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To Yukiko:
You edited the text to become readable.



Preface

Dear Reader,

I encountered the theory of relativity at first while in my teens, in the public library
of my hometown. There were two kinds of books: The easy ones did not really
explain, but displayed large, colored pictures of the science-fiction kind. The serious
books seem to explain something, but that was hidden in a mass of mathematical
symbols, and those they did not explain, so I was back to square one. Nevertheless,
they aroused my interest in physics. It also incited me to fill the gap. The result is
this book.

This book is about light, energy, mass, space, time, and gravity: I explain to you
how the theory of special relativity and the theory of general relativity work out.

We will use many thought experiments, and show you how physicists create and
solve models. This method is the one used by Einstein himself: He understood the
theory in physical and geometrical pictures. We will follow Einstein’s original train
of thought as closely as possible, using even some of his own thought experiments.

I will present some involved arguments, so you need your imagination, but no
complicated mathematics to understand the essence of it all. However, the beauty of
physics is, that we can calculate how the numbers work out. Therefore I prepared the
equations of the theory of relativity together with the most important exact solutions,
using only elementary mathematics. Even the Einstein equation of gravity, showing
the bending of space and time, we present in detail, in common language. We will
see why it is the simplest theory of gravity. We will not be content with analogies
like “space bends like the surface of a sphere!”

In the first four chapters, I explain what is called the theory of special relativity:
I describe the relation between light, matter, space, and time.

1. In Chap. 1, I describe after introducing the basics, that mass and energy are the
opposite site of the same coin.

2. In Chap. 2, we will see why time and length are “relative”.
3. In Chap. 3, we will see why any electric wire shows relativity in everyday life.
4. In Chap. 4, we learn that while riding a merry-go-round, school-geometry ceases

to be true.

vii



viii Preface

In the Chaps. 5 to 9 I describe gravity, that is the theory of general relativity.

5. In Chap. 5, I show you that earth’s gravity does not pull at you at all, and that it
bends space and time.

6. In Chap. 6, we will see in detail which effects the bending space and time are
causing.

7. In Chap. 7, we explain thoroughly the meaning of the famous Einstein equation
of gravity, and why it is the simplest possible way of describing gravity.

8. In Chap. 8, we introduce the most famous exact solution of the Einstein equation,
that is the Schwarzschild solution, in simple terms.

9. In Chap. 9, we use the solutions to the Einstein equation, and explore the famous
predictions of the theory of general relativity, as for example how much a light
beam bends while passing at the sun, how large and heavy black holes are, why
the orbits of the planets around the sun turn slowly around the sun, and why the
universe had a big bang, but why its future is unclear to us.

One word about highlighted text: Indexed words appear in boldface. Such you can
easily find them on their page, searching from the index. Before going on with
describing the strange properties of light, we better tell in what units we measure
and compare the size of things.

Units and Symbols

In physics, we use certain units to measure things. Lengths we measure only in
meters, time only in seconds, not in minutes, hours, or days. Mass we measure only
in kilograms. Any other unit we use in this book is a combination of these units. For
example, speed we measure in meters per second. Other units like pounds or inches
or such like we never use. The merit of this is that we can leave the units away in all
calculations, because we know anyway what units to add afterwards, just because
we fixed them at the beginning.

We will encounter often really large or very small numbers. For example, while
numbers like “one thousand” we can write down as 1000, the number of one billion
two hundred fifty-two million seven hundred eighty-four 1,250,000,784 is much
harder to read. Mostly we are only interested in the first three or so digits, for a
rough estimate of how large things are. Here physicists count the number of digits
after the first one, that is nine in this case, and write

1.25 × 109

In the same way, a very small number like 0.000145 we write as 1.45 × 10−4 by
counting the number of leading zeros. Then we can easily multiply such numbers:
We multiply 1.25×109 ×1.45×10−4 by multiplying at first 1.25 and 1.45 which is
roughly 1.81, and adding the exponents 9 − 4 = 5, so that the result is ≈1.81 × 105.
Here the symbol ≈ means “is roughly equal to”.

For example, we use for the speed of light mostly the rough value

speed of light ≈ 3.00 × 108 meters per second
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We will encounter other important numbers of nature in the text. We collected them
in Table A.1 for reference.

Special Expressions

At last, one word about how we use phrases like “far enough away from something”,
“fast enough”, and the like. For example, we say

“if the astronaut is far enough away from earth, the astronaut can neglect earth’s gravity.”

We are aware of the fact, that gravity is never exactly zero, even very far away
from earth. The point is here, that the astronaut wants to measure some effect, with
gravity spoiling this effect, to, say, one percent of the result that the astronaut would
get in really empty space. So if the astronaut finds that gravity is still spoiling his
experiment too much, he is free to move to a place which is so far away from earth
that there, gravity really does spoil his experiment only up to the desired one percent
at the most. Of course, if he wants to measure even more accurately, he must move
even farther away from earth. That is why we say, in short, that if he moves “far
enough away” from earth, he always can neglect earth’s gravity to the extent that he
wants to neglect it.

Kurt FischerTokuyama, Japan
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Chapter 1
Light, Matter, and Energy

1.1 Light Beams

An astronaut floating in space switches on a torch or a laser beamer. The emerging
light beam travels at the speed

299,792,458 meters per second (1.1)

This is the speed of light in vacuum. Exactly.
How can we verify this? First of all, we need an apparatus to send a light beam,

such as the box on the left in Fig. 1.1. It is open to the right. This box symbolizes the
torch, or the laser, or the sender for short. The black horizontal arrow stands for the
light beam. It travels through the gray box on the right, which is some speedometer,
measuring the speed of the light beam in meters per second. We will not discuss
what constitutes such an apparatus: We just assume that there are such devices.

1.2 First Law of Relativity: Straight, Steady Speed Is Relative

Does the speed of light change if we move the torch while sending a light beam?
This prompts the question: Moving relative to what?

If we are moving in a fast train, then we do not feel the steady speed of the
train, but only feel a slight tremble, that is the non-steady part of the speed. For
example, in Fig. 1.2 a table is standing inside a train. The train is moving straightly
and steadily. Then the black ball will not begin to move on the table. Do you feel
the tremendous speed while you are sitting at home at a table, feeling yourself at
rest? Which speed? The tremendous speed with which the earth is moving around
the sun, for example. This speed is at least during a few minutes, say, nearly straight
and steady. Or the speed with which the whole solar system is moving along the
galaxy. And not to forget the speed with which the galaxy is moving—to where?

Since the outgoing middle ages we know that we cannot detect if we are moving
steadily, straight ahead in some direction, by no means whatsoever. We always can

K. Fischer, Relativity for Everyone, DOI 10.1007/978-3-319-00587-4_1,
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2 1 Light, Matter, and Energy

Fig. 1.1 Light beam from left to right, sketched as black horizontal arrow. The box on the left
stands for some sender like a torch or laser, the gray box on the right is the light-speedometer,
displaying the speed of light

Fig. 1.2 The ball on the
glass table in a train will not
begin to move on the table, if
the train moves straightly and
steadily

take the point of view, that we are at rest, in the same way as we do when we “sit at
a table”.

Then even while sitting at a table in a steadily, straight ahead moving train, we
can say that we are at rest, and the whole station plus the surrounding area we pass
through is moving towards us. At the same time, a friend standing on the platform
of the station, objects: Of course the train is moving towards the station, and the
station together with the earth around it are at rest!

Then who is correct? Answer: Both we and our friend are correct in insisting to
be at rest: The train is moving only relative to the train station and the earth around
it. This is the first law of the theory of relativity, formulated by Galilei a few
hundred years ago:

The speed of straight, steady motion of a body we can only
measure relative to other bodies. The laws of nature do not depend
on a straight and steady speed at which we may move relative to

other bodies.

1.3 Measuring the Speed of Light

We measure the speed of the bodies in Fig. 1.3 relative to the ground. While sending
the light beam, we move the torch towards the speedometer with, say, 10000 meters
per second, relative to the ground, while the speedometer rests relative to the ground.
In order that nothing should disturb the light beam, we prepared the situation such
that there is no air above the ground.
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Fig. 1.3 Now the sender
moves towards the
speedometer with 10000
meters per second relative to
the ground. The ground we
indicated in dark gray

Fig. 1.4 A loudspeaker
moves towards the
speedometer with 40 meters
per second. The speed of
sound remains the same as if
the loudspeaker would rest

Fig. 1.5 If the speedometer
is moving towards the
loudspeaker which is resting
in the air, we measure a larger
speed of sound

Nevertheless, the speedometer shows the very same speed of light! Now, this
does not sound so astonishing. Here is an analogy: Replace the torch with a loud-
speaker, and the speedometer for light with a speedometer for sound, as in Fig. 1.4.
The sound we drew as white arrow. The calm air we depicted as light gray back-
ground. The sound travels through the calm air with a speed of about 343 meters per
second.

The sound travels through calm air, and so its movement does not feel the mov-
ing loudspeaker: We will measure the same 343 meters per second, even if the loud-
speaker travels towards the speedometer with 40 meters per second. So is this not a
very similar situation to the light beam?

No, because next we will put the loudspeaker at rest inside calm air, and move
the speedometer towards the loudspeaker, with the same 40 meters per second.

Because the sound moves with 343 meters per second relative to calm air to the
right, and the detector moves with 40 meters per second relative to the calm air as
well, to the left, we will measure a sound speed of

343 + 40 = 383 meters per second.

This we sketched in Fig. 1.5.

1.4 Second Law of Relativity: Speed of Light Is Absolute

Next we repeat that thought experiment with light, as in Fig. 1.6.
The astonishing result is, that for light the speedometer still shows the same speed

of light! That means that light does not need any medium like “air” to travel: It
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Fig. 1.6 If the speedometer
moves towards the sender, the
speed of light does not change

travels as such through the empty space. As one of the constants of nature it got its
own name, c. Therefore, to simplify calculations, physicists recently fine adjusted
the length of the meter, such that the speed of light has exactly the value of Eq. (1.1).

Light travels always at the same speed c = 299,792,458
meters per second through the vacuum. That is, the speed

of light is absolute.

This phenomenon of nature is the second law of the theory of relativity. Physi-
cists have tested and confirmed it in many experiments, with growing precision, over
the last hundred years or so. It is the starting point for the theory of relativity.

We think about some consequences in the next section, qualitatively, and intro-
duce the more detailed physical concepts later on.

1.5 Faster than Light?

Clearly, there are things moving faster than sound. When we hear the cracking sound
of a whip in the circus, for example, the tip of the whip is moving faster than sound!
For another example, using a fast airplane we can overtake the sound so that in the
setup of Fig. 1.7 the sound does not reach the speedometer any more.

However, because light travels always at the same speed, we cannot overtake it:
Suppose that in Fig. 1.8 we travel with 299,792,458 − 1 meters per second to the
right away from the torch.

Nevertheless we will see the light in the speedometer moving with the same speed
as before. This means that we cannot escape from the light beam:

We cannot travel faster than light!

You think that this is too weird, that it cannot be true? Here is another example:
In everyday life, we see that whatever is moving, will come to rest, if we do not
sustain its movement: balls, cars, airplanes, and so on. However, in reality, bodies
will move forever, with steady speed, along a straight line, if nothing hampers them.
What hampers them on earth is that by friction they heat up other bodies and such
lose their energy, and come to rest. From an every-day-life point of view this is
weird, but we know since a few hundred years or so that this is correct. So we
should not judge from our everyday experience, because that may be not enough.
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Fig. 1.7 Escaping from
sound

1.6 Theory and Practice

Any engineer should take the statement that we cannot travel faster than light as
a challenge. Let us built a powerful rocket, which, say, converts nearly all its fuel
to thrust. The payload shall be just a black peppercorn. Now start the rocket and
observe the peppercorn on top of the rocket accelerating, moving faster and faster
away from us. In Fig. 1.9, we sketched the peppercorn on top of the rocket larger
than life-size, for better view.

All the same, the faster the peppercorn becomes, the more difficult it becomes
for us to accelerate it further. If it has got, say, 99 percent of the speed of light, that
is, if it is moving with this speed away from us, then it seems hardly to react at all
to the thrust of the rocket.

1.7 Mass and Inertia

This is the time to ask what has changed within the peppercorn? Its inertial mass
has grown! “Inertial mass”, sometimes called for short mass, or inertia, you can
experience by putting a polished stone on a skating rink, as sketched in Fig. 1.10:
Even if the friction from contact with the ice is small, it resists being “pushed”, that
is, being accelerated. If the stone was twice as big, you have to use twice the effort

Fig. 1.8 Even if we try to escape with nearly the speed of light from a light-beam, it eventually
passes us at the speed of light c

Fig. 1.9 Trying to accelerate
a peppercorn by putting it on
top of a rocket
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Fig. 1.10 Pushing inertial
mass on an ice skating rink

you have to put up to move the lighter stone. This is because the more stone there is,
the more mass it contains. Clearly inertia has the connotation of “laziness”: Matter
resists being pushed, because all kinds of matter have mass, to a different extent.
Experience tells us that having mass is the fundamental property of matter.

1.8 Inertia and Weight: A First Glance

Usually we measure mass of a, say, stone, by weighing it. However, why on earth
heaviness should have anything to do with massiveness?

The massier a stone is, the less it wants to move. The heavier a stone is, the more
it wants to move, that is to say, to fall down!

What is more: On earth a stone has some weight, but out in space—and most
matter is out in space—we cannot weigh our stone, because there is no planet con-
veniently at hand! But we can push it, try to accelerate it, and measure how much
it resists.

Nevertheless there is a deep connection between mass and weight, which we will
explore later on in Chap. 5. For the time being, we continue to use the inertial mass.

Now back to our peppercorn: The faster it passes us, the more it resists being
accelerated to a higher speed. This means that its mass must have increased. In
general:

The faster a material body passes us, the more mass it
contains.

However, nothing comes from nothing, so what did we add to the peppercorn that
it became massier?

1.9 Energy

We burned fuel in the rocket, and such provided the peppercorn with what is called
motion energy, or kinetic energy, that is, energy of motion. There are many kinds
of energy, like heat energy, or electrical energy, or motion energy, but it turns out
by careful experiments that no matter which type of energy there is, we can convert
it into any other type. For example, while driving a car we convert the electrical
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energy sitting in the chemical bonds of the gasoline molecules to motion energy of
the molecules by burning the gasoline, and this into motion energy of the car, for
that is what we want. However, we carry away with us air which breaks away as air
whirls behind the car, so that part of our motion energy converts to motion energy of
air whirls. These whirls break up further and further until the energy converts to heat,
by air friction. However, heat is nothing but disordered movement of molecules. . . .

It took physicists a long time to establish per experiment, that we can convert any
form of energy into any other, without loss. In fact, it took a few centuries before the
concept of energy established itself: Why heat, electricity, or a fast car should con-
tain basically the same stuff, that is to say, energy? Nevertheless, physicists found
in every experiment so far, that energy may convert from one from into another, but
it never disappears, or springs up from nothing.

We can take one form of energy, say, motion energy, to specify the unit of energy,
the Joule: Two kilograms of mass traveling at the speed of 1 meter per second have
about 1 Joule of motion energy.

Let us convert 1 Joule of energy to different forms back and forth. In the end,
there is still just this 1 Joule of energy, just enough to accelerate the kilogram as
described before. We stress that this is an experimental fact, not something that you
can prove, only suggest by experience. Physicists say that

Energy is conserved: We can only convert energy into
different forms, but not create or destroy it.

To come back to our rocket: Clearly the rocket has converted the main part of the
energy sitting originally in its fuel, to motion energy of the peppercorn. If we burn
out our rocket, we have supplied the peppercorn with some energy.

1.10 Mass and Motion Energy

How can we measure the energy of the peppercorn? Simply put a wall into its path,
and assess the damage: The larger the hole, the more energy the peppercorn brought
along. A double as powerful rocket will load the peppercorn with double as much
energy, roughly. However, if the original rocket accelerated the peppercorn to 99
percent of the speed of light, then a double as strong rocket will achieve the pepper-
corn to fly at about 99.75 percent of c, which is not much faster.

So where the energy is getting into, when the peppercorn cannot become much
faster? Answer: The more matter approaches the speed of light, the more its motion
energy shows up as mass.

In other words: The more motion energy matter carries, the more mass it has.
That suggests that mass itself is a form of energy: Can we imagine a stone to be a
kind of frozen-in motion energy?



8 1 Light, Matter, and Energy

Fig. 1.11 Two internal bouncing masses increase the resting-mass of the box

1.11 Resting-Mass and Motion Energy

We can convert the different types of energy into each other. What then about mass
of a resting body, the resting-mass? Up to know, we imagined resting-mass as rigid,
like a stone. However, we know that mass consists of electrons, protons and the like
which all the time move around each other. These small constituents are not at rest,
even when the “stone” rests.

1.11.1 Internal Motion-Energy

We know that heat means disordered motion of atoms, that is, motion energy of
atoms. Hence if we heat a stone, it should contain more motion energy, and hence
more mass: The hotter, the massier! Here is a graphic example of internal motion:
Take a box where inside two identical balls bounce back and forth, as in Fig. 1.11.

Inside the box, they will bounce back at exactly the same time at the left and right
wall, so that the box remains resting on the ground. They carry motion energy, and
hence they carry more than just their resting-mass. The faster they bounce back and
forth, the more resting-mass the box gains!

We will calculate how much more mass a moving body has in Sect. 2.6.
Coming back to our resting stone: How much of the resting stone is actually

motion energy of its atoms? We see that by and by, the concept of “mass” and
“energy” blend in: They seem to be like two sides of the same coin!

1.11.2 Pure Energy

Motion energy is attached to a mass that can rest. This prompts the question: Is there
pure energy, without resting-mass? If there is, it never can rest beside us, because
what would be left over of resting energy without mass? However, we learned al-
ready of such a thing: In fact, light is pure energy: It never rests, because it moves
always at the speed c, no matter how much we change our speed. This experimen-
tal fact was the starting point of the theory of relativity, and we see that the more
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Fig. 1.12 The packet of light
has built up completely and
starts to leave the wall. The
triangular bump in the floor
indicates the center of mass.
The wall starts to recoil

we probe it, think about it, the more astonishing details it reveals. To coin a catch-
phrase:

Light is pure energy, without resting-mass,
rest-less, always moving at speed c.

If mass and pure energy are really two sides of the same coin, then we would like
to have a thought experiment connecting the two. In fact, Einstein himself provided
one thought experiment, the essence of which we present now.

1.12 Inertia of Pure Energy

Think of a wall, standing on an ice skating rink, as in Fig. 1.12. The wall contains
some light bulbs, so that light emits from the wall to the right. It builds up a package
of light, which we sketched in light gray.

When it has reached some width, we switch off the light bulbs, so that the pack-
age of light starts to leave the wall. After some time, the light package is at some
distance from the wall, as we see in Fig. 1.13.

While energy is building up inside the light-gray volume, it presses against the
wall, because that pressure is energy per volume. How can we understand that?
Think of a pressure cooker. If it is under some pressure, it certainly contains energy:
The energy you free by opening the lid of the cooker. Twice as much pressure means
twice as much energy in the cooker, and the same pressure in a twice as large cooker
means twice as much energy as well. Hence energy is pressure times volume, be-
cause this doubles if either we double the pressure or the volume. In other words:
Pressure is energy per volume.

Now we know that the package of light presses against the wall before leaving it.
In other words: The wall recoils from the leaving light package, and moves to the
left at some speed.
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Fig. 1.13 The light packet
has left the wall, moving at
the speed of light to the right.
The wall is slowly moving to
the left

Fig. 1.14 The center of mass
does not move without
outside influence

However, this is weird: The massy wall begins suddenly to move to the left on
the ice skating rink, and nothing, that is, no other mass is moving to the right? This
cannot be: The center of mass will not move without outside influence. There is only
one way out: The light carries some mass to the right!

We sketched in Fig. 1.14, that if the large mass of the wall recoils a little to the
left, then the light must carry a “light” mass over a longer distance to the right, so
that their masses are balanced again. This is similar to balanced weights on a scale,
where their center of mass remains at the triangular bump.

How much mass does the light carry away? The wall got pushed by the light,
which is pure energy. If there goes twice as much light out to the right, then the wall
recoils twice as much, so that we expect that the light carries twice as much mass,
or inertia, with it. We conclude that even a light package of pure energy E carries
mass m, and that the two are in proportion. The constant of proportion must be a
constant of nature, because we talk about a law of nature relating mass and energy.
The detailed discussion in physical terms you find in Sect. A.2, showing that the
constant of proportion is the inverse of the square of the speed of light:

m = E

c2
(1.2)

Said Einstein in 1905:1

1A. Einstein. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen der
Physik, Volume 18, page 639, 1905.

A. Einstein. Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der
Energie. Annalen der Physik, Volume 20, page 627, 1906.
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Wenn die Theorie den Tatsachen entspricht, so überträgt die Strahlung
Trägheit [...].

That is to say:

If the theory of relativity is correct, then radiation carries inertia.

By the way: In the original thought experiment Einstein made a mistake, which
we also explain in Sect. A.2.

1.13 Mass Is Energy Is Mass

Let us sum up: The theory of special relativity suggests, that

Inertial mass is a form of energy, and energy has mass.
Consequently there should be a way of converting resting-mass

into energy and vice versa.

Physicists say “mass and energy are equivalent”. Equation (1.2) we can rewrite
as the famous formula

E = mc2 (1.3)

connecting energy, mass, and the speed of light.
We can see this formula (1.3) at work in Fig. 1.15, when light hits an atom. Then

the atom recoils from the light, that is, the energy of the light converts to motion
energy of the atom. If the light carries enough energy, then sometimes some of its
energy converts into an electron and a positron, which leave the much slower atom.
Such we can observe directly the conversion of energy into mass. By the way, the
process works also in opposite direction: Then we can see how the matter of the
electron and positron convert into pure energy.

1.14 Information Needs Energy

We saw that material bodies like mass or pure energy cannot travel faster than light.
However, what if we do not send any energy or mass, but only the information about
it? Then maybe we can send pure information faster than light, using some kind of
telephone to send this information, to someone very far away, and he puts together
the mass or energy after our specification.

However, it is just the other way round: Information needs to travel mass or
energy! In order to handle information, you have to store it somehow, to remember
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Fig. 1.15 Pure energy
converts into matter in form
of an electron and a positron,
by hitting an atom

it, and for this you need some mass or energy. Hence even pure information cannot
travel faster than light.



Chapter 2
Light, Time, Mass, and Length

2.1 Light and Time

Let us think a little bit more about light sender and speedometer resting relative to
each other, as in Fig. 2.1. Here we omit the speedometer. We put the whole setup
into some transparent elevator, like you find sometimes in department stores. We
depicted it as light-gray background box.

The man inside the elevator rests relative to the light-sender. He sees the light
beam traveling horizontally. This is because the speed of the elevator has no absolute
meaning, as we saw. He measures the time it takes for the light beam to arrive at the
tip of the arrow with the clock resting beside him.

We, standing at the right, outside the elevator will see the light starting at the
sender. While the light moves to the right, for us the elevator moves up, together
with the light beam. For example, at half the time it will be half the way up, so it
just travels along the diagonal upwards.

This diagonal is longer than the horizontal distance. But remember that light
travels always at the same speed c along the line, whether measured inside, or from
outside the elevator. We see that the direction of the light beam changes, but the
magnitude of the speed of light is for both of us the same. Hence we see the light
traveling a longer time than the observer resting with the light source:

(
time of clock

moving relative to us

)
>

(
time of clock

resting relative to us

)
(2.1)

That means that light and time are connected: For us outside, time inside the elevator
evolves slower than ours. When the observer sitting inside the elevator says: “1
second has passed”, we outside say: “No, more than 1 second has passed”. In other
words:

Because the magnitude of the speed of light is absolute, the pace
of time is relative to the speed of the observer.

K. Fischer, Relativity for Everyone, DOI 10.1007/978-3-319-00587-4_2,
© Springer International Publishing Switzerland 2013

13

http://dx.doi.org/10.1007/978-3-319-00587-4_2


14 2 Light, Time, Mass, and Length

Fig. 2.1 We see the elevator moving upwards. Because speed is distance per time, we can write
the distances as speed times time

We use the Greek letter gamma “γ ” to describe this: It denotes a number between
zero and one and connects the larger time of the moving clock with the smaller time
of the resting clock:

(
time of clock

moving relative to us

)
× γ =

(
time of clock

resting relative to us

)

We see: For speed zero, γ is one, because then we agree with the observer in the
elevator on our times. The larger the speed of the elevator, the longer the diagonal
becomes, so the smaller the factor γ .

Please have again a look at Fig. 2.1. During the time of the moving clock in
which the light travels along the longer diagonal with speed c, the elevator travels
the shorter vertical line with its speed. Hence its speed is always less than the speed
of light. We see again:

Matter cannot travel faster than the speed of light, relative to us.

2.2 The Gamma Factor

We can actually compute the γ factor. We need only the Pythagoras theorem to
get the answer. Please have a look at Fig. 2.2. We took the triangle from Fig. 2.1.
The theorem of Pythagoras tells us that

(c × time of moving clock)2

= (c × time of resting clock)2 + (speed × time of moving clock)2
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Fig. 2.2 The Pythagoras theorem tells us how the times of the resting and moving clock depend
on each other

We want the time of the resting clock, looking from the outside, so

c2 × (time of moving clock)2 − speed2 × (time of moving clock)2

= c2 × (time of resting clock)2

Take the common factor of the “time of the moving clock” on the left out,

(time of moving clock)2 × (
c2 − speed2) = c2 × (time of resting clock)2

Then divide by c2:

(time of moving clock)2
(

1 − speed2

c2

)
= (time of resting clock)2

Because the square of the moving time and the resting time are never negative, the

factor (1 − speed2

c2 ) must be at least zero as well. Hence we see here again, that the
speed cannot be larger than the speed of light. Further, we can take the square root,
to get the relation between our moving time and the resting time inside the elevator:

(time of moving clock) ×
√

1 − speed2

c2
= time of resting clock (2.2)

The square root term is the γ factor,

γ =
√

1 −
(

speed

c

)2

(2.3)

We can also get the γ factor in a graphic way: We use again the triangle of
Fig. 2.2, and express the lengths of all three sites as multiples of the longest side,
that is, we divide all three sides by (c × speed of moving clock). Then the longest
side has length one, by construction. The lower side becomes

�c × (time of resting clock)

�c × (time of moving clock)
= γ
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Fig. 2.3 The Pythagoras
theorem tells us how the γ

factor depends on the speed

and the right side becomes

speed ×����������
(time of moving clock)

c ×����������
(time of moving clock)

= speed

c

In other words, γ and speed
c

are the coordinates of a point on a circle of radius one,
as you can see in Fig. 2.3. Hence we can read off the size of the γ factor also from
this figure. We see again that as the speed decreases to zero, γ increases to one.

This factor γ appears nearly everywhere in the theory of relativity, once you start
to calculate things. Sometimes it is easier to use γ than to use the speed.

How much differs the γ factor from one for ordinary speeds on earth? An air-
plane travels at roughly 1000 kilometers per hour, that are one million meters per
3600 seconds, or roughly 300 meters per second, that is 3 × 102. The speed of light
is 3 × 108, so the airplane travels roughly at 10−6, that is one part of a million of the
speed of light

speed

c
≈ 10−6

Now square this: It becomes practically zero, namely one part in a million-million,
that is 10−12. Hence the gamma factor is practically one for ordinary speeds on
earth. Can we conclude from this, that the theory of relativity does not play any
role for nature around us on earth, as sometimes people state? No! We will see in
Chap. 3, that even at speeds of less than one millimeter per second we can easily
observe the time slip!
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Fig. 2.4 We inside the elevator see the observer outside moving down, together with the
light-sender

For small speeds, we can estimate the γ factor, as you will find in Sect. A.3. The
result is

γ =
√

1 −
(

speed

c

)2

≈ 1 − 1

2

(
speed

c

)2

(2.4)

We list the most important properties of the gamma factor:

1. For zero speed, γ is one.
2. The larger the speed, the smaller γ .
3. For nearly the speed of light, γ is nearly zero.
4. For very small speed, γ is smaller than one by a factor which is in pro-

portion to the square of the speed.

2.3 Whose Clock Is Running Slower?

Let us now place the light-sender outside, left of the elevator, and let us be inside,
as in Fig. 2.4. Let the elevator move upwards. Then the outside observer will see the
light beam passing horizontally, and we see it passing downwards. For us, the light
travels the longer, diagonal path, so we conclude that for us the time of the observer
standing outside of the elevator is running slower. However, in the last section we
saw that for the outside observer, the time inside the elevator runs slower than his
own!

Compare this with Fig. 2.1. Then whose time is really running slower?
Answer: The question is wrong! It is the kind of question like: “When is the air

feeling colder: At night, or outside?” We cannot decide, because we cannot compare
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Fig. 2.5 Measuring the relative speed in terms of own length and time differences

the two situations. The same goes here: If the inside and outside observer want to
compare their clocks, one of them, or both, have to change their speed to stop near
each other. Then they can compare their clocks. However, by changing speed our
clocks will change their pace! We will see in Chap. 4 what will happen then. For the
time being, the observers pass at each other and continue to travel at a steady speed.
Hence both are correct in their statements, that the other one’s clock is going slow.

2.4 Light, Time, and Length

2.4.1 Length in Direction of the Speed

How do the observers measure the speed of the setup in Fig. 2.1? At first, we as the
outside observer: We put down some rod in front of us. We sketched the rod as the
solid black arrow pointing upwards in Fig. 2.5. Then we measure the length of the
rod.

Because the rod rests relative to us, we call this the “length of resting rod”. Then
we measure the time it takes the setup to pass the rod. We chose the time of the
moving clock, measured by us, resting. Hence we measure the speed

speed = length of resting rod

time of moving clock

Let us say that the resting rod has a length of one meter and that the elevator
moves in 1 second one meter upwards, so that the speed is one.

What does the observer inside the setup measure? Because speed is relative, he
can insist that he rests, but the rod outside and we travel with the same speed down-
wards. We indicated this with the dashed downwards pointing arrow. For him, the
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Fig. 2.6 The length of a rod
at right angles to the
movement does not change

speed is

speed = 1 = length of moving rod

time of resting clock

If for us outside one second on the moving clock is passing, for the observer inside
the elevator, on his resting clock only less than one second, namely γ < 1 second
has passed. Hence for him, the length of the moving rod must be shorter than for
us, by the same γ factor, to get the same speed “one”:

(
length of rod moving
in direction of speed

)
= (length of resting rod) × γ (2.5)

2.4.2 Length at Right Angles to Speed

What happens at right angles to the movement? In Fig. 2.6, we drew also the rails
on which the elevator moves up and down. We sketched two wheels and one axis.
Both observers measure the same length for the axis.

Why? For the outside observer, the rails always rest. Their distance is just the
length of the resting axis. If the elevator moves up, then for the observer inside, the
axis has still the same length, because speed is only relative, and he can insist that
he rests. If the outside observer would measure another length of the axis than the
resting length, this would mean that for him, the axis would be longer or shorter than
the distance of the still resting two rails: The elevator would derail! This is absurd.
Hence:

Lengths at right angles to speed do not change.
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Fig. 2.7 The resting pole is
longer than the barn

Fig. 2.8 The moving pole is
shorter than the barn, for us
standing inside the barn

2.5 At the Same Time?

Let us see how the relativity of time and length play hand in hand, with the help of
a famous thought experiment called “The pole and the barn”. Here at first light does
not enter, only a pole enters a barn, and apparently contracts:

A friend carries a gray pole, slightly longer than the barn in which he wants to
place it. The barn has an electrical front door at the left, and an electrical back door
at the right. At first, we check that the resting pole is really longer than the barn, as
in Fig. 2.7.

Then the friend takes the pole out of the barn, and runs very fast through it,
from the left to the right. Because of the contraction we described in Sect. 2.4, the
pole looks for us standing in the barn shorter than the barn, if the pole is only fast
enough. We can arrange in advance that both doors close at the same instant of time,
and open shortly afterwards. If we chose the right moment for closing and opening
the doors, the barn is for a short moment completely inside the barn, as we see in
Fig. 2.8.

However, what does our running friend see? For him the barn is moving towards
him, so the barn is shorter for him. Hence the pole does not fit into the barn at all!
By which miracle can the pole for some time be completely inside the barn, with
both doors closed at least for a moment?

The point is here, that for the running friend at first the right door closes and
opens again, and afterwards the left door closes and opens again, as you see in
Fig. 2.9.

Why is that? Enter light: Suppose that as we pressed the switch to close both
doors, some light flashes at the doors. For us standing in the center of the barn, the
flashes occur at the same time. Hence for us, the doors are closing at the same time.

What does our running friend see? He also sees the light of both flashes traveling
with the speed of light c, as we know. However, the flash from the right door moves
a shorter distance to the runner, because he runs towards it, while he moves away
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Fig. 2.9 For our running friend, the moving barn is shorter than the resting pole, but for him, the
right door closes and opens before the left door does

from the flash coming from the left door. Hence he sees the right flash before the
left flash: He sees that the right door is closing before the left door. The reason
is twofold: First, the speed of light is absolute, and second, the two events „the
backdoor is closing” and „the front door is closing” happen at different places. We
conclude:

The statement “At the same time” is not an absolute true
statement for things happening at different places: It depends on

the relative speed of the clock and the observer.

2.6 Time and Mass

While we were standing outside the moving elevator in Sect. 2.1, we saw that time
itself slows down for bodies inside that elevator. What consequences has this for
the bodies moving inside? It means that all movements slow down by exactly the
same amount. So some property shared by all the bodies inside, must change, at
least from our standpoint. The obvious candidate is the inertia of the body: If they
all become more inert, they move more sluggishly, as if in slow motion. That fits
with our observation before: For the same reason that time slows down, the bodies
will never be able to mover faster than light from us away. To coin a catch-phrase:

For bodies moving relative to us, time evolves slower than they
experience themselves. Therefore they look more inert from our
point of view: Their inertia increases as their time slows down,

relative to us.

Let us see how much the inertia grows with speed: Suppose a ball with some
resting-mass bounces at right angles, slowly at a wall and bouncing back elastically,
as in Fig. 2.10.

When the ball bounces back, it changes from its original downwards speed to
the same speed, but upwards. It makes no difference if the ball had, say, three times
as much mass, or if the same mass was three times as fast, so the “push” the wall
receives, only depends on the product

push = mass × speed
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Fig. 2.10 A ball bounces
from a resting wall

Fig. 2.11 The same ball
bouncing at right angles from
the same wall, seen by us,
moving relative to the wall,
along the wall

The wall receives twice this push: Once when the wall absorbs the push from the
ball, and a second time when the wall pushes the ball elastically back with the same
speed.

By the way, physicists call this push momentum.
Further, the ball was slow enough, so that its mass is, by our experience, nearly

unchanged, that is, nearly the resting-mass,

push = (resting mass) × speed

Next, we imagine ourselves traveling fast along the wall, that is, parallel to it, as in
Fig. 2.11. That is, relative to us, the wall travels from the right to the left.

All the same, the wall will receive the same push, at right angles. Also the dis-
tance between the wall and the ball does not change for us, because we learned in
Sect. 2.4.2 that lengths at right angles to the motion do not change. The only differ-
ence is now, that we see the time of the ball proceeding more slowly, by the factor γ .
Hence we see that the speed of the ball is slower by this factor. Therefore, to main-
tain the same push, the mass of the ball must be larger by the same amount that its
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Fig. 2.12 Masses moves
inside a light moving box

speed is slower, that is by the same amount that its time is going slower:

total mass moving at speed = resting mass
γ

(2.6)

We learned in Sect. 1.13 that this growing mass is due to the motion energy which
the mass has gained. Therefore this mass has the total energy

total energy of mass moving at some speed

= mass moving at speed × c2 = resting mass

γ
× c2 (2.7)

2.7 Speed Addition

We know already that we cannot travel faster than light. We demonstrated that in
Sect. 1.6 with a peppercorn, driven by a rocket. However, maybe there is a detour,
without needing to accelerate things? Here comes a thought experiment, shown in
Fig. 2.12. In a very light, yet strong box there are two balls with equal resting-mass
moving to the left and the right, so that we can ignore the mass of the box and
concentrate on the mass of the two balls.

This box moves with, say, 70 percent of the speed of light to the right, relative to
the ground. Let the upper ball move with the speed of, say, 70 percent of the speed
of light to the left, in the box, that is, relative to the box. Let the lower ball move
with the speed of, say, 70 percent of the speed of light to the right relative to the box.
Then it seems that the lower ball is moving relative to the ground with 140 percent
of the speed of light?

Let us count the masses: If we stand inside the box, the masses of both balls are
equal, and because of Eq. (2.6) larger than their resting-masses by the factor 1/γ

belonging to the speed of 70 percent of c. These two masses add up to the resting-
mass of the box, if we look at it from the outside, because we assumed the box itself
to have nearly no mass.

Now look at the masses while standing on the ground: The box moves with the
same speed to the right as the lower ball inside the box, so its moving mass is again
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larger by the inverse gamma factor 1/γ . Hence the total mass of the box is twice the
resting-mass of one ball, divided by γ 2.

Next look from the ground at each ball separately. The right ball moves with the
same speed as the box, but to the left, so it rests relative to the ground. Hence its
mass is now just its resting-mass. What is the mass of the left ball? The left ball has
just such more mass as the right ball has less, because their masses should add up to
the same total mass of the box as before. However, we know that mass increases the
more the higher the speed. Hence the left ball must gain less speed than the upper
ball has lost. In other words, the left ball must be slower than twice the speed he has
in the box. In fact, it is so much slower that again it is not faster than light! In other
words:

Relativistic speed addition
If some box moves relative to the ground, with some speed, and
some mass moves inside that box with some speed in the same

direction, then that mass moves relative to the ground with a speed
which is so much less than the sum of the speeds, so that it never

can be faster than light.

For the actual calculation, see Sect. A.4. The result is, in terms of fractions of the
speed of light

total speed

c
=

speed of box
c

+ speed of mass in box
c

1 + speed of box
c

× speed of mass in box
c

(2.8)

For our example speeds we get

total speed

c
= 0.7 + 0.7

1 + 0.7 × 0.7
≈ 0.94

which is of course less than the speed of light, because it must come out that way!



Chapter 3
Light, Electricity, and Magnetism

3.1 Electric Charge and Speed

We have seen that the theory of relativity provides us with a wealth of new insight
about the relations between light, time, space, mass, energy, and other quantities.
Some quantities were before supposed to be invariable. For example, before rel-
ativity, the total mass involved in some experiment was supposed not to change,
or conserved, as physicists call it. Another example is the conservation of energy,
which we discussed in Sect. 1.9. Relativity knocked both from its pedestal, only to
merge energy and mass as different forms of the same underlying thing, and so, as
Einstein put it in 1906:1

Nach der in dieser Arbeit entwickelten Auffassung ist der Satz von
der Konstanz der Masse ein Spezialfall des Energieprinzipes.

That is to say:

Mass in the capacity of being energy, is conserved as energy.

It was certainly hard to reexamine such basic concepts as space and time from
the very start, things that the philosopher Kant thought to be built into our brain to
be able to grasp the world around us. However, there was a road map at hand, a
blueprint of what was to be expected: That was, and still is, the theory of moving
electrical charges, that is, electrodynamics. The reason is simple:

While mass, time, and length change with speed relative to the
observer, electrical charge does not change at all!

1A. Einstein. Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der
Energie. Annalen der Physik, volume 20, page 627, 1906.
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Fig. 3.1 The magnetic field of magnets exerts a force on electrical charges moving relative to it.
The magnetic field itself is invisible. This is the basic model for the electric motor

There is even more to it: In Sect. 2.2, we got the impression that relativistic effects
are important only at large speeds, because the γ factor differs from one only less
than a part in a million-million, for ordinary speed on earth. This is incorrect!

We will see in this chapter that the theory of relativity enables us to explain
magnetism: It is caused by electric charges, which move much less than a millimeter
per second, obeying the laws of relativity. In other words, magnetism is relativity
visible at really low speed.

3.2 Electric Charges and Magnets

Maxwell created the theory of electromagnetism in the nineteenth century. Before
that, electricity and magnetism were considered separate things. However, then peo-
ple observed things like

An electric current in a wire makes a nearby magnetic compass
needle move.

and began to have a more closer look, which yielded:

In an electric motor, electric current through wires, makes
magnets move relative to those wires. The other way round, in an

electricity generator magnets moving relative to wires, create
electric current.

We sketched the principle of the electric motor in Fig. 3.1. Electric charges, that
are in this case electrons, move through the black wire loop. In other words: An
electric current runs through the wire. The magnetic field exerts a force on these
moving electrons.
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Fig. 3.2 Left-hand rule for negative charges. Spread the thumb, the index finger, and the middle
finger of your left hand, such that they stand at right angles to each other. Then turn the left hand
such that the negative charge, electrons in our case, move in direction of the thumb, and that the
magnetic field points in direction of the index finger. Then there will be a force acting on the
moving electrons in the direction of the middle finger. Please try this rule now at the situation
shown in Fig. 3.1, by turning your left hand accordingly!

This force is called the Lorentz force. The direction of the force we get from the
left-hand rule,2 which we explain below Fig. 3.2.

Let us see how the Lorentz force acts for our model of the electric motor in
Fig. 3.1. The electrons enter the magnetic field and move to the rear, and the mag-
netic field points from the north pole of the left magnet to the south pole of the right
magnet, that is, to the right. Hence according to the left-hand rule, a force is push-
ing the electrons upwards. Therefore this force pushes the left part of the wire loop
upwards.

Then the electrons turn back behind the magnetic field and move to the front.
The left-hand rule tells us that there is a force pushing the electrons, and therefore
the right part of the wire loop, downwards. In total, we see that the wire loop will
begin to rotate clockwise. This thought experiment shows, how an electric motor
works.

In Fig. 3.3, we see the opposite effect at work: Now no current is flowing through
the black wire. We turn the wire loop clockwise. Then the electrons sitting in the
left part of the wire, move upwards. The left-hand rule tells us that there is a force
pushing the electrons to the front. Likewise, the electrons in the right part of the wire
move downwards. The left-hand rule tells us that a force is pushing these electrons to

2Some textbooks specify the electrical current to flow in opposite direction to the flow of the
electrons. Then the left-hand rule becomes a right-hand rule, but of course the physical phenomena
do not change.

Some other textbooks use the Fleming left hand rule. However, this rule uses the fingers in a
different order, and would become a right hand rule in our case: The electrons move in the direction
of the right middle finger, and the magnetic field points in the direction of the right forefinger, so
that the force on the moving electrons points in the direction of the thumb, that is, again upwards.
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Fig. 3.3 Again, the magnetic field of magnets exerts a force on electrical charges moving relative
to it. This time the same setup as before serves as the basic model for the electricity generator

the rear. Hence an electric current will begin to flow through the wire. This thought
experiment shows, how an electricity generator works.

3.3 Electric and Magnetic Fields

What is more, by carefully observing and interpreting the experiments, Maxwell
concluded that the energy of a magnet or electric charge spreads out in space, as an
electric field or magnetic field. Indeed, the wire in Figs. 3.1 and 3.3 does not touch
the magnet, but acts or reacts on the invisible magnetic field of the magnet.

If an electric field varies with time, it creates around it a certain amount of mag-
netic field, and vice versa. He summarized his findings in his Maxwell equations.

Actually, the Maxwell equations alone do not tell us how a mass carrying an elec-
tric charge reacts to an electric or magnetic field. This law is logically independent
of the Maxwell-equations. The force which an electromagnetic field is exerting on
a charged mass is called the Lorentz force. The Maxwell equations together with
the Lorentz force together make up electrodynamics.

We saw the Lorentz force in action in Figs. 3.1, 3.2, and 3.3.
After convincing himself that his equations described the experiments so far cor-

rectly, Maxwell pushed his new theory to the extreme: Even if there are no electric
charges or magnets around, in empty space, suitably varying electric and magnetic
fields can sustain themselves. However, they cannot rest at the same place, but must
travel at a certain fixed speed. Maxwell could even calculate this speed from his
equations and found that it was the same as the speed of light! Hence light is noth-
ing but a wave of varying electric and magnetic fields, called an electromagnetic
wave.

Maxwell’s great achievement was not only to unify electric and magnetic phe-
nomena under one roof, but also to show that light itself is an electromagnetic phe-
nomenon. Therefore he actually unified three types of phenomena: Electric, mag-
netic, and optic.

What is equally important: The absolute, fixed speed of light comes out of the
Maxwell equations as constant of nature without further ado. We already mentioned
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Fig. 3.4 A steady current of electrons moves in a straight, long wire from the left to the right. The
negative, black charge with the white minus-sign rests in front of the wire, and remains there

that electrical charge does also not depend on the speed of the charge, and therefore
is absolute. In short, electrodynamics fits in with the theory of relativity from the
start.

Therefore we can use electrodynamic phenomena as road map to build the the-
ory of relativity. We do so using a thought experiment, with an electrical current
running through a wire, creating a magnetic field. In fact, this thought experiment
was the starting point for Einstein in his article about the theory of special relativity.
Its title is “On the electrodynamics of moving bodies”, and now you understand
why!

3.4 Magnetic Field from Electric Current

In Fig. 3.4 we sketched part of a long, straight wire made of some metal. The wire
itself rests relative to us. Through the wire flows a steady electric current, that is,
electrons from the left to the right. We chose for our thought experiment a wire
of very low electrical resistivity, for example by freezing the wire to a very low
temperature, so that the atoms nearly freeze out and do not disturb the electrons
moving. We assume from now on that there is no electrical voltage needed in the
wire to sustain the flow of the electrons.

By the way: The electrons in a typical metal wire are really slow: They move at
less than a tenth of a millimeter per second!

In Fig. 3.4 we sketched the electrons of the electrical current as white ovals with a
black minus-sign. In the wire some of the atoms of the metal provide for the moving
electrons, so that they now miss an electron. The charge of these atoms is therefore
now positive. We sketched these atoms as black plus-signs. They rest in the wire.
The total wire is electrically neutral, that is, it carries no net charge.

We can check that by putting a, say, negative charge resting in front of the wire,
like the one we sketched as black oval with white minus-sign. Nothing happens: The
black charge will not begin to move.
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Fig. 3.5 The negative black charge moves to the right. Then the magnetic field of the wire attracts
this charge

However, the electric current in the wire produces a magnetic field around the
wire, the direction of which we sketched by the lines going around the wire.
Then the left-hand rule of Fig. 3.2 tells us that the magnetic field attracts the
black electrical charge if that charge moves relative to the field to the right, as
in Fig. 3.5. Experiment tells us, that this Lorentz force grows in proportion to
the speed of the black charge. Experiment tells us also, that this force grows in
proportion to the current as well, that is, in proportion to the speed of the elec-
trons. Therefore if the black negative charge is moving with the same speed as
the electrons to the right, then the magnetic field of the wire attracts the nega-
tive black charge with a force which grows in proportion to the square of this
speed.

3.4.1 The Faraday Paradox

Next, we move at the same speed as the outside negative charge and the electrons
to the right. Hence for us now the electrons of the current in the wire as well as the
black negative charge outside are resting. However, the positively charged atoms
move with the same amount of speed to the left. In other words: The wire itself
moves to the left, as sketched in Fig. 3.6.

Let us at first only use the first law of relativity: The physical effects do not
depend on whether the observer moves with steady speed in one direction. We see
now a current of positive charges of the same size moving at the same speed to
the left, as we saw before moving to the right as negative charges. Hence these
positive moving charges produce the same magnetic field. Thus we have the same
situation as before. In particular, we are again resting relative to the magnetic
field!

In other words: In the situation of Fig. 3.5, we rested relative to the wire, and
relative to the magnetic field. However, in the situation of Fig. 3.6, we move along
the wire, but still rest relative to the same magnetic field as before! This raises the
question: Is this “magnetic field” we drew around the wire, a real, physical quantity?
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Fig. 3.6 Now the positive charges of the wire move to the left. We and the outside negative charge
rest again with the magnetic field

After all, it is invisible, and seems to rest even if we move along the wire! This is
called the Faraday paradox.3

In order to check the magnetic field, we now look at the force it exerts on the
black negative charge.

3.4.2 No Attraction Without Relativity

Let us again at first only use the first law of relativity: In Fig. 3.5, the outside neg-
ative charge moves relative to the magnetic field, so that the magnetic field attracts
it. However, in Fig. 3.6, the outside negative charge does not move relative to the
magnetic field, so the magnetic field will not attract it! This is weird, and exactly
this was the situation when Einstein published his article about the “electrodynamic
of moving bodies”.

3.4.3 Attraction with Relativity

Next we use also a consequence of the second law of relativity, that is to say, the
relativity of lengths in direction of speed of Sect. 2.4.1. We know that the resting
wire was electrically neutral. This means that per meter, say, the number of positive
charges on the atoms and the number of negative charges were the same. As moving
observer we see now:

1. The charge per electron or atom does not change. That is an experimental fact,
suggesting already that relativity and electrodynamics fit.

3Many textbooks use a rotating magnet for this thought experiment.
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Fig. 3.7 The moving wire has now a net positive charge

2. Suppose that we put a rod parallel to the wire, resting with it. Because we now
move relative to this rod, the rod looks shorter for us, so the same number of
positive charges fits into a shorter distance. Hence per meter, relative to us, there
are now more positive charges than before.

3. Suppose that a rod moved with the same speed as the electrons to the right.
Because we now rest relative to this rod, it looks longer for us, so that the same
number of negative charges fits into a longer distance. Hence per meter, relative
to us, there are now less negative charges of the electrons than before.

Altogether the wire has now per meter a net positive charge. We sketched this in
Fig. 3.7, overdoing it for better view.

We also know from Eq. (2.4) that the γ factor for slow motion differs from one by
an amount which is in proportion to the square of the speed. Hence the net positive
charge on the wire is also in that proportion. Therefore now the positively charged
wire attracts the outer negative charge, because that is what charges of the opposite
sign do, in proportion to their charges. Hence the wire attracts the positive charge
with a force in proportion to the square of the speed.

Compare with the resting wire of Fig. 3.5: In both cases the force attracts, and in
both cases the force grows in proportion to the square of the speed! Hence we can
guess already, without any calculation, that the two situations are identical.

We see that with the help of the theory of relativity we can understand elec-
trodynamics: We just explained the magnetic Lorentz force and the left-hand rule!
Magnetic fields are nothing but electric fields from moving charges, acting upon
moving charges.

Without knowing quantum theory, we can guess already that in a permanent mag-
net, there must be moving charges to sustain the magnetic field!

When estimating the γ factor we assumed that the electrons or atoms only move
slowly, but that is not necessary: From both points of view of the observer, the wire
attracts the outside negative charge in exactly the same amount.

What about the Faraday paradox? Because there are in Fig. 3.7 more positive
charges moving with the same speed to the left, than there were in Fig. 3.5 negative
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charges moving to the right, the electric current is now stronger. Hence the magnetic
field is not the same as before: It has increased!

We have seen in this chapter that relativity is not only about large speeds and
spaceships: It is also about very slow bodies—for example, the electrons in a wire
move with less than a millimeter per second! And it is about everyday electrical
appliances: Magnetism itself is a consequence of the theory of relativity.



Chapter 4
Acceleration and Inertia

Let us come back to the theme of the first chapters: Sending light at different speed.
Up to now, the sender and observer moved steadily, with speed both constant in
magnitude and direction. The part of the theory of relativity dealing with these phe-
nomena is the theory of special relativity.

However, to arrive at some speed, or to change the direction, we must accelerate.
We ask: How does acceleration of a body affect time, length, mass, or energy? This
will eventually help us understanding gravity.

4.1 Rotating Motion: Twin Paradox 1

We begin with the simplest case, in which speed changes its direction, but not its
magnitude, as on the merry-go-round in Fig. 4.1. The merry-go-round has the form
of a disk, with a hole in its center. We placed the merry-go-round on such a small
planet, that we can neglect its gravity.

Suppose we ride at the rim of the rotating merry-go-round. The merry-go-round
pulls us constantly inwards, along a circle. As it is, our speed relative to the ground
always changes, that is, it changes its direction: We accelerate by rotation. We feel
our inertia, because mass itself resists acceleration. If we let go, we would slip off
the merry-go-round, along a straight line, as our inertial mass prefers to do: We
would change into an inertial state, in which we continue to move steadily, with
speed both constant in magnitude and direction.

What if we place ourselves with a clock at the center of the merry-go-round, on
the ground? Then we do not turn around. Nothing accelerates us. We are in a state of
inertia. For this state we know by experience that time moves on steadily. We see a
friend with his clock riding on the rim of the merry-go-round with some speed. For
a very short time interval, we can think of our friend at the rim going nearly straight
ahead. We use our knowledge about moving clocks and conclude that the clock at
the rim will run slow, and this by the γ factor of Eq. (2.3).

K. Fischer, Relativity for Everyone, DOI 10.1007/978-3-319-00587-4_4,
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Fig. 4.1 Measuring time on a
merry-go-round

Because the clock at the rim does not move away from us, we can wait as long
as we wish, seeing the clock at the rim slowing down against our clock in the cen-
ter more and more. This leads to a weird thought experiment: Suppose that both
observers were identical twins. At first, they both rest in the center of the merry-
go-round. Then one of them steps on the merry-go-round and moves to the rim. He
rides there some time, and then returns back to the center. Certainly his clock will
react somehow during the time in which he moves towards the rim, and afterwards
when he returns. However, that does not depend on what happens while he is riding
on the rim which he can do as long as he wishes. In the end, when he has returned
after a long time riding on the rim, he is younger than the twin who waited all the
time in the center!

This is the famous twin paradox or clock paradox. In fact, it is no paradox, but
measured reality!

For example, in 1977 muons were sent along a circular tube of diameter 14 m,
at the European Organization for Nuclear Research CERN in Geneva. Muons with
negative electric charge are a kind of heavy version of an electron. They decay
into electrons and other particles. A muon resting near us has a lifetime of about
2 · 10−6 s.

However, inside the “merry-go-round”, that is the circular tube, the muons circled
with a speed of v = 0.99942 · c. Hence the γ -factor is about 1

29 , so that they should
live about 29 times longer than when resting near the observer. This is precisely
what was found!1

1You can download the original paper here: http://cds.cern.ch/record/929453/files/ep63_001.pdf.
Their γ is our γ −1.

http://cds.cern.ch/record/929453/files/ep63_001.pdf
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Fig. 4.2 Measuring lengths on a merry-go-round. Short lengths along the rim look nearly straight,
as we see in the closeup on the right

4.2 Rotating Motion: Not the School Geometry

Next, our friend at the rim wants to check out how lengths are effected by the rota-
tion. We in the center produce many small rods and give them to our friend at the
rim. The rods are so small that by joining them he can estimate the length of the rim
precisely enough.

We know from Sect. 2.4.2 that lengths at right angles to speed do not change.
Therefore we agree with our friend that the diameter of the merry-go-round does
not change as it turns around.

Then our friend measures the length of the rim of the merry-go-round, as in
Fig. 4.2. A small part of the rim looks nearly straight, if we only zoom in enough,
as in the right part of the figure. Hence for small enough rods our friend can esti-
mate the length of the rim, in terms of the number of rods it takes to exhaust the
rim.

Suppose at first that the merry-go-round is at rest. Our friend sends a light beam
along the rod as his feet. The light beam passes his feet at the speed c. This speed
is the length of the rod, divided by the “very short time” it takes for the light to
pass along the rod. Therefore the length of the rod is c times this “very short time”.
This “very short time” he reads off a clock he is carrying, and such he knows the
length of the rod. Because he counted the number of rods that exhaust the rim, he
will conclude that the length of the rim is π times the length of the diameter, as we
expect from school-geometry.

Next, for the rotating merry-go-round, the light beam will still pass along the rod
at his feet, because the rod lies in direction of the rotation speed. The light beam
passes at the rod still at the same speed c, because the speed of light is absolute,
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Fig. 4.3 The rim is longer
than π times the diameter,
when measured as number of
rods

and for the “very short time” our friend travels nearly straight ahead, along the rim.
He reads off his clock the “very short time” and finds that the light beam has not
made it along the rod, but traveled only along some part of it! Why is that? For our
rotating friend, time is passing slower, that is, in shorter intervals than for us resting
in the center, shorter by the γ factor of the rotation speed. Hence the light beam
will not make it during the “very short time” he reads off the clock. However, for
our friend the length of the rod is still the speed of light c times the time it takes
the light beam to travel along the rod. In other words, for him, the rod has become
longer.

However, there are still the same number of rods exhausting the rim. Therefore
the ratio between the length of the rim and the diameter is for him larger than π ! To
be precise: The ratio is by a factor 1/γ larger. Hence our friend decides to shorten
the rods by the factor γ . Then he needs now more rods to exhaust the rim of the
disk. In Fig. 4.3, we overdid the effect, for better view.

Up to now, when bodies moved with constant speed straight ahead, we saw that
time and length among others changed relative to the speed of the observer. How-
ever, at least we still could use school geometry, or what mathematicians call Eu-
clidean geometry. For example, we calculated the γ factor using the Pythagoras
theorem in Sect. 2.2, which is part of Euclidean geometry. This geometry is a rigid
systems of theorems, so when one of them ceases to be true, many others will fail
as well. One of these theorems is that the ratio of the length of the boundary and
the diameter of a circle is always π . In our case of the rotating merry-go-round, we
saw already that this is not any longer true: The rim of a rotating merry-go-round
is longer than its diameter times π ! We only can conclude, that when we are under
acceleration, the school geometry is incorrect!
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Fig. 4.4 We send a light
beam through an accelerating,
transparent elevator

Fig. 4.5 We outside are in an
inertial state, so that light
travels along a straight line

4.3 Straight Motion

Under acceleration, the weirdest things happen. This is not limited to rotating mo-
tion: Let us now put the light sender to the left of a transparent elevator, as in Fig. 4.4.
The upwards pointing arrow shows that the elevator is accelerating upwards. We
stand outside, and see the elevator passing by. At this instant, we send a light beam
through point A.

We see this beam passing through the glass walls of the elevator, in a horizontal,
straight line, from point A to the point B , as in Fig. 4.5. This is the fastest way some
body can travel from A to B , because nothing is faster than light.

What does our friend in the elevator see? Please have a look at Fig. 4.6. It shows
the moment when the light is leaving the elevator. As the light passes through the
elevator from point A on, the elevator gathers speed, upwards, so that for our friend,
the light bends downwards. He sees the light beam leaving the elevator at some point
B further downwards.

We drew a straight, dotted line on the wall of the elevator between the points A

and B . Is this path not shorter than the path the light has chosen? If so, can we not
send some signal along that shorter, straight path, faster than light?

The answer is: The question was wrong! We drew the straight, dotted line before
the elevator began to accelerate. Then for us time proceeds at an even pace. Once
the elevator is accelerating, time inside the elevator slows down more and more.
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Fig. 4.6 Light bends for the
observer under acceleration

Fig. 4.7 No matter what course the twin takes: After returning home, he finds that his clock is
running slow

Straight lines will deform, because vertical lengths will shrink, while horizontal
lengths will remain the same. Further, we cannot even measure “the” length of the
dotted line, because while we measure, time and lengths will distort even more! We
sit in space-time, not only in space!

We see that the easiest way to handle rods and clocks, is while in a state of inertia:
Time passes steadily on, and lengths do not shrink. Once you begin to accelerate,
lengths can change as time proceeds, Euclidean geometry becomes wrong, so that
things get complicated.

4.4 Proper Time and Inertia: Twin Paradox 2

The time for the twin riding the merry-go-round in Sect. 4.1, proceeded slower than
the time for the resting twin. This time, measured by one’s own clock, we call the
proper time of the observer or a body. Hence we can say: The proper time for the
resting twin passes steadily on, faster than the proper time of the twin who left the
center of the merry-go-round.
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Fig. 4.8 The clock of the left twin remaining at the start, remains in the same state of inertia and
therefore is running faster

Now let us repeat this thought experiment in another way, as shown in Fig. 4.7.
At first, both twins rest near each other, at the start, not feeling any acceleration.
Their proper time passes steadily on.

Then one twin decides to leave the place. Hence he has not only to leave the
place, but also this state of inertia: He must change his speed to get away. He
travels on a route like the one in the figure, and after he returned, he finds that his
clock is running slow. We can push this thought experiment to its extreme:

In Fig. 4.8, the traveling twin accelerates at first to a certain speed, then he travels
a long way with this speed, straight away, in an inertial state. Then he gently returns,
again traveling nearly all the way home at the same constant speed straight away,
in an inertial state, and finally accelerates to stop at the start beside the first twin.
Certainly his clock will react somehow during his initial and final acceleration, or
when he returns. However, that does not depend on what happens when he is travel-
ing at constant speed back and forth. The longer the distance to the point of return,
the longer he travels straightly at constant speed back and forth, and the more his
clock slows down.

Therefore we can neglect these accelerations: The time of the traveling twin ad-
vances less by the γ -factor of his mainly constant speed, in comparison to the time
of the twin who remained at the start.

However: Is it really during these long trip in the inertial state, that the traveling
twin’s clock is going slow? He may say: “I only saw my twin brother going away
from me to the left. I certainly was in a state of inertia for a long time, during which
I saw my twin brother moving away from me at constant speed, straight away, and
later approaching me, again at constant speed. So during that time my state of inertia
is as good as his, so from what I learned in Chap. 2, I reckon that his clock slowed
down, not mine!”

This is again the clock paradox or twin paradox.
However, his opinion is in error: We compare the clocks after the traveling twin

returned, and is again resting with the other twin. It is irrelevant what he thinks
would happen in the meantime, because that was not the question, only which time
he accumulated in the end.

In fact, even the traveling twin can observe that his clock does only advance
the fraction γ of the remaining twin’s clock! Why is that? Let us think about the
distance between the start and return points in Fig. 4.8. The twin remaining at the
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start measures this distance, for example by sending a light beam to the return point,
where a mirror reflects the light back to the start point. From the time the light was
traveling, he calculates the distance. And from this distance and the speed of the
traveling twin, he finds the time it takes the traveling twin to return to the start. And
of course, that is the time that passes for the twin remaining at the start.

Now, what distance will the traveling twin measure? We saw already in
Sect. 2.4.1, that distances in direction of speed will shrink by the γ -factor of that
speed. And because the clock of the traveling twin does advance always at the same
pace for him, he indeed needs only the fraction γ of the time which the twin at the
start observes, because he has to travel less a distance than what the remaining twin
measured.

In short: For the twin remaining at the start, the time of the traveling twin is
passing slower, by the factor γ , while for the traveling twin, the distance is shorter
by this factor γ . So there is no paradox: It all fits!

Let us sum up: The only, but crucial difference between the two twins is, that the
traveling twin changed his state of inertia. Turning tables, this means that as long as
we drift freely in space, in the same state of inertia, our proper time evolves always
fastest. To coin a catch-phrase:

Because matter wants to remain inert, it moves without force such
that it takes the longest proper time possible.



Chapter 5
Inertia and Gravity

Matter drifting in empty space resists being accelerated: it has inertia. However,
near large masses like the earth, for example, mass seems to accelerate towards the
large mass. Starting from this simple observation will help us to understand better
how to deal with acceleration and gravity.

Gravity we feel everyday, beginning when we get up in the morning, when we
go upstairs or downstairs, or drop a cup, or such like. It is too common to be aston-
ishing. And yet gravity is one of the most mysterious things in the universe, if we
think a little bit about it. For this we need pure gravity, not marred by air drag, so let
us make a thought experiment, similar to what high school teachers really do: We
put a bird feather and a heavy metal ball into a glass tube, and close the tube at both
ends with some plug. Through one of the plugs we drive a thin tube connected to a
vacuum pump, and pump the air out of the glass tube, and seal it. Then we hold the
air void tube vertically, and overturn it fast. The result will be as shown in Fig. 5.1.

The ball and the feather fall equally fast down! On earth we have to get rid of the
air to see this, but on the moon, astronaut David Scott from the Apollo 15 mission
did exactly that: He dropped at the same time a hammer from his right hand and
a feather from his left hand, and both reached the ground at the same time. Just
search the Internet for the keywords “hammer feather Apollo”, and you even can
see a movie from the original television capture.

Physicists repeated this kind of experiment, with more and more accuracy, and
all kinds of materials including even subatomic particles, over the last hundred years
or so, and always found this result:

All matter reacts in the same way to the same gravity.

This is astonishing, because it shows that inertia and gravity are somehow con-
nected. Let us sort it out: Inertia of a 1 kg-stone, say, you can measure on an ice
skating rink, by pushing the mass, as we already saw in Fig. 1.10. This has nothing
to do with gravity: You can do the same in empty space, away from earth, and still
mass will resist to being pushed.
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Fig. 5.1 A bird feather falls
as fast as a metal ball inside a
void tube

Or we can weigh the stone. Again you will find “1 kg”, this time as weight, or
gravitational mass. Here the stone on the scale is at rest, so it does not resist any
acceleration, rather it wants to accelerate, to fall towards the center of earth.

The point is now, that when you take a 1 kg-piece of some material and another
2 kg-piece of another material, as measured on the ice skating rink, then the first
material will weigh exactly 1 kg, and the second will weigh exactly 2 kg. In other
words, their inertial mass and their gravitational mass are exactly equal. Why, if the
second materials would weigh, say, 3 kg, then in the glass tube it would fall faster
than the first material. Nobody has seen such a thing up to now:

Inertial and gravitational mass are exactly equal for all
materials.

5.1 Gravity Is No Force

So what exactly happens when the feather and the ball fall down the tube? The
gravitational mass of the ball, say, tries to accelerate the ball downwards. At the
same time, the equally large inertial mass resists this acceleration. The same goes for
the feather. Now comes the point: Because inertial and gravitational mass are exactly
equal, the ball does not accelerate at all! The ball is free-falling and therefore in an
inertial state.

However, if you are standing nearby, you may argue: But I see the ball acceler-
ating towards the earth! Answer: No, you are accelerating away from earth! While
standing on the ground, you yourself feel that upward acceleration, and therefore
your imagination is hampered by all kinds of weird things which can happen if we
are in an accelerated state, as described for the merry-go-round and the elevator in
Chap. 4.

So in order to really sort it out, we had better remain in a state of inertia. To clarify
things, we make a number of thought experiments, using elevators, in a similar way
as Einstein originally did. Please have a look at Fig. 5.2.
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Fig. 5.2 Suddenly someone
pulls the elevator with the
rope

In the picture on the left, we sketched an elevator floating in empty space, far
away from any planet, star or other large mass, and no air inside. The astronaut
inside the elevator in his spacesuit and the ball nearby float freely as well. Then
suddenly someone pulls the elevator, so that in the picture on the right the astronaut
sees the floor of the elevator accelerating up towards him. However, the astronaut
as well as the ball still are floating freely. No force is pulling at them! Hence he
reckons that someone is pulling the rope, accelerating the elevator upwards.

Or does he? What if in reality it all happens as in Fig. 5.3? This time nobody
pulls the rope, but suddenly a planet sneaked under the elevator. Still the astronaut
does not feel any acceleration, and the nearby ball does not move relative to him.
This is because the inertial and gravitational mass of the astronaut and the ball are
exactly equal. He and the ball are still in an inertial state, free-falling! Rather he sees
again the floor of the elevator accelerating towards him and the ball. However, the
observer standing on the surface of the planet, sees the astronaut and the ball falling
downwards.

Fig. 5.3 Suddenly a planet appears under the elevator
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By measuring acceleration alone the astronaut in the elevator cannot decide from
inside the elevator which of the two cases are true. He has to look outside the elevator
to find out.

This is the famous equivalence principle by Einstein:

Equivalence Principle

By measuring our acceleration alone we can in no way decide
whether gravity acts upon us. In particular, free-falling masses are

in an inertial state, as if they would float freely in empty space.

The equivalence principle will be our handy tool to understand gravity. Because
free-falling masses are in a state of inertia, their proper time is proceeding steadily,
and we can use our gathered knowledge about this state to explore the surroundings
of large masses, to find out how gravity works: The equivalence principle links
inertia with gravity.

Let us begin by again considering the merry-go-round of Sect. 4.1: For an ob-
server riding on the rim of the merry-go-round, Euclidean geometry does not work,
and his clock is running slower than the clock of someone resting outside in an
inertial state.

We saw that this was the case because he constantly is changing the direction
of its speed relative to the center of the merry-go-round. Now compare with what
happens on the surface of earth: We on the surface of the earth constantly accelerate
upwards, that is, away from the center of earth. In other words: We are not in an
inertial state. Therefore we can expect that for us under gravity Euclidean geometry
does not work as well, and that time will run slower than for an observer resting far
away from earth.

However: The acceleration we feel both while riding on the merry-go-round or
while standing on earth, as such cannot be the reason for the clocks to slow down!
For we saw in Sect. 4.1 that in case of the merry-go-round, for example, the clock
riding on the rim goes slow depending on its rotation speed, and not its acceleration:
A smaller merry-go-round with the same rotation speed would produce the same
effects, but an observer riding it would feel a larger acceleration.

We have at first to understand in more detail how gravity works.

5.2 Gravity Bends Space-Time

Image a rocket going around earth, with its engine switched off. The rocket is free-
falling, not towards earth, but around it, as we sketched in Fig. 5.4. We place our-
selves resting far enough away from earth, so that we are nearly in an inertial state
(for the meaning of “far enough”, see Preface). By the equivalence principle, the
rocket is in a state of inertia as we are. However, we see that the rocket does not
travel along the dashed straight line. What forces the rocket around the earth, along
the bended path, drawn as solid line?
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Fig. 5.4 Rocket free-falling
around earth

Fig. 5.5 On a bended
surface, the shortest path
between two points usually
bends as well

5.2.1 Bended Surface

To find the answer to that question, think of an analogy: Chose two points A and
B , somewhere in empty space, far away from any planet or star or any other large
mass. Try to find the shortest path between these points. Clearly this is the straight
path connecting them. How can we trace this path? Start at A, head towards B , and
keep going straight ahead.

Next, suppose the two points A and B are along the equator in the Pacific Ocean,
say, with A being west of B . Again try to find the shortest path between the two
points. The shortest path between the two points is a tunnel along the straight dashed
line connecting them, as sketched in Fig. 5.5.

If we restrict ourselves to the earth’s surface, the shortest path is the solid line,
which is part of the equator: It bends. How can we trace this path? Start at A and
keep straight ahead, eastwards.

For short distances, the ocean surface looks flat. Then keeping straight ahead
means for short distances, to the horizon perhaps, to follow a straight path. Hence
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Fig. 5.6 On a bended
surface, the straightest path
between two points is
sometimes not the shortest
path of all

the shortest path connecting two points on a bended surface is not straight, but the
straightest path.

Such shortest paths are always straightest paths, but on a bended surface only
short enough straightest paths are necessarily the shortest paths: Let us again start
at A and keeping straight ahead, moving westwards, along the equator, following
the fat line in Fig. 5.6. This path is a straight line for short distances, and up to
some not-too-far away intermediate point C, it is the shortest of all possible paths
connecting A and C. This you can see in Fig. 5.7, by comparing it for example with
the gray path connecting A and C. If we follow this straightest path further on, it
is again the shortest path between points C and D, and afterwards between points
D and the endpoint B . Hence this straightest path is the shortest of all paths which
cross it a short-enough intervals, like the total gray path in Fig. 5.7.

Hence the total path is the straightest path from point A to point B , if we start
in a westward direction. However, this path is of course longer than the eastward
path we chose in Fig. 5.5. We will encounter such a straightest path in space-time in
Sect. 6.2.

Such a straightest path is the natural analog to the straight line in a plane. Its name
is a geodesic. The name tells: geodesy is the science of measuring and mapping the
surface of earth...

5.2.2 Bended Space-Time

In the same way, the free-falling rocket travels over short distances nearly along a
straight path, with constant speed. For longer distances, the path can bend, and the
speed can change, as we have seen. However, this path from A to B in space is
usually not the straightest path in space, as is clear from Fig. 5.4. Then what does
gravity bend?

Gravity does not only bend space, gravity bends space and time,
called space-time.
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Fig. 5.7 The straightest path
is shorter than all nearby
paths, that is, which cross it
again and again at short
enough intervals

Let us see how.
From Sect. 4.4 we know that when we rest at some point without accelerating,

that then our clock is running fastest of all clocks which at first rest with us, then
move away a little bit and return to us, resting again with us, after some time. Now
comes the equivalence principle into play: We in the rocket in Fig. 5.4 do not feel
any force pulling at us, while free-falling along the solid curved line from A to B .
Hence we can insist that we rest. Therefore any clock which after resting with us,
has moved a little bit away at point A and returned at point B , again resting with us,
will run slower than our clock. Likewise we in the rocket can move along the dashed
line, but then we must switch on the rocket motor and accelerate: We must leave our
present state of inertia. Before leaving, we place a clock next to our rocket, which
continues to free-fall from A to B , along the solid curved line. When we meet again
and rest relative to this clock in B , then our clock is running slow against this clock
which traveled along the bended path free-falling in an inertial state.

Next we need to know what a “nearby” path in space-time means, in analogy to
Fig. 5.7. It must be a path which crosses the original path in short-enough intervals.
If we move on the original path, and our friend along such a nearby path, then in
short enough intervals, he crosses us. It means that relative to us, he stops over at
us. Such a path we call a space-time nearby path.

Therefore we can use as “length” of a path in space-time the proper time it takes
to pass through it. The straightest path between A and B is the path which takes
most proper time of all space-time nearby paths, with the same starting and arriving
speed.

Can it happen, that while we travel on such a straightest path, that our proper time
is running slower than for our friend, who left us some time ago, and just joined us
again, in analogy to a straightest but not shortest path on a surface in Sect. 5.2.1?
This is possible, if our friend does not follow a space-time nearby path, as we will
see in Sect. 6.2.

Such space and time are connected to space-time: Just drawing some line be-
tween two points A and B in space does not mean anything: In addition, we must
fix the starting speed and at least in a thought experiment travel from A to B to find
out what the straightest path is. It will be a path on which we can travel force-free,
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Fig. 5.8 Balls inside a large
enough, free-falling spaceship
begin to move towards each
other

that is, free-falling. The time it takes depends also on the starting speed in bended
space-time, and we use it as the “length” of the path in space-time.

All matter is free-falling in the same way, if it is light enough, so that it practically
does not influence other masses with its gravity, and if it is small enough, so that its
movement traces out a line. Such a mass we call a test-mass, like a for example a
small clock. Under gravity, the test-masses will move relative to each other and show
us how a piece of space deforms as time proceeds. Such we can see how space-time
is bending. We show in the next section how this works out.

Let us sum up:

Gravity bends space-time. The straightest path between two
points is when a test-mass is free-falling between them, that is,

when the proper time for a test-mass traveling between the points
with given initial speed, is passing fastest, compared with

space-time nearby paths. This path is a geodesic in space-time.

5.3 Measuring the Bending of Space-Time

We said in Sect. 5.1 that to detect gravity we have to look outside the elevator. All
the same, we can use a large enough spaceship, free-falling to earth, without air
inside, as we sketched in the left picture of Fig. 5.8.

On the left and right hand of the astronaut are two balls, which are falling together
downwards towards the center of earth, that is, parallel to him. However, gravity acts
in direction of the center of earth. Hence the two balls both begin to head towards
the center of earth, approaching each other. In the picture on the right, we see that
for the astronaut, the two balls will begin to move towards each other.

Again, we can make the analogy to the straight-ahead motion on the bending
surface of the earth. In Fig. 5.9, two observers starting at the equator and moving
straight-ahead northwards, will meet at the north-pole, so they move towards each
other.
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Fig. 5.9 Moving parallel
along two straightest lines on
a ball, two observers can
move towards each other

Fig. 5.10 Moving parallel
along two straightest lines on
a ball, two observers can also
move away from each other

However, there is more to this analogy: In Fig. 5.10, two observers move straight-
ahead towards the equator. Hence they move away from each other. An analog thing
happens in the spaceship: In the left picture of Fig. 5.11, we placed the balls in the
free-falling spaceship on top of each other. The upper ball is farther away from the
center of earth than the lower ball, so that gravity acts more strongly on the lower
ball.

Inside the spaceship, in the right picture of Fig. 5.11, we observe therefore that
the upper and lower ball will begin to move away from each other!

How does the whole picture fit together? Let us place even more balls as test-
masses inside the spaceship, resting relative to each other, so that they mark the
corners of an imagined shoe-box. Again we suppose for simplicity, that inside the
spaceship there is no air. We sketched one side of the box in the left picture of
Fig. 5.12 in light gray. In the picture in the center, we see both effects working at the
same time: The left and right balls move towards each other, while the upper and
lower balls move away from each other. In other words, the imagined box will gain
height, but lose width, and in the third dimension depth, as we see in the picture on
the right.
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Fig. 5.11 Balls inside a
large, free-falling spaceship
on top of each other, begin to
move away from each other

Fig. 5.12 Inside a large, free-falling spaceship the form of a small piece of space begins to change,
but not its volume

Now if you measure this carefully, you will find that the volume of the box does
not change! Can we understand this intuitively? If the imagined box would con-
tain mass, then the box would begin to shrink, because gravity tends to clump mass
together. However, we marked a box with test-masses that do not disturb the neigh-
borhood. Hence the box contains no mass. The gravity acting from outside masses
like earth will deform the box, but not shrink it.

This is the essence of what gravity does. We will show how exactly mass creates
gravity in Chap. 7. However, at first we have to understand how mass reacts on
gravity in more detail.



Chapter 6
Equivalence Principle in Action

6.1 Time and Gravity

How time reacts on gravity? Please have a look at Fig. 6.1. We put one clock on the
surface of a planet. To make things simpler, we chose a planet which does not spin.
We put the other, left clock far enough away (for the meaning of “far enough away”,
see Preface), where we can neglect the gravity of the planet. We place it resting
relative to the planet, so that this left clock is nearly in a state of inertia. We arrange
that at some instant, both clocks show, say, two o’clock, as you see in Fig. 6.1. We
ask: Does the clock on the planet advance at the same pace as the left clock far away
from the planet?

In order to compare the pace of the two clocks, we move the left clock to the right
clock, without changing its state of inertia. This is possible because the equivalence
principle tells us that a free-falling clock is in an inertial state. Therefore we chose to
free-fall together with the left clock towards the planet, starting at, say, two o’clock.
Then for us, the planet with its clock on it, is moving towards us. The horizontal
arrows show the speed. In Fig. 6.1, the planet with the right clock resting on it, just
started to move relative to us. In Fig. 6.2, the right clock nearly reached us. When
we pass near the right clock, we can compare the two clocks. Our clock was always
in the same inertial state, so it proceeded at the same pace as it did far away from
the planet. However, we see that the clock on the planet is moving relative to us at
a certain speed, when we pass it. Hence we conclude that the clock on the planet is
running slow against our clock.

In other words:

Gravity of a large mass slows down nearby clocks. If we let
another clock start from a place resting far away from the large

mass, free-falling towards it, and passing a clock resting near that
large mass, then the γ factor of this speed is the rate at which the

clock near the large mass is running slow.

We use this thought experiment to calculate the slowing rate in Sect. 8.5, when
we solve the Einstein equation of gravity.

K. Fischer, Relativity for Everyone, DOI 10.1007/978-3-319-00587-4_6,
© Springer International Publishing Switzerland 2013

53

http://dx.doi.org/10.1007/978-3-319-00587-4_6


54 6 Equivalence Principle in Action

Fig. 6.1 The left clock begins to free-fall from far away towards the planet

Fig. 6.2 The left, free-falling clock passes the right clock which rests on the planet

In practice, we just use three very precise clocks, plus a high rise building. We
adjust the clocks, and put one clock on the ground floor of the building on this
planet, and one on the upper floor. Then we free-fall again from far away, and pass
at the high-rise building, as in Fig. 6.3. We pass the upper clock with some speed,
and the lower clock with some larger speed. Hence we see that the lower clock is
proceeding at a slower pace: Time on the upper floor of the high-rise building is
proceeding faster than on the ground floor!1

1This has been checked in 2010 by physicists C.W. Chou, D.B. Hume, T. Rosenband, and
D.J. Wineland from the National Institute of Standards and Technology, USA. See for example
http://www.sciencedaily.com/releases/2010/09/100923142436.htm.

http://www.sciencedaily.com/releases/2010/09/100923142436.htm
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Fig. 6.3 Clocks in a high-rise building

Some popular texts claim, that it is the acceleration we feel on the planet, that
slows the clocks down, by comparing it with clocks in a starting rocket. This is
incorrect. Compare with the merry-go-round: The clock of the observer riding on
the rim slows down according to his rotation speed. We can build two merry-go-
rounds, one with a smaller diameter, and one with a larger diameter. We let them
both rotate with the same speed. Then the acceleration on the small merry-go-
round is larger than on the larger merry-go-round, but the time delay of the rotating
clocks is the same. Likewise, we can find two planets, one with roughly double
the mass and diameter of the other, such that they have different acceleration due
to gravity, but the same time delay of clocks. The exact condition we will learn in
Chap. 8.

6.2 Proper Time in Bended Space-Time: Twin Paradox 3

In Sect. 5.2.2 we learned that the proper time of a free-falling test-mass is passing
fastest, compared with space-time nearby paths. However, what can happen if two
twins who were at first together, move along completely different paths in bended
space-time? For this please have a look at Fig. 6.4. At first, the two twins free-fall
around a planet, as you can see in the left picture of Fig. 6.4. Then the white-headed
twin accelerates and stops at the platform, as in the right picture.

The white-headed twin sees again and again the dark-headed twin passing at
him, encircling free-falling the planet. Finally, when the dark-headed twin passes
the platform again, the white-headed twin rejoins the dark-headed twin. While the
dark-headed twin continued to free-fall, the white-headed twin was always accel-
erating: He clearly accelerated in order to depart from and to rejoin the dark-
headed twin. What is more, while he was standing on the platform, the white-headed
twin constantly felt the gravity of the planet, that is, he constantly accelerated also
there.

Let us compare the proper time of the two twins. We carry a clock and start free-
falling vertically from a resting place far away from the planet. We fall such that we
pass at the same time both the dark-headed and the white-headed twin, as you see
in Fig. 6.5. We see the white-headed twin moving upwards towards us with some



56 6 Equivalence Principle in Action

Fig. 6.4 The dark-headed twin continues to move free-falling in a circle around a planet, while
the white-headed twin stops at the platform

Fig. 6.5 We are carrying a
clock and are passing at the
same time vertically the
white-headed twin standing
on the platform, and the
free-falling dark-headed twin.
The arrows show the speed,
as seen by the white-headed
twin

speed. However, the dark-headed twin moves in addition to the vertical speed also at
some horizontal speed, that is, faster than the upwards moving white-headed twin,
relative to us. Hence the proper time of the dark-headed twin passes more slowly
than the proper time of the white-headed twin standing on the platform.

During the stopping and starting from the platform the proper time of the white-
headed twin will change somehow, but because the white-headed twin can wait on
the platform as long as he wishes, he can make sure that when he joins the dark-
headed twin again, his proper time proceeded more than the dark-headed twin’s
proper time.

This is then again an example of the twin paradox or clock paradox. However,
here the time of the twin remaining in the inertial state proceeds slower than the
time of the twin who changes his state of inertia, in contrast to what happened in
Sects. 4.1 and 4.4.

In other words: Although the dark-headed twin moved along the straightest path
in space-time between leaving and joining the white-headed twin, his proper time
did not pass fastest of all paths. This is in analogy to the straightest westward
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Fig. 6.6 Bended path in space-time

path along the equator in Fig. 5.6. Similar to that figure, the dark-headed twin
does not move on a space-time nearby path to the white-headed twin, but “west-
wards”.

6.3 Moving Straightly in Bended Space-Time

In Sect. 6.1, the clock free-fell along a straight line. However, in bended space-
time this should be a curved line, in analogy to Fig. 5.4. Let us see why: In the
left picture of Fig. 6.6 we sketched a very light planet as a gray disk. This planet
creates nearly no gravity. For better view, we drew the planet smaller than the clock.
The two directions in this picture are not width and height, but time and distance in
space-time. We see that the clock moves towards the light planet, along a straight
line in space-time, at an even pace: When one third of the time-span until impact
time has elapsed, the clock traveled one-third of the distance to the planet. When
two-thirds of the time until impact time has elapsed, the clock traveled two-thirds of
the distance and so on.

In the picture on the right-hand side, we have a situation similar to the one in
Fig. 6.1: Now the planet has mass, and we sketched this as dark black disk. We
let the clock start at some initial speed, which is the same initial speed as in the
left picture. The clock will accelerate relative to the planet while approaching it. It
follows now the curved solid line, instead of the straight dashed line, reaching the
heavy planet in less time than the very light planet before.

We see although the clock free-falls along a straight line in space towards the
center of the planet, the clock moves along a bended path in space-time near a
gravitating mass.

6.4 Length Under Gravity of a Perfect Ball

In order to see how lengths change under gravity, let us model a planet or star.
Physicists try to construct for physical phenomena the simplest possible models,



58 6 Equivalence Principle in Action

Fig. 6.7 In a perfect ball,
mass density depends maybe
on depth, but not on direction.
Darker colors mean layers of
higher mass density

which still contain the essence of the phenomenon. Let us do the same: We know
that planets or stars are nearly balls. Their mass may vary with depth, but in all
directions there is nearly the same amount of mass. This we sketched in Fig. 6.7.
For real planets and stars, this is a good assumption. We call such a body a perfect
ball.

Let us imagine in empty space the surface of a ball, which has the same center
as the perfect ball. We sketched it in Fig. 6.7 as dashed line. Next, we let several
observers free-fall towards the perfect ball, from far away, were they rested relative
to the ball, at the same large distance. They measure time and length in this state
of inertia. Because the mass of the perfect ball is the same in all direction, gravity
acts the same in all direction, and the observers free-fall at the same pace. Therefore
they pass with the same speed through the surface of the imagined dashed ball. Let
us free-fall with one of the observers. Then relative to us, this dashed ball moves
towards us. A friend resting at the imagined dashed ball surface has placed rods
along its surface. The lengths along the surface of the dashed ball are at right angles
to our speed relative to the perfect ball. Hence when we pass such a rod, the length
of the rod does not change with this speed, as we saw in Sect. 2.4.2. All observers
agree on that: Lengths on the surface of any ball with the same center as the perfect
ball do not change. In particular, the length of any circle with the same center as the
perfect ball is the same as it would be without gravity.

Our friend resting at the dashed imagined ball also placed identical rods along
the diameter of the ball. When we pass such a rod, it is in the direction of our
speed, which grows, as we approach the perfect ball. Hence relative to us, this rod
shrinks by the γ factor of our passing speed, as we saw in Sect. 2.4.1. We gained this
speed while free-falling in from a far away point resting with the perfect ball. We
sketched this in Fig. 6.8. However, we are still in the same inertial state as when we
started resting far away from the planet. Hence a rod resting with the planet along
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Fig. 6.8 Around a perfect
ball, rods along the diameter
shrink, but rods at right
angles do not, according to an
observer free-falling in from a
resting-place far enough
outside

the diameter, shrinks relative to us resting outside the planet the more, the nearer it
is to the center.

What does our friend resting near the perfect ball observe? He will need more
rods to exhaust the diameter than he would need without the gravity of the perfect
ball. Hence the ratio of the length of any circle with the same center as the perfect
ball, and its diameter will be less than π because of gravity. Hence near a perfect
ball, space itself is bending!

It will turn out that there is a more practical way to keep track of the bend-
ing space. In Fig. 6.9, the observer rests between two circles with the same cen-
ter as the perfect ball. He counts the number of identical rods needed to trace
the outer circle, and subtracts the number of rods needed to trace the inner cir-
cle. If space does not bend, the number of rods on the outer circle is the num-
ber of rods needed to trace its radius × 2π . Likewise, the number of rods on
the inner circle is the number of rods on its radius × 2π . Hence the number of
rods fitting into the solid line between the two circles, in front of the observer
in the figure, is the difference of the number of rods on the large and small cir-
cles, divided by 2π . The observer wants this ratio to remain the same even when
a perfect ball in its center is bending space. We know that the rods on the cir-
cles will not change their length, even with the perfect ball in its center now
gravitating. However, the rod in front of the observer in the figure, drawn as
solid line, will shrink by the factor γ , corresponding to the speed of the bypass-
ing clock, free-falling from a resting place sufficiently far away from the perfect
ball.

Hence the observer decides to stretch the rods in front of him by the factor 1/γ

so that now the number of stretched rods is again the difference of the number of
rods on the large and smaller circle, divided by 2π . Such the observer keeps track
of the bending space. Hence for us free-falling from a resting place sufficiently far
away from the perfect ball, the rod shrinks by the same γ factor, so that for us, the
rod has now the same length as the original rods far away outside. This is why this
way of measuring is practical.
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Fig. 6.9 Our friend standing
between the two nearly
equally large dashed circles
measures a length which is
shorter than when there is no
gravity, by the factor γ of the
speed of the clock free-falling
in from a point resting far
away from the perfect ball

6.5 Gravity Around a Perfect Ball

Let us sum up what we learned about gravity around a perfect ball of mass. Space-
time bends in the following way:

1. At a place resting near the perfect ball, time will run slow by a factor γ ,
relative to a place resting sufficiently far away from the perfect ball.

2. This γ factor belongs to the speed which the clock reaches here, after
free-falling in vertically from a place at rest sufficiently far away from
the perfect ball.

3. This factor γ depends only on the radius. Far outside, γ is one. The
smaller the radius outside the perfect ball, the smaller γ .

4. Lengths at right angles to the diameter will not change: Geometry on the
surface of a ball with the same center as the perfect ball does not change.

5. The ratio of the boundary and radius of any circle with the same center as
the perfect ball, will be as in school geometry 2π , and the surface area
of a ball with the same center as the perfect ball, will be as in school
geometry 4π times the squared radius.

6. The distance between two nearby points on the same diameter will be
larger than what the measuring tape shows, by the factor 1/γ . However,
for an observer free-falling in from a resting place sufficiently far away
from the perfect ball, the measuring tape shows the correct distance.

This way in which rods and time change locally is called a metric. It allows
us to measure how space-time is bending. We see that the equivalence principle
gives us nearly the complete picture of how gravity is bending space-time around a
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Fig. 6.10 Light, depicted as light-gray arrow, bending under gravity

perfect ball. The only information we still are missing, is how exactly the shrink-
ing factor γ is depending on the radius! We will calculate this factor in Chap. 8,
when we solve the Einstein equation of gravity exactly for the perfect ball. This
bending of space-time is the Schwarzschild solution of the Einstein equation of
gravity, or Schwarzschild metric. It is named after Karl Schwarzschild, a Ger-
man astronomer and physicist. It is the most important exact solution of the Einstein
equation of gravity, because planets and stars are nearly perfect balls after all.

6.6 Mass Under Gravity

We saw learned in Sect. 2.6 that if clocks slow down, then inertial mass increases.
Hence a gravitating mass increases the inertial mass of a test-mass nearby. This
is remarkable: There is so much mass in the universe, acting on a test-mass with its
gravity, so that we may speculate:

What if all inertial mass of bodies comes from the gravity of the
other masses in the universe?

This is not a strict physical law, but only an idea, called the Mach principle.
In fact, already before the theory of relativity was created, Ernst Mach speculated
about this possibility. It is interesting because it would allow to state a reason why
matter has mass. However, it never led to an exact theory. The equivalence principle
shows that at least some part of the inertial mass of a body may come from nearby
gravitating masses.

6.7 Light Under Gravity

Suppose that a light beam passes through a transparent, free-falling box, as in the left
picture of Fig. 6.10. Box and observer in the box are in a state of inertia. Therefore
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Fig. 6.11 Light bending along the sun

the observer in the box sees the light passing straight away through the box. Then
the equivalence principle tells us that in the picture on the right, the observer on the
planet will see the box accelerating towards him, together with the light beam: The
light beam bends, that is, it accelerates towards the planet. This effect is strongest
if the light passes near the surface of the planet or star, because there gravity is
strongest.

The sun has enough mass so that we can see this effect: We take a photograph
of distant stars behind the sun, so that their light bends near the surface of the sun.
However, the sun is much too bright, so that we have to wait for the moon interrupt-
ing the light from the sun, at a solar eclipse, as in Fig. 6.11. Here the small, dark
moon stands between us and the gray, large sun in the center. The light-gray drawn
stars really stand more closer together than they look on the photograph, as “white”
stars.

To verify this, we wait half a year. Then, at night, the sun is on the left behind us
as you see in Fig. 6.12. We take the same photograph again. This time we see the
stars at the place of the “gray” stars. We see that the stars are really nearer together
than they seemed when the sun was in-between:

Light bends near mass, because space-time bends.

In this setup, the stars are very far away from the bending body, and the observer
is relatively nearby.

Another possible setup is when the bending body, a yellow galaxy for example,
is far away and a blue star is behind the galaxy, as you see in Fig. 6.13. The galaxy
acts as gravity lens. Then we can see the light from the blue star as a ring. This is
the so-called Einstein ring. In Fig. 6.14, you see a photograph of such a ring.2

2Credit: NASA, ESA, A. Bolton (Harvard-Smithsonian Center for Astrophysics) and the Sloan
Lens Advanced Camera for Surveys Team.



6.7 Light Under Gravity 63

Fig. 6.12 The original position of the stars, seen half a year later

Fig. 6.13 A galaxy acts as lens for the light from a distant star

Fig. 6.14 Einstein ring with
the number SDSS
J162746.44-005357.5,
photographed by the Hubble
space telescope. The
resolution you see here, is the
resolution of the camera

In Sect. 9.2 we calculate the angle at which light bends while passing a star, using
the Schwarzschild exact solution.
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Fig. 6.15 Clocks run slow near large masses, and freeze at the horizon of a black hole, relative to
outside observers

6.8 Black Holes: A First Look

The more mass a star contains, the more gravity acts on its neighborhood: Light
bends more, time runs more slowly, inertial masses get more inertia. Hence, maybe
from a certain mass on, light rays bend so much, that even light sent upwards from its
center is falling back: The star emits no light. Such a body is a black hole. Around
it there is a ball-shaped imaginary surface, the horizon. Any body can travel from
the outside through this horizon, but as for a trapdoor, there is no way out of a black
hole.

If some spaceship approaches the horizon from the outside, then for a far away
observer time in the spaceship is running slower and slower. When it reaches the
horizon, time is running infinitely slow as you can see in Fig. 6.15. Hence we never
see the spaceship traveling through the horizon. However, the spaceship is free-
falling, so it does not notice anything special in its neighborhood: It will travel
through the horizon into the interior of the black hole. Why, the equivalence princi-
ple tells us that free-falling test-masses act like floating in empty space.

There is no contradiction: An astronaut in the spaceship cannot tell the outside
world that he has passed inside the horizon, because not even light can pass through
the horizon from the interior.

We will calculate the necessary mass of a black hole from the Schwarzschild
exact solution in Sect. 9.1.
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6.9 Equivalence Principle: Summary

If we look at gravity just as a force which pulls masses together, then why on earth
the inertia should be the same as the weight of the mass? There is no reason for
it. Einstein saw that this equality of inertial and gravitational mass is the key to
understand gravity more deeply. All small enough mass reacts in the same way to
gravity. Because the inertia resists acceleration and the heaviness tends to accelerate,
but both are of exactly the same size, test-masses in gravity will not accelerate at
all, but move in a state of inertia, force-free, that is, free-falling.

Moving force-free, that is, free-falling, does not depend on the material, so this
explains why inertia and heaviness are always of the same size.

However, we know that test-masses move under gravity along bended paths, with
varying speed, so gravity must bend space and time. Gravity does not bend space
alone, because the free-falling test-masses do not follow the shortest path, but the
path that takes the longest proper time, compared with nearby paths in space-time.
This path is called a geodesic in space-time. We can produce a geodesic, by fixing
the direction and the starting speed of the test-mass, and letting it free-fall. Different
starting speeds give different geodesics, so again it is not only space that bends.

With such free-falling test-masses, we can use our knowledge about the theory
of special relativity, to understand how mass is reacting to gravity.

Then why does matter create gravity? Nobody knows! We only know how mat-
ter creates gravity: It does so consistent with the equivalence principle, and in the
simplest possible way. This we will see in the next chapter.



Chapter 7
How Mass Creates Gravity

We know from experience, and used in the preceding chapter, that mass creates
gravity. We saw that gravity bends space-time, so mass itself should bend space-
time. What is the simplest possible way that mass can bend space-time?

7.1 Gravity in a Lonely Cloud

We simplify the situation as much as possible: We drive with our spaceship into
some empty region of space, so that no large mass is nearby, and we are in an
inertial state. Then we place outside the spaceship a small cloud of dust, carefully,
such that the dust particles are resting near each other. In Fig. 7.1 we sketched the
dust particles as black balls. Then we gently move away and rest near the cloud.
Hence the cloud as well as we are in an inertial state.

From experience, we expect that gravity tends to move mass together. In fact,
as soon as we left the dust particles alone, the cloud begins to shrink. What is
the simplest quantity to describe shrinking? This is how much the volume of the
cloud decreases per time, that is, at which speed the volume decreases. What is
the simplest quantity to describe the beginning of shrinking? That is how much the
shrinking speed starts to change from zero, that is, the acceleration of the volume
decrease, that is, change of volume per time, per time. That shrinking beginning
rate should depend on how much mass is in the cloud. In the simplest case, the rate
should grow in proportion to the mass in the cloud: Twice as much mass in the same
volume should produce a twice as large shrinking rate.

Indeed, this is what nature has chosen as the law of gravity!
Let us give a numerical example of how a volume may begin to shrink. Suppose

that we prepare a dust cloud of the size 10 × 10 × 10 meters, that is a volume
of 1000 m3. When this cloud is beginning to shrink, we measure its volume each
second, say. In Fig. 7.2, we see in the column of boxes on the left how much volume
is left after 0, 1, 2, 3, 4 seconds. The rate at which the volume shrinks per time, that
is from second to second, stands in the middle column of boxes. Finally, the rate at

K. Fischer, Relativity for Everyone, DOI 10.1007/978-3-319-00587-4_7,
© Springer International Publishing Switzerland 2013

67

http://dx.doi.org/10.1007/978-3-319-00587-4_7


68 7 How Mass Creates Gravity

Fig. 7.1 A dust cloud begins to shrink under its own gravity

Fig. 7.2 Example of how a
volume may begin to shrink

which this change of the volume itself is changing per second, that is the change per
second, per second, we find in the right column. We see that the volume begins to

shrink at a rate of 2 m3, per second, per second, that is 2 m3

s2 .

However, we wanted to know how mass bends space-time, not just how mass
clumps together. Here the equivalence principle comes in again:

We know that test-masses, especially dust-like small particles, will react to grav-
ity in the same way, no matter what their matter consists of, or how much mass
they carry, if only not too much. Therefore we can think of the dust particles as just
probing the space-time around them. While the cloud is beginning to shrink, the
test-masses accelerate towards each other. However, remember that nothing pulls
the test-masses together: Only because inside the cloud, space itself is beginning
to shrink in time, the test-masses accelerate towards each other. Hence when the
cloud begins to shrink, this means that the small volume of space itself begins to
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shrink, as time proceeds a little bit. This is how mass is bending a small piece of
space-time.

We have found the Einstein law of gravity!

7.2 Einstein Equation of Gravity

The Einstein law of gravity, or with other name the Einstein equation of gravity
is:

The rate at which a small enough, resting cloud of matter begins to
shrink, is in proportion to the mass in that cloud. The constant of

proportion is 4π times the gravity constant.

Why not just “gravity constant” but 4π times it? This has purely historical rea-
sons, nothing else. The value of the gravity constant is about 6.67 × 10−11 in appro-
priate units. You find it for reference in the Table A.1.

The mass density, that is the mass per volume, is nearly constant if we look at
a small enough volume. It often is more practical to ask for the shrinking rate per
volume, that is the relative shrinking rate. The Einstein equation of gravity in
terms of the mass density, that is in terms of the mass per volume, reads

The relative rate at which a small enough, resting cloud of matter
begins to shrink, grows in proportion to the mass density in that

cloud. The constant of proportion is 4π times the gravity constant.

However, mass is energy, divided by the square of the speed of light. In terms of
the energy density the Einstein equation of gravity for energy of gravity reads

The relative rate at which a small enough, resting cloud of matter
begins to shrink, grows in proportion to the energy density in that
cloud. The constant of proportion is 4π times the gravity constant,

divided by the square of the speed of light.

7.3 Enter Pressure

We assumed that we can always place our test-masses inside the cloud such that
at least at the beginning they rest with each other. What happens if our cloud does
also contain pure energy, that is, light? Pure energy moves always at the speed of
light, so we cannot place it like our masses. This light behaves much like a gas:
Suppose we put our masses inside a gas. The simplest case is when at least near the
cloud the gas looks everywhere the same. Therefore the gas particles, or light in the
case of pure energy, are constantly entering and leaving the cloud we marked with
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Fig. 7.3 A dust cloud inside
a gas. We sketched the
gas-particles as small black
disks, and show their
momentary speed by small
arrows. The dust cloud
contains also the energy
coming from the disordered
moving particles in the gas.
This energy also creates
gravity

test-masses, but the number of gas particles which leave per second the cloud, is the
same as the number of particles which enter the cloud during this second. Still, the
particles of the gas always quiver and bump against each other, so that they never
rest relative to the test-masses in the cloud. This you can see in Fig. 7.3.

Because there enter per second as many gas-particles the cloud as there are leav-
ing the cloud, we can imagine that for every gas particle that wants to leave the
cloud, a gas particle from the outside bounces against it, to keep the gas inside the
cloud together. In other words: the outside gas presses from any of the three direc-
tions of space. But pressure is energy density, as we saw in Sect. 1.12. This means
that we have to add to the energy density inside the cloud the sum of the three
pressures in the three directions of space.

We get the complete Einstein equation of gravity:

The relative rate at which a small enough, resting cloud of matter
begins to shrink, grows in proportion to the energy density plus the

pressures in each of the three directions in that cloud. The
constant of proportion is 4π times the gravity constant, divided by

the square of the speed of light.

However, inside the cloud, the gas particles are not only moving around, but
also bumping against our test-masses. If pressure is constant in all direction, the
test-mass will not move on the average. However, under a microscope, we see
the test-mass vibrating under the bombarding small gas-particles. Hence we can-
not place our test-masses perfectly at rest. The very concept of pressure does only
make sense if we do not look too closely, that is, if our cloud of masses is not too
small.

Einstein himself was aware of this:1

1A. Einstein. The meaning of relativity. Princeton University press, 1956.
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Fig. 7.4 A moving dust cloud begins to shrink

We know that matter is built up of electrically charged particles,
but we do not know the laws which govern the constitution of

these particles. In treating mechanical problems, we are therefore
obliged to make use of an inexact description of matter, which

corresponds to that of classical mechanics. The density [...] of a
material substance and the hydrodynamical pressures are the

fundamental concepts upon which such a description is based.

If you like to see the mathematical expression for the Einstein equation of gravity,
please have a look at Sect. A.5. With the exception of Sect. 9.9, we deal in the
following with matter whose pressure is so small that we can ignore it, so that we
can still use the model of the dust-cloud of the Sect. 7.1.

7.4 Enter Speed

The law of how mass creates gravity should fit with the theory of special relativity.
That is: If we are in a state of inertia, and the cloud is passing us free-falling with
some speed, then the Einstein equation of gravity should not change. However, we
know that all kind of things change: First of all, the cloud has more mass by a factor
1/γ .

Therefore it creates more gravity! However, also the reaction of the volume
changes: The length of the cloud in direction of the speed is now smaller by this
γ factor, while its sizes which are vertically to the speed do not change, as we can
see by comparing the Figs. 7.1 and 7.4. Hence the volume of the moving cloud is
smaller by this factor γ . However, the volume begins to shrink in less time: We
know from Sect. 2.1 that our time runs faster than the proper time of the moving
cloud by the inverse factor 1/γ . Hence the cloud shrinks faster by this amount, and
it begins to shrink at the even faster rate of (1/γ ) × (1/γ ). In total the volume of
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Fig. 7.5 A shrinking small cloud acts like a test-mass and free-falls under gravity of a nearby mass

the cloud begins to shrink faster by the factor

γ︸︷︷︸
Volume shrinks

× (1/γ ) × (1/γ )︸ ︷︷ ︸
shrinking begins faster

= 1/γ

which is precisely the amount by which the mass in the cloud became larger. Hence
the Einstein equation of gravity holds also for free-falling clouds.

7.5 Enter Outside Masses

In Sect. 7.2 we described how mass creates gravity for a carefully prepared small
cloud of dust, far away from other large masses. In reality there are stars, planets and
the like outside the cloud. Let us consider them. Because our cloud is small enough,
it moves like a test-mass under the gravity of outside masses, that is, it free-falls, as
you can see in Fig. 7.5. Then by the equivalence principle, the cloud is free-falling
and reacts as if there would be no large mass nearby: The shrinking rate does only
depend on how much mass is inside the dust cloud. The law of gravity does not
change at all!

The outside masses can only change the form of the small free-falling cloud of
mutually resting test-masses, as we already saw in Fig. 5.12.
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Fig. 7.6 Measuring how much the surface of the earth is bending near the north pole: Draw a
circle around the north pole, on the surface of earth. The boundary of the circle is π times the
black dashed diameter, which runs inside the earth. However, the diameter measured on the bended
surface of earth, is the gray arc spanning from left to the right, and this is longer than the dashed
straight line. Hence on the surface of the earth, the ratio of the boundary and the diameter of a
circle is less than π , similar as in Fig. 6.8 for a circle around a perfect ball

7.6 Local and Global Space-Time

The Einstein law of gravity is formulated for a small enough piece of space (our
“cloud”) and a small enough period of time, in which the cloud “begins” to shrink,
that is altogether, in small enough piece of space-time, that is, a local piece of space-
time. How do we get the global picture of what happens under gravity? Take for
example the sun. We know that the sun will bend space-time, and that far away
from it, space-time will be flat. We insert here and there small clouds of test-masses
to probe space-time. Then we patch these local pictures to a smooth map of space-
time. It is a little like building a globe from patches showing parts of the surface of
earth: Only when we have connected them smoothly, we see that earth indeed has
the form of a globe. We get the global picture of how the globe is bending.

However, in space-time, things are more involved than for a surface: If the vol-
ume begins to shrink near a mass, then space-time must bend to connect the nearby
space, where there is no mass. What is more, not only does the volume of a cloud
shrink in time, but time itself depends on the relative speed of the free-falling masses
in a cloud, so we have to follow how space and time evolve.

For a bended surface in ordinary three-dimensional space, it is enough to know
one number per surface point, the Gauss curvature, to know how a surface bends.
This curvature measures basically, how much the ratio of the boundary and the di-
ameter of a small circle around a point differ from π , as in Fig. 7.6. In other words,
it measures to what extend Euclidean geometry is wrong. However, space-time has
more directions in which it can bend, so one number is not enough. Careful think-
ing shows that for each point in space-time we need twenty numbers to render the
bending rate.

It was Riemann who generalized the theory of bended surfaces of Gauss to three
and more dimensional space. The twenty numbers are named after him the Rie-
mann curvature tensor. Einstein used and developed this theory to describe bended
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Fig. 7.7 A material bends

space-time. The mathematical toolbox for calculations is tensor analysis. The word
“tensor” comes from the Latin word for “tension”. In fact, engineers use tensors to
describe how materials of bridges and the like bend under tension. Materials bend
inside space-time, which we can easily show, as in Fig. 7.7. However, it is much
harder to imagine how space-time itself bends. We will show in Sect. 9.7 that there
is a fundamental difference between a bending material and bending space-time.

7.7 How to Solve the Einstein Equation of Gravity

Not only getting the global picture is difficult: Focus on one small cloud: What
happens after that cloud has begun to shrink? The test-masses inside have just begun
to move against each other, free-falling. To follow them, we must look into even
smaller parts of the cloud, adjust our speed and time, look for the shrinking rate and
so on. This is because the masses in the cloud at the same time act on space-time
by bending it, and react on space-time by free-falling. We cannot easily separate
action and reaction of mass. In other words, not every pattern of masses that we can
think of, we may be able to realize in space-time. That makes gravity unique among
the interactions in nature. This is also what makes solving the Einstein equation of
gravity so difficult.

In fact, we know only a few exact solutions to the Einstein equation of gravity.
In order to solve it exactly, we must place mass in a balanced way, so that we can
handle the self-interaction.

1. For the perfect ball of mass, as in Sect. 6.5, the same amount of mass is sitting in
every direction from its center. Hence mass balances itself out. Gravity depends
only on the distance to the center of the ball, not the direction. All that remains
to do, is to find the γ factor, that is, with which speed test-masses will vertically
free-fall in at a certain distance from the center. We will do so in Chap. 8 and get
the Schwarzschild exact solution, and the Newton law of gravity will follow
from it for weak gravity. This case is most important because stars and planets
are to a good degree perfect balls.

2. Observations show that over large enough distances, there is more or less the
same amount of mass everywhere in the universe. Then again mass is balanced,
because the space-time bending must be the same everywhere in space, and can
only depend on time. We thus will see in Sect. 9.8 how it comes to the big-bang
of the universe.
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And basically, that was that! There are some slightly more general solutions, like
for a perfect, rotating ball, or a perfect ball with electric charges, or even a rotating
perfect ball with electric charges, and the like, but for an arbitrary collection of
masses, we have to use tensor analysis and solve the Einstein equation of gravity on
a computer approximately.

Make no mistake: We cannot prove that the law of gravity must be the Einstein
equation. We only said that the Einstein gravity law is the simplest possible. Physi-
cists constructed other theories, in which mass changes the space-time around it in
a more complicated way. However, then it becomes more and more difficult to ac-
commodate the law of gravity with the equivalence principle. In other words: It is
hard to construct a theory which correctly describes how mass creates gravity and
how mass reacts on gravity. What is more, experiments and observations again and
again showed that only the Einstein gravity law plus the equivalence principle seem
to give the correct law of gravity.

Look how beautiful everything falls into place:

1. We fixed positions and speeds for test-masses inside a small cloud, such
that they rest relative to each other, and then let them loose. Then the
simplest way mass can bend space-time, is by the rate at which the vol-
ume begins to shrink, while free-falling.

2. This shrinking rate does only depend on the mass inside the volume.
3. It does so in the simplest manner, that is, in proportion to the mass inside.
4. The gravity law fits with the theory of special relativity, because it does

not change even if we move free-falling relative to the free-falling cloud.
5. One physical quantity, that is to say the mass inside the cloud, de-

termines how another, geometrical quantity, that is to say its volume,
changes with time. In other words: The Einstein equation of gravity does
not regulate directly how the form of the small volume changes in time!

6. This is done by masses outside the cloud: They deform the cloud, but
do not change the volume, to fit the global picture of the bending space-
time.

This theory, using the Einstein equivalence principle and the Einstein gravity law,
is the theory of general relativity.

Next we want to see the gravity law in action. How does the motion of the planets
around the sun follow from it? How does this law fit in with the classic Newton way
of looking at gravity, where the sun seems to “pull” earth around it? And what new
effects can we find?



Chapter 8
Solving the Einstein Equation of Gravity

Having stated and discussed the Einstein equation of gravity, let us solve them!

8.1 Gravity Causes Law of Motion

The equivalence principle told us that test-masses move free-falling under gravity,
that is, how they react on bended space-time. This is the law of motion. The Einstein
equation of gravity tells us how mass acts on space-time, how it bends space-time.
Surprisingly the Einstein equation of gravity also tells us how test-masses must
react! A thought experiment will tell us why: Suppose that we rest inside a small
cloud of test-masses, in an inertial state. The test-masses are also resting relative to
us, as sketched in Fig. 8.1.

Then according to the Einstein equation of gravity, the cloud will begin to shrink
at a rate which is in proportion to the mass inside the cloud. Now let us look at an
even smaller volume, inside the cloud, directly around us: The smaller this volume,
the less mass is inside. The less mass is inside, the less the volume will begin to
shrink.

What is more, the cloud can begin to change its form as in Fig. 5.12, due to the
gravity of outside masses. However, the volume we showed there, is quite large,
compared with the planet nearby. Again, the smaller volume we mark around us,
the less it will begin to deform.

Therefore let us chose a tiny volume inside the cloud, that contains only the white
test-mass beside us, and us. Then this volume will neither begin to shrink, nor begin
to change its form. However, this is only possible if the white test-mass beside us
will not begin to move relative to us, that is, will not accelerate relative to us. That
means that the white test-mass is also in an inertial state, moving along a geodesic
in space-time.

In other words: We have found the law of motion for this white test-mass!
Compare this with the Newton theory of gravity: Gravity of earth, say, creates a

force pulling at a test-mass. This is the Newton law of gravity, telling us how matter

K. Fischer, Relativity for Everyone, DOI 10.1007/978-3-319-00587-4_8,
© Springer International Publishing Switzerland 2013

77

http://dx.doi.org/10.1007/978-3-319-00587-4_8


78 8 Solving the Einstein Equation of Gravity

Fig. 8.1 The white test-mass
directly beside us will not
begin to accelerate relatively
to us

creates gravity. Then the test-mass reacts by resisting the acceleration because of
its inertia. This reaction of the test-mass we cannot infer from the Newton law of
gravity. What is more, it is a riddle why weight and inertia should be equal at all. In
fact, the Newton law of gravity is only an estimate of what really happens.

Or compare gravity with electrodynamics: Electric charges create an electromag-
netic field around them, obeying the Maxwell-equations. But these alone do not tell
us how another charged mass will react to the field. We know that the Lorentz force
of Chap. 3 describing this reaction, fits in with both the theory of relativity and the
Maxwell equations. However, the Lorentz force is not the only possible force fitting
with the Maxwell equations.

Incidentally, an electromagnetic field carries energy and hence bends space-time,
so that using the Einstein equation of gravity and a similar argument as above, we
can derive the Lorentz force!

8.2 Gravity Inside a Perfect Ball of Mass

A star or planet is nearly a perfect ball. In a thought experiment, we drill thin vertical
shafts into the ball, through its center, in many directions. We sketched for better
view only four directions in Fig. 8.2. We place test-masses in the shafts, at the same
fixed distance from the center, marking the small black ball in the center. At some
time we release the test-masses and let them loose, so that they now fall freely.

If the black volume is small enough, and if the test-masses rest relative to each
other when we release them, we can use the Einstein equation of gravity for it: The
rate by which the black volume marked the free-falling test-masses begins to shrink,
is in proportion to the mass inside, that is, the mass of the black ball. Because the
mass spreads in all directions in the same way, the test-masses fall all with the same
speed, inside the vertical shafts, and mark at all times a ball.

Make no mistake: The mass of the perfect ball itself does not move at all! Only
the test-masses begin to move, because of the gravity of the motionless mass inside
the perfect ball.

We measure now the space-time inside and around the perfect ball. However,
we know from Sects. 6.1 and 6.4, that under gravity time itself runs different for
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Fig. 8.2 The small black
disks at the surface of the
central black mass are the
test-masses, which start to
free-fall in vertical shafts of
the perfect ball. The dashed
arrow marks us, free-falling
into one of the shafts, having
started from a position where
we were resting far away
enough from the perfect ball

Fig. 8.3 A small, thin black
volume sandwiched between
two balls begins to shrink

different distances to the center, and vertical lengths also change under gravity. We
also know from Sect. 6.6 that even the mass of a section of the perfect ball itself is
changed by the gravity of other parts of the perfect ball.

We account for that, using the equivalence principle: We start at a point at the
right, nearly resting in an inertial state far away relative to the perfect ball, and free-
fall in from the right. In Fig. 8.2, we sketched this by the horizontal dashed arrow.
We enter the shaft, and at the time when we pass the center, all the test-masses
begin to free-fall. Because we are free-falling, our proper time is the same time as if
resting far outside the perfect ball.

We know from Sect. 7.4 that the Einstein equation of gravity does not change, if
we measure mass and volume of the small ball marked by the test-masses as well as
time from our point of view.

Next, we repeat this thought experiment with a small black volume which is
sandwiched between the ball at the center, and some slightly larger ball with the
same center, as in Fig. 8.3. The shell between the two balls should be very thin. We
only drew it thicker for better view.
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Fig. 8.4 A thin black shell
inside the perfect ball. We
drew the shell not so thin for
better view

Fig. 8.5 A slightly larger
ball, marked by test-masses,
begins to shrink

Again we free-fall in from our resting-place far outside. Again the volume
marked by the test-masses is very small. Again the test-masses do not move rel-
ative to each other. Again the test-masses begin their free-fall when we pass through
that volume. Therefore, we can use the Einstein equation of gravity: The volume
marked by the test-masses, begins to shrink in proportion to the mass in the black
volume. The same is true for any other small volume inside this shell in any other
direction. Hence it is true for the total thin shell, sketched as black region in Fig. 8.4.
Again we drew the thin shell not so thin, for better view.

In both Figs. 8.2 and 8.4 we free-fall in. Hence the time in which we measure the
beginning of the shrinking, is proceeding at the same pace as for bodies resting far
outside the perfect ball. Hence the total ball marked by the masses on the outside of
the thin shell, begins to shrink as well in proportion to its mass, as we measure it.
This total mass is the black volume in Fig. 8.5.

Such we mark piece by piece towards the outside adjoining thin shells, like the
skins of an onion. Repeating the argument above, we conclude that the volume of
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Fig. 8.6 Within the interior
of a hollow perfect ball there
is no gravity

the total perfect ball marked by test-masses, begins to shrink at a rate in proportion
to the mass inside the ball.

8.3 Flat Space-Time Inside a Ball-Shaped Hollow

Now let us think of a weird planet, which has a hole in its center, as sketched in
Fig. 8.6. We can use the arguments of the last section for the ball-shaped hollow
itself: Place test-masses at the rim of the hollow. Then the ball marked by this test-
masses will begin to shrink in proportion to the mass it contains, that is zero. In
other words: It will not begin to shrink at all. However, it also must remain ball-
shaped, because the mass on the outside spreads equally in all directions. Hence the
test-masses do not begin to move at all: Inside the hollow there is no gravity.

This is our first exact solution of the Einstein equation of gravity! It is called
the Birkhoff theorem:

Birkhoff Theorem

If a perfect ball contains a ball-shaped hollow with the same
center as the ball, then inside that hollow space-time does not

bend.

8.4 Gravity Outside a Perfect Ball of Mass

We continue the argument of Sect. 8.2 to the outside of the perfect ball, by adding
also on the outside of the perfect ball thin shells piece by piece. Outside the perfect
ball there is no more mass, so that we conclude,
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Fig. 8.7 The marked ball
around the perfect ball begins
to shrink, as we pass it. In the
figure, we sketched our
passing by the dashed arrow

The volume of any ball with the same center as the perfect ball,
but larger as it, marked by test-masses resting to each other, will
begin to shrink at a rate which is 4π times the gravity constant

times the mass of the perfect ball.
Time and lengths we measure free-falling in from a resting place

far away from the perfect ball.

Let us put this differently, in terms of the radius of such a ball, as sketched in
Fig. 8.7. The test-masses rest relative to each other, and mark the volume of the
larger of the dashed balls, outside the perfect ball. At some time, they are released
and begin to free-fall. We started free-falling from a resting-place far away from
the perfect ball and pass, say, the right-upper test-mass just as it begins to free-
fall. During a short time, the larger dashed ball shrinks a bit, becoming the smaller
dashed ball. We saw in Sect. 6.5, point 6, that then the distance of the two balls is
for us just the amount that the radius has shrunk during that short time.

When the larger dashed ball begins to shrink to the slightly smaller dashed ball,
it loses the volume which is between the two balls. As you see from Fig. 8.7, this
is nearly the surface of the larger ball, times the distance between the two balls, or
the difference of the radiuses of the two balls, as we said above. The surface area of
a ball of some radius is the same as in school geometry, that is 4π times the square
of the radius, from what we saw in Sect. 6.5, point 5. Hence the rate at which the
volume of the dashed ball begins to shrink, is nothing but the rate at which the radius
begins to shrink, times 4π times the square of the radius.

In other words: According to the Einstein equation of gravity,

4π × (radius)2 × (acceleration of the radius)

= −4π × (gravity constant) × (mass of the perfect ball)
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The “minus” we need because the radius is shrinking, so its acceleration is negative.
The factor 4π drops out, and we divide by the squared radius, so that the change of
the radius accelerates at a rate of

⎛
⎜⎜⎝

acceleration of radius
in proper time of observer

free-falling from resting place
far away from perfect ball

⎞
⎟⎟⎠ = −

( gravity
constant

) × ( mass of
perfect ball

)
(radius)2

(8.1)

Even if our friend passes us at the given radius, free-falling with less speed, the
equivalence principle tells us that we and our friend are both in an inertial state, so
that we do not accelerate relative to each other. Hence for a given radius, Eq. (8.1)
remains valid for a free-falling test-mass of any possible speed relative to the perfect
ball.

We see that although the change of the radius accelerates, the observer does not
feel any acceleration. Again, this is because space-time bends: In the same way, an
astronaut in the spaceship of Fig. 5.4 does not feel any acceleration, despite going
along a bended path around earth: This acceleration is only relative to the perfect
ball.

8.5 Schwarzschild Exact Solution

We let a test-mass free-fall from a place resting far away from the perfect ball. Let us
calculate at which speed the test-mass is approaching the perfect ball, to complete
the picture of Sect. 6.5. The test-mass starts far away from the perfect ball, at zero
speed, relative to the perfect ball. The rate at which the speed is growing, is the
acceleration. This we know for any radius from Eq. (8.1). Hence we can calculate
the γ factor for any radius, bit by bit. This is enough to know how space-time bends,
after what we learned in Sect. 6.4. First we tell the result for the speed, at a given
radius, both in capital letters,

(SPEED)2 =
2 × ( gravity

constant

) × ( mass of
perfect ball

)
(RADIUS)

(8.2)

Let us now go backwards and confirm that this speed must have come from the
acceleration of the radius of Eq. (8.1). First we see from Eq. (8.2) that for a very
large radius, the speed becomes very small, so that we really start to free-fall at
nearly zero speed, if we rested only far enough away from the perfect ball. Next,
we study the free-fall during a short time. We measure that time as our proper time.
After the short time, the speed will grow by a small additional amount. During that
short time, the radius shrinks by a small amount. For us free-falling, this is just the
small distance we traveled during that short time, as we saw in Sect. 6.5, point 6.
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Hence we have at this later time the equation

(
SPEED + small additional

speed

)2

=
2 × ( gravity

constant

) × ( mass of
perfect ball

)
(
RADIUS − small

distance

) (8.3)

The small additional speed, per short time, is the acceleration we search for. We
expand the square of the speed,

(SPEED)2 + 2 × (SPEED) ×
(

small additional
speed

)
+

(
small additional

speed

)2

=
2 × ( gravity

constant

) × ( mass of
perfect ball

)
(
RADIUS − small

distance

)
The term in the middle on the left hand side, as the product of the original and the
small additional speed, is much larger than the product of the small additional speed
with itself on the right. Hence we can neglect this term if the short time is short
enough, and have

(SPEED)2 + 2 × (SPEED) ×
(

small additional

speed

)

=
2 × ( gravity

constant

) × ( mass of
perfect ball

)
(
RADIUS − small

distance

)
For the squared speed on the left hand side we replace the right hand side of
Eq. (8.2).

�2 × ( gravity
constant

) × ( mass of
perfect ball

)
(RADIUS)

+ �2 × (SPEED) ×
⎛
⎝ small

additional
speed

⎞
⎠

= �2 × ( gravity
constant

) × ( mass of
perfect ball

)
(
RADIUS − small

distance

)
The factor 2 we cancel on both sides. In order to get the small additional speed, we
subtract now the first term on both sides,

(SPEED) ×
(

small additional
speed

)

=
( gravity

constant

) × ( mass of
perfect ball

)
(
RADIUS − small

distance

) −
( gravity

constant

) × ( mass of
perfect ball

)
(RADIUS)

(8.4)

If for example the original radius was 100,000 meters and we approached the perfect
ball during the short time by the small distance of 3 meters, then the difference of
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the inverse radiuses is

1

99,997
− 1

100,000
= 100,000

99,997 × 100,000
− 99,997

99,997 × 100,000

= 3

99,997 × 100,000
≈ 3

100,0002

Hence this is roughly the small distance, divided by the square of the radius. Mul-
tiplying this with

( gravity
constant

) × ( mass of
perfect ball

)
, we can rewrite the right hand side of

Eq. (8.4) as,

(SPEED) ×
(

small additional
speed

)
=

(
gravity

constant

)
×

(
mass of

perfect ball

)
×

( small
distance

)
(RADIUS)2

Now, the small additional speed per short proper time is the acceleration, and the
small distance per short time is the negative speed, because the radius shrinks by
that amount. Hence per short time we have

(SPEED) × (acceleration) = −
(

gravity
constant

)
×

(
mass of

perfect ball

)
(SPEED)

(RADIUS)2

We divide both sides of the equation by the speed, and end up with Eq. (8.1). This
shows us that Eq. (8.2) really gives the correct speed of a test-mass free-falling in
from a place resting far away from the perfect ball. From it we get the γ factor,

γ =
√

1 − speed2

c2
=

√
1 −

2 × ( gravity
constant

) × ( mass of
perfect ball

)
(radius) × c2

(8.5)

Hence we have solved exactly the Einstein equation of gravity, that is, we got
the Schwarzschild exact solution:

Schwarzschild Exact Solution

1. A perfect ball of mass bends space-time such that time is running slow
at a certain radius by the factor γ of Eq. (8.5), relative to a clock resting
far enough away from the perfect ball.

2. The vertical distance between two nearby points will be larger than the
difference of their radiuses, by the factor 1/γ .

3. Horizontal lengths do not change.
4. The ratio of the boundary and radius of any circle with the same center

as the perfect ball is 2π , and the surface area of a ball with the same
center as the perfect ball is 4π times the squared radius.
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8.6 Newton Law of Gravity

The Newton law of gravity follows from the Einstein gravity law, if the gravitating
mass is small. Hence test-masses resting far away from the gravitating mass, will
not reach large speeds while free-falling towards it. For example, according to Ta-
ble A.1, the radius of the sun is 7×108 and its mass is 2×1030. The gravity constant
is about 7 × 10−11. According to Eq. (8.2) we find that such a test-mass free-falling
from a resting place far away into the sun reaches at most 0.2 percent of the speed
of light,

speed

c
=

√
2 × (gravity constant) × mass

(radius) × c2

Let us insert the above numbers:

speed

c
≈

√
2 × (7 × 10−11) × (2 × 1030)

(7 · 108) × (3 · 108)2
≈

√
22

106
× 10

9
≈ 2

1000
(8.6)

Then the γ factor is nearly one,

γ =
√

1 − speed2

c2
≈ 0.999998

Therefore time runs everywhere nearly at the same pace, and the length of the same
rod is nearly everywhere the same. The radius is now nearly the distance from the
center: School geometry is nearly valid. The radius entering Eq. (8.1) is now prac-
tically the distance of the test-mass to the center. Hence the Einstein equation of
gravity tells us that a test-mass falling in vertically towards a perfect ball, will ac-
celerate relative to the perfect ball with a rate

(
acceleration of

distance to center

)
= −

( gravity
constant

) × ( mass of
perfect ball

)
(distance to center)2

(8.7)

This looks already very much like the Newton law of gravity. In fact, this law merges
two laws of the original Newtonian mechanics: The first law states that there is a
force coming somehow from the center of the perfect ball, acting infinitely fast at
any distance, pulling a test-mass of some heaviness towards the center of the perfect
ball in proportion to its heaviness,

(
force on
test-mass

)
= −

( gravity
constant

) × ( mass of
perfect ball

)
(distance to center)2

×
(

heaviness of
test-mass

)
(8.8)
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This is the Newton law of gravity. At the same time, the inertia of the test-mass
resists the force such that the test-mass accelerates in inverse proportion to its inertia

acceleration =
( force on

test-mass

)
(inertia of

test-mass

) (8.9)

This is the Newton law of motion. Dividing both sides of the Newton law of grav-
ity (8.8) by the “inertia of test-mass”, we see how the acceleration depends on the
distance to the center of the perfect ball:

acceleration =
( force on

test-mass

)
(inertia of

test-mass

) = −
( gravity

constant

) × ( mass of
perfect ball

)
(distance to center)2

×
(heaviness of

test-mass

)
(inertia of

test-mass

)
In the Newton theory, the heaviness and the inertia of a test-mass are accidentally
equal, so they cancel each other on the right hand side of the equation, and we have
again the law (8.7).

However, there is no reason why inertia and heaviness should be the same within
the Newtonian mechanics. We see that in general relativity, inertia and heaviness
are equal because gravity is no force, but all kinds of test-masses move in the same
way free-falling through space-time bended by masses. We also see how the classic
Newton law of gravity and the Newton law of motion emerge as good estimate
from the Einstein equation of gravity, if the gravitating masses are not too large!
The Newton law of motion emerges because of what we said in Sect. 8.1, that the
Einstein equation of gravity also determines the law of motion of a test-mass.



Chapter 9
General Relativity in Action

9.1 Black Holes

A nearly perfect ball as the sun has mass 2 × 1030 and radius 7 × 108. These two
numbers determine how strongly this star bends space-time, via the following ratio

S =
2 × ( gravity

constant

) × ( mass of
perfect ball

)
c2

(9.1)

The letter S stands for the Schwarzschild radius of the perfect ball. For the sun,
we have in meters

S =
2 × (6.67 × 10−11 m3

kg×s2 ) × (2 × 1030 kg)

(3 × 108 m
s )2

≈ 2.96 × 103 m ≈ 3000 m (9.2)

which is much smaller than its radius of about 7 × 108 m. The vertical speed of
Eq. (8.2) with which a test-mass resting far away from a perfect ball, free-falls
towards the perfect ball, becomes in terms of the Schwarzschild radius

speed2

c2
=

2×( gravity
constant)×( mass of

perfect ball)
c2

radius
= S

radius
(9.3)

The Schwarzschild radius enters the γ factor of the Schwarzschild exact solu-
tion (8.5) as

γ =
√

1 −
2
( gravity

constant

) × ( mass of
perfect ball

)
(radius) × c2

=
√

1 − S

radius
(9.4)

which is for the sun about

γ ≈ 0.999998
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Fig. 9.1 Clocks run slow
near large masses, and freeze
at the horizon of a black hole,
relative to outside observers

Please have a look at Fig. 9.1. We know from the Schwarzschild solution that a clock
of an observer on the surface of the ball runs slow for a distant, resting observer by
the factor γ . For the same radius, the larger the mass of the ball, the larger the ratio

S
radius , and the stronger gravity acts on the surface of the perfect ball.

When the mass in the perfect ball clumps so much together that its radius is
smaller than its Schwarzschild radius, then a strange thing happens: A clock at the
Schwarzschild radius is still outside the perfect ball, with a γ factor of

γ =
√

1 − S

S
= 0

That is: An outside observer sees that the time of the clock is freezing! Such a star
is a black hole. We discussed this already in Sect. 6.8, but here we see how the
Schwarzschild exact solution predicts that black holes are possible. The horizon
which we discussed in Sect. 6.8, is therefore the surface of the ball, which has its
center at the black hole, and its radius is the Schwarzschild radius.

Outside the black hole, its gravity acts like any other perfect ball. Equation (9.2)
tells us that if the sun could shrink to less than about 3000 m, it would become a
black hole. However, the planets would move on exactly the same paths around the
sun as they do now!

The theory allows in principle any body to become a black hole, if it only shrinks
enough. This depends of course on the inner structure of the body: You cannot just
“like this” squeeze a stone. For collapsing stars this depends on how rigid its ele-
mentary particles are. With the help of quantum theory we can predict that a star
must have at least roughly one and a half times the mass of the sun to be able to col-
lapse eventually into a black hole. Up to now (2013), the smallest observed black
holes have a mass of about 3 times the mass of the sun. Large black holes should sit
in the center of a galaxy, “feeding” on stars which came to close. It seems that in the
center of our galaxy there sits a monster black hole which has a mass of over three
million sun masses.
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Fig. 9.2 Light passes near a light perfect ball nearly along a straight line

Fig. 9.3 The total angle
between the incoming and the
outgoing direction will grow
eventually to 180 degrees

Fig. 9.4 The dashed arrow
shows the growth of the angle
during some short time like,
say, one millisecond. We
draw the gray triangle much
larger than in reality, for
better view

9.2 Light Bending: Weak Gravity 1

In Fig. 6.10 we saw already that a light beam should bend near a large mass. How
much does a light beam bend?

A light beam passes a perfect ball, from the right to the left, as sketched in
Fig. 9.2. The light beam is the solid black arrow, and all other, dashed lines are
only a guide for the eye. The gray circle at the bottom of the figure shows a very
light perfect ball. We aim not at the center of the ball, but at some distance b from
it. Because the ball is very light, it nearly has no gravity. Hence the light beam will
pass along a straight line. We measure how far the light has gone by the angle it has
with the dashed line which runs from the left to the right. At the far right, the angle
is practically zero. It grows as the light beam approaches the perfect ball. When it is
nearest, the angle is 90 degrees, as in the left picture of Fig. 9.2. When the light has
passed far to the left, the angle grows eventually to 180 degrees, as you can see in
Fig. 9.3.

First we need to know at which rate the angle is growing when a very light perfect
ball is there. In Fig. 9.4 we see the light passing during some short time of, say, one
millisecond. During this time, the angle grows as much as the dashed arrow shows.

How much does the angle grow? The ratio of the growth and the full angle of 360
degrees is the ratio of the horizontal side of the gray triangle and the circumference
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Fig. 9.5 A light beam bends
near a heavy perfect ball

of the circle with the radius,

angle growth

360 degrees
= horizontal

2π × radius
(9.5)

Beware: “Horizontal” does not mean “along the lines of the text in the book”, but “at
right angles to the respective radius”! Next, we replace the light by a heavy perfect
ball. Then as the light passes it to the left, the angle will grow beyond 180 degrees, as
you see in Fig. 9.5: The light beam bends. We estimate now this additional, bending
angle of the light beam, using the Schwarzschild exact solution.

The Schwarzschild solution (8.5), point 2, tells us that the small gray triangle in
Fig. 9.4 will distort, because space is bending: The horizontal side will not change,
but the vertical side will grow by the 1/γ factor of the radius at which the triangle
sits. We flatten out space near the triangle by growing the horizontal distance in the
same manner,

horizontal −→ horizontal/γ (9.6)

Time also “bends”: The light beam passes along the longest side of the small triangle
with the speed c. However, we observe the light from a place far away “above” the
perfect ball, resting relatively to the perfect ball in an inertial state. Relative to us,
time slows down by the factor γ .

short time −→ (short time) × γ (9.7)

The ratio of the horizontal side per time, per radius, is in proportion to how much
the angle will grow, per short time,

horizontal

(short time) × radius
−→ horizontal/γ

(short time × γ ) × radius

= horizontal

(short time) × (γ 2 × radius)
(9.8)

We see: If the perfect ball is heavy, the angle grows more by the factor γ −2. In other
words: The light beam bends. However, then Fig. 9.4 cannot be correct, because the
light will not follow a straight line! Nonetheless we can use this figure, if the perfect
ball is not too heavy, as for example the sun. Then the light beam bends only a little.
Hence it does not make much difference if we assume that the light beam came in
along a straight line, from the right. We make only a small mistake by adding up
these bending angles for each short time. In other words: Once we have flattened
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Fig. 9.6 Light bends because it feels only the radius minus the Schwarzschild radius. For better
view, we drew the Schwarzschild radius S larger than the radius of the black perfect ball. For a not
to heavy perfect ball, the Schwarzschild radius is much smaller than either b or the radius. Hence
to a very good approximation, the left side of the larger gray triangle has length b, and its right
side is nearly the radius

out space-time near where the light beam passed, we can use school geometry to
calculate the bending angle. Physicists call such a perturbative calculation.

The second line of Eq. (9.8) tells us that instead of changing the horizontal side
of the triangle and time, we also can shrink the radius by the amount γ 2 and leave all
other distances and times as they are. In this way we can flatten space-time around
a not-too heavy perfect ball with sufficient accuracy.

How much do we have to shrink the radius? We know the square of the γ factor
from the Schwarzschild exact solution (9.4),

radius −→ (radius) × γ 2 = (radius)

(
1 − S

radius

)
= radius − S (9.9)

In words: In order to calculate the bending angle, we shrink the radius by the
Schwarzschild radius. Please have a look at the left picture of Fig. 9.6. For a very
light perfect ball, the light beam travels during a short time along the arrow from
point B to point A. The additional angle during that short time is the dashed angle,
measured from the center of the perfect ball, in the same way as in Fig. 9.4.

For a more heavy perfect ball, we use the reduced radius, “radius−S”. That is, we
measure the angle not from the center of the perfect ball, but from the Schwarzschild
radius on. We get the thin solid line through A. T his line turns against the left dashed
line by the solid bending angle.

We show now that the bending angle grows in proportion to the solid horizontal
fat side of the small gray triangle in the right picture.
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The solid horizontal fat side of the small gray triangle stands at right angles to
the solid side b of the larger gray triangle. Its largest side is the dashed fat line,
which is nearly part of the dotted circle around A, and therefore is standing at right
angles to the radius which is the largest side of the larger gray triangle. Its smallest
side stands at right angles to the smallest side of the larger gray triangle. Hence if
we turn the small gray triangle by 90 degrees clockwise and enlarge it, we could
fit the larger triangle. Therefore the sides of the small and large gray triangle are in
proportion. In particular,

horizontal fat line

b
= dashed fat line

radius
(9.10)

The dashed fat line is also nearly that part of the dotted circle with center in A,
belonging to the bending angle in the left picture. Hence the ratio of the dashed fat
line and the circumference of 2π × radius of the dotted circle equals the ratio of the
bending angle and the full angle,

bending angle

360 degrees
= dashed fat line

2π × radius

We multiply both sides with 2π ,

2π × bending angle

360 degrees
= dashed fat line

radius
(9.11)

Because the right hand sides of the two equations (9.10) and (9.11) are equal, the
left hand sides are also equal: Indeed the bending angle is growing in proportion to
the horizontal fat line,

horizontal fat line

b
= 2π × bending angle

360 degrees

Next have a look at Fig. 9.7. As the light beam travels from the right to the left,
the horizontal fat line is growing all the way from the right to the left of the dashed
circle, filling eventually its diameter 2S. Hence the total bending angle becomes

2S

b
= 2π

total bending angle

360 degrees

The factors 2 we cancel. After multiplying both sides of the equation with 360
π

de-
grees, we get finally how much a light beam is bending around a not-too-heavy
perfect ball,

360

π
× S

b
degrees = total bending angle (9.12)
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Fig. 9.7 The bending angle
grows in proportion to the
horizontal fat line

To get the largest effect, for a given star as the sun, we should make b as small
as possible: We should use light beams just touching the sun, so that b is then the
radius of the sun. Multiplying with 60 gives this in arc minutes, and again with 60
gives the bending angle in arc seconds, and filling in the numbers from Table A.1,

bending angle ≈ 360

π
× 2.96 × 103

6.96 × 108
× 60 × 60 ≈ 1.75 arc seconds (9.13)

This is what many experiments have shown over the years!
Observe that to get the correct bending angle, we needed three effects:

1. Space bends around the perfect ball.
2. Time slows down near the perfect ball.
3. A light beam passes near the observer with speed c.

If only space would bend, then the above argument shows, that we would have to
ignore Eq. (9.7), and hence have to shrink the radius in Eq. (9.8) not by the factor
γ 2, but only by the factor γ . Hence our calculation would predict less (in fact, about
one-half) of the observed bending. So it is really again space-time which is bending.

9.3 Kepler Laws

We saw in Sect. 8.6 that for weak gravity, the Newton law of gravity is nearly cor-
rect. The Newton law of gravity can explain the famous three Kepler laws. Planets
going around the sun move nearly according to these three laws:

1. A planet moves around the sun on an ellipse, with the sun sitting in one focus of
the ellipse.

2. A straight line extending from the center of the sun to the center of the planet,
moves in equal small enough times over an equally small area. See Fig. 9.8.
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Fig. 9.8 The sun is the light-gray ball sitting in one focus point of the ellipse. The planet is the
black ball on the ellipse. The perihelion is the line at which the planet comes nearest to the sun.
The dotted straight lines show where the planet is after a fixed time span has passed. The light gray
and the darker gray triangles have the same area, so that the planet is faster near the sun than far
away from it

3. The square of the year of the planet is in proportion to the third power of the
largest radius of the ellipse. This largest radius is half the length of the horizon-
tal diameter line in Fig. 9.8. The constant of proportion is 4π2, divided by the
gravity constant and the mass of the sun.

We explain here only the simplest case in which the planets move in ellipses
which are nearly circles. This case still shows all the interesting physical effects.
Then the “largest radius” is just “the” radius to the sun. The third Kepler law
simplifies to:

The square of the year of the planet is in proportion to the third
power of its radius to the sun. The constant of proportion is 4π2,

divided by the gravity constant and the mass of the sun.

Example: Earth is at distance 1.5×1011 to the sun, which has mass 2×1030, and
the gravity constant is 6.67 × 10−11. Gravity of the sun is not too strong, so that we
can use the distance of earth to the sun as radius. Hence one year should be about

year =
√

4π2 (1.5 × 1011)3

(6.67 × 10−11) × (2 × 1030)
≈ 3.16 × 107 seconds

Check: Including the leap years, one year is about 365.25 days, that are 365.25×24
hours, or 365.25 × 24 × 60 × 60 ≈ 3.16 × 107 seconds, as it should be.

How do the Kepler laws follow from the Einstein equation of gravity? First of
all, the planets are much smaller than the sun, at least the ones nearer to the sun.
Therefore we assume that the planets themselves are just test-masses. Then we know
that the sun is nearly a perfect ball. How such a test-mass can move around the
perfect ball in a circle, and at the same time free-fall? Please have a look at the
left picture of Fig. 9.9. The box free-falls vertically. Inside the box, a test-mass
moves horizontally with steady speed, as sketched by the horizontal thick arrow.
The vertical arrow shows the perfect ball accelerating relative towards the box.

In the picture on the right hand side, we stand on a platform which reaches up
to the height where the test-mass is. We see the box falling down faster and faster.
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Fig. 9.9 A test-mass moves free-falling in a circle around a perfect ball, if we tune its horizontal
speed: We need no force for that, just the bended space-time

Fig. 9.10 During a short time the place and the speed of the planet turn at nearly the same angles,
so that the planet remains on the circle around the sun

Hence the test-mass moves more and more downwards, while moving to the right: It
moves along a bended path, much in the same way as the light beam in Fig. 6.10. If
we adjust the horizontal speed, we can arrange that the bended path continues to be
the dotted circular path around the perfect ball. Hence we see here how just by bend-
ing space-time, the sun makes a planets moving around it, without any force pulling
at the planet. We show now how large this speed is, using the Einstein equation of
gravity, exactly, so that we do not need the Newton law of gravity at all!

We look from a place far enough above the plane in which the planet moves,
nearly resting relatively to the perfect ball in an inertial state. We observe the planet
during a short time interval, as in Fig. 9.10. During this short time, it moves a certain
distance along the circle to the right. This is nearly the horizontal distance in the left
picture of Fig. 9.10. Distance per time is speed, so it moves at a distance which is
speed times the short time.

During this short time the place of the planet turns by a small angle. We learned
in Sect. 6.5 that the circumference of the circle with the same center as the perfect
ball is 2π times the radius, even within bended space-time. Hence for a small angle,
the ratio of horizontal distance and radius is in proportion to the angle.

Next let us have a look at how the speed is changing its direction during the short
time, as in the right picture. The additional speed is nearly vertically during the short
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time. Acceleration is additional speed per short time, so the additional speed is just
the acceleration times the short time, as we see in the right picture.

Now comes the point: To remain on the circle also in the future, the direction of
the speed must turn by the same small angle during the short time. Because both the
left and the right gray triangles have therefore the same small angle and are nearly
right triangles, the ratio of their smallest side and the side at right angles to it, must
be nearly the same, and this the better, the smaller the time interval is:

speed × (short time)

radius
= acceleration × (short time)

speed

The short time we can cancel, and see how the speed depends on the acceleration
and the radius:

speed2 = (acceleration) × (radius)

The acceleration we have from the Einstein equation of gravity (8.1), for us looking
from a place far above the plane in which the planet moves, resting relatively to the
perfect ball in an inertial state. The minus sign in that equation we can ignore here,
because here we viewed the vertical speed in Fig. 9.10 as positive number. Hence a
planet moving along a circle with a certain radius, moves at the speed

speed2 =
( gravity

constant

) × ( mass of
perfect ball

)
(radius)2

× (radius)

We cancel the radius on the right against one radius in the denominator,

speed2 =
( gravity

constant

) × ( mass of
perfect ball

)
(radius)

(9.14)

In terms of the Schwarzschild radius (9.1) this is

speed2

c2
= 1

2
×

2 × ( gravity
constant

) × ( mass of
perfect ball

)
(radius) × c2

speed2

c2
= 1

2
× S

radius

(9.15)

This is again an exact result of the theory of general relativity!
Now, speed is distance per time. During one year the test-mass moves once

around the circle. This distance is 2π times the radius, as we know from Sect. 6.5.
Hence

4π2 × (radius)2

(year)2
=

( gravity
constant

) × ( mass of
perfect ball

)
radius

Solving for the length of the year we get
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4π2 × (radius)3( gravity
constant

) × ( mass of
perfect ball

) = (year)2 (9.16)

This is just the third Kepler law. We see that if we use the radius as in Sect. 6.5,
and measure the time from a point resting far away relative to the perfect ball, that
then for a circular orbit, the third Kepler law remains exactly correct in the theory
of general relativity.

9.4 Planet Orbits Rotate: Weak Gravity 2

In the previous section we stated the Kepler laws, in particular that the planets move
around the sun on an ellipse. As a matter of fact, the planets do not follow an ellipse
to perfection. The reason is mainly, that the planets act with their own gravity on
each other. As one result, the ellipse itself slightly deforms. This is hard to observe.
However, one effect piles up as the years go by, so that astronomers can easily
measure it, just by waiting long enough: Very slowly, the ellipses themselves rotate
along the sun, as sketched in Fig. 9.11.

Astronomers use the line where the planet comes closest to the sun, as refer-
ence line. It is called the perihelion, and you see it in Fig. 9.8. “Peri” stands for
“near” and “helios” for the sun. Every time the planet comes nearest to the sun, this
perihelion has turned at some angle. This angle per one turn astronomers call the
perihelion advance.

Mathematicians and physicists developed calculus among other things to calcu-
late such tiny effects, using the Newton law of gravity. One way is to take off the
influence of the other planets. Then a lonely planet should move along a perfect
ellipse, because that is what the Newton law of gravity predicts for a single planet
going around the nearly perfect ball of the sun.

However, what we really see is that the ellipse of such an imagined lonely planet
still rotates by some angle per one turn around the sun! Now we know that the New-
ton law is out of line with the correct Einstein equation of gravity. So Einstein asked
himself if this left-over perihelion advance is an effect which General Relativity can
explain?

First let us use the Einstein equation of gravity only in the approximation of the
Newton law of gravity, which leads to the Kepler laws. Then a test-mass moves
around a perfect ball on a fixed ellipse. So to make things simpler, assume that the
ellipse differs from a circle only by a tiny bit.

Such an ellipse has to a very good approximation the form of a circle, as the solid
ellipse in the left picture of Fig. 9.12. However, the perfect ball does not sit quite
in the center of the ellipse, but rather somewhat shifted in the center of the dashed
circle.

A test-mass starts at the perihelion at point 1, heading parallel to the dashed
circle, along the solid ellipse. Then it will swing about the dashed circle: At point 2,
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Fig. 9.11 A planet moves
along a slowly rotating
ellipse, so that the orbit does
not close properly. For better
view, we calculated the orbit
for a planet which has
roughly the same distance to
the star as earth has to the
sun, but the star here is
one-million times heavier
than the sun

Fig. 9.12 Left picture: The perfect ball sits at the center of the dashed circle. The solid ellipse is
to a very good approximation a circle. The arrows show how much the test-mass is departing from
the circular orbit. Point 1 is the perihelion. Right picture: The dashed circle expanded to a straight
line, so that we see how much the test-mass is departing from the circle

it already approaches the dashed circle. From point 3 on, it moves away from the
dashed circle, and so on. After one year it passes through the starting point 1 with
the same speed as it started, heading again parallel to the dashed circle.

We saw in Sect. 9.3 that Kepler’s third law determines the period of a planet
moving along the dashed circle. In other words: If the Newton law of gravity would
be exactly correct, then Kepler’s third law (9.16) would determine also the period
of this swing.

We estimate now how much the bending space-time changes the speed of the
swing, when we see it from an inertial state far away from the central mass, as we
did in Sect. 9.3 for Kepler’s third law. We assume that the mass of the perfect ball is
not too large, so that we can calculate perturbatively, similar to Sect. 9.2. For this
purpose we flatten the bended space-time near the dashed circle.



9.4 Planet Orbits Rotate: Weak Gravity 2 101

Fig. 9.13 A test-mass moving along the solid ellipse swings around the dashed circular orbit
slower than Kepler’s third law predicts. Therefore it turns more than 360 degrees between the
perihelion, and the next perihelion

The arrows in Fig. 9.12 point in direction of the radius. We know from the
Schwarzschild exact solution (6.5) that the length of the vertical arrows will be
larger than what the measuring tape shows, by the factor γ −1 of the radius of the
dashed circle. Time is running slower by the γ factor, relative to us resting far away
from the perfect ball in an inertial state. The speed at which the arrow changes its
length, is change of length per time, and hence is larger by the factor y−1/γ = γ −2,
than in the Newtonian theory.

We can get the same effect by enlarging all vertical distances near the dashed cir-
cle by this factor γ −2, calculated for the radius of the dashed circle, but measuring
time with our clock. This will lead of course to the incorrect space-time in general,
but near the dashed circle we have such flattened out space-time. Because we mea-
sure with our clock, and gravity is not so strong, we can use again Kepler’s third
law (9.16) to get the period of the swing, but with the radius enlarged by the factor
γ −2. The third power of the radius will then grow by the factor (γ −2)3 = (γ −3)2.
Because this is in proportion to (period)2, the period itself will be larger than one
year by the factor γ −3.

Hence the test-mass arrives again at a perihelion, starting from one perihe-
lion after about 360 × γ −3 degrees, as you see in Fig. 9.13. We know from the
Schwarzschild exact solution (9.4) that the square of the γ factor is smaller than
one by

γ 2 = 1 − S

radius

We also know that for the solar system, this γ factor is nearly one. Hence we can
use Sect. A.3 and see that the γ factor itself is about half of that amount smaller
than one, that is, by 1/2 × S/radius, and the inverse of its third power is about
three times of that amount larger than one. Hence the perihelion of an ellipse will
advance each year by the angle

perihelion advance = 360 degrees × 3

2
× S

radius
(9.17)

The nearer the planet is to the sun, the larger is the effect.
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Let us check this for earth. Earth moves nearly in a circle around the sun, so we
can use the formula (9.17). Earth is at the distance 1.5 × 1011 from the sun. This
is nearly the radius, because gravity of the sun is weak. Hence the perihelion of the
ellipse advances per year about

360 × 3

2
× 2.96 · 103

1.5 × 1011
≈ 1.066 × 10−5 degrees

Per hundred years, this piles up hundred times to 1.066×10−3 degrees. Multiplying
with 60 gives this in arc minutes, and again with 60 gives the perihelion advance
in arc seconds. Hence the ellipse of earth should rotate by

3.8 arc seconds per century

This is what astronomers observe!

9.5 Strong Gravity Near Black Holes

In Sects. 9.2 and 9.4, we have seen how the theory of general relativity acts, if gravity
is weak. The reason was in both cases, that the Schwarzschild radius S ≈ 3000 m
is much smaller than radius of the sun ≈6.96 · 108 m, and therefore much smaller
than the smallest radius of the light beam or the planet moving around the sun.
We can estimate the weakness of the gravity also from the speed of the test-mass
moving free-falling in a circle around the sun: According to the Kepler law (9.15),
the squared speed in fractions of the speed of light, is just half the fraction of the
Schwarzschild radius and the radius of the circular path of the test-mass,

speed2

c2
= 1

2
× S

radius
(9.18)

For example, the speed of the earth around the sun is, using for the radius as approx-
imation its distance 1.50 · 1011 m from the sun,

speed

c
≈ 1

10000

which is really much slower than the speed of light.
We see also from the Kepler law (9.18), that the nearer the test-mass circles

around the perfect ball, the faster it will be. If the perfect ball is a black hole, then
how near can the test-mass circle free-falling around the black hole?

The speed of the test-mass entering the Kepler law is in terms of the time of
us resting relatively to the perfect ball in an inertial state. We know that no mass
can pass an observer at a speed faster than light. To let the test-mass pass us in
our inertial state, we free-fall in, as usual, from our place resting far away from the
perfect ball, as you see in Fig. 9.14.
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Fig. 9.14 Testing how near
to a black hole the black
test-mass can free-fall around
it in a circle

The horizontal part of the speed, at which the black test-mass is passing us, is
the speed of the Kepler law (9.18), at which the test-mass is going around the black
hole,

(horizontal speed)2

c2
= 1

2
× S

radius
(9.19)

Its vertical part is our speed relative to the black hole, given by Eq. (9.3),

(vertical speed)2

c2
= S

radius
(9.20)

Our time runs at the same pace as the time in which we measured the Kepler law.
Hence we get the total speed with which the black test-mass is passing us, simply
by using the Pythagoras theorem, as in Fig. 9.15,

(total speed)2

c2
= 1

2
× S

radius
+ 1 × S

radius
= 3

2
× S

radius
(9.21)

The test-mass can pass us with no more than the speed of light. Hence the left
hand side of Eq. (9.21) is never larger than one, and so is therefore the right hand
side. In other words: Any test-mass free-falling on a circle around the black hole,
must do so at a radius which is at least 1.5 times larger than the Schwarzschild
radius. At exactly 1.5 times the Schwarzschild radius, Eq. (9.21) tells us that a light
beam will go around the black hole in a circle!

We can say even more: Any free-falling test-mass approaching the black hole
nearer than 1.5 times the Schwarzschild radius, will fall into the black hole. Why is
that? If the test-mass does not fall into the black hole, it will keep a smallest distance.
Let us assume that the black test-mass in Fig. 9.16, is just passing at its smallest dis-
tance to the center of the black hole. Hence it must move at least with the horizontal
speed, which it needs to continue on the dotted circular path. However, this dotted
circle has a radius which is smaller than 1.5 times the Schwarzschild radius, so that
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Fig. 9.15 The total speed
relative to the free-falling
observer we get from the
Pythagoras theorem

Fig. 9.16 A test-mass
free-falling nearer to the
center of the black hole than
1.5 times the Schwarzschild
radius, will pass the horizon,
that is, free-fall into the black
hole

is impossible. Hence the black test-mass can only escape if it leaves its free-falling
state, and fires for example a rocket motor, accelerating it to an orbit which is at
least this 1.5 times the Schwarzschild radius away from the center of the black hole.

9.6 Gravity Waves

No body can influence its neighborhood faster than light, not even with the help of
gravity itself. We make a thought experiment to see what happens, if the bended
space-time around two bodies is changing with time. For simplicity, let two equal
masses swing back and forth, under their gravity, and bouncing at each other elasti-
cally, like billiard balls. We sketched their movement in Fig. 9.17. Observe that they
both are no test-masses: Both act with their gravity upon each other.

In the first line of the figure, the two balls start to move towards each other,
because of their gravity. We illustrated the gravity as a spring, pulling the balls
together.
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Fig. 9.17 Gravity acts
weaker when the balls
approach each other, than
when the move away

In the second line, the balls move already at some speed. Now, gravity itself can
only move at most with the speed of light. Hence in order to reach the right ball,
the left ball must have acted with its gravity already a little earlier, in order that
the gravity can reach the right ball at its position right now, and the same the other
way round. We sketched the balls exercising their gravity in the past as dotted balls,
and let the spring begin and end there. However, because the balls were then further
apart, gravity acts weaker than at their actual position.

In the third line, the balls collide, and in the fourth line they bounce elastically.
That is, they depart with the same speed as they have collided some moments ago.
In other words, they do not lose any of their motion energy due to the bouncing.

In the last line, gravity acts again a little bit earlier than at their actual position,
because it has to travel to influence the other ball. However, now gravity acts when
the balls were nearer than at their actual position, so it is stronger than at their actual
position.

In a nutshell: The balls use more motion energy to overcome their gravity while
departing from each other, than they gain from their gravity while approaching each
other. In total, they have less energy than before, when they are in rest again: They
come nearer to each other any time they begin to approach each other, because of
delayed gravity.

Where has the energy gone? By bending space-time between the balls, gravity
itself has not stopped when it reached the other ball, but spread: It formed gravity
waves, because gravity acts at a distance delayed.

How can we measure a gravity wave which is passing us? We saw in Fig. 5.12 that
in vacuum, gravity does not contract sufficiently small volumes, but rather stretches
them in one direction, and shrinks them in the other direction. Hence when a grav-
ity wave is passing a volume marked with test-masses, it should react as shown in
Fig. 9.18. After the volume has deformed, some of the energy of the gravity wave
sits in the springs between the test-masses. This means that a gravity wave is carry-
ing energy.

Up to now, 2013, nobody has detected gravity waves directly, but Hulse and Tay-
lor found in 1974 that two very compact stars, called PSR-1913+16, move around
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Fig. 9.18 As the gravity
wave is passing, the volume
marked by the test-masses is
expanding in one direction,
and shrinking in the other
direction

each other at a very narrow distance. They have both about the same mass of roughly
1.4 times the sun mass. They must have come together from somewhere. Hence they
lost energy by delayed gravity, and therefore continue to lose energy, by spiraling
ever faster towards each other. One of the two stars is a so-called pulsar, that is, it
rotates very fast and emits electromagnetic waves, like the rotating mirror of a light-
house, acting as a timer. Physicists calculated with the help of the Einstein equation
of gravity how much energy the two stars should lose to gravity waves. Now, after
30 years of gathering data, we know that the theory of general relativity describes
this effect to at least 99 percent correctly.

9.7 Where Is the Gravity Energy?

Let us again free-fall vertically towards a perfect ball, as sketched in Fig. 9.19.
We start free-falling from the position at the far left. When we pass through

the dashed imaginary circle, we already travel at some speed towards the perfect
ball. At this instant, our dark-headed friend on the right who rested at this distance
from the perfect ball, begins to free-fall. The perfect ball moves with much more
speed towards us than it does towards our friend. Hence for us, the perfect ball
has more mass than for him, as we know from Sect. 2.6. However, according to the
equivalence principle, we are in the same state of inertia as we were when we started
far away from the perfect ball. Hence we conclude that the perfect ball contains more
mass when looked upon from a place resting far away from it, than when looked
upon from resting at some smaller distance. The energy of this mass seems to be
sitting between us and the perfect ball. The question is only, where exactly is this
energy sitting?

Compare with the case of elastic energy. In Fig. 9.17 we used the picture that
gravity attracts masses like a spring does. Hence maybe the space outside the perfect
ball is bending like an elastic body, as the body sketched in Fig. 7.7 does? Inside the
material we can imagine little springs holding the atoms together. When the material
bends, the springs expand or contract, and such contain the bending energy.
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Fig. 9.19 Falling from different distances towards a perfect ball. The arrows show the direction
and magnitude of the speed relative to the perfect ball

Therefore let us check a small volume of space outside the perfect ball, and
search for the “gravity energy” in it. We mark the small volume by test-masses,
which are resting relative to each other. However, when we release them, we know
from the Einstein equation of gravity of Sect. 7.2, that the small volume will not
begin to shrink, because we are outside the mass of the perfect ball. Hence there
cannot be any gravity energy inside this small volume, which would have caused
gravity.

However, in the case of gravity waves in Sect. 9.6, we saw that test-masses mark-
ing a small volume as in Fig. 9.18 can pick up energy from gravity in form of a grav-
ity wave, even if it does not shrink the volume! We repeat this thought experiment
now: We put test-masses connected by springs, in flat space-time, marking a small
volume, far away from other masses, as you see in Fig. 9.20. We are in the middle
of the test-masses. Then we let a perfect ball pass near us. While the perfect ball is
passing, the test-masses will react to the bending of space-time more or less as in
the Fig. 5.12. When the springs have picked up some energy, we lock the springs
until the perfect ball has passed.

Then the test-masses and springs have more energy than before! What kind of
energy did we pick up? The perfect ball moves slower away from us, than it ap-
proached us. Hence we did not pick up some energy of bending space around the
perfect ball, but rather some small part of the motion energy of the perfect ball,
relative to us.

To sum up: Precisely because bending space-time outside of a perfect ball does
not shrink a small volume marked by test-masses which are resting relative to each
other, we cannot find the gravity energy in a small volume, because we know that
energy inside a small volume would shrink that volume. The gravity energy sits in
the total bended space-time around the gravitating mass, but we cannot place it!
Why, where do you want to place it? In space and time. That is the big difference: In
Fig. 7.7, the material bends in space-time, whereas gravity bends space-time itself.
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Fig. 9.20 As the perfect ball is passing, the volume marked by the test-masses is expanding in one
direction, and shrinking in the other directions

9.8 Big Bang of the Universe

If we look with our naked eyes at the night sky, we see planets, stars, and galaxies.
Between them, there is much void. However, to all our knowledge, the universe
looks pretty much the same in all directions, if we look only at distances which are
much larger than between galaxies. On such scales, there is everywhere the same
amount of mass per volume. This observation is called the cosmological principle.
What is more, only gravity seems to act over such large distances.

Hence we construct the following simplest model of the universe:

1. The energy, including mass, in the universe spreads everywhere, and in every
direction, to the same extend.

2. Gravity dominates between the masses, but no other forces, and nearly no pres-
sure.

3. The number of stars and galaxies in the universe does not change with time.

Then in what way the energy in the universe can bend space-time? In this model,
time must run everywhere at the same pace, on a coarse scale, because mass spreads
everywhere the same. Lengths can change, but again, lengths must change by the
same amount everywhere, and on top of this, lengths must change by the same
amount in any direction. The only way that this can happen, is that lengths only
change with time. This whole picture is called the Friedman model of the universe.

We illustrate this in Fig. 9.21. A typical length is the distance of some not too
near galaxies, which we sketched as stars. All bodies move away from each other, if
time proceeds as we pass on from the left to the right picture, or move towards each
other, if time proceeds as we pass from the right to the left.

The universe does not need to be infinitely large: Suppose that the universe had
only two dimension, such as the surface of a balloon. The stars and galaxies we
realize by adhering small pips to it. If we blow up the balloon, all pips on the balloon
will move away from each other, and there is no center, just as in Fig. 9.21. However,
the pips themselves do not grow! In a similar way, if three dimensional space around
us will grow, all galaxies will move away from us, from a certain large average
distance on, but the stars and galaxies themselves do not grow.

Then we like to get an answer to the following questions:
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Fig. 9.21 The universe can expand or shrink, depending on whether time is proceeding as we pass
from the left to the right, or vice versa

1. Can we not have a static universe, of must it shrink or expand?
2. It so, can we calculate the expansion or shrinking rate?

We start by looking in our neighborhood around us, and generalize to larger regions
of the universe later on.

9.8.1 Small Ball of Mass in the Universe

We chose a small ball around us. In the real universe, “small” means “still large
enough, so that the mass and energy spreads more or less equally in all directions”.
We sketched the ball in Fig. 9.22.

Then the rest of the universe does not influence our small ball at all! Why is
that? We assumed in the Friedman model, that only gravity acts among the galax-
ies. What is more, mass spreads in any direction in the same way. Hence by the
Birkhoff theorem of Sect. 8.3, the outside masses do not gravitate inside our small
ball.

How does then the gravity of the masses acts inside the ball? As in Sect. 8.2,
we place black test-masses at the surface of the ball, which rest there relative to
each other, and let them loose, starting to free-fall. Then the Einstein equation of
gravity (7.2) tells us:

The relative rate at which the volume of the small ball marked by
the test-masses begins to shrink, is 4π times the gravity constant

times the density of the mass in the ball.

Galaxies, stars and the like at the surface of the ball may move relative to the
resting test-masses, but they do not accelerate relative to the nearby test-masses,
because they both free-fall. Hence we can let the ball move with the galaxies on
its surface. Then all the same, the rate at which the growth of the ball begins to
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Fig. 9.22 We placed black
test-masses at the rim of the
ball, resting relative to each
other. We just released them,
so that they free-fall, as the
nearby stars do, and therefore
do not accelerate relative to
the nearby stars

slow down, or the shrinking of the ball is quickening, is the same as for the test-
masses. In other words: Forget about the test-masses. The Einstein equation reads
now

The relative rate at which the volume of the small ball marked by
the galaxies, and moving with the galaxies on its surface, begins to
slow down its growth, or begins to accelerate its shrinking, is 4π

times the gravity constant times the density of the mass in the ball.

We express this law now in terms of the radius of the small ball. In the Friedman
model universe, we can make the ball as small as we wish, because we assumed that
mass spreads everywhere in the same way. This means also that because there is per
volume everywhere the same amount of mass, that the smaller the ball, the less mass
is in it, and the less the space-time is bending. Hence for a sufficiently small ball, it
is nearly perfectly correct to use school-geometry to calculate its volume in terms
of its radius.

In school-geometry, the volume of the small ball is in proportion to the third
power of its radius. If for example the radius of the ball shrinks from 1 to 0.999, that
is relatively by one per thousand, then its volume shrinks by 0.9993 ≈ 0.997, that is
relatively by three per thousand, three times as much as the relative shrinking of the
radius.

Therefore the relative rate at which the growth of the volume of the small ball of
galaxies begins to slow down, or the shrinking begins to accelerate, is three times
the negative acceleration of the radius, per radius, and the Einstein equation of grav-
ity (7.2) tells us that this is

−3 × acceleration of radius

radius
= 4π ×

(
gravity

constant

)
× (mass density) (9.22)

This acceleration is in the case of an expanding ball the rate at which its expansion
is slowing down.
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Fig. 9.23 The larger ball grows or shrinks relatively in the same manner, as all the small balls
grow or shrink

9.8.2 Large Ball of Mass in the Universe

We really wanted to know how much larger portions of the universe behave under
gravity. In the Friedman model, mass spreads to the same extent everywhere, so that
even for a large ball of mass, as before, only the gravity of the masses inside this
ball determine how much the ball will begin to shrink.

By the cosmological principle, the mass density on the right hand side of
Eq. (9.22) is everywhere the same. Hence the radius of a ten times as large ball must
begin to change relatively in the same way, because we can fill it with smaller balls,
all of which begin to change by the same relative amount, as you see in Fig. 9.23.
Therefore we can use this equation for a ball of any size in the universe!

We want to rewrite the gravity law for the universe in terms of the mass inside
a large ball, because in our model, the mass of the stars and galaxies inside a ball
like in Fig. 9.22 does not change in time because the ball is growing or shrinking
with the distance of the galaxies. However, the mass density will change, if the ball
grows or shrinks. Mass density is mass per volume, so we can use that instead of
the right hand side of the Einstein equation (9.22). However, inside a large ball
there is so much mass, that space-time, and in particular space, will bend. Hence we
cannot use school geometry: The volume of that large ball, at a given time, is not
in proportion to the third power of its radius, but there is a much more complicated
law connecting the radius and the volume of a large ball.

However, there is a way out: Please have again a look at Fig. 9.23. We see that
if the volume of the large ball grows by, say, 2 percent, that then the volumes of
the small balls also grow or shrink relatively by that amount. Hence the volume of
the large ball grows or shrinks relatively by the same amount as the volumes of the
small balls. We also learned at the end of the last section, that the radius of a large
and a small ball grow or shrink relatively by the same amount.
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Finally, we know that because school geometry holds nearly perfectly for the
small balls, that the volumes of the small balls shrink or grow relatively three times
as much as their radius. Hence also the volume of the large ball will grow or shrink
relatively three times as much as its radius,

volume of ball = 4π

3

(radius)3

constant

For very small balls, the constant is one, and we get again the formula from school
geometry.

The constant does depend on the radius of the ball at some given time, but does
not change with time. Hence the mass density of the ball is in terms of the radius of
the ball,

mass density = mass of ball

volume of ball

= mass of ball

(radius)3
× constant

4π
3

(9.23)

Hence we can use the Einstein equation of gravity (9.22), which we write here again,

−3 × acceleration of radius

radius
= 4π ×

(
gravity

constant

)
× (mass density)

and replace the “mass density” in terms of the mass and radius of the large ball
of (9.23),

−�3 × acceleration of radius

���radius
= ��4π

( gravity
constant

) × (mass of ball)

(radius)�3 2
× constant

��4π

�3

One radius and the factors 3 and 4π we can cancel on both sides, so

acceleration of radius = −
( gravity

constant

) × (mass of ball)

(radius)2
× constant

The radius we can replace with the distance to the center of the ball, because in the
Friedman model both are in proportion. Then the constant changes its value, but the
equation remains in the same form

(
acceleration of

distance to center

)
= −

( gravity
constant

) × (mass of ball)

(distance to center of the ball)2
× constant (9.24)

This is the Friedman-equation. We have seen this equation before: Because time in
the universe runs everywhere at the same pace, the equation looks up to the constant
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Fig. 9.24 The universe is expanding in the same way as an apple thrown vertically upwards from
a small planet is slowing down

on the right, just like the Newton law of gravity for a perfect ball (8.7). Let us coin a
catch-phrase:

For the universe as a whole, the law of gravity looks like the
Newton law!

We can solve this equation in the opposite way as Newton did: Not by looking at an
apple falling from a tree, but by throwing an apple vertically into the sky. To get rid
of the air drag, we do it as the little prince of Saint-Exupéry would do, on the surface
of several small planets of different mass, with the same initial speed. In Fig. 9.24
we sketched what happens: The planet on the left has enough mass, so that the apple
will eventually fall back. The planet on the right is so light that the apple is leaving
it, moving forever away.

We have found again an exact solution of the Einstein equation of gravity!
Now we can answer the first question of p. 109: A static universe is not stable:

It will immediately start to collapse, just as the apple resting above the planet will
start to fall down. The universe has only two choices: To expand, or to collapse. In
fact, astronomers know since about 80 years ago, that the distant galaxies all move
away from each other. Hence they all must have been much more closer in the past:
There must have been a big bang, where all energy of the universe suddenly started
to expand.

In the same way as for the apple on the small planet, if the universe has enough
mass, then the expansion caused by the big bang will eventually stop and the uni-
verse will collapse in the future. If not, then the universe will forever expand, but in
any case, the expansion will slow down.

Therefore we should observe that the distant galaxies are moving faster away
from us than the nearer galaxies, because in the past the universe should have ex-
panded faster, and slowed down its expansion up to today. However, in the last ten
years or so astronomers found the opposite to be true: The universe expands ever
faster!

This is still a riddle, but there is one possibility that we neglected: The energy
and pressure of the vacuum.



114 9 General Relativity in Action

Fig. 9.25 Two light waves wiping each other out. In reality they are on top of each other, but we
drew them beside each other, for better view

Fig. 9.26 Two parallel metal
plates in vacuum, with
swinging light waves in
between: We took the right
picture at some later time
than the left picture

9.9 Vacuum Energy and Gravity

We have a definite idea about the vacuum: It is what is left over, when we removed
everything. Hence nothing should be left, especially no energy. However, experi-
ments show that energy is left over! Let us see how. Suppose two light waves travel
through empty space, through the same path, but swinging in the opposite way, as
sketched in Fig. 9.25. Then in the same way as water waves, they wipe each other
out: No wave is left over. However, both waves carry a positive amount of energy.
Therefore no wave, but vacuum energy is left.

If such waves wipe each other out, how can we see them anyway? We can,
and we now describe how they have been seen. Put two metal plates near to each
other in vacuum. Metal does not allow light waves to pass, at least no waves with
small enough wave lengths. Also, the light waves cannot swing inside the metal. In
Fig. 9.26, we show in the left picture swinging light waves at one time instant, and
in the right picture some time later. Compare the two pictures: The upper two, solid
waves fit between the plates, because near the plates they do not swing. However,
the dashed wave does swing near the plates, so it cannot fit. This means that there
are more possible waves and vacuum energy without metal plates than with metal
plates.

Now, move the metal plates nearer together, say, to one-fourth of their distance,
as you see in Fig. 9.27. Then the upper wave does not fit any longer. Only the wave
in the middle still fits. Hence the more the metal plates approach each other, the
less energy fits between them. Therefore the metal plates begin to approach each
other by themselves, to lower their energy. This is what physicists observe! It is the
Casimir effect.1

1It has been observed in 2001 by physicists G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso. You
can download the original paper here: http://arxiv.org/abs/quant-ph/0203002.

http://arxiv.org/abs/quant-ph/0203002
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Fig. 9.27 The nearer the
metal plates comes together,
the less light waves fit
in-between

How much energy does such a light wave carry? Its energy is in proportion to its
inverse wave length. The constant of proportion is the Planck constant times the
speed of light. It is one of the most important phenomenons of the subatomic world,
and we would need quantum theory to estimate the Casimir effect. This is out of
the scope of this book. In fact Casimir has done the calculation, and indeed quantum
theory predicts the correct attraction between the two plates.

However, we can take the Casimir effect as experimental fact, showing that these
“ghost” waves are real. By the way, they are called vacuum fluctuations. We see
that the more we look into small pieces of space, the more such waves with smaller
and smaller wave lengths fit into that space. Because their energy goes as the inverse
of their wavelength, this energy grows more and more! And any type of energy will
gravitate!

Hence we have the same situation as we already discussed shortly in Sect. 7.3:
The vacuum itself acts as a kind of gas in which matter immerses. We see from
the Casimir effect that the vacuum is carrying energy, so it must exert pressure.
Then what pressure does the vacuum energy exert? For this, let us do a thought ex-
periment that we never can do for real. In Fig. 9.28, we sketched a lightly shaded
volume containing vacuum, with nothing, not even a vacuum around. That is of
course why we never can realize this experiment, but never mind. We saw that vac-
uum has some definite positive energy. Hence to create more vacuum, we need
to add energy. That means, we have to do some work to pull the piston to the
right.

Compare to positive air pressure: We have to do work to compress the tire of a
bicycle. So for vacuum it is the other way round: It has negative pressure. Hence
in contrast to what we learned about the energy density in a pressure cooker in
Sect. 1.12, we conclude that the pressure is here just the negative vacuum energy
density itself. This pressure is the same in any of the three directions of space. The
complete Einstein equation of gravity (7.3) tells us that instead of the energy density
of the vacuum we have to use

(
energy density

of vacuum

)
+ 3

⎛
⎝pressure = negative

energy density
of vacuum

⎞
⎠ = (−2)

(
energy density

of vacuum

)
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Fig. 9.28 Positive vacuum
energy means negative
pressure

This is a constant, negative mass density, if we divide by c2 using Eq. (1.2). Hence
our equation for the universe expansion (9.22) gets a new source of acceleration,

−3

(extra acceleration
of radius

)
radius

= 4π

(
gravity

constant

)
× (−2)

(energy density
of vacuum

)
c2

Because the distance from the center is in proportion to the radius, we can use it as
well, and use the constant to correct for larger balls, as before:

− 3

( extra acceleration
of distance to center

)
distance to center

= 4π

(
gravity

constant

)
× (−2)

(energy density
of vacuum

)
c2

× constant

In other words: This extra acceleration is positive and in proportion to the distance
to the center:(

extra acceleration
of distance to center

)
= 8π

3c2

(
gravity

constant

)(
energy density

of vacuum

)
×

(
distance
to center

)

Hence the more the universe expands, the larger is this extra acceleration, while the
original slowing down of Eq. (9.24) is becoming smaller. Therefore already today
the vacuum energy should dominate the fate of the universe!

We say “should” because there is a snag: You can already guess that many, many
types of ghost waves fit in the universe. So there should be a huge amount of vacuum
energy, actually so large, that its huge negative pressure should make the universe
explode right now! So there must be something else, some mechanism which keeps
the vacuum energy much smaller. Nobody has any convincing explanation why the
vacuum energy is so small, that we see the universe expanding so slowly. Or to put
it another way:

It seems that at present we do not understand how the effects of the subatomic
world fit into bended space-time, or how bending space-time influences the sub-
atomic world.



Chapter 10
Epilogue

We saw that the theory of relativity is based on four principles:

1. Light passes near an observer always at the same speed c.
2. Time, lengths, and all other steady speed have only a meaning relative to some

observer.
3. The equivalence principle: A small enough mass moves under gravity, that is in

bended space-time, free-falling, with steady proper time.
4. Mass bends space-time in the simplest possible way fitting with the first three

principles: The rate at which the volume of a small enough, resting cloud of
small pieces of matter begins to shrink, grows in proportion to the mass in that
cloud.

The first two principles are the foundation of the theory of special relativity, and all
together form the theory of general relativity.

The theory does not ask, what technically makes masses move, or what atomic
structure mass has, but explores how mass, momentum, energy on one hand, and
time and space on the other hand, interact. It even absorbs one force of nature, grav-
ity, into bended space-time, so that gravity turns out to be no force at all. Einstein
created this theory using only meticulous physical reasoning. All that makes the
theory of relativity so beautiful.

We saw that especially the equivalence principle is a powerful tool, to see how
mass is reacting on bended space-time. It is not only the famous elevator alle-
gory of Sect. 5.1, repeated in many popular books: Because mass acts and re-
acts on bended space-time, the equivalence principle helps to solve the Einstein
equation of gravity, or to derive the Friedman model of the universe, for exam-
ple.

Checked again and again over a period of over hundred years, the theory of rel-
ativity serves today as a frame in which more detailed theories of matter have to fit
in. For example, electrodynamics, describing all electrical and magnetic processes,
fits naturally in from the beginning.

K. Fischer, Relativity for Everyone, DOI 10.1007/978-3-319-00587-4_10,
© Springer International Publishing Switzerland 2013

117

http://dx.doi.org/10.1007/978-3-319-00587-4_10


118 10 Epilogue

It took a long time to fit quantum theory, that is the theory of the small, at least
into the frame of special relativity, that is, the first two of the four principles above.
This beared much fruit, but it would need at least one more book to describe its
weird, yet real phenomena, such as anti-matter.

It remains for future generations to merge this theory of the small with the theory
of general relativity describing the largest structures in our world.



Appendix

A.1 Important Numbers

The numbers in Table A.1 are in fact known to higher precision, but given here
rounded to two decimal places.

A.2 Inertia of Pure Energy in Detail

Please have a look at Fig. A.1. While building up, the light package presses against
the wall. Pressure itself is force per area of the wall. So let us fix the area of the right
side of the wall to be just one square-meter, so that pressure and force are the same.
During the time the light is pressing against the wall, the wall receives a “push”, that
is, momentum. This recoil momentum is mass times speed of the wall, as we saw
in Sect. 2.6. Double the time, or double the pressure, and you will get twice as much
recoil from the wall. Hence the recoil is the pressure of the light, times the time it
takes to build up the package of light,

(wall mass) × (wall speed) = pressure × time

By the way, nowadays we can measure this light pressure in the laboratory. We saw
in Sect. 1.12 that this light pressure is energy per volume. This volume is the surface
area of the wall, which we set to one, times the width of the light package. Hence
the pressure times the time it acts, is the energy of the light, per width of the light
package, times the time it acts on the wall

pressure × time = energy

width
× time

The package of light builds up with the speed of light, so that width
time is just c,

pressure × time = energy

c
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Table A.1 Important quantities and their units

Name of the number Value Unit

speed of light c 2.99792458 × 108 ≈ 3.00 × 108 m/s

gravity constant G 6.67 × 10−11 m3/(kg s2)

sun’s mass 1.99 × 1030 kg

sun’s radius 6.96 × 108 m

sun’s Schwarzschild radius 2.96 × 103 m

earth’s mean distance from sun 1.50 × 1011 m

Fig. A.1 A wall recoils to the left, because pure energy left the wall to the right

Hence the wall will move to the left with speed

(wall mass) × (wall speed) = pressure × time

(wall mass) × (wall speed) = energy

c2
× c

(A.1)

After “some time” has elapsed, the wall traveled to the left to some distance,
which is the product (wall speed)× (some time). During this “some time”, the light
package traveled some distance c × (some time) to the right. Hence we multiply
Eq. (A.1) for the wall speed with this “some time”, and we know how far the wall
has traveled in the right picture of Fig. A.1,

(wall mass) × (wall distance) = energy

c2
× (light package distance)

The center of the total mass is still at rest. Hence while the wall carries its mass to
the “wall distance” to the left, the light, that is the pure energy, carries some mass
to the “light package distance”. Hence we read off the previous equation that this is
the energy of the light package, divided by c2,

mass of light package = energy

c2
(A.2)

This is just Eq. (1.2).
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Fig. A.2 A packet of light
moves from the left to the
right wall of a box

We made several small mistakes: If the light carries away some mass from the
wall, the wall must have lost this mass. However, we can make this error as small as
we want by making the wall as massy as we wish. Likewise, it takes the wall some
time to react, because the left part of the wall cannot know that light has left the
right part already. However, we can think of the wall as being as thin and dense as
we wish.

Said Einstein in 1905:

Wenn die Theorie den Tatsachen entspricht, so überträgt die
Strahlung Trägheit zwischen den emittierenden und

absorbierenden Körpern.

That is to say:

If the theory of relativity is correct, then radiation carries inertia
between the emitting and adsorbing body.

Apropos “adsorbing body”: In the original setup by Einstein the wall was the left
wall of a box, and the right wall of the box absorbed the light again, as in Fig. A.2.
He made basically the same calculation as we did here.

However, then Einstein made the mistake to assume that this whole box recoiled
without delay from the emitted light. This contradicts the theory of relativity, be-
cause the right wall must then react before the light package reached it, that is, it
must have received the forces making it react with a speed faster than light! You see
that sometimes even Einstein himself had the wrong intuition about relativity.

A.3 Relativity for Small Speeds

We know that relativistic effects nearly always depend on the speed via the γ factor.
For small speed, we know that the γ factor is nearly one. We want to know to what
extend it is different from one. Check by hand or with a pocket calculator that

(
1 − 1

2
× 0.01

)2

= 0.9952 = 0.990025 ≈ 0.99 = 1 − 0.01



122 Appendix

(
1 − 1

2
× 0.001

)2

= 0.99952 = 0.99900025 ≈ 0.999 = 1 − 0.001

so that by taking roots on both sides we have the estimate

1 − 1

2
× 0.001 ≈ √

1 − 0.001 = (1 − 0.001)
1
2

and we see that this estimate becomes the better, the less the γ factor differs from
one. Therefore we can now estimate the γ factor at small speed

1 − 1

2

(
speed

c

)2

≈
√

1 −
(

speed

c

)2

= γ (A.3)

The same pattern holds for other powers: If a number like 0.999 differs from one
only by a very small amount −0.001, then the power of that number, differs from
one by that amount −0.001 times that power, if the power is not too large. For
example, for the minus first or minus third power, we have

(1 − 0.001)−1 = 1

0.999
≈ 1.001001 · · · ≈ 1.001 = 1 + (−1) × (−0.001)

(1 − 0.001)−3 = 1

0.9993
≈ 1.0030006 · · · ≈ 1.003 = 1 + (−3) × (−0.001)

and so on. Using the previous estimate (A.3), we have an estimate for the inverse γ

factor at small speed,

γ −1 = 1

γ
≈ 1

1 − 1
2 (

speed
c

)2
≈ 1 + 1

2

(
speed

c

)2

γ −3 = 1

γ 3
≈ 1

1 − 3
2 (

speed
c

)2
≈ 1 + 3

2

(
speed

c

)2
(A.4)

A.4 Speed Addition from Growing Mass

From Fig. A.3 we see that the two balls of resting-mass m0 have relative to the box
the total mass

M0 = 2m0√
1 − u2

c2

because the square of both speeds u2 = (−u)2. This mass M0 is the resting-mass of
the box, because we assumed the box itself to be very light, so that the balls make
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Fig. A.3 The left ball moves
in the light box with speed u

to the right, and the right ball
with speed −u to the left,
relative to the box. The box
itself moves with speed v to
the right, relative to the
ground

up nearly all of its mass. Hence, when the box moves with speed v, its mass should
be

M0√
1 − v2

c2

= 2m0√
1 − u2

c2 ×
√

1 − v2

c2

(A.5)

We check this mass, adding up the masses of the balls one at a time. If one ball
moves in the box with a fraction u

c
of the speed of light, and the box moves relative

to the ground with a fraction v
c

of the speed of light, then we claim that the ball
moves relative to the ground not with a fraction u

c
+ v

c
of the speed of light, but with

a smaller total speed w, whose fraction w
c

of the speed of light is,

w

c
=

u
c

+ v
c

1 + u
c

× v
c

(A.6)

To see this, we calculate the γ factor for w:

1 −
(

w

c

)2

= 1 −
( u

c
+ v

c

1 + u
c

× v
c

)2

= (1 + u
c

× v
c
)2

(1 + u
c

× v
c
)2

− (u
c

+ v
c
)2

(1 + u
c

× v
c
)2

We rearrange the numerator, crossing out the factors that cancel each other. We find
that we can write it as product of the γ factors of u and v:

(
1 + u

c
× v

c

)2

−
(

u

c
+ v

c

)2

= 1 +
����2

u

c
× v

c
+

(
u

c

)2(
v

c

)2

−
(

u

c

)2

−
����2

u

c
× v

c
−

(
v

c

)2

=
(

1 − u2

c2

)
×

(
1 − v2

c2

)

Hence, taking roots,

√
1 −

(
w

c

)2

=
√

1 − u2

c2 ×
√

1 − v2

c2

1 + u
c

× v
c
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Therefore the ball traveling with speed u inside the box traveling with speed v gets
the total mass

m0√
1 − w2

c2

= m0(1 + u
c

× v
c
)√

1 − u2

c2 ×
√

1 − v2

c2

Replacing u by −u we arrive at the γ factor for the ball moving left with speed
−u inside the box. This changes only the sign in the numerator from 1 + u

c
× v

c
to

1 − u
c

× v
c

. Therefore the two moving masses add to

m0(1 +���u
c

× v
c
)√

1 − u2

c2 ×
√

1 − v2

c2

+ m0(1 −���u
c

× v
c
)√

1 − u2

c2 ×
√

1 − v2

c2

= 2m0√
1 − u2

c2 ×
√

1 − v2

c2

that is, to the same mass as in Eq. (A.5). Hence Eq. (A.6) is the correct way to add
parallel speeds.

A.5 Einstein Equation of Gravity in Terms of Tensors

The complete Einstein equation of gravity of Sect. 7.3 reads as follows:
The relative rate at which a small enough, resting cloud of matter begins to

shrink, grows in proportion to the energy density plus the pressures in each of the
three directions in that cloud. The constant of proportion is 4π times the gravity
constant G, divided by the square of the speed of light, or in short,

(
relative shrinking

beginning rate

)
= 4πG

c2

[(
energy
density

)
+

(
sum of pressures
in each direction

)]
(A.7)

In order to make contact to text books, we write this equation in terms of tensors.
We cannot give here a course on tensor analysis, but at least explain what the sym-
bols mean. For matter resting relative to each other and us, energy density is one
component of the energy tensor T m

n . This tensor has sixteen components, which
are labeled by two indices m and n, both of which can take the values 0, 1, 2, or 3.
Energy density is the component T 0

0 . The negative of the component T 1
1 is the pres-

sure in one direction of space, and −T 2
2 and −T 3

3 in the other two directions. For
resting matter without internal stress, like a gas or a liquid, the other components
are zero.

The relative volume shrinking beginning rate is the component R0
0 of the Ricci

tensor, times c2. Hence the complete Einstein equation of gravity is

R0
0 = 4πG

c4

(
T 0

0 − T 1
1 − T 2

2 − T 3
3

)
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We need still a tensor U whose component U0
0 gives the right hand site of the equa-

tion. There is the tensor δm
n which is one if m = n and zero else. Using the tensor

T = T 0
0 + T 1

1 + T 2
2 + T 3

3

which has only this one component T we can built the tensor T δm
n and from it the

tensor

Um
n = 2T m

n − T δm
n

Its 0
0 component is

U0
0 = 2T 0

0 − (
T 0

0 + T 1
1 + T 2

2 + T 3
3

) = T 0
0 − T 1

1 − T 2
2 − T 3

3

Hence the Einstein equation of gravity in terms of the energy tensor and Ricci tensor
is

R0
0 = 4πG

c4

(
2T 0

0 − T δ0
0

)
(A.8)

In Sects. 7.1 and 7.2, we chose the simplest case in which pressure is zero, for a
small cloud of test masses which are resting relatively to each other. In this case, all
components of the energy tensor are zero, except the component T 0

0 , which gives the
energy density. For more complicated distributed and moving masses, we need the
equations all for the components of the Ricci and energy tensor. This is the Einstein
equation of gravity in terms of tensors,

Rm
n = 4πG

c4

(
2T m

n − T δm
n

)
(A.9)
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B
Bending angle of light beam, 92
Big bang, 113
Birkhoff theorem, 81
Black hole, 64, 90, 102
Body speed and mass, 6

C
c for speed of light in vacuum, 4
Casimir effect, 114
CERN, 36
Clock paradox, 36, 41, 56
Conserved quantity, 25
Cosmological principle, 108
Curvature of bended surface, 73

D
Delayed gravity, 105

E
E = mc2, 11
E is the symbol for energy, 10

Einstein about inertia and energy, 10
Einstein equation of gravity, 61, 69
Einstein equation of gravity, complete, 70
Einstein equation of gravity, exact solution of,

81, 85, 113
Einstein equation of gravity for energy, 69
Einstein equation of gravity in terms of mass

density, 69
Einstein equation of gravity in terms of

tensors, 125
Einstein law of gravity, 69
Einstein ring, 62
Electric current makes magnets move, 26
Electric field, 28
Electric motor, 26, 27
Electrical charge is absolute, 25
Electricity generator, 26, 28
Electrodynamics, 25, 28
Electromagnetic wave, 28
Ellipse, 95
Energy, concept of, 7
Energy, kinetic = motion energy, 6
Energy, motion, 6
Energy, pure, 8
Energy, pure, mass of, 10, 120
Energy and information, 11
Energy conservation, 7
Energy tensor, 124
Energy-mass equivalence, 11
Equivalence principle, 46
Euclidean geometry, 38
Exact solution of the Einstein equation of

gravity, 81, 85, 113

F
Faraday paradox, 31
Faster than light, 4, 14
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First law of relativity, 2, 30
Free-fall and reaction to gravity, 65
Free-falling, 44
Free-falling and bended space-time, 46
Free-falling and equivalence principle, 65
Free-falling and inertial state, 46
Free-falling and proper time, 50
Free-falling and straightest path, 50
Friedman model, 108
Friedman-equation, 112

G
Galilei, 2
γ factor, 14, 15
γ factor, properties, 17
Gauss curvature, 73
General theory of relativity: theory of general

relativity, 75
Geodesic in space-time, 50, 65
Geodesic on surface, 48
Gravitational mass, 44
Gravity, delayed, 105
Gravity bends space-time, 48
Gravity constant, 69
Gravity lens, 62
Gravity slows down clocks, 53
Gravity waves, 105

H
Horizon, 64, 90, 104

I
Inertia, 5
Inertia and time, 21
Inertial and gravitational mass are the same, 44
Inertial mass, 5
Inertial mass under gravity, 61
Inertial state, 35
Inertial state and free-falling, 46
Information and energy, 11

J
Joule, 7

K
Kepler law, third, for motion in a circle, 96
Kepler laws, 95
Kinetic energy = motion energy, 6

L
Law of motion, 77
Law of motion, Newton, 87
Left-hand rule, 27, 30
Length at right angles to speed, 19

Length in direction of speed, 19
Light, faster than, 4, 14
Light as pure energy, 9
Light beam, going around a circle, 103
Light pressure, 119
Lorentz force, 27, 28, 78
Lorentz force from electrical current, 30

M
m is the symbol for mass, 10
Mach principle, 61
Magnetic field, 28
Mass, 5
Mass, gravitational, 44
Mass, inertial, 5
Mass, inertial under gravity, 61
Mass, resting, 8, 23, 122
Mass, total energy of, 23
Mass density, 69
Mass-energy equivalence, 11
Matter drifting in empty space and inertia, 43
Maxwell equations, 28
Metric, 60
Model of planet or star, 57
Momentum, 22, 119
Motion energy, 6
Muons, 36

N
Nearby path, in space, 49
Nearby path, in space-time, 49, 50, 57
Negative pressure, 115
Newton law of gravity, 74, 86, 87
Newton law of motion, 87

O
On the electrodynamics of moving bodies, 29

P
Path, nearby, in space, 49
Path, nearby, in space-time, 49, 50, 57
Perfect ball, 58
Perfect ball, gravity of, 60
Perfect ball, gravity outside of, 81
Perfect ball, hollow, 81
Perfect ball and bended surface, 73
Perfect ball and exact solution of Einstein

equation of gravity, 74
Perfect ball and Schwarzschild exact solution,

85
Perihelion, 96, 99
Perihelion advance, 99
Perturbative calculation, 93, 100
Planck constant, 115
Pressure and disordered motion of particles, 70
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Pressure and gravity, 70
Pressure and model of universe, 108
Pressure and pure energy, 9, 119
Pressure of vacuum, 115
Proper time, 40
Proper time and bending space time, 50
Proper time and inertia, 42
Pulsar, 106
Pure energy, 8
Pure energy, mass of, 10
Pure energy and gravity, 69
Pythagoras theorem, 14, 38, 103

Q
Quantum theory and black holes, 90
Quantum theory and general relativity, 118
Quantum theory and vacuum, 115

R
Relativity, first law, 2, 30
Relativity, second law, 4, 31
Resting-mass, 8, 23, 122
Resting-mass and motion energy, 8
Resting-mass and pure energy, 8
Resting-mass and total mass, 23
Ricci tensor, 124
Riemann curvature tensor, 73
Roughly equal to: ≈, viii

S
S stands for Schwarzschild radius, 89
School geometry, 37, 38
Schwarzschild, Karl, 61
Schwarzschild exact solution, 61, 74, 85
Schwarzschild metric, 61
Schwarzschild radius, 89
Second law of relativity, 4, 31
Shrinking rate of volume, relative, 69
Shrinking volume, 67

Space, small volume, shrinking in time, 68
Space-time, 40
Space-time, bended, 48
Space-time inside hollow perfect ball, 81
Space-time nearby path, 49, 50, 57
Special theory of relativity: theory of special

relativity, 35
Speed addition, relativistic, 24
Speed addition, relativistic: total speed, 123
Speed of light, absolute, versus time, 13
Speed of light, direction of, 13
Speed of light in vacuum, 1
Speed of light is absolute, 4
State of inertia and proper time, 41
Straightest path, 48
Straightest path and bending space time, 50

T
Tensor analysis, 74
Test-mass, 50
Theory of general relativity, 75
Theory of relativity, starting point of, 4
Third Kepler law, 99
Thought experiment, vii
Time, coincidence and speed, 21
Total mass and resting-mass, 23
Twin paradox, 36, 41, 56

U
Units, viii

V
Vacuum, 114
Vacuum, light traveling through, 4
Vacuum energy, 114
Vacuum fluctuations, 115
Vacuum pressure, 115
Volume, shrinking, 67
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