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PREFACE

The importance of discrete and combinatorial mathematics has increased dramatically
within the last few years. The purpose of the Handbook of Discrete and Combinatorial
Mathematics is to provide a comprehensive reference volume for computer scientists,
engineers, mathematicians, and others, such as students, physical and social scientists,
and reference librarians, who need information about discrete and combinatorial math-
ematics.

This book is the first resource that presents such information in a ready-reference form
designed for use by all those who use aspects of this subject in their work or studies.
The scope of this book includes the many areas generally considered to be parts of
discrete mathematics, focusing on the information considered essential to its application
in computer science and engineering. Some of the fundamental topic areas covered
include:

logic and set theory graph theory

enumeration trees

integer sequences network sequences

recurrence relations combinatorial designs
generating functions computational geometry
number theory coding theory and cryptography
abstract algebra discrete optimization

linear algebra automata theory

discrete probability theory data structures and algorithms.

Format

The material in the Handbook is presented so that key information can be located
and used quickly and easily. Each chapter includes a glossary that provides succinct
definitions of the most important terms from that chapter. Individual topics are cov-
ered in sections and subsections within chapters, each of which is organized into clearly
identifiable parts: definitions, facts, and examples. The definitions included are care-
fully crafted to help readers quickly grasp new concepts. Important notation is also
highlighted in the definitions. Lists of facts include:

e information about how material is used and why it is important
e historical information

e key theorems

e the latest results

e the status of open questions

e tables of numerical values, generally not easily computed

e summary tables

e key algorithms in an easily understood pseudocode

e information about algorithms,; such as their complexity

e major applications

e pointers to additional resources, including websites and printed material.
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Facts are presented concisely and are listed so that they can be easily found and un-
derstood. Extensive crossreferences linking parts of the handbook are also provided.
Readers who want to study a topic further can consult the resources listed.

The material in the Handbook has been chosen for inclusion primarily because it is
important and useful. Additional material has been added to ensure comprehensiveness
so that readers encountering new terminology and concepts from discrete mathematics
in their explorations will be able to get help from this book.

Examples are provided to illustrate some of the key definitions, facts, and algorithms.
Some curious and entertaining facts and puzzles that some readers may find intriguing
are also included.

Each chapter of the book includes a list of references divided into a list of printed
resources and a list of relevant websites.

How This Book Was Developed

The organization and structure of the Handbook were developed by a team which in-
cluded the chief editor, three associate editors, the project editor, and the editor from
CRC Press. This team put together a proposed table of contents which was then ana-
lyzed by members of a group of advisory editors, each an expert in one or more aspects
of discrete mathematics. These advisory editors suggested changes, including the cover-
age of additional important topics. Once the table of contents was fully developed, the
individual sections of the book were prepared by a group of more than 70 contributors
from industry and academia who understand how this material is used and why it is
important. Contributors worked under the direction of the associate editors and chief
editor, with these editors ensuring consistency of style and clarity and comprehensive-
ness in the presentation of material. Material was carefully reviewed by authors and
our team of editors to ensure accuracy and consistency of style.

The CRC Press Series on Discrete Mathematics and Its Applications

This Handbook is designed to be a ready reference that covers many important distinct
topics. People needing information in multiple areas of discrete and combinatorial
mathematics need only have this one volume to obtain what they need or for pointers
to where they can find out more information. Among the most valuable sources of
additional information are the volumes in the CRC Press Series on Discrete Mathematics
and Its Applications. This series includes both Handbooks, which are ready references,
and advanced Textbooks/Monographs. More detailed and comprehensive coverage in
particular topic areas can be found in these individual volumes:
Handbooks

e The CRC Handbook of Combinatorial Designs

e Handbook of Discrete and Computational Geometry

e Handbook of Applied Cryptography

Textbooks/Monographs
e Graph Theory and its Applications
e Algebraic Number Theory

e Quadratics
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e Design Theory

e Frames and Resolvable Designs: Uses, Constructions, and Existence

e Network Reliability: Experiments with a Symbolic Algebra Environment
e Fundamental Number Theory with Applications

e Cryptography: Theory and Practice

e Introduction to Information Theory and Data Compression

e Combinatorial Algorithms: Generation, Enumeration, and Search

Feedback

To see updates and to provide feedback and errata reports, please consult the Web page
for this book. This page can be accessed by first going to the CRC website at

http://www.crcpress.com
and then following the links to the Web page for this book.
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BIOGRAPHIES

Victor J. Katz

Niels Henrik Abel (1802-1829), born in Norway, was self-taught and studied the
works of many mathematicians. When he was nineteen years old, he proved that
there is no closed formula for solving the general fifth degree equation. He also
worked in the areas of infinite series and elliptic functions and integrals. The term
abelian group was coined in Abel’s honor in 1870 by Camille Jordan.

Abraham ibn Ezra (1089-1164) was a Spanish-Jewish poet, philosopher, astrologer,
and biblical commentator who was born in Tudela, but spent the latter part of
his life as a wandering scholar in Italy, France, England, and Palestine. It was in
an astrological text that ibn Ezra developed a method for calculating numbers of
combinations, in connection with determining the number of possible conjunctions of
the seven “planets” (including the sun and the moon). He gave a detailed argument
for the cases n = 7, k = 2 to 7, of a rule which can easily be generalize to the modern
formula C(n, k) = 77 | C(i,k — 1). Tbn Ezra also wrote a work on arithmetic in
which he introduced the Hebrew-speaking community to the decimal place-value
system. He used the first nine letters of the Hebrew alphabet to represent the first
nine numbers, used a circle to represent zero, and demonstrated various algorithms
for calculation in this system.

Aristotle (384-322 B.C.E.) was the most famous student at Plato’s academy in Athens.
After Plato’s death in 347 B.C.E., he was invited to the court of Philip II of Mace-
don to educate Philip’s son Alexander, who soon thereafter began his successful
conquest of the Mediterranean world. Aristotle himself returned to Athens, where
he founded his own school, the Lyceum, and spent the remainder of his life writing
and lecturing. He wrote on numerous subjects, but is perhaps best known for his
works on logic, including the Prior Analytics and the Posterior Analytics. In these
works, Aristotle developed the notion of logical argument, based on several explicit
principles. In particular, he built his arguments out of syllogisms and concluded that
demonstrations using his procedures were the only certain way of attaining scientific
knowledge.

Emil Artin (1898-1962) was born in Vienna and in 1921 received a Ph.D. from the Uni-
versity of Leipzig. He held a professorship at the University of Hamburg until 1937,
when he came to the United States. In the U.S. he taught at the University of Notre
Dame, Indiana University, and Princeton. In 1958 he returned to the University
of Hamburg. Artin’s mathematical contributions were in number theory, algebraic
topology, linear algebra, and especially in many areas of abstract algebra.

Charles Babbage (1792-1871) was an English mathematician best known for his in-
vention of two of the earliest computing machines, the Difference Engine, designed
to calculate polynomial functions, and the Analytical Engine, a general purpose cal-
culating machine. The Difference Engine was designed to use the idea that the nth
order differences in nth degree polynomials were always constant and then to work
backwards from those differences to the original polynomial values. Although Bab-
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bage received a grant from the British government to help in building the Engine, he
never was able to complete one because of various difficulties in developing machine
parts of sufficient accuracy. In addition, Babbage became interested in his more
advanced Analytical Engine. This latter device was to consist of a store, in which
the numerical variables were kept, and a mill, in which the operations were per-
formed. The entire machine was to be controlled by instructions on punched cards.
Unfortunately, although Babbage made numerous engineering drawings of sections
of the Analytical Engine and gave a series of seminars in 1840 on its workings, he
was never able to build a working model.

Paul Gustav Heinrich Bachmann (1837-1920) studied mathematics at the Univer-
sity of Berlin and at Gottingen. In 1862 he received a doctorate in group theory and
held positions at the universities at Breslau and Miinster. He wrote several volumes
on number theory, introducing the big-O notation in his 1892 book.

John Backus (born 1924) received bachelor’s and master’s degrees in mathematics
from Columbia University. He led the group at IBM that developed FORTRAN.
He was a developer of ALGOL, using the Backus-Naur form for the syntax of the
language. He received the National Medal of Science in 1974 and the Turing Award
in 1977.

Abu-l-’Abbas Ahmad ibn Muhammad ibn al-Banna al-Marrakushi (1256-
1321) was an Islamic mathematician who lived in Marrakech in what is now Morocco.
Ibn al-Banna developed the first known proof of the basic combinatorial formulas,
beginning by showing that the number of permutations of a set of n elements was 7!
and then developing in a careful manner the multiplicative formula to compute the
values for the number of combinations of k objects in a set of n. Using these two
results, he also showed how to calculate the number of permutations of k& objects from
a set of n. The formulas themselves had been known in the Islamic world for many
years, in connection with specific problems like calculating the number of words of
a given length which could be formed from the letters of the Arabic alphabet. Ibn
al-Banna’s main contribution, then, was to abstract the general idea of permutations
and combinations out of the various specific problem situations considered earlier.

Thomas Bayes (1702-1761) an English Nonconformist, wrote an Introduction to the
Doctrine of Fluxions in 1736 as a response to Berkeley’s Analyst with its severe crit-
icism of the foundations of the calculus. He is best known, however, for attempting
to answer the basic question of statistical inference in his An Essay Towards Solving
a Problem in the Doctrine of Chances, published three years after his death. That
basic question is to determine the probability of an event, given empirical evidence
that it has occurred a certain number of times in a certain number of trials. To do
this, Bayes gave a straightforward definition of probability and then proved that for
two events F and F, the probability of E given that F' has happened is the quo-
tient of the probability of both E and F' happening divided by the probability of F
alone. By using areas to model probability, he was then able to show that, if x is the
probability of an event happening in a single trial, if the event has happened p times
in n trials, and if 0 < r < s < 1, then the probability that x is between r and s is
given by the quotient of two integrals. Although in principle these integrals can be
calculated, there has been a great debate since Bayes’ time about the circumstances
under which his formula gives an appropriate answer.

James Bernoulli (Jakob I) (1654-1705) was one of eight mathematicians in three
generations of his family. He was born in Basel, Switzerland, studied theology in
addition to mathematics and astronomy, and entered the ministry. In 1682 be began
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to lecture at the University of Basil in natural philosophy and mechanics. He became
professor at the University of Basel in 1687, and remained there until his death. His
research included the areas of the calculus of variations, probability, and analytic
geometry. His most well-known work is Ars Conjectandi, in which he described
results in combinatorics and probability, including applications to gambling and the
law of large numbers; this work also contained a reprint of the first formal treatise
in probability, written in 1657 by Christiaan Huygens.

Bhaskara (1114-1185), the most famous of medieval Indian mathematicians, gave a
complete algorithmic solution to the Pell equation Dx? 41 = y?. That equation had
been studied by several earlier Indian mathematicians as well. Bhaskara served much
of his adult life as the head of the astronomical observatory at Ujjain, some 300 miles
northeast of Bombay, and became widely respected for his skills in astronomy and the
mechanical arts, as well as mathematics. Bhaskara’s mathematical contributions are
chiefly found in two chapters, the Lilavati and the Bijaganita, of a major astronomical
work, the Siddhantasiromani. These include techniques of solving systems of linear
equations with more unknowns than equations as well as the basic combinatorial
formulas, although without any proofs.

George Boole (1815-1864) was an English mathematician most famous for his work
in logic. Born the son of a cobbler, he had to struggle to educate himself while
supporting his family. But he was so successful in his self-education that he was able
to set up his own school before he was 20 and was asked to give lectures on the work
of Isaac Newton. In 1849 he applied for and was appointed to the professorship in
mathematics at Queen’s College, Cork, despite having no university degree. In 1847,
Boole published a small book, The Mathematical Analysis of Logic, and seven years
later expanded it into An Investigation of the Laws of Thought. In these books, Boole
introduced what is now called Boolean algebra as part of his aim to “investigate the
fundamental laws of those operations of the mind by which reasoning is performed;
to give expression to them in the symbolical language of a Calculus, and upon this
foundation to establish the science of Logic and construct its method.” In addition
to his work on logic, Boole wrote texts on differential equations and on difference
equations that were used in Great Britain until the end of the nineteenth century.

William Burnside (1852-1927), born in London, graduated from Cambridge in 1875,
and remained there as lecturer until 1885. He then went to the Royal Naval College
at Greenwich, where he stayed until he retired. Although he published much in
applied mathematics, probability, and elliptic functions, he is best known for his
extensive work in group theory (including the classic book Theory of Groups). His
conjecture that groups of odd order are solvable was proved by Walter Feit and John
Thompson and published in 1963.

Georg Ferdinand Ludwig Philip Cantor (1845-1918) was born in Russia to Danish
parents, received a Ph.D. in number theory in 1867 at the University of Berlin, and
in 1869 took a position at Halle University, where he remained until his retirement.
He is regarded as a founder of set theory. He was interested in theology and the
nature of the infinite. His work on the convergence of Fourier series led to his study
of certain types of infinite sets of real numbers, and ultimately to an investigation
of transfinite numbers.

Augustin-Louis Cauchy (1789-1857) the most prolific mathematician of the nine-
teenth century, is most famous for his textbooks in analysis written in the 1820s for
use at the Ecole Polytechnique, textbooks which became the model for calculus texts
for the next hundred years. Although born in the year the French Revolution began,
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Cauchy was a staunch conservative. When the July Revolution of 1830 led to the
overthrow of the last Bourbon king, Cauchy refused to take the oath of allegiance to
the new king and went into a self-imposed exile in Italy and then in Prague. He did
not return to his teaching posts until the Revolution of 1848 led to the removal of
the requirement of an oath of allegiance. Among the many mathematical subjects
to which he contributed besides calculus were the theory of matrices, in which he
demonstrated that every symmetric matrix can be diagonalized by use of an orthog-
onal substitution, and the theory of permutations, in which he was the earliest to
consider these from a functional point of view. In fact, he used a single letter, say S,
to denote a permutation and S~! to denote its inverse and then noted that the

powers S, S2, S3, ... of a given permutation on a finite set must ultimately result
in the identity. He also introduced the current notation (ajas...a,) to denote the
cyclic permutation on the letters ay,as, ..., ay,.

Arthur Cayley (1821-1895), although graduating from Trinity College, Cambridge
as Senior Wrangler, became a lawyer because there were no suitable mathematics
positions available at that time in England. He produced nearly 300 mathematical
papers during his fourteen years as a lawyer, and in 1863 was named Sadlerian profes-
sor of mathematics at Cambridge. Among his numerous mathematical achievements
are the earliest abstract definition of a group in 1854, out of which he was able to
calculate all possible groups of order up to eight, and the basic rules for operating
with matrices, including a statement (without proof) of the Cayley-Hamilton theo-
rem that every matrix satisfies its characteristic equation. Cayley also developed the
mathematical theory of trees in an article in 1857. In particular, he dealt with the
notion of a rooted tree, a tree with a designated vertex called a root, and developed
a recursive formula for determining the number of different rooted trees in terms of
its branches (edges). In 1874, Cayley applied his results on trees to the study of
chemical isomers.

Pafnuty Lvovich Chebyshev (1821-1894) was a Russian who received his master’s
degree in 1846 from Moscow University. From 1860 until 1882 he was a professor at
the University of St. Petersburg. His mathematical research in number theory dealt
with congruences and the distribution of primes; he also studied the approximation
of functions by polynomials.

Avram Noam Chomsky (born 1928) received a Ph.D. in linguistics at the University
of Pennsylvania. For many years he has been a professor of foreign languages and
linguistics at M.I.T. He has made many contributions to the study of linguistics
and the study of grammars.

Chrysippus (280206 B.C.E.) was a Stoic philosopher who developed some of the ba-
sic principles of the propositional logic, which ultimately replaced Aristotle’s logic of
syllogisms. He was born in Cilicia, in what is now Turkey, but spent most of his life
in Athens, and is said to have authored more than 700 treatises. Among his other
achievements, Chrysippus analyzed the rules of inference in the propositional calcu-
lus, including the rules of modus ponens, modus tollens, the hypothetical syllogism,
and the alternative syllogism.

Alonzo Church (1903-1995) studied under Hilbert at Gottingen, was on the faculty
at Princeton from 1927 until 1967, and then held a faculty position at UCLA. He
is a founding member of the Association for Symbolic Logic. He made many con-
tributions in various areas of logic and the theory of algorithms, and stated the
Church-Turing thesis (if a problem can be solved with an effective algorithm, then
the problem can be solved by a Turing machine).
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George Dantzig (born 1914) is an American mathematician who formulated the gen-
eral linear programming problem of maximizing a linear objective function subject
to several linear constraints and developed the simplex method of solution in 1947.
His study of linear programming grew out of his World War II service as a mem-
ber of Air Force Project SCOOP (Scientific Computation of Optimum Programs),
a project chiefly concerned with resource allocation problems. After the war, linear
programming was applied to numerous problems, especially military and economic
ones, but it was not until such problems could be solved on a computer that the real
impact of their solution could be felt. The first successful solution of a major linear
programming problem on a computer took place in 1952 at the National Bureau of
Standards. After he left the Air Force, Dantzig worked for the Rand Corporation
and then served as a professor of operations research at Stanford University.

Richard Dedekind (1831-1916) was born in Brunswick, in northern Germany, and
received a doctorate in mathematics at Gottingen under Gauss. He held positions
at Gottingen and in Zurich before returning to the Polytechnikum in Brunswick.
Although at various times he could have received an appointment to a major Ger-
man university, he chose to remain in his home town where he felt he had sufficient
freedom to pursue his mathematical research. Among his many contributions was
his invention of the concept of ideals to resolve the problem of the lack of unique
factorization in rings of algebraic integers. Even though the rings of integers them-
selves did not possess unique factorization, Dedekind showed that every ideal is either
prime or uniquely expressible as the product of prime ideals. Dedekind published
this theory as a supplement to the second edition (1871) of Dirichlet’s Vorlesungen
tiber Zahlentheorie, of which he was the editor. In the supplement, he also gave one
of the first definitions of a field, confining this concept to subsets of the complex
numbers.

Abraham deMoivre (1667-1754) was born into a Protestant family in Vitry, France,
a town about 100 miles east of Paris, and studied in Protestant schools up to the age
of 14. Soon after the revocation of the Edict of Nantes in 1685 made life very difficult
for Protestants in France, however, he was imprisoned for two years. He then left
France for England, never to return. Although he was elected to the Royal Society
in 1697, in recognition of a paper on “A method of raising an infinite Multinomial
to any given Power or extracting any given Root of the same”, he never achieved a
university position. He made his living by tutoring and by solving problems arising
from games of chance and annuities for gamblers and speculators. DeMoivre’s major
mathematical work was The Doctrine of Chances (1718, 1736, 1756), in which he
devised methods for calculating probabilities by use of binomial coefficients. In
particular, he derived the normal approximation to the binomial distribution and,
in essence, invented the notion of the standard deviation.

Augustus DeMorgan (1806-1871) graduated from Trinity College, Cambridge in
1827. He was the first mathematics professor at University College in London, where
he remained on the faculty for 30 years. He founded the London Mathematical Soci-
ety. He wrote over 1000 articles and textbooks in probability, calculus, algebra, set
theory, and logic (including DeMorgan’s laws, an abstraction of the duality principle
for sets). He gave a precise definition of limit, developed tests for convergence of
infinite series, and gave a clear explanation of the Principle of Mathematical Induc-
tion.

René Descartes (1596-1650) left school at 16 and went to Paris, where he studied
mathematics for two years. In 1616 he earned a law degree at the University of
Poitiers. In 1617 he enlisted in the army and traveled through Europe until 1629,
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when he settled in Holland for the next 20 years. During this productive period of
his life he wrote on mathematics and philosophy, attempting to reduce the sciences
to mathematics. In 1637 his Discours was published; this book contained the devel-
opment of analytic geometry. In 1649 he has invited to tutor the Queen Christina
of Sweden in philosophy. There he soon died of pneumonia.

Leonard Eugene Dickson (1874-1954) was born in Iowa and in 1896 received the
first Ph.D. in mathematics given by the University of Chicago, where he spent much
of his faculty career. His research interests included abstract algebra (including the
study of matrix groups and finite fields) and number theory.

Diophantus (c. 250) was an Alexandrian mathematician about whose life little is
known except what is reported in an epigram of the Greek Anthology (c. 500), from
which it can calculated that he lived to the age of 84. His major work, however,
the Arithmetica, has been extremely influential. Despite its title, this is a book on
algebra, consisting mostly of an organized collection of problems translatable into
what are today called indeterminate equations, all to be solved in rational numbers.
Diophantus introduced the use of symbolism into algebra and outlined the basic rules
for operating with algebraic expressions, including those involving subtraction. It
was in a note appended to Problem II-8 of the 1621 Latin edition of the Arithmetica
— to divide a given square number into two squares — that Pierre de Fermat first
asserted the impossibility of dividing an nth power (n > 2) into the sum of two nth
powers. This result, now known as Fermat’s Last Theorem, was finally proved in
1994 by Andrew Wiles.

Charles Lutwidge Dodgson (1832-1898) is more familiarly known as Lewis Carroll,
the pseudonym he used in writing his famous children’s works Alice in Wonderland
and Through the Looking Glass. Dodgson graduated from Oxford University in 1854
and the next year was appointed a lecturer in mathematics at Christ Church College,
Oxford. Although he was not successful as a lecturer, he did contribute to four
areas of mathematics: determinants, geometry, the mathematics of tournaments and
elections, and recreational logic. In geometry, he wrote a five-act comedy, “Euclid
and His Modern Rivals”, about a mathematics lecturer Minos in whose dreams Euclid
debates his Elements with various modernizers but always manages to demolish the
opposition. He is better known, however, for his two books on logic, Symbolic
Logic and The Game of Logic. In the first, he developed a symbolical calculus for
analyzing logical arguments and wrote many humorous exercises designed to teach
his methods, while in the second, he demonstrated a game which featured various
forms of the syllogism.

Eratosthenes (276-194 B.C.E) was born in Cyrene (North Africa) and studied at
Plato’s Academy in Athens. He was tutor of the son of King Ptolemy III Euergetes
in Alexandria and became chief librarian at Alexandria. He is recognized as the
foremost scholar of his time and wrote in many areas, including number theory (his
sieve for obtaining primes) and geometry. He introduced the concepts of meridians
of longitude and parallels of latitude and used these to measure distances, including
an estimation of the circumference of the earth.

Paul Erdds (1913-1996) was born in Budapest. At 21 he received a Ph.D. in math-
ematics from EStv6s University. After leaving Hungary in 1934, he traveled exten-
sively throughout the world, with very few possessions and no permanent home,
working with other mathematicians in combinatorics, graph theory, number theory,
and many other areas. He was author or coauthor of approximately 1500 papers
with 500 coauthors.
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Euclid (c. 300 B.C.E.) is responsible for the most famous mathematics text of all time,
the Elements. Not only does this work deal with the standard results of plane
geometry, but it also contains three chapters on number theory, one long chapter
on irrational quantities, and three chapters on solid geometry, culminating with the
construction of the five regular solids. The axiom-definition-theorem-proof style of
Euclid’s work has become the standard for formal mathematical writing up to the
present day. But about Euclid’s life virtually nothing is known. It is, however,
generally assumed that he was among the first mathematicians at the Museum and
Library of Alexandria, which was founded around 300 B.C.E by Ptolemy I Soter,
the Macedonian general of Alexander the Great who became ruler of Egypt after
Alexander’s death in 323 B.C.E.

Leonhard Euler (1707-1783) was born in Basel, Switzerland and became one of the
earliest members of the St. Petersburg Academy of Sciences. He was the most pro-
lific mathematician of all time, making contributions to virtually every area of the
subject. His series of analysis texts established many of the notations and methods
still in use today. He created the calculus of variations and established the theory of
surfaces in differential geometry. His study of the Konigsberg bridge problem led to
the formulation and solution of one of the first problems in graph theory. He made
numerous discoveries in number theory, including a detailed study of the properties
of residues of powers and the first statement of the quadratic reciprocity theorem.
He developed an algebraic formula for determining the number of partitions of an
integer n into m distinct parts, each of which is in a given set A of distinct positive
integers. And in a paper of 1782, he even posed the problem of the existence of a
pair of orthogonal latin squares: If there are 36 officers, one of each of six ranks from
each of six different regiments, can they be arranged in a square in such a way that
each row and column contains exactly one officer of each rank and one from each
regiment?

Kamal al-Din al-Farisi (died 1320) was a Persian mathematician most famous for his
work in optics. In fact, he wrote a detailed commentary on the great optical work of
Ibn al-Haytham. But al-Farisi also made major contributions to number theory. He
produced a detailed study of the properties of amicable numbers (pairs of numbers
in which the sum of the proper divisors of each is equal to the other). As part of this
study, al-Farisi developed and applied various combinatorial principles. He showed
that the classical figurate numbers (triangular, pyramidal, etc.) could be interpreted
as numbers of combinations and thus helped to found the theory of combinatorics
on a more abstract basis.

Pierre de Fermat (1601-1665) was a lawyer and magistrate for whom mathematics
was a pastime that led to contributions in many areas: calculus, number theory,
analytic geometry, and probability theory. He received a bachelor’s degree in civil
law in 1631, and from 1648 until 1665 was King’s Counsellor. He suffered an attack
of the plague in 1652, and from then on he began to devote time to the study
of mathematics. He helped give a mathematical basis to probability theory when,
together with Blaise Pascal, he solved Méré’s paradox: why is it less likely to roll a 6
at least once in four tosses of one die than to roll a double 6 in 24 tosses of two dice.
He was a discoverer of analytic geometry and used infinitesimals to find tangent
lines and determine maximum and minimum values of curves. In 1657 he published
a series of mathematical challenges, including the conjecture that ™ + y™ = 2™ has
no solution in positive integers if n is an integer greater than 2. He wrote in the
margin of a book that he had a proof, but the proof would not fit in the margin. His
conjecture was finally proved by Andrew Wiles in 1994.
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Fibonacci (Leonardo of Pisa) (c.1175—c. 1250) was the son of a Mediterranean mer-
chant and government worker named Bonaccio (hence his name filius Bonaccio, “son
of Bonaccio”). Fibonacci, born in Pisa and educated in Bougie (on the north coast
of Africa where his father was administrator of Pisa’s trading post), traveled exten-
sively around the Mediterranean. He is regarded as the greatest mathematician of
the Middle Ages. In 1202 he wrote the book Liber Abaci, an extensive treatment
of topics in arithmetic and algebra, and emphasized the benefits of Arabic numerals
(which he knew about as a result of his travels around the Mediterranean). In this
book he also discussed the rabbit problem that led to the sequence that bears his
name: 1,1,2,3,5,8,13,.... In 1225 he wrote the book Liber Quadratorum, studying
second degree diophantine equations.

Joseph Fourier (1768-1830), orphaned at the age of 9, was educated in the military
school of his home town of Auxerre, 90 miles southeast of Paris. Although he hoped
to become an army engineer, such a career was not available to him at the time
because he was not of noble birth. He therefore took up a teaching position. Dur-
ing the Revolution, he was outspoken in defense of victims of the Terror of 1794.
Although he was arrested, he was released after the death of Robespierre and was
appointed in 1795 to a position at the Ecole Polytechnique. After serving in various
administrative posts under Napoleon, he was elected to the Académie des Sciences
and from 1822 until his death served as its perpetual secretary. It was in connection
with his work on heat diffusion, detailed in his Analytic Theory of Heat of 1822,
and, in particular, with his solution of the heat equation % = % + %, that he
developed the concept of a Fourier series. Fourier also analyzed the relationship
between the series solution of a partial differential equation and an appropriate inte-
gral representation and thereby initiated the study of Fourier integrals and Fourier
transforms.

Georg Frobenius (1849-1917) organized and analyzed the central ideas of the theory of
matrices in his 1878 memoir “On linear substitutions and bilinear forms”. Frobenius
there defined the general notion of equivalent matrices. He also dealt with the
special cases of congruent and similar matrices. Frobenius showed that when two
symmetric matrices were similar, the transforming matrix could be taken to be
orthogonal, one whose inverse equaled its transpose. He then made a detailed study
of orthogonal matrices and showed that their eigenvalues were complex numbers
of absolute value 1. He also gave the first complete proof of the Cayley-Hamilton
theorem that a matrix satisfies its characteristic equation. Frobenius, a full professor
in Zurich and later in Berlin, made his major mathematical contribution in the area
of group theory. He was instrumental in developing the concept of an abstract group,
as well as in investigating the theory of finite matrix groups and group characters.

Evariste Galois (1811-1832) led a brief, tragic life which ended in a duel fought under
mysterious circumstances. He was born in Bourg-la-Reine, a town near Paris. He
developed his mathematical talents early and submitted a memoir on the solvabil-
ity of equations of prime degree to the French Academy in 1829. Unfortunately,
the referees were never able to understand this memoir nor his revised version sub-
mitted in 1831. Meanwhile, Galois became involved in the revolutionary activities
surrounding the July revolution of 1830 and was arrested for threatening the life
of King Louis-Phillipe and then for wearing the uniform of a National Guard divi-
sion which had been dissolved because of its perceived threat to the throne. His
mathematics was not fully understood until fifteen years after his death when his
manuscripts were finally published by Liouville in the Journal des mathématique.
But Galois had in fact shown the relationship between subgroups of the group of
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permutations of the roots of a polynomial equation and the various extension fields
generated by these roots, the relationship at the basis of what is now known as Galois
theory. Galois also developed the notion of a finite field in connection with solving
the problem of finding solutions to congruences F'(z) = 0 (mod p), where F(z) is a
polynomial of degree n and no residue modulo the prime p is itself a solution.

Carl Friedrich Gauss (1777-1855), often referred to as the greatest mathematician
who ever lived, was born in Brunswick, Germany. He received a Ph.D. from the
University of Helmstedt in 1799, proving the Fundamental Theorem of Algebra as
part of his dissertation. At age 24 Gauss published his important work on number
theory, the Disquisitiones Arithmeticae, a work containing not only an extensive
discussion of the theory of congruences, culminating in the quadratic reciprocity
theorem, but also a detailed treatment of cyclotomic equations in which he showed
how to construct regular n-gons by Euclidean techniques whenever n is prime and
n—1 is a power of 2. Gauss also made fundamental contributions to the differential
geometry of surfaces as well as to complex analysis, astronomy, geodesy, and statistics
during his long tenure as a professor at the University of Gottingen. It was in
connection with using the method of least squares to solve an astronomical problem
that Gauss devised the systematic procedure for solving a system of linear equations
today known as Gaussian elimination. (Unknown to Gauss, the method appeared in
Chinese mathematics texts 1800 years earlier.) Gauss’ notebooks, discovered after
his death, contained investigations in numerous areas of mathematics in which he
did not publish, including the basics of non-Euclidean geometry.

Sophie Germain (1776-1831) was forced to study in private due to the turmoil of
the French Revolution and the opposition of her parents. She nevertheless mas-
tered mathematics through calculus and wanted to continue her study in the Ecole
Polytechnique when it opened in 1794. But because women were not admitted as
students, she diligently collected and studied the lecture notes from various mathe-
matics classes and, a few years later, began a correspondence with Gauss (under the
pseudonym Monsieur LeBlanc, fearing that Gauss would not be willing to recognize
the work of a woman) on ideas in number theory. She was, in fact, responsible for
suggesting to the French general leading the army occupying Brunswick in 1807 that
he insure Gauss’ safety. Germain’s chief mathematical contribution was in connec-
tion with Fermat’s Last Theorem. She showed that x™ + y™ = 2" has no positive
integer solution where xyz is not divisible by n for any odd prime n less than 100.
She also made contributions in the theory of elasticity and won a prize from the
French Academy in 1815 for an essay in this field.

Kurt Gédel (1906-1978) was an Austrian mathematician who spent most of his life at
the Institute for Advanced Study in Princeton. He made several surprising contribu-
tions to set theory, demonstrating that Hilbert’s goal of showing that a reasonable
axiomatic system for set theory could be proven to be complete and consistent was in
fact impossible. In several seminal papers published in the 1930s, Gédel proved that
it was impossible to prove internally the consistency of the axioms of any reasonable
system of set theory containing the axioms for the natural numbers. Furthermore,
he showed that any such system was inherently incomplete, that is, that there are
propositions expressible in the system for which neither they nor their negations are
provable. Godel’s investigations were stimulated by the problems surrounding the
axiom of choice, the axiom that for any set S of nonempty disjoint sets, there is
a subset T of the union of S that has exactly one element in common with each
member of S. Since that axiom led to many counterintuitive results, it was impor-
tant to show that the axiom could not lead to contradictions. But given his initial
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results, the best Godel could do was to show that the axiom of choice was relatively
consistent, that its addition to the Zermelo-Fraenkel axiom set did not lead to any
contradictions that would not already have been implied without it.

William Rowan Hamilton (1805-1865), born in Dublin, was a child prodigy who
became the Astronomer Royal of Ireland in 1827 in recognition of original work
in optics accomplished during his undergraduate years at Trinity College, Dublin.
In 1837, he showed how to introduce complex numbers into algebra axiomatically
by considering a + b as a pair (a, b) of real numbers with appropriate computational
rules. After many years of seeking an appropriate definition for multiplication rules
for triples of numbers which could be applied to vector analysis in 3-dimensional
space, he discovered that it was in fact necessary to consider quadruplets of numbers,
which Hamilton named quaternions. Although quaternions never had the influence
Hamilton forecast for them in physics, their noncommutative multiplication provided
the first significant example of a mathematical system which did not obey one of the
standard arithmetical laws of operation and thus opened the way for more “freedom”
in the creation of mathematical systems. Among Hamilton’s other contributions was
the development of the Icosian game, a graph with 20 vertices on which pieces were
to be placed in accordance with various conditions, the overriding one being that a
piece was always placed at the second vertex of an edge on which the previous piece
had been placed. One of the problems Hamilton set for the game was, in essence, to
discover a cyclic path on his game board which passed through each vertex exactly
once. Such a path in a more general setting is today called a Hamilton circuit.

Richard W. Hamming (1915-1998) was born in Chicago and received a Ph.D. in
mathematics from the University of Illinois in 1942. He was the author of the first
major paper on error correcting and detecting codes (1950). His work on this problem
had been stimulated in 1947 when he was using an early Bell System relay computer
on weekends only. During the weekends the machine was unattended and would
dump any work in which it discovered an error and proceed to the next problem.
Hamming realized that it would be worthwhile for the machine to be able not only
to detect an error but also to correct it, so that his jobs would in fact be completed.
In his paper, Hamming used a geometric model by considering an n-digit code word
to be a vertex in the unit cube in the n-dimensional vector space over the field of
two elements. He was then able to show that the relationship between the word
length n and the number m of digits which carry the information was 2™ < f—:l
(The remaining k = n — m digits are check digits which enable errors to be detected
and corrected.) In particular, Hamming presented a particular type of code, today
known as a Hamming code, with n = 7 and m = 4. In this code, the set of actual
code words of 4 digits was a 4-dimensional vector subspace of the 7-dimensional
space of all 7-digit binary strings.

Godfrey Harold Hardy (1877-1947) graduated from Trinity College, Cambridge in
1899. From 1906 until 1919 he was lecturer at Trinity College, and, recognizing the
genius of Ramanujan, invited Ramanujan to Cambridge in 1914. Hardy held the
Sullivan chair of geometry at Oxford from 1919 until 1931, when he returned to
Cambridge, where he was Sadlerian professor of pure mathematics until 1942. He
developed the Hardy-Weinberg law which predicts patterns of inheritance. His main
areas of mathematical research were analysis and number theory, and he published
over 100 joint papers with Cambridge colleague John Littlewood. Hardy’s book A
Course in Pure Mathematics revolutionized mathematics teaching, and his book A
Mathematician’s Apology gives his view of what mathematics is and the value of its
study.
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Abii ’Ali al-Hasan ibn al-Haytham (Alhazen) (965-1039) was one of the most
influential of Islamic scientists. He was born in Basra (now in Iraq) but spent most
of his life in Egypt, after he was invited to work on a Nile control project. Although
the project, an early version of the Aswan dam project, never came to fruition, ibn
al-Haytham did produce in Egypt his most important scientific work, the Optics.
This work was translated into Latin in the early thirteenth century and was studied
and commented on in Europe for several centuries thereafter. Although there was
much mathematics in the Optics, ibn al-Haytham’s most interesting mathematical
work was the development of a recursive procedure for producing formulas for the
sum of any integral powers of the integers. Formulas for the sums of the integers,
squares, and cubes had long been known, but ibn al-Haytham gave a consistent
method for deriving these and used this to develop the formula for the sum of fourth
powers. Although his method was easily generalizable to the discovery of formulas
for fifth and higher powers, he gave none, probably because he only needed the fourth
power rule in his computation of the volume of a paraboloid of revolution.

Hypatia (c.370-415), the first woman mathematician on record, lived in Alexandria.
She was given a very thorough education in mathematics and philosophy by her
father Theon and became a popular and respected teacher. She was responsible for
detailed commentaries on several important Greek works, including Ptolemy’s Al-
magest, Apollonius’ Conics, and Diophantus’ Arithmetica. Unfortunately, Hypatia
was caught up in the pagan-Christian turmoil of her times and was murdered by an
enraged mob.

Leonid Kantorovich (1912-1986) was a Soviet economist responsible for the develop-
ment of linear optimization techniques in relation to planning in the Soviet economy.
The starting point of this development was a set of problems posed by the Leningrad
timber trust at the beginning of 1938 to the Mathematics Faculty at the University
of Leningrad. Kantorovich explored these problems in his 1939 book Mathematical
Methods in the Organization and Planning of Production. He believed that one
way to increase productivity in a factory or an entire industrial organization was
to improve the distribution of the work among individual machines, the orders to
various suppliers, the different kinds of raw materials, the different types of fuels,
and so on. He was the first to recognize that these problems could all be put into the
same mathematical language and that the resulting mathematical problems could
be solved numerically, but for various reasons his work was not pursued by Soviet
economists or mathematicians.

Abii Bakr al-Karaji (died 1019) was an Islamic mathematician who worked in Bagh-
dad. In the first decade of the eleventh century he composed a major work on
algebra entitled al-Fakhri (The Marvelous), in which he developed many algebraic
techniques, including the laws of exponents and the algebra of polynomials, with the
aim of systematizing methods for solving equations. He was also one of the early
originators of a form of mathematical induction, which was best expressed in his
proof of the formula for the sum of integral cubes.

Stephen Cole Kleene (1909-1994) studied under Alonzo Church and received his
Ph.D. from Princeton in 1934. His research has included the study of recursive func-
tions, computability, decidability, and automata theory. In 1956 he proved Kleene’s
Theorem, in which he characterized the sets that can be recognized by finite-state
automata.

Felix Klein (1849-1925) received his doctorate at the University of Bonn in 1868.
In 1872 he was appointed to a position at the University of Erlanger, and in his
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opening address laid out the Erlanger Programm for the study of geometry based on
the structure of groups. He described different geometries in terms of the properties
of a set that are invariant under a group of transformations on the set and gave
a program of study using this definition. From 1875 until 1880 he taught at the
Technische Hochschule in Munich, and from 1880 until 1886 in Leipzig. In 1886
Klein became head of the mathematics department at Gottingen and during his
tenure raised the prestige of the institution greatly.

Donald E. Knuth (born 1938) received a Ph.D. in 1963 from the California Institute
of Technology and held faculty positions at the California Institute of Technology
(1963-1968) and Stanford (1968-1992). He has made contributions in many areas,
including the study of compilers and computational complexity. He is the designer
of the mathematical typesetting system TEX. He received the Turing Award in 1974
and the National Medal of Technology in 1979.

Kazimierz Kuratowski (1896-1980) was the son of a famous Warsaw lawyer who be-
came an active member of the Warsaw School of Mathematics after World War 1. He
taught both at Lwow Polytechnical University and at Warsaw University until the
outbreak of World War II. During that war, because of the persecution of educated
Poles, he went into hiding under an assumed name and taught at the clandestine
Warsaw University. After the war, he helped to revive Polish mathematics, serving
as director of the Polish National Mathematics Institute. His major mathemati-
cal contributions were in topology; he formulated a version of a maximal principle
equivalent to the axiom of choice. This principle is today known as Zorn’s lemma.
Kuratowski also contributed to the theory of graphs by proving in 1930 that any
non-planar graph must contain a copy of one of two particularly simple non-planar
graphs.

Joseph Louis Lagrange (1736-1813) was born in Turin into a family of French de-
scent. He was attracted to mathematics in school and at the age of 19 became a
mathematics professor at the Royal Artillery School in Turin. At about the same
time, having read a paper of Euler’s on the calculus of variations, he wrote to Eu-
ler explaining a better method he had recently discovered. Euler praised Lagrange
and arranged to present his paper to the Berlin Academy, to which he was later
appointed when Euler returned to Russia. Although most famous for his Analytical
Mechanics, a work which demonstrated how problems in mechanics can generally be
reduced to solutions of ordinary or partial differential equations, and for his Theory
of Analytic Functions, which attempted to reduce the ideas of calculus to those of
algebraic analysis, he also made contributions in other areas. For example, he un-
dertook a detailed review of solutions to quadratic, cubic, and quartic polynomials
to see how these methods might generalize to higher degree polynomials. He was led
to consider permutations on the roots of the equations and functions on the roots
left unchanged by such permutations. As part of this work, he discovered a version
of Lagrange’s theorem to the effect that the order of any subgroup of a group divides
the order of the group. Although he did not complete his program and produce a
method of solving higher degree polynomial equations, his methods were applied by
others early in the nineteenth century to show that such solutions were impossible.

Gabriel Lamé (1795-1870) was educated at the Ecole Polytechnique and the Ecole
des Mines before going to Russia to direct the School of Highways and Transporta-
tion in St.Petersburg. After his return to France in 1832, he taught at the Ecole
Polytechnique while also working as an engineering consultant. Lamé contributed
original work to number theory, applied mathematics, and thermodynamics. His
best-known work is his proof of the case n = 5 of Fermat’s Last Theorem in 1839.
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Eight years later, he announced that he had found a general proof of the theorem,
which began with the factorization of the expression z" 4+ 4™ over the complex num-
bers as (z + y)(z + ay)(z + a?y)...(x + a"ly), where « is a primitive root of
2" — 1 = 0. He planned to show that the factors in this expression are all relatively
prime and therefore that if ™ + y™ = 2™, then each of the factors would itself be an
nth power. He would then use the technique of infinite descent to find a solution in
smaller numbers. Unfortunately Lamé’s idea required that the ring of integers in the
cyclotomic field of the nth roots of unity be a unique factorization domain. And, as
Kummer had already proved three years earlier, unique factorization in fact fails in
many such domains.

Edmund Landau (1877-1938) received a doctorate under Frobenius and taught at
the University of Berlin and at Gottingen. His research areas were analysis and
analytic number theory, including the distribution of primes. He used the big-O
notation (also called a Landau symbol) in his work to estimate the growth of various
functions.

Pierre-Simon de Laplace (1749-1827) entered the University of Caen in 1766 to
begin preparation for a career in the church. He soon discovered his mathematical
talents, however, and in 1768 left for Paris to continue his studies. He later taught
mathematics at the Ecole Militaire to aspiring cadets. Legend has it that he exam-
ined, and passed, Napoleon there in 1785. He was later honored by both Napoleon
and King Louis XVIII. Laplace is best known for his contributions to celestial me-
chanics, but he was also one of the founders of probability theory and made many
contributions to mathematical statistics. In fact, he was one of the first to apply his
theoretical results in statistics to a genuine problem in statistical inference, when
he showed from the surplus of male to female births in Paris over a 25-year period
that it was “morally certain” that the probability of a male birth was in fact greater
than %

Gottfried Wilhelm Leibniz (1646-1716), born in Leipzig, developed his version of
the calculus some ten years after Isaac Newton, but published it much earlier. He
based his calculus on the inverse relationship of sums and differences, generalized
to infinitesimal quantities called differentials. Leibniz hoped that his most origi-
nal contribution to philosophy would be the development of an alphabet of human
thought, a way of representing all fundamental concepts symbolically and a method
of combining these symbols to represent more complex thoughts. Although he never
completed this project, his interest in finding appropriate symbols ultimately led
him to the d and | symbols for the calculus that are used today. Leibniz spent much
of his life in the diplomatic service of the Elector of Mainz and later was a Counsel-
lor to the Duke of Hanover. But he always found time to pursue his mathematical
ideas and to carry on a lively correspondence on the subject with colleagues all over
Europe.

Levi ben Gerson (1288-1344) was a rabbi as well as an astronomer, philosopher,
biblical commentator, and mathematician. He lived in Orange, in southern France,
but little is known of his life. His most famous mathematical work is the Maasei
Hoshev (The Art of the Calculator) (1321), which contains detailed proofs of the
standard combinatorial formulas, some of which use the principle of mathematical
induction. About a dozen copies of this medieval manuscript are extant, but it is
not known whether the work had any direct influence elsewhere in Europe.

Augusta Ada Byron King Lovelace (1815-1852) was the child of the famous poet
George Gordon, the sixth Lord Byron, who left England five weeks after his daugh-

(©) 2000 by CRC Press LLC



ter’s birth and never saw her again. She was raised by her mother, Anna Isabella
Millbanke, a student of mathematics herself, so she received considerably more math-
ematics education than was usual for girls of her time. She was tutored privately by
well-known mathematicians, including William Frend and Augustus DeMorgan. Her
husband, the Earl of Lovelace, was made a Fellow of the Royal Society in 1840, and
through this connection, Ada was able to gain access to the books and papers she
needed to continue her mathematical studies and, in particular, to understand the
workings of Babbage’s Analytical Engine. Her major mathematical work is a heav-
ily annotated translation of a paper by the Italian mathematician L.F.Menabrea
dealing with the Engine, in which she gave explicit descriptions of how it would
solve specific problems and described, for the first time in print, what would today
be called a computer program, in this case a program for computing the Bernoulli
numbers. Interestingly, only her initials, A.A.L., were used in the published ver-
sion of the paper. It was evidently not considered proper in mid-nineteenth century
England for a woman of her class to publish a mathematical work.

Jan Lukasiewicz (1878-1956) studied at the University of Lwéw and taught at the
University of Lwéw, the University of Warsaw, and the Royal Irish Academy. A
logician, he worked in the area of many-valued logic, writing papers on three-valued
and m-valued logics, He is best known for the parenthesis-free notation he developed
for propositions, called Polish notation.

Percy Alexander MacMahon (1854-1929) was born into a British army family and
joined the army himself in 1871, reaching the rank of major in 1889. Much of
his army service was spent as an instructor at the Royal Military Academy. His
early mathematical work dealt with invariants, following on the work of Cayley
and Sylvester, but a study of symmetric functions eventually led to his interest
in partitions and to his extension of the idea of a partition to higher dimensions.
MacMahon’s two volume treatise Combinatorial Analysis (1915-16) is a classic in
the field. It identified and clarified the basic results of combinatorics and showed
the way toward numerous applications.

Mahavira (ninth century) was an Indian mathematician of the medieval period whose
major work, the Ganitasarasangraha, was a compilation of problems solvable by var-
ious algebraic techniques. For example, the work included a version of the hundred
fowls problem: “Doves are sold at the rate of 5 for 3 coins, cranes at the rate of 7
for 5, swans at the rate of 9 for 7, and peacocks at the rate of 3 for 9. A certain man
was told to bring at these rates 100 birds for 100 coins for the amusement of the
king’s son and was sent to do so. What amount does he give for each?” Mahavira
also presented, without proof and in words, the rule for calculating the number of
combinations of r objects out of a set of n. His algorithm can be easily translated into
the standard formula. Mahavira then applied the rule to two problems, one about
combinations of tastes and another about combinations of jewels on a necklace.

Andrei Markov (1856-1922) was a Russian mathematician who first defined what
are now called Markov chains in a paper of 1906 dealing with the Law of Large
Numbers and subsequently proved many of the standard results about them. His
interest in these chains stemmed from the needs of probability theory. Markov never
dealt with their application to the sciences, only considering examples from literary
texts, where the two possible states in the chain were vowels and consonants. Markov
taught at St. Petersburg University from 1880 to 1905 and contributed to such fields
as number theory, continued fractions, and approximation theory. He was an active
participant in the liberal movement in pre-World War I Russia and often criticized
publicly the actions of state authorities. In 1913, when as a member of the Academy
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of Sciences he was asked to participate in the pompous ceremonies celebrating the
300th anniversary of the Romanov dynasty, he instead organized a celebration of the
200th anniversary of Jacob Bernoulli’s publication of the Law of Large Numbers.

Marin Mersenne (1588-1648) was educated in Jesuit schools and in 1611 joined the
Order of Minims. From 1619 he lived in the Minim Convent de I’Annonciade near the
Place Royale in Paris and there held regular meetings of a group of mathematicians
and scientists to discuss the latest ideas. Mersenne also served as the unofficial
“secretary” of the republic of scientific letters in Europe. As such, he received
material from various sources, copied it, and distributed it widely, thus serving as
a “walking scientific journal”. His own contributions were primarily in the area
of music theory as detailed in his two great works on the subject, the Harmonie
universelle and the Harmonicorum libri, both of which appeared in 1636. As part of
his study of music, he developed the basic combinatorial formulas by considering the
possible tunes one could create out of a given number of notes. Mersenne was also
greatly interested in the relationship of theology to science. He was quite concerned
when he learned that Galileo could not publish one of his works because of the
Inquisition and, in fact, offered his assistance in this matter.

Hermann Minkowski (1864-1909) was a German Jewish mathematician who received
his doctorate at the University of Konigsberg. He became a lifelong friend of David
Hilbert and, on Hilbert’s suggestion, was called to Gottingen in 1902. In 1883, he
shared the prize of the Paris Academy of Sciences for his essay on the topic of the
representations of an integer as a sum of squares. In his essay, he reconstructed
the entire theory of quadratic forms in n variables with integral coefficients. In
further work on number theory, he brought to bear geometric ideas beginning with
the realization that a symmetric convex body in n-space defines a notion of distance
and hence a geometry in that space. The connection with number theory depends
on the representation of forms by lattice points in space.

Muhammad ibn Muhammad al-Fullani al-Kishnawi (died 1741) was a native
of northern Nigeria and one of the few African black scholars known to have made
contributions to “pure” mathematics before the modern era. Muhammad’s most
important work, available in an incomplete manuscript in the library of the School
of Oriental and African Studies in London, deals with the theory of magic squares.
He gave a clear treatment of the “standard” construction of magic squares and also
studied several other constructions — using knight’s moves, borders added to a magic
square of lower order, and the formation of a square from a square number of smaller
magic squares.

Peter Naur (born 1928) was originally an astronomer, using computers to calculate
planetary motion. In 1959 he became a full-time computer scientist; he was a de-
veloper of the programming language ALGOL and worked on compilers for ALGOL
and COBOL. In 1969 he took a computer science faculty position at the University
of Copenhagen.

Amalie Emmy Noether (1882-1935) received her doctorate from the University of
Erlangen in 1908 and a few years later moved to Gottingen to assist Hilbert in
the study of general relativity. During her eighteen years there, she was extremely
influential in stimulating a new style of thinking in algebra by always emphasizing
its structural rather than computational aspects. In 1934 she became a professor
at Bryn Mawr College and a member for the Institute for Advanced Study. She is
most famous for her work on Noetherian rings, and her influence is still evident in
today’s textbooks in abstract algebra.
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Blaise Pascal (1623-1662) showed his mathematical precocity with his Essay on Con-
ics of 1640, in which he stated his theorem that the opposite sides of a hexagon
inscribed in a conic section always intersect in three collinear points. Pascal is bet-
ter known, however, for his detailed study of what is now called Pascal’s triangle
of binomial coefficients. In that study Pascal gave an explicit description of math-
ematical induction and used that method, although not quite in the modern sense,
to prove various properties of the numbers in the triangle, including a method of
determining the appropriate division of stakes in a game interrupted before its con-
clusion. Pascal had earlier discussed this matter, along with various other ideas in
the theory of probability, in correspondence with Fermat in the 1650s. These letters,
in fact, can be considered the beginning of the mathematization of probability.

Giuseppe Peano (1858-1932) studied at the University of Turin and then spent the
remainder of his life there as a professor of mathematics. He was originally known as
an inspiring teacher, but as his studies turned to symbolic logic and the foundations
of mathematics and he attempted to introduce some of these notions in his elemen-
tary classes, his teaching reputation changed for the worse. Peano is best known
for his axioms for the natural numbers, first proposed in the Arithmetices prin-
cipia, nova methodo exposita of 1889. One of these axioms describes the principle
of mathematical induction. Peano was also among the first to present an axiomatic
description of a (finite-dimensional) vector space. In his Calcolo geometrico of 1888,
Peano described what he called a linear system, a set of quantities provided with
the operations of addition and scalar multiplication which satisfy the standard prop-
erties. He was then able to give a coherent definition of the dimension of a linear
system as the maximum number of linearly independent quantities in the system.

Charles Sanders Peirce (1839-1914) was born in Massachusetts, the son of a Harvard
mathematics professor. He received a master’s degree from Harvard in 1862 and an
advanced degree in chemistry from the Lawrence Scientific School in 1863. He made
contributions to many areas of the foundations and philosophy of mathematics. He
was a prolific writer, leaving over 100,000 pages of unpublished manuscript at his
death.

George Pdélya (1887-1985) was a Hungarian mathematician who received his doctor-
ate at Budapest in 1912. From 1914 to 1940 he taught in Zurich, then emigrated to
the United States where he spent most of the rest of his professional life at Stanford
University. Pélya developed some influential enumeration ideas in several papers in
the 1930s, in particular dealing with the counting of certain configurations that are
not equivalent under the action of a particular permutation group. For example,
there are 16 ways in which one can color the vertices of a square using two colors,
but only six are non-equivalent under the various symmetries of the square. In 1937,
Poélya published a major article in the field, “Combinatorial Enumeration of Groups,
Graphs and Chemical Compounds”, in which he discussed many mathematical as-
pects of the theory of enumeration and applied it to various problems. Pélya’s work
on problem solving and heuristics, summarized in his two volume work Mathematics
and Plausible Reasoning, insured his fame as a mathematics educator; his ideas are
at the forefront of recent reforms in mathematics education at all levels.

Qin Jiushao (1202-1261), born in Sichuan, published a general procedure for solving
systems of linear congruences — the Chinese remainder theorem — in his Shushu
Jjiuzhang (Mathematical Treatise in Nine Sections) in 1247, a procedure which makes
essential use of the Euclidean algorithm. He also gave a complete description of a
method for numerically solving polynomial equations of any degree. Qin’s method
had been developed in China over a period of more than a thousand years; it is
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similar to a method used in the Islamic world and is closely related to what is now
called the Horner method of solution, published by William Horner in 1819. Qin
studied mathematics at the Board of Astronomy, the Chinese agency responsible
for calendrical computations. He later served the government in several offices, but
because he was “extravagant and boastful”, he was several times relieved of his duties
because of corruption. These firings notwithstanding, Qin became a wealthy man
and developed an impressive reputation in love affairs.

Srinivasa Ramanujan (1887-1920) was born near Madras into the family of a book-
keeper. He studied mathematics on his own and soon began producing results in
combinatorial analysis, some already known and others previously unknown. At the
urging of friends, he sent some of his results to G. H. Hardy in England, who quickly
recognized Ramanujan’s genius and invited him to England to develop his untrained
mathematical talent. During the war years from 1914 to 1917, Hardy and Ramanu-
jan collaborated on a number of papers, including several dealing with the theory
of partitions. Unfortunately, Ramanujan fell ill during his years in the unfamiliar
climate of England and died at age 32 soon after returning to India. Ramanujan
left behind several notebooks containing statements of thousands of results, enough
work to keep many mathematicians occupied for years in understanding and proving
them.

Frank Ramsey (1903-1930), son of the president of Magdalene College, Cambridge,
was educated at Winchester and Trinity Colleges. He was then elected a fellow of
King’s College, where he spent the remainder of his life. Ramsey made important
contributions to mathematical logic. What is now called Ramsey theory began with
his clever combinatorial arguments to prove a generalization of the pigeonhole prin-
ciple, published in the paper “On a Problem of Formal Logic”. The problem of that
paper was the Entscheidungsproblem (the decision problem), the problem of search-
ing for a general method of determining the consistency of a logical formula. Ramsey
also made contributions to the mathematical theory of economics and introduced the
subjective interpretation to probability. In that interpretation, Ramsey argues that
different people when presented with the same evidence, will have different degrees
of belief. And the way to measure a person’s belief is to propose a bet and see what
are the lowest odds the person will accept. Ramsey’s death at the age of 26 deprived
the mathematical community of a brilliant young scholar.

Bertrand Arthur William Russell (1872-1970) was born in Wales and studied at
Trinity College, Cambridge. A philosopher/mathematician, he is one of the founders
of modern logic and wrote over 40 books in different areas. In his most famous
work, Principia Mathematica, published in 1910-13 with Alfred North Whitehead,
he attempted to deduce the entire body of mathematics from a single set of primitive
axioms. A pacifist, he fought for progressive causes, including women’s suffrage in
Great Britain and nuclear disarmament. In 1950 he won a Nobel Prize for literature.

al-Samaw’al ibn Yahya ibn Yahiida al-Maghribi (1125-1180) was born in Bagh-
dad to well-educated Jewish parents. Besides giving him a religious education, they
encouraged him to study medicine and mathematics. He wrote his major mathemat-
ical work, Al-Bahir (The Shining), an algebra text that dealt extensively with the
algebra of polynomials. In it, al-Samaw’al worked out the laws of exponents, both
positive and negative, and showed how to divide polynomials even when the division
was not exact. He also used a form of mathematical induction to prove the binomial
theorem, that (a +b)" = >";'_, C(n, k)a™ *b*, where the C(n, k) are the entries in
the Pascal triangle, for n < 12. In fact, he showed why each entry in the triangle
can be formed by adding two numbers in the previous row. When al-Samaw’al was
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about 40, he decided to convert to Islam. To justify his conversion to the world,
he wrote an autobiography in 1167 stating his arguments against Judaism, a work
which became famous as a source of Islamic polemics against the Jews.

Claude Elwood Shannon (born 1916) applied Boolean algebra to switching circuits
in his master’s thesis at M.I.T in 1938. Shannon realized that a circuit can be
represented by a set of equations and that the calculus necessary for manipulating
these equations is precisely the Boolean algebra of logic. Simplifying these equations
for a circuit would yield a simpler, equivalent circuit. Switches in Shannon’s calculus
were either open (represented by 1) or closed (represented by 0); placing switches
in parallel was represented by the Boolean operation “+4”, while placing them in
parallel was represented by “-”. Using the basic rules of Boolean algebra, Shannon
was, for example, able to construct a circuit which would add two numbers given in
binary representation. He received his Ph.D. in mathematics from M.I.T. in 1940
and spent much of his professional life at Bell Laboratories, where he worked on
methods of transmitting data efficiently and made many fundamental contributions
to information theory.

James Stirling (1692-1770) studied at Glasgow University and at Balliol College,
Oxford and spent much of his life as a successful administrator of a mining company
in Scotland. His mathematical work included an exposition of Newton’s theory of
cubic curves and a 1730 book entitled Methodus Differentialis which dealt with
summation and interpolation formulas. In dealing with the convergence of series,
Stirling found it useful to convert factorials into powers. By considering tables of
factorials, he was able to derive the formula for logn!, which leads to what is now
known as Stirling’s approximation: n! =~ (2)"v2mn. Stirling also developed the
Stirling numbers of the first and second kinds, sequences of numbers important in
enumeration.

Sun Zi (4th century) is the author of Sunzi suanjing (Master Sun’s Mathematical
Manual), a manual on arithmetical operations which eventually became part of the
required course of study for Chinese civil servants. The most famous problem in
the work is one of the first examples of what is today called the Chinese remainder
problem: “We have things of which we do not know the number; if we count them by
threes, the remainder is 2; if we count them by fives, the remainder is 3; if we count
them by sevens, the remainder is 2. How many things are there?” Sun Zi gives the
answer, 23, along with some explanation of how the problem should be solved. But
since this is the only problem of its type in the book, it is not known whether Sun
7i had developed a general method of solving simultaneous linear congruences.

James Joseph Sylvester (1814-1897), who was born into a Jewish family in London
and studied for several years at Cambridge, was not permitted to take his degree
there for religious reasons. Therefore, he received his degree from Trinity College,
Dublin and soon thereafter accepted a professorship at the University of Virginia. His
horror of slavery, however, and an altercation with a student who did not show him
the respect he felt he deserved led to his resignation after only a brief tenure. After
his return to England, he spent 10 years as an attorney and 15 years as professor
of mathematics at the Royal Military Academy at Woolwich. Sylvester returned to
the United States in 1871 to accept the chair of mathematics at the newly opened
Johns Hopkins University in Baltimore, where he founded the American Journal of
Mathematics and helped initiate a tradition of graduate education in mathematics in
the United States. Sylvester’s primary mathematical contributions are in the fields
of invariant theory and the theory of partitions.
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John Wilder Tukey (born 1915) received a Ph.D. in topology from Princeton in
1939. After World War II he returned to Princeton as professor of statistics, where
he founded the Department of Statistics in 1966. His work in statistics included
the areas of spectra of time series and analysis of variance. He invented (with J. W
Cooley) the fast Fourier transform. He was awarded the National Medal of Science
and served on the President’s Science Advisory Committee. He also coined the word
“bit” for a binary digit.

Alan Turing (1912-1954) studied mathematics at King’s College, Cambridge and in
1936 invented the concept of a Turing machine to answer the questions of what a
computation is and whether a given computation can in fact be carried out. This
notion today lies at the basis of the modern all-purpose computer, a machine which
can be programmed to do any desired computation. At the outbreak of World
War II, Turing was called to serve at the Government Code and Cypher School in
Bletchley Park in Buckinghamshire. It was there, during the next few years, that
he led the successful effort to crack the German “Enigma” code, an effort which
turned out to be central to the defeat of Nazi Germany. After the war, Turing
continued his interest in automatic computing machines and so joined the National
Physical Laboratory to work on the design of a computer, continuing this work after
1948 at the University of Manchester. Turing’s promising career came to a grinding
halt, however, when he was arrested in 1952 for homosexual acts. The penalty for
this “crime” was submission to psychoanalysis and hormone treatments to “cure”
the disease. Unfortunately, the cure proved worse than the disease, and, in a fit of
depression, Turing committed suicide in June, 1954.

Alexandre-Théophile Vandermonde (1735-1796) was directed by his physician fa-
ther to a career in music. However, he later developed a brief but intense interest in
mathematics and wrote four important papers published in 1771 and 1772. These
papers include fundamental contributions to the theory of the roots of equations,
the theory of determinants, and the knight’s tour problem. In the first paper, he
showed that any symmetric function of the roots of a polynomial equation can be
expressed in terms of the coefficients of the equation. His paper on determinants
was the first logical, connected exposition of the subject, so he can be thought of
as the founder of the theory. Toward the end of his life, he joined the cause of the
French revolution and held several different positions in government.

Francois Viéte (1540-1603), a lawyer and advisor to two kings of France, was one
of the earliest cryptanalysts and successfully decoded intercepted messages for his
patrons. In fact, he was so successful in this endeavor that he was denounced by
some who thought that the decipherment could only have been made by sorcery. Al-
though a mathematician only by avocation, he made important contributions to the
development of algebra. In particular, he introduced letters to stand for numerical
constants, thus enabling him to break away from the style of verbal algorithms of
his predecessors and treat general examples by formulas rather than by giving rules
for specific problems.

Edward Waring (1734-1798) graduated from Magdalen College, Cambridge in 1757
with highest honors and shortly thereafter was named a Fellow of the University.
In 1760, despite opposition because of his youth, he was named Lucasian Professor
of Mathematics at Cambridge, a position he held until his death. To help solidify
his position, then, he published the first chapter of his major work, Miscellanea
analytica, which in later editions was renamed Meditationes algebraicae. Waring is
best remembered for his conjecture that every integer is the sum of at most four
squares, at most nine cubes, at most 19 fourth powers, and, in general, at most r
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kth powers, where r depends on k. The general theorem that there is a finite r for
each k was proved by Hilbert in 1909. Although the result for squares was proved
by Lagrange, the specific results for cubes and fourth powers were not proved until
the twentieth century.

Hassler Whitney (1907-1989) received bachelor’s degrees in both physics and music
from Yale; in 1932 he received a doctorate in mathematics from Harvard. After a
brief stay in Princeton, he returned to Harvard, where he taught until 1952, when he
moved to the Institute for Advanced Study. Whitney produced more than a dozen
papers on graph theory in the 1930s, after his interest was aroused by the four color
problem. In particular, he defined the notion of the dual graph of a map. It was
then possible to apply many of the results of the theory of graphs to gain insight into
the four color problem. During the last twenty years of his life, Whitney devoted his
energy to improving mathematical education, particularly at the elementary school
level. He emphasized that young children should be encouraged to solve problems
using their intuition, rather than only be taught techniques and results which have
no connection to their experience.
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INTRODUCTION

This chapter covers material usually referred to as the foundations of mathematics, in-
cluding logic, sets, and functions. In addition to covering these foundational areas, this
chapter includes material that shows how these topics are applied to discrete mathe-
matics, computer science, and electrical engineering. For example, this chapter covers
methods of proof, program verification, and fuzzy reasoning.

GLOSSARY

action: a literal or a print command in a production system.
aleph-null: the cardinality, Ng, of the set A/ of natural numbers.
AND: the logical operator for conjunction, also written A.

antecedent: in a conditional proposition p — ¢ (“if p then ¢”) the proposition p
(“if-clause”) that precedes the arrow.

antichain: a subset of a poset in which no two elements are comparable.
antisymmetric: the property of a binary relation R that if aRb and bRa, then a = b.

argument form: a sequence of statement forms each called a premise of the argument
followed by a statement form called a conclusion of the argument.

assertion (or program assertion): a program comment specifying some conditions
on the values of the computational variables; these conditions are supposed to hold
whenever program flow reaches the location of the assertion.

asymmetric: the property of a binary relation R that if aRb, then bRa.

asymptotic: A function f is asymptotic to a function g, written f(z) ~ g(z), if
f(z) # 0 for sufficiently large = and lim,_, % =1.

atom (or atomic formula): simplest formula of predicate logic.

atomic formula: See atom.

atomic proposition: a proposition that cannot be analyzed into smaller parts and
logical operations.

automated reasoning: the process of proving theorems using a computer program
that can draw conclusions that follow logically from a set of given facts.

axiom: a statement that is assumed to be true; a postulate.

axiom of choice: the assertion that given any nonempty collection A of pairwise
disjoint sets, there is a set that consists of exactly one element from each of the sets
in A.

axiom (or semantic axiom): arule for a programming language construct prescribing
the change of values of computational variables when an instruction of that construct-
type is executed.

basis step: a proof of the basis premise (first case) in a proof by mathematical induc-
tion.

big-oh notation: f is O(g), written f = O(g), if there are constants C' and k such
that | f(x)] < Clg(z)| for all x > k.

bijection (or bijective function): a function that is one-to-one and onto.

bijective function: See bijection.
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binary relation from a set A to a set B: any subset of A x B.
binary relation on a set A: a binary relation from A to A; i.e., a subset of A x A.

body of a clause Ay,..., A, < By,...,B,, in a logic program: the literals By, ..., By,
after «.

cardinal number (or cardinality) of a set: for a finite set, the number of elements;
for an infinite set, the order of infinity. The cardinal number of S is written |S]|.

cardinality: See cardinal number.

Cartesian product (of sets A and B): the set A x B of ordered pairs (a,b) witha € A
and b € B (more generally, the iterated Cartesian product A; x Ay x -+ X A,
is the set of ordered n-tuples (ai,as,...,a,), with a; € A; for each 7).

ceiling (of x): the smallest integer that is greater than or equal to x, written [x].
chain: a subset of a poset in which every pair of elements are comparable.

characteristic function (of a set S): the function from S to {0,1} whose value at
islifzeSand0ifx ¢ S.

clause (in a logic program): closed formula of the form Vz;...Vags(A; V-V A, «
By A---ABp).

closed formula: for a function value f(x), an algebraic expression in x.

closure (of a relation R with respect to a property P): the relation S, if it exists, that
has property P and contains R, such that S is a subset of every relation that has
property P and contains R.

codomain (of a function): the set in which the function values occur.

comparable: Two elements in a poset are comparable if they are related by the partial
order relation.

complement (of a relation): given a relation R, the relation R where aRb if and only
if aRb.

complement (of a set): given a set A in a “universal” domain U, the set A of objects
in U that are not in A.

complement operator: a function [0,1] — [0, 1] used for complementing fuzzy sets.

complete: property of a set of axioms that it is possible to prove all true statements.

complex number: a number of the form a + bi, where a and b are real numbers, and
i2 = —1; the set of all complex numbers is denoted C.

composite key: given an n-ary relation R on A; X Ay X - -+ X A, a product of domains
Aj, X A, X - x A, such that for each m-tuple (ai,, @iy, ..., a4,,) € Aijy X Ajy X -+ - X
A; , there is at most one n-tuple in R that matches (a;,, ai,, . .., a;,, ) in coordinates
11,02y« oy im.

composition (of relations): for R a relation from A to B and S a relation from B to
C, the relation S o R from A to C such that a(S o R)c if and only if there exists
b € B such that aRb and bSc.

composition (of functions): the function f o g whose value at x is f(g(x)).

compound proposition: a proposition built up from atomic propositions and logical
connectives.

computer-assisted proof: a proof that relies on checking the validity of a large
number of cases using a special purpose computer program.
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conclusion (of an argument form): the last statement of an argument form.

conclusion (of a proof): the last proposition of a proof; the objective of the proof is
demonstrating that the conclusion follows from the premises.

condition: the disjunction A; V ---V A, of atomic formulas.

conditional statement: the compound proposition p — ¢ (“if p then ¢”) that is true
except when p is true and ¢ is false.

conjunction: the compound proposition pAq (“p and ¢”) that is true only when p
and ¢ are both true.

conjunctive normal form: for a proposition in the variables p1,po, ..., pn, an equiv-
alent proposition that is the conjunction of disjunctions, with each disjunction of the
form xp, Vxg, V---V 2y, , where Ty, is either py, or —py;.

consequent: in a conditional proposition p — ¢ (“if p then ¢”) the proposition ¢
(“then-clause”) that follows the arrow.

consistent: property of a set of axioms that no contradiction can be deduced from the
axioms.

construct (or program construct): the general form of a programming instruction
such as an assignment, a conditional, or a while-loop.

continuum hypothesis: the assertion that the cardinal number of the real numbers
is the smallest cardinal number greater than the cardinal number of the natural
numbers.

contradiction: a self-contradictory proposition, one that is always false.

contradiction (in an indirect proof): the negation of a premise.

contrapositive (of the conditional proposition p — ¢): the conditional proposition
—q — —p.

converse (of the conditional proposition p — ¢): the conditional proposition ¢ — p.

converse relation: another name for the inverse relation.

corollary: a theorem that is derived as an easy consequence of another theorem.

correct conclusion: the conclusion of a valid proof, when all the premises are true.

countable set: a set that is finite or denumerable.

counterexample: a case that makes a statement false.

definite clause: clause with at most one atom in its head.

denumerable set: a set that can be placed in one-to-one correspondence with the
natural numbers.

diagonalization proof: any proof that involves something analogous to the diagonal
of a list of sequences.

difference: a binary relation R— S such that a(R— S)b if and only if aRb is true
and aSb is false.

difference (of sets): the set A — B of objects in A that are not in B.
direct proof: a proof of p — ¢ that assumes p and shows that ¢ must follow.
disjoint (pair of sets): two sets with no members in common.

disjunction: the statement pV ¢ (“p or ¢”) that is true when at least one of the two
propositions p and ¢q is true; also called inclusive or.
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disjunctive normal form: for a proposition in the variables p1,ps, ..., pn, an equiv-
alent proposition that is the disjunction of conjunctions, with each conjunction of

the form xy, Ak, A--- Axy,, , where zy, is either py, or —py;.

disproof: a proof that a statement is false.

divisibility lattice: the lattice consisting of the positive integers under the relation
of divisibility.

domain (of a function): the set on which a function acts.

element (of a set): member of the set; the notation a € A means that a is an element
of A.

elementary projection function: the function m;: X1 x --- x X,, — X such that
T(T1, ..oy Tn) = T;.

empty set: the set with no elements, written () or { }.
epimorphism: an onto function.
equality (of sets): property that two sets have the same elements.

equivalence class: given an equivalence relation on a set A and a € A, the subset
of A consisting of all elements related to a.

equivalence relation: a binary relation that is reflexive, symmetric, and transitive.

equivalent propositions: two compound propositions (on the same simple variables)
with the same truth table.

existential quantifier: the quantifier dx, read “there is an z”.

existentially quantified predicate: a statement (3x)P(z) that there exists a value
of x such that P(z) is true.

exponential function: any function of the form b*, b a positive constant, b # 1.
fact set: set of ground atomic formulas.

factorial (function): the function n! whose value on the argument n is the product
1-2-3...n;thatis,n!l=1-2-3...n.

finite: property of a set that it is either empty or else can be put in a one-to-one
correspondence with a set {1,2,3,...,n} for some positive integer n.

first-order logic: See predicate calculus.
floor (of x): the greatest integer less than or equal to z, written |z].

formula: a logical expression constructed from atoms with conjunctions, disjunctions,
and negations, possibly with some logical quantifiers.

full conjunctive normal form: conjunctive normal form where each disjunction is a
disjunction of all variables or their negations.

full disjunctive normal form: disjunctive normal form where each conjunction is a
conjunction of all variables or their negations.

fully parenthesized proposition: any proposition that can be obtained using the
following recursive definition: each variable is fully parenthesized, if P and @ are
fully parenthesized, so are (=P), (PAQ), (PVQ), (P — @), and (P < Q).

function f: A — B: a rule that assigns to every object a in the domain set A exactly
one object f(a) in the codomain set B.

functionally complete set: a set of logical connectives from which all other connec-
tives can be derived by composition.
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fuzzy logic: a system of logic in which each statement has a truth value in the inter-
val [0, 1].

fuzzy set: a set in which each element is associated with a number in the interval [0, 1]
that measures its degree of membership.

generalized continuum hypothesis: the assertion that for every infinite set .S there
is no cardinal number greater than |S| and less than |P(S)].

goal: a clause with an empty head.
graph (of a function): given a function f: A — B, the set { (a,b) | b= f(a) } C Ax B.

greatest lower bound (of a subset of a poset): an element of the poset that is a lower
bound of the subset and is greater than or equal to every other lower bound of the
subset.

ground formula: a formula without any variables.

halting function: the function that maps computer programs to the set { 0,1}, with
value 1 if the program always halts, regardless of input, and 0 otherwise.

Hasse diagram: a directed graph that represents a poset.
head (of a clause Aq,..., A, < Biq,...,By,): the literals Ay,..., A,, before <.

identity function (on a set): given a set A, the function from A to itself whose value
at  is x.

image set (of a function): the set of function values as  ranges over all objects of the
domain.

implication: formally, the relation P = @ that a proposition @ is true whenever
proposition P is true; informally, a synonym for the conditional statement p — q.

incomparable: two elements in a poset that are not related by the partial order
relation.

induced partition (on a set under an equivalence relation): the set of equivalence
classes under the relation.

independent: property of a set of axioms that none of the axioms can be deduced
from the other axioms.

indirect proof: a proof of p — ¢ that assumes —¢ is true and proves that —p is true.
induction: See mathematical induction.

induction hypothesis: in a mathematical induction proof, the statement P(x) in
the induction step.

induction step: in a mathematical induction proof, a proof of the induction premise
“if P(xy) is true, then P(zg41) is true”.

inductive proof: See mathematical induction.

infinite (set): a set that is not finite.

injection (or injective function): a one-to-one function.
instance (of a formula): formula obtained using a substitution.

instantiation: substitution of concrete values for the free variables of a statement or
sequence of statements; an instance of a production rule.

integer: a whole number, possibly zero or negative; i.e., one of the elements in the set
Z2={..,-2,-1,0,1,2,...}.
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intersection: the set AN B of objects common to both sets A and B.

intersection relation: for binary relations R and S on A, the relation R NS where
a(R N S)b if and only if aRb and aSb.

interval (in a poset): given a < b in a poset, a subset of the poset consisting of all
elements x such that a < x <b.

inverse function: for a one-to-one, onto function f: X — Y, the function f~%:Y — X
whose value at y € Y is the unique z € X such that f(z) =y.

inverse image (under f: X — Y of a subset T CY): the subset {z € X | f(z) € T},
written f~1(T).

inverse relation: for a binary relation R from A to B, the relation R~ from B to A
where bR~ 'a if and only if aRb.

invertible (function): a one-to-one and onto function; a function that has an inverse.

irrational number: a real number that is not rational.

irreflexive: property of a binary relation R on A that alRa, for all a € A.

lattice: a poset in which every pair of elements has both a least upper bound and a
greatest lower bound.

least upper bound (of a subset of a poset): an element of the poset that is an upper
bound of the subset and is less than or equal to every other upper bound of the
subset.

lemma: a theorem that is an intermediate step in the proof of a more important
theorem.

linearly ordered: the property of a poset that every pair of elements are comparable,
also called totally ordered.

literal: an atom or its negation.

M=o

logarithmic function: a function log, = (b a positive constant, b # 1) defined by the
rule log, x = y if and only if Y = «.

little-oh notation: f is o(g) if limeoo|

logic program: a finite sequence of definite clauses.

logically equivalent propositions: compound propositions that involve the same
variables and have the same truth table.

logically implies: A compound proposition P logically implies a compound proposi-
tion @ if @ is true whenever P is true.

loop invariant: an expression that specifies the circumstance under which the loop
body will be executed again.

lower bound (for a subset of a poset): an element of the poset that is less than or
equal to every element of the subset.

mathematical induction: a method of proving that every item of a sequence of
propositions such as P(ng), P(ng + 1), P(ng + 2), ... is true by showing: (1) P(ng)
is true, and (2) for all n > ng, P(n) — P(n+ 1) is true.

maximal element: in a poset an element that has no element greater than it.
maximum element: in a poset an element greater than or equal to every element.

membership function (in fuzzy logic): a function from elements of a set to [0,1].
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membership table (for a set expression): a table used to calculate whether an ob-
ject lies in the set described by the expression, based on its membership in the sets
mentioned by the expression.

minimal element: in a poset an element that has no element smaller than it.
minimum element: in a poset an element less than or equal to every element.
monomorphism: a one-to-one function.

multi-valued logic: a logic system with a set of more than two truth values.

multiset: an extension of the set concept, in which each element may occur arbitrarily
many times.

mutually disjoint (family of sets): (See pairwise disjoint.)
n-ary predicate: a statement involving n variables.
n-ary relation: any subset of A; X Ay X -+ X A,,.

naive set theory: set theory where any collection of objects can be considered to be
a valid set, with paradoxes ignored.

NAND: the logical connective “not and”.

natural number: a nonnegative integer (or “counting” number); i.e., an element of
N ={0,1,2,3,...}. Note: Sometimes 0 is not regarded as a natural number.

negation: the statement —p (“not p”) that is true if and only if p is not true.

NOP: pronounced “no-op”, a program instruction that does nothing to alter the values
of computational variables or the order of execution.

NOR: the logical connective “not or”.
NOT: the logical connective meaning “not”, used in place of —.
null set: the set with no elements, written () or { }.

omega notation: f is Q(g) if there are constants C' and k such that |g(z)| < C|f(x)]
for all z > k.

one-to-one (function): a function f: X — Y that assigns distinct elements of the
codomain to distinct elements of the domain; thus, if x1 # xo, then f(x1) # f(x2).

onto (function): a function f: X — Y whose image equals its codomain; i.e., for every
y €Y, there is an « € X such that f(z) =y.

OR: the logical operator for disjunction, also written V.

pairwise disjoint: property of a family of sets that each two distinct sets in the family
have empty intersection; also called mutually disjoint.

paradox: a statement that contradicts itself.

partial function: a function f: X — Y that assigns a well-defined object in Y to some
(but not necessarily all) the elements of its domain X.

partial order: a binary relation that is reflexive, antisymmetric, and transitive.
partially ordered set: a set with a partial order relation defined on it.

partition (of a set): given a set S, a pairwise disjoint family P = {A;} of nonempty
subsets of S whose union is S.

Peano definition: a recursive description of the natural numbers that uses the concept
of successor.

Polish prefix notation: the style of writing compound propositions in prefix notation
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where sometime the usual operand symbols are replaced as follows: N for -, K for A,
A for v, C for —, E for <.

poset: a partially ordered set.

postcondition: an assertion that appears immediately after the executable portion of
a program fragment or of a subprogram.

postfix notation: the style of writing compound logical propositions where operators
are written to the right of the operands.

power (of a relation): for a relation R on A, the relation R™ on A where R’ = I,
R'=Rand R" = R" 'o R for all n > 1.

power set: given a set A, the set P(A) of all subsets of A.

precondition: an assertion that appears immediately before the executable portion of
a program fragment or of a subprogram.

predicate: a statement involving one or more variables that range over various do-
mains.
predicate calculus: the symbolic study of quantified predicate statements.

prefix notation: the style of writing compound logical propositions where operators
are written to the left of the operands.

premise: a proposition taken as the foundation of a proof, from which the conclusion
is to be derived.

prenex normal form: the form of a well-formed formula in which every quantifier
occurs at the beginning and the scope is whatever follows the quantifiers.

preorder: a binary relation that is reflexive and transitive.

primary key: for an n-ary relation on A, As,..., Ay, a coordinate domain A; such
that for each « € A; there is at most one n-tuple in the relation whose jth coordinate
is x.

production rule: a formula of the form C4,...,C, — A1,..., A,, where each Cj is a

condition and each A; is an action.
production system: a set of production rules and a fact set.
program construct: See construct.

program fragment: any sequence of program code, from a single instruction to an
entire program.

program semantics (or semantics): the meaning of an instruction or of a program
fragment; i.e., the effect of its execution on the computational variables.

projection function: a function defined on a set of n-tuples that selects the elements
in certain coordinate positions.

proof (of a conclusion from a set of premises): a sequence of statements (called steps)
terminating in the conclusion, such that each step is either a premise or follows from
previous steps by a valid argument.

proof by contradiction: a proof that assumes the negation of the statement to be
proved and shows that this leads to a contradiction.

proof done by hand: a proof done by a human without the use of a computer.

proper subset: given a set S, a subset T of S such that S contains at least one element
not in 7.
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proposition: a declarative sentence or statement that is unambiguously either true or
false.

propositional calculus: the symbolic study of propositions.

range (of a function): the image set of a function; sometimes used as synonym for
codomain.

rational number: the ratio § of two integers such that b # 0; the set of all rational
numbers is denoted Q.

real number: a number expressible as a finite (i.e., terminating) or infinite decimal;
the set of all real numbers is denoted R.

recursive definition (of a function with domain N): a set of initial values and a rule
for computing f(n) in terms of values f(k) for k < n.

recursive definition (of aset S): a form of specification of membership of S, in which
some basis elements are named individually, and in which a computable rule is given
to construct each other element in a finite number of steps.

refinement of a partition: given a partition P; = {A;} on a set S, a partition
Py = {B;} on the same set S such that every B; € P is a subset of some A; € P;.

reflexive: the property of a binary relation R that aRa.
relation (from set A to set B): a binary relation from A to B.
relation (on a set A): a binary relation from A to A.

restriction (of a function): given f: X — Y and a subset S C X, the function f|S
with domain S and codomain Y whose rule is the same as that of f.

reverse Polish notation: postfix notation.

rule of inference: a valid argument form.

scope (of a quantifier): the predicate to which the quantifier applies.
semantic axiom: See axiom.

semantics: See program semantics.

sentence: a well-formed formula with no free variables.

sequence (in a set): a list of objects from a set S, with repetitions allowed; that is, a
function f: N — S (an infinite sequence, often written ag,a,az,...) or a function
f:{1,2,...,n} — S (a finite sequence, often written a1, as,...,ay).

set: a well-defined collection of objects.
singleton: a set with one element.
specification: in program correctness, a precondition and a postcondition.

statement form: a declarative sentence containing some variables and logical symbols
which becomes a proposition if concrete values are substituted for all free variables.

string: a finite sequence in a set S, usually written so that consecutive entries are
juxtaposed (i.e., written with no punctuation or extra space between them).

strongly correct code: code whose execution terminates in a computational state
satisfying the postcondition, whenever the precondition holds before execution.

subset of a set S: any set T of objects that are also elements of .S, written T C S.
substitution: a set of pairs of variables and terms.

surjection (or surjective function): an onto function.
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symmetric: the property of a binary relation R that if a Rb then bRa.

symmetric difference (of relations): for relations R and S on A, the relation R @ S
where a(R @ S)b if and only if exactly one of the following is true: aRb, aSb.

symmetric difference (of sets): for sets A and B, the set A @ B containing each
object that is an element of A or an element of B, but not an element of both.

system of distinct representatives: given sets Ay, As,..., A, (some of which may
be equal), a set {a1,as,...,a,} of n distinct elements with a; € A; fori =1,2,...,n.

tautology: a compound proposition whose form makes it always true, regardless of
the truth values of its atomic parts.

term (in a domain): either a fixed element of a domain S or an S-valued variable.

theorem: a statement derived as the conclusion of a valid proof from axioms and
definitions.

theta notation: f is ©(g), written f = O(g), if there are positive constants C, Cs,
and k such that Cylg(z)| < |f(z)| < Calg(z)| for all z > k.

totally ordered: the property of a poset that every pair of elements are comparable;
also called linearly ordered.

transitive: the property of a binary relation R that if aRb and bRc, then aRc.
transitive closure: for arelation R on A, the smallest transitive relation containing R.

transitive reduction (of a relation): a relation with the same transitive closure as
the original relation and with a minimum number of ordered pairs.

truth table: for a compound proposition, a table that gives the truth value of the
proposition for each possible combination of truth values of the atomic variables in
the proposition.

two-valued logic: a logic system where each statement has exactly one of the two
values: true or false.
union: the set AU B of objects in one or both of the sets A and B.

union relation: for R and S binary relations on A, the relation RUS where a(RUS)b
if and only if aRb or aSb.

universal domain: the collection of all possible objects in the context of the imme-
diate discussion.

)

universal quantifier: the quantifier Vz, read “for all 2” or “for every z”.

universally quantified predicate: a statement (Vx)P(x) that P(z) is true for ev-
ery x in its universe of discourse.

universe of discourse: the range of possible values of a variable, within the context
of the immediate discussion.

upper bound (for a subset of a poset): an element of the poset that is greater than
or equal to every element of the subset.

valid argument form: an argument form such that in any instantiation where all the
premises are true, the conclusion is also true.

Venn diagram: a figure composed of possibly overlapping circles or ellipses, used to
picture membership in various combinations of the sets.

verification (of a program): a formal argument for the correctness of a program with
respect to its specifications.
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1.1

weakly correct code: code whose execution results in a computational state satis-
fying the postcondition, whenever the precondition holds before execution and the
execution terminates.

well-formed formula (wff): a proposition or predicate with quantifiers that bind
one or more of its variables.

well-ordered: property of a set that every nonempty subset has a minimum element.

well-ordering principle: the axiom that every nonempty subset of integers, each
greater than a fixed integer, contains a smallest element.

XOR: the logical connective “not or”.
Zermelo-Fraenkel axioms: a set of axioms for set theory.

zero-order logic: propositional calculus.

PROPOSITIONAL AND PREDICATE LOGIC

Logic is the basis for distinguishing what may be correctly inferred from a given collec-
tion of facts. Propositional logic, where there are no quantifiers (so quantifiers range
over nothing) is called zero-order logic. Predicate logic, where quantifiers range over
members of a universe, is called first-order logic. Higher-order logic includes second-
order logic (where quantifiers can range over relations over the universe), third-order
logic (where quantifiers can range over relations over relations), and so on. Logic has
many applications in computer science, including circuit design (§5.8.3) and verification
of computer program correctness (§1.6). This section defines the meaning of the sym-
bolism and various logical properties that are usually used without explicit mention.
[F1Pa88], [MeT9], [Mo76]

In this section, only two-valued logic is studied; i.e., each statement is either true
or false. Multi-valued logic, in which statements have one of more than two values, is
discussed in §1.7.2.

1141

PROPOSITIONS AND LOGICAL OPERATIONS

Definitions:
A truth value is either true or false, abbreviated T and F', respectively.

A proposition (in a natural language such as English) is a declarative sentence that
has a well-defined truth value.

A propositional variable is a mathematical variable, often denoted by p, ¢, or r, that
represents a proposition.

Propositional logic (or propositional calculus or zero-order logic) is the study
of logical propositions and their combinations using logical connectives.

A logical connective is an operation used to build more complicated logical expressions
out of simpler propositions, whose truth values depend only on the truth values of the
simpler propositions.
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A proposition is atomic or simple if it cannot be syntactically analyzed into smaller
parts; it is usually represented by a single logical variable.

A proposition is compound if it contains one or more logical connectives.

A truth table is a table that prescribes the defining rule for a logical operation. That
is, for each combination of truth values of the operands, the table gives the truth value
of the expression formed by the operation and operands.

The unary connective negation (denoted by —) is defined by the following truth table:

p -p
T F
F T

Note: The negation —p is also written p’, D, or ~p.

The common binary connectives are:

pAq conjunction p and q
pVq disjunction porgq
p—q conditional if p then q
P q biconditional p if and only if ¢
pdq exclusive or p xor q
plaq not or p nor q
plg orpTlyq not and p nand q

The connective | is called the Sheffer stroke. The connective | is called the Peirce arrow.
The values of the compound propositions obtained by using the binary connectives are
given in the following table:

P q pVqg pAq p—q pe=q pdqg plqg plg
T T T T T T F F F
T F T F F F T F T
F T T F T F T F T
F F F F T T F T T

In the conditional p — ¢, p is the antecedent and ¢ is the consequent. The conditional
p — q is often read informally as “p implies ¢”.

Infix notation is the style of writing compound propositions where binary operators
are written between the operands and negation is written to the left of its operand.
Prefix notation is the style of writing compound propositions where operators are
written to the left of the operands.

Postfix notation (or reverse Polish notation) is the style of writing compound
propositions where operators are written to the right of the operands.

Polish notation is the style of writing compound propositions where operators are
written using prefix notation and where the usual operand symbols are replaced as
follows: N for —, K for A, A for Vv, C for —, E for <. (Jan Lukasiewicz, 1878-1956)

A fully parenthesized proposition is any proposition that can be obtained using the
following recursive definition: each variable is fully parenthesized, if P and @ are fully
parenthesized, so are (—P), (PAQ), (PVQ), (P — Q), and (P < Q).
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Facts:

1. The conditional connective p — ¢ represents the following English constructs:

e if p then ¢ eqgifp

e p only if ¢ e p implies ¢

e g follows from p e ¢ whenever p

e p is a sufficient condition for ¢ e ¢ is a necessary condition for p.

2. The biconditional connective p < q represents the following English constructs:
e p if and only if ¢ (often written p iff ¢)
e p and g imply each other
e p is a necessary and sufficient condition for ¢
e p and ¢ are equivalent.

3. In computer programming and circuit design, the following notation for logical op-
erators is used: p AND ¢ for pA g, p OR ¢ for pV q, NOT p for —p, p XOR ¢ for p @ gq,
p NOR ¢ for p | ¢, p NAND ¢ for p|q.

4. Order of operations: In an unparenthesized compound proposition using only the
five standard operators —, A, V, —, and <, the following order of precedence is typically
used when evaluating a logical expression, at each level of precedence moving from left to
right: first -, then A and V, then —, finally <. Parenthesized expressions are evaluated
proceeding from the innermost pair of parentheses outward, analogous to the evaluation
of an arithmetic expression.

5. It is often preferable to use parentheses to show precedence, except for negation
operators, rather than to rely on precedence rules.

6. No parentheses are needed when a compound proposition is written in either prefix or
postfix notation. However, parentheses may be necessary when a compound proposition
is written in infix notation.

7. The number of nonequivalent logical statements with two variables is 16, because
each of the four lines of the truth table has two possible entries, T' or F'. Here are
examples of compound propositions that yield each possible combination of truth values.
(T represents a tautology and F a contradiction. See §1.1.2.)

P q T pVg q—p p—q plg D q P q
T T T T T T F T T T
T F T T T F T T F F
FT T T F T T F T F
FF T F T T T F F T
P q pdqg g —-p pAq DpA-qg —pAqg plqg F
T T F F F T F F F F
T F T T F F T F F F
FT T F T F F T F F
F F F T T F F F T F

8. The number of different possible logical connectives on n variables is 22", because
there are 2™ rows in the truth table.

Examples:

1. “141 = 3” and “Romulus and Remus founded New York City” are false propositions.
2. “14+1=2" and “The year 1996 was a leap year” are true propositions.

3. “Go directly to jail” is not a proposition, because it is imperative, not declarative.
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4. “x > 5” is not a proposition, because its truth value cannot be determined unless
the value of x is known.

5. “This sentence is false” is not a proposition, because it cannot be given a truth value
without creating a contradiction.

6. In a truth table evaluation of the compound proposition p V (—p A ¢) from the
innermost parenthetic expression outward, the steps are to evaluate —p, next (—p A q),
and then p V (=p A q):

pq | p (<pAq) pV(-pAq)
TT| F F T
TF| F F T
FT| T T T
FF| T F F

7. The statements in the left column are evaluated using the order of precedence indi-
cated in the fully parenthesized form in the right column:

pVgAT (pVa)Ar)
peoq—r (p(qg—r))
—qV -r —sAt (((mq) V (=r)) — (s A1)

8. The infix statement p A g in prefix notation is A p ¢, in postfix notation is pg A, and
in Polish notation is K pq.

9. The infix statement p — —(¢Vr) in prefix notation is — p—V g r, in postfix notation
is pgrV ——, and in Polish notation is CpNAgqr.

EQUIVALENCES, IDENTITIES, AND NORMAL FORMS

Definitions:

A tautology is a compound proposition that is always true, regardless of the truth
values of its underlying atomic propositions.

A contradiction (or self-contradiction) is a compound proposition that is always
false, regardless of the truth values of its underlying atomic propositions. (The term
self-contradiction is used for such a proposition when discussing indirect mathematical
arguments, because “contradiction” has another meaning in that context. See §1.5.)

A compound proposition P logically implies a compound proposition @, written
P = @, if Q is true whenever P is true. In this case, P is stronger than @), and @ is
weaker than P.

Compound propositions P and @ are logically equivalent, written P = Q, P < Q, or
P iff @, if they have the same truth values for all possible truth values of their variables.

A logical equivalence that is frequently used is sometimes called a logical identity.

A collection C of connectives is functionally complete if every compound proposition
is equivalent to a compound proposition constructed using only connectives in C.

A disjunctive normal expression in the propositions pi, ps, ..., pn is a disjunction of
one or more propositions, each of the form xx, Axg, A--- Axg,,, where Ty, is either pg,
OT 7Pk, -

A disjunctive normal form (DNF) for a proposition P is a disjunctive normal ex-
pression that is logically equivalent to P.
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A conjunctive normal expression in the propositions pi, ps,...,pn iS a conjunction
of one or more compound propositions, each of the form xy, Vg, V- --Vxy,, , where zy;
is either py; or —py;.

A conjunctive normal form (CNF) for a proposition P is a conjunctive normal
expression that is logically equivalent to P.

A compound proposition P using only the connectives —, A, and V has a logical dual
(denoted P’ or P%), obtained by interchanging A and V and interchanging the constant
T (true) and the constant F (false).

The converse of the conditional proposition p — ¢ is the proposition ¢ — p.

The contrapositive of the conditional proposition p — ¢ is the proposition =q¢ — —p.

The inverse of the conditional proposition p — ¢ is the proposition —p — —gq.

Facts:

1. P& @ is true if and only if P = @ and Q = P.

2. P & Q@ is true if and only if P « @ is a tautology.

3. Table 1 lists several logical identities.

4. There are different ways to establish logical identities (equivalences):

e truth tables (showing that both expressions have the same truth values);
e using known logical identities and equivalence to establish new ones;
o taking the dual of a known identity (Fact 7).
5. Logical identities are used in circuit design to simplify circuits. See §5.8.4.
6. Each of the following sets of connectives is functionally complete:

{/\’ \Z _'}’ {/\a _'}a {\/7 _'}’ { | }7 { ! }
However, these sets of connectives are not functionally complete:
{n}, {vh An v
7. If P < Q is a logical identity, then so is P’ < @', where P’ and Q' are the duals
of P and @, respectively.

8. Every proposition has a disjunctive normal form and a conjunctive normal form,
which can be obtained by Algorithms 1 and 2.

Algorithm 1: Disjunctive normal form of proposition P.

write the truth table for P

for each line of the truth table on which P is true, form a “line term”

x1 AT A -+ A\ Xy, Wwhere x; := p; if p; is true on that line of the truth table
and x; := —p; if p; is false on that line

form the disjunction of all these line terms

Algorithm 2: Conjunctive normal form of proposition P>

write the truth table for P

for each line of the truth table on which P is false, form a “line term”
r1VayV---Vax,, where x; := p; if p; is false on that line of the truth table
and x; := —p; if p; is true on that line

form the conjunction of all these line terms
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Table 1 Logical identities.

name rule
Commutative laws pPAGE qAD pVg&EqVp
Associative laws pA(gAT) =S (PAQ AT pV(gVr)s (pVe Vr
Distributive laws pA(gVr)e (A V(pAT)

pVgAr) e (Vg ApVr)

DeMorgan’s laws ~pAg) = (p)V(mg) PV e (-p) A(mg)
Excluded middle pV-psT
Contradiction pA—-p<sF
Double negation law —(-p) S p
Contrapositive law p—q&S g — D
Conditional as disjunction p—q&s pVg
Negation of conditional —(p—q) & pA—gq
Biconditional as implication peqgep@—9N(q—Dp)
Idempotent laws pPApED pVp&p
Absorption laws pA(pVq) &p pV(pAg) &p
Dominance laws pvVT<&T pANF <& F
Exportation law p—(g—r)e(pAg —r
Identity laws pANT < p pVF < p

Examples:

1. The proposition p V —p is a tautology (the law of the excluded middle).

2. The proposition p A =p is a self-contradiction.
3. A proof that p < ¢ is logically equivalent to (p A q) V (=p A =q) can be carried out

using a truth table:

pq |peqg —p ¢ pAqg —pA-g (pAq)V(=pA-q)
T T T F F T F T
T F F F T F F F
F T F T F F F F
F F T T T F T T

Since the third and eighth columns of the truth table are identical, the two statements
are equivalent.

4. A proof that p < ¢ is logically equivalent to (p A ¢) V (—p A =q) can be given by a
series of logical equivalences. Reasons are given at the right.

peqge(p—qgA(g—Dp) biconditional as implication

< (-pVq)A(—=qVDp) conditional as disjunction
< [(=pVaq)AN—q]V[(=pVq) Ap distributive law
S [(pA-qQ)V(gA-g)]V[(-pADp)V(gAp)] distributive law
< [(-pA—q) VF]VIFV(qADp) contradiction
< [(=pA—-q)VF]VI(gAp)VF commutative law
< (-pA—q) V(g ADp) identity law
< (—pA—q)V(pAQ) commutative law
< (pAgq)V (—pA—q) commutative law
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5. The proposition p | ¢ is logically equivalent to =(pV ¢). Its DNF is =p A ¢, and its
CNF is (=pV =) A (=pV @) A (pV ).

6. The proposition p|q is logically equivalent to =(p A ¢). Its DNF is (p A —q) V (—p A
q) V (=p A —q), and its CNF is —p V —q.

7. The DNF and CNF for Examples 5 and 6 were obtained by using Algorithm 1 and
Algorithm 2 to construct the following table of terms:

p q |plg DNF terms CNF terms p q |p|q DNF terms CNF terms
TT | F —pV g T T | F —pV g
T F F —pVq T F | T pA g

F T F pV q FT | T pAq

F F T -p A\ —q F F | T -p A g

8. The dual of p A (qV —r)ispV (gA ).

9. Let S be the proposition in three propositional variables p, ¢, and r that is true
when precisely two of the variables are true. Then the disjunctive normal form for S is

(PAGA=T)V (PA=gAT)V (P AgAT)
and the conjunctive normal form for S is

(pV =gV r)A(=pVaVr)A®V-gVr)APVaVor)AlpVgVr).

PREDICATE LOGIC

Definitions:
A predicate is a declarative statement with the symbolic form P(z) or P(z1,...,2,)
about one or more variables x or x1,...,x, whose values are unspecified.

Predicate logic (or predicate calculus or first-order logic) is the study of state-
ments whose variables have quantifiers.

The universe of discourse (or universe or domain) of a variable is the set of possible
values of the variable in a predicate.

An instantiation of the predicate P(z) is the result of substituting a fixed constant
value ¢ from the domain of x for each free occurrence of x in P(x). This is denoted by
P(c).

The existential quantification of a predicate P(z) whose variable ranges over a do-
main set D is the proposition (3x € D)P(x) or (3x)P(z) that is true if there is at least
one ¢ in D such that P(c) is true. The existential quantifier symbol, 3, is read “there
exists” or “there is”.

The universal quantification of a predicate P(x) whose variable ranges over a domain
set D is the proposition (Vx € D)P(z) or (Va)P(z), which is true if P(c) is true for
every element ¢ in D. The universal quantifier symbol, V, is read “for all”, “for each”,
or “for every”.

The unique existential quantification of a predicate P(xz) whose variable ranges
over a domain set D is the proposition (3la)P(x) that is true if P(c) is true for exactly
one ¢ in D. The unique existential quantifier symbol, 3!, is read “there is exactly one”.

The scope of a quantifier is the predicate to which it applies.
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A variable x in a predicate P(x) is a bound variable if it lies inside the scope of an
r-quantifier. Otherwise it is a free variable.

A well-formed formula (wiff) (or statement) is either a proposition or a predicate
with quantifiers that bind one or more of its variables.

A sentence (closed wif) is a well-formed formula with no free variables.

A well-formed formula is in prenex normal form if all the quantifiers occur at the
beginning and the scope is whatever follows the quantifiers.

A well-formed formula is atomic if it does not contain any logical connectives; otherwise
the well-formed formula is compound.

Higher-order logic is the study of statements that allow quantifiers to range over
relations over a universe (second-order logic), relations over relations over a universe
(third-order logic), etc.

Facts:
1. If a predicate P(x) is atomic, then the scope of (Vx) in (Vz)P(x) is implicitly the
entire predicate P(x).

2. If a predicate is a compound form, such as P(z) A Q(z), then (Va)[P(x) A Q(z)]
means that the scope is P(z) A Q(x), whereas (Vz)P(x) A Q(z) means that the scope is
only P(x), in which case the free variable = of the predicate Q(z) has no relationship
to the variable x of P(x).

3. Universal statements in predicate logic are analogues of conjunctions in propositional
logic. If variable x has domain D = {x1,...,2,}, then (Vx € D)P(z) is true if and only
if P(xy) A+ A P(xy,) is true.

4. Existential statements in predicate logic are analogues of disjunctions in proposi-
tional logic. If variable x has domain D = {z1,...,z,}, then (3z € D)P(x) is true if
and only if P(x1) V---V P(z,) is true.

5. Adjacent universal quantifiers [existential quantifiers] can be transposed without
changing the meaning of a logical statement:

(Vo) (Vy) P(z,y) < (Vy)(Ve)P(z,y)
(B2)By)P(z,y) < (3y)(3r)P(z,y).

6. Transposing adjacent logical quantifiers of different types can change the meaning
of a statement. (See Example 4.)

7. Rules for negations of quantified statements:

~(Vz)P(z) < (3x)[~P(z)]

—(3z)P(z) < (Vz)[~P(z)]

—~(Az)P(x) < ~Ex)P(z)V (3y)(32)[(y # 2) A Py) A P(2)].
8. Every quantified statement is logically equivalent to some statement in prenex nor-
mal form.

9. Every statement with a unique existential quantifier is equivalent to a statement
that uses only existential and universal quantifiers, according to the rule:

(Alz)P(z) & (32) [P(z) A (W) [P(y) — (z = y)]]
where P(y) means that y has been substituted for all free occurrences of x in P(x), and
where y is a variable that does not occur in P(z).
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10. If a statement uses only the connectives V, A, and —, the following equivalences
can be used along with Fact 7 to convert the statement into prenex normal form. The
letter A represents a wif without the variable x.

(Va)P(x) A (V2)Q(z) & (Vo)[P(z) A Q)]
(Vz)P(z) v (V2)Q(z) < (Vo)(vy)[P(z) V Q(y)]
(Fx)P(x) A (F2)Q(z) < (Fz)(Fy)[P(z) A Q(y)]
(@2)P(@) v (3)Q() & (@2)[P(x) v Q@)
(V2)P(x) A Br)Q(x) & (¥2)(3y)[P() A Q)]
(V2)P(a) Vv Br)Q(x) & (¥2)(3y)[P) v Q)

AV (Vx)P(z) & (Vz)[AV P(x)]

AV (3z)P(x) & (3x)[AV P(x)]

AN (Vx)P(x) & (Vz)[AN P(x)]

AN (3x)P(x) & (Fz)[AA P(x)].

Examples:

1. The statement (Vz € R)(Vy € R) [x + y = y + x| is syntactically a predicate pre-
ceded by two universal quantifiers. It asserts the commutative law for the addition of
real numbers.

2. The statement (Vz)(Jy) [xy = 1] expresses the existence of multiplicative inverses
for all number in whatever domain is under discussion. Thus, it is true for the positive
real numbers, but it is false when the domain is the entire set of reals, since zero has no
multiplicative inverse.

3. The statement (Va # 0)(Jy) [xy = 1] asserts the existence of multiplicative inverses
for nonzero numbers.

4. (Vz)(Jy) [x + y = 0] expresses the true proposition that every real number has an
additive inverse, but (Jy)(Vz) [z+y = 0] is the false proposition that there is a “universal
additive inverse” that when added to any number always yields the sum 0.

5. In the statement (Vz € R) [zt +y = y+«], the variable x is bound and the variable y
is free.

6. “Not all men are mortal” is equivalent to “there exists at least one man who is not
mortal”. Also, “there does not exist a cow that is blue” is equivalent to the statement
“every cow is a color other than blue”.

7. The statement (Va) P(z) — (V) Q(z) is not in prenex form. An equivalent prenex
form is (Vz)(Jy) [P(y) — Q(z)]-

8. The following table illustrates the differences in meaning among the four different
ways to quantify a predicate with two variables:

statement meaning
(3z)(Jy) [x +y = 0] | There is a pair of numbers whose sum is zero.
(Vz)(Jy) [x +y = 0] | Every number has an additive inverse.
(3z)(Yy) [t +y = 0] | There is a universal additive inverse z.
(Vz)(Vy) [x +y = 0] | The sum of every pair of numbers is zero.

9. The statement (Vx)(3ly) [x+y = 0] asserts the existence of unique additive inverses.
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1.2

SET THEORY

Sets are used to group objects and to serve as the basic elements for building more
complicated objects and structures. Counting elements in sets is an important part of
discrete mathematics.

Some general reference books that cover the material of this section are [F1Pa8§],
[Ha60], [Ka50].

1.2.1

SETS

Definitions:

A set is any well-defined collection of objects, each of which is called a member or an
element of the set. The notation z € A means that the object x is a member of the
set A. The notation = ¢ A means that z is not a member of A.

A roster for a finite set specifies the membership of a set S as a list of its elements

within braces, i.e., in the form S = {ay,...,a,}. Order of the list is irrelevant, as is the
number of occurrences of an object in the list.

A defining predicate specifies a set in the form S = {z | P(x)}, where P(z) is a
predicate containing the free variable x. This means that S is the set of all objects x
(in whatever domain is under discussion) such that P(z) is true.

A recursive description of a set S gives a roster B of basic objects of S and a set
of operations for constructing additional objects of S from objects already known to be
in S. That is, any object that can be constructed by a finite sequence of applications
of the given operations to objects in B is also a member of S. There may also be a list
of axioms that specify when two sequences of operations yield the same result.

The set with no elements is called the null set or the empty set, denoted §) or { }.
A singleton is a set with one element.

The set N of natural numbers is the set {0,1,2,...}. (Sometimes 0 is excluded from
the set of natural numbers; when the set of natural numbers is encountered, check to
see how it is being defined.)

The set Z of integers is the set {...,—2,—1,0,1,2,...}.

The set Q of rational numbers is the set of all fractions § where a is any integer and b
is any nonzero integer.

The set R of real numbers is the set of all numbers that can be written as terminating
or nonterminating decimals.

The set C of complex numbers is the set of all numbers of the form a 4+ bi, where
a,beRandi=+—1 (i*=-1).
Sets A and B are equal, written A = B, if they have exactly the same elements:
A=B & (Vz)[(z € A) < (z € B)].
Set B is a subset of set A, written B C A or A D B, if each element of B is an element
of A:
BCA & (Vz)[(z € B) — (z € 4)].
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Set B is a proper subset of A if B is a subset of A and A contains at least one element
not in B. (The notation B C A is often used to indicate that B is a proper subset of A,
but sometimes it is used to mean an arbitrary subset. Sometimes the proper subset
relationship is written B ;A, to avoid all possible notational ambiguity.)

A set is finite if it is either empty or else can be put in a one-to-one correspondence
with the set {1,2,3,...,n} for some positive integer n.

A set is infinite if it is not finite.
The cardinality |S| of a finite set S is the number of elements in S.

A multiset is an unordered collection in which elements can occur arbitrarily often,
not just once. The number of occurrences of an element is called its multiplicity .

An axiom (postulate) is a statement that is assumed to be true.

A set of axioms is consistent if no contradiction can be deduced from the axioms.

A set of axioms is complete if it is possible to prove all true statements.

A set of axioms is independent if none of the axioms can be deduced from the other
axioms.

A set paradox is a question in the language of set theory that seems to have no
unambiguous answer.

Naive set theory is set theory where any collection of objects can be considered to
be a valid set, with paradoxes ignored.

Facts:

1. The theory of sets was first developed by Georg Cantor (1845-1918).
2. A=Bifand only if AC B and B C A.

3. NcZcQcRcC.

4. Every rational number can be written as a decimal that is either terminating or else
repeating (i.e., the same block repeats end-to-end forever).

5. Real numbers can be represented as the points on the number line, and include all
rational numbers and all irrational numbers (such as V2, 7, e, etc.).

6. There is no set of axioms for set theory that is both complete and consistent.

7. Naive set theory ignores paradoxes. To avoid such paradoxes, more axioms are
needed.

Examples:

1. The set {z € N |3 < <10}, described by the defining predicate 3 < z < 10 is
equal to the set {3,4,5,6,7,8,9}, which is described by a roster.

2. If A is the set with two objects, one of which is the number 5 and other the set
whose elements are the letters z, y, and z, then A = {5,{x,y,2}}. In this example,
5€ A, but x ¢ A, since x is not either member of A.

3. The set E of even natural numbers can be described recursively as follows:
Basic objects: 0 € E,
Recursion rule: if n € E, then n+ 2 € F.

4. The liar’s paradox: A person says “I am lying”. Is the person lying or is the person
telling the truth? If the person is lying, then “I am lying” is false, and hence the person
is telling the truth. If the person is telling the truth, then “I am lying” is true, and
the person is lying. This is also called the paradox of Epimenides. This paradox also
results from considering the statement “This statement is false”.
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5. The barber paradox: In a small village populated only by men there is exactly one
barber. The villagers follow the following rule: the barber shaves a man if and only
if the man does not shave himself. Question: does the barber shave himself? If “yes”
(i.e., the barber shaves himself), then according to the rule he does not shave himself. If
“no” (i.e., the barber does not shave himself), then according to the rule he does shave
himself. This paradox illustrates a danger in describing sets by defining predicates.

6. Russell’s paradox: This paradox, named for the British logician Bertrand Russell
(1872-1970), shows that the “set of all sets” is an ill-defined concept. If it really were a
set, then it would be an example of a set that is a member of itself. Thus, some “sets”
would contain themselves as elements and others would not. Let S be the “set” of “sets
that are not elements of themselves”; i.e., S={A| A ¢ A}. Question: is S a member
of itself? If “yes”, then S is not a member of itself, because of the defining membership
criterion. If “no”, then S is a member of itself, due to the defining membership criterion.
One resolution is that the collection of all sets is not a set. (See Chapter 4 of [MiR091].)

7. Paradoxes such as those in Example 6 led Alfred North Whitehead (1861-1947) and
Bertrand Russell to develop a version of set theory by categorizing sets based on set
types: Ty, T, . ... The lowest type, Tj, consists only of individual elements. For ¢ > 0,
type T; consists of sets whose elements come from type 7;_1. This forces sets to belong
to exactly one type. The expression A € A is always false. In this situation Russell’s
paradox cannot happen.

1.2.2

SET OPERATIONS

Definitions:

The intersection of sets A and B is the set ANB ={xz | (xr € A) A (x € B)}. More
generally, the intersection of any family of sets is the set of objects that are members of
every set in the family. The notation

NicrAi={xz|xcA;forallicl}
is used for the intersection of the family of sets A; indexed by the set I.
Two sets A and B are disjoint if AN B = (.
A collection of sets {a; | i € I'} is disjoint if (,.; A; = 0.
A collection of sets is pairwise disjoint (or mutually disjoint) if every pair of sets
in the collection are disjoint.

The union of sets A and B is the set AUB = {z | (xr € A) V (z € B) }. More generally,
the union of a family of sets is the set of objects that are members of at least one set in
the family. The notation

Uicr Ai={z |z € A;forsomeic I}
is used for the union of the family of sets A; indexed by the set 1.

icl

A partition of a set S is a pairwise disjoint family P = {A;} of nonempty subsets
whose union is S.

The partition Py = {B;} of a set S is a refinement of the partition P; = {A;} of the
same set if for every subset B; € P, there is a subset A; € Py such that B; C A;.

The complement of the set A is theset A=U — A= {z |z ¢ A} containing every

object not in A, where the context provides that the objects range over some specific
universal domain U. (The notation A’ or A° is sometimes used instead of A.)
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The set difference is the set A— B = ANB ={z|(x € A) A (z ¢ B)}. The set
difference is sometimes written A\ B.

The symmetric difference of A and Bistheset AbB={z|(x€ A-B) V (z €
B — A) }. This is sometimes written AAB.

The Cartesian product A x B of two sets A and B is the set { (a,b) | (a € A) A (b€
B) }, which contains all ordered pairs whose first coordinate is from A and whose second
coordinate is from B. The Cartesian product of Aq,..., A, istheset Ay x Ay x---x A, =
[T, Ai ={(a1,a2,...,a,) | (Vi)(a; € A;) }, which contains all ordered n-tuples whose
ith coordinate is from A;. The Cartesian product A x A x --- x A is also written A™.
If S is any set, the Cartesian product of the collection of sets Ay, where s € S, is the
set [[,cq As of all functions f: S — (J,cg As such that f(s) € A, for all s € S.

The power set of A is the set P(A) of all subsets of A. The alternative notation 24
for P(A) emphasizes the fact that the power set has 2™ elements if A has n elements.

A set expression is any expression built up from sets and set operations.

A set equation (or set identity) is an equation whose left side and right side are both
set expressions.

A system of distinct representatives (SDR) for a collection of sets Ay, Ag, ..., A,
(some of which may be equal) is a set {ay,az,...,a,} of n distinct elements such that
a; € A; fori=1,2,....n.

A Venn diagram is a family of n simple closed curves (typically circles or ellipses)
arranged in the plane so that all possible intersections of the interiors are nonempty
and connected. (John Venn, 1834-1923)

A Venn diagram is simple if at most two curves intersect at any point of the plane.

A Venn diagram is reducible if there is a sequence of curves whose iterative removal
leaves a Venn diagram at each step.

A membership table is a table used to calculate whether an object lies in the set
described by a set expression, based on its membership in the sets mentioned by the
expression.

Facts:

1. If a collection of sets is pairwise disjoint, then the collection is disjoint. The converse

is false.
A
A B
B

2. The following figure illustrates Venn diagrams for two and three sets.

3. The following figure gives the Venn diagrams for sets constructed using various set
operations.

A B A B U A B A
ANnB A-B

(AnB)-C
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4. Intuition regarding set identities can be gleaned from Venn diagrams, but it can be
misleading to use Venn diagrams when proving theorems unless great care is taken to
make sure that the diagrams are sufficiently general to illustrate all possible cases.

5. Venn diagrams are often used as an aid to inclusion/exclusion counting. (See §2.4.)

6. Venn gave examples of Venn diagrams with four ellipses and asserted that no Venn
diagram could be constructed with five ellipses.

7. Peter Hamburger and Raymond Pippert (1996) constructed a simple, reducible Venn
diagram with five congruent ellipses. (Two ellipses are congruent if they are the exact
same size and shape, and differ only by their placement in the plane.)

8. Many of the logical identities given in §1.1.2 correspond to set identities, given in
the following table.

name rule

Commutative laws ANB=BnNA AUB=BUA

Associative laws A NBNC)=(AN B) N C’
UBUC)=(AUB

Distributive laws Nn(BU C) (ANB)U(ANCQC)
UuBnNC)=(AuB)N(AUCQC)

DeMorgan’s laws ANB=AUB AUB=ANB

Complement laws ANA=10 AUA=U

Double complement law A=A

Idempotent laws ANA=A AUA=A

Absorption laws AN(AUB)=A AU(ANB)=A

Dominance laws ANnh=10 AUU=U

Identity laws Aup=A ANU=A

9. In a computer, a subset of a relatively small universal domain can be represented by
a bit string. Each bit location corresponds to a specific object of the universal domain,
and the bit value indicates the presence (1) or absence (0) of that object in the subset.

10. In a computer, a subset of a relatively large ordered datatype or universal domain
can be represented by a binary search tree.

11. For any two finite sets A and B, |[AU B| = |A| + |B| — | AN B| (inclusion/exclusion
principle). (See §2.3.)
12. Set identities can be proved by any of the following:

e a containment proof: show that the left side is a subset of the right side and the
right side is a subset of the left side;

e a membership table: construct the analogue of the truth table for each side of
the equation;

e using other set identities.

13. For all sets A, |A] < |P(4)].
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14. Hall’s theorem: A collection of sets Ay, As, ..., A, has a system of distinct repre-

sentatives if and only if for all k = 1,...,n every collection of k subsets A;,, Ai,, ..., 4,
satisfies |[A4;, U A;, U---UA,;, | > k.
15. If a collection of sets Ay, Ao, ..., A, has a system of distinct representatives and if

an integer m has the property that |A;| > m for each i, then:
e if m > n there are at least #LL)' systems of distinct representatives;
e if m < n there are at least m! systems of distinct representatives.

16. Systems of distinct representatives can be phrased in terms of 0-1 matrices and
graphs. See §6.6.1, §8.12, and §10.4.3.

Examples:

1. {1,2}n{2,3} = {2}.

2. The collection of sets {1,2}, {4,5}, {6,7,8} is pairwise disjoint, and hence disjoint.
3. The collection of sets {1,2}, {2, 3}, {1, 3} is disjoint, but not pairwise disjoint.

4. {1,2}uU{2,3} ={1,2,3}.

5. Suppose that for every positive integer n, [j mod n] = {k € Z | k mod n = j }, for
j=0,1,...,n—1. (See §1.3.1.) Then { [0 mod 3],[1 mod 3],[2 mod 3] } is a partition
of the integers. Moreover, {[0 mod 6],[1 mod 6],...,[5 mod 6]} is a refinement of
this partition.

6. Within the context of Z as universal domain, the complement of the set of positive
integers is the set consisting of the negative integers and 0.

7. {1,2} —{2,3} = {1}.

8. {1,2} x{2,3} ={(1,2),(1,3),(2,2),(2,3)}.

10. If L is aline in the plane, and if for each x € L, C,, is the circle of radius 1 centered
at point z, then (J, ., C; is an infinite strip of width 2, and (., Co = 0.

11. The five-fold Cartesian product {0,1}° contains 32 different 5-tuples, including,
for instance, (0,0,1,0,1).

12. The set identity AN B = AU B is verified by the following membership table.
Begin by listing the possibilities for elements being in or not being in the sets A and B,
using 1 to mean “is an element of” and 0 to mean “is not an element of”. Proceed to
find the element values for each combination of sets. The two sides of the equation are
the same since the columns for AN B and A U B are identical:

A B| AnB AnB A B AUB
1 1 1 0 0 0 0
10 0 1 0 1 1
0 1 0 1 1 0 1
0 0 0 1 1 1 1

13. The collection of sets 4; = {1,2}, Ay = {2,3}, A5 = {1,3,4} has systems of
distinct representatives, for example {1,2,3} and {2,3,4}.

14. The collection of sets A; = {1,2}, Ay = {1,3}, A3 = {2,3}, A4 = {1,2,3}, 45 =
{2,3,4} does not have a system of distinct representatives since |A; U A U A3 U Ay| < 4.
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1.23

INFINITE SETS

Definitions:

The Peano definition for the natural numbers N:
e 0 is a natural number;
e every natural number n has a successor s(n);
e axioms:
¢ 0 is not the successor of any natural number;
¢ two different natural numbers cannot have the same successor;
o if 0 € T and if (Vn € N) [(n € T) — (s(n) € T)], then T = N.
(This axiomatization is named for Giuseppe Peano, 1858-1932.)

A set is denumerable (or countably infinite) if it can be put in a one-to-one corre-
spondence with the set of natural numbers {0,1,2,3,...}. (See §1.3.1.)

A countable set is a set that is either finite or denumerable. All other sets are un-
countable.

The ordinal numbers (or ordinals) are defined recursively as follows:
e the empty set is the ordinal number 0;
e if o is an ordinal number, then so is the successor of o, written a® or o + 1,
which is the set o U {a};
e if 3 is any set of ordinals closed under the successor operation, then ( is an
ordinal, called a limit ordinal.

The ordinal « is said to be less than the ordinal 8, written o < 3, if & C 8 (which is
equivalent to « € 3).

The sum of ordinals « and 3, written o + 3, is the ordinal corresponding to the well-
ordered set given by all the elements of « in order, followed by all the elements of 3
(viewed as being disjoint from «) in order. (See Fact 26 and §1.4.3.)

The product of ordinals a and (3, written « - 3, is the ordinal equal to the Cartesian
product a x 3 with ordering (a1,b1) < (a2, bs) whenever by < bs, or by = be and a; < ag
(this is reverse lexicographic order).

Two sets have the same cardinality (or are equinumerous) if they can be put into
one-to-one correspondence (§1.3.1.). When the equivalence relation “equinumerous” is
used on all sets (see §1.4.2.), the sets in each equivalence class have the same cardinal
number. The cardinal number of a set A is written |A|. It can also be regarded as the
smallest ordinal number among all those ordinal numbers with the same cardinality.

An order relation can be defined on cardinal numbers of sets by the rule |A| < B if
there is a one-to-one function f: A — B. If |A| < |B| and |A| # |B|, write |A| < |B|.

The sum of cardinal numbers a and b, written a + b, is the cardinal number of the
union of two disjoint sets A and B such that |A| = a and |B| = b.

The product of cardinal numbers a and b, written ab, is the cardinal number of the
Cartesian product of two sets A and B such that |A| = a and |B| = b.

Exponentiation of cardinal numbers, written aP, is the cardinality of the set AZ of
all functions from B to A, where |A| = a and |B| = b.
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Facts:

1. Axiom 3 in the Peano definition of the natural numbers is the principle of mathe-
matical induction. (See §1.5.6.)

. The finite cardinal numbers are written 0,1,2,3,....
. The cardinal number of any finite set with n elements is n.

. The first infinite cardinal numbers are written Ng, N, No, ..., N, . ...

. The cardinal number of any denumerable set, such as N/, Z, and Q, is N.
. The cardinal number of P(N), R, and C is denoted ¢ (standing for the continuum).

The set of algebraic numbers (all solutions of polynomials with integer coefficients)

2
3
4
5. For each ordinal «, there is a cardinal number N,.
6
7
8.
is denumerable.

9. The set R is uncountable (proved by Georg Cantor in late 19th century, using a
diagonal argument). (See §1.5.7.)

10. Every subset of a countable set is countable.
11. The countable union of countable sets is countable.
12. Every set containing an uncountable subset is uncountable.

13. The continuum problem, posed by Georg Cantor (1845-1918) and restated by
David Hilbert (1862-1943) in 1900, is the problem of determining the cardinality, |R|,
of the real numbers.

14. The continuum hypothesis is the assertion that |R| = Ny, the first cardinal
number larger than Ry. Equivalently, 2% = X;. (See Fact 35.) Kurt Godel (1906-1978)
proved in 1938 that the continuum hypothesis is consistent with various other axioms of
set theory. Paul Cohen (born 1934) demonstrated in 1963 that the continuum hypothesis
cannot be proved from those other axioms; i.e., it is independent of the other axioms of
set theory.

15. The generalized continuum hypothesis is the assertion that 2%« = R, for
all ordinals . That is, for infinite sets there is no cardinal number strictly between |S|
and |P(9)].

16. The generalized continuum hypothesis is consistent with and independent of the
usual axioms of set theory.

17. There is no largest cardinal number.

18. |A| <|P(A)| for all sets A.

19. Schréder-Bernstein theorem: If |A| < |B| and |B| < |A|, then |A| = |B|. (This is
also called the Cantor-Schroder-Bernstein theorem.)

20. The ordinal number 1 = 07 = {0} = {0}, the ordinal number 2 = 1+ = {0, 1}, etc.
In general, for finite ordinals, n +1=n" = {0,1,2,...,n}.

21. The first limit ordinal is w = {0,1,2,...}. Then w +1 = vt = w U {w} =
{0,1,2,...,w}, and so on. The next limit ordinal is w + w = {0,1,2,...,w,w+ 1w +
2,...}, also denoted w - 2. The process never stops, because the next limit ordinal can
always be formed as the union of the infinite process that has gone before.

22. Limit ordinals have no immediate predecessors.
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23. The first ordinal that, viewed as a set, is not countable, is denoted w;.
24. For ordinals the following are equivalent: a < 3, « € 3, a C 3.

25. Every set of ordinal numbers has a smallest element; i.e., the ordinals are well-
ordered. (See §1.4.3.)

26. Ordinal numbers correspond to well-ordered sets (§1.4.3). Two well-ordered sets
represent the same ordinal if they can be put into an order-preserving one-to-one cor-
respondence.

27. Addition and multiplication of ordinals are associative operations.

28. Ordinal addition and multiplication for finite ordinals (those less than w) are the
same as ordinary addition and multiplication on the natural numbers.

29. Addition of infinite ordinals is not commutative. (See Example 2.)
30. Multiplication of infinite ordinals is not commutative. (See Example 3.)
31. The ordinals 0 and 1 are identities for addition and multiplication, respectively.

32. Multiplication of ordinals is distributive over addition on the left: a(8 +v) =
af + av. It is not distributive on the right.

33. In the definition of the cardinal number aP, when a = 2, the set A can be taken
to be A = {0,1} and an element of AP can be identified with a subset of B (namely,
those elements of B sent to 1 by the function). Thus 2/B = |P(B)|, the cardinality of
the power set of B.

34. If a and b are cardinals, at least one of which is infinite, then a+ b = a- b = the
larger of a and b.

35. clo =i = 2%

36. The usual rules for finite arithmetic continue to hold for infinite cardinal arithmetic
(commutativity, associativity, distributivity, and rules for exponents).

Examples:

1. wi >w- 2, w >w?, w >w”.
2. l+tw=w, bt w+1>w.
3. 2-w=w,but w-2>w.

4. Np-Rp=Ng+ Vg = Np.

1.2.4

AXIOMS FOR SET THEORY

Set theory can be viewed as an axiomatic system, with undefined terms “set” (the
universe of discourse) and “is an element of” (a binary relation denoted €).

Definitions:

The Axiom of choice (AC) states: If A is any set whose elements are pairwise disjoint
nonempty sets, then there exists a set X that has as its elements exactly one element
from each set in A.
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The Zermelo-Fraenkel (ZF) axioms for set theory: (The axioms are stated infor-
mally.)

e Extensionality (equality): Two sets with the same elements are equal.
e Pairing: For every a and b, the set {a,b} exists.

e Specification (subset): If A is a set and P(z) is a predicate with free variable «,
then the subset of A exists that consists of those elements ¢ € A such that P(c)
is true. (The specification axiom guarantees that the intersection of two sets
exists.)

e Union: The union of a set (i.e., the set of all the elements of its elements) exists.
(The union axiom together with the pairing axiom implies the existence of the
union of two sets.)

e Power set: The power set (set of all subsets) of a set exists.
e Empty set: The empty set exists.

e Regularity (foundation): Every nonempty set contains a “foundational” element;
that is, every nonempty set contains an element that is not an element of any
other element in the set. (The regularity axiom prevents anomalies such as a
set being an element of itself.)

e Replacement: If f is a function defined on a set A, then the collection of images
{f(a) | a € A} is a set. The replacement axiom (together with the union
axiom) allows the formation of large sets by expanding each element of a set
into a set.

e Infinity: An infinite set, such as w (§1.2.3), exists.

Facts:

1. The axiom of choice is consistent with and independent of the other axioms of set
theory; it can be neither proved nor disproved from the other axioms of set theory.

2. The axioms of ZF together with the axiom of choice are denoted ZFC.

3. The following propositions are equivalent to the axiom of choice:

e The well-ordering principle: Every set can be well-ordered; i.e., for every set A
there exists a total ordering on A such that every subset of A contains a smallest
element under this ordering.

e Generalized axiom of choice (functional version): If A is any collection of non-
empty sets, then there is a function f whose domain is A, such that f(X) € X
for all X € A.

e Zorn’s lemma: Every nonempty partially ordered set in which every chain (totally
ordered subset) contains an upper bound (an element greater than all the other
elements in the chain) has a maximal element (an element that is less than no
other element). (§1.4.3.)

e The Hausdorff maximal principle: Every chain in a partially ordered set is con-
tained in a maximal chain (a chain that is not strictly contained in another
chain). (§1.4.3.)

e Trichotomy: Given any two sets A and B, either there is a one-to-one function
from A to B, or there is a one-to-one function from B to A; i.e., either |A| < |B|
or | B < |A].
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1.3

FUNCTIONS

A function is a rule that associates to each object in one set an object in a second set
(these sets are often sets of numbers). For instance, the expected population in future
years, based on demographic models, is a function from calendar years to numbers.
Encryption is a function from confidential information to apparent nonsense messages,
and decryption is a function from apparent nonsense back to confidential information.
Computer scientists and mathematicians are often concerned with developing methods
to calculate particular functions quickly.

1.3.1

BASIC TERMINOLOGY FOR FUNCTIONS

Definitions:

A function f from a set A to a set B, written f: A — B, is a rule that assigns to every
object a € A exactly one element f(a) € B. The set A is the domain of f; the set B
is the codomain of f; the element f(a) is the image of a or the value of f at a. A
function f is often identified with its graph { (a,b) |a € Aand b= f(a)} C A x B.

Note: The function f: A — B is sometimes represented by the “maps to” notation
x +— f(x) or by the variation x — expr(z), where expr(z) is an expression in z. The
notation f(z) = expr(z) is a form of the “maps to” notation without the symbol .

The rule defining a function f: A — B is called well-defined since to each a € A there
is associated exactly one element of B.

If f:A— B and S C A, the image of the subset S under f is the set f(S) = { f(z) |
reS}.

If f:A— B and T C B, the pre-image or inverse image of the subset T under f is
the set f~YT) ={z| f(z) € T}.

The image of a function f: A — B is the set f(A) ={f(z) |z € A}.

The range of a function f: A — B is the image set f(A). (Some authors use “range”
as a synonym for “codomain”.)

A function f: A — B is one-to-one (1-1, injective, or a monomorphism) if distinct
elements of the domain are mapped to distinct images; i.e., f(a1) # f(az2) whenever
a1 # as. An injection is an injective function.

A function f: A — B is onto (surjective, or an epimorphism) if every element of

the codomain B is the image of at least one element of A; i.e., if (Vb € B)(Ja € A)
[f(a) = b] is true. A surjection is a surjective function.

A function f: A — B is bijective (or a one-to-one correspondence) if it is both
injective and surjective; i.e., it is 1-1 and onto. A bijection is a bijective function.

If ffA— Band S C A, the restriction of f to S is the function fs:S — B where
fs(z) = f(x) for all x € S. The function f is an extension of fg. The restriction of f
to S is also written f|g.

A partial function on a set A is a rule f that assigns to each element in a subset of A
exactly one element of B. The subset of A on which f is defined is the domain of
definition of f. In a context that includes partial functions, a rule that applies to all
of A is called a total function.
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Given a 1-1 onto function f: A — B, the inverse function f~!: B — A has the rule
that for each y € B, f~1(y) is the object # € A such that f(z) = y.

If f: A — B and g: B — C, then the composition is the function gof: A — C defined
by the rule (gof)(z) = g(f(x)) for all x € A. The function to the right of the raised
circle is applied first.

Note: Care must be taken since some sources define the composition (gof)(z) = f(g(x))
so that the order of application reads left to right.

If f: A — A, the iterated functions f": A — A (n > 2) are defined recursively by the
rule f*(z) = fo fr1(x).

A function f: A — A is idempotent if fo f = f.

A function f: A — A is an involution if fo f =i4. (See Example 1.)

A function whose domain is a Cartesian product A; X --- X A, is often regarded as
a function of n variables (also called a multivariate function), and the value of f at
(a1, ...,ay) is usually written f(ai,...,a,).

An (n-ary) operation on a set A is a function f: A — A, where A" = Ax---x A
(with n factors in the product). A l-ary operation is called monadic or unary, and a
2-ary operation is called binary.

Facts:
1. The graph of a function f: A — B is a binary relation on A x B. (§1.4.1.)

2. The graph of a function f: A — B is a subset S of A x B such that for each a € A
there is exactly one b € B such that (a,b) € S.

3. In general, two or more different objects in the domain of a function might be
assigned the same value in the codomain. If this occurs, the function is not 1-1.

4. If f:A — B is bijective, then: fof~! = ig (Example 1), f~lof = ia, f~!is
bijective, and (f~1)~1 = f.

5. Function composition is associative: (fog)oh = fo(goh), whenever h: A — B,
g:B—C,and f:C — D.

6. Function composition is not commutative; that is, fog # gof in general. (See
Example 12.)

7. Set operations with functions: If f: A — B with S1,5, C A and 71,75 C B, then:
e f(51U82) = f(S1) U f(S2);
e f(S1NSy) C f(S1)N f(S2), with equality if f is injective;
e £(S1) D f(S1) (ie., f(A—S1) D B — f(S1)), with equality if f is injective;
o fTHTUT) = f~H(Th) U f N (To);
o fTHTINT) = f~H(T1) N fH(T);
o fTHT) =1 (Th) (e, fTHB-T1) = A~ f~H(Th));
o f7Y(f(S1)) D Sy, with equality if f is injective;
o f(f~1(T1)) C Ty, with equality if f is surjective.
8. If fA— B and g: B — C are both bijective, then (go f)™! = f~1og™!.

9. If an operation * (such as addition) is defined on a set B, then that operation can be
extended to the set of all functions from a set A to B, by setting (f*g)(z) = f(x)*g(z).
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10. Numbers of functions: If |A| = m and |B| = n, the numbers of different types of
functions f: A — B are given in the following list:

e all: n™ (§2.2.1)

e one-to-one: P(n,m)=n(n—1)(n—2)...(n—m+1)ifn>m (§2.2.1)
e onto: 30 (=1)7(7)(n—5)™ if m >n (§2.4.2)
e partial: (n+1)"™ (§2.3.2)

Examples:

1. The following are some common functions:

e exponential function to base b (for b > 0, b # 1): the function f: R — RT
where f(x) = b*. (See the following figure.) (R is the set of positive real
numbers.)

e logarithm function with base b (for b > 0, b # 1): the function log,: Rt — R
that is the inverse of the exponential function to base b; that is,

log, x =y if and only if bY = x.

e common logarithm function: the function log;,: R™ — R (also written log)
that is the inverse of the exponential function to base 10; i.e., log;, = y when
10Y = z. (See the following figure.)

e binary logarithm function: the function log,: Rt — R (also denoted log
or lg) that is the inverse of exponential function to base 2; i.e., logy = y when
2¥ = z. (See the following figure.)

e natural logarithm function: the function In: Rt — R is the inverse of
the exponential function to base e; i.e., In(z) = y when e¥ = z, where e =
lim,, oo (1 4 L) & 2.718281828459. (See the following figure.)

i loga(x)
In(x)
2r log(x)
1
0 T T T T T T T
2 4 6 8 10 12 14
-2 7
L 4/ 1 1 J

4L -4 2 0 2 4
e iterated logarithm: the function log™: Rt — {0,1,2,...} where log™ z is the
smallest nonnegative integer k such that log(k) x < 1; the function log(k) is

defined recursively by

x ifk=0
log®) & = { log(log* =V z)  if log®* Y 2 is defined and positive
undefined otherwise.

e mod function: for a given positive integer n, the function f:Z — N defined by
the rule f(k) = k mod n, where kK mod n is the remainder when the division
algorithm is used to divide k by n. (See §4.1.2.)

e identity function on a set A : the function i4: A — A such that i4(z) = x for
all z € A.
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e characteristic function of S: for S C A, the function y,: A — {0,1} given by
Xs(x)=1ifx € Sand x,(x)=0ifx ¢ S.

e projection function: the function m;: A1 x --- x A, — A; (j = 1,2,...,n)
such that m;(a1,...,a,) = a;.

e permutation: a function f: A — A that is 1-1 and onto.

e floor function (sometimes referred to, especially in number theory, as the great-
est integer function): the function | |: R — Z where |z| = the greatest

integer less than or equal to . The floor of = is also written [z]. (See the
following figure.) Thus |7| =3, [6] =6, and |—0.2] = —1.

e ceiling function: the function [ |: R — Z where [z] = the smallest integer
greater than or equal to x. (See the following figure.) Thus [#]| =4, [6] = 6,

and [—0.2] = 0.
lX] 4 IXI (_]
| Samne ——
2 | S 2 —
' S
-2 4 2 4 . €
2 2 4
— -2 — -2
——

2. The floor and ceiling functions are total functions from the reals R to the integers Z.
They are onto, but not one-to-one.

3. Properties of the floor and ceiling functions (m and n represent arbitrary integers):

e |z]=n ifandonlyif n<z<n+1 ifandonlyif z —1<n <z

e[z]=n ifandonlyif n—1<a<n ifandonlyif z <n<z+1;

o |z] <n ifand only if z <n; [z] <n if and only if x < n;

en < |z| ifand only if n <z; n< [z] if and only if n < x;

ex—1<|z]<z<[z]<z+1;

e |z] =z if and only if z is an integer;

e [z] =z if and only if = is an integer;

o[-z =—[z]; [-z]=—[z];

e lotn]= o) +n; [z+n]=[2] +m;

e the interval [x1,z2] contains |z2] — [z1] + 1 integers;

e the interval [x1,z2) contains [z] — [21] integers;

e the interval (z1, z5] contains |x] — |21] integers;

e the interval (x1,z2) contains [z2] — |21 — 1 integers;

e if f(z) is a continuous, monotonically increasing function, and whenever f(z) is
an integer, x is also an integer, then | f(z)| = [ f(|z])] and [f(z)] = [f([z])];

e if n > 0, then |27 | = LM%J and [ZE7] = [m%] (a special case of the
preceding fact);

eif m >0, then |mz) = [z] + [z + L]+ + [z + =]

4. The logarithm function log, z is bijective from the positive reals R to the reals R.
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5. The logarithm function z — log, x is the inverse of the function x — b*, if the
codomain of x +— b” is the set of positive real numbers. If the domain and codomain are
considered to be R, then x — log,  is only a partial function, because the logarithm of
a nonpositive number is not defined.

6. All logarithm functions are related according to the following change of base formula:

log, ©
log, b"

log, x =

7. log*2 =1, log*4 =2, log* 16 = 3, log* 65536 = 4, log* 265536 = 5,

8. The diagrams in the following figure illustrate a function that is onto but not 1-1
and a function that is 1-1 but not onto.

A f B A f B
—> —>
onto, not 1-1 1-1, not onto

9. If the domain and codomain are considered to be the nonnegative reals, then the
function = + 22 is a bijection, and x +— /z is its inverse.

10. If the codomain is considered to be the subset of complex numbers with polar
coordinate 0 < 6 < 7, then x — /& can be regarded as a total function.

11. Division of real numbers is a multivariate function from R x (R — {0}) to R,
given by the rule f(z,y) = § Similarly, addition, subtraction, and multiplication are
functions from R x R to R.

12. If f(z) = 2% and g(z) = 2+ 1, then (fog)(x) = (x +1)? and (go f)(x) = 2> + 1.
(Therefore, composition of functions is not commutative.)

13. Collatz conjecture: If f:{1,2,3,...} — {1,2,3,...} is defined by the rule f(n) = %
if n is even and f(n) = 3n + 1 if n is odd, then for each positive integer m there is a
positive integer k such that the iterated function f¥(m) = 1. It is not known whether
this conjecture is true.

1.3.2

COMPUTATIONAL REPRESENTATION

A given function may be described by several different rules. These rules can then
be used to evaluate specific values of the function. There is often a large difference
in the time required to compute the value of a function using different computational
rules. The speed usually depends on the representation of the data as well as on the
computational process.

Definitions:
A (computational) representation of a function is a way to calculate its values.
A closed formula for a function value f(z) is an algebraic expression in the argument z.

A table of values for a function f: A — B with finite domain A is any explicit
representation of the set { (a, f(a)) € Ax B|a€ A}.
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An infinite sequence in a set S is a function from the natural numbers {0,1,2,...}
to the set S. It is commonly represented as a list o, 1, %2, ... such that each x; € S.
Sequences are often permitted to start at the index 1 or elsewhere, rather than 0.

A finite sequence in a set S is a function from {1,2,...,n} to the set S. It is commonly
represented as a list z1,22,..., 2, such that each z; € S. Finite sequences are often
permitted to start at the index 0 (or at some other value of the index), rather than at
the index 1.

A value of a sequence is also called an entry, an item, or a term.

A string is a representation of a sequence as a list in which the successive entries are
juxtaposed without intervening punctuation or extra spacing.

A recursive definition of a function f with domain S is given in two parts: there is
a set of base values (or initial values) B on which the value of f is specified, and
there is a rule for calculating f(z) for every x € S — B in terms of previously defined
values of f.

Ackermann’s function (Wilhelm Ackermann, 1896-1962) is defined recursively by

x+y ifz=0

0 ify=0,2=1
A(z,y,2) =14 1 ify=0,2z=2

x ify=0,2>2

Az, A(z,y — 1,2),z—1) ify, z>0.
An alternative version of Ackermann’s function, with two variables, is defined recursively
by
n+1 ifm=20
A(m,n) =< A(m—1,1) ifm>0,n=0
A(m —1,A(m,n—1)) ifm,n > 0.
Another alternative version of Ackermann’s function is defined recursively by the rule

A(n) = Ay (n), where A1(n) = 2n and A, (n) = A" (1) if m > 2.

The (input-independent) halting function maps computer programs to the set { 0,1 },
with value 1 if the program always halts, regardless of input, and 0 otherwise.

Facts:

1. If f:N — R is recursively defined, the set of base values is frequently the set
{f(0), f(1),..., f(5)} and there is a rule for calculating f(n) for every n > j in terms
of f(i) for one or more i < n.

2. There are functions whose values cannot be computed. (See Example 5.)

3. There are recursively defined functions that cannot be represented by a closed for-
mula.

4. Tt is possible to find closed formulas for the values of some functions defined recur-
sively. See Chapter 3 for more information.

5. Computer software developers often represent a table as a binary search tree (§17.2).

6. In Ackermann’s function of three variables A(x,y, z), as the variable z ranges from 0
to 3, A(z,y, 2) is the sum of x and y, the product of x and y, x raised to the exponent y,
and the iterated exponentiation of  y times. That is, A(z,y,0) = z+y, A(z,y,1) = zy,

A(z,y,2) =2Y, A(z,y,3) = z (y xs in the exponent).
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7. The version of Ackermann’s function with two variables, A(z,y), has the following
properties: A(1,n) =n+2, A(2,n) =2n+ 3, A(3,n) =23 — 3.

8. A(m,n) is an example of a well-defined total function that is computable, but not
primitive recursive. (See §16.)
Examples:

1. The function that maps each month to its ordinal position is represented by the
table

{(Jan,1),(Feb,2),...,(Dec,12)}.
2. The function defined by the recurrence relation
f0)=0; f(n)=f(n—1)+2n—1forn>1
has the closed form f(x) = z2.
3. The function defined by the recurrence relation
f(0)=0,f1)=1; f(n)=f(n—1)+ f(n—2)forn=>2
generates the Fibonacci sequence 0,1,1,2,3,5,8, ... (see §3.1.2) and has the closed form
n n
fny = 0+ \/5)27;/(51 —V5)"
4. The factorial function n! is recursively defined by the rules
00=1;, nl=n-(n-1)! forn>1

It has no known closed formula in terms of elementary functions.

5. It is impossible to construct an algorithm to compute the halting function.

6. The halting function from the Cartesian product of the set of computer programs
and the set of strings to {0,1} whose value is 1 if the program halts when given that
string as input and 0 if the program does not halt when given that string as input is
noncomputable.

7. The following is not a well-defined function f:{1,2,3,...} — {1,2,3,...}
1 ifn=1
f(n) =< 14+ f(5) ifniseven
fBn—1) ifnisodd, n>1
since evaluating f(5) leads to the contradiction f(5) = f(5) + 3.

8. It is not known whether the following is a well-defined function f:{1,2,3,...} —
{1,2,3,...}

1 n=1
f(n){l—f—f(%) n even
fBn+1) nodd, n>1.
(See §1.3.1, Example 13.)

1.3.3

ASYMPTOTIC BEHAVIOR

The asymptotic growth of functions is commonly described with various special pieces
of notation and is regularly used in the analysis of computer algorithms to estimate the
length of time the algorithms take to run and the amount of computer memory they
require.
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Definitions:
A function f:R — R or f: N — R is bounded if there is a constant k such that
|f(z)| <k for all z in the domain of f.
For functions f,g: R — R or f,g: N — R (sequences of real numbers) the following are
used to compare their growth rates:
e f is big-oh of g (¢ dominates f) if there exist constants C' and k such that
|f(z)| < Clg(x)] for all z > k.

Notation: fis O(g), f(x) € O(g(x)), f € O(g), f = O(g).

e f is little-oh of g if limxﬁoo| ﬁg | = 0; i.e., for every C > 0 there is a constant k

such that |f(z)| < Clg(z)| for all z > k.

Notation: f is o(g), f(z) € o(g(x)), f € o(g), f = o(g).

e [ is big omega of g if there are constants C' and k such that |g(x)| < C|f(z)]
for all x > k.

Notation: f is Q(g), f(x) € Qg(z)), f € Qg), f = Q9g).

e f is little omega of g if hmw_,oo’%’ =0.

Notation: f is w(g), f(z) € w(g(x)), f € w(g), f=w(g).
e f is theta of g if there are positive constants C7, Cy, and k such that Cq|g(z)| <
|f(z)| < Calg(z)| for all x > k.
Notation: [ is ©(g), f(z) € ©(g(x)), f € O(g), f =0O(9), f~g.

e f is asymptotic to g if lim, . % = 1. This relation is sometimes called

asymptotic equality.
Notation: f ~ g, f(z) ~ g(x).

Facts:

1. The notations O( ), o( ), ( ), w( ), and ©( ) all stand for collections of functions.
Hence the equality sign, as in f = O(g), does not mean equality of functions.

2. The symbols O(g), o(g), Q(g), w(g), and ©(g) are frequently used to represent
a typical element of the class of functions it represents, as in an expression such as
f(n) =nlogn+ o(n).
3. Growth rates:
e O(g): the set of functions that grow no more rapidly than a positive multiple
of g;
e 0(g): the set of functions that grow less rapidly than a positive multiple of g;
e (g): the set of functions that grow at least as rapidly as a positive multiple of g;
e w(g): the set of functions that grow more rapidly than a positive multiple of g;
e O(g): the set of functions that grow at the same rate as a positive multiple of g.
4. Asymptotic notation can be used to describe the growth of infinite sequences, since

infinite sequences are functions from {0,1,2,...} or {1,2,3,...} to R (by considering
the term a,, as a(n), the value of the function a(n) at the integer n).

5. The big-oh notation was introduced in 1892 by Paul Bachmann (1837-1920) in the
study of the rates of growth of various functions in number theory.

6. The big-oh symbol is often called a Landau symbol, after Edmund Landau (1877-
1938), who popularized this notation.
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7. Properties of big-oh:
e if f € O(g) and c is a constant, then cf € O(g);
o if f1, fo € O(g), then f1 + fo € O(g);
o if f1 € O(g1) and fo € O(g2), then
o (fi+[f2) €091+ g2)
o (f1+ f2) € O(max(|g1, [g2]))
o (f1f2) € O(g192);
o if f is a polynomial of degree n, then f € O(z");
e if f is a polynomial of degree m and g a polynomial of degree n, with m > n,
then 5 € O(z™™");
o if f is a bounded function, then f € O(1);
o for all a,b > 1, O(log, z) = O(log; );
o if f € O(g) and |h(z)| > |g(x)| for all x > k, then f € O(h);
o if f € O(x™), then f € O(a™) for all n > m.

8. Some of the most commonly used benchmark big-oh classes are: O(1), O(logz),
O(z), O(zlogx), O(x?), O(2%), O(z!), and O(x®). If f is big-oh of any function in this
list, then f is also big-oh of each of the following functions in the list:
O(1) c O(logz) € O(x) C O(xlogz) C O(z?) C O(2%) C O(z!) C O(z%).
The benchmark functions are drawn in the following figure.
XX

x1

oX

100,000

10,000

1,000

9. Properties of little-oh:

e if f € 0(g), then ¢f € o(g) for all nonzero constants c;

o if f1 € 0(g) and f5 € o(g), then f1 + fo € o(g);

o if f1 € 0(g1) and f3 € 0(g2), then
o (f1+ f2) € o(g1 + g2)
o (f1+ f2) € o(max(|g1],|g21))
o (f1f2) € 0(g192);

o if Jf‘ is a polynomial of degree m and g a polynomial of degree n with m < n, then
5 € o(1);

e the set membership f(x) € L + o(1) is equivalent to f(x) — L as x — oo, where
L is a constant.
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1.4

10. If f € o(g), then f € O(g); the converse is not true.

11. If f € O(g) and h € o(f), then h € o(g).

12. If f € o(g) and h € O(f), then h € O(g).

13. If f € O(g) and h € O(f), then h € O(g).

14. If f1 € o(g1) and fa € O(g2), then fif2 € 0(g192).

15. f € O(g) if and only if g € Q(f).

16. f € ©O(g) if and only if f € O(g) and g € O(f).

17. f € ©(g) if and only if f € O(g) and f € Q(g).

18. If f(x) = apz™ + -+ a1z + ag (an #0), then f ~ a,a™.

19. f ~ g if and only if (5 —1) € o(1) (provided g(x) = 0 only finitely often).

Examples:

1. 528 410225 4 3z + 1 € O(2%).
2. 2% € O(z?), 2* ¢ O(z?).

3. 23 €o(z?), 2* ¢ o(2®).

4. 23 ¢ o(z?).

5. z? € O(5z?); 2 ¢ o(5z?).

6. sin(z) € O(1).

7. L5 € O('): E7E € O(a')
8 14+2+3+---+neO0(n?).

9. 1+35+3+--++€O0(logn).
10. log(n!) € O(nlogn).

11. 8z° € O(3z).

12. 2 € Q(a?).

13. 2" +o(n?) ~ 2.

14. Sometimes asymptotic equality does not behave like equality: Inn ~ In(2n), but
n /2n and Inn —Inn /An(2n) — Inn.
15. 7(n) ~ = where m(n) is the number of primes less than or equal to n.

16. If p, is the nth prime, then p, ~ nlnn.

17. Stirling’s formula: n! ~ v27n(2)".

RELATIONS

Relationships between two sets (or among more that two sets) occur frequently through-
out mathematics and its applications. Examples of such relationships include integers
and their divisors, real numbers and their logarithms, corporations and their customers,
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cities and airlines that serve them, people and their relatives. These relationships can
be described as subsets of product sets.

Functions are a special type of relation. Equivalence relations can be used to describe
similarity among elements of sets and partial order relations describe the relative size
of elements of sets.

1.441

BINARY RELATIONS AND THEIR PROPERTIES

Definitions:

A binary relation from set A to set B is any subset R of A x B.

An element a € A is related to b € B in the relation R if (a,b) € R, often written
aRb. If (a,b) ¢ R, write alRb.

A binary relation (relation) on a set A is a binary relation from A to A; i.e., a subset
of A x A.

A binary relation R on A can have the following properties (to have the property, the
relation must satisfy the property for all a,b,c € A):

e reflexivity: aRa

e irreflexivity: aRa

e symmetry: if aRb, then bRa

e asymmetry: if aRb, then bRa

e antisymmetry: if aRb and bRa, then a =b
e transitivity: if aRb and bRc, then aRc

e intransitivity: if aRb and bRc, then aRRc

Binary relations R and S from A to B can be combined in the following ways to yield
other relations:
e complement of R: the relation R from A to B where aRb if and only if aRb
(i.e., = (aRD))
e difference: the binary relation R — S from A to B such that a(R — S)b if and
only if aRb and —(aSb)
e intersection: the relation RN S from A to B where a(R N S)b if and only if
aRb and aSb
e inverse (converse): the relation R~! from B to A where bR 'a if and only if
aRb
e symmetric difference: the relation R&® S from A to B where a(R® S)b if and
only if exactly one of the following is true: aRb, aSb
e union: the relation RU S from A to B where a(R U S)b if and only if aRb or
aSh.

The closure of a relation R with respect to a property P is the relation S, if it exists,
that has property P and contains R, such that S is a subset of every relation that has
property P and contains R.

A relation R on A is connected if for all a,b € A with a # b, either aRb or there are
€1,C2,...,c; € A such that aRey, c1Res, ..., cp_1Rcy, ci Rb.
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If R is a relation on A, the connectivity relation associated with R is the relation R’
where aR'D if and only if aRb or there are c1,cs,...,c; € A such that aRey, c1Rea, . . .,
Ck_1RCk, Cka.

If R is a binary relation from A to B and if S is a binary relation from B to C, then
the composition of R and S is the binary relation S o R from A to C' where a(S o R)c
if and only if there is an element b € B such that aRb and bSec.

The nth power (n a nonnegative integer) of a relation R on a set A, is the relation R,
where R® = { (a,a) |a € A} = I4 (see Example 4), R! = R and R" = R""! o R for all
integers n > 1.

A transitive reduction of a relation, if it exists, is a relation with the same transitive
closure as the original relation and with a minimal superset of ordered pairs.

Notation:
1. If a relation R is symmetric, aRb is often written a ~ b, a = b, or a = b.

2. If a relation R is antisymmetric, aRb is often written a < b, a < b, a C b, a C b,
a=b,a<boralb.

Facts:

1. A binary relation R from A to B can be viewed as a function from the Cartesian
product A x B to the boolean domain {TRUE, FALSE} (often written {T', F'}). The
truth value of the pair (a,b) determines whether a is related to b.

2. Under the infix convention for a binary relation, aRb (a is related to b) means

R(a,b) = TRUE; altb (a is not related to b) means R(a,b) = FALSE.

3. A binary relation R from A to B can be represented in any of the following ways:
e aset R C Ax B, where (a,b) € R if and only if aRb (this is the definition of R);

e a directed graph Dy whose vertices are the elements of AU B, with an edge from
vertex a to vertex b if aRb (§8.3.1);

e a matrix (the adjacency matrix for the directed graph Dg): if A ={a1,...,am}
and B = {b1,...,b,}, the matrix for the relation R is the m X n matrix Mg
with entries m;; where m;; = 1 if a;Rb; and m;; = 0 otherwise.

4. Ris areflexive relation on A if and only if { (a,a) |a € A} C R;i.e., Ris a reflexive
relation on A if and only if T4 C R.

5. R is symmetric if and only if R = R~

6. R is an antisymmetric relation on A if and only if RN R™! C {(a,a) |a € A}.

7. R is transitive if and only if Ro R C R.

8. A relation R can be both symmetric and antisymmetric. See the first example in
Table 2.

9. For a relation R that is both symmetric and antisymmetric: R is reflexive if and
only if R is the equality relation on some set; R is irreflexive if and only if R = ().

10. The closure of a relation R with respect to a property P is the intersection of all
relations @ with property P such that R C @, if there is at least one such relation Q.

11. The transitive closure of a relation R is the connectivity relation R’ associated
with R, which is equal to the union Ufil R of all the positive powers of the relation.

12. A transitive reduction of a relation may contain pairs not in the original relation
(Example 8).

(©) 2000 by CRC Press LLC



13. Transitive reductions are not necessarily unique (Example 9).

14. If R is a relation on A and z,y € A with x # y, then z is related to y in the
transitive closure of R if and only if there is a nontrivial directed path from = to y in
the directed graph Dp of the relation.

15. The following table shows how to obtain various closures of a relation and gives

the matrices for the various closures of a relation R with matrix Mg on a set A where
|A| = n.

relation set matrix
reflexive closure | RU{(a,a)|a € A} MgpV I,
symmetric closure RUR™! MpV Mp-1
transitive closure UL, R MgV ME] \VEERRY; MI[;L]

The matrix I,, is the n x n identity matrix, Ml[;] is the ith boolean power of the ma-
trix Mg for the relation R, and V is the join operator (defined by 0 V0 = 0 and
OVi=1v0=1Vv1=1).

16. The following table provides formulas for the number of binary relations with
various properties on a set with n elements.

type of relation number of relations
all relations on*
reflexive gn(n—1)
symmetric gn(n+1)/2
transitive no known simple closed formula (§3.1.7)
antisymmetric on . gn(n—1)/2
asymmetric gn(n—1)/2
irreflexive gn(n—1)
equivalence (§1.4.2) B,, = Bell number = Y {}} where {}}
is a Stirling subset number (§2.4.2)
partial order (§1.4.3) | no known simple closed formula (§3.1.7)

Algorithm:

1. Warshall’s algorithm, also called the Roy-Warshall algorithm (B.Roy and S. War-
shall described the algorithm in 1959 and 1960, respectively), Algorithm 1, is an algo-
rithm of order n3 for finding the transitive closure of a relation on a set with n elements.
(Stephen Warshall, born 1935)

Algorithm 1: Warshall’s algorithm.

input: M = [m;;]nxn = the matrix representing the binary relation R
output: M = the transitive closure of relation R

for k:=1ton
fori:=1ton
for j:=1ton
My = My; V (mlk A\ mkj)
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Examples:

1. Some common relations and whether they have certain properties are given in the
following table:

set relation reflexive symmetric antisymmetric transitive
any nonempty set = yes yes yes yes
any nonempty set #* no yes no no
R < (or >) yes no yes yes
R < (or >) no no yes yes
positive integers is a divisor of yes no yes yes
nonzero integers  is a divisor of yes no no yes
integers congruence mod n yes yes no yes
any set of sets C (or D) yes no yes yes
any set of sets C (or D) no no yes yes

2. If A is any set, the universal relation is the relation R on A x A such that aRb for
all a,b € Ajie, R=AXx A

3. If A is any set, the empty relation is the relation R on A x A where aRb is never
true; i.e., R = 0.

4. If A is any set, the relation R on A where aRb if any only if a = b is the identity
(or diagonal) relation I = I4 = {(a,a) | a € A}, which is also written A or A 4.

5. Every function f: A — B induces a binary relation Ry from A to B under the
rule aRyb if and only if f(a) = b.

6. For A = {2,3,4,6,12}, suppose that aRb means that a is a divisor of b. Then R
can be represented by the set

{(27 2)’ (2’4)7 (27 6)’ (27 12)7 (37 3)’ (376)7 (3’ 12)’ (47 4)7 (4’ 12)’ (676)7 (6’ 12)’ (12’ 12)}'

The relation R can also be represented by the digraph with the following adjacency
matrix

SO OO
OO O = O
SO = O
O = O = =
— = = =

7. The transitive closure of the relation {(1,3),(2,3),(3,2)} on {1,2, 3} is the relation
{(1,2),(1,3),(2,2),(2,3),(3,2), (3,3)}-

8. The transitive closure of the relation R = {(1,2),(2,3),(3,1)} on {1,2,3} is the
universal relation {1,2,3} x {1,2,3}. A transitive reduction of R is the relation given
by {(1,3),(3,2),(2,1)}. This shows that a transitive reduction may contain pairs that
are not in the original relation.

9. If R ={(a,b) | aRb for all a,b € {1,2,3} }, then the relations {(1,2),(2,3),(3,1)}
and {(1,3), (3,2), (2,1)} are both transitive reductions for R. Thus, transitive reductions
are not unique.
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1.4.2 EQUIVALENCE RELATIONS

Equivalence relations are binary relations that describe various types of similarity or
“equality” among elements in a set. The elements that look alike or behave in a similar
way are grouped together in equivalence classes, resulting in a partition of the set.
Any element chosen from an equivalence class essentially “mirrors” the behavior of all
elements in that class.

Definitions:

An equivalence relation on A is a binary relation on A that is reflexive, symmetric,
and transitive.

If R is an equivalence relation on A, the equivalence class of a € A is the set R[a] =
{be€ A|aRb}. When it is clear from context which equivalence relation is intended,
the notation for the induced equivalence class can be abbreviated [a].

The induced partition on a set A under an equivalence relation R is the set of equiv-
alence classes.

Facts:
1. A nonempty relation R is an equivalence relation if and only if Ro R~ = R.

2. The induced partition on a set A actually is a partition of A; i.e., the equivalence
classes are all nonempty, every element of A lies in some equivalence class, and two
classes [a] and [b] are either disjoint or equal.

3. There is a one-to-one correspondence between the set of all possible equivalence
relations on a set A and the set of all possible partitions of A. (Fact 2 shows how to
obtain a partition from an equivalence relation. To obtain an equivalence relation from
a partition of A, define R by the rule aRb if and only if a and b lie in the same element
of the partition.)

4. For any set A, the coarsest partition (with only one set in the partition) of A is
induced by the equivalence relation in which every pair of elements are related. The
finest partition (with each set in the partition having cardinality 1) of A is induced by
the equivalence relation in which no two different elements are related.

5. The set of all partitions of a set A is partially ordered under refinement (§1.2.2 and
§1.4.3). This partial ordering is a lattice (§5.7).

6. To find the smallest equivalence relation containing a given relation, first take the
transitive closure of the relation, then take the reflexive closure of that relation, and
finally take the symmetric closure.

Examples:

1. For any function f: A — B, define the relation aj Ras to mean that f(a1) = f(az).
Then R is an equivalence relation. Each induced equivalence class is the inverse image
f71(b) of some b € B.

2. Write a = b (mod n) (“a is congruent to b modulo n”) when a,b and n > 0 are
integers such that n | b — a (n divides b — a). Congruence mod n is an equivalence
relation on the integers.

3. The equivalence relation of congruence modulo n on the integers Z yields a partition
with n equivalence classes: [0] = {kn | ke Z},[1]={1+kn|ke Z} 2] ={2+Ekn|
keZ}t,....in—1={(n—1)+kn|keZ}
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4. The isomorphism relation on any set of groups is an equivalence relation. (The same
result holds for rings, fields, etc.) (See Chapter 5.)

5. The congruence relation for geometric objects in the plane is an equivalence relation.

6. The similarity relation for geometric objects in the plane is an equivalence relation.

1.4.3

PARTIALLY ORDERED SETS

Partial orderings extend the relationship of < on real numbers and allow a comparison
of the relative “size” of elements in various sets. They are developed in greater detail
in Chapter 11.

Definitions:
A preorder on a set S is a binary relation < on S that has the following properties for
all a,b,c € S:
e reflexive: a < a
e transitive: if a < b and b < ¢, then a < c.
A partial ordering (or partial order) on a set S is a binary relation < on S that

has the following properties for all a,b,c € S:
e reflexive: a < a

e antisymmetric: if a < band b < a, thena=1>

e transitive: if a < b and b < ¢, then a < c.
Notes: The expression ¢ > b means that b < ¢. The symbols < and > are often used
in place of < and >. The expression a < b (or b > a) means that a < b and a # b.
A partially ordered set (or poset) is a set with a partial ordering defined on it.

A directed ordering on a set S is a partial ordering that also satisfies the following
property: if a,b € S, then there is a ¢ € S such that a < cand b < c.

Note: Some authors do not require that antisymmetry hold in the definition of directed
ordering.

Two elements a and b in a poset are comparable if either a < b or b < a. Otherwise,
they are incomparable.

A totally ordered (or linearly ordered) set is a poset in which every pair of elements
are comparable.

A chain is a subset of a poset in which every pair of elements are comparable.

An antichain is a subset of a poset in which no two distinct elements are comparable.
An interval in a poset (S, <) is a subset [a,b] = {x |z € S,a<x <b}.

An element b in a poset is minimal if there exists no element ¢ such that ¢ < b.

An element b in a poset is maximal if there exists no element ¢ such that ¢ > b.

An element b in a poset S is a maximum element (or greatest element) if every
element c satisfies the relation ¢ < b.

An element b in a poset S is a minimum element (or least element) if every element
¢ satisfies the relation ¢ > b.
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A well-ordered set is a poset (S, <) in which every nonempty subset contains a mini-
mum element.

An element b in a poset S is an upper bound for a subset U C S if every element ¢
of U satisfies the relation ¢ < b.

An element b in a poset S is a lower bound for a subset U C S if every element ¢ of U
satisfies the relation ¢ > b.

A least upper bound for a subset U of a poset S is an upper bound b such that if ¢
is any other upper bound for U then ¢ > b.

A greatest lower bound for a subset U of a poset S is a lower bound b such that if ¢
is any other lower bound for U then ¢ < b.

A lattice is a poset in which every pair of elements, z and y, have both a least upper
bound lub(z,y) and a greatest lower bound glb(z,y) (§5.7).

The Cartesian product of two posets (S1, <,) and (S2,<,) is the poset with domain
S1 x Sy and relation <, x <, given by the rule (a1,a2) <, x <, (b1,b2) if and only if
aq Sl b1 and a9 §2 bg.

The element ¢ covers another element b in a poset if b < ¢ and there is no element d
such that b < d < c.

A Hasse diagram (cover diagram) for a poset (S, <) is a directed graph (§11.8)
whose vertices are the elements of S such that there is an arc from b to ¢ if ¢ covers b,
all arcs are directed upward on the page when drawing the diagram, and arrows on the
arcs are omitted.

Facts:
1. Ris a partial order on a set S if and only if R~ is a partial order on S.
2. The only partial order that is also an equivalence relation is the relation of equality.

3. The Cartesian product of two posets, each with at least two elements, is not totally
ordered.

4. In the Hasse diagram for a poset, there is a path from vertex b to vertex c if and
only if b < ¢. (When b = ¢, it is the path of length 0.)

5. Least upper bounds and greatest lower bounds are unique, if they exist.

Examples:

1. The positive integers are partially ordered under the relation of divisibility, in which
b < ¢ means that b divides c. In fact, they form a lattice (§5.7.1), called the divisibility
lattice. The least upper bound of two numbers is their least common multiple, and the
greatest lower bound is their greatest common divisor.

2. The set of all powers of two (or of any other positive integer) forms a chain in the
divisibility lattice.

3. The set of all primes forms an antichain in the divisibility lattice.

4. The set R of real numbers with the usual definition of < is a totally ordered set.

5. The set of all logical propositions on a fixed set of logical variables p,q,r,... is
partially ordered under inverse implication, so that B < A means that A — B is a
tautology.

6. The complex numbers, ordered under magnitude, do not form a poset, because they
do not satisfy the axiom of antisymmetry.
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7. The set of all subsets of any set forms a lattice under the relation of subset inclusion.
The least upper bound of two subsets is their union, and the greatest lower bound is
their intersection. Part (a) in the following figure gives the Hasse diagram for the lattice
of all subsets of {a, b, c}.

8. Part (b) of the following figure shows the Hasse diagram for the lattice of all positive
integer divisors of 12.

9. Part (c) of the following figure shows the Hasse diagram for the set {1,2,3,4,5,6}
under divisibility.

10. Part (d) of the following figure shows the Hasse diagram for the set {1,2,3,4} with
the usual definition of <.

(a,b,c)
12

‘\ / \ 4 6 4
(ab) (a,c) (b,c) 4 6 // l
> X | / | ) |
(a) (b) (c) 2\ /3 \ / T
INZRN /]

(a) (b) (c) (d)

11. Multilevel security policy: The flow of information is often restricted by using se-
curity clearances. Documents are put into security classes, (L, C'), where L is an element
of a totally ordered set of authority levels (such as “unclassified”, “confidential”, “se-
cret”, “top secret”) and C is a subset (called a “compartment”) of a set of subject areas.
The subject areas might consist of topics such as agriculture, Eastern Europe, economy,
crime, and trade. A document on how trade affects the economic structure of Eastern
Europe might be assigned to the compartment {trade, economy, Eastern Europe}. The
set of security classes is made into a lattice by the rule: (Lq,C1) < (L2, C?) if and only
if L1 < Ly and Cy C Cy. Information is allowed to flow from class (Lq,C;) to class
(La, Co) if and only if (L1, C1) < (Lg, Cs). For example, a document with security class
(secret, {trade, economy}) flows to both (top secret, {trade, economy}) and (secret,
{trade, economy, Eastern Europe}), but not vice versa. This set of security classes
forms a lattice (§5.7.1).

1.4.4

n-ARY RELATIONS

Definitions:
An n-ary relation on sets A, Ao, ..., A, is any subset R of A] X Ay X -+ X A,.

The sets A; are called the domains of the relation and the number n is called the
degree of the relation.

A primary key of an n-ary relation R on Ay X Ay X --- X A, is a domain A; such that
each a; € A; is the ith coordinate of at most one n-tuple in R.
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A composite key of an n-ary relation R on A; X Ay X -+ x A, is a product of domains

Ai, X Ay X -+ x A; such that for each m-tuple (ai,, @iy, .- -, a4, ) € Aiy X Ajy X -+ X
A;, , there is at most one n-tuple in R that matches (a;,,a;,,...,a;, ) in coordinates
11,02, im.

The projection function P;
given by the rule

1582, yik ZAl X A2 X e X An — Ai1 XA,L'Q Xoee XAik is

Pil,ig,...,ik (ala ag, ..., an) = (ailvai27 ceey aik)~
That is, P i,,...i, selects the elements in coordinate positions ;,142,...,%; from the
n-tuple (a1,as,...,a,).

The join Ji(R,S) of an m-ary relation R and an n-ary relation S, where k& < m and
k < n, is a relation of degree m + n — k such that

(@1 -y Oy Cly e+ 3 Cy 1y oo b)) € JK(R,S)
if and only if
(ala"wamfk?acla"'ack) € R and (Clw-wck;bh-'-abnfk) €s.

Facts:

1. An n-ary relation on sets Aj, As,..., A, can be regarded as a function R from
A; X Ag X -+ - X Ay, to the Boolean domain {TRUE, FALSE}, where (a1, as,...,a,) € R
if and only if R(aq,aq,...,a,) = TRUE.

2. n-ary relations are essential models in the construction of database systems.

Examples:

1. Let A; be the set of all men and As the set of all women, in a nonpolygamous
society. Let mRw mean that m and w are presently married. Then each of A; and A,
is a primary key.

2. Let A; be the set of all telephone numbers and A the set of all persons. Let nRp
mean that telephone number n belongs to person p. Then A; is a primary key if each
number is assigned to at most one person, and A, is a primary key if each person has
at most one phone number.

3. In a conventional telephone directory, the name and address domains can form a
composite key, unless there are two persons with the same name (no distinguishing
middle initial or suffix such as “Jr.”) at the same address.

4. Let A= B =C = Z, and let R be the relation on A x B x C such that (a,b,¢) € R
if and only if a + b = ¢. The set A x B is a composite key. There is no primary key.

5. Let A = all students at a certain college, B = all student ID numbers being used at
the college, C' = all major programs at the college. Suppose a relation R is defined on
A x B x C by the rule (a,b,c) € R means student a with ID number b has major c. If
each student has exactly one major and if there is a one-to-one correspondence between
students and ID numbers, then A and B are each primary keys.

6. Let A = all employee names at a certain corporation, B = all Social Security
numbers, C' = all departments, D = all job titles, £ = all salary amounts, and F =
all calendar dates. On A x Bx C x D x E x F' x F let R be the relation such that
(a,b,c,d,e, f,g) € R means employee named a with Social Security number b works in
department ¢, has job title d, earns an annual salary e, was hired on date f, and had the
most recent performance review on date g. The projection P; 5 (projection onto A x E)
gives a list of employees and their salaries.
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1.5

PROOF TECHNIQUES

A proof is a derivation of new facts from old ones. A proof makes possible the derivation
of properties of a mathematical model from its definition, or the drawing of scientific
inferences based on data that have been gathered. Axioms and postulates capture
all basic truths used to develop a theory. Constructing proofs is one of the principal
activities of mathematicians.

Furthermore, proofs play an important role in computer science — in such areas
as verification of the correctness of computer programs, verification of communications
protocols, automatic reasoning systems, and logic programming.

1.5.1

RULES OF INFERENCE

Definitions:

A proposition is a declarative sentence that is unambiguously either true or false.

(See §1.1.1.)

A theorem is a proposition derived as the conclusion of a valid proof from axioms and
definitions.

A lemma is a theorem that is an intermediate step in the proof of a more important
theorem.

A corollary is a theorem that is derived as an easy consequence of another theorem.

A statement form is a declarative sentence containing some variables and logical
symbols, such that the sentence becomes a proposition if concrete values are substituted
for all the free variables.

An argument form is a sequence of statement forms.

The final statement form in an argument form is called the conclusion (of the argu-
ment). The conclusion is often preceded by the word “therefore” (symbolized .. ).

The statement forms preceding the conclusion in an argument form are called premises
(of the argument).

If concrete values are substituted for the free variables of an argument form, an argu-
ment of that form is obtained.

An instantiation of an argument is the substitution of concrete values into all free
variables of the premises and conclusion.

A valid argument form is an argument form such that in every instantiation in which
all the premises are true, the conclusion is also true.

A rule of inference is an alternative name for a valid argument form, which is used
when the form is frequently applied.

Facts:

1. Substitution rule: Any variable occurring in an argument may be replaced by an
expression of the same type without affecting the validity of the argument, as long as
the replacement is made everywhere the variable occurs.
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2. The following table gives rules of inference for arguments with compound statements.

argument argument
name form name form
Modus ponens p—q Modus tollens p—q
(method of affirming) D (method of denying) g
g oo
Hypothetical p—q Disjunctive pVyq
syllogism q—r syllogism =p
Lp—T o q
Disjunctive P Dilemma by pVq
addition ~pVgq cases p—r
q—r
T
Constructive pVr Destructive —qV s
dilemma p—q dilemma p—q
r—s r—s
sqVs soopVoor
Conjunctive D Conditional P
addition q proof pAqg—T
L PpAg Lqg—T
Conjunctive pAgq Rule of given contra-
simplification P contradiction diction ¢
—\p — C
)

3. The following table gives rules of inference for arguments with quantifiers.

name argument form

(Vz € D) Q(x)
~ Q(a) (a any particular element of D)

Universal instantiation

Generalizing from the Q(a) (a an arbitrarily chosen element of D)
generic particular -~ (Vz e D)Q(x)
(3z € D) Q(x)

Existential specification - Q(a) (for at least one a € D)

Q(a) (for at least one element a € D)
~(Jz € D)Q(x)

Existential generalization

4. Substituting R(z) — S(z) in place of Q(z) and z in place of z in generalizing from
the generic particular gives the following inferential rule:
Universal modus R(a) — S(a) for any particular but arbitrarily chosen a € D
ponens: . (Vz € D) [R(2) — S(2)].
5. The rule of generalizing from the generic particular determines the outline of most
mathematical proofs.

6. The rule of existential specification is used in deductive reasoning to give names to
quantities that are known to exist but whose exact values are unknown.
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7. A useful strategy for determining whether a statement is true is to first try to prove
it using a variety of approaches and proof methods. If this is unsuccessful, the next
step may be to try to disprove the statement, such as by trying to construct or prove
the existence of a counterexample. If this does not work, the next step is to try to
prove the statement again, and so on. This is one of the many ways in which many
mathematicians attempt to develop new results.

Examples:

1. Suppose that D is the set of all objects in the physical universe, P(z) is “x is a
human being”, Q(z) is “x is mortal”, and a is the Greek philosopher Socrates.

argument form an argument of that form
(Vo € D) [P(z) — Q(z)] ¥ objects z, (x is a human being) — (x is mortal).
(informally: All human beings are mortal.)
P(a) (for particular a € D) Socrates is a human being.
= Q(a) . Socrates is mortal.

2. The argument form shown below is invalid: there is an argument of this form (shown
next to it) that has true premises and a false conclusion.

argument form an argument of that form
(Vz € D) [P(z) — Q(z)] V objects z, (x is a human being) — (x is mortal).
(informally: All human beings are mortal.)
Q(a) (for particular a € D) My cat Bunbury is mortal.
- P(a) - My cat Bunbury is a human being.

In this example, D is the set of all objects in the physical universe, P(z) is “x is a
human being”, Q(x) is “z is mortal”, and a is my cat Bunbury.

3. The distributive law for real numbers, (Va, b, ¢ € R)[ac+ bc = (a+b)c], implies that
2V/2 +3V2 = 2+ 3)\/5 (because 2, 3, and V/2 are particular real numbers).

4. Since 2 is a prime number that is not odd, the rule of existential generalization
implies the truth of the statement “J a prime number n such that n is not odd”.

5. To prove that the square of every even integer is even, by the rule of generalizing
from the generic particular, begin by supposing that n is any particular but arbitrarily
chosen even integer. The job of the proof is to deduce that n? is even.

6. By definition, every even integer equals twice some integer. So if at some stage
of a reasoning process there is a particular even integer n, it follows from the rule of
existential specification that n = 2k for some integer k (even though the numerical
values of n and k may be unknown).

1.5.2

PROOFS

Definitions:

A (logical) proof of a statement is a finite sequence of statements (called the steps of
the proof) leading from a set of premises to the given statement. Each step of the proof
must either be a premise or follow from some previous steps by a valid rule of inference.

In a mathematical proof, the set of premises may contain any item of previously
proved or agreed upon mathematical knowledge (definitions, axioms, theorems, etc.) as
well as the specific hypotheses of the statement to be proved.

A direct proof of a statement of the form p — ¢ is a proof that assumes p to be true
and then shows that ¢ is true.
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An indirect proof of a statement of the form p — ¢ is a proof that assumes that —q
is true and then shows that —p is true. That is, a proof of this form is a direct proof of
the contrapositive =q¢ — —p.

A proof by contradiction assumes the negation of the statement to be proved and
shows that this leads to a contradiction.

Facts:

1. A useful strategy to determine if a statement of the form (Vz € D) [P(z) — Q(x)]
is true or false is to imagine an element x € D that satisfies P(x) and, using this
assumption (and other facts), investigate whether « must also satisfy Q(x). If the answer
for all such x is “yes”, the given statement is true and the result of the investigation is
a direct proof. If it is possible to find an « € D for which Q(z) is false, the statement
is false and this value of = is a counterexample. If the investigation shows that is not
possible to find an & € D for which Q(x) is false, the given statement is true and the
result of the investigation is a proof by contradiction.

2. There are many types of techniques that can be used to prove theorems. Table 2
describes how to approach proofs of various types of statements.

Examples:

1. In the following direct proof (see Table 1, item 2), the domain D is the set of all
pairs of integers, = is (m,n), and the predicate P(m,n) is “if m and n are even, then
m+n is even”.

Theorem: For all integers m and n, if m and n are even, then m + n is even.
Proof: Suppose m and n are arbitrarily chosen even integers. [m + n must be
shown to be even.]

1.~ m =2r, n =2s for some integers r and s  (by definition of even)

2. . m+n=2r+2s (by substitution)

3. . m+n=2(r+s) (by factoring out the 2)

4. r+ s is an integer (it is a sum of two integers)

5. .. m+niseven (by definition of even)

The following partial expansion of the proof shows how some of the steps are justified
by rules of inference combined with previous mathematical knowledge:
1. Every even integer equals twice some integer:
[Veven z € Z (xz =2y for some y € Z)]
m is a particular even integer.
- m = 2r for some integer r.

3. Every integer is a real number: [Vn € Z (n € R)]
(V integer n, n is a real number.)
r and s are particular integers.
- r and s are real numbers.

The distributive law holds for real numbers: [Va,b,c € R (ab+ ac = a(b+ ¢))]
2, r, and s are particular real numbers.
2 2r4+2s=2(r+s).
4. Any sum of two integers is an integer: [Vm,n € Z (m+n € Z)]
r and s are particular integers.
- T+ s is an integer.

(©) 2000 by CRC Press LLC



Table1 Techniques of proof.

statement

technique of proof

p—q

(Vx € D)P(x)

(3z € D)P(x)

(VzeD)(JyeE)P(x,y)

p—q

p—q

p—yq

(3z € D)P(x)
(Vx € D)P(x)
p—(qVvr)

pb1,...,pr are
equivalent

Direct proof: Assume that p is true. Use rules of inference
and previously accepted axioms, definitions, theorems, and
facts to deduce that ¢ is true.

Direct proof: Suppose that x is an arbitrary element of
D. Use rules of inference and previously accepted axioms,
definitions, and facts to deduce that P(x) is true.

Constructive direct proof: Use rules of inference and pre-
viously accepted axioms, definitions, and facts to actually
find an « € D for which P(x) is true.

Nonconstructive direct proof: Deduce the existence of x
from other mathematical facts without a description of how
to compute it.

Constructive direct proof: Assume that x is an arbitrary
element of D. Use rules of inference and previously accepted
axioms, definitions, and facts to show the existence of a
y € E for which P(x,y) is true, in such a way that y can
be computed as a function of x.

Nonconstructive direct proof: Assume z is an arbitrary
element of D. Deduce the existence of y from other math-
ematical facts without a description of how to compute it.

Proof by cases: Suppose p = p1V---Vpg. Prove that each
conditional p;—q is true. The basis for division into cases
is the logical equivalence [(p1V - - Vpr)—q] = [(p1—4q) A
- A (pr—q)]-

Indirect proof or Proof by contraposition: Assume that
—q is true (that is, assume that ¢ is false). Use rules of
inference and previously accepted axioms, definitions, and
facts to show that —p is true (that is, p is false).

Proof by contradiction: Assume that p — ¢ is false (that is,
assume that p is true and ¢ is false). Use rules of inference
and previously accepted axioms, definitions, and facts to
show that a contradiction results. This means that p — ¢
cannot be false, and hence must be true.

Proof by contradiction: Assume that there is no z € D for
which P(x) is true. Show that a contradiction results.
Proof by contradiction: Assume that there is some x € D
for which P(z) is false. Show that a contradiction results.
Proof of a disjunction: Prove that one of its logical equiv-
alences (p A —q) — r or (p A —r) — ¢ is true.
Proof by cycle of implications: Prove p; — pa, ps — p3,
.ey Pk—1 — Pk, Pk — p1. This is equivalent to proving
(pr = p2) A(p2 = p3) A= A (Pt — pr) A (pr — p1)-
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5. Any integer that equals twice some integer is even: [Vz € Z (if x = 2y for
some y € Z, then z is even.)]
2(r 4+ s) equals twice the integer r + s.
= 2(r 4 s) is even.

2. A constructive existence proof:
Theorem: Given any integer n, there is an integer m with m > n.

Proof: Suppose that n is an integer. Let m = n + 1. Then m is an integer and
m > n.

The proof is constructive because it established the existence of the desired integer m
by showing that its value can be computed by adding 1 to the value of n.

3. A Nonconstructive existence proof:

Theorem: Given a nonnegative integer n, there is always a prime number p
that is greater than n.

Proof: Suppose that n is a nonnegative integer. Consider n! + 1. Then n! + 1
is divisible by some prime number p because every integer greater than 1 is
divisible by a prime number, and n! +1 > 1. Also, p > n because when n!+ 1
is divided by any positive integer less than or equal to n, the remainder is 1
(since any such number is a factor of n!).

The proof is a nonconstructive existence proof because it demonstrated the existence of
the number p, but it offered no computational rule for finding it.

4. A proof by cases:
Theorem: For all odd integers n, the number n? — 1 is divisible by 8.

Proof: Suppose n is an odd integer. When n is divided by 4, the remainder is
0, 1, 2, or 3. Hence n has one of the four forms 4k, 4k + 1, 4k + 2, or 4k + 3
for some integer k. But n is odd. So n # 4k and n # 4k + 2. Thus either
n =4k + 1 or n = 4k + 3 for some integer k.

Case 1 [n = 4k + 1 for some integer k]: In this case n® — 1= (4k+1)2—1=
16k% + 8k +1 — 1 = 16k? + 8k = 8(2k? + k), which is divisible by 8 because
2k? + k is an integer.

Case 2 [n = 4k + 3 for some integer k]: In this case n? —1 = (4k+3)? —1=
16k% 4 24k +9 — 1 = 16k? + 24k + 8 = 8(2k* + 3k + 1), which is divisible by 8
because 2k? + 3k + 1 is an integer.

So in either case n?—1 is divisible by 8, and thus the given statement is proved.

5. A proof by contraposition:
Theorem: For all integers n, if n? is even, then n is even.

Proof: Suppose that n is an integer that is not even. Then when n is divided
by 2 the remainder is 1, or, equivalently, n = 2k + 1 for some integer k. By
substitution, n? = (2k + 1)? = 4k? + 4k + 1 = 2(2k? + 2k) + 1. It follows that
when n? is divided by 2 the remainder is 1 (because 2k* + 2k is an integer).
Thus, n? is not even.
In this proof by contraposition, a direct proof of the contrapositive “if n is not even,
then n? is not even” was given.
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6. A proof by contradiction:
Theorem: /2 is irrational.

Proof: Suppose not; that is, suppose that /2 were a rational number. By
definition of rational, there would exist integers a and b such that /2 = 7, or,
equivalently, 2b> = a2. Now the prime factorization of the left-hand side of this
equation contains an odd number of factors and that of the right-hand side
contains an even number of factors (because every prime factor in an integer
occurs twice in the prime factorization of the square of that integer). But this
is impossible because the prime factorization of every integer is unique. This
yields a contradiction, which shows that the original supposition was false.
Hence /2 is irrational.

7. A proof by cycle of implications:
Theorem: For all positive integers a and b, the following statements are equiv-
alent:
(1) a is a divisor of b;
(2) the greatest common divisor of a and b is a;
3) [2]=1¢
Proof : Let a and b be positive integers.

(1) — (2): Suppose that a is a divisor of b. Since a is also a divisor of a, a is a
common divisor of a and b. But no integer greater than a is a divisor of a. So
the greatest common divisor of a and b is a.

(2) — (3): Suppose that the greatest common divisor of a and b is a. Then

a is a divisor of both a and b, so b = ak for some integer k. Then g =k, an

integer, and so by definition of floor, LEJ =k=2,

a

(3) — (1): Suppose that [2| = 2. Let k = |2|. Then k = |2| = &, and k

is an integer by definition of floor. Multiplying the outer parts of the equality
by a gives b = ak, so by definition of divisibility, a is a divisor of b.

8. A proof of a disjunction:

Theorem: For all integers a and p, if p is prime, then either p is a divisor of a,
or a and p have no common factor greater than 1.

Proof: Suppose a and p are integers and p is prime, but p is not a divisor of a.
Since p is prime, its only positive divisors are 1 and p. So, since p is not a
divisor of a, the only possible positive common divisor of a and p is 1. Hence a
and p have no common divisor greater than 1.

1.5.3 DISPROOFS

Definitions:
A disproof of a statement is a proof that the statement is false.

A counterexample to a statement of the form (Vx € D)P(z) is an element b € D for
which P(b) is false.
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Facts:

1. The method of disproof by counterexample is based on the following fact:
=[(Vx € D) P(z)] & (3z € D) [-~P(z))].

2. The following table describes how to give various types of disproofs:

statement technique of disproof

(VzeD)P(x) Constructive disproof by counterexample: Exhibit a spe-
cific @ € D for which P(a) is false.

(VzeD)P(x) Existence disproof: Prove the existence of some a € D for
which P(a) is false.

(3zeD)P(x) Prove that there is no a € D for which P(a) is true.

(VzeD) [P(z) — Q(z)] Find an element a € D with P(a) true and Q(a) false.

(VzeD)(3yeE) P(z,y) Find an element a € D with P(a,y) false for every y € E.

(3zeD)(VYyeE) P(x,y) Prove that there is no a € D for which P(a,y) is true for
every possible a € E.

Examples:

1. The statement (Va,b € R) [a? < b? — a < b] is disproved by the following coun-
terexample: a = 2, b = —3. Then a? < b? (because 4 < 9) but a £ b (because 2 £ —3).

2. The statement “every prime number is odd” is disproved by the following coun-
terexample: n = 2, since n is prime and not odd.

154

MATHEMATICAL INDUCTION

Definitions:
The principle of mathematical induction (weak form) is the following rule of
inference for proving that all the items in a list zg, 21, 2, . . . have some property P(x):
P(xp) is true basis premise
(VE > 0) [if P(xy) is true, then P(xy41) is true] induction premise
o (Yn > 0) [P(z,) is true]. conclusion

The antecedent P(xy) in the induction premise “if P(xy) is true, then P(z41) is true”
is called the induction hypothesis.
The basis step of a proof by mathematical induction is a proof of the basis premise.
The induction step of a proof by mathematical induction is a proof of the induction
premise.
The principle of mathematical induction (strong form) is the following rule of
inference for proving that all the items in a list zg, 21, 2, . . . have some property P(x):

P(x) is true basis premise

(VE > 0) [if P(xo), P(x1),...,P(zy) are all (strong) induction premise

true, then P(xy41) is true]
= (Yn > 0) [P(z,) is true]. conclusion
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The well-ordering principle for the integers is the following axiom: If § is a
nonempty set of integers such that every element of S is greater than some fixed integer,
then S contains a least element.

Facts:

1. Typically, the principle of mathematical induction is used to prove that one of the
following sequences of statements is true: P(0), P(1), P(2),... or P(1), P(2), P(3),....
In these cases the principle of mathematical induction has the form: if P(0) is true and
P(n) — P(n+1) is true for all n > 0, then P(n) is true for all n > 0; or if P(1) is true
and P(n) — P(n+ 1) is true for all n > 1, then P(n) is true for all n > 1

2. If the truth of P(n+1) can be obtained from the previous statement P(n), the weak
form of the principle of mathematical induction can be used. If the truth of P(n + 1)
requires the use of one or more statements P(k) for k£ < n, then the strong form should
be used.

3. Mathematical induction can also be used to prove statements that can be phrased
in the form “For all integers n > k, P(n) is true”.

4. Mathematical induction can often be used to prove summation formulas and in-
equalities.

5. There are alternative forms of mathematical induction, such as the following:
o if P(0) and P(1) are true, and if P(n) — P(n+2) is true for all n > 0, then P(n)
is true for all n > 0;
e if P(0) and P(1) are true, and if [P(n) A P(n + 1)] — P(n + 2) is true for all
n > 0, then P(n) is true for all n > 0.

6. The weak form of the principle of mathematical induction, the strong form of the
principle of mathematical induction, and the well-ordering principle for the integers are
all regarded as axioms for the integers. This is because they cannot be derived from the
usual simpler axioms used in the definition of the integers. (See the Peano definition of
the natural numbers in §1.2.3.)

7. The weak form of the principle of mathematical induction, the strong form of the
principle of mathematical induction, and the well-ordering principle for the integers are
all equivalent. In other words, each of them can be proved from each of the others.

8. The earliest recorded use of mathematical induction occurs in 1575 in the book
Arithmeticorum Libri Duo by Francesco Maurolico, who used the principle to prove

that the sum of the first n odd positive integers is n?.

Examples:

1. A proof using the weak form of mathematical induction: (In this proof, zg,z1,za, ...
is the sequence 1,2,3,..., and the property P(z,) is the equation 1 + 2+ --- 4+ n =

n(n2+1) )

Theorem: For all integers n > 1, 1+2+---4+n= w
Proof:
Basis Step: For n = 1 the left-hand side of the formula is 1, and the
right-hand side is w7 which is also equal to 1. Hence P(1) is true.
Induction Step: Let k be an integer, k > 1, and suppose that P(k) is true.

That is, suppose that 1+2+---+k = @ (the induction hypothesis) is true.
It must be shown that P(k+1) is true: 1+2+4---+ (k+1) = w,
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or, equivalently, that 1+ 2+ -+ (k+1) = W But, by substitution

from the induction hypothesis,
1424+ (k+1)=Q+2++k)+(k+1)
k(k
=MD 4 (K +1)
_ (k1) (k+2)
R R

Thus, 1+ 2+ -+ (k 4 1) = EFLEE) jg e,

2. A proof using the weak form of mathematical induction:
Theorem: For all integers n > 4, 2™ < n!.

Proof:

Basis Step: For n = 4, 2% < 4! is true since 16 < 24.

Induction Step: Let k be an integer, k > 4, and suppose that 2¥ < k! is
true. The following shows that 2871 < (k + 1)! must also be true:

2L =2.2F < 2.kl < (k+ 1)k! = (k+ 1)L

3. A proof using the weak form of mathematical induction:

Theorem: For all integers n > 8, n cents in postage can be made using only
3-cent and 5-cent stamps.

Proof:  Let P(n) be the predicate “n cents postage can be made using only
3-cent and 5-cent stamps”.

Basis Step: P(8) is true since 8 cents in postage can be made using one
3-cent stamp and one 5-cent stamp.

Induction Step: Let k be an integer, k > 8, and suppose that P(k) is true.
The following shows that P(k + 1) must also be true. If the pile of stamps
for k cents postage has in it any 5-cent stamps, then remove one 5-cent stamp
and replace it with two 3-cent stamps. If the pile for k cents postage has only
3-cent stamps, there must be at least three 3-cent stamps in the pile (since
k # 3 or 6). Remove three 3-cent stamps and replace them with two 5-cent
stamps. In either case, a pile of stamps for k + 1 cents postage results.

4. A proof using an alternative form of mathematical induction (Fact 5):

Theorem: For all integers n > 0, F,, < 2". (F}, are Fibonacci numbers. See
§3.1.2.)

Proof. Let P(n) be the predicate “F,, < 2™”.

Basis Step:  P(0) and P(1) are both true since Fy = 0 < 1 = 2% and
Fr=1<2=2.

Induction Step: Let k be an integer, k& > 0, and suppose that P(k) and

P(k+1) are true. Then P(k+2) is also true: Fj,o = Fj+ Fjq < 284281 <
2k+1 + 2k+1 =9. 2k+1 — 2k+2-

5. A proof using the strong form of mathematical induction:

Theorem: Every integer n > 2 is divisible by some prime number.

Proof: Let P(n) be the sentence “n is divisible by some prime number”.
Basis Step: Since 2 is divisible by 2 and 2 is a prime number, P(2) is true.
Induction Step: Let k be an integer with k > 2, and suppose that P(i) (the

induction hypothesis) is true for all integers ¢ with 2 < ¢ < k. That is, suppose

for all integers ¢ with 2 < i < k that ¢ is divisible by a prime number. (It must
now be shown that k is divisible by a prime number.)
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Now either the number & is prime or k is not prime. If k is prime, then k
is divisible by a prime number, namely itself. If k is not prime, then k =a -0
where a and b are integers, with 2 < a < k and 2 < b < k. By the induction
hypothesis, the number a is divisible by a prime number p, and so k = ab is
also divisible by that prime p. Hence, regardless of whether k is prime or not,
k is divisible by a prime number.

6. A proof using the well-ordering principle:
Theorem: Every integer n > 2 is divisible by some prime number.

Proof.: Suppose, to the contrary, that there exists an integer n > 2 that is
divisible by no prime number. Thus, the set S of all integers > 2 that are
divisible by no prime number is nonempty. Of course, no number in S is
prime, since every number is divisible by itself.

By the well-ordering principle for the integers, the set S contains a least
element k. Since k is not prime, there must exist integers a and b with 2 < a <
k and 2 < b < k, such that £ = a - b. Moreover, since k is the least element of
the set S and since both a and b are smaller than k, it follows that neither a nor
b is in S. Hence, the number a (in particular) must be divisible by some prime
number p. But then, since a is a factor of k, the number k is also divisible by
p, which contradicts the fact that k is in S. This contradiction shows that the
original supposition is false, or, in other words, that the theorem is true.

7. A proof using the well-ordering principle:
Theorem: Every decreasing sequence of nonnegative integers is finite.

Proof.: Suppose ai,as,... is a decreasing sequence of nonnegative integers:
ay > ag > ---. By the well-ordering principle, the set {aj,as,...} contains a
least element, a,. This number must be the last in the sequence (and hence
the sequence is finite). If a, is not the last term, then a,41 < a,, which
contradicts the fact that a,, is the smallest element.

1.5.5 DIAGONALIZATION ARGUMENTS

Definition:
The diagonal of an infinite list of sequences s1, so, S3, . .. is the infinite sequence whose

jth element is the jth entry of sequence s;.

A diagonalization proof is any proof that involves the diagonal of a list of sequences,
or something analogous to this.

Facts:
1. A diagonalization argument can be used to prove the existence of nonrecursive func-
tions.

2. A diagonalization argument can be used to prove that no computer algorithm can
ever be developed to determine whether an arbitrary computer program given as input
with a given set of data will terminate (the Turing Halting Problem).

3. A diagonalization argument can be used to prove that every mathematical theory
(under certain reasonable hypotheses) will contain statements whose truth or falsity is
impossible to determine within the theory (Gédel’s Incompleteness Theorem).

(©) 2000 by CRC Press LLC



1.6

Example:

1. A diagonalization proof:

Theorem: The set of real numbers between 0 and 1 is uncountable. (Georg
Cantor, 1845-1918)

Proof: Suppose, to the contrary, that the set of real numbers between 0 and 1
is countable. The decimal representations of these numbers can be written in
a list as follows:

0.(111(1120,13 BN ATRERR

0.&21(122@23 ...Aaon ...

0.&31&320,33 ...Aa3p - ..

0.a4p1012a03 ... Cpn - - -

From this list, construct a new decimal number 0.b1b2bs3 . .. b, ... by specifying
that

For each integer ¢ > 1, 0.b1bobs ... b, ... differs from the ith number in the
list in the ¢th decimal place, and hence 0.b1b3bs...b, ... is not in the list.
Consequently, no such listing of all real numbers between 0 and 1 is possible,
and hence, the set of real numbers between 0 and 1 is uncountable.

AXIOMATIC PROGRAM VERIFICATION

Axiomatic program verification is used to prove that a sequence of programming instruc-
tions achieves its specified objective. Semantic axioms for the programming language
constructs are used in a formal logic argument as rules of inference. Comments called
assertions, within the sequence of instructions, provide the main details of the argument.
The presently high expense of creating verified software can be justified for code that
is frequently reused, where the financial benefit is otherwise adequately large, or where
human life is concerned, for instance, in airline traffic control. This section presents a
representative sample of axioms for typical programming language constructs.

1.6.1

ASSERTIONS AND SEMANTIC AXIOMS

The correctness of a program can be argued formally based on a set of semantic axioms
that define the behavior of individual programming language constructs [F167], [Ho69],
[Ap81]. (Some alternative proofs of correctness use denotational semantics [St77], [Sc86]
or operational semantics [We72].) In addition, it is possible to synthesize code, using
techniques that permit the axioms to guide the selection of appropriate instructions
[Di76], [Gr81]. Code specifications and intermediate conditions are expressed in the
form of program assertions.

(©) 2000 by CRC Press LLC



Definitions:

An assertion is a program comment containing a logical statement that constrains the
values of the computational variables. These constraints are expected to hold when
execution flow reaches the location of the assertion.

A semantic axiom for a type of programming instruction is a rule of inference that
prescribes the change of value of the variables of computation caused by the execution
of that type of instruction.

The assertion false represents an inconsistent set of logical conditions. A computer
program cannot meet such a specification.

Given two constraints A and B on computational variables, a statement that B follows
from A purely for reasons of logic and/or mathematics is called a logical implication.
The postcondition for an instruction or program fragment is the assertion that imme-
diately follows it in the program.

The precondition for an instruction or program fragment is the assertion that imme-
diately precedes it in the program.

The assertion true represents the empty set of logical conditions.
Notation:

1. To say that whenever the precondition {Apre} holds, the execution of a program
fragment called “Code” will cause the postcondition {Apost} to hold, the following
notation styles can be used:

e Horizontal notation: {Apre} Code {Apost}

o Vertical notation: {Apre}
Code
{Apost}.

e Flowgraph notation:
\I/. .. Apre
Code

J/...ADOSt

2. Curly braces { ...} enclose assertions in generic program code. They do not denote
a set.

3. Semantic axioms have a finite list of premises and a conclusion. They are represented
in the following format:

{Premise 1}

{Premise n}

{Conclusion}

4. The circumstance that A logically implies B is denoted A = B.
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1.6.2 NOP, ASSIGNMENT, AND SEQUENCING AXIOMS

Formal axioms of pure mathematical consequence (no operation, from a computational
perspective) and of straight-line sequential flow are used as auxiliaries to verify correct-
ness, even of sequences of simple assignment statements.

Definitions:
A NOP (“no-op”) is a (possibly empty) program fragment whose execution does not
alter the state of any computational variables or the sequence of flow.

The Axiom of NOP states:
{Apre} = {Apost} Premise 1

{Apre} NOP {Apost} Conclusion
Note: The Axiom of NOP is frequently applied to empty program fragments in order
to facilitate a clear logical argument.
An assignment instruction X := E; means that the variable X is to be assigned the

value of the expression F.

In a logical assertion A(X) with possible instances of the program variable X, the
result of replacing each instance of X in A by the program expression E is denoted

AX «— E).
The Axiom of Assignment states:

{true} No premises

{A(X — E)}X := E; {A(X)} Conclusion
The following Axiom of Sequence provides that two consecutive instructions in the
program code are executed one immediately after the other:

{Apre} Codel {Amid} Premise 1

{Amid} Code2 {Apost} Premise 2

{Apre} Codel, Code2 {Apost} Conclusion

(Commas are used as separators in program code.)

Examples:

1. Example of NOP: Suppose that X is a numeric program variable.
{X =3} = {X > 0} mathematical fact

{X =3} NOP {X > 0} by Axiom of NOP

2. Suppose that X and Y are integer-type program variables. The Axiom of Assign-
ment alone implies correctness of all the following examples:

(a) {X =4} X:=Xx2 {X=8}

A(X)is{X =8}; Fis X %2; A(X <« E) is {X %2 = 8}, which is equivalent to {X = 4}.

(b) {true} X:=2; {X =2}
A
() {(FH9<X)N(X<0)} YV:=X; {(-9<Y)A(Y <0)}

(
(X)is {X =2}; Fis 2; A(X «— E) is {2 = 2}, which is equivalent to {true}.
)
(

AY)is {(—9<Y)A(Y <0)}; Eis X; A(Y «— E) is {(=9 < X) A (X < 0)}.
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(d) {y=1} X:=0; {Y=1}

AX)is{Y =1}; Eis 0; A(X « E) is {Y =1}.

(e) {false} X:=8; {X =2}

A(X) is {X =2}; Fis 8; A(X « E) is {8 = 2}, which is equivalent to {false}.

3. Examples of sequence:
(a) {X =1} X:=X+1; {X >0}

L{X=1}={X > -1} mathematics
ii. {X =1} NOP {X > -1} Axiom of NOP
i, {X >-1} X:=X+1; {X >0} Axiom of Assignment
iv. {X =1} NOP, X :=X +1; {X >0} Axiom of Sequence on ii, iii
vi{X=1}X:=X+1; {X >0} definition of NOP.
D) {Y=aANX=b}Z=Y;,YV=X;, X:=Z;{X=a NY =V}

i {Y=aANX=02Z=Y;{Z=a N X =0} Axiom of Assignment
i.{Z=a N X=bY=X;{Z=a NY =b} Axiom of Assignment
iil.{Y=a AN X=0}2Z2:=Y,Y:=X, {Z=a ANY =b} Axiom of Sequence on i, ii
v{Z=aANY=0X=Z;{X=a NY=0b} Axiom of Assignment
v.{Y=aANX=b}Z2=Y,Y =X, X:=27 Axiom of Sequence

{X=a NY =0b} on iii, iv.

1.6.3

AXIOMS FOR CONDITIONAL EXECUTION CONSTRUCTS

Definitions:

A conditional assignment construct is any type of program instruction containing
a logical condition and an imperative clause such that the imperative clause is to be
executed if and only if the logical condition is true. Some types of conditional assignment
contain more than one logical condition and more than one imperative clause.

An if-then instruction if IfCond then ThenCode has one logical condition (which
follows the keyword if) and one imperative clause (which follows the keyword then).
The Axiom of If-then states:

{Apre A IfCond} ThenCode {Apost} Premise 1
{Apre A -IfCond} = {Apost} Premise 2

{Apre} if IfCond then ThenCode {Apost} Conclusion

ThenCode

An if-then-else instruction if IfCond then ThenCode else ElseCode has one
logical condition, which follows the keyword if, and two imperative clauses, one after
the keyword then, and the other after the keyword else.
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The Axiom of If-then-else states:
{Apre A IfCond} ThenCode {Apost} Premise 1
{Apre A —IfCond} ElseCode {Apost} Premise 2

{Apre} if IfCond then ThenCode else ElseCode {Apost} Conclusion

ThenCode

ElseCode

... Apost
Examples:
1. If-then:
{true} f X =3then Y :=X;{X=3—-Y =3}
L{X=3Y:=X;{X=3AY=3} Axiom of Assignment

ii.{X=3AY=3} NOP{(X=3)— (Y =3)} Axiom of NOP
(Step ii uses a logic fact: p Ag=p — q)

. {X=31Y =X;{X=3-Y =3} Axiom of Sequence on i, ii
(Step iii establishes Premise 1 for Ax. of If-then)
iv. {(~(X=3)}={X=3—-Y =3} Logic fact

(Step iv establishes Premise 2 for Ax. of If-then)
v. {true} f X =3 then Y :=X; {X =3—->Y =3} Axiom of If-then on iii, iv.
2. If-then-else:
{X >0}
if (X >Y) then M := X;else M =Y,
{X>OANX>Y->M=X)ANX<Y->M=Y)}
L{X>0ANX>YIM=X; {X>0AN (X>Y ->M=X)A(X<Y—->M=Y)}
by Axiom of Assignment and Axiom of NOP (establishes Premise 1)
HAX>0A (X>Y)} M =Y; {X>0N(X>Y >M=X)A (X<Y > M=Y)}
by Axiom of Assignment and Axiom of NOP (establishes Premise 2)
iii. Conclusion now follows from Axiom of If-then-else.

1.6.4 AXIOMS FOR LOOP CONSTRUCTS

Definitions:

A while-loop instruction while WhileCond do LoopBody has one logical condi-
tion called the while-condition, which follows the keyword while, and a sequence of
instructions called the loop-body. At the outset of execution, the while condition is
tested for its truth value. If it is true, then the loop body is executed. This two-step
process of test and execute continues until the while condition becomes false, after which
the flow of execution passes to whatever program instruction follows the while-loop.
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A loop is weakly correct if whenever the precondition is satisfied at the outset of
execution and the loop is executed to termination, the resulting computational state
satisfies the postcondition.

A loop is strongly correct if it is weakly correct and if whenever the precondition is
satisfied at the outset of execution, the computation terminates.

The Axiom of While defines weak correctness of a while-loop (i.e., the axiom ig-
nores the possibility of an infinite loop) in terms of a logical condition called the loop
invariant denoted “Looplnv” satisfying the following condition:

{Apre} = {Looplnv} “Initialization” Premise
{LoopInv A WhileCond} LoopBody {LoopInv} “Preservation” Premise
{LoopInv A =“WhileCond} = {Apost} “Finalization” Premise

{Apre} while {LoopInv} WhileCond do LoopBody {Apost} Conclusion

... Apre

—0

...Looplnv

whileCond folse

true

— LoopBady

Apost ...

Example:

1. Suppose that J, N, and P are integer-type program variables.
{Apre: J=0 AN P=1 A N >0}

while {LoopInv: P =27 A J< N} (J < N)do

P:=Px2;
J=J+1
endwhile

{Apost : P =2V}
i. {Apre:J=0 A P=1 A N >0} = {Looplnv: P=27 A J<N}
Initialization Premise trivially true by mathematics
ii. {LoopInv A WhileCond : (P =27 A J<N) A (J<N)}
P :=Px2;
J:=J+1;
{Looplnv: P =27 A J< N}
Preservation Premise proved using by Axiom of Assignment twice
and Axiom of Sequence
iii. {LoopInv A =WhileCond : (P =27 A J<N)A—(J<N)} = {Apost : P =2V}
Finalization Premise provable by mathematics
iv. Conclusion now follows from Axiom of While.

Fact:

1. Proof of termination of a loop is usually achieved by mathematical induction.
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1.6.5 AXIOMS FOR SUBPROGRAM CONSTRUCTS

1.7

The parameterless procedure is the simplest subprogram construct. Procedures with
parameters and functional subprograms have somewhat more complicated semantic ax-
ioms.

Definitions:

A procedure is a sequence of instructions that lies outside the main sequence of in-
structions in a program. It consists of a procedure name, followed by a procedure
body.

A call instruction call ProcName is executed by transferring control to the first
executable instruction of the procedure ProcName.

A return instruction causes a procedure to transfer control to the executable instruction
immediately following the most recently executed call to that procedure. An implicit
return is executed after the last instruction in the procedure body is executed. It is
good programming style to put a return there.

In the following Axiom of Procedure (parameterless), Apre and Apost are the
precondition and postcondition of the instruction call ProcName; ProcPre and ProcPost
are the precondition and postcondition of the procedure whose name is ProcName.

{Apre} = {ProcPre} “Call” Premise
{ProcPre} ProcBody {ProcPost} “Body” Premise
{ProcPost} = {Apost} “Return” Premise
{Apre} call ProcName; {Apost} Conclusion
I ... Apre
... ProcPre
ProcBody

...ProcPost

f]i ... Apost

LOGIC-BASED COMPUTER PROGRAMMING PARADIGMS

Mathematical logic is the basis for several different computer software paradigms. These
include logic programming, fuzzy reasoning, production systems, artificial intelligence,
and expert systems.

1.71

LOGIC PROGRAMMING

A computer program in the imperative paradigm (familiar in languages like C, BASIC,
FORTRAN, and ALGOL) is a list of instructions that describes a precise sequence
of actions that a computer should perform. To initiate a computation, one supplies
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the iterative program plus specific input data to the computer. Logic programming
provides an alternative paradigm in which a program is a list of “clauses”, written in
predicate logic, that describe an allowed range of behavior for the computer. To initiate
a computation, the computer is supplied with the logic program plus another clause
called a “goal”. The aim of the computation is to establish that the goal is a logical
consequence of the clauses constituting the logic program. The computer simplifies the
goal by executing the program repeatedly until the goal becomes empty, or until it
cannot be further simplified.

Definitions:
A term in a domain S is either a fixed element of S or an S-valued variable.
An n-ary predicate on a set S is a function P: S™ — {T, F'}.

An atomic formula (or atom) is an expression of the form P(ty,...,t,), where n > 0,
P is an n-ary predicate, and t¢1,...,t, are terms.

A formula is a logical expression constructed from atoms with conjunctions, disjunc-
tions, and negations, possibly with some logical quantifiers.

A substitution for a formula is a finite set of the form {vi/t1,...,v,/t,}, where each
v; is a distinct variable, and each t; is a term distinct from v;.

The instance of a formula v using the substitution 6 = {vy /t1, ..., v,/t,} is the formula
obtained from ¥ by simultaneously replacing each occurrence of the variable v; in ¥ by
the term ¢;. The resulting formula is denoted by ¥6.

A closed formula in logic programming is a program without any free variables.
A ground formula is a formula without any variables at all.

A clause is a formula of the form Vzy ...Vag(A; V-V A, «— By A+ A By,) with no
free variables, where s,n,m > 0, and A’s and B’s are atoms. In logic programming,
such a clause may be denoted by Ay,..., A, « Bi,..., By,.

The head of a clause Ay,..., A, < B1,...,B,, is the sequence A1,..., A,.
The body of a clause Ay,..., A, < Bi,...,B,, is the sequence By,..., B,,.

A definite clause is a clause of the form A «— By,...,B,, or «— Bi,...,B,,, which
contains at most one atom in its head.

An indefinite clause is a clause that is not definite.
A logic program is a finite sequence of definite clauses.

A goal is a definite clause < By, ..., B, whose head is empty. (Prescribing a goal for
a logic program P tells the computer to derive an instance of that goal by manipulating
the logical clauses in P.)

An answer to a goal G for a logic program P is a substitution 6 such that G0 is a
logical consequence of P.

A definite answer to a goal G for a logic program P is an answer in which every
variable is substituted by a constant.

Facts:

1. A definite clause A «— By, ..., B,, represents the following logical constructs:

If every B; is true, then A is also true;
Statement A can be proved by proving every B;.
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2. Definite answer property: If a goal G for a logic program P has an answer, then it
has a definite answer.

3. The definite answer property does not hold for indefinite clauses. For example,
although G = JzQ(x) is a logical consequence of P = {Q(a),Q(b) <}, no ground
instance of G is a logical consequence of P.

4. Logic programming is Turing-complete (§16.3); i.e., any computable function can
be represented using a logic program.

5. Building on the work of logician J. Alan Robinson in 1965, computer scientists
Robert Kowalski and Alain Colmerauer of Imperial College and the University of Mar-
seille-Aix, respectively, in 1972 independently developed the programming language
PROLOG (PROgramming in LOGic) based on a special subset of predicate logic.

6. The first PROLOG interpreter was implemented in ALGOL-W in 1972 at the Uni-
versity of Marseille-Aix. Since then, several variants of PROLOG have been introduced,
implemented, and used in practical applications. The basic paradigm behind all these
languages is called Logic Programming.

7. In PROLOG, the relation “is” means equality.

Examples:

1. The following three clauses are definite:
P—Q,R P~ — Q,R.

2. The clause P,S < @Q, R is indefinite.
3. The substitution {X/a,Y/b} for the atom P(X,Y, Z) yields the instance P(a,b, Z).

4. The goal « P to the program {P <} has a single answer, given by the empty
substitution. This means the goal can be achieved.

5. The goal < P to the program {@ <} has no answer. This means it cannot be
derived from that program.

6. The logic program consisting of the following two definite clauses P1 and P2 com-
putes a complete list of the pairs of vertices in an arbitrary graph that have a path
joining them:

P1. path(V,V) «

P2. path(U,V) « path(U, W), edge(W, V)
Definite clauses P3 and P4 comprise a representation of a graph with nodes 1, 2, and
3, and edges (1,2) and (2,3):

P3. edge(1,2) <

P4. edge(2,3) «
The goal G represents a query asking for a complete list of the pairs of vertices in an
arbitrary graph that have a path joining them:

G. < path(Y, Z2)

There are three distinct answers of the goal G to the logic program consisting of
definite clauses P1 to P4, corresponding to the paths (1,2), (1,2,3), and (2,3), respec-
tively:

Al. {Y/1,Z/2}
A2. {Y/1,Z/3}
A3. {Y/2,7/3}
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7. The following logic program computes the Fibonacci sequence 0,1,1,2,3,5,8,13, ...,
where the predicate fib(N, X) is true if X is the Nth number in the Fibonacci sequence:
£ib(0,0) «—
Fib(1,1) —
fib(N, X +Y)«— N >1, fib(N — 1, X), fib(N —2,Y)
The goal “— fib(6,X)” is answered {X/8}, the goal “— fib(X,8)” is answered {X/6},
and the goal “— fib(IN, X)” has the following infinite sequence of answers:
{N/0,X/0}
{N/1,X/1}
{N/2,X/1}

8. Consider the problem of finding an assignment of digits (integers 0, 1,...,9) to letters
such that adding two given words produces the third given word, as in this example:
S END
+ MORE

M ONEY
One solution to this particular puzzle is given by the following assignment:
D=0, E=0, M=1, N=0, O=0, R=0, =9, Y =0.

The following PROLOG program solves all such puzzles:

between(X, X, 7)) — X < Z.

between(X,Y, Z) « between(K,Y, Z), X is K — 1.

val([],0)

val([X|Y], A) < val(Y, B), between(0, X,9), Ais 10* B + X.

solve(X,Y, Z) —wval(X, A), val(Y, B), val(Z,C), C is A+ B.
The specific example given above is captured by the following goal:

— solve([D, N, E, 8], [E, R, 0, M], [Y, E, N, 0, M]).

The predicate between(X,Y,Z) means X < Y < Z. The predicate val(L,N)
means that the number N is the value of L, where L is the kind of list of letters that
occurs on a line of these puzzles. The notation [X|L] means the list obtained by writing
list L after item X. The predicate solve(X,Y, Z) means that the value of list Z equals
the sum of the values of list X and list Y.

This example illustrates the ease of writing logic programs for some problems where
conventional imperative programs are more difficult to write.

1.7.2

FUZZY SETS AND LOGIC

Fuzzy set theory and fuzzy logic are used to model imprecise meanings, such as “tall”,
that are not easily represented by predicate logic. In particular, instead of assigning
either “true” or “false” to the statement “John is tall”, fuzzy logic assigns a real number
between 0 and 1 that indicates the degree of “tallness” of John. Fuzzy set theory assigns
a real number between 0 and 1 to John that indicates the extent to which he is a member
of the set of tall people. See [Ka86], [Ka92], [KaLa94|, [YaFi94|, [YaZa94], [Za65], [Zi91],
[Zi93].
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Definitions:
A fuzzy set F = (X, u) consists of a set X (the domain) and a membership function
u: X — [0,1]. Sometimes the set is written { (z,u(z)) |z € X } or {p(z)x |z € X }.

The fuzzy intersection of fuzzy sets (A, ua) and (B, up) is the fuzzy set AN B with
domain A N B and membership function panp(z) = min(pa(z), pp(x)).

The fuzzy union of fuzzy sets (A, pa) and (B, pup) is the fuzzy set AU B with domain
AU B and membership function payup(z) = max(pa(x), up(z)).

The fuzzy complement of the fuzzy set (A, 1) is the fuzzy set ~A or A with domain A
and membership function p—(z) = 1 — p(x).

The nth constructor con(u,n) of a membership function u is the function p™. That
is, con(p, n)(x) = (u(x))"

The nth dilutor dil(iu,n) of a membership function y is the function p'/™. That is,
dil(p, n)(z) = (u(2))"/".

A T-norm operator is a function f: [0, 1] x [0, 1] — [0, 1] with the following properties:

o f(z,y) = f(y,x) commutativity

o f(f(z,y),2) = f(z, f(y,2)) associativity

o if x <wand y < w, then f(z,y) < f(v,w) monotonicity

e f(a,1) =a. 1 is a unit element

The fuzzy intersection ANy B of fuzzy sets (A,pa) and (B, pup) relative to the
T-norm operator f is the fuzzy set with domain A N B and membership function

pan,(z) = f(pa(x), pp(z)).

An S-norm operator is a function f: [0, 1] x[0, 1] — [0, 1] with the following properties:

o f(z,y) = f(y,x) commutativity
hd f(f(m7 y)’ Z) = f(l‘, f(y’ Z)) aSSOCjathjty

o if z <wandy < w, then f(z,y) < f(v,w) monotonicity
e f(a,1)=1.

The fuzzy union A Uy B of fuzzy sets (A, pa) and (B, up) relative to the S-norm
operator f is the fuzzy set with domain AU B and membership function pau,p(z) =

f(pa(z), pp(x)).

A complement operator is a function f:[0,1] — [0, 1] with the following properties:

e f(0)=1
o if z <y then f(z) > f(y)
o f(f(z)) ==z.

The fuzzy complement —;A of the fuzzy set (A, p) relative to the complement
operator f is the fuzzy set with domain A and membership function p- () = f(u(z)).

A fuzzy system consists of a base collection of fuzzy sets, intersections, unions, com-
plements, and implications.

A hedge is a monadic operator corresponding to linguistic adjectives such as “very”,
“about”, “somewhat”, or “quite” that modify membership functions.

A two-valued logic is a logic where each statement has exactly one of the two values:
true or false.
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A multi-valued logic (n-valued logic) is a logic with a set of n (> 2) truth values;
i.e., there is a set of n numbers vy, vs,...,v, € [0,1] such that every statement has
exactly one truth value v;.

Fuzzy logic is the study of statements where each statement has assigned to it a truth
value in the interval [0, 1] that indicates the extent to which the statement is true.

If statements p and ¢ have truth values v; and vs respectively, the truth value of pV g
is max(v1,v2), the truth value of p A ¢ is min(vy, v2), and the truth value of —p is 1 —v;.

Facts:
1. Fuzzy set theory and fuzzy logic were developed by Lofti Zadeh in 1965.

2. Fuzzy set theory and fuzzy logic are parallel concepts: given a predicate P(z), the
fuzzy truth value of the statement P(a) is the fuzzy set value assigned to a as an element
of {z | P(x) }.

3. The usual minimum function min(x,y) is a T-norm. The usual real maximum
function max(z,y) is an S-norm. The function ¢(x) = 1 — z is a complement operator.

4. Several other kinds of T-norms, S-norms, and complement operators have been
defined.

5. The words “T-norm” and “S-norm” come from multi-valued logics.

6. The only difference between T-norms and S-norms is that the T-norm specifies
f(a,1) = a, whereas the S-norm specifies f(a,1) = 1.

7. Several standard classes of membership functions have been defined, including step,
sigmoid, and bell functions.

8. Constructors and dilutors of membership functions are also membership functions.

9. The large number of practical applications of fuzzy set theory can generally be
divided into three types: machine systems, human-based systems, human-machine sys-
tems. Some of these applications are based on fuzzy set theory alone and some on
a variety of hybrid configurations involving neurofuzzy approaches, or in combination
with neural networks, genetic algorithms, or case-based reasoning.

10. The first fuzzy expert system that set a trend in practical fuzzy thinking was the
design of a cement kiln called Linkman, produced by Blue Circle Cement and SIRA
in Denmark in the early 1980s. The system incorporates the experience of a human
operator in a cement production facility.

11. The Sendai Subway Automatic Train Operations Controller was designed by Hi-
tachi in Japan. In that system, speed control during cruising, braking control near sta-
tion zones, and switching of control are determined by fuzzy IF-THEN rules that process
sensor measurements and consider factors related to travelers’ comfort and safety. In
operation since 1986, this most celebrated application encouraged many applications
based on fuzzy set controllers in the areas of home appliances (refrigerators, vacuum
cleaners, washers, dryers, rice cookers, air conditioners, shavers, blood-pressure measur-
ing devices), video cameras (including fuzzy automatic focusing, automatic exposure,
automatic white balancing, image stabilization), automotive (fuzzy cruise control, fuel
injection, transmission and brake systems), robotics, and aerospace.

12. Applications to finance started with the Yamaichi Fuzzy Fund, which is a fuzzy
trading system. This was soon followed by a variety of financial applications world-wide.
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13. Research activities will soon result in commercial products related to the use of
fuzzy set theory in the areas of audio and video data compression (such as HDTV),
robotic arm movement control, computer vision, coordination of visual sensors with
mechanical motion, aviation (such as unmanned platforms), and telecommunication.

14. Current status: Most applications of fuzzy sets and logic are directly related to
structured numerical model-free estimators. Presently, most applications are designed
with linguistic variables, where proper levels of granularity are being used in the evalu-
ations of those variables, expressing the ambiguity and subjectivity in human thinking.
Fuzzy systems capture expert knowledge and through the processing of fuzzy IF-THEN
rules are capable of processing knowledge combining the antecedents of each fuzzy rule,
calculating the conclusions, and aggregating them to the final decision.

15. One way to model fuzzy implication A — B is to define A — B as ~.AU; B
relative to some complement operator ¢ and to some S-norm operator f. Several other
ways have also been considered.

16. A fuzzy system is used computationally to control the behavior of an external
system.

17. Large fuzzy systems have been used in specifying complex real-world control sys-
tems. The success of such systems depends crucially on the specific engineering pa-
rameters. The correct values of these parameters are usually obtained by trial-and-
readjustment.

18. A two-valued logic is a logic that assumes the law of the excluded middle: p VvV —p
is a tautology.

19. Every n-valued logic is a fuzzy logic.

Examples:

1. A committee consisting of five people met ten times during the past year. Person A
attended 7 meetings, B attended all 10 meetings, C' attended 6 meetings, D attended no
meetings, and F attended 9 meetings. The set of committee members can be described

by the following fuzzy set that reflects the degree to which each the members attended

meetings, using the function u: {A, B, C, D, E} — [0, 1] with the rule y(z) = = (number

of meetings attended): v
{(4,0.7),(B,1.0),(C,0.6), (D,0.0), (E,0.9)},
which can also be written as
{0.74,1.0B,0.6C,0.0D,0.9E}.

Person B would be considered a “full” member and person D a “nonmember”.

2. Four people are rated on amount of activity in a political party, yielding the fuzzy
set

P, ={0.84,0.45B,0.1C,0.75D},
and based on their degree of conservatism in their political beliefs, as
P, ={0.6A4,0.85B,0.7C,0.35D}.
The fuzzy union of the sets is
P,UP,={0.84,0.85B,0.7C,0.75D},
the fuzzy intersection is
PN P,={0.6A4,045B,0.1C,0.35D}
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and the fuzzy complement of P; (measurement of political inactivity) is
P, = {0.24,0.55B,0.9C,0.25D}.

3. In the fuzzy set with domain T" and membership function

20

0 if h < 170
pr(h) =< =170 3£ 170 < h < 190
1 otherwise

the number 160 is not a member, the number 195 is a member, and the membership
of 182 is 0.6. The graph of ur is given in the following figure.

A
u(h)

Quite Tall

(o) I
170 190

\
=

4. The fuzzy set (T,pr) of Example 3 can be used to define the fuzzy set “Tall”
= (H, pp) of tall people, by the rule pg(z) = pr(height(x)) where height(z) is the
height of person z calibrated in centimeters.

5. The second constructor con(pg,2) of the fuzzy set “Tall” can be used to define a
fuzzy set “Quite tall”, whose graph is given in the following figure.

A
u(h)

Somewhat Tall

Q I
170 190

A\
o

6. The second dilutor dil(pm, 2) of the fuzzy set “Tall” defines the fuzzy set “Somewhat
tall”, whose graph is given in the following figure.

A
u(h)

Somewhat Tall

v
>

170 190
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7. The concept of “being healthy” can be modeled using fuzzy logic. The truth
value 0.95 could be assigned to “Fran is healthy” if Fran is almost always healthy.
The truth value 0.4 could be assigned to “Leslie is healthy” if Leslie is healthy some-
what less than half the time. The truth of the statements “Fran and Leslie are healthy”
would be 0.4 and “Fran is not healthy” would be 0.05.

8. Behavior closed-loop control systems: The behavior of some closed-loop control
systems can be specified using fuzzy logic. For example, consider an automated heater
whose output setting is to be based on the readings of a temperature sensor. A fuzzy set
“cold” and the implication “very cold — high” could be used to relate the temperature
to the heater settings. The exact behavior of this system is determined by the degree of
the constructor used for “very” and by the specific choices of S-norm and complement
operators used to define the fuzzy implication — the “engineering parameters” of the
system.

1.73

PRODUCTION SYSTEMS

Production systems are a logic-based computer programming paradigm introduced by
Allen Newell and Herbert Simon in 1975. They are commonly used in intelligent systems
for representing an expert’s knowledge used in solving some real-world task, such as a
physician’s knowledge of making medical diagnoses.

Definitions:

A fact set is a set of ground atomic formulas. These formulas represent the information
relevant to the system.

A condition is a disjunction A; V ---V A,,, where n > 0 and each A; is a literal.

A condition C'is true in a fact set S if:
e (C is empty, or
e (C is a positive literal and C' € S, or
e (' is a negative literal = A, and B /& for each ground instance B of A, or
e (C=A,V---VA,, and some condition A; is true in S.

A print command “print(x)”, means that the value of the term x is to be printed.
An action is either a literal or a print command.

A production rule is of the form Cy,...,C, — Aq,..., A,,, where n,m > 1, each C;
is a condition, each A; is an action, and each variable in each action appears in some
positive literal in some condition.

The antecedent of the rule Cy,...,C, — Ay,..., Ay s Cq,...,C,.
The consequent of the rule Cy,...,C, — Ay,..., Apn is A1,..., An;.

An instantiation of a production rule is the rule obtained by replacing each variable
in each positive literal in each condition of the rule by a constant.

A production system consists of a fact set and a set of production rules.
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Facts:

1. Given a fact set S, an instantiation C4,...,C,, — Aq,...,A,, of a production rule
denotes the following operation:

if each condition C; is true in S then
for each A;:
if A; is an atom, add it to S
if A; is a negative literal =B, then remove B from S
if A; is “print(c)”, then print c.

2. In addition to “print”, production systems allow several other system-level com-
mands.

3. OPS5 and CLIPS are currently the most popular languages for writing production
systems. They are available for most operating systems, including UNIX and DOS.

4. To initialize a computation prescribed by a production system, the initial fact set
and all the production rules are supplied as input. The command “runl” non-deter-
ministically selects an instantiation of a production rule such that all conditions in the
antecedent hold in the fact set, and it “fires” the rule by carrying out the actions in the
consequent. The command “run” keeps on selecting and firing rules until no more rule
instantiations can be selected.

5. Production systems are Turing complete.

Examples:

1. The fact set S = {N(3),3 > 2,2 > 1} may represent that “3 is a natural number”,
that “3 is greater than 2”7, and that “2 is greater than 1”.

2. If the fact set S of Example 1 and the production N(z) — print(x) are supplied as
input, the command “run” will yield the instantiation N(3) — print(3) and fire it to
print 3.
3. The production rule N(z),xz >y — —~N(z),N(y) has N(3),3 > 2 — -N(3),N(2)
as an instantiation. If operated on fact set S of Example 1, this rule will change S to
{3>2,2>1,N(2)}.
4. The production system consisting of the following two production rules can be used
to add a set of numbers in a fact set:

—5(x) — 5(0)

S(x), N(y) — ~S(x), ~N(y), S(z +y).
For example, starting with the fact set {N (1), N(2), N(3), N(4)}, this production system
will produce the fact set {S(10)}.

1.7.4

AUTOMATED REASONING

Computers have been used to help prove theorems by verifying special cases. But
even more, they have been used to carry out reasoning without external intervention.
Developing computer programs that can draw conclusions from a given set of facts
is the goal of automated reasoning. There are now automated reasoning programs
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that can prove results that people have not been able to prove. Automated reasoning
can help in verifying the correctness of computer programs, verifying protocol design,
verifying hardware design, creating software using logic programming, solving puzzles,
and proving new theorems.

Definitions:

Automated reasoning is the process of proving theorems using a computer program
that can draw conclusions which follow logically from a set of given facts.

A computer-assisted proof is a proof that relies on checking the validity of a large
number of cases using a special purpose computer program.

A proof done by hand is a proof done by a human without the use of a computer.

Facts:

1. Computer-assisted proofs have been used to settle several well-known conjectures,
including the Four Color Theorem (§8.6.4) and the nonexistence of a finite projective
plane of order 10 (§12.2.3).

2. The computer-assisted proofs of both the Four Color Theorem and the nonexistence
of a finite projective plane of order 10 rely on having a computer verify certain facts
about a large number of cases using special purpose software.

3. Hardware, system software, and special purpose program errors can invalidate a
computer-assisted proof. This makes the verification of computer-assisted proofs im-
portant. However, such verification may be impractical.

4. Automated reasoning software has been developed for both first-order and higher-
order logics. A database of automated reasoning systems can be found at

http://www-formal.stanford.edu:80/clt/ARS/systems.html

5. Automated reasoning software has been used to prove new results in many areas,
including settling long-standing, well-known, open conjectures (such as the Robbins
problem described in Example 2).

6. Proofs generated by automated reasoning software can usually be checked without
using computers or by using software programs that check the validity of proofs.

7. Proofs done by humans often use techniques ill-suited for implementation in auto-
mated proof software.

8. Automatic proof systems rely on proof procedures suitable for computer implemen-
tation, such as resolution and the semantic tableaux procedure. (See [Fi96] or [Wo96]
for details.)

9. The effectiveness of automatic proof systems depends on following strategies that
help programs prove results efficiently.

10. Restriction strategies are used to block paths of reasoning that are considered to
be unpromising.

11. Direction strategies are used to help programs select the approaches to take next.
12. Look-ahead strategies let programs draw conclusions before they would ordinarily

be drawn following the basic rules of the program.
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13. Redundancy-control strategies are used to eliminate some of the redundancy in
retained information.

14. There are efforts underway to capture all mathematical knowledge into a database
that can be used in automated reasoning systems (see the information about the QED
system in Example 3).

Examples:

1. The OTTER system is an automated reasoning system for first order logic developed
at Argonne National Laboratory [Wo96]. OTTER has been used to establish many
previously unknown results in a wide variety of areas, including algebraic curves, lattices,
Boolean algebra, groups, semigroups, and logic. A summary of these results can be
found at

http://www.mcs.anl.gov/home/mccune/ar/new_results

2. The automated reasoning system EQP, developed at Argonne National Laboratory,
settled the Robbins problem in 1996. This problem was first proposed in the 1930s by
Herbert Robbins, and was actively worked on by many mathematicians. The Robbins
problem can be stated as follows. Can the equivalence
—\(—|p) =p

be derived from the commutative and associative laws for the “or” operator V and the
identity

~(=(pVa@)V-(pV—q) = p?
The EQP system, using some earlier work that established a sufficient condition for the
truth of Robbins’ problem, found a 15-step proof of the theorem after approximately 8
days of searching on a UNIX workstation when provided with one of several different
search strategies.

3. The goal of the QED Project is to build a repository that represents all important,
established mathematical knowledge. It is designed to help mathematicians cope with
the explosion of mathematical knowledge and help in developing and verifying computer
systems.
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