

I[1
4]

=
s ∞

I[1
2]

=
s ∞

I[1
3]

=
s 9

Algorithm 5, VisibilityMap, takes O(n log2 n) time and can be used for ray shooting
among simple polygons. The visibility map consists of array I and takes O(n) space.
The problem is harder if the segments are allowed to intersect. Algorithm 6, RayShoot,
takes O(log2 n) time.
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Algorithm 5: Computing visibility map.

procedure V isibilityMap(p: fixed origin point, S: set of n segments)
sort endpoints of all segments by their polar angles so that q1 ≺ q2 ≺ · · · ≺ q2n

no of intervals := 0; S′ := 〈s∞〉
{S′ is a binary search tree containing segments ordered by “≺” relation}
for i = 1 to 2n
first := the “smallest” (under the “≺” relation) segment in S′

if qi starts a segment sj then insert sj into S′

if qi ends a segment sj then remove sj from S′

if first �= smallest segment in S′ then
no of intervals := no of intervals+ 1
I[no of intervals].angle := polar angle of qi

I[no of intervals].name := the smallest segment in S′

Algorithm 6: Ray shooting using the visibility map.

procedure RayShoot(r = (p,Fv): query ray, I: visibility map)
consider Fv as a polar angle
do a binary search among I[∗].angle to find the segment I[k].name such that
I[k].angle ≤ Fv and I[k + 1].angle > Fv

13.7 COMPUTATIONAL TECHNIQUES
This section describes some techniques used in the design of geometric algorithms.

13.7.1 PARALLEL ALGORITHMS

The goal of parallel computing is to solve problems faster than would be possible on
a sequential machine — through the use of parallel algorithms. The complexity of a
parallel algorithm is given in terms of its time and the number of processors used [Já92].
The work of a parallel algorithm is bounded above by the processor-time product, the
product of the number of processors and the time.

Definitions:

A parallel algorithm is an algorithm that concurrently uses more than one processing
element during its execution.

A parallel machine is a computer that can execute multiple operations concurrently.

A parallel random access machine (PRAM) is a synchronous machine in which
each processor is a sequential RAM and processors communicate using a shared mem-
ory. Depending upon whether concurrent accesses are allowed to the shared memory
cells, a PRAM is either exclusive read (ER) or concurrent read (CR), and either
exclusive write (EW ) or concurrent write (CW ).
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Algorithm 1: ConvexHull(S: a set presorted by x-coordinate).

if |S| ≤ 3 then construct CH(S) directly
else

partition S into two subsets of equal size, SL (the left subset) and SR (the
right subset), which are separated by a vertical line

in parallel, recursively construct CH(SL) and CH(SR)
construct CH(S) from CH(SL), CH(SR), and common tangents between them

Facts:
1. Parallel divide-and-conquer: Parallel algorithms can be obtained using the divide-
and-conquer paradigm. The subproblems resulting from the divide phase are solved
in parallel, and the combining phase of the algorithm is parallelized. In traditional
divide-and-conquer algorithms, the problem is partitioned into two subproblems.
2. Many-way divide-and-conquer: Sometimes faster parallel algorithms can be ob-
tained by partitioning the original problem into multiple, smaller subproblems, often
referred to as many-way divide-and-conquer [Já92]. The solution to the original problem
is obtained from the solutions to the subproblems.
3. Cascading divide-and-conquer: Some divide-and-conquer algorithms can be speeded
up by pipelining (cascading) the work performed in the recursive applications as follows.
Consider a binary tree representing the solutions to the recursive computations of the
original divide-and-conquer algorithm, where leaves represent terminal subproblems. To
obtain a faster algorithm, information is passed from a child to its parent before the
solution to the child’s subproblem is completely known. The parent then does some
precomputation so that the solution to its problem can be computed as soon as the
solutions of both of its children’s problems are available. Typically, the information
passed from a child to its parent is a constant sized sample of the child’s current state.
Often, such algorithms run in time proportional to the height of the recursion tree.
4. Cole first used pipelining to design a work-optimal O(log n) time parallel version of
merge sort. Atallah, Cole, and Goodrich used this strategy to solve several geometric
problems including the three-dimensional maxima problem and computing the visibility
of a polygon from a point [AtGo93].

Algorithms:
1. Using parallel divide-and-conquer to compute the convex hull CH(S) of a set S of n
points in the plane: In Algorithm 1 the points in S are presorted by x-coordinate so
that the division in the second step can be accomplished in constant time. The sorting
takes O(log n) time using O(n log n) work [Já92]. The tangents needed in the third step
can be computed in constant time using |SL| + |SR| processors on a CREW PRAM
[AtGo93]. Thus, as there are O(log n) recursive calls, Algorithm 1 runs in O(log n) time
using O(n log n) work, which is both worst-case work-optimal and time-optimal for the
CREW PRAM.
2. Computing the convex hull of a three-dimensional point set: The convex hull of
a three-dimensional point set can be computed using a two-way divide-and-conquer
algorithm similar to Algorithm 1. The running time of this algorithm is O(log2 n)
because the combining in the last step of Algorithm 1 takes O(log n) time since it is
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more complex than in the planar case. However, a faster algorithm can be designed
using many-way divide-and-conquer. The point set is partitioned into O(n

1
2 ) groups,

each of size O(n
1
2 ), and then, even though the combining still takes O(log n) time, a

total time of O(log n) can be obtained.

13.7.2 RANDOMIZED ALGORITHMS

Randomization is a powerful technique that has been used in algorithms for many
geometric problems.

Definition:

A randomized algorithm is an algorithm that makes random choices during its exe-
cution.

Facts:

1. Randomized algorithms are often faster, simpler, and easier to generalize to higher
dimensions than deterministic algorithms.

2. For many problems, efficient algorithms can be obtained by processing the input
objects in a particular order or by grouping them into equal sized subsets. Although
significant computation may be required to exactly determine an appropriate order or a
good partition into subsets, in many cases simple random choices can be used instead.

3. Randomized incremental methods: One of the simplest ways to construct a geo-
metric structure is incrementally. In an incremental construction algorithm, the input
objects are inserted one at a time and the current structure is updated after each ad-
dition. The desired structure is obtained after all input objects have been inserted.
Although the cost of some updates could be very large, in many cases it can be shown
that if the objects are inserted in random order, then the amount of work for each
update is expected to be small and the expected running time of the algorithm will
be small as well. Thus, the expectation of the running time depends not on the input
distribution but on the ratio of good to bad insertion sequences.

4. The power of randomization in incremental algorithms was first noted by Clarkson
and Shor, and by Mulmuley. Randomized incremental algorithms have been proposed
for constructing many geometric structures including convex hulls, Delaunay triangula-
tions, trapezoidal decompositions, and Voronoi diagrams [Mu94].

5. Randomized divide-and-conquer: In randomized divide-and-conquer a random sub-
set of the input is used to partition the original problem into subproblems. Then, as in
any divide-and-conquer algorithm, the subproblems are solved, perhaps recursively, and
their solutions are combined to obtain the solution to the original problem. Ideally, the
partition produces subproblems of nearly equal size and the sum of the subproblem sizes
roughly equals the input size. This ideal can almost be achieved for many geometric
problems. For example, with probability at least 1

2 , O(r) subproblems of size O(n log r
r )

can often be obtained, where n is the number of input objects and r is the size of the
random subset.

6. The fact that a random sample of the input items can often be used to produce sub-
problems of almost equal size was first shown by Clarkson, and by Haussler and Welzl.
Randomized divide-and-conquer algorithms are known for many geometric problems in-
cluding answering closest-point queries, constructing arrangements, triangulating point
sets, and constructing convex hulls [Mu94].
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Algorithm 2: Intersect(S: a set of n halfplanes).

R := a random sample of size r chosen from S.
compute the intersection I(R) and triangulate it by connecting each vertex of

I(R) to the origin to obtain T (R)
for each triangle t ∈ T (R), determine its conflict list c(t) (the set of halfplanes

in S whose bounding lines intersect t)
for each triangle t ∈ T (R), compute the intersection of the halfplanes in c(t) re-

stricted to t {This may be done recursively}

Examples:

1. Incrementally constructing the intersection of a set H of n halfplanes in the plane:
First, a random permutation (h1, h2, . . . , hn) of H is formed. Let Ii denote the inter-
section of halfplanes h1 through hi. During the ith iteration of the algorithm, Ii is
computed from Ii−1 by removing the portion of Ii−1 that is not contained in hi.

To make this update easier, a vertex of the current intersection Ii−1 that is not
contained in hj is maintained, for all j ≥ i; such a vertex is said to conflict with hj . Given
a conflicting vertex v for hi, the portion of Ii−1 that must be removed is determined
by traversing its boundary in both directions from v until reaching vertices that are
contained in hi. Since In has size O(n), the amortized cost of each update is O(1)
and the algorithm spends a total of O(n) time updating the intersection. After Ii is
computed, the conflicting vertex for hj is updated, for all j > i. It can be shown that
the total cost of maintaining the conflicting vertices in the algorithm is O(n log n).

2. Using randomized divide-and-conquer to construct the intersection I(S) of a set S
of n halfplanes, each of which contains the origin: See Algorithm 2. In Step 2, the
intersection of the halfplanes in the sample is used to create O(r) triangles, each of
which corresponds to a subproblem. For technical reasons, the region corresponding to
each subproblem should have constant descriptive complexity.

Often, this condition is achieved by triangulating the resulting structure. Next,
the input is distributed to the subproblems. Usually, this is done by finding the objects
that intersect, or conflict with, a subproblem’s region.

Then, the subproblems are solved, recursively if desired, and their solutions are
combined to form the solution to the original problem. In the intersection algorithm
the final solution is obtained by “gluing” the subproblem solutions together.

If r is some suitably chosen constant, then Algorithm 2 runs in expected time
O(n log n).

13.7.3 PARAMETRIC SEARCH

Definition:

Parametric search is an algorithmic technique for solving optimization problems by
using an algorithm for solving an associated decision problem as a subroutine.
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Algorithm:

1. Parametric search is a powerful algorithmic technique that can be applied to a
diverse range of optimization problems. It is best explained in terms of an abstract
optimization problem. Consider two versions of this problem:

• a search problem P , which can be parametrized by some real, nonnegative value t
and whose solution is a value t∗ that satisfies the optimization criteria;

• a decision problem D(t), whose input includes a real, nonnegative value t and
whose solution is either YES or NO.

In parametric search, the search problem P is solved using an algorithm As for the
decision problem D(t). In order to apply parametric search, the points corresponding
to YES answers for D(t) must form a connected, possibly unbounded, interval in [0,∞).
Then, assuming that D(0) = YES, the search problem P is to find the largest value of t
for which D(t) = YES.

The basic idea of parametric search is to use As to find t∗. This is done by simulat-
ing As, but using a variable (parameter) instead of a value for t. Assume that As can
detect if t = t∗, and that the computation in As consists of comparisons, each of which
tests the sign of a bounded degree polynomial in t and in the original input. During
each comparison in the simulation:

• the roots of the appropriate polynomial are computed,
• As is run on each root,
• t∗ is located between two consecutive roots.

Thus, each comparison in the simulation reduces the interval known to contain t∗, which
is originally [0,∞).

Facts:

1. In most geometric applications it can be shown that at some point the simulation
will test a root that is equal to t∗.

2. If Ts denotes the worst-case running time of As, the total cost of the parametric
search is O(T 2

s ) since there are O(Ts) operations in the simulation of As, and each
comparison operation in this simulation takes O(Ts) time.

3. With a parallel algorithm Ap to solve the decision problem D(t), the (sequential)
parametric search can be done faster. Suppose that Ap runs in Tp parallel time steps
using p processors. Then, Ap performs at most p independent comparison operations
during each parallel time step. The parametric search simulates Ap sequentially as
follows. To simulate a parallel time step of Ap:

• compute the O(p) roots of the at most p bounded degree polynomials correspond-
ing to independent comparisons in the parallel time step;

• sort these roots;
• use a binary search to locate t∗ between two consecutive roots. (The sequential

algorithm As is used to evaluate the roots during the binary search.)
The cost of simulating each parallel time step is O(p log p+ Ts log p), and the total cost
of the parametric search is O(Tp(p log p+ Ts log p)).

4. Parametric search was originally proposed by Megiddo. It has been used for many
geometric problems including ray shooting, slope selection, and computing the diameter
of a three-dimensional point set [Mu94].
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Example:

1. Answering ray shooting queries in a convex polytope Q: In the search problem P ,
a ray r is given originating at a point p contained in Q, and the face of Q hit by r needs
to be found. The decision problem D(t) is the polytope membership problem: given a
point t, determine if t lies in Q. The value t∗ sought by the parametric search is the
point where r intersects Q. The ray shooting problem can be solved in O(log2 n) time
by parametric search [Mu94] (since, given an appropriate data structure, the polytope
membership problem can be solved sequentially in O(log n) time).

13.7.4 FINITE PRECISION

Geometric algorithms are usually designed assuming the real random access machine
model of computation. In this model, values can be arbitrarily long real numbers, and
all standard operations such as +,−,×, and ÷ can be performed in unit time regardless
of operand length. In reality, however, computers have finite precision and can only
approximate real numbers. Several techniques have been suggested for dealing with
this problem [Fo93].

Facts:

1. Algorithms directly designed for a discrete domain: This approach can dramatically
increase the complexity of the algorithm and has not gained wide use.

2. Floating point numbers: Floating point numbers provide a convenient and effi-
cient way to approximate real numbers. Unfortunately, naively rounding numbers in
geometric algorithms can create serious problems such as topological inversions. There
are cases when floating point arithmetic can safely be used. For example, for certain
inputs the result of the floating point operation will be unambiguous. Some algorithms
have been shown to be sufficiently stable using floating point arithmetic. However, no
general method is known for designing stable algorithms.

3. Exact arithmetic: In exact arithmetic, numbers are represented by vectors of inte-
gers and all primitive operations are guaranteed to give correct answers. Integer arith-
metic is sufficient for many geometric algorithms since symbolic or algebraic numbers
are rarely needed, and in many cases homogeneous coordinates can remove the need for
rational numbers. However, since exact representations can have large bit complexity,
exact arithmetic can be expensive — typically increasing the cost of arithmetic oper-
ations by an order of magnitude. This cost can be decreased somewhat by optimizing
the expressions and computations involving exact arithmetic.

4. A combination of floating point and exact arithmetic: First, the operation is per-
formed using floating point arithmetic. Then, if the result is ambiguous, an exact
computation is performed.

5. Adaptive-precision arithmetic: In adaptive-precision arithmetic each number is
approximated by an interval whose endpoints require lower precision. If the exact
computation using the approximation is ambiguous, the method iterates using smaller
and smaller intervals with higher precision endpoints.

6. Although no clear consensus has been reached, a combination of the above strategies
may yield the best results.
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13.7.5 DEGENERACY AVOIDANCE

To simplify exposition by reducing the number of cases that must be considered, many
geometric algorithms assume that the input is in general position. The general position
assumption depends on the problem. For example, in problems involving planar point
sets, the assumption might be that no two points have the same x-coordinate, that no
three points lie on the same line, or that no four points lie on the same circle.

Definitions:

A set of objects is in general position if the objects satisfy certain specified conditions.

A set of input objects that violates the general position assumption is degenerate.

Facts:

1. Perturbation: Several schemes have been proposed that apply small perturbations
to transform the input so that it does not contain degeneracies [Fo93]. The object of
perturbation schemes is to allow the design of simpler algorithms which may validly
assume the input is in general position.

Algorithms using perturbation schemes may not always produce correct output.
For example, in a convex hull algorithm, points on the boundary could potentially be
perturbed into the interior of the polytope and vice versa. Also, perturbation schemes
can affect, perhaps adversely, output-sensitive algorithms whose running times depend
on the size of the output they produce.

2. Deal with degeneracies directly : Algorithms that deal with degeneracies in a prob-
lem specific manner have been designed for problems such as triangulating point sets.
Although this approach is not as general and usually leads to more complex algorithms
than those employing perturbation schemes, it can provide superior performance.

3. Symbolically perturbing the coordinates of each input point (Edelsbrunner and
Mücke): This is done by adding to each coordinate a suitable power of a small, pos-
itive real number represented by a symbolic parameter ε. Then, since values are now
polynomials in ε, the arithmetic operations in the algorithm are replaced by polynomial
arithmetic operations. Geometric primitives are implemented symbolically, typically by
evaluating a sequence of determinants. Assuming that the dimension of the problem is
fixed, this scheme increases the running time of the algorithm by at most a constant
factor. However, the overhead incurred can in fact be quite large.

13.8 APPLICATIONS OF GEOMETRY

Geometry overlays the entire computing spectrum, having applications in almost every
area of science and engineering, including astrophysics, molecular biology, mechanical
design, fluid mechanics, computer graphics, computer vision, geographic information
systems, robotics, multimedia, and mechanical engineering.
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Some excellent general references to geometry applications include a report on
application challenges to computational geometry at the website

http://www.cs.princeton.edu/~chazelle/taskforce/CGreport.ps

a status report on theoretical computer science, including applications of computational
geometry, at the website

http://hercule.csci.unt.edu/sigact/longrange/contributions.html

Eppstein’s list of general geometric references at the website
http://www.ics.uci.edu/~eppstein/geom.html

and Amenta’s directory of software at the website
http://www.geom.umn.edu/software/cglist/

including planar algorithms, arbitrary dimensional convex hull, Voronoi diagram, Delau-
nay triangulation, polygon decomposition, point location, intersection, linear program-
ming, smallest enclosing ball and center point, visualization, mesh generation, shape
reconstruction and collision in robotics.

13.8.1 MATHEMATICAL PROGRAMMING

Definition:

Mathematical programming is the large-scale optimization of an objective function
(such as cost) of many variables subject to constraints, such as supplies and capacities.

Facts:

1. Mathematical programming includes both linear programming (continuous, integer,
and network) and nonlinear programming (quadratic, convex, general continuous, and
general integer).

2. Applications include transportation planning and transshipment, factory production
scheduling, and even determining a least-cost but adequate diet.

3. A modeling language, such as AMPL, is often used in applications. [FoGaKe93]

Example:

1. Linear programming in low dimensions: This is a special case of linear program-
ming since there are algorithms whose time is linear in the number of constraints but
exponential in the number of dimensions.

Application:

1. Find the smallest enclosing ball of a set of points or a set of balls in arbitrary
dimension, [We91]. This uses a randomized incremental algorithm employing the move
to front heuristic.

13.8.2 POLYHEDRAL COMBINATORICS

Polyhedra have been important to geometry since the classification of regular polyhedra
in classical times.
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Fact:

1. The following are some of the many possible operations that can be performed on
polygons and polyhedra:

• Boolean operations, such as intersection, union, and difference;
• point location of new query points in a preprocessed set of polygons, which may

partition a larger region;
• range search of a preprocessed set of points to find those inside a new query

polygon;
• decomposition (or triangulation) of a polygon into triangles or a polyhedron into

tetrahedra (§13.4.2). A simple n-gon is always decomposable into n−2 triangles,
in linear time, and all triangulations have exactly n−2 triangles. However, in R3,
some polyhedra cannot be partitioned intro tetrahedra without additional Steiner
points. Also, different triangulations of the same polyhedron may have different
numbers of tetrahedra.

Applications:

1. Aperiodic tilings and quasicrystals: Tilings (in the plane) and crystallography (in
three-dimensional space) are classic applications of polygons and polyhedra. A recent
development is the study of aperiodic (Penrose) tilings [Ga77] and quasicrystals [Ap94].
These are locally but not globally symmetric under 5-fold rotations, quasi-periodic with
respect to translations, and self-similar. See the website

http://www.geom.umn.edu/apps/quasitiler/

Large-scale symmetries, such as 5-fold, that are impossible in traditional crystallog-
raphy, can be visible with X-ray diffraction. Tilings can be constructed by projecting
simple objects from, say, R5. One application is the surface reinforcement of soft metals.

2. Error-correcting codes: Some error-correcting codes can be visualized with poly-
topes as follows. Assume that the goal is k-bit symbols, where any error of up to b bits
can be detected. The possible symbols are some of the 2k vertices of the hypercube in
k-dimensional space. The set of symbols must contain no two symbols less than b + 1
distance apart, where the metric is the number of different bits. If errors of up to c bits
are to be correctable, then no two symbols can be closer than 2c+ 1.

Similarly, in quantum computing, a quantum error-correcting code can be designed
using Clifford groups and binary orthogonal geometry. [CaEtal95]

13.8.3 COMPUTATIONAL CONVEXITY

Definitions:

An H-polytope is a polytope defined as the intersection of m half-spaces in Rn.

A V-polytope is a polytope defined as the convex hull of m points in Rn.

A zonotope is the vector (Minkowski) sum of a finite number of line segments.

Computational convexity is the study of high-dimensional convex bodies.

An oracle is an algorithm that gives information about a convex body.
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Facts:
1. Computational complexity is related to linear programming, polyhedral combina-
torics, and the algorithmetic theory of polytopes and convex bodies.
2. In contrast to computational geometry, computational complexity considers convex
structures in normed vector spaces of finite but not restricted dimension. If the body
under consideration is more complex than a polytope or zonotope, it may be represented
as an oracle. Here the body is a black-box, and all information about it, such as
membership, is supplied by calls to the oracle function. Typical algorithms involve
volume computation, either deterministically, or by Monte-Carlo methods, perhaps after
decomposition into simpler bodies, such as simplices.
3. When the dimension n is fixed, the volume of V-polytopes and H-polytopes can be
computed in polynomial time.
4. There does not exist a polynomial-space algorithm for the exact computation of the
volume of H-polytopes (where n is part of the input).
5. Additional information on computational convexity can be found at the following
website:

http://dimacs.rutgers.edu/techps/1994/94-31.ps

13.8.4 MOTION PLANNING IN ROBOTICS

In Computer Assisted Manufacturing, both the tools and the parts being assembled
must often be moved around each other in a cluttered environment. Their motion
should be planned to avoid collisions, and then to minimize cost.

Definitions:

A Davenport-Schinzel sequence of order s over an alphabet of size n, or DS(n, s),
is a sequence of characters such that:

• no two consecutive characters are the same;
• for any pair of characters, a and b, there is no alternating subsequence of length
s+ 2 of the form . . . a . . . b . . . a . . . b . . . .

Facts:
1. Practical general motion, path planning, is solvable with Davenport-Schinzel se-
quences [Sh95]. Upper bounds on λs(n), the length of the longest DS(n, s), determine
upper bounds on the complexity of the lower envelopes of certain functions.

For example, given n points in the plane that are moving with positions that are
polynomials of degree s in time, the number of times that the closest pair of points can
change is λ2s(C(n, 2)).
2. Visibility graphs (§13.5.5) are useful in finding shortest path between two points in
the plane, in the presence of obstacles.
3. The problem of moving a finite object in the presence of obstacles may also be
mapped into a configuration space (or C-space) problem of moving a corresponding
point in a higher dimension. If translational and rotational motion in 2-dimensional
(respectively 3-dimensional) is allowed, then the C-space is 3-dimensional (respectively
6-dimensional).
4. Articulated objects, multiple simultaneous motion, and robot hands also increase
the number of degrees of freedom.

c© 2000 by CRC Press LLC

http://dimacs.rutgers.edu/


5. Current problems:
• representation of objects, since, although planar, faceted, models are simpler, the

objects should be algebraic surfaces, and, even if they are planar, in C-space
their corresponding versions will be curved;

• grasping , or placing a minimal number of fingers to constrain the object’s motion;
• sequence planning of the assembly of a collection of parts;
• autonomous navigation of robots in unstructured environments.

13.8.5 CONVEX HULL APPLICATIONS

Facts:
1. The convex hull (§13.5.1) is related to the Voronoi diagram (§13.5.3) since a convex
hull problem in Rk is trivially reducible to a Voronoi diagram problem in Rk, and a
Voronoi diagram problem in Rk is reducible to a convex hull problem in Rk+1.
2. The definition of convex hull is not constructive, in that it does not lead to a method
for finding the convex hull. Nevertheless, there are many constructive algorithms and
implementations. One common implementation is QuickHull (§13.5.1), a general di-
mension code for computing convex hulls, Delaunay triangulations, Voronoi vertices,
furthest-site Voronoi vertices, and halfspace intersections. [BaDoHu95]

Applications:
See http://www.geom.umn.edu/~bradb/qhull-news.html

1. Mathematics:
• determining the principal components of spectral data;
• studying circuits of matroids that form a Hilbert base;
• studying the neighbors of the origin in the R8 lattice.

2. Biology and medicine:
• classifying molecules by their biological activity;
• determining the shapes of left ventricles for electrical analysis of the heart.

3. Engineering :
• computing support structures for objects in layered manufacturing in rapid pro-

totyping, [StBrEa95]. By supporting overhanging material, these prevent the
object from toppling while partially built.

• designing nonlinear controllers for controlling vibration;
• finding invariant sets for delta-sigma modulators;
• classifying handwritten digits;
• analyzing the training sets for a multilayer perceptron model;
• determining the operating characteristics of process equipment;
• navigating robots;
• creating 6-dimensional wrench spaces to measure the stability of robot grasps;
• building micromagnetic models with irregular grain structures;
• building geographical information systems;
• simulating a spatial database system to evaluate spatial tesselations for indexing;
• producing virtual reality systems;
• performing discrete simulations of incompressible viscous fluids using vortex

methods;
• modeling subduction zones of tectonic plates and studying fluid flow and crystal

deformation;
• computing 3-dimensional unstructured meshes for computational fluid dynamics.
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13.8.6 NEAREST NEIGHBOR

Variants of the problem of finding the nearest pair of a set of points have applications
in fields from handwriting recognition to astrophysics.

Applications:
1. Fixed search set, varying query point: A fixed set, P, of n points in Rd is prepro-
cessed so that the closest point p ∈ P can be found for each query point, q. The search
time per query can range from logn (if d = 2) to n

d
2 (for large d). The Voronoi diagram

is commonly used in low dimension. However, because of the Voronoi diagram’s com-
plexity in higher dimension, hierarchical search structures, bucketing, and probabilistic
methods perhaps returning approximate answers are common.
2. Moving points: The points in P may be moving and the close pairs of points over
time is of interest.

Examples:
1. Examples of fixed search sets with varying query point:

• Character recognition in document processing : Each representative character is
defined by a vector of features. Each new, unknown character must be mapped
to the closest representative character in feature space.

• Color map optimization in computer graphics: Many frame buffers allow only
the 256 colors in the current color map to be displayed simultaneously, from a
palette of 224 possible colors. Thus, each color in a new image must be mapped
to the closest color in the color map. A related problem is the problem of
determining what colors to use in the color map.

• Clustering algorithms for speech and image compression in multimedia systems:
As in the color map problem, a large number of points must be quantized down
to a smaller set.

2. Examples of moving points:
• Simulation of star motion in astrophysics: Calculating the gravitational attrac-

tion between every pair of stars is too costly, so only close pairs are individually
calculated. Otherwise the stars are grouped, and the attraction between close
groups is calculated. The groups may themselves be grouped hierarchically.

• Molecular modeling : In molecular modeling, close pairs of atoms will be subject
to van der Waals forces.

• Air traffic control: Air traffic controllers wish to know about pairs of aircraft
closer than a minimum safe distance. Here the metric is nonuniform; small
vertical separations are more tolerable than small horizontal separations.

• During path planning in robotics and numerically controlled machining, unin-
tended close pairs of objects must also be avoided.

13.8.7 COMPUTER GRAPHICS

Computer graphics may be divided into modeling of surfaces, and simulation of the
models. The latter includes rendering a scene and its light sources to generate synthetic
imagery with respect to some viewpoint. Rendering involves visibility , or determining
which parts of the surfaces are visible, and shading them according to some lighting
model.
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Definitions:

Anti-aliasing refers to filtering out high-frequency spatial components of a signal, to
prevent artifacts, or aliases, from appearing in the output image. In graphics, a high
frequency may be an object whose image is smaller than one pixel or a sharp edge of
an object.

A GUI (graphical user interface) is a mechanism that allows a user to interactively
control a computer program with a bitmapped display by using a mouse or pointer
to select menu items, move sliders or valuators, and so on. The keyboard is only
occasionally used. A GUI contrasts with typing the program name followed by options
on a command line, or by preparing a text file of commands for the program. A GUI is
easier and more intuitive to use, but can slow down an expert user.

Examples:

1. Visibility : Visibility algorithms may be object-space, where the visible parts of each
object are determined, or image-space, where the color of each pixel in the frame buffer
is determined. The latter is often simpler, but the output has less meaning, since it is
not referred back to the original objects. Techniques include ray tracing and radiosity .

• Ray tracing : Ray tracing extends a line from viewpoint through each pixel of the
frame buffer until the first intersecting object. If that surface is a mirror, then
the line is reflected from the surface and continues in a different direction until
it hits another object (or leaves the scene). If the object is glass, then both a
reflecting and a refracting line are continued, with their colors to be combined
according to Fresnel’s law.

One geometry problem here is that of sampling for subpixel averaging. The
goal is to color a square pixel of a frame buffer according to the fraction of its
area occupied by each visible object. Given a line diagonally crossing a pixel,
the fraction of the pixel covered by that face must be obtained for anti-aliasing.
If the edges of two faces intersect in this pixel, each face cannot be handled
independently, for example with an anti-aliased Bresehnam algorithm. If this
is done badly, then it is very obvious in the final image as a possible fringe of
a different color around the border of the object, [Mi96].

The solution is to pick a small set of points in the pixel (typically 9, 16,
or 64 points), determine which visible object projects to each point, and combine
those colors. The problem is then to select a set of sampling points in the pixel,
such that given a subset region, the number of points in it approximates its
area. Four possible methods, from worst to best, are:
/ pick the points independently and uniform randomly;
/ use a nonrandom uniform distribution;
/ start with the above distribution, then jitter the points, or perturb

each one slightly;
/ use simulated annealing to improve the point distribution.

• Radiosity : Radiosity partitions the scene into facets, computes a form factor of
how much light from each facet will impinge on each other, and solves a system
of linear equations to determine each facet’s brightness. This models diffuse
lighting particularly well.

• Windowing systems: Another visibility problem is designing the appropriate
data structure for representing the windows in a GUI, so that the window that
is in front at any particular pixel location can be determined, in order to receive
the input focus.
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• Radio wave propagation: The transmission of radio waves, as from cellular
telephones, which are reflected and absorbed by building contents, is another
application of visibility. [Fo96]

2. Computer vision: Applications of geometry to vision include model-based recogni-
tion (or pattern matching), and reconstruction or recovery of 3-D structure from 2-D
images, such as stereopsis, and structure from motion. See the website

http://www.cs.princeton.edu/~chazelle/taskforce/CGreport.ps

In recognition, a model of an object is transformed into a sensor-based coordinate
system and the transformation must be recovered. In reconstruction, the object must
be determined from multiple projections.

3. Medical image shape reconstruction: Various medical imaging methods, such as
computer tomography, produce data in the form of successive parallel slices through
the body. The basic step in reconstructing the 3-dimensional object from these slices in
order to view it involves joining the corresponding vertices and edges of two polygons in
parallel planes by triangles to form a simple polyhedron. However, there exists a pair
of polygons that cannot be so joined. [GiO’RSu96]

13.8.8 MECHANICAL ENGINEERING DESIGN AND MANUFACTURING

Geometry is very applicable in CAD/CAM, such as in the design and manufacture of
automobile bodies and parts, aircraft fuselages and parts such as turbine blades, and
ship hulls and propellers.

Examples:

1. Representations: How should mechanical parts be represented? One problem is
that geometric descriptions are verbose compared to 2-dimensional descriptions, such
as draftings, since those assume certain things that the users will fill in as needed,
but which must be explicit in the geometric description. Possible methods include the
following:

• constructive solid geometry : Primitive objects, such as cylinders and blocks,
are combined with the regularized Boolean operators union, intersection, and
difference.

• faceted boundary representation: The object is a polyhedron with a boundary
of planar faces.

• exact boundary representation: The object is defined by boundary “faces”, but
now each face can be curved, such as a NURBS (Non-Uniform Rational B-
Spline), or an implicit piecewise quadric, Dupin cyclide (a quartic surface that
is good for blending two quadric surfaces), or supercyclide.

The possible methods can be evaluated with the following criteria:
• robustness against numerical errors;
• elegance;
• accuracy in representing complex, curved, shapes, especially blends between the

two surfaces at the intersection of two components;
• ease of explicitly obtaining geometry such as the boundary.
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2. Mesh generation: A mesh is the partition of a polyhedron into, typically, tetra-
hedra or hexahedra to facilitate finite element modeling. A good mesher conforms to
constraints, can change scale over a short distance, has no unnecessary long thin ele-
ments, and has fewer elements when possible. In some applications, periodic remeshing
is required.

If the elements are tetrahedra, then a Delaunay criterion that the circumsphere of
each tetrahedron contains no other vertices may be used. However, this is inappropriate
in certain cases, such as just exterior to an airfoil, where a (hexahedral) element may
have an aspect ratio of 100,000:1. This raises numerical computation issues.

Applications of meshing outside mechanical design include computational fluid dy-
namics, contouring in GIS, terrain databases for real time simulations, and Delaunay
applications in general. See

http://www.cs.cmu.edu/~quake/triangle.html

3. Minimizing workpiece setup in NC machining: In 4- and 5-axis numerically con-
trolled machining, in order to machine all the faces, the workpiece must be repeatedly
dismounted, recalibrated, and remounted. This setup can take much more time than
the actual machining. Minimizing the number of setups by maximizing the number
of faces that can be machined in one setup is a visibility problem harder than finding
an optimal set of observers to cover some geographic terrain. Exact solutions are NP-
hard; approximate solutions use geometric duality, topological sweeping, and efficient
construction and searching of polygon arrangements on a sphere.

4. Dimensional tolerancing : Tolerancing refers to formally modeling the relationships
between mechanical function and geometric form while assigning and analyzing dimen-
sional tolerances to ensure that parts assemble interchangeably. [SrVo93]

A tolerance may be specified parametrically , as a variation in a parameter, such
as the width of a rectangle, or as a zone that the object’s boundary must remain in.
The latter is more general but must be restricted to prohibit pathologies, such as the
object’s boundary being not connected.

Tolerance synthesis attempts to optimize the tolerances so as to minimize the man-
ufacturing cost of an object, considering that, while large tolerances are cheaper to
manufacture, the resulting product may function poorly. [Sk96]

Unsolved Problems:
The following lists some of the many remaining unsolved problems in applying geometry:

1. Blending between two surfaces in mechanical design, especially at the ends of the
blend, where these surfaces meet others. (A blending surface smooths the intersection
of two surfaces by being tangent to them, each along a curve.)

2. Variational design of a class of objects subject to constraints. Well-designed con-
straint systems may have multiple solutions; the space must be searched for the correct
one. Labeling derivative entities, such as the edge resulting from the intersection of two
inputs is an issue, partly because this edge may not exist for some parameter values.

3. Generally formalizing the semantics of solid modeling. [Ho96]

4. Updating simplifying assumptions, such as the linearity of random access memory,
and points being in general position, which were useful in the past, but which cause
problems now.

5. Accounting for dependencies between geometric primitives, and maintaining topo-
logical consistency .
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6. Designing robust algorithms when not only is there numerical roundoff during the
computation, but also the input data are imprecise, for example, with faces not meeting
properly.

7. Better 3-dimensional anti-aliasing to remove crevices and similar database errors
before rapid prototyping.

8. There still remains a need for many features in geometry implementations, such as
more geometric primitives at all levels, default visualization or animation easily callable
for each data structure, more rapid prototyping with visualization, a visual debugger for
geometric software, including changing objects online, and generally more interactivity ,
not just data-driven programs.

13.8.9 LAYOUT PROBLEMS

Efficiently laying out objects has wide-ranging applications in geometry.

Examples:

1. Textile part layout: The clothing industry cuts parts from stock material after
performing a tight, nonoverlapping, layout of the parts, in order to minimize the costs
of expensive material. Often, because the cloth is not rotationally symmetric, the parts
may be translated, but not rotated. Therefore, geometric algorithms for minimizing
the overlap of translating polygons are necessary. Since this problem is PSPACE-hard,
heuristics must be used. [Da95] [LiMi95].

2. VSLI layout: Both laying out circuits and analyzing the layouts are important
problems. The masks and materials of a VLSI integrated circuit design are typically
represented as rectangles, mostly isothetic, although 45 degrees or more general angles
of inclination for the edges are becoming common. The rectangles of different layers
may overlap. One integrated circuit may be 50MB of data before its hierarchical data
structure is flattened, or 2GB after. See the website:

http://ams.sunysb.edu/~held/proc usb comp geo-95.html

Geometry problems include the following.
• design rule verification: It is necessary to check that objects are separated by

the proper distances and that average metal densities are appropriate for the
fabrication process.

• polygon simplification: A design described by a complex set of polygons may per-
haps be optimized into a smaller set of isothetic polygons (with only horizontal
and vertical sides), such that the symmetric difference from the original design
is as small as possible.

• logic verification: The electrical circuit is determined by the graph extracted from
the adjacency information of the rectangles, and whether it matches the original
logic design is determined. A subproblem is determining devices (transistors),
which occur when rectangles of two particular different layers overlap.

• capacitance: This depends on the closeness of the component rectangles, which
might be overlapping or separated, representing two conductors.

• PPC (process proximity correction): This means to correct the effect that, when
etching a circuit, a rectangle’s edges are displaced outward, possibly causing it
to come too close to another rectangle, and change the circuit.
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13.8.10 GRAPH DRAWING

The classic field of graph drawing [TaTo94] aims automatically to display a graph, em-
phasizing fundamental properties such as symmetry while minimizing the ratio between
longest and shortest edges, number of edge crossings, etc. Applications include ad-
vanced GUIs, visualization systems, databases, showing the interactions of individuals
and groups in sociology, and illustrating connections between components in software
engineering. Recent 3-dimensional visualization hardware now permits 3-dimensional
graph drawing. See

file://ftp.cs.brown.edu/pub/papers/compgeo/gdbiblio.ps.gz

Facts:
1. Graph G can be drawn as the 1-skeleton of a convex polytope in R3 if and only if G
is planar and 3-connected. (Steinitz) [Gr67].

2. Given a 3-connected planar graph, the graph can be drawn as a convex polyhedron
in R3 using O(n) volume while requiring the vertices to be at least unit distance apart,
which allows them to be visually distinguished. This can be done in time O(n1.5).
(Chrobak, Goodrich, Tamassia) See

http://ams.sunysb.edu/~held/proc usb comp geo-95.html

13.8.11 GEOGRAPHIC INFORMATION SYSTEMS

A map (§8.6.4) is a planar graph. Minimally, it contains vertices, edges, and polygons.
However, a sequence of consecutive edges and 2-vertices is often called a chain (or
polyline), and its interior vertices points. For example, if each polygon is one nation,
then the southern border of Canada with the USA, is one chain.

Definition:

A geographic information system (GIS) is an information system designed to cap-
ture, store, manipulate, analyze, and display spatial or geographically-referenced data.

Facts:
Typical simple geometric operations are given in Facts 1–6. More complex ones are
given in Facts 7–9.
1. Projecting data from one map projection to another, and determining the appro-
priate projection: Since the earth is not a developable surface, no projection meets
all the following criteria simultaneously: equal-area, equidistant (preserving distances
from one central point to every other point), conformal (preserving all angles), and
azimuthal (correctly showing the compass angle from one central point to every other
point). Since a projection that meets any one criterion exactly is quite bad in the oth-
ers, the most useful projections tend to be compromises, such as the recent Robinson
projection. [Da95]
2. Rubber-sheeting , or nonlinear stretching, to align a map with calibration points, and
for edge joining of adjacent map sheets or databases, which may have slightly different
coordinate systems.
3. Generalizing or reducing the number of points in a chain while preserving certain
error properties.
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4. Topological cleanup so that edges that are supposed to meet at one vertex do so,
the boundary of each polygon is a closed sequence of vertices and polylines, adjacency
information is correct, and so on.
5. Choice of the correct data structure. Should elevation data be represented in a
gridded form (as an array of elevations) or should a triangulated irregular network
(TIN) be used (the surface is partitioned into triangles)?
6. Zone of influence calculation: For example, find all the national monuments within
ten miles of the highway.
7. Overlaying : Overlaying two maps to produce a third, where one polygon of the
overlay map will be those points that are all from the same two polygons of the two
input maps is one of the most complex operations in a GIS. If only the area or other
mass property of the overlay polygons is desired, then it is not necessary completely
to find the overlay polygons first; it is sufficient to find the set of vertices and their
neighborhoods of each overlay polygon. [FrEtal94]
8. Name placement: Consider a cartographic map containing point features such
as cities, line features such as rivers, and area features such as states. The name
placement problem involves locating the features’ names so as to maximize readability
and aesthetics [FrAh84]. Efficient solutions become more important as various mapping
packages now produce maps on demand. The techniques also extend to labelling CAD
drawings, such as piping layouts and wiring diagrams.
9. Viewsheds and visibility indices: Consider a terrain database, and an observer and
target, both of which may be some distance above the terrain. The observer can see
the target if and only if a line between them does not intersect the terrain. Note that
if they are at different heights above the terrain, then this relation is not necessarily
commutative.

The (not necessarily connected) polygon of possible targets visible by a particular
observer is his viewshed. The viewshed’s area is the observer’s visibility index. In
order to site observers optimally, the visibility index for each possible observer in the
database may be required. Calculating this exactly for an n×n gridded database takes
time O(n5) so sampling techniques are used. [FrRa94]

13.8.12 GEOMETRIC CONSTRAINT SOLVING

Applications of geometric constraint solving include mechanical engineering, molecular
modeling, geometric theorem proving, and surveying.

Definition:

Geometric constraint solving is the problem of locating a set of geometric elements
given a set of constraints among them.

Fact:
1. The problem may be under-constrained, with an infinite number of solutions, or
over-constrained, with no solutions without some relaxation.

Examples:
1. A receptor is a rigid cavity in a protein, which is the center of activity for some
reaction. A ligand is a small molecule that may bind at a receptor. The activity level of
a drug may depend on how the ligand fits the receptor, which is made more complicated
by the protein molecule’s bending.
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2. In CAD/CAM, there may be constraints such as that opposite sides of a feature
shall be parallel. For example, commercial systems like Pro/Engineer allow the user
to freehand-sketch a part, and then apply constraints such as right angles, to snap the
drawing to fit. Then the user is required to add more constraints until the part is
well-constrained.

3. Molecular modeling : There is often a lock-and-key relationship between a flexible
protein molecule’s receptor and the ligand that it binds. In addition to geometrically
matching the fitted shapes, the surface potentials of the molecules is also important.
This fitting problem, called molecular docking , is important in computer-aided drug
design. Generally, a heuristic strategy is used to move the molecules to achieve no
overlap between the two molecules while maximizing their contact area. (Ierardi and
Park) See

http://ams.sunysb.edu/~held/proc usb comp geo-95.html

13.8.13 IMPLEMENTATIONS

One major application of geometry is in implementations of geometric software packages,
either as subroutine packages callable from user programs, or as standalone systems,
which the user prepares input data files for and directs with either input command files
or a GUI.

Definition:

In an object-oriented computer language, a class library is a set of new data types
and operations on them, activated by sending an object, or data item, a message.
(For example, a plane object may respond to a message to rotate itself. The internal
representation of an object is private, and it may be accessed only by sending it a
message.)

Examples:

1. Leda, started in 1989, is a major C++ class library, whose design goals are correct-
ness, ease of use and elegance, and efficiency [MeNä95]. Its geometry has been moved to
CGAL, which often uses exact computation and aims for efficiency in a general-purpose
professional-quality library of geometric algorithms written in C ++ for Unix first, and
then PCs. See the website

http://www.cs.ruu.nl/people/geert/CGAL/

2. Stand-alone systems:
• Geomview is an interactive program for viewing and manipulating geometric

objects, from the University of Minnesota Geometry Center. Examples like
Penrose quasi-tiling, Pascal’s theorem in projective conics, Teichmuller space,
and families of Riemann surfaces with a specified group of symmetries. See the
website

http://www.geom.umn.edu/apps/gallery.html

• Geomamos, a “Geometric Object Manipulation/Monitoring System” is an X-
based visualization system with a 2-D display, GeomSheet, based on X-fig,
which allows mouse input. It includes a library based on LEDA. See the website

http://web.eecs.nwu.edu/~theory/geomamos.html
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• XYZ Geobench assists the implementation of geometric algorithms. [Sc91]

13.8.14 GEOMETRIC VISUALIZATION

There are many packages to display geometric objects. D. Banks lists many examples,
by himself and others, such as D. Cox, G. Francis, and R. Idaszak, including a torus
rotating in R4, a Steiner surface showing the triple point, crosscaps, Klein bottles, a
Sudanese surface, a complex reciprocal, a knotted sphere, the Etruscan Venus, a stable
mapping of a Klein bottle into 3-dimensional Euclidian space. See the website

http://www.icase.edu/~banks/math.html

There are also libraries of minimal and other surfaces, and knots, at the Center for
Geometry Analysis Numerics and Graphics, U Mass Amherst.
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subgraphs”, Ann. Discrete Math. 12 (1982), 9–12.

[AkAl89] J. Akiyama and N. Alon, “Disjoint simplices and geometric hypergraphs”,
Combinatorial Mathematics, Annals of the New York Academy of Sciences 555
(1989), 1–3.

[AlKl92] N. Alon and D. Kleitman, “Piercing convex sets and the Hadwiger-Debrunner
(p, q)-problem”, Advances Math. 96 (1992), 103–112.
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[ErFiFü91] P. Erdős, P. Fishburn, and Z. Füredi, “Midpoints of diagonals of convex
n-gons”, SIAM Journal of Discrete Mathematics 4 (1991), 329–341.
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[FeKu93] G. Fejes Tóth and W. Kuperberg, “Packing and covering with convex sets”,
Handbook of Convex Geometry , P. Gruber and J. Wills, eds., North-Holland, 1993,
799–860.

c© 2000 by CRC Press LLC



[Fo93] S. Fortune, “Computational Geometry”, Geometric Computing , R. Martin, ed.,
Information Geometers Ltd., 1993.

[Fo96] S. Fortune, “A beam tracing algorithm for prediction of indoor radio propaga-
tion”, Proceedings First ACM Workshop on Applied Computational Geometry, M.
C. Lin and D. Manocha, eds., Philadelphia, 27–28 May 1996, 76–81.

[FoGaKe93] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language
for Mathematical Programming , Duxbury Press/Wadsworth Publishing Co., 1993.
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[Gr67] B. Grünbaum, Convex Polytopes, Wiley, 1967.
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[KáPaTó96] G. Károlyi, J. Pach, and G. Tóth, “Ramsey-type results for geometric
graphs”, 12th Sympos. Comput. Geom., 1996.

[Ki83] D. Kirkpatrick, “Optimal Search in Planar Subdivisions”, SIAM Journal of Com-
puting 12 (1983), 28–35.

[Kn92] D. E. Knuth, Axioms and Hulls, Lecture Notes in Computer Science 606, Spring-
er-Verlag, 1992.
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http://ams.sunysb.edu/~held/proc usb comp geo-95.html (Electronic Proceed-
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http://hercule.csci.unt.edu/sigact/longrange/contributions.html (SIGACT
Long Range Planning Committee, Contributions of Theoretical Computer Science.)

http://web.eecs.nwu.edu/~theory/geomamos.html (GeoMANOS.)

http://www.cs.cmu.edu/~quake/triangle.html (Triangle: A Two-dimensional
Quality Mesh Generator and Delaunay Triangulator.)

http://www.cs.duke.edu/~jeffe/compgeom/ (Jeff Erickson’s Computational Geom-
etry pages; extensive computational geometry site.)

http://www.cs.hope.edu/~alganim/ccaa/algo.html (The Complete Collection of
Animated Algorithms.)

http://www.cs.princeton.edu/~chazelle/taskforce/CGreport.ps (Computation-
al Geometry Impact Task Force, Application Challenges to Computational Geome-
try.)

http://www.cs.ruu.nl/people/geert/CGAL/ (The CGAL Kernel Manual.)

http://www.cs.sunysb.edu/~algorith/ (The Stony Brook Algorithm Repository;
see Section 1.6 on Computational Geometry.)

http://www.geom.umn.edu/~bradb/qhull-news.html (News about QuickHull.)

http://www.geom.umn.edu/apps/gallery.html (Gallery of Interactive Geometry, U.
Minnesota Geometry Center.)

http://www.geom.umn.edu/apps/quasitiler/ (QuasiTiler 3.0, U. Minnesota Geom-
etry Center.)

http://www.geom.umn.edu/software.cglist/ (Software repository of The Geometry
Center at the University of Minnesota Geometry Center, collected by Nina Amenta.)

http://www.icase.edu/~banks/math.html (Mathematical Visualization.)

http://www.ics.uci.edu/~eppstein/geom.html (David Eppstein’s Geometry in Ac-
tion pages, a collection of many applications of discrete and computational geome-
try.)

http://www.inria.fr/prisme/personnel/bronnimann/cgt/ (Hervé Brönnimann’s
CG Tribune, a journal of articles in computational geometry; contains extensive
list of software and Web sites in computational geometry.)

http://www.math.tu-berlin.de/diskregeom/polymake/doc/ (Polymake, a tool for
the algorithmic treatment of polytopes and polyhedra.)

http://www.research.ibm.com/xw-p4205-description00.html (IBM 3D Interac-
tion Accelerator.)

http://www.utexas.edu/depts/grg/gcraft/notes/mapproj/mapproj.html (Map
Projections.)
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INTRODUCTION

This chapter deals with techniques for the efficient, reliable, and secure transmission
of data over communications channels that may be subject to non-malicious errors and
adversarial intrusion. The general topic areas related to these techniques are information
theory, coding theory, and cryptology.

Information theory is concerned with the mathematical theory of communication,
and includes the study of redundancy and the underlying limits of communications
channels.

Coding theory, in its broadest sense, deals with the translation between source data
representations and the corresponding representative symbols used to transmit source
data over a communications channels, or store this data. Error-correcting coding is the
part of coding theory that adds systematic redundancy to messages to allow transmission
errors to not only be detected, but also to be corrected.

Cryptology is the field which includes both cryptography, which deals with the
protection of data from malicious or unauthorized actions, and cryptanalysis, which
attempts to defeat cryptographic mechanisms.

GLOSSARY
affine cipher: a cipher that replaces the plaintext letter x (represented as the appro-

priate integer in the set {0, 1, . . . , 25}) by ax+ b mod 26, where a and b are integers
relatively prime to 26.

analog channel: a channel that is continuous in amplitude and time.
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authentication: corroboration that a party, or the origin of a message, is as claimed.

BCH code: a code from a special family of cyclic codes.

binary symmetric channel (BSC): a memoryless channel with binary input and
output alphabets, and fixed probability p that a symbol is transmitted incorrectly.

block cipher: a cipher that processes the plaintext after grouping it into pieces called
blocks.

burst error: a vector whose only nonzero entries are among a string of successive
components, the first and last of which are nonzero.

Caesar cipher: the cipher that shifts each letter forward three positions in the al-
phabet, wrapping the letters at the end of the alphabet around to the beginning
letters.

capacity of a channel: a measure of the ability of a channel to transmit information
reliably.

certification authority : a trusted authority who verifies the identity and public key
of a party, and signs this data.

chosen-plaintext attack: an attack when the adversary has some chosen plaintext
and its corresponding ciphertext.

chosen-ciphertext attack: an attack when the adversary has some chosen ciphertext,
and its corresponding plaintext.

cipher: an encryption scheme.

cipher-block chaining (CBC) mode: a mode of operation of an n-bit block cipher
in which plaintext is processed n bits at a time, an initialization block is used, and to
encrypt each successive n-bit block the bitwise XOR of the block with the encrypted
version of the previous block is formed and the resulting n-bit block is encrypted by
the block cipher.

cipher feedback (CFB) mode: a mode of operation of an n-bit block cipher in which
plaintext may be processed r bits at a time where 1 ≤ r ≤ n and in which ciphertext
depends on the current block and previous blocks.

ciphertext: transformed plaintext that is supposed to be unintelligible to all but an
authorized recipient.

ciphertext-only attack: an attack when the adversary has possession of some ci-
phertext and nothing else.

code: a map from the set of words to the set of all finite strings of elements of a
designated alphabet.

codeword: a string produced when a code is applied to a word.

coding theory : the subject concerned with the translation between source data rep-
resentations and the corresponding representative symbols used to transmit source
data over a communications channel.

complete maximum likelihood decoding (CMLD): the decoding scheme that
decodes a received n-tuple to the unique codeword of minimum distance from this
n-tuple, if such a codeword exists. Otherwise, the scheme arbitrarily decodes the
n-tuple to one of the codewords closest to this n-tuple.

computational security : the amount of computational effort required by the best
currently-known attacks to defeat a system.
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convolutional code: a code in which the encoder has memory, so that an n-tuple
produced by the encoder not only depends on the message k-tuple u, but also on
some message k-tuples produced prior to u.

coset: the set C + x = { c + x | c ∈ C } determined by a word x, given a code C.

coset leader: a coset member of smallest Hamming weight.

cryptanalysis: the science devoted to the defeat of cryptographic protection mecha-
nisms.

cryptography : the science of protecting data from malicious or unauthorized actions.

cryptology : the field that includes both cryptography and cryptanalysis.

cryptosystem (or cryptographic system): a system comprised of a space of plain-
text messages, a space of ciphertext messages, a space of keys, and families of enci-
phering and deciphering functions.

cyclic code: a linear code in which every cyclic shift of a codeword is also a codeword.

data compression: the transformation of data into a representation which is more
compact yet maintains the information content of the original data.

data encryption standard (DES): a block cipher adopted as a standard in the
United States and which is widely used for commercial applications.

data integrity : the ability to detect data manipulation by unauthorized parties.

data origin authentication: corroboration that the origin of data is as claimed.

decryption: the process of recovering plaintext from ciphertext.

digital signature: a number dependent on some secret known only to the signer, and
on the message being signed.

dual code (of a code): the orthogonal complement of the code.

electronic codebook (ECB) mode: a mode of operation of a n-bit block cipher in
which long messages are partitioned into n-bit blocks and encrypted separately.

ElGamal cryptosystem: a public-key cryptosystem based on the discrete logarithm
problem.

encryption: the process of mapping plaintext to ciphertext designed to render data
unintelligible to all but the intended recipient.

entity authentication: corroboration that a party’s identity is as claimed.

entropy : a measure of the amount of information provided by an observation of a
random variable.

equivalent codes: codes for which there is a fixed permutation of the coordinate
positions which transform one code to the other.

error-correction coding : coding that adds systematic redundancy to messages to
allow transmission errors to be detected and corrected.

error-detection coding : coding that adds systematic redundancy to messages to
allow transmission errors to be detected (but not necessarily corrected).

extended code: the code obtained by adding a parity check symbol to each codeword
of a code.

generator matrix for a code: a matrix whose rows form a basis for that code.

generator polynomial: a monic polynomial of least degree in a cyclic code.
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Golay code: a particular perfect code.

Hamming code: a perfect single-error correcting code.

Hamming distance between two n-tuples: the number of coordinate positions in
which they differ.

Hamming distance of a code: the smallest Hamming distance over all pairs of
distinct codewords in that code.

Hamming weight of an n-tuple: the number of nonzero coordinates.

hash function: a function that maps arbitrary length bit strings to small fixed-length
outputs that is easy to compute and in addition may have preimage-resistance, weak
collision-resistance, and/or strong collision-resistance.

Hill cipher: a cipher that has an m × m matrix K as its key and which encrypts
plaintext by splitting it into blocks of size m and sending the plaintext block x =
(x1, x2, . . . , xm) to the m-tuple xK.

homophonic substitution: a cipher where plaintext characters in the source lan-
guage are associated with disjoint sets of ciphertext characters, and each time a
character is to be encrypted, one element of the associated set of ciphertext charac-
ters is randomly chosen.

incomplete maximum likelihood decoding (IMLD): the decoding scheme that
decodes a received n-tuple to a unique codeword such that the distance between
the n-tuple and the codeword is a minimum if such a codeword exists. If no such
codeword exists, then the scheme reports that errors have been detected, but no
correction is possible.

information theory : the mathematical theory of communication concerned with both
the study of redundancy and the underlying limits of communication channels.

Kerberos protocol: an authenticated key distribution protocol developed as part of
Project Athena at M.I.T. based on symmetric cryptographic techniques and the use
of a key distribution center.

key agreement: a key establishment mechanism in which two parties jointly establish
a shared secret key which is a function of information contributed by each.

key distribution center (KDC): a trusted third party who distributes short-term
secret keys for secure communications from a particular party to another.

key distribution problem: the problem of how to securely distribute secret keys
between two or more parties.

key establishment: a mechanism with the specific objective of making a symmetric
key secretly available to two authorized parties for subsequent cryptographic use.

key transfer: a key establishment mechanism in which a key created by one party is
securely transmitted to another.

knapsack cryptosystem: a cryptosystem in which encryption is carried out using a
super-increasing sequence of integers.

known-plaintext attack: an attack when the adversary has some plaintext and its
corresponding ciphertext.

linear code: a subspace of the set of n-tuples with entries from a finite field.

McEliece cryptosystem: a public-key cryptosystem based on linear codes from the
theory of error-correcting codes.

c© 2000 by CRC Press LLC



message: a finite string of source words.

minimum error probability decoding (MED): the decoding scheme that decodes
a received n-tuple r to a codeword c for which the conditional probability P (c is sent
| r is received), c ∈ C, is largest.

memoryless source: a source for which the probability of a particular word being
emitted at any point in time is fixed.

modem: a device that transforms between analog channel data and discrete encoder-
decoder data; modem is short for modulator/demodulator.

non-repudiation: a provision for the resolution of disputes arising related to digital
signatures where the purported sender of a message denies having sent it.

Nordstrom-Robinson code: a special nonlinear code.

one-time pad: a stream cipher where each bit of plaintext is encrypted by XOR-ing
it to the next bit of a truly random key, which is never reused for encryption and is
of bit length equal to that of the plaintext.

output feedback (OFB) mode: a mode of operation of an n-bit block cipher in
which a message may be split into blocks of r bits where 1 ≤ r ≤ n for processing
and in which error propagation is avoided.

parity check bit: a bit added to a bit string so that the total number of 1s in the
extended string is even.

parity check matrix (for a code): a generator matrix for the dual code of the code.

perfect code: a code of distance d for which every word is within distance t =
⌊
d−1
2

⌋
of some codeword.

plaintext: a message in some source language.

polyalphabetic cipher: a cipher that uses multiple substitutions for mapping plain-
text letters to ciphertext letters.

Preparata code: a code from an infinite family of nonlinear codes that have efficient
encoding and decoding algorithms.

privacy : preventing confidential data from being available in an intelligible form to
unauthorized parties.

prefix code: a code in which no codeword is a prefix of another codeword.

provable security (of a cryptographic method): security where the difficulty of de-
feating the method is essentially as difficult as solving a well-known and supposedly
difficult problem.

public-key certificate: data that binds together a party’s identification and public
key.

public-key cryptosystem: a cryptosystem in which each user has his/her own pair
of encryption (public) and decryption (private) keys.

punctured code: the code obtained by removing any column of a generator matrix
of a linear code.

Rabin cryptosystem: a public-key cryptosystem whose security depends on the dif-
ficulty of finding square roots modulo the product of two large primes.

Reed-Muller code: a code from a particular family of linear codes.

Reed-Solomon code: a code from a special family of BCH codes.
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RSA cryptosystem: a public-key cryptosystem in which encryption is based on mod-
ular exponentiation with a modulus that is the product of two primes.

secret sharing scheme: a scheme where the contents of a secret can be recovered
if and only if particular groups of people sharing information relating to the secret
collaborate.

self-dual code: a linear code that is equal to its dual code.

self-orthogonal code: a linear code that is contained in its dual code.

self-synchronizing stream cipher: a stream cipher capable of reestablishing proper
decryption automatically after loss of synchronization, with only a fixed number of
plaintext characters unrecoverable.

shift cipher: a cipher that replaces each plaintext letter by the letter shifted a fixed
number of positions in the alphabet, with letters at the end of the alphabet shifted
to the beginning of the alphabet.

shortened code: the set of all codewords in a linear code which are 0 in a fixed
coordinate position with that position deleted.

syndrome (of a word x): the vector xHT , where H a parity check matrix for a linear
code C.

stream cipher: a cipher which encrypts individual characters of a plaintext message.

substitution cipher: a cipher that replaces each plaintext character by a fixed sub-
stitute according to a permutation on the source alphabet.

super-increasing sequence: a set {a1, a2, . . . , an} of positive integers with the prop-
erty that ai >

∑i−1
j=1 aj for each i = 2, . . . , n.

symmetric-key system: a cryptosystem where each pair of users share a secret key.

synchronous stream cipher: a stream cipher in which the keystream is generated
independently of the message.

systematic code: a linear code that has a generator matrix of the form [Ik |A].

(n,k)-threshold scheme: a scheme whereby a secret datum S can be divided up
into n pieces, in such a way that knowledge of any k or more pieces allows S to
be easily recovered, but knowledge of k−1 or fewer pieces provides no information
about S.

transposition cipher: a cipher that divides plaintext into blocks of a fixed size and
rearranges the characters in each block according to a fixed permutation.

turbo code: a special type of code built using convolutional codes and an interleaver
which permutes the original bits before sending them to the second encoder.

unconditional security (for encryption schemes): the security condition where ob-
servation of the ciphertext provides no information to an adversary.

uniquely decodable code: a code for which every string of symbols is the image of
at most one message.

Vernam cipher: a one-time pad.

Vigenère cipher: a cipher with a d-tuple (k1, . . . , kd) as its key that encrypts plaintext
messages in blocks of size d so that the ith letter in a block is shifted ki positions in
the alphabet, modulo 26.
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14.1 COMMUNICATION SYSTEMS AND INFORMATION THEORY

14.1.1 BASIC CONCEPTS

Definitions:

A communication system, as illustrated in the following figure, is modeled as a data
source providing either continuous or discrete output, a source encoder transforming
source data into binary digits (bits), a channel encoder, and a channel.

In many communication systems the channel is analog , that is, continuous in amplitude
and time, in which case a modulator/demodulator (modem) is required to transform
between analog channel data and discrete encoder/decoder data.

The source encoder, the aim of which is to minimize the number of bits required to
represent source data while still allowing subsequent reconstruction, typically includes
data compression to remove unnecessary redundancy.

The objective of the channel encoder is to maximize the rate at which information
can be reliably conveyed by the channel, in the presence of disruptive channel noise.

Coding theory is the study of the translation between source data representations
and the corresponding representative symbols (coded data) used to transmit source
data over a communication channel.

Error-correction coding , located in the channel encoder, adds systematic redundancy
to messages to allow transmission errors not only to be detected but also to be corrected.

Encryption, located after the source encoder but not always before the channel en-
coder, is designed to render data unintelligible to all but the intended recipient, and
thereby preserve the secrecy of messages in the presence of unfriendly monitoring of
the channel.

Cryptography is the science of maintaining secrecy of data, that is, protecting data
from malicious or unauthorized actions, including passive intrusion (eavesdropping)
and active intrusion (injection or modification of messages).
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Authentication is corroboration that a party, or the origin of a message, is as claimed.

Data integrity is the property that data have not been modified in an unauthorized
manner.

Non-repudiation is the preclusion of parties from making undetectable false denials.

14.1.2 ENTROPY

Definitions:

Let X be a random variable that takes on a finite set of values x1, x2, . . . , xn with
probability P (X = xi) = pi, where 0 ≤ pi ≤ 1 for each i, 1 ≤ i ≤ n, and

∑n
i=1 pi = 1.

Also, let Y be a random variable that takes on a finite set of values.

Information theory is concerned with a mathematical theory of communication and
includes the study of redundancy and the underlying limits of communication channels.

The entropy (or uncertainty) of X is defined to be H(X) = −
∑n

i=1 pi log2 pi, where
pi log2 pi = 0 if pi = 0.

The joint entropy of X and Y is defined to be
H(X, Y ) = −

∑
x,y P (X= x, Y = y) log2 P (X= x, Y = y).

If X and Y are random variables, the conditional entropy of X given Y = y is
H(X |Y = y) = −

∑
x P (X= x |Y = y) log2 P (X= x |Y = y).

The conditional entropy of X given Y (or equivocation of Y about X), is
H(X |Y ) = −

∑
y P (Y = y) H(X |Y = y). (The summation indices x and y range over

all values of X and Y , respectively.)

Facts:

1. Useful books that cover information theory include [Ha80], [HaHaJo97], [Mc77],
[Re94], and [We88].

2. Information theory provides a theoretical basis for many results in error-correcting
codes and cryptography, and provides theoretical bounds useful as metrics for evaluating
conjectures in both areas.

3. The entropy of X is a measure of the amount of information provided by an obser-
vation of X.

4. The entropy of X is also useful for approximating the number of bits required to
encode the elements of X.

5. If X and Y are random variables, then:
• 0 ≤ H(X) ≤ log2 n;
• H(X) = 0 if and only if pi = 1 for some i, and pj = 0 for all j 
= i (that is, there

is no uncertainty of the result);
• H(X) = log2 n if and only if pi = 1

n for each i, 1 ≤ i ≤ n (that is, all outcomes
are equally likely);

• H(X, Y ) ≤ H(X) + H(Y );
• H(X, Y ) = H(X) + H(Y ) if and only if X and Y are independent.

6. The quantity H(X |Y ) measures the amount of uncertainty remaining about X
after Y has been observed.
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7. If X and Y are random variables, then:
• H(X |Y ) ≥ 0;
• H(X |X) = 0;
• H(X, Y ) = H(Y ) + H(X |Y );
• H(X |Y ) ≤ H(X);
• H(X |Y ) = H(X) if and only if X and Y are independent. .

Example:
1. If X is the random variable on the set {x1, x2, x3, x4} with X(x1) = 0.4, X(x2) = 0.3,
X(x3) = 0.2, and X(x4) = 0.1, then the entropy of X is

H(X) = −(0.4 log2 0.4 + 0.3 log2 0.3 + 0.2 log2 0.2 + 0.1 log2 0.1) ≈ −1.84644.

14.1.3 THE NOISELESS CODING THEOREM

Definitions:

A source is a stream of words from a set W = {w1, w2, . . . , wM}.
Let Xi denote the ith word produced by a source. The source is said to be memoryless
if for each word wj ∈ W , the probability P (Xi = wj) = pj is independent of i, that is,
the Xi are independent and identically distributed random variables.

The entropy of a memoryless source is H = −
∑M

j=1 pj log2 pj .

A code is a map f from W to A∗, the set of all finite strings of elements of A where A
is a finite set called the alphabet.

For each source word wj ∈ W , the string f(wj) is a codeword.

The length of the codeword f(wj), denoted |f(wj)|, is the number of symbols in the
string.

A message is any finite string of source words. If m = v1v2 . . . vr is a message, then
its encoding is obtained by concatenation: f(m) = f(v1)f(v2) . . . f(vr).

The average length of a code f is
∑M

j=1 pj |f(wj)|.
A code is uniquely decodable if every string from A∗ is the image of at most one
message.

A prefix code is a code such that there do not exist distinct words wi and wj such
that f(wi) is an initial segment, or prefix, of f(wj).

Facts:
1. Prefix codes are uniquely decodable.
2. Prefix codes have the advantage of being instantaneous. That is, they can be de-
coded online without looking at future codewords.
3. Kraft’s inequality: A prefix code f : W → A∗ with codeword length |f(wi)| = li for
i = 1, 2, . . . , M exists if and only if

∑M
j=1 n−lj ≤ 1, where n is the size of the alphabet

A.
4. Macmillan’s inequality : If a uniquely decodable code f : W → A∗ with codeword
lengths l1, l2, . . . , lM exists, then

∑M
j=1 n−lj ≤ 1, where n is the size of the alphabet A.

5. A uniquely decodable code with prescribed word lengths exists if and only if a prefix
code with the same word lengths exists. As a result, attention can be restricted to prefix
codes.
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6. Shannon’s noiseless coding theorem: For a memoryless source of entropy H, any
uniquely decodable code for the source into an alphabet of size n must have average
length at least H

log2 n
. Moreover, there exists such a code having average length less than

1 + H
log2 n

.

7. For a memoryless source, a prefix code with smallest possible average length can be
constructed by the Huffman coding algorithm. (See §9.1.2.)

Examples:

1. The code that maps the letters A, B, C, D to 1, 01, 001, 0001, respectively, is a
prefix code on this set of four letters.

2. The code that maps the letters A, B, C, D to 11, 111, 11111, 111111, respectively,
is not a prefix code since the code for A forms the first part of the code for B (and
for the codes for C and D as well). It is also not uniquely decodable since a bit string
can correspond to more than one string of the letters A, B, C, D. For example, 11111
corresponds to AB, BA, and C.

14.1.4 CHANNELS AND CHANNEL CAPACITY

Definitions:

A channel is a medium that accepts strings of symbols from a finite alphabet A =
{a1, . . . , an} and produces strings of symbols from a finite alphabet B = {b1, . . . , bm}.
Let Xi denote the ith input symbol and let Yi denote the ith output symbol. The
channel is said to be memoryless if the probability P (Yi = bj |Xi = ak) = pjk (for
1 ≤ j ≤ m and 1 ≤ k ≤ n) is independent of i.

A binary symmetric channel (BSC) is a memoryless channel with input and out-
put alphabets {0, 1}, and probability p that a symbol is transmitted incorrectly. The
probability p is called the symbol error probability of the channel. See the following
figure.

A q-ary symmetric channel is a memoryless channel with input and output alphabets
each of size q and such that the probability that an error occurs on symbol transmission
is a constant p. Furthermore, if an error does occur then each of the q−1 symbols
different from the correct symbol is equally likely to be received.

The capacity of a binary symmetric channel with symbol error probability p is C(p) =
1 + p log2 p + (1− p) log2(1− p).
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Facts:

1. The capacity of a communications channel is a (unitless) measure of its ability to
transmit information reliably.

2. The capacity of a BSC with symbol error probability p is a monotone decreasing
function of p for 0 ≤ p ≤ 1

2 , with 1 ≥ C(p) ≥ 0. Moreover, C(0) = 1 and C( 1
2 ) = 0.

Example:

1. The capacity of a BSC with symbol error probability 0.01 is given by
C(0.01) = 1 + 0.01 log2(0.01) + 0.99 log2(0.99) ≈ 0.92.

14.2 BASICS OF CODING THEORY

Coding theory is the subject devoted to the theory of error-correcting codes. Error-
correcting codes were invented to correct errors over unreliable transmission links. With
digital communications and digital storage media ubiquitous in the modern world, error-
correcting codes have grown in importance. Advances in error-correcting codes have
made it possible to transmit information across the solar system using weak transmitters
and to store data robustly on storage media so that it is resistant to damage, such as
scratches on a compact disk.

Error-correcting codes work by encoding data as strings of symbols, such as bit
strings, that contain redundant information that helps identify which codeword may
have been sent when a string of symbols, potentially different than the string sent, is
received. Coding theory is an active area, with new and better codes being devised at
a steady pace.

14.2.1 FUNDAMENTAL CONCEPTS

Definitions:

Let A be any finite set (called an alphabet), and let An denote the set of all n-tuples with
entries in A. A block code of length n containing M codewords over the alphabet A
is a subset of An of size M . Such a block code is called an [n, M ]-code over A.

The Hamming distance d(x, y) between two n-tuples x and y ∈ An is the number of
entries in which they differ.

Let C be an [n, M ]-code over A. The Hamming distance of C is the smallest Ham-
ming distance over all pairs of distinct codewords in C. If C has Hamming distance d,
then C is sometimes referred to as an [n, M, d]-code.

The information rate (or rate) of an [n, M ]-code over an alphabet of size q is R =
logq M

n .

Suppose that a codeword c from a block code is transmitted and r is received. The
error-vector is e = r − c (formed by subtracting componentwise). The number of
errors is the number of nonzero components in e.
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A code is said to detect t errors if the decoder is capable of detecting any pattern of t
or fewer errors per codeword that may be introduced by the channel.

A code is said to correct t errors if the decoder is capable of correcting any pattern
of t or fewer errors per codeword that may be introduced by the channel.

If C1 and C2 are two [n, M ]-codes over an alphabet A, then C1 and C2 are said to
be equivalent codes if there is a fixed permutation of the coordinate positions which
transform one code to the other.

The parity check bit of a bit string is 0 if there are an even number of bits in the
string and is 1 if there are an odd number of bits in the string.

Facts:

1. Some of the many introductory-level books in coding theory are [Ba97], [Hi86],
[HoEtal92], [Pl89], [Pr92], [Ro96], [Vava89], and [We98]. For more extensive treat-
ments, see [Be84], [Bl83], [LiCo83], [PlHuBr98], [va90], [va99], [PeWe72], and especially
[MaSl77], which contains a bibliography of 1478 entries.

2. The Error Correcting Codes (ECC) home page provides free software implementing
several important error-correcting codes:

http://imailab.iis.u-tokyo.ac.jp/~robert/codes.html

3. The main objective of coding theory is the design of codes such that:
• an efficient algorithm is known for encoding messages;
• an efficient algorithm is known for decoding;
• the error-correcting capability of the code is high;
• the information rate of the code is high.

4. For applications in which a two-way communications channel is available (for exam-
ple, a telephone circuit), it is sometimes economical to use error detection and retrans-
mission upon error, in a so-called automatic repeat request (ARQ) strategy, rather than
so-called forward error correction (FEC) techniques capable of actually correcting errors
at the cost of more complex decoding equipment. This is not an option when the com-
munications channel is effectively one-way or unperturbed source data is not available
for retransmission (for example in CD-ROM storage and deep-space communications
systems).

5. For any n-tuples x, y, z ∈ An, the Hamming distance satisfies the following:
• d(x, y) ≥ 0 with equality if and only if x = y;
• d(x, y) = d(y, x);
• d(x, y) + d(y, z) ≥ d(x, z).

6. The information rate R of a block code measures the fraction of information of the
code which is non-redundant; the information rate R satisfies the inequality 0 < R ≤ 1.

7. When a word r is received, the decoder must make some decision. This decision
may be one of the following:

• no errors have occurred; accept r as a codeword;
• errors have occurred; correct r to a codeword c;
• errors have occurred; no correction is possible.

8. Let C be an [n, M, d]-code.
• If used only for error detection, C can detect d−1 errors.
• If used for error correction, C can correct

⌊
d−1
2

⌋
errors.
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9. Equivalent codes have the same distance, and hence the same error-correcting ca-
pabilities.
10. Adding a parity check bit to a bit string of length n produces a bit string of length
n + 1 with an even number of 0s.
11. Different families of error-correcting codes have been, and continue to be, designed
to meet the particular requirements of applications. One type of requirement is the
ability to correct specific types of errors. For example, when signals are sent over radio
channels, including those from deep space, interference can produce errors in a run of
bits. Similarly, damage to storage media, such as a compact disk, can produce errors
that come in clusters. Some of the codes designed to correct errors of these types, known
as burst errors, are Reed Solomon codes (§14.3.7), interleaved Reed-Solomon codes (see
[Vava89] for more information) and fire codes (see [Bl83]).

Examples:
1. The code produced by adding a parity check bit to each bit string of length n can
detect a single error. (It detects an odd number of errors, but not an even number of
errors; no error correction is possible using this code.) For example, suppose the bit
string 0111 is received where the code word sent is a bit string of length three with a
parity check bit added. Since 0111 contains three 1s, it cannot be a codeword. Hence,
an error was made in transmission. This error cannot be corrected. To see this, note
that if exactly one bit error was made in the transmission, any of the codewords 0110,
0101, 0011, and 1111 could have been sent.
2. C = {0100011, 1010101, 1101111} is a [7, 3, 3]-code over the binary alphabet. The
information rate of C is R = log2 3

7 ≈ 0.226.
3. The binary repetition code of length n is the code C = {00 . . . 0, 11 . . . 1}. The code
has distance n, and so can correct

⌊
n−1

2

⌋
errors. If used only for error detection, then C

can detect n−1 errors. Although the error-correcting capabilities of C are very good,
its information rate R = 1

n is very poor.

14.2.2 MAXIMUM LIKELIHOOD DECODING

Definitions:

Suppose C is an [n, M, d]-code. Different decoding schemes can be used to recover a
codeword from a transmitted bit string received with possible errors. These schemes
include the following:

•Minimum Error Probability Decoding (MED): If an n-tuple r is received,
then correct r to a codeword c for which the conditional probability P (c is sent
| r is received), c ∈ C, is largest.

•Incomplete Maximum Likelihood Decoding (IMLD): If an n-tuple r is
received, and there is a unique codeword c ∈ C such that d(r, c) is a minimum,
then correct r to c. If no such c exists, then report that errors have been
detected, but no correction is possible.

•Complete Maximum Likelihood Decoding (CMLD): If an n-tuple r is
received, and there is a unique codeword c ∈ C such that d(r, c) is a minimum,
then correct r to c. Otherwise, arbitrarily select one of the codewords c ∈ C
that is the closest to r, and correct r to c.
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Facts:
1. For any fixed probability distribution of the source messages, the probability of a
decoding error, given that an n-tuple r is received, is minimized by MED among all
decoding schemes.
2. MED has the disadvantage that the decoding algorithm depends on the probability
distribution of the source messages. The decoding strategy that is used in practice is
CMLD.
3. Suppose that the probability that a symbol is transmitted incorrectly in a q-ary
symmetric channel is p, where 0 < p < q−1

q . Let r be a received word and c1, c2 ∈ C

with d(c1, r) = d1 and d(c2, r) = d2. Let P (r | c) denote the probability that r is
received, given that c was sent. Then P (r | c1) ≤ P (r | c2) if and only if d1 ≥ d2.
4. CMLD chooses a codeword c for which the conditional probability P (r is received |
c is sent), c ∈ C, is largest.
5. If all source messages are equally likely, then CMLD performs in exactly the same
way as MED.

14.2.3 THE NOISY CHANNEL CODING THEOREM

Definitions:

Let C be an [n, M ]-code, each word occurring with equal probability. Let ri be the
probability of making an incorrect decision using complete maximum likelihood decoding
given that the ith codeword was transmitted. The error probability of the code C is
PC = 1

M

∑M
j=1 rj .

Let parameters n and M be fixed. Define P ∗(n, M, p) to be the smallest error proba-
bility PC of any [n, M ]-code using a BSC with symbol error probability p.

Facts:
1. Shannon’s noisy channel coding theorem: Let C(p) denote the capacity of a BSC
with symbol error probability p, and define the quantity Mn = 2�Rn�. If 0 < R < C(p),
then P ∗(n, Mn, p)→ 0 as n →∞.
2. By Shannon’s noisy channel coding theorem, arbitrarily reliable communication with
a fixed information rate is possible on a channel provided that the information rate is less
than the channel capacity. Unfortunately, all proofs of the theorem are non-constructive
and hence does specify how to construct such codes. Moreover, the good codes promised
by the theorem may have very large word lengths.

14.3 LINEAR CODES

Linear codes are an important type of codes with a particular type of structure. In
particular, a linear code is a code that is a subspace of a finite-dimensional vector space
over a finite field. The main advantages of using linear codes arise from the efficient
procedures for correcting errors. These procedures are based on matrix computations
that can be carried out easily and rapidly.
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14.3.1 INTRODUCTION

Definitions:

Let Fn
q denote the vector space of all n-tuples having components from the finite field Fq

(§5.6.3). The elements of Fn
q are called vectors or words.

An (n, k)-linear code C over Fq is a k-dimensional subspace of Fn
q over Fq. More

precisely, C is a linear block code, but the qualification “block” is generally omitted.
The code C is referred to as an (n, k, d)-code, where n is the length of the code, k is
the dimension of the subspace, and d is the distance.

The Hamming weight of a word v ∈ FN
q is the number of nonzero coordinates in v.

Let C be an (n, k)-code over Fq. A generator matrix G for C is a k× n matrix with
entries from Fq whose rows form a basis for C.

If an (n, k)-code C has a generator matrix of the form G = [Ik |A], then C is called a
systematic code, and the generator matrix G is said to be in standard form.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors in Fn
q . The inner

product of x and y is the field element x ◦ y =
∑n

i=1 xiyi. If x ◦ y = 0, x and y are
orthogonal.

Let C be an (n, k)-code over Fq. The orthogonal complement of C, denoted C⊥

(read “C perp”), is the set of vectors orthogonal to every vector in C:
C⊥ = {x ∈ Fn

q | x ◦ y = 0 for all y ∈ C }.
C⊥ is usually called the dual code of C.

A parity check matrix for an (n, k)-code C is a generator matrix for C⊥.

A linear code C is self-orthogonal if C ⊆ C⊥. It is self-dual if C = C⊥.

Facts:

1. Round parentheses (used to denote an (n, k)-code or an (n, k, d)-code) denote that a
code is linear, while square brackets (used to denote an [n, M ]-code or an [n, M, d]-code
as defined in §14.2.1) are used for all codes, linear or not.

2. An (n, k)-code over Fq, the finite field of q elements, is an [n, qk]-block code.

3. The information rate of an (n, k)-code is R = k
n .

4. The distance of a linear code C is the minimum Hamming weight of a nonzero vector
in C.

5. A linear code is often described by its generator matrix.

6. A linear code can have many different generator matrices.

7. If G is a generator matrix for a code, then any matrix obtained from G by applying
a sequence of elementary row operations is also a generator matrix for that code.

8. Let C be an (n, k)-code over Fq. Then there exists an equivalent code C ′ with
generator matrix [Ik |A], where Ik is the k × k identity matrix, and A is a k × (n− k)
matrix with entries from Fq.

9. If G is a generator matrix for an (n, k)-code C, then C = {mG | m ∈ F k
q }. The

source messages can be taken to be the elements of F k
q , and hence encoding is simply

multiplication by G. Systematic codes are advantageous because if G is in standard
form and c = mG is the codeword corresponding to a message m, then the first k
components of c are identically m.
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Algorithm 1: Constructing a parity check matrix H from a generator
matrix G.

G′ := the reduced row echelon form of G {use elementary row operations }
A := the k × (n− k) matrix obtained from G′ by deleting the leading columns

of G′

H := the (n− k)× n matrix H obtained by placing, in order, the rows of −A in
the columns of H which correspond to the leading columns of G′, and
placing in the remaining n− k columns of H, in order, the columns of the
(n− k)× (n− k) identity matrix In−k

10. If C is an (n, k)-code over Fq, then C⊥ is an (n, n− k)-code over Fq.
11. If C is an (n, k)-code over Fq, then the dual code of C⊥ is C itself.
12. An interesting and useful way to describe an (n, k)-code is in terms of C⊥.
13. There are many important special types and families of linear codes, including
Hamming codes (§14.3.4), Golay codes (§14.4.2), Reed-Muller codes (see Chapter 4 in
[Vava89] for details) and cyclic codes (§14.3.5). Among cyclic codes, BCH codes form
an important class (§14.3.6) and among BCH codes there is an important class of codes
known as Reed-Solomon codes (§14.3.7).
14. Reed-Muller codes were used by the Mariner 9 spacecraft on its mission to Mars.
A Golay code was used by the Voyager 2 on its mission to Jupiter and Saturn. A Reed-
Solomon code was used by the Voyager 2 on its mission to Uranus. (See [Vava89] for
more details on these applications.)
15. Algorithm 1 uses linear algebra to construct a parity check matrix for a linear code
from a generator matrix.
16. Parity check matrices: Let C be an (n, k)-code over Fq with a generator matrix G,
and let H be a parity check matrix for C.

• A vector x ∈ Fn
q belongs to C if and only if xHT = 0; it follows that GHT = 0.

• If G = [Ik |A] is a generator matrix for C, then H = [−AT | In−k] is a parity
check matrix for C.

• C has distance at least s if and only if every set of s−1 columns of H are linearly
independent over Fq; in other words, the distance of C is equal to the smallest
number of columns of H that are linearly dependent over Fq

17. Let C be an (n, k)-code with generator matrix G. C is self-orthogonal if and only
if GGT = 0.
18. Let C be an (n, k)-code with generator matrix G. C is self-dual if and only if it is
self-orthogonal and k = n

2 (and hence n is even).

Examples:
1. Let C be a binary (7, 4)-code with generator matrix

G =




0 0 1 0 1 0 1
1 1 0 0 1 0 1
0 0 1 0 0 1 1
1 1 1 0 1 1 1


 .
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Elementary row operations yields the reduced row echelon form of G:

G′ =




1 1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1


.

The leading columns of G′ are columns 1, 3, 5 and 7, and

A =




1 0 1
0 0 1
0 0 1
0 0 0


 .

Hence, the following parity check matrix is obtained

H =


 1 1 0 0 0 0 0

0 0 0 1 0 0 0
1 0 1 0 1 1 0


.

2. The extended Hamming code of order 3 is a binary (8, 4, 4)-code with generator
matrix

G =




1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 1 1 1 0


.

The code is self-dual since GGT = 0.

14.3.2 SYNDROME DECODING

Syndrome decoding is a general decoding technique for linear codes that is useful if the
information rate of the code is high. Let C be an (n, k, d)-code over Fq with parity
check matrix H.

Definitions:

For any x ∈ Fn
q , the coset of C determined by x is the set C + x = { c + x | c ∈ C }.

For any x ∈ Fn
q , the syndrome of x is the vector xHT .

A coset leader of a coset of C is one of the coset members of smallest weight.

Facts:

1. The coset determined by 0 is C.

2. For all x ∈ Fn
q , x ∈ C + x.

3. For all x, y ∈ Fn
q , if y ∈ C + x, then C + y = C + x, that is, each word in a coset

determines that coset.

4. The cosets of C partition Fn
q into qn−k cosets, each of size qk.

5. A syndrome is a vector of length n− k.

6. Two vectors x1 and x2 ∈ Fn
q are in the same coset of C if and only if they have the

same syndrome, that is, x1HT = x2HT .

7. A vector x ∈ Fn
q is a codeword if and only if its syndrome is 0.
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Algorithm 2: Syndrome decoding for linear codes.

precomputation: set up a one-to-one correspondence between coset leaders and
syndromes; let r be a received word and H the parity check matrix.

compute the syndrome s = rHT of r
find the coset leader e associated with s
correct r to r − e

8. Suppose that a codeword c is transmitted and r is received. If e = r − c, then
rHT = eHT , which means that the error-vector is in the same coset as the received
word. By maximum likelihood decoding, the decoder should choose a vector of smallest
weight in this coset as the error vector.
9. The fact that there is a one-to-one correspondence between syndromes and coset
leaders leads to syndrome decoding , a decoding algorithm for linear codes, which is
described as Algorithm 2.

Example:
1. Consider the binary (5, 2)-code C with generator matrix

G =
(

1 0 0 0 1
0 1 1 1 1

)
and parity check matrix

H =


 0 1 1 0 0

0 1 0 1 0
1 1 0 0 1


.

The 8 cosets of C are
{00000, 10001, 01111, 11110} {10000, 00001, 11111, 01110}
{01000, 11001, 00111, 10110} {00100, 10101, 01011, 11010}
{00010, 10011, 01101, 11100} {11000, 01001, 10111, 00110}
{10100, 00101, 11011, 01010} {01100, 11101, 00011, 10010}

.

The following is a list of coset leaders and their syndromes:
coset leader 00000 10000 01000 00100 00010 11000 10100 01100

syndrome 000 001 111 100 010 110 101 011

If the word r = 01101 is received, compute the syndrome 01101 · HT = 010, which
corresponds to a coset leader e = 00010. Hence, r is corrected to r − e = 01111.

14.3.3 CONSTRUCTING NEW CODES FROM OLD

There are several methods for modifying a linear code to produce a new linear code.
Some of these methods are extending a code, puncturing a code, and shortening a code.

Definitions:

If C is a linear code of length n over the field Fq, then the extended code C of C

is C = { (c1, c2, . . . , cn, cn+1) | (c1, c2, . . . , cn) ∈ C,
∑n+1

i=1 ci = 0 }. The symbol cn+1 is
called the overall parity check symbol.

If C is a linear code over Fq, the code obtained by removing any column of a generator
matrix of C is called a punctured C, denoted C∗.
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If C is a linear code of length n, a shortened code C ′ of C is a linear code of length
n− 1 which equals the set of all codewords in C having 0 in a fixed coordinate position,
with that position deleted.

Facts:
1. If C is an (n, k, d)-code over Fq with generator matrix G and parity check matrix H,
then:

• C is an (n + 1, k, d)-code over Fq;

• if C is a binary code, then d =
{

d, if d is even
d + 1, if d is odd;

• a generator matrix for C is G, which is obtained by adding a column to G in such
a way that the sum of the elements of each row of G is 0;

• a parity check matrix for C is H, where H =




1 1 1 1 · · · 1
0

H 0
...
0


.

2. Puncturing a code is the reverse process to extending a code.
3. If C is an (n, k, d)-code over Fq, then C∗ is a linear code over Fq of length n−1,
dimension k or k−1, and distance d or d−1.
4. If C is an (n, k, d)-code over Fq, k ≥ 2, and C has at least one codeword for which
the deleted position has a nonzero entry, then C ′ is an (n− 1, k− 1, d′)-code over Fq,
with d′ ≥ d.

14.3.4 HAMMING CODES

Definition:

A Hamming code of order r over Fq, denoted Hr(q), is an (n, k)-code where n = qr−1
q−1

and k = n− r, with a parity check matrix whose columns are nonzero and such that no
two columns are scalar multiples of each other.

Facts:
1. A decoding algorithm for Hamming codes is shown in Algorithm 3.
2. In the binary case (q = 2), the Hamming code Hr(2) has a parity check matrix
whose columns consist of all nonzero binary vectors of length r, each used exactly once.
3. Hr(q) has distance 3, and so is a 1-error correcting code.
4. Any two binary Hamming codes of order r are equivalent.
5. Hr(q) is a perfect code (§14.4.2).

Example:
1. Consider H3(2), the binary Hamming code of order 3. The code has length n = 7
and dimension k = 4, and a parity check matrix is

H =


 1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1


 .

If the received word is r = 1011101, compute the syndrome s = 1011101 · HT = 001,
which is the third column of H. Hence e = 0010000, and correct r to 1001101.
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Algorithm 3: Decoding algorithm for Hamming codes.

H := a parity check matrix for a Hamming code Hr(q)
r := a received word
compute the syndrome s = rHT of r
if s = 0 then accept r as the transmitted word
else

compare sT with the columns of H
if sT = αhi (where hi is the ith column of H) and α ∈ Fq then

the error vector e is the vector with α in position i and 0s elsewhere
correct r to c = r − e

14.3.5 CYCLIC CODES

Definitions:

A linear code C of length n is cyclic if whenever (a0, a1, a2, . . . , an−1) is a codeword
in C, then the cyclic shift (an−1, a0, a1, . . . , an−2) is also a codeword in C.

Let g(x) be a polynomial in Fq[x]/(xn− 1). The ideal generated by g(x), namely
{ a(x)g(x) | a(x) ∈ Fq[x]/(xn− 1) }, is called the code generated by g(x), and de-
noted 〈g(x)〉.
Let C be a nonzero cyclic code in Fq[x]/(xn− 1). A monic polynomial g(x) of least
degree in C is called a generator polynomial of C.

The polynomial h(x) =
xn − 1
g(x)

is called the check polynomial of C.

Let H be a parity check matrix for a cyclic code. If r is a received word, the syndrome
polynomial of r is the polynomial s(x) corresponding to the syndrome s = rHT .

Facts:

1. The study of cyclic codes is facilitated by the attachment of some additional algebraic
structure to the vector space Fn

q .

2. If the vector (a0, a1, a2, . . . , an−1) in Fn
q is identified with the polynomial a0 +a1x+

a2x2 + · · ·+ an−1xn−1, then:

• the ring Fq[x]/(xn− 1) can be viewed as a vector space over Fq;

• the vector spaces Fn
q and Fq[x]/(xn− 1) are isomorphic;

• multiplication of a polynomial in Fq[x]/(xn− 1) by x corresponds to a cyclic shift
of the corresponding vector;

• a linear code C in the vector space Fn
q is cyclic if and only if C is an ideal in the

ring Fq[x]/(xn− 1).

3. An ideal may contain many elements which will generate the ideal. One of these
generators is singled out as the generator.
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4. If g(x) is a generator polynomial of a cyclic code C, then g(x) generates C; that is,
〈g(x)〉 = C.

5. The following are consequences of the fact that the ring Fq[x]/(xn− 1) is a principal
ideal domain (§5.4.5). Here C is a nonzero cyclic code in Fq[x]/(xn− 1) with generator
polynomial g(x).

• the generator polynomial of C is unique;
• g(x) divides xn − 1 in Fq[x];
• if the degree of g(x) is n−k, that is, g(x) = g0 +g1x+g2x2 + · · ·+gn−kxn−k (and

gn−k = 1), then a basis for C is {g(x), xg(x), x2g(x), . . . , xk−1g(x)}; hence C
has dimension k and a generator matrix for C is


g0 g1 g2 · · · · · · gn−k 0 0 · · · 0
0 g0 g1 · · · · · · gn−k−1 gn−k 0 · · · 0
0 0 g0 · · · · · · gn−k−2 gn−k−1 gn−k · · · 0
...

...
. . . . . . . . . . . .

...
0 0 · · · 0 g0 · · · · · · gn−k


.

6. Any c(x) ∈ C can be written uniquely as c(x) = f(x)g(x) in the ring Fq[x], where
f(x) ∈ Fq[x] has degree less than k. Hence, encoding a message polynomial f(x) consists
simply of polynomial multiplication by g(x).

7. The dual code C⊥ is also cyclic.

8. Let h(x) = h0 + h1x + h2x2 + · · · + hkxk =
xn − 1
g(x)

in Fq[x]. Then the reciprocal

polynomial h∗(x) = xkh( 1
x ) of h(x) is a generator of C⊥. (In fact, ( 1

h0
)h∗(x) is the

generator polynomial of C⊥.) Hence, a parity check matrix for C is


hk hk−1 hk−2 · · · · · · h0 0 0 · · · 0
0 hk hk−1 · · · · · · h1 h0 0 · · · 0
0 0 hk · · · · · · h2 h1 h0 · · · 0
...

...
. . . . . . . . . . . .

0 0 · · · 0 hk · · · · · · h0


.

9. A cyclic code of length n over Fq is characterized by its generator polynomial.

10. There is a one-to-one correspondence between cyclic codes in Fn
q and monic poly-

nomials in Fq[x] which divide xn − 1.

11. Table 1 gives the complete factorization of xn − 1 over F2 for some small values of
odd n.

12. If C is an (n, k)-cyclic code generated by g(x), then another parity check matrix
for C is the matrix H whose ith column is xi mod g(x), for i = 0, 1, . . . , n− 1.

13. If r(x) is the polynomial corresponding to the received word r, then the syndrome
polynomial of r is simply s(x) = r(x) mod g(x).

Example:

1. Over F2, the factorization of x7 − 1 is x7 − 1 = (1 + x)(1 + x + x3)(1 + x2 + x3).
The monic divisors of x7 − 1 are:
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Table 1 Factorization of xn − 1 over F2, n odd, 1 ≤ n ≤ 31.

n factorization of xn − 1 over F2

1 1 + x

3 (1 + x)(1 + x + x2)
5 (1 + x)(1 + x + x2 + x3 + x4)
7 (1 + x)(1 + x + x3)(1 + x2 + x3)
9 (1 + x)(1 + x + x2)(1 + x3 + x6)

11 (1 + x)(1 + x + x2 + · · ·+ x10)
13 (1 + x)(1 + x + x2 + · · ·+ x12)
15 (1 + x)(1 + x + x2)(1 + x + x2 + x3 + x4)(1 + x + x4)(1 + x3 + x4)
17 (1 + x)(1 + x + x2 + x4 + x6 + x7 + x8)(1 + x3 + x4 + x5 + x8)
19 (1 + x)(1 + x + x2 + · · ·+ x18)
21 (1 + x)(1 + x + x2)(1 + x2 + x3)(1 + x + x3)(1 + x2 + x4 + x5 + x6)

(1 + x + x2 + x4 + x6)
23 (1 + x)(1 + x + x5 + x6 + x7 + x9 + x11)(1 + x2 + x4 + x5 + x6 + x10 + x11)
25 (1 + x)(1 + x + x2 + x3 + x4)(1 + x5 + x10 + x15 + x20)
27 (1 + x)(1 + x + x2)(1 + x3 + x6)(1 + x9 + x18)
29 (1 + x)(1 + x + x2 + · · ·+ x28)
31 (1 + x)(1 + x2 + x5)(1 + x3 + x5)(1 + x + x2 + x3 + x5)(1 + x + x2 + x4 + x5)

(1 + x + x3 + x4 + x5)(1 + x2 + x3 + x4 + x5)

g1(x) = 1
g2(x) = 1 + x

g3(x) = 1 + x + x3

g4(x) = 1 + x2 + x3

g5(x) = (1 + x)(1 + x + x3) = 1 + x2 + x3 + x4

g6(x) = (1 + x)(1 + x2 + x3) = 1 + x + x2 + x4

g7(x) = (1 + x + x3)(1 + x2 + x3) = 1 + x + x2 + x3 + x4 + x5 + x6

g8(x) = 1 + x7

The polynomial g5(x) generates the binary (7, 3)-cyclic code

C = {0000000, 1011100, 0101110, 0010111, 1001011, 1100101, 1110010, 0111001}.
A generator matrix for C is

G =


 1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1


.

A parity check matrix for C is

H =




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


.
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Algorithm 4: Decoding algorithm for BCH codes.

Suppose a codeword c is transmitted and r is received.
Compute Sj = r(βa+j) for j = 0, 1, . . . , δ − 2, and form the polynomial S(z) =∑δ−2

j=0 Sjz
j .

Use the extended Euclidean algorithm to calculate the greatest common divisor
of S(z) and zδ−1 in the ring Fqm [z]; stop as soon as the remainder ri(z)
has degree < δ−1

2 ; this yields polynomials si(z) and ti(z) such that
si(z)zδ−1 + ti(z)S(z) = ri(z); σ(z) := ti(z); w(z) := ri(z)

Find B, the set of roots of σ(z) in Fqm {the roots will actually lie in the
subgroup of F ∗

qm generated by β}
For each γ ∈ B, set Eγ = −γ−1w(γ)

σ′(γ) , where σ′(z) denotes the formal derivative
of σ(z).

The error vector is e = (e0, e1, . . . , en−1), where ei =
{

0, if β−i 
∈B,
Eγ , if β−i = γ ∈ B

decode r to r − e

{it is assumed that the number of errors is l ≤ � δ−1
2 �; if the number of errors is

such, then the decoding is correct}
{there are more efficient ways of obtaining σ(z) and w(z) than by using the

Euclidean algorithm, for example by using the Berlekamp-Massey algorithm
(see [MevaVa96])}

14.3.6 BCH CODES

Definitions:

Let β be a primitive nth root of unity in an extension field of Fq. Let g(x) be the least
common multiple of the minimal polynomials over Fq of βa, βa+1, . . . , βa+δ−2 where a is
an integer. The cyclic code of length n over Fq with generator polynomial g(x) is called a
BCH code (after its discoverers: R. C. Bose, D. Ray-Chaudhuri, and A. Hocquenghem)
with designed distance δ.

If a = 1 in the definition of a BCH code, the code is called narrow-sense. If n = qm−1
for some positive integer m (that is, β is primitive in Fqm), the code is primitive.

Facts:

1. BCH codes are special types of cyclic codes, discovered by A. Hocquenghem in 1959
and independently by R. C. Bose and D. K. Ray-Chaudhuri in 1960.

2. BCH bound: Let C be a BCH code over Fq with designed distance δ. Then C has
distance at least δ.

3. Algorithm 4 is one method for decoding BCH codes. In the algorithm, g(x) be
a generator polynomial for a BCH code over Fq of designed distance δ and length n.
Hence g(x) = lcm{mi(x) | a ≤ i ≤ a + δ − 2 }, where mi(x) is the minimal polynomial
of βi over Fq, and β is a primitive nth root of unity in an extension field Fqm .
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Table 2 Elements of F33 as powers of α, where α is a root of f(x) = 1+2x2 +x3.

i αi i αi i αi

0 1 9 2 + 2α + 2α2 18 1 + α
1 α 10 1 + 2α + α2 19 α + α2

2 α2 11 2 + α 20 2 + 2α2

3 2 + α2 12 2α + α2 21 1 + 2α + 2α2

4 2 + 2α + α2 13 2 22 1 + α + α2

5 2 + 2α 14 2α 23 2 + α + 2α2

6 2α + 2α2 15 2α2 24 1 + 2α
7 1 + α2 16 1 + 2α2 25 α + 2α2

8 2 + α + α2 17 1 + α + 2α2

Examples:

1. Consider the finite field F33 generated by a root α of the primitive polynomial
f(x) = 1 + 2x2 + x3 ∈ F3[x]. A table of powers of α is given in Table 2.

The element β = α2 is a primitive 13th root of unity in F33 . If mi(x) denotes the
minimal polynomial of βi over F3, then

m0(x) = 2 + x

m1(x) = 2 + 2x + 2x2 + x3

m2(x) = 2 + 2x + x3

m4(x) = 2 + x + 2x2 + x3

m7(x) = 2 + x2 + x3.

Since m1(x) = m3(x), the polynomial
g(x) = lcm(m0(x), m1(x), m2(x), m3(x)) = m0(x)m1(x)m2(x)

has among its roots the elements β0, β1, β2, and β3. Hence g(x) is a generator polyno-
mial for a BCH code over F3 of designed distance δ = 5 and length n = 13.

2. Using the BCH code in Example 1, suppose that the decoder received the word
r = (220 021 110 2110). The following steps follow Algorithm 4 to decode r:

•Compute S0 = r(β0) = 1, S1 = r(β1) = α14, S2 = r(β2) = α23, and S3 = r(β3) =
α16. This gives S(z) = 1 + α14z + α23z2 + α16z3.

•Applying the extended Euclidean algorithm in F33 [z] to S(z) and z4 yields:

i si(z) ti(z) ri(z) deg ri(z)

−1 1 0 z4 4
0 0 1 1 + α14z + α23z2 + α16z3 3
1 1 α17 + α23z α17 + α16z + α13z2 2
2 α3 + α16z α15 + α3z + α13z2 α15 + α16z 1

Stop, since deg(r2(z)) < δ−1
2 = 2. Hence σ(z) = α15 + α3z + α13z2 and

w(z) = α15 + α16z.
•By trying all possibilities, find that the set of roots of σ(z) is B = {β5, β9}.
•Compute Eβ5 = −β−5 w(β5)

σ′(β5) = 2, and Eβ9 = −β−9 w(β9)
σ′(β9) = 2.

•Hence, the error vector is e = (000 020 002 0000) and the word r is decoded to
(220 001 111 2110).
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14.3.7 REED-SOLOMON CODES

Definition:

A Reed-Solomon (RS) code is a primitive BCH code of length n = q − 1 over Fq.

Facts:
1. Reed-Solomon codes are special types of BCH codes, and hence they have the same
encoding and decoding algorithms.
2. Reed-Solomon codes are important because, for a fixed n and k, no linear code can
have greater distance.
3. Reed-Solomon codes are useful for correcting burst errors. (A binary burst of
length b is a bit string whose only nonzero entries are among b successive components,
the first and last of which are nonzero.)
4. A Reed-Solomon code was used to encode the data transmissions from the Voyager 2
spacecraft during its encounter with Uranus in January, 1986.
5. If C is an (n, k)-RS code over Fq with designed distance δ, then the generator
polynomial for C has the form g(x) = (x − βa)(x − βa+1) . . . (x − βa+δ−2), where β is
a primitive element of Fq.
6. If C is an (n, k)-RS code over Fq with designed distance δ, then the distance of C
is exactly δ.
7. Error correction in compact disks (developed by Philips and Sony) uses a code known
as the Cross-Interleaved Reed-Solomon Code (CIRC). The CIRC code is obtained by
cross-interleaving two Reed-Solomon codes, one a (28,24)-RS code and the other a
(32,28)-RS code. See [Vava89] for more information and further references.

Example:
1. Consider the finite field F5 generated by β = 2. Then g(x) = (x − β)(x − β2) =
(x− 2)(x− 4) = x2 + 4x + 3 generates a (4, 2)-RS code over F5 with distance δ = 4.

14.3.8 WEIGHT ENUMERATORS

Definitions:

Let C be an [n, M ]-code and let Ai be the number of codewords of weight i in C, for
i = 0, 1, . . . , n. The vector (A0, A1, . . . , An) is called the weight distribution of C.

Let C be an (n, k)-code over Fq with weight distribution (A0, A1, . . . , An). The weight
enumerator of C is defined to be the polynomial WC(z) =

∑n
i=0 Aiz

i.

Facts:
1. Let C be an (n, k)-code over Fq, and let the symbol error probability on the q-ary
symmetric channel be p. If C is used only for error detection, then the probability of
an error going undetected is

∑n
i=0 Ai

(
p

q−1

)i(1− p)n−i.

2. MacWilliams identity : Let C be an (n, k)-code over Fq with dual code C⊥. Then
WC⊥(z) = 1

qk [1 + (q − 1)z]n WC

(
1−z

1+(q−1)z

)
.
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Examples:
1. The weight distribution of a binary Hamming code of length n satisfies the recurrence
A0=1, A1 = 0,

(i + 1)Ai+1 + Ai + (n− i + 1)Ai−1 =
(
n
i

)
, i ≥ 1.

2. The weight enumerator of the Golay code (§14.4.2) is 1+253z7 +506z8 +1288z11 +
1288z12 + 506z15 + 253z16 + z23.

14.4 BOUNDS FOR CODES

How many codewords can a code have if its codewords are n-tuples of elements of Fq

and it has distance d? Although this is a difficult question for all but special sets of
values of n, q, and d, there are several different useful bounds on M , the number of
codewords in the code. There are also special types of codes, called perfect codes, that
achieve the maximum number of codewords possible, given values of n, q, and d.

14.4.1 CONSTRAINTS ON CODE PARAMETERS

Definitions:

Let Aq(n, d) be the maximum M for which there exists an [n, M, d]-code over Fq. A
code that achieves this bound is called optimal.

Let Vq(n, d) be the number of words in Fn
q that have distance at most d from a fixed

word.

An (n, k, d)-code for which k = n − d + 1 is called a maximum distance separable
(MDS) code.

Facts:
1. Little is known about Aq(n, d) except for some specific values of q, n, and d.

2. For all n ≥ 1, Aq(n, 1) = qn and Aq(n, n) = q.

3. For all n ≥ 2, Aq(n, d) ≤ qAq(n− 1, d).

4. If d is even, then A2(n, d) = A2(n− 1, d− 1).

5. Vq(n, d) =
∑d

i=0

(
n
i

)
(q − 1)i.

6. Hamming bound (or sphere-packing bound): If t =
⌊
d−1
2

⌋
, Aq(n, d) ≤ qn

Vq(n,t) .

7. Singleton bound: Aq(n, d) ≤ qn−d+1. Hence, for any (n, k, d)-code over Fq, k ≤
n− d + 1.

8. Gilbert-Varshamov bound:

• Aq(n, d) ≥ qn

Vq(n,d−1) ;

• If Vq(n−1, d−2) < qn−k, then there exists an (n, k, d)-linear code over Fq; hence,
if k is the largest integer for which this inequality holds, then Aq(n, d) ≥ qk.
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9. For thirty years, the asymptotic version of the Gilbert-Varshamov bound (not dis-
cussed here) was believed to be the best possible lower bound for good codes. In 1982,
using some sophisticated ideas from algebraic geometry, it was proved that the Gilbert-
Varshamov bound can be bettered. A good survey of these results appears in [Va92].

10. Let C be an (n, k)-MDS code. If G is a generator matrix for C, then any k columns
of G are linearly independent.

11. If C is an (n, k)-MDS code, then C⊥ is also an MDS code.

12. Johnson bound: If d = 2t + 1, then

A2(n, d) ≤ 2n
t∑

i=0

(
n
i

)
+ 1

� n
t+1�

(
n
t

)(
n−t
t+1 −

⌊
n−t
t+1

⌋) .

This is an improvement of the Hamming bound (Fact 6) for binary codes.

Example:

1. The Reed-Solomon codes (§14.3.7) are MDS codes.

14.4.2 PERFECT CODES

Definitions:

An [n, M, d]-code over Fq is said to be perfect if it meets the Hamming bound, that is,
M = qn

Vq(n,t) , where t =
⌊
d−1
2

⌋
.

The binary Golay code is a (23, 12, 7)-code over F2 with generator matrix G =
[I12 |A], where

A =




1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1
0 1 1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 1 1
0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 1 1 1 0 0 0
0 1 1 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1




.

The ternary Golay code is an (11, 6, 5)-code over F3 = {0, 1, 2} with generator matrix
G = [I6 |B], where

B =




1 1 1 1 1
0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0


 .
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Facts:

1. A necessary condition for a code to be perfect is that d be odd.

2. The binary Golay code is a perfect code.

3. The extended binary Golay code is a (24, 12, 8)-code that is self-dual.

4. The ternary Golay code is a perfect code.

5. The set of all perfect codes over Fq, determined in 1973 by Aimo Tietäväinen,
consists of the following:

• the linear code consisting of all words in Fn
q ;

• the binary repetition codes of odd lengths;
• the Hamming codes and all codes of the same parameters as them;
• the binary Golay code and all codes equivalent to it;
• the ternary Golay code and all codes equivalent to it.

6. There do exist perfect codes with the same parameters as the Hamming codes, but
which are not equivalent to them.

14.5 NONLINEAR CODES

Although linear codes are studied and used extensively, there are several important
types of nonlinear codes. In particular, there are nonlinear codes with efficient encoding
and decoding algorithms, as well as nonlinear codes that are important for theoretical
reasons.

14.5.1 NORDSTROM-ROBINSON CODE

Definitions:

Permute the coordinates of the extended binary Golay code so that one of the weight 8
codewords is 1111111100 . . . 0, and call this new code C ′. For each of the 8-bit words
00000000, 10000001, 01000001, 00100001, 00010001, 00001001, 00000101, 00000011,
there are exactly 32 codewords in C ′ that begin with that word. The extended
Nordstrom-Robinson code is the code whose codewords are obtained from these 256
words by deleting the first 8 coordinate positions. The Nordstrom-Robinson code
is obtained by puncturing the last digit of the extended Nordstrom-Robinson code.

Facts:

1. The extended Nordstrom-Robinson code is a binary [16, 256, 6]-nonlinear code.

2. The Nordstrom-Robinson code is a binary [15, 256, 5]-nonlinear code.

3. The Johnson bound (§14.4.1, Fact 12) yields A2(15, 5) ≤ 256, and hence it follows
that A2(15, 5) = 256. On the other hand, it has been proved that no linear code of
length 15 and distance 5 has more codewords than the binary 2-error correcting BCH
code, which has 128.
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14.5.2 PREPARATA CODES

Definitions:

The Preparata codes are an infinite family of nonlinear codes that have efficient
encoding and decoding algorithms. Let β be a primitive element of F2m , and label the
elements of F2m as αi = βi, 0 ≤ i ≤ 2m − 2, and α2m−1 = 0. For a subset X ⊆ F2m ,
let χ(X) denote the characteristic vector of X; that is, χ(X) is a binary vector of
length 2m whose ith coordinate is 1 if αi ∈ X and 0 otherwise, for each 0 ≤ i ≤ 2m− 1.

If m ≥ 3 is odd, the extended Preparata code P (m) is the set of words of the form
(χ(X), χ(Y )), where X and Y are subsets of F2m such that:

• |X| and |Y | are even;
•

∑
x∈X x =

∑
y∈Y y;

•
∑

x∈X x3 +
(∑

x∈X x
)3 =

∑
y∈Y y3.

The Preparata code P (m) is obtained from P (m) by puncturing the coordinate cor-
responding to the field element 0 in the first half of each codeword.

Facts:

1. If m ≥ 3 is odd, then P (m) is a binary nonlinear code with parameters n = 2m+1,
M = 22m+1−2m−2, d = 6.

2. If m ≥ 3 is odd, then P (m) is a binary nonlinear code with parameters n = 2m+1−1,
M = 22m+1−2m−2, d = 5.

3. P (3) is the same as the Nordstrom-Robinson code.

4. The Preparata codes can be viewed as linear codes over Z4.

14.6 CONVOLUTIONAL CODES

Convolutional codes are a powerful class of error-correcting codes. They work differently
than block codes do. Instead of grouping message symbols into blocks for encoding,
check digits are interwoven within streams of information symbols. Convolutional codes
can be considered to have memory, since n symbols of information are encoded using
these n symbols and previous information symbols.

14.6.1 BACKGROUND

Definitions:

The figure in §14.1.1 can be used to distinguish two approaches to decoding. For a hard
decision decoder, the demodulator maps received coded data symbols into the set of
transmitted data symbols (for example, 0 and 1). In contrast, the demodulator of soft
decision decoders may pass extra information to the decoder (for example, 3 bits of
information for each received channel data symbol, indicating the degree of confidence
in its being a 0 or a 1).
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Facts:

1. Convolutional codes were introduced by P. Elias in 1955, and are widely used in
practice today.

2. Convolutional codes are used extensively in radio and satellite links and have been
used by NASA for deep-space missions since the late 1970s.

3. There are linear codes that differ from block codes in that the codewords do not
have constant length.

4. Convolutional codes also differ from block codes in that the n-tuple produced by an
encoder depends not only on the message k-tuple u, but also on some message k-tuples
produced prior to u; that is, the encoder has memory.

5. Soft decision decoding typically allows performance improvements.

6. Hard and soft decision techniques can be used in both block and convolutional
codes, although soft decision techniques can typically be used to greater advantage in
convolutional codes.

7. Theoretical results, particularly with respect to BCH codes, position block codes as
superior to convolutional codes.

8. The minimum distances of BCH codes are typically much larger than the corre-
sponding free distances (§14.6.3) of comparable convolutional codes.

9. Decoding techniques for block codes are generally applicable only to q-ary (or binary)
symmetric channels, which are an appropriate model for only a relatively small fraction
of channels that arise in practice.

10. Efficient decoding of BCH codes requires hard-decision decoding, which suffers
information loss relative to soft-decision strategies, precipitating a performance penalty.
The resulting performance of the BCH decoder is significantly inferior to that for a
comparable convolutional code, despite the BCH codes being inherently more powerful.
Consequently, convolutional codes are used in a majority of practical applications, due
to their relative simplicity and performance, and the large number of communication
channels which benefit from soft decoding techniques.

11. A recently developed classes of codes, known as turbo codes, are built using con-
volutional codes. The basic idea behind a turbo encoder is to combine two simple
convolutional encoders. Input to the encoder is a block of bits. The two constituent
encoders generate parity bits and the information bits are sent unchanged. The key
innovation is an interleaver, which permutes the original information bits before they
are provided as input to the second encoder. The permutation causes input sequences
which produce low-weight codewords for one encoder to generally produce high-weight
codewords for the other encoder. See [HeWi99] for information on turbo codes.

12. A good starting point for information on turbo codes is the JPL Turbo Codes Web
page:

http://www331.jpl.nasa.gov/public/JPLtcodes.html

Example:

1. In the simplest version of soft decision decoding, known as the binary erasure channel
(and usually classified as a hard-decision technique), the demodulator output is one
of three values: 0, 1, or “erasure” (indicating that neither a 0 nor a 1 was clearly
recognized).
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14.6.2 SHIFT REGISTERS

Definitions:

An m-stage shift register is a hardware device that consists of m delay elements
(or flip-flops), each having one input and one output, and a clock which controls the
movement of data. During each unit of time, the following operations are performed:

• a new input bit and the contents of some of the delay elements are added modulo 2
to form the output bit;

• the content of each delay element (with the exception of the last delay element)
is shifted one position to the right;

• the new input bit is fed into the first delay element.

The generator of an m-stage shift register is a polynomial g(x) = 1 + g1x + g2x2 +
· · ·+ gmxm ∈ F2[x], where gi = 1 if the contents of the ith delay element is involved in
the modulo 2 sum that produces the output, and 0 otherwise.

Fact:

1. Assume that the initial contents of a shift register are all 0s. Suppose that a shift
register has generator g(x). Let the input stream u0, u1, u2, . . . be described by the
formal power series u(x) = u0 +u1x+u2x2 + · · · over F2. (If the input stream is finite of
length t, let ui = 0 for i ≥ t.) Similarly, let the output stream c0, c1, c2, . . . be described
by the formal power series c(x) = c0 + c1x + c2x2 + · · · over F2. Then c(x) = u(x)g(x).

Examples:

1. Shift-example: Suppose that the delay elements of the 4-stage shift register in the
following figure initially contain all 0s:

If the input stream to the register is 11011010 (from left to right), the updated contents
of the delay elements and the output bits are summarized in the following table:

time input D1 D2 D3 D4 output

0 – 0 0 0 0 –
1 1 1 0 0 0 1
2 1 1 1 0 0 0
3 0 0 1 1 0 1
4 1 1 0 1 1 1
5 1 1 1 0 1 1
6 0 0 1 1 0 0
7 1 1 0 1 1 1
8 0 0 1 0 1 0

2. The generator of the shift register in Example 1 is g(x) = 1 + x + x4.
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14.6.3 ENCODING

Note: Throughout this subsection assume that the initial contents of a shift register
are all 0s.

Definitions:

An (n, 1, m)-convolutional code with generators g1(x), g2(x), . . . , gn(x) ∈ F2[x] (m =
max(deg gi(x))) consists of all codewords of the form c(x) = (c1(x), c2(x), . . . , cn(x)),
where ci(x) = u(x)gi(x), and u(x) = u0 + u1x + u2x2 + · · · represents the input stream.
The system memory of the code is m.

A convolutional code is catastrophic if a finite number of channel errors can cause an
infinite number of decoding errors.

The rate of an (n, k, m)-convolutional code is k
n .

The free distance dfree of a convolutional code is the minimum weight of all nonzero
output streams.

Facts:

1. A convolutional code is linear.

2. Convolutional codes are not block codes since the codewords have infinite length.
They are, however, similar to block codes, and in fact can be viewed as block codes over
certain infinite fields.

3. An (n, 1, m)-convolutional code can be described by a single shift register with n
outputs, where ci(x) is the output of the single-output shift register with generator gi(x)
when u(x) is the input. In practice, c1(x), c2(x), . . . , cn(x) are interleaved to produce
one output stream.

4. Let C be an (n, 1, m)-convolutional code with generators g1(x), g2(x), . . . , gn(x).
Let G(x) =

∑n
i=1 xi−1gi(xn). If the message is u(x), then the corresponding interleaved

codeword is c(x) = G(x)u(xn).

5. The Viterbi algorithm is a maximum likelihood decoding algorithm for convolutional
codes. See [LiCo83]. For an algebraic treatment of convolutional codes, see [Pi88].

6. If gcd(g1(x), g2(x), . . . , gn(x)) = 1 in F2[x] then C is not catastrophic.

7. An (n, k, m)-convolutional code can be described by k multi-output shift registers,
each of maximum length m. The message is divided into k streams, each stream being
the input to one of the k shift registers. There are n output streams, each formed using
some or all of the shift registers.

8. The free distance of a convolutional code is a measure of the error-correcting capa-
bility of the code, and is a concept analogous to the distance of a block code.

9. In contrast to block codes, there are few algebraic constructions known for convo-
lutional codes.

10. The convolutional codes used in practice are usually those found by a computer
search designed to maximize the free distance among all encoders with fixed parame-
ters n, k, and m. The following table lists the best codes with a rate of 1

2 (n = 2,
k = 1). The polynomials g1(x) and g2(x) are represented by their coefficients, from low
order to high order.
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m g1(x) g2(x) dfree

2 101 111 5
3 1101 1111 6
4 10011 11101 7
5 110101 101111 8
6 1011011 1111001 10
7 11100101 10011111 10
8 101110001 111101011 12
9 1001110111 1101100101 12

10 10011011101 11110110001 14
11 100011011101 101111010011 15
12 1000101011011 1111110110001 16

Examples:

1. Consider the (2, 1, 3)-convolutional code with generators g1(x) = 1+x3 and g2(x) =
1 + x + x3. The code can be described by the shift register of the following figure. The
message u(x) = 1 + x3 + x4, corresponding to the bit string 10011, gets encoded to
c(x) = (u(x)g1(x), u(x)g2(x)) = (1+x4 +x6 +x7, 1+x+x5 +x6 +x7), or in interleaved
form to c = 11 01 00 00 10 01 11 11 00 00 00 . . . .

2. Suppose that the input stream contains an infinite number of 1s, and the output
stream has only finitely many 1s. If the channel introduces errors precisely in the
positions of these 1s, then the resulting all-zero output stream will be decoded by the
receiver to m(x) = 0.

3. The following figure is a shift register encoder for a (3, 2, 3)-convolutional code C.

If the input stream is u = 1011101101, it is first divided using alternating bits into 2
streams I1 = 11110 and I2 = 01011. The 3 output streams are c1 = 10010, c2 = 00011
and c3 = 01010, and the interleaved output is c = 100 001 000 111 010.
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14.7 BASICS OF CRYPTOGRAPHY

Protecting the secrecy of information goes back to ancient times. For example, the
ancient Romans used a secret code to send messages so the messages could not be read
by their enemies. In modern times, there is a constant need to protect information
from unauthorized access and from malicious actions. The science of cryptography is
devoted to methods that offer such protection. Sending secret messages, authenticating
messages, distributing secret keys, and sharing secrets are only some of the applications
addressed by modern cryptography.

14.7.1 BASIC CONCEPTS

Definitions:

Cryptography is the science and study of protecting data from malicious or unautho-
rized actions, including access to, manipulation, impersonation, and forgery.

Cryptanalysis is the use of mathematical, statistical, and other techniques to defeat
cryptographic protection mechanisms.

Cryptology is the study of both cryptography and cryptanalysis, although “cryptog-
raphy” is often used in place of “cryptology”.

A cipher is a method whereby a message in some source language (the plaintext) is
transformed by a mapping, called an encryption algorithm to yield an output, called
the ciphertext, which is unintelligible to all but an authorized recipient.

A recipient of an encrypted message is able to recover the plaintext from the ciphertext
by use of a corresponding decryption algorithm.

A key is a secret number or other significant information which parametrizes an en-
cryption or decryption algorithm.

The message space M is the set of all possible plaintexts, the ciphertext space C
consists of all possible ciphertexts, and the key space K consists of all possible keys.

An encryption algorithm E is a family of mappings parametrized by a key k ∈ K,
such that each value k defines a mapping Ek ∈ E , where E is the set of all invertible
mappings fromM to C. A specific plaintext message m is mapped by Ek to a ciphertext
c = Ek(m).

The set D of decryption algorithms consists of all invertible mappings from C back
to M, such that for each encryption key k ∈ K, there is some mapping D ∈ D such that
Df(k)(Ek(m)) = m for all m ∈ M, where f(k) is some key dependent on k and Df(k)

is the decryption algorithm corresponding to the decryption key f(k). For so-called
symmetric-key systems, this decryption key f(k) is equal to k itself.

Facts:

1. Useful books that cover cryptography include [BePi82], [Br88], [DaPr89], [De83],
[Ko94], [Sc96], [SePi89], [Si93], [St95], and [We88]. A comprehensive treatment can be
found in [MevaVa96].
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2. Useful Internet sites on cryptography include:

• A-Z Cryptology:
http://www.achiever.com/freehmpg/cryptology/crypto.html

• Cryptographic Software Archive:
ftp://ftp.funet.fi/pub/crypt

• Introduction to Cryptography:
http://www.cs.hut.fi/ssh/crypto/intro.html

• RSA Laboratories:
http://www.rsa.com/rsalabs

• Some Classic Ciphers:
http://rschp2.anu.edu.au:8080/cipher.html

3. Separating cryptography from cryptanalysis is, in fact, difficult, as the design of
secure cryptographic systems requires that all possible cryptanalytic attacks be taken
into account.

4. Cryptography differs from steganography in that while the former involves use of
techniques to secure data (for example, codes and ciphers), the latter involves the use of
techniques which obscure the existence of data itself (for example, invisible ink, secret
compartments, use of subliminal channels).

5. While falling under the broader category of communications security, cryptography
is generally concerned with the more mathematical details, rather than system-level
aspects such as traffic-flow analysis and electronic security aspects such as monitoring
electromagnetic emanations.

6. Cryptographic mechanisms can be used to support a number of fundamental security
services, including:

• privacy : preventing confidential data from being available in an intelligible form
to unauthorized parties;

• data integrity : detection of data manipulation by unauthorized parties (includ-
ing alteration, insertion, deletion, substitution, delay and replay); it should be
noted that encryption alone does not guarantee data integrity;

• authentication: corroboration that a party’s identity is as claimed (entity authen-
tication), or that the origin of data is as claimed (data origin authentication);
related to this is the assurance that data has not been subjected to unautho-
rized manipulation (cf. data integrity), possibly including assurances regarding
uniqueness and timeliness;

•non-repudiation: provision for the resolution of disputes related to digital sig-
natures; digital signatures can be used as the basis of authorization of certain
actions; disputes may occasionally arise subsequently due to either false denials
(repudiated signatures) or fraudulent claims (forged signatures).

In addition, entity authentication and/or data authentication may be the basis for
granting access to certain controlled resources. Access control mechanisms often rely
upon cryptographic support to restrict access (of information or other resources) to
authorized parties; access is generally granted upon proof of authorization, which may
be based on an entity’s identity or possession of anonymous tokens, either physical or
digital.
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7. The traditional objectives of privacy and authentication (although not both required
in all cases) lead to the following requirements for a cryptosystem:

• fundamental requirement: (to maintain secrecy of key) it should be infeasible
for an adversary to deduce the key k given one or more plaintext-ciphertext
pairs (m, c);

• privacy requirement: (to maintain confidentiality) it should be infeasible for an
adversary to deduce the plaintext m corresponding to any given ciphertext c;

• authentication requirement: (to prevent forgery or substitution) it should be
infeasible for an adversary to deduce a ciphertext c′ corresponding to any mes-
sage m′ of his choosing, or corresponding to any other (meaningful) message m.

In the encryption model above, the decryption mapping was such that Df(k)(Ek(m)) =
m, and it was stated that in symmetric-key systems the decryption key f(k) is the
same as (or easily computed from) the encryption key k. In their landmark 1976 paper,
W. Diffie and M. Hellman introduced the concept of public-key cryptosystems. Here
each user has his own pair of encryption and decryption keys (k, f(k)) where k 
= f(k),
with the property that it is infeasible for anyone to deduce f(k) from k. If the so-called
public key , k, of a user A is published, then anyone looking up that key can encrypt
a message for A, such that A alone, having knowledge of f(k), the private key , can
decrypt it. User A is able to compute both k and f(k) from another key k′.

8. A digital signature is intended to be the digital analogue of a handwritten signa-
ture; it should be a number dependent on some secret known only to the signer, and,
additionally, on the content of the message being signed.

9. Signatures must be verifiable in the sense that, should a dispute arise as to whether a
party signed a document (caused by either a lying signer trying to repudiate a signature
it did create, or a fraudulent claimant), an unbiased third party can resolve the matter
equitably, without requiring access to the signer’s secret information (private key).

10. Signatures must be easy for the signer to computer.

11. Signatures must be easy to verify by anyone.

12. The following describes the general method of constructing digital signatures: A
has a message m which it wishes to send to B. A sends to B the quantity Df(k)(m)
obtained by applying the decryption function. Then, upon reception, B can use A’s
public-key algorithm Ek to recover the message m = Ek(Df(k)(m)). (Here it is required
that for each k ∈ K, Df(k) is a mapping from M to C, Ek is a mapping from C to M,
and Ek is the inverse of Df(k).) Provided the message m recovered by B is meaningful
(e.g. contains a sufficient degree of redundancy — to ensure it is not simply the result
of applying Ek to a random quantity anyone might have generated), B has assurance
that the message is authentic and originated from A, since by assumption no one aside
from A knows or can feasibly compute A’s secret key f(k). Moreover, B can keep the
signature Df(k)(m) to prove to any third party, at a later point in time, that A actually
did send the message m; such a party would similarly uses A’s public key to recover m
as verification. This provides a digital analogue to handwritten signatures.

13. Digital signatures are also possible using symmetric-key techniques, but this gen-
erally requires use of an on-line trusted third party or new keying material for each
signature (one-time signature schemes). For these reasons, digital signatures based on
public-key cryptography are used in practice.
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14.7.2 SECURITY OF CRYPTOSYSTEMS

Definitions:

Adversaries are either passive or active. Passive adversaries are a threat to confiden-
tiality; they do not interrupt, alter or insert any transmitted or stored data. Active
adversaries additionally threaten integrity and authentication.

There are many models under which one can assume a cryptanalyst is able to attack a
cryptographic system. The following types of attack can be hypothesized for increasingly
powerful adversaries:

• ciphertext-only : the adversary has possession only of some ciphertext;
• known-plaintext: the adversary has some plaintext and its corresponding

ciphertext;
• chosen-plaintext: the adversary has some plaintext of his choosing, and its

corresponding ciphertext;
• chosen-ciphertext: the adversary has some ciphertext of his choosing, and its

corresponding plaintext.

The most stringent measure of the security of a cryptographic algorithm is uncon-
ditional security where an adversary is assumed to have unlimited computational
resources, and the question is whether there is enough information available to defeat
the system. Unconditional security for encryption systems is called perfect secrecy .

To measure an adversary’s uncertainty in the key after observing n ciphertext characters,
C. Shannon defined the key equivocation function Q(n) = H(K|C1C2 . . . Cn) and
defined the unicity distance of the cipher to be the first value n = n0 such that
Q(n) ≈ 0.

A cryptographic method is said to be provably secure if the difficulty of defeating it
can be shown to be essentially as difficult as (that is, polynomially equivalent to) solving
a well-known and supposedly difficult (typically number-theoretic) problem, such as
integer factorization or the computation of discrete logarithms. (Thus, “provable” here
means provable subject to as yet unproved assumptions.)

A proposed technique is said to be computationally secure if the (perceived) level of
computation required to defeat it exceeds, by a comfortable margin, the computational
resources of the hypothesized adversary.

Facts:
1. It is a standard cryptographic assumption that an adversary will have access to
ciphertext.
2. Kerckhoff’s assumption: The security of a system should rest entirely in the se-
cret key — the adversary is assumed to have complete knowledge of the rest of the
cryptographic mechanism(s).
3. In determining whether the security of a particular cryptosystem is adequate for a
particular application, the powers and resources of the anticipated adversary must be
taken into account. Potential adversaries may have powers ranging from minimal to
unlimited.
4. The security of a cryptographic algorithm can be measured according to several
different metrics, including unconditional security, provable security, and computational
security.
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5. Let M , C, and K be random variables ranging over the message spaceM, ciphertext
space C, and key space K. Unconditional security for encryption systems can be specified
by the condition H(M |C) = H(M); that is, the uncertainty in the plaintext, after
observing the ciphertext, is equal to the a priori uncertainty about the plaintext —
observation of the ciphertext provides no information (whatsoever) to an adversary.
6. A necessary condition for an encryption scheme to be unconditionally secure is that
the key should be at least as long as the message. The one-time pad (§14.8.4) is an
example of an unconditionally secure encryption algorithm.
7. In general, encryption schemes do not offer perfect secrecy, and each ciphertext
character observed decreases the uncertainty in the encryption key k used.
8. Let n0 be the unicity distance of a cipher. After observing n0 characters, the key
uncertainty is zero, meaning an information-theoretic adversary can narrow the set of
possible keys down to a single candidate, thus defeating the cipher.
9. The computational security measures the amount of computational effort required,
by the best currently-known attacks, to defeat a system; it must be assumed here that
the system has been well-studied to determine which attacks are relevant.

14.8 SYMMETRIC-KEY SYSTEMS
Classical cryptosystems such as the Caesar cipher have the property that the decryption
key can easily be found from the corresponding encryption key. Until recently, all
cryptosystems had this general property. Such systems are known as symmetric-key
systems, to distinguish them from cryptosystems that do not have this property, that
is, where knowing an encryption key does not provide adequate information for finding
the corresponding decryption key.

14.8.1 REDUNDANCY

Definitions:

Let plaintext messages be composed from an alphabet A of L characters. Let Hn denote
the entropy (§14.1.2) of n-character messages, or equivalently, the expected bit length
of n-character messages under an optimal encoding.

The absolute rate R of a language is the maximum number of bits of information that
each character could encode, assuming all combinations of characters are equiprobable
in the language. R = log2 L.

The rate rn for n-character messages is rn = Hn

n .

The rate r∞ of a language is r∞ = lim
n→∞

rn.

The redundancy Dn for n-character messages is Dn = n(R− rn).

The redundancy D of a language (measured in bits per plaintext character) is
D = lim

n→∞
Dn

n = R− r∞.

Let D be a family of parametrized decryption algorithms, K be a random variable
ranging over keyspace K, and C be a random variable ranging over ciphertext space C.
A random cipher is a cipher such that the decipherment DK(C) is a random variable
uniformly distributed over all preimages of C.
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Facts:

1. Knowing the rate and redundancy of a language allows estimation of the unicity
distance (§14.7.2 Fact 8) for a certain class of “statistically perfect” ciphers known as
random ciphers.

2. A reasonable estimate of unicity distance for a random cipher is n0 = H(K)
D cipher-

text characters, where D = R− r∞ is the redundancy of the language and H(K) is the
key entropy.

3. The redundancy in the denominator of this estimate indicates that data compression
prior to encryption increases the unicity distance of a cipher (increasing security).

Examples:

1. Estimates for the English language with 26-character alphabet indicate r1 ≈ 4.2,
r2 ≈ 3.6, and r3 ≈ 3.2 bits/character; these estimate the number of bits of information
per character in messages of lengths one, two and three characters.

2. The rate r1 differs from R = log2 26 ≈ 4.7 due to the fact that characters in English
messages are not equiprobable; rn decreases as n grows due to the decreasing likelihood
that random character strings are meaningful messages — effectively due to redundancy
in the language.

3. Estimates suggest that for English, 1 ≤ r∞ ≤ 1.5, yielding a redundancy of be-
tween 3.2 and 3.7 bits per character in long messages, or between 68% and 79%.

14.8.2 SUBSTITUTION AND TRANSPOSITION CIPHERS

Definitions:

Let P = p1p2 . . . pn represent a plaintext message of n characters; often pi are interpreted
as integers 0, 1, . . . , 25 corresponding to the characters a, b, . . . , z.

A simple substitution cipher S replaces each plaintext character by a fixed substitute
according to a permutation π on the source alphabet. This means that S replaces the
string p1p2 . . . pn with π(p1)π(p2) . . . π(pn). This can be written as S(p1p2 . . . pn) =
π(p1)π(p2) . . . π(pn).

An affine cipher replaces the plaintext character x (represented as an integer) by the
ciphertext character (ax+b) mod 26, where a and b are integers with a relatively prime
to 26. When a = 1, an affine cipher is called a shift cipher since each letter is shifted
a fixed number of positions, with wrap around, in the alphabet. The shift cipher where
each character is shifted three positions, that is, where x is mapped to (x + 3) mod 26,
is known as the Caesar cipher.

A simple transposition cipher T (with fixed period d) divides plaintext into d-
character blocks and rearranges these characters by a permutation π on the numbers
1, 2, . . . , d. This can be written as T (p1p2 . . . pn) = pπ(1)pπ(2) . . . pπ(d)pd+π(1) . . . .

A full Vigenère cipher V of period d consists of d simple substitutions defined by
permutations π0, . . . , πd−1 used in sequence: V (pi) = πimod d(pi). Ciphers such as
the full Vigenère are called polyalphabetic — d different alphabetic substitutions are
used.
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The simple Vigenère cipher of period d restricts each permutation πi to a sim-
ple shift, so that the key may be represented by a d-letter sequence k0, . . . , kd−1; en-
cryption then consists of simply adding key characters to plaintext: V (pi) = (pi +
kimod d) mod 26. Such ciphers are also called periodic substitution ciphers.

A Hill cipher is a cipher with an m×m matrix K as its key that encrypts plaintext by
splitting it into blocks of size m and mapping the plaintext block x = (x1, x2, . . . , xm)
to the ciphertext block (y1, y2, . . . , ym) = xK.

A homophonic substitution is a cipher in which each plaintext character x in the
source language is associated with a set Sx of ciphertext characters, and each time x
is to be encrypted, one element of Sx is randomly chosen and where the sets Sx are
pairwise disjoint. The cardinality of Sx is chosen to be proportional to the frequency
of x in the source language, to flatten out frequency distributions.

Facts:

1. Simple transposition and substitution ciphers, and related symmetric-key ciphers,
are often called classical ciphers since they were designed and used in ancient times.

2. The permutation that serves as key of a substitution cipher can often be represented
more compactly than by specifying the permutation in full.

3. The size of the full key space of substitution ciphers provides an upper bound on
security, but is often a poor indication. For example, for a simple substitution, there
are 26! possible keys providing key entropy of 88 bits, or approximately 288 keys to
search through if one resorts to exhaustive cryptanalysis.

4. The unicity distance of a simple substitution can be estimated to be 28 characters;
all simple substitutions applied to English messages can be trivially cryptanalyzed given
about this many characters.

5. Periodic substitution ciphers may be cryptanalyzed by first deducing the period of
the cipher (by one of several known techniques, for example, the index-of-coincidence
introduced by W. Friedman, c. 1920, or the Kasiski method), and then solving d simple
substitution ciphers. (See [St95] for details.)

6. The simple Vigenère cipher of period d = 1 is a shift cipher.

7. Decryption of the affine cipher with encryption function e(x) = (ax + b) mod 26
is carried out using the decryption function d(y) = a(y − b) mod 26 where a is an
inverse of a modulo 26 and y is the ciphertext character associated with the plaintext
character x.

8. Decryption of the Hill cipher with encryption function e(x) = xK where x =
(x1, x2, . . . , xm) and K is an m×m matrix is carried out using the decryption function
d(y) = yK−1 where K−1 is the inverse of K modulo 26 and y is the ciphertext block
(y1, y2, ..., ym) associated with the plaintext block x. Note for K−1 to exist, it must be
the case that gcd(det K, 26) = 1.

9. The ideas of simple transposition and substitution can be combined and compounded
in countless ways. While not secure individually, they can be combined to construct the
powerful class of product ciphers which include DES (§14.8.3).

10. Data expansion is inherent in homophonic substitutions as the ciphertext character
set must be larger than the plaintext set.
11. Codes differ from ciphers in that codes employ a codebook or dictionary which
specifies words or phrases that are used to substitute for plain text words or phrases
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requiring encryption. Decryption is accomplished by a reverse-codebook, indexed by the
entries (rather than index terms) of the encryption codebook. The use of such codes is
not easily automated, and they no longer see much use.

Examples:

1. The Caesar cipher (shifting every letter by three modulo 26) sends the plaintext
message ZERO to the ciphertext message CHUR.

2. The affine cipher with encryption function e(x) = (7x + 10) mod 26 sends the
plaintext message PLEASESENDMONEY to the ciphertext message LJMKGMGM-
FQEXMW. For example, the letter P, which corresponds to the number 15, is sent to
e(15) = (7 · 15 + 10) = 11 mod 26, which corresponds to the letter L. Decryption is
done using the function d(y) = (15y + 6) mod 26.

3. The Vigenère cipher of period 4 with key (1, 0, 13, 3) sends the plaintext message
RENAISSANCE to the ciphertext message SEADJSFDOCR.

4. The Hill cipher that has
(

11 3
8 7

)
as its key encrypts the plaintext JULY (which

corresponds to the string 9 20 11 24) to the string DELW (which corresponds to the

string 3 4 11 22). Decryption is carried out using the matrix
(

7 23
18 11

)
, which is an

inverse of the encryption matrix.

14.8.3 BLOCK CIPHERS

Definitions:

A block cipher derives its name from the property that it processes the plaintext
stream after grouping it into pieces or blocks consisting of a fixed number of characters,
thereafter operating on the block as a whole. Each block of plaintext is enciphered
independently of preceding and succeeding plaintext input.

The U.S.Data Encryption Standard (DES) is a block cipher widely used in com-
merical applications. It has been adopted as a standard by the United States govern-
ment.

The mode of operation of an n-bit block cipher describes how the cipher processes
messages with more than n bits.

In Electronic Codebook (ECB) mode the plaintext message m is split into n-bit
blocks m = m1m2 . . . ml. Each message block is encrypted independently using the
same secret key k:

ci = Ek(mi), 1 ≤ i ≤ l.

In Cipher Block Chaining (CBC) mode each ciphertext block is dependent on all
previous plaintext blocks. Encryption is performed as follows, given an n-bit initializa-
tion vector IV :

c1 = Ek(m1 ⊕ IV ); ci = Ek(mi ⊕ ci−1), 2 ≤ i ≤ l.
Decryption is performed as follows:

m1 = Dk(c1)⊕ IV ; mi = Dk(ci)⊕ ci−1, 2 ≤ i ≤ l.
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In Cipher Feedback (CFB) mode the plaintext message is split into t-bit blocks
m = m1m2 . . . ml, where 1 ≤ t ≤ n. An n-bit shift register is initialized to the value
s0 = IV . Encryption is then performed as follows:

ci = mi ⊕ MSBt(Ek(si−1)), 1 ≤ i ≤ l,

where MSBt(v) denotes the t most significant bits of v, and where si is obtained
from si−1 by shifting the contents of the register t positions to the left and moving ci
into the rightmost t positions of the register.

In Output Feedback (OFB) mode: the plaintext message is split into t-bit blocks
m = m1m2 . . . ml, where 1 ≤ t ≤ n. Encryption is performed as follows:

ci = mi ⊕ MSBt(si−1), 1 ≤ i ≤ l,

where s0 = Ek(IV ) and si = Ek(si−1) for 1 ≤ i ≤ l−1 and MSB has the same meaning
as in the definition of CFB mode.

Facts:

1. Transposition ciphers are examples of block ciphers.

2. DES is the most widely used block cipher.

3. DES was published as a U. S. Federal Information Processing Standard in 1977. It
resulted from an IBM submission to a 1974 request by the U. S. National Bureau of
Standards (NBS) (which has now become NIST) soliciting encryption algorithms for
the protection of computer data.

4. DES processes plaintext blocks of n = 64 bits, producing ciphertext blocks of 64
bits.

5. The encryption mapping Ek is parametrized by a secret 56-bit key k. Since decryp-
tion requires that the mapping be invertible, Ek is a bijection.

6. The total number of distinct permutations on an n-bit space is (2n)! ; DES imple-
ments only a tiny fraction of these — at most 256, corresponding to the number of
distinct DES keys.

7. DES, and in fact all block ciphers, can be viewed as large substitution ciphers.
For a fixed key k, each 64-bit plaintext “character” is substituted by a fixed 64-bit
ciphertext “character”. The same techniques that make simple substitution ciphers
trivial to cryptanalyze do not directly threaten the security of DES or similar ciphers,
however, due to the large block size.

8. Encryption of each 64-bit block proceeds in sixteen stages or rounds.

9. The 56-bit key k is used to create sixteen 48-bit subkeys ki, one for each round.

10. Within each round, eight fixed, carefully selected 6-to-4 bit substitution mappings
(S-boxes) Si, collectively denoted S, are used.

11. The initial 64-bit plaintext is divided into two 32-bit halves, L0 and R0.

12. Each round is functionally equivalent, taking 32-bit inputs Li−1 and Ri−1 from the
previous round and producing outputs Li and Ri for 1 ≤ i ≤ 16, as follows:

Li = Ri−1; Ri = Li−1 ⊕ F (Ri−1, Ki); F (Ri−1, Ki) = P (S(E(Ri−1 ⊕Ki))).

Here E is a fixed expansion permutation mapping 32 bits to 48 bits (all bits are used
once, some are taken twice), and P is another fixed permutation on 32 bits.
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13. An initial permutation (IP) precedes the first round, and its inverse is applied
following the last round.

14. Decryption makes use of the same algorithm and the same key, except that subkeys
are applied to the internal rounds in the reverse order.

15. Each round involves both (bitwise) substitution and transposition.

16. A complete description of the U. S. Data Encryption Standard (DES) algorithm can
be found in the U. S. Federal Information Processing Standards Publication 46 (FIPS
46: Data Encryption Standard).

17. Given a plaintext-ciphertext pair, exhaustive cryptanalysis of DES is possible —
all 256 keys could be checked to determine which maps the given plaintext to the given
ciphertext. With current technologies, such an attack is now feasible in practice for
strongly-motivated adversaries. See [Gi98] for example.

18. Results of experiments indicate that all bits of the ciphertext depend on all bits
of the key and all bits of the plaintext; changing any single bit of the plaintext or key
causes each ciphertext bit to change with probability about 0.5.

19. There are several ways in which a block cipher can be employed. Let E be a block
cipher parametrized by a key k. Suppose that E processes plaintext blocks of n bits,
producing ciphertext blocks of n bits. The initial value IV is a randomly chosen n-bit
block known to the sender and receiver; IV may be exchanged in the clear (except in
output feedback mode (OFB)) or it may be transmitted by the sender to the receiver
by encrypting it in ECB mode.

20. The weakness of ECB mode is that two identical plaintext blocks are always en-
crypted to the same ciphertext block. An advantage of ECB mode is that transmission
errors are not propagated from block to block.

21. If a different IV is selected for each message encrypted in CBC mode, then two
identical plaintexts will, in general, be encrypted to different ciphertexts. If the integrity
of the IV is not protected, then an opponent can selectively manipulate the bits of the
first message block by manipulating the bits of the IV . This situation may be avoided
by encrypting the IV .

22. In CBC mode there is no propagation of transmission errors since a message
block mi depends on only two ciphertext blocks, ci−1 and ci.

23. Decryption in CFB mode is performed by initializing the shift register to the value
s0 = IV , and then computing

mi = ci ⊕ MSBt(Ek(si−1)), 1 ≤ i ≤ l.

24. In CFB mode a transmission error may affect several message blocks. Note that
the block cipher E is operated in encryption mode at both the sending and receiving
ends.

25. In OFB mode decryption is performed by computing
mi = ci ⊕ MSBt(si−1), 1 ≤ i ≤ l.

26. In OFB there is no error propagation. A single bit error in the ciphertext causes
a single bit error in the recovered plaintext. As with CBC mode, the block cipher E is
operated in encryption mode at both the sending and receiving ends.
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14.8.4 STREAM CIPHERS

Definitions:

A stream cipher is a symmetric-key cipher that encrypts individual characters of a
plaintext message, or small units. (In contrast, a block cipher tends to encrypt groups
of characters, or larger units.)

A synchronous stream cipher is a stream cipher in which the keystream is generated
independently of the message.

A self-synchronizing stream cipher is a stream cipher capable of reestablishing
proper decryption automatically after loss of synchronization, with only a fixed number
of plaintext characters unrecoverable.

The one-time pad is a stream cipher with the following encryption function: each bit
of plaintext is XORed to the next bit of a truly random key, which is never reused for
encryption and is of bit length equal to that of the plaintext. Decryption is accomplished
by applying the same process, with the same key, to the ciphertext string.

Facts:
1. Stream ciphers are more appropriate, and in some cases mandatory (for example, in
some telecommunications applications), when buffering is limited and characters must
be individually processed as they are received.
2. A stream cipher typically consists of a generator which produces a pseudorandom
bit sequence (the key) which is then XORed (added modulo 2) with the plaintext bits.
3. In a synchronous stream cipher, both the sender and receiver must be synchronized
— using the same key and operating at the same position (state) within that key
— in order for proper decryption. If synchronism is lost then decryption fails and
can only be restored through additional techniques for resynchronization (for example,
reinitialization, or the receiver trying possible offsets).
4. The OFB mode of a block cipher is an example of a synchronous stream cipher.
5. The CFB mode of a block cipher is an example of a self-synchronizing stream cipher.
6. For such ciphers, self-synchronization is possible because the encryption/decryption
mappings depend only on a fixed number of preceding ciphertext characters.
7. The one-time pad is the most well-known stream cipher. It is also referred to as the
Vernam cipher, originating from work of G. Vernam in 1917.
8. The one-time pad offers unconditional security, at the price of a key of length equal
to that of the plaintext, which can be used only once. It is an example of a synchronous
stream cipher.
9. An extensive study of stream ciphers can be found in [Ru86].

14.8.5 KEY DISTRIBUTION PROBLEM

Definitions:

The problem of producing secure keys that can be used by each of a group of users to
be able to communicate in secret with every other user is called the key distribution
problem.

A key distribution center (KDC) is a trusted third party that distributes short-term
secret keys for secure communications from a particular party to another.
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Facts:

1. The security of all cryptographic mechanisms depends on the secrecy and/or au-
thenticity of keying material.

2. Consider a system that uses only symmetric cryptographic algorithms such as the
U. S. Data Encryption Standard (DES), with n users. If each pair of users is to be
able to communicate privately, then each user must acquire and maintain n−1 secrets
keys, one for each other party; overall, this requires n(n−1)

2 keys in the system. These
keys must be distributed by secure means, for example by each pair meeting in person
or by trusted couriers, prior to the commencement of a secure communication. Such
distribution is typically both inconvenient and costly, and increasingly unmanageable
as n grows.

3. A solution to the key distribution problem is obtained by using public-key cryptog-
raphy (§14.9.1).

4. Another solution of the key distribution problem is to make use of a trusted third
party T , as follows. Each party A shares a unique long-term secret key KAT with
T . Any party A may acquire a short-term secret key or session key to communicate
securely with any other party B, using the third party T as a key distribution center in
the following way:

• using KAT to establish a secure channel with T , A requests from T a new random
secret key to use with B;

• T creates such a key KAB , transfers one copy of it to A using the secure channel
facilitated by KAT , and makes another copy of it available either directly to B
using the secure channel facilitated by KBT , or sends a copy of KAB encrypted
under KBT to A over the secure channel to A; A then transfers this encrypted
key to B.

5. The Kerberos protocol, originating from Project Athena at M.I.T. in 1987 and
based on a 1978 protocol of R. Needham and M. Schroeder, is a particular example of
an authenticated key distribution protocol based on symmetric cryptographic techniques
and the use of a KDC.

6. An alternative to a KDC is to use a trusted third party as a key translation center
(KTC); in this case, party A itself creates the key KAB intended for use with a party B,
transfers it securely to the trusted party under the channel secured by KAT , and relies
on the trusted party to decrypt the key intended for B, secure it specifically for B by
reencrypting it under the key KBT , and then make this encrypted version available to B
either directly or via A.

7. The use of both KDCs and KTCs for cryptographic key establishment was popu-
larized within the U. S. financial community by the ANSI X9.17 standard.

8. The use of a KDC or KTC to solve the key distribution problem can be pictured
as a spoked-wheel, with each user on the perimeter at the end of a spoke, and the
trusted party at the center. A secure channel between any two users A and B on
the perimeter can be established by using the secure channels provided by the spokes
(keys KAT and KBT ), set up during system initialization, to establish a secure channel
directly (by key KAB). Each party now needs initially to acquire only a single secret
key (corresponding to a single spoke), rather than n−1 keys as before.
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14.9 PUBLIC-KEY SYSTEMS

The invention of public-key cryptosystems in the mid-1970s has had a profound impact
on cryptography. In a public-key cryptosystem, there are public encryption keys that
can be publicly shared and secret decryption keys that cannot be found, using a practical
amount of computation, from the public encryption keys.

This fundamental difference between public-key cryptosystems and symmetric-key
cryptosystems, where knowledge of an encryption key brings knowledge of the corre-
sponding decryption key, makes public-key cryptography useful for many different types
of practical applications.

14.9.1 BASIC INFORMATION

Definitions:

Public-key cryptography is the study of codes where each party has a pair of keys
(a private key and a public key) and only needs to keep the private key secret.

Facts:

1. Public-key cryptography was first proposed by W. Diffie and M. Hellman in 1976
[DiHe76].

2. The fundamental concept is that the public key, which can be made known to
everyone, allows anyone to encrypt messages for A, but the decryption of these messages
can be carried out only with knowledge of the corresponding private key, which only
party A knows.

3. A necessary condition for a public-key cryptosystem to be secure is that it be infea-
sible to derive a private key from the corresponding public key.

4. Three advantages offered by public-key systems over private-key systems are the
following:

• They provide a solution to the key distribution problem without using a KDC or
a KTC. Each party requires only one public key and one private key in order to
communicate securely with all other parties, as opposed to a separate private
key to communicate with each. A new prerequisite however is that authentic
copies of other parties’ public keys be available by some means.

• They provide an elegant solution to the problem of digital signatures.
• They allow public key distribution systems, whereby, surprisingly, secret symmet-

ric keys can be derived jointly by two remote parties through communications
over unsecured public channels.

5. Diffie and Hellman proposed solutions to the public key distribution problem, and
shortly after they conceived the notion, practical instantiations of both public-key en-
cryption and public-key signature systems were proposed: knapsack encryption schemes
and both RSA signature and encryptions schemes.
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6. Many different public-key cryptosystems have been proposed. Among the most
important of these are:

• the RSA cryptosystem (security based on the difficulty of factoring large integers
and the problem of finding eth roots modulo a composite integer where e is an
integer);

• the Rabin cryptosystem (security based on the difficulty of factoring large integers
and the problem of finding square roots modulo a composite integer);

• the El Gamal cryptosystem (security based on the difficulty of finding discrete
logarithms);

• the McEliece cryptosystem (security based on the difficulty of decoding certain
linear codes);

• the Merkle-Hellman cryptosystem (security based on the difficulty of the subset
sum problem);

• the elliptic curve cryptosystem (security based on the theory of elliptic curves);
see the Certicom ECC Tutorials and Whitepapers page at the website:
http://www.certicom.com/ecc/index.htm

• the NTRU cryptosystem (security based on the difficulty of lattice problems); see
the NTRU Public Key Cryptosystem Overview at the website:
http://www.ntru.com/tutorials/techsummary.htm

7. The current status of public-key cryptosystems is that they offer many advantages
for key establishment and digital signatures, but so far have generally been too compu-
tationally expensive for bulk encryption.
8. Typically, in practice symmetric ciphers like DES continue to be used for encryp-
tion, public-key systems like RSA are used for digital signatures, and a combination of
symmetric and public-key techniques are used for key establishment.

14.9.2 KNAPSACK ENCRYPTION SCHEME

Definitions:

Given a set of positive integers {a1, a2, . . . , an} and a specified sum s, the knapsack
problem is the problem of finding a 0-1 vector (x1, x2, . . . , xn) such that

∑n
i=1 aixi = s,

or determining that such a vector does not exist.

A super-increasing sequence is a set {a1, a2, . . . , an} of positive integers with the
property that ai >

∑i−1
j=1 aj for each i = 2, . . . , n.

The knapsack cryptosystem is a cryptosystem in which encryption is carried out
using a super-increasing sequence of integers.

Facts:
1. The knapsack encryption scheme, due to R. Merkle and M. Hellman, was the first
concrete realization of a public-key encryption scheme. Its security is based on the
knapsack problem.
2. Although the knapsack problem, also known as the subset sum problem, is known
to be NP-hard, there are special instances of the problem which are easy to solve.
3. For a super-increasing sequence the knapsack problem is very easy to solve. The
Merkle-Hellman knapsack encryption scheme disguises a super-increasing sequence by
modular multiplication and a permutation.
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4. Key generation for the knapsack encryption scheme can be carried out as follows.
An integer n is fixed. Each user does the following:

• choose a super-increasing sequence of positive integers a1, a2, . . . , an, and choose
a modulus M with M > a1 + a2 + · · ·+ an;

• choose an integer W , 1 ≤ W ≤ M − 1, with gcd(W, M) = 1;
• choose a random permutation π of the integers {1, 2, . . . , n};
• compute bi = Waπ(i) mod M , for i = 1, 2, . . . , n;
• publish the public key (b1, b2, . . . , bn); the private key is (π, M, W, a1, a2, . . . , an).

5. The basic Merkle-Hellman knapsack encryption scheme operates as follows, where
person B sends a message to person A:

• encryption: B does the following:
� look up A’s public key (b1, b2, . . . , bn);
� represent the message m as a binary string of length n, m = m1m2 . . . mn;

if the message is too big, break it into blocks;
� compute c = m1b1 + m2b2 + · · ·+ mnbn;
� send c to A.

• decryption: A does the following:
� compute d = W−1c mod M ;
� solve the super-increasing knapsack by finding integers r1, r2, . . . , rn, ri ∈

{0, 1}, such that d = r1a1 + r2a2 + · · ·+ rnan;
� conclude that the message bits are mi = rπ(i), i = 1, 2, . . . , n.

6. The Merkle-Hellman scheme, as well as sundry variations of it, have all been shown
to be insecure. Essentially, this is because the underlying easy knapsack can be recovered
from the public knapsack with minimal effort.

Examples:
1. The sequence 1, 2, 5, 10, 20, 40 is super-increasing, but 1, 2, 6, 10, 18, 30 is not.
2. The solution to the super-increasing subset problem with super-increasing sequence
1, 2, 5, 10, 20, 40 and subset sum 27 is 27 = 20 + 5 + 2.

14.9.3 RSA CRYPTOSYSTEM

Definition:

The RSA cryptosystem is a public-key cryptosystem that encrypts messages using
modular exponentiation, where the modulus is the product of two very large primes.

Facts:
1. The RSA cryptosystem was invented by R. Rivest, A. Shamir, and L. Adleman in
1978, and is the most widely used public-key cryptosystem today.
2. The RSA cryptosystem supports both secrecy and digital signatures, and its security
is based on the difficulty of factoring integers.
3. Keys are generated in RSA when each user does the following:

• pick two large primes p and q, each roughly the same size. Compute n = pq and
φ(n) = (p− 1)(q − 1);

• select a random integer e, 1 < e < φ(n), such that gcd(e, φ(n)) = 1;
• using the extended Euclidean algorithm (§4.2.2), compute the unique integer d,

1 < d < φ(n), such that ed ≡ 1 (mod φ(n));
• publish the public key (n, e); the private key is d.
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4. The RSA system is used as follows for B to send a message to A:
• encryption: B does the following:

� look up A’s public key (n, e);
� represent the message as an integer m in the interval [0, n−1]; if the message

is too big, break it into blocks;
� compute c = me mod n;
� send c to A.

• decryption: A does the following:
� use the private key d to recover m = cd mod n.

5. The RSA system can be used to send signed messages as follows, where A signs a
message for B:

• signature generation: A does the following:
� represent the message m as an integer in the interval [0, n−1]; if the message

is too big, break it into blocks;
� use his/her private key d to compute s = md mod n;
� send the signature s to B (the message m will be recovered from s itself).

• signature verification: B does the following:
� look up A’s public key (n, e);
� recover the message m = se mod n;
� accept A’s signature, provided that m is “meaningful”.

6. In practice, one does not select an exponent e at random, but instead chooses some
small value such as 3, 17, or 216 + 1.
7. One technique for rendering a message meaningful is to add some prearranged re-
dundancy to the message, for example by requiring that m begin with a predetermined
64-bit pattern. Another is to use a suitable hash function (§14.9.2) before signing, even
when the message m is short enough to fit in a single block.
8. A common technique used to avoid having to sign each block of a long message m is
to first compute m∗ = H(m), where H is a public one-way hash function that outputs
integers in the interval [0, n−1], and then send the message m along with the signature
of the hash value, s = (m∗)d mod n to B. Person B can verify the signature by
computing se mod n and H(m), and checking that these two quantities are the same.
9. Breaking the RSA encryption or signature schemes is widely believed to be as dif-
ficult as factoring the modulus n in these schemes, although such an equivalence has
never been proven.
10. Given the latest progress on the factorization of large integers, a 512-bit modulus n
will provide only marginal security from concerted attack; as of 1999, a modulus n of
at least 768 bits is recommended.
11. More information about the RSA cryptosystem can be obtained on the Internet at
the RSA Laboratories site

www.rsa.com/rsalabs

Example:
1. Take the modulus in the public key encryption scheme to be 2537 = 43 · 59 and
the exponent to be 13. The plaintext message PUBLICKEYCRYPTOGRAPHYX,
corresponding to 1520 0111 0802 1004 2402 1724 1519 1406 1700 1507 2423 when letters
are replaced with the corresponding integers in the set {0, 1, . . . , 25}, is mapped to the
ciphertext message 0095 1648 1410 1299 0811 2333 2132 0370 1185 1457 1084. For
example, the first block 1520 is mapped to 0095 since 152013 mod 2537 = 95.
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14.9.4 EL GAMAL CRYPTOSYSTEM

Definition:

The ElGamal cryptosystem is a public-key cryptosystem based on the discrete log-
arithm problem (see Chapter 4).

Facts:
1. The El Gamal cryptosystem was proposed in 1985 by T. El Gamal.
2. The El Gamal cryptosystem supports both secrecy and digital signatures and its
security is based on the difficulty of the discrete logarithm problem.
3. Keys for the El Gamal cryptosystem are generated when each user does the following:

• pick a large prime p and a generator α of the multiplicative group Z∗
p of the

integers modulo p;
• select a random integer a, 1 < a < p−1, and compute αa mod p;
• publish the public key (p, α, αa); the private key is a.

4. The El Gamal encryption scheme works as follows where B sends a message to A:
• encryption: B does the following:

� look up A’s public key (p, α, αa);
� represent the message as an integer m in the interval [0, p−1]; if the message

is too big, break it into blocks;
� select a random integer k, 1 ≤ k ≤ p−2;
� compute αk mod p and m · (αa)k mod p
� send (αk, mαak) to A;

• decryption: A does the following:
� use the private key a to compute αak = (αk)a mod p and then compute

α−ak mod p;
� recover m by computing (α−ak)(mαak) mod p.

5. The El Gamal signature scheme operates as follows where A signs a message for B:
• signature generation: to sign a message m of arbitrary length, A does the

following:
� select a random integer k, 1 ≤ k ≤ p−2, with gcd(k, p− 1) = 1;
� use the extended Euclidean algorithm to compute an integer I, 1 ≤ I ≤ p−2,

such that kI ≡ 1 (mod p−1);
� compute r = αk mod p;
� compute H(m), the hash of m, using a one-way hash function H;
� compute s = I · (H(m)− ra) mod (p−1)
� send the signature (r, s) along with the message m to B.

•signature verification: B does the following:
� look up A’s public key (p, α, αa);
� compute H(m);
� compute u1 = (αa)r · (rs) mod p;
� compute u2 = αH(m) mod p;
� accept the signature only if u1 = u2.

6. Breaking the El Gamal encryption or signature scheme is widely believed to be as
difficult as computing logarithms in Z∗

p , although such an equivalence has never been
proven.
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7. Given the latest progress on the discrete logarithm problem, a 512-bit modulus p
will provide only marginal security from concerted attack; as of 1999, a modulus p of
at least 768 bits is recommended.

8. The parameters p and α can be common to a group of users, in which case user A’s
public key is just αa.

9. The El Gamal cryptosystem can be generalized to work in any finite cyclic group G
instead of the multiplicative group Z∗

p . Groups that have been proposed for this purpose
for reasons of practical efficiencies include the following: the multiplicative group F ∗

2m

of finite fields of characteristic two and the group of points on an elliptic curve over a
finite field.

14.9.5 MC ELIECE ENCRYPTION SCHEME

Definition:

The McEliece encryption scheme is the encryption method that is the foundation
of a public-key cryptosystem based on linear codes from the theory of error-correcting
codes.

Facts:

1. R. McEliece introduced the McEliece encryption scheme in 1978 as the basis of a
public-key cryptosystem.

2. The security of the McEliece encryption scheme is based on the fact that the general
decoding problem for linear codes is NP-hard.

3. Keys are generated in the McEliece encryption scheme in the following way: Inte-
gers k and n are first fixed. Each user does the following:

• choose a k × n generator matrix G for a binary (n, k)-code that can correct t
errors, and for which there is an efficient decoding algorithm;

• choose a random k × k binary nonsingular matrix S;
• choose a random n× n permutation matrix P ;
• compute the k × n matrix Ĝ = SGP ;
• publish the public key (Ĝ, t); the private key is (S, G, P ).

4. A party B sends a message to a party A in the McEliece encryption scheme as
follows:

• B does the following to encrypt the message:
� look up A’s public key (Ĝ, t);
� represent the message m as a binary string of length k; if the message is too

big, break it into blocks;
� choose a random error vector z of length n and Hamming weight ≤ t;
� compute c = mĜ + z;
� send c to A.

• A does the following to decrypt the received message:
� compute ĉ = cP−1;
� use the decoding algorithm for the code generated by G to decode ĉ to m̂;
� compute m = m̂S−1.
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5. McEliece suggested using a special type of error-correcting code called a Goppa
code with parameters n = 1024, k = 524, t = 50, in step 1 of the key generation
procedure. (For each irreducible polynomial g(x) of degree t over the finite field of 2m

elements, there exists a binary Goppa code of length n = 2m and dimension k ≥ n−mt
capable of correcting any pattern of t or fewer errors. Furthermore, efficient decoding
algorithms are known for Goppa codes. For further information, see [MaSl77].) With
these parameters, the McEliece encryption scheme is believed to form the basis of a
secure public-key cryptosystem.
6. Two disadvantages of the scheme are the large size of public keys and the message
expansion.

14.9.6 DIGITAL SIGNATURE ALGORITHM

The digital signature algorithm (DSA) was adopted in 1994 as a signature standard by
the U. S. Government. Its security is based on the difficulty of the discrete logarithm
problem in a large subgroup of the multiplicative group Z∗

p . The scheme can be viewed
as a variant of the El Gamal signature scheme.

Facts:
1. To generate keys, each user does the following:

• pick a prime p such that p− 1 has a prime factor q, where 2159 < q < 2160;

• select a random integer h, 1 < h < p−1, and such that h
p−1

q mod p > 1; let
g = h

p−1
q mod p;

• select a random integer x, 0 < x < q, and compute y = gx mod p;
• the user’s public key is (p, q, g, y); the user’s private key is x.

2. The following steps make up a digital signature algorithm where A signs a message
that is to be sent to B:

•signature generation: to sign a message m of arbitrary length, A does the follow-
ing:
� choose a random integer k, 0 < k < q;
� compute k−1 mod q;
� compute r = (gk mod p) mod q;
� compute H(m), the hash of the message, using a one-way hash function H();
� compute s = k−1 · (H(m) + xr) mod q;
� send the signature (r, s) along with message m to B.

• signature verification: B does the following:
� look up A’s public key (p, q, g, y);
� compute w = s−1 mod q;
� compute H(m);
� compute u1 = H(m)w mod q and u2 = rw mod q;
� compute v = ((gu1yu2) mod p) mod q;
� accept the signature only if v = r.

3. The U. S. Government standard specifies that the prime p must be between 512 and
1024 bits in length, however it is generally recommended that p be at least 768 bits in
length.
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4. The parameters p, q, and g can be common to a group of users, in which case the
public key is just y.

5. The specific hash algorithm specified for use within the DSA standard is the se-
cure hash algorithm (SHA-1) as specified in the U. S. Federal Information Processing
Standards Publication 180-1 (FIPS 180-1: Secure Hash Standard).

14.9.7 FIAT-SHAMIR SIGNATURE SCHEME

Definition:

The Fiat-Shamir signature scheme is a signature scheme based on the difficulty of
extracting square roots modulo a composite number n.

Facts:

1. The Fiat-Shamir signature scheme was introduced in 1986.

2. The security of the Fiat-Shamir signature scheme is based on the difficulty of ex-
tracting square roots modulo a composite number n, a problem that is equivalent in
difficulty to the problem of factoring n.

3. Key generation is done using the Fiat-Shamir scheme as follows. Integers k and t
are fixed; each user does the following:

• pick two primes p and q, and compute n = pq;
• select k random integers s1, s2, . . . , sk in the interval [1, n−1], such that for each

i, gcd(si, n) = 1;
• compute vi = s−2

i mod n, for 1 ≤ i ≤ k.
• the user’s public key is (v1, v2, . . . , vk, n); the user’s private key is (s1, s2, . . . , sk).

4. The Fiat-Shamir signature scheme operates as follows, where A signs a message
for B:

•signature generation: to sign a message m of arbitrary length, A does the follow-
ing:
� choose random integers r1, r2, . . . , rt in the range [0, n−1], and compute

xi = r2
i mod n for each i, 1 ≤ i ≤ t;

� compute H(m, x1, x2, . . . , xt), where H is a one-way hash function, and use
its first kt bits as entries eij of a t× k binary matrix E;

� compute yi = (ri
∏

eij=1 sj) mod n for i = 1, 2, . . . , t;
� send the signature (y1, y2, . . . , yt, E) along with message m to B.

•signature verification: B does the following:
� look up A’s public key (v1, v2, . . . , vk, n);
� compute zi = (y2

i

∏
eij=1 vj) mod n for i = 1, 2, . . . , t;

� compute h = H(m, z1, z2, . . . , zt);
� accept the signature only if the first kt bits of h are the same as the entries

eij of E.

5. The Fiat-Shamir scheme is provably secure, provided that factoring is difficult and H
is a truly random function.

6. The modulus n should be large enough to withstand the best algorithms known for
factoring integers; as of 1999, a size of at least 768 bits is recommended.

7. To avoid forgeries, the parameters k and t should be chosen so that kt is at least 72.
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14.9.8 KEY DISTRIBUTION

Definitions:

Entity (identity) authentication is some form of positive corroboration of the iden-
tity of another party in a protocol.

A key establishment mechanism provides explicit key authentication (key confirma-
tion) if one party receives some indication that a second party whose identity has been
corroborated actually knows the secret key established; it provides (only) implicit key
authentication if no such indication is received, but nonetheless the identified second
party is the only other party who could feasibly derive that key.

Facts:

1. The solution to the key distribution problem (§14.8.5) by symmetric techniques and
a trusted third party has several disadvantages, two of which are the requirement and
involvement of an on-line trusted third party, and that compromise of long-term keys
shared between a user and the trusted party will compromise all other keys established
for that user based on that key.

2. If public-key cryptographic techniques are used, even in the case where each party
computes its own private keys of (public, private) key pairs, two types of keys generally
need to be distributed between parties: public keys (for use in algorithms such as RSA),
and symmetric keys (for use in symmetric algorithms such as DES).

3. Public keys can be delivered in person, but this is costly; other appropriate means
are generally used, such as public-key certificates (§14.9.9).

4. Key establishment mechanisms are generally used to make a symmetric key secretly
available to two authorized parties for subsequent cryptographic use.

5. Key establishment mechanisms may be divided into key transfer mechanisms, in
which a key created by one party is securely transmitted to another; and key agreement
mechanisms, whereby two parties jointly establish a shared secret key which is a function
of information contributed by each.

6. Two basic requirements in key establishment are the secrecy of the established key,
and that each party learn the true identity of the other party sharing the key.

7. Authentication may be either unilateral or mutual.

8. The number of passes refers to the number of messages exchanged between the
parties.

9. In 1976, W. Diffie and M. Hellman provided the first practical solution to the key
distribution problem by presenting a key agreement protocol with the following prop-
erties: two parties who may possibly have never met before nor shared any information
related to keys are able to establish a shared secret key by exchanging two messages
over an unsecured public channel. To set up the Diffie-Hellman key agreement where
two parties establish a secret key over a public channel, carry out the following steps:

• fix an appropriate prime p and generator α of Z∗
p ;

• A chooses a random secret rA ∈ {1, 2, . . . , p− 2}, and sends αrA mod p to B;
• B chooses a random secret rB ∈ {1, 2, . . . , p− 2}, and sends αrB mod p to A;
• B computes the shared key as k = (αrA)rB mod p;
• A receives αrB and computes k = (αrB )rA mod p.

10. As of 1999, it is recommended that p be at least 768 bits in length.
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11. The basic mechanism provides secrecy against passive intruders but not authenti-
cation — neither party is assured about the other’s identity, and neither obtains entity
authentication or implicit key authentication.
12. El Gamal key agreement (one-pass; B sends to A information allowing key agree-
ment): El Gamal’s encryption scheme (§14.9.4) is a variation of the Diffie-Hellman key
agreement protocol, and can be used for a one-pass key transfer protocol with implicit
key authentication of the intended recipient A to the originator B, as follows (assume
the same setup as in §14.9.4):

• B chooses a random integer l, 1 ≤ l ≤ p−2, and sends A the quantity αl mod p;
• B looks up A’s public key αa and computes for himself the key k = (αa)l mod p;
• A computes the same quantity upon receipt of B’s message, as k = (αl)a mod p.

13. The recipient A has no corroboration of whom it shares the secret key with; the
protocol does not provide entity authentication to either party.

14. If A independently initiates an analogous protocol simultaneously with B, resulting
in the key k′, and each party then computes K = kk′ mod p, then the combined two-
pass scheme provides key agreement with mutual implicit key authentication (but still
provides neither entity authentication nor explicit key authentication).

15. Both the one-pass and two-pass schemes have the advantage that public keys could
be exchanged (for example, by including certificates) within the protocol itself without
additional passes.

16. The following three-pass variation of the basic Diffie-Hellman protocol allows the
establishment of a shared secret key between two parties with mutual entity authen-
tication and mutual explicit key authentication. This technique makes use of digital
signatures. Set up is the same as in basic Diffie-Hellman key agreement, plus:

• A has RSA public signature key (eA, nA), and private key dA; B has analogous
keys;

• RSA signature generation is done using an appropriate one-way hash function H
prior to exponentiation; A’s signature on m is SA(m) = H(m)dA mod nA;

• A and B have access to authentic copies of the other’s public signature keys.

17. Diffie-Hellman with explicit authentication (three-pass):
• A generates a secret random number rA ∈ {1, 2, . . . , p−2} and sends to B:

αrA mod p;
• B generates a secret random number rB ∈ {1, 2, . . . , p−2}, and computes the

shared key k = (αrA)rB mod p. B signs the concatenation of both exponentials
and the computed key, and sends to A: αrB , SB(αrB , αrA , k);

• A computes the shared key k = (αrB )rA mod p, and verifies with B’s public key
that the message recovered on signature verification of the received message is
the hash of the following three quantities: the cleartext exponential received,
the exponential sent in the first message, and the computed key k;

• if signature verification fails, A terminates with failure; otherwise, A accepts
that k is actually shared with B, and sends to B the message: SA(αrA , αrB , k).

• B analogously verifies A’s signature on the received message;
• if signature verification fails, B terminates with failure; otherwise B accepts that k

is actually shared with A.

18. Inclusion of the key k within the hashed, signed portion of the second and third
messages provides explicit key authentication.
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19. RSA can also be used in a one-pass protocol for key establishment by key transfer.
The basic protocol consists of A using B’s public encryption key, encrypting a randomly
generated key k, and sending it to B. This provides B with no authentication regarding
the source of the key, but can be modified by having the sender RSA-sign the mes-
sage using its own private signature key, before RSA-encrypting it with the intended
recipient’s public encryption key.

14.9.9 PUBLIC-KEY CERTIFICATES

Definitions:

A public-key certificate consists of a data part and a signature part.

The data part consists of the name of an entity, the public key corresponding to that
entity (for example, RSA public key), and possibly additional relevant information (for
example, entity’s street or network address, validity period for public key, etc.).

The signature part consists of the signature of a trusted authority, called a central
authority or certification authority (CA), over the data part.

Facts:

1. The distribution of public keys is generally easier than that of symmetric keys, since
secrecy is not required. However, the integrity (authenticity) of public keys is critical.

2. In 1979 L. Kohnfelder suggested the idea of using public-key certificates to facilitate
the distribution of public keys over unsecured channels, such that their authenticity can
be verified.

3. For any party B to verify the authenticity of the public key of any party A, B
must have an authentic copy of the public (signature verification) key of the CA. (For
simplicity, assume that the authenticity of this public key is provided to party B by
non-cryptographic means, for example, by having party B obtain it from the CA in
person.)

4. Given the Fact 3, B can then carry out the following steps:
• acquire the public-key certificate of A over some unsecured channel, either from

a central database of certificates, from A directly, or otherwise;
• using the CA’s public key, verify the CA’s signature on A’s certificate;
• if this signature verifies correctly, accept the public key in the certificate as A’s

authentic public key; otherwise, assume the public key is invalid.

5. Before creating a public-key certificate for a A, the CA must take appropriate mea-
sures to verify the identity of A and the fact that the public key to be certified actually
belongs to that party.

6. One method might be to require that A appear before the CA with a conventional
government passport as proof of identity, and obtain A’s public key from A in person.

7. Once the CA creates a certificate for a party, the trust that all other entities have
in the authenticity of the CA’s public key can be used transitively to gain trust in
the authenticity of that party’s public key, through acquisition and verification of the
certificate.
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14.9.10 AUTHENTICATION

Definitions:

Two important types of authentication are entity authentication (also known as
identification), which authenticates the identity of a party, and message authenti-
cation, which authenticates the validity of a message.

Facts:

1. One authentication method, allowing identification of one party using a 2-pass
challenge-response protocol based on a shared secret key, is called an IFF scheme (iden-
tification, friend or foe). This terminology originates from the original use of this tech-
nique for identifying aircraft during times of war — the challenger is a military radar
station, and the challenged entity is an aircraft, either friendly or foreign.

An entity B (the challenger), which wishes to be able to identify a second entity A
(the responder), distributes a shared secret key to that entity ahead of time.

• the challenger B sends to an unidentified entity X a time-varying number (the
challenge);

• entity X receives the challenge, and replies with an answer (the response) ex-
pected by B to be a one-way function of the challenge and the shared secret
key;

• if the response is that which was expected from entity A, then the challenger
accepts X to be A; otherwise X remains unidentified.

2. Any one-way function of the shared secret key can be used, including encryption
with a block cipher such as DES, or an appropriate keyed one-way hash function.

3. The protocol must be modified in environments where the roles of challenger and
responder can be reversed, otherwise a challenged party, upon being challenged, can
initiate a new protocol by reflecting the challenge back to the challenger, extracting
the correct response from that entity, and then using that response to respond to the
original challenge.

4. An authentication scheme, proposed by L. Guillou and J.-J. Quisquater in 1988
known as the GQ scheme, allows identification of one party and is based on public-
key techniques. It is an optimization, with respect to number of messages and memory
requirements, of an earlier scheme of A. Fiat and A. Shamir; the Fiat-Shamir Signature
Scheme discussed in §14.9.7. The GQ Scheme involves three messages between entities A
and B, where A is the prover (entity whose identity is to be corroborated) and B is
the verifier (or challenger). It was designed with the specific application in mind where
the prover is a processor such as a “smart card” (integrated circuit mounted on a credit
card) with limited processing power and memory. This scheme is set up as follows:

• a trusted authority C randomly selects two appropriate primes p and q as in RSA,
and computes n = pq;

• C defines as the public exponent an integer v coprime to φ(n);
• the values n and v are made public; C keeps p and q secret;
• each entity X has a unique identity IX from which an integer JX < n is derived

using publicly known redundancy rules;
• for each integer J = JX , C computes U = (J)v

−1
mod n, and gives to entity X

the secret W = U−1 = (J)−(v−1) mod n. (Note: J ·W v ≡ 1 (mod n).)
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The GQ identification scheme operates as follows to provide unilateral identification of
prover A to verifier B:

• entity A with identifier IA selects a random integer r, 1 < r < n−1, and computes
the initial witness T = rv mod n;

• A sends to B the pair of integers (T, IA);
• B selects a random challenge d, 0 ≤ d ≤ v−1, and sends d to A;
• A computes the response t = r ·W d mod n, and sends t to B;
• B receives t, computes Jd · tv mod n, and accepts A’s identity as authentic if this

quantity is equal to T (which it will be if A carried out the protocol properly).

5. For security reasons: a new random value r must be chosen each time the GQ
identification scheme is run and the prover must respond to only one challenge d for
each initial witness T .

6. A fraudulent prover can defeat the GQ identification scheme with a 1 in v chance
by guessing d correctly a priori (and then forming T = Jd · tv mod n as the verifier
would). Thus the recommended bit length of v depends on the environment under which
attacks could be mounted. For a fraudulent prover who must participate locally and is
subject to being apprehended in person upon failure, 8 to 16 bits may suffice; if remote
attacks are possible, for example, by telecommunications linkups, 30 or more bits may
be required.

7. Extracting vth roots modulo n appears necessary to defeat the GQ identification
scheme, and this is believed to be intractable in the absence of knowledge of the factor-
ization of n.

8. The security of the GQ identification scheme relies on the fact that a fraudulent
prover has only a 1 in v chance of guessing d correctly a priori (and then forming
T = Jd ·tv mod n as the verifier would); and it can be shown that if a fraudulent prover
is able to correctly respond to two different challenges for the same initial witness, then
that prover can recover W , i.e. compute a vth root modulo n, which is believed to be
infeasible unless the factorization of n is known.

9. The following algorithm computes a short quantity called a message authentication
code (MAC), which can be appended to a message as a data integrity mechanism to
allow the receiver to verify that the message has not been altered by an unauthorized
party. In addition, this provides a type of symmetric data origin authentication — the
identity of the party which originated the message can be implicitly verified. MAC
algorithms such as this have been used in the financial services industry for over 15
years. The algorithm is set up as follows:

• let w be the required bit length of the MAC;
• select a fixed n-bit block cipher algorithm E (for example, DES, yielding n = 64),

such that w ≤ n;
• the originator of the message and the intended recipient must share a secret key

k for the block cipher E.
The CBC-based MAC scheme operates as follows to append a keyed checksum to mes-
sage m for data integrity. The originator generates the MAC as follows:

• a single 1-bit is appended to the message m (this allows unambiguous recovery
of the original message even after padding as outlined below);

• the augmented message is broken into n-bit blocks mi; the last block is padded
by zero or more 0-bits as required to fill it completely; label the resulting blocks
x1, . . . , xt;
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• the MAC is defined to be the leftmost w bits of the value ct computed by the
following sequence of computations:

c1 = Ek(x1); ci = Ek(xi ⊕ ci−1), 2 ≤ i ≤ t;
• the message m, along with the MAC, are sent to the recipient in such a format

that the recipient can separate the MAC from the message; the padding bits
may or may not be sent along with the message (as agreed by the two parties).

The MAC verification by recipient is carried out as follows:
• the recipient receives the message m, adds padding bits as the sender did (if these

were not transmitted along with m), and computes a MAC on the message using
the shared key k, as outlined above;

• the recipient compares the computed MAC to the received MAC; if they agree,
the recipient is satisfied that the message was not altered during transit (and
that it originated from the party with whom the key k is shared).

10. The strength of the MAC algorithm depends on the secrecy and bit length of the
key k, the strength of the block cipher E, and the bit length w of the MAC.

11. As an option in the MAC construction, the last block ct can be subjected to
additional processing to make the algorithm more resistant to certain types of attacks.

12. Any digital signature scheme, and, in particular, public key schemes such as RSA,
can also be used to provide message authentication.

14.9.11 SECRET SHARING

Definitions:

A scheme whereby a secret datum S can be divided up into n pieces, in such a way
that knowledge of any k or more of the n pieces allows S to be easily recovered, but
knowledge of k−1 or fewer pieces provides no information about S whatsoever (that
is, no more information than 0 pieces) is called a (k, n) threshold scheme, and is an
instance of a more general class of techniques known as secret sharing schemes.

Facts:
1. Threshold schemes were introduced by A. Shamir in 1979.

2. Shamir’s secret sharing scheme: To set up Shamir’s Secret Sharing Scheme, first
do the following:

• define an upper bound Smax on any secret number S to be shared;
• define an upper bound nmax on the number of participants;
• select a prime number p which exceeds both nmax and Smax.

To use the scheme to split a secret S so that any k of n users can recover it, the following
steps are used:

• splitting up the secret: a trusted party does the following:
� obtain a secret number S to be shared, S < Smax, and define a0 = S;
� define the number of active participants to be n < nmax (additional active

participants can easily be added later);
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� define a recovery threshold k ≤ n;
� select k−1 random integers ai, 1 ≤ i ≤ k−1, from [0, p−1], and consider the

polynomial f(x) =
∑k−1

i=0 aix
i of degree at most k−1;

� pick n distinct values xj , 1 ≤ j ≤ n (for example, xj = j), and compute
Sj = f(xj) mod p (Sj is a share);

� give the point (xj , Sj) to participant j; xj can be made public, but the share
Sj should be a secret revealed only to participant j;

• to recover the secret: any k of n active participants do the following (without
loss of generality, label these as participants 1 through k):
� pool their k shares (xj , Sj), 1 ≤ j ≤ k, allowing the recovery of the coefficients

of f(x) by polynomial interpolation;
� from f(x), compute the secret S by evaluating f(0).

3. Distributing one piece or share to each of n parties yields a method of distributing
trust in a secret (such as a cryptographic key) jointly among any k-subset of them. The
built-in redundancy of the secret sharing scheme also provides reliability — loss of any
number of shares that leaves k or more shares remaining does not result in overall loss
of the secret.

4. Shamir’s Secret Sharing scheme is based on polynomial interpolation and the fact
that a polynomial y = f(x) of degree k−1 is uniquely defined by any k points (xi, yi) for
distinct xi, where f(xi) = yi. By construction, f(0) = S, that is, S is the y-intercept
of the graph y = f(x). No partial information regarding S is obtained from any k−1
(or fewer) shares because given k−1 shares, a kth point is needed to uniquely deter-
mine f(x), and each of the p candidate points (0, S) for S in {0, 1, . . . , p−1} defines a
different (equally probable) polynomial. Polynomial evaluation can be done by Horner’s
rule in k multiplications and k additions. Polynomial interpolation can be done using
either Lagrange’s formula or Newton’s formula, with the greatest computational cost
being O(k2) multiplications or divisions.

14.9.12 HASH FUNCTIONS

Definitions:

A hash function h maps arbitrary length bit strings to small fixed-length (for exam-
ple, 64 or 128 bit) outputs called hash-values. (See §17.4.1 for a discussion of hash
functions in a more general setting.)

A collision is a pair of bit strings mapped to the same output by a hash function.

The following are common properties a hash function h may have:
• preimage-resistance: given any y in the range of h (for which a correspond-

ing input is not known), it should be computationally infeasible to find any
preimage x∗ such that h(x∗) = y;

•weak collision-resistance: given any one input x, it should be computationally
infeasible to find a second preimage x∗ 
= x such that h(x) = h(x∗);

• strong collision-resistance: it should be computationally infeasible to find
any two distinct inputs, x and x∗, such that h(x) = h(x∗).
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A one-way hash function (OWHF) is a function h that maps arbitrary length
inputs to fixed length outputs, and has the properties of preimage-resistance and weak
collision-resistance.

A collision-resistant hash function (CRHF) is a function h that maps arbitrary
length inputs to fixed length outputs, and has the property of strong collision-resistance.

An n-bit hash function is said to have ideal security if the following properties hold:
• given a hash output, producing both a preimage and a second preimage given a

first, requires approximately 2n operations;
•producing a collision requires approximately 2n/2 operations.

Facts:

1. The basic idea is that a hash-value serves as a compact representative image (some-
times called a digital fingerprint, or message digest) of the input string, and can be used
as if it were uniquely identifiable with that string.

2. The problem of checking the integrity of the potentially large original input is re-
duced to verifying that of a small, fixed-size hash-value.

3. A hash-value should be uniquely identifiable with a single input in practice, and
collisions should be computationally difficult to find.

4. While the utility of hash functions is widespread, the most common cryptographic
uses are with digital signatures and for data integrity.

5. Regarding digital signatures, long messages are typically hashed first, and then
the hash-value is signed rather than signing individual blocks of the original message.
Advantages of this over signing the individual blocks of the original message directly
include efficiency with respect to both time and space.

6. Regarding data integrity, hash functions together with appropriate additional tech-
niques can be used to verify the integrity of data. Specific integrity applications include
virus protection and software distribution.

7. MACs (§14.9.10) are a special class of hash functions, which take in addition to
message input a secret key as a second input, allowing for the verification of both data
integrity and data origin authentication.

8. Given a hash function h and an input x, h(x) should be easy to compute.

9. The complete specification of h is usually assumed to be publicly available.

10. Collision-resistance is required for applications such as digital signatures and data
integrity, otherwise an adversary might find two messages, x and x′, that have the same
hash-value, obtain a signature on x, and claim it as a signature on x′.

11. Depending on the intended application and the susceptibility of the environment
to certain attacks, weak or strong collision-resistance may be required.

12. There are no known instances of functions that have been proven to be one-way,
that is, for which it can be proven (without assumptions) that finding a preimage is
difficult. However, it would be most surprising if such functions indeed did not exist.
All instances of “one-way functions” given to date should thus properly be qualified as
“conjectured” or “candidate” one-way functions.
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13. Most hash functions process fixed-size blocks of the input iteratively as follows:
• A prespecified starting value or initializing value (IV ) is defined.
• The hash input x = x1x2 . . . xt of arbitrary finite length is divided into fixed-

length n-bit blocks xi. This preprocessing typically involves appending extra
bits (padding) as necessary to extend the input to an overall bit length that
is a multiple of the block length n. The padding also often includes a partial
block indicating the bit length of the unpadded input.

• Each block xi is then used as input to a simpler hash function f called an m-bit
compression function, which computes a new intermediate result of some fixed
bit length m as a function of the previous m-bit intermediate result (initially
the IV ) and the block xi. Letting Hi denote the partial result after the ith
stage, the hash h(x) of an input x = x1x2 . . . xt is defined as follows:

H0 = IV ; Hi = f(Hi−1, xi), 1 ≤ i ≤ t; h(x) = Ht.
• Hi−1 serves as the chaining variable between stages i− 1 and i.

14. Particular hash functions differ in the nature of the compression function and
preprocessing of the input.

Examples:

1. A typical usage for data integrity is as follows:
• the hash-value corresponding to a particular input is computed at some point in

time;
• the integrity of this hash-value is then protected in some manner;
• at a subsequent point in time, to verify the input data has not been altered, the

hash-value is recomputed, using purportedly the same input, and compared for
equality with the original hash-value.

2. Matyas-Meyer-Oseas hash function: Let E be an n-bit block cipher, such as DES,
parametrized by a symmetric key k, and let g be a function that maps an n-bit string
to a key k suitable for E. Fix an initial value IV . The following algorithm is then an
n-bit hash function which, given any input string x, outputs an n-bit hash h(x):

• divide x into n-bit blocks and pad if necessary by some method such that all
blocks are complete, yielding a padded message of t n-bit blocks x1x2 . . . xt;

• define h(x) = Ht where:
H0 = IV ; Hi = Eg(Hi−1)(xi)⊕ xi, 1 ≤ i ≤ t.

This is believed to be a one-way hash function requiring 2n operations to find a preimage,
and 2n/2 operations to find a collision. For underlying ciphers, such as DES, which have
relatively small blocklength (for example, with blocks of no more than 64 bits), this
is not a collision-resistant hash function since 232 operations is well within current
computational capability.
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INTRODUCTION

This chapter discusses various topics in discrete optimization, especially those that arise
in applying operations research techniques to applied problems. Linear programming
provides a fundamental operations research tool for studying, formulating, and solving
a number of combinatorial optimization problems — either exactly or approximately.
For example, linear programming is an important tool in solving packing and covering
problems, in which a given resource must be optimally utilized subject to constraints.
Location theory studies the optimal placement of facilities in order to service a finite
number of customers on a network or in the plane. Activity networks are commonly used
in the planning and scheduling of interrelated activities to complete a project; in this
case the completion time, resources used, and total cost are important considerations.
Game theory is a discipline with applications to many areas, in which several agents
compete or cooperate to maximize their respective gains. Fixed-point theorems have
applications to economics, nonlinear optimization, and game theory.

GLOSSARY
active constraint: an inequality satisfied with equality by a given vector.

balanced matrix: a 0-1 matrix having no square submatrix of odd order with exactly
two 1s in each row and column.

basic feasible solution (of an LP): a basic solution that is also a feasible solution.

basic solution (of an LP): a solution obtained by setting certain nonbasic variables
to zero and solving for the remaining basic variables.

bin packing problem: an optimization problem in which a given set of items are to
be packed using the fewest number of bins.

bounded LP: a linear programming problem having a finite optimal solution.

capacitated location problem: a location problem in which bounds are placed on
the amount of demand that can be handled by individual facilities.

p-center: a set of p locations for facilities that minimizes the maximum distance from
any demand point to its closest facility.

characteristic function: a mapping from the set of all coalitions to the nonnegative
real numbers.

characteristic-function game: a model for distributing a cooperative benefit fairly
among players when the concept of fairness is based on the bargaining strengths of
coalitions that could form if the players had not already agreed to cooperate.

coalition: any subset of the players in a game.

complete information: a situation arising when a game’s structure is known to all
players.

convex hull: the smallest convex set containing a given set of points.

convex set: a set containing the line segment joining any two of its points.

CPM model: a deterministic activity net with strict precedence among the activities.

critical path: a sequence of activities that determines the completion time of a project.

criticality index: the probability that a given path (activity) is (lies on) a critical
path of a project.
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cutting plane: a constraint that can be added to an existing set of constraints without
excluding any feasible integer solution.

decision variables: the unknowns in an optimization problem.

demand point: a point in a metric space that is a source of demand for the service
provided by the facilities.

deterministic activity net: a directed network in which all the parameters (such as
duration, resource requirements, precedence) are known deterministically.

dual LP: a minimization LP problem associated with a given maximization LP prob-
lem.

equilibrium: a strategy combination from which no player has a unilateral incentive
to depart.

facility : a place where a service (or product) is provided.

facility location: a point in a metric space where a facility is located.

feasible direction: a direction that preserves feasibility in a sufficiently small neigh-
borhood of a given feasible solution.

feasible LP: an LP with a nonempty feasible region.

feasible region: the set of all feasible solutions to a given LP.

feasible solution: a vector that satisfies the given set of constraints.

fixed point (of a function): given a function f , a point x such that f(x) = x.

float: in a deterministic activity net, a measure of the flexibility available in scheduling
an activity without delaying the project completion time.

c-game: a characteristic-function game.

GAN model: a probabilistic activity net with conditional progress and probabilistic
realization of activities.

general position: a set of points x1, x2, . . . , xp+1 ∈ Rn such that the vectors x2 −x1,
x3 − x1, . . . , xp+1 − x1 are linearly independent.

GERT model: a probabilistic activity net with exclusive-or branching.

goal programming (GP) problem: an LP having multiple objective functions.

improving direction: a feasible direction that improves the objective function value.

imputation: a distribution among players of the cooperative benefit in a c-game.

infeasible LP: an LP with an empty feasible region.

integer programming (IP) problem: a linear programming problem in which some
of the decision variables are required to be integers.

interior point method: a technique for solving an LP that iteratively moves through
the interior of the feasible region.

knapsack problem: an optimization problem in which items are to be selected to
maximize the total benefit without exceeding the capacity of the knapsack.

linear programming (LP) problem: an optimization problem involving the selec-
tion of decision variables that optimize a given linear function and that satisfy linear
inequality constraints.

location problem: an optimization problem in which p facilities are to be established
to minimize the cost of meeting known demands arising from n locations.
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LP relaxation: the linear programming problem obtained by dropping the integrality
requirements of an IP.

p-median: a set of p locations for facilities that minimizes the total (transportation)
cost of satisfying all demands.

metric space: a set of points on which a distance function has been defined.

mixed strategy : a probability distribution over a set of pure strategies.

noncooperative game: a mathematical model of strategic behavior in the absence
of binding agreements.

normalized characteristic function: a mapping from the set of all coalitions to
[0, 1].

nucleolus: a c-game solution concept based on minimizing the dissatisfaction of the
most dissatisfied coalitions.

objective function: the function associated with a given optimization problem that
is to be maximized or minimized.

optimal solution: a feasible solution to an optimization problem achieving the largest
(or perhaps smallest) value of the objective function.

packing : a subset of items from a given list that can be placed in a bin of specified
capacity.

payoff function: a mapping from the set of feasible strategy combinations to Rn,
where n is the number of players.

perfect information: a situation arising when the history of a game is known to all
players.

PERT model: a probabilistic activity net with strict precedence and activity dura-
tions that are known only in probability.

pivot: a move from a given basic solution of an LP to one differing in only one active
constraint.

players: a collection of interacting decisionmakers.

polyhedron: the set of points satisfying a given finite set of linear inequalities.

probabilistic activity net: a directed network in which some or all of the parameters,
including the realization of the activities, are probabilistically known.

pure strategy : a plan of action available to a player.

reduced cost: the unit change in the objective function incurred by increasing the
value of a given decision variable.

redundant constraint: a constraint that can be removed from a given set of con-
straints without changing the set of feasible solutions.

set cover: a family of subsets such that each of a specified list of elements is contained
in at least one subset.

set covering problem: an optimization problem in which a minimum cost set cover
is needed.

set partition: a family of subsets such that each of a specified list of elements is
contained in exactly one subset.

set partitioning problem: an optimization problem in which a minimum cost set
partition is needed.
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Shapley value: a c-game solution concept based on players’ marginal worths to coali-
tions on joining, assuming all orders of formation are equally likely.

p-simplex: the convex hull of a collection of p+ 1 points in general position.

simplex method: a technique for solving an LP that moves from vertex to neighboring
vertex along the boundary of the feasible region.

simplicial subdivision (of a simplex): a decomposition of the simplex into a collection
of simplices that intersect only along entire common faces.

slack variables: the components of b − Ax∗ where x∗ is a feasible solution to an LP
with constraints Ax ≤ b, x ≥ 0.

solution: an equilibrium or set of equilibria in a noncooperative game, or an imputa-
tion or set of imputations in a c-game.

strategic behavior: behavior such that the outcome of an individual’s actions de-
pends on actions yet to be taken by others.

strategy combination: a vector of strategies, one for each player.

tableau: a table storing all information pertinent to a given basic solution for an LP.

totally unimodular matrix: a 0-1 matrix such that every square submatrix has
determinant 0, +1, or −1.

unbounded LP: a linear programming problem that is not bounded.

vertex (of a feasible region): given a feasible region S, a point x ∈ S ⊆ Rn defined by
the intersection of exactly n linearly independent constraints.

15.1 LINEAR PROGRAMMING
Linear programming involves the optimization of a linear function under linear inequal-
ity constraints. Applications of this model are widespread, including problems arising in
marketing, finance, inventory, capital budgeting, computer science, transportation, and
production. Algorithms are available that, in practice, solve LP problems efficiently.

15.1.1 BASIC CONCEPTS

Definitions:

A linear programming (LP) problem is an optimization problem that can be written
maximize: cx

(1)
subject to: Ãx ≤ b̃

where Ã is a given q × n matrix, c is a given row vector of length n, and b̃ is a given
column vector of length q. The decision variables of problem (1) are represented by
the column vector x of length n.

A feasible solution is a vector x satisfying Ãx ≤ b̃. The feasible region is the subset
of all feasible solutions in Rn. If no feasible solution exists (so that the feasible region
is empty), the LP problem is infeasible; otherwise it is feasible.

Each of the q inequalities in Ãx ≤ b̃ is a constraint. A constraint is redundant if
removing it from (1) doesn’t change the feasible region.
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For a feasible solution x, the function z = cx is the objective function, with cx the
objective value of x. When the objective value z∗ = cx∗ is also maximum, then the
feasible x∗ is an optimal solution. If the objective value can be made arbitrarily large
over the feasible region, the LP problem is unbounded. Otherwise it is bounded.

A vector y is a feasible direction at x∗ if there is some τ > 0 such that Ã(x∗+λy) ≤ b̃
for all 0 ≤ λ ≤ τ . If cy > 0 also holds, then y is an improving direction.

A constraint of the system Ãx ≤ b̃ that is satisfied with equality by a feasible solution x∗

is active at x∗.

A set of constraints {aix ≤ bi | i = 1, 2, . . . , k} is linearly independent if the vectors
{a1, a2, . . . , ak} are linearly independent (see §6.1.3).

A vertex is a feasible solution with n linearly independent active constraints. A vertex
with more than n active constraints is degenerate. An LP problem with a degenerate
vertex is degenerate.

A set S is convex if the line segment joining any two of its points is contained in S:
i.e., for all x, y ∈ S and 0 ≤ λ ≤ 1, then λx+ (1 − λ)y ∈ S.

Let L be the line segment connecting the two vertices x1 and x2. Then x1 and x2 are
adjacent if for all points y 
= x1, x2 on L and all feasible y1 and y2, the only way y can
equal 1

2y
1 + 1

2y
2 is if y1 and y2 are also on L. In this case, L is an edge.

Facts:

1. Linear programming models arise in a wide variety of applications, which typically
involve the allocation of scarce resources in the best possible way. A sample of such
application areas, with reference sources, is given in the following table.

application references

production scheduling and inventory control [Ch83], [Ga85]
tanker scheduling [BaJaSh90]
airline scheduling [Ga85]
cutting stock problems [BaJaSh90], [Ch83]
workforce planning [Ga85]
approximation of data [Ch83]
matrix games [Ch83]
blending problems [BaJaSh90]
petroleum refining [Ga85]
capital budgeting [BaJaSh90]
military operations [Ga85]
land use planning [Ga85]
agriculture [Ga85]
banking and finance [Ga85]
environmental economics [Ga85]
health care [Ga85]
marketing [Ga85]
public policy [Ga85]
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2. The general concepts of linear programming were first developed by G. B. Dantzig
in 1947 in connection with military planning problems for the U. S. Air Force. Earlier,
in 1939, L. V. Kantorovich formulated and solved a particular type of LP problem in
production planning.

3. The term “linear programming” conveys its historical origins and purpose: it is a
mathematical model involving linear constraints and a linear objective function, used
for the optimal planning (programming) of operations.

4. Form (1) of an LP naturally occurs in the selection of levels for production activities
that maximize profit subject to constraints on the utilization of the given resources.

5. These transformations on an LP do not change feasible (or optimal) solutions:
• constraints: change the sense of an inequality by multiplying both sides by −1;

or replace aix = bi with aix ≤ bi and −aix ≤ −bi; or replace aix ≤ bi with
aix+ si = bi and si ≥ 0;

• variables: for xj unrestricted, set xj := x′j − x′′j with x′j , x
′′
j ≥ 0; or for xj ≤ 0,

set xj := −x′j with x′j ≥ 0;
• objective function: change a minimization (maximization) problem to a maxi-

mization (minimization) problem by setting c := −c.

6. Farkas’ lemma: Suppose Ã is a q × n matrix and c is an n-row vector. Then the
following are equivalent:

• cy ≥ 0 for all y ∈ Rn such that Ãy ≥ 0;
• there exists some u ∈ Rq such that u ≥ 0, c = uÃ.

This result is important in establishing the optimality conditions for linear programming
problems; it can also be applied to show the existence (and uniqueness) of solutions
to linear models of economic exchange and stationary distributions in finite Markov
chains (§7.7). (J. Farkas, born 1902)

7. A feasible solution with an improving direction can not be optimal for (1).

8. A feasible solution with no improving direction is always optimal for (1).

9. If a feasible solution to (1) has an improving direction y and if Ãy ≤ 0 then the LP
problem is unbounded.

10. Each LP problem is either infeasible, unbounded, or has an optimal solution. This
need not be the case for nonlinear optimization problems.

11. Form (1) of an LP is helpful for understanding the geometric properties of an LP.

12. For algorithmic purposes the following form, form (2), of an LP is preferred:
maximize: cx

subject to: Ax ≤ b
x ≥ 0

(2)

Here A is an m× n matrix.

13. The most general form of an LP problem is:

maximize (or minimize): dx1 + ex2 + fx3

subject to: Ax1 +Bx2 + Cx3 ≤ a
Dx1 + Ex2 + Fx3 ≥ b
Gx1 +Hx2 +Kx3 = c
x1 ≥ 0, x2 ≤ 0, x3 unrestricted.
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In this formulation A, B, C, D, E, F , G, H, and K are matrices; a, b, and c are column
vectors; and d, e, and f are row vectors.

14. The feasible region of an LP problem is a convex set.

15. Equivalence of forms: The general form in Fact 13 is equivalent to both form (1)
and form (2) in the following sense: any of these three forms can be transformed into
another using the operations of Fact 5. Each form possesses the same set of feasible (or
optimal) solutions.

16. An excellent glossary of linear programming terms, as well as concepts in general
mathematical optimization, can be found at the site:

• http://www-math.cudenver.edu/~hgreenbe/glossary/glossary.html

Examples:

1. Feed mix: A manufacturer produces a special feed for farm animals. To ensure
that the feed is nutritionally balanced, each bag of feed must supply at least 1250 mg
of Vitamin A, 250 mg of Vitamin B, 900 mg of Vitamin C, and 232.5 mg of Vitamin D.
Three different grains (1, 2, 3) are blended to create the final product. Each ounce of
Grain 1 supplies 2, 1, 5, 0.6 mg of Vitamins A, B, C, D, respectively. Each ounce of
Grain 2 provides 3, 1, 3, 0.25 mg of Vitamins A, B, C, D, while each ounce of Grain 3
provides 7, 1 mg of Vitamins A, D. The costs (per ounce) of the constituent grains are
41, 35, and 96 cents for Grains 1, 2, and 3, respectively.

The manufacturer wants to determine the minimum cost mix of grains that sat-
isfies all four nutritional requirements. If xi is the number of ounces of Grain i that
are blended in the final product, then the manufacturer’s problem is modeled by the
following LP:

minimize: 0.41x1 + 0.35x2 + 0.96x3

subject to: 2x1 + 3x2 + 7x3 ≥ 1250
x1 + x2 ≥ 250

5x1 + 3x2 ≥ 900
0.6x1 + 0.25x2 + x3 ≥ 232.5

x1, x2, x3 ≥ 0.

Each constraint in this LP corresponds to a nutritional requirement. It turns out that
the optimal solution to the LP is x∗1 = 200.1, x∗2 = 49.9, x∗3 = 100.01 with z∗ = 195.5.
Note that the amount of Vitamin C supplied by this solution is in excess of 900 mg,
while the other vitamins are supplied in exactly the minimum amounts.

2. The LP in Example 1 is not in either form (1) or form (2). However, using Fact 5
it can be transformed into form (2), giving the equivalent representation:

maximize: − 0.41x1 − 0.35x2 − 0.96x3

subject to: − 2x1 − 3x2 − 7x3 ≤ −1250
−x1 − x2 ≤ −250
−5x1 − 3x2 ≤ −900

−0.6x1 − 0.25x2 − x3 ≤ −232.5
x1, x2, x3 ≥ 0.
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3. The following figure shows the feasible region of the LP problem:

maximize: −x1

subject to: − x2 ≤ 0 (A)
−x1 − x2 ≤−4 (B)
−x1 + x2 ≤ 4 (C)

−3x1 + 5x2 ≤ 30 (D)
−x1 + 3x2 ≤ 22 (E)

This LP has n = 2 decision variables x1, x2 and it has the vertices (4, 0), (0, 4), and (5, 9).
Vertex (x1, x2) = (0, 4) is the optimal solution, achieving the maximum objective value
z = 0. Thus, the LP is bounded, even though its feasible region is not bounded.
Constraint (D) is redundant, since dropping it doesn’t change the feasible region. Ver-
tex (5, 9) is degenerate, since 3 > n constraints are active at this vertex. All vectors are
feasible directions at (6, 5). At vertex (5, 9), the direction (1,−1) is feasible, but the
direction (1, 1) is not. Vertices (0, 4) and (5, 9) are adjacent, as are (4, 0) and (0, 4).

4. Farkas’ lemma: The row vectors a1, a2 of Ã =
(

2 4
5 2

)
are shown in the following

figure.

The set Y = { y | Ãy ≥ 0 } is the region bounded by the two dashed lines. Notice that
if c = uÃ for some u ≥ 0 then c must lie in the cone C bounded by the vectors a1

and a2. Geometrically, any c ∈ C makes an acute angle with every y ∈ Y , hence cy ≥ 0.
Conversely, any c making an acute angle with every y ∈ Y must be in C.
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5. Fact 10 is illustrated using the following LP problem:

maximize: − x1 − x2

subject to: − 2x1 + x2 ≤ −1
−x1 − 2x2 ≤ −2

x1, x2 ≥ 0 .

This LP has the optimal solution (x∗1, x
∗
2) = ( 4

5 ,
3
5 ). Suppose the objective function is

changed to z = x1 − x2. Then (x1, x2) = (a, 0) is feasible for a ≥ 2 with objective
value a. Thus z can be made arbitrarily large and the LP is unbounded. On the other
hand, if the second constraint is changed to 4x1 −x2 ≤ −1, the feasible region is empty
and the LP is infeasible.

6. Product mix: A company manufactures n types of a product, usingm shops. Type j
requires aij machine-hours in shop i. There is a limitation of bi machine-hours for
shop i and the sale of each type j unit brings the company a profit cj . The optimization
problem facing the company is given by an LP problem in form (2). Namely, if xj is
the number of units produced of type j, then the optimization problem is

maximize:
n∑
j=1

cjxj

subject to:
n∑
j=1

aijxj ≤ bi, i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n.

7. Transportation: A product stored at m warehouses needs to be shipped to satisfy
demands at nmarkets. Warehouse i has a supply of si units of the product, and market j
has a demand of dj units. The cost of shipping a unit of product from warehouse i to
market j is cij . The problem is to determine the number of units xij to ship from
warehouse i to market j in order to satisfy all demands while minimizing cost:

minimize:
m∑
i=1

n∑
j=1

cijxij

subject to:
n∑
j=1

xij ≤ si, i = 1, . . . ,m

m∑
i=1

xij = dj , j = 1, . . . , n

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

This is an LP in the form specified by Fact 13. Using the transformations in Fact 5,
this optimization problem can alternatively be expressed as an LP in the form (1).

15.1.2 TABLEAUS

Definitions:

Suppose that an LP is expressed in form (2) of §15.1.1, with A an m × n matrix. A

tableau is any table
u z
D f

with the following properties:
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• D is anm×(m+n) matrix with entries dtj ; z is a real number; u is an (m+n)-row
vector; and f is an m-column vector.

• Associated with the tableau is a partition ΣB ,ΣN of the integers 1, . . . ,m + n.
The set ΣB , with cardinality m, is the basic set and ΣN is the nonbasic set.

• For every row index t = 1, . . . ,m, there is a column of D equal to zero in all
coordinates except for the tth coordinate, which equals 1. The index of this
column is ϕ(t) where ϕ is a function from {1, . . . ,m} to ΣB associated with the
tableau.

• u z
D f

can be obtained from
−c 0 0
A I b

(where ΣB = {n +

1, . . . ,m + n} and ϕ(t) = n + t, t = 1, . . . ,m) by performing the following
pivot operation a finite number of times:

P1. choose a row index t∗ ∈ {1, . . . ,m} and a column index j∗ ∈ ΣN with
dt∗j∗ 
= 0;

P2. multiply row t∗ by 1/(dt∗j∗);
P3. add appropriate multiples of row t∗ to all other rows to make uj∗ = 0 and

to make dtj∗ = 0 for all t 
= t∗;
P4. remove j∗ from ΣN and place it in ΣB ; remove ϕ(t∗) from ΣB and place

it in ΣN ; set ϕ(t∗) = j∗.

In the pivot operation, ϕ(t∗), before replacement, is the index of the leaving variable
and j∗ is the index of the entering variable.

The set of variables {xi | i ∈ ΣB } are the basic variables and the remaining variables
are the nonbasic variables.

A basic solution is a vector x∗ with its basic variables defined by x∗i = ft where
t = ϕ−1(i); its nonbasic variables have x∗i = 0. If f ≥ 0 then x∗ is a basic feasible
solution (BFS).

The basis matrix B is the m ×m matrix consisting of the columns of [A I ] corre-
sponding to the basic variables; the nonbasis matrix N is the m × n matrix corre-
sponding to the nonbasic variables. Let cB [cN ] denote the vector of basic [nonbasic]
components of c. Let xB [xN ] denote the vector of basic [nonbasic] components of x.

The reduced cost of nonbasic variable xj is the negative of uj in the associated tableau.

The slack variables are given by (xn+1, xn+2, . . . , xn+m) = b−Ax.

Facts:

1. Every BFS of (2) corresponds to a vertex of (1), where q = m+ n, Ã =
[
A

−I

]
, and

b̃ =
[
b
0

]
.

2. In the absence of degeneracy the correspondence in Fact 1 is one-to-one; otherwise
it is many-to-one.

3. Every LP problem (2) with an optimal solution has an optimal solution that is a
vertex. Since the number of vertices is finite, LP problems are combinatorial in nature;
that is, an LP can be solved in theory by enumerating its vertices and then selecting
one with maximum objective function value.
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4. Let x∗ be a BFS of (2). All information pertinent to x∗ is contained in its tableau
which (after possibly permuting the first m+ n columns) is

0 cBB
−1N − cN cBB

−1b
I B−1N B−1b

.

Here cBB−1b is the objective value z of x∗. The value of the basic variable x∗i is the
tth component of B−1b, where i = ϕ(t). Every nonbasic variable has value 0.
5. A tableau expresses the set of equations below, called a dictionary [Ch83]:

xB = B−1b−B−1NxN

z = cBB−1b+ (cN − cBB−1N)xN .
6. The reduced costs of the nonbasic variables are given by the vector cN − cBB−1N .
Basic variables have zero reduced cost.
7. Column i of B−1 is identical to dm+i, the column of D associated with the slack
variable xn+i.

Examples:
1. When slack variables x4, x5, x6 are added to the LP

maximize: 3x1 + 4x2 + 4x3

subject to: 3x1 − x3 ≤ 5
−9x1 + 4x2 + 3x3 ≤ 12
−6x1 + 2x2 + 4x3 ≤ 2

x1, x2, x3 ≥ 0

the following equivalent LP is formed:

maximize: 3x1 + 4x2 + 4x3 + 0x4 + 0x5 + 0x6

subject to: 3x1 − x3 + x4 = 5
−9x1 + 4x2 + 3x3 + x5 = 12
−6x1 + 2x2 + 4x3 + x6 = 2

x1, x2, . . . , x6 ≥ 0.

The associated tableau, with ΣB = {4, 5, 6} and ΣN = {1, 2, 3}, is then

−3 −4 −4 0 0 0 0
3 0 −1 1 0 0 5

−9 4 3 0 1 0 12
−6 2 4 0 0 1 2

Here ϕ(1) = 4, ϕ(2) = 5, ϕ(3) = 6. The basic variables are x4 = 5, x5 = 12, x6 = 2
and the nonbasic variables are x1 = 0, x2 = 0, x3 = 0. The basic feasible solution
associated with this tableau is x = (0, 0, 0, 5, 12, 2)T with objective value z = 0. The
nonbasic variables x1, x2, x3 have reduced costs 3, 4, 4, respectively.
2. A pivot is now performed on the tableau in Example 1 using t∗ = 3 and j∗ = 2,
so the entering variable is x2 and the leaving variable is x6. The resulting tableau (a)
follows, where ΣB = {2, 4, 5} and ϕ(1) = 4, ϕ(2) = 5, ϕ(3) = 2. The corresponding
BFS is x = (0, 1, 0, 5, 8, 0)T with objective value z = 4. If a pivot is performed on (a)
using t∗ = 1 and j∗ = 1, then tableau (b) results. Here ϕ(1) = 1, ϕ(2) = 5, ϕ(3) = 2
and the new BFS is x = ( 5

3 , 6, 0, 0, 3, 0)T with objective value z = 29.
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tableau (a)

−15 0 4 0 0 2 4
3 0 −1 1 0 0 75
3 0 −5 0 1 −2 8

−3 1 2 0 0 1
2 1

tableau (b)

0 0 −1 5 0 2 29
1 0 − 1

3
1
3 0 0 5

3
0 0 −4 −1 1 −2 3
0 1 1 1 0 1

2 6

For tableau (b), the basis matrix B corresponds to columns 1, 5, 2 of [A I ] , namely

B =


 3 0 0

−9 1 4
−6 0 2


. From Fact 7, the inverse matrix B−1 =


 1

3 0 0
−1 1 −2

1 0 1
2


 consists

of columns 4, 5, 6 in tableau (b).

15.1.3 SIMPLEX METHOD

The simplex method is in practice remarkably efficient and it is widely used for solving
LP problems. The solution idea dates back to J. B. J. Fourier (1768–1830); it was devel-
oped and popularized in 1947 by G. B. Dantzig (born 1914). This section presents two
descriptions of the same algorithm — the first geometrically intuitive, the second closer
to its actual implementation.

Facts:

1. Simplex algorithm I : This method (Algorithm 1) solves a linear programming prob-
lem in form (1) of §15.1.1. Assuming that an initial vertex is known, this algorithm
travels from vertex to vertex along improving edges until an optimal vertex is reached
or an unboundedness condition is detected. In Algorithm 1, the rows of Ã are denoted
a1, a2, . . . , aq and b̃ has the corresponding components b1, b2, . . . , bq.

2. Simplex algorithm II : This method (Algorithm 2) solves a linear programming
problem in form (2) of §15.1.1, assuming that b ≥ 0. It proceeds by successively identi-
fying nonbasic variables having positive reduced cost and pivoting them into the current
basis in a way that maintains a basic feasible solution (BFS).

3. There are examples for which Algorithm 1 requires exponential running time, and
similarly for Algorithm 2.

4. In practice the number of iterations of Algorithms 1 and 2 is proportional to the
number of constraints m and grows slowly with the number of variables n.

5. There is a one-to-one correspondence between the vertex xk of Algorithm 1 and the

BFS xk of Algorithm 2, when Ã is set to
[
A

−I

]
and b̃ is set to

[
b
0

]
.

6. Interchanging a basic and a nonbasic variable in Algorithm 2 corresponds to inter-
changing a nonactive and an active constraint in Algorithm 1.

7. In the absence of degeneracy, the objective value strictly increases at each step (in
both algorithms). The method of breaking ties by choosing the smallest index prevents
cycling and ensures termination in finite time. In practice, though, cycling is rare and
other rules are used.

8. When a vertex is not known in Algorithm 1 (when b 
≥0 in Algorithm 2) a prelimi-
nary LP problem, Phase I, can be solved to get an initial vertex (a starting tableau).
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Algorithm 1: Simplex algorithm — form (1).

input: LP in form (1), initial vertex x0

output: an optimal vertex or an indication of unboundedness

k := 0
find a subsystem Bx ≤ r of (1) consisting of n linearly independent constraints

active at xk
S := list containing the indices of these active constraints
{Main loop}
if u ≡ cB−1 ≥ 0 then xk is an optimal solution — stop
else {an improving direction}
i∗ := the smallest index such that ui∗ < 0
y := column i∗ of −B−1

if Ãy ≤ 0 then the LP problem is unbounded — stop
else {move to next vertex (possibly same as last)}
j∗ := smallest index j attaining minimum λ ≡ min

{ bj−ajxk

ajy

∣∣ j 
∈S, ajy > 0
}

xk+1 := xk + λy
S[i∗] := j∗; update B
k := k + 1

{Continue with next iteration of main loop}

Algorithm 2: Simplex algorithm — form (2).

input: LP in form (2), with b ≥ 0
output: an optimal BFS or an indication of unboundedness

begin with the initial tableau:
−c 0 0
A I b

, where ΣB = {n+1, . . . ,m+n}

and ϕ(t) = n+ t, t = 1, . . . ,m
x0 := (xB , xN ) where xB = b ≥ 0 and xN = 0
k := 0
{Main loop}
if uj ≥ 0 for all j ∈ ΣN then xk is an optimal solution — stop
else {select entering variable}
j∗ := the smallest index with uj∗ < 0
if dtj∗ ≤ 0 for t = 1, . . . ,m then the LP is unbounded — stop
else
t∗ := an index t achieving the minimum

min
{

ft

dtj∗

∣∣ t = 1, . . . ,m; dtj∗ > 0
}

(if there are several such t∗, make ϕ(t∗) as small as possible)
do a pivot with entering index j∗, leaving index ϕ(t∗)
set component ϕ(t) of xk+1 to ft for t = 1, . . . ,m and the remaining com-

ponents of xk+1 to zero
k := k + 1

{Continue with next iteration of main loop}
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9. The revised simplex method is a variation of Algorithm 2. Instead of maintaining
the entire tableau at each step only B−1 is kept. Columns of [A I ] are brought in
from storage as needed to find j∗ and t∗. This method is good for sparse matrices A
with many columns.

10. A survey of 39 software packages for solving linear programming problems is de-
scribed in [Fo97]. Virtually all of these products run on PCs. In many cases, the LP
solvers are linked to more general modeling packages that provide a single environment
for carrying out the formulation, solution, and analysis of LP problems.

11. Many software packages are available to solve LP problems on mainframes and
personal computers. Commercial packages include LINDO, CPLEX, OSL, C-WHIZ,
and MINOS. Most use a version of the revised simplex method:

• http://www.lindo.com/

• http://www.cplex.com/

• http://www.research.ibm.com/osl/

• http://www.ketronms.com/products.html

• http://www-leland.stanford.edu/~saunders/brochure/brochure.html

12. An extensive tabulation of software packages to solve LP problems is found at the
site:

• http://www-c.mcs.anl.gov/home/otc/Guide/SoftwareGuide
/Categories/linearprog.html

13. Computer codes (in C, Pascal, and Fortran) that implement the simplex method
are catalogued at the sites:

• http://plato.la.asu.edu/guide.html#LP

• http://ucsu.colorado.edu/~xu/software/lp/

• http://www.wior.uni-karlsruhe.de/Bibliothek/Title Page1.html

Examples:

1. The LP in Example 1 of §15.1.2 can be placed in the form (1) with

Ã =




3 0 −1
−9 4 3
−6 2 4
−1 0 0
0 −1 0
0 0 −1


, b̃ =




5
12
2
0
0
0


, c = (3 4 4).

If x0 = (0, 1, 0)T then constraints 3, 4, 6 are active at x0 and S = [3, 4, 6]. Thus

B =


−6 2 4

−1 0 0
0 0 −1


, B−1 =


 0 −1 0

1
2 −3 2
0 0 −1


, u = cB−1 = (2 −15 4).

Here i∗ = 2, y = (1, 3, 0)T , Ãy = (3, 3, 0,−1,−3, 0)T , and b̃ − Ãx0 = (5, 8, 0, 0, 1, 0).
Then λ = min{ 5

3 ,
8
3} = 5

3 and j∗ = 1. The new vertex is x1 = x0 +λy = ( 5
3 , 6, 0)T and S

is updated to S = [3, 1, 6], so B now contains rows 3, 1, 6 of Ã. Additional iterations of
Algorithm 1 can then be carried out using the updated S and B.
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2. The same LP can alternatively be solved using Algorithm 2. For illustration, suppose
that the tableau (a) from Example 2 (§15.1.2) is given, corresponding to the BFS x1 =
(0, 1, 0, 5, 8, 0)T and ΣB = {2, 4, 5}. Here u = (−15, 0, 4, 0, 0, 2) and j∗ = 1 is chosen.
The minimum ratio test gives min{ 5

3 ,
8
3} = 5

3 and t∗ = 1. The next pivot produces
tableau (b) in Example 2 (§15.1.2), with ΣB = {1, 2, 5} and x2 = ( 5

3 , 6, 0, 0, 3, 0)T . Here
u = (0, 0,−1, 5, 0, 2) so a further pivot is performed using j∗ = 3 and t∗ = 3, giving the
tableau below. Since u ≥ 0 the BFS x3 = ( 11

3 , 0, 6, 0, 27, 0)T is an optimal solution to
the LP, with optimal objective value z∗ = 35.

0 1 0 6 0 5
2 35

1 1
3 0 2

3 0 1
6

11
3

0 4 0 3 1 0 27

0 1 1 1 0 1
2 6

15.1.4 INTERIOR POINT METHODS

There are numerous interior point methods for solving LP problems. In contrast to
the simplex method, which proceeds from vertex to vertex along edges of the feasible
region, these methods move through the interior of the feasible region. In particular
this section discusses N. Karmarkar’s “projective scaling” algorithm (1984).

Definitions:

The norm of x ∈ Rn is given by ‖x‖ =
√
x2

1 + x2
2 + · · · + x2

n. (See §6.1.4.)

Let e denote the row vector of n 1s.

The LP problem

minimize: z = cx
subject to: Ax = 0

ex = 1
x ≥ 0

(3)

is in standard form for Karmarkar’s method if 1
n e is a feasible vector and if the

optimal objective value is z∗ = 0.

The n×n diagonal matrix diag(x1, x2, . . . , xn) has diagonal entries x1, x2, . . . , xn. (See
§6.3.1.)

The unit simplex in n dimensions is Sn = {x ∈ Rn | ex = 1, x ≥ 0 }.
If x is feasible to (3), Karmarkar’s centering transformation Tx :Sn → Sn is

Tx(x) =
diag(x)−1x

e diag(x)−1x
.

The projection of a vector v onto the subspace X ≡ {x ∈ Rn | Ãx = 0 } is the unique
vector p ∈ X for which (v − p)Tx = 0 for all x ∈ X. (See §6.1.4.)

Karmarkar’s potential function for (3) is f(x) =
n∑
j=1

ln
(
cx
xj

)
.
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Algorithm 3: Karmarkar’s method.

input: LP in form (3)
output: an optimal solution to (3)

x0 := e
n

k := 0
{Main loop}
{test for optimality within ε}
if cxk < ε then stop
else {find new point y in transformed unit simplex}

P :=
(
Adiag(xk)
1 1 · · · 1

)
cP := [I − PT (PPT )−1P ] diag(xk) cT

yk := e
n −

(
θ√

n(n−1)

)
cP

‖cP ‖

{find new feasible point in the original space}
xk+1 := T−1

xk
(yk)

k := k + 1
{Continue with next iteration of main loop}

Facts:

1. Any LP problem can be transformed into form (3); see [Sc86], [BaJaSh90] for details.

2. The centering transformation Tx is 1-1 and onto.

3. The inverse of the centering transformation is

T−1
x (y) =

diag(x) y
e diag(x) y

.

4. The transformation Tx places x at the center of the transformed unit simplex:
Tx(x) = 1

n e.

5. The transformation Tx maps the feasible region of (3) to

Y = { y ∈ Rn | Adiag(x) y = 0, ey = 1, y ≥ 0 }.

6. W = {w ∈ Rn | Adiag(x)w = 0, ew = 0, w ≥ 0 } is the set of all feasible directions
for Y .

7. The projection of v onto W is [I − PT (PPT )−1P ]v, where P =
(
Adiag(x)
1 1 · · · 1

)
.

8. Karmarkar’s algorithm: This method (Algorithm 3) moves through the interior of
the feasible region of (3), transforming the problem at each iteration to place the current
point at the “center” of the transformed region.

9. In Algorithm 3, ε > 0 is a fixed tolerance chosen arbitrarily small. The parameter θ
is a constant, 0 < θ < 1, associated with convergence of the algorithm. The value θ = 1

4
ensures the convergence of Algorithm 3.

10. There is a positive constant δ with f(xk) − f(xk+1) ≥ δ for all iterations k of
Karmarkar’s method. To ensure this inequality diag(xk) c, rather than c, is projected
onto the space of feasible directions W .
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11. For large problems, Karmarkar’s method requires many fewer iterations than does
the simplex method.

12. Letting L be the maximum number of bits needed to represent any number asso-
ciated with the LP problem, the running time of Karmarkar’s algorithm is polynomial,
namely O(n3.5L2).

13. The earliest polynomial-time algorithm for LP problems is the ellipsoid method,
proposed by L. G. Khachian in 1979. (See [Ch83] or [Sc86].)

14. The ellipsoid method has worst-case complexity O(n6L2), where L is defined in
Fact 12. Because its calculations require high precision, this method is very inefficient
in practice.

15. Karmarkar’s polynomial-time algorithm was announced in 1984 and it has proven
to be seriously competitive with the simplex method. Typically, Karmarkar’s algorithm
reduces the objective function by fairly significant amounts at the early iterations, often
converging within 50 iterations regardless of the problem size.

16. Other versions of Karmarkar’s algorithm are faster than the one described here,
but are more complicated to explain. Efficient implementations of these faster versions
solve some classes of large LP problems over 50 times faster than the simplex method.

17. Computer codes (in C, Pascal, and Fortran) that implement interior point methods
are catalogued at the sites:

• http://plato.la.asu.edu/guide.html#LP

• http://ucsu.colorado.edu/~xu/software/lp/

• http://www.wior.uni-karlsruhe.de/Bibliothek/Title Page1.html

18. LP problems can be submitted online for solution by different interior point algo-
rithms using the NEOS home page:

• http://www-c.mcs.anl.gov/home/otc/Server/

19. An archive of technical papers and other information on interior point algorithms
is available at the site:

• http://www-c.mcs.anl.gov/home/otc/InteriorPoint/index.html

Example:

1. In the following LP the vector x = ( 1
3 ,

1
3 ,

1
3 )T is feasible and the problem has the

optimal objective value z∗ = 0, achieved for x∗ = (0, 2
3 ,

1
3 )T .

minimize: x1

subject to: x1 + x2 − 2x3 = 0
x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

Karmarkar’s algorithm is started with x0 = ( 1
3 ,

1
3 ,

1
3 )T , yielding cx0 = 1

3 . For illustrative
purposes the value θ = 0.9 is used throughout. Since A = (1 1 −2) the matrix P =(

1
3

1
3 − 2

3
1 1 1

)
, giving cP = ( 1

6 ,− 1
6 , 0) and y0 = (0.0735, 0.5931, 0.3333)T = x1. The

new objective value is cx1 = 0.0735.
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Additional iterations of Algorithm 3 are tabulated in the following table, showing
convergence to the optimal x∗ = (0, 2

3 ,
1
3 )T after just a few iterations.

k 0 1 2 3 4

xk


 0.3333

0.3333
0.3333





 0.0735

0.5931
0.3333





 0.0056

0.6611
0.3333





 0.0004

0.6663
0.3333





 0.0000

0.6666
0.3333




yk


 0.0735

0.5931
0.3333





 0.0349

0.5087
0.4564





 0.0333

0.4852
0.4814





 0.0333

0.4835
0.4832





 0.0333

0.4833
0.4833




cxk 0.3333 0.0735 0.0056 0.0004 0.0000

15.1.5 DUALITY

Associated with every LP problem is its dual problem, which is important in devis-
ing alternative solution procedures for the original LP. The dual also provides useful
information for conducting postoptimality analyses on the given LP.

Definitions:

Associated with every LP problem is another LP problem, its dual. The original
problem is called the primal.

The dual of an LP in form (2)
maximize: cx

subject to: Ax ≤ b
x ≥ 0

(2)

is defined to be the LP
minimize: ub

subject to: uA ≥ c
u ≥ 0 .

(4)

The components u1, u2, . . . , um of u are the dual variables.

Facts:
1. To find the dual of an arbitrary LP problem either transform it (§15.1.1 Fact 5) into
form (2) or use the following table:

primal dual

maximization problem minimization problem
unrestricted variable equality constraint
nonnegative variable ≥ constraint
nonpositive variable ≤ constraint
equality constraint unrestricted variable
≤ constraint nonnegative variable
≥ constraint nonpositive variable
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2. The dual of the dual LP is the primal LP.

3. Weak duality theorem: For any feasible solution x to the primal and any feasible
solution u to the dual cx ≤ ub.

4. Strong duality theorem: If x∗ is an optimal solution to (2) then there exists an
optimal solution u∗ for (4) and cx∗ = u∗b.

5. A given primal LP and its associated dual LP can only produce certain combina-
tions of outcomes, as specified in the following table. For example, if one problem is
unbounded then the other must be infeasible.

primal dual

optimal optimal
infeasible unbounded
unbounded infeasible
infeasible infeasible

6. Let x∗ be an optimal BFS of the primal LP (2), with the corresponding tableau
u z
D f

. Then u is an optimal BFS of the dual LP (4).

7. Complementary slackness: An optimal dual (primal) variable u∗i (x∗j ) can be
nonzero only if it corresponds to a primal (dual) constraint active at x∗ (u∗).

8. Economic interpretation: Suppose in the LP (2) that bi is the amount of resource i
available to a firm maximizing its profit. Then the optimal dual variable u∗i is the price
the firm should be willing to pay (over and above its market price) for an extra unit of
resource i.

9. Dual simplex algorithm: This approach (Algorithm 4) can be used when a basic
solution for (2) is known that is not necessarily feasible but which has nonnegative
reduced costs (i.e., it is a dual feasible basic solution). The main idea of the algorithm
is to start with the dual feasible basic solution and to maintain dual feasibility at each
pivot. An optimal BFS is found once primal feasibility is achieved.

10. The dual simplex method was devised in 1954 by C. E. Lemke.

11. Computer code (in C) that implements the dual simplex algorithm can be found
at the site:

• http://ucsu.colorado.edu/~xu/software/lp/minit.html

Examples:

1. Using the table of Fact 1, the dual of

maximize: 5x1 − 7x2

subject to: x1 + 3x2 − x3 + x4 ≤ −1
2x1 + x2 − 4x3 − x4 ≥ 3
x1 + x2 − 3x3 + 2x4 = 2
x2 ≥ 0, x4 ≤ 0, x1, x3 unrestricted

is
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Algorithm 4: Dual simplex algorithm.

input: LP in form (2), dual feasible basic solution x0

output: an optimal BFS or an indication of infeasibility

associate with x0 = (xB , xN ) = (f, 0) the tableau
u z
D f

, where u ≥ 0

k := 0
{Main loop}
{optimality test}
if f ≥ 0 then xk is an optimal solution — stop
else
t∗ := the smallest index with ft∗ < 0
if dt∗j ≥ 0 for all j then the LP is infeasible — stop
else
j∗ := the smallest index attaining the maximum

max
{ uj

dt∗j

∣∣ j = 1, . . . ,m+ n; dt∗j < 0
}

do a pivot with entering index j∗, leaving index ϕ(t∗)
set component ϕ(t) of xk+1 to ft for t = 1, . . . ,m and the remaining com-

ponents of xk+1 to zero
k := k + 1

{Continue with next iteration of main loop}

minimize: − u1 + 3u2 + 2u3

subject to: u1 + 2u2 + u3 = 5
3u1 + u2 + u3 ≥ −7
−u1 − 4u2 − 3u3 = 0
u1 − u2 + 2u3 ≤ 0

u1 ≥ 0, u2 ≤ 0, u3 unrestricted.

2. The LP of §15.1.2 Example 1 has the dual

minimize: 5u1 + 12u2 + 2u3

subject to: 3u1 − 9u2 − 6u3 ≥ 3
4u2 + 2u3 ≥ 4

−u1 + 3u2 + 4u3 ≥ 4
u1, u2, u3 ≥ 0 .

The optimal solution to the primal LP (see §15.1.3 Example 2) is x∗ = ( 11
3 , 0, 6)T with

optimal objective value z∗ = 35. The associated tableau has u = (0, 1, 0, 6, 0, 5
2 ). The

optimal dual variables for (4) are recovered from the reduced costs of the slack variables
x4, x5, and x6, so that u∗ = (6, 0, 5

2 ). As guaranteed by Fact 4, the optimal dual
objective value 5u∗1 + 12u∗2 + 2u∗3 = 30 + 5 = 35 = z∗. The complementary slackness
conditions in Fact 7 hold here: the second primal constraint holds with strict inequality
(x∗5 = 27 > 0), so the second dual variable u∗2 = 0; also, the second dual constraint
holds with strict inequality (u∗5 = 1 > 0), so the second primal variable x∗2 = 0.
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3. Using the transformations of §15.1.1 Fact 5, the LP problem

minimize: 2x1 + 3x2 + 4x3

subject to: 2x1 − x2 + 3x3 ≥ 4
x1 + 2x2 + x3 ≥ 3

x1, x2, x3 ≥ 0

can be written in form (2), with the corresponding tableau (a) below. Since u ≥ 0 the
current solution x4 = −4, x5 = −3 is dual feasible but not primal feasible. Algorithm 4
can then be applied, giving t∗ = 1 and j∗ = 1. The variable x4 leaves the basis and
the variable x1 enters, giving tableau (b) and the new basic but not feasible solution
x = (2, 0, 0, 0,−1)T with z = 4. One additional dual simplex pivot achieves primal
feasibility and produces the optimal solution x∗ = ( 11

5 ,
2
5 , 0, 0, 0)T with z∗ = 28

5 .

tableau (a)

2 3 4 0 0 0
−2 1 −3 1 0 −4

−1 −2 −1 0 1 −3

tableau (b)

0 4 1 1 0 −4
1 − 1

2
3
2 − 1

2 0 2

0 − 5
2

1
2 − 1

2 1 −1

15.1.6 SENSITIVITY ANALYSIS

Since the data to an LP are often estimates or can vary over time, the analysis of many
problems requires studying the behavior of the optimal LP solution to changes in the
input data. This form of sensitivity analysis typically uses the solution of the original
LP as a starting point for solving the altered LP.

Definitions:

The original tableau for the LP problem (2) is
−c 0 0
A I b

.

The final tableau for the optimal basic solution x∗ (possibly after a permutation of
the columns 1, . . . ,m+ n) is

u z
D f

=
0 cBB

−1N − cN cBB
−1b

I B−1N B−1b
.

Row 0 of a tableau refers to the row u of associated dual variables.

A tableau is suboptimal if some entries of row 0 are negative. A tableau is infeasible
if some entries of column f are negative.

Let aj be the column of [A I ] associated with variable xj and let dj be the column
of D associated with variable xj .

Facts:

1. The formulas in Table 1 show how to construct an updated tableau T ′ from the
final tableau T of an LP problem:

• if T ′ is suboptimal, reoptimize using the simplex method starting with T ′;
• if T ′ is infeasible, reoptimize using the dual simplex method starting with T ′;
• otherwise, T ′ corresponds to an optimal BFS for the altered problem.
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Table 1 Formulas for constructing the updated tableau T ′.

change in possible changes
tableau updatesLP data in tableau

change in cs, s nonbasic: only entry s of
us := us − ∆cs := cs + ∆ row 0 can change

update cBchange in cs, s basic: row 0 and z
uj := cBB−1aj−cj , j nonbasic

cs := cs + ∆ can change
z := cBB−1b

f := f + ∆(dn+r)
change in br: decision variables

update b
br := br + ∆ and z can change

z := cBB−1b

change nonbasic column s: update as and cstableau column s and
as := ãs us := cBB−1as − csus can change
cs := c̃s ds := B−1as

add a new column new tableau column 5 u� := cBB−1a� − c�
a� with cost c� and new u� d� := B−1a�

2. Ranging : Table 2 shows how to calculate the (maximal) ranges over which the
current basis B remains optimal. In the “range” column of Table 2, b and cB refer to
entries of T , rather than T ′.

3. When bi is changed within the allowable range (Table 2), the change in the objective
value is −∆ times the reduced cost of the slack variable associated with row i.

4. To add a new constraint a�x ≤ b� to the original LP do the following:
• add a new (identity) column to the tableau corresponding to the slack variable

of the new constraint;
• add a new row 5 to the tableau corresponding to the new constraint;
• for each basic j with d�j 
= 0, multiply row i = ϕ−1(j) by −d�j and add to row 5;
• if the updated f� < 0 use the dual simplex method to reoptimize.

5. For changes in more than one component of c, or in more than one right-hand side b,
use the “100% rule”:

• objective function changes: If all changes occur in variables j with uj > 0, the
current solution remains optimal as long as each cj is within its allowable range
(Table 2). Otherwise, let ∆cj be the change to cj . If ∆cj ≥ 0 set rj := ∆cj

∆U
,

else set rj := −∆cj

∆L
, where ∆U ,∆L are computed from Table 2. If

∑
rj ≤ 1,

the current solution remains optimal (if not, the rule tells nothing).

• right-hand side changes: If all changes are in constraints not active at x∗, the
current basis remains optimal as long as each bi is within its allowable range
(Table 2). Otherwise, let ∆bi be the change to bi. If ∆bi ≥ 0 set ri := ∆bi

∆U
, else

set ri := −∆bi

∆L
, where ∆U ,∆L are computed from Table 2. If

∑
ri ≤ 1, the

current solution remains optimal (if not, the rule tells nothing).
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Table 2 Ranges over which current basis is optimal.

change in LP data range

change in cs, s nonbasic:
∆ ≤ uscs := cs + ∆

∆L ≤ ∆ ≤ ∆U , where p = sth row of B−1

change in cs, s basic:
∆L = max { cj−cBB

−1aj

paj | paj > 0, j nonbasic }
cs := cs + ∆

∆U = min { cj−cBB
−1aj

paj | paj < 0, j nonbasic }

∆L ≤ ∆ ≤ ∆U , where q = rth column of B−1

change in br:
∆L = max { −(B−1b)i

qi
| qi > 0 }

br := br + ∆
∆U = min { −(B−1b)i

qi
| qi < 0 }

Examples:

1. The LP problem
maximize: 3x1 + 4x2 + 4x3

subject to: 3x1 − x3 ≤ 5
−9x1 + 4x2 + 3x3 ≤ 12
−6x1 + 2x2 + 4x3 ≤ 2

x1, x2, x3 ≥ 0

has the final tableau T

0 1 0 6 0 5
2 35

1 1
3 0 2

3 0 1
6

11
3

0 4 0 3 1 0 27
0 1 1 1 0 1

2 6

corresponding to the optimal BFS x∗ = ( 11
3 , 0, 6, 0, 27, 0)T with z∗ = 35. The associated

basis matrix B contains columns 1, 5, 3 and the inverse basis matrix is B−1, where

B =


 3 0 −1

−9 1 3
−6 0 4


, B−1 =


 2

3 0 1
6

3 1 0
1 0 1

2


.

If the nonbasic objective coefficient c2 is changed to 4 + ∆, the current BFS remains
optimal for ∆ ≤ u2 = 1, that is for c2 ≤ 5. If the basic objective coefficient c1 is changed
to 3 + ∆, then p = ( 2

3 , 0,
1
6 ) and ∆L = max { −1

1/3 ,
−6
2/3 ,

−5/2
1/6 } = −3. This gives −3 ≤ ∆,

so the current BFS remains optimal over the range c1 ≥ 0. If however c3 is changed to
the value 2, meaning ∆ = −2, the current basis with ΣB = {1, 5, 3} will no longer be
optimal. Using Table 2 the vector cB is updated to cB = (3, 0, 2) and the nonbasic uj
are computed as u2 = −1, u4 = 4, u6 = 3

2 . The updated u = (0,−1, 0, 4, 0, 3
2 ) and

z = 23 are inserted in tableau T . Since u2 < 0 a simplex pivot with j∗ = 2 and t∗ = 3
is performed, leading to the new optimal solution x∗ = ( 5

3 , 6, 0, 0, 3, 0)T with z∗ = 29.
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2. Suppose that the right-hand side b1 in the original LP of Example 1 is changed
to b1 = 3, corresponding to the change ∆ = −2. From Table 2 f is updated to
( 11

3 , 27, 6)T − 2( 2
3 , 3, 1)T = ( 7

3 , 21, 4)T , giving the optimal BFS x∗ = ( 7
3 , 0, 4, 0, 21, 0)T .

Since b = (3, 12, 2)T the objective value found from Table 2 is z = 23. Notice that the
change in objective value is ∆z = 23 − 35 = −12, which is the same as −∆ times the
reduced cost −u4 of x4: namely, −12 = 2 · (−6). To determine the range of variation
of b1 so that the basis defined by ΣB = {1, 5, 3} remains unchanged, Table 3 is used.
Here q = ( 2

3 , 3, 1)T and ∆L = max {− 11/3
2/3 ,− 27

3 ,− 6
1} = − 11

2 . Thus − 11
2 ≤ ∆ so that

the current basis is optimal for b1 ≥ − 1
2 .

3. If the new constraint 3x1 + 2x2 − x3 ≤ 4 is added to the LP in Example 1, the
(previous) optimal solution x∗ = ( 11

3 , 0, 6, 0, 27, 0)T is no longer feasible. Using Fact 4,
a new row and column are added to the tableau T , giving tableau (a) below. By
adding (−3) times row 1 and +1 times row 3 to the last row, a new tableau (b) is
produced corresponding to the basic set ΣB = {1, 5, 3, 7}. Since b4 < 0 the dual simplex
algorithm is then used with t∗ = 4 and j∗ = 4, producing a new tableau that is primal
feasible, with the new optimal BFS (3, 0, 5, 1, 24, 0, 0)T and objective value 29.

tableau (a)

0 1 0 6 0 5
2 0 35

1 1
3 0 2

3 0 1
6 0 11

3

0 4 0 3 1 0 0 27
0 1 1 1 0 1

2 0 6
3 2 −1 0 0 0 1 4

tableau (b)

0 1 0 6 0 5
2 0 35

1 1
3 0 2

3 0 1
6 0 11

3

0 4 0 3 1 0 0 27
0 1 1 1 0 1

2 0 6
0 2 0 −1 0 0 1 −1

4. One example of the practical use of sensitivity analysis occurred in the airline indus-
try. When the price of aviation fuel was relatively high, and varied by airport location,
a linear programming model was successfully used to determine an optimal strategy for
refueling aircraft. The key idea is that it might be more economical to take on extra fuel
at an enroute stop if the fuel cost savings for the remainder of the flight are greater than
the extra fuel burned because of the excess weight of additional fuel. A linear program-
ming model of this situation ended up saving millions of dollars annually. An important
feature was providing pilots with ranges of fuel prices for each airport location, with
associated optimal policies for taking on extra fuel based on the cost range.
5. Another example of the beneficial use of sensitivity analysis occurred in a 1997 study
to assess the effectiveness of mandatory minimum-length sentences for reducing drug
use. One finding of the study was that the longer sentences become more effective than
conventional enforcement only when it costs more than $30,000 to arrest a drug dealer.
Thus, rather than producing a single optimal policy, this study identified conditions
(parameter ranges) under which each alternative policy is to be preferred.

15.1.7 GOAL PROGRAMMING

Goal programming refers to a multicriteria decision-making problem in which a given
LP problem can have multiple objectives or goals. This technique is useful when it is
impossible to satisfy all goals simultaneously. For example, a model for optimizing the
operation of an oil refinery might seek not only to minimize production cost, but also
to reduce the amount of imported crude oil and the amount of oil having a high sulfur
content. In another instance, the routing of hazardous waste might consider minimizing
not only the total distance traveled but also the number of residents living within ten
miles of the selected route.
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Definitions:

A goal programming (GP) problem has linear constraints that can be written

Ax ≤ b
Hx+ x̃− x = h

x ≥ 0, x̃ ≥ 0, x ≥ 0

and objective functions

G1 : minimize z1 = c1x̃1 + d1x1

G2 : minimize z2 = c2x̃2 + d2x2
...

G� : minimize z� = c�x̃� + d�x�

where A is an m× n matrix and H is an 5× n matrix.

The value hk is the target value of the kth goal. Goal k is satisfied if (Hx)k = hk
holds for a given vector x of decision variables.

The variables x̃ are the underachievement variables while the variables x are the
overachievement variables.

Facts:
1. In a GP problem, the aim is to find decision variables that approximately satisfy
the given goals, which is achieved by jointly minimizing the magnitudes of the under-
achievement and overachievement variables.
2. Assuming ck > 0 and dk > 0, then goal k is satisfied by making zk = 0.
3. If all ct and dt are positive then for each k = 1, . . . , 5 at most one of x̃k, xk will be
positive in an optimal solution.
4. One important case of a GP problem has ck = dk = 1 for k = 1, . . . , 5, making the
objective to (approximately) satisfy all constraints Hx = h.
5. When the relative importance of G1, . . . , G� is known precisely, an ordinary LP can
be used with the objective function being a weighted sum of z1, . . . , z�.
6. Preemptive goal programming : Here the goals are prioritizedG1 � G2 � · · · � G�,
meaning that goalG1 is the most important and goalG� is the least important. Solutions
are sought that satisfy the most important goal. Among all such solutions, those are
retained that best satisfy the second highest goal, and so forth.
7. Goal programming simplex method: The simplex method (§15.1.3, Algorithm 2)
can be extended to preemptive GP (minimization) problems, with the following modi-
fications:

• 5 “objective rows” are maintained in the tableau instead of just one.
• Let i∗ be the highest-priority index with zi∗ > 0 for which there exists a non-

basic j∗ with ui
∗
j∗ > 0 and with uij∗ ≥ 0 for any (higher-priority) objective row

i < i∗. If there is no such i∗, stop; else pick j∗ corresponding to the most
positive ui

∗
j∗ .

• All 5 objective rows are updated when a pivot is performed.
• At completion, if the solution fails to satisfy all goals, then every nonbasic vari-

able that would decrease the objective value zi if it entered the basis, would
increase zi′ for some higher-priority goal Gi′ , i′ < i.
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8. Computer codes (in C, Pascal, and Fortran) that implement goal programming are
available at the sites:

• ftp://garbo.uwasa.fi/pc/ts/tslin35c.zip

• http://www.iiasa.ac.at/~marek/soft/descr.html#MCMA

15.1.8 INTEGER PROGRAMMING

Integer programming problems are LPs in which some of the variables are constrained
to be integers. Such problems more accurately model a wide range of application areas,
including capital budgeting, facility location, manufacturing, scheduling, logical infer-
ence, physics, engineering design, environmental economics, and VLSI circuit design.
However, integer programming problems are much more difficult to solve than LPs.

Definitions:

Let Zn [Zn
+] denote the set of all n-vectors with all components integers [nonnegative

integers], and let Rn [Rn
+] denote the set of all n-vectors with all components real

numbers [nonnegative real numbers].

A pure integer programming (IP) problem is an optimization problem of the form

maximize: zIP = cx
subject to: Ax ≤ b

x ∈ Zn
+

(5)

where A is an m× n matrix, b is an m-column vector, and c is an n-row vector.

A 0-1 IP problem is an IP with each xj ∈ {0, 1}.
A mixed integer programming (MIP) problem is of the form

maximize: zMIP = cx+ hy
subject to: Ax+Gy ≤ b

x ∈ Zn
+, y ∈ Rp

+

where A is an m × n matrix, G is an m × p matrix, b is an m-column vector, c is an
n-row vector, and h is a p-row vector.

For IP problem (5), the feasible region is S ≡ {x ∈ Zn
+ | Ax ≤ b }.

A polyhedron is a set of points in Rn satisfying a finite set of linear inequalities.

If X is a finite set of points in Rn, the convex hull of X is

conv (X) ≡ {
∑
λixi | xi ∈ X,

∑
λi = 1, λi ≥ 0 }.

The LP relaxation of (5) is the linear programming problem

maximize: zLP = cx
subject to: Ax ≤ b

x ≥ 0 .
(6)

More generally, a relaxation of (5) is any problem max {cx | x ∈ T}, where S ⊂ T .

The problem max { cx | Āx ≤ b̄, x ∈ Zn
+ } is a formulation for (5) if it contains exactly

the same set of feasible integral points as (5). If the feasible region of the LP relaxation
of one formulation is strictly contained in another, the first is a tighter formulation.
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Algorithm 5: Cutting plane algorithm for (5).

input: IP in form (5)
output: an optimal solution x∗ with objective value z∗

let R be the LP relaxation: max { cx | Ax ≤ b, x ≥ 0 }
{Main loop}
optimally solve problem R, obtaining x
if x ∈ Zn

+ then stop with x∗ := x and z∗ := cx
else

find a cutting plane πx ≤ π0 with πx > π0 and πx ≤ π0 for all feasible solutions
of (5)

modify R by adding the constraint πx ≤ π0

{Continue with next iteration of main loop}

Suppose x̃ is a feasible solution to (6) but not to (5). A cutting plane is any inequality
πx ≤ π0 satisfied by all points in conv (S) but not by x̃.

A family S of subsets of S is a separation of S if
⋃
Sk∈S Sk = S; a separation is usually

a partition of the set S.

A lower bound z for zIP is an underestimate of zIP .

Facts:
1. zIP ≤ zLP . More generally, any relaxation of (5) has an optimal objective value at
least as large as zIP .
2. If x′ is feasible to (5) then z′ = cx′ satisfies z′ ≤ zIP .
3. The feasible region of an LP problem is a polyhedron, and every polyhedron is the
feasible region of some LP problem.
4. The set conv (S) is a polyhedron, so there is an LP problem max { cx | Ãx ≤ b̃, x ≥
0 } with the feasible region conv (S).
5. An optimal solution to the LP in Fact 4 is an optimal solution to (5). However,
finding all necessary constraints, called facets, of this LP is extremely difficult.
6. IP is an NP-hard optimization problem (§16.5.2). Consequently, such problems are
harder to solve in practice than LPs. The inherent complexity of solving IPs stems from
the nonconvexity of their feasible region, which makes it difficult to verify the optimality
of a proposed optimal solution in an efficient manner.
7. Formulation of an IP is critical: achieving problem tightness is more important than
reducing the number of constraints or variables appearing in the formulation.
8. Solution techniques for (5) usually involve some preliminary operations that improve
the formulation, called preprocessing , followed by an iterative use of heuristics (§10.7)
to quickly find feasible solutions.
9. Popular solution techniques for solving (5) include cutting plane methods (Fact 10),
branch and bound techniques (Fact 12), and (hybrid) branch and cut methods.
10. Cutting plane method: This approach (Algorithm 5) proceeds by first finding an
optimal solution x to a relaxation R of the original problem (5). If x is not optimal, a
cutting plane is added to the constraints of the current relaxation and the new LP is
then solved. This process is repeated until an optimal solution is found.

c© 2000 by CRC Press LLC



11. General methods for finding cutting planes for IP or MIP problems are relatively
slow. Cutting plane algorithms using facets for specific classes of IP problems are better,
since facets make the “deepest” cuts.
12. Branch and bound method: This approach (Algorithm 6) decomposes the original
problem P into subproblems or nodes by breaking S into subsets. Each subproblem Pj
is implicitly investigated (and possibly discarded) until an optimal one is found. In
this algorithm z∗j is the optimal value of problem Pj , zj is the optimal value of the
relaxation Rj of Pj , and zj is the best known lower bound for z∗j .
13. In Algorithm 6 the optimal value zj of relaxation Rj is an upper bound for z∗j .
Also z0 is the objective function value for the best known feasible solution to (5).
14. LP relaxations are often used in the bounding portion of Algorithm 6.
15. There are specializations of Algorithm 6 for 0-1 IP problems and for MIP problems.
16. Branch and bound tends to be a computationally expensive solution method. Usu-
ally it is applied only when other methods appear to be stalling.
17. In the survey [Fo97] of linear programming software, several of the packages listed
will handle IP problems as well. When available, these extensions to binary and/or
integer-valued variables are indicated by the survey.
18. There are several commercial software packages that solve IP and MIP problems,
such as CPLEX, OSL, MIPIII, XPRESS-MP, XA, and LINDO:

• http://www.cplex.com/

• http://www.research.ibm.com/osl/

• http://www.ketronms.com/mipiii.html

• http://www.dash.co.uk/

• http://www.sunsetsoft.com/

• http://www.lindo.com/

19. An extensive tabulation of software packages to solve IP and MIP problems is
found at the site:

• http://www-c.mcs.anl.gov/home/otc/Guide/SoftwareGuide
/Categories/intprog.html

20. Computer codes (in C and Pascal) for solving IP and MIP problems are available
at the sites:

• http://www.mpi-sb.mpg.de/~barth/opbdp/opbdp.html

• http://www.iiasa.ac.at/~marek/soft/descr.html#MOMIP

• http://www.netcologne.de/~nc-weidenma/readme.htm

Examples:
1. The following figure shows the convex hull of feasible solutions to the IP

maximize: −x1 + 1
2x2

subject to: x2 ≤ 4
−x1 − x2 ≤− 5

2

8x1 + x2 ≤ 24
−3x1 + 4x2 ≤ 10

x1, x2 ≥ 0
x1, x2 integers.
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Algorithm 6: Branch and bound algorithm for (5).

input: IP in form (5)
output: an optimal solution x0 with objective value z0
let P be the problem: max { cx | x ∈ S }
P0 := P ; S0 := S; z0 := −∞; z0 := +∞
put P0 on the list of live nodes
{branching}

if no live node exists then go to {termination}
else select a live node Pj

{bounding}
solve a relaxation Rj of Pj
if Rj is infeasible then discard Pj and go to {branching}
if zj = +∞ then go to {separation}

{zj is finite}
if zj ≤ z0 then discard node Pj and go to {branching}
if zj = zj then update z0 := max {z0, zj} and discard any node Pi for

which zi ≤ z0
{separation}

choose a separation S∗
j of Sj forming new live nodes and go to {branching}

{termination}
if z0 = −∞ then problem (5) is infeasible
if z0 is finite then z0 is the optimal objective value and the associated x0 is

an optimal solution

Here S = {(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0)}. The optimal solution occurs
at (1, 3), with zIP = 1

2 . The feasible region of the LP relaxation is also shown in
Figure 3, with the optimal LP value zLP = 5

4 attained at (0, 5
2 ); a cutting plane is shown

as the dashed line. For this problem, conv (S) is defined by the following constraints:

−x1 − x2 ≤−3
−x1 + x2 ≤ 2
−x1 + ≤−1
4x1 + x2 ≤ 12

x2 ≤ 4
x1, x2 ≥ 0.

All of these constraints are facets except for x2 ≤ 4 and the nonnegativity constraints,
which are redundant.
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2. The following IP has the feasible region S = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)} and
the optimal solution occurs at (4, 4) with zIP = 8:

maximize: x1 + x2

subject to: 2x1 − 2x2 ≤ 1
−7x1 + 8x2 ≤ 4

x1, x2 ≥ 0
x1, x2 integers.

The LP relaxation has a feasible region defined by vertices (0, 0), ( 1
2 , 0), (0, 1

2 ), (8, 15
2 ),

so its optimal solution occurs at (8, 15
2 ) with zLP = 31

2 . Consequently, the LP solution
is a poor approximation to the optimal IP solution. Moreover, simply rounding the LP
solution gives either (8, 7) or (8, 8), both of which are infeasible to the given IP problem.

3. The following IP can be solved using Algorithm 6:

maximize: 3x1 + 3x2 − 8x3

subject to: −3x1 + 6x2 + 7x3 ≤ 8
6x1 − 3x2 + 7x3 ≤ 8

x1, x2, x3 ≥ 0
x1, x2, x3 integers.

The initial problem P0 has an LP relaxation R0 that is obtained by removing the integer
restrictions; solving this LP gives x = (2.667, 2.667, 0) with z = 16. A separation is
achieved by creating the two subproblems P1 and P2; the constraint x1 ≤ 2 is appended
to P0 creating P1 while the constraint x1 ≥ 3 is appended to P0 creating P2. Now
the live nodes are P1 and P2. Solving the LP relaxation R1 gives x = (2, 2.333, 0) with
z = 13. New subproblems P3 and P4 are obtained from P1 by appending the constraints
x2 ≤ 2 and x2 ≥ 3, respectively. Now the live nodes are subproblems P2, P3, P4. The
LP relaxation R2 of P2 is infeasible, as is the LP relaxation R4 of P4. Solving the LP
relaxation R3 gives the feasible integer solution x = (2, 2, 0) with z = 12. Since there
are no more live nodes, this represents the optimal solution to the stated problem.

4. Fixed-charge problems: Find optimal levels of n activities to satisfy m constraints
while minimizing total cost. Each activity j has per unit cost cj . In addition, there is
a startup cost dj for certain undertaken activities j.

This problem can be modeled as a MIP problem, with a real variable xj for the
level of each activity j. If activity j has a startup cost, introduce the additional 0-1
variable yj , equal to 1 when xj > 0 and 0 otherwise. For example, this condition can
be enforced by imposing the constraints Mjyj ≥ xj , yj ∈ {0, 1}, where Mj is a known
upper bound on the value of xj . The objective is then to minimize z = cx+ dy.

5. Queens problem: On an n× n chessboard, the task is to place as many nontaking
queens as possible.

This problem can be formulated as a 0-1 IP problem, having binary variables xij .
Here xij = 1 if and only if a queen is placed in row i and column j of the chessboard.
The objective function is to maximize z =

∑
i

∑
j xij and there is a constraint for

each row, column, and diagonal of the chessboard. Such a constraint has the form∑
(i,j)∈S xij ≤ 1, where S is the set of entries in the row, column, or diagonal. For

example, one optimal solution of this IP for the 7 × 7 chessboard is the assignment
x16 = x24 = x37 = x41 = x53 = x65 = x72 = 1, with all other xij = 0.
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15.2 LOCATION THEORY

Location theory is concerned with locating a fixed number of facilities at points in some
space. The facilities provide a service (or product) to the customers whose locations
and levels of demand (for the service) are known. The object is to find locations for
the facilities to optimize some specified criterion, e.g., the cost of providing the service.
Interest in location theory has grown very rapidly because of its variety of applications
to such fields as operations research, city planning, geography, economics, electrical
engineering, and computer science.

15.2.1 p-MEDIAN AND p-CENTER PROBLEMS

Definitions:

A metric space is a space S consisting of a set of points with a real-valued function
d(x, y) defined on all pairs of points x, y ∈ S with the following properties (§6.1.4):

• d(x, y) = d(y, x) ≥ 0 for all x, y ∈ S
• d(x, y) = 0 if and only if x = y
• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

The value d(x, y) is called the distance between points x, y ∈ S.

There are p facilities that are to be located at some set Xp = {x1, x2, . . . , xp} of p points
in the (metric) space S. The elements of Xp are the facility locations.

The facilities are to provide a service to the customers whose positions are given by a
set V = {v1, v2, . . . , vn} of n points in S. The points in V are the demand points and
the level of demand at vi ∈ V is given by w(vi) ≥ 0.

For x ∈ S and Xp ⊆ S, let d(x,Xp) be the minimum distance from x to a point of Xp:
d(x,Xp) = min

xi∈Xp

{d(x, xi)}.

Suppose Xp is a candidate set of points in S for locating the p facilities. The following
two objective functions are defined on Xp ⊆ S:

• F (Xp) =
n∑
i=1

w(vi)d(vi, Xp);

• H(Xp) = max
1≤i≤n

{w(vi)d(vi, Xp)}.

Xm
p ⊆ S is a p-median if F (Xm

p ) ≤ F (Xp) for all possible Xp ⊆ S.

Xc
p ⊆ S is a p-center if H(Xc

p) ≤ H(Xp) for all possible Xp ⊆ S.

Facts:

1. It is customary to assume that the demand at vi is satisfied by its closest facility.
Then w(vi)d(vi, Xp) indicates the total (transportation) cost associated with having the
demand at vi ∈ S satisfied by its closest facility in the candidate set Xp.

2. F (Xp) represents the total transportation cost of satisfying the demands if the
facilities are located at Xp.

3. H(Xp) represents the cost (or unfairness) associated with a farthest demand point
not being in close proximity to any facility.
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4. A p-median formulation is designed for locating p facilities in a manner than mini-
mizes the average cost of serving the customers.

5. A p-center formulation is designed for locating p emergency facilities (police, fire,
and ambulance services), in which the maximum time to respond to an emergency is to
be made as small as possible.

6. The p-median and p-center problems are only interesting if p < n; otherwise, it is
possible to locate at least one facility at each demand point, thereby reducing F (Xp)
or H(Xp) to 0.

Examples:

1. Suppose that a single warehouse is to be located in a way to service n retail outlets
at minimum cost. Here w(vi) is the number of shipments made per week to the outlet
at location vi. This can be modeled as a 1-median problem, since the objective is to
locate the single warehouse to minimize the total distance traveled by delivery vehicles.

2. A new police station is to be located within a portion of a city to serve residents of
that area. Neighborhoods in that area can be taken as the demand points, and locating
the police station can be formulated as a 1-center problem. Here, the maximum distance
from the source of an emergency is critical so the police station should be located to
minimize the maximum distance from a neighborhood. The weights at each demand
point might be taken to be equal, or in some situations differing weights could signify
conversion factors that translate distance into some other measure such as the value of
residents’ time.

3. Statistics: Suppose that n given data values x1, x2, . . . , xn are viewed as points
placed along the real line. If the distance between points xi and xj is their absolute
difference |xi−xj |, then a 1-median of this set of points (unweighted customer locations)
is a point (facility) x̂ that minimizes

∑n
i=1 |xi − x̂|. In fact, x̂ corresponds to a median

of the n data values. If the distance between points xi and xj is their squared difference
(xi − xj)2, then a 1-median is a point x̄ minimizing

∑n
i=1(xi − x̄)2, which is precisely

the mean of the n data values. Alternatively, for either distance measure the 1-center of
this set of points turns out to correspond to the midrange of the data set: namely, the
1-center is the point located halfway between the largest and the smallest data values.

15.2.2 p-MEDIANS AND p-CENTERS ON NETWORKS

Definitions:

A network is a weighted graph G = (V,E) with vertex set V = {v1, v2, . . . , vn} and
edge set E, where m = |E|; see §8.1.1.

The weight of vertex v ∈ V represents the demand at v and is denoted by w(v) ≥ 0.

The length of edge e ∈ E represents the cost of travel (or distance) across e and is
denoted by 5(e) > 0. Each edge is assumed to be a line segment joining its end vertices.

A point on a network G is any point along any edge of G. The precise location of
the point x on edge e = (u, v) is indicated by the distance of x from u or v.

If x and y are any two points on G, the distance d(x, y) is the length of a shortest path
between x and y in G, where the length of a path is the sum of the lengths of the edges
(or partial edges) in the path.
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Facts:

1. Network G with the above definition of distance constitutes a metric space (§15.2.1).

2. p-median theorem: Given a positive integer p and a network G = (V,E), there
exists a set of p vertices Vp ⊆ V such that F (Vp) ≤ F (Xp) for all possible sets Xp of p
points on G. That is, a p-median can always be found that consists entirely of vertices.

3. A p-median of a network G can be found by a finite search through all possible
(
n
p

)
choices of p vertices out of n. This is still a formidable task, but if p is a small number
(say p < 5) it is certainly manageable.

4. The p-median theorem also holds if the cost of satisfying the demand at vi ∈ V
is fi(d(vi, Xp)), instead of w(vi) · d(vi, Xp), provided that fi:R+ → R+ is a concave
nondecreasing function for all i = 1, 2, . . . , n. (R+ denotes the set of nonnegative
real numbers.) In this case, the objective function for the p-median problem becomes
F (Xp) =

∑n
i=1 fi(d(vi, Xp)).

5. Each point x of a p-center Xc
p of network G = (V,E) is a point on some edge e such

that for some pair of distinct vertices u and v ∈ V , w(u)d(u, x) = w(v)d(v, x); i.e., the
point x is the “center” of a shortest path from u to v in G that passes through edge e.

6. There are at most n2 predetermined choices of points on each edge of G that could
be potential points in Xc

p; thus there are n2m predetermined choices for points in Xc
p.

7. A p-center Xc
p of network G can be found by examining all possible

(
n2m
p

)
choices

of p points out of n2m. Even for small values of p, this is a formidable task.

Examples:

1. In the following network the levels of demand are given at the vertices and the
lengths of the edges are shown on the edges. The 1-median of this network is at the
vertex labeled x1. The total transportation cost is F ({x1}) = 35.

2

2
2

2 2

2

2

11

3
3

3 3

4
4

x

2. A tree network T is shown in the following figure, with the vertex demands and edge
lengths displayed.

x1x2

1

11
1

1
1

2

2

2

2

e
4 3

A 2-median of T is the set of vertices X2 = {x1, x2}, with total transportation cost
F (X2) = 25. If x1 is kept fixed and t is an arbitrary point along edge e, then {x1, t}
also constitutes a 2-median of T . This is consistent with Fact 2, which only states that
there is a p-median that is a subset of V , not that every p-median occurs in this way.
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3. A 1-center Xc
1 is found for the network in part (a) of the following figure. For

illustration, suppose that the 1-center is along the edge (u1, u2), thereby limiting the
search to candidate points on this edge. Let X(x) be an arbitrary point along edge
(u1, u2), parametrized by the scalar x = d(u1, X(x)). Note that x ∈ [0, 3] with X(0) =
u1 and X(3) = u2.

Part (b) of the figure shows plots of w(ui)d(ui, X(x)) as a function of x for i =
1, 2, . . . , 4. The plot ofD(x) ≡ max1≤i≤4 w(ui)d(ui, X(x)) is indicated in bold andD(x)
assumes its minimum value when x = 8

7 . The 1-center of the network in part (a) is
then located along edge (u1, u2) a distance of 8

7 from u1. Note that for this value
of x, w(u4)d(u4, X(x)) = w(u3)d(u3, X(x)), consistent with Fact 5. In general, Xc

1 of a
network is not necessarily a unique point; however, here Xc

1 is unique and H(Xc
1) = 30

7 .

2

1

u4 u2

u1 u3 1.5

3

3.5

8/7

X1
c

(a) A simple network.

8/7

(b) Plots of w(ui)d(ui, X(x)) for 1≤ i ≤ 4.

w(u3)d(u3, X(x))

w(u4)d(u4, X(x))

w(u1)d(u1, X(x))

w(u2)d(u2, X(x))

4. Transportation planners are trying to decide where to locate a single school bus stop
along a major highway. Situated along a one-mile stretch of the highway are 8 commu-
nities. The table below gives the number of school-age students in each community who
ride the bus on a daily basis. The distance of each community from the westernmost
edge of the one-mile stretch of highway is also shown.

community 1 2 3 4 5 6 7 8

# students 9 4 8 11 5 3 5 11
distance (mi) 0.0 0.2 0.3 0.4 0.6 0.7 0.9 1.0
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The data of this problem can be represented by an undirected path (§8.1.3) with each
vertex v corresponding to a community and w(v) being the number of students from that
community riding the bus. Edges join adjacent communities and have a length given
by the difference in distance entries from the table. To minimize the total (weighted)
distance traveled by the students, a 1-median is sought. By Fact 2, only vertex locations
need to be considered. For example, situating the bus stop at vertex 3 incurs a cost of
F ({3}) = 9(0.3)+4(0.1)+8(0)+11(0.1)+5(0.3)+3(0.4)+5(0.6)+11(0.7) = 17.6. The
minimum cost is incurred for vertex 4, with F ({4}) = 16.3, so that the bus stop should
be located at community 4.

15.2.3 ALGORITHMS FOR LOCATION ON NETWORKS

Algorithms for finding p-medians and p-centers of a network G can be devised that are
feasible for small values of p. For general p, however, there are no efficient methods
known for arbitrary networks G. Specialized (and efficient) algorithms are available
when G is a tree.

Definitions:

Let T be a tree (§9.1.1) with vertex weights w(v).

If T ′ is a subnetwork of T , define the total weight of T ′ by W (T ′) =
∑

v∈V (T ′)

w(v).

For v ∈ V (T ), let Tv1, Tv2, . . . , Tvd(v) be the components of T − v, where d(v) is the
degree (§8.1.1) of vertex v. Define Mv = max

1≤i≤d(v)
{W (Tvi)}.

A leaf vertex of T is a vertex of degree 1.

Facts:

1. The fastest known algorithms for the p-median and p-center problems on a network
G = (V,E) with n vertices and m edges have worst-case complexities O(np+1) and
O(mpnp(log n)2), respectively [Ta88].

2. If p is an independent input variable (i.e., p could grow with n), then both the
p-center and p-median problems are NP-hard [KaHa79a, KaHa79b]. Thus it is highly
unlikely that an algorithm will be found with running time polynomial in n, m, and p.

3. Considerable success has been reported in solving large p-median problems by heuris-
tic methods that do not necessarily guarantee optimal solutions. The best known such
procedure is a dual-based integer programming approach due to Erlenkotter [Er78].

4. Algorithms of complexities O(n2p) and O(n log n) for the p-median and p-center
problems on tree networks have been reported by Tamir [Ta96] and by Frederickson
and Johnson [MiFr90, Chapter 7].

5. Vertex u is a 1-median of a tree network T if and only if Mu ≤ 1
2W (T ).

6. 1-median of a tree: This algorithm (Algorithm 1) is based on Fact 5. The main
idea is to repeatedly remove a leaf vertex, confining the problem to a smaller tree T ′.

7. Algorithm 1 can be implemented to run in O(n) time.

8. Let T be a tree network with w(v) = c for all v ∈ V (T ). Then the 1-center of T is
the unique middle point of a longest path in T .

9. Select any vertex v0 in a tree network T . Let v1 be a farthest vertex from v0, and
let v2 be a farthest vertex from v1. Then the path from v1 to v2 is a longest path in T .
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Algorithm 1: 1-median of a tree.

input: tree T
output: 1-median ṽ

T ′ := T ; W0 :=
∑

v∈V (T ′) w(v); W (v) := w(v) for each v ∈ V (T ′)

{Main loop}
if T ′ consists of a single vertex ṽ then stop
else
ṽ := a leaf vertex of T ′

if W (ṽ) ≥ 1
2W0 then stop

else
u := the vertex adjacent to ṽ in T ′

W (u) :=W (u) +W (ṽ)
T ′ := T ′ − ṽ

{Continue with next iteration of main loop}

Algorithm 2: 1-center of an unweighted tree.

input: tree T with w(v) = c for all v ∈ V (T )
output: 1-center x

find a longest path P in T (using Fact 9)
let u1 and u2 be the end vertices of P
find the middle point of this path: i.e., the point x such that d(x, u1) = d(x, u2)

10. 1-center of a tree: This algorithm (Algorithm 2) applies to “unweighted” trees, in
which there are identical weights at each vertex. It is based on Facts 8 and 9.
11. Algorithm 2 can be implemented to run in O(n) time.

Examples:
1. Suppose that the vertices of the tree T in Figure 2 (§15.2.2) are labeled v1, v2, . . . , v8
in order from top to bottom and left to right at each height. Algorithm 1 can be applied
to find the 1-median of T . First, the leaf vertex v1 is selected and since W (v1) = 1 is
less than 1

2W0 = 15
2 , its weight is added to vertex v3. The following table shows the

progress of the algorithm, which eventually identifies vertex v4 as the 1-median of T .
As guaranteed by Fact 5, Mv4 = max{6, 1, 3, 4} ≤ 15

2 .

W (vi)
iteration ṽ 1 2 3 4 5 6 7 8

0 1 1 1 1 3 4 2 2
1 v1 − 1 2 1 3 4 2 2
2 v2 − − 2 2 3 4 2 2
3 v5 − − 2 5 − 4 2 2
4 v6 − − 6 5 − − 2 2
5 v3 − − − 11 − − 2 2

c© 2000 by CRC Press LLC



2. Let the vertices of the tree T in the figure of §15.2.2 Example 2 be labeled as in
Example 1 of this section. Algorithm 2 can be applied to find the 1-center of T , with
all vertex weights being 1. First, select v1 and find a farthest vertex from it, namely v5.
A farthest vertex from v5 is then v8, giving a longest path P = [v5, v4, v7, v8] in T . The
midpoint x of P , located 1

2 unit from v4 along edge (v4, v5), is then the 1-center of T .
If instead the longest path Q = [v6, v3, v4, v5] in T had been identified, then the same
midpoint x would be found.

15.2.4 CAPACITATED LOCATION PROBLEMS

Definitions:

Let Xp = {x1, . . . , xp} be a set of locations for p facilities in the metric space S with n
demand points V = {v1, . . . , vn} ⊆ S where w(vi) ≥ 0 is the demand at vi ∈ V .

For each vi ∈ V and xj ∈ Xp, let w(vi, xj) be the portion of the demand at vi satisfied
by the facility at xj .

LetW (xj) be the sum of the demands satisfied by (or allocated to) the facility at xj . In
a capacitated location problem, upper (and/or lower) bounds are placed on W (xj).

Given the positive integer p and positive constant α, two versions of the capacitated
p-median (CPM) problem in network G = (V,E) are defined:

(a) Find a set of locations Xp such that F (Xp) =
∑

vi∈V w(vi)d(vi, Xp) is min-
imized subject to W (xj) ≤ α for all xj ∈ Xp. Here it is assumed that the
demands are satisfied by their closest facility, and in the case of ties, a demand,
say at v, may be allocated in an arbitrary way among the closest facilities to v.

(b) Find Xp and {w(vi, xj) | vi ∈ V and xj ∈ Xp } to minimize
p∑
j=1

n∑
i=1

w(vi, xj)d(vi, xj)

subject to
n∑
i=1

w(vi, xj) ≤ α, j = 1, 2, . . . , p

p∑
j=1

w(vi, xj) = w(vi), i = 1, 2, . . . , n.

Facts:
1. Capacitated facility location problems occur in several applied settings, including:

• the location of manufacturing plants (with limited output) to serve customers;
• the location of landfills (with limited capacity), which receive solid waste from

the members of a community;
• the location of concentrators in a telecommunication network, where each con-

centrator bundles messages received from individual users and can handle only
a certain amount of total message traffic.

2. Version (a) of CPM may not have a solution if α is too small.
3. If α is sufficiently large in version (a) and CPM has a solution, there may not exist
a solution consisting entirely of vertices of G. See Example 1.
4. Version (b) of the CPM has a solution consisting entirely of vertices of G. This was
shown by J. Levy; see [HaMi79].
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Examples:

1. Suppose p = 2 and α = 3 in the following network G. A solution to version (a) of
the CPM problem consists of the points X2 = {x1, x2} with W (x1) = W (x2) = 3 and
F (X2) = 9. It is easy to see that the choice of any two vertices for X2 would violate
the allocation constraint to one facility.

2. If p = 2 and α = 3 for the network G of the figure of Example 1, then version (b)
of the CPM problem has a solution containing only vertices of G. Suppose that the
top two vertices in the figure are v1 and v2 (from left to right) and the bottom two
vertices are v3 and v4. Then X2 = {v1, v2} is an optimal solution, where all the demand
w(v3) = 1 is allocated to v1 whereas the demand w(v4) = 2 is equally split between v1
and v2. (Here, not all demand from v4 is sent to its closest facility v2.) In this solution,
W (v1) =W (v2) = 3 and F (X2) = 7.

15.2.5 FACILITIES IN THE PLANE

The p-median and p-center problems can be defined in the plane R2. Several measures
of distance are commonly considered for these location problems in the plane.

Definitions:

Let x = (x1, x2) and y = (y1, y2) be points of S = R2.

The Euclidean (52) distance between x and y is d(x, y) = [(x1 − y1)2 +(x2 − y2)2]1/2.
The rectilinear (51) distance between x and y is d(x, y) = |x1 − y1| + |x2 − y2|.
The (generalized) Weber problem is the p-median problem in R2 with 52 as the
measure of distance.

The unweighted Euclidean 1-center problem is the 1-center problem in R2 with
the 52 measure of distance and with w(vi) = c for all vi ∈ V .

Facts:

1. No polynomial-time algorithm for the Weber problem, even when p = 1, has been
discovered.

2. In practice, an iterative method due to Weiszfeld [FrMcWh92] has been shown to
be highly successful for the Weber problem with p = 1.

3. The p-median and p-center problems in R2 with either 51 or 52 as the measure of
distance have been proven to be NP-hard if p is an input variable [MeSu84].
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4. The unweighted Euclidean 1-center problem is equivalent to finding the center of
the smallest (radius) circle that encloses all points in V .

5. The following table provides a summary of time complexity results of the best known
algorithms for location problems in the plane [Me83, MeSu84].

p arbitrary p = 1

NP-hard if p is an input variable
unknown complexity even when p = 1p-median under 51 or 52 under 51 or 52unknown complexity if p is fixed

p-center

NP-hard if p is an input variable O(n log2 n) under 52
under 51 or 52 O(n) under 52 in unweighted case

unknown complexity for fixed O(n) under 51 for both the weighted
p > 1 and unweighted cases

Examples:

1. The floor plan of a factory contains existing machines A, B, C at the coordinate
locations a = (0, 4), b = (2, 0), c = (5, 2). A new central storeroom, to house materials
needed by the machines, is to be placed at some location x = (x1, x2) on the factory floor.
Because the aisles of the factory floor run north-south and east-west, transportation
between the storeroom and the machines must take place along these perpendicular
directions. For example, the distance between the storeroom and the machine C is
|x1−5|+ |x2−2|. Management wants to locate the storeroom so that the weighted sum
of distances between the new storeroom and each machine is minimized, taking into
account that the demand for material by machine A is twice the demand by machine B,
and demand for material by machine C is three times that by machine B. This is a
weighted 1-median problem in the plane with the 51 measure of distance. The point (3, 2)
is an optimal location for the storeroom. In fact, for any 2 ≤ u ≤ 5 the point (u, 2) is
also an optimal location.

2. Suppose that the 52 distance measure is used instead in Example 1. Then a weighted
1-median is a location x = (x1, x2) that minimizes

2
√
x2

1 + (x2 − 4)2 +
√

(x1 − 2)2 + x2
2 + 3

√
(x1 − 5)2 + (x2 − 2)2.

The minimizing point in this case is (5, 2), which is the unique optimal location for the
storeroom. On the other hand, if the demands for material are the same for all three
machines, then the unweighted 1-median occurs at the unique location (2.427, 1.403).

15.2.6 OBNOXIOUS FACILITIES

In the preceding subsections, it has been assumed that the consumers at vi wish to be
as close as possible to a facility. That is, the facilities are desirable. In contrast, this
subsection discusses location problems where the facilities are undesirable or obnoxious.

Definitions:

For vi ∈ V , w(vi)d(vi, Xp) represents the utility (in contrast to cost) associated with
having an obnoxious facility located at distance d(vi, Xp) from vi.
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The following two obnoxious facility location problems are defined:

(a) find Xp ⊆ S to maximize F (Xp) =
n∑
i=1

w(vi)d(vi, Xp);

(b) find Xp ⊆ S to maximize G(Xp) = min
1≤i≤n

w(vi)d(vi, Xp).

If space S is a network G = (V,E), for each edge e = (u, v) ∈ E, let x(e) = x be the
point on e such that w(u)d(u, x) = w(v)d(v, x) ≡ w(e).

Facts:

1. If S is a network, problem (a) may not have a solution that is a subset of vertices
(see Example 2).

2. Suppose S is a network G with w(vi) > 0 for all vi ∈ V ; further assume that at most
one point of Xp can be on any particular edge. Renumber the m edges of G so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em). Then x(e1), x(e2), . . . , x(ep) is a solution to problem (b).

3. Additional results on this subject can be found in [BrCh89].

Examples:

1. In the location of obnoxious facilities, the distance to a closest facility is to be made
as large as possible. This type of problem arises in siting nuclear power plants, sewage
treatment facilities, and landfills, for example.

2. In the following network, a solution X1 to problem (a) when p = 1 is the midpoint
of any edge, and F (X1) = 5. If the facility is located at any vertex v then F ({v}) = 4.

2

1

x1

1

2

15.2.7 EQUITABLE LOCATIONS

The p-median problem is a widely used model for locating public or private facilities.
However, it may leave some demand points (communities) too far from their closest
facility and thus be perceived as inequitable. To remedy this situation, the p-median
problem can be modified in several ways.

Definitions:

Suppose S is a metric space, V ⊆ S, w(vi) ≥ 0 for all vi ∈ V , and p is a positive integer.

Let w′(vi) = w(vi)/
∑n

j=1 w(vj) and define F ′(Xp) =
∑n

i=1 w
′(vi)d(vi, Xp), Z(Xp) =∑n

i=1 w
′(vi)[d(vi, Xp) − F ′(Xp)]2.
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The following three equitable facility location problems are defined:

(a) given a constant β, find a set of p points Xp ⊆ S to minimize

F (Xp) =
∑n

i=1 w(vi)d(vi, Xp)
subject to

d(vi, Xp) ≤ β, for all vi ∈ V ;

(b) given a constant α, 0 < α < 1, find a set of p points Xp ⊆ S to minimize
αF (Xp) + (1 − α)H(Xp);

(c) find Xp to minimize Z(Xp).

Facts:
1. Since the objective function in (b) is a linear combination of the objective functions
for the p-median and p-center problems, the solution X∗

p is called a centdian.
2. F ′(Xp) = F (Xp)/

∑n
j=1 w(vj) is the mean distance to the consumers given that the

facilities are located at Xp.
3. Z(Xp) is the variance of the distance to the consumers given that the facilities are
located at Xp.
4. Additional results are discussed in [HaMi79, Ma86].

Example:
1. The following figure shows a tree network T on 7 vertices, with edge lengths dis-
played. Suppose that all vertex weights are 1. Then the 1-median of T is located
at vertex c, while the 1-center of T is located at the point x one unit from vertex d
along (d, g). These locations can be calculated using Algorithms 1 and 2 from §15.2.3.
It can be verified that the centdian of T is at point x for 0 ≤ α ≤ 1

6 , at vertex d for
1
6 ≤ α ≤ 1

2 , and at vertex c for 1
2 ≤ α ≤ 1.

15.3 PACKING AND COVERING

Many practical problems can be formulated as either packing or covering problems. In
packing problems, known activities are given each of which requires several resources for
its completion. The problem is to select a most valuable set of activities to undertake
without using any common resources. Such a problem arises for example in scheduling
as many computational activities as possible on a set of machines (resources) that cannot
be used simultaneously for more than one activity.
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In covering problems, a specified set of tasks must be performed, and the objective
is to minimize the resources required to perform the tasks. For example, a number of
delivery trucks (resources) operating on overlapping geographical routes need to be dis-
patched to pick up items at customer locations (tasks). The fewest number of trucks are
to be sent so that each customer location is “covered” by at least one of the dispatched
trucks.

Both exact and heuristic solution algorithms for packing and covering problems are
discussed in this section.

15.3.1 KNAPSACKS

The knapsack problem arises when a single critical resource is to be optimally allocated
among a variety of options. Specifically, there are available a number of items, each of
which consumes a known amount of the resource and contributes a known benefit. Items
are to be selected to maximize the total benefit without exceeding the given amount of
the resource. Knapsack problems arise in many practical situations involving cutting
stock, cargo loading, and capital budgeting.

Definitions:

Let N = {1, 2, . . . , n} be a given set of n items. Utilizing item j consumes (requires)
aj > 0 units of the given resource and confers the benefit cj > 0.

The knapsack problem (KP) is the following 0-1 integer linear programming problem:

maximize:
∑
j∈N

cjxj

subject to:
∑
j∈N

ajxj ≤ b

xj ∈ {0, 1}

(1)

It is assumed that aj ≤ b for all j ∈ N . Let z(b) denote the optimal objective value
in (1) for a given integer b.

The LP relaxation (§15.1.8) of (1) is the linear programming problem:

maximize:
∑
j∈N

cjxj

subject to:
∑
j∈N

ajxj ≤ b

0 ≤ xj ≤ 1

(2)

Let zLP denote the optimal objective value to the LP relaxation (2).

Let N1 and N0 be the set of variables taking values 1 and 0, respectively, in the optimal
solution to (2). Let λ∗ be the dual variable (§15.1.5) associated with the knapsack
inequality in the optimal solution to (2).

A cover is a set S ⊆ N such that
∑

j∈S aj > b. The cover S is minimal if no proper
subset of S is a cover.

A branch and bound tree for KP is a tree T whose nodes correspond to subproblems
obtained by fixing certain variables of (1) to either 0 or 1. The root of T corresponds
to the original problem (1).
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Algorithm 1: Greedy heuristic for the KP.

input: KP with c1
a1

≥ c2
a2

≥ · · · ≥ cn

an

output: feasible solution x = (x1, x2, . . . , xn)

for k := 1 to n
if

∑k
j=1 ajxj ≤ b then xk := 1

else xk := 0

A node t of T is specified by its level k = 0, 1, . . . , n and the index set Nt ⊆ {1, . . . , k}
of variables currently fixed to 1.

Associated with the set Nt is the current benefit zt =
∑

j∈Nt
cj and the available amount

of resource bt = b−
∑

j∈Nt
aj .

Facts:

1. Formulation (1) is a 0-1 integer linear programming problem with a single (knapsack)
constraint. It expresses the optimization problem in which a subset of the n items is
to be selected to maximize the total benefit without exceeding the available amount of
the given resource (the capacity of the knapsack).

2. KP is an NP-hard optimization problem (§16.5.2).

3. KP can be solved in polynomial time for fixed b.

4. Given a rational ε > 0, a {0, 1}-vector x∗ can be found satisfying
∑

j∈N ajx
∗
j ≤ b

and
∑

j∈N cjx
∗
j ≥ (1 − ε)z(b) in time polynomially bounded by 1

ε and by the sizes of
a = (a1, . . . , an), c = (c1, . . . , cn), and b.

5. If the coefficients aj can be ordered such that each coefficient is an integer multiple
of the previous one, then KP can be solved in polynomial time.

6. If aj−1 ≥ aj + · · · + an holds for j = 2, . . . , n then KP can be solved in polynomial
time.

7. Greedy heuristic: This heuristic (Algorithm 1) for the KP processes the variables xj
in nonincreasing order of cj

aj
, making each variable equal to 1 if possible.

8. Suppose zH is the objective value for the solution x produced by Algorithm 1. Then
z(b) ≥ zH ≥ 1

2z(b).

9. Algorithm 1 is most effective if the coefficients aj are small relative to b.

10. The LP relaxation (2) can be solved explicitly by filling the knapsack in turn with
items j in order of nonincreasing cj

aj
, ignoring the integer restriction. The solution x

obtained has at most one fractional component.

11. Core heuristic: This heuristic (Algorithm 2) for the KP first solves the LP re-
laxation (2) as in Fact 10, in which at most one variable xk can be fractional. A
smaller knapsack problem is then solved, by setting to 0 any variable xj with index j
sufficiently greater than k and by setting to 1 any variable xj with index j sufficiently
smaller than k.
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Algorithm 2: Core heuristic for the KP.

input: KP with c1
a1

≥ c2
a2

≥ · · · ≥ cn

an

output: feasible solution x = (x1, x2, . . . , xn)

{solve LP relaxation}
find the smallest value k such that

∑k
j=1 aj ≥ b

{solve restricted KP}
select any r > 0
xj := 1 for j ≤ k − r
xj := 0 for j ≥ k + r
solve to optimality the smaller knapsack problem:

maximize
∑k+r−1

j=k−r+1 cjxj

subject to
∑k+r−1

j=k−r+1 ajxj ≤ b−
∑k−r

j=1 aj

xj ∈ {0, 1}

12. Algorithm 2 is effective if the number of variables n is large since values of r
between 10 and 25 give very good approximations in most cases. For further details see
[BaZe80].
13. z(b) ≤ zLP .
14. If zl is the objective value of a feasible solution to (1), then zl ≤ z(b).
15. Node t of the branch and bound tree T corresponds to a subproblem having a
nonempty set of feasible solutions if and only if bt ≥ 0. When this holds, zt is a lower
bound for z(b).

16. An upper bound on the objective value over the subproblem corresponding to node
t is zut = �z∗t �, where z∗t = zt + max {

∑n
j=k+1 cjxj |

∑n
j=k+1 ajxj ≤ bt, 0 ≤ xj ≤ 1 }.

17. Implicit enumeration: This is an exact technique based on the branch and bound
method (§15.1.8). It is implemented using a branch and bound tree T , with the following
specifications:

• The initial tree T consists of the root t, with lower bound zl on z(b) obtained
using the greedy heuristic. An upper bound for node t is zut = zLP .

• If zut ≤ zl, then node t is discarded since it cannot provide a better solution.

• If zut > z
l, there are three cases (where node t is at level k of T ):

� ak+1 < bt: If k + 1 < n, create a new node with xk+1 = 1. If k + 1 = n an
optimal solution for node t has xn = 1. Since this solution is feasible for
KP, set zl = zut and discard node t.

� ak+1 = bt: An optimal solution for node t (and a feasible solution for KP)
is obtained by setting xk+1 = 1 and xj = 0 for j > k+ 1. Set zl = zut and
discard node t.

� ak+1 > bt: Discard the (infeasible) node with xk+1 = 1 and create a new
node with xk+1 = 0.

• To backtrack from node t let Nt = {j1, . . . , jr} ⊆ {1, . . . , k} with j1 < · · · < jr.
If k 
∈Nt retreat to level jr and set xjr = 0. If k = jr retreat to level jr−1 and
set xjr−1 = 0.
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18. Variable fixing : Given zLP , zl, N1, N0, and λ∗, the following tests can be used
to fix variables and reduce the size of the knapsack problem:

• If k ∈ N1 and zLP − (ck − λ∗ak) ≤ zl, then fix xk = 1.
• If k ∈ N0 and zLP + (ck − λ∗ak) ≤ zl, then fix xk = 0.
• Given k ∈ N1 define

zkLP =
∑

j∈N1−{k}
cj + max

{ ∑
j∈N−N1

cjxj

∣∣∣ ∑
j∈N−N1

ajxj ≤ b, 0 ≤ xj ≤ 1
}

.

If zkLP ≤ zl, then xk can be fixed to 1.

• Given k ∈ N0 define

zkLP = ck + max
{ ∑
j∈N−N0

cjxj

∣∣∣ ∑
j∈N−N0

ajxj ≤ b− ak, 0 ≤ xj ≤ 1
}

.

If zkLP ≤ zl, then xk can be fixed to 0.

19. Minimal cover inequality: If S is a minimal cover then each feasible solution x
to KP satisfies

∑
j∈S xj ≤ |S| − 1.

20. Lifted minimal cover inequality: The minimal cover inequality can be further
strengthened. Without loss of generality, assume that a1 ≥ a2 ≥ · · · ≥ an and S =
{j1 < j2 < · · · < jr}. Let µh =

∑h
k=1 ajk for h = 1, . . . , r and define λ = µr − b ≥ 1.

Then each feasible solution x to KP satisfies
∑

j∈N−S αjxj +
∑

j∈S xj ≤ |S|− 1, where:
• if µh ≤ aj ≤ µh+1 − λ then αj = h;
• if µh+1 − λ + 1 ≤ aj ≤ µh+1 − 1 then: (a) αj ∈ {h, h + 1}, and (b) there is at

least one lifted minimal cover inequality with αj = h+ 1.

21. Algorithms and computer codes to solve knapsack problems are given in [MaTo90].

22. Fortran code for solving knapsack problems can be found at the site:
• http://www.netlib.org/toms/632

23. Further details on the material in this section are available in [NeWo88], [Sc86].

Examples:
1. Investment problem: An investor has $50,000 to place in any combination of five
available investments (1, 2, 3, 4, 5). All investments have the same maturity but are
issued in different denominations and have different (one-year) yields, as shown here:

investment 1 2 3 4 5

denomination ($) 10,000 20,000 30,000 10,000 20,000
yield (%) 20 14 18 9 13

Let variable xj = 1 if Investment j is selected and xj = 0 if it is not. The interest
earned for Investment 1 is (0.20)10,000 = 2,000; the values of the other investments are
found similarly. Then the investor’s problem is the knapsack problem

maximize: 2,000x1 + 2,800x2 + 5,400x3 + 900x4 + 2,600x5

subject to: 10,000x1 + 20,000x2 + 30,000x3 + 10,000x4 + 20,000x5 ≤ 50,000

which has the optimal solution x1 = x3 = x4 = 1, x2 = x5 = 0 with maximum interest
of $8,300.
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2. Consider the knapsack problem in 0-1 variables x

maximize: 30x1 + 8x2 + 16x3 + 20x4 + 12x5 + 9x6 + 5x7 + 3x8

subject to: 10x1 + 3x2 + 7x3 + 9x4 + 6x5 + 5x6 + 3x7 + 2x8 ≤ 27.

Here the variables xj are indexed in nonincreasing order of cj

aj
. The optimal solution to

the LP relaxation (2) is x1 = x2 = x3 = 1, x4 = 7
9 , xj = 0 otherwise, with zLP = 69 5

9 .
The greedy heuristic (Algorithm 1) gives the feasible solution x1 = x2 = x3 = x5 = 1,
xj = 0 otherwise, with zH = 66. Using r = 3, the core heuristic gives x1 = x2 = x4 =
x6 = 1, xj = 0 otherwise. This solution is optimal, with objective value 67.

3. Consider the knapsack problem in 0-1 variables x

maximize: x1 + x2 + x3 + x4 + x5 + x6

subject to: 10x1 + 8x2 + 4x3 + 3x4 + 3x5 + 2x6 ≤ 11.

The set S = {3, 4, 5, 6} is a minimal cover which gives the lifted minimal cover inequality
3x1 +2x2 +x3 +x4 +x5 +x6 ≤ 3. Adding this inequality and solving the resulting linear
program gives x4 = x5 = x6 = 1, xj = 0 otherwise. This solution is optimal.

4. General knapsack problem: The general (or unbounded) knapsack problem allows
the decision variables xj to be any nonnegative integers, not just 0 and 1. The following
site provides an interactive algorithm for solving such knapsack problems (having up
to 10 integer variables):

• http://www.maths.mu.oz.au/~moshe/recor/knapsack/knapsack.html

15.3.2 BIN PACKING

Minimizing the number of copies of a resource required to perform a specified set of
tasks can be formulated as a bin packing problem. It is assumed that no such task can
be split between two different units of the resource.

For example, this type of problem arises in allocating a set of customer loads to
(identical) trucks, with no load being split between two trucks. Also, the scheduling
of heterogeneous tasks on identical machines can be viewed as a bin packing problem.
Namely, find the fewest number of machines of capacity C such that each task is executed
on one of the machines and the total capacity of jobs assigned to any machine does not
exceed C.

Definitions:

The positive integer C denotes the bin capacity .

Let L = (p1, p2, . . . , pn) be a list of n items, where item pi has an integer size s(pi) ≤ C.

A subset P ⊆ L is a packing if
∑

pi∈P s(pi) ≤ C.
The gap of a packing P is given by the quantity C −

∑
pi∈P s(pi).

The bin packing problem is the problem of finding the minimum number of bins
(each of capacity C) needed to pack all items so that the gap in each bin is nonnegative.
The minimum number of bins needed for the list L is denoted b∗(L).
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Algorithm 3: MFFD algorithm for bin packing.

input: list L, bin capacity C
output: a packing of L

partition L into the three sublists LA = { pi | s(pi) ∈ ( 1
3C,C] },

LD = { pi | s(pi) ∈ ( 11
71C,

1
3C] }, LX = { pi | s(pi) ∈ (0, 11

71C] }
pack the sublist LA using the FFD algorithm.
{pack as much of LD into A-bins as possible}

1. let bin Bj be the A-bin with the currently largest gap; if the two smallest
unpacked items in LD will not fit together in Bj , go to 4

2. place the smallest unpacked item pi from LD in Bj
3. let pk be the largest unpacked item in LD that will now fit in Bj ; place pk

in Bj and go to 1
4. combine the unpacked portion of LD with LX and add these items to the

packing using FFD

Facts:

1. The bin packing problem is an NP-hard optimization problem (§16.5.2).

2. First fit (FF) method: In this heuristic algorithm, item pi (i = 1, 2, . . . , n) is placed
in the first bin into which it fits. A new bin is started only when pi will not fit into any
nonempty bin.

3. Let bFF (L) denote the number of bins produced by the FF algorithm for a list L.
Then bFF (L) ≤ min

{⌈
17
10b

∗(L)
⌉
, 1.75b∗(L)

}
.

4. First fit decreasing (FFD) method: In this heuristic algorithm, the items are first
ordered by decreasing size so that s(p1) ≥ s(p2) ≥ · · · ≥ s(pn). Then the FF algorithm
is applied to the reordered list.

5. Let bFFD(L) denote the number of bins produced by the FFD algorithm for a list L.
Then bFFD(L) ≤ min

{
11
9 b

∗(L) + 3, 1.5b∗(L)
}
.

6. If all item sizes are of the form C( 1
k )j , j ≥ 0, for some fixed positive integer k, then

bFFD(L) = b∗(L).

7. If the item sizes are uniformly distributed on [0, a] with 0 < a ≤ C
2 , then asymptot-

ically bF F D(L)
b∗(L) → 1.

8. Modified first fit decreasing (MFFD) method: This heuristic method (Algorithm 3)
produces a packing using relatively few bins. After the initial phase of packing the
largest size items LA, let an “A-bin” denote one containing only a single item from LA.

9. Let bMFFD(L) denote the number of bins produced by the MFFD algorithm for a
list L. Then asymptotically, as b∗(L) gets large, bMFFD(L) ≤ 1.183b∗(L).

10. Best fit (BF) method: In this heuristic algorithm, item pi is placed in the bin into
which it will fit with the smallest gap left over. Ties are broken in favor of the lowest
indexed bin.

11. Best fit decreasing (BFD) method: In this heuristic algorithm, the items are first
ordered so that s(p1) ≥ s(p2) ≥ · · · ≥ s(pn). Then the BF algorithm is applied to the
reordered list.
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12. Asymptotic worst-case bounds for BF [BFD] are the same as those for FF [FFD].
In practice the BF version performs somewhat better.

13. Further details on the material in this section are provided in [CoGaJo84].

Examples:

1. Television commercials are to be assigned to station breaks. This is a bin pack-
ing problem where the duration of each station break is C and the duration of each
commercial is s(pi).

2. Material such as cable, lumber, or pipe is supplied in a standard length C. Demands
for pieces of the material are for arbitrary lengths s(pi) not exceeding C. The objective
is to use the minimum number of standard lengths to supply a given list of required
pieces. This is also a bin packing problem.

3. A set of independent tasks with known execution times s(pi) are to be executed on
a collection of identical processors. Determining the minimum number of processors
needed to complete all tasks by the deadline C is a bin packing problem.

4. Consider the list L = (4, . . . , 4, 7, . . . , 7, 8, . . . , 8, 13, . . . , 13), in which there are
twelve 4s and six each of 7s, 8s, and 13s in the list. Each bin has capacity C = 24.
Either FF (or BF) when applied to L result in a packing with twelve bins: two bins are
packed as (4, 4, 4, 4, 4, 4), two as (7, 7, 7), two as (8, 8, 8), and six as (13).

5. If FFD (or BFD) is applied to the list in Example 4, a packing with ten bins results:
six bins are packed as (13, 8), two as (7, 7, 7), and two as (4, 4, 4, 4, 4, 4).

6. If MFFD is applied to the list in Example 4, then LA contains the six 13s and LD
contains the remaining items. Packing LA using FFD results in six A-bins, each con-
taining a single 13 and having gap 11. Steps 1–3 of Algorithm 3 result in six bins
packed as (13, 7, 4), and Step 4 yields two bins packed as (8, 8, 8) and one bin packed as
(4, 4, 4, 4, 4, 4). This is an optimal solution since all nine bins are completely packed.

15.3.3 SET COVERING AND PARTITIONING

Set covering or set partitioning problems arise when a specified set of tasks must be
performed while minimizing the cost of resources used. Such problems arise in scheduling
fleets of vehicles or aircraft, locating fire stations in an urban area, political redistricting,
and fault testing of electronic circuits.

Definitions:

Let e denote the column vector of all 1s.

Let A = (aij) be a 0-1 incidence matrix and let c = (cj) be a row vector of costs.

The set Aj = {i | aij = 1 } contains all rows covered by column j.

The set covering (SC) problem is the 0-1 integer linear programming problem:

minimize: cx

subject to: Ax ≥ e
xj ∈ {0, 1}.

Let v∗ be the optimal objective value to this problem.
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The set partitioning (SP) problem has the same form as the set covering problem
except the constraints are Ax = e.

The LP relaxation of SC or SP is obtained by replacing the constraints xj ∈ {0, 1}
by 0 ≤ xj ≤ 1. Let vLP be the optimal objective value to the LP relaxation.

The matrix A is totally unimodular if the determinant of every square submatrix
of A is 0, +1, or −1.

The matrix A is balanced if A has no square submatrix of odd order, containing exactly
two 1s in each row and column.

The matrix A is in canonical block form if, by reordering, its columns can be par-
titioned into t nonempty subsets B1, . . . , Bt such that for each block Bj there is some
row i of A with aik = 1 for all k ∈ Bj and aik = 0 for k ∈ ∪tl=j+1Bl. The rows of A are
then ordered so that the row defining Bj becomes the jth row for j = 1, . . . , t.

Facts:
1. Formulation SC expresses the problem of selecting a set of columns (sets) that
together cover all rows (elements) at minimum cost. In Formulation SP, the covering
sets are required to be disjoint.
2. Both SC and SP are NP-hard optimization problems (§16.5.2).
3. Checking whether a set partitioning problem is feasible is NP-hard.
4. In many instances (including bin packing, graph partitioning, and vehicle routing)
the LP relaxation of the set covering (partitioning) formulation of the problem is known
to give solutions very close to optimality.
5. For the bin packing and vehicle routing problems (see Examples 2, 3) v∗ ≤ 4

3�vLP �.
6. If A is totally unimodular or balanced, then the polyhedra {x | Ax ≥ e, 0 ≤ xj ≤ 1}
and {x | Ax = e, 0 ≤ xj ≤ 1} have only integer extreme points (vertices). In this
case, SC and SP can be solved in polynomial time using linear programming.
7. Checking whether a given matrix A is totally unimodular or balanced can be done
in polynomial time.
8. Every 0-1 matrix that is totally unimodular is also balanced. The converse however
is not true (see Example 4).
9. The matrix A is totally unimodular if and only if each collection of columns of A
can be split into two parts so that the sum of the columns in one part minus the sum
of the columns in the other part is a vector with entries 0, +1, −1.
10. Greedy heuristic: This heuristic (Algorithm 4) for the set covering problem suc-
cessively chooses columns that have smallest cost per covered row.
11. Randomized greedy heuristic: This heuristic for the set covering problem is similar
to Algorithm 4 except that at iteration k the column jk ∈ Nk is selected at random from
among those columns j satisfying cj

|Aj∩Mk| ≤ (1 + α) min
{

cr

|Ar∩Mk|
∣∣ r ∈ Nk

}
, where

α ≥ 0.
12. Whereas Algorithm 4 is run only once, the randomized greedy heuristic is repeated
several times and the best solution is selected.
13. Implicit enumeration: This exact approach (Algorithm 5) for SP works well for
dense matrices. In this algorithm, S is the index set of the variables fixed at 1, z is the
associated objective value, and R is the set of rows satisfied by S. Also z∗ denotes the
objective value of the best feasible solution found so far.
14. Other implicit enumeration approaches to set partitioning and set covering are
discussed in [BaPa76].
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Algorithm 4: Greedy heuristic for the set covering problem.

input: 0-1 m× n matrix A, costs c
output: feasible set cover x

M1 := {1, 2, . . . ,m}; N1 := {1, 2, . . . , n}; k := 1
{Main loop}
select jk ∈ Nk to minimize cj

|Aj∩Mk|
Nk+1 := Nk − {jk}
obtain Mk+1 from Mk by deleting all rows containing a 1 in column jk

if Mk+1 = ∅ then xj := 1 for j 
∈Nk+1 and xj := 0 otherwise
else k := k + 1
{Continue with next iteration of main loop}

Algorithm 5: Implicit enumeration method for SP.

input: 0-1 matrix A, costs c
output: optimal set of columns S (if any)

place A in canonical block form with blocks Bj
order the columns within Bj by nondecreasing ct/

∑
i ait

S := ∅; R := ∅; z := 0, z∗ := ∞
1. r := min { i | i 
∈R }; set a marker in the first column of Br
2. examine all columns of Br in order starting from the marked column

if column j is found with aij = 0 for all i ∈ R and z + cj < z∗ then go to 3
if Br is exhausted then go to 4

3. S := S ∪ {j}; R := R ∪ { i | aij = 1 }; z := z + cj
if all rows are included in R then z∗ := z and go to 4 else go to 1

4. if S = ∅ then terminate with the best solution found (if any)
else let k := the last index included in S
S := S − {k}; update z and R
Br := the block to which column k belongs
move the marker in Br forward by one column and go to 2

15. Cutting plane methods: Cutting plane methods (§15.1.8) have been used success-
fully to solve large set partitioning and set covering problems. For details regarding an
implementation used to solve crew scheduling problems see [HoPa93].
16. Further details on the material in this section are in [GaNe72], [NeWo88], [Sc86].

Examples:
1. Crew scheduling problem: An airline must cover a given set of flight segments with
crews. There are specified work rules that restrict the assignment of crews to flights.
The objective is to cover all flights at minimum total cost. The rows of the matrix A
correspond to the flights that an airline has to cover. The columns of A are the incidence
vectors of flight “rotations”: sequences of flight segments for each flight that begin and
end at individual base locations and that conform to all applicable work rules. The
objective is to minimize crew costs. This problem can be formulated as either a set
covering or set partitioning problem.
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2. Bin packing : The bin packing problem (§15.3.2) can be formulated as a set parti-
tioning problem. The rows of the matrix A correspond to the items and the columns
are incidence vectors of any feasible packing of items to a bin. The cost of each variable
is 1 if the number of bins is to be minimized. In general, a weighted version can also be
formulated where different bins have different costs.
3. Vehicle routing : Given are a set of customers and the quantity that is to be supplied
to each from a warehouse. A fleet of trucks of a specified capacity are available. The
objective is to service all the customers at minimum cost. The rows of the matrix A
correspond to the customers and the columns are incidence vectors of feasible assign-
ments of customers to trucks (a bin packing problem). The cost of each variable is the
cost of the corresponding assignment of customers to the truck. This problem can be
formulated as either a set covering or set partitioning problem.
4. The following matrix A is not totally unimodular, since det(A) = −2. This can also
be seen using Fact 9. If A has columns Cj then (C1 + C2) − (C3 + C4) = (0, 2, 0, 0)T

has an entry greater than one in absolute value. However, A is a balanced matrix.

A =




1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1




5. There are four requests R1, R2, R3, R4 for information stored in a database, which
is comprised of five large files {1, 2, 3, 4, 5}. Request R1 can be fulfilled by retrieving
files 1, 3, or 4; request R2 by retrieving files 2 or 3; request R3 by retrieving files 1
or 5; and request R4 by retrieving files 4 or 5. The lengths of the files are 7, 3, 12, 7, 6
(gigabytes) respectively, and the time to retrieve each file is proportional to its length.
Filling all requests in the minimum amount of time is then a set covering problem, with
costs c = (7, 3, 12, 7, 6) and incidence matrix

A =




1 0 1 1 0
0 1 1 0 0
1 0 0 0 1
0 0 0 1 1




Applying the greedy heuristic (Algorithm 4) produces j1 = 2, j2 = 5, and j3 = 1, giving
x = (1, 1, 0, 0, 1) with total cost 16. This is an optimal solution to the SC problem.

15.4 ACTIVITY NETS
Activity nets are important tools in the planning, scheduling, and control of projects.
In particular, the CPM (Critical Path Method) and PERT (Program Evaluation and
Review Technique) models are widely used in the management of large projects, such
as those occurring in construction, shipbuilding, aerospace, computer system design,
urban planning, marketing, and accounting.

15.4.1 DETERMINISTIC ACTIVITY NETS

The scheduling of large complex projects can be aided by modeling as a directed net-
work of activities having known durations and resource requirements, with the network
structure defining the activity precedences. The commonly used critical path method
is described as well as extensions that address constrained resources, financial consider-
ations, and project compression.
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Definitions:

A project is defined by a set of activities that are related by precedence relations.
An activity consumes time and resources to accomplish, whereas a dummy activity
consumes neither.

Activity u (strictly) precedes activity v, written u ≺ v, if activity u must be completed
before activity v can be initiated.

A project can be represented using a directed acyclic network G (§8.3.4).

In the activity-on-node (AoN) representation of a project, the network G contains
a node for each activity and the arcs of G represent the precedence relations between
nodes (activities).

In the activity-on-arc (AoA) representation of a project, the network G contains an
arc for each activity and the nodes of G represent certain events. Precedence relations
are described by the network arcs, possibly requiring the use of dummy arcs (dummy
activities). In the AoA representation, the network is assumed to have no multiple arcs
joining the same pair of nodes, so an activity can be unambiguously referred to by (i, j)
for some nodes i and j, with the corresponding activity duration being aij .

Network G is a deterministic activity net if the precedence relations and the param-
eters associated with the activities are known deterministically. Such a network is also
referred to as a Critical Path Method (CPM) model.

An initial node of G has no entering directed arcs; a terminal node has no exiting
directed arcs.

Generalized precedence relations (GPRs) relax the necessity of a strict precedence
between activities. They can be specified in the form of certain lead or lags between a
pair of activities, commonly by start-to-start, finish-to-finish, start-to-finish, and
finish-to-start relations.

The optimal project compression problem is that of achieving a target project
completion time with least cost, or alternatively minimizing the duration of the project
subject to a specified budget constraint.

The complex interaction between the required resources and the duration of an activity
is assumed to be given by the functional relationship ca = φ(ya), where ya is the duration
of activity a, 5a ≤ ya ≤ ua, and ca is its cost. The upper limit ua is the normal duration
and the lower limit 5a is the crash duration of activity a.

Facts:

1. The CPM model arose out of the need to solve industrial scheduling problems; the
original work was jointly sponsored by Dupont and Sperry-Rand in the late 1950s.

2. In the AoA representation, the network can be assumed to have a single initial node
and a single terminal node. These conditions can in general be guaranteed, possibly
through the introduction of dummy arcs.

3. Suppose that the AoA representation of a network has n nodes, with initial node 1
and terminal node n. Then the nodes can always be renumbered (topologically sorted)
such that each arc leads from a smaller numbered node to a larger numbered one. (See
§8.3.4.)

4. In the AoA representation, the earliest time of realization of node j, written tj(E), is
determined recursively from tj(E) = maxi∈B(j){ti(E)+aij} and t1(E) = 0, where B(j)
is the set of nodes immediately preceding node j.
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5. Suppose the time of realization of node n is specified as tn(L) ≥ tn(E). The latest
time of realization of node i, written ti(L), is determined recursively from ti(L) =
minj∈A(i){tj(L) − aij}, where A(i) is the set of nodes immediately succeeding node i.

6. tj(L) ≥ tj(E) holds for any node j. The difference tj(L) − tj(E) ≥ 0 is called the
node slack for j.

7. For each activity (i, j) there are four activity floats corresponding to the differences
tj(X) − ti(Y ) − aij , where X,Y ∈ {E,L}:

• total float: TF (i, j) = tj(L) − ti(E) − aij
• safety float: SF (i, j) = tj(L) − ti(L) − aij
• free float: FF (i, j) = tj(E) − ti(E) − aij
• interference float: IF (i, j) = tj(E) − ti(L) − aij .

8. TF (i, j), SF (i, j), and FF (i, j) are always nonnegative, whereas IF (i, j) can be
negative, indicating infeasibility of realization under the specified conditions (all activi-
ties succeeding node j are accomplished as early as possible and all activities preceding
node i are accomplished as late as possible).

9. A critical activity (i, j) has total float TF (i, j) = 0. If tn(L) = tn(E), then the set
of critical activities contains at least one path from node 1 to node n, which represents
a longest path in the network from node 1 to node n. Such a path is called a critical
path (CP).

10. Floats play an important role in both resource allocation and activity schedul-
ing, since floats give a measure of the flexibility in scheduling activities during project
execution without delaying the project completion time.

11. The problems of optimal resource allocation and activity scheduling subject to the
known precedence constraints are NP-hard optimization problems (§16.5.2).

12. Practical solutions to optimal resource allocation and activity scheduling problems
are based on heuristics. Virtually all heuristics used in practice rely on ranking the
activities according to their float (TF, SF, FF, IF ).

13. The measure TF is the only float in the AoA mode that is representation-invariant;
this measure is the same in both modes of representation and in all AoA models of the
same project.

14. The SF, FF, IF measures are representation-dependent: they do indeed depend
on the structure of the AoA and they may also vary from their AoN values.

15. A simple redefinition of ti(E) for nodes i with all outgoing arcs dummy and tj(L)
for nodes j with all incoming arcs dummy reestablishes the invariance of the activity
floats to the mode of representation [ElKa90].

16. A plethora of “off-the-shelf” project planning and control software packages for
PCs are currently available [Ho85], [DeHe90]. The review [DeHe90] also outlines criteria
against which a software package should be judged. To a varying degree of sophistica-
tion, all these software packages satisfy the basic requirements of analysis and reporting.
However, these packages are typically incapable of correctly carrying out optimization
procedures.

17. A listing of commercial and noncommercial software for project planning can be
found at the site:

• http://www.wior.uni-karlsruhe.de/Bibliothek/Title Page1.html
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18. GPRs afford the flexibility of modeling relations that are present among activities
in many practical situations, gained at a price in computational effort and interpretation
of results. The concepts of criticality and float of an activity take on a new meaning,
since activities may be “compressed” (speeded up) or “expanded” (slowed down) from
their “normal” durations [ElKa92].

19. Considerations of resource availabilities are important in project planning and its
dynamic control. The most common planning criteria are:

• minimization of the project duration
• smoothing of resource usage
• minimization of the maximum resource utilization
• minimization of the cost of resource usage
• maximization of the present value of the project.

20. In the presence of limited resources, the “critical path” may no longer be a “path”,
in the sense of a connected chain of activities. What emerges is the concept of a critical
sequence of activities [El77], which need not form a connected chain in the network.
(See Example 4.)

21. The scheduling of activities related by arbitrary precedence relations subject to
resource availabilities is an NP-hard problem. Consequently, such problems are typically
approached by integer programming techniques (§15.1.8) or heuristics (e.g., simulated
annealing, tabu search, genetic algorithms, neural nets).

22. The book [SlWe89] discusses project scheduling under constrained resources; in
particular, Chapter 5 of Part I evaluates various heuristics that have been proposed.
Also [HeDeDe98] gives a review of recent contributions to this area.

23. Typically, resources are available in one or several units or may be acquired at a
cost. Mathematical models (large-scale integer linear programs) abound for the min-
imization of the project duration [El77]. Various branch and bound approaches have
been proposed for these models [DeHe92, Sp94].

24. Heuristic procedures, let alone optimization algorithms, for activity scheduling
under the other criteria mentioned in Fact 19 are not generally available.

25. In the CPM model of activity networks there is little problem in defining the cost
of an activity, and subsequently the cost of the project.

26. Generally, there are two streams of cash flow (from the contractor’s point of view):
an in-stream representing payments to the contractor by the owner, and an out-stream
representing payments by the contractor in the execution of the activities.

27. From the owner’s point of view there is only one stream of cash flows: namely,
payments to the contractor for work accomplished. Given a particular schedule for the
activities, the two streams of cash flow can be easily obtained. The problem is then
scheduling activities to maximize the net present value (NPV) of the project.

28. Issues concerning the NPV of a project are equally important to those interested
in bidding on a proposed project and those who are committed to carry out an already
agreed-upon project. Succinctly stated, the problem is to determine the dates of the
deliverables in order to maximize the NPV.

29. Suppose that the function φ(ya) is nonincreasing over the interval [5a, ua]. Refer-
ence [El77] gives a treatment of linear, convex, concave, and discrete functions, while
[ElKa92] discusses the case in which φ(ya) is piecewise linear and convex over the interval
[5a, ua].
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Examples:

1. Construction planning: The construction of a house involves carrying out the nine
activities listed in the following table. Their durations and (immediate) predecessor
activities are also indicated.

activity duration (days) predecessors

foundation/frame 12 —
wiring/plumbing 4 foundation/frame
sheetrock 7 wiring/plumbing
interior paint 2 sheetrock, windows
carpet 3 interior paint
roof 3 foundation/frame
siding 7 roof
windows 2 siding
exterior paint 2 windows

An AoA representation of this project is shown in the following figure. It is necessary
to use a dummy activity to ensure that the given precedences are faithfully depicted.
The nodes have been numbered in topological order, with node 1 the initial node and
node 9 the terminal node. The longest path from node 1 to node 9 is [1, 2, 4, 5, 6, 7, 8, 9]
with length 29, corresponding to a project completion time of 29 days.

2. A project is composed of the four activities a, b, c, d with precedence relations a ≺ c,
a ≺ d, and b ≺ d. The AoN representation of this project is shown in part (a) of the
following figure. The AoA representation is shown in part (b) of the figure, where the
nodes have been numbered in topological order (Fact 3). The dummy activity joining
nodes 2 and 3 is needed to maintain the integrity of the precedence relations. Activity
durations are indicated on the arcs of part (b) of the figure.
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3. The earliest and latest event times tj(E), tj(L) are shown next to each node j in
part (b) of the figure of Example 2, where t4(L) = 14, which is 2 units more than
t4(E) = 12. Here all nodes have the same slack of 2, which provides no information
on the various activity floats, given in the following table. Since TF (i, j) > 0 for all
activities (i, j), there are no critical activities and no critical path, since a small delay in
any activity will not delay the completion time of the project. The critical path can be
determined if instead t4(L) = t4(E) = 12. Then the critical path is given by [1, 2, 3, 4].

activity TF SF FF IF

(1, 2) 2 0 0 −2
(1, 3) 5 3 3 1
(2, 4) 3 1 1 −1
(3, 4) 2 0 0 −2

4. The following figure gives a project with six activities in AoN representation. There
is a single resource, with availability of 6 units. The duration of each activity and the
required quantity of the resource are indicated next to each activity (node). The CP
(based solely on durations) is [1, 3, 5, 6] of duration 5. If the integrity of the CP is
maintained as long as possible, then activity 4 must be inserted before activity 6 (thus
breaking the continuity of the CP), which is then followed by activity 2, as shown in
part (b) of the figure. The total duration of the project under this schedule is 11 time
units.

Now consider the schedule shown in part (c) of the figure, in which the CP is split
after activity 1; the total duration of the project is thereby reduced to only 8 time units.
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5. The project of the following figure is shown in AoA mode, with the duration of
each activity written beside each arc. The payment shown next to a node is the income
accrued (if positive) or expense incurred (if negative) at the time of realization of that
event (node). The CP is [1, 3, 4] with duration 11. Ignoring the time value of money (i.e.,
assuming a discount factor β = 0) gives 1000 as the estimate of project profit. Assuming
a discount factor β = 0.99 and that activities are done as early as possible to maintain
the CP, the estimate of project profitability shrinks to −5000(.99)2 + 3000(.99)8 +
3000(.99)11 = 553.75.

Now suppose that the schedule of activities is modified as follows: delay activ-
ity (1, 2) to complete at time t2 = 4 (instead of 2); do activity (1, 3) as early as possible
to complete at time t3 = 8; and do activity (2, 4) as early as possible (after the real-
ization of node 2) to complete at time t4 = 12. Then the project profitability increases
to −5000(.99)4 + 3000(.99)8 + 3000(.99)12 = 624.41. Note that the increase in project
profitability comes as a consequence of ignoring the CP, and in fact delaying the project
beyond its normal duration.

6. A project involving five activities is shown in the following figure in AoA mode.

Each activity (arc) a is labeled with (ua, 5a, ka) where ka is the marginal cost of re-
ducing duration from the normal time ua. Next to each node j is its earliest time of
realization tj(E) under normal activity durations. The following table summarizes the
breakpoints of the resulting piecewise linear cost function.

duration marginal cumulative
breakpoint (t4) cost cost

1 11 1 0
2 10 2 1
3 9 3 3
4 8 4 6
5 4 5 22
6 3 ∞ 27
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The function itself is shown in the following figure. With the complete cost function
in hand it is easy to answer various questions. For example, the least additional cost
required to reduce the project duration from its normal value 11 to 7 is seen to be 10.
Alternatively, if 6 additional units of money are available, then the maximum reduction
achievable in the project duration is 3 units of time (from 11 to 8).

15.4.2 PROBABILISTIC ACTIVITY NETS

The CPM model can be extended to incorporate uncertainty or randomness. If the
durations of activities are random variables, then the network is a PERT (Program
Evaluation and Review Technique) model. Alternatively, the very undertaking of an
activity may be determined by chance and this consideration has led to the development
of GAN (Generalized Activity Network) models.

Definitions:

A probabilistic activity net is a directed network in which some or all of the param-
eters, including the realization of the activities, are probabilistically known.

In a PERT model, activity durations are random variables. The duration of activity
a has expected value µa and variance σ2

a.

Let P (τ) be the probability that the project is completed by time τ .

The criticality index of a path Q in the network is the probability that Q is a critical
path in any realization of the project.

The criticality index of an activity a is the probability that a lies on a critical path
in any realization of the project.

A GAN model is a probabilistic activity net with conditional progress and probabilistic
realization of activities.

If X is a standard normal deviate (§7.3.1), then its (cumulative) distribution function
is denoted by Φ(x) = Pr(X ≤ x).
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Facts:

1. The original PERT model evolved in the late 1950s from the U. S. Navy’s efforts to
plan and accelerate the Polaris submarine missile project.

2. A detailed account of the original PERT model, its analysis, and the criticisms levied
against it is found in [El77, Chapter 3].

3. Estimation of the exact probability distribution function (pdf) of the project dura-
tion is an extremely difficult problem due to the nonindependence of the paths leading
from the initial node to the terminal node.

4. The original PERT model suggested substituting µa for each activity duration and
then proceeding with the standard CPM calculations to determine a critical path Q∗ in
the resulting deterministic network.

5. The pdf of the duration of the project can then be approximated using a normal
distribution having mean µ̂Q∗ =

∑
a∈Q∗ µa and variance σ̂2

Q∗ =
∑

a∈Q∗ σ2
a. The normal

approximation increases in validity as the number of activities in the path Q∗ increases.

6. The probability P (τ) of project completion by time τ can be approximated using
P̂ (τ) = Φ((τ − µ̂Q∗)/ σ̂Q∗).

7. The value µ̂Q∗ always underestimates the exact mean project duration (often, seri-
ously). No equivalent statement can be made about the variance estimate σ̂2

Q∗ except
that it is often a gross approximation of the exact variance.

8. PERT analysis goes one step further and uses an approximation to the expected
value and the variance of each activity, based on the assumption that each activity
duration follows a beta distribution (§7.3.1). In particular, the variance is approximated
by 1

36 (range)2. These additional assumptions render the procedure even more suspect.

9. An immediate consequence of randomness in the activity durations is that (virtually)
any path can be the CP in some realization of the project. Thus, the criticality index of
a path and the criticality index of an activity are more meaningful concepts. See [Wi92]
for a critique of the latter.

10. In general, it is extremely difficult to determine the exact values of the criticality
indices analytically. Monte Carlo sampling is typically used to estimate these values.

11. Since the early days of PERT, significant strides have been made in estimating
the various parameters in the PERT model. The approaches can be classified into the
categories of exact, approximating , and bounding procedures. See [El89, Ka92].

12. The concept of a uniformly directed cutset has been used to evaluate some common
network performance criteria under the assumption of exponentially distributed activity
durations [KuAd86]. Attempts to extend the concept to applications in optimal resource
allocation have had limited success thus far.

13. The restriction of GANs to “exclusive-or” type nodes renders the network a graph-
ical representation of a semi-Markov process. The resulting GERT (Graphical Evalu-
ation and Review Technique) model has been expanded into SLAM II, an extremely
powerful discrete event simulation language.

14. The analysis of stochastic activity nets with exclusive-or type nodes (STEOR-nets)
is thoroughly discussed in [Ne90].

Examples:

1. The following figure shows a project with six activities whose durations are random
variables that assume discrete values with equal probabilities. For example, activity
(1, 2) has duration 1, 2, or 5 with probability 1

3 each. The exact distribution of project
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completion time (secured by complete enumeration of the 324 realizations) is shown
in the following table, from which it is seen that the true mean project duration is
µ = 12.315 and the true standard deviation is σ = 2.5735. The probability that the
project duration is no more than 12 time units is P (12) = 0.4815. The PERT estimates
of these same parameters, based on the deterministic critical path [1, 2, 3, 4], are µ̂Q∗ =
10, σ̂Q∗ = 1, and P̂ (12) = 0.9772.

duration relative
frequency(t4) frequency

17 36 0.1111
15 12 0.0370
14 48 0.1481
13 72 0.2222
12 42 0.1296
11 30 0.0926
10 36 0.1111
9 28 0.0864
8 10 0.0309
7 6 0.0185
6 2 0.0062
5 2 0.0062

324 1.0000

2. The paths from initial node 1 to terminal node 4 for the project in the figure of
Example 1 are: Q1 = [1, 2, 4], Q2 = [1, 2, 3, 4], Q3 = [1, 4], Q4 = [1, 3, 4]. The following
table lists the frequency and relative frequency that each path Qi, or combination of
paths, is a critical path.

t4 Q1 Q2 Q3 Q4 Q1, Q2 Q1, Q4 Q2, Q3 Q2, Q4

17 36
15 12
14 36 12
13 30 6 24 6 6
12 12 24 6
11 6 18 6
10 8 24 4
9 10 16 2
8 2 6 2
7 2 2 2
6 2
5 2

freq. 112 90 24 64 10 6 4 14
rel. freq. .3457 .2778 .0741 .1975 .0309 .0185 .0123 .0432
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The path criticality indices are then easily determined from this table. For exam-
ple, the criticality index of Q1 is 0.3951 (= 0.3457 + 0.0309 + 0.0185), and of Q4 is
0.2592 (= 0.1975 + 0.0185 + 0.0432). The criticality index of each activity can be easily
determined from the criticality indices of the paths. For instance, the criticality index
of activity (1, 2), which lies on paths Q1 and Q2, is 0.7284 (= 1 − 0.0741 − 0.1975).

15.4.3 COMPLEXITY ISSUES

Facts:

1. The AoN representation of a project is essentially unique.

2. The AoA representation is not unique because of the necessity to introduce dummy
activities (e.g., to maintain the integrity of the precedence relations).

3. Construction of the AoA representation can be carried out with different objectives
in mind: to minimize the number of nodes, to minimize the number of dummy activities,
or to minimize the complexity index of the resulting AoA network [MiKaSt93].

4. Analytical solutions to optimization problems for project networks often proceed by
conditioning upon certain activities, and then removing the conditioning through either
enumeration or multiple integration. Minimizing the computing effort then involves
minimizing the number of activities on which such conditioning takes place.

5. If the network is series-parallel then no conditioning is required and its analysis is
straightforward, though it may be computationally demanding.

6. If the network is not series-parallel, then the minimum number of activities for
conditioning can be secured by the optimal node reduction procedure of [BeKaSt92],
which has polynomial complexity.

7. Patterson [Pa83] collected a set of 110 standard test problems, useful for comparing
alternative solution procedures. These problems have been supplanted by a more recent
set of test problems [KaSpDr92].

8. Several measures of the complexity of a project network were proposed in the 1960s,
with questionable validity. The significance of the complexity index [BeKaSt92] in
accounting for the difficulty in analysis is discussed in [DeHe96].

15.5 GAME THEORY

Games, mathematical models of conflict or bargaining, can be classified in three ways:
by mood of play (noncooperative or cooperative), by field of application (e.g., biology or
economics), and by mathematical structure (e.g., discrete, continuous, or differential).
Correspondingly, game theory is a vast and diverse subject with different traditions in
each of many specialties.

This section discusses discrete games, in which finitely many strategies are avail-
able to finitely many players. Combinatorial and other games form largely separate
disciplines to which appropriate references appear in §15.5.4.
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15.5.1 NONCOOPERATIVE GAMES

This section discusses noncooperative games involving a finite number of players. Col-
lusion among the players is not allowed in these types of games. Such games can model
a wide variety of situations, as indicated in §15.5.4.

Definitions:

An n-player game Γ in extensive form consists of:

• a set {1, . . . , n}∪ {0} of n decisionmakers (or players) augmented by a fictitious
player, called 0 (or chance), whose actions are random

• a tree, in which each nonterminal vertex represents a decision point for some
player, whose possible actions correspond to arcs emanating from the vertex

• a payoff function that assigns an n-vector to each terminal vertex
• a partition of the nonterminal vertices into n+ 1 vertex sets, one for each player

and for chance
• a subpartition of each player’s vertex set into subsets (information sets), such

that no vertex follows another in the same subset and all vertices in a subset
are followed by the same number of arcs

• a probability distribution on arcs emanating from any chance vertex.

A subgame of Γ is a game whose tree is a subtree of the tree for Γ. A subgame is
proper if the information set that contains its root contains no other vertices.

A game is finite if its tree is finite.

A game has perfect information if all information sets contain a single vertex; otherwise,
it has imperfect information.

A game has complete information if all players know the entire extensive form including
all terminal payoffs; otherwise it has incomplete information.

A pure strategy is a function that maps each of a player’s information sets to an
emanating arc.

An n-person game in normal (or strategic) form consists of a set N = {1, 2, . . . , n}
of players, a set Sk of possible pure strategies for each k ∈ N , and a payoff function
f = (f1, f2, . . . , fn) that assigns fk(w) to Player k for every pure strategy combination
w = (w1, w2, . . . , wn), where wk ∈ Sk. Payoffs are computed by taking expected values
over distributions associated with chance vertices in the corresponding extensive form.

Let D ⊆ S1 × S2 × · · · × Sn be the set of all possible pure strategy combinations w.

Let w ||wk denote the joint pure strategy combination that is identical to w except for
the strategy of Player k:

w ||wk = (w1, . . . , wk−1, wk, wk+1, . . . , wn).

w∗ ∈ D is a Nash equilibrium pure strategy combination (or simply equilibrium)
if, for every k ∈ N , fk(w∗) ≥ fk(w∗ ||wk) holds for all wk ∈ Sk. (J. F. Nash, born 1928)
Let E denote the set of all such equilibria.

For k ∈ N define the function mk that minimizes fk(w) over components of w that k
does not control:

mk(wk) = min
{w |wk=wk}

fk(w).
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If w̃k maximizes mk(wk), then w̃k is a max-min strategy for k and f̃k = mk(w̃k) is
the corresponding max-min payoff.

Let D∗ = {w ∈ D | fk(w) ≥ f̃k for all k ∈ N }.
The strategy combination w is individually rational for all players if w ∈ D∗.

The combination w ∈ D is group rational (or Pareto-optimal) if no w ∈ D exists
such that fk(w) ≥ fk(w) for all k ∈ N and fi(w) > fi(w) for some i ∈ N .

Let P denote the set of all Pareto-optimal w. The set P ∗ = P ∩D∗ is the bargaining
set and each w ∈ P ∗ is a cooperative strategy combination.

An equilibrium is subgame perfect if its restriction to any proper subgame is also an
equilibrium. Let ES denote the set of subgame perfect equilibria.

Facts:

1. Information sets are constructed so that in making a decision a player knows the
identity of the information set, but not the particular vertex of the set at which the
decision is being made.

2. At an equilibrium w∗ ∈ D, no k ∈ N has a unilateral incentive to depart from (w∗)k

if each j ∈ N , j 
= k, holds fast to (w∗)j .

3. w ||wk = w.

4. Different equilibria can yield identical outcomes.

5. The bargaining set can also be defined with “threat” strategies in lieu of max-min
(or “security”) strategies as criteria of individual rationality. Context determines which
definition is apt.

6. If E is a singleton, or if all elements of E yield the same outcome (see Example 7),
then the game is usually regarded as solved.

7. In general, however, E may either be empty or yield a multiplicity of outcomes (see
Example 8).

8. A sufficient condition for E 
= ∅ in a finite game is that information be perfect
(although E need not be computable by all players unless information is also complete).
The above condition is not necessary; see Examples 7 and 8.

9. If E yields a multiplicity of outcomes, then an equilibrium selection criterion is nec-
essary. One criterion is to reduce E to E∩P ∗, thus preferring cooperative equilibria (of
a noncooperative game) to noncooperative equilibria. Another criterion is to reduce E
to E ∩ ES .

10. Rationales for the above criteria are discussed in [Me93]. Other equilibrium selec-
tion criteria are discussed in [Fr90] and [My91].

11. The equilibrium selection problem is one of the important unsolved problems of
game theory; see [BiKiTa93].

Examples:

1. A university (Player 3) must offer a faculty position to either or both of two indi-
viduals, a distinguished researcher (Player 1) and a younger colleague in the same area
(Player 2), each of whom can say either YES or NO to an offer but cannot communicate
with the other. The payoff to Player i = 1, 2 (in well-being) is σi (> 0) for an offer,
bi (> σi) for an appointment, and Bi (> bi) if both are appointed. To the university,
hiring Player 1 alone is worth 4 (in prestige); but hiring both merits 3, hiring neither
is worth 2, and hiring Player 2 alone merits zero, because appointing Player 2 prevents

c© 2000 by CRC Press LLC



the appointment of another distinguished researcher. The university hides from each
candidate whether it has made an offer to the other. The extensive form of this game
is shown in the following figure. Each player has a single information set (denoted by
a rectangle). There are no chance vertices and no proper subgames. The payoffs to
Players 1, 2, and 3 are indicated by the 3-vector at each terminal vertex of the tree.

2. Suppose in Example 1 that the university now reveals to whom it has made an offer.
Also, the university need not offer the position to either candidate this year, in which
case a single individual is appointed next year and chance decides with equal probability
which current candidate the appointee matches in caliber, giving the university a payoff
of 0.5×4+0.5×0 = 2. The extensive form of this game is shown in the following figure.
Player 1 has information sets I, J whereas Player 2 has information sets K, L. There
is a single chance vertex. Information sets I, J , K each contain the root of a proper
subgame.
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3. The figures of Examples 1 and 2 are finite games of imperfect information since in
both cases Player 2 has an information set with more than one vertex. Each game has
incomplete information if players know only their own terminal payoffs.
4. In the figure of Example 2, Player 2 can say YES or NO at each of K or L. Hence
Player 2 has four possible strategies: YKNL (yes if K, no if L), NKYL, an unconditional
YES, and an unconditional NO. Likewise, Player 1 has four strategies: YINJ, NIYJ,
YES, and NO.
5. The following table depicts the strategic form of the figure of Example 1 as a 3-
dimensional array. The strategy sets are S1 = {YES, NO}, S2 = {YES, NO}, and
S3 = {BOTH, 1 ONLY, 2 ONLY}. The payoff function is defined by f1(YES, NO, 1
ONLY) = b1, f2(NO, NO, 2 ONLY) = σ2, f3(YES, YES, BOTH) = 3, etc. Player 1’s
strategies correspond to rows, Player 2’s strategies correspond to columns, and Player 3’s
strategies correspond to arrays.

YES NO YES NO YES NO

YES


B1

B2

3





 b1σ2

4


 YES


 b10

4





 b10

4


 YES


 0
b2
0





 0
σ2

2




NO


 σ1

b2
0





σ1

σ2

2


 NO


σ1

0
2





σ1

0
2


 NO


 0
b2
0





 0
σ2

2




BOTH 1 ONLY 2 ONLY

6. The following table depicts the strategic form of the figure of Example 2 as a 3-
dimensional array. Player 1’s strategies correspond to rows, Player 2’s strategies corre-
spond to columns, and Player 3’s strategies correspond to arrays.

The strategy sets now are S1 = {YES, YINJ, NIYJ, NO}, S2 = {YES, YKNL,
NKYL, NO}, and S3 = {BOTH, 1 ONLY, 2 ONLY, NEITHER}. The sets S1, S2 contain
more strategies than in Example 5 because Players 1 and 2 have better information:
the game is less imperfect. The payoff to Player 3 from NEITHER is an expectation
over arcs emanating from the game’s single chance vertex.
7. {YES, YES, 1 ONLY} and {YES, NO, 1 ONLY} are the equilibria of Example 1;
both yield the same outcome, namely, Player 1 is hired without an offer to Player 2.
8. Example 2 has 14 equilibria: namely, (YINJ, YES, BOTH), (YINJ, NKYL, BOTH),
and all strategy combinations of the form (YES, · , 1 ONLY), (NIYJ, · , 1 ONLY), or
(NO, · , NEITHER), where · denotes any of the four strategies of Player 2. Eight of
these 14 equilibria correspond to the equilibrium outcome of Example 1, whereas the
other six correspond to two different outcomes.
9. For Example 1, m3(BOTH) = 0 = m3(2 ONLY) and m3(1 ONLY) = 2, implying
w̃3 = 1 ONLY and f̃3 = 2. For k ≤ 2, mk(YES) = 0 = mk(NO), implying f̃k = 0. So
D∗ = D − {(YES, YES, 2 ONLY), (NO, YES, 2 ONLY), (NO, YES, BOTH)}.
10. For Example 1, P = {(YES, YES, BOTH), (YES, NO, BOTH)} = P ∗.
11. In Example 2, the equilibria (YINJ, YES, BOTH) and (YINJ, NKYL, BOTH) are
not subgame perfect because in the subgame beginning at J they would require Player 1
to say NO, which would be irrational. (Player 1’s threat to say NO, unless Player 3
makes an offer to BOTH, is not credible because Player 3 has a first mover advantage.)
12. While reducing E to E ∩ P ∗ eliminates equilibria of the form (NO, · , NEITHER)
in Example 2, it is also possible that E and P are disjoint (as in Example 1).
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YES YKNL NKYL NO YES YKNL NKYL NO

YES


B1

B2

3





 b1σ2

4





B1

B2

3





 b1σ2

4


 YES


 b10

4





 b10

4





 b10

4





 b10

4




YINJ


B1

B2

3





 b1σ2

4





B1

B2

3





 b1σ2

4


 YINJ


σ1

0
2





σ1

0
2





σ1

0
2





σ1

0
2




NIYJ


 σ1

b2
0





σ1

σ2

2





 σ1

b2
0





σ1

σ2

2


 NIYJ


 b10

4





 b10

4





 b10

4





 b10

4




NO


 σ1

b2
0





σ1

σ2

2





 σ1

b2
0





σ1

σ2

2


 NO


σ1

0
2





σ1

0
2





σ1

0
2





σ1

0
2




BOTH 1 ONLY

YES YKNL NKYL NO YES YKNL NKYL NO

YES


 0
b2
0





 0
b2
0





 0
σ2

2





 0
σ2

2


 YES


 0

0
2





 0

0
2





 0

0
2





 0

0
2




YINJ


 0
b2
0





 0
b2
0





 0
σ2

2





 0
σ2

2


 YINJ


 0

0
2





 0

0
2





 0

0
2





 0

0
2




NIYJ


 0
b2
0





 0
b2
0





 0
σ2

2





 0
σ2

2


 NIYJ


 0

0
2





 0

0
2





 0

0
2





 0

0
2




NO


 0
b2
0





 0
b2
0





 0
σ2

2





 0
σ2

2


 NO


 0

0
2





 0

0
2





 0

0
2





 0

0
2




2 ONLY NEITHER

13. While reducing E to E∩ES eliminates equilibria of the form (YINJ, YES, BOTH)
and (YINJ, NKYL, BOTH) in Example 2, it is also possible that E = ES (as in
Example 1, where there are no proper subgames).

15.5.2 MATRIX AND BIMATRIX GAMES

This subsection discusses two-player noncooperative games. Such games can be repre-
sented in normal form by a pair of matrices.

Definitions:

Suppose S1 = {1, . . . , r} and S2 = {1, . . . , s}.
The r×s payoff matrices A = (aij) and B = (bij), with aij = f1(i, j) and bij = f2(i, j),
define a bimatrix game.
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The game is zero-sum if aij + bij = 0 for all i ∈ S1, j ∈ S2. The game is symmetric
if r = s and B = AT . In either case, the game is completely determined by A and is
called a matrix game.

For Player 1, i ∈ S1 is dominated by i′ ∈ S1 if ai′j ≥ aij for all j ∈ S2, with strict
inequality for at least one j. For Player 2, j ∈ S2 is dominated by j′ ∈ S2 if bij′ ≥ bij
for all i ∈ S1 with strict inequality for at least one i.

Let 1k denote the k-dimensional vector in which every entry is 1, and let Xk denote the
(k−1)-dimensional unit simplex: Xk = { (x1, . . . , xk) | x1k = 1, x ≥ 0 }.
A mixed strategy for Player 1 is a vector p = (p1, . . . , pr) ∈ Xr, where pi is the
probability that Player 1 selects i ∈ S1. Similarly, a mixed strategy for Player 2 is
q = (q1, . . . , qs) ∈ Xs, where qj is the probability that Player 2 selects j ∈ S2.

In a mixed strategy combination (p, q) ∈ Xr ×Xs, the expected payoffs to Players
1 and 2, respectively, are given by φ1(p, q) = pAqT and φ2(p, q) = pBqT .

The pair (p∗, q∗) ∈ Xr ×Xs is a Nash equilibrium mixed strategy combination,
or simply an equilibrium in mixed strategies, if φ1(p∗, q∗) ≥ φ1(p, q∗) for all p ∈ Xr

and φ2(p∗, q∗) ≥ φ2(p∗, q) for all q ∈ Xs. If the game is zero-sum, then p∗ is called an
optimal strategy for Player 1 and q∗ is called an optimal strategy for Player 2.

Facts:

1. Every bimatrix game has at least one equilibrium in mixed strategies.

2. All equilibria in mixed strategies of a zero-sum game yield the same expected payoffs,
v to Player 1 and −v to Player 2; v is known as the value of the game.

3. The value v of a zero-sum game and a pair (p∗, q∗) of optimal strategies can always
be computed by solving a dual pair of linear programming (LP) problems (§15.1). The
primal LP problem finds p to maximize v subject to AT p ≥ v1s, p ∈ Xr, whereas the
dual LP problem finds q to minimize v subject to Aq ≤ v1r, q ∈ Xs.

4. Player 1 can achieve the value v of a zero-sum game with a mixed strategy that
attaches zero probability to any dominated pure strategy. Likewise, Player 2 can
achieve −v by playing dominated pure strategies with zero probability.

5. Graphical methods can be used to compute efficiently all equilibria of zero-sum
games where r = 2 or s = 2, or of matrix games (of either type) where r = s = 3; see
[Dr81], [Ow95], and [Me92]. There is no general method for computing all equilibria.

6. The definition of mixed strategy and the existence of equilibria are readily extended
to n-player games. This result was one of the fundamental contributions to game theory
for which John Nash was awarded the 1994 Nobel Prize in Economic Science.

Examples:

1. Two advertising agencies are involved in a campaign to promote competing bever-
ages. The payoffs of various promotional strategies are shown in this table:

j 1 2

i old new
1 old 0 −2
2 new −2 −1
3 diet 3 −3

The promotional strategies for the first agency are to: stress the old formula, advertise
a new formula, or advertise a diet drink. The second agency has the possible strategies:
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stress the old formula, or advertise a new formula. The payoffs in this case indicate the
net change in millions of sales gained (by Advertiser 1). For example, if the first agency
promotes a diet drink while the other agency promotes the old formula, three million
more drinks will be sold. On the other hand, if the other agency happens to promote
the new formula, then the first agency will end up losing three million unit sales to the
second agency.

2. An investor has just taken possession of jewels worth $45,000 and must store them
for the night in one of two locations (A, B). The safe in location A is relatively secure,
with a probability 1

15 of being opened by a thief. The safe at location B is not as secure
as the safe at location A, and has a probability 1

5 of being opened. A notorious thief
is aware of the jewels, but doesn’t know where they will be stored. Nor is it possible
for the thief to visit both locations in one evening. This is a (symmetric) zero-sum
game between the investor (Player 1), who selects where to keep the jewels and the
thief (Player 2), who decides which safe to try. If the investor puts the jewels in the
most secure location (A) and the jewel thief goes to this location, the expected loss in
this case is 1

15 (−45,000) + 14
15 (0) = −3,000. The other entries of the payoff matrix in

the following table are computed similarly, and are expressed in thousands of dollars
(to the investor).

j 1 2

i A B
1 A −3 0
2 B 0 −9

No pure strategy combination is a Nash equilibrium, since it is always tempting for one
player to defect from the current strategy. However, there is a Nash equilibrium mixed
strategy combination: p∗ = ( 3

4 ,
1
4 ) = q∗, with value v = −$2,250 to the investor. The

mixed strategy p∗ is found by solving the following linear program, in which Player 1
wants to find the largest value of v so that he is guaranteed of receiving at least v
(regardless of what Player 2 does). The associated optimal dual LP solution gives q∗.

maximize: v

subject to: − 3p1 + 0p2 ≥ v
0p1 − 9p2 ≥ v
p1 + p2 = 1
p1, p2 ≥ 0

3. The zero-sum game of chump is played between two camels, a dromedary (Player 1)
and a bactrian (Player 2). Player k must simultaneously flash Fk humps and guess
that its opponent will flash Gk. Possible strategies (Fk, Gk) satisfy 0 ≤ F1, G2 ≤ 1 and
0 ≤ F2, G1 ≤ 2. If both players are right or wrong, then the game is a draw; if one is
wrong and the other is right, then the first pays F1 + F2 piasters to the second. The
following table shows the strategy sets and corresponding payoffs aij to Player 1.

j 1 2 3 4 5

i (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
(0, 0) 0 0 −1 0 −2 0

1 (0, 1) 0 0 0 1 −2 0
2 (0, 2) 0 0 −1 0 0 2
3 (1, 0) 1 0 0 −1 0 −3
4 (1, 1) 0 −1 2 0 0 −3
5 (1, 2) 0 −1 0 −2 3 0
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The first row and column can be deleted from the full payoff matrix because (0, 0) is
dominated by (0, 1) for both players (Fact 4). Thus it suffices to analyze the reduced
payoff matrix in which r = s = 5. The value of the game is − 6

35 for Player 1 ( 6
35

for Player 2). Optimal strategies p∗ = ( 3
35 ,

18
35 ,

8
35 ,

6
35 , 0) and q∗ = ( 4

7 ,
2
7 , 0,

3
35 ,

2
35 ) are

found by linear programming (Fact 3). Note that strategies i = 5 and j = 3 have zero
probability at this equilibrium, despite being undominated.

4. The symmetric game of four ways [Me92] is played by two left-turning motorists
who arrive simultaneously from opposite directions at a 4-way junction. Each has three
pure strategies: the first is to go, the second to wait, and the third a conditional strategy
of going only if the other appears to be waiting. It takes 2 seconds for one motorist
to cross the junction while the other waits. If initially both either go or wait, then
both motorists incur an extra “posturing” delay of either 3 or 2 seconds, respectively.
Also, the one who ultimately waits is equally likely to be either player. For example,
a11 = 0.5 × (−3 − 2) + 0.5 × (−3) = −4 and a22 = 0.5 × (−2 − 2) + 0.5 × (−2) = −3.
This game has the payoff matrix 

−4 0 0
−2 −3 −2
−2 0 −4


.

There are infinitely many equilibria in mixed strategies; these are described in the
following table, where 0 ≤ a ≤ 1 and 1

2 ≤ b ≤ 1.

p∗ q∗

(1, 0, 0) (0, a, 1 − a)
(0, a, 1 − a) (1, 0, 0)

(0, 1, 0) (b, 0, 1 − b)
(b, 0, 1 − b) (0, 1, 0)

1
11 (6, 2, 3) 1

11 (6, 2, 3)

15.5.3 CHARACTERISTIC-FUNCTION GAMES

When there exists a binding agreement among all players to cooperate, attention shifts
from strategies to the bargaining strengths of coalitions. These strengths are assumed
to be measured in terms of a freely transferable benefit (e.g., money or time) and players
are assumed to seek a fair distribution of the total benefit available. Also, without loss
of generality, the benefit of cooperation will be taken as the savings in costs.

Definitions:

A coalition is a subset S of N = {1, . . . , n}; equivalently, S ∈ 2N .

The cost associated with coalition S is denoted c(S).

Let R+ denote the set of nonnegative reals. The characteristic function ν: 2N → R+

assigns to each S its cooperative benefit, using ν(S) = max {0,
∑
i∈S
c({i}) − c(S)}.

A characteristic-function game, or c-game, is the pair Γ = (N, ν).

The game Γ is inessential if ν(N) = 0. If ν(N) > 0 then the game is essential, with
normalized characteristic function ν: 2N → [0, 1] defined by ν(S) = ν(S)

ν(N) .
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The game Γ is convex if ν(S ∪ T ) ≥ ν(S) + ν(T ) − ν(S ∩ T ) for all S, T ∈ 2N .

Let X = Xn be the (n−1)-dimensional unit simplex (§15.5.2). Any x ∈ X is called an
imputation; it allocates xi of the total normalized benefit ν(N) = 1 to Player i. An
imputation is unreasonable if it allocates more to some i ∈ N than the maximum that
i could contribute to any coalition T − {i} by joining it.

The reasonable set is XRS = {x ∈ X | xi ≤ max
T

[ν(T ) − ν(T − {i})] for all i ∈ N }.

For any x ∈ X and S ∈ 2N , the excess of coalition S at x is e(S, x) = ν(S) −
∑
i∈S
xi.

The core of Γ is C = {x ∈ X | e(S, x) ≤ 0 for all S ∈ 2N }.
The marginal worth of Player i to the coalition T − {i} is ν(T ) − ν(T − {i}).
The Shapley value of a c-game is the imputation xS = (xS1 , x

S
2 , . . . , x

S
n) defined by

xSi = 1
n!

∑
T∈Πi

(|T | − 1)! (n− |T |)! (ν(T ) − ν(T − {i})), where Πi = {T ∈ 2N | T ⊇ {i} }.

Facts:

1. An imputation is both individually rational and group rational (see §15.5.1).

2. Convexity is a sufficient (but not necessary) condition for the core to exist.

3. If C 
= ∅ then C ⊆ XRS .

4. If C contains a single imputation, then the c-game is usually regarded as solved.

5. In general, C may either be empty (see Example 1) or contain infinitely many
imputations (see Example 2).

6. If C contains infinitely many imputations, then there are several ways to single one
out as the solution to the c-game. One approach is to define a “center” of C, which
leads to the important concept of the nucleolus [Me92].

7. Every c-game solution concept assumes that players have agreed to enter coalitionN .
If its order of formation were known, players could be allocated their marginal worths;
in general, however, this order of formation (and hence marginal worth) is a random
variable.

8. If all orders of formation of N are equally likely, then the probability that Player i
enters N by joining the coalition T − {i} is (|T |−1)!(n−|T |)!

n! .

9. The Shapley value distinguishes a single imputation as the solution of a c-game
by allocating to players the expected values of their marginal worths, based on the
assumption that all orders of formation of N are equally likely.

10. xS ∈ XRS .

11. xS ∈ C if Γ is convex.

Examples:

1. In the c-game log-hauling [Me92], three lone drivers of pickup trucks discover a pile
of 150 logs too heavy for any one to lift. Players 1, 2, and 3 can haul up to 45, 60,
and 75 logs, respectively. Thus ν({1, 2}) = 105, ν({1, 3}) = 120, ν({2, 3}) = 135, and
ν({1, 2, 3}) = 150 so that ν({1, 2}) = 7

10 , ν({1, 3}) = 4
5 , and ν({2, 3}) = 9

10 . This
c-game is not convex; for example, if S = {1, 2} and T = {2, 3}, then 1 = ν(S ∪ T ) <
ν(S) + ν(T ) − ν(S ∩ T ) = 8

5 . Also, C = ∅.
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2. The c-game car pool [Me92] is played by three co-workers whose office is d miles
from their residential neighborhood, shown in the following figure.

Driving to work costs $k per mile, and the shortest route is always used. The benefit
of cooperation is car pool savings, leading to the characteristic function in this table.

S c(S) ν(S) ν(S) e(S, x) for d = 1

∅ 0 0 0 0
{1} (4 + d)k 0 0 −x1

{2} (3 + d)k 0 0 −x2

{3} (3 + d)k 0 0 x1 + x2 − 1
{1, 2} (4 + d)k (3 + d)k 3+d

3+2d
4
5 − x1 − x2

{1, 3} (6 + d)k (1 + d)k 1+d
3+2d x2 − 3

5

{2, 3} (6 + d)k dk d
3+2d x1 − 4

5

{1, 2, 3} (7 + d)k (3 + 2d)k 1 0

Because x3 = 1 − x1 − x2 (≥ 0), a set of imputations is determined by its projection
onto x3 = 0. In these terms, for d = 1, X is the largest triangle in the following figure,
XRS is the shaded hexagon, and C is the shaded quadrilateral. Here C ⊂ XRS ⊂ X
because the c-game is convex (for all d ≥ 0).
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3. For the c-game in Example 2, it is easy enough to locate a center for C; see the
figure for Example 2, where the nucleolus is marked by a dot.

4. In Example 1, the six possible orders of formation of N are 123, 132, 213, 231, 312,
321. Thus, the Shapley value is the imputation xS = ( 17

60 ,
1
3 ,

23
60 ); see the following table.

i T ∈ Πi ν(T ) − ν(T − {i}) probability i enters N
xSiby joining T − {i}

{1} 0 1
3

1
{1, 2} 7

10
1
6 17

60{1, 3} 4
5

1
6

{1, 2, 3} 1
10

1
3

{2} 0 1
3

2
{1, 2} 7

10
1
6 1

3{2, 3} 9
10

1
6

{1, 2, 3} 1
5

1
3

{3} 0 1
3

3
{1, 3} 4

5
1
6 23

60{2, 3} 9
10

1
6

{1, 2, 3} 3
10

1
3

5. By a calculation very similar to that laid out in the table of Example 4, the Shapley
value for Example 2 is the imputation xS = ( 7

15 ,
11
30 ,

1
6 ). Because the c-game is convex,

xS ∈ C. This is illustrated in the previous figure, where xS is marked by a cross.

15.5.4 APPLICATIONS

Discrete (noncooperative or characteristic-function) games have numerous applications
and merge with other categories of games not examined here. The references in the
following table provide sources for the definitions, concepts, and applications of such
games. This table also lists some representative areas of application of game theory.

15.6 SPERNER’S LEMMA AND FIXED POINTS

A fixed point of a function from a set X to itself is a point of X that is mapped into
itself. Brouwer (1912) proved that every continuous mapping f on the unit ball has a
fixed point. Sperner (1928) gave an elegant proof of Brouwer’s fixed-point theorem using
a combinatorial lemma known today as Sperner’s lemma. This lemma has a number of
applications to economics, nonlinear programming, and game theory.
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category and references selected applications remarks

characteristic function airport landing fees, utility is usually assumed to be
games [Me92, 93], [Ow95], voting, water resour- transferable: in essence, play-
[Wa88] ces ers value benefits identically

classical game theory microeconomics, par- economic (as opposed to evolu-
[LuRa57], [voMo53] lor games tionary) game theory

combinatorial games chess, go, nim, other two players; complete, perfect
[Gu91] parlor games information; no chance moves;

zero-sum

continuous games [Dr81], duels, military com- a discrete game with mixed
[Fr90] bat, oligopoly theory strategies is a special case of

a continuous game

cooperative games in stra- wage bargaining, agreements among players are
tegic form (as opposed to motoring behavior binding
c-games) [Fr90], [Me92]

differential games fishery and forest extension of optimal control
[BaHa94], [Me93] management theory

economic game theory microeconomics equilibria are the result of ra-
[Fr90], [My91] tional thought processes

evolutionary game theory animal behavior equilibria are the result of nat-
[Cr92], [Ma82], [Me92] ural selection or equivalent

populational processes

iterated games [Fr90], rationality of cooper- often infinitely many iterations
[Me92] ation

resource games [Me93] fisheries, forestry, wa- discrete, continuous, and differ-
ter resources erential games all used

symmetric matrix games evolutionary game dynamical systems theory pro-
[Cr92], [Ma82], [Me92] theory vides a rationale for strategic

equilibrium

zero-sum matrix games military science
[Dr81]

15.6.1 SPERNER’S LEMMA

Sperner’s lemma is a combinatorial result applicable to certain triangulations of a p-
dimensional convex set, in which the vertices of the triangulation are given labels from
{1, 2, . . . , p+ 1}.

Definitions:

The p+1 points x1, x2, . . . , xp+1 ∈ Rn are said to be in general position if the vectors
x2−x1, x3−x1, . . . , xp+1−x1 are linearly independent (§6.1.3).

The set C ⊆ Rn is convex if for all x, y ∈ C and 0 ≤ λ ≤ 1, λx+ (1 − λ)y ∈ C.
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The convex hull of a finite set of points v1, . . . , vp+1 ∈ Rn is the set 〈v1, . . . , vp+1〉 ={ p+1∑
i=1

λivi
∣∣ p+1∑
i=1

λi = 1, λi ≥ 0
}
.

A p-simplex σ is the convex hull of p+1 points x1, . . . , xp+1 ∈ Rn in general position.

The vertices of the p-simplex σ = 〈x1, . . . , xp+1〉 are the points x1, . . . , xp+1. The
face τ = 〈xj1 , . . . , xjk〉 of σ is the simplex spanned by the subset {xj1 , . . . , xjk} of
{x1, . . . , xp+1}. Write τ ≺ σ when τ is a face of σ.

A simplicial complex K is a collection of simplices satisfying:
• if σ ∈ K and τ ≺ σ then τ ∈ K;
• if σ, τ ∈ K intersect, their intersection is a face of each.

The p-skeleton of a simplicial complex K is the set of all simplices of dimension p or
less. The 0-skeleton is the vertex set, denoted V (K).

A simplicial subdivision F of a simplex σ is a collection of simplices { τj | 1 ≤ j ≤ m }
satisfying:

• σ =
⋃m
j=1 τj ;

• the intersection of any two τj is either empty or a face of each.

A simplicial subdivision F ′ of a simplicial complex K is a refinement of the simplicial
subdivision F of K if every simplex of F is a union of simplices of F ′.

Given a simplicial subdivision F of the p-simplex σ = 〈x1, . . . , xp+1〉, a proper labeling
of F is a mapping 5:V (F) → {1, 2, . . . , p+ 1} satisfying:

• 5(xm) = m for m = 1, . . . , p+ 1;
• if vertex v lies on a face 〈xk1 , . . . , xkq 〉 of σ, then 5(v) ∈ {k1, . . . , kq}.

Here {1, 2, . . . , p+ 1} is the label set, and if 5(v) = k then v receives the label k.

A distinguished simplex is a p-simplex that receives all p+ 1 labels 1 through p+ 1.

Facts:

1. The convex hull 〈v1, . . . , vp+1〉 is the intersection of all convex sets containing the
points v1, . . . , vp+1.

2. The dimension of any p-simplex is p.

3. A p-simplex contains 2p+1 − 1 simplices of dimension p or less.

4. Sperner’s lemma (1928): Every properly labeled subdivision of a simplex σ has an
odd number of distinguished simplices. (E. Sperner, 1906–1980)

5. Algorithm 1 gives a method for finding a distinguished triangle in a properly labeled
subdivision of a triangle T . Each iteration of the outer loop starts at a distinguished
1-simplex and traces out a path, terminating either at a distinguished 2-simplex or at
an outer edge of T .

6. Since there are an odd number of distinguished 1-simplices along the bottom of T
(Fact 4) and since each “failed” outer loop iteration produces a path joining two such
distinguished 1-simplices, Algorithm 1 must eventually produce a path terminating at
a distinguished 2-simplex.
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Algorithm 1: Distinguished simplex of a 2-simplex.

input: properly labeled subdivision of triangle T
output: a distinguished triangle of T

{Outer loop}
find a distinguished 1-simplex τ along the bottom of T
{Inner loop}
repeat

if the unique triangle containing τ is distinguished then stop
else proceed to a neighboring triangle whose common edge is distinguished

until either a distinguished triangle is found or the search leads to the bottom
edge of T

continue outer loop with a new distinguished 1-simplex τ

Examples:
1. A 0-simplex is a point, a 1-simplex is a line segment, and a 2-simplex is a triangle
(interior included). A 3-simplex includes the vertices, edges, faces, and interior of a
tetrahedron. See the following figure.

2. The 0-skeleton of a simplex σ is its vertex set; the 1-skeleton of σ is the edge set
of σ including their endpoints; if σ is a 3-simplex, the 2-skeleton is the union of the
faces of σ.
3. Part (a) of the following figure shows a simplicial subdivision of a 2-simplex. The
subdivision in part (b) of the figure is not simplicial because τ1 ∩ τ3 is not a face of the
simplex τ3.

4. The following figure shows a proper labeling of a simplicial subdivision of a 1-simplex.
A distinguished 1-simplex is a subinterval that receives both the labels 1 and 2. In this
example, there are five such 1-simplices, an odd number (as guaranteed by Fact 4).
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5. The following figure shows a proper labeling of a simplicial subdivision of a 2-simplex.
There is one distinguished 2-simplex, receiving all three labels, which is shown shaded
in the figure. If the vertex in the interior of the triangle is instead labeled 3, then there
will be three distinguished 2-simplices, still an odd number.

6. Several possible paths from executing Algorithm 1 are displayed in the following
figure. The rightmost path terminates in a bottom edge, while the leftmost path leads
to a distinguished triangle. Note that there are three distinguished triangles in this
example, an odd number as required by Sperner’s lemma.

15.6.2 FIXED-POINT THEOREMS

Fixed-point theorems have applicability to a number of problems in economics, as well
as to game theory and optimization.

Definitions:

The point x ∈ B is a fixed point of the mapping f :B → B if f(x) = x.

The mapping f defined on a subset X of a normed space B is a contraction if there
is some 0 ≤ β < 1 such that ‖f(x) − f(y)‖ ≤ β‖x− y‖ for all x, y ∈ X.

The function F is a set mapping on X if F (x) is a nonempty subset of X for all
x ∈ X.

The set mapping F is convex if F (x) is a convex subset of X for all x ∈ X.

Facts:

1. Fixed-point theorems can be used to demonstrate the existence of economic equi-
libria, solutions to a system of nonlinear equations, and Nash equilibria in two-person
nonzero-sum games.
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Algorithm 2: Fixed point of a p-simplex.

input: function f defined on a p-simplex σ
output: fixed point x∗ ∈ σ
construct a sequence of subdivisions {Fn | n ≥ 1 } such that Fn+1 refines Fn
label the vertex set of Fn as in Fact 5
for each subdivision Fn find a distinguished simplex τn⋂
τn contains the desired fixed point x∗

2. Brouwer fixed-point theorem I: Every continuous mapping f :σ → σ where σ is a
p-simplex has a fixed point. (L. E. J Brouwer, 1881–1966)

3. For a simplex σ = 〈x1, x2, . . . , xp+1〉 and a continuous mapping f :σ → σ, let
f(

∑p+1
k=1 λkxk) =

∑p+1
k=1 µkxk. Then

∑p+1
k=1 µk =

∑p+1
k=1 λk = 1.

4. Relative to the mapping f :σ → σ, define Tj = {
∑p+1

k=1 λkxk | µj ≤ λj }. Then a
fixed point of f is any point belonging to

⋂ p+1
j=1 Tj .

5. Suppose an interior vertex v of a subdivision F of σ is labeled with j provided that
v ∈ Tj , and suppose a vertex v belonging to a face 〈xk1 , xk2 , . . . , xkt〉 is labeled with any
one of the labels k1, k2 . . . , kt. Then a fixed point of f occurs in a distinguished simplex
of σ.

6. Algorithm 2, based on Sperner’s lemma (§15.6.1), produces a sequence of points
converging to a fixed point of a p-simplex σ.

7. Brouwer fixed-point theorem II: Every continuous mapping from a convex compact
set B ⊆ Rn into itself has a fixed point.

8. Contraction mapping theorem: Every contraction f :X → X has a fixed point.
The fixed point is the limit of the sequence { f(xn) | n ≥ 0 }, where x0 is an arbitrary
element of X and xn+1 = f(xn).

9. Kakutani fixed-point theorem: Let X ⊆ Rn be a convex and compact set and
suppose that F is a convex mapping on X. If the graph { (x, y) | y ∈ F (x) } ⊆ R2n is
closed, then there exists a point x∗ ∈ X such that x∗ ∈ F (x∗).

10. Schauder fixed-point theorem: Every continuous mapping f on a convex compact
subset X in a normed space B has a fixed point.

11. Reference [Bo85] gives applications of fixed-point theorems to determining market
equilibria, maximal elements of binary relations, solutions to complementarity problems,
as well as solutions to various types of games (cooperative and noncooperative).

Examples:

1. The real-valued function f(x) = 1 − x is a mapping from the 1-simplex σ = [0, 1]
to itself. It is not a contraction since |f(x) − f(y)| = |(1 − x) − (1 − y)| = 1 · |x − y|
holds for all x, y ∈ σ so β ≥ 1. The function f has a fixed point at x = 1

2 . However,
the iterative procedure in Fact 8 will not generally locate this fixed point. For example,
using x0 = 1

4 produces the sequence x1 = f(x0) = 3
4 , x2 = f(x1) = 1

4 , x3 = f(x2) = 3
4 ,

and so forth, with no limiting value.
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2. The following figure shows a real-valued function f :σ → σ defined over the 1-simplex
σ = [0, 1]. This function has three fixed points, identified by the intersection of the graph
of f with the dashed line y = x. The sets Tj of Fact 4 relative to x1 = 0, x2 = 1 are
also indicated in the figure, and it is verified that T1∩T2 contains the three fixed points
of f . A subdivision of σ into five subintervals is shown in the figure. Using Fact 5,
the associated vertices (at x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) receive the labels 1, 2, 1, 1, 2, 2
respectively, and so there are three distinguished simplices (each containing a fixed
point).

3. The real-valued function f(x) = 1
4+x2 is a mapping from R to itself. It can also be

shown to be a contraction mapping with β = 1
16 < 1. If the iterative procedure in Fact 8

is applied using x0 = 1, then x1 = 0.2, x2 = 0.24752, x3 = 0.24623, x4 = 0.24627, and
x5 = 0.24627, yielding the (approximate) fixed point x∗ = 0.24627.

4. Perron’s theorem: This theorem (§6.5.5), which assures that every positive matrix
has a positive eigenvalue-eigenvector pair, can be proved using the fixed-point theorem
in Fact 2. Let A = (aij) be an n × n matrix, with all aij > 0. The set σ = {x ∈ Rn |∑n

k=1 xk = 1, xk ≥ 0 } is an (n−1)-simplex, and the continuous function defined by
f(x) = Ax

‖Ax‖1
maps σ into itself. (Here ‖w‖1 is the l1 norm of vector w; see §6.4.5.) By

Fact 2, f has a fixed point x̄, so that Ax̄ = ‖Ax̄‖1x̄. Since at least one component of x̄
is positive and A is positive, the vector Ax̄ has positive components. It then follows
that the eigenvalue ‖Ax̄‖1 is positive and that the corresponding eigenvector x̄ has all
positive components.
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INTRODUCTION

Theoretical computer science is concerned with modeling computational problems and
solving them algorithmically. It strives to distinguish what can be computed from what
cannot. If a problem can be solved by an algorithm, it is important to know the amount
of space and time needed.

GLOSSARY
abelian square: a word having the pattern xxp, where xp is any permutation of the

word x.

acceptance probability (of an input word by a probabilistic TM): the sum of the
probabilities over all acceptance paths of computation.

Ackermann function: a very rapidly growing function that is recursive, but not
primitive recursive.

algorithm: a finite list of instructions that is supposed to accomplish a specified com-
putation or other task.

alphabet: a finite nonempty set whose elements are called symbols.

ambiguous context-free grammar: a grammar whose language has a string having
two different leftmost derivations.

analysis of an algorithm: an estimation of its cost of execution, especially of its
running time.

antecedent of a production α → β: the string α that precedes the arrow.

average-case running time: the expected running time of an algorithm, usually
expressed asymptotically in terms of the input size.

Backus-Naur (or Backus normal) form (BNF): a metalanguage for specifying
computer language syntax.

busy beaver function: the function BB(n) whose value is the maximum number
of 1s that an n-state Turing machine can print and still halt.

busy beaver machine, n-state: an n-state Turing machine on the alphabet Σ =
{#, 1} that accepts an input tape filled with blanks (#s) and halts after placing a
maximum number of 1s on the tape.

cellular automaton, (n-dimensional): an interconnection network in which there
is a processor at each integer lattice point of n-dimensional Euclidean space, and
each processor communicates with its immediate neighbors.

characteristic function (of a language): the function on strings in the alphabet for
that language that has value yes for elements in the language, and no otherwise.

characteristic function (of a set): the function whose value is 1 for elements of the
set, and 0 otherwise.

Chomsky hierarchy : four classes of grammars, with gradually increasing restrictions.

Chomsky normal form (for a production rule): the form A → BC where B and C
are nonterminals or the form A → a where a is a terminal.
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Church’s thesis (or the Church-Turing thesis): the premise that the intuitive
notion of what is computable or partially computable should be formally defined as
computable by a Turing machine.

code (for an alphabet V ): a nonempty language C ⊆ V +, such that whenever a word w
in V can be written as a catenation of words in C, the write-up is always unique.
That is, if w = x1 . . . xm = y1 . . . yn, where m,n ≥ 1, and xi, yj ∈ C, then m = n
and xi = yi for i = 1, . . . ,m.

code indicator (of a language): the sum of the code indicators of all words in the
language.

code indicator (of a word w ∈ V ∗): the number ci(w) = |V |−|w|.

collapse (of the polynomial hierarchy to the ith rank): the circumstance that PH = Σpi ,
for some i ≥ 0.

common PRAM (or CRCWcom): a CRCW PRAM model in which concurrent
writes to the same location are permitted if all processors are trying to write the
same data.

comparison sort: a sorting algorithm that uses only comparisons between record keys
to determine the sorted order.

complement (of a language L over an alphabet V ): the language L, where comple-
mentation is taken with respect to V ∗.

C-complete language (where C is a class of languages): a language A such that A is
C-hard and A ∈ C.

complexity (of an algorithm): an asymptotic measure of the number of operations or
the running time needed for a complete execution; sometimes, a measure of the total
amount of computational space needed.

complexity (of a function): usually, the minimum complexity of any algorithm repre-
senting the function; sometimes, the length or complicatedness of the list of instruc-
tions.

complexity (of a function), Kolmogorov-Chaitin type: a measure of the minimum
complicatedness of any algorithm representing the function, usually according to
number of instructions in the algorithm (and not related to its running time).

complexity class coNP: the class Πp1, which contains every language A such that
A ∈ Σp1.

complexity class NP: the minimal class that contains every language that is nonde-
terministically TM-decidable in polynomial time.

complexity class P: the class comprising every language that is deterministically
TM-decidable in polynomial time.

complexity class PSPACE: the minimal class that contains every language that is
TM-decidable in polynomial space.

concatenation (of two languages L1 and L2): the set {xy | x ∈ L1, y ∈ L2 }, de-
noted L1L2.

concatenation (of two strings): the result of appending the second string to the right
end of the first.

consequent (of a production α → β): the string β that follows the arrow.

context-free (or type 2) grammar: a grammar in which the antecedent α of each
production α → β is a nonterminal.
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context-sensitive (or type 1) grammar G = (N,T, S, P ): a grammar such that
every production α → β (except possibly S → λ) has the form α = uAv and
β = uxv, for u, v ∈ (N ∪ T )∗, A ∈ N,x ∈ (N ∪ T )+.

CRCW concurrent read concurrent write: a PRAM model in which concurrent
reads from and concurrent writes to the same location are both allowed.

CREW concurrent read exclusive write: a PRAM model in which concurrent
reads are allowed, but not concurrent writes to the same location.

cube (over an alphabet): a word having the pattern xxx.

derivation (of the string y from the string x): a sequence of substitutions, according
to the production rules, that transforms string y into string z. The notation x =⇒∗ y
means that such a derivation exists.

emptiness problem for grammars: deciding whether the language generated by a
grammar is empty.

empty string : the string of length zero, that is, the string with no symbols; often
written λ.

equivalence problem for grammars: deciding whether two grammars are equiva-
lent.

equivalent automata: two automata that accept the same language.

equivalent grammars: grammars that generate the same language.

EREW exclusive read exclusive write: a PRAM model in which concurrent reads
from and concurrent writes to the same location are not allowed.

existential lower bound (for an algorithm): a lower bound for its number of execu-
tion steps that holds for at least one input.

existential lower bound (for a problem): a lower bound for every algorithm that
could solve that problem.

finite automaton: either a finite state recognizer or a nondeterministic finite state
recognizer.

finite-state recognizer (FSR): a model of a computer for deciding membership in a
set.

finite-state machine: a finite automaton or a finite transducer.

finite-state machine with output: is another name for a finite transducer.

finiteness problem (for a grammar): deciding whether the language generated by
that grammar is finite.

finite transducer: a model of a computer for calculating a function, like an FSR,
except that it also produces an output string each time it reads an input symbol.

free monoid (generated by an alphabet): the set of all strings composable from sym-
bols in the alphabet, with the semigroup operation of string concatenation.

frequency (of a symbol in a string): the number of occurrences of the symbol in the
string.

Game of Life: a 2-dimensional cellular automaton designed by John H. Conway.

Gödel numbering (of a set): a method for encoding Turing machines as products of
prime powers; more generally, a similar one-to-one recursive function on an arbitrary
set whose image in N is a recursive set.
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grammar: a quadruple G = (N,T, S, P ), where N is a finite nonempty alphabet of
nonterminals, T is a finite nonempty alphabet of terminals, with N ∩ T = ∅, S is a
nonterminal called the start symbol, and P is a finite set of production rules of the
form α → β.

halting problem: the problem of designing an algorithm capable of deciding which
computations P (x) halt and which do not, where P is a computer program (or a
Turing machine), and x is a possible input.

C-hard language (C a class of languages): a language A such that every language in
class C is polynomial-time reducible to A.

Hilbert’s tenth problem: the (recursively unsolvable) problem of deciding for an
arbitrary multivariate polynomial equation p(x1, . . . , xn) = 0 whether there exists a
solution consisting of integers.

inclusion problem for grammars: deciding whether one language is included in
another.

inherently ambiguous context-free language: a context-free language such that
every context-free grammar for the language is ambiguous.

input size: the quantity of data supplied as input to a computation.

interconnection network model: a parallel computation model as a digraph in
which each vertex represents a processor, and in each phase of the computational
process, each processor communicates with its neighbors and makes a computation.

inverse (of a morphism h:V ∗−→U∗): the mapping h−1:U∗−→2V
∗

defined by h−1(x) =
{ y ∈ V ∗ | h(y) = x }, x ∈ U∗.

Kleene closure (or Kleene star) of a language L: the set of all iterated concate-
nations of zero or more words in L, denoted L∗.

language (accepted by a machine, such as an FSR, a pushdown automaton, or a Turing
machine): the set of all accepted strings.

language (generated by the grammar G): the language L(G) = {x ∈ T ∗ | S =⇒∗ x }
of words consisting of terminal symbols derivable from the starting symbol.

language (over an alphabet V ): a subset of the free monoid V ∗.

Las Vegas algorithm: an algorithm that always produces correct output, whose run-
ning time is a random variable.

Las Vegas to Monte Carlo transformation: the Monte Carlo algorithm obtained
by running the Las Vegas scheme for kE[T ] steps and halting, where E[T ] is the
expected Las Vegas running time.

leftmost derivation x =⇒left y: a derivation x =⇒ y in which at each step the
leftmost nonterminal is replaced.

leftmost language (generated by the grammar G): the language Lleft(G) of strings
of terminals with leftmost derivations from the start symbol S.

length set (of a language L): the set
{
|x|

∣∣ x ∈ L
}
.

length-increasing (or type 1) grammar: a grammar in which the consequent β of
each production α→β (except S→λ, if present) is at least as long as its antecedent α.

linear grammar: a context-free grammar in which each production α→β has α ∈ N
and β ∈ T ∗ ∪ T ∗NT ∗.
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Mealy machine: a finite transducer whose output function always produces a single
symbol.

membership problem (for a grammar G): given an arbitrary string x, deciding
whether x ∈ L(G).

mirror image (of a language L): the language mi(L) = {xR | x ∈ L } obtained by
reversing every string in L.

Monte Carlo algorithm: an algorithm that has a bounded number of computational
steps and might produce incorrect output with some low probability.

Monte Carlo to Las Vegas transformation: the Las Vegas algorithm of repeatedly
running that Monte Carlo algorithm until correct output occurs.

Moore machine: a Mealy machine such that for every state k and every pair of input
symbols s1 and s2, the outputs τ(k, s1) and τ(k, s2) are the same.

morphism (from the alphabet V to the alphabet U): a function s:V −→2U
∗

with s(a)
a singleton set for all symbols a ∈ V .

nondeterministic finite-state recognizer (NDFSR): a model like a finite state
recognizer, but there may be several different states to which a transition is possible,
instead of only one.

nondeterministic polynomial-time computation on a TM : a computation for
which there exists a polynomial function p(n) such that for any input of size n there
is a computational path on the TM whose length is at most p(n) steps.

nondeterministic Turing machine: a 5-tuple M = (K, s, h,Σ,∆) otherwise like
a deterministic Turing machine, except that the transition function ∆ maps each
state-symbol pair (q, b) to a set of state-symbol-direction triples.

nonterminal (in a grammar): a symbol that may be replaced when a production is
applied.

nontrivial family of languages: a family that contains at least one language different
from ∅ and {λ}.

NP-complete language: a language A such that A is NP-hard and A ∈ NP .

NP-complete problem: a decision problem equivalent to deciding membership in an
NP-complete language.

NP-hard language: a language A such that every language in complexity class NP
is polynomial-time reducible to A.

oracle (for a language): a machine state that decides whether or not a given string is
in the language.

oracle Turing machine: a 6-tuple M = (K, s, h,Σ, δ or ∆, L), equipped with a spe-
cial second tape on which it can write a string in the alphabet of an oracle for
language L (which might be different from Σ). (Aside from oracle steps, it is a
Turing machine.)

palindrome: a string that is identical to its reverse.

parallel computation model: a computational model that permits more than one
instruction to be executed simultaneously, instead of requiring that instructions be
executed sequentially.

parsing a string : in theoretical computer science, a derivation.
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partial function: an incomplete rule that assigns values to some elements in its do-
main but not necessarily to all of them.

partial function φM induced by a TM M : the rule that associates to each input v
for which the M -computation halts the output φM (v), and is otherwise undefined.

partial recursive function: a partial function derivable from the constant zero func-
tions ζn(x1, . . . , xn) = 0, the successor function σ(n) = n + 1, and the projection
functions πni (x1, . . . , xn) = xi, using multivariate composition, multivariate primi-
tive recursion, and unbounded minimalization.

pattern (over an alphabet V ): a string of variables over that alphabet; regarded as
present in a particular word w ∈ V ∗ if there exists an assignment of strings from V +

to the variables in that pattern such that the word formed thereby is a substring
of w.

polynomial hierarchy PH: the union of the complexity classes Σpn, for n ≥ 0.

polynomial-space computation (of a function by a TM M): a computation by M
of that function such that there exists a polynomial function p(n) such that for every
input of size n, the calculation workspace takes at most p(n) positions on the tape.

polynomial-time computation (of a function by a TM M): a computation by M of
that function such that there exists a polynomial function p(n) such that for every
input of size n, the calculation takes at most p(n) steps.

positive closure (or Kleene plus) of a language L: the set of all iterated concate-
nations of words in L excluding the empty word, denoted L+.

nth power of a language: the set of all iterated concatenations w1w2 . . . wn where
each wi is a word in the language.

PRAM memory conflict: the conflict that occurs when more than one processor
attempts concurrently to write into or read from the same global memory register.

PRAM parallel random access machine: a model of parallel computation as a set
of global memory registers and a set of processors, each with access to an infinite
sequence of its own local registers.

primitive recursion: a restricted way of defining f(n + 1) in terms of f(n).

primitive recursive function: any function derivable from the constant zero func-
tions ζk(x1, . . . , xk) = 0, the successor function σ(n) = n + 1, and the projection
functions πni (x1, . . . , xn) = xi, using multivariate composition and multivariate prim-
itive recursion.

probabilistic Turing machine: a nondeterministic Turing machine M with exactly
two choices of a next state at each step, both with probability 1

2 and independent of
all previous choices.

production rule (in a grammar) of the form α→β: a rule for making a substitu-
tion in a string; iterative application of the production rules generates all the words
of the language of the grammar.

projection function, n-place: a function πni (x1, . . . , xn) = xi that maps an n-tuple
to its ith coordinate.

pumping lemma: any one of several results in formal language theory concerned with
rewriting strings.

pushdown automaton (PDA): a (possibly non-deterministic) finite-state automaton
equipped with an auxiliary stack.
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random access machine (RAM): a computation model with several arithmetic
registers and an infinite number of memory registers.

randomized algorithm: an algorithm that makes random choices during its execu-
tion, guided by the output of a random (or pseudo-random) number generator.

recursive language: a language with a decidable membership question.

recursive set: a set whose characteristic function is recursive.

recursively enumerable set: a set that is either empty or the image of a recursive
function.

reducibility in polynomial-time (of language A to language B): the existence of a
polynomial-time computable function f such that x ∈ A if and only if f(x) ∈ B, for
each string x in the alphabet of language A; denoted by A≤p

mB.

reduction: a strategy for solving a problem by transforming its natural form of input
into the input form for another problem, solving that other problem on the trans-
formed input, and transforming the answer back into the original problem domain.

regular expression (over an alphabet V ): a string w in the symbols of V and the
special set

{
ε, ), (, +, ∗

}
such that w ∈ V or w = ε, or (continuing recursively)

w = (αβ), (α + β), or α∗, where α and β are regular expressions.

regular (or type 3) grammar: a grammar such that every production α → β has
antecedent α ∈ N and consequent β ∈ T ∪ TN ∪ {λ}.

regular language: a language that can be obtained from elements of its alphabet V
using finitely many times the operations of union, concatenation and Kleene star.

regularity problem (for grammars): deciding whether L(G) is a regular language.

reverse (of the string x): the string xR obtained by writing x backwards.

running time: the number of primitive operation steps executed by an algorithm, usu-
ally expressed in big-O asymptotic notation (or sometimes Θ-notation) as a formula
based on the input size variables.

solvable problem: a problem that can be decided by a recursive function.

space complexity (of an algorithm): a measure of the amount of computational space
needed in the execution, relative to the size of the input.

sparse language: a language A for which there is a polynomial function p(n) such
that for every n ∈ N , there are at most p(n) elements of length n in A.

square (over an alphabet): the pattern xx, or any word having that pattern.

square-free word: a word having no subwords with the pattern xx.

start symbol (in a grammar): a designated nonterminal from which every word of the
language is generated.

state diagram (for an FSR): a labeled digraph whose vertices represent the states
and whose arcs represent the transitions.

string (accepted by an FSR or NDFSR): a string such that the automaton ends up in
an accepting state, immediately after the last transition.

string (accepted by a PDA): a string that, when supplied as input, ultimately can
lead to the stack being empty and the PDA being in an acceptance state after the
last transition.

string (accepted by a TM M): a string w such that M halts on input w.
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string (over an alphabet): a finite sequence of symbols from that alphabet.

substitution (for the alphabets V in the alphabet U): a mapping s:V −→2U
∗
, which

means that each symbol b ∈ V may be replaced by any of the strings in the set s(b);
extends to strings of V ∗.

terminal (in a grammar): a symbol that cannot be replaced by other symbols.

time complexity (of an algorithm): a function representing the number of operations
or the running time needed, using the size of the input as its argument.

total function: a partial function defined on all of its domain, i.e., a function.

tractable problem: a problem that can be solved by an algorithm with polynomial-
time complexity.

λ-transition (in a NDFSR): a transition that could occur without reading any symbols
of the input string.

transition table (for an FSR): a table whose rows are indexed by the states and
whose columns are indexed by the symbols, such that the entry in row r and column
c is the state to which the FSR moves if it reads symbol c while in state r.

trapping state (of a finite automaton): a non-accepting state q from which every
outward arc is a self-loop back into q.

trio: a nontrivial family of languages closed under λ-free morphisms, inverse mor-
phisms, and intersection with regular languages.

Turing-acceptable language: a language such that has a TM M that accepts it.

Turing-computable function: a function such that there is a TM M with f = φM .

Turing-decidable language: a language whose characteristic function is Turing-
computable.

Turing machine (TM): an automaton whose tape can move one character in either
direction and that can replace the symbol it reads by a different symbol.

Turing-p-reducibility (of language A to language B): the existence of a deterministic
oracle TM MB that decides language A in polynomial time. Notation: A≤p

TB.

Turing’s test (of whether a given computer can think): are its responses to written
questions distinguishable from human responses by a person who does not know
whether a computer or a person gave the response?

type 0 grammar: a grammar with no restrictions.

type 1 grammar: a length-increasing grammar, or equivalently, a context-sensitive
grammar.

type 2 grammar: a context-free grammar.

type 3 grammar: a regular grammar.

unambiguous context-free language: a context-free language L that has a context
free grammar that is not ambiguous.

unbounded minimalization: a way of using a function or partial function to define
a new function or partial function.

uncomputable function: a function whose values cannot be calculated by a Turing
machine (or by a computer program).

undecidable problem: a decision problem whose answers cannot be given by a Turing
machine (or by a computer program).
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universal Turing machine: a TM that can simulate every other TM.

variable (over an alphabet V ): a symbol not in V whose values range over V ∗.

word (over an alphabet): usually a finite sequence of symbols (same as string), some-
times a countably infinite sequence.

word equation (over an alphabet V ): an expression α = β, such that α and β are
words containing letters from V and some variables over V .

word inequality : the negation of a word equation, commonly written as α �= β.

worst-case running time: the maximum number of execution steps of an algorithm,
usually expressed in big-O asymptotic notation (or sometimes Θ-notation) as a for-
mula based on the input size variables.

16.1 COMPUTATIONAL MODELS

The objectives of a computer, no matter what special input/output or memory devices
are attached, are ultimately to make logical decisions and to calculate the values of a
function. A decision problem can be represented as recognizing whether an input string
is in a specified subset. Calculating a function amounts to accepting an input string
and producing an output string. At this fundamental level, the fundamental models in
Table 1 can serve as the theoretical basis for all sequential computers.

16.1.1 FINITE STATE MACHINES

Definitions:

A (deterministic) finite-state recognizer (often abbreviated FSR) models a com-
puter for decision-making as a 5-tuple M = (K, s, F,Σ, δ) such that:

• K is a finite set whose members are called the states;
• s ∈ K (s is called the starting state);
• F ⊆ K (each member of F is called an acceptance state);
• Σ is a finite set called the alphabet of symbols
• δ : K × Σ → K (δ is called the transition function).

The computer model for a finite-state recognizer M = (K, s, F,Σ, δ) consists of a
logic box, programmed by the transition function δ. It is equipped with a read-only
head that examines an input tape that moves in only one direction. Whenever it reads
symbol c on the input tape while in state q, the computer switches into state δ(q, c)
and moves on to read the next symbol. The string is considered to be accepted if the
automaton is in an acceptance state after the last transition.
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Table 1 Fundamental computational models.

model description comment

FSR = (K, s, F,Σ, δ)
K = set of states, start at s ∈ K Finite state recognizer: recognizes regularaccepting states F ⊆ K scans a tape once; de- languagesinput alphabet Σ cides whether to accept.
transition fn δ:K × Σ → K

NDFSR = (K, s, F,Σ,∆)
K, s, F,Σ like FSR nondeterministic FSR. equivalent to FSR
trans. relation ∆ : K × Σ∗ → 2K

FSM = (K, s,ΣI ,ΣO, δ, τ)
K = set of states, start at s ∈ K Finite state transducer:
in-alphabet ΣI , out-alphabet ΣO (also called “finite state
transition fn δ : K × ΣI → K machine with output”)
output fn δ : K × ΣI → Σ∗

O

Mealy = (K, s,ΣI ,ΣO, δ, τ) Mealy machine: writes
K, s,ΣI ,ΣO, δ like FSM a single output symbol equivalent to FSM
output fn δ : K × ΣI → ΣO for each input symbol.

Moore = (K, s,ΣI ,ΣO, δ, τ) Moore machine: output
K, s,ΣI ,ΣO, δ like FSM symbol depends only on equivalent to FSM
output function δ : K → ΣO state prior to transition.

PDA = (K, s, F,Σ,Γ,∆) with K, Pushdown automaton:
s,F,Σ like FSR, stack alphabet Γ uses a stack as a recognizes context-
∆ ⊆ (K × Σ∗ × Γ∗) × (K × Γ∗) computational resource, free languages
transition relation ∆ is finite set nondeterministic.

TM = (K, s, h,Σ, δ) Turing machine: has decides member-
K = set of states, start at s ∈ K two-way tape with ship in recursivehalting state h /∈ K, alphabet Σ rewritable symbols. sets
δ : K × Σ → K × Σ × {L,R} ∪ {h}

A state diagram for an FSR M = (K, s, F,Σ, δ) is a labeled digraph whose vertex
set is K, and such that for each state q ∈ K and each symbol c ∈ Σ there is an arc
from vertex q to vertex δ(q, c), labeled with the symbol c. Sometimes a single arc is
labeled with more than one symbol, instead of drawing two arcs from the same state
to the same state. The starting state is designated by an entering arrow “−→” and the
accepting states are indicated by a double circle.

A transition table for an FSR M = (K, s, F,Σ, δ) is a table whose rows are indexed
by the states in K and whose columns are indexed by the symbols in Σ, such that the
entry in row q and column c is δ(q, c). The starting-state row label is marked with a
“>” and the acceptance state row labels are underscored.

A configuration for an FSR M = (K, s, F,Σ, δ) is a pair (q, w) such that q ∈ K and
w ∈ Σ∗. The pair (q, w) signifies that the automaton is in state q with the read-only
head positioned at the initial character of the string w. (Since the read-only head moves
in only one direction, a common assumption is that it consumes each character that it
reads.)
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The FSR configuration (q, w) yields the configuration (q′, w′) in one step if deleting
the initial symbol, call it c, of the string w yields the string w′ and if δ(q, c) = q′. This
relationship between configurations is denoted by (q, w) �M (q′, w′).

A nondeterministic finite-state recognizer (often abbreviated NDFSR) is a 5-
tuple M = (K, s, F,Σ,∆) just like an FSR, except that ∆ is a finite subset of K×Σ∗×K
and is called the transition relation.

The computer model for an NDFSR M = (K, s, F,Σ,∆) is like the computer model
for an FSR. However, whenever it reads string u on the input string while in state q,
the computer switches into any of the states in the set ∆(q, u) and moves on to read
the next symbol.

A state diagram for an NDFSR M = (K, s, F,Σ,∆) is a labeled digraph whose vertex
set is K, and such that for each triple (q, u, p) ∈ ∆ there is an arc from vertex q to
vertex p, labeled with the string u, which may be the empty string λ.

A transition of an NDFSR M = (K, s, F,Σ,∆) is a triple (q, u, p) ∈ ∆. The idea
is that from state q, the NDFSR M may read the substring u, and then transfer into
state p.

A λ-transition in a NDFSR M = (K, s, F,Σ,∆) is a transition (q, λ, q′) ∈ ∆ that
could occur without reading any symbols off the input string. That is, it reads the
empty string λ.

A configuration for an NDFSR M = (K, s, F,Σ,∆) is a pair (q, w) such that q ∈ K
and w ∈ Σ∗.

The NDFSR configuration (q, w) yields the configuration (q′, w′) in one step if
there is an initial prefix u on the string w whose deletion yields the string w′, and if
(q, u, q′) ∈ ∆. Notation: (q, w) �M (q′, w′).

A finite automaton is either an FSR or an NDFSR.

A computation for a finite automaton M is a sequence of configurations (q0, w0),
(q1, w1), . . . , (qn, wn) such that (qi−1, wi−1) �M (qi, wi), for i = 1, . . . , n. This is called
a computation of (qn, wn) from (q0, w0).

For any finite automaton, the configuration (q, w) yields the configuration (q′, w′),
denoted (q, w) �∗

M (q′, w′), if there is a computation of (q′, w′) from (q, w).

A string w ∈ Σ∗ is accepted by an FSR or NDFSR M = (K, s, F,Σ, δ or ∆) if there
is an accepting state q ∈ F such that (s, w) �∗

M (q, λ). That is, machine M accepts
string w if, starting in state s at the first symbol, its transition sequence ultimately
leads to an accepting state, immediately after its last transition.

The language accepted by a finite automaton M is the set of all strings accepted
by M . It is denoted L(M).

Finite automata M1 and M2 are equivalent if L(M1) = L(M2), that is, if they accept
the exact same language.

A trapping state of a finite automaton M is a non-accepting state q from which every
outward arc is a self-loop back into q.

An implicit trapping state is a convention used to simplify state diagrams. If from
some state there is no exiting arc labeled with a particular symbol, then that combina-
tion is deemed to lead to the implicit trapping state.

A trapping group of a finite automaton M is set of non-accepting states from which
there is no directed path in the state diagram to an accepting state.
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A (deterministic) finite transducer models a function-calculating computer as a
6-tuple M = (K, s,ΣI ,ΣO, δ, τ) such that:

• K is a finite set (its members are called states);
• s ∈ K (s is the starting state);
• ΣI is a finite alphabet of input symbols;
• ΣO is a finite alphabet of output symbols;
• δ:K × ΣI → K (δ is called the transition function);
• τ :K × ΣI → Σ∗

O (τ is called the output function).

A finite-state machine with output is another name for a finite transducer.

A Mealy machine is a finite transducer whose output function always produces a
single symbol.

A Moore machine is a Mealy machine such that for every state k and every pair of
input symbols s1 and s2, the outputs τ(k, s1) and τ(k, s2) are the same.

A finite-state machine is a finite automaton or a finite transducer.

Facts:

1. Finite state machines are the design plan of many practical types of electronic control
devices, for instance in wristwatches or automobiles.

2. Terminological usage has evolved over several decades. The following table provides
a quick guide to current usage regarding output capacity:

terminology output capacity

recognizer none
Mealy machine one output symbol for each input symbol
transducer arbitrary output string for each input symbol

The phrase “finite state machine” refers to a finite state model that may or may not
have output capacity and that may or may not be nondeterministic.

3. The nondeterminism of an NDFSR is that possibly u = λ or that there might also
be a transition (q, u, p′), so that from the same state q the NDFSR M might also read
substring u and transfer either into state p or into state p′.

4. For every NDFSR, there is an equivalent FSR. (M. Rabin and D. Scott, 1959)

5. In software design, NDFSRs are commonly used in preference to deterministic FSRs
because they often achieve the same task with fewer states.

6. NDFSRs are often defined so that λ-transitions are the only possible instances of
non-determinism. In this seemingly more restrictive kind of NDFSR, the second com-
ponent of a transition (q, u, p) is either a single symbol or the empty string.

7. The class of languages accepted by finite automata is closed under all of the following
operations:

• union;
• concatenation;
• Kleene star (see §16.3.2);
• complementation;
• intersection.
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8. Kleene’s theorem: A language is regular (§16.3.4) if and only if it is the language
accepted by some finite automaton. (S. Kleene, 1956)
9. Some lexical scanning processes of compilers are modeled after finite automata.
10. The relation “yields” for finite automata is the reflexive, transitive closure of the
relation �M .
11. Both Moore machines and Mealy machines have the computational capability of
an unrestricted finite transducer.
12. More comprehensive coverage of finite state machines is provided by many text-
books, including [Gr97] and [LePa81].

Examples:
1. The FSR specified by the following transition table and state diagram decides
whether a binary string has evenly many 1s. Formally, M = (K, s, F,Σ, δ) with
K = {Even, Odd}, s = Even, F = {Even}, and Σ = {0, 1}.

2. In one early form of the language BASIC, an identifier could be a letter or a letter
followed by a digit. The following state diagram specifies an FSR that accepts this
restricted form of BASIC identifier.

3. A “proper fixed-point numeral” is a nonempty string of decimal digits (the “whole
part”), followed by a decimal point, and then another non-empty string (the “fractional
part”) of digits. For instance, the number zero would be represented as “0.0”. The
following FSR decides whether the input string is a fixed-point numeral.

4. An “integer” in some programming languages is a nonempty string of decimal digits,
possibly preceded by a sign + or −. The following NDFSR decides whether the input
string is an integer.

c© 2000 by CRC Press LLC



5. The following finite-state transducer has {0, 1, $} and {0, 1} for its input and output
alphabets, respectively, where “$” serves as an end-of-string marker. It reads a binary
numeral, starting at the units digit, and prints a binary numeral whose value is double
the input numeral.

6. The following finite state machine models a vending machine for a 20-cent local
newspaper. The possible inputs are a nickel, a dime, and a push of a button that releases
the newspaper if enough change has been deposited. The states indicate the amount of
money that has been deposited. This machine may be regarded as a transducer that
produces symbol N (newspaper) if it receives input B while in state 20.

7. NDFSRs can be used to model various kinds of solitaire games and puzzles. For
instance, making a complete knight’s tour of a chessboard is such a puzzle. At each
stage, there may be some moves that ultimately permit a complete tour and some other
moves that are traps.

16.1.2 PUSHDOWN AUTOMATA

Definitions:

A pushdown automaton (PDA) is essentially a (possibly non-deterministic) finite-
state machine equipped with an auxiliary stack. A pushdown automaton is given by a
6-tuple M = (K, s, F,Σ,Γ,∆) such that:

• K is a finite set (its members are called states);
• s ∈ K (s is called the starting state);
• F ⊆ K (each member of F is called an acceptance state);
• Σ is a finite set called the alphabet of input symbols;
• Γ is a finite set called the alphabet of stack symbols;
• ∆ is a finite subset of (K ×Σ∗ ×Γ∗)× (K ×Γ∗) (∆ is the transition relation).

A transition of a PDA M = (K, s, F,Σ,Γ,∆) is a pair ((p, u, β), (q, γ)) ∈ ∆. The idea
is that from state p, the PDA M may read the substring u and the stack substring β,
and transfer into state q while popping β and pushing γ, thereby replacing β by γ.
Note: A PDA is frequently defined so that the only strings that can be read or written
or pushed or popped are single characters and the empty string. This has no effect on
the computational generality, but it can lead to the need for more states to accomplish
a given task.
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The computer model for a PDA M = (K, s, F,Σ,Γ,∆) consists of a logic box, pro-
grammed by ∆, equipped with a read-only head that examines an input tape that moves
in only one direction, and also equipped with a stack. When it reads substring u from
input while in state p with substring β at the top of the stack, the computer selects a
corresponding entry from ∆ and makes the indicated transition.

An input string is accepted by a PDA if the stack is empty and the PDA is in an
acceptance state after the last transition.

A configuration for a PDA M = (K, s, F,Σ,Γ,∆) is a triple (p, u, β) such that p ∈ K,
u ∈ Σ∗, and β ∈ Γ∗.

The PDA configuration (p, ux, βα) yields the configuration (q, x, γα) in one step
if and only if there is a transition ((p, u, β), (q, γ)). This relationship between configu-
rations is denoted by (p, ux, βα) �M (q, x, γα).

A computation for a PDA M is a sequence of configurations C0, C1, . . . , Cn such that
Ci−1 �M Ci, for i = 1, . . . , n.

The PDA configuration C yields the configuration C ′, denoted C �∗
M C ′, if there is a

computation of C ′ from C.

A string w ∈ Σ∗ is accepted by a PDA M = (K, s, F,Σ,Γ,∆) if there is an accepting
state q ∈ F such that (s, w) �∗

M (q, λ, λ). That is, machine M accepts string w if,
starting in state s at the first symbol, its transition sequence can ultimately lead to an
accepting state and an empty stack after it has read the last symbol.

The language accepted by a PDA M is the set of all strings accepted by M . It is
denoted L(M).

A state diagram for a PDA M = (K, s, F,Σ,Γ,∆) is a labeled digraph whose vertex
set is K, and such that for each transition ((p, u, β), (q, γ)) ∈ ∆ there is an arc from
vertex p to vertex q, labeled (u, β) �→γ. Sometimes a single arc is labeled with more
than one symbol, instead of drawing two arcs from the same state to the same state.
The starting state is usually designated by an entering arrow, and the accepting states
are usually indicated by a double circle.

Facts:

1. The PDA model was invented by A. G. Oettinger in 1961.

2. A language L is context-free (see §16.3.3) if and only if there is a pushdown au-
tomaton M such that L is the language accepted by M . (M. Schutzenberger 1963, and
independently by N. Chomsky and by J. Evey)

3. A PDA can test whether a string is a palindrome or whether all the left and right
parentheses are matched, but an FSR cannot.
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4. The class of languages accepted by deterministic PDAs is smaller than the class
accepted by non-deterministic PDAs.

5. More comprehensive coverage of pushdown automata is provided by many textbooks,
including [Gr97] and [LePa81].

Examples:

1. The following PDA decides whether a sequence of left and right parentheses is well-
nested, in the sense that every left parenthesis is uniquely matched to a right parenthesis,
and vice versa. It is necessary and sufficient that in counting left and right parentheses
while reading from left to right, the number of right parentheses never exceeds the
number of left parentheses and that the total counts are the same.

2. The following PDA decides whether a string in the alphabet {0, 1,m} has the
form bmbr where b is a bitstring and br its reverse, i.e., the same string written back-
wards. The m in the middle signals when to switch from pushing symbols onto the
stack to popping them off.

3. The following non-deterministic PDA decides whether a binary string is of the
form bbr, that is, a bitstring followed by its reverse. In effect, it considers every character
interspace in the string as the possible middle.

16.1.3 TURING MACHINES

Definitions:

A Turing machine (TM) models a computer as a 5-tuple M = (K, s, h,Σ, δ) such
that:

• K is a finite set not containing h (elements of K are called states; h is called the
halting state);

• s ∈ K (s is called the starting state);
• Σ is a finite set of symbols, including the blank symbol #; (Σ is called the

alphabet);
• δ:K × Σ → (K × Σ × {L,R}) ∪ {h} (δ is called a transition function).

An m × n Turing machine is a Turing machine with m states and n symbols.
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The computer model for a Turing machine M = (K, s, h,Σ, δ) consists of a logic box,
programmed by δ, equipped with a read-write head that examines an input tape with
a left end, but no right end. To start a computation, the input string is written at the
left end of the tape, and the rest of the tape is filled with blanks. The read-write head
starts at the leftmost symbol. Whenever the Turing machine reads symbol b on the
input string while in state q, its internal logic produces the triple δ(q, b) = (p, c,D) the
computer switches into state p, replaces b by c, and moves one space in direction D,
that is, either to the left (L) or to the right (R), whereupon it is ready to read the next
symbol.

A transition table for an m × n Turing machine is an m × n table whose rows are
labeled with the states, whose columns are labeled with the symbols, such that the
entry in row q and column b is δ(q, b). Thus, a typical table entry is a triple indicating
to which state to switch from q, the new symbol to replace b, and whether to move one
square to the right or one to the left. However, another possibility is that a table entry
could be the halt state h.

In an alternative definition of a Turing machine, each transition is a change of
state and either a change of symbol or a one-symbol move to the right or left. In this
case the transition table entries are pairs, and it tends to take more states and symbols
to achieve a given objective.

A configuration for a Turing machine is a quadruple (q, u, b, v), such that q ∈ K∪{h},
u, v ∈ Σ∗, and b ∈ Σ, commonly written as a pair (q, ubv). This means that the Turing
machine is in state q, that the present value of the tape is ubv, that the present location
of the read-write head is at the indicated instance of the symbol b, and that the rest of
the tape to the right of the string ubv is filled with blanks.

A starting configuration for a Turing machine is a configuration of the form (s, λbv).
This means that the string bv is supplied to the given Turing machine as input, in the
starting state s.

A halting configuration for a Turing machine is a configuration of the form (h, ubv).
This means that the Turing machine has entered the halting state h, and that whatever
is on the tape is to be interpreted as the output.

A hanging configuration for a Turing machine is a configuration of the form (q, λbv),
such that the transition value δ(q, b) tells the Turing machine to move left (L), i.e., off
the left end of the tape.

The Turing machine configuration (p, ubv) yields the configuration (q, xcy) in one
step if and only if the transition δ(p, b) would change configuration (p, ubv) to config-
uration (q, xcy). This relationship between configurations is denoted by (p, ubv) �M
(q, xcy).

c© 2000 by CRC Press LLC



An infinite loop for a Turing machine is an infinite sequence of configurations C0, C1,
C2, . . . such that Ci−1 �M Ci, for i = 1, 2, . . ..

The M-computation for input v to a Turing machine M is one of three possibilities: (1)
the finite sequence of configurations C0 = (s, λ#v), C1, . . . , Cn such that Ci−1 �M Ci,
for i = 1, . . . , n, in which Cn is a halting configuration; (2) the finite sequence of
configurations C0 = (s, λ#v), C1, . . . , Cn such that Ci−1 �M Ci, for i = 1, . . . , n, in
which Cn is a hanging configuration; (3) the infinite sequence C0 = (s, λ#v), C1, C2, . . .
such that Ci−1 �M Ci, for i = 1, . . . , n.

The output of an M -computation for input v to a Turing machine M is the string φM (v)
from the left end of the tape up to the last non-blank character if the M -computation
halts, and undefined otherwise.

The partial function φM induced by a Turing machine M is the rule that as-
sociates to each input v for which the M -computation halts the output φM (v), and is
otherwise undefined.

A function f : Σ∗→Σ∗ is M-computable by a Turing machine M = (K, s, h,Σ, δ) if the
machine M halts for all inputs v ∈ Σ∗ and if the machine M computes the function f ,
that is, f(v) = φM (v) for all v ∈ Σ∗.

A function f : Σ∗→Σ∗ is Turing-computable if there is a Turing machine M =
(K, s, h,Σ, δ) such that f is M -computable.

A Turing machine M = (K, s, h,Σ, δ) simulates another Turing machine M ′ = (K ′, s′,
h,Σ′, δ′) if there exists a Turing-computable function β: Σ′∗→Σ∗ such that φM (β(w)) =
φM ′(w) for all w ∈ domain(φM ′) and φM (β(w)) is undefined for all w �∈domain(φM ′).

A universal Turing machine is a Turing machine U = (KU , sU , hU ,ΣU , δU ) that can
simulate every other Turing machine, in the following sense. There is a rule αU for
encoding any given Turing machine M and a rule βU for encoding any given input w
to M , such that φU (αU (M)#βU (w)) is defined and equals φM (w) whenever φM (w) is
defined, and is undefined otherwise.

A string w ∈ Σ∗ is Turing machine M accepted by the Turing machine M =
(K, s, h,Σ, δ) if M halts on input w.

A language L ⊆ Σ∗ is Turing machine M accepted by the Turing machine
M = (K, s, h,Σ, δ) if L = {w ∈ Σ∗ | M accepts w }.
A language L ⊆ Σ∗ is Turing-acceptable if there exists a Turing machine M that
accepts it.

The characteristic function χL: Σ∗→{yes, no} of a language L ⊆ Σ∗ is given by the
rule

χL(w) =
{
yes, if w ∈ L;
no, if w �∈L.

A language L ⊆ Σ∗ is a Turing-decidable language if its characteristic function is
Turing-computable.

A subset-membership decision problem is unsolvable if it does not correspond to a
Turing-decidable language.

An n-state busy beaver machine is an n-state Turing machine on the alphabet
Σ = {#, 1} that accepts a two-way infinite input tape filled with #s and halts after
placing a maximum number of 1s on the tape. (The name busy beaver derives from an
analogy between the machine piling up 1s and a beaver piling up logs.)
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The busy beaver function BB(n) has as its value the number of 1s on the output
tape of an n-state busy beaver machine.

A linear bounded automaton (or LBA) is representable as a Turing machine that is
fed only a finite stretch of tape containing the input word, rather than an infinite tape.

A nondeterministic Turing machine is defined like a Turing machine, except that
instead of a transition function that assigns a unique change of symbol and direction
of motion for the read-write head, there is a transition relation that may permit more
than one possibility.

Facts:

1. A Turing machine is commonly regarded as a program to compute the partial func-
tion φM .

2. Every Turing-decidable language is Turing-acceptable.

3. If a language L ⊆ Σ∗ is Turing-decidable, then its complement L is also Turing-
decidable.

4. Every Turing-acceptable language L ⊆ Σ∗ whose complement L is also Turing-
acceptable is a Turing-decidable language.

5. The following problems about Turing machines are unsolvable:
(a) Given a TM M and an input string w, does M halt on input w?
(b) Given a TM M , does M halt on the empty tape?
(c) Given a TM M , does there exist an input w for which M halts?
(d) Given a TM M , does M halt on every input string.
(e) Given two TMs M1 and M2, do they accept the same input?
(f) Given two numbers n and k, is BB(n) > k?

6. In view of part (d) of the preceding fact, there is no way to tell whether an arbitrary
computer program in a general language always halts, much less whether it calculates
what it is supposed to calculate.

7. It is possible to construct a universal Turing machine.

8. A universal Turing machine with six states and four symbols was constructed in
1982 by Y. Rogozhin.

9. The busy beaver problem was invented by Tibor Rado in 1962.

10. Turing machines have been extended in several ways, including the following: in-
finiteness in two directions, more work tapes, two or more tapes, two- or more dimen-
sional tapes, nondeterminism.

11. Some of the extensions of Turing machine can perform computations more quickly
and are easier to program.

12. Any function that can be computed by a Turing machine with a two-way infinite
tape can also be computed by some standard Turing machine.

13. Any function that can be computed by a Turing machine with k tapes can also be
computed by some standard Turing machine.

14. Any function that can be computed by a Turing machine with a two-dimensional
tape can also be computed by some standard Turing machine.

15. Any function that can be computed by a nondeterministic Turing machine can also
be computed by some standard Turing machine.
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16. The following table gives known values and lower bounds for the busy beaver
function:

n 1 2 3 4 5 6 8

BB(n) 1 4 6 13 ≥ 4098 ≥ 95,524,079 ≥ 1044

17. The finite amount of workspace to which a linear bounded automaton is restricted
causes it to be less powerful than a Turing machine with infinite tape. However, it is
more powerful than a pushdown automaton.
18. Alan M. Turing (1912-1954) was a British mathematician whose cryptanalytic work
during World War II lead to the decryption of ciphertext from the German cipher
machine called the Enigma.
19. Turing proposed that a machine be regarded as “thinking” if its responses to writ-
ten questions could not be distinguished from those of a person. This criterion is called
Turing’s test.
20. More comprehensive coverage of Turing machines is provided by many textbooks,
including [Gr97] and [LePa81].

Examples:
1. This is a 1-state Turing machine with alphabet Σ = {0, 1,#} that changes every
character preceding the first blank into a blank. It accepts any string over its alphabet.

0 1 #
→ a #aR #aR h

2. This 3-state Turing machine with alphabet Σ = {0, 1,#} doesn’t change its input
tape at all. It halts whenever it encounters the third ‘1’. Thus, it accepts any tape with
at least three 1’s but accepts no other strings.

0 1 #
→ a 0aR 1bR #aR
b 0bR 1cR #bR
c 0cR h #cR

3. This 3-state Turing machine with alphabet Σ = {1,#} adds two positive integers,
each represented as a string of 1s. For instance, the tape 111#11### · · · becomes
11111### · · ·.

1 #
→ a 1aR 1bR
b 1bR #cL
c #cR h

4. This 2-state Turing machine shows that BB(2) is at least 4.

# 1
→ a 1bL 1bR
b 1aR h

5. This 3-state Turing machine shows that BB(3) is at least 6.

# 1
→ a 1bR 1cL
b 1cR 1h
c 1aL #bL
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16.1.4 PARALLEL COMPUTATIONAL MODELS

Definitions:

A parallel computation model permits more than one instruction to be executed
simultaneously, instead of requiring that they be executed sequentially.

An interconnection network models parallel computation as a digraph in which each
vertex represents a processor. In each phase of the computational process, a processor
communicates with its neighbors and makes a computation.

An n-dimensional cellular automaton is an interconnection network in which there
is a processor at each integer lattice point of n-dimensional Euclidean space, and each
processor communicates with its immediate neighbors.

A random access machine (RAM) has several arithmetic registers and an infinite
number of memory registers (often modeled as an infinite array), and of which can be
accessed immediately via its address (the index in the array).

A parallel random access machine (PRAM) models parallel computation as a
set of global memory registers {Mj | j = 1, 2, . . . } and a set of processors {Pj |
j = 1, 2, . . . }. Each processor Pj has access to an infinite sequence of local registers
{Rj,k | k = 1, 2, . . . }.
In a PRAM, a register (global or local) may contain a single integer. It is local if
it can be accessed only by a single processor and global if it can be accessed by all
processors.

In a PRAM, a processor performs read and write instructions involving global memory
and other instructions involving only its local memory. All processors of a PRAM
perform the same program in perfect synchrony, so that at any given time all processors
that are not idle are all performing their task under the same instruction of the program.

In a PRAM, the concurrent construct par[a ≤ j ≤ b]Pj : Sj means that each of the
processors Pj for a ≤ j ≤ b is performing the operation Sj .

In a PRAM, the read instruction READ(j) tells processor Pi to read the content of
global register Mj into local register Ri,0.

In a PRAM, the write instruction WRITE(j) tells processor Pi to write the content
of local register Ri,0 into global register Mj .

In a PRAM, a computation starts when all the processors execute the first instruction.
It stops when processor P1 halts. The contents of the global memory are regarded as
the output.

In a PRAM, a memory conflict occurs when more than one processor attempts con-
currently to write into or read from the same global memory register.

In an exclusive read exclusive write (EREW ) PRAM model, concurrent reads
from and concurrent writes to the same location are not allowed.

In a concurrent read exclusive write (CREW ) PRAM model, concurrent reads
are allowed, but not concurrent writes to the same location.

In a concurrent read concurrent write (CRCW ) PRAM model, concurrent reads
from and concurrent writes to the same location are both allowed.

In a common PRAM (CRCWcom PRAM) model, concurrent writes to the same
location are permitted if all processors are trying to write the same data.
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Facts:

1. Commercially available parallel computers often have an array of elements in which
a single broadcast instruction applying to every element is executed simultaneously for
all the elements.

2. Random access machines are commonly thought to be close theoretical models of
commercially available sequential computers.

3. The indexing of registers and processors of a PRAM may be over any finite or
countably infinite set.

4. PRAM programs are often described using high-level programming language con-
structs for array-processing that are similar to sequential array processing, except that
the PRAM array locations are processed in parallel.

5. Whereas linear time is regarded as fast for sequential processing, a parallel algorithm
tends to be regarded as fast if it runs in O(lg n) time or less.

Examples:

1. A parallel computer for sorting up to n items can be modeled as a row of processors
P1, P1, . . . , Pn. Joining each processor Pj such that 2 ≤ j ≤ n − 1 to and from its im-
mediate predecessor Pj−1 and its immediate successor Pj+1 are arcs in both directions,
as shown here.

On the first phase and on all subsequent odd-numbered phases, each processor pair
(P2j+1, P2j+2) compares items and swaps, if necessary, so that the smaller item ends up
in the lower-indexed processor. On the second phase and on all subsequent even num-
bered phases, each processor pair (P2j , P2j+1) compares items and swaps, if necessary,
so that the smaller item ends up in the lower-indexed processor. After n phases, the
items are completely sorted into ascending order.

2. EREW PRAM : finding the maximum: Given n numbers, with n = 2r, store the
numbers in global registers Mn, . . . ,M2n−1. Then execute the following program:

for i = r − 1 downto 0
par[2i ≤ j ≤ 2i+1]Mj := max{M2j ,M2j+1}
next i

After r iterations of the loop body, the maximum appears in global register M1.

3. CRCWcom PRAM : finding the maximum: Given n numbers, store the numbers
in global registers M1, . . . ,Mn. Use processors Pi,j , 1 ≤ i, j ≤ n. Then execute the
following program:

par[1 ≤ i, j ≤ n]Pi,j : Mi+n := 0
par[1 ≤ i, j ≤ n]Pi,j : if Mi < Mj then Mi+n := 1

{Mi+n = 0 if and only if Mi = max{M1, . . . ,Mn}}
par[1 ≤ i, j ≤ n]Pi,j : if Mn+i = 0 then M0 := Mi

This program is much faster than the EREW PRAM program, because all pairs are
compared simultaneously in a single parallel step.

c© 2000 by CRC Press LLC



4. Game of Life: The Game of Life, invented at Cambridge by John H. Conway, a
mathematician now at Princeton University, is played on an infinite checkerboard. The
neighbors of a square are the eight squares that touch it, including those four at its
corners. In the initial configuration c0 of the game, some squares are regarded as alive
and all others dead. Each configuration ck gives birth to a new configuration ck+1,
according to the following rules:

• a live cell in configuration ck remains alive if its has either two or three live
neighbors, but no more;

• a dead cell in configuration ck becomes alive if and only if it has exactly three
live neighbors.

The following sequence of configurations illustrates these rules:

The Game of Life can be regarded as a cellular automaton in which the squares are the
processors and each processor is joined to its eight neighbors.

5. A configuration in the Game of Life has periodicity n if the sequence of configu-
rations to which its gives birth repeats every n configurations, and if n is the smallest
such number. Here are three periodic configurations.

16.2 COMPUTABILITY

The theory of computability is concerned with distinguishing what can be computed
from what cannot. This is not a question of skill at performing calculations. The
remarkable truth is that the impossibility of computing certain functions can be proved
from the definition of what it means to compute a function.

16.2.1 RECURSIVE FUNCTIONS AND CHURCH’S THESIS

The implicit domain for the theory of computability is the set N of natural numbers.
The encoding of problems concerned with arbitrary objects into terms of natural num-
bers permits general application of this theory.
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Definitions:

The n-place constant zero function is the function ζn(x1, . . . , xn) = 0.

The successor function is the function σ(n) = n + 1.

The ith n-place projection function is the function πni (x1, . . . , xn) = xi.

The (multivariate) composition of the n-place function f(x1, . . . , xn) and the n
m-place functions g1(x1, . . . , xm), . . . , gn(x1, . . . , xm) is the m-place function

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm).

(Multivariate) primitive recursion uses a previously defined (n+ 2)-place function
f(x1, . . . , xn+2) and a previously defined n-place function g(x1, . . . , xn) to define the
following new (n+1)-place function:

h(x1, . . . , xn+1) =
{
g(x1, . . . , xn) if xn+1 = 0;
f(x1, . . . , xn+1, h(x1, . . . , xn, xn+1 − 1)) otherwise.

Unbounded minimalization uses an (n+1)-place function f(x1, . . . , xn+1) to define
the following new n-place function, which is denoted µm[f(x1, . . . , xn,m) = 0]:

g(x1, . . . , xn+1) =
{

the least y such that f(x1, . . . , xn, y) = 0 if it exists;
0 otherwise.

An (n+1)-place function f(x1, . . . , xn+1) is regular if for every n-tuple (x1, . . . , xn)
there is a y ∈ N such that f(x1, . . . , xn, y) = 0

The class P of primitive recursive functions is the smallest class of functions that
contains:

• the constant zero functions ζn(x1, . . . , xn) = 0, for all n ∈ N ;
• the successor function σ(n) = n + 1;
• the projection functions πni (x1, . . . , xn) = xi, for all n ∈ N and 1 ≤ i ≤ n;

and is closed under multivariate composition and multivariate primitive recursion.

The class RF of recursive functions is the smallest class of functions that contains:
• the constant zero functions ζn(x1, . . . , xn) = 0, for all n ∈ N ;
• the successor function σ(n) = n + 1;
• the projection functions πni (x1, . . . , xn) = xi, for all n ∈ N and 1 ≤ i ≤ n;

and is closed under multivariate composition, multivariate primitive recursion, and the
application of unbounded minimalization to regular functions.

A recursive function is a function in RF .

Church’s thesis, or the Church-Turing thesis, is the premise that recursive func-
tions and Turing machines are capable of representing every function that is computable
or partially computable.

A partial function on N is a function whose values are possibly undefined for certain
natural numbers.

A partial function on N is called total if it is defined on every natural number.

The class PR of partial recursive functions is the smallest class of partial functions
that contains the constant zero functions ζ, the successor function σ, and the projec-
tion functions πni , and is closed under multivariate composition, multivariate primitive
recursion, and the arbitrary application of unbounded minimalization.
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A partial recursive function is a function in PR.

A partial recursive function f is represented by the Turing machine M if machine
M calculates the value f(n) for every number n on which f is defined and fails to halt
for every number on which f is undefined.

The Ackermann function A:N × N → N is defined as follows:
A(0, j) = j + 1;
A(i + 1, 0) = A(i, 1);
A(i + 1, j + 1) = A(i, A(i + 1, j)).

Facts:

1. The standard integer functions of arithmetic, including addition, subtraction, mul-
tiplication, division, and exponentiation, are all primitive recursive functions.

2. A function is a partial recursive function if and only if it can be represented by a
Turing machine.

3. There are several other models of computation that are equivalent to partial recur-
sive functions and to Turing machines, including labeled Markov algorithms and Post
production systems (see [BrLa74]).

4. Church’s thesis identifies formal concepts (recursive functions and Turing machines)
with the intuitive concept of what is computable, so it is not something that is subject
to proof.

5. Church’s thesis is often invoked in the proof of theorems about computable functions
to avoid dealing with low-level details of the model of computation.

6. The Ackermann function is recursive but not primitive recursive.

7. The Ackermann function grows faster than any primitive recursive function, in the
following sense. For every primitive recursive function f(n), there is an integer n0 such
that f(n) < A(n, n) for all n > n0.

Examples:

1. Addition is primitive recursive.
a(x, 0) = π1

1(x);
a(x, y + 1) = σ(π3

3(x, y + 1, a(x, y)).
Then a(x, y) = x + y.

2. Multiplication is primitive recursive.
m(x, 0) = 0;
m(x, y + 1) = a(m(x, y), π2

2(x, y)), where a(x, y) is addition.
Then m(x, y) = x · y.

3. Predecessor is primitive recursive.
p(0) = 0.
p(x + 1) = π1

1(x).
Then p(x) = x−.1.

4. Nonnegative subtraction is primitive recursive.
s(x, 0) = π1

1(x).
s(x, y + 1) = p(x−. y).

Then s(x, y) = x−. y.
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5. The function p(n) = the nth prime number is a primitive recursive function.

6. The Ackermann function is recursive but not primitive recursive.

16.2.2 RECURSIVE SETS AND SOLVABLE PROBLEMS

Definitions:

The characteristic function of a set A is the function

f(x) =
{

1 if x ∈ A;
0 if x �∈A.

A set A is recursive if its characteristic function is recursive.

A problem is (computationally) solvable if it can be represented as a membership
problem that can be decided by a recursive function.

A set A ⊆ N is recursively enumerable (r.e.) if A = ∅ or A is the image of a
recursive function.

A Gödel numbering of a set S is a one-to-one recursive function g:S → N whose
image in N is a recursive set.

Facts:
1. If a set A and its complement A are both recursively enumerable, then A is recursive.
2. If an recursively enumerable set A is the image of a non-decreasing function, then
A is recursive.
3. A set is recursively enumerable if and only if it is the image of a partial recursive
function.
4. A set is recursively enumerable if and only if it is the domain of a partial recursive
function.
5. The set of Turing machines has a Gödel numbering.

Examples:
1. Every finite set of numbers is recursive.
2. The prime numbers are a recursive set.
3. The problem of deciding which Turing machines halt on all inputs is unsolvable.
The set of Gödel numbers for these Turing machines is neither recursive not recursively
enumerable
4. For any fixed c ∈ N , the problem of deciding which Turing machines halt when the
number c is supplied as input is unsolvable. The set of Gödel numbers for these Turing
machines is recursively enumerable, but not recursive.
5. The problem of deciding which Turing machines halt when their own Gödel number
is supplied as input is unsolvable. The set of Gödel numbers for these Turing machines
is recursively enumerable, but not recursive.
6. Hilbert’s tenth problem: Hilbert’s tenth problem (posed in 1900) was the problem
of devising an algorithm to determine, given a polynomial p(x1, . . . , xn) with integer
coefficients, whether there exists an integer root. Y. Matiyasevich proved in 1970 that
no such algorithm exists. That is, the set of polynomials with integer coefficients that
have an integer solution is not recursive. Hilbert’s tenth problem is called a “natural
example” of an unsolvable problem, since the concepts used to define it are not from
within computability theory (i.e., unlike problems concerned with the behavior of Turing
machines). [Ma93]
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16.3 LANGUAGES AND GRAMMARS

Strings of symbols are a general way to represent information, both in written text and
in a computer. A language is a set of strings that are used within some domain of
discourse, and a grammar is a system for generating a language. A grammar is what
enables a compiler to determine whether a body of code is syntactically correct in a given
computer language. Formal language theory is concerned with languages, grammars,
and rudiments of combinatorics on strings. The range of applications of formal language
theory extends from natural and programming languages, developmental biology, and
computer graphics to semiotics, artificial intelligence, and artificial life.

16.3.1 ALPHABETS

Definitions:

An alphabet is a finite nonempty set.

A symbol is an element of an alphabet.

A string in an alphabet is a finite sequence of symbols over that alphabet.

A word in an alphabet is a finite or countably infinite sequence of symbols over that
alphabet.

The empty string λ is the string of length zero, that is, the string with no symbols.

The length of a string w is the number of symbols in w, denoted |w|.
The frequency |w|a of a symbol a in a string w is the number of occurrences of a in
string w.

A substring of a string w is a sequence of consecutive symbols that occurs in w.

A subword of a word w is a sequence of consecutive symbols that occurs in w.

A prefix of a string w is a substring that starts at the leftmost symbol.

A suffix of a string w is a substring that ends at the rightmost symbol.

The reverse or mirror image xR of the string x = a1a2 . . . an, is the string an . . . a2a1.

A palindrome is a string that is identical to its reverse.

A pseudopalindrome in an alphabet (such as English) that includes punctuation
symbols (such as comma, hyphen, or blank) is a word that becomes a palindrome when
all of its punctuation symbols are deleted.

The concatenation xy of two strings x = a1a2 . . . am and y = b1b2 . . . bn is the string
a1a2 . . . amb1b2 . . . bn obtained by appending string y to the right of string x.

The nth power of a string w, denoted wn, is the concatenation of n copies of w.

The shuffle x�⊥y of two strings x = x1 . . . xn and y = y1 . . . yn is the string x1y1 . . . xnyn.

Facts:

1. A symbol of an alphabet is usually conceptualized as something that it can be
represented by a single byte or by a written character

2. A finite word is a string.
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3. The sum of the frequencies |w|a taken over all the symbols a in the alphabet equals
the length of the string w.
4. The length |xy| of a concatenation equals the sum |x| + |y| of the lengths of the
strings x and y from which it is formed.
5. The length of the nth power of a string w is n · |w|.
6. When a pseudopalindrome occurs in a natural language, it is commonly called a
palindrome.

Examples:

1. The English alphabet includes lower and upper case English letters, the blank sym-
bol, the digits 0, 1, . . . , 9, and various punctuation symbols.
2. ASCII (American Standard Code for Information Interchange) is an alphabet of
size 128 for many common computer languages. See Table 1.
3. ABLE WAS I ERE I SAW ELBA is a palindrome.
4. The names EVE, HANNAH, and OTTO are palindromes.
5. MADAM I’M ADAM and SIX AT-NOON TAXIS are pseudopalindromes.
6. A list of palindromes can be found on the website

http://freenet.buffalo.edu/~cd431/palindromes.html

7. The third power of the string 011 is 011011011.
8. The concatenation of BOOK and KEEPER is BOOKKEEPER.
9. The shuffle of FLOOD and RIVER is FRLIOVOEDR.

16.3.2 LANGUAGES

Definitions:

The free monoid V ∗ generated by the alphabet V is the structure whose domain is
the set of all strings composable from symbols over V , with the semigroup operation of
string concatenation.

A (formal) language on the alphabet V is a subset L of the free monoid V ∗.

The λ-free semigroup V + on an alphabet V is the set V ∗−{λ}, with the concatenation
operation.

A λ-free language on the alphabet V is a subset of the λ-free semigroup V +.

The length set of a language L is the set length(L) = { |x| | x ∈ L }.
The concatenation L1L2 of two languages is the set {xy | x ∈ L1, y ∈ L2 }.
The ith power of a language L is the language Li defined recursively by the rule
L0 = {λ} and Li+1 = LiL, i ≥ 0.

The Kleene closure (or Kleene star) L∗ of a language L is the union
⋃
i≥0 L

i of all
its powers.

The positive closure (or Kleene plus) L+ of a language L is the union
⋃
i≥1 L

i of
all its powers excluding the zeroth power.

The union of two languages L1 and L2 is L1 ∪ L2, using the usual set operation.

The intersection of two languages L1 and L2 is L1 ∩L2, using the usual set operation.
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Table 1 ASCII codes.

000 0000 NUL 010 0000 SP 100 0000 @ 110 0000 ‘
000 0001 SOH 010 0001 ! 100 0001 A 110 0001 a
000 0010 STX 010 0010 ” 100 0010 B 110 0010 b
000 0011 ETX 010 0011 # 100 0011 C 110 0011 c
000 0100 EOT 010 0100 $ 100 0100 D 110 0100 d
000 0101 ENQ 010 0101 % 100 0101 E 110 0101 e
000 0110 ACK 010 0110 & 100 0110 F 110 0110 f
000 0111 BEL 010 0111 ’ 100 0111 G 110 0111 g
000 1000 BS 010 1000 ( 100 1000 H 110 1000 h
000 1001 HT 010 1001 ) 100 1001 I 110 1001 i
000 1010 LF 010 1010 * 100 1010 J 110 1010 j
000 1011 VT 010 1011 + 100 1011 K 110 1011 k
000 1100 FF 010 1100 , 100 1100 L 110 1100 l
000 1101 CR 010 1101 - 100 1101 M 110 1101 m
000 1110 SO 010 1110 . 100 1110 N 110 1110 n
000 1111 SI 010 1111 / 100 1111 O 110 1111 o
001 0000 DLE 011 0000 0 101 0000 P 111 0000 p
001 0001 DC1 011 0001 1 101 0001 Q 111 0001 q
001 0010 DC2 011 0010 2 101 0010 R 111 0010 r
001 0011 DC3 011 0011 3 101 0011 S 111 0011 s
001 0100 DC4 011 0100 4 101 0100 T 111 0100 t
001 0101 NAK 011 0101 5 101 0101 U 111 0101 u
001 0110 SYN 011 0110 6 101 0110 V 111 0110 v
001 0111 ETB 011 0111 7 101 0111 W 111 0111 w
001 1000 CAN 011 1000 8 101 1000 X 111 1000 x
001 1001 EM 011 1001 9 101 1001 Y 111 1001 y
001 1010 SUB 011 1010 : 101 1010 Z 111 1010 z
001 1011 ESC 011 1011 ; 101 1011 [ 111 1011 }
001 1100 FS 011 1100 < 101 1100 \ 111 1100 |
001 1101 GS 011 1101 = 101 1101 ] 111 1101 }
001 1110 RS 011 1110 > 101 1110 ˆ 111 1110 ˜
001 1111 US 011 1111 ? 101 1111 − 111 1111 DEL

Control codes: ACK: acknowledge, BEL: bell, BS: backspace, CAN: cancel, CR:
carriage return, DC1-4: device controls, DEL: delete, DLE: data link escape, EM:
end of medium, ENQ: enquiry, EOT: end of transmission, ESC: escape, ETB: end
of transmission block, ETX: end of text, FF: form feed, FS: file separator, GS:
group separator, HT: horizontal tab, LF: line feed, NAK: negative acknowledgment,
NUL: null, RS: record separator, SI: shift in, SO: shift out, SOH: start of heading,
SP: space, STX: start of text, SUB: substitute, SYN: synchronous/idle, US: united
separator, VT: vertical tab

The complement of a language L over an alphabet V is the language L, where com-
plementation is taken with respect to the free monoid V ∗ as the universe of discourse.

A language is regular if it is any of the languages ∅, {λ}, or {b}, where b is a symbol of
its alphabet, or if it can be obtained by applying the operations of union, concatenation
and Kleene star finitely many times to one of those languages.
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The shuffle L1�⊥L2 of two languages L1, L2 is the language {w ∈ V ∗ | w = x�⊥y, for
some x ∈ L1, y ∈ L2 }.
The mirror image mi(L) of the language L is the language {xR | x ∈ L }. It is also
called the reverse of the language L.

The left quotient of the language L1 with respect to the language L2 on the same
alphabet V , is the language L2\L1 containing every string of V ∗ that can be ob-
tained from a string in L1 by erasing a prefix from L2. That is, L2\L1 = {w ∈
V ∗ | there is x ∈ L2 such that xw ∈ L1 }.
The left derivative of language L with respect to the string x over the same alphabet V
is the language ∂x(L) = {x}\L.

The right quotient is the notion symmetric to left quotient.

The right derivative is the notion symmetric to left derivative.

A substitution for the alphabet V in the alphabet U is a mapping s:V −→ 2U
∗
. This

means that each symbol b ∈ V may be replaced by any of the strings in the set s(b).

A finite substitution is a substitution such that the replacement set s(a) for each
symbol a ∈ V is finite.

The extension of a substitution s:V −→ 2U
∗

from its domain alphabet V to the
set V ∗ of strings over V is given by the rules s(λ) = {λ} and s(ax) = s(a)s(x), for
a ∈ V, x ∈ V ∗.

A morphism from the alphabet V to the alphabet U is a substitution s:V −→ 2U
∗

such that the replacement set s(a) for every symbol a ∈ V is a singleton set.

A λ-free substitution is a substitution such that λ is never substituted for a symbol.
That is, λ �∈s(a), for every symbol a ∈ V .

A λ-free morphism is a morphism such that s(a) �= {λ}, for every symbol a ∈ V .

The extension of a substitution s:V −→ 2U
∗

to the language L ⊆ V ∗ is the language
s(L) =

⋃
x∈L s(x) that contains every string in U∗ obtainable from a string in L by

making replacements permissible under substitution s.

The inverse of a morphism h:V ∗ −→ U∗ is the mapping h−1:U∗ −→ 2V
∗

defined by
h−1(x) = { y ∈ V ∗ | h(y) = x }, x ∈ U∗.

A family of languages is nontrivial if it contains at least one language different from ∅
and {λ}.

Facts:
1. The set of all binary strings with at least as many 1s as 0s is a language.
2. The set of all binary strings in which no two occurrences of 1 are consecutive is a
language.
3. Some strings of a natural language such as English are categorized as nouns, verbs,
and adjectives. Other more complicated strings are categorized as sentences.
4. Some strings of common computer languages are categorized as identifiers and arith-
metic expressions. Other more complicated strings are categorized as statements, with
subcategories such as assignment statements, if-statements, and while-statements.

Examples:
1. Natural languages and computer languages are formal languages.
2. The Kleene closure of the language {00, 01, 10, 11} is the language of all strings of
even length.
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3. The left derivative {bee}\English includes the following strings: f, n, p, r, s, t, tle,
ts, keeper, swax, feater, ping.
4. The substitution 0 �→ {00, 01}, 1 �→ {10, 11} over the free monoid {0, 1}∗ is the
language of all strings of even length.
5. Given the alphabet {a, b}, define the morphism φ: {a, b} −→ {a, b}∗ by the replace-
ments φ(a) = ab and φ(b) = ba, and define the string wn by the recursion w0 = a and
wn+1 = φ(wn). Then,

w1 = ab, w2 = abba, w3 = abbabaab, w4 = abbabaabbaababba, . . . .
6. In Example 5 each word wn is a prefix of the next word wn+1. The Thue ω-word is
the infinite word limn→∞ wn.
7. Given the alphabet {a, b}, define the morphism ρ: {a, b} −→ {a, b}∗ by the replace-
ments ρ(a) = ab and ρ(b) = a, and define the string wn by the recursion w0 = a and
wn+1 = φ(wn). Then,

w1 = ab, w2 = aba, w3 = abaab, w4 = abaababa, . . . .
8. In Example 7 each word wn is a prefix of the next word wn+1. The Fibonacci ω-word
is the infinite word limn→∞ wn.
9. A language is regular if and only if it is the language of strings accepted by some
finite state recognizer.

16.3.3 GRAMMARS AND THE CHOMSKY HIERARCHY

Definitions:

A phrase-structure grammar (or unrestricted grammar or type 0 grammar)
is a quadruple G = (N,T, S, P ) such that:

• N is a finite nonempty alphabet of symbols called nonterminals;
• T is a finite nonempty alphabet, disjoint from N , of symbols called terminals;
• S is a nonterminal called the start symbol;
• P is a finite set of production rules of the form α → β, where α is a string in

N ∪ T that contains at least one nonterminal and β is a string in N ∪ T .

The antecedent of a production α → β is α.

The consequent of a production α → β is β.

The string y is directly derivable from the string x with respect to the grammar G
if there is a production rule u → v ∈ P and if there are strings w1, w2 ∈ (N ∪ T )∗ such
that x = w1uw2 and y = w1vw2.

The direct derivability relation x =⇒G y (or x =⇒ y, when the grammar G is
implicitly understood) means that y is directly derivable from string x.

A derivation of the string y from the string x is a sequence of direct derivations
x =⇒ z1, z1 =⇒ z2, . . . , zn =⇒ y. This is sometimes called parsing .

The string y is derivable from the string x with respect to the grammar G if there is
a derivation of y from x. Notation: x =⇒∗ y.

The Chomsky normal form for a production rule is A → BC, where B and C
are nonterminals or the form A → a where a is a terminal.

The language generated by the grammar G is the language L(G) = {x ∈ T ∗ |
S =⇒∗ x }.
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Grammars G1 and G2 are equivalent if L(G1) = L(G2).

A leftmost derivation x =⇒left y is a derivation x =⇒ y in which at each step the
leftmost nonterminal is replaced.

The leftmost language generated by the grammar G is the language Lleft(G) of
strings of terminals with leftmost derivations from the start symbol S.

A grammar G = (N,T, S, P ) is length-increasing (or of type 1) if |u| ≤ |v| for all
u → v ∈ P . (However, the production S → λ is allowed, provided that S does not
appear in the consequents of rules in P .)

A grammar G = (N,T, S, P ) is context-sensitive if for each production u → v ∈ P ,
the antecedent and consequent have the form u = u1Au2 and v = u1xu2, for u1, u2 ∈
(N ∪ T )∗, A ∈ N,x ∈ (N ∪ T )+. (The production S → λ is allowed, provided that S
does not appear in the right-hand members of rules in P .)

A grammar G = (N,T, S, P ) is context-free (or of type 2) if the antecedent of each
production u → v ∈ P is a nonterminal.

An L-system is a production-based model for growth and life development.

A grammar G = (N,T, S, P ) is monotonic if the consequent of each production (except
possibly S → λ) has at least as many symbols as the antecedent, and S does not occur
in any consequent.

A grammar G = (N,T, S, P ) is linear if each production u → v ∈ P has its antecedent
u ∈ N and its consequent v ∈ T ∗ ∪ T ∗NT ∗.

A grammar G = (N,T, S, P ) is right-linear if each production u → v ∈ P has u ∈ N
and v ∈ T ∗ ∪ T ∗N .

A grammar G = (N,T, S, P ) is left-linear if each production u → v ∈ P has u ∈ N
and v ∈ T ∗ ∪ NT ∗.

A grammar G = (N,T, S, P ) is regular (or type 3) if each rule u → v ∈ P has u ∈ N
and v ∈ T ∪ TN ∪ {λ}.
Given a class of grammars, there are some basic decision problems about arbitrary
grammars G1, G2 in the class:

equivalence: are the grammars G1 and G2 equivalent?
inclusion: is the language L(G1) included in the language L(G2)?
membership: given an arbitrary string x, is x an element of L(G1)?
emptiness: is the language L(G1) empty?
finiteness: is the language L(G1) finite?
regularity : is L(G1) a regular language? (see §16.3.2)

The recursive languages are the languages with a decidable membership question.

The various classes of languages are denoted as follows:
RE (type 0): the class of all unrestricted languages;
CS (type 1): the class of all context-sensitive languages;
CF (type 2): the class of all context-free languages;
LIN: the class of all linear languages;
REG (type 3): the class of all regular languages.
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Table 2 Closure properties for Chomsky hierarchy classes.

RE CS CF LIN REG

union yes yes yes yes yes
intersection yes yes no no yes
complement no yes no no yes
concatenation yes yes yes no yes
Kleene star yes yes yes no yes
intersection with

regular languages yes yes yes yes yes
substitution yes no yes no yes
λ-free substitution yes yes yes no yes
morphisms yes no yes yes yes
λ-free morphisms yes yes yes yes yes
inverse morphisms yes yes yes yes yes
left/right quotient yes no no no yes
left/right quotients with

regular languages yes no yes yes yes
left/right derivative yes yes yes yes yes
shuffle yes yes no no yes
mirror image yes yes yes yes yes

Facts:
1. Chomsky hierarchy : The following strict inclusions hold:

REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

2. The language of an unrestricted grammar is recursively enumerable (RE).

3. CS (context sensitive) ⊂ {recursive languages} ⊂ RE (unrestricted).

4. The class of languages generated by monotonic grammars is identical to the class of
languages generated by context-sensitive grammars.

5. L-systems were introduced in 1968 by Aristid Lindenmayer (1922–1990), a Dutch
biologist, to model the development of some plant systems. (See [Gr97].)

6. The classes of languages generated by right-linear or by left-linear grammars coin-
cide. This class is identical to the family of languages generated by regular grammars,
as well as to the class of regular languages (§16.3.2).

7. Lleft(G) ∈ CF (context-free) for each type-0 grammar G.

8. If G is a context-free grammar, then Lleft(G) = L(G).

9. Let G be a context-free grammar. Then there is a grammar G′ = (N,T, S, P ),
with every rule in Chomsky normal form. Moreover, there is constructive method for
transforming grammar G into the grammar G′.

10. Rice’s theorem: Let P be a nontrivial property of recursively enumerable languages
(i.e., a property such that there exists at least one grammar having property P and at
least one grammars not having property P ). Then property P is undecidable.
11. A language is context-free if and only if it is the language accepted by some (pos-
sibly nondeterministic) pushdown automaton.
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12. The following table summarizes the decidability properties of the grammar classes
in the Chomsky hierarchy. In this table U stands for undecidable, D for decidable, and
T for trivial.

RE CS CF LIN REG
(type 0) (type 1) (type 2) (type 3)

equivalence U U U U D
inclusion U U U U D
membership U D D D D
emptiness U U D D D
finiteness U U D D D
regularity U U U U T
intersection yes yes no no yes
complement no yes no no yes

Examples:

1. In the grammar G = (N,T, S, P ), where N = {S, x, y}, T = {0, 1}, and P = {S →
0S1, S → λ}, a derivation of the string 0011 is S =⇒ 0S1 =⇒ 00S11 =⇒ 0011.

2. The following are examples of languages generated by grammar G = (N,T, S, P )
with N = {S, x, y, z}, T = {0, 1, 2}, and the following sets P of productions:

production set P language L(G) class

S → 0x, x → 1y, y → 0x, x → 1, y → λ {01, 0101, 010101, . . .} regular

S → λ, S → 0x, S → 01, x → S1 {0n1n | n ≥ 0} linear

S → λ, S → 0Sx2, 2x → x2, 0x → 01, 1x → 11 {0n1n2n | n ≥ 0} unrestricted

16.3.4 REGULAR AND CONTEXT-FREE LANGUAGES

Definitions:

Given an alphabet V , a regular expression over V is a string w over the alphabet
V ∪

{
ε, ), (, +, ∗

}
that has one of the following forms:

• w ∈ V or w = ε;
• w = (αβ), where α and β are regular expressions;
• w = (α + β), where α and β are regular expressions;
• w = α∗, where α is a regular expression.

The set of all regular expressions over alphabet V is denoted rexV .

The function L maps rexV to the set of all languages over the alphabet V , using the
following rules:

• L(ε) = ∅, and L(a) = {a} for all a ∈ V ;
• L((αβ)) = L(α)L(β), L((α + β)) = L(α) ∪ L(β), and L(α∗) = (L(α))∗.
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A context-free grammar G is ambiguous if there is string x ∈ L(G) having two different
leftmost derivations in G.

A context-free language L is inherently ambiguous if every context-free grammar
of L is ambiguous; otherwise, language L is called unambiguous.

Facts:

1. Kleene theorem: A language L is regular if and only if there is a regular expression e
such that L = L(e).

2. Every context-free language over a one-letter alphabet is regular.

3. Every regular language L can be represented in the form L = h4(h−1
3 (h2(h−1

1 (a∗b)))),
where h1, h2, h3, h4 are morphisms.

4. Each regular language is unambiguous.

5. There are inherently ambiguous linear languages.

6. The ambiguity problem for context-free grammars is undecidable.

7. The length set of a context-free language is a finite union of arithmetical progres-
sions.

8. Every language L can be represented in the form L = h(L1 ∩ L2), as well as in the
form L = L3\L4, where h is a morphism and L1, L2, L3, L4 are linear languages.

9. Pumping lemma for regular languages: If L is a regular language over the alpha-
bet V , then there are numbers p and q such that every string z ∈ L with length |z| > p
can be written in the form z = uvw, with u, v, w ∈ V ∗, where |uv| ≤ q, v �= λ, so that
uviw ∈ L for all i ≥ 0.

10. Pumping lemma for linear languages: If L is a linear language on the alphabet V ,
then there are numbers p and q such that every string z ∈ L with length |z| > p can be
written in the form z = uvwxy, with u, v, w, x, y ∈ V ∗, where |uvxy| ≤ q and vx �= λ,
so that uviwxiy ∈ L for all i ≥ 0.

11. Bar-Hillel (uvwxy, pumping) lemma for context-free languages: If L is a context-
free language over the alphabet V , then there are numbers p and q such that every string
z ∈ L with length |z| > p can be written in the form z = uvwxy, with u, v, w, x, y ∈ V ∗,
where |vwx| ≤ q and vx �= λ, so that uviwxiy ∈ L for all i ≥ 0.

12. Ogden pumping lemma (pumping with marked positions): If L is a context-free
language on the alphabet V , then there is a number p such that for every string z ∈ L and
for every set of at least p marked occurrences of symbols in z, we can write z = uvwxy,
where:

• either each of u, v, w or each of w, x, y contains at least one marked symbol;
• vwx contains at most p marked symbols;
• uviwxiy ∈ L for all i ≥ 0.

13. Let G be a context-free grammar G. Then there is a grammar G′ = (N,T, S, P ),
with every rule in P of the form A → aα, for A ∈ N, a ∈ T, α ∈ (N ∪ T )∗, such
that L(G′) = L(G) − {λ}. Moreover, there is constructive method for transforming
grammar G into the grammar G′, which is said to be in the Greibach normal form.
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14. Let G be a context-free grammar G and (k, l,m) a triple of nonnegative integers.
Then an equivalent grammar G′ = (N,T, S, P ) can be effectively constructed whose
every rule is in one of the following two forms:

• A → xByCz, with A,B,C ∈ N,x, y, z ∈ T ∗, and |x| = k, |y| = l, |z| = m;
• A → x, with A ∈ N,x ∈ T ∗, |x| ∈ length(L(G)).

Such a grammar G′ is said to be in super normal form.

15. Variants of the Chomsky and Greibach normal forms can be obtained by particu-
larizing the parameters k, l, m in the super normal form.

Examples:
1. The following are some regular expressions over {0, 1} and the languages they rep-
resent:

1∗ all strings with no 0s
1∗01∗ all strings with exactly one 0
1∗(0 + ε)1∗ all strings with one or no 0s
(0 + 1)(0 + 1) all strings of length 2
(0 + 1)(0 + 1 + ε) all strings of length 1 or 2.

2. Backus-Naur form (BNF) (or Backus normal form) for specifying computer language
syntax uses context-free production rules. Nonterminals are enclosed in brackets; the
symbol ::= is used in place of →; and all the consequents of the same antecedent are
written in the same statement with the alternative consequents separated by vertical
bars. For instance, in some programming languages, this might be the BNF for the
lexical token called an identifier.

〈identifier〉 ::== 〈letter〉|〈letter〉〈alphameric string〉
〈letter〉 ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
〈alphameric string〉 ::= 〈alphameric〉|〈alphameric string〉〈alphameric〉
〈alphameric〉 ::= 〈letter〉|〈digit〉
〈digit〉 ::= 0|1|2|3|4|5|6|7|8|9

16.3.5 COMBINATORICS ON WORDS

Note: In this subsection, a word is taken to be finite.

Definitions:

A (word) variable over an alphabet V is a symbol (such as x or y) not in V whose
values range over V ∗.

A pattern in a word is a string of word variables.

A pattern is present in a word w ∈ V ∗ if there exists an assignment of strings from V +

to the variables in that pattern such that the word formed thereby is a substring of w.

A square is a word of the pattern “xx”.

A square-free word is a word with no subwords of the pattern “xx”.
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A cube is a word of the pattern “xxx”.

An Abelian square is a word of the form xxp, where xp is any permutation of the
word x.

A word equation over an alphabet V is an expression of the form α = β such that α
and β are words containing letters of an alphabet V and some variables over V .

A word inequality is the negation of a word equation, which is commonly written in
the form α �= β.

A solution to a system S of (finitely many) word equations and word inequalities is
a list of words whose substitutions for their respective variables converts every word
equation and word inequality in the system into a true proposition.

A code is a nonempty language C ⊆ V + such that whenever a word w in V can
be written as a catenation of words in C, the write-up is always unique. That is, if
w = x1 . . . xm = y1 . . . yn, where m,n ≥ 1, and xi, yj ∈ C, then m = n and xi = yi for
i = 1, . . . ,m. This property is called unique decodability .

The code indicator of a word w ∈ V ∗ is the number ci(w) = |V |−|w|.

The code indicator of a language is the sum of the code indicators of all words in
the language.

Facts:

1. Certain patterns are unavoidable in sufficiently long words.

2. Squares are avoidable in alphabets with three or more letters; that is, there are
arbitrarily long square-free words.

3. Cubes are avoidable over two letter alphabets.

4. Although squares are avoidable in three letter alphabets, Abelian squares are un-
avoidable. Every word of length ≥ 8 over V = {a, b, c} contains a subword of the form
xxp, x ∈ V +, where xp is a permutation of x.

5. Abelian squares are avoidable in alphabets with four or more letters.

6. It is decidable (by the so-called Makanin’s algorithm) whether or not a system S of
word equations and inequalities has a solution.

7. It is decidable whether or not a given finite language is a code.

8. Every code C satisfies the inequality ci(C) ≤ 1.

9. If a language C = {w1, . . . , wn} over V is not a code then, according to the so-called
defect theorem, the algebraic structure of C∗ can be simulated by an alphabet with at
most n−1 letters: the smallest free submonoid of V ∗ containing C is generated by at
most n−1 words.

10. The following three conditions are equivalent for any two words u and v:
• {u, v} is not a code;
• u and v are powers of the same word;
• uv = vu.

(This is a corollary to Fact 9.)

11. For every word w ∈ V +, there are a unique shortest word ρ(w) and an integer
n ≥ 1 such that w = (ρ(w))n. (The word ρ(w) is called the primitive root of w.)

12. Lyndon’s theorem: If uv = vw with u, v, w ∈ V ∗, then there exist words x, y ∈ V ∗

and a number n ≥ 0 such that u = xy,w = yx and v = (xy)nx = x(yx)n.
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13. If uv = vu with u, v ∈ V +, then ρ(u) = ρ(v) and, consequently, u and v are powers
of the same word. This is a corollary to Lyndon’s theorem.

14. Assume that words um and vn have a common prefix or suffix of length |u|+ |v|−d,
where u, v ∈ V +,m, n ≥ 1 and d = gcd(|u|, |v|). Then ρ(u) = ρ(v) and |ρ(u)| ≤ d. Thus,
if d = 1 then u and v are powers of the same letter.

15. If um = vn, where m,n ≥ 1, then u and v are powers of the same word. (This is a
corollary to Fact 14.)

16. If umvn = wp, where m,n, p ≥ 2, then ρ(u) = ρ(v) = ρ(w).

Examples:

1. In the alphabet V = {a, b}, the only square-free three-letter words are aba and bab.
The two possible extensions of aba by one letter are abaa, which contains the square aa,
and abab, which is a square. Similarly, both extensions of bab by one letter contain a
square. Thus, squares are unavoidable in words of length ≥ 4 over two-letter alphabets.

2. All solutions for the system xaba = abax, xx �= x, x �= aba, over the alphabet
V = {a, b} are (by the corollary to Lyndon’s theorem) of the form x = (aba)n, n ≥ 2.

16.4 ALGORITHMIC COMPLEXITY
The “complexity of an algorithm” has come to mean, most often, a measure of the
computational effort or cost of execution, relative to the “size” of the problem. Other
factors that may affect this kind of complexity are the characteristics of the particu-
lar input and the values returned by random number generators. The most common
complexity measure is running time, but other measures, such as space utilized and
number of comparisons are sometimes used. Another view of complexity focuses on the
complicatedness of the algorithm, rather than on the effort needed to execute it.

16.4.1 OVERVIEW OF COMPLEXITY

To simplify discussion, it is assumed that every function and algorithm under consider-
ation here has one argument. (Everything is easily generalized to multivariate functions
by regarding the list of arguments as an n-tuple.)

Definitions:

A function f :N → N is asymptotic to a function g:N → N if limn→∞
f(n)
g(n) = 1.

Notation: f(n) ∼ g(n). (See §1.3.3.)

The input size of the argument of an algorithm is either its numeric value or the
number of bits required to specify a value of that argument.

A (cost-based) complexity measure for an algorithm is any of several different
asymptotic measures of cost or difficulty in running that algorithm, relative to the
input size. It is given in big-O notation (or sometimes in Θ-notation). (See §1.3.3.)
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A time-complexity measure of an algorithm is a big-O expression for the number
of operations or the running time needed for a complete execution of that algorithm,
represented as a function of the size of the input.

A space-complexity measure of an algorithm is a big-O expression for the amount
of computational space needed in the execution of that algorithm, represented as a
function of the size of the input.

An algorithm runs in polynomial time if its time-complexity is dominated by a poly-
nomial.

An algorithm runs in polynomial space if its space-complexity is dominated by a
polynomial.

A Kolmogorov-Chaitin complexity measure of an algorithm is a measure based
on the number of instructions of the algorithm, which is taken as an estimate of the
logical complicatedness.

The time-complexity of a computable function is the minimum time-complexity taken
over all algorithms that compute the function.

The parallel time-complexity of a computable function is the minimum time-com-
plexity taken over all parallel algorithms that compute the function.

The space-complexity of a computable function is the minimum space-complexity
taken over all algorithms that compute the function.

A decision function is a function on a countably infinite domain that decides whether
an object is in some specified subset of that domain.

A computable decision function is in class P (polynomial) if its time-complexity is
polynomial.

A computable decision function is in class NP (nondeterministic polynomial) if its
parallel time-complexity is polynomial.

A function g reduces a decision function h to a decision function f if h = f ◦ g.

A computable decision function f is NP-hard if every decision function in class NP
can be reduced to f by a polynomial-time function.

A computable decision function is NP-complete if it is NP-hard and in class NP .

A tractable problem is a set membership problem with a decision function in class P .

Facts:
1. The previous definitions can be rephrased in terms of problems and algorithms:

• a problem is in class P (or tractable) if it can be solved by an algorithm that
runs in polynomial time;

• a problem is in class NP if, given a tentative solution (obtained by any means),
it is possible to check that the solution is correct in polynomial time;

• a problem is NP-complete if it is in class NP and NP-hard.
2. When considering whether a given problem belongs to P or NP, and whether it
might be NP-complete, it is helpful to rewrite the problem, or an associated problem,
as a decision problem (which has a yes/no answer) because decision problems have
been easier to characterize and classify than general problems. For example, see the
description of the traveling salesman problem in Example 3 in this section.
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3. Time-complexity of sorting algorithms is typically measured according to the number
of comparisons needed.

4. The words good, efficient, and feasible are commonly used interchangeably to mean
polynomial-time.

5. Additive and multiplicative constants that are ignored in big-O analysis of an algo-
rithm can sometimes be too large for practical application.

6. That a problem belongs to P does not necessarily imply that it can be solved in a
practical amount of time, since the polynomial bound of its complexity can be of high
degree. Fortunately, however, for most problems in P arising in practical applications,
the polynomial bound is of relatively small degree.

7. Belonging to class NP means that a solution can be checked in polynomial time,
but not necessarily found in polynomial time.

8. When a problem is in class NP, it may be possible to solve the problem for cases
arising in practical applications in a reasonable amount of time, even though there are
other cases for which this is not true. Also, such problems can often be attacked using
approximation algorithms which do not produce the exact solution, but instead produce
a solution guaranteed to be close in some precise sense to the actual solution sought.

9. Every problem in class P is in class NP.

10. It often requires only a small change to transform a problem in class P to one in
class NP. For example, the first four problems in Example 2 (Euler graph, edge cover,
linear Diophantine equation, 2-satisfiability) are in class P, but the similar first four
problems in Example 3 (Hamilton graph, vertex cover, quadratic Diophantine equation,
3-satisfiability), each of which results from seemingly small changes in the respective
problem from class P, are in class NP.

11. To show a problem is NP-complete, the problem can be transformed (in a specific
way) to a problem already known to be NP-complete. This is often much easier than
showing directly that the problem is NP-complete. See [GaJo78] for details.

12. If there is an NP-hard problem that belongs to P, then P = NP.

13. Not all NP problems are NP complete. (See Example 4 for such a problem.)

14. Deciding whether P = NP is the outstanding problem in the theory of computa-
tional complexity. It is the common belief that P �= NP, based on an extensive search
for polynomial-time solutions to various NP problems.

15. The first problem to be shown to be NP-complete was the satisfiability problem
(Example 3). That the satisfiability problem is NP-complete is called Cook’s theorem,
after Steven A. Cook, who discovered it in 1971. [Co71]

16. In 1972 Richard Karp proved that the traveling salesman problem (TSP) (and
many others) were NP-complete. [Ka72]

17. Currently, over 2500 problems (in many areas, including mathematics, computer
science, operations research, physics, biology) are known to be NP-complete. Further
information on NP-complete problems can be found in the “NP-completeness column:
an ongoing guide”, authored by David S. Johnson, in the Journal of Algorithms. See
[Jo81] for the first such column.
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18. Extensive information on NP-completeness (methods of proof, examples, etc.) can
be found in [At99], [GaJo78], [Tu97], and [va90].

19. A more formal approach to complexity, given in terms of Turing machines, appears
in §16.5.

Examples:

1. The following table gives some different input size variable for different problem
problem types:

problem type typical input size parameters

database sorting number of records
graph algorithms number of vertices and/or number of edges
arithmetic computation numbers of digits in the numerals
convex hull construction number of points

2. The following problems are in class P:

• Euler graph: given a graph, determine whether the graph has an Euler circuit;
• edge cover: given a graph G and positive integer n, determine whether there is a

subset E of edges of G with |E| ≤ n and every vertex of G an endpoint of an
edge in E;

• linear Diophantine equation: given positive integers a, b, c, determine whether
ax + by = c has a solution in positive integers x and y;

• 2-satisfiability : given a Boolean expression in conjunctive normal form in which
each sum contains only two variables, determine whether the expression is “sat-
isfiable” (i.e., there is an assignment of 0 and 1 to the variables such that the
expression has value 1);

• circuits: given a graph G and positive integer n, determine whether there is a
subset E of edges of G with |E| ≤ n such that each circuit in G contains an
edge in E;

• linear programming : maximize cx subject to Ãx ≤ b̃ where Ã is a given q × n
matrix, c is a given row vector of length n, and b̃ is a given column vector of
length q (see §15.1.1).

3. The following problems are NP-complete:

• Hamilton graph: given a graph, determine whether the graph has a Hamilton
circuit;

• vertex cover: given a graph G and positive integer n, determine whether there
is a subset V of vertices of G with |V | ≤ n with every edge of G having an
endpoint in V ;

• quadratic Diophantine equation: given positive integers a, b, c, determine whether
the equation ax2 + by = c has a solution in positive integers x, y;

• 3-satisfiability : given a Boolean expression in conjunctive normal form in which
each sum contains only three variables, determine whether the expression is
“satisfiable” (i.e., there is an assignment of 0 and 1 to the variables such that
the expression has value 1);
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• satisfiability : given a Boolean expression in conjunctive normal form, determine
whether the expression is “satisfiable” (i.e., there is an assignment of 0 and 1
to the variables such that the expression has value 1) (see Fact 15);

• traveling salesman problem given a weighted graph and positive number k, de-
termine whether there is a Hamilton circuit of weight at most k (see §10.7.1);

• independent vertex set: given a graph G and a positive integer n, determine
whether G contains an independent vertex set of size at least n;

• knapsack problem: given a set S, values ai and bi for each i ∈ S, and numbers a
and b, determine whether there is a subset T ⊆ S such that

∑
i∈T ai ≤ a and∑

i∈T bigeb (see §15.3.1);
• bin packing problem: given k bins (each of capacity c) and a collection of weights,

determine whether the weights can be placed in the bins so that no bin has its
capacity exceeded (§15.3.2);

• 3-coloring : given a graph G, determine whether its vertices can be colored with
3 colors;

• clique problem: given a graph G and positive integer n, determine whether G has
a clique of size at least n;

• dominating set: given a graph G and positive integer n, determine whether G
has a dominating set of size at most n;

• graph isomorphism: given two graphs, determine whether they are isomorphic.

4. The following problem is an NP problem, but not NP complete: given vertices v, w
in graph G, determine whether v and w are joined by a path in G.

16.4.2 WORST-CASE AND AVERAGE-CASE ANALYSIS

Definitions:

A worst-case complexity measure of an algorithm is based on the maximum com-
putational cost for any input of that size. It is usually expressed in big-O asymptotic
notation (or sometimes Θ-notation) as a formula based on the input size variables.

An average-case complexity measure of an algorithm is based on the expected
computational cost over a random distribution of its inputs of a given size.

Facts:

1. Algorithmic analysis of deterministic algorithms often assumes a uniform random
distribution of the possible inputs, when the actual distribution is unknown.

2. For sorting algorithms, an average-case analysis may assume that all input permuta-
tions of the keys to be sorted are equally likely. In practice, however, some permutations
may be far more likely than others, e.g., already sorted, almost sorted, or reverse sorted.

3. The input size measures for average-case analysis are usually the same as for worst-
case analysis.
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Examples:

1. The following table gives the worst-case running times of some sorting algorithms
[CoLeRi90], where the input size parameter n is the number of records:

sorting method worst-case complexity

insertion sort Θ(n2)
selection sort Θ(n2)
bubble sort Θ(n2)
heapsort Θ(n log n)
quicksort Θ(n2)
mergesort Θ(n log n)

2. The following table gives the worst-case running times of some graph algorithms,
based on input size parameters |V | and |E|, which are the numbers of vertices and edges:

graph algorithm worst-case complexity

Kruskal’s MST algorithm Θ(|E| log |V |)
Dijkstra’s shortest-path algorithm

with linked-list priority queue O(|V |2)
Dijkstra’s shortest-path algorithm

with heap-based priority queue O(|E| log |V |) [CoEtal90]
Dijkstra’s shortest-path algorithm

with Fibonacci-heap priority queue O(|E| + |V | log |V |) [CoEtal90]
Edmonds-Karp max-flow algorithm O(|V | · |E|2)

3. The following table gives the worst-case running times of some plane convex hull
algorithms (§13.5.1), based on the number n of points supplied as input:

convex hull algorithm worst-case complexity

Graham scan Θ(n log n)
Jarvis march (“gift-wrapping”) Θ(nh), h = # corners (convex hull)
QuickHull O(n2)
MergeHull O(n log n)

4. The following table gives the average-case running times of some sorting algorithms,
where the input size parameter n is the number of records:

sorting method average-case complexity

insertion sort O(n2)
selection sort O(n2)
bubble sort O(n2)
heapsort O(n log n)
quicksort O(n log n)
mergesort O(n log n)
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Algorithm 1: Randomized quicksort.

procedure randomized-quicksort(A, p, r)
if p < r then
begin

i := random(p, r)
exchange A[p] and A[i]
q := partition(A, p, r)
randomized-quicksort(A, p, q)
randomized-quicksort(A, q + 1, r)

end {subarray A[p . . r] is now sorted}

5. Randomized quicksort (Algorithm 1) [CoLeRi90]: A subarray from index p to
index r of an array A is sorted, using an external subroutine random(p, r) that generates
a number in the set {p, . . . , r} within O(1) worst-case running time. Another external
subroutine partition(A, p, r) rearranges the subarray A[p . . r] and returns an index q,
p ≤ q < r, such that for i = p, . . . , q, A[i] ≤ A[q] and such that for i = q + 1, . . . , r,
A[i] > A[q]; this subroutine runs in Θ(r − p) worst-case time.

To sort n keys, randomized quicksort takes Θ(n2) time in the worst case (when
unlucky enough to have partition sizes always unbalanced), but only Θ(n log n) time in
the average case (partition sizes are usually at least a constant fraction of the total).

6. Convex hull: For certain distributions of n points in the plane, the expected
value E[h] of the number of vertices on the convex hull, is known. This bound im-
plies that the average-case running time of Jarvis’s march is an additional factor of n
greater:

average-case
distribution E[h]

running time

uniform in convex polygon O(log n) O(n log n)

uniform in circle O(n
1
3 ) O(n

4
3 )

normal in plane O(
√

log n) O(n
√

log n)

16.4.3 LOWER BOUNDS

Lower bounds on running times of algorithms are typically given as functions of input
size using Ω-notation (§1.3.3).

Definitions:

An existential lower bound for an algorithm is a lower bound for its running time
that holds for at least one input.

An existential lower bound for a problem is a lower bound for every algorithm that
could solve that problem.

A comparison sort is a sorting method that rearranges records based only on com-
parisons between keys.
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The Euclidean minimum spanning tree (or Euclidean MST) problem has as
input vertices a set of n points in the plane and as output a spanning tree of minimum
total edge-length.

A reduction of a problem A to another problem B is the following sequence of steps:
• the input to problem A is transformed into an input to problem B;
• problem B is solved on the transformed input;
• the output of problem B is transformed back into a solution to problem A for

the original input.

An f(n) time reduction of problem A to problem B is a reduction such that the time
for the three steps together is f(n).

Facts:
1. For a given model of computation, if problem A has a lower bound of T (n) and it
reduces in f(n) time to problem B, then problem B has a lower bound of T (n) − f(n).
2. Every comparison sort on n records requires Ω(n log n) comparisons in the worst
case.
3. Computing the Euclidean minimum spanning tree on n points takes Ω(n log n) time
in the worst case.
4. Unlike the Euclidean MST problem, most graph problems have no known nontrivial
lower bound. Some graph algorithms, however, have lower bounds on their implemen-
tation.
5. Running Dijkstra’s algorithm (§10.3.2) on a directed graph with |V | vertices takes
Ω(|V | log |V |) time in the worst case.
6. Finding the vertices for the convex hull of n points in the plane, in any order, takes
Ω(n log n) time in the worst case.
7. Constructing the Voronoi diagram (§13.5.2) on n points in the plane takes in the
worst case Ω(n log n) time.

Examples:
1. An O(n)-time reduction of sorting to a gift-wrap of a convex hull: Given a set
of n positive numbers {x1, . . . , xn}, first produce in Θ(n) time their respective squares
{x2

1, . . . , x
2
n}. Since each point (xj , x2

j ) lies on the parabola given by y = x2, the Jarvis
march on the convex hull of the points (xj , x2

j ) is a list of points, ordered by abscissa.
Sequentially read off the first coordinate of every point of the convex hull in Θ(n) time,
thereby producing the sorted list of numbers. This implies that finding the gift-wrapped
convex hull of n points requires at least Ω(n log n) − Θ(n) = Ω(n log n) time.
2. An O(n)-time reduction of sorting numbers to Dijkstra’s algorithm: To sort a list of
n nonnegative numbers {x1, . . . , xn}, first create a star graph, with vertices {v0, . . . , vn},
and with an edge (v0, vi) weighted xi, for 1 ≤ i ≤ n. Next designate v0 as the root vertex,
and apply Dijkstra’s algorithm. Dijkstra’s algorithm proceeds according to increasing
order of the edge weights, which yields the sorted order. This implies that Dijkstra’s
algorithm requires at least Ω(n log n) − Θ(n) = Ω(n log n) time.
3. An O(n)-time reduction of sorting numbers to a Voronoi diagram: To sort n num-
bers {x1, . . . , xn}, create n points { (xi, 0) | 1 ≤ i ≤ n } in the Euclidean plane. The
Voronoi diagram consists of the n−1 bisectors separating adjacent points (xi, 0) on the
line y = 0. Since the Voronoi diagram description includes ordering of Voronoi edges
around each Voronoi vertex, the Voronoi diagram gives the ordering of the bisectors
and hence the n numbers. This implies that the Voronoi diagram requires at least
Ω(n log n) − Θ(n) = Ω(n log n) time.
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4. An O(n)-time reduction of sorting numbers to Euclidean MST: To sort n numbers
{x1, . . . , xn}, create n points { (xi, 0) | 1 ≤ i ≤ n } in the Euclidean plane. The Eu-
clidean MST of this set contains an edge between points (xi, 0) and (xj , 0) if and only
if the numbers xi and xj are consecutive in the sorted list of numbers. The Euclidean
MST is easily converted back to a sorted list of numbers in O(n) time.This implies that
Euclidean MST requires at least Ω(n log n) − Θ(n) = Ω(n log n) time.

16.5 COMPLEXITY CLASSES
From a formal viewpoint, complexity theory is concerned with classifying the difficulty
of testing for membership in various languages. This means deciding whether any given
string is in the language. The general application of complexity theory is achieved by
encoding decision problems on natural topics such as graph coloring and finding integer
solutions to equations as set membership problems.

16.5.1 ORACLES AND THE POLYNOMIAL HIERARCHY

Throughout this section, whenever the alphabet is unspecified, it may be assumed to
be the binary set {0, 1}. Also, throughout this section a Turing machine is assumed to
have among its states a unique acceptance state qA and a unique rejection state qR. All
other states continue the computation.

Definitions:

A language over an alphabet is a set of strings on that alphabet (see §16.1.1).

A nondeterministic Turing machine is a 5-tuple M = (K, s, h,Σ,∆) otherwise
like a deterministic Turing machine, except that the transition function ∆ maps each
state-symbol pair (q, b) to a set of state-symbol-direction triples.

An oracle for a language L is a special computational state to which a machine
presents a string w, which switches to special state Y (“yes”) if w ∈ L and to special
state N (“no”) if w �∈L.

An oracle Turing machine M is a 6-tuple M = (K, s, h,Σ, δ or ∆, L), equipped with
an oracle for language L and with a special second tape on which it can write a string
over the alphabet of language L (which might be different from Σ). Aside from oracle
steps, it is a Turing machine.

A Turing machine M accepts string w if there exists a computational path from the
starting configuration with input w to the acceptance state qA.

A Turing machine M rejects string w if it does not accept w. (Either M halts in
rejection state qR or does not halt.)

The language accepted by a Turing machine M is the set of all the strings it
accepts. It is denoted L(M).
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The Turing machine M decides the language L(M) if it always halts, even for input
strings not in L(M).

The time TimeM(w) taken by Turing machine M on input word w is the number of
steps on the shortest accepting path if M accepts w, the number of steps on the longest
rejecting path if M rejects w but always halts, and +∞ otherwise.

The space SpaceM(w) taken by Turing machine M on input word w is the maximum
number of different tape cells on which M writes during the computation, possibly +∞.

The time complexity of a Turing machine M is the function t defined by t(n) =
max

{
TimeM (x)

∣∣ |x| = n
}
.

A Turing machine M has polynomial time complexity if there exists a polynomial
function p(n) such that {TimeM (x) ≤ p(n) | n = 0, 1, . . . }.
A Turing machine M has polynomial space complexity if there exists a polynomial
function p(n) such that {SpaceM (x) ≤ p(n) | n = 0, 1, . . . }.
The complexity class P contains every language that can be decided by a deterministic
TM with polynomial time complexity.

The complexity class PSPACE contains every language that can be decided by a
deterministic TM with polynomial space complexity.

The complexity class NP contains every language that can be decided by a nonde-
terministic TM with polynomial time complexity.

For any language L, the complexity class PL contains every language that is decided
in polynomial time by a deterministic TM with oracle L.

For any language L, the complexity class NPL contains every language that is decided
in polynomial time by a nondeterministic TM with oracle L.

For any class C of languages, the complexity class PC contains every language that
is decidable in polynomial time by a deterministic TM with oracle L ∈ C.

For any class C of languages, the complexity class NPC contains every language that
is decidable in polynomial time by a nondeterministic TM with oracle L ∈ C.

The complexity class Σp
n is defined recursively:

Σp
k =

{
P if k = 0
NPΣp

k−1 if k ≥ 1

The polynomial hierarchy PH is the collection comprising every language A for
which there exists an n such that A ∈ Σpn.

The polynomial hierarchy is said to collapse (to the ith rank) if PH = Σpi , for some
i ≥ 0.

Complexity class coNP = Πp1.

For n ≥ 0, the complexity class Πp
n contains every language A such that A ∈ Σpn.

For any class C, the complexity class PC = {L | there is B ∈ C such that L ≤pT B}.

Complexity class ∆p
0 = P. For n ∈ Z+, the class ∆p

n = PΣp
n−1 .

The language A is sparse if there exists a polynomial p(n) such that for every n ∈ N ,
there are at most p(n) elements of length n in A.
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Facts:

1. The following identity for complexity classes holds:

Σp0 = Πp0 = ∆p0 = ∆p1 = P.

2. For n ≥ 0, the following relationships hold:

∆pn ⊆ Σpn ∩ Πpn
⊆Σp

n⊆
⊆Πp

n⊆ Σpn ∪ Πpn ⊆ ∆pn+1.

3. The polynomial hierarchy PH is a subset of the complexity class PSPACE.

4. If PH = PSPACE, then the polynomial hierarchy collapses.

5. Downward separation: If Σpn = Σpn+1, then PH = Σpn. In particular, P = NP if and
only if P = PH.

6. Downward separation: If Σpn = Πpn, then PH = Σpn.

7. Complexity class NP = Σp1.

8. The complexity class Σpn is closed under union and intersection, for all n ≥ 0.

9. PNP∩coNP = NP∩ coNP. More generally, PΣp
n∩Πp

n = Σpn ∩Πpn and P∆p
n = ∆pn, for all

n ≥ 0.

10. Upward separation: Nondeterministic exponential time
(⋃

c>0 NTIME[2cn]
)

is
equal to deterministic exponential time

(⋃
c>0 DTIME[2cn]

)
if and only if NP − P con-

tains no sparse sets.

11. Succinct certificates: For every language in NP there is a proof scheme in which
each member (and only members) has a polynomial-size “proof” of membership that
can be checked in deterministic polynomial time. Such a short membership proof is
sometimes called a succinct certificate.

Examples:

1. Logical proposition problems: The problem of deciding whether a particular as-
signment of TRUE-FALSE values to the variables satisfies a logical proposition is in P.
Deciding whether a proposition has an assignment that satisfies it is in NP. Deciding
whether all assignments satisfy it (i.e., whether the proposition is a tautology) is in
coNP.

2. Graph isomorphism problems: Deciding whether a given vertex bijection between
two graphs realizes a graph isomorphism is in class P. Deciding whether two graphs are
isomorphic is in class NP.

3. Graph coloring problems: Deciding whether an assignment of colors from a set of
three colors to the vertices of a graph is a proper coloring is in P. Deciding whether a
graph has a proper 3-coloring is in NP.

4. Unique maximum clique problem: Define UMC to be the set of graphs G with a
clique U ⊆ VG such that every other clique is strictly smaller than U . Then UMC is in
the class ∆p2 = PNP.

5. To prove by succinct certificate that a given graph has some clique of size at least k,
one can provide a list of k adjacent vertices that are mutually adjacent. (The mutual
adjacency condition for the k vertices can be verified in polynomial time.)
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16.5.2 REDUCIBILITY AND NP-COMPLETENESS

Definitions:

The language A over alphabet Σ is polynomial-time reducible (or m-p-reducible)
to the language B, denoted A≤p

mB, if there exists a polynomial-time computable func-
tion f such that x ∈ A if and only if f(x) ∈ B, for each x ∈ Σ∗.

The language A is NP-hard if every language in class NP is polynomial-time reducible
to A.

The language A is NP-complete if A is NP-hard and A ∈ NP.

The language A is C-hard if C is a class of languages that represent computational
problems and every language in class C is polynomial-time reducible to A.

The language A is C-complete if A is C-hard and A ∈ C.

The language A is Turing-p-reducible to the language B, denoted A≤p
TB if there is

a deterministic oracle TM MB that decides language A in polynomial time.

The language A is C-Turing-p-hard if C is a class of languages that represent compu-
tational problems and every language in class C is Turing-p-reducible to A.

The language A is C-Turing-p-complete if A is C-Turing-p-hard and A ∈ C.

Facts:

1. For most NP-complete problems, showing membership in NP is easy.

2. For integer linear programming, however, it is easy to show NP-hardness, but show-
ing membership in NP is nontrivial.

3. Polynomial-time reducibility is also called Karp reducibility after R. M. Karp.

4. Turing-p-reducibility is also called Cook reducibility after S. A. Cook.

5. The complement of any NP-complete problem is coNP-complete.

6. If A is polynomial-time reducible to B, then A is Turing-p-reducible to B.

7. If A ≤pm B and B ≤pm C, then A ≤pm C.

8. If A ≤pT B and B ≤pT C, then A ≤pT C.

9. Downward closure: If A ∈ Σpn and B ≤pm A, then B ∈ Σpn, for every n ≥ 1. In
particular, if any NP-complete set is in P, then P = NP.

10. Karp-Lipton theorem: If there is a sparse NP-≤pT -hard set, then PH = Σp2.

11. If there is a sparse NP-≤pT -complete set, then PH = ∆p2.

12. Mahaney’s theorem: If there is a sparse NP-hard (or NP-complete) set, then
P = NP.

13. Ladner’s theorem: If P �= NP, then there exists a set in NP − P that is not
NP-complete.

14. A large catalog of NP-complete problems appears in [GaJo79]. A few of the most
commonly cited appear in §16.4.1.
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Examples:

1. For examples of NP-complete problems, see §16.4.1 Example 3.
2. Quantified Boolean formulas: Let QBF be the class of true statements of the form

(∃x1) (∀x2) (∃x3) (∀x4) . . . (Qzxz) [F (x1, x2, . . . , xz)],
where F is a quantifier-free formula over the Boolean variables x1, . . . , xz and where Qi
is ∃ if z is odd and ∀ if z is even. Then QBF is PSPACE-complete.

3. Tautologies problem: The classic coNP-complete language is the set TAUTOLOGY
of all logical propositions that are satisfied by every assignment of logical values to its
variables.

4. Graph isomorphism problem: It is not known whether the set GI of isomorphic
graph pairs is in coNP or whether GI is NP-complete, though it is known that GI is
NP-complete only if the polynomial hierarchy collapses.

16.5.3 PROBABILISTIC TURING MACHINES

Definitions:

A probabilistic Turing machine is a nondeterministic Turing machine M with ex-
actly two choices at each step. Each such choice occurs with probability 1

2 , and is
independent of all previous choices.

The acceptance probability pM (w) that a probabilistic Turing machine accepts input
word w is the sum of the probabilities over all acceptance paths of computation.

A probabilistic Turing machine M accepts language L with one-sided error if
pM (w) > 1

2 if w ∈ L

pM (w) = 0 if w �∈L.

A probabilistic Turing machine M accepts language L with two-sided error if
pM (w) > 1

2 if w ∈ L

pM (w) ≤ 1
2 if w �∈L.

A probabilistic Turing machine M accepts language L with bounded two-sided
error if for some ε > 0

pM (w) > 1
2 + ε if w ∈ L

pM (w) < 1
2 − ε if w �∈L.

The complexity class RP of random polynomial-time languages is the class of
languages that are decided by Turing machines with one-sided error in polynomial time.

The complexity class coRP contains the language A if A ∈ RP.

The complexity class ZPP is the intersection RP ∩ coRP.

The complexity class PP of probabilistic polynomial-time languages is decided
by Turing machines with two-sided error in polynomial time.

The complexity class BPP of bounded-error probabilistic polynomial-time
languages is decided by Turing machines with bounded two-sided error in polynomial
time.
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Facts:

1. ZPP is exactly the class of languages accepted by error-free probabilistic Turing
machines running in expected polynomial time.

2. ZPP = RP ∩ coRP ⊆ RP ⊆
⊆coRP⊆ RP ∪ coRP ⊆ BPP ⊆ PP ⊆ PSPACE.

3. RP ⊆ NP ⊆ PP.

4. PZPP = ZPP; PBPP = BPP.

5. BPP ⊆ Σp2 ∩ Πp2.

6. PH ⊆ PPP.

7. PP is closed under all Boolean operations.

8. If NP ⊆ BPP then BPP = PH and RP = NP.

9. PP is the class of languages L that for some Turing machine M running in polynomial
time and given access to a fair two-sided coin has the property that, for each x, x ∈ L
if and only if M accepts x with probability greater than 1

2 .

10. It remains an open question whether BPP, RP, coRP, or ZPP have complete lan-
guages.

Examples:

1. SAT ∈ PP : Consider a probabilistic polynomial-time Turing machine M that,
given a proposition F , immediately flips its coin. If the result is “heads”, then propo-
sition F is accepted and machine M halts. If “tails”, then the machine, via a series
of coin flips, randomly assigns each variable to be either true or false, and ultimately
accepts F if the resulting assignment satisfies the proposition. Thus, F is accepted with
probability exactly 1

2 if F is unsatisfiable, but is accepted with probability at least 1
2 + 1

2k

if F is satisfiable, where k is the number of logical variables in F . Thus, SAT ∈ PP.
This implies that NP ⊆ PP, since the language SAT is NP-complete.

2. MAJORITY-SAT is PP-complete: The language MAJORITY-SAT is the set of
(quantifier-free) Boolean formulas F such that F is satisfied by more than half of the
possible variable assignments.

3. PRIMES ∈ ZPP : The language PRIMES consists of the bitstrings that repre-
sent prime numbers when interpreted as binary numerals. If the Extended Riemann
Hypothesis holds, then PRIMES ∈ P .

4. Equality of polynomial products: Given two lists of rational-coefficient polynomials,
where each polynomial in the lists has been specified by a list of (coefficient,degree) pairs,
the problem of deciding whether the product of the polynomials in the first list yields
the same polynomial as the product of the polynomials in the second list is in the class
coRP.

Intuitively, this is because if the two products are equal, then they will evaluate to
the same value on any argument, yet it can be argued that if an argument is chosen in an
appropriate “random” fashion the products evaluated at that argument will probably
differ if the product polynomials are not identical.
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16.6 RANDOMIZED ALGORITHMS

Some general randomization principles for algorithms have many specific applications.
In particular, random algorithms from number theory have applications in cryptogra-
phy and fingerprinting, Also, randomized algorithms for partitioning, for searching and
sorting, and for graph problems such as mincut and matching, including some heuristics
for NP-complete problems, have applications in testing and applications for parallel or
distributed environments.

16.6.1 OVERVIEW AND GENERAL PARADIGMS

Most randomized algorithms follow a few general paradigms that guide the effective use
of probabilistic strategies. For many further topics not covered here, see the excellent
survey papers [Ka91] and [We83] and also the textbook [MoRa95].

Definition:

A randomized algorithm is an algorithm that makes random choices during its exe-
cution. Such random choices can be guided by the output of a random (or, in practice,
pseudo-random) number generator.

Facts:

1. Intuitively, the power of randomization is analogous to the standard game-theoretic
fact that probabilistic game strategies are substantially more effective than deterministic
ones.

2. In the game-theoretic analogy, an algorithm can be regarded as a player, and the
problem to be solved can be regarded as an adversary trying to present the player with
input instances on which the algorithm exhibits worst case performance.

3. If an algorithm is deterministic, then the game-theoretic adversary knows in advance
the entire strategy of the player. Thus, the worst case instances are well defined and
can be presented as input to the algorithm.

4. If an algorithm is probabilistic, then the game-theoretic adversary does not know
in advance the output of the random number generator that guides part of the algo-
rithm’s choices. In particular, worst case instances under deterministic strategies may
be smoothed out by randomization.

5. Worst case instances of a randomized algorithm occur when the algorithm performs
badly for the overwhelming majority of its probabilistic choices.

6. Many problems have no known deterministic algorithms to match the efficiency of
randomized algorithms. Even for problems for which efficient deterministic algorithms
are known, randomized algorithms are often remarkably easier to understand and im-
plement.

7. Abundance of witnesses paradigm: Deciding whether a given input has a certain
property sometimes reduces to finding a combinatorial object “witnessing” the property.
When the space of all potential witnesses is too large to be searched exhaustively, it
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sometimes suffices to inspect a small random sample, selected so that one of the elements
of the sample will be a suitable witness with very high probability.

8. Random sampling : Sometimes a small random sample is indicative of the popula-
tion as a whole.

Examples:

1. Cryptography : Most of public-key cryptography is based on the sharp dichotomy
between the efficiency of deciding whether a number is prime or composite and the
apparent hardness of actually factoring composite numbers.

2. Fingerprinting: A large data object is represented by a much smaller “fingerprint”
such that, with very high probability, distinct objects map to distinct fingerprints. A
similar strategy is used for “hashing” (§17.4) where large objects are mapped to much
smaller keys with very low probabilities of collisions.

3. Testing identities: It is often possible to check if an algebraic expression is identically
equal to zero by substituting random values for the variables and checking whether the
expression evaluates to zero.

4. Symmetry breaking : It is often necessary for a set of distributed or parallel processes
to come collectively to an arbitrary but consistent decision among a set of indistinguish-
able possibilities. There is a method to break such symmetries using randomization and
for an indication that gives an efficient parallel perfect matching algorithm, as well as
applications to many protocols for distributed environments, to computation in the
presence of errors, and to Byzantine agreements.

5. Load balancing : For problems involving choice between a number of resources, such
as processors or communication links in parallel or distributed networks, randomization
can be useful in spreading out the load.

6. The probabilistic method: The probabilistic method is to demonstrate that a combi-
natorial object of interest occurs with non-zero probability in a suitably defined probabil-
ity space. Sometimes the probabilistic method yields efficient algorithmic constructions
rather than mere existential arguments.

16.6.2 LAS VEGAS AND MONTE CARLO ALGORITHMS

Randomized algorithms are classified into two types — Monte Carlo algorithms and Las
Vegas algorithms.

Definitions:

A Monte Carlo algorithm has bounded running time and produces correct output
with probability bounded away from zero.

The success amplification method for a Monte Carlo algorithm is to perform k
independent runs of the algorithm.

A Las Vegas algorithm always produces correct output. However, its running time is
a random variable, whose expectation and variance must be quantified in the analysis
of the algorithm.

c© 2000 by CRC Press LLC



The success amplification method for a Las Vegas algorithm is to perform k
2

independent Las Vegas runs of 2E[T ] steps each.

The Monte Carlo to Las Vegas transformation, starting from a Monte Carlo
algorithm, is the Las Vegas algorithm of repeatedly running that Monte Carlo algorithm
until a success occurs.

The Las Vegas to Monte Carlo transformation, starting from a Las Vegas algo-
rithm, is the Monte Carlo algorithm obtained by running the Las Vegas scheme for
kE[T ] steps and halting, where E[T ] is the expected Las Vegas running time.

Facts:

1. If the probability of success of a single run is p, then the probability under the success
amplification method that k independent runs fail is (1 − p)k. Thus, the probability of
success becomes 1 − (1 − p)k.

2. If p is the probability of success of a Monte Carlo algorithm, then the expected
number of Las Vegas trials before a success occurs is

p + 2(1 − p)p + 3(1 − p)2p + 4(1 − p)3p + · · · = 1
p .

3. Markov’s inequality: The probability that a positive random variable exceeds k
times its expectation is at most 1

k .

4. Markov’s inequality yields a general method to bound variances of Las Vegas algo-
rithms. If T is the running time of a Las Vegas algorithm, then

Pr[T > kE[T ] ] < 1
k .

5. The probability that a transformed Las Vegas to Monte Carlo algorithm is successful
is at least 1 − 1

k .

6. If the expected running time of a Las Vegas algorithm is E(T ), then the running
time of the amplified algorithm is kE[T ]. However, the probability of success becomes
1−( 1

2 )
k
2 , since each 2E[T ] run has probability of failure at most 1

2 . Thus, the probability
that k2 independent runs fail is at most (1

2 )
k
2 .

Examples:

1. A database problem: In a large database whose keys are stored in no particular
order, find a key that is not contained in that database, within time O(N), where N is
the size of the database. (Assume N = 230 and that the keys are 32 digits long.) This
would match the natural lower bound of Ω(N), the time required just to read the entire
database. The deterministic strategy of sorting and checking for the first missing key
would take time O(N logN), where N = 230 is the size of the database.
• a Monte Carlo randomized strategy : Pick a random 32-digit key and then scan

the database! There are 232 potential 32-digit keys and only N
32 = 225 keys in the

database, a fraction of 225

232 = 2−7. Thus, the probability that a randomly chosen key
is not in the database is at least 1 − 2−7, which is greater than 99%. The running
time is dominated by a single scan of the database to check whether the randomly
chosen key is suitable. Thus, it completes in O(N).

• success amplification: The probability that among k independently chosen random
keys none are found suitable is less than 0.01k = 10−2k; this quantity becomes neg-
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Algorithm 1: In a set A of n distinct keys, find the mth smallest.

input: a set A with n = |A|, and an integer m with 1 ≤ m ≤ n

FIND (A,m)
if A = {s} then return s
else

pick s uniformly at random from A
compute X = { a ∈ A | a < s }
compute Y = { a ∈ A | a > s }
if |X| ≥ m then call FIND(X,m)
if n − |Y | ≤ m then call FIND(Y,m − (n − |Y |))
if |X| < m < n − |Y | then return s

end

ligible, even for very small values of k. The running time of this amplified algorithm
is O(kN).

• from Monte Carlo to Las Vegas: Repeatedly pick random keys until a suitable key
is found. The expected number of trials before a suitable key is found is 1

p < 100
99 .

Thus, the expected running time is O( 100N
99 ) = O(N).

2. A modified database problem: Among the n = N
32 keys of the database of Example 1,

find the mth in increasing lexicographic order, within time O(n). (Algorithm 1 does
this.) The deterministic strategy of sorting would take time O(n log n).

• a Las Vegas randomized strategy : Pick a random key s from the database and consider
the sets X and Y of keys in the database that are smaller and larger, respectively,
than s. If |X| ≥ m, then the problem reduces to finding the mth key in X. If
n − |Y | ≤ m, then the problem reduces to finding the (m−(n−|Y |))th key in Y .
Finally, if |X| < m < n − |Y |, then s is the mth key.

• expected running time: The randomly chosen key s splits the database into pieces
X and Y which are, on average, of size n

2 ,and in most cases substantially smaller
than n. Thus, the problem of looking for a key in a set of size n reduces to a problem
of looking for a key in a set of size “approximately” n

2 and a running time of the
type

T (n) ≈ T (n2 ) + O(n) = O(n)

can intuitively be expected. More precisely, let T (n,m) denote the running time
to find the mth key. Since any of the keys could equally likely be picked as the
splitter s, the expectation E[T (n,m)] satisfies this recurrence:

E[T (n,m)] =
1
nE[T (n−1,m−1)] + 1

nE[T (n−2,m−2)] + · · · + 1
nE[T (n−(m−1), 1)]

+ 1
nE[T (m+1,m)] + 1

nE[T (m+2,m)] + · · · + 1
nE[T (n−1,m)] + cn,

for some constant c. The solution is E[T (n,m)] = O(n), for all m.

•variance: Markov’s inequality bounds the variance of the running time by

Pr[T (n,m) > kE[T (n,m)] ] < 1
k .
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Algorithm 2: Test primality of n with k witnesses.

PRIMALITY TEST(n, k)
input: positive integers n and k with n odd and k > 2

if n is odd then
pick a1, . . . , ak, each ai independently and uniformly at random from [1, n−1]
compute gcd(n, ai) for all 1 ≤ i ≤ k

{gcd(n, ai) can be computed efficiently using Euclid’s algorithm}
if there exists an ai with gcd(n, ai) �= 1 then output “composite” and halt

compute a
n−1

2
i (mod n) for all ai with 1 ≤ i ≤ k

{a
n−1

2
i (mod n) can be computed efficiently by repeated squaring}

if for some ai, a
n−1

2
i �≡ ±1 (mod n) then output “composite” and halt

if for some ai, a
n−1

2
i ≡ −1 (mod n) then output “prime, with high confidence”

and halt
if for all ai, a

n−1
2
i ≡ 1 (mod n) then output “composite, with high confidence”

and halt

3. Algorithm 2, Primality Test, produces correct output with probability at least
1 − ( 1

2 )k. After logn trials of selecting a random integer less than n and testing, the
likelihood is very high for reasonably large n, that a prime number will be obtained.
This follows from the prime number theorem and Markov’s inequality.
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INTRODUCTION

Information structures are groupings of related information into records and organiza-
tion of the records into databases. The mathematical structure of a record is specified
as an abstract datatype and represented concretely as a linkage of segments of computer
memory. General chapter references are [AhHoUl83], [Kn68], and [Kn73].

GLOSSARY
abstract datatype (ADT): a mathematically specified datatype equipped with op-

erations that can be performed on its data objects.

adaptive bubblesort: a bubblesort that stops the first time a scan produces no trans-
positions.

ADT-constructor: any of the three operations string of, set of, or tuple of used to
build more complex ADTs from simpler ADTs.

alphabetic datatype: an elementary datatype whose domain is a finite set of symbols,
and whose only primary operation is a total ordering query.

ambivalent data structure: a structure that keeps track of several alternatives at
many of its vertices, even though a global examination of the structure would deter-
mine which of these alternatives is optimal.

array data structure: an indexed sequence of cells 〈aj | j = d, . . . , u〉 of fixed size,
with consecutive indices.

AVL tree: a binary search tree with the property that the two subtrees of each node
differ by at most one in height.

binary search: a recursive search method that proceeds by comparing the target key
to the key in the middle of the list, in order to determine which half of the list could
contain the target item, if it is present.

binary search tree: a binary tree in which the key at each node is larger than all the
keys in its left subtree, but smaller than all the keys in its right subtree.

binary-search-tree structure: a binary-tree structure in which for every cell, all cells
accessible through the left child have lower keys, and all cells accessible through the
right child have higher keys.

binary-tree structure: a tree structure such that each cell has two pointers.

bubblesort: a sort that repeatedly scans an array from the highest index to the low-
est, on each iteration swapping every out-of-order pair of consecutive items that is
encountered.

cell (in a concrete data structure): a storage unit within the data structure that may
contain data and pointers to other cells.

certificate (for a property of a graph G): another graph that has the specified property
if and only if the graph G has the property.

chaining method (for hash tables): a hashing method that resolves collisions by
placing all the records whose keys map to the same location in the main array into
a linked list (chain), which is rooted at that location, but stored in the secondary
array.
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circular linked list: a set of cells, each with two pointers, one designated as its
forward pointer and the other as its backward pointer, plus a header with one or
more pointers to current cells, such that these conditions hold:
• the sequence of cells formed by following the forward pointers, starting from any

cell, traverses the entire set and returns to the starting cell;
• the sequence of cells formed by following the backward pointers, starting from

any cell, traverses the entire set and returns to the starting cell.

closed hash table: a hash table in which collisions are resolved without the use of
secondary storage space, that is, by probing in the main array to find available
locations.

cluster (in a spanning tree): a set of vertices whose induced subgraph is connected.

clustering property (of a probe function): the undesirable possibility that parts of
the probe sequences generated for two different keys are identical.

collision instance (of a hash function): a pair of different keys for which the value of
the hash function is the same.

collision resolution (of a hashing process): a procedure within the hashing process
used to define a sequence of alternative locations for storage of a record whose key
collides with the key of an existing record in the table.

comparison sort: a sorting method in which the final sorted order is based solely on
comparisons between elements in the input sequence.

concrete data structure: a mathematical model for storing the current value of a
structured variable in computer memory.

database: a set of records, stored in a computer.

datatype: a set of objects, called the domain, and a set of mappings, called primary
operations, from the domain to itself or to the domain of some other datatype.

deheaping : removing the highest priority entry from a heap and patching the result
so that the heap properties are restored.

dictionary : an abstract datatype whose domain is a set of keyed pairs, in which
arbitrary pairs may be accessed directly.

domain (of a datatype): the set of objects within that datatype.

dyadic graph property : a property defined with respect to pairs of vertices.

dynamic structure (for a database): an information structure for the database whose
configuration may be changed, for instance, by the insertion or deletion of elements.

dynamic update operation: (on a graph) an operation that changes the graph and
keeps track of whether the graph has some designated property.

edge-incidence table (for a graph): a dictionary whose keys are the vertices of a
graph or digraph. The data component for each key vertex is a list of all the edges
that are incident on that vertex. Each self-loop occurs twice in the list.

elementary datatype: an alphabetic datatype or a numeric datatype, usually in-
tended for direct representation in the hardware of a computer.

endpoint table (for a graph): a dictionary whose keys are the edges. The data
component for each key edge is the set of endpoints for that edge. If an edge is
directed, then its endpoints are marked as head and tail.

enheaping : placing a new entry into its correctly prioritized position in a heap.
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entry (in a database): a 2-tuple, whose first component is a key , and whose second
component is some data; also called a record.

external sorting method: a method that uses external storage, such as hard disk or
tape, outside the main memory during the sorting process.

far end (of a one-way linked list): the cell that contains a null pointer.

Fibonacci heap: a modification of a heap, using the Fibonacci sequence, that per-
mits more efficient implementation of a priority queue than a heap based on a left-
complete binary tree.

FIFO property (of a database): the property that the item retrieved is always the
item inserted the longest ago. FIFO means “first-in-first-out”.

flat notation (in a postcondition of a primary operation specification): the value X�

of the variable X before the specified operation is executed.

fullness (of a closed hash table): the ratio of the number of records presently in the
table to the size of the table.

generic datatype: a specification in an ADT-template that means that there are no
restrictions whatsoever on that datatype.

hash function (for storing records in a table): a function that maps each key to a
location in the table.

hash table: an array of locations for records (entries) in which each record is identified
by a unique key, and in which a hash function is used to perform the table-access op-
erations (of insertion, deletion, and search), possibly involving the use of a secondary
array to resolve competition for locations.

hashing : storage-retrieval in a large table in which the table location is computed
from the key of each data entry.

header (of a concrete data structure): a special memory unit (but not a cell) that
contains current information about the entire configuration and pointers to some
critical cells in the structure.

heap: a concrete data structure that represents a priority tree as an array.

heapsort: sorting a set of entries by first enheaping them all and then deheaping them
all.

incidence matrix (for a graph): a 0-1 matrix that specifies the incidence relation.
The rows are indexed by the vertices and the columns by the edges. The entry in
the row corresponding to vertex v and edge e is 1 if v is an endpoint of e, and 0
otherwise.

in-place realization (of a sorting method): a method that uses, beyond the space
needed for one copy of each data entry, only a constant amount of additional space,
regardless of the size of the list to be sorted.

insertion sort: a sort that transforms an unsorted list into a sorted list by iteratively
transferring the next item from the remaining items in the unsorted input list and
inserting it into correct position in the sorted output list.

internal sorting method: any method that keeps all the entries in the primary mem-
ory of the computer during the process of rearrangement.

key (in a database entry): a value from an ordered set, used to store and retrieve data.

key domain: the ordered set from which values of keys are drawn.
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key entry (of a record in a table): a value from an ordered set (e.g., integer identifi-
cation codes or alphabetic strings) used to store records in the table.

key randomization: a “preliminary” procedure within the hashing process for map-
ping non-numeric keys (or keys with poor distribution) into (more uniformly) random
distributed integers in the domain of the hash function.

keyed pair: a 2-tuple whose first component, called a key , is used to locate the data
in the second component.

left-child (of a cell in a binary tree structure): the cell to which the first pointer points.

left-complete binary tree: either a binary tree that is complete, or a balanced binary
tree (§9.1.2) such that at depth one less than the maximum, the following hold:
• all nodes with two children are to the left of all nodes with one or no children;
• all nodes with no children are to the right of all nodes with one or two children;
• there is at most one node with only one child, which must be a left-child.

LIFO property (of a database): the property that the item retrieved is always the
item most recently inserted. LIFO means “last-in-first-out”.

linear search: the technique of scanning the entries of a list in sequence, until either
some stopping condition occurs or the entire list has been scanned.

mergesort: a sort that partitions an unsorted list into lists of length one and then
iteratively merges them until a single sorted list is obtained.

near end (of a one-way linked list): the cell that is pointed to by the header and by
no other cell.

nearly complete (property of a binary tree): the possible property that the binary
tree is complete at every level except possibly at the bottom level. At the bottom
level, all the missing leaves are to the right of all the present leaves.

null pointer: a pointer that points to an artificial location, which serves as a signal to
an algorithm to react somewhat differently than to a pointer to an actual location.

numeric datatype: an elementary datatype whose domain is a set of numbers and
whose primary operations are a total ordering query and the arithmetic operators +
(addition), × (multiplication), and − (change of sign).

one-way linked list: a set of cells, each with one pointer, such that:
• exactly one of these cells is pointed to by the header but by no cell;
• exactly one cell contains a null pointer;
• the sequence of cells formed by following the pointers, starting from the header,

traverses the entire set, ending with the cell containing the null pointer.

open hash table: a hash table that uses a secondary array to resolve collisions.

ordered datatype: a datatype with an order relation such that any two elements can
be compared.

pivot (in a quicksort): an entry at which the sequence is split.

plane graph: a planar graph, together with a particular imbedding in the plane.

pointer (to a cell): a representation of that cell’s location in computer memory.

postcondition (of a primary operation): a list of conditions that must hold after the
operation is executed, if the precondition is satisfied when the operation commences.

precondition (of a primary operation): a list of conditions that must hold immediately
before the operation is executed, for the operation to execute as specified.
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primary key : the key component of highest precedence, when the key has more than
one component.

primary operation (for a datatype): a basic operation that retrieves information
from an object in the domain or modifies the object.

priority queue: an abstract datatype whose domain is a set of records, in which only
the entry with the largest key is immediately accessible.

priority tree: a nearly complete binary tree whose nodes are assigned data entries
from an ordered set of “priorities”, such that there is no node whose priority super-
sedes the priority of its parent node.

probe function: a function used iteratively to calculate an alternative location in a
closed hash table when the initial location calculated from the key or the previous
probe location is already occupied.

probe sequence (for a hash table location): the sequence of locations calculated by
the probe function in its effort to find an unoccupied place in the table.

query (to a datatype): a primary or secondary operation that changes nothing and
returns a logical value, i.e., true or false.

queue: an abstract datatype that organizes the records into a sequence, such that
records are inserted at one end (called the back of the queue) and extractions are
made from the other end (called the front).

quicksort: sorting by recursively partitioning a list around an entry called the pivot
so that all smaller items precede the pivot and all larger items follow it.

radix sort: a sort using iterative partitioning into queues and recombining by con-
catenation, in which the partitioning is based on a digit in a numeral.

random access list: an abstract datatype whose domain is a set of records such that
the values of the key field range within an interval of integers a ≤ k ≤ b; this permits
implementations that execute primary operations faster than a general table.

rank (of an element of a finite ordered set): the number of elements that it exceeds or
equals.

rank-counting sort: sorting by calculating the “rank” for each element, and then
assigning each element to its correct position according to its rank.

record: a 2-tuple, whose first component is a key , and whose second component is
some data; also called an entry .

record in a table: a table entry containing a key and some data.

right-child (of a cell in a binary-tree structure): the cell to which the second pointer
points.

root cell (of a tree structure): the cell to which the header points.

scanning a database (or a portion of a database): examining every record in that
database or portion.

searching (a database): seeking either a target entry with a specific key or a target
entry whose key has some specified property.

secondary key : the key component of next highest precedence, when the key has
more than one component.

secondary operation (for a datatype): an operation constructed from primary oper-
ations and from previously defined secondary operations.
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selection sort: a sort that transforms an unsorted list into a sorted list by iteratively
finding the item with smallest key from the remaining items in the unsorted input
list and appending it to the end of the sorted output list.

sequence of : an ADT-constructor that converts a datatype with domain D into a new
datatype, whose domain is the set of all finite sequences of objects from domain D,
and whose primary operations are some sequence operations.

set of : an ADT-constructor that converts a datatype with domain D into a new
datatype, whose domain is the set of all subsets of objects from domain D, and
whose primary operations are set operations.

shakersort: a bubblesort variation that alternates between bubbling upward and sink-
ing downward on alternate scans.

Shellsort: a sorting method that involves partitioning a list into sublists and insertion
sorting each of the sublists.

sinking sort: a “reverse bubblesort” that scans an array repeatedly from the lowest
index to the highest, each time swapping every out-of-order pair of consecutive items
that is encountered.

size (of a cell in a data structure): the number of bytes of computer memory that the
cell occupies.

size (of a hash table): the number of locations in the main array in which the records
are stored. (If chaining is used to resolve collision, the total number of records stored
may exceed the size of the main array.)

sorting algorithm: a method for arranging the entries of a database into a sequence
that conforms to the order of their keys.

sparse certificate: a strong certificate (for a property of a graph G) in which the
number of edges is O(|VG|).

sparse sequence: a sequence in which nearly all the entries are zeros.

stable certificate: a certificate produced by a stable function.

stable (certificate) function: a function that maps graphs to strong certificates such
that:
• A(G ∪H) = A(A(G) ∪H);
• A(G− e) differs from A(G) by O(1) edges, where e is an edge in G.

stack: an abstract datatype that organizes the records into a sequence, in which in-
sertion and extraction are made at the same end (called the top of the stack).

static structure (for a database): an information structure for the database whose
configuration does not change during an algorithmic process.

strong certificate (for a property of a graph G): a certificate graph G′ for G with the
same vertex set as G such that, for every graph H, the graph G∪H has property P
if and only if G′ ∪H has property P.

table: a set of keyed pairs, in which arbitrary pairs may be accessed directly; used as
the domain of a dictionary .

target (of a database search): an entry whose key has been designated as the objective
of the search.

2-3 tree: a tree in which each non-leaf node has 2 or 3 children, and in which every
path from the root to a leaf is of the same length.
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tree structure: a concrete data structure such that the header points to a single cell,
and such that from that cell to each other cell, there is a single chain of pointers.

k-tuple of : an ADT-constructor that converts a list of k datatypes into a new data-
type, whose domain is the cartesian product of the domains of the datatypes in that
list, and whose primary operations are the projection functions from a k-tuple to
each of its coordinates.

two-way incidence structure (for a graph): a pair consisting of an edge-incidence
table and an endpoint table.

two-way linked list: a set of cells, each with two pointers, one designated as its
forward pointer and the other as its backward pointer, plus a header with a forward
pointer and a backward pointer, such that these conditions hold:
• considering only the forward pointers, it is a one-way linked list;
• following the sequence of backward pointers yields the reverse of the sequence

obtained by following the forward pointers.

two-way sequential list: an ADT-template whose domain is strings, in which an
entry is reached by applying the access operations forward and backward. Insertions
are made before or after the current location.

union-find datatype: an abstract datatype whose records are mutually disjoint sets,
in which there is a primary operation to locate the set containing a specified target
element and a primary operation of merging two sets.

17.1 ABSTRACT DATATYPES

Organizing numbers and symbols into various kinds of records is a principal activity of
information engineering. The organizational structure of a record is called a datatype.
Abstractly, a datatype is characterized by a formal description of its domain and of the
intrinsic operations by which information is entered, modified, and retrieved. Providing
the specification at this abstract level ensures that the datatype is independent of the
underlying types of information elements stored within the structure, and independent
also of the hardware and software used to implement this organization. [AhHoUl83],
[Kn68]

17.1.1 ABSTRACT SPECIFICATION OF RECORDS AND DATABASES

Information engineering uses discrete mathematics as a source of models for various
kinds of records and databases. The language of abstract mathematics is used to specify
a complex structure in terms of its elements. Constructors and templates are used to
create new kinds of data from old kinds.

Definitions:

A datatype consists of a set of objects, called the domain, and a set of mappings, called
primary operations, from the domain to itself or to the domain of some other datatype.

The domain of a datatype is its set of objects.

A primary operation for a datatype is a basic operation that retrieves information
from an object in the domain or modifies the object.
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A secondary operation on the domain of a datatype is an operation constructed from
primary operations and previously defined secondary operations.

A query is a primary or secondary operation on a datatype domain that preserves the
values of all its arguments and returns a logical value, i.e., true or false.

An alphabetic datatype is a datatype whose domain is a finite set of symbols. Its
only primary operation is a total ordering query.

A numeric datatype is a datatype whose domain is a set of numbers and whose
primary operations are a total ordering query and the arithmetic operators + (addition),
× (multiplication), and − (change of sign).

An elementary datatype is an alphabetic datatype or a numeric datatype, usually
intended for direct representation in the hardware of a computer.

An abstract datatype (ADT) is a mathematically specified datatype equipped with
operations that can be performed on its data objects.

An ADT-constructor is a template that converts a datatype into a new ADT.

The constructor sequence of transforms a datatype X-type with domain D into a new
datatype “sequence of X-type” whose domain is the set SeqD of all finite sequences of
elements of D. The primary operations of the resulting datatype are:

• header(s), which yields a singleton sequence whose only element is the first
object in the sequence s (or the empty sequence, if the sequence s is empty);

• trailer(s), which deletes the first entry of sequence s (or yields the empty se-
quence, if the sequence s is empty);

• concat(s, t), which concatenates the two sequences;
• first(s), which gives the value of the first entry of a non-empty sequence s;
• append(s, d), which appends to sequence s ∈ SeqD an entry d ∈ D;
• nullseq( ), whose value is the null sequence λ.

The constructor set of converts a datatype X-type with domain D into a new datatype
“set of X-type” whose domain is the set of all subsets of D. The primary operations
are:

• inclusion(S, T ), a query whose value is true if S ⊆ T ;
• union(S, T ), whose value is S ∪ T ;
• intersection(S, T ), whose value is S ∩ T ;
• difference(S, T ), whose value is S − T ;
• choose(S), whose value is an arbitrary element of a nonempty subset S;
• singleton(d), which transforms an element of D into the singleton set whose

only entry is d;
• emptyset( ), whose value is the emptyset ∅;
• universe( ), whose value is the underlying domain D.

The constructor k-tuple of converts a list of k datatypes
X1-type, X2-type, . . . , Xk-type

into a new datatype “k-tuple (X1, . . . , Xk)” whose domain is the cartesian product
D1 ×D2 ×· · ·×Dk of the domains of the respective datatypes in that list. The primary
operations are the projection functions:

• coordj(s), which gives the value of the jth coordinate of the k-tuple s;
• entuple (d1, . . . , dk), whose value is the k-tuple whose jth coordinate is the

element dj of domain Dj .
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An elementary ADT-constructor is any of the three operations sequence of, set of,
or tuple of used to build more complex ADTs from simpler ADTs.

The Iverson truth function assigns to a proposition p the integer value (p) such that

(p) =
{ 1 if p is true;

0 otherwise.
A datatype specification uses a combination of elementary datatypes and ADT-
constructors to specify the domain and the primary operations. It may also use the
following mathematical notation:

• ∅ denotes the empty set;
• λ denotes the empty sequence;
• · denotes the operation of appending one element to a sequence;
• ◦ denotes the sequence concatenation operation;

Moreover, every primary operation is either a query or a procedure.

Specifying a datatype as generic in an ADT-template means that any datatype can be
used in that part of the template as a block in the construction of the new datatype.

Specifying a datatype as ordered in an ADT-template means that any ordered datatype
can be used in that part of the template as a block in the construction of the new
datatype.

The precondition of a primary operation is a list of conditions that must hold imme-
diately before the operation is executed, for it to execute as described.

The postcondition of a primary operation is a specification of conditions that must
hold after the operation is executed, if the precondition is satisfied when the operation
commences.

The flat notation X� in a postcondition of a primary operation specification means
the value of the variable X before that operation is executed. Unadorned X (without
the �) means the value of X after the operation.

Facts:

1. The domain of an ADT is specified as a mathematical model, without saying how
its elements are to be represented.

2. Sometimes the domain of a datatype is specified by roster. Other times it is specified
with the use of set-theoretic operations.

3. A primary operation of an ADT is specified functionally. That is, its value on every
element of the domain is declared, but the choice of an algorithm to be used in its
implementation is omitted.

4. A primary operation may be implemented so that it has direct access to the data
representing the value of the computational variable to which it is applied.

5. A primary operation can modify the information within a variable in its datatype
or retrieve information from a variable.

6. A secondary function is implemented through calls to the primary operations from
which it is ultimately composed.

7. There is no set of standard conventions for writing ADTs.
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8. Software designers frequently specify a particular concrete information structure
(see §17.2), instead of writing an ADT.

9. The advantage of writing an ADT, rather than a concrete datatype, is that it leaves
the implementer room to find a new (and possibly improved) way to meet the require-
ments of the task.

10. In a datatype specification, a functional subprogram is represented by a procedure
that produces a non-boolean value, and a variable to receive that value is specified as
its last parameter.

Examples:

1. Elementary numeric datatypes include the integers and the reals.

2. Elementary alphabetic datatypes include the ASCII set and the decimal digits.

3. Complex number is a datatype that represents complex numbers and their addition
and multiplication.
ADT complex number:
Domain

2-tuple (re: real, im: real)

Primary Operations
sum (w: complex number, z: complex number)
Comment: add two complex numbers.

{pre: none}
{post: sum(w, z) = entuple

(
re(w) + re(z), im(w) + im(z)

)
}

prod (w: complex number, z: complex number)
Comment: multiply two complex numbers.

{pre: none}
{post: prod(w, z) = entuple(

re(w) · re(z) − im(w) · im(z), re(w) · im(z) + im(w) · re(z)
)
}

4. Baseten digit is a datatype that might be used in the construction of base-ten nu-
merals representing arbitrarily large integers and their addition.
ADT baseten digit:
Domain

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: integers

Primary Operations
add digits (x: baseten digit, y: baseten digit)

{pre: none}
{post: add digits(x, y) = x + y mod 10}

addcarry: (x: baseten digit, y: baseten digit)
{pre: none}
{post : addcarry(x, y) = (x + y ≥ 10)}

5. The datatype alphastring represents sequences of lowercase English letters.
ADT alphastring :
Domain

sequence of {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}
Primary Operations

none except from the constructor sequence of
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6. The union-find constructor transforms a datatype on domain set S into a datatype
whose objects are of three kinds: elements of S, subsets of S, and partitions of S. There
is a primary operation to merge two cells of a partition, and a primary operation to
locate the cell of a partition that contains a specified target element.

17.1.2 STACKS AND QUEUES

Access to entries in the interior of a list is unnecessary much of the time. Restricting
access to the first and last entries is a precaution to prevent mistakes.

Definitions:

A stack is an ADT whose domain is a sequence, one end of which is called the top,
and the other the bottom. One primary operation, called pushing appends a new entry
to the top, and the other, called popping removes the entry at the top and returns its
value. No entry may be examined, added to the stack, or deleted from the stack except
by an iterated composition of these operations.

The top of a stack is the end of that stack that can be accessed directly.

Pushing an entry onto a stack means appending it to the top of the stack.

Popping an entry from a stack means deleting it from the top of the stack and
possibly examining the data it contains.

The LIFO property of a database is that the item retrieved is always the item most
recently inserted. LIFO means “last-in-first-out”.

A queue is an ADT whose domain is a sequence, one end of which is called the front,
and the other the back. One primary operation, called enqueueing appends a new entry
to the back, and the other, called dequeueing removes the entry at the front and returns
its value. No entry may be examined, added to the queue, or deleted from the queue
except by an iterated composition of these operations.

The back of a queue is the end to which entries may be appended.

The front of a queue is the end from which entries may be deleted and possibly
examined.

Enqueueing an entry into a queue means appending it to the back of the queue.

Dequeueing an entry from a queue means deleting it from the front of the queue,
and possibly examining the data it contains.

The FIFO property of a database is that the item retrieved is always the item inserted
the longest ago. FIFO means “first-in-first-out”.

Facts:

1. Abstract specification of stacks and queues mention only the behavior of those
datatypes, and totally avoid all details of implementation. This permits a skillful imple-
menter to innovate with efficient concrete structures (see §17.2) that meet the behavioral
specification.
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2. Abstract specification of stacks and queues is consistent with the principles of object-
oriented programming, in which details of implementation are hidden inside the data
objects, so that the rest of the program perceives only the specified functional behavior.

3. All stacks have the LIFO property. For any stack S and for any element b, after
executing the sequence of instructions

push(S, b), pop(S, x)
the resulting value of the stack S is whatever it was before the operations.

4. A stack is most commonly implemented as a linked list (see §17.2.2).

5. After changing the value of the variable y to that of the top entry on the stack S,
the sequence of instructions

pop(S, x), y := x, push(x)
restores S to its previous state.

6. All queues have the FIFO property. Given an empty queue Q and two elements b1
and b2, the sequence of operations

enqueue(Q, b1), enqueue(Q, b2), dequeue(Q, x1), dequeue(Q, x2),
yields x1 = b1, x2 = b2, and Q = λ.

7. A queue is most commonly implemented as a linked list (see §17.2.2).

Examples:

1. The following pseudocode specifies the ADT stack of D, where D is an arbitrary
datatype.

Domain
sequence of D: generic

Primary Operations
create stack (S: stack)
Comment: Initialize variable S as an empty stack.

{pre: none}
{post: S = λ}

push (S: stack, x: element of D)
Comment: Put value of x at top of stack S

{pre: none}
{post: S = x · S�}

pop (S: stack, x: element of D)
Comment: Remove top item of stack S; return it as value of variable x.

{pre: S �= λ}
{post: x · S = S�}

query empty stack (S: stack)
Comment: Decide whether stack S is empty.

{pre: none}
{post: query empty stack = (S = λ)}

2. The following pseudocode specifies the ADT queue of D, where D is an arbitrary
datatype.

Domain
sequence of D: generic
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Primary Operations
create queue (Q: queue)
Comment: Initialize Q as an empty queue.

{pre: none}
{post: Q = λ }

enqueue (Q: queue, x: element of D)
Comment: Put x at the back of queue Q.

{pre: none}
{post: Q = Q� · x}

dequeue (Q: queue, x: element of D)
Comment: Delete front of Q; return as x.

{pre: Q �= λ}
{post: Q� = x ·Q}

query empty queue ( Q: queue)
Comment: Decide whether queue Q is empty.

{pre: none}
{post: query empty queue = (Q = λ)}

3. The following figure illustrates the difference between stacking (last-in-first-out) and
queueing (first-in-first out).

17.1.3 TWO-WAY SEQUENTIAL LISTS

A two-way sequential list conceptualizes a linear list as having a current location, so
that entries may be inserted or deleted only at the current location.

Definitions:

A two-way sequential list is a list with a designated location at which access is
permitted.

The current location of a two-way sequential list is the location at which access is
permitted.

The forepart of a two-way sequential list is the part preceding the current location,
which is empty when the current location is at the start of the list.

The aftpart of a two-way sequential list is the part following the current location, which
is empty when the current location is at the finish of the list.
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Facts:

1. A two-way sequential list does not maintain place-in-list numbers for the entries. The
result of such an additional requirement would force the insert operation to renumber
the part of the list following a newly inserted entry. This would slow the performance.

2. A two-way sequential list is easily implemented as a pair of stacks.

Example:

1. ADT seq list of D
Domain

2-tuple (fore: sequence of D, aft: sequence of D)
type D: generic

Primary Operations
create list (L: seq list)
Comment: Initialize an empty list L.

{pre: none}
{post: fore(L) = λ ∧ aft(L) = λ}

reset to start (L: seq list)
Comment: Reset to start of list.

{pre: none}
{post: fore(L) = λ ∧ aft(L) = fore(L�) ◦ aft(L�)}

advance (L: seq list)
Comment: Advance current position by one element.

{pre: aft(L) �= λ}
{post: (∃x : D)[fore(L) = fore(L�) · x ∧ aft(L�) = x · aft(L)]}

query atstart (L: seq list)
{pre: none}
{post: query atstart = (fore(L) = λ)}

query atfinish (L: seq list)
{pre: none}
{post: query atfinish = (aft(L) = λ)}

insert (L: seq list, x: element of D)
{pre: none}
{post: aft(L) = x · aft(L�) ∧ fore(L) = fore(L�)}

remove (L: seq list, x: element of D)
{pre: aft(L) �= λ}
{post: aft(L�) = x · aft(L) ∧ fore(L) = fore(L�)}

swap right (L: seq list, M : seq list)
{pre: none}
{post: fore(L) = fore(L�) ∧ fore(M) = fore(M �)

∧aft(L) = aft(M �) ∧ aft(M) = aft(L�)}

17.1.4 DICTIONARIES AND RANDOM ACCESS LISTS

Definitions:

A keyed pair is a 2-tuple whose first entry, which is called a key , is from an ordered
datatype and is used to access data in the second entry.

A table is a set of keyed pairs such that no two keys are identical.
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A random access list is a table whose keys are consecutive integers.

A dictionary is another name for a table.

Facts:

1. A static table (whose size does not change) can be implemented as an array.

2. A dynamic table (which permits inserts and deletes) is often implemented as a binary
search tree (see §17.2.4).

3. Specifying a datatype as a dictionary means that its primary retrieval operation can
execute in Θ(n) time.

4. Specifying a datatype as a random access list means that its primary retrieval op-
eration can execute in Θ(1) time.

Examples:

1. ADT table
Domain

set of table entry
type table entry: 2-tuple (key: ordered, data: generic)

Primary Operations
create table (T : table)

{pre: none}
{post: T = λ}

insert entry (T : table, e: table entry)
{pre: (∀e′ ∈ T )[ key(e′) �= key(e)]}
{post: T = T � ∪ {e}}

remove entry (T : table, e: table entry)
{pre: e ∈ T}
{post: T = T � − {e}}

find entry (T : table, k: key, found: boolean, e: table entry)
{pre: none}
{post:

(
(∃e′ ∈ T )[e′.key = k]) ∧ (found = true) ∧ (e = e′)

)
∨

(
¬(∃e′ ∈ T )[e′.key = k] ∧ found = false

)
}

2. ADT Random access list
Domain

set of table entry
type table entry: 2-tuple (key: subrange of integers, data: generic)

Primary Operations
Exactly the same as for the ADT table.

17.1.5 PRIORITY QUEUES

A priority queue is an “unfair queue”, in which entries are not dequeued on a first-
enqueued basis. Instead, each entry has a priority, and is dequeued on a highest priority
basis.

Definition:

A priority queue is a set of keyed pairs, such that the key of the entry returned by a
dequeue operation is not exceeded by the key of any other entry currently in the queue.
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Facts:

1. A priority queue is usually implemented as a heap (see §17.2.5).

2. Two different entries in a priority queue may have the same key.

3. The operating system for a multi-user programming environment places computa-
tional tasks into a priority queue.

Example:

1. ADT P queue
Domain

set of Pq entry
type Pq entry: 2-tuple (key: ordered, data: generic)

Primary Operations
create Pq (PQ: P queue)

{pre: none }
{post: PQ = λ }

enPqueue(PQ: P queue, e: Pq entry)
{pre: none }
{post: PQ = PQ� ∪ {e} }

dePqueue (PQ: P queue, e: Pq entry)
{pre: PQ �= ∅ }
{post: (e ∈ PQ�) ∧ (∀e′ ∈ PQ)[key(e) ≤ key(e′)] ∧ PQ = PQ� − {e} }

query empty Pqueue(PQ: P queue)
{pre: none }
{post: query empty Pqueue = (PQ = λ) }

17.2 CONCRETE DATA STRUCTURES

Concrete data structures configure computer memory into containers of related informa-
tion. They are used to implement abstract datatypes. Contiguous stretches of memory
are regarded as arrays, and noncontiguous portions are linked with pointers.

17.2.1 MODELING COMPUTER STORAGE AND RETRIEVAL

There are a few generic concepts common to nearly all concrete data structures.

Definitions:

A concrete data structure is a mathematical model for storing the current value of
a structured variable in computer memory.

A cell in a concrete data structure S is a unit within the data structure that may
contain data and pointers to other cells.

The header of a concrete data structure is a special unit that contains current informa-
tion about the entire configuration and pointers to some critical cells in the structure.
It is not a cell.
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An insert operation insert(S: structure, c: cell, loc: location) inserts a new cell c into
structure S at location loc.

A delete operation delete(S: structure, loc: location) deletes from a structure S the
cell at location loc.

A target predicate for a concrete data structure is a predicate that applies to the
cells.

A find operation find(S: structure, t: target, loc: location) searches a structure S for a
cell that satisfies target predicate t. It returns false if there is no such cell. In addition
to returning the boolean value true if there is such a cell, it also assigns to its location
parameter loc the location of such a cell.

A next operation next(S: structure, loc: location) returns the boolean value true if
the structure S is nonempty, in which case it also assigns to its location parameter loc
the location of whatever cell it regards as next; it returns false if S is empty.

The size of a cell is the number of bytes of computer memory it occupies.

A pointer to a cell is a representation of its location in computer memory.

A null pointer is a pointer that points to an artificial location. Detecting a null pointer
is a signal to an algorithm to react somewhat differently than to a pointer to an actual
location.

Facts:
1. There may be several alternative suitable concrete data structures that can be used
to implement a given abstract datatype.
2. If the records of a database are all of the same fixed size, then the records themselves
may be in the cells of a concrete data structure.
3. If the size of records is variable, then the cells of the concrete data structure often
contain pointers to the actual data, rather than the data itself. This permits faster
execution of operations.
4. The most common form of target predicate for a concrete data structure is an
assertion that a key component of the cell matches some designated value.

17.2.2 ARRAYS AND LINKED LISTS

Definitions:

An array is an indexed sequence of identically structured cells 〈aj | j = d, . . . , u〉, with
consecutive indices.

An array is zero-based if its lowest index is zero.

A one-way linked list is a set of cells, each with one pointer, such that:
• exactly one of these cells is pointed to by the header but by no cell;
• exactly one cell contains a null pointer;
• the sequence of cells formed by following the pointers, starting from the header,

traverses the entire set, ending with the cell containing the null pointer.

The far end of a one-way linked list is the cell that contains a null pointer.

The near end of a one-way linked list is the cell that is pointed to by the header
and by no other cell.

c© 2000 by CRC Press LLC



A two-way linked list is a set of cells, each with two pointers, one designated as its
forward pointer and the other as its backward pointer, plus a header with a forward
pointer and a backward pointer, such that:

• considering only the forward pointers, it is a one-way linked list;
• following the sequence of backward pointers yields the reverse of the sequence

obtained by following the forward pointers.

A sparse sequence is a sequence in which nearly all the entries are zeros.

A circular linked list is a set of cells, each with two pointers, one designated as its
forward pointer and the other as its backward pointer, plus a header with one or more
pointers to current cells, such that:

• the sequence of cells formed by following the forward pointers, starting from any
cell, traverses the entire set and returns to the starting cell;

• the sequence of cells formed by following the backward pointers, starting from
any cell, traverses the entire set and returns to the starting cell.

Facts:
1. A random-access list (§17.1.4) can be implemented as an array so that a find op-
eration executes in O(1) time.
2. A stack (§17.1.2) can be implemented as a one-way linked list with its top at the
near end, so that push and pop both execute in O(1) time.
3. A queue (§17.1.2) can be implemented as a two-way linked list with its back at the
near end of the forward list and its front at the far end, so that enqueue and dequeue
both execute in O(1) time.
4. A two-way sequential list (§17.1.3) can be implemented as a two-way linked list, or
as a pair of one-way linked lists.

Examples:
1. The following figure illustrates an array with cells ad, . . . , au.

2. The following figure illustrates a one-way linked list, with cell ad at the near end
and cell au at the far end.

3. The following figure illustrates a two-way linked list.
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Algorithm 1: BSTsearch(T, t).

input: a binary-search tree T and a target key t
output: if t ∈ T , the address of the vertex with key t, else the address where t

could be inserted
if root(T ) = NULL then return address of root
else if t < key(root) then BSTsearch(leftsubtree(T ), t)
else if t = key(root) then return address of root
else BSTsearch(rightsubtree(T ), t)

4. Representing a sparse finite sequence by a linked list can save space. The cell given
to each nonzero entry includes its position in the sequence and points to the cell with
the next nonzero entry.

5. A queue whose maximum length is bounded can be represented by a circular linked
list with two header pointers, one to the back and one to the front of the queue. The
number of cells equals the maximum queue length. This eliminates the need for “garbage
collection”.

17.2.3 BINARY SEARCH TREES

Definitions:

A tree structure is a concrete data structure such that the header points to a single
cell, and such that from that cell to each other cell, there is a single chain of pointers.

The root cell of a tree structure is the cell to which the header points.

A binary tree structure is a tree structure such that each cell has two pointers.

The left child of a cell in a binary tree structure is the cell to which the first pointer
points.

The right child of a cell in a binary tree structure is the cell to which the second
pointer points.

A binary search tree structure is a binary tree structure in which for every cell, all
cells accessible through the left child have lower keys, and all cells accessible through
the right child have higher keys.

Facts:
1. The ADT table is commonly implemented as a binary search tree structure.
2. The average running time for the ADT table operations of insertion, deletion, and
find is O(log n). The time may be worse if relatively few cells have two children.
3. Using a 2-3 tree structure instead of a binary search tree structure for the ADT
table operations reduces the worst case running time from O(n) to O(log n).
4. Algorithm 1 can be used in the binary search tree operations of finding, inserting,
and deleting.
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5. To find a target key t in the binary search tree T , first apply BSTsearch(T, t). If
the address of a null pointer is returned, then there is no node with key t. Otherwise,
the address returned is a node with key t.
6. To insert a node with target key t into the binary search tree T , first apply the
algorithm BSTsearch(T, t). Then install the node at the location returned.
7. To delete node t from the binary search tree T , first apply BSTsearch(T, t). Then
replace node t either by the node with the largest key in the left subtree or by the node
with the smallest key in the right subtree.

Examples:
1. The following figure illustrates a binary search tree.

2. Inserting 32 into the BST of Example 1 yields the following BST.

3. Deleting node 10 from the BST of Example 1 would yield one of the following two
BSTs.

17.2.4 PRIORITY TREES AND HEAPS

Definitions:

A binary tree is left-complete if it is complete or if it is a balanced binary tree (§9.1.2)
such that at depth one less than the maximum, the following conditions hold:

• all nodes with two children are to the left of all nodes with one or no children;
• all nodes with no children are to the right of all nodes with one or two children;
• there is at most one node with only one child, which must be a left-child.
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Algorithm 2: PriorityTreeEnqueue (T, x).

input: a priority tree T and a new entry x
output: tree T with the new vertex x inserted so that it remains a priority tree

install entry x into the first vacant spot in the left-complete tree T
while x �= root(T ) and priority(x) > priority(parent(x))

swap x with parent(x)

A priority tree is a left-complete binary tree, with the following additional structure:
• each vertex has an attribute called a key ;
• the values of the keys are drawn from a partially ordered set;
• no vertex has a higher priority key than its parent.

A heap is a representation of a priority tree as a zero-based array, such that each
vertex is represented at the location in the array whose index equals its location in the
breadth-first-search order of the tree. Thus:

• index(root) = 0;
• index(leftchild(v)) = 2 × index(v) + 1;
• index(rightchild(v)) = 2 × index(v) + 2;
• index(parent(v)) =

⌊ index(v)−1
2

⌋
.

Enheaping an entry into a heap means placing it into a correctly prioritized position.

Trickle-up means enheaping by Algorithm 2.

Deheaping an entry from a heap means taking the root as the deheaped entry and
patching its left subtree and its right subtree back into a single tree.

Trickle-down means deheaping by Algorithm 3.

A Fibonacci heap is a modification of a heap, using the Fibonacci sequence, that
permits more efficient implementation of a priority queue than a heap based on a left-
complete binary tree.

Facts:
1. Worst-case execution time of the priority tree enqueueing algorithm, Algorithm 2,
is in the class Θ(log n).
2. Worst-case execution time of the priority tree dequeueing algorithm, Algorithm 3,
is in the class Θ(log n).

Examples:
1. This is a left-complete binary tree.
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Algorithm 3: PriorityTreeDequeue (T ).

input: a priority tree T
output: tree T − root(T ) with priority-tree shape restored

replace root(T ) by rightmost entry y at bottom level of T
while y is not a leaf and [priority(y) ≤ priority(leftchild(y)) or

priority(y) ≤ priority(rightchild(y))]
if priority(leftchild(y)) > priority(rightchild(y))

then swap y with leftchild(y)
else swap y with rightchild(y)

2. The following is a priority tree of height 3.

3. The following figure illustrates a priority tree insertion. It shows how 45 is inserted
into the priority tree of Example 2 in the correct location to maintain the left-compete
binary tree shape and then rises until the priority property is restored.

4. The following figure illustrates a priority tree deletion. It shows how the left-
complete binary tree shape and priority property are restored after the root is removed
from the priority tree of Example 2.
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5. The following heap corresponds to the priority tree of Example 2. Observe that the
keys occur in the array according to the breadth-first-search order of their vertices.

index 0 1 2 3 4 5 6 7 8 9
key 47 42 16 28 36 6 10 4 14 32

17.2.5 NETWORK INCIDENCE STRUCTURES

Definitions:

An incidence matrix for a graph is a 0-1 matrix that specifies the incidence relation.
The rows are indexed by the vertices and the columns by the edges. The entry in the
row corresponding to vertex v and edge e is 1 if v is an endpoint of e, and 0 otherwise.

An endpoint table for a graph (§8.1) is a dictionary whose keys are the edges. The
data component for each key edge is the set of endpoints for that edge. If an edge is
directed, then its endpoints are marked as head and tail.

An edge-incidence table is a dictionary whose keys are the vertices of a graph or
digraph. The data component for each key vertex is a list of all the edges that are
incident on that vertex. Each self-loop occurs twice in the list.

A two-way incidence structure for a graph is a pair consisting of an edge-incidence
table and an endpoint table.

Facts:

1. The time required to insert a new vertex v into a two-way incidence structure for a
graph with n vertices and m edges is in Θ(log n). By way of contrast, the time for an
incidence matrix is in Θ(n ·m).

2. The time required to delete a vertex v from a two-way incidence structure for a
graph with n vertices and m edges is in Θ(log n+deg(v)). By way of contrast, the time
for an incidence matrix is in Θ(n ·m).

3. The time required to insert a new edge e into a two-way incidence structure for a
graph with n vertices and m edges is in Θ(logm). By way of contrast, the time for an
incidence matrix is in Θ(m · n).

4. An edge-incidence table can represent an imbedding of a graph on a surface as a
rotation system (§8.8.3).

c© 2000 by CRC Press LLC



Example:

1. The following graph corresponds to the network incidence structure given below.

EDGE-INCIDENCE TABLE

u. a b d
v. b c e f
w. a c g
x. d e h
y. f g h

ENDPOINT TABLE

a. u w
b. u v
c. v w
d. u x
e. v x
f. v y
g. w y
h. x y

17.3 SORTING AND SEARCHING

Since commercial data processing involves frequent sorting and searching of large quanti-
ties of data, efficient sorting and searching algorithms are of great practical importance.
Sorting and searching strategies are also of fundamental theoretical importance, since
sorting and searching steps occur in many algorithms. Table 1 compares the perfor-
mance of some of the most common sorting methods.

17.3.1 GENERIC CONCEPTS FOR SORTING AND SEARCHING

Definitions:

A database is a set of entries, stored in a computer as an information structure.

An entry in a database is a 2-tuple whose first component is a key and whose second
component is some data.

A key in a database entry is a value from an ordered set, used to store and retrieve
data.

The key domain is the ordered set from which keys are drawn.

The primary key is the component of highest precedence, when the key for database
records has more than one component.

The secondary key is the component of next highest precedence after the primary
key.

A record is another name for a database entry.
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Table 1 Comparison of sorting methods.

sorting method
average time factors comments

(grouped by type)

expanding a sorted subsequence

≈ N2

2 comparisons
selection sort ≈ N exchanges

≈ N2

4 comparisons linear if input file isinsertion sort “almost sorted”≈ N2

8 exchanges

for “good” incrementsShellsort < N3/2 comparisons 1, 4, 13, 40, 131, . . .

exchanging out-of-order pairs

≈ N2

2 comparisons one pass if input filebubblesort is already sorted≈ N2

4 exchanges

≈ N2

2 comparisons one pass if input filesinking sort is already sorted≈ N2

4 exchanges

≈ N2

2 comparisons
shakersort

≈ N2

4 exchanges

heapsort < 2N lgN comparisons always Θ(N logN)

divide-and-conquer

mergesort ≈ N lgN comparisons always Θ(N logN)

quicksort ≈ 2N lgN comparisons worst-case N2

2

sorting by distribution

rank counting Θ(N)

radix sort on k-digit key ≈ N lgN comparisons

Sorting is the process of arranging a collection of database entries into a sequence that
conforms to the order of their keys.

Searching a database means using a systematic procedure to find an entry with a
key designated as the objective of the search.

Scanning a database (or a portion of a database) means examining every record in
that database (or portion).

The target of a database search is an entry whose key that has been designated as the
objective of the search.

A comparison sort is any sorting method that uses only comparisons of keys.

An internal sorting method keeps all the entries in the primary memory of the
computer during the process of rearrangement.

An external sorting method uses external storage outside the main memory during
the sorting process.
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An in-place realization of a sorting method uses beyond the space needed for one
copy of each data entry, only a constant amount of additional space, regardless of the
size of the list to be sorted.

A dynamic structure for a database is an information structure whose configuration
may change during an algorithmic process, for instance, by the insertion or deletion of
elements.

A static structure for a database is a data structure whose configuration does not
change during an algorithmic process.

Facts:
1. Several different general strategies for sorting are given in the following subsections.
Each leads to more than one method for sorting.
2. Some elementary sorting methods take O(n2) time. Most practical comparison
sorting methods require O(n log n) time.
3. The worst case running time of any comparison sort is at least Ω(n log n).

Examples:
1. Selection sort (§17.3.2), insertion sort (§17.3.2), Shellsort (§17.3.2), bubblesort (§17.-
3.3), heapsort (§17.3.3), and quicksort (§17.3.4) are all internal comparison sorts.
2. Mergesort (§17.3.4) is a comparison sort that may be either internal or external.
3. Database model for a telephone directory : Each entry has as key the name of a
person and as data that persons’s telephone number. The target of a search is the entry
for a person whose number one wishes to call. Names of persons form an ordered key
domain under a modified lexicographic (“alphabetic”) ordering, in which it is understood
that a family name (a “last name” in European-based cultures) has higher precedence
than a given name.
4. Database model for a reverse telephone directory : In a reverse telephone directory
entry the key is a telephone number and the data is the name of the person with that
number. This permits the telephone company to retrieve the name of the person who
has a particular phone number, for instance, if someone inquires why some particular
telephone number occurs on a long-distance phone bill.
5. Database model for credit-card information: In a credit-card database, the key to
each entry is a credit-card number, and the data include the name of the cardholder,
the maximum credit limit, and the present balance.

17.3.2 SORTING BY EXPANDING A SORTED SUBSEQUENCE

One general strategy for sorting iteratively expands a sorted subsequence, most often
implemented as an array or a linked list, until the expanded subsequence ultimately
contains all the entries of the database.

Definitions:

A selection sort iteratively transforms an unsorted input sequence into a sorted output
sequence. At each iteration, it selects the item with smallest key from the remaining
items in the unsorted input sequence and appends that item at the end of the sorted
output sequence.
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An insertion sort iteratively transforms an unsorted input sequence into a sorted
output sequence. At each iteration, it takes the first remaining item from the unsorted
input subsequence and inserts it into its proper position in the sorted output sequence.

A Shellsort of an unsorted sequence a1, . . . , an is based on a list of increments of
decreasing size: h1 >h2 > · · · >ht = 1. On the kth iteration, the sequence is partitioned
into hk subsequences, such that for j = 1, . . . , hk, the jth subsequence is〈

aj+rhk
| 0 ≤ r ≤ n−j

hk

〉
and each of these j subsequences is sorted by an insertion sort.

Facts:

1. Selection sorts and insertion sorts both have time-complexity O(n2) in the worst
case.

2. The time-complexity of a selection sort is independent of the order of the input
sequence, since finding the smallest remaining item requires scanning all the remaining
items.

3. The running time of an insertion sort can be significantly reduced for “almost sorted”
sequences, with time O(n) as the limiting case.

4. Optimizing the running time of a Shellsort involves some very difficult mathematical
problems, many of which have not yet been solved. In particular, it is not known which
choice of increments yields the best result.

5. It is known that Shellsort increments should not be multiples of each other, if the
objective is to achieve fast execution.

6. Evidence supporting the efficiency of the Shellsort increment list . . . , 40, 13, 4, 1 ac-
cording to the rule hi−1 = 3hi + 1 is given by Knuth [Kn73]. The increment list
. . . , 15, 7, 3, 1 satisfying the rule hi−1 = 2hi + 1 is also recommended.

7. Shellsort is a refinement of a straight insertion sort. The motivation for its design
in 1959 by D. L. Shell is based on the observation that an insertion sort works very fast
for “almost sorted” sequences.

8. Shellsort is guaranteed to produce a sorted list, because on the last pass, it applies
an insertion sort to the whole sequence.

9. An in-place realization of the strategy of expanding a sorted subsequence concep-
tually partitions the array into a sorted subsequence at the front of the array A[1..n]
and an unsorted subsequence of remaining items at the back. Initially, the sorted sub-
sequence is the empty sequence and the unsorted subsequence is the whole list. At each
step of the iteration, the sorted front part expands by one item and the unsorted back
part contracts by one item.

Algorithms:
1. Algorithm 1 is an in-place realization of a selection sort.
2. Algorithm 2 is an in-place realization of an insertion sort.

Examples:

In the following examples of single-list implementations of SelectionSort and Insertion-
Sort, the symbol “ | ” separates the sorted subsequence at the front from the remaining
unsorted subsequence at the back. The arrows “←” and “→” indicate how far the in-
dex j moves during an iteration.
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Algorithm 1: SelectionSort of array A[1..n].

for i := 1 to n− 1 do
minindex := i; minkey := A[i]
for j := i + 1 to n do

if A[j] < minkey then minindex := j; minkey := A[j] end-if
swap A[i] with A[minindex]

Algorithm 2: InsertionSort of array A[1..n].

for i := 2 to n do
nextkey := A[i]; j := i− 1
while j > 0 and A[j] > nextkey do A[j + 1] := A[j]; j := j − 1 end-while
A[j + 1] := nextkey

1. On the sequence 15, 8, 10, 6, 13, 17, SelectionSort would progress as follows:

minkey minkey minkey

15 8 10 6̂ 13 17 6 | 8̂ 10 15 13 17 6 8 | 1̂0 15 13 17

i j
search for minkey−−−−−−−−−−→ i j −−−−−−−−→ i j −−−−→

minkey minkey

6 8 10 | 15 1̂3 17 6 8 10 13 | 1̂5 17 6 8 10 13 15 17 |
i j −→ i j

2. On the sequence {15, 8, 10, 6, 13, 17}, InsertionSort would progress as follows:

shift shift shift shift shift

15/| 8 10 6 13 17 8 15/| 10 6 13 17 8/ 10/ 15/| 6 13 17
← j i ← j i ←−−−−− j i

shift

6 8 10 15/| 13 17 6 8 10 13 15 | 17 6 8 10 13 15 17 |
← j i j i

3. If n = 13 and h3 = 4, then on the third iteration, ShellSort would insertion sort the
following subsequences:

a1, a5, a9, a13

a2, a6, a10

a3, a7, a11

a4, a8, a12

17.3.3 SORTING BY EXCHANGING OUT-OF-ORDER PAIRS

A standard measure of the totality of disorder of a sequence of n items is the number
of pairs (ai, aj) such that i < j but ai > aj . Thus, the disorder ranges from 0 (i.e.,
totally ordered) to

(
n
2

)
(i.e., in reverse order). The strategy of exchange sorts is to swap

out-of-order pairs until all pairs are in order.
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Definitions:

A bubblesort scans an array A[1..n] repeatedly from the highest index to lower indices,
each time swapping every out-of-order pair of consecutive items that is encountered.

A sinking sort scans an array A[1..n] repeatedly from the lowest index to higher indices,
each time swapping every out-of-order pair of consecutive items that is encountered.

A shakersort scans an array A[1..n] repeatedly, and alternates between bubbling up-
ward and sinking downward on alternate scans.

A bubblesort, sinking sort, or shakersort is adaptive if it stops the first time a scan
produces no transpositions.

Heapsort sorts a sequence of entries by iteratively enheaping them all into a heap
(§17.2.4) and then iteratively deheaping them all. The order in which they deheap is
sorted.

Facts:

1. The name “bubblesort” suggests imagery in which lighter items (i.e., earlier in the
prescribed order of the key domain) bubble to the top of the list.

2. The name “sinking sort” suggests that heavier items sink to the bottom.

3. The name “shakersort” suggests a salt shaker that is turned upside down.

4. Since each swap during an exchange sort reduces the total disorder, it follows that
each scan brings the list closer to perfect order. By transitivity of the order relation,
it follows that if every consecutive pair in a sequence is in the correct order, then the
entire sequence is in order.

5. After the first pass of a bubblesort from bottom to top, the smallest element is
certain to be in its correct final position at the beginning of the list. After the second
pass, the second largest element must be in its correct position, and so on.

6. Bubblesort has worst-case time complexity O(n2).

7. For “almost sorted” sequences, an adaptive bubblesort can run much faster than
O(n2) time.

8. The priority property implies that the root of a priority tree is assigned the data
entry with first precedence.

9. Whereas a sequence of length n has
(
n
2

)
pairs that might be out of order, a binary

tree of n elements has at most n log n pairs that could be out of order, if one compares
only those pairs such that one node is an ancestor of the other.

10. Heapsort improves upon the idea of bubblesort because it bubbles only along tree
paths between a bottom node and the root, instead of along the much longer path in a
linear sequence from a last item to the first.

11. Heapsort runs in O(n log n) time.

12. Heapsort was invented by J. W. J. Williams in 1964.

Algorithms:

1. Algorithm 3 is an adaptive version of bubblesort.

2. Algorithm 4 is a heapsort algorithm.
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Algorithm 3: BubbleSort of array A[1..n].

first := 1; last := n; exchange := true
while exchange do

first := first + 1; exchange := false;
for i := last to first with step −1 do

if A[i] < A[i− 1] then {swap A[i] and A[i− 1]; exchange := true}

Algorithm 4: HeapSort of array A[0..n] into array B[0..n].

procedure heapify(i)
if (A[i] is not a leaf) and (a child of A[i] is larger than A[i]) then

let A[k] be the larger child of A[i]
swap A[i] and A[k]
heapify(k)

procedure buildheap
for i := �n

2 � downto 0 do
heapify(i)

main program heapsort
buildheap
for i = 0 to n do

deheap root of A and transfer its value to B[n− i]

Examples:
1. When canceled checks are returned to the payer by a bank, they may be in nearly
sorted order, since the payees are likely to deposit checks quite soon after they arrive.
Thus, they arrive for collection in an order rather close to the order in which they are
written. A shakersort might work quite quickly on such a distribution.
2. Starting with the unsorted list L = 15, 8, 10, 6, 17, 13, bubblesort would produce the
following sequence of lists.

initial list : 15 8 10 6 17 13
after one pass : 6 15 8 10 13 17

after two passes : 6 8 15 10 13 17
after three passes : 6 8 10 15 13 17
after four passes : 6 8 10 13 15 17

3. Starting with the unsorted list L = 15, 8, 10, 6, 17, 13, sinking sort would produce
the following sequence of lists.

initial list : 15 8 10 6 17 13
after one pass : 8 10 6 15 13 17

after two passes : 8 6 10 13 15 17
after three passes : 6 8 10 13 15 17
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4. Starting with the unsorted list L = 15, 8, 10, 6, 17, 13, shakersort would produce the
following sequence of lists:

initial list : 15 8 10 6 17 13
after one pass : 6 15 8 10 13 17

after two passes : 6 8 10 13 15 17

17.3.4 SORTING BY DIVIDE-AND-CONQUER

The strategy of a divide-and-conquer sort is to partition the given sequence into smaller
subsequences, to sort the subsequences recursively, and finally to merge the sorted
subsequences into a single sorted sequence.

Definitions:

A top-down mergesort splits the input sequence into two equal (or nearly equal)
sized subsequences, recursively mergesorts the two subsequences, and finally merges the
two sorted subsequences into a single sorted sequence.

A bottom-up mergesort initially regards each entry in its input sequence as a list of
length one. It merges two consecutive pairs at a time into lists of length two. Then it
merges the lists of length two into lists of length four. Ultimately, all the initial items
are merged into a single list.

A quicksort selects an element x (called the pivot) in the input list and splits the input
list into two subsequences S1 and S2 such that every element in S1 is no larger than x
and every element in S2 is no smaller than x. Next it recursively sorts S1 and S2. Then
it concatenates the two sorted subsequences into a single sorted sequence.

The pivot in a quicksort iteration is the element x at which the sequence is split.

Facts:

1. A top-down mergesort is usually implemented as an internal sort.

2. A bottom-up mergesort is a common form of external sort.

3. An outstanding merit of quicksort is that it can be performed quickly within a single
array.

4. Quicksort was first described by C. A. R. Hoare in 1962.

5. The running time of a mergesort is O(n log n).

6. In the worst case, a quicksort takes time Ω(n2).

7. Choosing the quicksort pivot at random tends to avoid worst case behavior.

8. The average running time for a quicksort is O(n log n).

9. External sorting is used to process very large files, much too large to fit into the
primary memory of any computer.

10. The emphasis in devising good external sorting algorithms is on decreasing the
number of times the data are accessed because the time required to transfer data back
and forth between the the primary memory and the tape usually outweighs far the time
required to perform comparisons on data in the primary memory.
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Algorithm 5: Merge two sequences.

procedure merge(A[1..m], B[1..h], C[ ])
{merge two sorted sequences A and B into a single sorted sequence C}
iA := 1; iB := 1; iC := 1
while iA ≤ m and iB ≤ h do

if A[iA] ≤ B[iB ] then {C[iC ] := A[iA]; iA := iA + 1}
else {C[iC ] := B[iB ]; iB := iB + 1}
iC := iC + 1

if iA > m then move the remaining elements in B to C
else move the remaining elements in A to C

Algorithm 6: MergeSort S.

procedure mergesort(S)
if length(S) ≤ 1 then return else

split S into two (equal or nearly equal)-sized subsequences S1 and S2

mergesort S1

mergesort S2

merge(S1, S2)

Algorithm 7: External MergeSort sequence S of length n.

for i := 1 to  log n!
for j := 1 to  log n

4i !
merge next sublist from input A with next sublist from input B,

writing merged sublist onto output tape C
merge next sublist from input A with next sublist from input B,

writing merged sublist onto output tape D
reset output tape C as input tape A and vice versa
reset output tape D as input tape B and vice versa

11. Formal algorithms and more detailed discussions of external can be found in [Kn73].
12. In an external sort, the number of times each element is read from or written
to the external memory is log( n

m ) + 1, where m is the available internal memory size.
Improvements on the construction of runs as well as on the merging process are possible
(see [Kn73]).

Algorithms:

1. Algorithm 5 merges two sorted sequences into a single sorted sequence.
2. Algorithm 6 mergesorts a sequence internally.
3. In a typical external mergesort such as Algorithm 7, there are two input tapes and
two output tapes. The entries are initially arranged onto the two input tapes, with half
the entries on each tape, and regarded as sublists of length one. A sublist from the first
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Algorithm 8: QuickSort.

procedure split(x, S)
for each element y in S do

if x ≥ y then put y in S1 else put y in S2

main program
if length(S) ≤ 1 then return else

choose an arbitrary element x in sequence S
split(x, S) into S1 and S2

recursively sort S1 and S2

concatenate the two sorted subsequences

input tape is merged with a sublist from the second input tape and written as a sublist
of doubled length onto the first output tape. Then the next sublist from the first input
tape is merged with the next sublist from the second input tape and written as a sublist
of doubled length onto the second output tape. The alternating process is iterated until
the sublists from the input tapes have all been merged into sublists of doubled length
onto the two output tapes. Then the two output tapes become input tapes to another
iteration of the merging process. This continues until all the original entries are in a
single list.

4. The generic quicksort algorithm QuickSort (Algorithm 8) does not specify how to
select a pivot.

Example:

1. The following illustrates MergeSort on the sequence S = 21, 6, 8, 11, 10, 17, 15, 13.

21 6 8 11 10 17 15 13/ ∖
(split)

21 6 8 11 10 17 15 13/ ∖ / ∖
(split)

21 6 8 11 10 17 15 13/ ∖ / ∖ / ∖ / ∖
(split)

21 6 8 11 10 17 15 13∖ / ∖ / ∖ / ∖ /
(merge)

6 21 8 11 10 17 13 15∖ / ∖ /
(merge)

6 8 11 21 10 13 15 17∖ /
(merge)

6 8 10 11 13 15 17 21
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Algorithm 9: RankCountingSort of array A[1..] into array B[1..n].

{pre : max(A[i]) ≤ cn}
for i := 1 to cn do C[i] := 0
for j := 1 to n do C[A[j]] := 1
for i := 2 to cn do C[i] := C[i] + C[i− 1]
for j := 1 to n do B[C[A[j]]] := A[j]

17.3.5 SORTING BY DISTRIBUTION

Prior knowledge of the distribution of the elements of the input sequence sometimes
permits sorting algorithms to break the lower bound of Ω(n log n) for running time of
comparison sorts

Definitions:

The rank of an element of a finite ordered set is the number of elements that it exceeds
or equals.

A rank counting sort calculates the “rank” for each element, and then assigns the
elements directly to their correct position according to their rank.

In a base-ten radix sort, the keys are base-ten integer numerals with at most k digits.
Each entry is appended to one of ten queues Q0, . . . , Q9, according to the value of its
least significant digit, after which the list Q0 ◦ · · · ◦Q9 is formed by concatenation. The
concatenated list is then similarly separated into ten queues, according to the values of
the next least significant digit. This process is iterated up to the most significant digit.

A radix sort is a sort like the base-ten radix sort, using an arbitrary radix, not neces-
sarily ten.

Facts:
1. A rank counting sort gives favorable results when the input keys are n different
positive integers, all bounded by cn for some constant c.
2. The running time of a rank counting sort is in O(n). The RankCountingSort (Al-
gorithm 9) can be modified so that it sorts in linear time even when the input elements
are not all distinct. [CoLeRi90]
3. It can be proved that a radix sort correctly sorts the input. [Kn73]
4. The running time of RadixSort is bounded by O(kn), where k is the maximum
number of digits in a key. When k is a constant independent of n, RadixSort sorts in
linear time. Note, however, that if the input consists of n distinct numbers and the base
of the numbers is fixed, then k is of order Ω(logn).

Algorithms:
1. In the rank counting sort, Algorithm 9, the array A contains n input elements, the
array B is the output array, and the array C is an auxiliary array of size cn used for
counting. Step 3 causes count C[A[j] ] to be the rank of entry A[j].
2. The base-ten radix sort, Algorithm 10, starts with an input list A whose keys have
at most k digits.
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Algorithm 10: RadixSort of array A[1..n].

for d := 1 to k do
for i := 0 to 9 do make Qi an empty queue
for j := 1 to n do

let h be the jth digit of A[j]
append A[j] to queue Qh

A := Q0 ◦ · · · ◦Q9 (concatenation)

17.3.6 SEARCHING

Definitions:

Searching a database means seeking either a target entry with a specific key or a
target entry whose key has some specified property.

Linear search is the technique of scanning the entries of a list in sequence, either until
some stopping condition occurs or the entire list has been scanned.

Binary search is a recursive technique for seeking a specific target entry in a list. The
target key is compared to the key in the middle of the list, in order to determine which
half of the list could contain the target item, if it is present.

Hashing is storage-retrieval in a large table in which the table location is computed
from the key of each data entry. (§17.4)

A binary search tree is a binary tree in which each note has an attribute called its
key , and the keys are elements of an ordered datatype (e.g., the integers or alphabetic
strings). Moreover, at each node v the key is larger that all the keys in its left subtree,
but smaller than all the keys in its right subtree.

A 2-3 tree is a tree in which each non-leaf node has 2 or 3 children, and in which every
path from the root to a leaf is of the same length.

An AVL tree is a binary search tree with the property that the two subtrees of each
node differ by at most 1 in height.

Facts:
1. Some common database search objectives are for a specified target entry, for the
maximum entry, for the minimum entry, or for the kth smallest entry.
2. The performance of a dynamic database structure that permits insertions and dele-
tions is measured by the time needed for insertions and deletions, as well as the time
needed for searching.
3. A binary search runs in average time O(log n) to search for a specified element x in
a sorted list of n elements.
4. In the worst case of searching by comparison-based algorithms for a specified target
element in a sorted list of length n, Ω(log n) comparisons are necessary.
5. A randomly constructed n-node binary search tree has expected height of at most
2 log n.
6. An AVL tree of n nodes has depth O(log n).
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Algorithm 11: BinarySearch (A,L,U,x).

{Look for x in A[L..U ]. Report its position if found, else report 0.}
if L = U then

if x = A[L] then return L else return 0
else M :=

⌊
L+U

2

⌋
if x > A[M ] then return BinarySearch (A,M + 1, U, x)
else return BinarySearch (A,L,M, x)

Algorithm 12: 23TSearch(x, r).

case 1: r is a leaf
if r is labeled with x then return “yes” else return “no”

case 2: r is not a leaf
if x ≤ L[r] then return 23TSearch(x, leftchild(r))
else if x ≤ M [r] then return 23TSearch(x,midchild(r))
else if x has a right child then return 23TSearch(x, rightchild(r))
else return “no”

7. Insertion and deletion on an AVL tree, with patching if needed so that the result is
an AVL tree, can be performed in O(log n) worst-case running time. [Kn73]

8. AVL trees are named for their inventors, G. M. Adelson-Velskii and Y. M. Landis.

9. A 2-3 tree for a set S of entries can be constructed by assigning the entries to the
leaves of the tree in order of increasing key from left to right. Each non-leaf node v
is labeled with two elements L[v] and M [v], which are the largest keys in the subtrees
rooted at its left child and middle child, respectively.

10. The operations of searching, finding a maximum or minimum, inserting a new
entry, and deleting an entry all execute within O(log n) time.

Algorithms:

1. To search for a specified target key x in a sorted list A[1..n], a call to the recursive
algorithm BinarySearch (A, 1, n, x) in Algorithm 11 can be used. Its technique is to
compare the target to the middle entry of the list and to decide thereby in which half
the target might occur; then that half remains as the active portion of the list for the
next iteration of the search step, while the other half becomes inactive.

2. Find the maximum [minimum] in an unsorted list: Scan the list from start to finish
and keep track of the largest [smallest] seen so far.

3. Finding the maximum in a binary search tree: Start at the root and follow the
right child pointers until some node has no right child. That node must contain the
maximum.

4. Finding the minimum in a binary search tree: Start at the root and follow the left
child pointers until some node has no left child. That node must contain the minimum.

5. Searching for a target entry x in a 2-3 tree: Start at the root, and use the keys at
non-leaf nodes to locate the correct leaf, as described by Algorithm 12.
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Algorithm 13: Finding-The-kth-Smallest.

divide the n input elements into  n
5 ! groups of five elements

find the median for each of the  n
5 ! groups

recursively find the median m∗ of these group medians
partition the input into two sets S1 and S2 such that each element in S1 is no

larger than m∗ and each element in S2 is no smaller than m∗

if S1 has ≥ k elements then recursively find the kth smallest element in S1

else recursively find the (k − |S1|)th smallest element in S2

6. Finding the maximum in a 2-3 tree: Starting from the root, follow the right-child
pointers to the rightmost leaf, which contains the maximum entry.

7. Finding the minimum in a 2-3 tree: Starting from the root, follow the left-child
pointers to the leftmost leaf, which contains the minimum entry.

8. To insert a new entry x into a 2-3 tree: First locate the non-leaf node v whose
child x “should” be. If v is a 2-child node v, then simply install x as a third child of v.
If v already has three children, then let v keep as children the two smallest of the set
comprising its three children and x. A new non-leaf node u becomes the parent of the
largest member of this set. Now recursively insert node u as a new child to the parent
of node v. If the process eventually makes the root of the tree a 4-child node, then the
last step is to create a new root with two new children, each of which has two of the
four children of the former root. Note that the labels of some non-leaf nodes may be
updated in this process.

9. To delete an entry x from a 2-3 tree: Essentially, reverse the manner by which an
element is inserted. First find the leaf v containing x. If the parent p of v has three
children, then the leaf v is simply deleted. If p has only two children v and v′, then
select an adjacent sibling p′ of p. If p′ has only two children, then make v′ a child of p′,
and recursively delete the node p from the tree. If p′ has three children, then make an
appropriate child of p′ into a new child of p and delete the node v (note that now both p
and p′ have two children). Again the process may progress recursively to the root of
the tree, such that it is necessary to delete one of the only two children of the root. In
this case, delete the root and make the remaining child of the root into a new root of
the tree. Labels of some non-leaf nodes may need to be updated in this process.

10. Searching in a random list: Finding the kth smallest element, for an arbitrary k,
in a random list can also be done in linear time. The algorithm, Algorithm 13, is based
on the method of “Prune and Search”. That is, the process first prunes away in linear
time a constant factor of the elements in the input, then recursively searches the rest. A
careful analysis shows that each of the two sets S1 and S2 contains at most 7n

10 elements.
Therefore, if T (n) is the running time for Algorithm 13 on input of n elements, it follows
that T (n) ≤ T (n

5 ) + T ( 7n
10 ) + O(n). This relation gives T (n) = O(n).

Example:

1. To search for the target 64 in the following 16-element list
5, 8, 9, 13, 16, 22, 25, 36, 47, 49, 64, 81, 100, 121, 144, 169

first split it into these two 8-element sublists,
5, 8, 9, 13, 16, 22, 25, 36 47, 49, 64, 81, 100, 121, 144, 169

and then compare 64 to the largest item in the first list. Since 64 > 36, it follows that
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64, if present in the original list, would have to be in the second sublist. Next split the
active sublist further into these two 4-element sublists

47, 49, 64, 81 100, 121, 144, 169
and then compare 64 to the largest item in the first new sublist. Since 64 ≤ 81, it
follows that 64, if present, would have to be in the second sublist. Therefore, resplit the
active sublist further into these two 2-element sublists

47, 49 64, 81
and then compare target 64 to the largest item in the first new sublist. Since 64 > 49,
it follows that 64, if present, would have to be in the second sublist. Therefore, resplit
the active sublist further into these two 1-element sublists

64 81
and then compare 64 to the largest item in the first new sublist. Since 64 ≤ 64, it
follows that 64, if present, would have to be in the first sublist. Since that sublist has
only one element, namely 64, the target 64 is compared to that one element. Since they
are a match, the target has been located as the 11th item in the original list.

17.4 HASHING

Hashing, also known as “address calculation” and as “scatter storage”, is a mathematical
approach to organizing records within a table. The objective is to reduce the amount
of time needed to find a record with a given key. Hashing is best suited for “dynamic”
tables, that is, for databases whose use involves interspersed lookups and insertions.
Dynamic dictionaries (such as spelling checkers) and compiler-generated symbol tables
are examples of applications where hashing may be useful.

17.4.1 HASH FUNCTIONS

Hashing is an approach to placing records into a table and retrieving them when needed,
in which the location for a record is calculated by an algorithm called a hash function.

Definitions:

A record is a pair of the form (k:key , d:data), in which the second component is data
and the first component is a key used to store it in a table and to retrieve it subsequently
from that table.

A key domain is an ordered set, usually the integers, whose members serve as keys for
the records of a table. No two different records have the same key.

A hash table is an array, in which the location for storing and retrieving a record are
calculated from the key of that record.

A hash function h is a function that maps a key domain to an interval of integers
[0..m−1]. The intent is that a record with key k is to be stored in or retrieved from the
location h(k) in the table.

A collision occurs when a hash function h assigns the same table location to two
different keys k1 �= k2, i.e., when h(k1) = h(k2).
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Collision resolution is the process of finding an alternative location for a new record
whose key collides with that of a record already in the table.

The fullness of a hash table T is the ratio α(T ) = n
m of the number n of records in the

table to the capacity m of the table.

Facts:
1. Hashing is often used when the set of keys (of the records in the database) is not
a consecutive sequence of integers or easily convertible to a consecutive sequence of
integers.
2. Keys that are non-numeric (or do not have a good random distribution) can be trans-
formed into integers by using or modifying their binary representation. The resulting
integers are called virtual keys.
3. It is desirable for a hash function to have the simplicity property , i.e., that it takes
only a few simple operations to compute the hash function value.
4. It is desirable for a hash function to have the uniformity property, i.e., that each
possible location in the range 0, . . . ,m − 1 of the hash function h:K → [0..m−1] is
generated with equal likelihood, that is, with probability 1

m .

Examples:
1. The division method h(k) = k mod m is a simple hash function that can be used
when the keys of the records are integers that extend far beyond a feasible table size.
The table size m must be chosen carefully to avoid high instance of collision, without
wasting too much storage space. Selecting m to be a prime not close to a power of 2 is
typically a good choice.
2. The multiplication method is another simple hashing rule. First the key (in base 2)
is multiplied by a constant value A such that 0 < A < 1, and then p = logm bits
are selected for the hash function value from somewhere in the fractional part of the
resulting base-2 numeral, often required to be away from its low end. (This is similar
to some methods for generating random numbers.)
3. As a simplified example of a multiplicative hash function, consider table size m = 16,
address size p = log(16) = 4 bits, and keysize w = 6 bits. With fractional constant A =
0.1010112, use first four bits of the fractional part. For instance, given key k = 0110112,
first calculate R = A · k = 010010.0010012. Then take k = 00102, the low-end four bits
of the fractional part. Knuth [Kn73] suggests A = 0.6180339887... as a good choice of
a multiplier.

17.4.2 COLLISION RESOLUTION

Definitions:

Collision resolution is the process of computing an alternative location for a colliding
record. The two basic methods are chaining and rehashing .

Chaining is a collision resolution method that involves auxiliary storage space for
records outside the confines of the main array. Each slot in the main table can be used
as the root of a linked list that contains all the records assigned to that location by the
hash function. Each additional colliding record is inserted at the front of the linked list.
When searching for a record, the list is traversed until the record is found, or until the
end of the list is reached.
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The size of a chained hash table is the number of linked list headers (i.e., the size of
the main array). Thus, a chained hash table said to be of size m may be used to store
a database with more than m records.

Rehashing is a collision resolution method in which there is no auxiliary storage outside
the main table, so that a colliding record must be stored elsewhere in the main table,
that is, at a location other than that assigned by the hash function to its key k. A
collision resolution function finds the substitute location.

A collision resolution function under rehashing generates a probe sequence 〈h0(k) =
h(k), h1(k), h2(k), . . . , hm−1(k)〉. The new record is inserted into the first unoccupied
probe location. When searching for a record, the successive probes are tried until the
record is found or the probe finds an unoccupied location (i.e. unsuccessful search).

A probe sequence for key k is a sequence 〈h0(k), h1(k), h2(k), . . . , hm−1(k)〉 of possible
storage locations in the table T that runs without repetition through the entire set
〈0, 1, 2, . . . ,m − 1〉 of locations in the table, as possible places to store the record with
key k.

Clustering is a hashing phenomenon in which after two keys collide, their probe se-
quences continue to collide.

Linear probing means trying to resolve a collision at location h(k) with a probe
sequence of the form hi(k) = (h0(k) + ci) mod m.

Quadratic probing means trying to resolve a collision at location h(k) by using a
probe sequence of the form hi(k) = (h0(k) + c1i + c2i

2) mod m.

A secondary hash function is a hash function used to generate a probe sequence,
once a collision has occurred.

Double hashing means using a primary hash function h and a secondary hash func-
tion h

′
to resolve collisions, so that hi(k) = (h(k) + ih

′
(k)) mod m.

Facts:

1. In designing a hash function, an objective is to keep the length of the probe sequences
short, so that records are stored and retrieved quickly.

2. Under chain hashing, inserting a record always requires O(1) time.

3. Under chain hashing, the time to find a record is proportional to the length of the
chain from its key, and the average length of a chain in the table equals the fullness α
of the table.

4. Under chain hashing, if the number of records in the table is proportional to the
table capacity, then a find operation needs O(1) time, on average.

5. Under chain hashing, a delete operation consists of a find with time proportional to
table fullness, followed by removal from a linked list, which requires only O(1) time.

6. Analysis of rehashing performance is based on the following assumptions:
• uniform distribution of keys: each possible key in the key domain is equally likely

to occur as the key of some record;
• uniform distribution of initial hash locations (see §17.4.1);
• uniform distribution of probe sequences: each possible probe sequence

〈h0(k), h1(k), h2(k), . . . , hm−1(k)〉,
regarded as a permutation on the set of all table locations is equally likely.

7. Under rehashing, the expected time to perform an insert operation is the same as
the expected time for unsuccessful search, and is at most 1

(1−α) .

c© 2000 by CRC Press LLC



8. Under rehashing, the expected time E(α) to perform a successful find operation is
at most 1

α ln 1
1−α + 1

α . For instance, E(0.5) = 3.386, and E(0.9) = 3.670. That means
that if a table is 90% full, a record will be found, on average, with 3.67 probes.

9. Under rehashing, location of the deleted record needs to be marked as deleted so
that subsequent probe sequences do not terminate prematurely. Moreover, the running
time of a delete operation is the same as for a successful find operation. (It also causes
the measure of fullness for searches to be different from that used for insertions, because
a new record can be inserted into the location marked as deleted). However, in most
applications that use hashing, records are never deleted.

Examples:

1. The following example of linear probing uses prime modulus m = 1013 and prime
multiplier c = 367. The keys are taken to be social security numbers.

key k h0(k) h1(k)
113548956 773
146834522 172
207639313 651
359487245 896
378545523 592
435112760 896 250
670149788 651
721666437 172 539
762456748 12

2. Linear probing suffers from clustering. That is, if hi(k1) = hj(k2), then hi+p(k1) =
hj+p(k2) for all p = 1, 2, . . . . All probe sequences follow the same (linear) pattern, from
which it follows that long chains of filled locations will cause a large number of probes
needed to insert a new record (and to locate it later).

3. Quadratic probing suffers from clustering. That is, if h0(k1) = h0(k2), then hi(k1) =
hi(k2) for i = 1, 2, . . . .

4. Pairing the primary hash function h(k) = k mod p with the secondary hash function
h

′
(k) = k div p, where p is a prime, yields the double hash function hi(k) = (h0(k) +

ih
′
(k)) mod p.

17.5 DYNAMIC GRAPH ALGORITHMS

Dynamic graph algorithms are algorithms that maintain information in regard to prop-
erties of a (possibly edge-weighted) graph while the graph is changing. These algorithms
are useful in a number of application areas, including communication networks, VLSI
design, distributed computing, and graphics, where the underlying graphs are subject
to dynamic changes. Efficient dynamic graph algorithms are also used as subroutines
in algorithms that build and modify graphs as part of larger tasks, e.g., the algorithm
for constructing Voronoi diagrams by building planar subdivisions.

Notation: Throughout this section, n and m denote the number of vertices and the
number of edges, respectively, of the graph that is being maintained and queried dy-
namically.
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17.5.1 DYNAMICALLY MAINTAINABLE PROPERTIES

Definitions:

A (dynamic) update operation is an operation on a graph that keeps track whether
the graph has a designated property.

A query is a request for information about the designated property.

Facts:
1. The primitive update operations for most dynamic graph algorithms are edge inser-
tions and deletions and, in the case of edge-weighted graphs, changes in edge weights.
2. For most dynamic graph algorithms, insertion or deletion of an isolated vertex can
be accomplished by an easy modification of a non-dynamic algorithm.
3. The insertion or deletion of vertices together with their incident edges is usually
harder and has to be done by iterating the associated edge update operation.
4. There is a trade-off between the time required for update operations and the time
required to respond to queries about the property being maintained. Thus, running
times of the update operations depend strongly on the property being maintained.
5. Nontrivial dynamic algorithms corresponding to several graph properties are known
(see Examples).

Examples:
1. Connectivity : The permitted query is whether two vertices x and y are in the
same component. Permitted updates are edge insertions, edge deletions, and isolated
vertex insertions. Frederickson [Fr85] provides an algorithm for maintaining minimum
spanning forests that can easily be adapted to this problem. Improvements in running
times have been achieved by [EpEtal92] and [EpGaIt93].
2. Bipartiteness: Update operations are the same as for Connectivity (Example 1). A
query simply asks whether a graph is bipartite. An algorithm is presented in [EpEtal92],
with an improvement in [EpGaIt93].
3. Minimum spanning forests: The query is whether an edge is in a minimum spanning
forest. The graph is weighted, and the update operations are increments and decrements
of weights. (Edge insertion is accomplished by lowering the edge weight from ∞ and edge
deletion by incrementing the edge weight to ∞.) [Fr85] contains the early result, with
improvements by [EpGaIt93]. The plane and planar graph cases have been considered
by [EpEtal92] and [EpEtal93].
4. Biconnectivity and 2-Edge Connectivity: Update operations are the same as for
Connectivity (Example 1). Queries ask whether two given vertices lie in the same bi-
connected (resp., 2-edge connected) component. Efficient algorithms for maintaining
biconnectivity are found in [EpEtal92], [EpGaIt93], [Ra93], and [HeRaSu94]. Efficient
algorithms for maintaining 2-edge connectivity are found in [EpEtal92], [Fr91], and
[Fr85]. Any algorithm for dynamically maintaining biconnectivity translates to an al-
gorithm with the same time bounds for 2-edge connectivity [GaIt91].
5. Planarity : Update operations include edge insertions and deletions. Queries ask
whether the graph is currently planar. Variants include queries that would test whether
the addition of a particular edge would destroy the current imbedding. Algorithms are
described in [EpEtal93] and [Ra93].

c© 2000 by CRC Press LLC



17.5.2 TECHNIQUES

Definitions:

A partially dynamic algorithm is usually an algorithm that handles only edge inser-
tions and, for edge-weighted graphs, decrements in edge weights. Less commonly, this
term can refer to an algorithm that handles only edge deletions or weight increments.

A cluster in a spanning tree T for a graph G is a set of vertices such that the subgraph
of T induced on these vertices is connected.

An ambivalent data structure is a structure that, at many of its vertices, keeps track
of several alternatives, despite the fact that a global examination of the structure would
determine which of these alternatives is optimal.

A certificate for property P and graph G is a graph G′ such that G has property P if
and only if G′ has property P.

A strong certificate for property P and graph G is a graph G′, on the same vertex
set as G, such that, for every graph H, G∪H has property P if and only if G′ ∪H has
property P.

A sparse certificate is a strong certificate in which the number of edges is O(n).

A function A that maps graphs to strong certificates is stable if it satisfies:
• A(G ∪H) = A(A(G) ∪H);
• A(G− e) differs from A(G) by O(1) edges, where e is an edge in G.

A stable certificate is one produced by a stable mapping.

A plane graph is a planar graph, together with a particular imbedding in the plane.

A compressed certificate for a property P of G, where G = (V,E) is a subgraph of a
larger graph F and X ⊂ V separates G from F −G, is a small certificate G′ = (V ′, E′)
with X ⊂ V ′ such that, for any graph H that is attached to G only at the vertices of X,
H ∪G has property P if and only if H ∪G′ does, and |V ′| = O(|X|).
A graph property P is dyadic if it is defined with respect to a pair of vertices (x, y).

A graph C is a certificate of a dyadic property P for X in G if and only if, for
any H with V (H) ∩ V (G) ⊂ X and every x and y in V (H), P is true for (x, y) in the
graph G ∪H if and only if it is true for (x, y) in the graph C ∪H.

Facts:

1. Using the union-find data structure [Ta75], it is possible to maintain connectivity
information in O(α(m,n)) amortized time per update or query.

2. For other graph properties, such as 2-edge connectivity and biconnectivity, a data
structure called the link/condense tree [WeTa92] maintains information in O(α(m,n))
amortized time per update or query.

3. The link/condense tree supports the operation of condensing an entire path in the
tree into a single vertex. This is important in the applications considered, because the
insertion of an edge may cause several biconnected components or 2-edge connected
components to be combined into one.

4. Link/condense trees are based on dynamic trees. [SlTa83]
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Algorithm 1: Frederickson: to maintain a minimum spanning tree.

Preprocessing :
find a minimum spanning tree T of the initial graph G
maintain a dynamic tree of T , using [SlTa83]
for z := n2/3 group the vertices of T into clusters whose sizes are between z

and 3z − 2 {There will be Θ(n1/3) clusters.}
for each pair of clusters i, j maintain the set of edges Eij as a min-heap

Updates: Decreases in tree edge weights do not change anything, and increases in
non-tree weights can be handled by a suitable update of the appropriate min-
heap. Handle decreases in non-tree edge weights by using the dynamic tree
appropriately. If tree edge e increases in weight, remove it, thus partitioning
the clusters into two sets. Find an edge of minimum cost between clusters on
opposite sides of the partition.

5. The dynamic tree data structure maintains a set of rooted trees. It supports the
operations of linking the root of one tree as the child of a vertex in another tree, cutting
a tree at a specified edge, and everting a tree to make a specified vertex the root in
worst-case O(log n) time per operation. It also supports other operations based on keys
stored at vertices, such as finding the minimum key on the path from a given vertex to
the root in O(log n) time.

6. To maintain minimum spanning trees in an edge-weighted, connected graph subject
to changes in edge weights, Frederickson [Fr85] uses clustering and topology trees in
Algorithm 1.

7. Ambivalence may permit faster updates, possibly at the cost of slower queries.

8. Frederickson [Fr91] presents an ambivalent data structure for spanning forests that
builds upon the ideas of multilevel partitions and (2-dimensional) topology trees that
he developed in [Fr85].

9. Let P be a property for which sparse certificates can be found in time f(n,m).
Suppose that there is a data structure that can be built in time g(n,m) and permits
static testing of property P in time q(n,m). Then there is a fully dynamic data struc-
ture for testing whether a graph has property P; update time for this structure is
f(n,O(n))O(log(m

n ))+ g(n,O(n)), and query time is q(n,O(n)). This “basic sparsifica-
tion technique” is used to dynamize static algorithms. To use it, one need only be able
to compute sparse certificates efficiently.

10. The sparsification method of [EpEtal92] is to partition the input graph into sparse
subgraphs (with O(n) edges) and summarize the relevant information about each sub-
graph in an even sparser “certificate”. Certificates are merged in pairs, producing larger
subgraphs that are themselves sparsified using the certificate technique. The result is
a balanced binary tree in which each vertex is a sparse certificate. Each insertion or
deletion of an edge in the input graph causes changes in log(m

n ) tree vertices. Because
these changes occur in graphs with O(n) edges, instead of the m edges in the input
graph, time bounds for updates are reduced in most natural problems.

11. Let P be a property for which stable sparse certificates can be maintained in time
f(n,m) per update. Suppose that there is a fully dynamic algorithm for P with update
time g(n,m) and query time q(n,m). Then this algorithm can be sped up; specifi-
cally, P can be maintained fully dynamically in time f(n,O(n))O(log(m

n )) + g(n,O(n))
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per update, with query time q(n,O(n)). Because this “stable sparsification technique”
is used to speed up existing dynamic algorithms, it often yields better results than the
basic sparsification technique described above. However, to use it, one must be able to
maintain stable sparse certificates efficiently; this is a more stringent requirement than
what is needed to apply basic sparsification.
12. Eppstein, Galil, and Italiano [EpGaIt93] improve the sparsification technique to get
rid of the log(m

n ) factor in these bounds. They achieve this improvement by partitioning
the edge set of the original graph more carefully.
13. Dynamic algorithms restricted to plane graphs have been considered by several
authors. Eppstein et al. [EpEtal93] introduce a variant of sparsification that permits the
design of efficient dynamic algorithms for planar graphs in an imbedding-independent
way, as long as the updates to the graph preserve planarity. Because these graphs are
already sparse, Eppstein et al.design a separator-based sparsification technique.
14. The fact that separator sizes are sublinear (O(

√
n) for planar graphs) allows

the possibility of maintaining sublinear certificates. Eppstein et al. [EpEtal93] use a
separator-based decomposition tree as the sparsification tree and show how to compute
it in linear time and maintain it dynamically. They use it to show the following: For a
property P for which compressed certificates can be built in time T (n), a data structure
for testing P built in time P (n), and queries answered in time Q(n), a fully dynamic
algorithm for maintaining P under planarity-preserving insertions and deletions takes
amortized time P (O(n1/2)) + T (O(n1/2)) per update and Q(O(n1/2)) per query.
15. A dyadic property P, for which compressed certificates can be built in time T (n),
a data structure for testing P built in time P (n), and queries answered in time Q(n),
can be maintained with updates taking T (O(n1/2)) amortized time and queries taking
P (O(n1/2)) + Q(O(n1/2)) + T (O(n1/2)) worst-case time.
16. In dealing with plane (as opposed to planar) graphs and allowing only updates that
can be performed in a planarity-preserving manner on the existing imbedding, simpler
techniques that rely on planar duality can be used [EpEtal92].
17. When maintaining minimum spanning trees under updates that change only edge
weights, the most difficult operation to handle is an increase in the weight of an MST
edge. However, in the dual graph this can be viewed as a decrease in the weight of a non-
MST edge. This idea and the handling of edge insertions and deletions are addressed by
the data structures of [GuSt85] and the edge-ordered tree data structure of [EpEtal92].
These data structures help maintain the subdivision and its dual in the face of general
updates and also help perform required access operations efficiently. Edge-ordered trees
are an adaptation of the dynamic trees of [SlTa83].
18. Knowledge of the imbedding allows one to use topology trees in more efficient
ways. Specifically, Rauch [Ra94] partitions the non-tree edges into equivalence classes
called bundles. In the cyclical ordering of edges emanating from a cluster, bundles are
carefully chosen, consecutive subsets of edges.

17.5.3 APPLICATIONS

Examples:
1. Bipartiteness [EpGaItNi92], [EpGaIt93]: A graph that is not bipartite contains an
odd cycle. The graph formed by adding the shortest edge inducing an odd cycle (if any)
to the minimum spanning forest is a stable certificate of (non-)bipartiteness. Using the
clustering techniques of [Fr85] and the improved sparsification techniques of [EpGaIt93],
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this certificate can be maintained in O(n1/2) time per update. The query time in this
example is O(1); one bit is used to indicate whether the operation is maintaining a
certificate of bipartiteness or of non-bipartiteness.

2. Minimum spanning forests [EpGaItNi92], [EpGaIt93], [Fr85]: In this example, the
goal is not to maintain a data structure that supports efficient testing of a property,
but rather to maintain the minimum spanning forest itself as edges are added to and
deleted from the input graph. It is shown in [EpGaItNi92] how to define a canonical
minimum spanning forest that serves as the analogue of a stable sparse certificate.
Frederickson [Fr85] uses the topological approach to obtain a fully dynamic algorithm
that maintains minimum spanning forests in time O(m1/2) per update. Applying the
improved stable sparsification technique with f(n,m) = g(n,m) = O(m1/2) yields a
fully dynamic minimum spanning forest algorithm with update time O(n1/2). For plane
graphs, [EpEtal92] show that both updates and queries can be performed in O(log n)
time per operation; in planar graphs, [EpEtal93] show that O(log2 n) per deletion and
O(log n) per insertion are sufficient.

3. Connectivity [EpGaItNi92], [EpGaIt93], [Fr85]: Simple enhancements to the min-
imum spanning forest algorithms in [Fr85] yield fully dynamic algorithms for the con-
nectivity problem in which the update times are the same as they are for minimum
spanning forests, and the query times are O(1). Thus, as in the previous example,
applying improved stable sparsification with f(n,m) = g(n,m) = O(m1/2) yields a
fully dynamic connectivity algorithm with update time O(n1/2) and query time O(1).
Similarly, the planar and plane graph algorithms for minimum spanning trees can be
generalized to work for minimum spanning forests and adapted to maintain connected
components.

4. Biconnectivity [EpGaItNi92], [EpGaIt93], [Ra93], [HeRaSu94]: Cheriyan, Kao, and
Thurimella [ChKaTh93] show that C2 = C1 ∪ B2 is a sparse certificate for biconnec-
tivity, where C1 is a breadth-first spanning forest of the input graph G, and B2 is a
breadth-first spanning forest of G − C1. Eppstein et al. [EpGaItNi92] show that C2 is
in fact a strong certificate of biconnectivity. These strong certificates can be found in
time O(m), using classical breadth-first search algorithms. Applying improved sparsifi-
cation with f(n,m) = g(n,m) = O(m) yields a fully dynamic algorithm for maintaining
the biconnected components of a graph that has update time O(n).

The approach to biconnectivity in [Ra94] is to partition the graph G into clusters
and decompose a query that asks whether vertices u and v lie in the same biconnected
component into a query in the cluster of u, a query in the cluster of v, and a query
between clusters. The 2-dimensional topology tree is adapted in a novel way, and the
ambivalent data structures previously defined for connectivity and 2-edge connectivity
are extended to test biconnectivity between clusters. To test biconnectivity within a
cluster C, the entire subgraph induced by C and a compressed certificate of G−C are
maintained. Using all these ingredients, [Ra94] obtains amortized O(m1/2) time per
update and O(1) worst-case time per query.

Using clever data structures based on topology trees, bundles, and the idea of
recipes, first introduced in this context in [HeRaSu94], the problem of fully dynamic
biconnectivity for plane graphs can be solved in O(log2 n) time per update and O(log n)
time per query.

5. 2-edge connectivity [EpGaItNi92], [Fr91], [Fr85]: Thurimella [Th89] and Nagamochi
and Ibaraki [NaIb92] show that the following structure U2 is a certificate for 2-edge
connectivity: U2 = U1 ∪ F2, where U1 is a spanning forest of G, and F2 is a spanning
forest of G − U1. Eppstein et al. [EpGaItNi92] show that U2 is in fact a stable,
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sparse certificate. Frederickson’s minimum spanning forest algorithm [Fr85] can be
adapted to maintain U2 in time f(n,m) = O(m1/2). Frederickson’s ambivalent data
structure technique [Fr91] can be used to test 2-edge connectivity with update time
g(n,m) = O(m1/2) and query time q(n,m) = O(log n). Here a “query” is a pair of
vertices, and the answer is “yes” if they are in the same 2-edge connected component
and “no” otherwise. Applying improved stable sparsification yields a fully dynamic
algorithm with update time O(n1/2) and query time O(log n).

6. Planarity [EpEtal93], [Ra93]: Eppstein et al. [EpEtal93] use the separator-based
sparsification technique described above to obtain a fully dynamic planarity-testing
algorithm for general graphs that answers queries of the form “is the graph currently
planar?” and “would the insertion of this edge preserve planarity?”. Their algorithm
requires amortized running time O(n1/2) per update or query. Italiano, La Poutré, and
Rauch [ItLaRa93] use topology trees, bundles, and recipes to obtain a fully dynamic
algorithm on plane graphs that tests whether the insertion of a particular edge would
destroy the given imbedding. Their algorithm requires time O(log2 n) for updates and
queries.

17.5.4 RECENT RESULTS AND OPEN QUESTIONS

Examples:

1. Alberts and Henzinger [AlHe95] investigate dynamic algorithms on random graphs
with n vertices and m0 edges on which a sequence of k arbitrary update operations is
performed. They obtain expected update times of O(k log n+

∑k
i=1

n√
mi

) for minimum

spanning forest, connectivity, and bipartiteness and O(k log n +
√

log n
∑k

i=1
n√
mi

) for
2-edge connectivity. The data structures required for these algorithms use linear space,
and the preprocessing times match those of the best algorithms for finding a minimum
spanning forest.

2. Fredman and Rauch [FrRa94] investigate lower bounds in the cell probe model of
computation and obtain good results for k-edge connectivity, k-vertex connectivity,
and planarity-testing of imbedded planar graphs. Both average-case analysis and lower
bounds are important topics for future research on dynamic graph algorithms.

3. Klein et al. [KlEtal94] give a fully dynamic algorithm for the all-pairs shortest path
problem on planar graphs. If the sum of the absolute values of the edge-lengths is D,
then the time per operation is O(n9/7 logD) (worst case for queries, edge deletion,
and length changes, and amortized for edge insertion); the space requirement is O(n).
Several types of partially dynamic algorithms for shortest paths appear in [AuEtal90],
[EvGa85], [FrMaNa94], and [Ro85].

Although it is one of the most important dynamic graph algorithms problems,
there is less known about shortest paths than about many other problems, and this is
an important topic for future study.

4. In a recent breakthrough, Henzinger and King [HeKi95] obtained fully dynamic,
randomized algorithms for connectivity, 2-edge connectivity, bipartiteness, cycle equiva-
lence, and constant-weight minimum spanning trees that have polylogarithmic expected
time per operation.
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