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The Encyclopedia	 of	 Mathematics	 and	 Society (three 
volumes) explains how mathematics is at the root of 
modern civilization, from measuring temperature on 
a frigid day to driving a car to using a digital camera; 
enthusiasts might say applied mathematics rules the 
world. The set includes 478 articles, all of which were 
written specifically for the work.

Scope of Coverage
The Encyclopedia	of	Mathematics	and	Society is designed 
to provide students at the high school and under-
graduate levels with a convenient source of informa-
tion on the fundamental science and the mathematics 
behind our daily lives, explaining to students how and 
why mathematics works, and allowing readers to bet-
ter understand how disciplines such as algebra, geom-
etry, calculus, and others affect what we do every day. 
This academic, multiauthor reference work serves as 
a general and nontechnical resource for students and 
teachers to understand the importance of mathemat-
ics; to appreciate the influence of mathematics on soci-
eties around the world; to learn the history of applied 
mathematics; and to initiate educational discussion 
brought forth by the specific social and topical articles 
presented in the work.

Publisher’s Note

The articles in the set fall into one or more of the 
following broad categories: architecture and engi-
neering (35 articles); arts, music, and entertainment 
(41): business, economics, and marketing (32); com-
munication and computers (22); friendship, romance, 
and religion (18); games, sport, and recreation (42); 
government, politics, and history (43); history and 
development of curricular concepts (63); mathemat-
ics around the world (21); mathematics culture and 
identity (27); medicine and health (34); school and 
society (19); space, time, and distance (25); travel and 
transportation (18); and weather, nature, and envi-
ronment (35).

Rationale for Choice of Topics
Mathematics is a fundamental part of society, yet 
many people may not be aware of the interconnections 
between what they have learned in school and their 
everyday lives. In its Curriculum Guide (MAA, 2004), 
the Mathematical Association of America’s Committee 
on the Undergraduate Program in Mathematics 
(CUPM) recommends that mathematics programs 
lead people “to learn mathematics in a way that helps 
them to better understand its place in society: its 
meaning, its history, and its uses.” In keeping with this 
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philosophy, the editors chose topics for inclusion based 
on one or more of the following criteria:

• The topic is timely and likely to remain so.
• The topic can be tied to mathematical 

concepts that people likely have been  
exposed to.

• The topic is related to concepts and 
connections that professional mathematical 
organizations have suggested are important.

• The topic is one that the general public has 
expressed interest in.

• The topic is one we have successfully used or 
that we know has been successfully used in 
other contexts.

Article Length and Format
Articles in the encyclopedia range in length from 500 
to 3500 words. Each is first presented with the cat-
egory to which it belongs (for example, architecture 
and engineering), an article summary, and fields of 
study for the article. The fields of study include the 
following:

• Algebra
• Calculus
• Communication
• Connections
• Data Analysis and Probability
• Geometry
• Measurement
• Number and Operations
• Problem Solving
• Reasoning and Proof
• Representations

Each article is then followed by “See Also” cross-ref-
erences to other relevant articles and “Further Read-
ing” sources that include bibliographic citations. Many 
articles are richly illustrated with photos and captions, 
and charts, graphs, and tables. Finally, each article is 
signed by the contributor to the encyclopedia.

Frontmatter and Backmatter
Volume 1 of the Encyclopedia	of	Mathematics	and	Soci-
ety	begins with “About the Editors” and then presents 

their introduction to the encyclopedia. The “List of 
Articles,” repeated in all three volumes, features all the 
articles in alphabetical order with page numbers as they 
are listed in the encyclopedia. A “Topic Finder” shows 
all the articles organized by category to enable readers 
to find related article by topic. The “List of Contribu-
tors” presents all the writers for the encyclopedia along 
with their academic or institutional affiliations.

The backmatter of the encyclopedia at the end of 
Volume 3 has the “Chronology of Mathematics,” a time-
line of major milestones in the discoveries and devel-
opment of mathematics. Next is the “Resource Guide” 
for further research that includes books that are major 
works in the history of mathematics as well as current 
editions of new works, journals in the mathematics 
field, and Internet sites that pertain to mathematics. 
A “Glossary” provides mathematical definitions for 
terms encountered in the articles. Lastly, a comprehen-
sive subject index references all concepts, terms, events, 
persons, places, and other topics of discussion.

Online Access
Salem provides access to its award-winning content 
both in traditional printed form and online. Any 
school or library that purchases this three-volume set is 
entitled to complimentary access to Salem’s online ver-
sion of the content through our Salem Science Data-
base. For more information about our online database, 
please contact our online customer service representa-
tives at (800) 221-1592.

The advantages are clear:

• Complimentary with print purchase
• Fully supported
• Unlimited users at your library
• Full access from home or dorm rooms
• Immediate access via online registration
• A simple, intuitive interface
• User profile areas for students and patrons
• Sophisticated search functionality
• Complete content, including appendixes
• Integrated searches with any other Salem 

Press product you already have on the Salem 
Science platform

• E-books are also available
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Introduction

Mathematics is pervasive in modern society, and on 
some level we all use mathematics in our daily lives. At 
the same time, many people are not fully aware of the 
diverse interactions and connections between mathe-
matics and society. Mathematics takes a readily appar-
ent starring role in highly technological fields like engi-
neering, computer science, and the natural sciences. 
Outside these fields, however, there are countless ideas, 
inventions, and advances that cannot be fully realized 
without the involvement of mathematics. 

Organizations like the National Council of Teachers 
of Mathematics and the Mathematical Association of 
America recommend that mathematics be explored in 
the context of contemporary society. To examine these 
connections, we approach them from different angles. 
We can look at mathematics through the lens of larger 
societal structures like nations, cultures, and educa-
tional systems, or we can turn this method around to 
explore the societal structures within mathematics, 
such as the culture of mathematicians and notions of 
proof, certainty, and success.

Connections are also found in the countless applica-
tions of mathematics to society. Overall, definitions and 
applications of mathematics are inherently dependent 
on context: the socio-historical events during which 
they developed; the people who created or discovered 
concepts, who built upon the work of others, or who 

passed their knowledge on to the next generation; the 
fundamental connections to daily tasks of living; the 
ethics, controversies, and philosophies surrounding 
mathematics; the public’s perceptions of mathemat-
ics and mathematicians; the way current society uses 
mathematics to solve problems and educate its citizens; 
and the way mathematics draws from society in order 
to grow and evolve. 

Mathematics shapes the world in which we live. In 
the twenty-first century it is almost impossible to find 
an academic field of study that does not use mathemat-
ics, either directly or via tools and technology in which 
mathematics plays a vital role. The world in turn shapes 
the discipline of mathematics by inspiring mathemati-
cians to formulate new questions, solve new problems, 
develop new theories, and use new technologies. Each 
successive generation of mathematicians brings fresh 
perspectives, expectations, and ways of thinking and 
working into the culture of mathematics. These math-
ematicians are influenced by the home, school, and 
play environments in which they were raised. 

However, despite the mathematics all around us, 
people’s exposure may be limited. Representations in 
the media or in popular culture may portray math-
ematics and mathematicians in highly stereotypical 
ways that do not reflect the true depth, breadth, diver-
sity, and culture of the mathematics community.



The goal of The	 Encyclopedia	 of	 Mathematics	 and	
Society is to weave multilayered connections between 
society, history, people, applications, and mathemat-
ics. These connections address both mathematical 
concepts that our readers likely have been exposed to 
at school, work, or through other sources, as well as 
advanced topics that are built upon these fundamental 
ideas. The articles in the Encyclopedia, which were con-
tributed by a broad spectrum of authors in many fields, 
also include connections to multiple disciplines within 
and outside of mathematics. 

In general, the articles do not teach or present 
detailed mathematical theory, derivations, and equa-
tions. There is already a vast array of textbooks and 
other works better able to accomplish that important 
task. Instead, we intended them to serve as a founda-
tion and jumping-off point for additional explorations. 
As mathematics professor and educator Art Johnson 
has noted in other settings, we hope that this type of 
contextualization helps people to “see mathematics as 
a discipline that transcends culture, time, and gender, 
and as a discipline for everyone, everywhere.”

In keeping with this focus on linkages and inter-
disciplinarity, we have organized the articles not by 
mathematics topic but according to various connect-
ing themes. For example, there are few stand-alone 
articles about individual people within the encyclope-
dia. Instead, we encouraged our authors to include sig-
nificant mathematical contributors within the associ-
ated context of one or more topics or applications. The 
people we did choose to include as stand-alone articles 
serve to highlight the diversity of individuals who have 
produced great achievements with mathematics. 

Further, our intent was to discuss, via these indi-
viduals and other articles in the Mathematics Culture 
and Identity theme, the community of mathematicians 
today: who mathematicians are, as professionals and 
people; the type of work mathematicians do; the dif-
ferent ways in which mathematicians describe math-
ematics and where their ideas come from; and math-
ematicians’ personal processes when working with 
mathematics. We also wanted to address in these arti-
cles how the mathematics community perceives itself 
and how it is in turn perceived by society.

Articles within the History and Development of 
Curricular Topics theme highlight many of the earliest 
known uses, both ancient and modern advances, and 
people who have contributed to the development and 

spread of the concept or field. In contrast, the articles 
within the School and Society theme examine the 
importance of broad fields inside and outside of school, 
primarily in the United States. These articles showcase, 
for example, what jobs use particular skills and why the 
field is a fundamental part of current school curricula 
and society. The Mathematics Around the World theme 
extends the discussion of cross-cultural attitudes and 
perspectives on mathematics, with geographic regions 
grouped according to current United Nations stan-
dards. Other themes that center on mathematics appli-
cation are Games, Sport, and Recreation; Government, 
Politics, and History; and Space, Time, and Distance.

Why did we choose to focus on connections? In 
modern society, widespread Internet access has placed 
data about a broad spectrum of people, objects, and 
events essentially at our fingertips, yet mathematics 
content may be buried among other discussions rather 
than brought to the forefront.

Both Internet and other types of library searches 
can result in a potentially overwhelming number 
of results, many of which contain almost nothing of 
mathematical relevance, though important connec-
tions exist. Too often, regardless of the amount of data 
or sources returned, connections between mathemat-
ics, people, objects, and events are missing, or they are 
presented in isolation from their broader historical 
context. Such connections are critical components of 
knowledge acquisition, creation, and dissemination. 
They are what allow people to extrapolate from what 
they already know to new situations, to create new 
knowledge or new applications, to overcome existing 
negative stereotypes about mathematics, and to fully 
understand the timeline of human events from mul-
tiple perspectives. 

Even several hundred articles cannot provide an 
exhaustive examination of mathematics and society. At 
best, we can perhaps provide a snapshot of the history, 
people, applications, and mathematical connections as 
they exist at the time of publication, with some discus-
sion of the rich history and speculations about future 
directions. Hopefully, this encyclopedia is a representa-
tive sampling of articles that, with the accompanying 
further readings, will allow a reader to follow the path 
to related topics of interest. 

In making the very difficult decision regarding what 
topics to include, given that time and space were not 
unlimited, we used an array of selection criteria, such 

x	 Introduction



as: the topic was timely and likely to remain so for a 
reasonable period of time; the topic was tied to math-
ematical concepts to which people likely have been 
exposed; the topic was related to concepts and con-
nections that professional mathematical organizations 
suggested are important; the topic is one that the gen-
eral public has expressed interest in; or the topic was 
one that we ourselves have successfully used or that we 
know has been successfully used in other educational 
or professional contexts.

When embarking on this work, we already knew in 
a general sense how pervasive mathematics is in soci-
ety, and we were eager to share these ideas with oth-
ers. However, even though we are mathematicians with 
diverse interdisciplinary backgrounds, research and 

	 Introduction	 xi

teaching interests, we were surprised to discover so 
many interesting and amazing connections. We learned 
more than we ever imagined we would. It was regret-
tably impossible to include everything we thought was 
interesting or important, and we have accumulated a 
long list of items that we want to explore in the future, 
on our own or with our students and colleagues. 

The creation of this encyclopedia has been an intel-
lectual pleasure and a profound learning experience, 
and we hope that our readers find the same kind of 
enjoyment and wonder that we experienced.

Sarah J. Greenwald
Jill E. Thomley

General	Editors
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Accident 
Reconstruction 
Category: Travel and Transportation.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement.
Summary: Accidents can be mathematically 
reconstructed to model accident risk and to improve 
safety equipment designs.

Accident reconstruction is important for understand-
ing how accidents happen and for preventing accidents 
in the future. Principles and techniques from physics, 
mathematics, engineering, and other sciences are used 
to quantify critical variables and calculate others. For 
example, the initial speed of a suddenly braking vehi-
cle can be determined by mathematically analyzing 
tire skid and yaw marks. The length of skid marks is a 
function of vehicle velocity and the amount of friction 
between the wheels and the road surface. In the case 
of yaw or circular motion, the radius of the yaw mark 
is also a factor in the calculation, as well as the eleva-
tion of the road. Speed can also be calculated from the 
trajectories, angles, and other characteristics of objects 
struck by a speeding vehicle, or between two or more 
colliding vehicles. Investigators may use distances and 
angles to determine the original positions of passengers 

who have been ejected from a vehicle. For more com-
plex modeling, mathematicians, engineers, and other 
accident reconstructors rely on principles and equa-
tions from physics, such as those governing energy and 
momentum, as well as vehicle specifications, mechani-
cal failure analyses, geometric characteristics of high-
ways, and quantification of visibility, perception, and 
reaction. Data from both real accidents and staged col-
lisions, along with statistically designed safety analyses 
and other methods such as stochastic modeling, are 
often used to construct accident simulations and visu-
alizations for use in a wide variety of contexts, including 
legal proceedings. Actuaries use accident data to model 
accident risk, which in turn influences insurance rates 
and public policy, such as seat belt and helmet laws.

Modeling Accident Reconstructions
Accidents related to travel and transportation can have 
a variety of negative consequences including personal 
injury and death. The analysis of accidents can lead 
to improved designs of vehicles and reduced fatali-
ties as well as warning travelers about potential risks 
of travel. In reconstructing accidents, evidence from 
photographs, videos, eyewitnesses, or police reports 
is collected. Decision trees are used to ask questions 
at each stage of reconstruction and help decide the 
closest accident scenario dictated by the available evi-
dence. In such reconstructions, probability must be 
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assigned for the likely cause of the accident and for the 
particular accident type among the possible accident 
scenarios based on the available evidence. Stochastic 
modeling is used to help solve such problems in acci-
dent reconstructions. 

Uses of Accident Reconstructions
Another important aspect of accident reconstructions 
is to estimate the probability of occurrence of various 
types of injuries one may suffer in accidents. Such prob-
ability estimates are used to help calculate travel insur-
ance. By nature, accidents happen randomly and—
since the types of injuries suffered in accidents also vary 
randomly—it is important to model accident types and 
predict the kinds of injuries one may suffer in different 
accident types. Such models can help prepare commu-
nities with the optimal number of emergency services 
and also help doctors prepare for any unique types of 
injuries they are likely to deal with. 

A typical problem is determining the types of spe-
cial medical facilities that should be established to deal 
with travel-related accidents in a city. Such problems 
require stochastic modeling based on past data, which 
will help in simulating different types of accidents. 
Simulations help in planning emergency services to 
deal with accidents. Accident reconstructions may also 
help in forecasting the number of accidents of different 
types likely to happen in the near future, which may 
lead to better planning of the health, emergency, and 
disaster management facilities in the city. 

Safety and Design Using Accident  
Reconstructions
Accident reconstructions also may help in improving 
vehicle design. Incorporating safety devices in vehicles 
is also a very important aspect of design. Safety devices, 
which help in avoiding severe injuries to passengers 
because of accidents, are designed with the help of 
accident reconstruction and are always a matter of 
high priority. Simulations can be used to develop sen-
sors that can give an early warning about impending 
accidents or reduce the speeds of vehicles—thereby 
reducing the severity of an accident. In creating such 
designs, mathematical optimization methods are used 
to determine the optimal cost and space to be allotted. 
Another crucial application of accident reconstruction 
and accident modeling is driver training. Sophisticated 
simulators can be used to simulate different accident 

scenarios and train drivers to react appropriately to 
each situation in real time. These simulators are based 
on algorithms and use random number generators 
to simulate accident situations. Well-developed algo-
rithms that closely simulate real accidents are needed 
to reduce—or even eliminate—major accidents. 

Further Reading
Brach, Raymond, and R. Matthew Branch. Vehicle 

Accident Analysis and Reconstruction Methods. 
Warrendale, PA: SAE International, 2005. 

Franck, Harold, and Darren Franck. Mathematical 
Methods for Accident Reconstruction: A Forensic 
Engineering Perspective. Boca Raton, FL: CRC  
Press, 2009.

Ravi Sreenivasan

See Also: Animation and CGI; Crime Scene 
Investigation; Data Mining; Insurance; Probability. 

Accounting
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Number and Operations.
Summary: Accounting applies mathematics to the 
recording and analysis of a business’s financial status.

Accounting is the recording, interpretation, and presen-
tation of financial information about a business entity, 
typically with the goal of producing financial state-
ments that describe the business’s economic resources 
in standardized terms. Formal accounting began with 
the work of Franciscan friar Luca Pacioli, who intro-
duced accounting techniques in his 1494 mathematical 
work Summa de Arithmetica, Geometria, Proportioni 
et Proportionalita. During the Industrial Revolution, 
Josiah Wedgwood introduced cost accounting, a tech-
nique to ensure a profit margin by calculating the costs 
of materials and labor at every stage of production and 
setting the price accordingly. The needs of stockholders 
and other interested parties within the business, and 
an increasingly complex business environment, have 
increased the need for financial record-keeping tech-
niques that are thorough and produce useful financial 
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and to decrease assets, the transaction is recorded in the 
right column (crediting the account). Similarly, since 
liabilities and owners’ equity are listed on the right-hand 
side of the equation, to increase liabilities and owners’ 
equity, the transaction is recorded in the right column 
(crediting the account) and to decrease liabilities and 
owners’ equity, the transaction is recorded in the left 
column (debiting the account). For example, suppose 
a company needed to purchase $100 worth of office 
supplies. Furthermore, suppose the company pays $40 
with cash and puts the remaining $60 on account (store 
credit). The general ledger may look like the following:

Figure 1. Purchased office supplies.

04-31-2017 Office supplies $100

Cash $40

Accounts payable $60

statements. Modern accounting is assisted by a variety 
of software packages, but the accountant must still be 
well-versed in mathematics in order to interpret the 
information. The fundamental accounting equation 
can be stated as the following:

Assets = Liabilities + Owners’ Equity.

For any given company, assets can be thought of as 
what the company owns. This includes cash (actual 
cash and bank accounts), money that is owed to the 
business (called accounts receivables), inventory, build-
ings, land, equipment, and intangibles like patents and 
goodwill. Liabilities are what the company owes. This 
includes money owed to a bank (notes payable), suppli-
ers (accounts payable), or the government (taxes pay-
able). Owners’ equity can take several forms depending 
on who the owners are: a single person (sole propri-
etor), a few people (partnership), or shareholders (cor-
poration). Each method of ownership has advantages 
and disadvantages, but regardless of the method, the 
owners’ equity can be thought of as a net asset since it 
can be found by subtracting liabilities from assets.

Accounting as Record Keeping
Whenever a financial transaction takes place, it must 
be recorded in at least three locations. First, it will be 
recorded in the general ledger (a book of entry sum-
marizing a company’s financial transactions). When 
recorded, the entry should contain the date of the 
transaction, a brief description of the transaction, and 
the monetary changes to all accounts affected (which 
will be at least two). 

From there, the transaction gets recorded a second 
time in a secondary (or subsidiary) ledger for each of 
the accounts affected. When the amounts are recorded, 
they are put into the left (debit) column or the right 
(credit) column of the ledger. (In bookkeeping, “debit” 
and “credit” mean left and right, respectively; they are 
not related to debit or credit cards in this situation.) The 
total of each column of the general ledger record must 
add to the same sum. In that manner, all money can be 
accounted for as going into or out of an account.

In order to determine whether to credit or debit an 
account, a general rule that works for most accounts is to 
first look at the fundamental accounting equation. Since 
assets are listed on the left, to increase assets, the transac-
tion is recorded in the left column (debiting the account) 
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 In Figure 1, notice that both the right and left columns 
add up to $100; this shows that no money was lost in 
the process. Office supplies are considered an asset, so 
since the company increased the amount of office sup-
plies, that account was recorded on the left—in other 
words, it debited office supplies for $100. Cash is also an 
asset, but the company decreased the amount of cash 
it had. As a result, cash was credited (the transaction 
was recorded on the right for that account). Accounts 
payable is a liability the company owes to the retailer 
it purchased the products from. Since the company 
increased the amount it owed the retailer, that account 
was recorded on the right as an increase to the compa-
ny’s liabilities—accounts payable was credited.

Once this transaction was recorded in the general 
ledger, the company would also need to record this 
transaction in the Office Supplies ledger, the Cash 
ledger, and the Accounts Payable ledger. Accounts are 
debited or credited in their specific ledgers in the exact 
same manner that they are debited or credited in the 
general ledger. In a similar manner, the retailer who 
sold the office supplies would need to record this same 
transaction into his or her general and secondary led-
gers. However, the retailer’s transaction would use the 
opposite side to denote the sale as follows:

Figure 2. Sold office supplies.

04-31-2017 Cash $40
Account Receivable $60
Inventory $100

 

Again, the right and left columns add up to the same 
amount. Contrary to the purchasing company, the 
receiving company lists three assets to record the trans-
action. Cash and accounts receivable are both being 
increased, so debited. The asset “inventory” is being 
decreased and results in a credit to inventory. If this 
were a large company, rather than record each individ-
ual transaction, the retailer would most likely record 
an entire day’s transactions as a single entry at the end 
of each business day. Once the general ledger has been 
recorded, the secondary ledgers need adjusting entries 
as well to denote the transaction(s).

Accounting as Record Sharing
In addition to keeping records of transactions for a busi-
ness, accounting is responsible for creating reports that 

summarize the journals to share with others. To learn 
about the reports and how to create reports intended 
for people outside the business (such as shareholders, 
creditors, or government agencies), a person can take a 
class in financial accounting. To learn about the reports 
and how to create reports intended for people inside 
the business (such as managers), a person can take a 
class in managerial accounting.

The most common reports created for people outside 
the business are balance sheets, income statements, cash 
flow statements, and retained earnings statements. Of 
the four statement types, the balance sheet is written as a 
snapshot of the company at a point in time. In contrast, 
the other three statements are created to show what hap-
pened over a period of time such as a month, quarter, 
or year. When creating these reports, the income state-
ment is usually completed first. As its name implies, the 
income statement is created to determine the company’s 
income during a specific time period. The income state-
ment is also known as a profit and loss statement (P&L) 
or earnings statement. Information from the income 
statement is then used to create the retained earnings 
statement. Finally, the information from the retained 
earnings statement is used on the balance sheet.

The balance sheet first lists all of the company’s assets 
in order of liquidity (the ability to turn the asset into 
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Benford’s Law

B enford’s	 law,	named	after	physicist	 Frank	
Benford,	 gives	 the	 probability	 with	 which	

the	numbers	1	through	9	will	occur	as	the	first	
digit	 in	many	types	of	real-life	data.	For	exam-
ple,	 in	a	 list	of	actual	bank	account	deposits	
in	a	given	day,	about	30%	of	the	time	the	first	
digit	of	the	deposit	amount	will	be	a	1.	Fraudu-
lent	data	that	has	been	created	by	people	often	
does	not	match	the	expected	probabilities.	

In	 very	 large	 modern	 data	 sets,	 highly	
focused	tests	use	 this	principle	 to	find	devia-
tions	 in	 selected	 subsets;	 for	 example,	 the	
occurrence	of	a	suspiciously	large	frequency	of	
$24	receipts	submitted	in	a	company	that	has	
a	$25	maximum	meal	allowance.



cash easily) from the most liquid to the least liquid. The 
assets are then added together to find the total assets of 
the company. The balance sheet next lists all of the com-
pany’s liabilities in order of due date from the soonest 
due to the latest due. Below the liabilities is listed the 
owners’ equity (which includes retained earnings from 
the retained earnings statement). The liabilities and 
owners’ equity are added together. Referring back to 
the fundamental accounting equation, both of these 
amounts (the total assets and the sum of the liabilities 
and owners’ equity) should equal one another.

Reports created for internal users vary widely 
depending on the reasoning and the need for the report. 
Internal reports are usually created and specifically 
designed for making decisions within the company. 
For example, manufacturers could use internal reports 
to determine the optimal price of their product. 

Manufacturers may also use internal reports to 
determine if it is more cost effective to create a needed 
part or to purchase the part from another company. 
They may need to consider continuing or eliminating 
a division of their company. Managerial accounting is 
also responsible for budgeting and forecasting.

Mathematical Models
Many areas in financial accounting rely on mathemati-
cal models for explanation and prediction. For exam-
ple, models have played important roles in applications 
such as understanding the consequences of public dis-
closure, formalizing market efficiency or competition, 
measuring income, and evaluating equilibrium pricing 
for goods and services. Some important mathematical 
techniques used in accounting models include linear 
regression, systems of simultaneous equations, equi-
librium notions, and stochastic analysis. In the lat-
ter, random rather than constant inputs are used to 
model scenarios where decisions must be made under 
realistic conditions of uncertainty. The data used in 
these models may be cross-sectional (representing a 
single snapshot in time) or longitudinal (one or more 
variables are measured repeatedly to detect trends 
and patterns). Probability theory is also used to detect 
instances of accounting fraud. 
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Acrostics, Word 
Squares, and  
Crosswords
Category: Games, Sport, and Recreation.
Fields of Study: Geometry; Number and 
Operations; Problem Solving.
Summary: Mathematics and symmetry come into 
play in creating and solving word puzzles.

Acrostics, word squares, and crossword puzzles are the 
most common forms of word puzzles in English. Acros-
tics and word squares are over 2000 years old and call 
for the solver to discover words hidden either covertly 
(acrostics) or overtly (word squares). The crossword 
puzzle premiered in 1913 and is similar to a word square 
expanded onto a larger grid, with gaps. Word puzzles 
have been used as mnemonics, ciphers, literary devices, 
educational exercises, and as simple games. Their con-
struction, especially in the case of crossword puzzles, is 
informed by geometry; their solution can be pursued 
through probability theory. In a sense, the construc-
tion and solving of word puzzles provide pleasures very 
similar to those of doing mathematics.
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Historic Examples
The earliest examples of acrostics are in the Old Testa-
ment of the Bible. The Lamentations of Jeremiah and 
12 Psalms are arranged so that the first letters of each 
verse spell out the Hebrew alphabet.

In Greece  in 400 b.c.e., Dionysius forged a Sopho-
clean text titled Parthenopaeus with the intention of 
mocking his rival, Heraclides. Having declared the 
author to be Sophocles, Heraclides was referred to in 
one of the several acrostics that Dionysius had included, 
which read, “Heraclides is ignorant of letters.”

In more contemporary times, novelist Vladimir 
Nabokov enjoyed chess problems, and one can find 
acrostics, number puzzles, cryptic references, and puns 
in several of his novels and stories. The last paragraph 
of his 1951 short story “The Vane Sisters,” for example, 
can be read both as the narrator’s confusion and acros-
tically (taking the first letter of each word) as a message 
from the dead sisters.

Acrostics are often found in poetry because of its 
greater flexibility in syntax and phrasing. Former U.S. 
President George Washington is known to have con-
structed at least one acrostic when he was 15—a love 
poem for a girl about whom nothing is known other 
than her name, Frances. 

Another good example of an acrostic poem is to be 
found at the end of Lewis Carroll’s 1871 book Alice 
Through the Looking Glass; each letter of the name Alice 
Pleasance Liddell begins a new line in the poem about 
childhood innocence.

Word Squares
If the first acrostics appeared in the Old Testament, 
word squares were not far behind. One of the most 
well known is a Latin word square from about 2000 
years ago:

 S A T O R
 A R E P O
 T E N E T
 O P E R A
 R O T A S

This word square is called a 5-by-5 symmetric word 
square because there are five words that can be read 
either down or across. The words “TENET,” “OPERA,” 
and “ROTAS” will be familiar to speakers of lan-
guages descended from Latin. SATOR is a Latin word 

for planter or creator. AREPO is a contentious word; 
it can be assumed that it was at some time used in 
Latin. This particular word square is unique in another 
way—SATOR reversed is ROTAS, AREPO is OPERA 
reversed, and TENET is palindromic (reads the same 
forward and backward).

Below is an example of an ordinary symmetrical 4-
by-4 word square using English words

 B A S E
 A W A Y
 S A L E
 E Y E S

Many 5-by-5 and 6-by-6 squares exist in English. 
There are even a few 9-by-9 word squares, though many 
of the constituent words are extremely unfamiliar.

Those with an interest in algebra will notice that 
symmetry in word squares is equivalent to symmetry 
in matrices. If one transposes—swaps the rows and 
columns—a symmetrical word square, the resulting 
word square is the same as the original. A non-
symmetrical word square does not have this property. 
A 4-by-4 double word square, like the one below, is 
not symmetrical. It is a double word square because 
it contains twice the number of words of a 4-by-4 
symmetrical square, that is, eight:

 D A R T
 O B O E
 C L A M
 K E M P

Crosswords
Word squares can be entertaining in themselves. How-
ever, simply by expanding a word square onto a larger 
grid and using gaps to section long words into shorter 
ones, one can create a puzzle of an altogether different 
kind. By doing so, puzzle creator Arthur Wynne turned 
the largely esoteric practice of crafting word squares 
into a puzzle for the masses—the crossword.

The first published crossword appeared in December 
1913 in the newspaper New York World. Wynne wrote 
definitions for each of the words he had used to complete 
a diamond-shaped grid, and it was up to the solvers of 
the newspaper’s puzzle page to fill in the blanks.

Wynne’s grid was almost fully “checked,” which means 
that most letters were part of two words—a white square 
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is “unchecked” when it is part of only one word. In U.S. 
crosswords, it remains the norm to have very heavily—if 
not fully—checked grids. For other crossword types, 
particularly cryptic crosswords, grids may be only 50% 
to 60% checked. Having a fully checked grid means that 
it is possible to complete the crossword by entering only 
the across (or down) words. As the number of unchecked 
squares increases, however, the ability to build on one’s 
correct answers decreases. Most crosswords have a 15-
by-15 grid and twofold rotational symmetry (they look 
the same after 180 degrees of rotation), but differences 
in the number of checked squares can produce as many 
as 80 words or as few as 30.

PROVERB, a computer program designed to solve 
crosswords, relies on the heavily checked nature of 
American-style grids. Computer scientist Michael 
Littman and others report that PROVERB averaged 
more than 95% correct answers in less than 15 minutes 
per puzzle on a sample of 370 puzzles. This result is 
better than average human solvers but not better than 
the best. If nothing else, the complexity of the PROVERB 
program serves to highlight the vast computing power 
humans naturally possess.

Instinctively, many people may not be aware that the 
five most frequently used letters in the English language 
are E, T, A, O, and I. Crosswords setters (and PROV-
ERB), on the other hand, are acutely aware of this and 
aim to use letters in their longer words that will be easy 
to intersect with the shorter ones. It is therefore worth 
bearing in mind that, for example, “Erie” and “Taoist” 
will appear in crosswords much more often than “jazz” 
and “Quixote.” Incidentally, the five least frequently 
used letters are K, J, X, Z, and Q.

Estimates suggest that fewer than 100 people con-
struct crossword puzzles for a living in the United States. 
Mathematician Byron Walden has been called “one of 
the best” by a New York Times crossword editor. For 
some, he may be most well known for writing the puzzle 
that was used in the championship round of the Ameri-
can Crossword Puzzle Tournament, later featured in the 
film Wordplay. He has also analyzed and given talks on 
symmetry and patterns associated with conventional 
crossword construction, with the aim of helping people 
become more skilled puzzle solvers. 

Mathematician Kiran Kedlaya is also a well-known 
puzzle solver and creator. He believes that the brain 
processes required for computer science, mathemat-
ics, music, and crossword puzzles are similar, and he 

pursues all of these activities professionally and recre-
ationally. One puzzle he created was published on the 
well-known New York Times crossword page, and he 
regularly contributes mathematics puzzles to compe-
titions like the USA Mathematical Olympiad. He has 
been quoted as saying, “It’s important to tell kids who 
are interested in math as a career that there are many 
venues to do it, not just in the academic area within 
math departments.”

Further Reading
Balfour, Sandy. Pretty Girl in Crimson Rose (8). 

Sirlingshire, UK: Palimpset Book Production, 2003.
Littman, M., et al. “A Probabilistic Approach to Solving 

Crossword Puzzles.” Artificial Intelligence 134 (2002).
MacNutt, Derrick Somerset. Ximenes on the Art of the 

Crossword. London: Methuen & Co., 1966.

Eoin O’Connell 

See Also: Literature; Poetry; Puzzles; Religious 
Writings; Sudoku.

Actors
See Writers, Producers, and Actors

Addition and  
Subtraction 
Category: History and Development of Curricular 
Concepts. 
Fields of Study: Communication; Connections; 
Number and Operations; Representations.
Summary: Addition and subtraction are binary 
mathematical operations, each the inverse of the 
other, and are among the oldest mathematical 
concepts.

Addition can be thought of as a process of accumulation. 
For example, if a flock of 3 sheep is joined with a flock 
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of 4 sheep, the combined flock will have 7 sheep. Thus, 7 
is the sum that results from the addition of the numbers 
3 and 4. This can be written as 3 + 4 = 7 where the sign  
“+” is read “plus” and the sign “=” is read “equals.” Both 
3 and 4 are called addends. Addition is commutative; 
that is, the order of the addends is irrelevant to how 
the sum is formed. Subtraction finds the remainder 
after a quantity is diminished by a certain amount. If 
from a flock containing 5 sheep, 3 sheep are removed, 
then 2 sheep remain. In this example, 5 is the minu-
end, 3 is the subtrahend, and 2 is the remainder or 
difference. This can be written as 5 − 3 = 2 where “−” 
is read “minus.” Subtraction is not commutative and 
therefore the ordering of the minuend and subtrahend 
affects the result: 5 − 3 = 2 , but 3 − 5 = −2.

The concept of addition can be extended to have 
meaning for fractions, negative numbers, real num-
bers, measurements, and other mathematical entities. 
The algorithms used for computing the sum or differ-
ence, some of which have been taught for millennia, 
ultimately depend on the representation used for the 
numbers. For example, the approach used for adding 
Roman numerals is different from that used to add 
Hindu-Arabic numbers. Computers perform subtrac-
tion using the same circuits they use for addition.

History and Development of  
Addition and Subtraction
Human beings’ ability to add and subtract small 
whole numbers is probably innate. Some of the ear-
liest descriptions of techniques for handling large 
numbers come from ancient China during the War-
ring States period (475–221 b.c.e.), when arithmetic 
operations were performed by manipulating rods 
on a flat surface that was partitioned by vertical and 
horizontal lines. The numbers were represented by a 
positional base-10 system. Some scholars believe that 
this system—after moving westward through India 
and the Islamic Empire—became the modern system 
of representing numbers. 

The Greeks in the fifth century b.c.e., in addition 
to using a complex ciphered system for representing 
numbers, used a system that is very similar to Roman 
numerals. It is possible that the Greeks performed 
arithmetic operations by manipulating small stones on 
a large, flat surface partitioned by lines. A similar stone 
tablet was found on the island of Salamis in the 1800s 
and is believed to date from the fourth century b.c.e. 

The word “calculate” was derived from the Latin word 
for “little stone.”

The Romans had arithmetic devices similar in 
appearance to the typical Chinese abacus. It is difficult 
to use modern paper-and-pencil techniques for adding 
and subtracting Roman numerals (with I as one, II as 
two, V as five, X as ten, L as fifty, C as one hundred, D as 
five hundred, M as one thousand)—but it worked well 
in its time, since it was devised for use with an abacus.

During the Middle Ages, counting boards were 
used to perform arithmetic. A counting board con-
sisted of a series of actual or virtual horizontal lines 
that were labeled from the bottom by I, X, C, M, and 
so on. The system borrowed the symbols used for core 
numbers from the Roman system. The spaces between 
the lines were labeled starting from the bottom by V, 
L, and D. A number like MMDCCXXXVIIII (2739) 
would be represented by placing the appropriate 
number of counters on each line. The line labeled M 
would have 2 counters (for 2000, or two thousands). 
The space just below, labeled D, would have 1 coun-
ter (500, or one five-hundreds); the line labeled C, 2 
counters (200, or two hundreds); the space labeled L, 
0 counters; the line labeled X, 3 counters (for 30, or 
three tens); the line labeled V, 1 counter (5); and the 
line labeled I, 4 counters (4, or four ones). The total 
of all these numbers is 2739. Note that accountants 
used VIIII (denoting five plus four) to represent 9, 
whereas stonemasons used “IX”(denoting 10 less 1). 
To compute the sum MMDCCXXXVIIII + MCLXI, 
a person would simply transcribe the numbers to the 
counting board and then combine the counters fol-
lowing rules of carrying to ensure that no more than 4 
counters were on any line and 1 counter on any space. 
This representation was then easily transcribed back 
into Roman numerals. 

Many early books on arithmetic claim that this 
method of performing arithmetic was especially pre-
ferred by women, who at times had the responsibility for 
keeping the books for small family businesses. Hindu-
Arabic numerals and paper-and-pencil methods for 
performing arithmetic began to appear in Europe in 
the twelfth century and replaced Roman numerals and 
the counting board by the nineteenth century.

Two Methods for Subtracting by Hand
Two popular methods for handling “borrowing” that 
are taught today are shown below. The method shown 
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in the figure below on the left is popular in Italy, Eng-
land, and the United States, while the one on the right 
is popular in Spain, France, and parts of Latin America. 
The example is to compute 3047−1964. Starting with 
the method on the left, first begin with the rightmost 
column and subtract 4 from 7. Write the result, 3, below 
the 4. Moving one column to the left, try to subtract 6 
from 4, which cannot be done without using negative 
numbers. The method is thus to attempt to “borrow” 
1 from 0, which is the digit to the left of the 4. Again, 
this cannot be done without using negative numbers. 
Therefore, the method is to borrow 1 from 3, which is 
the digit to the left of the 0 resulting in crossing out the 
3 and replacing it with a 2. Then the zero becomes a 10, 
and it in turn can be replaced by a 9 so the borrowed 
1 can be placed in front of the 4 to make it 14. Now, 
one can subtract 6 from 14 to get 8, which is written 
below the 6. Moving left to the next column, one can 
subtract 9 from 9 to get a 0, which is written below the 
9. Finally, 1 is subtracted from 2 to get a 1, which is 
written below.

3 0  4  7
1  9  6  4

1  0  8  3

−
3 0  4  7
1  9  6  4

1  0  8  3

−

2 9 1

1 1

To solve the problem using subtraction with carry, 
use the example on the right. The carrying numbers 
(the small 1s) affect the numbers on a diagonal, as 
shown in the example. The number 1 adds 10 to the 
integer in the top row and adds 1 to the integer in the 
bottom row. Starting from the rightmost column, 4 
is subtracted from 7, resulting in 3, which is written 
below. Then, try to subtract 6 from 4, which cannot be 
done, so insert a small 1 to the left of the space between 
the 4 and the 6. This is interpreted to mean that the 
4 has become 14. Subtract 6 from 14 and record the 
answer, 8, below. Move left to the next column con-
taining 0 and 9. The small 1, written above and to the 
right of the 9, is added to the 9 to get 10. Attempt to 
subtract the 10 from the 0 above, which cannot be 
done. Instead, write a small 1 just to the left of the space 
between the 0 and 9, and interpret this to mean that 
the 0 has become a 10. Now, 10 minus 10 is 0, which is 
written below. Move left to the next column. The small 
1, written above and to the right of the 1, is added to 
the 1 giving 2, which is subtracted from 3 resulting in 
1, which is written below.

Adding and Subtracting on a Computer
At the most basic level, whole numbers are represented in 
a computer in base-two by a sequence of the binary states 
“Hi” and “Lo” interpreted as “1” and “0.” The circuits that 
perform addition are implemented by sequences of logi-
cal gates. Typically a “1” in the leftmost bit indicates that 
the number is negative, with the remaining bits indicat-
ing the magnitude of the number. Subtraction can be 
performed by the same circuits that perform addition. 
Two popular approaches are designated as “one’s com-
plement” and “two’s complement.” “One’s complement” 
can best be explained by performing subtraction in base-
10 using “nine’s complement.” Assume a computation of 
3047−1964. To find the “nine’s complement” of 1964, 
subtract each digit from 9 to obtain 8035. This is added 
to 3047 resulting in 11,082. The leftmost 1 is viewed as 
a “carry” and brought around and added to the right-
most digit in an operation called “end-around carry” to 
obtain the final result: 1083. 

Generalizing Addition and Subtraction
The sum of two fractions a/b and c/d is defined to be

 ad + bc

bd
.

The sum of irrational numbers (numbers that can-
not be represented as fractions of whole numbers) can 
be approximated only by adding their approximating 
rationals. The exact sum of two irrational lengths, a 
and b, can be found exactly using geometry by first 
extending the segment representing a sufficiently on 
one end so that the length b can be marked off from 
that end with a compass. 

Addition can be generalized to other mathematical 
objects, such as complex numbers and matrices. One 
of these objects, typically called the additive identity 
and denoted by “0,” has the property such that if “a” 
is any object then the sum of 0 and a is a. The addi-
tive reciprocal of an object a is denoted by −a and is 
defined to the object so that the sum a + −a( )  is 0. The 
difference a − b is defined to be a + −b( ). 

Further Reading
Flegg, G. Numbers: Their History and Meaning. New 
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Advertising
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Mathematics is used to weigh the costs 
and gains of advertising and to profile and target 
consumers.

Advertising delivers product information from suppli-
ers to consumers—suppliers may be manufacturers, 
hospitals, software developers, educators—and is criti-
cal to the success of a business in marketing develop-
ment. Advertising media may be traditional (such as 
television, newspapers, and posters) or technological 
(via Internet and e-mail), as well as commercial (to 
sell products for profit) or noncommercial (in politi-
cal campaigns or for religious purposes). The annual 
advertising cost in the United States amounts to more 
than $100 billion.

Advertising includes two stages: the planning stage 
for marketing strategies, whose goal is business devel-
opment, and the analysis stage of cost analysis involved 
with the forms and the contents of communication 
between suppliers and potential customers. Math-
ematics and statistics play critical roles in both stages 
of advertising.

Market Shares
In the planning stage, the analysis of market shares 
for advertising necessitates matrix operations and 
multivariate probability inequalities to portray the 

dynamics of market shares over time. The follow-
ing is an example of matrix operations, which bridge 
advertising with market shares. Consider the market 
shares of General Motors (GM) and Ford in the U.S. 
automobile industry. Assume that the current market 
shares distribute as follows: 

 General Motors:   21%
 Ford:    17%
 Other Manufacturers:  62%

If GM starts an advertising campaign with the goal 
of increasing the market share to 29% in three years, 
GM may count on customers to switch from Ford or 
other manufacturers to GM. However, in reality, some 
of the GM customers may switch to Ford or to other 
manufacturers. 

Let a
1
, a

2
, a

3
 be the percentages of original GM users 

who, at the end of the advertising campaign, remain 
with GM, who switch to Ford, and who switch to 
other manufacturers, respectively. Let b

1
, b

2
, b

3
 be the 

percentages of original Ford users who switch to GM, 
who remain with Ford, and who switch to other man-
ufacturers, respectively. Let c

1
, c

2
, c

3
 be the percentages 

of the other customers who switch to GM, who switch 
to Ford, and who remain with their manufacturers, 
respectively. Then, the market shares x

GM
, x

Ford
, and 

x
Others

 at the end of the three years are determined by 
the following simple matrix equation:

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3
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If GM intends to increase x
GM

 to 29%, GM should 
advertise specifically to different groups of customers. 
This is mathematically equivalent to manipulating the 
elements in the 3 × 3 matrix above within plausible 
ranges of the elements.

The foregoing scenario is a simplified example to 
illustrate the role of matrix operations in advertising. 
In reality, the story is more complex. For example, the 
3 × 3 matrix above will become an n × n matrix, where 
n is the number of competing suppliers in the market. 
Also, the stochastic feature of the supply-demand mar-
ket, the market shares, and the corresponding elements 
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for the n × n matrix change constantly under the influ-
ence of the advertising campaign. 

Thus, it is more appropriate to treat the market shares 
as a vector consisting of random variables. In this case, 
one of the convenient approaches to evaluating the 
market shares is the method of multivariate probabil-
ity inequalities in conjunction with the construction of 
Hamilton-type circuits.

Advertising Costs and Effects
The analysis stage examines costs and effects associated 
with various communication channels and advertising 
media. For instance, in Internet advertising, typical cost 
considerations are cost per mile (CPM), cost per click 
(CPC), and conversion rate. These terms have strong 
connections with mathematics and statistics.

For Web advertising, CPM usually refers to the cost 
for every thousand visits to the publisher’s Web site. 
For example, assume that an ad network offers a $5 
CPM for a banner, which was put on three Web sites 
for three months. If the total page views for the three 
Web sites are 80,000, 110,000, and 140,000 during the 
three-month period, the total cost of Web advertising 
for the ad network is

$5
80,000

1000
+ $5

110,000

1000
+ $5

140,000

1000
= $1,650

In general, if an ad is posted in n Web sites, the total 
cost is

CPM ×
=∑ ( / )Wii

n

1
1000

where W
i
 is the number of Web impressions (visits) to 

the i th publisher’s Web site for the same period of time. 
Consider that the number of Web impressions on 

each publisher’s Web site depends on many continu-
ously changing factors; then W

i
 is a random number. 

Let E Wi( ) be the expected value of W
i
, which measures 

the long-term average of the number of Web impres-
sions of the banner on the i th publisher’s Web site. The 
long-term average cost is

CPM ×
=∑ ( ( ) / )E W

ii

n

1
1000 .

CPC refers to the amount that the advertiser pays 
for each click generated from the Web publisher. For 

example, if the cost per click is $0.04, and three Web 
publishers generate 1700, 1600, and 900 clicks in three 
months, the cost of Web advertising is

$ . $ . $ . $0 04 1700 0 04 1600 0 04 900 168( ) + ( ) + ( ) =

In general, if a Web ad is posted in m Web sites, the 
total cost is 

CPC ×
=∑ Cii

m

1

where C
i
 is the number of clicks generated on the i th 

publisher’s Web site for a given period of time. 
Consider the fact that the number of clicks on each 

publisher’s Web site depends on various unexpected 
factors: C

i
 is actually a random variable. Let E Ci( )be 

the expected value of C
i
, which measures the long-term 

average of the number of clicks generated from the i th 
publisher’s Web site over a given period of time. The 
long-term average ad cost is then

CPC ×
=∑ E Cii

m
( )

1
.

The foregoing two concepts, CPM and CPC, mea-
sure the potential impact of the internet ad only in 
terms of clicks or Web visits. However, these two con-
cepts are unable to provide the advertiser with infor-
mation regarding whether the Web impression has 
been transferred into the desired action (such as buying 
the advertised product). A useful measurement in Web 
advertising to help account for the advertising effect is 
the “conversion rate” (or CR, the average number of 
people taking the action encouraged by the ad per 100 
visits to the publisher’s Web site). For example, if out of 
2000 clicks on an ad posted on a publisher’s Web site, 
12 people end up buying the product, the conversion 
rate of the ad for this Web site is then

12

2000
100 0 6





 × = . %.

Being highly associated with key factors such as the 
design of the publisher’s Web site, the conversion rate 
is an index that directly measures the final impact of 
the ad for the Web site.

Since the conversion rate directly reflects the per-
formance of the Web site, it can be used to compare 
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advertising effects of two or more Web sites. However, 
it is risky to compare conversion rates directly. The 
example in Figure 1 helps illustrate this point. Con-
sider two Web sites: Google AdSense and Chitika. If the 
conversion rates of the two Web sites are as follows in 
the past four months, it is impossible to claim which 
site has better performance on Web advertising. 

In fact, the raw values shown in Figure 1 include the 
stochastic influence of many online factors. In this case, 
to evaluate the monthly advertising effect of different 
Web sites accurately, statistical data analysis is needed.

Because of random effects, the expected value of the 
conversion rate of each Web site should be considered 
when comparing two or more publishers’ Web sites in 
terms of the conversion rates. Given a set of histori-
cal data involving all the Web sites of interest, one of 
the statistical estimation approaches is the method of 
“simultaneous confidence intervals,” which compares 
the ranges of expected conversion rates with a pre-
specified confidence level. For example, with a set of 
data for the conversion rates of three Web sites over 
a period of time, if a 95% simultaneous confidence 
interval reads 

0 5 2. % %< − <CR CRGoogle Chitika

and

1 3 3 4. % . %< − <CR CRGoogle Yahoo

it means that at 95% confidence level, the advertising 
performance (in terms of conversion rate) of Google is 
better than that of Chitika and Yahoo. 

To enhance the accuracy of the simultaneous con-
fidence ranges, or to improve the power of testing 
multiple advertising effects, the two-stage estimation 
procedure can be considered. When the underlying 
distribution of the monthly conversion rates is skewed, 
the two-stage estimation procedure can be used with 

nonparametric tests to make inferences on the perfor-
mance of multiple Web sites. 

Data Mining and Advertisements
Masses of personal data being collected every day about 
consumers, via mechanisms like credit card applica-
tions, consumer discount cards, and product views and 
ratings on shopping Web sites are poised to revolution-
ize the field of advertising. Data mining is the mathe-
matical and statistical method for sifting through large 
volumes of data to find patterns and create prediction 
models, in this case of consumer behavior. In 2009, 
the online video rental company Netflix awarded a $1 
million prize to the winners of its three-year contest to 
develop a better algorithm to predict what movies its 
users would prefer, based on ratings data provided by 
the company.

Finally, mathematics is used not only to decide when, 
where, and how to advertise products and services 
but also to determine what to emphasize within the 
advertisements themselves: discounts on pricing or the 
number of calories per serving, just to name two. How-
ever, it is often difficult to verify those numbers. Many 
will remember Trident Gum’s 1960s slogan, “Four out 
of five dentists surveyed would recommend sugarless 
gum to their patients who chew gum.” Although the 
statement was popular at the time, its legitimacy was 
later questioned, since it came from a survey whose 
details have never been released. 

IBM has initiated a Smarter Planet campaign 
focused on dispersed or cloud computing (Internet-
based computing). Its “Smarter Math Builds Equa-
tions for a Smarter Planet” commercial cites math-
ematics as the universal language and gives a number 
of ways in which mathematics will be used to create a 
“smarter planet.”

Further Reading
Baines, Paul. “A Pie in the Face.” Alternatives Journal 27, 

no. 2 (2001).
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May June July August

Google AdSense 5% 6.1% 4.3% 7.5%

Chitika 7.3% 5.2% 5.7% 6.4%
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Africa, Central
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Central African contributions include 
counting games and decorative geometric patterns.

Central Africa comprises Angola, the Central African 
Republic, Chad, Congo, the Democratic Republic of 
the Congo, Equatorial Guinea, Gabon, and Sao Tome 
and Principe. Mathematical concepts developed in 
central Africa include variations of the counting game 
Mancala and the sophisticated geometric patterns 
used in traditional art. These patterns, in sand art and 
pottery, woven into mats and baskets, and displayed 
in tattoos, include complex symmetries and fractals. 
Some educators have advocated incorporating these 
indigenous African manifestations of mathematics 
into school curriculums.

Mancala
As with much of Africa, variations of the mathemati-
cal counting game Mancala were played throughout 
the region. The mathematics of Mancala games are 
discussed in more detail in the entry “Africa, East,” 
but some description here is warranted. The Com-
plete Mancala Games Book gives rules for 28 different 

versions of this game played in central Africa. These 
variations arise throughout much of central Africa 
but especially in Cameroon and the Congo. While the 
version of Mancala best known in the United States 
is a two-row version (also called Wari or Oware), 
many of the variations played in the Congo have four 
rows, which adds substantially to the complexity of 
the game, as well as the complexity of the arithme-
tic calculations and logical thinking required to play 
them well. Even with the two-row version, the Congo-
lese variation Mbele uses a complicated game board (a 
two-row version with many holes in each row, with the 
rows pinched together near the ends). Again, this adds 
mathematical complexity to the game. 

Geometric Patterns
Many of the most interesting mathematics developed 
by the peoples of central Africa have been geometric 
in nature. A significant part of African art traditions 
include quite complex—and mathematically sophis-
ticated—geometric patterns. These patterns include 
symmetries in various combinations, between dif-
ferent elements, and between various colors. Claudia 
Zaslavsky writes: “If one wanted to survey the whole 
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field of geometric design in Africa, one would have to 
catalogue almost every aspect of life.” In central Africa, 
such geometric patterns are found on pottery, cloths, 
mats, carvings, baskets, bowls, tattoos, and other 
objects of daily use. 

The Kuba people of the Congo are particularly 
famous for such art, especially their raffia embroidered 
cloth. Both Africa Counts and Geometry From Africa 
show many examples of Kuba artwork, along with art-
work of other African peoples. The woven mats of the 
Yombe women of the Congo are another example of 
complex geometric design. Paulus Gerdes has studied 
these mat designs as an interplay between cultural val-
ues and mathematics.

The art of the Chokwe people of the Congo and 
Angola includes a mathematically challenging art form 
called “sona,” usually drawn in the sand. These draw-
ings are made with a single line continuously weaving 
through an arrangement of dots, such as the “Lion With 
Cubs” drawing of the accompanying figure. The heads 
and tails of the animals are added after the principal 
line is drawn. These drawings represent stories, morals, 
or values of the Chokwe, or just an animal or object 
from their environment. The techniques for determin-
ing which dot arrangements will generate such one-line 
drawings are fundamentally mathematical in nature. 
Drawings that can be done in a single line, without 
retracing, are a mathematics topic known as Eulerian 
Graphs. This artwork of the Chokwe is strongly con-
nected to this mathematical idea, and was being inves-
tigated by the Chokwe artists about the same time that 
the idea was first studied by European mathematicians 
in the mid-eighteenth century. 

The geometric patterns of central Africa extend to 
include fractal designs. Fractals are a mathematical 
structure that can be viewed as a repetition of the same 
shapes at many different sizes or scales. For example, 
trees have branches, each with smaller branches, and 
then even smaller branches. Western architecture 
often has rectangular blocks with rectangular houses, 
but rarely are such shapes repeated at more than two 
scales, and rarely is this a conscious shape imitation. 
African fractals often use circular, oval, or diamond 
shapes at several scales, with smaller shapes inside or 
around the larger shapes. There is substantial evi-
dence that at least some of these fractal designs are a 
conscious choice of the artists and builders, and not 
accidental. African Fractals shows several Cameroo-

nian examples of fractal designs in cities and villages, 
and even in hair braiding. This book also shows a 
similar style of pattern, using increasingly smaller but 
otherwise identical shapes in the art of the Mangbetu 
people of the Congo.

Education
Several African educators have suggested incorpo-
rating these traditional mathematical elements into 
their schools. The Cameroonian educator A. N. Boma 
writes: “In African traditional education, the curricu-
lum was organized holistically rather than in discipline 
areas such as mathematics, history. . . .Education for 
all cannot afford the luxury of isolating education in 
terms of disciplines, rather it should take the holistic 
approach in developing a total person. . . .” The ideas 
described here integrate mathematics with cultural, 

“Lion With Cubs” drawing made with a single line 
weaving through an arrangement of dots.
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artistic, and other elements to achieve this holistic 
approach. Unfortunately, the schools in Central Africa 
cannot easily incorporate such ideas. The 2009 Mathe-
matics in Africa report describes low percentages of the 
population attending schools, high student-to-teacher 
ratios, heavy use of recycled European mathemat-
ics textbooks, and few prepared teachers in most of 
central Africa outside of Cameroon. All of these facts 
make it difficult to customize mathematics education 
for African students. Cameroon has a more developed 
education system, but at the college level it is struggling 
with filling the mathematics faculty positions that have 
been approved, and most mathematics teaching there 
is done in large classes by low-level staff. Neverthe-
less, with more than half of the central African Ph.D.s 
in mathematics, Cameroon may become a leader in 
mathematics education for the region. 
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See Also: Africa, Eastern; Africa, Southern; Africa, 
West; African Mathematics; Board Games; Graphs.

Africa, Eastern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: East African contributions include 
Mancala, logic games, and games similar to 
Tic-Tac-Toe.

Eastern Africa is the birthplace of the human species, 
and includes Burundi, Comoros, Djibouti, Eritrea, 
Ethiopia, Kenya, Madagascar, Malawi, Mauritius, 
Mayotte, Mozambique, Reunion, Rwanda, Seychelles, 
Somalia, Tanzania, Uganda, Zambia, and Zimbabwe. 
Mancala, an ancient counting game with many varia-
tions throughout the continent, originates in East 
Africa, which is also home to complicated geometric 
patterns in woven art and a number of logic puzzles 
and other mathematical games. The quality of math-
ematics education continues to be a serious concern.

Mancala
Eastern Africa is home to an impressive variety of math-
ematically based games. The most well known are the 
many variations of Mancala, often called the “African 
national game.” Although there are hundreds of varia-
tions, the general idea is: (1) stones or seeds are placed 
in pits laid out with two to four rows and several pits 
per row; (2) players collect the seeds from one pit and 
“sow” them one at a time into other pits around the 
board; (3) under some circumstances, the player picks 
up the seeds from the final pit and continues sowing 
those seeds; (4) when the move ends, the player will, 
in some cases, capture seeds from his or her opponent. 
These games generally involve a substantial amount 
of counting, adding, and subtracting (for example, to 
determine where the final seed will land), as well as con-
sideration of multiple possibilities, analysis to calculate 
where an opponent can move afterward, strategy, and 
logic. It is no wonder that some leaders (including Tan-
zanian president Julius Nyerere) were first noticed as 
good Mancala players. It is uncertain where the game 
originated, but the oldest dated game boards come 
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from Ethiopia and Eritrea about 1300 years ago. The 
game is surely older than that, possibly as much as 3300 
years old. The Complete Mancala Games Book includes 
61 different variations of this game played in eastern 
Africa, including variations specific to every country 
except Burundi. 

Other Puzzles and Games
Logic puzzles come in many forms. One puzzle type 
common to eastern Africa is the river-crossing puzzle. 
For example, a man with a wolf, a goat, and a cabbage 
must use a boat to cross a river except that (1) he can 
take only one item across at a time; and (2) the goat 
cannot be left alone with the wolf (who would eat it) or 
the cabbage (which it would eat). These kinds of puz-
zles are mathematical because, as Marcia Ascher writes, 

“A stated goal must be achieved under a given set of 
logical constraints.” Variations of this puzzle, with dif-
ferent logical constraints, appear in Ethiopia, Zambia, 
and Mozambique.

Several “three-in-a-row” games, related to Tic-Tac-
Toe, are played in eastern Africa. In Shisima, from 
Kenya, players start with an octagonal board, the eight 
corners, a center point, and lines connecting opposite 
corners through that center. Players start with three 
stones each, on the corners closest to them. During a 
turn, players move one of the stones to one of the nine 
points (eight corners and the center) connected to it, if 
it is empty. The goal is to get three stones in a row (a 
straight line), which must include the center and two 
corners opposite each other. Africa Counts describes 
two other three-in-a-row games from Zimbabwe, each 
of which begins like Tic-Tac-Toe where players place 
stones on points on the board, then continues like Shi-
sima with players moving their stones to get a triple. In 
Tsoro Yematatu, the board has seven spots, each player 
has three stones, and one spot is always empty. In Afri-
can Morris, there are 24 spots, and each player has 12 
stones. Here, it could happen that the board becomes 
filled, but if there is a three-in-a-row during that stage, 
the player does not win; instead, the player captures an 
opponent’s stone. Hence, the game usually continues 
into the second phase. These three-in-a-row games are 
logic puzzles and are examples of games of position, 
which have been widely studied in mathematics. 

Geometric Patterns
The geometric patterns of art from eastern Africa con-
tain a great deal of mathematical and geometric struc-
ture and symmetry. Some of the most well known of 
such crafts are the woven sipatsi baskets of Mozam-
bique, and other types of woven baskets and mats from 
Mozambique, Kenya, Tanzania, Uganda, and Madagas-
car. This artwork contains varied types of symmetries 
and dramatic patterns. Paulus Gerdes writes that this art 
“reveals the force of the imagination and the artistic and 
geometric creativity of the women and men who weave 
[these baskets].” Examples exist in the Ba-ila settlement 
in Zambia and in Ethiopian processional crosses. 

Mathematical Education
Mathematical education in eastern Africa shares many 
of the challenges that exist throughout the continent, 
especially the lack of prepared teachers at the second-
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ary level. As the South African mathematics educator 
Jan Persons writes, “At the departure of the Portuguese 
from Mozambique in the early 1970s, there were only 
a handful of qualified secondary mathematics teachers. 
In general, starving the local population of decent and 
effective education was used as a weapon to halt or, at 
least, retard development.” 

This issue has been a major problem in eastern and 
central Africa, which combined have 48% of Africa’s 
population but have produced less than 8% of Africa’s 
mathematics Ph.D.s. Kenya has a strong college-level 
mathematics program, having produced nearly half 
of all Ph.D.s in eastern Africa. Unfortunately, as also 
happens in central Africa, most of the mathemat-
ics students are attracted into professions other than 
teaching because of the low salaries for teachers. There 
are several efforts in place to improve mathematics 
education in these countries, but much work on the 
educational structures remains to be done throughout 
this region.
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Africa, North
Category: Mathematics Around the World.
Fields of Study: All.
Summary: North Africa has been a major 
contributor to mathematics, particularly in ancient 
Egypt and the Islamic Golden Age.

North Africa, comprised of Algeria, Egypt, Libya, 
Morocco, Sudan, Tunisia, and Western Sahara, has long 
been geographically and culturally distinct from the rest 
of the continent because of the Sahara desert (which 
includes most of the region) and the proximity to 
southern Europe and the Middle East. The mathematics 
of ancient Egypt is among the oldest known mathemat-
ics traditions, and the Egyptian city of Alexandria was 
an important center of learning in the ancient world. 
Centuries later, Egyptian mathematicians were among 
the contributors to the Islamic Golden Age, translat-
ing classical works, which also helped bring about the 
Renaissance and Age of Enlightenment. 

Mathematics historians and teachers have explored 
a variety of historical mathematics in the area, such as 
string figures and precolonial mathematics in Sudan, 
or the work of Gaston Julia, who was born in Algeria 
at the end of the nineteenth century and is known for 
his investigations on dynamical systems. The Julia set is 
named for him. Modern mathematicians and scholars 
in North Africa continue to take part in mathematics 
research and teaching.

Ancient Developments
Papyrus scrolls predating 1500 b.c.e. have been found 
in Egypt that discuss mathematical topics. One of the 
more famous is the Ahmes scroll (after the name of the 
scribe to whom it is attributed), currently held in the 
British Museum, which describes many problems in 
algebra and geometry and demonstrates their solutions. 
It is of particular interest for its use of unit fractions 
(fractions with a numerator of 1, such as 1/8) and for 
demonstrating a method of calculating circular areas. 
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In the Hellenistic period (c. 323–146 b.c.e.), and in 
the Roman period that followed, the city of Alexandria 
in Egypt was a center of learning, and the Great Library 
of Alexandria was the most important library in the 
ancient world. Euclid (c. 300 b.c.e.), a Greek mathe-
matician who worked in Alexandria, is best known for 
his treatise Elements, which formed the basis for how 
geometry has been understood and taught for more 
than 2000 years. Eratosthenes of Cyrene (276–194 
b.c.e.) was born in what is now Libya. He estimated 
the circumference of Earth and is known for the Sieve 
of Eratosthenes, which is useful in number theory.

One of the best-known Egyptian mathematicians 
from the Roman period was Ptolemy (c. 90–168 c.e.), 
a Roman citizen who lived in Egypt. One of his well-
known works is the Almagest, the most comprehensive 
surviving ancient treatise on astronomy. Hypatia (c. 
350–415), a Greek who lived in Alexandria, was a female 
mathematician who wrote commentaries and was also 
known as a teacher of astronomy and philosophy. 

Islamic Period
Mathematics flourished during the Islamic Golden Age 
(c. mid-eighth to mid-thirteenth century). One impe-
tus to this development was the translation of classical 
Greek works, such as Ptolemy’s Almagest and Euclid’s 
Elements. These translations were often the only sur-
viving copies and their preservation by Islamic scholars 
allowed them to be reintroduced into Western thought. 
Besides the appreciation of knowledge for its own sake, 
the development of mathematical sciences had practi-
cal uses in the Islamic world; for instance, knowledge 
of astronomy was required to understand the phases of 
the moon and thus correctly observe Islamic holy days, 
while algebraic notation was developed in part to solve 
problems relating to the laws of inheritance. Geomet-
ric motifs are very common in Islamic art and design, 
in part because, for religious reasons, Islamic artists 
did not create representational art, such as portraits. 
Instead, complex patterns such as tessellation figures 
(tilings) were developed for artistic use. 

Many mathematicians worked in Egypt during the 
Islamic Golden Age. Ahmed ibn Yusuf (c. 835–912) was 
born in what is now Iraq but moved to Egypt and died 
in Cairo. He worked with his father, Yusuf ibn Ibrahim, 
on mathematics and wrote a book on ratio and pro-
portion, which commented on Euclid’s Elements and 
was translated into Latin in the twelfth century. Abu 

Kamil Shuja ibn Aslam (c. 850–930) was a mathemati-
cian who made important contributions to the study 
of real numbers, irrational numbers, and combinator-
ics, and some of whose techniques were adopted by the 
thirteenth-century Italian mathematician Fibonacci. 
Ibn Yunus (c. 950–1009) was an Egyptian astrono-
mer and mathematician whose most famous work is a 
handbook of astronomical tables, which is notable for 
the accuracy of his observations and for his meticulous 
description of numerous planetary conjunctions and 
lunar eclipses. Abu Ali al-Hasan ibn al-Hasan ibn al-
Haytham (c. 965–1039) was born in Persia but lived 
primarily in Egypt and died in Cairo. He worked as an 
engineer, reportedly attempting to develop a method 
to dam the Nile River, and made important contribu-
tions to optics and to the development of the scientific 
method. Al-Marrakushi ibn Al-Banna (c. 1256–1321) 
lived in Morocco and may have been born there. He 
worked on Euclid’s Elements and texts on algebra and 
arithmetic operations.

��	 Africa, North

Besides being an Egyptian mathematician, Ptolemy was 
also an astronomer, a geographer, and an astrologer.



Modern Developments
In the early twenty-first century, mathematical study 
and research continues in North Africa. Mathemati-
cians belong to professional organizations like the 
Association Mathématique Algérienne, the Egyp-
tian Mathematical Society, the Tunisian Mathemati-
cal Society, and the Société des Sciences Naturelles et 
Physiques du Maroc. Egypt and Tunisia are members 
of the International Mathematical Union, which is a 
worldwide organization designed to promote math-
ematics. North African countries have participated in 
the International Mathematical Olympiad, an annual 
competition held since 1959 for high school students. 
Algeria first participated in 1977, Morocco in 1983, 
and Tunisia in 1981.
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Africa, Southern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Southern Africa is the home of ancient 
mathematical artifacts and modern mathematical 
innovations.

Southern Africa comprises the five nations of the 
Southern African Customs Union: Botswana, Lesotho, 
Namibia, South Africa, and Swaziland. Colonization 
led to significant European populations, especially in 
South Africa and Namibia.

The oldest known mathematical artifact is the 
Lebombo bone, discovered in a rock shelter in the 
Lebombo Mountains near the South Africa/Swaziland 
border. There is evidence of the cave having been 
inhabited continuously beginning some 200,000 years 
ago, and the bone itself is estimated to be 35,000 years 
old. The Lebombo bone is a fragment of baboon fibula 
with 29 notches, most likely used as a tally stick—a 
notched object used to keep track of quantities. In this 
case it may have been a menstrual calendar. 

Historically, the Dutch and British were particularly 
influential in this region. For example, the nineteenth-
century Boer (also known as Afrikaner) community 
established the Boer States, including Transvaal and 
the Orange Free State. It has been documented that the 
Boer farmers, who were largely descendants of Dutch 
and some other European settlers, relied heavily on 
education at home. The migration of large numbers 
of predominantly British settlers into South Africa in 
the nineteenth century saw the establishment of more 
schools and later, universities in the European style. 
The mathematics heritage of southern Africa reflects 
both the diversity of the native cultures and the effects 
of this European colonialism. 

South African Mathematicians
One early South African mathematician was Francis 
Guthrie (1831–1899), who proposed the Four Color 
Problem. It stemmed from a problem he first explored 
as a student in which only four colors could be used to 
denote the counties of England, and no two counties 
sharing a border could have the same color. Guthrie 
was born in London but immigrated to South Africa, 
where he worked as both a mathematician and a bot-
anist. Mathematician Stanley Skewes (1899–1988), 
who was a faculty member at the University of South 
Africa and grew up near Johannesburg, postulated 
his Skewes number, which is an important concept in 
number theory. 

Within South Africa, one well-known mathemati-
cian is Chris Brink, who grew up in a town on the 
edge of the Kalahari Desert and studied at Johan-
nesburg. He earned a degree in mathematics before 
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earning a scholarship to Cambridge University in 
England, where he completed his doctoral thesis on 
algebraic logic. 

Returning to South Africa, he worked on Boolean 
modules and was vice-chancellor of the University 
of Stellenbosch from 2002 until 2007. Outside of the 
country of South Africa, another early mathematics 
Ph.D. from the southern Africa region is Abraham 
Busa Xaba. He was born in Swaziland in 1938 and 
earned his Ph.D. in 1984. His doctoral dissertation 
was titled “Maintaining an optimal steady state in the 
disturbances.” 

During the latter years of the twentieth century, 
some South African mathematicians also became 
known for their work overseas. For example, Lionel 
Cooper (1915–1979) left the country for political rea-
sons. He grew up in Cape Town and won a Rhodes 
scholarship to study mathematics at Oxford University. 
Afterward, he served as a lecturer at Birkbeck College, 
London, and at Cardiff University, then became head 
of the Mathematics Department at Chelsea College, 
London. Abraham Manie Adelstein (1916–1992) was 
born in South Africa but left to live in England in 1961, 
where he became a leading medical statistician. 

Organizations
As well as these important role models, there have 
been many attempts to encourage collaboration and 
development of mathematics in the southern African 
region. The Southern Africa Mathematical Sciences 
Association was founded in 1981 and is headquartered 
in Botswana. Its serves as a forum for the sharing of 
mathematical ideas for the countries in southern Africa 
as well as some neighboring countries that may be 
more broadly defined as being in the southern portion 
of the African continent. 

The African Institute for Mathematical Sciences was 
founded in 2003 as a partnership of six universities: 
Cambridge University (England), University of Cape 
Town (South Africa), Oxford University (England), 
Université Paris-Sud XI (France), Stellenbosch 
University (South Africa), and University of the 
Western Cape (South Africa). Its three primary goals 
are: promoting mathematics and science in Africa; 
recruiting and training talented students and teachers 
of science and mathematics; and building capacity for 
educational, research, and technological initiatives in 
Africa. The South African Mathematics Olympiad is 

held each year for high school students, and teams from 
southern Africa have participated in the International 
Mathematical Olympiad since 1992.
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Africa, West
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Mathematics has long been used in west 
African art, architecture, industry, and music.

The peoples of west Africa have a long history of using 
mathematics. Everyday uses were similar to mathemat-
ics in other traditional societies around the world. 
Farmers measured their fields and counted their crops, 
anticipating the production figures. Fishers designed 
boats to carry them off the coast and prepared nets for 
catching fish. For both, there were processes to han-
dle their products, either for immediate consumption 
or—with additional mathematics—for sale in local or 
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distant markets. Markets served as centers of trade and 
also as centers of mathematical calculations of quan-
tities and sizes, profits and losses. Everyone designed 
and built houses, often round in shape, which calcu-
lus shows to provide the maximum area for a given 
perimeter. As larger societies and governing units grew 
beyond the villages, mathematics played a role in gov-
ernments, from taxation and salaries to the design of 
palaces and warehouses. 

Mathematics in West African Art
West Africa has long been known for its art, textiles, 
music, and dance. Mathematics is central to the cre-
ative and performing arts. Some particular west Afri-
can examples include carved sculptures, wall paint-
ings, tie-dyed textiles, and woven cloth. Sculptures 
often show symmetries, not only of human features 
but also of geometrical designs and proportions of 
animals, village scenes and daily life, and abstrac-

tions of circles, rhombi, stars, and repeating patterns. 
Often, the palaces of chiefs or emirs became sites 
of art, especially with designs on the walls or in the 
architecture of the structure—all incorporating geo-
metrical designs. 

Throughout west Africa, textiles have been a cen-
tral part of culture. From the multicolored patterns in 
Sierra Leone to the deep blues and indigos of the Hau-
sas, the techniques of dyeing cloth have been popular, 
especially with tied or sewn folds of the cloth to yield 
intricate patterns of dyed and nondyed areas of the 
material. Often, the use of symmetries and Euclidean 
geometric constructions is necessary to produce the 
desired circular, radial, rhombic, and zigzag patterns. 
Woven cloth includes the brightly colored kente of 
Ghana, the metallic shine of the Okenne cloth of west-
ern Nigeria, and others. Weaving requires engineering 
mathematics to design and build looms, and then care-
ful planning so that the strips of material that come 

Kente weaving is traditional among the Ashanti and Ewe people of Ghana, Africa. A kente cloth is sewn 
together using narrow strips of brightly colored cloth with different geometric patterns. 
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off the looms will fit together in two-dimensional sym-
metrical arrangements.  

These traditional artistic products have been carried 
into the present day. Traditional designs are now seen 
in modern buildings throughout the region. Fashion-
able textiles sometimes use new materials or printed 
cloth but continue the geometric traditions. Kente has 
become a popular material not only in Ghana but also 
in the United States, especially the symmetrical strips 
used as wraps and ties. Recent studies by ethnomath-
ematician Ron Eglash have demonstrated a variety of 
uses of fractal patterns in traditional west African arts, 
ranging from repeating smaller patterns in the geo-
graphical arrangement of savannah villages, to neck-
laces and bracelets, carvings from Mali of increasingly 
small antelopes, and even corn-row hair braids that 
repeat smaller shapes as the pattern goes from the fore-
head and temples to the rear of the head.

Music and dance from west Africa are famous to 
both ethnomusicologists and jazz aficionados—and 
to ethnomathematicians. The rhythm patterns, espe-
cially from complex drumming structures, often 
involve unusual time signatures and alternations of 
loud and soft sounds. The three-dimensional move-
ments of dance, like the carvings and textiles, show 
complex symmetries and geometrical arrangements 
of the dancers.  

Early in the second millennium, Islam was intro-
duced in west Africa, along with Islamic mathemati-
cal studies. This introduction added to the original 
practical base of west African mathematics, as west 
Africans adapted Islamic counting methods, reflected 
not only in the languages of west Africa but also in 
theoretical mathematics studied at scholarly centers 
such as Timbuktu (in modern Mali) and Katsina (in 
modern Nigeria).

Mathematics and West African Development
Since gaining independence, mostly in the 1960s, west 
African countries have moved rapidly to modern-
ize. In the process, they have shown a dynamic use 
of mathematics—on a smaller scale than but similar 
to the technical mathematics of the developed world. 
Oil production in Nigeria, gold mining in Ghana, 
and diamond mining in Sierra Leone all use modern 
mathematical techniques, including those employed 
by geological surveys, sophisticated industrial equip-
ment design, accounting, marketing, and business 

management. New businesses are being established to 
work with cell phones, the Internet, automatic teller 
machines, television and film production, and other 
industries that rely on technical mathematics and engi-
neering. Modern freeways connect the larger cities and 
are designed by civil engineers and urban planners. 

Education and West African Mathematics
Education throughout west Africa has grown dramati-
cally since independence—universal primary education 
remains elusive, but the percentage of children attend-
ing school is approaching that goal in several coun-
tries. Political independence also brought educational 
independence, including national curricula offered by 
the Ministries of Education, the West African Exami-
nations Council’s system of standardized examinations, 
and locally produced textbooks and teaching materials, 
using familiar names, places, and situations in examples. 
Local researchers are studying their own cultures, seek-
ing examples of ethnomathematics in traditional life, 
often with the goal of using these findings to strengthen 
the content of school mathematics curricula. With only 
a few universities in existence at the time of indepen-
dence, west African countries now have numerous uni-
versities. These are often managed by the national gov-
ernments—though some states of Nigeria operate their 
own universities and research centers, and the number 
of private universities is growing. These universities 
offer degree programs in mathematics, the sciences, 
engineering, and computer science, all with curricula 
based on the accepted world standards of these fields. 
Most countries have professional and scholarly organi-
zations of mathematicians and mathematics educators, 
and periodically there are regional and continent-wide 
conferences, such as the meetings of the African Math-
ematical Union (AMU). The AMU’s activities include 
the Commissions on Mathematics Education in Africa, 
Women in Mathematics in Africa, the African Math-
ematics Olympiads, and publishing the journal Afrika 
Matematica. Thus, even as west Africa maintains its tra-
ditional uses of mathematics in the arts and music, it 
has also become a part of the modern world mathemat-
ics community.
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Indigenous Design. New Brunswick, NJ: Rutgers 
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African Mathematics
Category: Government, Politics, and History.
Fields of Study: Connections; Geometry; 
Measurement; Number and Operations; 
Representations.
Summary: Throughout African history, mathematics 
has been used in the arts, in engineering and business 
dealings, and in games.

As in all societies, mathematics has always been a part 
of the cultures and daily life of people in Africa. One 
difficulty of studying African mathematics is that for 
much of the history of Africa, the societies were non-
literate, relying on oral traditions to pass their stories 
to the coming generations. 

The wet tropical and subtropical climates of most 
African civilizations destroyed whatever records may 
have been kept—or at least hid them from the eyes of 
future probing historians. Hence, when assertions like 
the first African mathematical achievement are pro-
claimed, there should be a caveat that this is the first 
“that we know of,” for similar earlier achievements may 
well have been lost to history. The African Mathematical 
Union hosts a Commission on History of Mathemat-
ics in Africa—and readily recognizes the difficulty of 
its charge when even details of the social, political, and 
military history of precolonial Africa remain difficult 
to find. Discovering the history of African mathematics 
is an even greater challenge. Hence, much mathematics 

history in Africa remains speculative, based on general 
understandings of how mathematics works in other 
societies past and present, and fitted into the growing 
framework of bits and pieces of the history of Africa 
and African society.

Modern Western mathematics (now used around 
the world) has indeed come from the developments 
in the European academy, but it is only the formalized 
structures of pure theoretical mathematics and their 
applications in science, industry, and technology that 
grew from this theoretical work. However, mathemati-
cal thinking is much broader than the tightly logical 
structures of academic mathematics. Everyone who 
thinks about counting, arranging, or designing—any-
one who makes strategic plans for achieving a goal—is 
thinking in mathematical terms. These examples of 
mathematics have occurred in Africa as much as any-
where else in the world.

Development of African Mathematics
Before recorded history, Africans herded their animals, 
planted and harvested crops, and built homes and 
other structures. All these activities required mathe-
matics. Farming required finding the best time to plant 
and the appropriate time for harvest. Over time, it is 
likely that this led to formal or informal calendars, so 
the farmers would be prepared to do their tasks at the 
right time. They applied measurements and design as 
they laid out their fields, including sorting out bound-
ary disputes with neighbors. Anthropologists have even 
studied the variations in the arrangements of fields in 
farming communities. When the time for harvesting 
came, several other mathematical issues arose. Initially, 
there would be a need for containers and storage bins 
for the produce, requiring geometrical design. 

Later, business mathematics would be used in the 
markets—even those using barter systems—to deter-
mine the comparative values of the products, the gains 
and losses, and the purchases of other products. Some 
societies developed currencies—a famous example is 
the use of strings and bundles of cowry shells by the 
Yorubas. This probably contributed to the complex 
numeration system of the Yoruba language, which can 
handle very large numbers. It has even been suggested 
that the use of higher numbers came as a result of infla-
tion requiring higher prices. Also, the use of strings and 
bundles easily flows into the grouping used in place-
value of counting systems.
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Village life also measured the times of human life, 
from the diurnal movement of the sun and language 
of timekeeping, to the much longer periods of mile-
stones of maturity—birth, initiation as an adult, old 
age, and death. These time markers sometimes went 
beyond the individual and family, such that entire age 
cohorts measured time and followed the appropri-
ate customs of their ages together. Kinship relations 
sometimes were built into mathematical structures, 
attempting to avoid disputes and maintain a smoothly 
functioning society.

Over the past one to two millennia, villages grew and 
coalesced into larger units. As societies grew beyond the 
size of villages, the mathematics correspondingly grew. 
The savanna of west Africa saw Songhai, ancient Mali 
and Ghana, and the Hausa States. The Swahili civiliza-
tion grew along the coast of the Indian Ocean in east 
Africa. Also, trading links reached to increasingly distant 
targets across the Sahara and along distant stretches of 
ocean coastline. Although few records have survived, 
it is acknowledged that large governmental and trad-
ing organizations required complex record keeping and 

accounting. A trader would certainly want to keep care-
ful records of items being traded to avoid being cheated 
by faraway customers. Governments had to handle 
administrative and logistical details of the equivalent 
of civil servants and the king’s retinue, and, especially, 
of armies. Longer trade routes required the design of 
stronger boats for coastal travel and navigational skills 
for caravan travel across empty desert landscapes. Also, 
the needs for currencies grew far beyond those of local 
markets, as traders had to convert the prices of the sellers 
to those of the buyers and still control costs and profits.

Reaching out from local roots also put Africans in 
contact with others—and often, the reverse happened 
as outside groups came into Africa. Either way, this 
led to a mixing of culture and a growth of experience. 
Mathematical ideas jumped from culture to culture, 
contributing a growth of power and sophistication 
of mathematics. It is reported that when king Mansa 
Musa of Mali accepted Islam and traveled across the 
Sahara to make the hajj pilgrimage to Mecca in 1324–
1325 c.e., he brought so much of the golden riches of 
his empire that he upset the economy of Egypt as he 
passed through! The flow of the Arabs into both west 
Africa and east Africa brought the intellectual riches of 
Islamic mathematics. Even in the terminology of count-
ing words, Arabic influence can be seen in the words 
for the decade numbers (20, 30, 40, and so on) in both 
the Hausa language of west Africa and Swahili of east 
Africa. Arab mathematics, which would later also make 
fundamental contributions to European mathematics, 
was taught in Qur’anic schools, and scholarly centers 
were established in various place including Timbuktu 
and Mombasa. One of the few documented examples 
of precolonial history of mathematics in west Africa 
was the work of Muhammad ibn Muhammad, who 
worked in Katsina—now in northern Nigeria—in the 
early 1700s. Interestingly, part of his work became con-
troversial—his calculations of “magic squares,” which 
some of the Islamic authorities considered as flirting 
with the occult. The astronomical calculations required 
to maintain the calendar of Islamic festivals led to a 
growth of formalized geometry and trigonometry.

Mathematics in Egypt
In addition to the mathematics of subsistence, daily 
life, government, and trade, there was also consider-
able mathematics used in the arts and recreation. Prob-
ably the most famous and spectacular mathematics of 
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the arts and architecture on the African continent is 
the mathematics of early Egypt. Beyond the famous 
hieroglyphic mathematics of ancient Egyptian numer-
als and the arithmetic of the problems found in rolls 
of papyrus, the mathematics of Egyptian architecture 
reached the level of “wonders of the world.” Notably, the 
famous pyramids are built with precise lengths, angles, 
and alignments. They fit into near-perfect geometrical 
shapes—all the more impressive given their massive 
size and the belief they were actually constructed by 
uneducated laborers working under the supervision 
of masters of labor. The mathematical history ques-
tions remain: Who did the design work? How were the 
designs communicated to the individual laborers?

Mathematics in Sub-Saharan Africa
In sub-Saharan Africa such spectacular wonders are 
not often seen, but the mathematics of the arts remains 
impressive. Other architectural examples include the 
massive structure of the Zimbabwe fortress as well as 
decorative design in chiefs’ palaces and public struc-
tures throughout the continent. Walls are often deco-
rated with geometrical patterns—some to be washed 
off for new work when a new king would arrive.

On a smaller scale, many parts of Africa are known 
for their textile designs. Sierra Leone has intricate tie-
and-dye patterns in cloth. Akan weavers in Ghana pro-
duce long strips of woven kente cloth in bright colors 
of red, blue, green, and gold, and then align them side 
by side to create broad sheets used as toga-like robes 
in traditional dress. Okenne weavers also make cloth, 
often with metallic threads giving a shiny appearance 
to the design. All of these patterns require mathemat-
ics in their design—especially considerations of sym-
metry. Tie-and-dye requires careful planning of the 
ties so that the resulting dye pattern reflects the design 
pattern. Kente and Okenne cloth show symmetry both 
along the initial woven strips and also across the strips 
in the full cloth of the robe.

The sculptures from many parts of Africa contrib-
uted to some of the designs of modern Western art. They 
show much use of symmetry, scale distortion, and even 
repetitive fractal-like patterns. Similarly, African music 
and dance, especially from west Africa, show mathe-
matically complex rhythm structures in drumming and 
in the use of a variety of plucked and strummed musi-
cal instruments. Like African art, the music of Africa 
has contributed much to Western music, especially via 

the music the African slaves brought to the Americas, 
which formed the roots of jazz. 

Beyond the arts, recreational mathematics is seen in 
numerous African games and pastimes. The best exam-
ple is the many varieties of the mancala games (known 
under various names in different countries), which 
involve sharing seeds into pits in a game board, trying 
to capture the seeds of the opponent. There are many 
variations of the rules but all require a careful strategy 
of play and mathematical problem solving. Some game 
experts have listed mancala among the great games of 
the world.

Further Reading
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Aircraft Design
Category: Architecture and Engineering.
Fields of Study: Geometry; Number and 
Operations.
Summary: Mathematics plays a pivotal role in 
designing, manufacturing, and enhancing aircraft 
components and launch platforms.

Achieving flight has been a dream of mankind since 
prehistory, one never abandoned. As early as Leonardo 
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da Vinci, mathematics—the cornerstone of engineering 
and physics—was recognized as the key to realizing the 
dream. Da Vinci’s 1505 “Codex on the Flight of Birds,” 
for instance, is a brief illustration-heavy discussion 
attempting to discover the mechanics of birdflight in 
order to replicate those mechanics in manmade flying 
machines. Da Vinci considered not simply the wing-
span and weight of birds but a fledgling notion of aero-
dynamics. He was the first to note that in a bird in flight, 
the center of gravity—the mean location of the gravita-
tional forces acting on the bird—was located separately 
from its center of pressure where the total sum of the 
pressure field acts on the bird. This fact would be impor-
tant in later centuries when aircraft were designed that 
are longitudinally stable. Today, mathematics is used in 
the study of all aspects of flight, from launch platform 
design to the physics of sonic booms.

Complex Analysis and the Joukowski Airfoil
Abstract mathematics can find its place in physical appli-
cations people experience quite often. For example, com-
plex analysis and mappings play a vital role in aircraft. In 
layman’s terms, complex analysis essentially amounts to 
reformulating all the concepts of calculus using complex 
numbers as opposed to real numbers. This formula-
tion leads to new concepts that cannot be achieved with 
only real numbers. In fact, the very notion of graphing 
complex functions, rather than real functions, is quite 
different—mathematicians often call the graphing of 
complex functions a “mapping.” Taking a simplistic geo-
metric figure, like a circle, and then applying a complex 
function transforms the figure into a more complicated 
geometric structure. One figure that results from such 
a transformation looks like an airplane wing. Further-
more, one can consider the curves surrounding the circle 
as fluid flow, that is, air currents, and we obtain a rudi-
mentary model of airflow around an airplane wing. This 
transformation is entitled the Joukowski Airfoil, which 
is named after the Russian mathematician and scientist 
Nikolai Joukowski (1847–1921), who is considered a 
pioneer in the field of aerodynamics. Variations of this 
transformation have been utilized in applications for the 
construction of airplane wings.

Nature-Inspired Algorithms
An example of how various fields of mathematics, sci-
ence, and engineering coalesce is epitomized at the 
Morpheus Laboratory, where applications of methods 

and systems found in nature are applied to the study 
and design of various types of aircraft. For example, 
biologically inspired research is conducted by study-
ing an assortment of details related to the mechanics 
of birds in flight. 

Birds are an example of near perfection in flight, a 
fact that humans have long observed. Birds have been 
evolving for millions for years and have adapted to var-
ious environmental changes, thus altering their flight 
mechanics accordingly. By studying the mathemati-
cal properties related to their wing morphing, surface 
pressure sensing, lift, drag, and acceleration, among 
other aspects, the researchers at Morpheus Laboratory 
can use the knowledge they have gleaned and apply it 
to several different types of aircraft. In order to accom-
plish this feat, mechanical models of actual birds are 
constructed and analyzed. Morpheus researchers uti-
lize an assortment of mathematics and physics, includ-
ing fluid mechanics (the study of air flow in this case) 
and computer simulations, to analyze the data that 
result from studying the mechanical birds in flight. The 
analysis, in turn, results in novel perspectives in flight 
as well as the design of innovative types of planes. 

In addition, many of the problems that arise regard-
ing the machinery and components that comprise an 
aircraft carrier can also be potentially solved via Dar-
winian-inspired mathematical models. For example, the 
structural components of aircraft are constantly being 
optimized, as numerical performance is attempted to 
be maximized while cost is minimized. 

The managing of cabin pressurization has made it 
possible for aircraft to fly safely under various weather 
conditions and landscape formations. This ability is due 
in large part to devices known as “pressure bulkheads,” 
which close the extremities of the pressurized cabins. 
Because of the wealth of physical phenomena that influ-
ence the stability of these bulkheads, such as varying 
pressures, it has been a challenge to optimize their design. 
In the early twenty-first century, it was proposed that the 
bulkheads should have a dome-like shape, as apposed to 
a flat one, which was suggested by both mathematical 
and biological evidence. Interestingly, these two struc-
tures demonstrate completely dissimilar mechanical 
behaviors, which lead researchers to consider different 
approaches to modeling the dome-like bulkheads. 

The dome-like structured bulkheads are analogous 
to biological membranes and can be mathematically 
modeled in a similar fashion. In addition to the imple-
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mentation of these membrane-like designs, the mini-
mization of the cost of their construction and the assur-
ance of their durability is mathematically modeled.

Simulating Sonic Booms 
Every time an aircraft travels faster than the speed of 
sound, a very loud noise is produced called a “sonic 
boom.” The boom itself results when an aircraft travels 
faster than the speed of the corresponding sound waves. 
The boom is a continuous event, as opposed to an 
instantaneous sound, which is a result of the compres-
sion of the sound waves. Other fast-moving projectiles 
like bullets and missiles also produce sonic booms.

Mathematically, this concept means that the veloc-
ity of an aircraft (va) exceeds the wave velocity of sound 
(vs). The Mach Number (M), named after the Austrian 
physicist and philosopher Ernst Mach (1838–1916), is 

defined as the ratio of the velocity of an aircraft to the 
velocity of sound. This ratio is expressed mathemati-
cally as

M
v

v
a

s

= .

When va 
< vs 

, M < 1, the object is moving at what is 
often referred to as “subsonic speed.” If va 

= vs 
, M = 1, 

and the object is moving at what is frequently called 
“sonic speed.” Whenever va 

> vs 
, M > 1, and the object 

is moving at what is titled “supersonic speed.” Further-
more, whenever va 

> vs 
, a shock wave is produced.

The shock waves from jet airplanes that travel at 
supersonic speeds carry a great amount of concen-
trated energy resulting in great pressure variations. In 
fact, two booms are often produced when jets fly at 
supersonic speeds. Usually, these two booms coalesce 
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into an N-shaped sound wave that propagates in the 
atmosphere toward the ground. Although shock waves 
are exceedingly interesting, they can be unpleasant to 
the human ear and can also cause damage to buildings 
including the shattering of windows. 

However, there is increasing economical interest 
in designing aircraft carriers that can travel at super-
sonic speeds with a low sonic boom. To demonstrate, 
the flight time for a trip from New York to Los Ange-
les can essentially be cut from 10% to 50% if the plane 
flies at a supersonic cruise speed instead of subsonic 
speed. Therefore, physicists are currently developing 
adaptive methods that model sonic booms in order 
to ultimately develop aircraft that can travel at super-
sonic speeds without causing structural damage—
aircraft that create a low sonic boom. Aspects such as 
near-field airflow as well as pressure distribution have 
been analyzed in these models by utilizing techniques 
of mathematical analysis. 

Aircraft Carriers
Airplanes were a major evolution in modern warfare. 
World War II aircraft carriers that moved airplanes 
closer to targets that would otherwise be well beyond 
their fuel ranges proved to be pivotal to many battles, 
especially in the Pacific. They continue to be a key com-
ponent of many countries’ navies for rapid deployment 
of aircraft for surveillance, rescue, and other military 
uses. Launching from and landing airplanes on aircraft 
carriers is considered one of the most challenging pilot 
tasks because of the restricted length of the deck and 
the constant motion of the deck in three dimensions. 
A catapult launch system gives planes the added thrust 
they need to achieve liftoff and requires calculations 
that take into account mass, angles, force, and speed. 
Similar issues apply to the tailhook capture system that 
stops planes when they land. 

There are also significant scheduling issues for mul-
tiple aircraft on a carrier, fuel use, weapons logistics, 
and radar systems used to monitor both friendly and 
enemy planes. Aircraft carriers are like large, self-con-
tained floating cities. Mathematicians work in the 
nuclear or other power plants that provide electricity 
for the massive aircraft carriers of the twenty-first cen-
tury and in many other logistics areas beyond direct 
flight launch and control. They also help design and 
improve aircraft carriers. For example, mathematician 
Nira Chamberlain modeled the lifetime running costs 

of aircraft carriers versus operating budgets to develop 
what are known as “cost capability trade-off models,” 
which were used to help make decisions about opera-
tions. He also worked on plans for efficiently equipping 
ships to optimize speedy access to spare components. 
Some of the mathematical methods he used include 
network theory, Monte Carlo simulation, and various 
mathematical optimization techniques.
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Airplanes/Flight
Category: Travel and Transportation.
Fields of Study: Algebra in Society; Geometry in 
Society; Number and Operations.
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Summary: Aerodynamics is necessary to 
understanding the flight of objects through three-
dimensional space and the forces acting upon them.

Human flight involves moving in a three-dimensional 
environment within the atmosphere in a stable, con-
trolled way. Aerodynamics is the study of forces and 
the resulting motion of objects through air. It comes 
from Greek aerios, meaning “air,” and dynamis, mean-
ing “force.” Mathematics is fundamental to under-
standing flight and in the design of different flying 
devices and machines, including kites, balloons, 
helicopters, and airplanes. From Orville and Wil-
bur Wright’s initial experiments with gliders at the 
beginning of the twentieth century, to the breaking 
of the sound barrier in the middle of the century, to 
the development of suborbital craft at the start of the 
twenty-first century, airplanes have been constructed 
in many different forms. 

However, the ability to fly for all fixed-wing aircraft 
ultimately depends on a differential movement of air 
above and below the wings to generate positive lift. 
Control depends on three parameters, known as “pitch,” 
“yaw,” and “roll,” that are angles of rotation in three 
dimensions or axes about the plane’s center of mass. 
Mathematicians and others continue to study flight in 
order to more fully understand the mathematical and 
scientific principles that keep heavier-than-air craft in 
the air and to produce designs that are faster, safer, and 
more efficient. They also explore related issues in air 
travel, such as optimal strategies for loading passengers 
onto planes and the scheduling of aircraft flight crews. 

Mathematical History
Stories from many cultures around the world suggest 
that humans have been interested in flight for thou-
sands of years. There is evidence that the Chinese used 
kites well before the first century c.e. Leonardo da Vinci 

The Father of Aviation

E ngineer	George	Cayley	(1773–1857),	working	
in	 the	eighteenth	and	nineteenth	century,	 is	

often	 called	 the	 “father	 of	 modern	 aviation”	 for	
his	 research,	 which	 helped	 identify	 the	 aerody-
namic	forces	of	flight:	weight,	lift,	drag,	and	thrust.	
Though	Cayley	experimented	with	manned	gliders,	
modern	heavier-than-air	 flight	 is	 generally	 traced	
to	the	1903	launch	of	the	Wright	Flyer,	a	twin	pro-
peller	biplane	with	a	single	motor	to	provide	thrust	
and	mechanisms	so	 that	 the	pilot	 could	 control	
for	pitch,	roll,	and	yaw.	

Their	design	helped	overcome	previous	obsta-
cles	 to	sustained	stable	and	controlled	flight	by	
adding	ailerons	to	the	wings,	elevators	to	the	tail	
surfaces,	 and	 rudders	 to	 the	 fuselage	 to	 man-
age	airflow.	By	common	convention,	roll	is	motion	
about	 the	 longitudinal	 axis	 of	 the	 plane.	 Yaw	 is	
movement	about	 the	 vertical	 body	axis.	Pitch	 is	
movement	about	an	axis	that	is	perpendicular	to	
the	longitudinal	plane	of	symmetry.	Pilots	require	
a	firm	grasp	of	this	three-dimensional	geometry	to	
navigate	aircraft	and	follow	directional	headings.	

George Cayley’s “Governable Parachute” design 
was printed in Mechanics’ Magazine in 1857.
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recorded his studies of flight in the fifteenth century 
with more than 100 drawings, including his theoretical 
ornithopter. Air is a fluid, and so much of the mathe-
matics of flight science derives from fluid force studies, 
such as those performed by mathematician Daniel Ber-
noulli in the seventeenth century. Bernoulli’s principle 
is one foundation of flight mechanics. 

Mathematical models for flight rely on the Navier-
Stokes equations, named for mathematicians Claude-
Louis Navier and George Stokes, which are fundamen-
tal partial differential equations describing fluid flow. 
They have many extensions. The Darcy–Weisbach 
equation, derived by dimensional analysis and named 
for engineer Henry Darcy and mathematician Julius 
Weisbach, is important to understanding the dissipa-
tion of energy because of friction, such as drag. Work-
ing in the early twentieth century, mathematician Otto 
Blumenthal studied the theory of complex functions, 
which he also applied to problems such as stress in air-
plane wings. Mathematician Selig Brodetsky studied 
equations of airplane motion, including three-dimen-
sional phugoids, which are extensions of common, 
undesirable oscillatory motions where a plane pitches 
up and climbs, then pitches down and descends, with 
changes in airspeed. Peter Lax studied a class of non-
linear equations that can develop singularities, which 
have applications in aerodynamics that are related 
to phenomena like the shock waves that result from 
breaking the sound barrier. 

Principles of Flight
Balloons are an example of lighter-than-air craft that 
use buoyancy to ascend and descend within the atmo-
sphere, and hot air balloons are known to have been 
explored and used in the eighteenth century. There is 
also evidence that miniature hot air balloons were used 
in China for several centuries. 

Heavier-than-air craft use the principle of lift to 
overcome gravity. There have been various mathemati-
cal and physical theories posed regarding how lift in 
airplane wings is accomplished. Aerodynamicists have 
analyzed how the motion of the air over an airplane 
wing creates circulation and differential pressure above 
and below the wing, which creates lift. Lifting forces 
on the airfoil are perpendicular to the motion of the 
lifting surface through the air and, in level flight, they 
counteract gravity. An observable example is the “sing” 
or hum that occurs in telephone wires in a steady wind, 

which is a repeating pattern of swirling vortices. This 
effect is because of the oscillations induced by a phe-
nomenon called “vortex shedding,” which causes the 
wires to oscillate perpendicular to the wind flow. 

Studies and models suggest that an airfoil pro-
duces circulation in a similar manner. Airfoils can be 
optimally designed to take advantage of this effect by 
allowing a smooth flow to develop over the surface of 
the airfoil, called “laminar flow.” The Reynolds num-
ber, named for mathematician Osborne Reynolds, 
quantifies laminar flow. Without laminar flow over an 
airfoil, turbulence is produced and vortex shedding 
occurs. Others suggest that aircraft lift is a Newtonian 
reaction force, named for Isaac Newton, coupled with 
the Coandă effect, named for engineer Henri Coandă, 
which is the tendency of a fluid to be attracted to a 
surface, like an airplane wing. The wing pushes the air 
down, so the air pushes the wing up. 

Lift and Thrust
In general, a pilot taking off from the ground initially 
accelerates directly into oncoming wind whenever 
possible, since there is agreement based on observa-
tion and mathematics that relative forward motion of 
the plane’s wings with respect to the air is required for 
flight. Usually, the plane itself is in motion, though a 
strong wind over a stationary wing can also generate 
some lift. To maintain a steady, level flight path after 
takeoff, without any added acceleration, two math-
ematical relations must be maintained: thrust = drag 
and lift = weight. Early aircraft engines were powered 
by gasoline, similar to automobile combustion engines. 
A fundamental problem of weight, which inhibited lift, 
was solved by using aluminum as a construction mate-
rial. Although oxygen is needed to burn gasoline, it is 
not carried by the aircraft but extracted from the atmo-
sphere so that it does not add to the mass of the aircraft. 
Jet engines compress and discharge a fast-moving jet of 
air to generate thrust, using the same principles of fluid 
dynamics that govern other aspects of aircraft flight, 
according to Newton’s third law of motion. In contrast, 
a rocket must carry propellants, both fuel and oxidizer, 
and can thus fly outside of the atmosphere. The added 
force helps compensate for the extra weight.

Flight Speed
The types of speeds of flight are typically classified as 
slow subsonic flight, fast subsonic flight, trans-sonic 
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flight, and supersonic flight. The Bell X-1 rocket-pro-
pelled airplane is credited as the first piloted aircraft 
in the world to break the sound barrier, under control 
of test pilot Charles Yeager. Other planes have been 
thought to have broken the sound barrier during steep 
dives, which many do not consider flight. The joint 
United Kingdom and France plane known as the Con-
corde, which flew from the 1970s until its retirement 
in 2003, was the only commercial supersonic aircraft. 
Commercial jets of the early twenty-first century typi-
cally achieve speeds in the range of 80% to 85% of the 
speed of sound, the slower end of trans-sonic flight. 

The design speeds tend to avoid compressibil-
ity effects in air, which occur above roughly 80% of 
Mach 1. The Mach number is a ratio of the speed of 
the aircraft to the speed of sound at the aircraft’s alti-
tude. Supersonic flight requires much more energy to 
sustain, and generally only military aircraft conduct 
sustained supersonic flight within the atmosphere. 
The Prandtl-Glauert equation, named for scientists 
Ludwig Prandtl and Hermann Glauert, is used to help 
correct computations of fluid flow at high speeds a 
function of compressibility, while the Prandtl-Glauert 
singularity is observed as a visible cloud of vapor that 
results from air pressure changes around a trans-sonic 
airplane. The pressures can be modeled as an N-wave, 
named because a plot of pressure versus time resem-
bles the letter N. 

A mode of atmospheric flight explored with experi-
mental aircraft at the beginning of the twenty-first  
century is hypersonic flight, which starts at speeds 
approximately 5–10 times the speed of sound. Special 
engines must be developed to make this speed pos-
sible. Previously, the Lockheed Aircraft SR-71 held the 
speed record at greater than Mach 3. It was powered by 
a special fuel and was air breathing. In 1974, the SR-71 
set a speed record flying across the Atlantic from Beale 
Air Force Base in Louisiana to London in less than two 
hours. This flight occurred many decades after aviator 
Beryl Markham’s speculations about flying the Atlantic 
in an hour. Hypersonic aircraft flying at speeds greater 
than Mach 5 likely will be powered by different forms 
of air breathing propulsion systems, such as turbine-
free engines known as “scramjets,” which at very high 
speeds use ram air compression to ignite a fuel in the 
engine. In principle, such designs have the capability of 
going at very high speeds at high altitude and form a 
transition to spaceflight. 

Further Reading
Anderson, David, and Scott Eberhardt. Understanding 

Flight. 2nd ed. New York: McGraw-Hill, 2009. 
Tennekes, Henk. The Simple Science of Flight: From 
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Cambridge, MA: MIT Press, 2009.

Julian Palmore
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Algebra and  
Algebra Education
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication; 
Connections; Geometry.
Summary: Algebra and algebra education have 
undergone many radical changes and remain highly 
adaptable mathematical disciplines with many real-
world applications.

When they hear the term “algebra,” many people may 
think only of solving an equation for an unknown vari-
able x. In reality, algebra is a broad mathematical dis-
cipline that includes a range of theories and methods 
and which has no single agreed-upon definition. Even 
young children may engage in algebraic reasoning, such 
as understanding the relationships between quantities 
or manipulating symbols, without referring to it by 
name. For much of human history, computations were 
likely performed using a variety of words and symbols 
to meet needs such as accounting, taxation, and plant-
ing. There is evidence of algebraic problem solving in 
Egypt and Babylonia. Their techniques appear to have 
relied a great deal on spoken rhetoric rather than sym-
bol manipulation, though the Babylonians solved qua-
dratic equations using methods similar to those taught 
in the twenty-first century. 

Algebraic thinking is also found in works from 
ancient China. Greeks, Hindus, Arabs, Persians, and 
Europeans all made advances and contributions to 
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algebra, and the term is derived from an Arabic word. 
In the nineteenth century, mathematicians began to 
expand the notions of algebraic form and structure to 
encompass more types of mathematical objects such as 
vectors and matrices as well as operations that could be 
carried out upon these objects. Also, algebra was not 
constrained to the ordinary systems of numbers, and 
noncommutative algebras emerged. The discipline of 
abstract or modern algebra has grown even further to 
encompass concepts like groups, rings, and fields. 

Concurrently, algebra has become increasingly 
more important in education at all levels. One of the 
perceived advantages of algebra and algebraic thinking 
is that problem solving can be accomplished by sym-
bolic manipulation rules without constant reference to 
meaning, and these generalized problem-solving skills 
are viewed as advantageous for students in a wide range 
of life and occupations skills. This notion has led to a 
somewhat controversial “algebra for all” approach in 
many K–12 educational systems in which all students 
must take an algebra course before graduating, and 
basic algebraic concepts are introduced as early as the 
primary grades.

Early History
Even in the classical and ancient period, people had 
started to use numerals such as 1, 2, and 3 (or I, II, and 
III, for example) to represent quantities. Numerals, 
however, bore a direct relation to the quantity being 
counted. The numeral 1, for instance, only ever referred 
to a quantity of one. In ancient Egypt, some mathema-

ticians had started to use other symbols, called ahau, 
to represent unknown quantities. These symbols are 
called “variables” in the twenty-first century because 
the quantity or number they represented could vary. 
But the variation in quantity that the Egyptians allowed 
for was much more restricted than what is allowed for 
in modern algebra. For example, the symbol x can refer 
to any number (whole, integer, or other) depending on 
the mathematical context in which it is used. 

Thus, while ancient Egyptians and mathematicians 
in other ancient civilizations may have used symbols 
to represent quantities, they did not use symbols in the 
generalized way in which they are used today. In fact, 
it was only in the third century c.e. that a Greek math-
ematician, Diophantus of Alexandria, first used letters 
of the alphabet to stand in for numbers. It is because 
of Diophantus’s works that mathematicians started to 
express “an unknown quantity” using symbols such as 
x and y rather than written words.

Al-Khowarizmi
Diophantus’s symbolical technique was not widespread, 
however. In fact, the term “algebra” actually stems from 
a period much later than that of Diophantus. It comes 
from the work of the eighth-century Muslim scholar 
Muhammad Ibn Musa Al-Khowarizmi (there are vari-
ous spellings of his name). Al-Khowarizmi worked as a 
scholar and intellectual during the reign of the Caliph 
al-Ma’mun (r. 813–833 c.e.). 

Al-Khowarizmi was a prominent member of the 
Bayt al-Hikma, the “House of Wisdom,” which the 
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Caliph had created as an academy and library to pro-
mote science. Al-Khowarizmi’s book, Al-Kitab al-
mukhtasar fi hisab al-jabr w’al-muqabalah (an abridged 
book on the operations of al-jabr and al-muqabalah) 
is the oldest surviving Arabic book on mathematics. 
Al-Khowarizmi was also one of the first algebra teach-
ers, as he taught algebra within the Bayt al-Hikma as 
a subject on its own. Although the ancient Egyptians 
and Babylonians did produce texts on arithmetic, alge-
braic, and geometric problems as early as 2000 b.c.e., 
Al-Khowarizmi was among the first to teach algebra as 
a science on its own rather than as a subbranch of other 
branches of mathematics.

The word al-jabr, from which the modern-day term 
“algebra” is derived, first appeared in the title of Al-
Khowarizmi’s book. Some historians have interpreted it 
to mean “the restoration of a broken bone” or, in math-
ematical terms, “the removal of the negative quantity 
from the equation,” while the word al-muqabalah has 
often been interpreted to mean the removal of positive 
quantities. Gandz has contested these interpretations, 
however, to argue that a better translation of al-jabr is 
simply “the science of equations.” 

Europeans
Europeans first became acquainted with Al-Khowar-
izmi’s works through Latin translations by Gerhard 
of Cremona (1114–1187) and Robert of Chester (c. 
1150), both of which first appeared in the twelfth 
century. Historians have often accredited these Latin 
translations of Arabic mathematics with the origins of 
European algebra. One of the first European treatises 
on algebra to emerge in the Renaissance period was 
written by the Italian mathematician and friar Luca 
Pacioli in 1494. Other Italians worked on varied alge-
braic problems in subsequent years, including Scipi-
one del Ferro (1465–1526), who was able to derive 
the solution to a cubic equation in the early sixteenth 
century. The Italian mathematician, Niccolò Tartaglia 
(1499–1557), derived a general solution to cubic equa-
tions a few years later. 

In the same century, the French mathematician René 
Descartes (1596–1650) began to combine algebra (and 
algebraic rules) with geometry. Descartes was the first to 
apply algebra to the study of geometric curves. In 1637, 
he published a work in which he represented curves 
by means of algebraic equations. Descartes’ innova-
tion was to study curves in their algebraic form rather 

than in their geometric form. The result was a field of 
mathematics known as “analytic geometry” (also called 
“geometric analysis”) according to some eighteenth and 
nineteenth practitioners. Analytic geometry allowed 
mathematicians to use symbols, along with the rules 
that govern the combination and interaction of sym-
bols, to solve problems related to the motion of bodies 
in space and the behavior of geometrical objects, such 
as circles, parabolas, and hyperbolas.

Solving Equations
Algebra could therefore be used to find solutions to lin-
ear equations such as ax + by = 0, which describe lines 
in space; quadratic equations, such as ax2 + bx + c  = y, 
which describe parabolas in space; cubic equations, such 
as ax 3 + bx 2 + cx + d = 0, which describe cubic relations 
in space; and other higher-order equations, such as  
anx n + an-1 x n-1  + … + a

o
, which describe various curves. 

The upshot of the Cartesian use of algebra in geometry 
was that algebraic manipulations could be used to also 
solve “systems of equations,” such as

ax + by  = c 
dx + by = f.

Another outcome of the rise of analytic geometry 
was the development of the calculus in the seventeenth 
century. However, although calculus uses the tools of 
algebra—including symbolic representation and alge-
braic manipulation—to compute its solutions, it is not 
the same as algebra. Algebra is generally understood 
to include only those expressions that possess a finite 
number of terms and factors. This means that the 
computation of solutions to algebraic equations termi-
nates after a certain number of steps. In calculus, on 
the other hand, the concept of a “limit” means that the 
process of differentiation can be repeated ad nauseam 
and therefore never terminate. 

Modern Period
Over the course of the past 1000 years, algebra has 
thus expanded from a basic use of symbols in sim-
ple numerical reasoning to the analysis of structures 
called algebraic “fields” and “groups” in the nineteenth 
and twentieth centuries. In fact, the “modern” period 
in algebra is typically understood as having begun in 
the early nineteenth century with the work of math-
ematicians such as the French mathematicians Joseph 
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Louis Lagrange (1736–1813) and Évariste Galois 
(1811–1832), as well as the Norwegian mathematician 
Niels Henrik Abel (1802–1829). Galois, for instance, 
worked on the concept of an algebraic field. Though 
Galois died prematurely young at the age of 20 (as the 
result of a duel in which he was shot), his work later 
culminated in what is called Galois Theory. 

Another important change in the field of algebra 
occurred in the mid-nineteenth century with the alge-
braic-geometric work of the Irish natural philosopher 
Sir William Rowan Hamilton (1805–1865). Hamilton 
started to work on couples (number-pairs that can be 
represented as (x, y) on a Cartesian graph) to under-
stand the algebra that could be used to describe their 
behavior. 

In trying to extend the algebra of couples to the 
algebra of triplets (numbers that could be represented 
by the point (x, y, z) on a three-dimensional axis sys-
tem), Hamilton generated an interesting mathematical 
operator known as the “quaternion.” The quaternion 
can be represented as w + xi + yj + zk, where w, x, y, 
and z represent real numbers, and i, j, and k represent 
imaginary numbers. To get his quaternion algebra to 
work, however, Hamilton had to manipulate the stan-
dard rules of algebra as they were conceived of at the 
time. While it is the case in normal arithmetic that  
1 × 2 = 2 × 1, such that the order of the numbers does 
not affect the outcome of the operation of multipli-
cation, Hamilton’s quaternions did not follow this 
rule. Hamilton found that when numbers are repre-
sented as directed lines in space (called “vectors”), the 
order in which the numbers are multiplied with one 
another does matter. In Hamilton’s algebra, therefore, 
1 × 2 ≠ 2 × 1. Rather, 1 × 2 = −(2 × 1). 

Hamilton is often seen as a pioneer in the study of 
algebras. Based on his work in quaternion algebra, other 
mathematicians developed the idea that by changing 
the rules of the game—by playing around with the 
standard rules of algebra and arithmetic, such as the 
commutative principle in multiplication—one could 
generate new algebraic systems in which the compo-
nent parts—the variables being manipulated and the 
objects they represent—do not necessarily follow the 
same rules as normal algebra. 

Another mathematician who developed a simi-
larly new algebraic system was Hermann Grassmann 
(1809–1877). However, Grassmann’s works were 
largely unknown across Europe until the mid-nine-

teenth century, by which point Hamilton had already 
published his major works on quaternions. A British 
mathematician who attempted to extend Hamilton and 
Grassmann’s new algebraic systems to n-dimensional 
space was William Kingdon Clifford (1845–1879). Clif-
ford died young, and, as a result, it took many years for 
his bi-quaternion algebraic operator to become widely 
known, understood, or used.

Fermat’s Theorem
The history of algebra is therefore replete with break-
throughs. In the seventeenth century, a French math-
ematician, Pierre de Fermat, worked on a problem in 
number theory that he had picked up while studying 
the works of Diophantus. Fermat was interested in 
studying the Pythagorean numbers. Pythagorean num-
bers are sets of three numbers, such as a, b, and c, which 
satisfy the equation a2 + b 2 = c 2. Students often learn 
about Pythagorean numbers through the Pythagorean 
theorem, which describes the length of sides in right-
angle triangles in geometry. Fermat, however, was not 
interested in triangles so much as he was interested 
in the consequences of slight manipulations to the 
Pythagorean theorem. 

He attempted to determine the consequence of 
manipulating the exponents in the Pythagorean num-
bers from 2 to n. In so doing he wrote, “I have dis-
covered a truly remarkable proof” Fermat explained 
that when the Pythagorean theorem is made to read  
an + b n = c n, the new equation has no integer solutions 
for any value of n greater than 2. In other words, it 
is impossible to find numbers a, b, and c that satisfy 
the equation a5 + b 5 = c 5. Fermat never offered a full 
proof of this claim and mathematicians ever since have 
struggled to generate it. This bit of algebra is still called 
a “theorem” to indicate that, although it is believed to 
be true, one cannot be sure that it actually holds true 
for all integer values of n.

Mathematicians who have tried to prove Fermat’s 
Theorem over the years have been led to develop other 
branches of algebra along the way. One example is Edu-
ard Kummer (1810–1893), who created the concept 
of “ideals” in algebra. The theory of ideals remains an 
important tool in algebraic systems. An “ideal” A is a 
(nonempty) subset of a ring R whenever the sum of two 
elements of A is an element of A as well. In addition, if a 
is any element of the subset A, and r is any element of the 
ring R, the products ar and ra are both in the subset A. 
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An example of this is the integer 3. All of the multiples of 
3 form an “ideal” in the ring of the set of integers.

Later Developments
By the late nineteenth century, mathematicians in 
Europe, Great Britain, and the United States also 
became interested in studying the structure of certain 
algebraic equations. Rather than concerning themselves 
with particular solutions to individual equations, these 
mathematicians wanted to identify the axioms (or laws) 
that governed the behavior of differing algebraic equa-
tions. These mathematicians focused on the structure 
of algebraic systems, where a system consists of a set of 
elements and a set of operations that abide by certain 
axioms (or rules). The simplest example of an algebraic 
structure is called a “group.” The French mathemati-
cian Camille Jordan (1833–1922), the German math-
ematician Felix Klein (1849–1925), and the Norwegian 
Sophus Lie (1842–1899) studied groups and did much 
to establish this area of algebraic research, although  
older mathematicians such as the eighteenth-century 
German mathematician Leonhard Euler and the nine-
teenth-century German mathematician Carl F. Gauss 
(1777–1855) had already developed some foundational 
notions that related to abstract groups. Groups are a 
fundamentally nineteenth-century idea. By the mid-
twentieth century, the notion of a group had become 
widely accepted and had even come to form the core of 
abstract algebra. 

Throughout the nineteenth and twentieth centu-
ries, mathematicians who worked on various aspects 
of algebraic structure included people such as Benja-
min Pierce, Eduard Study, Karl Weierstrass, Richard 
Dedekind, Theodor Molien, Élie Cartan, Emil Artin, 
and the twentieth-century female mathematician 
Emmy Noether (and the entire “school” of mathemati-
cians that she fostered). Some of the “groups” that they 
helped to define, use, and develop include semigroups, 
loops, rings, integral domains, fields, lattices, modules, 
Boolean algebras, and linear algebras, among others.

In the twentieth and twenty-first centuries, abstract 
algebra has come to include a wide variety of subject 
topics, including negative and complex numbers, 
proportions, theory of exponents, finite arithmetic 
progression, geometric progression, mathematical 
induction, the binomial theorem, permutations and 
combinations, the theory of equations, partial frac-
tions, inequalities, and determinants.

Algebra Instruction
Algebra developed because of the need to solve real-life 
questions and as an extension of mathematical investi-
gations, but in the eighteenth century, mathematicians 
such as Colin Maclaurin and Euler thought of algebra 
as a universal arithmetic, and education focused on 
solving equations for unknown quantities by symbol 
assignment and manipulation. The focus on symbol 
manipulation and transformational activities such as 
collecting like terms, factoring, and simplifying equa-
tions continued in school algebra until the mid-1960s, 
when educators experimented with ways to make alge-
bra more meaningful to students. By the early 1990s, 
generational activities that included algebra as a way 
to describe numerical or geometric patterns replaced 
transformational activities in some countries. Teachers 
also investigated the effectiveness of a wide variety of 
teaching strategies such as computer algebra software, 
historical perspectives, or active learning methodolo-
gies, and there were also many algebra survival books 
marketed such as Hot X: Algebra Exposed by actress 
Danica McKellar, who majored in mathematics. 

Teachers continue to experiment with ways to help 
students understand algebraic equations and models as 
well as the process of manipulating them. There is also 
a long history of debate about when to begin teaching 
algebra. Before 1700, algebra was not routinely part of 
the U.S. curriculum at any level of schooling, though 
evidence suggests it was taught in some places, such 
as Harvard University, in the early part of the 1700s. 
By 1820, Harvard required algebra for admission, and 
several other Ivy League schools adopted this standard 
over the next three decades. Massachusetts also passed 
a law in 1827 requiring algebra to be taught in many 
high schools. As early as the first part of the twentieth 
century, some educators such as Claude Turner sug-
gested that algebra should be taught in eighth grade 
to help students understand concepts like cube roots. 
Some educators pointed to developmental theories 
such as Jean Piaget’s theory of cognitive development 
in order to resist teaching algebra any earlier than 
eighth grade. In the twenty-first century, many states in 
the United States have adopted an “algebra for every-
one” approach to teaching, and several states require 
students to pass an algebra test to graduate from high 
school. This emphasis is due in part to the increased 
focus on problem-solving skills believed to develop a 
wide range of life and occupational skills.
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Algebra in Society
Category: School and Society.
Fields of Study: Algebra; Connections.
Summary: Algebra provides tools for orderly 
thinking and problem solving, applicable across a 
spectrum of pursuits.

Among the many discussions in his 1961 book The 
Realm of Algebra, science fiction author and biochem-
ist Isaac Asimov described the real-life uses of algebra; 
explored the role it played in the discoveries of scien-
tists and mathematicians such as Galileo Galilei and 
Sir Isaac Newton; and suggested the idea that “the real 
importance of algebra, and of mathematics in general, 
is not that it has enabled man to solve this problem or 
that, but that it has given man a new outlook on the 
universe.” This notion underlies many of the perspec-
tives on algebra in the twenty-first century. 

Knowledge of algebra is seen as important not only 
for scientific research and the workplace but also for 
teaching general logical thinking and for making deci-

sions that are important to personal well-being and 
society as a whole. For example, some functional rela-
tionships among people’s day-to-day activities that 
may affect personal decisions include the relationship 
between how much food a person eats and weight; the 
amount of exercise and weight loss; and calculations 
for loans, interest, and other financial matters. 

Some would say that the ramifications of these 
relationships and a lack of understanding of them 
mathematically are found in the housing crisis of the 
early twenty-first century and the increase in obesity. 
Algebra is reported as being a challenging subject for 
some people. 

Many consider algebra to be a major gateway into 
higher mathematics in both high school and college, 
and it is thus critical to careers in engineering, sci-
ence, mathematics, and other disciplines that require 
advanced mathematics training. Performance of pri-
mary and secondary students on algebra tests is one 
common comparison measure used to evaluate the 
relative standing of countries with regard to education. 
Professional organizations like the National Council of 
Teachers of Mathematics (NCTM) continue to exam-
ine the role of algebra in society and make recommen-
dations. Some of the numerous careers that have been 
cited as requiring algebra include architecture, bank-
ing, carpentry, dentistry, civil engineering, nursing, 
pharmacy, and plumbing. 

How Is Algebra Useful?
In 2003, the RAND Corporation’s Mathematics Study 
Panel underscored the key role of algebra in education 
by choosing it as one of the panel’s main areas of focus, 
explaining their decision in part by saying, “Algebra 
is foundational in all areas of mathematics because it 
provides the tools (i.e., the language and structure) for 
representing and analyzing quantitative relationships, 
for modeling situations, for solving problems, and for 
stating and proving generalizations.” In algebra, there 
are general laws or algebraic models that can be used to 
represent a given scenario. 

Algebra is sometimes noted as a type of language 
that provides answers to all cases at all times and 
models the relationships between quantities, reduc-
ing the need for repeated or inefficient computation. 
For example, in order to determine the savings in an 
interest-bearing account after a given period of time, 
one could compute the savings each month or year by 
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multiplying by the interest rate. However, this compu-
tation is cumbersome after many compounding cycles. 
Instead, the algebraic formula 

A P r
t= +( )1

can be applied directly, where P is the initial investment, r 
is the interest rate per period, t is the number of periods, 
and A is the amount of money in the bank after t periods. 
People may want to know if it is profitable to leave money 
in a bank subjected to the stated formula. On the other 
hand, people may want to determine the present and 
future value of the money they have invested because of 
the effect of inflation. In other instances, such as taking a 
car or home loan, similar algebraic laws exist. These laws 
help people know how much money, for instance, they 
may save if they pay off their loan earlier than the due 
date. In the eleventh century, scholar, poet, and math-
ematician Omar Khayyam explained the following: 

. . . Algebra is a scientific art. The objects with which 
it deals are absolute numbers and measurable 
quantities which, though themselves unknown, are 
related to “things” which are known, whereby the 
determination of the unknown quantities is pos-
sible. . . . What one searches for in the algebraic art 
are the relations which lead from the known to the 
unknown. . . . The perfection of this art consists in 
knowledge of the scientific method by which one 
determines numerical and geometric unknowns.

Early History
Algebra definitions and applications have evolved over 
time, though many aspects of algebraic thinking and 
methods that are taught in twenty-first-century schools 
can be traced back to antiquity. The Babylonians and 
Egyptians used algebraic techniques to solve problems 
directly related to the everyday needs of society, such as 
dividing land and keeping financial records. One such 
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example from Babylonian mathematics is an alterna-
tive method for solving cubic equations of the form  
x 3 + x 2 = b, via tabulated numerical values of squares 
and cubes. The Babylonians were able to solve this 
polynomial by using the table that gave the values of  
x 3 + x 2  or x x2 1+( ) . They constructed the table to 
solve: x x2 1 1 30+( ) = ;  in sexigesimal notation. The 
“periods” below are used to represent multiplication.

x  x x3 2+
1  1.2  =  2
2  4.3   =  12
3  9.4  =  36
4  16.5  =  80
5  25.6  =  150
6  36.7  =  252
7  49.8  =  392
8  64.9  =  576
9  81.10  =  810

10  100.11  =  1100
.

30  900.31 =  27900

The algorithm used by the Babylonians to find the 
roots of cubic equations is different from the modern 
approach, although it can be explained using modern 
language. 

For example, in modern notation, in solving the 
equation x3 + 2x2 − 3136 = 0 set x = 2y. Then the equa-
tion can be rewritten as the following:

( ) ( )2 2 2 3136 0

8 8 3136 0

392.

3 2

3 2

3 2

y y

y y

y y

+ − =
+ − =

+ =

From the table, y = 7. Since x = 2y, then x = 14.

Topics that are viewed as algebra in contempo-
rary mathematics were often numerical or geomet-
ric in nature. The Pythagorean theorem, named for 
Pythagoras of Samos, can be expressed in terms of 
the algebraic equation that relates the sum of the sides 
surrounding a right angle in a triangle squared to the 
square of the hypotenuse. However, historically, there 
is evidence that the Babylonians explored numerical 
versions of the theorem, while the Greeks examined 

the areas of the geometric squares that sat on the edges 
of the triangle. 

The Pythagorean theorem can be found in twenty-
first-century algebra classrooms, and it is useful in set-
ting right angles in constructions and in measuring 
distance in flat objects. Symbolic notation for algebra 
was developed in India and became popular in Europe 
in the seventeenth and eighteenth centuries. Histori-
cal methods reflect the unique construction of under-
standing, indicative of the localized culture at that 
time. Algebraic methods have also been found in some 
ancient Chinese works. 

Greeks, Hindus, Arabs, Persians, and Europeans all 
contributed to the development of algebra. The term 
itself comes from the Arabic word al-jabr, which has 
several translations including “the science of equa-
tions.” The word appears in the title of the early alge-
bra text written by Muhammad Ibn Musa Al-Khowar-
izmi in the ninth century. 

Applied Algebra
For a long time, one major emphasis in algebra was 
solving polynomial equations, but in the eighteenth 
century, algebra went through a transformation that 
broadened the field to include study of other math-
ematical structures. Around that time, textbooks 
defined algebra in many different ways. According to 
mathematician Colin Maclaurin, “Algebra is a general 
method of computation by certain signs and sym-
bols which have been contrived for this purpose, and 
found convenient. 

It is called an universal arithmetic, and proceeds by 
operations and rules similar to those in common arith-
metic, founded upon the same principles.” Leonhard 
Euler defined algebra as: “The science which teaches 
how to determine unknown quantities by means of 
those that are known.” As the concept of variables was 
further developed, many physical properties, including 
time, mass, density, pressure, temperature, charge, and 
energy, were expressed algebraically. 

For instance, Albert Einstein’s equation relates 
energy to mass times the speed of light squared. In 
the twenty-first century, defining algebra commonly 
requires a broader approach. First, one could say that 
early or elementary algebra is essentially the study of 
equations and methods for solving them; and sec-
ond, that modern or abstract algebra is the study of 
various mathematical structures. High school algebra 
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textbooks typically contain a breadth of topics, such as 
polynomials and systems of linear equations. These are 
important in modeling many relationships in society. 
For example, parabolas represent the paths of ball or 
bullet trajectories, and systems of linear equations and 
matrices give rise to digital images. At the college level, 
students continue their study of algebraic equations in 
virtually every mathematics and statistics class. Stu-
dents in a broad range of majors, including the sciences 
and mathematics, may further their understanding of 
systems of linear equations and their applications in a 
linear algebra class. 

Mathematics majors in modern or abstract algebra 
study topics like groups, rings, and fields, and gradu-
ate students further explore these and other algebraic 
structures. These concepts have been useful in chem-
istry, computer science, cryptography, crystallography, 
electric circuits, genetics, and physics. Algebra is a core 
area from the middle grades and high school to under-
graduate and graduate mathematics. Research fields 
include the connections of algebra with other subdis-
ciplines, like algebraic geometry, algebraic topology, or 
algebraic number theory, and the abstract structures 
and notions in pure algebra have been applied in many 
contexts. Some algebraists work for the National Secu-
rity Agency and others work as professors.

In general, mathematicians and scientists often alge-
braically derive laws for a given scenario or relationship 
from patterns. For example, consider a triangle num-
ber pattern. It is fairly simple to find the next number 
recursively but finding larger values such as the 1000th 
triangular number without a general rule can be more 
challenging. (See Figure 1 and Table 1.)

Figure 1.

Algebra can be used to generalize the preceding case 
and derive that
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Hermann Weyl noted “The constructs of the math-
ematical mind are at the same time free and necessary. 
The individual mathematician feels free to define his 
notions and set up his axioms as he pleases. But the 
question is will he get his fellow mathematician inter-
ested in the constructs of his imagination. We cannot 
help the feeling that certain mathematical structures 
which have evolved through the combined efforts of the 
mathematical community bear the stamp of a necessity 
not affected by the accidents of their historical birth. 
Everybody who looks at the spectacle of modern alge-
bra will be struck by this complementarity of freedom 
and necessity.”

Many algebraic equations are used in everyday life 
to meet societal needs. For example, the area of a rect-
angle is given by the length times the width. There are 
algebraic equations like finding the area of a square or 
circle, and also finding volume, which are used in appli-
cations like home decorating, cooking, landscaping, and 
construction. Building houses and fences, determining 
amounts of material needed for a project, and complet-
ing everyday chores use algebra to make work accurate 
and efficient. Economists use algebraic laws to project 
business profits or losses and to advise investors and 
other decision makers. In other instances such as taking 
a car or home loan similar algebraic laws help people 
know how much money, for instance, they may save if 
they pay off their loan earlier than the due date. 

Many formulas are easy to use and can easily be 
entered in a hand calculator or computer to generate 
the required result. Such formulas have been adapted 

Table 1.

1st term 2nd term 3rd term 4th term 5th term nth term

1 = 1 3 = 1 + 2 6 = 1 + 2 + 3 10 = 1 + 2 + 3 + 4 15 = 1 + 2 + 3 + 4 + 5 = 1 + 2 + 3 + … + n 
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to Web-based applets and software like spreadsheets 
to track financial records, making them widely acces-
sible and often easy to use. 

Mathematician Roger Cooke explained, “Algebra 
provided more than just a compact notation for writ-
ing down relations among variables. Its rules made 
it possible to manipulate those laws on paper and 
derive some of them from others. For example, a 
consequence of Kepler’s third law is that the ratio . . . 
of the square of a planet’s period to the cube of its 
distance from the sun is the same for all planets . . . 
Kepler’s third law and Newton’s law of gravitation 
are equivalent statements, given certain basic facts of 
mechanics.” Kepler’s laws were named for Johannes 
Kepler and Newton’s for Sir Isaac Newton. The ability 
to express algebraic relationships using variables and 
rates of change in calculus increased the applicability 
of equations in a wide variety of contexts.  

The U.S. Bureau of Labor Statistics highlights the 
importance of coursework in algebra for numer-
ous careers, including brickmasons, blockmasons, 
and stonemasons; carpenters; computer control pro-
grammers and operators; construction and building 
inspectors; engineers and engineering technicians; line 
installers and repairers; machine setters, operators and 
tenders in metal and plastic; machinists; opticians; 
physical therapist assistants; power plant operators, 
distributors and dispatchers; sheet metal workers; sur-
veyors, cartographers, photogrammetrists, and survey-
ing and mapping technicians; radiation therapists; tool 
and die makers; and veterinarians. 

Algebra’s Role as a Gateway
Some would argue that in the United States, math-
ematics achievement has not met the same standards 
of excellence as in other developed countries, and 
that, as a result, students may not be prepared to enter 
college. Some historians trace the growing need for 
mathematics education to the turn of the twentieth 
century or the Industrial Revolution, when there were 
debates about the appropriate level of mathematics 
for high school education. Historically, popular opin-
ion was often against algebra as a subject of wide-
spread study in secondary schools, since many did not 
see clear connections between algebra and real-world 
needs. Mathematics educator W. D. Reeve cited one 
newspaper editorial as an example of such an attitude 
in a 1936 National Council of Teachers of Mathemat-

ics report, The Place of Mathematics in Modern Educa-
tion, saying the following: 

Quite frankly, I see no use for algebra except for 
the few who will follow engineering and techni-
cal lines. . . . I cannot see that algebra contributes 
one iota to a young person’s health or one grain of 
inspiration to his spirit. . . . I can see no use for it 
in the home as an aid to a parent, a citizen, a pro-
ducer, or a consumer.” 

The same report noted deficits in algebra skills even 
among graduate students and relatively high failure 
rates for algebra students in some high schools, such 
as in New York City, which were used by some as addi-
tional arguments against algebra’s broad inclusion in 
the high school curriculum. With regard to who should 
and should not study algebra, Reeve countered: “. . . no 
one, I think, has the wisdom to decide who will profit 
most by its study or predict who the future Newtons 
and Einsteins are to be.” 

Mathematician and philosopher Alfred Whitehead 
stated the following: 

Quadratic equations are part of algebra, and algebra 
is the intellectual instrument which has been cre-
ated for rendering clear the quantitative aspects of 
the world. There is no getting out of it. Through and 
through the world is infected with quantity. To talk 
sense, is to talk in quantities. It is no use saying that 
the nation is large. . . . How large? It is no use saying 
that radium is scarce. . . . How scarce? You cannot 
evade quantity. You may fly to poetry and to music, 
and quantity and number will face you in your 
rhythms and your octaves. . . . This question of the 
degeneration of algebra into gibberish, both in word 
and in fact, affords a pathetic instance of the useless-
ness of reforming educational schedules without a 
clear conception of the attributes which you wish to 
evoke in the living minds of the children. . . . First, 
you must make up your mind as to those quantita-
tive aspects of the world which are simple enough to 
be introduced into general education; then a sched-
ule of algebra should be framed which will about 
find its exemplification in these applications. 

Other newspapers like the Columbus Dispatch sup-
ported broad high school mathematics education 

�0	 Algebra in Society



during that time period, asserting that schools should 
provide the “mathematical key” to the “gateways of a 
larger life.” 

Algebra eventually became commonplace in high 
schools and some middle schools, with basic algebraic 
concepts often introduced even in the primary grades, 
and yet questions about how to teach algebra con-
tinued. Algebra is usually a prerequisite for all higher 
mathematics courses in both high school and college, 
and, in some cases, it is required for high school gradu-
ation. Students will not advance in many majors or 
career paths unless they pass algebra, and the result is 
that some students change majors or abandon educa-
tion altogether. Students requiring remediation courses 
at the college level are fairly common. 

The result is that in the twenty-first century, algebra 
is still viewed by many as a major gatekeeper to edu-
cational and career advancement, and learning algebra 
has been promoted as a civil rights issue for every U.S. 
citizen, though many of the same arguments from past 
decades continue to be debated. In the latter twenti-
eth century, algebra education became a renewed topic 
of discussion from local school districts all the way to 
the White House. The RAND Corporation’s panel fur-
ther explained its decision to focus on algebra by say-
ing, “Without proficiency in algebra, students cannot 
access a full range of educational and career options, 
and this curtailment of opportunities often falls most 
directly on groups that are already disadvantaged.” 

At the same time, naysayers continue to publish 
counterpoints regarding algebra’s lack of utility. One 
2006 Washington Post article about a student named 
Gabriella, who purportedly dropped out of high school 
after failing her algebra course many times, asserted that 
writing teaches logical reasoning more effectively than 
algebra and stated that many students will “never need 
to know algebra” in the real world, since most math-
ematics can now be done by computer or calculator. It 
concluded that having an algebra requirement for high 
school graduation is potentially more detrimental than 
helpful because it may spur students to drop out who 
otherwise might have graduated. 

This article spurred many further discussions, and 
it appeared to reflect the author’s own difficult expe-
riences with algebra, a phenomenon that has been 
reported by many educational researchers and that 
drives further curricular revisions. Authors of algebra 
textbooks and self-help books have explored different 

ways to help students connect to algebra. For instance, 
actress Danica McKellar has written algebra readiness 
and algebra books that include stories and characters in 
order to express equations and solutions in contextual 
situations. Some educators incorporate mnemonics, 
songs, or other memory techniques such as First, Out-
side, Inside, Last (FOIL) in order to teach the multipli-
cation of two binomials. Other authors highlight real-
life applications, historical connections, or solutions 
using technology.

Many national reports have indicated that educa-
tion in the United States is in a critical period, and 
some would say particularly in mathematics and sci-
ence. Educators and politicians have proposed changes 
to the mathematics education curriculum to prepare 
U.S. students. The number of students entering college 
and requiring courses that enable them to be effective in 
the workplace is rising. Further, engineering and other 
technical fields that were once seen as elite or remote are 
increasingly a part of daily life, including computing, 
electronics, business, and architecture. Technology is 
changing every day, which has changed society, includ-
ing mathematics. As a result, there is an increased need 
for people who can adapt to the changes and continue 
being effective in society. In this context, there has been a 
movement to reform algebra education so that it can be 
more readily accessed by everyone. The “algebra for all” 
movement has been a central point within the reform 
initiatives. National standards such as those published 
by the NCTM have stressed the need to make algebra 
more accessible to students, and they often outline both 
the content to be covered and instruction expectations. 
Some research has shown that students who take alge-
bra by eighth or ninth grade are more likely to pursue 
higher mathematics, though this cannot be interpreted 
as a cause-and-effect relationship.
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Analytic Geometry
See Coordinate Geometry

Anesthesia
Category: Medicine and Health.
Fields of Study: Algebra; Measurement.
Summary: Anesthesia dosages must be precisely 
determined and the patient must be monitored for 
signs of too high or low a dosage. 

The word “anesthesia” was coined from the Greek word 
anaisthesis meaning “insensibility.” As early as 4200 
b.c.e, opium poppies were used as an herbal remedy 
in Samaria and, later, in Cyprus, India, and China. The 
three main types of anesthesia are local (loss of sen-
sation in a small area of the body by the blockage of 
nerve signals), regional (loss of sensation in a larger 

area of the body), and general (loss of consciousness), 
are used to relieve the feeling of pain during medical 
and dental procedures. Anesthesia uses mathematics 
in variety of ways including the calculation of appro-
priate drug dosages, the monitoring of patients under 
general anesthetics during surgery and recovery, and 
the design and use of anesthetic equipment including 
vaporizers, ventilators, and pressure gauges.

Non-pharmacological anesthetic techniques his-
torically have included local anesthetics such as ice and 
rum. Nitrous oxide (“laughing gas”), ether, and chlo-
roform were used as general anesthetics in the 1800s 
during childbirth and surgery.

Applications of Mathematics 
Anesthetic drug dosages per minute are based on mil-
ligrams of drug per kilogram weight of the patient. The 
rate of elimination of drugs from the body per unit of 
time is proportional to the amount of drug in the body. 
The time taken for the drug concentration in the plasma 
to be reduced by 50% is called the elimination half life. 

The measurements monitored while a patient is 
under general anesthetics can include data such as 
temperature; heart rate via ECG (electrocardiogram); 
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Anesthesiologists uses mathematics for tasks from 
calculating drug dosages to monitoring patients.



oxygen saturation via pulse oximetry; ratio of oxygen, 
carbon dioxide, and nitrous oxide from the patient’s 
inspired and expired gases; urine output; arterial blood 
pressure; central venous pressure; pulmonary artery 
occlusion pressure; cerebral activity via EEG (electro-
encephalogram); and neuromuscular function. 

A major concern is keeping the patient at the appro-
priate level of anesthesia. The cardiovascular system is 
threatened if the anesthetic is too deep, but if the anes-
thetic is too light, the patient may experience pain or 
regain consciousness. 

Researchers have attempted to measure the depth 
of anesthesia by monitoring on a graph and on a time 
scale EEG signals generated by electrical discharges 
of neurons near the brain surface. One method is to 
administer a gaseous anesthetic drug and hypothesize 
that the concentration of the drug in the expired air 
is proportional to the blood-plasma concentration. An 
alternative research technique is to observe respiratory 
sinus arrhythmia (RSA), which is the variation in heart 
rate during a breathing cycle. The heart rate increases 
during inhalation and decreases during exhalation. 
On the graph of an ECG, each heartbeat is referred to 
as an R peak. The difference between two consecutive 
R peaks is an RR interval, which is shortened during 
inspiration and lengthened during expiration. 

Anesthesia Providers’  
Educational Backgrounds
The academic and clinical preparation for an anes-
thesiologist in the United States consists of four years 
of college, four years of medical school, one year of 
internship, and three years of anesthesiology resi-
dency. A description of Steven Cruickshank’s 1998 
book Mathematics and Statistics in Anaesthesia states 
that anesthesia residents are required to study and 
understand pharmokinetics (the study of what the 
body does to a drug) and statistics as “a core part of 
their training.” In addition to physician anesthesiolo-
gists, anesthesiologist assistants or Certified Registered 
Nurse Anesthetists (CRNAs) can apply anesthesia or 
sedation while working with healthcare professionals. 
CRNAs complete four years of college, at least one year 
of acute-care nursing, and a 24- to 36-month master’s 
degree program before passing the required certifica-
tion examination. Anesthesiologist assistants (AAs) 
with master’s degrees may practice under the supervi-
sion of an anesthesiologist in several states. 

Further Reading 
Chen, Z., et al. “Linear and Nonlinear Quantification 

of Respiratory Sinus Arrhythmia During Propofol 
General Anesthesia.” http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2804255.

Cruickshank, Steven. Mathematics and Statistics in 
Anaesthesia. New York: Oxford University Press, 1998.

Neligan, Pat. “Pharmacokinetics.” http://www.scribd 
.com/doc/39115053/Pharmacokinetic. 

Widman, G., T. Schreiber, B. Rehberg, A. Hoeft, and  
C. E. Elger. “Quantification of Depth of Anesthesia 
by Nonlinear Time Series Analysis of Brain Electrical 
Activity.” http://arxiv.org/PS_cache/nlin/pdf/0007/
0007027v1.pdf.

Karen Doyle Walton

See Also: Drug Dosing; LD50/Median Lethal Dose; 
Medical Imaging; Surgery.

Animals
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Communication; 
Geometry; Measurement. 
Summary: Principles of engineering, physics, and 
mathematics are demonstrated by the physiology, 
movement, and behavior of animals.

Animals, including human beings, are living organisms 
that belong to the domain Eukaryota (having complex 
cellular structures enclosed with membranes) and the 
kingdom Animalia. Within this taxonomy, the king-
dom is defined by several characteristics, including 
internal digestion of food (called “heterotrophism”) 
and the ability to move using its own energy in at 
least some stages of life (called “motility”). Some say 
that what distinguishes humans from other animals is 
mathematical ability. However, researchers have stud-
ied a diverse range of mathematical concepts as they 
relate to animal behavior and have found evidence 
of abilities such as symbolic calculation, efficiency in 
locomotion, and synchrony. There are questions about 
whether these findings are biased perceptions of math-
ematical significance. Many mathematical patterns 
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and symmetry can also be found in the structure 
of animals, ranging from their cellular tis-
sue to their coat patterns. Some of the 
motivation behind the development 
of many statistical measures and 
methods, such as standard devia-
tion and regression, was to charac-
terize natural variability and associa-
tions in animal species.

Biological Systematics,  
Set Theory, and Logic
Biological systematics is the field that 
describes and names living organisms, pro-
vides their classifications and keys for identification, 
and situates classes of organisms within evolutionary 
history and modern adaptations. In particular, classifi-
cation of organisms (called “taxonomy”) is an empiri-
cal science, where description of classes is the final step 
in the discovery and description of organisms. Exist-
ing biological classifications may include the ranks of 
domain, kingdom, phylum, class, order, family, genus, 
and species.

The definition of the kingdom Animalia is inten-
sional definition—it specifies necessary and sufficient 
conditions for belonging to the set of animals. The 
particular subclass of definitions used in systemat-
ics to define animals is called definition by genus and 
differentia. Such definitions rely on a structure of sets, 
subsets, and supersets as well as their differentiating 
conditions. For example, defining negative numbers 
as the set of rational numbers that are less than zero, 
mathematicians use the superset of rational numbers 
(defined elsewhere) and the differentiating condition 
of being less than zero. Animalia is one of several king-
doms (subsets) of the domain Eukaryota, differenti-
ated from other kingdoms by particular conditions.

Careful decisions are made in the organization of 
kingdoms and in defining differentiated conditions. For 
example, if only the conditions of internal digestion of 
food and motility were used, the Venus flytrap would 
be considered an animal rather than a plant. However, 
plants are also differentiated by the sufficient condi-
tion of having plastids, such as chloroplast, in their cells. 
Internal digestion of food and motility are necessary 
but not sufficient conditions for declaring an organ-
ism an animal. There are historical and modern systems 
defining anywhere from two to eight kingdoms of living 

organisms, depending on the necessary and suf-
ficient conditions used for definitions.

Animal Tissue Structures
All animal cells have extracellular matrix, the bound-
ary that can serve many functions, including exchang-
ing substances between cells, segregating tissues, and 
anchoring cells. Animal cells typically form tissues; 
groups of cells carry out particular functions within 
animal bodies. There are four types of animal tissues, 
defined by their functions: muscle, nervous, epithelial, 
and connective. Cells within tissues and tissues within 
organs may be tessellated (filling space or surface infi-
nitely, without gaps). 

Tissue engineering is an interdisciplinary field 
combining biology, material science, chemistry, and 
engineering to re-create, change, or replace tissues. It 
pays special attention to the mechanical and structural 
properties of tissues, often modeled mathematically 
before being implemented in the lab. 

Technological Metaphors and Models
Beginning in the Renaissance, it was common for 
people to conceptualize living organisms in terms of 
human-made machines. This phenomenon worked 
both ways, since human constructions were informed 
by new understandings and observations of nature. 
During the Renaissance, animal tissues and organs were 
seen as combinations of relatively simple mechanisms 
such as levers. Attempts were made to imitate some 
functions of animals in construction, such as making 
bird-like wings. This analytic approach informed the 
development of scientific methods in biology—in con-
trast with a holistic view of living things as having a 
completely different nature from human-made mech-
anisms. In the seventeenth century, this philosophical 
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approach of modeling animals on machines was sup-
ported by such influential scientists as Galileo Galilei, 
René Descartes, and Isaac Newton.

Engineering and mathematics developed along 
with explanations in biology. Developments in steam 
technology introduced the ideas of energy and work, 
which, in turn, led to the analysis of gas and liquid 
pressures as explanations of the interaction of tissues 
and organs in animal bodies. The metaphors of heart 
or cellular structures as pumps—or kidneys and the 
liver as filters—persist to this day. When electricity and 
magnetism were first discovered, there were numerous 
attempts to apply them directly to explanations of ani-
mal bodies, but many of these early models were dis-
carded later. In the twentieth century, animal processes 
are often conceptualized as computer entities, such as 
nervous system as a computational network. Likewise, 
animal brains are observed for the purpose of building 
the artificial intelligence. Mathematical models in biol-
ogy developed from simple measurements of weight, 
length, and proportion to those incorporating calculus, 
differential equations, statistics, computational science, 
and other areas of modern mathematics.

Animal Motility, Field Perception,  
and Gradients
Animals can move under their own power. Animals 
movement in response to external stimuli or gradi-
ents of stimuli is called taxis. In calculus, the gradient 
is a vector field; its vectors point in the direction of 
the greatest rate of increase in a variable and have the 
magnitude equal to that rate. Depending on the nature 
of the variable in the gradient, animals or animal cells 
can exhibit different types of taxis, such as thermotaxis 
along temperature gradients or phototaxis along light 
gradients. Mathematical models of taxis are based on 
calculus, differential equations, and statistics.

Chemotaxis is the movement along the 
gradient in a chemical substance. Animal 
cells may have multiple chemical recep-
tors around their boundaries, allowing 
the cell to determine the direction of 
chemical gradient vectors. 
Animal cells can move 
toward chemoattrac-
tors, such as immune 
cells arriving where they 
need to be, or away from 

chemorepellents. The development of animal embryos 
involves the movement of cells and is regulated by gra-
dients in signal chemicals. Sperm movement occurs 
because of chemotaxis and thermotaxis.

Magnetoperception (the ability to detect magnetic 
fields) is observed in migrating birds, sharks, rays, 
honeybees, and other animals. It is an important fac-
tor in regulating animal movement and navigation—
for example, during bird migrations. Experiments 
and applications in magnetoperceptions usually 
involve attaching magnetic substances to animals and 
observing effects. For example, cows and deer graz-
ing under power lines orient themselves differently. 
The mechanisms of magnetoperception continue to 
be actively investigated.

Animal Locomotion
The way animals move, in addition to being a matter 
of biological interest, is a source of engineering ideas. 
Until the twentieth century, the main source of data 
on animal movement was observation and, sometimes, 
experiments with animals or their body parts. Photog-
raphy and videography added details to the observa-
tion. Animals may be equipped with miniature devices 
that track their positions in space, as well as the electric 
activity within muscles, the contraction of muscles, or 
the forces exerted by muscles. These devices allow the 
development of detailed models of animal bodies dur-
ing movement. 

Every type of locomotion has been modeled in phys-
ics, with a variety of relevant equations. There are three 
major types of terrestrial locomotion (movement on 
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solid surfaces): legged movement, slithering, and roll-
ing. Legged animals may have from two to 750 legs, with 
the geometry of leg and joint position defining pos-
ture, and the pattern and pace of leg use defining gaits. 
Snakes move by undulating in several patterns, such as 
sidewinding, or by lifting parts of their belly slightly off 
the ground, moving them forward relative to their ribs, 
and then pulling the body to them (rectilinear motion). 
These movements on land are described by kinematic 
equations, in water by hydrodynamic equations. Roll-
ing animals, such as pangolins, can briefly achieve great 
speed, usually by forming a wheel or a ball out of their 
whole body and using gravity to escape predators.

Swimming is accomplished by body movement 
propulsion in fish, jet propulsion in mollusks, undula-
tion in several types of animals, and limb movement 
in some birds and mammals. Jet propulsion requires 
relatively high energy but can provide animals with an 
occasional burst of speed. Models of swimming include 
such measures as buoyancy and are modeled with fluid 
dynamics and mechanics.

Gliding, soaring, and flying are energy-efficient ways 
of locomotion, and attract much interest in biome-
chanics and aerodynamics. Scientists study concepts 
like lift and drag as well as ratios of wing measurements 
such as loading (weight to area). Animals use different 
types of motion through the air, which are defined by a 
combination of timing and geometry. For example, fall-
ing with increased drag forces that prolongs the fall can 
be either parachuting (when the angle to earth is more 
than 45 degrees) or gliding (when the angle is less than 
45 degrees). Gliding animals such as fish and squirrels 
have aerodynamic adaptations including streamlining. 
The variable glide ratio is the ratio between the hori-
zontal and the vertical speed components (lift to drag). 
A flying squirrel has a glide ratio of about two, and a 
human in a glider windsuit modeled after gliding ani-
mals has a glide ratio of about two and a half. Soaring 
birds glide during parts of their flight.

The properties of winged flight in birds and bats 
depend on proportions of the animal’s body. Wing-
span is the distance between wingtips, and the mean 
wing chord is the average of the distances between the 
front and the back edge of the wing, found using cal-
culus. Aspect ratio of a wing is the ratio of wingspan 
to mean chord. Fast birds such as falcons have pointy 
short wings with high aspect ratio (narrow wings). 
Long wings with high aspect ratios such as the wings 

of albatrosses, on the other hand, can produce slow 
soaring and gliding flight. Wide, rounded wings with 
medium aspect ratios can be used for a variety of flight 
types, for example, in storks or sparrows.

Biophysicists first attempted to explain insect flight 
using bird flight mechanics. They found that the result-
ing forces were several times less than what would be 
needed to lift and to propel an insect. Current theories 
of insect flight are still controversial. The theories use 
computational differential equations to model effects 
such as vortexes created in front of wings. When wings 
flap with high enough frequency, such a vortex can pro-
vide significant additional suction force.

Relatively rare types of animal locomotion depend 
on surface tension and capillary forces for walking on 
the water surface, or moving faster over released liquid 
(Marangoni effect). These forces are studied in fluid 
dynamics and thermodynamics.

Researchers debate why the wheel, which provides 
several mechanical advantages in terrestrial locomo-
tion, has never evolved in any animal. The relevant 
mathematical model is a graph measuring fitness of 
organisms to the environment, called fitness landscape. 
Fitness peaks are stable states, with genetic modifica-
tions meaning worse fitness. While wheel locomotion 
may be a fitness peak, it is surrounded by fitness valleys 
too deep to be crossed by evolutionary means.

Migrating Animals
Many animals migrate—periodically travelling among 
habitats—sometimes over long distances. Models of 
migration take into account the time of each leg of the 
journey as well as the full period of migration. These 
times can be synchronized with seasonal milestones, 
developmental stages in the life of each animal, and 
other natural events. Because migrations can take 
place across international boundaries, they can help 
promote international efforts in research and con-
servation. The Convention on the Conservation of 
Migratory Species of Wild Animals, for example, cov-
ers several endangered species of birds and fish, as well 
as migratory bats and turtles.

About a fifth of all bird species in the world migrate. 
Typically, birds migrate closer to the equator in win-
ters, and farther from the equator in summers. Math-
ematical models of bird migration include the overall 
patterns for particular populations such as migration 
corridors as well as random events such as irrup-
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tions (large numbers of birds) 
migrating farther after population 

explosions. Biophysics involved in bird 
migration includes theories of energy effi-

ciency, and various mechanical effects, such as 
wear on feathers that necessitates periodic molting 
synchronized with the migration period.

During migration, birds navigate by using the land-
scape clues they learn while young, orienting by the 
sun, or using magnetoperception. In some bird spe-
cies, navigating is mostly a learned behavior; in others, 
it is mostly coded genetically. Sometimes the coding 
goes wrong, reversing the migration direction 180 
degrees, thus causing birds to reverse-migrate in the 
opposite direction from the majority of their flock. 
Bird species that learn their migration routes from 
their elders, such as cranes, can be taught to use safer 
routes by following light aircraft of animal preserva-
tion specialists.

Shorter migration routes also exist. For example, 
many fish species rise to the water surface to feed at 
night—a type of diel vertical migration. Many fish spe-
cies high in the food chain migrate to follow their prey, 
with varying times and lengths of migration journeys. 

Because many insects are relatively short-lived, their 
migrations may involve multiple generations being 
born along the route. In these cases, none of the indi-
vidual insects travels the full migration route. Some 
migrating insects, such as locusts, swarm for the pur-
pose of migration. A swarm can be modeled using a 
system of differential equations where pairs of indi-
viduals move closer if they are too far, move away if 
they are too close, and orient themselves toward the 
same direction. However, studies of insects, includ-
ing locusts, show complex mechanisms that include 
chemoregulation, physiological change in response to 
overcrowding (measured in contacts per unit of time), 

emission, and responsiveness to sounds and other vari-
ables involved in swarming. 

Herds of animals, schools of fish, and flocks of birds 
can be modeled as groups of particles, with interactions 
among individuals determined by differential equa-
tions with some fixed and some random parameters to 
account for individual behavior variations. Such math-
ematical models (called “interacting particle models”) 
can describe flock behavior or predict school migra-
tion routes. To observe animal migration, researchers 
use tracking devices, satellite observation, and echolo-
cation for marine species.

Food Webs
Food webs and food chains map food relationships 
in ecosystems. The key measurement of the position 
within the food web is called “trophic level.” Autotrophs 
(producers) are at trophism level one. Autotrophs are 
organisms that do not consume other organisms or 
carbon produced by them, and therefore are not ani-
mals. Two mechanisms of autotrophism are photo-
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The Physics of  
Winged Flight

T he	physics	of	winged	flight	in	birds,	bats,	
and	 extinct	 dinosaurs	 focuses	 on	 the	

balance	of	 four	 forces:	 lift,	 drag,	 thrust,	 and	
gravity.	Air	moving	around	wings	produces	lift	
because	of	speed	and	pressure	differences	in	
the	airflow	on	either	side	of	the	wing—a	com-
plex	process	still	being	studied	in	aerodynam-
ics	and	modeled	with	systems	of	differential	
equations.	

Drag	comes	from	air	resistance	to	the	fly-
ing	body,	and	by	air	turbulence	created	by	wing	
movements.	Newton’s	second	and	third	laws	of	
physics	explain	thrust	(the	force	created	when	
a	wing	flaps).	The	vector	of	thrust	points	in	the	
direction	opposite	to	where	the	wing	is	moving.	
In	 other	words,	 the	 flapping	wing	 propels	 the	
animal	 forward	 by	 by	 pushing	 against	 the	air.	
The	force	of	gravity	is	proportional	to	the	mass	
of	the	animal.

The long wings of  
albatrosses produce  
slow soaring and  
gliding flight. 



synthesis in plants, and chemosynthesis in archae and 
bacteria. The first organisms to evolve on Earth used 
chemosynthesis. A third mechanism, radiotrophy, is 
being researched in fungi in high-radiation areas. All 
food chains within all food webs on Earth start with 
level one autotrophs. Predator species that no other 
species predate upon are called apex predators. 

More specifically, classes of organisms are named 
according to the flow chart with three branchings. 
The first branching determines the source of energy, 
either light (photo-) or chemical (chemo-). The sec-
ond branching determines the source of extra elec-
trons in reduction-oxidation reactions, either organic 
(-organo-) or inorganic (-litho-). The third branching 
defines the source of carbon, either organic (-hetero-
troph) or carbon dioxide (-autotrophs). For example, 
fungi are chemoorganotrophic. All eight combinations 
resulting from these three branchings exist in nature. 
Heterotrophic organisms that break down other dead 
organisms into simpler organic or inorganic com-
pounds are called decomposers. Consumer organisms 
use other living organisms as their source of energy. 
Simplistically, the second trophic level comprises pri-
mary consumers that eat plants (herbivores) or chemo-
synthesizing creatures. The third trophic level, second-
ary consumers or predators, consists of animals that 
eat primary consumers. Animals that eat those at the 
third trophic level are said to have the fourth trophic 
level, and so on. However, most existing animal species 
obtain energy from several sources. For example, foxes 
eat rabbits and berries; chickens eat grains and insects. 

To address the complexity of food chains, the tro-
phic level of an animal is determined by the formula 
of adding all products of levels of its food by the frac-
tion of that food in the animal’s diet, and adding 1. 
For example, if a chicken’s diet consists of 30% worms 
(level 2) and 70% grain (level 1), its trophic level is 
equal to

0 3 2 0 7 1 1 2 3. ( ) . ( ) .+ + = .

Statistical analysis is used to determine the mean 
trophic level of a species in a particular ecosystem.

Changes in any part of the food web affect all other 
parts. For example, the effect of introducing predators 
that reduce the numbers of the prey and cause abun-
dance in the next trophic level down is an example of 
a “trophic cascade event.” The ability of an ecosystem 

to withstand disturbances is measured by an index 
called ascendency, and is derived by formulas from the 
information theory field of mathematics. Variables 
in ascendency formulas include both the amounts of 
energy and matter circulated within an ecosystem and 
the information shared among members of the system. 
Low ascendancy values make ecosystems internally 
unstable; high ascendancy values make ecosystems 
oversensitive to external disturbances. Ascendency 
values corresponding to stable systems are called “the 
window of vitality.”

Ascendency is an example of using multiple indices 
and metrics to model, evaluate, and predict changes in 
food webs. For example, consider energy or biomass 
transfer from one feeding level to the next feeding level. 
The efficiency of this transfer is a measure of an ecosys-
tem called ecological efficiency. For example, in a food 
chain that consists of four levels, with mean ecological 
efficiency of 1/10, the apex predator has the ecological 
efficiency of converting sunlight into its biomass of
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Ecological efficiency restricts the number of pos-
sible trophic levels. 

Fantastic Animals, Hybrids,  
and Genetic Chimeras
A variety of cultures describe fantastic animals or 
humanoids with animal traits. These animals—espe-
cially those invented before the nineteenth century—
are used in mathematics education to help students 
understand concepts related to combinatorics because 
they are made by combining parts of existing animals. 
For example, ancient Greeks invented a chimera that 
had the body of a lion, the heads of a goat and a lion, 
and a snake for the tail. In genetics, chimeras are ani-
mals that have genetic material from more than one 
zygote—from four or more parents. Chimeras of dif-
ferent animals of the same species happen naturally 
when several eggs in one female are fertilized by sperm 
from different males and then fused. They may also 
happen artificially, in which case different animals spe-
cies can be used. For example, a goat-sheep chimera 
called “geep” was first produced in the 1970s.

Hybrid animals are different from chimeras in that 
they have two parents, but the parents are of different 
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species. Hybridization has been recognized and used 
for millennia. For example, humans have produced 
large populations of mules since ancient times. The 
mathematics of hybrids involves tracking the amount 
of genetic material from each species through genera-
tions, and calculating the probabilities of achieving 
particular traits in offspring. For example, a single-
cross hybrid has 50% genetic material from either line 
of parents. Crossing such hybrids with the line of one 
of the parents (called backcrossing) produces hybrids 
with roughly 75% genetic material from that parent’s 
species—averaged across a species, as individuals will 
have either pure or half-and-half genetic material.

Symmetry and Fractals
Most animal bodies exhibit either rotational (radial) 
or reflection symmetry. Animals with bilateral reflec-
tion symmetry (having a plane separating bodies into 
roughly reflected halves) form the taxon Bilateria. 
Observation of symmetry is a major tool of evolution-
ary theory. For example, it is hypothesized that all Bila-
teria animals evolved from a common ancestor species, 
Urbilaterian, that lived around six hundred million 
years ago. This makes Bilateria a clade (a group of ani-
mals that come from a common ancestor). Bilaterians 
have the front end with the mouth and the back end 
with the anus, defined by the plane of symmetry.

Rotationally symmetric animals such as sea anemo-
nes and sea stars usually have the mouth on the axis of 
the symmetry. When animals have a certain number 
of body regions positioned around the axis symmet-
rically, they are called by the number of regions. For 
example, five-armed stars exhibit pentamerism, and 
many coral polyps exhibit hexamerism, or six-part 
rotational symmetry.

Combinations of reflections, rotations, and transla-
tions can produce repeated geometric patterns called 
tessellations or wallpaper groups in plane and crystal-
lographic groups in space. There are 17 types of wall-
paper groups and 230 types of crystallographic groups 
described by the area of mathematics called group the-
ory. Wallpaper and crystallographic groups can be found 
in colonies of animals such as corals or in arrangements 
of animal body parts such as fish scales.

Fractals are shapes that can be split into parts that 
are copies of the whole. Fractals frequently occur in 
the living nature. For example, feathers are fractal-like 
structures of the tree type, with three or four levels. 

Nervous systems and lungs of mammals are also tree-
type fractals. Beyond the literal meaning as a geometric 
shape, the idea of a fractal as a self-repeating structure 
is applied to many areas related to animals to describe 
patterns within systems behavior, evolution, migration, 
and development.
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See Also: Airplanes/Flight; Bees; Genetics; Joints;  
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Spontaneous Order.

Animation and CGI
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Measurement; 
Representations.
Summary: Animators have become adept at creating 
realistic products with the help of mathematics.

Animation is the process of creating the illusion of 
fluid movement from a series of static images. When 
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these images are viewed in sufficiently fast succession, 
the human eye sees them as continuous motion rather 
than a sequence of discontinuous still images. From 
the earliest mechanical devices, through hand-drawn, 
stop-motion, and computer-assisted film techniques of 
the twentieth century, up to the latest computer-gener-
ated imagery (CGI), the quest has been to create inter-
esting representations of movement and action.

Early Animation Devices
Historically, there have been several mechanical devices 
that were developed to simulate movement using still 
pictures. The Phenakistoscope, invented in 1832 by the 
Belgian physicist Joseph Plateau, consisted of a spindle 
with two mounted discs, one with slots around its edge 
and the other with pictures of successive action. With 
the discs spinning in unison and the picture side fac-
ing a mirror, the view through the slots appeared to 
show a moving drawing. In 1834, a British mathemati-
cian named William Horner produced the Zoetrope, 
a cylinder cut with vertical slits. Pictures of successive 
action were positioned on the inside opposite the slits. 
With the cylinder rotating, the image seen through the 
slits appeared to be in motion. As the Zoetrope used 
more pictures, and could be rotated more quickly, this 
gave a better illusion of movement. Even in the early 
twenty-first century, the Zoetrope is used to illustrate 
the basic idea of animation.

Animation Principles
By the start of the twentieth century, these mechani-
cal devices were superseded by animated films. The 
principal technique was to hand-draw 
each frame. In the 1930s, animators at 
Walt Disney Studios developed what 
became known as the “12 princi-
ples of animation,” many of which 
remain pertinent in an era of CGI. To 
illustrate, consider someone throw-
ing a ball so that it bounces along the 
ground. A thrown ball is known to fol-
low a parabolic path, a form of arc. The 
“arc” principle of animation is that 
almost all actions follow some form of 
arc. Arcs, as the Disney animators were 
well aware, give animation a more natu-
ral appearance. Another principle, “slow in 
and slow out,” relates to the ball taking time 

to accelerate and decelerate. The animation looks most 
realistic if there are more frames near the beginning 
and end of a movement, and fewer in the middle. The 
flight of the ball and its bounce involves the principle 
of “squash and stretch.” As the ball falls, animating a 
slight stretch gives the impression of the ball having 
speed. Dilation is the mathematical transformation for 
stretching and shrinking. Animating a squash to the 
ball as it bounces gives the impression of weight. For 
the ball to seem real, the animator uses the principle 
of “solid drawing” by taking into account the form of 
the ball in three-dimensional space as well as using the 
geometry of light and shadow.

CGI and Mathematics
CGI is even more mathematically based than hand ani-
mation because the images must be mathematically 
represented in order to be manipulated in the computer 
environment. Oscar-winning computer scientist Tony 
DeRose, who has worked for Pixar Animation Studios, 
said, “. . . different kinds of mathematics are used for 
different aspects of a film, from the simulation of how 
light bounces around in an environment (integral cal-
culus) to obtaining smooth surfaces efficiently (subdi-
vision surfaces) and making characters move in a real-
istic fashion (harmonic coordinates).” Trigonometry 
and vector algebra are widely used in CGI algorithms 
for creating and manipulating images. Matrices are a 
standard algebraic way of representing various trans-
formations. Dilation makes objects larger or smaller in 
addition to stretching; translations move objects; and 

rotations turn objects. 
One classic CGI method for creat-

ing three-dimensional animated 
objects involves using polygonal 

meshes, which are collections, 
or grids, of polygons. This 
method makes use of the 
geometry of smooth surfaces. 

Like animated motion, this 
method relies on the human 

eye’s tendency to smooth discon-

When the cylinder of a Zoetrope 
rotates, the images on the inside 

appear to be moving when viewed 
through a succession of slits.
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tinuous regions. Locally, smooth surfaces look flat, so 
they can be approximated with small, flat polygons such 
as triangles or quadrilaterals. Basic three-dimensional 
shapes such as cubes, cylinders, spheres, and cones may 
be joined to form composite three-dimensional objects. 
Interpolation is also used. More complex and smoother-
looking three-dimensional objects can be modeled using 
sophisticated mathematics like spline patches and non-
uniform rational basis splines, where a spline is a math-
ematical function defined piecewise by polynomials. 
Such techniques have become standard practice in CGI. 
The mathematical representation of three-dimensional 
shapes, including layout and materials, is used to com-
pute a two-dimensional image from a given viewpoint, a 
process called “rendering.” This process entails address-
ing issues such as visibility from selected viewer angles 
(including which parts of objects in the scene are hid-
den) and appearances, and how objects look different as 
the lighting varies. Finally, the motion of each object in 
the scene has to be specified.

Lucasfilm LTD and animator Kecskemeti B. Zoltan 
of Ste-One provided mathematician Timothy Chartier 
with digital models of Yoda from the Star Wars mov-
ies to explore in linear algebra classrooms. One of the 
models had 53,756 vertices, 4040 triangles, and 49,730 
quadrilaterals, illustrating that realistic images and their 
transformations have many more data points and matrix 
multiplications than is typical as classroom examples. 
Chartier noted, “More recently, computer animation 
produced the character’s movement, which required 
mathematical concepts from such areas as linear algebra, 
calculus, differential equations, and numerical analysis. 
Drawing on these popular culture ties in appropriate 
coursework can pique students’ curiosity and compel 
further learning.”

Despite the many available mathematical tech-
niques and advances in the computational and visual-
ization power of computer systems, convincing simu-
lation of some physical features, like hair, continues to 
be challenging. Pixar noted that it took up to 12 hours 
to render a single frame of the character Sulley in the 
2001 movie Monsters, Inc. because of his nearly 3 mil-
lion individually animated hair strands. Each hair was 
mathematically modeled as a series of springs con-
nected via hinges.

CGI has come a long way since the 1976 movie 
Futureworld, which many acknowledge as the first use of 
three-dimensional computer imagery. Even though the 

first CGI film to win an Oscar was Pixar’s short movie 
Tin Toy in 1988, the 1995 movie Toy Story was the first 
full-length, fully CGI feature film. Many challenges and 
problems remain to be solved in the quest for photo-
realism in CGI. Examples include more accurate mod-
eling and representation of physical actions, such as 
swallowing, as well as textural and other properties of 
materials like skin, including wrinkles. Animators also 
seek to better differentiate faces for people of varying 
ages, such as children or the elderly.

Further Reading
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Apgar Scores
Category: Medicine and Health.
Fields of Study: Algebra; Measurement; 
Representations.
Summary: The Apgar score is a simple prognostic 
device for neonatal care.

Throughout the developed world and in many other 
countries, every newborn baby is assessed according to 
various factors, each of which is assigned a score that is 
aggregated to quantify the baby’s condition and prog-
nosis. The system was introduced in the 1950s by Dr 
Virginia Apgar, whose last name has come to serve as 
a mnemonic for the assessed categories: activity, pulse, 
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grimace (reflex), appearance (skin color), and respira-
tion. The Apgar score indicates the health of the new-
born and the likelihood that medical treatment or spe-
cial intervention will be necessary much more quickly 
and more accurately than any system that had previ-
ously been in use.

In medicine, there are many scoring systems designed 
to predict and identify clinical situations in which the 
potential value of intensive care is low, while the burden 
of therapy is high, providing a numerical prediction of 
mortality. In gastroenterology, the Child-Pugh score is 
a scoring system to assess the prognosis of chronic liver 
disease; for vascular patients, the Eagle score allows esti-
mation of a patient’s risk of dying during heart surgery; 
the probability of pulmonary embolism is estimated by 
the Geneva score; the Gleason Grading system is used to 
help evaluate the prognosis of men with prostate can-
cer; and for pediatric end-stage liver disease, a scoring 
system exists for prioritizing allocation of liver trans-
plants for children under 12 years of age. 

Development and Effectiveness
Dr. Virginia Apgar was the first woman at Colum-
bia University College of Physicians and Surgeons to 
be named a full professor. She developed a practical 
method for measuring the status of probable survival 
of newborn infants. Initially, she listed all objective 
signs that pertained in any way to the condition of the 
infant birth. Then she observed that five of these signs 
could be easily determined one minute after the com-
plete birth of the baby. Depending on if the sign was 
absent, weak, or present, a rating of 0, 1, or 2 was given 
for each signal. The signs are heart rate (slow, normal, 
fast, or irregular), respiratory effort (from normal to 
distressed), reflex response (from over- to under-reac-
tive), muscle tone, and color (pale, normal, or blue). 
In this system, infants in poor condition scored 0–2, 
infants in fair condition scored 3–7, and a score of 10 
indicated a baby in the best possible condition. 

In 1953, she observed the mortality rates of 2096 
newborn infants with low, moderate, and high Apgar 
scores within 60 seconds after complete birth. This 
evaluation was rapidly adopted in delivery rooms 
throughout the United States and elsewhere. In 1959, 
a study with 15,348 infants established the predictive 
value of the Apgar score. The death rate among infants 
scoring 2, 1, or 0 was about 15%, while the rate for 
infants scoring 10 was about 0.13%. This prediction 

is especially useful in judging the urgency for resusci-
tative measures, such as respiratory assistance. It can 
be used to guide care, including intensive care. The 
score is generally determined by doctors and nurses 
at one minute and at five minutes after delivery. The 
five-minute score is generally accepted as the best pre-
dictor for newborn infant survival. A low score on the 
one-minute test may show that the neonate requires 
medical attention but is not necessarily an indication 
that long-term problems will occur, particularly if 
there is an improvement for the five-minute test.

Prediction
Probability is used to express knowledge or belief that 
an event will occur or it has occurred. A prediction is 
a statement that tells what might happen in the future 
based upon the given information. Prediction meth-
ods are important in various fields, including medi-
cine, physics, and finance. Mathematics can be used to 
develop predictions, which are based on a careful anal-
ysis of patterns and collected data. Apgar recognized 
the patterns related to a baby’s health signs and used 
them as a basis to make subsequent predictions. This 
example provides a clear idea of a credible prediction 
that was based on some form of empirical evidence. 
Thanks to this predictor approach, thousands of babies 
with special needs get the care they need immediately. 
Although it is not possible to make a 100% accurate 
prediction, predictions based on solid data and statisti-
cal analysis can increase the likelihood of accuracy.

Before 1952, the way to judge the condition of a new-
born baby quickly and accurately shortly after birth was 
based on “breathing time” and “crying time.” Apgar’s 
accurate observations between 1949 and 1952 allowed 
the development of the automatic method of one-
minute observation covering several signs easily. Thus, 
using some mathematical tools it is possible to trans-
form qualitative values, such as physiological signs of 
babies, into quantity values—Apgar scores. By making 
predictions using Apgar scores it is also possible to per-
form the reverse: using the quantitative values (scores) 
to predict future qualitative values (health of babies). 

Further Reading
Apel, M. A. Virginia Apgar: Innovative Female Physician 
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Famers in Mathematics and Science). New York: Rosen 
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Arabic/Islamic  
Mathematics
Category: Government, Politics, and History.
Fields of Study: Algebra; Connections; 
Geometry; Measurement; Number and Operations; 
Representations.
Summary: Arabic and Islamic mathematicians 
popularized the decimal system and Arabic numerals 
and also developed algebra.

Mathematicians living in Islamic lands and writing in 
Arabic have played a central role in the development of 
mathematics, particularly during the 700-year period 
from around the year 750 c.e to around 1450 c.e. These 
scholars lived in an area that not only includes the 
present-day Middle East but stretches into the western 
parts of India, the major cities of central Asia, all of 
northern Africa, and most of the Iberian Peninsula. 
Most of the influential mathematicians of this seventh-
century era were Muslim, and most wrote in Arabic. 
However, the lands ruled by Muslim rulers included 
many ethnicities, cultures, languages, and religions. 
Muslims, Christians, Jews, Zoroastrians, Manichaeans, 
Sabians, Buddhists, Hindus, Persians, Turks, Sogdians, 
Mongols, Arabs, Berbers, Egyptians, and many others 
contributed to a remarkable multiethnic, multicultural 
civilization. Mathematics was not an exception. The 
full story of mathematics in this era has yet to be told. 
Hundreds of manuscripts await examination, transla-
tion, and a critical edition. Undoubtedly, in the years 

to come, our understanding of the extent, the import, 
and the influence of the mathematics of this period 
will change dramatically.

While their knowledge of what came before them 
was incomplete and uneven, the mathematicians of 
the Islamic era were aware of—and in some ways 
heirs to—ideas, methods, and points of view that 
originated in India, Persia, and—especially—Greek 
Alexandria. A remarkable translation movement cou-
pled with a scholarly tradition of writing commentar-
ies on previous works meant that mathematicians of 
this era were comfortable with the contents and the 
methodology of the works of, among others, Euclid, 
Archimedes, Apollonius, Ptolemy, and Diophantus as 
well as the basics of Indian decimal arithmetic and 
trigonometry. They also had access to Persian astro-
nomical tables. They accomplished a great deal with 
this heritage. What the mathematicians of the Islamic 
era bequeathed to those who came later was very dif-
ferent in content, style, and approach than what had 
come before them. (A note on names: names of math-
ematicians and places can be transliterated to English 
based on their Arabic, Persian, or Turkish versions. 
For the most part, we have chosen what is currently 
most common in English. The one exception is that 
we have often omitted the Arabic definite article “al” 
that precedes titles and nicknames.)

The Decimal System and  
the Concept of Number
For Euclid—the preeminent mathematician of Greek 
Alexandria—“number” meant a rational number. In 
his work, irrational numbers were called magnitudes 
and were treated quite differently from numbers. In 
fact, Euclid’s very influential book Elements contains 
few numbers and hardly any calculations. Starting 
with Khwarizmi of Khwarizm (c. 780–850 c.e.), the 
principles of the positional decimal system that had 
originally come from India were organized and widely 
disseminated. Hence, with the use of 10 symbols it was 
possible to carry out all arithmetic operations. Over 
the following centuries, the methods for these arith-
metical operations were improved and included work-
ing with decimal fractions and with large numbers. In 
fact, in the process, the Euclidean concept of number 
was gradually enlarged to include irrational numbers 
and their representation as decimal fractions. The 
mathematician Kashani (c. 1380–1429), also known as 
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al-Kashi, worked comfortably with irrational numbers 
and, for example, was able to produce an approxima-
tion that was correct to 16 decimal places. The Arabic 
texts on the decimal number system were translated to 
Latin and were the basis for what are now called the 
Hindu-Arabic numerals.

Algebra
While it is possible to recognize algebraic problems in 
ancient mathematics, algebra as a discipline distinct 
from geometry and concerned with solving of equa-
tions was developed during the Islamic period. The first 
book devoted to the subject was Khwarizmi’s Al-kitab 
al-muhtasar fi hisab al-jabr wa-l-muqabala (Compen-
dium on Calculation by Completion and Reduction). 

In this title, “al-jabr”—the origin of the word “alge-
bra”—means “restoration” or “completion” and refers 
to moving a negative quantity to the other side of 
an equation where it becomes positive. Al-muqabala 
means “comparison” or “reduction” and refers to the 
possibility of subtracting like terms from two sides of 
an equation. While all algebra problems were stated 
and solved using words and sentences—symbolic 
algebra did not arise until much later in the fifteenth 
century in Italy—an algebra of polynomials was devel-
oped by Abu Kamil (c. 850–930), Karaji (c. 953–1029), 
and Samu’il Maghribi (c. 1130–1180+, also known 
as al-Samaw’al). Powers, even negative powers, of 
unknowns were considered and many algebraic equa-
tions were classified and solved. Khwarizmi gave a full 
account of second-degree equations, and Khayyam 
(1048–1131) gave a geometric solution to equations 
of degree three using conic sections. Here, we give a 
problem—translated to modern notation—solved 
by Abu Kamil. Some 300 years later, this exact same 
problem appeared in Chapter 15 of the 1202 text Liber 
Abaci by Leonardo Fibonacci. Abu Kamil gave a solu-
tion to the following system of three equations and 
three unknowns:

x + y + z = 10
x2 + y2 = z2

xz = y2

Abu Kamil first started with the choice of x = 1 and 
solved the latter two equations for y and z. Since, for 
the latter two equations, any scalar multiple of the 
solutions continues to be a solution, he then scaled the 

solutions so that the first equation was also satisfied. 
He simplified the answer to get: 

x = − −5 3125 50 .

Geometry
Geometrical methods and problems were ubiquitous 
in the Islamic era. While algebraic problems were 
solved using the newly developed algebraic algorithms 
(the word “algorithm” itself is derived from algorismi, 
the Latin version of the name of the mathematician al-
Khwarizmi), the justification for the algebraic methods 
was usually given using geometrical arguments and 
often relying on a distinctively Euclidean style. Guided 
by problems in astronomy and geography (for exam-
ple, finding, from any place on Earth, the direction of 
Mecca for the purpose of the Islamic daily prayers), 
spherical geometry was developed. 

But new work in plane geometry was also carried 
out. Khayyam and Nasir al-din Tusi (1201–1274), for 
example, studied the fifth postulate of Euclid and came 
close to ideas that much later on led to the development 
of non-Euclidean geometries in Europe. However, as 
is the case with much of the mathematics of this era, 
applications play an important role in the choice of 
questions and problems. 

For example, Abu’l Wafa Buzjani (940–997) reports 
on meetings that included mathematicians and arti-
sans. A problem of interest to tile makers is how to cre-
ate a single square tile from three tiles. A traditional 
mathematician, Abu’l Wafa explains, translates this 
problem into a ruler and compass construction and 
gives a method for constructing a square of side 3. 

While logically correct, this construction is of little 
use to the tile maker, who is confronted with three 
actual tiles and wants to cut and rearrange them to 
create a new tile. Abu’l Wafa also gives the customary 
practical method that is actually used by tile makers 
to solve this problem, and proves that their method, 
while practical, is not precise, and the final object is 
not exactly a square. While stressing the importance 
of being both practical and precise, and the virtues of 
Euclidean proofs, he presents his own practical and 
correct methods for solving this and related problems.

Trigonometry
The origins of trigonometry begin with the Greek 
study of chords as well as the Indian development 
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of what is now called the “sine function.” Claudius 
Ptolemy’s table of chords and Indian tables of sine 
values were powerful tools in astronomy. However, a 
systematic study and use of all the trigonometric func-
tions motivated by applications to astronomy, spheri-
cal geometry, and geography begins in the Islamic 
era. Abu’l Wafa had a proof of the addition theorem 
for sines and used all six trigonometric functions; 
Abu Rayhan Biruni (973–1048) used trigonometry to 
measure the circumference of Earth; and Nasir al-din 
Tusi gave a systematic treatment in his Treatise on the 
Quadrilateral that helped establish trigonometry as a 
distinct discipline. 

Combinatorics
One of the earlier known descriptions and uses of the 
table of binomial coefficients (also known as the Pascal 
triangle) is that of Karaji. While his work on the sub-
ject is not extant, his clear description of the triangle 
survives in the writings of Samu’il Maghribi. Binomial 
coefficients were used extensively, among other appli-
cations, for extracting roots. Kashani, for example, 
used binomial coefficients to give an algorithm for 
extracting fifth roots. He demonstrated it by finding 
the fifth root of 44,240,899,506,197. Other combinato-
rial questions were treated as well. Ibn al-Haytham (c. 
965–1039, also known as Alhazen) gave a construction 
of magic squares of odd order, and Ibn Mun’im (died 
c. 1228) devotes a whole chapter of his book Fiqh al-
Hisab to combinatorial counting problems. 

Numerical Mathematics
The prominence of applied problems, the development 
of Hindu-Arabic numerals and calculation schemes, 
and the development of algebra and trigonometry 
led to a blossoming of numerical mathematics. One 
prime example is Kashani’s Miftah al-Hisab or Calcu-
lators’ Key. In addition to his approximation of 2π and 
his extraction of fifth roots, he also gave an iterative 
method for finding the root of a third-degree polyno-
mial in order to approximate the sine of one degree to 
as close as an approximation as one wishes. 
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Archery
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Mathematics is essential in modeling and 
predicting a bow’s performance.

Archery is the practice of propelling an arrow with a 
bow for the purpose of hunting, warfare, or sport. A 
bow is a pair of elastic limbs connected at the tips by a 
string. A bow acts as a spring and stores in the limbs the 
energy applied by the archer. As the archer releases the 
string, the arrow is propelled with a force proportional 
to the tension on the string. The path of the arrow is 
a parabola whose shape is determined in part by the 
angle of release from the bow, measured with reference 
to the ground.

The origins of archery are lost in the beginning of 
civilization and probably will never be determined with 
precision. The earliest bows known today were found 
in the Holmegaard area of Denmark and were made 
of elm and yew. The Holmegaard bows date form the 
Mesolithic period (10,000–3000 b.c.e.); however, there 
is archaeological evidence of projectile wounds—pos-
sibly caused by bows—from the Upper Paleolithic 
(40,000–10,000 b.c.e.) in all continents. It is specu-
lated that archery was first used for hunting and, later, 
for warfare as social structures became increasingly 
complex. By the twelfth century b.c.e., archery was 
a decisive branch of military power. For example, the 
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wall of the Theban temple of Ramses III depicts the 
Aegean fugitive fleet—driven from Crete by the Greek 
immigration—engaging in and losing a battle against 
the Egyptian fleet, whose primary weapon is shown to 
be archery. Archery remained the weapon of choice in 
the West for distance combat until the introduction of 
gunpowder toward the fourteenth century c.e. Archers 
in the medieval era would fire in a high arc, achieving 
accuracy by volume rather than deliberate aim. Today, 
archery is practiced as a precision sport and for hunt-
ing. Men’s archery was one of the events of the second 
modern Olympics in 1900. The first Olympic archery 
event for women was held in 1904.

Mathematical Modeling of Bows
Since the 1930s, engineers and scientists have studied 
the design of bows. In 1947, C. N. Hickman made the 
first accurate mathematical model for flat bows, con-

sisting of an idealized representation of two linear elas-
tic hinges and rigid limbs with point mass (an idealized 
representation of a body used to simplify calculations) 
at the tip. More recent modeling efforts by B. W. Kooi 
and C. A. Bergman consider the limbs as beams that 
store elastic energy by bending. 

The Bernoulli-Euler equation, named for Daniel 
Bernoulli and Leonhard Euler, describes the change in 
the curvature of a beam as a function of the “bend-
ing moment” (tendency to rotate about an axis) and 
is used to estimate the force in the string. When the 
archer draws the bow, the force exerted at the middle 
of the string causes an increase in the bending of the 
limbs, thus increasing the momentum and storing 
more energy for the shot. The elasticity modulus of 
the bow’s material—the proportionality constant that 
relates limb deformation versus energy stored—deter-
mines the force with which the limbs recover their 
original shape after being deformed. 

Mathematical modeling is a viable alternative for 
the evaluation of the performance of old bow models. 
As time passes, environmental conditions and natural 
processes cause considerable degradation within the 
cell structure of the wood used in ancient bows, which 
prevents a realistic assessment of the original density of 
the material and precludes direct testing. 
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Archimedes
Category: Government, Politics, and History.
Fields of Study: Calculus; Connections; Geometry; 
Measurement; Representations.
Summary: Archimedes contributed to many areas of 
mathematics, demonstrated the law of buoyancy, and 
designed a number of marvelous devices.

Archimedes of Syracuse (287–212 b.c.e.) was born and 
lived most of his life in Syracuse on the Greek island of 
Sicily in the Mediterranean. Archimedes possessed an 
incredibly versatile intellect—today he is remembered 
as one of the most important mathematicians, astron-
omers, and engineers in history. 

He is credited with numerous inventions, such as the 
mechanical pump known as the Archimedes screw, the 
compound pulley, and various engines of war (includ-
ing advanced catapults, ship-destroying mechanical 
arms, and the famous Archimedes “death ray”). As 
important as Archimedes’ legacy is to engineering and 
astronomy, perhaps his most important work was in 
mathematics. His contributions in geometry, conic 
sections, and number theory along with his work in 
computational mechanics, his discovery of the law of 
buoyancy, and his contributions to the field of math-
ematics that would become known as calculus almost 
two millennia later, secure Archimedes’ place in math-
ematical history.

Early Life
Most of what is known about Archimedes was writ-
ten long after his death by Roman historians such as 
Plutarch. This lack of contemporary sources—coupled 
with the fact that surviving works of Archimedes him-
self are copies made many centuries later—make some 
of the popular stories about the Greek mathematician 
questionable. 

Archimedes’ father was an astronomer named Phi-
dias. According to some authors, young Archimedes 
was sent to Alexandria, Egypt, to study. The library at 
Alexandria was the center of learning for the Greek 
world, containing the mathematical and astronomi-
cal manuscripts produced by scholars such as Euclid 
of Alexandria, the “father of geometry.” It is very likely 
that Archimedes studied mathematics with the stu-
dents of Euclid. While in Alexandria, Archimedes may 
have produced his first important invention, a pump 

now known as the Archimedes screw (some historians 
claim the device was invented by Archimedes at a later 
date at the request of King Hieron II to be used as a 
bilge pump for removing water from ships). Whatever 
Archimedes’ motivation for developing it, the Archi-
medes screw is a simple mechanical device that is used 
to move water. In fact, the device continues to be used 
today in various applications.

Although there is no indisputable evidence that 
Archimedes studied in Alexandria, there are several 
indicators that he was friendly with the mathemati-
cians there. For instance, the famous Archimedes’ 
Cattle Problem is found in a letter Archimedes sent 
to the Alexandrian astronomer and mathematician 
Eratosthenes. Archimedes challenged the mathema-
ticians of Alexandria to solve a complicated math-
ematical riddle concerning the number of cattle in 
the herd of the sun god. Written in verse, the problem 
involves extremely large numbers and was not solved 
by the mathematicians of Alexandria, or by anyone 
else for that matter (including Archimedes), until the 
late nineteenth century.

Archimedes’ Inventions
In addition to the Archimedes screw, Archimedes is 
credited with the invention of the compound pulley. A 
compound pulley is a system of movable pulleys that 
provides a substantial mechanical advantage for doing 
work. Evidently very confident in his knowledge and 
abilities, Archimedes once asserted, “Given a place to 
stand on, I can move the Earth.” King Hiero II decided 
to test Archimedes’ boast by assigning him the job of 
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The design principles of  
the Archimedes screw, 
invented in the third  
century b.c.e., are  
still used today.



moving a heavily laden ship from its dock, a job that 
would have required a great effort from a substantial 
number of men. Archimedes constructed a system of 
pulleys by which, with very little effort on his part, he 
was able to move the heavy ship.

Perhaps the best-known inventions of Archime-
des were the engines of war used by the defenders of 
Syracuse against the invading Roman army. Although 
the Syracusans were badly outnumbered, Archimedes’ 
ingenious devices kept the attackers at bay, even strik-
ing fear into the hearts of the Roman soldiers. In addi-
tion to making improvements on existing weapons 
such as the catapult, Archimedes developed new and 
frightening methods for defending his home. One of 
these inventions reportedly involved the use of great 
mirrors to focus the sun’s rays on the Roman ships 
blockading Syracuse, setting fire to the helpless ships 
and the soldiers contained in them. This particular 

story of Archimedes’ exploits has been questioned for 
centuries. In fact, it was a topic of the Discovery Chan-
nel television show, MythBusters, which concluded that 
the likely success of such a device was very small. 

Archimedes also built, according to Roman histo-
rians, gigantic mechanical arms that swung out over 
the enemy ships. Some of these arms dropped massive 
stones and other weapons, sinking the ships. Another 
mechanical device, today known as the Archimedes 
claw, was used to pluck ships out of the water and bash 
them against the rocks or simply shake them and drop 
them from great heights so that they would sink to the 
bottom of the sea. 

Archimedes’ inventions were so effective, and so ter-
rifying, that reports claim that the Roman ships and 
their invading armies would flee in terror at the slight-
est sound or movement emanating from the Syracuse 
defenses that hinted at another attack. 

��	 Archimedes

O ne	of	 the	primary	duties	of	historians	 is	 to	
use	old	letters,	manuscripts,	and	other	docu-

ments	to	try	to	understand	a	people	or	culture.	In	
most	 cases,	 the	 existence	 of	 these	 documents	
is	already	known	 to	others,	and	 the	historian	 is	
simply	trying	to	shed	new	light	on	the	past	through	
the	 interpretation	 of	 the	 existing	 manuscripts.	
Occasionally,	a	new	document	is	discovered	and	
serves	to	excite	the	historical	community.	

In	the	tenth	century,	a	manuscript	containing	
several	of	the	works	of	Archimedes	was	produced	
in	Greek,	 the	 language	Archimedes	had	used	 to	
compose	 the	 original	 works	 thirteen	 centuries	
earlier.	A	few	centuries	later,	this	manuscript	and	
several	other	unrelated	manuscripts	were	reused	
to	produce	a	Byzantine	prayer	book.	

Since	the	manuscripts	were	written	on	parch-
ments—or	 animal	 skins—the	 words	 were	 liter-
ally	scraped	off	the	page	(the	word	“palimpsest”	
means	“scraped	again”),	making	the	parchment	
ready	for	its	new	authors.	In	this	way,	the	monks	
saved	 the	 expense	 of	 new	 parchment.	 This	
prayer	book	survived	the	ensuing	centuries	until	

the	early	twentieth	century,	when	a	leading	Archi-
medes	scholar,	John	Ludwig	Heiberg,	determined	
that	underneath	the	prayers	and	barely	visible	in	
a	few	places	were	works	of	the	Greek	mathemati-
cian	Archimedes.

The	 location	 of	 the	 Archimedes	 Palimpsest	
throughout	the	rest	of	the	twentieth	century	is	a	
bit	of	a	mystery,	but	in	1999	a	wealthy	collector,	
wishing	to	remain	anonymous,	bought	the	manu-
script	at	auction	and	entrusted	 it	 to	 the	Walters	
Art	 Museum	 in	 Baltimore	 for	 conservation	 and	
study.	 At	 the	 museum,	 experts	 in	 various	 fields	
have	worked	with	scholars	to	uncover	the	hidden	
text.	What	they	uncovered	proved	to	be	one	of	the	
most	exciting	discoveries	 in	the	history	of	math-
ematics.	 One	 of	 the	 Archimedean	 treatises	 on	
the	 palimpsest	 represents	 the	 only	 known	 copy	
of	that	work	in	Greek.	Two	others	are	manuscripts	
previously	thought	lost	by	scholars.	

Although	Greek	and	Roman	writers	attributed	
both	of	these	works	to	Archimedes,	no	one	in	the	
modern	age	had	ever	laid	eyes	on	either	one—until	
the	secrets	of	the	palimpsest	were	unlocked.

The Archimedes Palimpsest



Archimedes’ Mathematics
Although renowned for his engineering achievements 
and machines of war, Archimedes was at heart a pure 
mathematician. His insights and discoveries in many 
fields of mathematics cause historians today to con-
sider him one of the greatest and most original math-
ematicians who ever lived. Archimedes was report-
edly obsessed with mathematics, and stories abound 
regarding this obsession. While lounging in the pub-
lic baths—as was the custom at the time—Archime-
des would often draw geometric figures in the chim-
ney embers. This single-mindedness eventually led to 
his demise. Two stories emerged from biographies of 
Archimedes by the Roman historian Plutarch, both 
of which occurred when the Romans finally overran 
Syracuse. In the first and most popular story (probably 
because it illustrates the romantic idea of the dedicated 
but absent-minded scientist), Archimedes is contem-
plating some geometric figures when a Roman soldier 
comes upon him and orders Archimedes to come with 
him. Archimedes’ response to the soldier is that the sol-
dier should leave him alone until he has finished the 
proof to the problem he is contemplating—a response 
not appreciated by the soldier, as he slew Archimedes 
with a sword. The other story involves a soldier coming 
upon Archimedes as he carried various mathematical 
instruments to General Marcellus, the Roman general 
in charge of the invasion. The soldier, thinking the 
instruments were valuable—perhaps even vessels filled 
with gold—slew Archimedes for the treasure. In either 
account, General Marcellus is very unhappy, as he had 
ordered Archimedes brought to him alive. 

Today, Archimedes the mathematician is remem-
bered for much, but his discovery of the methods that 
one day would be called integral calculus is at the fore-
front. Archimedes used a technique called the method of 
exhaustion to approximate the area of a circle and thus 
the value of pi. In this method, Archimedes inscribed 
a polygon in a circle and calculated the area of the 
polygon. Inscribing a polygon involves drawing a poly-
gon—a multisided, closed figure such as a pentagon or 
an octagon—so that each vertex just touches the inside 
of a circle. He then circumscribed a polygon around the 
outside of the circle and calculated its area. He knew the 
actual area of the circle must be somewhere between the 
areas of the two polygons. By calculating the areas of 
polygons with more and more sides—eventually using 
a 96-sided figure—he was able to approximate the area 

of the circle closely and conclude that the value of π lay 
somewhere between the following two fractions:

3
1

7
3

10

71
and .

Archimedes used the method of exhaustion to find 
many other interesting mathematical theorems. Most 
of these theorems are geometric in nature and address 
methods for finding areas of plane figures and volumes 
of three-dimensional solids. For example, Archimedes 
proved that the surface area of a sphere is four times 
the area of a great circle. 

He also compared a sphere and a cylinder circum-
scribed around the sphere and found that the sphere’s 
volume and surface area were two-thirds those of the 
cylinder. Many scholars believe that Archimedes con-
sidered his most important work to be in this area. A lit-
tle more than century after the death of Archimedes, the 
Roman senator and orator Cicero discovered a grave he 
believed to belong to Archimedes, marked with sphere 
inscribed in a cylinder along with the related theorem.

Interestingly, although Archimedes used geomet-
ric methods like the method of exhaustion to prove 
his theorems, he used other methods in the discovery 
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Archimedes found that a sphere’s volume and surface 
area were two-thirds those of a circumscribed cylinder.



of some of those same theorems. One such method 
involved the use of infinitesimals. An infinitesimal is 
an indefinitely small number that proved to be criti-
cal to the development of calculus many centuries 
later. Ironically, Archimedes did not accept the use 
of infinitesimals—or other mechanical methods he 
used to uncover interesting mathematical truths—in 
a rigorous proof. Archimedes accepted the Greek tra-
dition that only pure geometric demonstrations con-
tained the rigor demanded in mathematical proof. 
According to Archimedes, as translated by Brit-
ish mathematician Thomas Heath, “Certain things 
first became clear to me by a mechanical method, 
although they had to be demonstrated by geometry 
afterwards.…But it is of course easier, when we have 
previously acquired by the method, some knowledge 
of the questions, to supply the proof than it is to find 
it without any previous knowledge.”

Archimedes made many other mathematical dis-
coveries. He found methods for calculating the center 
of gravity of plane figures, methods for summing infi-
nite series, techniques for finding tangents to curves 
(a forerunner of differential calculus), and a method 
for finding the weight of a solid body immersed in liq-
uid. In addition to these geometric discoveries, Archi-
medes found many interesting results in arithmetic, 
or the theory of numbers. He developed methods for 
estimating the value of square roots, and in a work 
called The Sand Reckoner, Archimedes invented a new 
number system capable of representing impossibly 
large numbers—numbers large enough, according to 
Archimedes, to count the number of grains of sand in 
the universe. 

Today, we know of Archimedes’ great mind through 
copies of his own works made centuries after his 
death as well as books from other authors who attri-
bute results to Archimedes. Several works of Archi-
medes no longer exist, and we know only of their one-
time existence from references in other books. Until 
the twentieth century, an Archimedes work called 
The Method belonged in this category of lost works. 
Other authors related that The Method contained 
explanations of the techniques used by Archimedes 
to discover many of his mathematical theorems. His-
torians and mathematicians alike lamented the fact 
that this potential insight into the mind of the great 
man would never be known. A copy of this work has 
recently come to light and has opened a treasure trove 

of new information regarding the creative processes 
used by Archimedes.

Archimedes’ Legacy
The esteem with which history holds a figure like 
Archimedes may be tied to the stories—substantiated 
or otherwise—that become a part of the folklore sur-
rounding that figure. The most famous story concern-
ing Archimedes is another example of this historical 
perception. It seems that King Hiero II was concerned 
that a greedy goldsmith had used a certain amount of 
silver in a crown that was intended to be pure gold. 

The king asked Archimedes to determine the purity 
of his crown without destroying it. While bathing one 
day—as the story goes—Archimedes realized that the 
volume of water displaced by his (or any other) body 
could be used to calculate the density of the body—a 
method that could measure the density of the crown 
and thus its content. Archimedes immediately sprang 
from his bath and ran naked through the streets of Syr-
acuse yelling, “Eureka!” (“I have found it!”)

Although this Archimedean anecdote does not 
appear in print until several centuries after his death, 
“Eureka!” remains the first thing that comes to the 
minds of many modern readers when they encounter 
the name of Archimedes. If indeed Archimedes did 
actually solve the problem of the impure crown for his 
king, it seems much more likely that he used a method 
that is now called the Archimedes principle. This 
method, which actually appears in Archimedes’ writ-
ings, involved weighing an object while it is submerged 
in water to determine its buoyant force.

In his own lifetime, Archimedes was renowned as an 
inventor and military engineer rather than as a math-
ematician. History, however, remembers Archimedes 
as one of the most brilliant and original mathemati-
cal thinkers who ever lived. In today’s modern world, 
“pure” and “applied” mathematics are often scrupu-
lously separated by their practitioners. In his time, how-
ever, Archimedes was both a brilliant pure mathemati-
cian—whose work involving integral calculus predated 
Isaac Newton and Gottfried Leibniz by almost 2000 
years—as well as a gifted applied mathematician—
who used geometric techniques to find, among other 
things, the center of gravity of solid objects. Certainly, 
Archimedes is a part of the small pantheon of scientific 
geniuses like Newton and Albert Einstein whose bril-
liance changed the way in which we see our world. 

�0	 Archimedes
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Arenas, Sports
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Geometry.
Summary: Modern arena designers consult 
mathematicians to determine the effects of design on 
play and crowd behavior.

A sports arena is essentially an enclosed area consist-
ing of a large open space where a sport is played, sur-
rounded by seating for spectators. It may also include 
various facilities for athletes, spectators, and the press. 
Many sports use specific terms for arenas, like “park” 
for baseball and “stadium” for football. Some sports 
arenas are open-air while others are roofed. The word 
“stadium” comes from stadion, an ancient Greek unit 
of length. Mathematics plays a significant role in the 

design and maintenance of modern sports arenas, 
including not only the geometrically shaped playing 
surfaces but also the optimization of seating, sightlines, 
acoustics, lighting, spectator traffic flow, and placement 
of restrooms and concessions. Features such as retract-
able roofs and convertible forms to accommodate mul-
tiple sports require careful design as well. Mathemati-
cians also analyze and model features of sports arenas 
to determine their potential effect on the game play.

The rules of each sport dictate dimensions for the 
field of play. Some such as hockey, football, basketball, 
and soccer specify exact dimensions for the playing 
surface and delineate areas for specific activities, like 
the rectangular key in basketball or the half-circle goal 
crease for amateur hockey. Baseball, on the other hand, 
standardizes the dimensions of some features such as 
the distance between bases and the distance between 
the pitcher and home plate, but the outfield varies 
depending on the positions of the outfield walls. Fur-
ther, aspects of game play can be affected by design 
choices. Fenway Park’s outfield wall known as the 
“Green Monster” is notorious for stopping home runs, 
yielding more doubles and triples. When the new Yan-
kee Stadium produced a higher rate of home runs, there 
was speculation about a “wind tunnel” effect. Statisti-
cal analyses suggested that curvature and height of the 
right field wall were more important than wind speeds 
or patterns. Statistician George “Bill” James developed 
the concept of park factors, which attempts to measure 
how park characteristics influence game outcomes.

Robert F. Kennedy Memorial Stadium in Washing-
ton, D.C., which opened in 1961, was the first multiuse 
stadium. It was widely decried for being a “concrete 
donut.” Some critics suggested its wavy shape and cur-
vature optimized it for baseball seating, though the 
widely replicated design has deficiencies for baseball 
and football. Some critical seats were too low for foot-
ball and too high for baseball, resulting in poor sight-
line angles. 

The baseball configuration was also more symmet-
rical than most baseball-only fields. Modern design-
ers use mathematical techniques and tools (such as 
Mathcad software), simulations, and three-dimen-
sional modeling for their designs, resulting in unique 
facilities like The Float in Singapore, which is literally 
floating on Marina Bay. Similar methods are involved 
in the design of arena roofs or domes, some of which 
are retractable. Calculating the amount of material 
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needed to construct a curved dome, as well as calculat-
ing the weights, forces, and stresses, typically involves 
the use of calculus. These calculations, in turn, partially 
determine the type of support required. 

Geometry and graph theory also contribute to dome 
design. R. Buckminster Fuller suggested that domes are 
strongest when the edges lie along great circles. Trian-
gles are often used to give great strength with minimal 
weight, while other support structures resemble the 
latitude and longitude configuration on a globe. Fibo-
nacci sequences and plane tilings also are used in the 
design of some domes. Veltins Arena in Germany uses 
features like hinged columns with ball-bearing edges 
that move in three dimensions. Both Veltins Arena and 
University of Phoenix Stadium in the United States 
feature sliding roofs and retractable natural-grass 
playing surfaces weighing millions of pounds. These 
were mathematically modeled extensively before con-

struction. Transformative structures of this type have 
become known as “kinetic architecture.”

Mathematicians continue to investigate ques-
tions related to sports arenas, some of which have 
wider applications. Researchers have considered the 
impact of sports arenas on land values using hedonic 
regression models. Mathematical analyses of crowd 
sequence videos (frequently taken from sports ven-
ues) benefit research in areas including surveillance, 
designs of densely populated public spaces, and crowd 
safety. In some cases, people are conceptualized as a 
“thinking fluid” to which fluid dynamic and stochas-
tic models may be applied. Unusual events like emer-
gency evacuations are fairly rare, and there are legal 
barriers to obtaining extensive live footage. As such, 
computer scientists and mathematicians have devel-
oped detailed simulations for both “normal” behavior 
and unusual crowd events. Some have suggested that 
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The Green Monster is the nickname for the left field wall at Fenway Park, home to the Boston Red Sox. The 37-
foot-high wall is famous for preventing home runs that would clear the walls of most other ballparks.



topology optimization would be beneficial for investi-
gating arena evacuation plans. 
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Artillery
Category: Government, Politics, and History.
Fields of Study: Algebra; Calculus; Measurement; 
Number and Operations.
Summary Mathematics is essential to the design and 
firing of artillery pieces.

Mathematics has had numerous military applications, 
including the development of artillery pieces after the 
invention of gunpowder in China in the fourteenth 
century. Mathematical formulas and calculations are 
critical to the design and use of artillery. The science 
of ballistics, which relies on mathematical formulas to 
study the flight paths of projectiles, also plays a major 
role in artillery development. 

Engineer Benjamin Robbins invented the ballistic 
pendulum and is referred to by some as the founder of 
modern ballistics. Technological and scientific devel-
opments resulted in the modern use of artillery firing 
tables and computer-based firing calculation programs. 
Mathematics also plays a significant role in the ability 
to centralize fire control command centers and the use 
of indirect fire in which targets are not visible through 
a weapon’s sightlines. 

Many mathematicians have worked in places such 
as the Ballistics Research Laboratory at Aberdeen Prov-
ing Ground, such as Gilbert Bliss, who worked on fir-
ing tables for artillery.

Early artillery weapons relied on mechanical 
energy to fire projectiles and were not of uniform 
design—making them large, cumbersome, and inac-
curate. Technological innovations in the eighteenth 
and nineteenth centuries led to the development of 
standardized artillery with increased accuracy and 
mobility. 

In the late eighteenth century, British Royal Artil-
lery Lieutenant Henry Shrapnel created a shell (con-
tainer) that held multiple musket balls and a time fuse 
that allowed the shell to travel longer distances before 
exploding, increasing the cannon’s range. High-explo-
sive fragmentation shells and improved conventional 
munitions replaced shrapnel shells beginning in the 
early twentieth century.

Military scientists, weapon and projectile engineers, 
and soldiers have utilized the science of ballistics (the 
study of the flight of projectiles as they exit the weapon, 
travel through the air, and penetrate the target) since 
its early development in the fourteenth century to 
improve the accuracy and range of artillery. 

Cannons, which first appeared in the early four-
teenth century, spurred the development of ballistics. 
Early artillery crews used mathematics to determine 
the optimal angles at which to elevate their weap-
ons for improved accuracy and range. Engineers also 
used mathematics to determine the angles at which 
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Artillery Categories

T he	 three	main	 categories	of	modern	artil-
lery	are	guns	(excluding	personal	weapons	

such	 as	 handguns	 and	 rifles),	 howitzers,	 and	
mortars.	Guns	rely	on	stored	kinetic	energy	to	
force	a	solid	projectile	through	both	the	weap-
on’s	 barrel	 and	 the	 air	 to	 its	 intended	 target,	
while	howitzers	and	mortars	use	stored	chemi-
cal	energy	and	explosive	(non-solid)	projectiles.	
Howitzers	 and	 mortars	 generally	 fire	 shorter	
ranges	along	parabolic	arcs	while	guns	fire	lon-
ger	ranges	along	sightlines.	Tanks,	anti-aircraft	
batteries,	 rockets,	 and	 missiles	 can	 also	 be	
considered	part	of	modern	artillery.	Artillery	can	
be	either	self-propelled	or	towed.



to build fortifications to best defend against artillery 
bombardments. 

Calculations of elevation, distance to target, 
weather conditions, projectile weight, and flight tra-
jectory are necessary to achieve accuracy. Scientists 
and mathematicians, beginning with Italian mathe-
matician Niccolo Franco Tartaglia, sought to improve 
the accuracy and reliability of early artillery pieces 
through ballistics. Tartaglia’s studies on a variety of 
cannons led to his determination that a 45-degree 
angle was ideal for firing—with the caveat that exter-
nal factors such as air drag would affect the results. 
Tartaglia is also credited with the development of 
the first ballistics firing tables based on standardized 
weapons and projectiles.

Other notable mathematical advances in early bal-
listics included the theories of Galileo Galilei on the 
effects of the forces of gravity and air drag on the pro-

jectile’s velocity and flight path, as well as the para-
bolic nature of ballistic trajectories. In the early eigh-
teenth century, English scientist Benjamin Robbins 
invented the Ballistic Pendulum, which allowed the 
measurement of a projectile’s velocity and the effects 
of air drag on that velocity. He also determined that 
air drag plays a much greater role in affecting a pro-
jectile’s velocity than gravity does. Sir Isaac Newton 
is credited with the development of formulas used 
to calculate aerodynamic drag, which he determined 
was proportional to air density, the projectile’s cross-
sectional area, and the approximate square of the 
projectile’s velocity. However, Newton’s solution was 
incomplete, and mathematician Johann Bernoulli 
produced a more general solution. Mathematician 
Leonhard Euler integrated the various stages of a pro-
jectile’s flight to reduce the difficulty of the equations 
utilized in ballistics. 

A U.S. M777 Light Towed Howitzer being fired in 2009 in Afghanistan. Howitzers have relatively short barrels 
and are used to shoot projectiles at high trajectories with a steep angle of descent.
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Artillery projectile designers use ballistics studies 
that calculate projectile properties, such as mass and 
diameter, based on the design specifications of the 
weapon in order to ensure the projectile will fit inside 
the barrel and generate enough energy to propel the 
projectile without damaging the weapon. Mathemati-
cal formulas are used to determine projectile design 
based on various input data including the force of 
aerodynamic drag, the ratio of the projectile’s veloc-
ity to that of the sound in the medium it will traverse, 
the properties of the medium, the projectile’s caliber 
(diameter), and the velocity at which it travels. 

The mathematics of ballistics can be further broken 
down into internal, external, and terminal ballistics. 
Internal ballistics studies the flight properties of a pro-
jectile as it travels through the barrel of the weapon. A 
firing mechanism lights the gunpowder, which creates 
energy through the pressure generated by expanding 
gases. The energy is equal to the force times the barrel 
length. This energy forces the projectile through and 
out of the barrel. External ballistics studies the flight 
properties of a projectile as it travels through the air 
from the weapon to its intended target. Various formu-
las can be used to determine the kinetic energy of the 
projectile as it leaves the muzzle. Other calculations are 
then used to determine ballistic coefficient (a measure 
of a body’s ability to overcome air resistance in flight.). 
The distance and direction of artillery projectiles is 
affected by aerodynamic drag caused by a combination 
of air pressure (the disturbance of air around a projec-
tile creating an area of low pressure behind it) and skin 
friction (the contact between the air and the projectile’s 
surface). Retardation is the measurement of the degree 
to which drag will slow a projectile’s flight speed and 
can be calculated by the following formula:

R
D

M
=

where R is retardation, D is drag, and M is the projec-
tile’s mass. The ballistic coefficient is often used in place 
of drag because of the greater difficulty in calculating 
drag, which reduces along the flight path in relation to 
the decrease in velocity. 

External ballistic formulas must also account for the 
fact that projectiles do not travel along straight flight 
paths. Physical and meteorological forces must be taken 
into account when determining or predicting a projec-

tile’s flight path. These forces include yaw (caused when 
the nose of the bullet rotates away from a straight tra-
jectory) and precession (caused when the bullet rotates 
around the center of mass). Terminal ballistics studies 
the impact of the projectile as it hits the target. Math-
ematical calculations can be used to study how a projec-
tile’s design and flight features, such as velocity, shape, 
and mass, will affect its damage and wound capabilities.

Artillery firing requires the use of mathematical 
equations to determine range, elevation, and deflection, 
as well as the arc of fire and the probability of hitting the 
intended target. Artillery equation data also include the 
projectile’s initial velocity, which is further divided into 
vertical and horizontal velocity components. Calculat-
ing the distance a projectile travels is performed by mul-
tiplying the time the projectile is in the air by the veloci-
ty’s horizontal component. The needed angle to achieve 
a certain distance can then be determined by solving the 
equation for distance as a function of the angle. 

Modern artillery crews rely on indirect fire, a tech-
nique developed in the early twentieth century in 
which a target is fired upon despite not being visible 
along sightlines. Indirect fire required more complex 
mathematical formulas and calculations, increasing 
the importance of specialized trained military person-
nel. These personnel calculated the range and bearing 
to the target. New techniques of determining the loca-
tions of enemy artillery batteries and subsequent firing 
data included flash spotting, sound ranging, air pho-
tography, and registration point. Indirect fire led to the 
development of graphical or tabular firing tables and 
the maintenance of a command center. Technological 
developments also allowed for greater adjustments to 
firing data based on such variable conditions as wind 
speed and weather. Initially, firing data derived from 
these tables was placed on the weapon’s sights.

Use of Computers
Battlefield computers began to appear by the 1960s and 
were in use by the British and U.S. military by the fol-
lowing decade. Computerized firing tables utilize input 
data to determine the angle and position of artillery, 
which weapons will fire, and how many rounds will be 
fired (although some military forces still rely on older 
instruments and human calculations as backups). 

Firing data such as quadrant elevation, azimuth (an 
angular measurement in a spherical coordinate system), 
fuse setting, and projectile properties are inputted into 
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the software program spreadsheets based on estab-
lished data and standard conditions, which determine 
ideal firing information. The firing information is then 
corrected for deviations from standard conditions, 
such as meteorological conditions. Further technologi-
cal developments include computer-based surveillance 
and target acquisition systems, global positioning sys-
tems, and laser rangefinders. 

Further Reading
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Asia, Central and 
Northern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: The contributions of central Asia have 
included algebra and its great houses of wisdom.

Throughout history, countries in Asia have had shifting 
sociopolitical boundaries. The names of some countries 
have changed, influenced by the Arab and Islamic empires 
as well as European colonialism in the eighteenth and 
nineteenth centuries. Though not widely used, Northern 
Asia sometimes refers to the part of the Asia occupied by 
the transcontinental country of Russia, which is com-
monly included in eastern Europe. Central Asia includes 

the former Soviet satellites of Kazakhstan, Kyrgyzstan, 
Tajikistan, Turkmenistan, and Uzbekistan. Mongolia, 
typically considered part of central Asia by historians, 
is in the modern world classified as part of Eastern Asia 
by the United Nations. “Northern Asia” is a term that is 
not commonly used, thus the transcontinental country 
of Russia is usually thought of as part of Eastern Europe. 
Knowledge of the contributions of mathematicians 
around the world is constantly changing as histori-
ans discover and translate written materials in many 
languages. Further, the breakup of the Soviet Union 
and shifting alliances have given researchers access to 
documents from decades in which many Eastern Bloc 
nations kept themselves in isolation, as well as even 
older works contained in the libraries and educational 
institutions of these nations. For example, medieval 
Islamic texts in Uzbekistan have helped shed light on 
the rich mathematics culture of central Asia. However, 
the mathematics contributions and achievements of 
some people from central Asia may be included in the 
histories of other areas, countries, or cultures.

In the seventh century, the great Library of Alex-
andria in Egypt was captured by a Muslim army, and 
there are some historians who believe some contents of 
the library were taken into Muslim lands. Many cities 
in central Asia became famous in the medieval period 
for their own libraries, which contained original works 
and translations of texts from Greek and Sanskrit, some 
of which became the only surviving copies of these 
earlier works. Houses of wisdom provided places for 
scholars to gather, as well as scientific centers such as 
the fifteenth-century Samarkand Observatory in what 
is now Uzbekistan, which was founded by astrono-
mer Muhammad Taragay Ulughbek. This observatory 
reputedly served as a model for later observatories in 
India. Astronomer and mathematician Ala al-Din Ali 
ibn Muhammed, also known as Ali Kushji, later pre-
served and disseminated some of the knowledge gath-
ered by the observatory when it was destroyed. This 
catalogue of stars, containing the most accurate math-
ematical measurements of location known prior to the 
invention of the telescope, is still studied. 

Significant Central Asian Mathematicians
In the same way that mathematicians in central Asia 
studied and developed many concepts that were first 
introduced by other cultures, other concepts and tech-
niques in twenty-first-century mathematics were first 
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brought to Europe by mathematicians who worked 
in or came from central Asia. The word “algorithm” 
derives from a Latin transliteration of the name of 
eighth- and ninth-century mathematician Abu Abdal-
lah Muhammad ibn Musa al-Khwarizmi (sometimes 
written as Al-Khoresmi). The Khwarizm (or Koresm) 
region included portions of what are now Turkmeni-
stan and Uzbekistan. The word “algebra” comes from 
the term al-jabr, which was found in al-Khwarizmi’s 
treatise on that subject. Another of his mathematical 
writings, the Book of Addition and Subtraction by the 
Indian Method, helped promote the Hindu base-10 
decimal system within the Arabic world. This system 
spread to Europe and revolutionized mathematics 
around the world in subsequent centuries. 

Historical evidence suggests that tenth-century 
astronomer and mathematician Abu Mahmud Hamid 
ibn al-Khidr Al-Khujandi was born in the city of Khud-
zhand, in what is now Tajikistan. His mural sextant pro-
duced some of the most accurate astronomical obser-
vations of the day, and he may have contributed to 
trigonometry. The tenth- and eleventh-century mathe-
maticians Abu Rayhan al-Biruni and Abu Nasr Mansur 
are also cited as being natives of Khwarizm. Al-Biruni 
studied a diversity of topics in mathematics and science, 
including cartography and map projections, trigonom-
etry, combinatorial analysis, ratio theory, algebraic 
problem solving, geometry, Archimedes of Syracuse’s 
theorems, conic sections, and spherical triangles. Along 
with his own prolific body of writings, he was also a 
translator of Sanskrit texts. Abu Nasr Mansur taught 
and collaborated with al-Biruni—the two frequently 
cited one another’s contributions to their own work. 

Many consider Mansur’s primary mathematical 
contributions to be his commentary on Menelaus of 
Alexandria’s Sphaerica, his development of trigonom-
etry, and his tables for numerical solutions to problems 
in spherical astronomy. In the same time period, Abu 
Ali al-Husain ibn Abdallah ibn Sina, also known by the 
Latin name Avicenna, wrote on many topics, including 
medicine and mathematics. Some of his investigations 
included ruler and compass constructions, areas of cir-
cles, and geometric algebra. He also considered music 
to be a subdiscipline of mathematics, and some believe 
that his studies led to musical tuning by the method of 
just intonation, where the note frequencies are related 
by ratios of small whole numbers, rather than Pythago-
rean tuning, named for Pythagoras of Samos. 

Beginning in about the twelfth century, central Asia 
underwent a great deal of social and political disrup-
tion, and there is often little surviving evidence regard-
ing mathematics and science during those eras. During 
the Soviet period, mathematicians from Kazakhstan, 
Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan 
may have been drawn to some of the central academic 
centers in Russia and other parts of the Soviet Union. 
Since the fall of the Soviet Union, these countries are 
reestablishing themselves as independent nations, and 
achievement in mathematics continues. For example, 
students from central Asia have participated in and 
won numerous medals in the International Mathemat-
ical Olympiad, an annual competition for high school 
students in which individual medals are awarded based 
on each student’s success in solving a set of mathemat-
ics problems. Countries send six-member teams. 

Kazakhstan, Kyrgyzstan, and Turkmenistan first 
participated in 1993, Uzbekistan in 1997, and Tajikistan 
in 2005. In 2010, Kazakhstan hosted the 51st Olym-
piad in its capital of Astana. Students from 98 coun-
tries around the world participated. Professor Askar 
Dzhumadildayev noted, “Mathematics is one of the 
most important indexes of the education level in the 
country. Gathering the best young mathematicians in 
Astana is a great honor for us.” A news report regarding 
the Olympiad acknowledged the rich history of central 
Asia: “. . . we should not forget that our country is an 
heiress of the mathematical school founded by great 
scientists of the Middle Ages. . . . who greatly contrib-
uted to development of mathematics long before the 
modern countries of the West appeared.”

Further Reading
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Asia, Eastern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Across eastern Asia, mathematics 
education is given a high priority, with the goal of 
continuing the region’s tradition of excellence.

Eastern Asia is one of the most populated regions of the 
world, lagging behind only southern Asia, and includes 
the Chinese cultural sphere once called the “Far east-
ern civilizations”: China, Hong Kong, Macau, Taiwan, 
Japan, Mongolia, North Korea, and South Korea. The 
region is by no means homogeneous but has certainly 
been influenced to varying degrees by China in its writ-
ing systems, its cuisine, its architecture, and its religion. 
These influences are principally historical, cultural 
exchange being less centralized now, and influences like 
the Western world and the Soviet Union (in the case of 
Mongolia and North Korea) having been significant in 
the recent past. The technology sector is important in 
much of this region and mathematics education is a 
priority. Mathematics education in most of east Asia 
follows the Confucian model.

Number System
The number system in all Chinese-based east Asian lan-
guages centers on the same decimal system as the West 
but with stricter adherence to simple place-value pat-
terns. For example, employing literal translations, the 
word for the number 12 is ten-two, 20 is two-ten, 37 is 
three-ten, seven, and 533 is five-hundred, three-ten, three. 
This system, along with the use of an abacus, facilitates 

the understanding of place value among east Asian ele-
mentary students. east Asian countries also follow the 
Chinese myriad-grouping system, which groups large 
numbers by ten thousands, rather than thousands. In 
other words, these languages have single words for the 
numbers “ten thousand” and “one-hundred million,” 
but not for “million” or “billion.” 

Educational Philosophy
Historically, public east Asian mathematics classrooms 
could be generalized as teachers delivering lectures to 
large classes of students who are expected to master 
calculations and grasp theory through repetition and 
memorization. Inherent in this Confucian approach is 
the assumption among students, parents, and teachers 
that mathematical success results more from diligent 
studying than natural talent. Student-centric and prac-
tical applications of mathematics are not a primary 
focus in east Asia, as they sometimes are in the West. 
This educational philosophy is true not only of the 
textbooks, which in east Asia are succinct and cover the 
minimal core set forth by each of the national govern-
ments but also of the classrooms, which must closely 
follow the textbooks. However, since the international 
test results illuminated relative weaknesses in problem 
solving, creativity, and practical applications, the east 
Asian governments have been working to adapt cur-
ricula in various ways. 

China
Chinese children’s task of memorizing thousands 
of Chinese characters naturally seems to transfer to 
the subject of mathematics where memorization of 
formulas and processes is assumed to lead to under-
standing and discovery. 

While mainland China did not participate in some 
international comparisons, the Chinese team has per-
formed exceptionally well in the annual International 

Mathematical Olympiad (IMO), a compe-
tition among high school students, 
where it placed first almost every 
year between 1990 and 2010. But 
these achievements in mathematics 

are not limited to Chinese students; 
two Chinese mathematicians have 

received the distinguished Wolf Prize 
in Mathematics: Shiing-Shen Chern in 

1983–1984 and Shing-Tung Yau in 2010. 
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Hong Kong
The mathematics education system in Hong Kong 
employs elements both from mainland China and 
Great Britain. Despite the fact that international test 
scores ranked students from Hong Kong as years ahead 
of many Western countries, there is widespread con-
cern about students viewing mathematics as irrelevant 
beyond testing. This concern has been leading to a cur-
riculum that emulates the Western approach to teach-
ing more mathematics related to problem solving and 
practical abilities. 

Japan
While Japan distinguished itself in mathematics from 
the other east Asian countries during the Edo period 
(1603–1868), modern Japanese mathematics carries 
few remnants of this period. One such remnant is the 
soroban, a Japanese modification of an abacus. Japanese 
schoolchildren continue to use this beaded calculation 
device as a means of mastering the decimal system. 
Like in all east Asian countries, private schools (called 
juku) are attended widely by Japanese students. Japan 
has produced some of Asia’s best mathematicians of 
the past century, including three winners of the Wolf 
Prize (Kunihiko Kodaira in 1984–1985, Kiyoshi Ito in 
1987, and Mikio Sato in 2002–2003), and three winners 
of mathematics’ most revered award, the Fields Medal 
(Kunihiko Kodaira in 1954, Heisuke Hironaka in 1970, 
and Shigefumi Mori in 1990).

Mongolia
Geographically, Mongolia lies between China and Rus-
sia. Until the early twentieth century, it was largely under 
the control of China and was later strongly influenced 
by Russia and the Soviet Union, adopting a Soviet-style 
government until 1990. Mongolian teams began partic-
ipating in the International Mathematical Olympiad in 
1964. Ming Antu was a Mongolian mathematician and 
astronomer, though he has been referred to as Chinese 
in the past. He worked on infinite series in the eigh-
teenth century, among other accomplishments.

North Korea
While North Korea has the same Confucian background 
as the other east Asian countries, the former Soviet 
Union played a significant role in sculpting the mod-
ern approach to mathematics education. As do most 
countries around the world, the North Korean educa-

tion system upholds mathematics as a central focus for 
both primary and secondary students, although North 
Korean story problems tend to be phrased in a nation-
alistic context. Students who excel in mathematics dur-
ing their secondary school education may be admitted 
into the esteemed Kim Il-Sung University. In terms of 
global rankings, North Korea has sporadically entered 
a team into the International Mathematics Olympiad, 
some of which placed in the top 10. 

South Korea
From childhood, South Koreans grow up using two 
separate number systems in their daily lives. The first 
one, a purely Korean system, is used mainly for count-
ing objects, animals, and people and is no longer used 
for numbers larger than 99. It is worth noting that the 
numerals in this Korean system do not follow the same 
simple place-holding constructions as the number sys-
tems rooted in the Chinese language. The Sino-Korean 
number system, on the other hand, does follow these 
rules, and is most commonly used with money and 
large numbers. In school, many South Korean students 
receive just as much, if not more, of their mathematics 
instruction from private tutors or hagwons (academies) 
as from the public school environment. This system 
stems from the inextricable link between a student’s 
mathematics performance on entrance exams and 
his or her eventual place in society. Some people cite 
this pressure as an explanation for why South Korean 
and Japanese students, despite performing exception-
ally well on international tests, also rank the highest in 
their professed dislike for mathematics.

Taiwan
Private mathematics academies in Taiwan are referred 
to as buxiban (cram schools), suggesting their pri-
mary, but not exclusive, role of preparing Taiwanese 
students for entrance examinations. With electronics 
as a major industry, there has been a recent overhaul 
of the Taiwanese education system to focus on practi-
cal applications of mathematics instead of only theo-
retical mathematics.
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Asia, Southeastern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Mathematics in the region has long been 
intertwined with religion and astrology and in recent 
generations has been impacted by colonialism.

The United Nations classification of southeastern Asia 
includes Brunei Darussalam, Cambodia, Indonesia, 
Lao People’s Democratic Republic, Malaysia, Myan-
mar, Philippines, Singapore, Thailand, Timor-Leste, 
and Vietnam. Throughout history, the countries of 
Asia have had shifting political and social boundaries, 
and the names of many countries have changed over 
time, especially from the European colonial eras of the 
eighteenth and nineteenth centuries—when Western 
historians often began to study and document these 

countries—into the twenty-first century. For example, 
Burma became known as Myanmar; Siam became 
Thailand; Malay or Malaya became Malaysia; the Dutch 
East Indies or Netherlands East Indies and Java became 
Indonesia; and French Indochina included Laos, Cam-
bodia, and Vietnam. Singapore was also part of Malay-
sia for a brief time in the 1960s, and the two regions 
share many historical developments. China and India, 
which have long histories of mathematics work and 
achievement, also had an influence in this region of the 
world. Therefore, mathematics contributions of some 
people from southeastern Asia, may be included within 
the histories of other regions or countries.

Early History
The great architectural feats found in places such as 
Borobudur, built in the ninth century on the island 
of Java, now part of Indonesia, and Angkor Wat, 
constructed three centuries later in Cambodia, sug-
gest to scholars and historians that the architects 
and the builders must have had considerable math-
ematics knowledge. Some mathematics was probably 
brought to the region from India and China, as also 
happened in Europe and other areas, but there were 
almost certainly local mathematicians as well. The 
geometry involved in the design of both Borobudur 
and Angkor Wat has amazed generations of scholars 
who have discovered many complex ratios and for-
mulas in the designs. Historians have also discussed 
the interconnection between religion, astronomy, 
mathematics, and astrology in southeastern Asia. 
Often there was little distinction made between 
mundane and divine matters, and some sequences of 
numbers (for example, 4, 8, 16, and 32) had religions 
connotations. 

These numbers were used in both government 
and spiritual matters, such as the number of chiefs 
and territories in some Malay courts. Numerical sys-
tems emerged for the Burmese, Siamese, Cambodian, 
Laotian, Vietnamese, and Javanese languages. When 
Europeans began to explore and colonize southeastern 
Asia, they brought with them their own formal methods 
of school structure and mathematics teaching, which 
were documented by historians. Colonial influence saw 
the Vietnamese language develop a Romanized script, 
along with Western systems of counting, but the other 
scripts kept their systems of numerals. The introduc-
tion to southeastern Asia of a European-style school 
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education, which replaced previous systems of instruc-
tion at pagodas or mosques, was a contributing factor 
in mathematics education. Much of this education 
came from the commercial needs of colonial powers 
to educate boys for work as bookkeepers and business-
men, so Western accounting systems were introduced 
to these populations—though many merchants con-
tinued to use Chinese systems, including the abacus, 
up through the twenty-first century.

Singapore and Malaysia
Singapore and Malaysia have active mathematics pro-
grams. The Raffles Institution in Singapore has a math-
ematics club whose members compete in events like 
the Singapore Mathematical Olympiad. The school was 
established in 1823 and named for (Thomas) Stamford 
Raffles, who is known as the founder of the British colony 
in Singapore. The Singapore Mathematical Society was 
founded in 1952. In the twenty-first century, it organizes 
participation in events like the national and interna-
tional mathematics olympiads and the Singapore Math-
ematics Project Festival, among other educational and 
professional activities. Singapore first participated in the 
International Mathematical Olympiad (IMO) in 1988. 
While many twentieth-century textbooks on mathemat-
ics were imported into Singapore, the “Singapore Math 
Method,” first developed in the 1980s and used in the 
national curriculum in Singapore, is now used in several 
places in the United States and elsewhere. 

One of Singapore’s well-known mathematicians is 
Tony Tan, who completed his doctorate, with a disser-
tation on “Mathematical models for commuter traffic 
in cities,” at the University of Adelaide, South Australia. 
He taught mathematics before going into banking, and 
then into politics, ultimately becoming his country’s 
deputy prime minister. Raffles College in Singapore 
taught mathematics from the time it started operations 
in 1928. Relations between Singapore and Malaysia in 
the twentieth century led to its transformation into the 
University of Malaya, then the University of Singapore, 
and the National University of Singapore. Sir Alexan-
der Oppenheim, the vice-chancellor of the University 
of Malaya 1957–1965, was a prominent mathematician 
who had taught at Raffles College. 

The Malaysian Mathematical Sciences Society, 
founded in 1970, was formerly known as the Malaysian 
Mathematical Society. It hosts events like the National 
Mathematical Olympiad in Malaysia; Malaysia first par-

ticipated in the IMO in 1995. The Penang Free School, 
established in Malaysia in 1816, has taught mathematics 
from its inception. The Institute of Mathematical Sci-
ences at the University of Malaya, founded in 1959 as the 
Department of Mathematics, continues to provide edu-
cation for many Malaysian and overseas students and is 
an important mathematical institute in that country. 

Thailand
Historically, Thailand was the only country in 
southeastern Asia never to be colonized by a foreign 
nation. Rulers such as the nineteenth-century King 
Mongkut, the inspiration for the 1946 movie Anna and 
the King of Siam and often called “the father of science 
and technology,” embraced Western innovations. 
Assumption College, Bangkok, founded in 1885, had 
an extensive program of mathematics. The Mathemat-
ical Association of Thailand publishes the Thai Jour-
nal of Mathematics and hosts conferences and contests. 
Thailand has been participating in the IMO since 1989.
The Center for Promotion of Mathematical Research 
of Thailand was established in 1978. Mathematician 
Yupaporn Kemprasit is an acknowledged world expert 
on algebraic semigroup theory, ring theory, and 
algebraic hyperstructure theory.

Cambodia, Laos, and Vietnam
In French Indochina, mathematics was encouraged 
for commerce. The Quoc Hoc or National Acad-
emy, established in 1896, included mathematics in its 
curriculum, with French as the language of instruc-
tion. Until the 1950s, most secondary schools in this 
region used French and French-language mathemat-
ics books—this was done in Cambodia until the early 
1970s. Growth in the education system in the late 
twentieth century produced new native mathematics 
teachers, including Cambodian Communists Saloth 
Sar (Pol Pot), Khieu Samphan, and Gaing Kek Ieu 
(called “Comrade Deuch”). 

The Vietnamese Mathematical Society was founded 
in 1965, roughly the same time as one major build-
up of American troops during the Vietnam conflict. 
Many educational institutions were closed for many 
years because of the war, but the society continued 
to support regional mathematical research. Vietnam 
first participated in the IMO in 1974 and hosted the 
competition in 2007. Mathematics researchers and stu-
dents from Lao People’s Democratic Republic (Laos) 
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also participate in conferences and competitions. For 
example, in 2010, two high school students won a 
mathematics prize in a competition that included stu-
dents from Brunei, Cambodia, Indonesia, Malaysia, the 
Philippines, Singapore, Vietnam, Thailand, and Laos.

Indonesia
The Dutch in the Netherlands East Indies operated a 
system of European schools, so-called “native schools,” 
and vocational schools, teaching primarily in Dutch 
with Dutch-language textbooks. Many of the applied 
mathematics courses were directed toward engineering. 
After independence, with the expansion of the educa-
tion system in Indonesia, there are mathematics depart-
ments in all schools and most universities in the country. 
Indonesia first participated in the IMO in 1988.

Brunei, Myanmar, and the Philippines
Elsewhere in the region there is also mathematical 
activity. The study of mathematics in the Philippines 
has been influenced by its close connections with the 
United States. The Mathematics Society of the Philip-
pines was established in 1973, and the Philippines began 
participating in the IMO in 1988. Brunei participated in 
the IMO in 2000. The country of Myanmar has been 
isolated for much of the period since its independence in 
1948. At the start of the twenty-first century, it initiated 
a 30-year plan for educational reform to address the 
challenges of the information age. Traditionally, state 
schools focused on writing, reading, and speaking in 
Myanmar and English, as well as mathematics, science, 
and Myanmar geography and history. Newer programs 
offer increased access to computer skills, as well as courses 
on information technology, medicine, and engineering, 
which require more advanced mathematics skills. 
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Asia, Southern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Southern Asia’s history of mathematics 
reaches back thousands of years and mathematics 
continues to be a priority.

Southern Asia has a rich tradition in mathematics. Per-
sian, Hindu, and Vedic scholars, among others in this 
area, contributed to the body of mathematics knowl-
edge. Some of the achievements that have been histori-
cally credited to Arabic or Islamic mathematicians may 
have been influenced by pre-Islamic Persia. From ancient 
times, the rise and fall of various empires, wars, migra-
tion, and colonial influences have resulted in shifting 
cultural and geographical boundaries. As a result, many 
countries and regions in southern Asia have changed 
over time. The United Nations statistical classification 
for southern Asia contains Afghanistan, Bangladesh, 
Bhutan, India, Iran (Islamic Republic of), the Maldives, 
Nepal, Pakistan, and Sri Lanka. In the twenty-first cen-
tury, these Asian nations continue to make advances in 
mathematics and mathematics education.

History
Construction of many ancient temples or monu-
ments in southern Asia clearly involved mathemati-
cal knowledge, and mathematicians from this time 
period made various contributions to mathematics. 
One example is Indian scholar Baudhayana, who lived 
around 800 b.c.e. and is credited by some with devel-
oping the Pythagorean theorem, although others feel 
he was reflecting Babylonian work. The Vedic priest 
Katyayana, who lived approximately six centuries later, 
appears to have been interested in mathematics for reli-
gious purposes. Panini (520–460 b.c.e.), born in Shal-
atula, now part of Pakistan, wrote a scientific theory 
of Sanskrit. Some historians have theorized that devel-
opment of algebraic structures and number systems in 
this region may be tied to the linguistic structure of 
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Sanskrit. Panini’s work also influenced computer lan-
guages. Aryabhata (476–550) wrote a mathematical 
text known as the Aryabhatiya. It is composed of 123 
metrical stanzas, whose organization has been studied 
by mathematicians because it differs from later math-
ematical works in many traditions. Some historians 
believe that it was influenced by Mesopotamia, while 
others suggest that it might be an anthology of works 
by earlier mathematicians. Another text, the Bakhshali 
manuscript, discovered in 1881 near Peshawar in pres-
ent-day Pakistan, is believed to date from the seventh 
century, although some experts have dated it to up to 
eight centuries earlier or five centuries later.

By medieval times, Indian mathematicians had devel-
oped the notion of zero as a number, the use of negative 
numbers, and the definitions of sine and cosine. Some 
early Indian poetry also shows evidence of the binary 
number system and the use of decimal numbers. Math-
ematician Abd Al-Hamid ibn Wasi ibn Turk Al-Jili (c. 
ninth century) is believed to have been born in Iran, 
Afghanistan, or Syria. He wrote an algebra book. Persian 
mathematician, poet, and astronomer Omar Khayyam 
(1048–1141) wrote books on arithmetic and algebra by 
the age of 25 and contributed to many mathematical 
areas. Mathematician Nasir al-Din al-Tusi (1201–1274) 
was born in the city of Tus, now in Iran. He wrote Arabic 
translations of several Greek mathematical texts and is 
also credited with developing planar and spherical trigo-
nometry from what many considered an astronomical 
tool into a separate mathematical discipline. Ghiyath al-
Din Jamshid Mas’ud al-Kashi (1380–1429) was born and 
worked in Kashan, now in Iran. His Treatise on the Cir-
cumference included a calculation of π, which exceeded 
any known precision at the time. He also authored a 
teaching text called The Key to Arithmetic. 

Education
Mathematics education has long been a focus in south-
ern Asia. Mathematics was a part of garakula resi-
dential schools in ancient Nepal and India. From the 
fourteenth century, what became known as the “Kerala 
school of astronomy and mathematics” emerged in 
southern India. There was a flourishing of new dis-
coveries, including the use of calculus long before it 
was developed by Isaac Newton and Gottfried Leibniz. 
These developments continued under mathematicians 
such as Citrabhanu (c. 1530) and Jyesthadeva (c. 1500–
1575). English scholar Charles Whish (1794–1833) 

publicized many of the Kerala achievements to the rest 
of the world. Even then, the work of Whish—primar-
ily a collector of Sanskrit manuscripts—was largely 
unknown beyond the scholarly community until the 
Indian mathematicians K. M. Marar and C. T. Raja-
gopal were able to demonstrate the advances made in 
Kerala just prior to the establishment of the European 
colonial empires in India. 

British colonialism brought some European teaching 
styles into areas of southern Asia, and many universi-
ties were founded in the nineteenth century. Also in 
the nineteenth century, some Nepalese students trav-
eled to India to study, where they were exposed to texts 
like Bhaskaracharya II’s (1114–1185) Siddhanta Siro-
mani. French mathematics traditions were introduced 
to southern Asia by Father Racine (1897–1976), a Jesuit 
missionary who had previously earned a doctorate in 
mathematics. With Indian colleagues such as Ramas-
wamy Vaidyanathaswamy (1894–1960), he promoted 
“modern” or contemporary mathematics teaching ver-
sus solely classical mathematics in the twentieth century. 
Indo-French collaborations continue to flourish into the 
twenty-first century and have been cited as contributing 
to development of areas like algebraic geometry and the-
oretical partial differential equations in southern Asia. 
There were other well-known collaborations, such as 
that between Indian mathematician Srinivasa Ramanu-
jan and British mathematician Godfrey (G. H.) Hardy. 
In the 1980s, the Maldives introduced a new school cur-
riculum that increasingly emphasized the importance of 
a variety of subjects, including mathematics. 

Researchers in southern Asia have investigated a wide 
variety of different curricular issues such as gender dif-
ferences in mathematics in Pakistan. King of Bhutan 
Jigme Khesar Namgyel Wangchuck noted in 2009: 

In all the countries where progress has been strong 
in the areas we strive to develop, the strength of the 
education system has been in Math and Science. In 
fact in India, the favourite subject for most students 
is Mathematics. In Bhutan, Mathematics is one of 
our main weaknesses.

Students from Bangladesh, India, Iran, Pakistan, and 
Sri Lanka have competed in the International Mathe-
matics Olympiad: Iran since 1985, India since 1989, Sri 
Lanka since 1995, and Bangladesh and Pakistan since 
2005. Mumbai, India, hosted the Olympiad in 1996.

	 Asia, Southern	 ��



Further Reading 
Dauben, Joseph W., and Rohit Parikh. “Beginnings of 

Modern Mathematics in India.” Current Science 99, 
no. 3 (August 10, 2010). http://www.ias.ac.in/currsci 
/10aug2010/suppl/15.pdf.

Jha, K., P. R. Adhikary, and S.R. Pant. “A History of 
Mathematical Sciences in Nepal.” Kathmandu 
University Journal of Science, Engineering and 
Technology II, no. 1 (2006). http://www.ku.edu.np/
kuset/second_issue/e2/KANAIYA%20JHa-pdf.pdf.

Joseph, George. The Crest of the Peacock: Non-European 
Roots of Mathematics. 3rd ed. Princeton, NJ: Princeton 
University Press, 2011.

Katz, Victor. The Mathematics of Egypt, Mesopotamia, 
China, India, and Islam. Princeton, NJ: Princeton  
University Press, 2007.

Waldschmidt, Michel. “Indo–French Cooperation 
in Mathematics.” Mathematics Newsletter of the 
Ramanujan Mathematical Society 19, Special Issue 1 
(2010) http://www.math.jussieu.fr/~miw/articles/pdf/ 
IndoFrenchCooperationMaths.pdf.

Justin Corfield

See Also: Arabic/Islamic Mathematics; Asia, Western; 
Babylonian Mathematics; Vedic Mathematics.

Asia, Western
Category: Mathematics Around the World.
Fields of Study: All.
Summary: The people of western Asia have long 
studied and influenced mathematics.

Ancient western Asia, including Anatolia, Syria, Meso-
potamia, and the Iranian plateau, along with Egypt, is 
regarded by many as the cradle of civilization. Activi-
ties that shaped numerous civilizations are traced his-
torically to this region, including the invention of the 
wheel, practice of agriculture, first writing systems, and 
first administrative structures. Many intellectual and 
scientific disciplines flourished. The development of 
mathematics followed and was affected by the rise and 
decline of the civilizations of western Asia. Through-
out history, the territory has been settled or invaded 

by many ethnic groups, including the Babylonian, Per-
sian, Hellenistic, Roman, and Islamic cultures. Some 
countries were also part of the Soviet Union. It is not 
always possible to determine the exact origin of his-
torical figures, and, as such, people may be included in 
the histories of many regions or identified by cultural 
heritage and the location where they did their work. 
Further, many of their accomplishments are named for 
later mathematicians. The twenty-first-century United 
Nations grouping for western Asia is listed as Armenia, 
Azerbaijan, Bahrain, Cyprus, Georgia, Iraq, Israel, Jor-
dan, Kuwait, Lebanon, Occupied Palestinian Territory, 
Oman, Qatar, Saudi Arabia, Syrian Arab Republic, Tur-
key, the United Arab Emirates, and Yemen. 

Babylon
Historical knowledge of Babylonian mathematics is 
largely limited to translations of the surviving clay tab-
lets that have been unearthed by archaeologists, but 
even this evidence suggests a rich depth and breadth of 
mathematics scholarship, largely focused on practical 
problems. Subsequent cultures that came to the region 
also left parts of their mathematical legacies. With the 
emergence of Islam at the end of the sixth century, 
many of the nomadic tribes living in the Arabian Pen-
insula joined together to form a significant power. 

By the early eighth century, a sociopolitical entity 
often called the Islamic Empire, which was ruled 
mostly by a series of government entities known as 
caliphates, spanned from Spain and north Africa to 
southeastern Anatolia, Persia, and the western por-
tion of central Asia. On the east, the region shared 
a long border with India, and hence many Muslim 
intellectuals were also cognizant of Indian culture 
and mathematical accomplishments. Many local rul-
ers encouraged scholarship, building on the legacy 
left by the Hellenic and Roman periods. 

The House of Wisdom in Baghdad, in what is now 
Iraq, became the main hub of research and intellec-
tual activity, rivaling Alexandria at its zenith. Works 
of Hellenistic mathematicians were translated into 
Arabic—the only surviving copies of certain works. 
Mathematicians also extended and introduced new 
ideas and fields. Social factors were another motivat-
ing influence in mathematics scholarship in Muslim 
lands, such as the calculation of the local daily prayer 
times, the direction of the prayer (toward Mecca), and 
the determination of the local first day and the end of 
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the holy month of Ramadan. Since the commonly used 
lunar calendar was 11 days shorter than the solar year, 
this problem added complexity for numerous peoples 
and religions in the area. Observing the heavens and 
predicting the astronomical events was a major field of 
research for mathematicians and astronomers. 

Ottoman Empire and Turkey
Wars brought turmoil to the area, and scholarly activi-
ties suffered. Following the conquest of Istanbul in 
1453, Ottoman Sultan Mehmed-II built madrasas 
(buildings used for teaching Islamic theology and 
religious law, often including a mosque) and encour-
aged scholars to congregate. However, later events 
negatively impacted mathematics in western Asia; for 
example, the destruction of centers of learning such 
as the Istanbul observatory and the spread of religious 

scholasticism (a philosophy of teaching that follows a 
relatively a narrow set of traditional methods heavily 
influenced by religious teachings), which also occurred 
in medieval Europe. Some scholars indicate the passage 
of mathematical leadership over to Europe after about 
the fifteenth century. 

Ottoman Empire efforts of the early nineteenth cen-
tury reenergized mathematics efforts. Vidinli Hüseyin 
Tevfik Pasa (1832–1901) contributed to linear algebra 
and Mehmet Nadir (1856–1927) worked on the theory 
of Diophantine equations, named for Diophantus of 
Alexandria. The Ottoman Empire faded after World 
War I, but the Turkish Republic continued its efforts. 
A well-known Turkish mathematician is Cahit Arf 
(1910–1997), known for the Arf invariant in algebraic 
topology, Arf semigroups, and Arf rings, among oth-
ers. The Turkish Journal of Mathematics is one of the 
many scientific journals published by the Scientific and 
Technological Research Council of Turkey. The Turk-
ish Mathematical Society was founded in 1948, and the 
country is a member of the International Mathematical 
Union (IMU), a worldwide association that promotes 
mathematics research and activity. In 1978, Turkey 
began participating in the International Mathematical 
Olympiad (IMO), a competition for high school stu-
dents. Turkey hosted the IMO in 1993.

Israel
Mathematical activity in Israel dates back to antiquity, 
and it is one of the countries in western Asia with a 
thriving mathematics community. This fact is due 
in part to researchers like algebraist Shimshon Avra-
ham Amitsur, who was one of the 1963 founders of 
the Israel Journal of Mathematics. Some other notable 
Israeli-born mathematicians include Oded Schramm, 
Saharon Shelah, and 2010 Fields Medal winner Elon 
Lindenstrauss. The Einstein Institute of Mathemat-
ics, named for Albert Einstein, was founded in the 
1920s. Israel is a member of the IMU, and Israeli high 
school students first participated in the IMO in 1979. 
The Israel Mathematical Union is an organization 
that offers opportunities for students, teachers, and 
researchers. In the twenty-first century, there were 
some calls to boycott Israeli scholars over disputed 
territories. In response, numerous mathematical orga-
nizations worldwide, including the IMU, passed reso-
lutions that stressed the importance of open interna-
tional scientific exchange. 
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Other Countries
A revitalization of mathematical activity took place in 
many other western Asian countries in the twentieth 
century often connected with professional organiza-
tions or national institutes of science. For example, 
the development of contemporary mathematics in 
Armenia is tied to the 1944 beginnings of the Insti-
tute of Mathematics of the National Academy of Sci-
ences of the Republic of Armenia. The country began 
participating in the IMO in 1993, the same year as 
Azerbaijan. 

The first issue of the Azerbaijan Journal of Math-
ematics was published in January 2011. The Kuwait 
Foundation for the Advancement of Sciences supports 
the Kuwait Mathematics Program at the University 
of Cambridge, which underscores the relationships 
between western Asia and universities in other areas 
of the world. Kuwait began participating in the IMO 
in 1982. 

In 2010, the editor of the Arab Journal of Math-
ematics and Mathematical Sciences was from Jordan. 
The Cyprus Mathematical Society was founded in 
1983 and hosts activities like the Cyprus Mathemati-
cal Olympiad. Cyprus began participating in the IMO 
in 1984, Bahrain in 1990, the United Arab Emirates 
in 2008, and Syria in 2009. Saudi Arabia first partici-
pated in the IMO in 2004. It is also a member of the 
IMU, and mathematicians gather through the Saudi 
Association for Mathematical Sciences. Oman is an 
associate member of the IMU. Countries such as Qatar 
have developed mathematics standards for grades 1–9. 
Some countries in western Asia continue to be affected 
by the area’s ongoing sociopolitical volatility. Georgia 
declared its independence from the Soviet Union in 
1991 and is redeveloping many aspects of its national 
identity. It began participating in the IMO in 1993 and 
is a member of the IMU through the Georgian National 
Mathematical Committee. Iraq is also rebuilding itself 
after the turmoil of the late twentieth century and early 
twenty-first-century wars.

Some countries in the region participated in the 
Trends in International Mathematics and Science 
Study (TIMSS). In 2003, the study included fourth 
graders from the Republic of Yemen; eighth graders 
from Bahrain, Israel, Jordan, Lebanon, the Palestin-
ian National Authority, the Syrian Arab Republic, 
and Saudi Arabia; and both fourth and eighth graders 
from Armenia and Cyprus. In 2007, even more coun-

tries from this region participated, including Arme-
nia, Bahrain, Cyprus, Georgia, Israel, Jordan, Kuwait, 
Lebanon, Oman, the Palestinian National Authority, 
Qatar, Saudi Arabia, the Syrian Arab Republic, Turkey, 
and Yemen. In 2011, Armenia, Azerbaijan, Bahrain, 
Georgia, Israel, Jordan, Kuwait, Lebanon, Oman, the 
Palestinian National Authority, Qatar, Saudi Arabia, 
the Syrian Arab Republic, Turkey, the United Arab 
Emirates, and Yemen are included with benchmarking 
participants from this region listed as including Abu 
Dhabi, UAE, and Dubai, UAE.
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Astronomy
Category: Space, Time, and Distance.
Fields of Study: Geometry; Measurement; Number 
and Operations; Representations.
Summary: Mathematics is used in astronomy to 
measure and model celestial bodies. 
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Astronomy is the science that deals with celestial objects. 
It is divided into two disciplines: positional astronomy 
(or “astrometry”), which deals with the positions and 
movements of celestial objects; and astrophysics, which 
deals with their chemical and physical properties.

Positional astronomy began as a practical science. 
The first astronomers, before the invention of writing, 
dealt with such questions as the proper time of the year 
to plant crops and the proper dates for religious fes-
tivals. As their understanding improved over the ages, 
astronomers tackled other practical problems such as 
how to predict eclipses, how to tell time within a day, 
and how to navigate at sea.

Ancient people could take simple observations of 
the sun and moon and observe the patterns they made. 
From there it was a short leap to predicting future 
patterns. They would first record (or, before writ-
ing, memorize) the observations, and then perform a 
mathematical analysis—even if the analysis were noth-
ing more than counting (for example, discovering there 
were about 365 days between winter solstices). 

A much more sophisticated accomplishment was 
working out the complicated cycles on which lunar 
and solar eclipses occurred. An eclipse can be terrify-
ing for a people who are not expecting it. If astrono-
mers (many of whom doubled as priests) could predict 
eclipses, they could warn people in advance and reduce 
the collective fear. 

A number of ancient peoples, including Mayans, 
Chinese, and Babylonians, developed elaborate calen-
dar systems and tracked the movements of the plan-
ets. The Chinese constructed star charts, kept records 
starting possibly as early as 4000 b.c.e., and developed 
astronomical instruments. The Babylonians mapped 
constellations and introduced 60-minute hours and 
60-second minutes. Both the Chinese and the Baby-
lonians were able to predict eclipses. By 2500 b.c.e, 
Egyptians had measured star positions well enough to 
orient the pyramids to face celestial north. Polynesians 
traveled throughout the Pacific Ocean using stars as 
navigational aids.

The Greeks
The ancient Greeks effectively applied mathematics to 
astronomy. Eratosthenes (c. 200 b.c.e.) used geometry 
to calculate the size of Earth. Hipparchus (c. 161–126 
b.c.e.) discovered the precession of the equinoxes and 
created the most accurate Greek tables of lunar motion. 
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Lunar Calendars

S ome	 cultures	 found	 it	 easier	 to	 use	 the	
moon	 instead	 of	 the	 sun	 to	 tell	 time.	 A	

quick	 glance	 shows	 the	 phase	 of	 the	 moon,	
while	observing	the	sun	takes	careful	measure-
ment.	 There	 is	 not	 an	 even	 number	 of	moon	
cycles	 in	 a	 solar	 year—making	 the	 exclusive	
use	of	moon	calendars	difficult—yet	the	Baby-
lonians	(and	others)	discovered	that	there	was	
a	19-year	cycle.	

In	19	solar	years	(assuming	365.25	days	
per	year),	there	are	6939.75	days.	The	moon	
takes	 29.5306	 days	 to	 cycle	 from	 one	 new	
moon	to	the	next.	In	235	lunar	months,	there	
are	6939.69	days.	A	lunar	calendar	based	on	
this	 cycle	 has	 12	 months	 (six	 with	 29	 days	
and	six	with	30	days—figuring	a	 lunar	month	
of	29.5	days),	adding	up	 to	354	days.	Seven	
times	in	the	19-year	cycle,	there	is	a	leap	year,	
with	an	extra	month	of	30	days	added	in—mak-
ing	the	leap	year	384	days.	

12 354 7 384 6936×( ) + ×( ) = 	days.

Since	the	lunar	month	is	slightly	more	than	
29.5	days,	a	total	of	four	days	have	to	be	added	
during	the	19-year	cycle,	giving	6940	days.	This	
lunar	 calendar,	 originated	 by	 the	 Babylonians	
and	 refined	 over	 the	 centuries,	 is	 still	 in	 use	
today—it	 sets	 the	 dates	 of	 Easter	 and	 of	 all	
Jewish	holidays.



Like some other Greek astronomers, he held that Earth 
revolved around the sun. Claudius Ptolemy (c. 120–150 
c.e.) combined observations from Hipparchus and oth-
ers with his own observations to propose a model of 
how the solar system worked—assuming Earth was at 
the center. By using epicycles (circles revolving on cir-
cles), he produced what was by far the best model of the 
heavens until Nicolaus Copernicus.

The Greeks did not only conduct astronomical cal-
culations by hand but used a computer as well. Though 
not much is currently known about it, a mechanical 
analog computer was built somewhere in the Greek 
world about 100 b.c.e., called the “Antikythera mech-
anism” after the place it was found. This remarkably 
sophisticated computer was able to show both solar 
and lunar calendars, track the complicated path of the 
moon using Hipparchus’s results, and predict eclipses 
for years into the future.

The Renaissance
During the Middle Ages, Arabs, Persians, and Jews, as 
well as European Christians (after c. 1000 c.e.), con-
tinued the work of the Greeks, including making new 
tables of planetary positions to update Ptolemy’s, and 
keeping track of the precession of the equinoxes. In 
1543, Copernicus’s book on the solar system was pub-
lished. Through a mathematical analysis of Ptolemy’s 
work and later observations, Copernicus showed that 
a system in which the sun was the center of the solar 
system led to simpler and more accurate analysis than 
Ptolemy’s.

Johannes Kepler used Tycho Brahe’s careful naked 
eye observations of the planets to show that Mars went 
around the sun in an ellipse, not a circle as the Greeks 
had assumed. Kepler stated his three laws, which relate 
the speed of a planet to the shape of its orbit, but he 
could not explain why these laws worked. Isaac New-
ton was the first to explain Kepler’s laws. He was able 
to show that any object affected by gravity would move 
in one of the conic sections: Kepler’s ellipse, a line, a 
circle, a parabola, or a hyperbola. The one exception 
was the planet Uranus, which did not follow its New-
tonian orbit. 

It was not until the 1800s that Urbain Leverrier, in 
France, and John Couch Adams, in England, (unknown 
to each other) made the assumption that the discrep-
ancies were because of the gravitational pull of an 
unknown planet. The planet Neptune was discovered 

in 1846 using Leverrier’s prediction. Neptune was 
found by the consideration of the three components, 
Px , Py , and Pz , of Neptune’s position and the three com-
ponents, Vx , Vy , and Vz , of Neptune’s velocity. 

Until 1821, Uranus was moving faster in its orbit 
than expected—more than 4 planetary diameters 
ahead of its predicted position. After 1821, Uranus 
moved slower than expected. Obviously, Uranus 
moved past Neptune around 1821. If one adjusted the 
coordinate system so that Px  

= 0 was Uranus’s position 
in its orbit in 1821 and examined how far Uranus was 
pulled above or below its expected orbit, then one can 
tell whether Neptune was above or below Uranus in 
1821, which gives Py , and also whether Neptune was 
moving up or down, which gives Vy. If we have Pz , 
which represents Neptune’s distance from the sun in 
1821, then Kepler’s laws can be used to find the two 
remaining parameters: Vx and Vz . Leverrier and Adams 
used a shortcut to find Pz . Both used Titius-Bode’s 
law, an empirical formula, to predict the next planet 
beyond Uranus to be 38.8 times Earth’s distance from 
the sun. These predictions were good enough to find 
Neptune, although Neptune is only 30.1 times Earth’s 
distance from the sun. 

Leverrier later examined the orbit of Mercury 
and found a discrepancy of 43 seconds of arc (which 
sounds small but is twice the discrepancies used to 
find Neptune). He computed the orbit of a hypotheti-
cal planet, called “Vulcan,” which would explain this 
43-second variation. Vulcan has never been found, 
and Einstein’s general theory of relativity also explains 
this discrepancy.

Parallax
The ancient Greeks made attempts using parallax (the 
difference in the angle to a distant body measured 
from two different locations, also called triangulation) 
to find the size of the solar system. Being restricted to 
naked-eye observations, their results were inaccurate. 
Using telescopes, a much more accurate measurement 
was made in 1761 in which observers scattered across 
Earth found the parallax of Venus when it passed in 
front of the sun. The observations gave a value of 
95.25 million miles from Earth to the sun (the mod-
ern estimate is just under 93 million miles). A much 
more difficult problem was to find the distances of 
stars by their parallax when viewed from opposite sides 
of Earth’s orbit, first accomplished by Friedrich Bes-
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sel in the 1830s. Is space Euclidean or non-Euclidean? 
If measurably non-Euclidean, this would show up in 
stellar parallax measurements. No such effect has yet 
been observed, so one can say—except for relativistic 
considerations—that space is Euclidean for hundreds 
of light-years from Earth.

Astrophysics
Astrophysical questions date to the ancient Chinese, 
who discovered sunspots, and Hipparchus (c. 190–120 
b.c.e), who worked on the magnitude (or brightness) 
of stars. His magnitudes, much refined, are still in use 
today. However, astrophysics as a discipline can be said 
to have started with Joseph von Fraunhofer, who in 
1815 devised a spectroscope and catalogued the vari-
ous lines (known as the Fraunhofer lines) that can be 
seen in the solar spectrum. In the 1850s, Gustav Kirch-
hoff and Robert Bunsen determined that these lines 
belonged to different chemical elements. Thus, by 
examining the spectrum of a star, its chemical compo-
sition can be determined. In addition, it was discovered 
that magnetic fields caused broadening and splitting of 
Fraunhofer lines, allowing the magnetic fields of stars 
to also be investigated.

Over the course of the twentieth century, astro-
physicists went from studying the spectrum of visible 
light to studying every frequency of electromagnetic 
waves—from gamma rays to radio waves. There is now 
no known radiation from a star that is not being used 
to help find answers to the questions of what stars are, 
and how they operate.
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Atomic Bomb  
(Manhattan Project)
Category: Government, Politics, and History.
Fields of Study: Algebra; Data Analysis 
and Probability; Number and Operations; 
Representations.
Summary: The atomic bomb was made possible by 
Einstein’s discovery of energy-mass equivalence.

Influenced by a letter from the famous German-Amer-
ican theoretical physicist Albert Einstein and other 
prominent scientists, U.S. President Franklin D. Roos-
evelt authorized the establishment of the Manhattan 
Project (the code name given to an elaborate effort 
to design, construct, and detonate an atomic bomb) 
in mid-1942. The project was directed by physicist 
J. Robert Oppenheimer, and his group of scientists, 
mathematicians, and engineers conducted secretive, 
pioneering research that led to the development of the 
first nuclear weapons. 

Among the scientists who worked on the Manhattan 
Project were Italian physicist Enrico Fermi, American 
theoretical physicist Richard Feynman, Hungarian-
American mathematician John von Neumann, Hun-
garian-American theoretical physicist Edward Teller, 
and Polish-American mathematician Stanislaw Ulam 
(Einstein also worked as a consultant throughout the 
project). Notably, several of these scientists, including 
Einstein and Ulam, were of Jewish decent and eventu-
ally resided in America because of Nazi persecution.

Through much trial and tribulation, the first nuclear 
bomb detonation test titled “Trinity” was success-
fully conducted on July 16, 1945, in Alamogordo, New 
Mexico. The Manhattan Project ultimately produced 
two types of atomic bombs; the plutonium implo-
sion device (the plutonium or implosion bomb), and 
the uranium bomb (the uranium “gun” bomb). The 
plutonium bomb was the more difficult of the two to 
construct and required testing, whereas the uranium 
bomb was comparatively more simplistic and remained 
untested until the war.

Following Trinity, the U.S. government attempted to 
end World War II by detonating its uranium bomb nick-
named “Little Boy” over Hiroshima, Japan, on August 6, 
1945. The blast destroyed approximately one-third of 
the city and caused about 140,000 causalities. Japan’s 
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reluctance to surrender prompted the United States to 
drop its plutonium bomb nicknamed “Fat Man” over 
Nagasaki, Japan, three days later. This blast killed about 
70,000 people, destroyed about one-third of the city, 
and subsequently ended the war. 

The revolutionary science of the Manhattan Proj-
ect—namely the process of creating atomic explo-
sions—was seemingly insurmountable, and paved the 
way for significant advancements in physics, chemis-
try, and mathematics. However, the historical impact 
of the atomic bombs dropped on Japan, as well as the 
philosophical and ethical ramifications, is an issue still 
debated today. In this regard Oppenheimer said, “It is 
a profound and necessary truth that the deep things in 
science are not found because they are useful; they are 
found because it was possible to find them.”

The First Nuclear Reactions
Nuclear fission is the splitting of the nucleus of a heavy 
atom into smaller pieces, which releases a gigantic 
amount of energy. When this type of reaction is self-
sustaining (it stimulates further reactions), it is called a 
“chain reaction.” A critical mass is the minimum mass 
of fissionable material needed to ensure that a nuclear 
reaction sustains a chain reaction. Achieving a critical 
mass and, ultimately, a chain reaction was the essential 
challenge in developing both Little Boy and Fat Man.

The Little Boy design utilized the “gun method,” which 
was detonated by firing a mass of uranium-235 down a 
cylinder into another mass of uranium-235 to produce 
a chain reaction. Fat Man was an implosion-type device 
that used plutonium-239. In this design, plutonium was 
placed in the center of a hollowed-out sphere of high 
explosives, and a number of detonators located on the 
high explosive’s surface were simultaneously fired pres-
surizing the core and increasing its density—creating an 
implosion that resulted in a chain reaction. The Trinity 
test bomb was similar and was nicknamed “The Gad-
get.” Little Boy produced a blast of approximately 12,500 
tons of trinitrotoluene (TNT). Fat Man had the explo-
sive power of about 22,000 tons of TNT and The Gadget 
had a blast yield of around 15–20 tons of TNT. 

A tremendous amount of engineering, chemistry, 
physics, and mathematics was involved in the develop-
ment and deployment of the atomic bombs. Among 
these fields was a branch of theoretical physics called 
“quantum mechanics” (the set of scientific principles 
that describe the behavior of matter and energy pre-

dominating at both the atomic and subatomic levels), 
which at the time was in its infancy. Quantum mechan-
ics was developed under the assumption that energy is 
not infinitely divisible but rather composed of quanta 
(small increments). 

Unlike classical or Newtonian mechanics, which 
describes the motion of objects we encounter every day 
at the macrocosmic level, quantum mechanics deals 
with uncertainty in many of its results and is statisti-
cal and probabilistic in nature. Although initially this 
branch of physics was not readily accepted, it nonethe-
less proved an essential tool in the development of the 
atomic bomb as it provided many of the insights nec-
essary for its construction. In regard to the science and 
mathematics utilized in the development of the bomb 
Stanislaw Ulam said, “It is still an unending source of 
surprise for me to see how a few scribbles on a black-
board or on a sheet of paper could change the course 
of human affairs.”

The Energy-Mass Equivalence
One of the most imperative concepts in the develop-
ment of the atomic bomb was the mathematical for-
mulation of the energy-mass equivalence, which was 
derived by Einstein. He established that mass and 
energy are, in fact, both different manifestations of the 
same thing. This idea was a counterintuitive and revo-
lutionary result that spawned from his 1905 special 
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theory of relativity. Einstein’s formulation implied that 
very minute amounts of mass can be converted into 
excessively large amounts of energy. For example, this 
very encyclopedia is, in actuality, a form of energy in 
storage, which could equivalently be called rest energy 
or mass. If this encyclopedia could be completely con-
verted into energy, it would yield a gigantic amount of 
energy indeed. This energy-mass equivalence concept is 
depicted symbolically through one of the world’s most 
famous equations:

E = mc2.

This equation is interpreted as the rest energy E of 
an object being equivalent to the mass m of the object 
multiplied by the square of the speed of light c in a 
vacuum. Alternatively, E = mc 2 can be construed as the 
equation that allows one to determine the amount of 
mass needed to produce a certain amount of energy—
assuming all of the mass can be converted completely 
into pure energy.

To better understand how this famous simple equa-
tion was crucial in the development of the atomic bomb, 
one needs to understand its nature. First, E = mc 2 is a 
“direct proportion” (E is directly proportional to m), 
and is symbolically expressed as E m∝ . In general, a 
direct proportion has the form of

x y∝  or equivalently x ay=

where a is the proportionality constant. As a simple 
example:

 
4 2∝  or equivalently 4 2= a.

In this case, the proportionality constant is a = 2, 
whereas in the energy-mass equivalence, the pro-
portionality constant is c 2. According to the Interna-
tional Bureau of Weights and Measures, the value of 
c is 299,792,458 meters per second (m/s), or about 
186,282.4 miles per second (mi/s). For computa-
tional simplicity, c is often rounded to 300,000,000 
m/s (186,000 mi/s), except when performing experi-
ments that require exact values for light speed. Now, 
taking c = = ×300 000 000 3 10

8
, , m/s m/s  one can com-

pute that 1 kilogram of plutonium could theoretically 
turn into 

E= ⋅ = × ⋅90 000 000 000 000 000 9 102 2 16 2 2, , , , , / /kg m s kg m sE= ⋅ = × ⋅90 000 000 000 000 000 9 102 2 16 2 2, , , , , / /kg m s kg m s

Therefore, one can intuitively understand why a 
small amount of uranium or plutonium can generate 
explosions as massive as the ones produced by Little 
Boy and Fat Man. 

It is interesting to note that for the Trinity test, 
the mushroom cloud expanded to nearly 300 meters 
(about 984 feet) in .053 seconds.
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Auto Racing 
Category: Games, Sport, and Recreation. 
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Mathematics is essential in the design  
of race cars and racetracks, and the formulation of 
race strategy.

Auto racing has taken place for as long as cars have 
existed. While the early days of racing were related to 
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fairly simple vehicles, it is now a very technical sport 
that has multiple branches with fans worldwide. Auto 
racing includes not only cars that are similar to those 
driven by the average citizen but also cars that are very 
sophisticated. The different branches of auto racing 
differ in the specifics of the car but all share a strong 
relationship to mathematical principles. The design of 
the car, its tires, the track, and the drivetrain require 
very careful measurement. The optimal path for a 
given track and weather condition requires a deep 
understanding of angles and geometry. Analysis of 
data to create probability information enables drivers 
and their teams to make wise decisions for a given set 
of conditions during a race.

Overview
Auto racing began as soon as the automobile was 
invented in the late 1800s. Auto racing is a broad term 
that includes single-seat cars or open wheel cars, which 

the Indianapolis 500 has made famous. Formula 1 rac-
ing is another type of open wheel racing but involves 
racing around courses that are not oval shaped. The 
National Association for Stock Car Auto Racing (NAS-
CAR) utilizes cars that are modified from cars that 
can be bought by the general public. Many successful 
professional race car drivers began their racing careers 
with Kart racing, which involves vehicles that look like 
sophisticated go-karts.

Race Track Design
The racing surface and the track design are significant 
factors that affect both car design and driving strategy. 
Race surfaces can include asphalt, concrete, dirt, sand, 
and (sometimes) ice. Some tracks consist of a very 
short distance (1/4 mile) and are straight. These tracks 
are typically used for drag racing, which involves cars 
trying to go as fast as possible over a short distance. 
Many track designs have drivers travel in an oval, or 
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near-oval, shape with some banking to help make 
high-speed turns easier. An understanding of geom-
etry is imperative when determining how best to set 
up the car to handle the banking and the speeds. Track 
designs also include road courses in which racers turn 
both left and right and require a completely differ-
ent car design to handle banking in both directions. 
The radius of a turn influences how fast the car can go 
without losing grip and crashing into the outer wall. 
The speed affects the size of the down force on the 
car (caused by spoilers), and, as such, different tracks 
require car designs.

Car Design
Race car designs evolve in response to technology 
changes and safety concerns, often as a result of math-
ematical or statistical analysis. Each branch of auto rac-
ing has very strict rules on car design, which are tested 
before—and sometimes after—each race. The testing 
includes very careful measurements of various compo-
nents of the car from the size of various components 
of the engine, to the car’s width, height, and weight. 
The tests focus on items that affect the car’s power (the 
engine), response to the environment (temperature, 
air resistance, and gravity), and its influence on forces 
that are made on the car (width, height, and weight). 
Because they are such an important part of car perfor-
mance, tires are supplied to the teams. A large amount 
of testing by tire companies goes into determining 
which type of tires will be provided for a particular 
track. The air and track temperatures often change 
drastically during a race and can affect how the tires 
interact with the track surface—providing more or less 
grip. Likewise, the gas that is put into the car is also 
provided to drivers. These standardizations provide a 
more even playing field for the teams so that the driver 
who wins is, presumably, the one with the greatest skill. 
Teams can alter the cars slightly during races to modify 
how the car receives forces from the track and from the 
air. These modifications include taking out or adding 
small wedges that alter the angle that the car sits on the 
track. The impact these small changes make on force is 
understood using trigonometry.

Race Strategy
Once teams have prepared their car and driver for 
the race, the issue of strategy plays an important role. 
Teams use probabilities to determine if and when to 

stop in the pits to change tires or to add gas. Gas mile-
age is estimated by using regression involving the num-
ber of laps, the speed of the car during the laps run, 
and the temperature. This estimation is not absolutely 
exact, and it is not uncommon for drivers to run out 
of gas near the end of some races because of an error 
in the team’s regression model. Some teams alter the 
usual pit stop, which involves replacing all of the tires 
and adding gas, by replacing just some of the tires or 
just adding gas.

Technology and Safety
Technology is playing a bigger role in auto racing in 
both car development and car testing. Car teams now 
use technology to measure a large number of fac-
tors that influence their car’s performance. For some 
branches of auto racing, these measurements are made 
during races. For other branches, the rules prohibit 
this during races but allow the measurements to occur 
during practice and research design. Because testing 
can be so expensive, some tests are done with a few 
drivers and then shared with all the teams. The use of 
computer simulation based on mathematical model-
ing is becoming more prevalent in all branches. It is 
not unusual for teams to use wind tunnels to test car 
design, and fluid dynamic modeling has been used to 
improve the aerodynamic properties of race cars. Off-
season drivers use sophisticated driving simulators to 
hone their skills. 

Technology has also been used to make racing safer. 
Race uniforms, helmets, and car interiors have become 
much less dangerous because of technological improve-
ments. Additionally, track walls now include what is 
called a Steel and Foam Energy Reduction (SAFER) 
barrier, which dissipates the collision energy from a 
crash so that the impact force felt by the car and driver 
is smaller and less dangerous. 
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Axiomatic Systems
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry; Reasoning and Proof.
Summary: An axiom is a statement that is assumed 
to be true, and axiomatic systems have a rich and 
interesting mathematical history.

Axiomatic systems provide a deductive framework for 
mathematicians to combine related definitions and the-
orems that make mathematical knowledge systematic 
and structural. Mathematical theories including num-
ber systems, set theory, probability, algebra, and many 
others are built by using axiomatic systems.

Axiomatic Method and Axiomatic  
System in Mathematics
To build a deductive mathematical system, one needs 
to observe two intrinsic limitations in this process. 

Limitation 1: Not every mathematical term can be 
defined. The reason can be seen by the following con-
siderations: To define a term A, one needs a term B, 
and possibly some other terms. To define the term B, 
one needs another term, C, and so on. One may even-
tually come back to the term A; in which case the defi-
nition would be circular as there are a finite number 
of words. This means that A is used to define A, which 
is undesirable. 

If the definitions are not to become circular, some 
terms are needed to start with. The solution is that 
there will be some terms that will not be defined. 
These will be called “undefined terms,” and will be 
used to define all the other terms to be considered. 
One may think that it is strange that this solution can 
work. How can undefined terms give meaning? This 

puzzle is partially answered upon consideration of 
the next limitation.

Limitation 2: Not every mathematical statement can 
be deduced or proven. The reason is similar to the one 
in Limitation 1; some statements are needed to start a 
chain of deduction: if R, then S; if S, then T; if T, then 
U; and so on. To deal with this limitation, certain state-
ments must be accepted without proof. These state-
ments are called “axioms,” and they are the statements 
that we used to deduce other statements. Actually, the 
axioms are often statements about the undefined terms. 
In other words, the axioms often tell us certain proper-
ties or restrictions of the undefined terms. Thus, the 
axioms help provide meaning to the undefined terms.  
Starting with undefined terms, axioms, and defini-
tions, and by using deductive reasoning to establish 
important mathematics facts in the form of theorems, 
the mathematics system so obtained is said to be built 
by using the “axiomatic method.” Such a system that 
consists of undefined terms, axioms A, definitions D, 
statements of the form If P then Q and proof of such 
statements is called an “axiomatic system.” In an axi-
omatic system, one does not talk about the validity of 
A or P, one talks only about the validity of the proof 
based on A and D.

Historical Developments
Historically, Euclidean geometry was the best-known 
model of an axiomatic system. Around 300 b.c.e., Euclid 
wrote his 13-volume Elements, which contained an axi-
omatic treatment of geometry. It starts with 23 defi-
nitions; Euclid stated 10 axioms. The first five axioms 
are geometric assumptions, which he called postulates. 
The last five are more general, which he called common 
notions. There, Euclid did not use undefined terms.

The most important and fundamental property of 
an axiomatic system is “consistency” (it is impossible 
to deduce from these axioms a theorem that contra-
dicts any axiom or previously proved theorem). The 
Euclidean geometry provides such a consistent axiom-
atic system. An individual axiom is “independent” if it 
cannot be logically deduced from the other axioms in 
the system. The entire set of axioms is said to be inde-
pendent if each of its axioms is independent. Math-
ematicians prior to the nineteenth century doubted 
very much about the independence of the fifth postu-
late (the parallel postulate). They tried to deduce such 
a postulate by using the first four postulates. Despite 
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considerable effort devoted to the task, no significant 
result could be obtained. 

Euclid’s Elements indeed became the most influen-
tial book on geometry, as well as the model of logical 
reasoning and axiomatic system, until the nineteenth 
century when two fundamental developments took 
place. First, it was realized that Euclid’s logical system 
was not rigorous enough. A rigorous axiomatic treat-
ment of Euclidean geometry was given by David Hilbert 
(1862–1943) in his 1899 book Grundlagen der Geomet-
rie (The Foundation of Geometry). Here, Hilbert used 
the undefined terms of point, line, lie on, between, and 
congruent for the geometry system. Second, research 
results of C. F. Gauss (1777–1855), J. Bolyai (1802–
1860), and N. I. Lobachevsky (1793–1856) asserted 
that the parallel postulate was actually an independent 
axiom. Non-Euclidean geometry could be developed by 
replacing the fifth postulate with another independent 
axiom. The lesson from Euclidean and non-Euclid-
ean geometry is that both are valid axiomatic systems. 
When studying Euclidean or non-Euclidean geometry, 
no claims are made on the truth of the axioms about 
the physical world. One merely claims that if the axi-
oms are valid, then the theorems deduced therein are 
also valid. Whether the logical system describes the real 
world is another question.

Current Issues
There are still many issues regarding the axiomatic sys-
tems. The set of axioms in an axiomatic system is “com-
plete” if the axioms are sufficient in number to prove 
or disprove any statement that arises concerning our 

collection of undefined terms. To determine whether 
an axiomatic system is complete is by no means an easy 
question to answer. A great surprise was discovered by 
Kurt Gödel (1906–1978) in 1931. He proved that in a 
formal mathematics system that included the integers, 
there exist statements that are impossible to prove or 
disprove. This result is called Gödel’s incompleteness 
theorem. Also, to determine whether a given propo-
sition is an axiom has been a very important issue in 
computer science and is important when one tries to 
use a computer to do proofs. If the computer cannot 
recognize the axioms, the computer will also not be 
able to recognize whether a proof is valid.
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Babylonian  
Mathematics
Category: Government, Politics, and History.
Fields of Study: Algebra; Connections; Geometry; 
Measurement; Representations.
Summary: Babylon had an advanced utilitarian 
mathematics from which we inherited sexagesimal 
timekeeping.

Our knowledge of Babylonian mathematics (2100–200 
b.c.e.) is based on extensive mathematical calculations 
found on clay tablets in the area of Mesopotamia (now 
Iraq), surrounding the ancient city of Babylon between 
the Tigris and Euphrates rivers. Because only a fraction 
of the tablets have survived—and only a small frac-
tion of those have been translated—our knowledge of 
the depth and breadth of Babylonian mathematics is 
limited. Mathematics historian Otto Neugebauer lik-
ens the situation to tearing a few random pages out 
of a few textbooks and then trying to reconstruct a 
representation of modern mathematics. Nonethe-
less, Babylonian mathematics did involve complicated 
mathematics, and was used primarily to solve practical 
problems. These mathematical problems ranged from 
arithmetic calculations, to algebraic rules, to geomet-
rical formulas, to numerical ideas. 

Babylonian Number System
The Babylonian number system was sexagesimal, using 
both a place value notation based on powers of 60 and 
a base-10 grouping system for numbers between 1 and 
59 within each place value. 

Traces of their sexagesimal notation remain today 
in the recording of time (hours, minutes, seconds) and 
the measurement of angles (degrees, minutes, seconds). 
Their numbers were written in cuneiform, or the use of 
a triangular stylus to make wedges on a clay tablet. A 
vertical line represented unity and a horizontal wedge 
mark represented a 10. 

For example, within each place value, the number 
57 would be represented by 5 horizontal wedges and 
7 vertical lines. Expanding the example, a cuneiform 
number represented in modern form as “3,  4, 57” was 
equivalent to 

3 60 4 60 57 60

3 3600 4 60 57 1 1109

2 1 0( )+ ( )+ ( )
= ( )+ ( )+ ( ) = 7.

The Babylonians had neither a symbol for zero as 
a placeholder nor a symbol to designate the “decimal” 
point in their sexagesimal fractions. Writing and read-
ing numbers required the Babylonian mathematician 
to understand the problem’s context and the use of 
a space to represent either an “empty” place value or 

B



shift to fractional place values. Thus, the previous 
number, “3,4,57,” possibly was equivalent to:  

3 60 0 60 4 60 57 604 3 1 0( ) + ( ) + ( ) + ( )
or 3 60 4 60 57 604 3 2( )+ ( )+ ( )
or 3 60 4 60 57 601 0 1( )+ ( )+ ( )−

or even 3 60 4 60 57 601 2 3− − −( )+ ( )+ ( ).

To avoid ambiguity, modern translations of these 
numbers would be first “3,0,4,57” or “3,4,57,0,0” or 
“3,4;57” or “0;3,4,57” respectively, where the semicolon 
separates whole numbers from fractional numbers. Tab-
lets from the Seleucid period (300 b.c.e.) did include a 
special symbol that played the double role of a place-
holder (zero) and the separator between two sentences. 

Babylonian Arithmetic
Using the sexagesimal system, the Babylonians were 
able to add, subtract, multiply, and divide numbers. 
Their computations were complemented by the use of 
extensive tables. Their multiplication tables had prod-
ucts ranging from 1 × 1 through 59 × 59, and seeming 
somewhat unusual, they had access to multiplications 
tables for “1,20” (or 80), “1,30” (or 90), “1,40” (or 100), 
“3,20” (or 200), “3,45” (225), and even “44,26,40” (or 
160,000). Some of this can be explained by looking at 
their tables of reciprocals for working with fractions. 
For example, one table includes the deceptive notation 
1 ÷ 1,21 = 44,26,40, with the latter value actually being 
“0;0,44,26,40.”

The Babylonians produced extensive tables of 
squares and cubes, tables of square sides and cube 
sides (square and cube roots), and sums of squares 
and cubes. When a table side-value was not available, 
the Babylonians approximated roots using an inter-
polation process based on averaging and division; this 
process was quite fast, producing 26-decimal accuracy 
in five iterations. 

Babylonian Algebra
Though without an algebraic notation, the Babylo-
nians solved numerous types of algebraic equations. 
Each solution involved the replication of a formulaic 
prescription represented by a step-by-step list of rules. 
In effect, their prescriptions invoked algorithms, which 

were usually specific to a stated problem and not gen-
eralized to a class of problems.

For example, consider this Babylonian problem:  
the area and two-thirds of the side of my square have 
I added and it is 0;35. In modern notation, their step-
by-step solution was: 1, the unit, you take; two-thirds 
of 1, the unit, is 0;40: Its half is 0;20 and 0;20 you 
multiply 0;6,40, you add 0;35 to it and 0;41,40 has 
0;50 for its square root. 0;20 that you multiplied with 
itself, from 0;50 you subtract and 0;30 is the side of 
the square. 

In modern mathematics, this same problem would 
involve solving the quadratic equation: 

x x2 2

3

35

60
+ = .

The steps in this problem also can be interpreted 
using geometrical algebra, where the square is “com-
pleted” in a manner similar to the derivation of our 
general quadratic formula. 

In their solution of special types of algebraic equa-
tions, the Babylonians made extensive use of their 
tables of the sums of squares and cubes, especially if 
the equation was of the third or fourth degree. Some of 
their solutions to algebraic problems were quite sophis-
ticated. For example, one problem involved a system of 
equations of the form 

xy n=  and 
mx

y

py

x
q

2 2

0+ + = .

Its solution using substitution would normally lead 
to a single-variable equation involving x6, but the Bab-
ylonians solved it by viewing it as a quadratic equation 
in x3.   

Babylonian Geometry 
Dominated by their work with algebraic ideas, the Bab-
ylonians’ geometry focused on practical measurements 
such as the calculation of lengths, areas, and volumes. 
Again, the Babylonians used prescriptive formulas. 
For example, to calculate a circle’s circumference, they 
multiplied the diameter by 3, implying their value of 
π was 3. For the circle’s area, they squared the circum-
ference and divided by 12, which is equivalent to our 
modern formula A = πr2 if the correct value of π had 
been used.  
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ness transactions). Also, the Louvre tablet (300 b.c.e.) 
includes two series problems

1 + 2 + 22 + 23 + . . . + 28 + 29 = 29 + 29 −1

and

12 + 22 + 32 + 42 +  . . . 92 + 1021 2 3 4 9 10

1
1

3
10

2

3
55 588

2 2 2 2 2 2+ + + + + +

= +



 ( ) =

but historians do not suggest the Babylonians knew 
general series formulas such as

r
r

r
k

n

k

n

= −
−

+

=
∑

1

0

1

1
.

Specific to number theory, mathematics historians 
point to the cumbersome nature of the Babylonians’ 
sexagesimal system, making it difficult to explore ideas 
such as factors, powers, and reciprocals. Some suggest 
that this is symptomatic of the Babylonian’s reasonable 
choice of 3 for π, rather than the fraction

22

7

equal to the more complicated repeating expression  
“3; 8, 34, 17, 8, 34, 17, . . . .”
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Mathematics historians credit the Babylonians with 
the division of a circle into 360 degrees. Neugebauer 
suggests it is related to their Babylonian mile, a mea-
sure of long distance equal to about 7 miles. This mea-
sure evolved into a time unit, being the time it took to 
travel this distance. After noting that 12 of these time 
units equaled a full day or one revolution of the sky, 
the Babylonians subdivided their mile into 30 equal 
parts for simplicity, leading to 12 × 30 = 360 units in 
a full circle.   

The Babylonians computed areas of right triangles, 
isosceles triangles, and isosceles trapezoids, as well as 
the volumes of both rectangular parallelepipeds and 
some prisms. They had difficulties with certain three-
dimensional shapes, being unable to compute cor-
rectly the length of the frustum of a pyramid (they 
claimed it was the product of the altitude by the aver-
age of the bases). 

The Babylonians did know some general geometric 
relationships. For example, they knew that perpendic-
ulars dropped from the vertex of an isosceles triangle 
bisected the base, that corresponding sides of similar 
triangles were proportional, and that angles inscribed 
in a semicircle are right angles. The Babylonians used 
this knowledge to solve difficult geometrical problems, 
such as their determination of the radius of a circle cir-
cumscribing an isosceles triangle. 

Evidence suggests that they knew a precursor of the 
Pythagorean formula. One cuneiform tablet (c. 1700 
b.c.e.) includes sexagesimal numbers written along 
a square’s side (30) and diagonal (“42,25,35” and  
“1; 24, 51, 10”). 

The latter number is both the product of the other 
two numbers and a good approximation of the square 
root of 2 (1.414214). Also, in the Plimpton 322 collec-
tion, some of the tablets contain tables of Pythagorean 
triples (a2 + b2 = c 2), arranged with increasing acute 
angle of the associated right triangle.

Signs of Advanced Mathematical Thinking
For the most part, Babylonian mathematics was 
utilitarian, being tied to solving practical problems. 
Nonetheless, interpretations of some of the tables on 
the clay tablets suggest that the Babylonians occa-
sionally explored theoretical aspects of mathematics. 
Examples include their tables of Pythagorean triples 
and tables of exponential functions (which perhaps 
were used to compute compound interest in busi-
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Ballet
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Geometry;  
Representations.
Summary: Ballet uses geometry to create captivating 
moving art.

Ballet can be considered mathematics in motion from 
basic counting (keeping time with music, and doing 
demi-pliés in childhood dance classes); making lines, 
angles, and geometric shapes in space via basic posi-
tions and choreographed routines of principal dancers 
and the corps de ballet; communicating stories in ballet 
productions (like the classic Swan Lake, or a seasonal 
favorite The Nutcracker); conversing visually among 
dancers (as in a pas de deux with Margot Fonteyn and 
Rudolf Nureyev); and by representing general emo-
tions, moods, and abstract themes (as in George Bal-
anchine’s Serenade). Words from the French language 
may be common in ballet terminology, but concepts 
from mathematics abound as well. These representa-
tions, communications, and geometric creations can 
all be achieved and evidenced through the dance fig-
ures and ballet movements.

Ballet distin-
guishes itself from many 

other forms of dance through 
its use of the “turnout” (an out-

ward rotation of the legs in the hip 
sockets to form a 180-degree line with 

the feet in first position). This turnout gives 
the dancer a strong base and the ability to move in any 

direction while allowing a more open body presenta-
tion to the audience, yet holding the graceful curves and 
shapes of the dancer’s body to preserve a svelte “line.”  
Other standard positions of the feet, carriage of the 
arms, or basic movements of the body produce angles 
such as a 135-degree arabesque, a 90-degree attitude, or 
a 45-degree battement tendu. The rond de jambe à terre 
or en l’air utilizes circular movements of the leg to trace 
semicircles or arcs, on or off the ground. These geomet-
ric lines, circles, and angles continue when basic steps 
become building blocks to more complicated move-
ments. Meanwhile, dancing on the tips of the toes (en 
pointe), another distinctive ballet feature, heightens the 
dancer’s lines in a vertical fashion. The linear extension, 
from head to toe, fingertip to fingertip, does not end at 
the extremities but continues as if through an imagi-
nary line into the space around the dancer.

Ballet as Geometry
One of the earliest ballet performances was the six-
teenth-century Le Balet Comique de la Reine by 
Balthazar Beaujoyeulx, commissioned by the court of 
France. During that elaborate production, the dancers 
performed dozens of geometric figures involving tri-
angles, circles, and squares for their geometric propor-
tions and spatial configurations. These beginning bal-
lets were influenced by the writings of Pythagoras and 
Plato and represented the cosmic and heavenly signifi-

cance of numbers and geometry. A twen-
tieth-century choreographer, Frederick 
Ashton, however, was inspired by math-
ematics for its sheer beauty in his cre-

ation, Scènes de Ballet. Working from a book 
of Euclid theorems, he specifically used geometry to 
create floor patterns and dance movements that could 
be viewed from any angle to see the geometric figures 
and “symmetrical asymmetries.” Combined with the 
strong rhythms and counts of Igor Stravinsky’s music, 
and geometrically patterned costumes and set details, 
Ashton’s work was said to have beautifully combined 
mathematics and ballet for its visual imagery.

Notation Systems
To preserve these choreographed works of art, dance 
notation systems were created to symbolically repre-
sent the positions, steps, and movements of the danc-
ers. Early seventeenth- and eighteenth-century sys-
tems, such as Feuillet notation, recorded mainly floor 
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patterns and feet positions, whereas the twentieth-
century notation systems, Labanotation and Benesh 
Movement Notation (written on vertical and horizon-
tal staffs, respectively), corresponded to the scores of 
accompanying music. These notation systems detailed 
the entire body movements from head to toe of every 
dancer. Even with the advent of video recording, it is 
these symbolic notations showing graphical represen-
tations of the step details that best preserve ballets for 
future generations.

Further Reading
Cooper, Elizabeth. “Le Balet Comique de la Reine: An 

Analysis.” http://depts.washington.edu/uwdance/ 
dance344reading/bctextp1.htm.

Greskovic, Robert. Ballet 101: A Complete Guide to 
Learning and Loving the Ballet. Milwaukee, WI:  
Limelight Editions, 2005.

Minden, Eliza Gaynor. The Ballet Companion. New York:  
Fireside, 2005.

Schaffer, Karl, and Erik Stern. “Math Dance 
Bibliography.” http://www.mathdance.org/
MathDance-Bibliography.pdf.

Thomas, Rachel. “Scènes de Ballet.” http://plus.maths 
.org/issue24/reviews/ballet/.

Elizabeth A. McMillan-McCartney

See Also: Ballroom Dancing; Contra and Square 
Dancing; Musical Theater.

Ballroom Dancing
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Geometry; 
Representations.
Summary: Ballroom dancing allows students to 
approach mathematics in a variety of ways.

 
Ballroom dancing, considered sophisticated for its 
elegance, is a style of choreographed dance showcasing 
not only the dancers’ technical skill but also their poise 
and style. Originally danced primarily at balls for the 
social elite, ballroom dancing has become a competi-
tive sport. Dancing allows students to approach math-

ematics in a variety of ways, from the basic arithmetic 
of the beats per minute (bpm) to the geometric spatial 
relationship with respect to the other dancers. Chore-
ographers Erik Stern and Karl Schaffer have created a 
dance called a “math dance.” The purpose is twofold: to 
use mathematics to create dance, and to help students 
learn mathematics concepts through the movements of 
the dance. Some of the topics explored in math dances 
are the mathematics of rhythm, polyhedra, symmetry, 
and dissection puzzles.

History
The phrase “ballroom dancing” derives from the Latin 
word ballare meaning to sweep or to dance. Now con-
sidered historical dances, the original forms of ball-
room dancing included the minuet and quadrille. Some 
steps performed in the quadrille, such as the entrechats 
(crossing the legs one in front of the other multiple 
times) and the ronds de jambes (circular movement of 
the leg while it is extended, toe pointing to the floor), 
have disappeared from the modern ballroom yet still 
exist in the ballet world. 

In the early 1800s, the waltz made its appearance; 
the distance between dancing partners was considered 
scandalous at the time since the waltz required the 
partners to dance in close proximity. The early 1900s 
brought the birth of jazz and new dance styles as danc-
ers moved together yet independently of each other. In 
addition, lively dances such as the Foxtrot, otherwise 
known as the one-step or two-step, moved away from 
the traditional placement of feet being turned out and 
instead called for dancers to have their feet parallel to 
each other. While many people are unfamiliar with any 
ballroom dances besides the waltz, competitive ball-
room dancing has gained notoriety; it has been show-
cased on the ABC television show Dancing with the 
Stars and has become an Olympic sport as well. 

Beats
Ballroom dancing consists of a series of dance moves, 
where more complicated dance steps are called “figures” 
or “dance figures.” Each of the formally named dances 
has a variety of dance moves that can be put together 
to form a personalized performance. Determining the 
dance moves to use involves more than merely count-
ing the beats. One can calculate the total number of 
beats that will occur in a song and then determine how 
many different dance moves would be necessary. For 
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example, if one hears 12 beats in a five-second segment 
of the song, it can be calculated that the song has 144 
bpm. If the song is exactly two minutes long, one can  
calculate there are 288 beats to work with for the whole 
song (2 × 144 = 288). Since each dance move is typi-
cally 8 beats, dividing 288 by 8 beats indicates one needs 
36 dance moves. The moves can be repeated, using, for 
example, 9 moves 4 times each or 11 moves 3 times each 
(the second option gives the dancer three fewer moves 
than needed, requiring a dramatic flourish to end the 
dance). The total number of beats combined with the 
thematic moves of a particular dance and an individual’s 
personal signature steps form a composite whole.

Rhythm
One rhythm option for the American-style Foxtrot 
consists of Slow, Quick, Quick, or half, quarter, quarter 
in 4/4 time; this approach to the dance gives teachers 
the opportunity to teach fractions to students using 
dancing. By creating a dance of successive moves in 
which two basic steps make one whole move, students 
will use fractions—adding and subtracting in 4/4 time 
and introducing the family of fractions

1
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1

8
, 

1

4
,
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1

2
.

This also can be done in 6/8 time with 1

2
, 1

3
, 1

6
, and so 

on.

Geometry
As the lead dancer gauges the couple’s location within 
the coordinate plane of the dance floor, he or she 
keeps them spatially equidistant from other couples. 
In addition to the symmetry involved in the various 
dance moves on the dance floor, symmetry is consid-
ered within each dancer’s pose and posture (the form 
created by the two partners together—symmetrical or 
asymmetrical). This symmetry can lead to an under-
standing of angles and curves when various dance poses 
are examined, and allows students the opportunity to 
solve problems kinesthetically when they attempt to 
form a mirror image of their partner while executing 
the dance moves.

Further Reading
Hackney, Madeleine. “Dancing Classrooms Enhance 

Math Skills.” Connect 19, no. 4 (2006).

International Dance Sport Federation. http://www 
.idsf.net.

National Dance Council of America. http://www.ndca.org.
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Senses in Learning.” Australian Senior Mathematics 
Journal 19, no. 1 (2005).

World Dance Council. “Welcome.” http://www.wdc 
dance.com.

Deborah L. Gochenaur

See Also: Ballet; Contra and Square Dancing; 
Geometry of Music; Step Dancing.

Bankruptcy, Business
Category: Business, Economics, and Marketing.
Fields of Study: Data Analysis and Probability; 
Number and Operations; Problem Solving.
Summary: The value of a business entering 
bankruptcy is determined by the asset, income, or 
market approach and creditors are repaid according to 
their risk.

Bankruptcy of a business occurs when the business is 
legally declared insolvent (its assets are less than its li-
abilities). If the debtor files a bankruptcy petition, it 
is called a voluntary bankruptcy. However, if creditors 
force the debtor into bankruptcy, then it is called an 
involuntary bankruptcy. Most bankruptcies are volun-
tary. In either case, the value of the business needs to 
be determined for legal purposes. The standard of the 
value used in the valuation is the fair market value (the 
value of the price of the firm that a rational buyer is 
willing to pay to a willing seller in a free market). There 
are three basic approaches for valuating the business: 
the asset approach, the income approach, and the mar-
ket approach. The hierarchy of the creditor in a bank-
ruptcy is determined by the amount of risk the creditor 
bears: the creditor who bears least amount of risk will 
have priority to receive payment after liquidation. 

Asset Approach
The asset approach determines the value of a company 
by adjusting its book value of assets to the current 
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market value. It is based on the economic principles of 
substitution: a rational investor will not pay more for 
a business asset than the price of a different asset that 
provides similar utility. There are two methods associ-
ated with the asset approach: the adjusted book value 
method and the replacement cost method. 

In the adjusted book value method, the assets and 
liabilities on the balance sheet are examined item by 
item by professionals to determine the business’s cur-
rent market value. Once the assets and liabilities have 
been adjusted to the current market value, the value of 
the company is calculated as the difference. 

In the replacement cost method, the value of each 
asset and liability on the balance sheet is first deter-
mined as the cost to replace it. Then, the value the 
company is determined as the difference of its assets 
and liabilities. 

The asset approach is not reliable for companies 
with significant intangible assets because the approach 
involves professional judgment. It is more suitable 
for companies that have many tangible assets and few 
intangible assets. 

Income Approach
The income approach determines the fair market value 
of a firm by discounting its expected cash flows at an 
appropriate discount rate assuming the firm will con-
tinue to operate without liquidation. The discount 
rate is often chosen to be the firm’s weighted average 
cost of capital (WACC). The procedure is completely 
analogous to that of determining the net present value 
of a firm in corporate finance theory. Mathematically, 
the fair market value under the income approach can 
be written as 

FMV
WACC

=
( )E C

where FMV is the fair market value, E C( )  is the 
expected cash flows under the assumption that the firm 
will continue to operate, and WACC is the weighted 
capital of cost.

In corporate finance theory, WACC is often calcu-
lated as the weighted average of the cost of debt of the 
firm and the cost of equity of the firm 

WACC = −( )
+

+
+
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where Tc
 is the corporate tax rate, rD

 is the cost of 
debt, rE

 is the cost of equity, B is the market value 
of the firm’s bonds, and S is the market value of the 
firm’s stocks.

WACC takes into consideration the facts of lever-
age and taxes and thus is the appropriate discount 
rate used for income approach. The income approach 
assesses the value of the debtor to the creditors. How-
ever, it fails to take account of the value inherent in the 
flexibility of decision making, which is often valued 
using a mathematical tool called “decision tree.” 

Market Approach
The market approach assesses a company’s value by 
comparing it with similar companies in the market. 
The rationale behind this approach is that the price of 
the subject company should be very close to the val-
ues of the similar companies in the market. There are 
two methods associated with the market approach: the 
guideline public company method, and the comparable 
transaction method. In the guideline public company 
method, a peer group of public companies with similar 
sizes, natures, operations, and financial characteristics 
is first selected. Next, the enterprise value of each com-
pany in the group is calculated as 

EV = × + −P N D CS S E

where EV is the enterprise value, PS  is the stock price 
per share, NS  is the number of outstanding shares, D  
is total debt, and CE is excess cash.

Then market multiples, such as enterprise value/
revenue and enterprise value/earning before interest 
and tax, will be calculated using the enterprise value. 
Finally, the value of the subject company is determined 
by applying the calculated market multiples. For exam-
ple, if the enterprise value/revenue is used, then the 
value of the subject company can be calculated as

 
V R= ×EV

where V is the value of the subject company and R is 
the revenue of the subject company.

In the comparable method, the value of the subject 
company is determined in a similar fashion as in the 
guideline public company method. In other words, 
market multiples are derived, and then they are applied 
to the subject company to determine its value. However, 
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in the comparable method, public data of comparable 
transactions are used to calculate the market multiples. 

 Thus, the comparable method also consists of 
three steps: selecting a group of comparable transac-
tions, calculating market multiples, and applying the 
market multiples. 

The biggest drawback to the guideline public com-
pany method is that it is not applicable for nonpub-
lic companies. The challenge with the comparable 
method is finding appropriate and reliable compa-
rable transactions. 

Paying Creditors
When a company declares bankruptcy, its creditors 
must be paid, but the creditors receive only some of 
the money they are owed. For example, if a bankrupt 
company is ordered to pay 10 cents on the dollar, this 
means for every dollar the company owes a creditor, it 
will pay only 10 cents. This is a proportional solution 
that is easy to arrive at using simple algebra. However, 
this is not the only payout strategy. There are several 
mathematical methods that can be used to determine 
how much money each creditor should receive. In the 
total equality method, available capital is simply divided 
equally among debtors, regardless of how much they 
are owed. A variation, traced back to medieval philoso-
pher Moses Maimonides, proposes giving every debtor 
as equal a share as possible but never more than they 
are owed. In modern terms, this is a constrained opti-
mization problem that can be solved using methods 
such as linear programming. Other decision meth-
ods are logically and analytically more complex, like 
the Shapely value, which considers paying a sequence 
of creditors their full amounts owed, to the extent of 
available funds, for all possible orderings. This game-
theory approach is named for American mathemati-
cian and economist Lloyd Shapely.

Further Reading
Brealey, Richard A., Stewart C. Myers, and Allen 
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ed. Upper Saddle River, NJ: Pearson Education, 2005.  

Newton, Grant W. Practice and Procedure. Vol. 1, 
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Wiley, 2010. 
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See Also: Accounting; Bankruptcy, Personal; Budgeting.

Bankruptcy, Personal
Category: Business, Economics, and Marketing.
Fields of Study: Data Analysis and Probability; 
Number and Operations; Problem Solving.
Summary: Personal bankruptcy can be caused by 
exponentially increasing debt, and mathematics is 
used to calculate payments or to divide assets among 
creditors.

Personal bankruptcy is a legal proceeding intended to 
provide relief for the debtor. Personal bankruptcy es-
sentially results from huge debts, which can be caused 
many factors including unexpected medical bills, huge 
credit card debts, poorly managed loans, unemploy-
ment, and divorce. The fundamental formula that lies 
behind most large debts is exponential growth. 

Legal Procedure 
Personal bankruptcy in the United States is usually a 
court-supervised procedure that provides the debtor 
with the opportunity for a fresh financial start. The 
earliest personal bankruptcy law in the United States 
can be traced to 1800. The most recent personal bank-
ruptcy law passed by the U.S. Congress is the Bank-
ruptcy Code of 1978. Under this law, an individual may 
file a voluntary petition under either Chapter 7 (liqui-
dation) or Chapter 13 (Reorganization). 

If a personal bankruptcy case is filed under Chapter 
7, a court-supervised procedure begins. The debtor’s 
assets will be classified as either exempt or nonexempt 
according to the state law. A trustee will then collect the 
nonexempt assets of the debtor. The debtor is allowed 
to keep all the exempt assets provided such an asset is 
not secured by any property. For example, a mortgage 
is secured by the house. Thus, debtors can still lose their 
houses if mortgaged payments fall behind. The debts 
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of the debtor will be wiped out except certain non-dis-
chargeable debts including alimony, child support, stu-
dent loans, taxes, and any fines resulting from criminal 
conviction. The record of personal bankruptcy could 
stay on the debtor’s credit history for up to 10 years. 
In summary, under Chapter 7, the debtor is discharged 
most of the debts and surrenders all possessions except 
those necessary for living. However, not everyone is 
qualified for Chapter 7 bankruptcy. To qualify, the 
debtor must complete Official Form 22A (Chapter 7) to 
pass the means test. The personal bankruptcy involves 
balancing the conflicting interests of the creditors and 
the debtor. While a qualified debtor can wipe out most 
debts under Chapter 7, some creditors will not receive 
any payment. The 2005 Bankruptcy Abuse Prevention 
and Consumer Protection Act was enacted to prevent 
the abuse of Chapter 7 and makes it more difficult for 
a debtor to file under Chapter 7. 

If a personal bankruptcy petition is filed under Chap-
ter 13, then the debtor is required to propose a repay-
ment plan that will pay the debts during a specified 
period of time (typically three to five years). The plan 
must be reasonable and meet certain requirements. It 
must be approved by the court. Although the debts of 
the debtor cannot be written off immediately under 
Chapter 13, the debtor is protected from debt-collecting 
actions from the creditors while the repayment plan is in 
effect. Thus, the Chapter 13 bankruptcy is often chosen 
by those who have a stable income. 

Exponential Growth
Personal bankruptcy results from unmanageably large 
debts that can be caused by many factors such as medi-
cal costs because of under-insurance and uninsured 
status, compulsive buying habits, loss of job, or irre-
sponsible loans. The fundamental formula that leads 
to a large debt is the law of exponential growth, which 
occurs when the growth rate of a quantity is propor-
tional to the current value. In mathematics, exponen-
tial functions generally involve the constant e. Math-
ematically equivalent forms with different bases may 
be used in order to more intuitively correspond to the 
parameters of a real-life problem, such as interest cal-
culations. The traditional way of calculating interest 
on a loan is called compound interest, under which 
the interest earned during each interest measurement 
period (month, quarter, or year) will automatically be 
added to the principal to earn additional interest dur-

ing the next interest measurement period. Mathemati-
cally, this can be expressed as

B B rt

t= +( )0 1

where B0  is the principal amount, Bt  is the balance of 
the loan at the end of t-th interest measurement period, 
and r is the interest effective per interest measurement 
period.

The loan balance under the compounding inter-
est grows rapidly over a relatively long period, even if 
the interest rate is not high. For example, consider a 
person who takes a loan of $10,000 from a bank at a 
monthly interest rate of 1.5%. The loan balance after 
one, five, and 10 years will be $11,956, $24,432, and 
$59,693, respectively.

Mathematical Division of Assets
The ideas of dividing and choosing have existed as long 
as mankind. The mathematical theory of fair division 
dates back to World War II, to Polish mathematicians 
Hugo Steinhaus, Bronisław Knaster, and Stefan Ban-
ach. The classic bankruptcy problem in game theory 
addresses fairness in one way. It involves allocating 
some amount of resources among two or more indi-
viduals who have a claim on them, assuming that any 
division of the assets is allowable and that there are not 
enough resources to satisfy all claims. Real-life exam-
ples include someone who has declared Chapter 13 
bankruptcy and therefore must repay some creditors, 
or dividing a deceased person’s estate among several 
heirs—especially when the estate cannot satisfy all the 
deceased’s commitments. 

Assets may be divided equally (with or without 
ensuring no claimant receives more than his or her 
claim), proportionally according to the relative size 
of the claim, or by other more complex strategies. 
The cake-cutting problem also tackles the issue of fair 
allocation but includes more subjective measures of 
valuation that must be modeled mathematically, and 
sometimes an asset pool with constraints on the ways 
in which it may be divided. Cake-cutting problems 
typically require iterative algorithms to solve.

Further Reading 
Anosike, Benji O. How to Declare Your Personal 

Bankruptcy Without a Lawyer. 3rd ed. Newark, NJ: 
Do-It-Yourself Legal Publishers, 2004.
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Bar Codes
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Number and Operations; 
Representations.
Summary: Bar codes encode numerical data visually 
for product identification and other purposes.

A bar code is a visual representation of information 
intended to be decoded by an optical scanner called a 
bar code reader. The reader illuminates the bar code, 
thus allowing its light sensor to detect the patterns of 
dark and light bars. The sequence and width of dark 
and light bars represents a unique sequence of num-
bers and letters. 

Origins
It took 26 years for the idea of bar codes to be suc-
cessfully implemented in the retail industry. In 1948, 
two graduate students at Drexel University, Norman 
J. Woodland and Bernard Silver, overheard a conver-
sation in which the president of a local supermarket 
chain in Philadelphia wished to automate the checkout 
process. At that time, a cashier in a supermarket would 
have to type into a cash register the price of all items 
in a purchase—a time-consuming and error-prone 
task. Woodland and Silver filed a patent application 
in 1949, obtaining the patent in 1952, for an optical 
device that would read information automatically. The 
first prototype was produced by IBM but was imprac-
tical because of both its size and the heat generated by 
the 500-watt light bulb used by the bar code scanner. 
The patent was sold in 1952 to the Philadelphia Stor-

age Battery Company (Philco), which was also unable 
to produce a viable prototype, and sold the patent the 
same year to the Radio Corporation of America (RCA). 
Bernard Silver died in a 1963 car accident, before the 
bar code system was implemented in practical settings. 
The invention of lasers and integrated circuits in the 
1960s allowed the manufacture of small, low-energy 
bar code readers. RCA developed a modern version 
of bar codes in 1972 in a Kroger store in Cincinnati, 
but the code was printed in small stripes that were eas-
ily erased or blurred by employees who had to attach 
them manually to each item. Norman J. Woodland was 
an employee at IBM at the time and led a team that 
produced bar codes according to a standard known as 
Universal Product Code (UPC) still in use today. Bar 
codes are used in nearly all retail products worldwide. 
The applications of bar codes have also reached far 
beyond the retail industry; they are now used in such 
disparate applications as patient identification, airline 
luggage management, and document management, as 
well as purchase receipts.

The Mathematics of Bar Codes
The most ubiquitous form of bar codes consists of a 
visual pattern of long lines (hence the “bar” in “bar 
code”), which has four well-defined zones (see Figure 
1): (1) quiet zone, or empty zone, located in the left 
and right zones of the code; (2) initial character (right) 
and final character (left) are standard bars that appear 
on all bar codes, and indicate where the information 
begins and ends; (3) variable-length character chain, 
which contains as many characters as needed to encode 
the message; and (4) checksum, which is a number that 
is computed algebraically from the other characters 
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using modular arithmetic, and is used to verify that 
the characters have been correctly transmitted and 
interpreted. The digits are either simply added or are 
weighted. For example, the 10-digit International Stan-
dard Book Number (ISBN-10) uses weights based on 
digit position and modulus 11 arithmetic.

Each digit is encoded by two white and two black 
bars. The bars have widths of 1 to 4 units, and the total 
width for each digit is always seven units. Bar code 
readers are designed to read bar codes irrespective 
of their size; a magnified bar code encodes the same 
information as a reduced-size bar code. This property 
is mathematically known as scale invariance. 

Further Reading
Adams, Russ, and Joyce Lane. The Black & White 
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See Also: Coding and Encryption; Comparison 
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Baseball
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability; 
Measurement.
Summary: Baseball is a mathematically rich sport, 
especially with regard to its array of statistics.

Though America’s favorite sport for more than a cen-
tury, the game of baseball has undergone many chang-
es, many in response to statistics gathered regarding 
all parts of the game. At first, the statistics were limited 
to scorecard data but have expanded to include every 
action and detail of the game. More so, this gathering 

and analysis of data has expanded beyond the realm of 
statistical analysis, as mathematics is now used to ex-
amine all aspects of baseball—the physical character-
istics and performance of its players, the analysis and 
modeling of each element (hitting, fielding, pitching, 
strategies), and the combined geometry and physics 
surrounding the game. 

Although some fans object to this intrusion of 
mathematics into a competitive sport, most accept or 
even depend on the mathematical aspects as enriching 
their enjoyment of the game itself. That is, mathemat-
ics has become the arbiter in arguments, the stimulus 
for “hot stove league” discussions, a tool to help iden-
tify either patterns of team strengths and weaknesses 
or optimal strategies, and a decision-making tool for 
gamblers and fantasy league participants. 

Sabermetrics
Bill James, a baseball writer, historian, and statistician, 
gave authenticity to the use of statistics in analyzing all 
aspects of baseball through his pioneering mathemat-
ics and statistics work. Multiple editions of his Baseball 
Abstract in the 1980s changed not only the play of the 
game itself but also how it is viewed by fans, and are 
the predecessor to many modern Web sites dedicated 
to analysis of the sport. James revolutionized the way 
mathematics is used to analyze sports to determine 
why some teams win and others lose. He coined the 
term “sabermetrics,” which is derived from the Society 
for American Baseball Research acronym SABR, for 
his analytical and modeling methods. In 2006, Time 
magazine named him one of the most influential peo-
ple in the world.

Mathematical statistics provide perspectives that 
explain game occurrences, provide comparative rank-
ings of teams and players, and assist in managerial deci-
sion making. The primary example is the simple use 
of ratios, means, and medians as both descriptive and 
inferential statistics for a player, position, game, season, 
or career. Some examples include the following:

• Batting average, slugging percentage, on-base 
percentage, and batter’s run average

• Effect of artificial turf on numbers of ground 
ball hits or base stealers’ performances

• Performance of hitters and pitchers in 
different environments (outdoor versus dome 
stadiums; night games versus day games)

	 Baseball	 97



• Expected strike zones for umpires, given a 
pitcher or batter is right- or left-handed

Going beyond these descriptive statistics, the game 
of baseball can be analyzed using very sophisticated 
techniques. Some examples include the following:

• Connections between a player’s 
characteristics and training regimens relative 
to game performance, or even to document 
the effects of steroid use

• Trend analysis, based on either a player’s 
or team’s performance (hitting, pitching, 
fielding) over the past five, 10, and 15 games

• Importance of pitcher throwing a “first strike”
• Effects of bringing in the infield when the 

bases are loaded with less than two outs 
• Team winning tendencies based on run 

differential in innings seven, eight, and nine
• Impact of rule changes on pitching and 

hitting, such as the effects of elevating the 
pitching mound or changing foul-line 
distances to outfield fences

• Determination of coaching strategies such 
as sacrifice bunts, pitch-outs, stealing home, 
intentional walks, shifts of fielders for certain 
hitters, or use of pinch hitters and relief 
pitchers

• Determining the “best” all-time player in a 
particular position (for example, centerfielder, 
hitter, relief pitcher, base-stealer)

• Selection of players by professional teams 
during annual drafts, using both historical 
data for each player’s performance and 
physical data

• Use of statistical data during contract 
negotiations between a player and 
management, or even the release or trading 
of players based on team needs

Mathematical probabilities, odds, and expected val-
ues can help examine the chances of particular events 
happening within a game or across games:

• Probability that the World Series will go four, 
five, six, or seven games

• Use of odds to determine personal or 
professional betting strategies

• Use of conditional probabilities to determine 
lineups or use of pinch hitters, reflecting the 
probability of a batter getting a hit given that 
the pitcher is right- or left-handed

• Correlations between a team’s wins per 
season and player payrolls, or pitcher salaries 
and their ERAs

• Probability of a record being broken, either 
by a team or player, such as Joe DiMaggio’s 
56-game hitting streak

Though difficult to implement practically, geome-
try, trigonometry, and calculus can shed light on other 
important ideas:

• Length of a home run
• Actions of different pitches such as a curve ball, 

slider, fastball with movement, or forkball
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• Determination or alteration of a hitter’s 
batting stance or position in the batter’s box

• Use of angles in fielding balls off outfield walls

Game theory also is used as part of the decision-
making process within a baseball environment, leading 
to choices of optimal tactics. Some specific decisions 
are as follows:

• A manager’s choice of batting lineups and 
pitching moves, relative to the opposing 
manager’s choices

• A manager’s calling for shifts of fielders, pitch-
outs, or steals at times within a game

• A manager trying to argue, influence, or 
reverse decisions by umpires

• A manager’s use of techniques to motivate 
specific players

• A team’s selection of players during a draft, 
dependent on the player’s apparent abilities, 
the inferred needs of other teams, and the 
specific draft round

• Contract negotiations involving players, 
agents, and team management

Finally, using all of these statistical data and math-
ematical modeling techniques, one can create realistic 
simulations of baseball games or end-of-year series, 
possibly using computer animations. 

At the collegiate and professional levels, managers 
are increasingly using mathematics to remain compet-
itive, even hiring mathematical statisticians as impor-
tant parts of their staff. However, some authors and 
fans suggest that the team with the best players and 
managers will usually win, despite any use of sophisti-
cated mathematics.
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See Also: Basketball; Football; Hitting a Home Run; 
Hockey; Soccer.

Basketball
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Play can be analyzed geometrically and 
probabilistically to inform strategy or construct 
simulations.

Basketball is an international sport that can be enjoyed 
either as a participant or as a spectator, regardless of 
one’s sex or one’s age. A growing number of coaches, 
reporters, and ardent fans are using mathematics to 
examine all aspects of basketball—the physical aspects 
and performance of its players, the analysis of each el-
ement (shooting, defense, strategies) of the game, and 
the combined geometry and physics surrounding the 
game. Perhaps as expected, this mathematical analysis 
can have opposite effects, either enriching or ruining 
the sports experience itself. 

Basketball was intended to be a dynamic, fair com-
petition between two teams; however, mathematical 
concepts and techniques can be used in a basketball 
environment to identify patterns of strengths and 
weaknesses, suggest optimal strategies for coaches and 
players, stimulate discussions, and resolve arguments. 
Statistician Dean Oliver is a well-known contribu-
tor to the statistical evaluation of basketball, which 
is called APBRmetrics. The name comes in part from 
the Association for Professional Basketball Research 
(APBR). This methodology is a very similar to the 
analysis of professional baseball using sabermetrics. 
Though difficult to implement practically, geometry, 
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trigonometry, and calculus can shed light on these 
important ideas:

• Given a player’s height, the best angle and 
velocity for shooting a basketball, assuming 
the intent is to have the basketball’s parabolic 
arc pass through the basket (often called the 
“Shaq phenomena”)

• The connection between the angle of 
shooting a ball and the event known as an 
“all-net” basket

• The connection between a player’s height 
and where a player should aim a shot—at the 
center of basket, the front of the rim, or the 
back of the rim

• Use of angles in making bounce passes

• Determining defensive positions that 
maximize centers of gravity

• The connection between a player’s position 
on the court and decisions to bank the 
basketball off the backboard as the best shot

• Comparison of the merits of shooting a free-
throw underhand versus overhand

By gathering and analyzing the myriad of available 
data provided by a game experience, mathematical 
probabilities can help examine the chances of par-
ticular events happening within a game, including the 
following:

• The likelihood of a player making 0, 1, or 2 
points in a 1-and-1 free throw opportunity
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• The reality of a player having a “hot-hand,” 
based on his or her making successive shots

• The decision as to which player should be 
purposely fouled at the end of a close game

• The evaluation of a player’s performance in 
terms of “per-possession efficiency” 

• The probability of a record being broken, 
either by a team or a player

Similarly, the collection and organization of 
mathematical statistics can provide perspectives that 
explain game occurrences, provide comparative rank-
ings of teams and players, and assist in future deci-
sion making by coaches and team management. The 
usual sources of statistics are data regarding shoot-
ing, rebounding, free throws, turnovers, defensive 
gains, and time management. Some specific examples 
include the following:

• The simple use of ratios, means, and medians 
as descriptive statistics for a player, a position, 
a game, or a season

• Connections between a player’s 
characteristics and training regimens relative 
to game performance

• Trend analysis, based on either a player’s or a 
team’s performance in specific ways over the 
past five, 10, and 15 games

• Winning tendencies based on connections to 
lead changes during a game or knowledge of 
the team leading at the end of the third quarter

• The impact of rules changes on scoring and 
defenses within the sport itself, such as the 
observed effects of expanding either the 
three-point arc or the free-throw lane

• Determining the “best” all-time player in  
a particular position (for example, center), at 
a particular time in a game (for example, last-
second shot), or in an era

• The seeding and selection of teams in a 
bracketed tournament, possibly as part of a 
betting pool with stated odds

• Selection of players by professional teams 
during the annual draft, using historical data 
for each player’s performance in conjunction 
with physical data 

• The use of statistical data as part of contract 
negotiation between players and management

• The release or trading of players based on 
team needs

The ideas of mathematical game theory have been 
applied to the decision-making process within a bas-
ketball environment, leading to choices of optimal tac-
tics. The specific decisions range considerably:

• A coach’s choice of designed offenses and 
defense strategies, relative to the opposing 
coach’s choices

• A coach’s calling of time-outs at opportune 
times within a game

• A coach trying to influence or reverse 
decisions by game officials

• A coach’s use of techniques to motivate 
specific players 

• A team’s selection of players during a draft, 
dependent on the player’s apparent abilities, 
the inferred needs of other teams, and the 
specific draft round

• Contract negotiations involving players, 
agents, and team management

Finally, using all of these available statistical data and 
mathematical modeling techniques, one can create real-
istic simulations of basketball events, full games, or even 
tournament series. At the collegiate and professional 
levels, coaches are increasingly using mathematics to 
remain competitive, even hiring mathematical statisti-
cians as important parts of their staffs. Some mathema-
ticians are even found on the court. 

Retired San Antonio Spurs player Michael Robin-
son earned a bachelor’s degree in mathematics from 
the U.S. Naval Academy, and is considered by many to 
be the best basketball player that school has ever seen. 
However, there are still some authors and fans who 
suggest the team with the best players and coaches 
will usually win, despite the use of sophisticated 
mathematics. 

Further Reading
Bennett, Jay, and James Cochran. Anthology of Statistics 

in Sports. Philadelphia: Society for Industrial and 
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De Mestre, Neville. The Mathematics of Projectiles in 
Sport. Cambridge, England: Cambridge University 
Press, 1990.
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Basketry
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Geometry; Number and 
Operations.
Summary: Basket shapes and patterns are created by 
varying the weave.

Baskets are woven containers made of plant or artificial 
strips, such as palm fronds, willow branches, or fabric. 
People were already making baskets at least 10,000 years 
ago. Historians conjecture that basketry played a ma-
jor role in the development of pattern, structure, and 
number in human cultures. Early humans could have 
observed birds and animals that wove to first learn the 
craft. Tracing basket-weaving patterns through cultures 
assists in creating models of human migration. “Under-
water basket weaving,” which is a technique in wicker, 
is a humorous idiom describing academic courses with 
low education standards or very narrow specializations. 
Mathematicians study and model patterns found in 
baskets from around the world, including those created 
by the Hopi people of the southwestern United States, 
various African peoples, and Pacific Islanders.

Weaves
There are several types of basket weaves, each with 
infinitely many possible patterns. Coiled baskets are 
made with two types of fiber—one thick, and one 
soft and pliable. The thick cord or vine forms the coil. 
Flat, pliable strips of materials such as grass or fabric 
are wound a number of times around the cord, then 
a number of times around its previous row or several 
rows in the coil, connecting the rows. Craftspeople can 
change patterns and shapes of baskets by varying these 

weave numbers. Wicker is a type of basket weave con-
sisting of relatively stiff fibers of two types. One mate-
rial, the foundation, is completely rigid, and the other, 
the weft, is more pliable. The pattern of individual weft 
fibers going over and under the foundation spokes 
determines the look of the basket’s surface. Such pat-
terns can become very complex. Weft fibers are often 
soaked to make them soft during weaving.

Twining also requires rigid foundation fibers and 
pliable weft. Several strands of pliable fiber—usually 
two—go around a foundation spike on either side, 
cross or twist in the middle, then go around the next 
spike. Twining patterns are created by changing the 
number of wefts or formulas of skipping spikes,  and 
introducing braiding between spikes. 

Plaited baskets consist of pliable fibers woven over 
and under one another, typically at right angles. This 
weave is very similar to how woven textiles are made, 
and some historians believe that textiles originated 
from this type of basket. Formulas—whose variables 
are the number of fibers that go over and under in each 
row—determine the pattern.

The physical properties of baskets are determined 
by the weave, the materials, and the pattern. Wicker 
baskets can be very sturdy, and wicker has been used in 
making fences, houses, and furniture like baby cradles. 
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Basket Patterns

P atterns found in baskets come up in many 
areas of mathematics. Frieze patterns 

have translational symmetry along lines, and 
there are seven types of them, all of which ap-
pear in traditional basket making. They are a 
part of more general wallpaper groups, of which 
there are seventeen types.

Some mathematics historians observed 
differences in patterns that involve six-fold 
symmetry, such as honeycombs, and more 
complex five-fold symmetry that comes up in 
basket weaving. For example, the traditional 
woven Malaysian ball is similar to the modern 
soccer ball (also known as “football”) in that it 
contains pentagons.



Shapes
Baskets take a variety of three-dimensional shapes, 
such as cylinders, cubes, and prisms. Properties of 
weaving often determine the shape. For example, the 
stiff foundation fibers of twined or wicker baskets are 
usually straight lines, which only allows so-called ruled 
surfaces. By definition in analytic geometry, ruled sur-
faces are generated by straight lines. Cylinders, prisms, 
and cones are ruled surfaces and can be made by 
wicker. Spheres cannot be made out of straight lines, 
but spherical baskets are made by coiling, plaiting, or 
using bendable foundations in wicker and twining. 
Mathematicians and mathematical artists who use 
basket weaving to create striking sculptured models of 
complex surfaces have to select appropriate weaving 
techniques for their projects.

Further Reading
Gerdes, Paulus. African Basketry: A Gallery of Twill-Plaited 

Designs and Patterns. NP: Lulu Publishing, 2008.
University of East Anglia. “Basket Weaving May Have 

Taught Humans to Count.” ScienceDaily (June 8, 
2009). http://www.sciencedaily.com /releases/2009/06/
090604222534.htm.
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Interdisciplinary Cooperative-Learning Activities. 
Portland, ME: Walch Education, 1993.
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Bees
Category: Weather, Nature, and Environment.
Fields of Study: Algebra, Geometry; Representations.
Summary: Geometry explains why honeycombs are 
made of hexagonal cells, while bee movement patterns 
communicate information visually.

Honeycombs are remarkable for their beauty, preci-
sion, and symmetry. The honeycomb corresponds to a 
mathematical concept known as a “tiling of the plane.” 
That bees use regular hexagons for this tiling (built to 

a remarkable level of precision) has fascinated human 
beings throughout history. At the end of the twenti-
eth century, mathematician Thomas Hales rigorously 
proved a long-standing conjecture that fully justifies 
to humans what the bees have apparently known all 
along: the most efficient way to repeatedly enclose a 
fixed amount of storage space is to use regular hexa-
gons to form the boundaries.

Honeycomb: How to Choose a Cell
Bees use honeycomb cells for storage. It takes work and 
material (wax) to create the boundary of each cell, so 
the bees want cells with as little boundary (perimeter) 
as possible, given that each cell should enclose a certain 
amount of storage (area). If a bee only needed to make 
one cell to store honey, it would likely use a shape other 
than a regular hexagon. For instance, a regular octa-
gon holding the same area has less perimeter; a regular 
decagon will have less perimeter still. The more sides a 
polygon has, the smaller the perimeter will be, with the 
circle having the smallest perimeter-to-area ratio. That 
a circle is the least-perimeter shape to enclose a given 
area is a famous problem that goes back to the wonder-
ful tale of Queen Dido of Tyre.  

For example, suppose a bee wanted to enclose one 
square unit of area. The square that accomplishes this 
has a perimeter of 4. If the bee used an equilateral tri-
angle instead, the necessary perimeter is larger, about 
4.56. But the regular hexagon’s perimeter is smaller, at 
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just over 3.72. The pattern of increasing the number of 
sides leading to a lower perimeter holds for all whole 
numbers n > 2, and every such regular polygon enclos-
ing one unit of area has greater perimeter than a circle 
holding the same area. The circle that encloses one unit 
of area has a perimeter of approximately 3.54.  

Tilings: Fitting the Cells Together
Bees do not need just one cell; they need many consec-
utive cells in which to place their honey, and therefore 
essentially have to create a “tiling” (a pattern involving 
polygons that will completely cover their work space 
without overlapping while leaving no space unused). 
Circular cells simply don’t fit together as well because 
there are gaps between consecutive circles.

Many different kinds of floors and ceilings are tiled—
usually with congruent squares or rectangles. Why don’t 
bees use square cells in their honeycomb, rather than 
hexagons? Or equilateral triangles? It turns out that equi-
lateral triangles, squares, and regular hexagons can all be 
used to tile the plane, as shown in the figures below. Bees 
choose hexagons from among these three options since 
a regular hexagon of unit area uses less perimeter (wax) 
than does a square or equilateral triangle; the hexagon is 
a more efficient choice (see Figure 2).

Figure 2.

So why not use regular octagons? Here it is not the 
efficiency of the individual cell that governs the choice 
but rather the overall packing of them: regular octa-
gons cannot be used to tile the plane.  

To understand why triangles, squares, and hexagons 
tile the plane, but octagons do not, observe that in a 
regular polygon with n sides, the sum of its interior 
angles is 180 2n −( )  degrees, and each of its n individ-
ual interior angles has the measure

180 2n
n

−( )
.

For instance, with the square, each interior angle has 
the measure 

180 4 2

4
90

−( )
=  degrees.

Four squares arranged at a single vertex fit together 
perfectly, creating a full 360 degrees around the shared 
corner. Likewise, six equilateral triangles (each having 
60-degree angles) can fit together perfectly for a full 
360 degrees, as can three regular hexagons with their 
120-degree interior angles.

But for the octagon with n = 8, each interior angle 
has the measure of 135 degrees. Three octagons put 
together at a shared vertex would have 135 3 405× =  
degrees, which is simply impossible—as would be 
attempting to only have two octagons meet at a single 
vertex. Regardless of the number of sides of the regu-
lar polygon, the measure of the polygon’s interior angle 
will need to divide evenly into 360 degrees. This forces

 2

2

n

n −

to be an integer, and the only values of n for which that 
is true are n = 3, 4, and 6: triangle, square, and hexagon! 
That the only ways to tile a flat surface using congruent 
regular polygons are with triangles, squares, or hexa-
gons is a result often taught in high school geometry 
courses.

Irregular and Non-Polygonal Tilings
Since the time of the ancient Greeks, mathematicians 
conjectured that among all the ways to tile the plane 
so that each tile encloses just one unit of area, the way 
that uses the least perimeter is the tiling that uses all 
regular hexagons. This conjecture is much harder 
than it sounds to prove: one must consider irregu-
lar polygons (with sides of different lengths), as well 
as the possibility that the sides of some tiles might 
be curved. The first possibility is not too difficult to 
eliminate. For instance, it is straightforward to show 
that a regular hexagon with all sides of equal length 
will use less perimeter than any other hexagon to 
enclose the same area.

But the second possibility—using non-polygonal 
shapes—proved to be much, much more challenging. 
In this situation, one must consider the possibility of a 
shape that bows out on one side and, to fit into a tiling, 
bows in on another. Obviously, the part that bows out 
picks up area, while the part that bows in loses area. 
In 1999, mathematician Thomas Hales proved that any 
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advantage that comes from a side of the tile bowing 
out is more than cancelled out by the disadvantage that 
follows from another side having to bow in. Thus, the 
ideal tile is one that has no bulges: a polygon!  

What Professor Hales proved is essentially what the 
bees knew all along: of all possible tilings, the one using 
regular hexagons is the most efficient way to enclose 
cells of the same area.

Other Mathematical Aspects of Bees
Another way that mathematics relates to bees is when 
mathematicians work with bee researchers to solve 
problems such as those related to viral disease infec-
tion and pollination. Mathematics is also used to 
model the ways in which bees communicate locations. 
When a bee finds a source of food, it returns to the 
hive and performs an elaborate dance that conveys the 
direction and distance from the hive. Ethologist Karl 
von Frisch was one of the first to explore the meaning 
of the honeybee dance, and he won a Nobel Prize for 
his work. The angle that the bee dances expresses the 
direction. For example, if a bee dances in a straight line 
toward the upper part of the hive, then the flowers are 
located in the direction of the sun. The bee also takes 
into account the fact that the sun moves; the angle it 
describes inside the hive changes as the sun does. The 
duration of the dance and the number of vibrations 
give the exact distance. Other features of the dance 
remained unexplained until Barbara Shipman theo-
rized that the honeybee’s complex choreography is a 
projection of a six-dimensional space, and she was able 
to use this representation to reproduce the entire bee 
dance in all its parts and variations. To her, this implies 
that bees can sense the quantum world, although some 
researchers dispute her conclusions.
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Betting and Fairness
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Mathematics is used to analyze betting 
and probabilities for games of chance and for 
investing in the stock market.

A pivotal moment in the early development of prob-
ability occurred in 1654, as the French mathemati-
cians Blaise Pascal and Pierre de Fermat exchanged a 
series of letters. Pascal and Fermat were wrestling with 
questions involving the fair payoff for a gambler who 
is forced to quit in the middle of a game. In modern 
language, they were calculating the “expected value” of 
the game’s payoff (the average payoff under the vari-
ous possible outcomes, weighted according to the like-
lihood of those outcomes). A bet is said to be “fair” if 
the price of placing it is equal to the expected value of 
the payoff. Betting plays an integral part in our mod-
ern society. People place bets in casinos and at sporting 
events, as well as by buying lottery tickets. They are also 
placing bets when purchasing insurance or investing in 
the stock market. Some of these bets are fair, some are 
unfair, and some cannot be objectively categorized.

The primary problem that Pascal and Fermat solved 
(each employing a different method) can be used to 
illustrate some important ideas on fairness. In the 
problem, two gamblers are playing a game in which a 
coin is repeatedly tossed. The game is interrupted at 
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a point where 2 more heads are required for Player A 
to win and 3 more tails are required for Player B to 
win (whichever occurs first). How should the potential 
winnings be divided at this stage of the game?

Fermat solved the problem by observing that at most 
4 tosses remain in order to identify the winner, and that 
there are 16 equally likely ways in which 4 tosses could 
occur:

HHHH,  HHHT,  HHTH,  HTHH,  THHH,  HHTT, 
HTHT,  HTTH,  THHT,  THTH,  TTHH,  HTTT,  
 THTT,  TTHT,  TTTH, and TTTT.

In 11 of these possibilities (the first 11 items on the 
list), Player A would win, because 2 heads occur before 
3 tails; in the other 5 possibilities, Player B would win, 
because 3 tails occur first. Therefore, Fermat reasoned 
that Player A should receive 11/16 of the winnings, and 
Player B should receive 5/16 of the winnings. In mod-
ern language, Player A would win the game with prob-
ability 11/16 and Player B would win with probability 
5/16; Fermat was calculating the “expected value” of 
the winnings for each player.  

Suppose that up to this point in their game, neither 
Player A nor B has paid any money for the opportu-
nity to play, but that they are now required to pay a 
total of $1, altogether, and that this dollar will con-
stitute the winnings. Fermat’s solution to the previ-
ous problem allows for a fair method of dividing the 
payment: Player A should pay 11/16 of the dollar and 
Player B should pay 5/16, so that the payments match 
the expected winnings. In other words, if the game is 
being played for a $1 payoff, then the price for a fair 
bet is 11/16 of a dollar for Player A and 5/16 of a dollar 
for Player B.

Lotteries and Casinos
State-run lotteries are unfair to the player who pur-
chases a ticket, because some of the revenue goes to 
the state and is not redistributed to the winner(s). Of 
course, even if all of the ticket revenue were paid to the 
winner(s)—so that the bets were fair—a lottery would 
be unfavorable to almost every player. Nonetheless, lot-
teries attract large numbers of players because people 
are willing to pay a small amount for the minuscule 
chance of winning a fortune.  

A similar motivation attracts bettors to casinos, where 
almost all games are unfair. This casino advantage is 

known as the “house edge.” On average, the house edge 
at a casino is 2% to 3%, which means that for each dollar 
that is bet, the house makes a profit of 2 or 3 cents. Over 
thousands of bets, this adds up to a significant profit. 
Some games, like slot machines, can have a house edge 
of up to 15%. Typically (in roulette, slot machines, and 
craps, for instance), the odds for each bet are slightly 
in favor of the house. Blackjack is a rare example of a 
casino game in which a player might be able to place bets 
that are better than fair from the player’s perspective. In 
blackjack, two initial cards are dealt to each player as 
well as to the dealer. Certain strict rules dictate whether 
additional cards are dealt to the dealer, while each player 
has the choice of whether to receive additional cards. 
The objective of each player is to hold a total card value 
closer to 21 than the dealer holds, without going over. 
Each player knows which cards he or she holds, as well 
as some of the cards held by the dealer and other players, 
since some cards are dealt face up. An adept player can 
also keep track of cards that have been used in previous 
games following the last shuffle—though casinos often 
dissuade such card counting by combining several decks 
and shuffling regularly. By using this information, it is 
possible for a player to calculate the probability of draw-
ing a particular card and, therefore, the expected value 
of the payoffs under the options of either receiving an 
additional card or not; often, one of these expected val-
ues is greater than the amount of the bet.

Subjective Probabilities
Early in the twentieth century, mathematicians real-
ized the need to define probability in a rigorous way, 
if it were to be a formal part of mathematics. In prob-
lems involving tossing fair dice or coins, or counting 
card hands, it was obvious what should constitute the 
probabilities of the various occurrences, but in many 
other situations it was unclear. Usually people thought 
of probabilities as idealized frequencies: if a fair coin 
is tossed many times, for example, then the fraction 
of tosses which land heads should be approximately 
1/2; so a fair bet for a $1 payoff on heads should cost 
$0.50. But there is not an obvious analogy for two box-
ers, for example, about to fight a match. Also, prob-
ability was becoming an increasingly important tool 
for the physical sciences, and mathematical theorems 
were required. As such, an axiomatic system was nec-
essary. The Russian mathematician A. N. Kolmogorov 
and the Italian philosopher and mathematician Bruno 
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de Finetti independently provided such a framework 
in the 1930s. Although different in appearance, their 
definitions are equivalent in most situations.

De Finetti’s concept of a probability stems from gam-
bling: the probability of an event is the price for a $1 
payoff bet on that event. These prices may be assigned 
in whatever way one wants (hence the label “subjec-
tive probabilities”), provided certain consistency con-
ditions are met. For example, suppose even money is 
coming into a betting house on two teams preparing 
to play a baseball game. This indicates that the bettors 
collectively value the two teams as equally likely to win 
the game. Ignoring the house fees, the price for a $1 
payoff bet on either team is $0.50, because after the 
game, the entire pool of money will be redistributed to 
those who bet on the winning team. 

Suppose, however, a particular bettor favors the 
home team, believing that team to have a 3/4 probabil-
ity of winning the game. Then this bettor would price a 
$1 payoff bet on that team at $0.75; for this bettor, the 
$0.50 price generated by the betting pool is a bargain. 
From this bettor’s perspective, a bet on the home team is 
better than fair: the price for a $1 payoff bet is $0.50, but 
the expected value of the payoff is $0.75. Such situations 
occur beyond sporting events, perhaps most prominently 
in the stock market. The fact that individuals’ valuations 
often differ from those of the collective public is the 
driving force behind the trading of stocks. Individuals 
buy stocks that they believe to be undervalued and sell 
stocks that they believe to be overvalued. Because they 
are predicting the future performance of these stocks, 
they are essentially placing bets that they believe to be 
better than fair. In 1956, John Larry Kelly, Jr., a physi-
cist who worked at Bell Labs, formulated and described 
the Kelly criterion. This algorithm for determining an 
optimal series of investments (or bets) is based on prob-
ability and economic utility theory, which tries to math-
ematically quantify satisfaction. In recent years, the Kelly 
criterion has been incorporated into many mainstream 
investment theories and betting strategies.
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Bicycles
Category: Travel and Transportation.
Fields of Study: Algebra, Geometry.
Summary: Bicycle geometry impacts performance, 
aerodynamics, efficiency, and stability.

The first bicycles of the early nineteenth century were 
simple designs of wooden frames and metal hoops for 
wheels. Though these early bicycles were propelled by 
feet pushing along the ground, soon pedals were added 
to the front axle allowing the rider to drive the front 
wheel for locomotion. It was not until the late 1880s 
when the first chain-driven bicycle was introduced, 
thereby separating the axles from the primary point of 
locomotion and overcoming problems with handling, 
steering, and weight distribution. This explosive de-
cade of development also saw the first pneumatic tires, 
gearing, and coaster brakes, the latter allowing the rider 
to brake by pedaling backwards. Another series of in-
novations a century later was spurred by an explosion 
in frame design and fabrication techniques including 
the use of better materials such as aluminum, titanium, 
and, eventually, carbon fiber.  

Bicycles serve as the primary means of transporta-
tion in several cultures, especially in southeast Asia. 
European communities are also known for embracing 
the bicycle as a legitimate form of transportation. 

Mechanics
Bicycles have two in-line wheels and are driven by 
pedaling. The wheels each spin on axles rotating on  
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bearing surfaces and most commonly support the rims 
via tension spokes. Pneumatic tires are secured to the 
outer surface of the rims to provide the primary con-
tact with the ground. The centrally located bottom 
bracket is the rotating connection point of the ped-
als. Power is transferred to the rear wheel via a chain. 
Brakes are usually found on both wheels; most bicy-
cles’ brakes squeeze braking pads on the rim surface 
to create friction and slow the wheel and, as a result, the 
bicycle. Many newer mountain bicycles use disc brakes 
for increased stopping power. The rider sits on a saddle 
atop the bicycle and leans forward on handle bars, which 
provide support and the ability to steer. Many bicycles, 
especially mountain bicycles, have shock absorbers built 
into the front fork to provide cushioning over rough ter-
rain. Some bicycles also feature rear suspension, which 
allows the rear triangle of the frame to rotate and further 
absorb the impacts of uneven terrain.

Gears (chain rings on the bottom bracket, a cassette 
on the rear axle) allow the rider to alter the ratio of 
pedal rotation to wheel rotation in order to go faster or 

slower. The gear ratio is determined by the diameter of 
the chain ring divided by the diameter of the rear cog. 
Since the number of teeth is proportional to diameter, 
tooth count is more typically used. For example, a 39-
tooth chain ring used with a 15-tooth cog produces a 
gear ratio of

39

15
2 6= .

 

that is, one revolution of the pedals produces 2.6 revo-
lutions of the rear wheel. A standard 700C wheel (70 
centimeters in diameter) will travel 0 7 2 2. .π =  meters 
(7.2 feet) along the road with each revolution. Thus, a 
single rotation of the pedals produces

39

15
0 7 5 7. .( ) =π

 
meters (18.7 feet) of travel. 

Speed and distance traveled can then be calculated 
based upon the rider’s revolutions per minute.
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Types of Bicycles
Reflecting their wide ver-
satility, bicycles come in 
a multitude of different 
styles. One of the most 
common is the road bicy-
cle, which is distinguished 
by thin tires; a drop-style 
handlebar; and a stiff, light 
frame. Road bicycles are 
designed for fast travel over 
smoother road surfaces. 
The other most common 
bicycle is the mountain 
bicycle, which features 
wide, knobby tires designed for increased traction in the 
dirt; flat handlebars for a more upright position; and a 
wide range of gears, including very low gears for steep 
climbing. Most mountain bicycles have a front suspen-
sion fork and many feature a rear suspension as well.

Cyclocross bikes are closely related to road bikes 
but have slightly wider tires and lower gears for rac-
ing on cyclocross race courses or for exploring gravel 
roads. Comfort bicycles, commuters, and hybrids are 
usually compromises between the stiffness of a road 
bicycle and the comfort of a mountain bicycle; these 
bicycles’ lower prices are often aimed at entry-level 
riders who are seeking practicality over high perfor-
mance. Bicycle motocross (BMX) bicycles are single 
speed (no gears) with smaller, wider tires designed for 
racing on BMX courses. There are additional niche 
bicycles for special purposes such as time trialing, 
track racing, snow riding, and touring. Though most 
people cannot imagine a bicycle having anything but 
circular wheels, since that shape travels smoothly 
on flat roads, mathematicians have modeled as well 
as built wheels with other shapes, such as squares, 
three-leaf clovers, star-like shapes, and triangles. They 
found that a square-wheeled bike will travel smoothly 
on a road made of inverted catenaries, and each of 
the other types has at least one solution as well. A dif-
ferential equation can be used to generally solve the 
problem of noncircular wheels.

Racing and Performance
Bicycle racing is a popular sport with a surprisingly 
active history. Near the end of the nineteenth century, 
bicycle racing was one of the most popular sports, 

drawing huge crowds of spectators across Europe 
and the United States. Today, bicycle racing is popu-
lar worldwide but has a stronger European following. 
Why certain cyclists are more successful than others 
can be analyzed in part using mathematics. Average 
riding speed, efficiency, and power are all calculated 
metrics useful for assessing performance. Seven-
time Tour de France winner Lance Armstrong has 
been studied and modeled extensively throughout 
his career. American cyclist Greg LeMond overcame 
a 58-second deficit and won the 1989 Tour de France 
by 8 seconds over French favorite Laurent Fignon, 
which is generally attributed by most to the innova-
tive aerodynamic handlebars he used in the last stage. 
Companies now routinely use mathematical model-
ing for cycling equipment, as well as to test aerody-
namics and other essential properties, and teams use 
optimization strategies to construct bicycles within 
the sport’s guidelines, since seconds can make the dif-
ference between victory and second place.

For the average rider as well as for professionals, the 
geometry of a bicycle plays a large role in its overall 
performance and stability. For example, the distance 
between the axles and the angle the front fork makes 
with respect to the ground are both important, accord-
ing to bicycle makers. Some mathematicians have 
explored stability issues. In study released in 2007, 
researchers investigated and dynamically modeled 25 
parameters believed to be important, with the goal of 
being able to construct bicycles targeted toward riders’ 
specific needs.
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Billiards
Category: Games, Sport, and Recreation.
Fields of Study: Geometry; Number and Operations.
Summary: Playing billiards depends on an 
understanding of spin, momentum, and angles.

Billiards is a cue sport game that involves the use of a 
rectangular table, billiard balls, and a stick called a “cue.” 
Mathematics and physics are two important compo-
nents of playing the game well. There are many differ-
ent games within the cue sports that Americans typically 
name “billiards.” Billiard tables with pockets comprise 
games that are termed as “pool” or pocket billiards. The 
rectangular table has two long sides (twice the short side) 
and two short sides with six pockets—one at each cor-
ner, and one midway along the longer two sides of the 
table. The object of the game is to hit the billiard balls 
into the pockets using a cue ball (the lone white ball in 
the set). Gaspard Coriolis, known today for the Coriolis 
effect, wrote a work on the mathematics and physics of 
billiards in 1835. He stated that the curved path followed 
by the cue ball after striking another ball is always para-
bolic because of top or bottom spin. Further, the maxi-
mum side spin on a cue ball is achieved by striking it half 
a radius off-center with the tip of the cue. 

The game of billiards is also a source for interest-
ing mathematical problems, which are connected to 
dynamical systems, ergodic theory, geometry, physics, 
and optics. In mathematical billiards, the angle of inci-
dence is the same as the angle of reflection for a point 
mass on a frictionless domain with a boundary. The 
dynamics depend on the starting position, angle, and 
geometry of the boundary and the table. Mathemati-
cians investigate the motion and the path of the ball on 
a variety of differently shaped flat and curved tables, 
like triangular or elliptical boundaries or hyperbolic 
tables. In 1890, mathematician Charles Dodgson, bet-
ter known as Alice in Wonderland author Lewis Carroll, 
published rules for circular billiards and may have also 
had a table built. In 2007, mathematician Alex Eskin 
won the Research Prize from the Clay Mathematics 
Institute for his work on rational billiards and geomet-
ric group theory.

Eight Ball
Eight ball is the pool game most commonly played in the 
United States, and it involves 16 billiard balls. To begin 

the game of Eight Ball, the numbered balls are placed in 
a triangular rack that sets the 8-ball in the middle posi-
tion of the third row of balls with a single lead ball oppo-
site the cue ball. The cue ball is placed on the midpoint 
of the line parallel to the short side at one-quarter of 
the long side known as the head spot. The point of the 
triangular-shaped racked set of billiard balls is placed on 
the opposite short end at one-quarter of the length of 
the long side from the other short side and is known as 
the foot spot. After one player “breaks” by hitting the cue 
ball from the head spot into the racked set of balls, the 
player then hits a set of balls into the pockets. A shot 
that does not cause a ball of his or her set to go into the 
pocket results in the next shot going to the other player. 

Billiards Geometry and Physics
Shooting the balls into the pockets requires an under-
standing of angles and momentum, as well as placement 
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Billiard players can use transformational geometry to 
try to hit the ball so that it will return to a pocket.



of the cue so that the correct spin is achieved to place the 
cue ball where it can achieve the target ball going into 
a pocket. Coriolis investigated 90-degree and 30-degree 
rules of various shots and measured the largest deflec-
tion angle the cue ball can experience. Both skill and 
geometric understanding contribute to successful shots. 
Some shots require straight shooting; some shots need 
to be “banked” in by using the table sides. Players can 
use transformational geometry to approximate where 
on the table to hit the ball for it to return to a pocket. By 
measuring the angle from the ball to the side being used 
to bank off and reflecting the same angle with the cue 
stick, one can see the most viable spot to aim for so that 
the path of the caromed ball ends in a pocket. Using the 
diamonds found on the sides of most tables is one way 
of measuring these angles, and some systems for pool 
and billiards play use the diamonds. Using the diamond 
system for a different billiard game, Three Cushion Bil-
liards is demonstrated on the 1959 Donald Duck Dis-
ney cartoon Donald in Mathmagic Land. The demon-
stration shows that it is possible to use subtraction to 
know where to aim the ball in relation to a diamond to 
make sure that all three balls are hit.

Further Reading
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Binomial Theorem
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication; 
Connections; Number and Operations.
Summary: The binomial theorem is the basis of 
Pascal’s Triangle and is used to solve a variety of 
problems.

A binomial is an algebraic expression with two terms, 
like x y+ . When binomials are multiplied together, 
they produce higher powers of the individual terms that 
are called “binomial coefficients.” The binomial theo-
rem states that for any real numbers x and y, and whole 
number n:

x y c x y c x y c x y c x y
n n n n

n
n+( ) = + + + +− −

0
0

1
1 1

2
2 2 0…

where ck
 is the binomial coefficient

n

k n k

!

! !−( )

and n! is the product of the numbers 1 through n. 
These coefficients are the entries in what is referred to 
as Pascal’s Triangle, named for mathematician Blaise 
Pascal. Students typically encounter this theorem in 
middle school or high school algebra, and in high 
school or college calculus. It also has uses in other ar-
eas of mathematics, such as in combinatorics, where it 
helps in calculations for certain counting problems. 

The binomial theorem is found across ages and cul-
tures. It appears in the ancient world in the work of 
Greek mathematician Euclid of Alexandria. His for-
mula was for the square (n = 2) of a binomial, but it 
was described geometrically rather than algebraically. 
There is also evidence that the Hindu scholar Aryab-
hata knew the theorem for cubes in the sixth century. 
At least as early as the eleventh century, Chinese math-
ematicians such as Jia Xian and later Zhu Shijie knew 
the binomial coefficients in the form of Pascal’s Tri-
angle. They used the binomial theorem to find square 
and cube roots, and evidence suggests they knew of 
the binomial theorem for large values of n. Around the 
fifteenth century, the binomial theorem and binomial 
coefficients to at least the seventh power were found 
in the writings of Islamic scholars including Omar 
Khayyam, Abu Bekr ibn Muhammad ibn al-Husayn 
Al-Karaji, Abu Ali al-Hasan ibn al-Haytham (Alhazen), 
and Ibn Yahya al-Maghribi al-Samaw’al. 

In the sixteenth century, European mathematicians 
began using the binomial theorem and binomial coef-
ficients. For example, mathematician Michael Stifel’s 
1544 work Arithmetica integra contained the bino-
mial coefficients. Other contributors include François 
Viète, Blaise Pascal, James Gregory, Sir Isaac Newton, 
and Niels Abel. John Wallace’s seventeenth century 
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book De Algebra Tractatus is cited as the first pub-
lished account of Newton’s binomial work. While Pas-
cal was not the first to study the binomial coefficients, 
he is credited with linking algebraic and combinatorial 
interpretations of the coefficients. 

Pascal’s Triangle is a triangular representation of 
the binomial coefficients, which may be attributed to 
him because of his 1653 work Traité du Triangle Arith-
métique in which he compiled and expounded on 
much of what was known about binomial coefficients. 
The related Pascal matrix is a symmetric, positive defi-
nite matrix with the Pascal triangle represented on its 
antidiagonals.

Generalizations and Extensions
James Gregory and Sir Isaac Newton generalized the 
binomial theorem to allow first fractional, and then real 
powers, which requires replacing the finite sum with 
an infinite series and extending the definition of the 
binomial coefficients. When generalizing to an infinite 
series, another issue that must be considered is con-
vergence, which imposes restrictions on the numbers 
x and y for which the series converges to the binomial. 
Newton came to this generalization indirectly while 
trying to calculate areas under certain curves.

Another way to generalize the binomial theorem is 
to broaden the types of values that x and y can take. 
One such generalization allows x, y, and n to be com-
plex numbers. The definition of the binomial coeffi-
cients has to be generalized to complex numbers, and 
certain restrictions on the variables are required for 
convergence of the resulting infinite series. Alterna-
tively, one can allow x and y to be commuting elements 
of a Banach algebra, a normed algebra studied in such 
fields as complex analysis, real analysis, and functional 
analysis. Banach algebra is named for twentieth cen-
tury mathematician Stefan Banach. 

One more type of generalization considers not just 
the sum of two numbers x and y, but sums with more 
terms. Such a sum would be called a multinomial, and 
the multinomial coefficients would be appropriate 
generalizations of the binomial coefficients. Pascal’s 
Pyramid or Pascal’s Simplex are extensions of Pascal’s 
Triangle for three or more dimensions. 

Applications
The binomial theorem gives a quick way of expanding a 
power of the form x y

n+( ) , making the formula useful 

for basic algebraic calculations. The binomial theorem, 
along with De Moivre’s formula, can be used to prove 
the trigonometric double-angle identities, as well as 
more general formulas for cos nx( )  and sin nx( ) . The 
mathematical constant e also can be written as the infi-
nite limit of

1
1+ .



n

n

Mathematical induction and the binomial theorem, 
or the multinomial theorem, can be used to prove 
what is known as “Fermat’s little theorem,” named for 
mathematician Pierre de Fermat. This result in num-
ber theory states that if p is a prime number and n is 
an integer not divisible by p, then n np −  is divisible 

112 Binomial Theorem

Probability Theory

I n probability theory, the binomial distribu-
tion uses binomial coefficients in the com-

putation of probabilities. A binomial distribu-
tion is used to model a situation or process 
in which a series of independent trials occurs. 
Each trial may have only one of two possible 
outcomes, traditionally labeled “success” and 
“failure.” In each trial, the chance of success 
or failure is constant, such as flipping a fair 
coin and getting a head, or rolling a fair die and 
getting a 6. 

In this context, the binomial coefficient in-
dicates the number of permutations there may 
be of a specific number of successes in a given 
number of trials; for example, the orderings of 
2 heads and 8 tails in a series of 10 coin toss-
es. Mathematicians such as Jacob Bernoulli, 
Abraham de Moivre, Pierre de Laplace, Simeon 
Poisson, and Pascal worked on the binomial 
distribution and extensions, such as the lim-
iting Poisson distribution. Mathematician and 
statistician Samuel Wilks, as well as others, 
developed the multinomial distribution to ex-
tend the binomial to cases with more than two 
possible outcomes on each trial.



by p. Fermat’s little theorem is itself used in cryptog-
raphy, providing an indirect application of the bino-
mial theorem. One theorem in graph theory states 
that a graph with n vertices and adjacency matrix A 
is connected if and only if all the entries in the matrix 
1

1
+( ) −A

n
 are positive. This theorem is proved using 

the binomial theorem, generalized to certain matri-
ces, and some basic graph theory results. Certain 
colorings of Pascal’s Triangle produce fractal figures 
like Sierpinski’s Triangle, named for mathematician 
Waclaw Sierpinski. In set theory, the regions of a Venn 
diagram for n distinct sets are in one-to-one corre-
spondence with the binomial coefficients ck  for k 
ranging from 0 to n. Venn diagrams are named for 
John Venn.
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Birthday Problem
Category: Friendship, Romance, and Religion.
Fields of Study: Algebra; Data Analysis and  
Probability; Measurement; Number and Operations.
Summary: The Birthday Problem is a classic example 
of how probability can reveal counterintuitive truths.

The Birthday Problem is a classic probability problem 
first presented by mathematician and scientist Rich-
ard von Mises in 1939, though the fundamental com-
binatorial concepts involved can be traced back as far 
as India in the sixth century b.c.e. Today, it is one of 
the most-explored problems in classrooms, often in-
troduced as early as the middle grades. The problem 
asks: Given that there is some number of people (n) in 
a room, what is the probability that at least two of them 
share the same birthday? One of the aspects that makes 
this problem so intriguing is that the answer is much 
different than people intuitively expect.

Solving the Birthday Problem
The extreme cases of the problem are easy to determine 
logically. If there are fewer than two people, then it is 
impossible to have two who share the same birthday, 
making the probability 0. If there are more people than 
days in a year, then at least two people must share the 
same birthday, making the probability 1. Von Mises 
assumed a fixed 365 days per year, ignoring February 29 
as a possible birthday, so the probability is always 1 if 
there are 366 or more people. More interesting and chal-
lenging are the cases for which there are anywhere from 
2 to 364 people. For the purposes of modeling and com-
putation, it is assumed that it is equally likely that some-
one will be born on one day of the year versus another, 
so there is a

1

365
 chance 

that a person will be born on any particular day.
The Birthday Problem is solved using the math-

ematical ideas of permutations and combinations, and 
it is more easily approached if one asks a slightly dif-
ferent but complementary question: What is the prob-
ability that everyone in the room has a unique birth-
day? That is, that no one shares. If there are two people 
in the room, the first can be born on any of 365 days 
of the year and the second must be born on any of the 
remaining 364 days. If there are three people in the 
room where the first is born on a particular day, the 
second must be born on one of the remaining 364 days 
of the year and the third on one of the remaining 363 
days. The probability is

 

365

365
×

364

365
×

363

365
.
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If there are four people, the probability is 

 
1×

364

365
×

363

365
×

362

365
.

This pattern can be generalized as 

P n
P

nomatch
n
n( )( ) = 365

365
.

The probability that at least two people in a room 
of n people share a birthday is 1 minus the probability 
that there is no match, which can be used to generate 
the following probabilities.

Number of people  
in the room

Probability that two of 
these people share  

a birthday

2 .00274
10 .117
20 .411
23 .507
30 .706
50 .970
60 .995

When there are 23 people in the room, there is slightly 
more than a 50% chance that two people will share the 
same birthday, which answers the original question. 
The probability of at least one match increases quickly 
and nonlinearly with the number of people, so that 
when the number reaches 60 (well below the certainty 
value of 366 people), there is a 99.5% chance that there 
will be a match—almost certain. For example, as of 
2010, there are six pairs of men who share a birthday 
among the 74 unique winners of the Academy Award 
for Best Actor. For women, there are three pairs among 
the 69 unique Best Actress winners.

Applications of the Birthday Problem
Applications of the Birthday Problem exist in many 
fields. One is called Class Phenotype Probability. Given 
six characteristics (blood type, RH positive/negative, sex, 
mid-digital hair positive/negative, earlobes attached/
unattached, and PTC taste receptor), it is possible to 
determine the probability that a particular combination 
exists and also the probability that two people share the 
same combination. This possibility is quite valuable in 

medicine when considering the likelihood of finding 
matches between donors and recipients. In computer 
security, a birthday attack is a computationally inten-
sive strategy used to break encrypted digital signatures. 
A “collision” occurs when different sets of data yield the 
same cryptographic hash value, which is a function of 
the input data. The attack repeatedly evaluates a hash-
generating function using random inputs until the out-
put creates a collision with the true hash value it seeks 
to duplicate. On average, 1.2 × k  trials are needed to 
get a match, where k is the number of possible outputs 
(for example, a 64-bit hash value has about 1.8 × 1019 
outputs). The birthday attack strategy becomes much 
less efficient as the hash length increases.

There are interesting extensions of the Birthday 
Problem based on slightly altering the question or 
assumptions. The first comes from considering the 
chance that three or more people share a birthday (or 
four, or five, and so forth). The Almost-Birthday Prob-
lem expands the problem to finding at least two people 
whose birthdays are within one day of each other. The 
Movie Line Problem states that the first person in a line 
for a movie whose birthday matches someone in front 
of them wins free tickets, and it seeks to find where 
someone should stand to have the best chance of win-
ning. The Goldberg Extension computes the expected 
number of different birthdays in a group, while the 
Tuesday Birthday Problem is given as, “I have two chil-
dren, one of whom is a boy born on a Tuesday. What 
is the probability that my other child is a boy?” Other 
variations assume unequal distributions of birthdays 
throughout the year. As with the original problem, 
solutions usually run contrary to most people’s intu-
ition. The ideas provide the basis for many applied 
investigations, such as the photon behavior modeling 
done by mathematical physicist Satyendra Nath Bose, 
after whom the subatomic particle “boson” is named.

Further Reading
Borja, Mario Cortina, and John Haigh. “The Birthday 
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See Also: Bar Codes; Coding and Encryption; 
Permutations and Combinations; Probability; Statistics 
Education.

Black Holes
Category: Space, Time, and Distance.
Fields of Study: Geometry; Measurement; Number 
and Operations; Representations.
Summary: Black holes were implied by Einstein’s 
general relativity and have challenged physicists’ 
theories since.

A black hole is a finite region of space during a period of 
time (called space-time) subject to a singularity caused 
by a large concentration of mass in its interior. This 
massive object generates a gravitational field so power-
ful that atoms are compacted in super-high densities, 
which in turn increases the gravitational pull. A singu-
larity is created in space because no particle of matter, 
not even light photons, can escape from that region. 
Hence the name: a black hole is an invisible region be-
cause it does not reflect any light (all light is absorbed). 
Many aspects of black holes can be described and stud-
ied using algebraic and geometric concepts, but the ex-
istence of black holes is still under debate. For example, 
Australian mathematician Stephen Crothers argues 
that black holes are inconsistent with general relativity 
and critiques the mathematics used by others to dem-
onstrate their existence. It is believed that black holes 
originate when stars runs out of gas needed to main-
tain their temperature, causing a decrease in volume. As 
volume decreases, the proximity of particles increases 
the gravitational pull in a positive feedback loop; as par-
ticles get closer, the gravitational force keeps increasing. 
This compaction process continues until a singularity, 
called the “event horizon,” is created. The event hori-
zon is defined as a boundary in space and time beyond 
which events cannot affect an outside observer. The 
event horizon separates the black hole region from the 
rest of the universe and is the boundary of space from 
which no particle can leave, including light. 

The singularity caused by a black hole is considered 
as a curvature in space-time. This curvature is explored 
by Albert Einstein’s general relativity theory, which pre-

dicted the existence of black holes—though Einstein 
himself did not believe in them. In the 1970s, Stephen 
Hawking, George Ellis, and Roger Penrose proved several 
important theorems on the occurrence and geometry of 
black holes. Previously, in 1963, Roy Kerr had shown 
that black holes in a space-time have an almost-spherical 
geometry determined by three parameters: their mass, 
their total electric charge, and angular momentum.

It is believed that at the center of most galaxies, 
including the Milky Way, there are supermassive black 
holes. The existence of black holes is supported by 
astronomical observations, in particular through the 
emission of X-rays. Some black hole candidates have 
been identified experimentally using observations and 
data. There are different types of black holes, such as 
rotating black holes and stationary black holes, and 
these are described by using various metrics in physics 
and differential geometry.

Origins of Human Awareness of Black Holes
The concept of a body so dense that even light could not 
escape was described in a paper submitted in 1783 to 
the Royal Society by an English geologist named John 
Michell. By then, Isaac Newton’s theory of gravitation 
and the concept of escape velocity were well known. 
Michell computed that a body with a radius 500 times 
that of the sun and the same density, would, on its sur-
face, have an escape velocity equal to that of light and 
would therefore be invisible. 

In 1796, the French mathematician Pierre-Simon 
Laplace explained in the first two editions of his book 
Exposition du Système du Monde the same idea; how-
ever, the concept that light was a wave without mass 
and therefore unaffected by gravitation was prevalent 
in the nineteenth century, and Laplace discarded the 
idea in later editions.

In 1915, Einstein developed his general relativ-
ity theory, and showed that light was influenced by 
the gravitational interaction. A few months later, Karl 
Schwarzschild found a solution to Einstein’s equations, 
where a heavy body would absorb the light. We now 
know that the Schwarzschild radius is the radius of the 
event horizon of a black hole that will not turn, but 
this was not well understood at the time. Schwarzschild 
himself thought it was just a mathematical solution, 
not physical. In 1930, Subrahmanyan Chandrasekhar 
showed that any star with a critical mass (now known 
as the Chandrasekhar limit) and that does not emit 
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radiation would collapse under its own gravity. How-
ever, Arthur Eddington opposed the idea that the star 
would reach a size zero, implying a naked singularity 
of matter; instead, the black hole should have some-
thing that will inevitably put a stop to collapse, an idea 
adopted by most scientists.

In 1939, Robert Oppenheimer predicted that a mas-
sive star could suffer a gravitational collapse and there-
fore black holes might be formed in nature. This theory 
did not receive much attention until the 1960s because 
after World War II he was more interested in what was 
happening at the atomic scale.

In 1967, Stephen Hawking and Roger Penrose 
proved that black holes are solutions to Einstein’s equa-
tions and that in certain cases the creation of a black 
hole is the inevitable consequence of a star aging. The 
black hole idea gained force with the scientific and 
experimental advances that led to the discovery of pul-
sars. Soon after, in 1969, John Wheeler coined the term 

“black hole” during a meeting of cosmologists in New 
York, to designate what was formerly called “star in 
gravitational collapse completely.”

The Entropy of Black Holes
The mathematical tools used to model black holes use 
fundamental laws of physics, particularly relativity and 
thermodynamics. According to initial theories by Ste-
phen Hawking, black holes violate the second law of 
thermodynamics (the entropy, or disorder, of isolated 
systems tend to increase over time), which led to specu-
lations about travel in space-time wormholes (tunnels 
that would allow time travel or fast travel over very long 
distances). Hawking has recanted his original theory and 
has admitted that the entropy of the matter is kept inside 
a black hole. According to Hawking, despite the physi-
cal impossibility of escape from a black hole, it may end 
up evaporating by constant leakage of X-ray energy that 
escapes the event horizon, called Hawking radiation. 
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According to this model, black holes have intrinsic grav-
itational entropy, which implies that gravity introduces 
an additional level of unpredictability over the quantum 
uncertainty. It appears, based on the current theoretical 
and experimental capacity, as if nature took decisions by 
chance or, more generally, far from precise laws.

The hypothesis that a black hole contains entropy 
and, furthermore, it is finite, required to be consistent 
with such holes emitting thermal radiation, at first 
seems contradictory. The explanation is that the radia-
tion escapes the black hole in such a way that an exter-
nal observer knows only the mass, angular momentum, 
and electric charge. This means that all combinations or 
configurations of radiation of particles having energy, 
angular momentum, and electric charge are equally 
likely. Physicists such as Jacob D. Bekenstein have been 
linked to black hole entropy and information theory.
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Blackmun, Harry A.
Category: Government, Politics, and History.
Field of Study: Connections.
Summary: Harry A. Blackmun was a U.S. Supreme 
Court justice who applied mathematical logic in his 
judicial career.

Harry A. Blackmun (1908–1999) is best known as the 
author of the majority opinion in Roe v. Wade, the U.S. 
Supreme Court case that recognized a constitutional 
right to abortion. Blackmun, however, was perhaps the 
only Supreme Court justice to hold a degree in math-

ematics (A.B., Harvard, 1929), and one of the very few 
who has carefully applied mathematical concepts in ju-
dicial opinions.

Blackmun graduated from Harvard Law School in 
1932 and served as law clerk to Judge John B. Sanborn 
of the U.S. Court of Appeals for the Eighth Circuit. His 
law practice, with a prominent Minneapolis law firm 
and the Mayo Clinic, focused primarily on tax law 
and estate planning. He succeeded Judge Sanborn on 
the Eighth Circuit in 1959 and was appointed to the 
U.S. Supreme Court by President Richard M. Nixon in 
1970 following the Senate’s rejection of two previous 
nominees. Both of Blackmun’s judicial appointments 
were promoted by his childhood friend, Chief Justice 
Warren E. Burger. So close was this connection that for 
their first decade on the Supreme Court, the two men 
were referred to as the “Minnesota Twins,” but thereaf-
ter they went separate jurisprudential ways.

Blackmun and Mathematical Reasoning
A particularly striking example of Blackmun’s use of 
mathematical reasoning involves his application of the 
binomial distribution as a method for assessing dis-
crimination claims. In Castaneda v. Partida (1977), a 
Texas county was accused of systematically discriminat-
ing against Mexican Americans in the selection of grand 
jurors. Mexican Americans constituted nearly 80% of 
the population but only 39% of the grand jurors dur-
ing the 11-year period at issue. Blackmun’s opinion for 
the Court noted the substantial absolute disparity but 
used the binomial distribution to explain the unlikeli-
hood that such a disparity would have arisen by chance. 
Eschewing mathematical symbols, he verbally explained 
the calculations involved and the formula for making 
them. The difference between the observed and the 
expected number of Mexican-American grand jurors 
during this period was approximately 29 standard devia-
tions, a result that would occur by chance less than once 
in 10149 times. The use of statistical evidence has since 
become standard practice in discrimination cases.

Justice Blackmun also relied heavily on empiri-
cal evidence in Ballew v. Georgia (1978), a case that 
established the minimum constitutionally acceptable 
size for juries. American juries traditionally had 12 
members, but—in a case considered shortly before 
Blackmun took his seat—the Supreme Court held 
that six-member juries were permissible. Ballew held 
that a five-person jury was too small to satisfy the 
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requirements of due process. Blackmun’s opinion on 
this issue spoke for all of his colleagues, some of whom 
wrote separately on other issues. Engaging with a sub-
stantial body of statistical and experimental research, 
he observed that smaller juries are less likely to engage 
in effective deliberations, take diverse viewpoints seri-
ously, and reflect a fair cross-section of the community 
than 12-person juries and that smaller juries are more 
likely to reach inaccurate judgments. Blackmun con-
ceded that the differences between five- and six-per-
son juries might be difficult to discern empirically, but 
he concluded that a line had to be drawn somewhere 
to avoid further reductions in jury size. The data actu-
ally raised troubling questions about the earlier deci-
sion upholding six-person juries, but the Court was 
unwilling to overrule that precedent.

Finally, Blackmun addressed statistical issues relat-
ing to the imposition of the death penalty, both on the 
Supreme Court and on the court of appeals. On the 
Eighth Circuit, in Maxwell v. Bishop (1968), Blackmun 
rejected a statistical study purporting to show that Afri-
can Americans were much more likely than whites to 
get the death penalty in rape cases. The study was lim-
ited in scope, did not relate to the county where the case 
arose, failed to account for relevant variables, and did 
not show that racism affected the verdict or sentence 
in that case. The Supreme Court set aside this decision 
because of an intervening ruling on a different issue.

Two decades later, in McCleskey v. Kemp (1987), 
Blackmun dissented from a decision that rejected a 
claim of racial discrimination in a Georgia death pen-
alty case. Blackmun explained that this claim was sup-
ported by a multiple regression analysis of every homi-
cide case in that state during the relevant time period. 
The study, which included 230 variables, found that 
persons accused of killing whites were 4.3 times as likely 
to receive a death sentence as persons accused of killing 
African Americans and that African-American defen-
dants were significantly more likely to be sentenced to 
death than white defendants. Blackmun emphasized 
the “sophistication and detail” of this study and con-
cluded that it showed an unacceptable risk that racism 
had affected the decision to impose the death sentence.

Further Reading
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See Also: Data Analysis and Probability in Society; 
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Blackwell, David
Category: Mathematics Culture and Identity.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Statistician and game theorist David 
Blackwell (1919–2010) became one of the most 
esteemed African-American mathematicians. 

David Harold Blackwell was one of the most famous 
American mathematicians. He was Professor of Statis-
tics at the University of California at Berkley.  

Early History
David Blackwell was born on April 24, 1919, in Cen-
tralia, Illinois, and was an African American. David 
was the oldest of four children in his family. His father 
worked for the Illinois Central Railroad looking after 
the locomotives, and his mother looked after the fam-
ily. David attended the integrated elementary school 
rather than the existing segregated school for African 
Americans in Centralia. He said, “I had no sense of 
being discriminated against. My parents protected 
us from it and I didn’t encounter enough of it in the 
schools to notice it.”

Blackwell enjoyed geometry very much. In high 
school, he applied his mathematical skills to games. His 
interest in mathematics continued to grow after enter-
ing the University of Illinois, in 1935, at age 16. In a 
course on real analysis, he was especially interested in 
calculus, and he was excited by Newton’s method for 
solving equations. The course on real analysis turned 
him on to a career in mathematics. He remarked upon 
the course, saying, “That’s the first time I knew that 
serious mathematics was for me. It became clear that 
it was not simply a few things that I liked. The whole 
subject was just beautiful.”
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During his study at the university, his father had to 
borrow money to finance his education. David took 
jobs such as dishwashing to help earn money and, at the 
same time, he took courses over the summers and was 
able to graduate with a B.A. in 1938. After graduating, 
Blackwell continued to study at the University of Illinois 
for his master’s degree, which he was awarded in 1939, 
and then for his doctorate, supervised by Joseph Doob. 
This was awarded in 1941 when Blackwell was only 22 
years old. The dissertation title was “Some Properties of 
Markoff Chains.” After that, Blackwell received a one-
year appointment as a Rosenwald Postdoctoral Fellow 
at the Institute for Advanced Study in Princeton. This 
appointment caused some turmoil, of which he was not 
fully aware, because he was an African American. 

Personal and Professional Life
From 1942 to 1943, he had a post at the Southern Uni-
versity at Baton Rouge, followed by a year as an instruc-
tor at Clark College in Atlanta. Blackwell was appointed 
as an instructor in 1944 at Howard University and, after 
only three years, he was  promoted to full professor and 
head of the Department of Mathematics. 

In 1944 he married Ann Madison, with whom he 
had eight children.

He left Howard University in 1954 to take up a pro-
fessorship at the University of California at Berkeley, 
where he taught students up to his retirement, and, 
after that, as Professor Emeritus. 

During three summers between 1948 and 1950, he 
worked at the Research and Development Corpora-
tion (RAND). At about the time of his arrival and the 
beginning of his work at Berkeley, Blackwell’s interests 
turned toward statistics, and he became a theoretical 

statistician. In 1956, he became 
chairman of the Department 
of Statistics. He was one of the 
eponyms of the Rao–Blackwell 
theorem, a famous theorem in 

statistical theory. Thanks 
to him, the areas of game 
theory and topology 
were connected as well. 

Awards and Honors
Blackwell received honorary Doctorate of Science 
degrees from 12 universities. He was selected to be 
president of the Institute of Mathematics Statistics, the 
International Association for Statistics in Physical Sci-
ences, and the Bernoulli Society. He was vice president 
of the International Statistical Institute, the American 
Statistical Association, and the American Mathemati-
cal Society. He was elected to the National Academy of 
Science, the first African-American mathematician to 
do so. He was also elected to the American Academy of 
Arts and Sciences. He held memberships in numerous 
professional organizations, including being a life mem-
ber of National Association of Mathematicians. He was 
an Honorary Fellow of the Royal Statistical Society.

David Blackwell lived in Berkeley until his death in 
July 2010.

Further Reading
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See Also: Game Theory; Probability; Statistics  
Education.

Board Games
Category: Games, Sport, and Recreation.
Fields of Study:  Algebra; Data Analysis and 
Probability; Geometry.
Summary: While some games are explicitly 
mathematical, others are implicitly governed by math.

Humans have been playing games for as long as they 
have been around. Johan Huizinga was the first to call 
the attention to the fact that play precedes culture. 
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Board games, a very organized form of play, are part 
of human social nature. Human communities may dif-
fer in many ways, but they all play games. From the 
ancient Mancala, practiced for millennia in Africa, to 
our Monopoly, we find board games in many societies. 
Besides their cultural relevance—they are studied by 
anthropologists, historians, and others—board games 
are characterized by their sets of rules, which show 
mathematical structures and connections that are at 
times very surprising.

Game Classifications
Chess and Go come to mind as examples of traditional 
board games, and Monopoly and Scrabble are exam-
ples of proprietary games. The distinction between the 
two types of games is not always easy to identify. In 
chess, the movements of the pieces and the other rules 
are the main considerations. Chess is an abstract game, 
not considering the fact that it originally emulated a 
battle between two armies. Chess does have similari-
ties with other games. When playing representational 
games like Monopoly or Diplomacy, players find them-
selves focusing on the possibilities and strategic choices, 
forgetting the particular settings. Accoring to David 
Parlett, positional games refer to games where pieces 
are played in a board or any other set of markings, as 
chess, checkers, and Go, and “theme” games are gener-
ally representational and commercial, like Monopoly 
and Diplomacy. 

Board game classification has been inspired in the 
fact, first noted by H. J. R. Murray, that games are typi-
cal of early activities of man—the battle, the siege, the 
race, the hunt, alignment, arrangement, and counting. 
Parlett’s classification, which evolved from Murray’s 
and others, is as follows. In race games, the board is 
a linear track where each player tries to be the first to 
reach a particular cell or remove a set of pieces from 
the board. Most of the games under this category use 
dice or other randomizing devices, like Chutes & Lad-
ders, Ludo, and Backgammon, but not all, such as Hare 
& Tortoise. 

Space games, typically two-dimensional and free 
placing, comprise the alignment games, as Nine Men 
Morris; connection games, as Hex and Twixt; traversal 
games, in which a player tries to have one or several 
pieces cross the board, as Breakthrough, Halma, and 
Chinese Checkers; configuration games, where play-
ers try to achieve certain displays with their pieces, 

as Agon; restriction games, where the aim is to try to 
block the adversary, like Pentominoes; and occupation 
games, in which the winner is the player who achieves 
more space in the board, as in Go and Othello. Chase 
games are asymmetrical, one player having several 
pieces while the other has only one or two. Their goals 
are also distinct, as in Fox & Geese. “Displace games” 
include chess and checkers, where a player aims at 
capturing most of his opponent’s pieces (as in check-
ers) or a particular one (as in chess), and other war 
games; the family of Mancala games belongs also to 
this class. 

History
The Royal Game of Ur, also known as the Game of 
Twenty Squares, was found in the south of Iraq in the 
1920s and is about 4500 years old. The board shows 
twenty squares, 12 in a three-by-four rectangular 
array, six in two rows of three, and two connecting 
cells. The reverse of the board corresponding to the 
12 cells showed a zodiac, illustrating that in the past, 
the same object could be a board game and a divina-
tory device. Two cuneiform clay tablets give the exact 
rules for this game. Each player had seven pieces, 
which moved across the board according to the toss 
of three tetrahedral dice. 

A similar game is found in Ancient Egypt, Senet 
or the Game of Thirty Squares. It was a race game as 
well, but it was more than a simple toy. In funerary 
monuments that date from 4000 years ago, images are 
shown of the deceased playing Senet against an invis-
ible adversary. Osiris, which is present but not shown, 
decides on matters of life after death.

The Royal Game of Ur and Senet can be viewed 
as the oldest relatives of the modern Backgammon, a 
game in which the moves are decided by the players 
upon tossing two cubic dice. The player who better 
understands the probability laws that rule the dice is 
most often the winner. 

The Chinese game Go is four millennia old. Now-
adays, it remains one of the most complex games, 
despite the simplicity of its rules. Go is played on the 
intersections of a 19-by-19 grid, and each player fights 
to control the largest area.

Pure strategy games could also be found in Ancient 
Greece, like Petteia. This game, and the Roman Ludus 
Latrunculorum, shared the shape of the board, check-
ered, and the orthogonal movement of the pieces. 
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Chess, which originated in India about 1400 years 
ago, traveled to the West with the Arabs, and saw its 
rules evolve in the process. It was originally created as 
a war game between two armies, and its pieces repre-
sented the actors of the battle. However, the abstract 
shapes that reached Europe gave way to the symbolic 
representation of the European medieval society. 

The Arabs introduced several other games in Europe. 
One game they introduced, Alquerque, was played on 
the intersections of a five-by-five lined board. The 
adaptation of this game to the chessboard originated 
the game of Checkers.  

Board Games and Mathematics
The oldest known pedagogical game is Rithmomachia, 
also known as Philosopher’s Game. It was invented 
in the eleventh century as a didactical device to teach 

mathematics. It was practiced wherever Boethius’s 
arithmetic was taught. Pythagorean in nature, this tra-
dition of mathematics dominated teaching at churches 
and universities for more than 500 years. In an eight-
by-16 board, two armies fought each other. Pieces car-
ried numbers and could have one of three shapes: cir-
cular, triangular, or square. 

The movements depended on the shape of the piece 
played; the captures depended on the numbers and 
on arithmetical calculations. Victory was attained by 
means of a configuration of pieces holding numbers in 
progression (arithmetic, geometric, harmonic, or com-
binations of the three). This game spread throughout 
Europe, and only when the mathematical curriculum 
at universities changed in the sixteenth century did it 
vanish. Losing its pedagogical goal turned out to be 
fatal, as Rithmomachia lacked the qualities to survive 
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as a purely recreational activity. Chinese scholars of 
the eleventh century also published work on permuta-
tions based on the Go board. John H. Conway’s twen-
tieth-century research on the game contributed to the 
invention of surreal numbers and the development of 
combinatorial game theory.

Ludus Astronomorum was a board game for seven 
players based on Ptolemaic astrological principles. In 
the sixteenth century, William Fulke, a professor at 
Cambridge who had written a manual of the Philoso-
pher’s Game, created two other games. One, intended 
to improve on the astronomy game, was Ouranoma-
chia, the other, created to teach geometry, was Metro-
machia. Fulke published one book on each.

In the eighteenth century, George Berkeley invented 
a game to help teach algebra, a subject Berkeley had 
in very high consideration. The game was Ludus Alge-
braicus and essentially functioned as a randomizing 
device to generate algebraic equations.

Charles Dodgson invented a game in the nineteenth 
century to practice logical deduction and wrote a book 
about it, The Game of Logic, under his pen name, Lewis 
Carroll.

In Ireland, mathematician William Hamilton cre-
ated in 1857 the Icosian Game and soon after Travel-
ler’s Dodecahedron. This comprised a dodecahedron 
and a piece of thread that should touch every vertex 
according to some rules. It was this game that gave rise 
to the concept of Hamiltonean Graph.

The familiar game of Nim in which a move consists 
of choosing from one of a pile of beans and reducing 
its cardinality, was first solved mathematically at the 
beginning of the previous century. In its normal form, 
where the winner is the one who takes the last bean, is 
the paradigm of a class of games studied in Combina-
torial Game Theory. The familiar children’s game Dots 
& Boxes was also treated mathematically with the same 
techniques. Some traditional games, like Konane, can 
be approached the same way.

The game Hex was invented independently by both 
Piet Hein and John Nash in the 1940s. It is a connection 
game played on a diamond-shaped board of hexagonal 
cells. David Gale noted that a game of Hex can never 
end in a tie, and that this fact is logically equivalent to 
a deep theorem in topology.

Abstract games with complete information and no 
chance devices are also called mathematical games. 
The mental processes present in their practice and in a 

typical mathematical activity, like problem solving, are 
far from disjointed.
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See Also: Dice Games; Mathematical Puzzles; Puzzles; 
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Body Mass Index
Category: Medicine and Health.
Fields of Study: Algebra; Number and Operation.
Summary: Body Mass Index is a statistically useful 
index of a person’s relative weight.

Body mass index (BMI) is an index of the relative 
weight of a person. In other words, it is an estimate of 
a person’s weight, adjusted for height. The formula for 
calculating BMI is

Weight in kilograms /(Height in Meters)2.

The equation implies that, holding other factors 
constant, weight is proportional to height squared, at 
each level of height. This equation is counterintuitive 
because of the common assumption that to calcu-
late mass or volume, a cubic function is necessary. In 
fact, dividing mass by height cubed was historically a 
popular method, called the “Ponderal index.” However, 
Adolphe Quetelet (1796–1874) observed that, for an 
“average man,” a squared function was a better fit to 
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the data. With increasing age, humans’ height increases 
at a faster rate than width. Taller adults tend to be slim-
mer—waistlines do not usually grow in proportion to 
increasing height. Quetelet observed that people do 
not expand equally in all three dimensions. If they did, 
then the Ponderal index would still be valid. In reality, 
he noted that, “weight increases nearly as the square 
of the height”—particularly between puberty and age 
25. Before puberty, the Ponderal index does increase 
more proportionally to width. Quetelet stressed that 
there was considerable variance in body shape and size, 
which are determined by biological, psychological, and 
social factors. For example, he noted that “young per-
sons who apply themselves to study, and persons in the 
affluent classes generally, are taller than others.”

The Quetelet Index
The popularity of the Quetelet index increased follow-
ing World War II, when epidemiological evidence began 
to accumulate that excess weight was a risk factor for 
premature mortality and morbidity. Historically, and 
in several cultures today, excess weight (corpulence) 
was considered healthy and desirable. Given this new 
evidence, actuaries needed a quick and reliable way to 
predict who might be most at risk, so that insurance 
premiums could be loaded against those with excess 
weight. They creating height-weight charts, based on 
Quetelet’s data, which provided the typical weights 
expected at various levels of height for the average per-
son—assuming that they were age 25. The index was 
later termed “body mass index.” 

Insurance companies, clinicians, and researchers 
began using BMI as a proxy variable for measuring 
excess weight at all ages, not simply as an index of rela-
tive weight at age 25, as originally intended. The popu-
larity of BMI remains today. For example, the World 
Health Organization uses BMI in its definition of obe-
sity, where “overweight” is defined as BMI equal to or 
greater than 25, and obesity is defined as a BMI more 
than 30. There are no agreed BMI cutoffs for child-
hood obesity in the same way that there are for adults. 
The categorization of continuous data (for example, 
overweight, obese) is controversial because it results 
in a loss of information. BMI is indeed a risk factor for 
chronic diseases, despite its usage deviating from the 
original intended purpose. In clinical settings, BMI is 
usually supplemented with other information regard-
ing disease risk, such as blood pressure or lifestyle fac-

tors including cigarette smoking. Additionally, it may 
be necessary to take into account whether the person 
has an ectomorphic, mesomorphic, or endomorphic 
body type.

The Quetelet index was first formally evaluated by 
epidemiologists working on data from a large cohort 
study, called the Framingham Heart Study. They 
noticed that Quetelet’s index was being widely used 
as an indicator of excess weight, not simply weight 
adjusted for height as it was originally intended. The 
epidemiologists wanted to evaluate the validity of this 
assumption, by comparing different methods for mea-
suring relative weight against three criteria:

1. The proxy should not correlate with height.
2. The proxy should correlate highly with 

skinfold thickness measurements, since these 
are valid proxies for the thickness of the 
subcutaneous fat layers in different parts of 
the body, in turn.

3. The proxy should be easy to calculate.

After analyzing the data, they concluded that Que-
telet’s index was indeed the best available measure, and 
renamed it the Body Mass Index. However, it should 
be noted that correlations between BMI and skinfold 
thickness measurements varied considerably, and the 
highest was 0.8. The researchers noted that if height 
and weight are the only data available, excess body fat is 
unlikely to be measured in a satisfactory way. The lower 
a correlation between a proxy variable and the variable 
it is intended to measure, the less well that proxy will 
correlate with health outcomes. It should also be noted 
that the third criterion (the ease of calculation) is not 
statistical—the validity of an index or test should be 
based on how well it performs against a gold standard, 
not simply because it is easy to use. 

Criticisms
Researchers have since argued that valid proxies for 
excess body fat should take into account its distribution 
in the body. Excess fat in the abdominal region (visceral 
fat) is a risk factor for metabolic diseases, regardless of 
total fat volume in the body. Waist circumference cor-
relates highly with visceral fat, leading some research-
ers to suggest that waist circumference is a better proxy 
for excess weight than BMI. Similar alternatives include 
the ratio of waist circumference to hip circumference 
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(waist-to-hip ratio). Because waist circumference is 
associated with increased morbidity and mortality risk, 
holding BMI constant, it provides additional informa-
tion that is not captured by BMI. Both are considered 
independent risk factors, such that it may be necessary 
to measure both BMI and waist circumference. In fact, 
a consensus statement from Shaping America’s Health 
concluded that waist circumference predicted cardio-
metabolic outcomes, and should therefore be measured 
in clinical settings as a matter of routine. However, 
waist circumference is difficult to measure reliably. BMI 
remains a useful index for many purposes.
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Brain
Category: Medicine and Health.
Fields of study: All.
Summary: The brain is studied through models  
and through algorithm-dependent medical 
technology. The neurology of mathematical thought  
is a vibrant field.

The applications of mathematics to the study and un-
derstanding of the brain have been varied and wide-
spread. They include models to predict the start of 
seizures using dynamical systems; maps of the brain 
using projective, hyperbolic, or other geometries, as 
well as graph theory; applications of morphometrics, 
which is the statistical study of shapes, to schizophrenic 
brains; and dynamic simulations and visualizations of 
electrochemical activity in neurons. Other models are 
used to study how electrical signals propagate along 
nerve cells and the way in which electrical discharges in 
nerve cells tend to synchronize and form waves. Medi-
cal technology used in brain treatment and studies 
uses mathematical algorithms; for example, to create 
and process computer-generated images of brain cells, 
as well as to measure functions like blood flow, glucose 
consumption, and electrical activity. Mathematics is 
also important in modern medical devices that involve 
nerve fibers within or leading to the brain, such as co-
chlear implants. How mathematical thought arises in 
the brain—from arithmetic to abstract thinking—is 
also of great interest. Mathematics and the Brain was 
the theme of Mathematics Awareness Month in 2007.

Brain Composition and Structure
Before proceeding with some applications of math-
ematics in the study of the brain, it is important to 
have an idea of brain composition and structure. In 
humans, this complex organ consists of perhaps 100 
billion nerve cells (or neurons), with roughly a total 
of 100 trillion connections between neurons (or syn-
apses). Although some nerve cells do regenerate, and 
new connections between nerve cells are made, overall 
these numbers tend to decline after birth. Even with 
advances in computer processing and storage, the sheer 
number of neurons and connections hints at the enor-
mous scope of the problem inherent in understanding 
the brain. By comparison, the nematode Caenorhab-
ditis elegans has 959 cells in the entire organism, 302 
being nerve cells, which result in over 5000 connec-
tions between neurons. Even for something of this 
vastly smaller scale, the nematode’s neural connections 
were initially mapped after more than 10 years of effort 
by the mid-1980s, and earned a Nobel Prize for Sydney 
Brenner—who famously called C. elegans “nature’s gift 
to science.” Those results have since been updated. 

A single neuron generally consists of: a main cell 
body (or soma); many filamentous dendrites, which are 
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where signals from other neurons are usually received; 
and a single axon, which typically communicates to the 
dendrites of other neurons. The electrical voltage across 
the neuron’s cell membrane varies as the concentra-
tions of calcium, sodium, potassium, and chloride ions 
fluctuate, producing a fluctuating electrical signal. The 
electrical signal is transferred from one neuron’s axon 
to another’s dendrite across a gap known as a “syn-
apse.” Some synapses, known as “electrical synapses,” 
involve a direct channel that connects the two cells’ 
cytoplasm and allows for very fast electrical transmis-
sion. By contrast, chemical synapses involve molecules 
known as “neurotransmitters,” which mediate signal 
transmission. The human brain utilizes more than 100 
types of neurotransmitters. However, just two of these 
types arise at the vast majority of synapses; namely, 
glutamate and gamma aminobutyric acid. In addition 
to neurons, glial cells serve various support functions 
for neurons. One important function of special kinds 
of glial cells—namely, special kinds of oligodendro-
cytes—is the myelinization of axons. Myelin, a fatty 
substance, essentially electrically insulates neurons. 
Because they are pinkish white, and white when stored 
in formaldehyde, bundles of myelinized axons make up 
what is known as “white matter” in the brain. On the 
other hand, “grey matter,” as seen on the surface of the 
cerebral cortex in a typical brain slice image, comprises 
of the soma, dendrites, and other kinds of glial cells, 
such as astrocytes. While C. Elegans has fewer than 60 
glial cells, the human brain likely has at least as many 
glial cells as neurons, although the ratio varies widely 
in different brain regions.  

Applications of Neural Networks
How neurons collectively convey information is also of 
much interest to researchers. Interestingly, attempts to 
model so-called “artificial neural networks” have led to 
highly useful algorithms used in many areas of math-
ematics, science, and engineering in their own right, 
having nothing to do with the study of the brain. Com-
puters are often “trained” with data sets using such 
neural networks to help process data. Neural networks 
can be found in software used in fields as varied as 
financial analysis and fraud detection, robotics, hand-
writing analysis, and voice recognition. As another 
example, much mathematics is used in processing and 
analyzing the enormous amount of neuron image data, 
and neural network algorithms are now being used to 

help automate that processing to help computers track 
neural connectivity.

Brain Mapping and Study
Mathematics also has been used to help in producing 
accurate maps of the cortex of various parts of the brain. 
The extensive folding in the human brain in the cere-
bral cortex, which produces peaks or ridges (or gyri) 
and valleys or furrows (or sulchi) makes it difficult to 
compare two different brain surfaces. A calculus-based 
geometry is used to find effective maps. As another 
example of an application, mathematics is used exten-
sively in devices such as cochlear implants, useful to 
deaf individuals who still have a functioning auditory 
nerve. In humans, as many as 30,000 individual nerve 
cells in the inner ear pass through the auditory nerve 
to the brain. Different sound frequencies innervate dif-
ferent nerve cells; roughly speaking, lower frequencies 
innervate nerve cells in the basilar membrane closer to 
the beginning of the cochlea, as opposed to higher fre-
quencies innervating cells further along. But the pre-
cise mapping of which cells are affected by which fre-
quencies follows a logarithmic mathematical pattern, 
as a function of distance in the cochlea. Using various 
radio signal technologies, external sounds are trans-
mitted to a receiver in the inner ear, which connects 
to implanted electrodes for nerve innervation. There, 
mathematics is used in the computational processing 
to convert the received frequencies into the appropriate 
electrical innervations, so that only certain nerve cells 
are stimulated for certain frequencies.

Examples of mathematics applied to the study of 
the brain abound in the five-year, National Institutes 
of Health–funded Human Connectome Project. This 
project, somewhat analogous to the Human Genome 
Project, was funded in 2010 for approximately $40 mil-
lion. Mapping all the connections between neurons in 
the human brain in a meaningful way is the goal of 
the Connectome project. One component involves 
constructing connection data from 1200 individuals, 
including numerous twins. Developing effective ways 
to collect the data set, as well as analyze the results, 
involves several areas of mathematics in crucial ways. 
First, instruments must be able to create high-reso-
lution images of the brain tissue of living humans in 
a completely noninvasive way. Next, the enormous 
image data must yield to automated computer analy-
sis that can determine the actual neural connections 
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within the brain. Finally, the connection data set must 
be amenable to meaningful analysis by researchers 
interested in understanding normal brain processing 
as well as diseases. At each stage, mathematics plays a 
crucial role. 

Brain Imaging Technologies
Magnetic resonance imaging (MRI) is commonly used 
today for noninvasive imaging of the internal structure 
of the human body; for example, to help determine 
if knee surgery or back surgery is warranted. In stan-
dard MRIs, a powerful magnetic field changes rapidly, 
and, by doing so, it manipulates the minute magnetic 
fields produced by protons in water molecules inside 
the body—a weak signal can be detected externally 
from the protons being flipped around by the strong 
magnetic fields. From these weak and indirect measure-
ments, solving the inverse problem using mathematics 
related to calculus is used to create what appear as two-
dimensional slices through the body. In the case of brain 
studies, the resolution of standard MRIs is adequate to 
see tumors but is too crude to see individual neurons 
or even to effectively track bundles of neurons. Since 
myelin is a fatty substance, water outside neurons will 
generally not diffuse into axons; rather, this water will 
tend to diffuse along the length of axons—the water 
percolates along axons or white matter. 

Diffusion tensor imaging (DTI) uses a variation of 
a standard MRI to determine the diffusion direction, 
and hence determine bulk nerve fibers. While DTI can 
produce high-resolution images of nerve fibers, diffi-
culties arise when fibers cross. Water diffusion in this 
case can now take multiple paths at the crossing points, 
and it is thus difficult to track nerve fibers at these 
crossing points. Diffusion spectrum imaging (DSI) 
involves more mathematics that determines more pre-
cisely how water diffuses and is not limited to think-
ing that water diffuses in only one direction. Roughly 
speaking, the mathematics is a mixture of calculus and 
statistical ideas, and it is interesting that two-dimen-
sional ellipses and three-dimensional ellipsoids play a 
role in the mathematics of DTIs and DSIs. The result-
ing images of nerve fibers are visually striking.

Not all techniques for imaging neurons rely on such 
indirect approaches as conventional MRI, or the MRI-
based DSI and DTI. Recall that those techniques are 
used primarily for imaging nerve fibers, not individual 
neurons. Techniques for higher-resolution imaging of 

actual neurons are somewhat direct. Jeff Lichtman and 
others developed the use of genes encoding three pro-
teins that fluoresce in, essentially, the colors red, blue, 
and green. Genetically modifying mice with these 
genes, as well as an enzyme that randomly arranges 
the genes amongst neurons, allows for mice neurons to 
appear in one of now approximately 150 colors, creat-
ing what Lichtman has termed a “brainbow.” Another 
approach relies on a genetically modified version of 
the rabies virus, which ordinarily is well suited for 
traveling from neuron to neuron on its journey to the 
brain. By tagging the modified virus with a fluores-
cent molecule, one obtains bright images of neurons 
connecting to just one other neuron to further aid in 
understanding neural connectivity. All in all, excep-
tionally striking images are displayed in many places 
including on the Internet. While the imaging of indi-
vidual neurons is often more direct and makes less use 
of mathematics than the MRI approaches to imaging 
nerve fibers, much mathematics is subsequently used 
in automating the process of tracking neurons and 
nerve fibers and, ultimately, the connections found 
might be described and analyzed by an area of math-
ematics known as “graph theory.”  

The approaches to imaging nerve fibers discussed 
above, such as DTI and DSI, rely on MRI instru-
ments; that is, they rely on indirect methods involving 
minute variations in very small magnetic fields from 
protons that are assailed by powerful externally gen-
erated magnetic fields. They use indirect information 
coming from throughout the local environment inside 
the brain, and mathematics is crucial to inverting the 
recorded data to recover what is going on at a particu-
lar location in the brain. But not all imaging inside the 
brain focuses just on the connections between indi-
vidual neurons or bundles of neurons. Other areas of 
interest include determining which parts of the brain 
are stimulated at which times by which activities. Here, 
other inversion processes are used to see what is hap-
pening in the brain, including functional MRI (fMRI), 
positron-emission tomography (PET), and electroen-
cephalograms (EEG). Blood oxygen level dependence 
(BOLD) uses MRI technology that takes into account 
the very slight differences in the magnetic fields from 
water molecules in blood, depending on whether the 
blood is carrying oxygen. Hemoglobin bound to oxygen 
is diamagnetic, essentially repelled by a magnetic field. 
Hemoglobin without bound oxygen is paramagnetic, 
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or attracted to a magnetic field. In either case, it affects 
the overall magnetic fields from the water molecules. 
This effect leads to functional MRI (fMRI), which is 
used to examine oxygenated blood in the brain. The 
principle is that high neural activity is probably associ-
ated with increased blood flow.

PET, another imaging approach, uses an analog 
of glucose with a radioactive fluorine atom attached. 
When it decays, it produces a particle known as a posi-
tron that is quickly annihilated upon encountering 
an electron, and two photons stream out in opposite 
directions. Photomultiplier detectors essentially notice 
the two photons, and mathematics is used to invert 
this problem and determine where the annihilation 
occurred, which presumably is near where the brain 

was consuming the glucose-like food. A single-photon 
to PETs, Single Photon Emission Computed Tomogra-
phy (SPECT), is also utilized.  

As the final example of imaging approaches, EEGs 
focus on using electrical activity recorded on the scalp 
to see what voltages are created by bulk neurons extend-
ing over somewhat larger regions of the brain, as neu-
rons synchronize their electrical signaling. EEGs thus 
have less spatial resolution than some of the other imag-
ing approaches. Magnetoencephalography (MEG) is a 
magnetic analog of the EEG in that it is also a nonin-
vasive procedure. Rather than using electrodes attached 
to a person’s scalp for measurements, as in an EEG, very 
precise superconducting quantum interference devices 
(SQUIDs) detect weak magnetic fields directly arising 
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from electrical brain activity. A mathematical inverse 
process makes the externally obtained magnetic data 
usable and converts it to internal electrical activity. 
MEG typically offers greater resolution, so it can local-
ize the electrical activity more precisely, than EEGs. 

Much mathematics is used to model the flow of elec-
trical impulses in the brain. Wave phenomena in the 
brain arise in varied contexts, from the propagation of 
signals down a neuron, to collective behavior of many 
neurons resulting in rhythmic activity. More specifi-
cally, the Nernst equation, named for Walther Nernst, 
and its generalization, the Goldman equation, named 
for David Goldman, help relate ion concentrations 
to voltages. How those voltages change in a neuron 
as it is stimulated by other neurons is modeled by the 
Hodgkin–Huxley set of equations, which are a calcu-
lus-based set of differential equations that resulted in 
a Nobel Prize for Alan Hodgkin and Andrew Huxley. 
Next, an area of mathematics known as “dynamical sys-
tems” helps model how the firing of individual neurons 
can naturally become synchronized and produce wave 
behavior at different frequencies, which are ultimately 
recorded on EEGs. Normal rhythmic activity is impor-
tant in activities such as sleeping, breathing, or walking. 
Abnormal rhythmic activity is manifested in various 
diseases; for example, forms of schizophrenia, Parkin-
son’s disease, and epilepsy demonstrate deviations from 
what is considered typical rhythmical behavior.  

Neurology of Learning Mathematic
How the brain learns mathematics is another area of 
interest to researchers. Psychology and other social 
sciences bring light to bear on this subject but so too 
does the study of various neural pathologies. As an 
example, dyscalculia, which has been called a form of 
“number blindness” (by analogy to color blindness), is 
a pathology wherein individuals cannot acquire arith-
metic skills. For instance, individuals fully capable of 
language communication who cannot tell if one whole 
number is larger than another or are unable to do 2-
digit computations are considered “number blind.” 
For other examples, there are cases of individuals with 
increasing difficulties with speech—primarily because 
of atrophy in the temporal lobes leading to demen-
tia—having highly reduced vocabulary including an 
inability to name common objects, yet whose arithme-
tic abilities remained virtually flawless. Similarly, there 
are instances of autistic individuals essentially unable 

to speak or understand speech, who nevertheless can 
perform computations. Infants can notice when the 
number of objects in a display changes or when a num-
ber of objects are hidden behind a screen. 

Finally, there are instances of stroke victims who 
have fully intact language but lack numerical skills, 
such as not being able to count past 4, or say how many 
days are in a week. These examples indicate that lan-
guage is not crucial for arithmetic computations, and, 
further, language may not be necessary for learning to 
calculate. Generally speaking, computations seem to be 
localized to the parietal lobe at the top of the brain, 
whereas key language areas, such as Broca’s (frontal 
lobe), named for Paul Broca, and Wernicke’s (tempo-
ral lobe), named for Carl Wernicke, reside elsewhere. 
However, there are ongoing debates among neurosci-
entists regarding what the highlighted areas on images 
mean with regard to brain functionality.

A related issue is how mathematical thinking beyond 
the level of simple arithmetic evolved in humans, 
including its relationship with the development of 
language and increasingly abstract reasoning. There 
are different and intriguing hypotheses regarding why 
language evolved roughly 200,000 years ago, whereas 
various forms of numerical and algorithmic abstrac-
tion evolved within the past few thousand years.
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Bridges
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry.
Summary: Bridges are subject to various complex 
forces, the distribution of which are determined by 
their structures. 

Bridges are structures built to span a gap or a physi-
cal obstacle such as a road or body of water. The many 
forces acting on bridges make different designs vari-
ously suited to different conditions, uses, and building 
materials. The earliest manmade bridges emulated nat-
urally occurring bridges, like fallen trees that spanned 
rivers, and were improved upon by lashing logs into 
place, cutting planks to form a more even travel sur-
face, and eventually building bridges out of stone. The 
mathematics of bridges was not well understood and 
most improvements were achieved through trial and 
error, one of the most significant being the advent of 
the arch bridge, introduced in Greece in 1300 b.c.e. 
and used extensively by the Romans. Arch bridges 
use arch-shaped abutments, sometimes in a series, to 
distribute much of the bridge’s load into horizontal 
thrust the abutments can restrain—not only a major 
improvement over earlier designs, but a design well-
suited to the simple building materials of the time as 
stone is strong in compression but weakly resists ten-
sion. As applied mathematics became more sophisti-
cated, bridges were often objects of study.

Most bridges are built for functional purposes, but 
some of them are works of art, like the Golden Gate 
Bridge or the London Bridge. Mathematicians have 
long worked on various aspects related to the design 
and construction of bridges. For instance, Charles 
Hutton worked on equilibrium principles and Claude-
Louis Navier developed a theory for suspension bridges. 
Applied mathematician P. Joseph McKenna analyzed 
bridge oscillations and differential equation models of 
the collapse of the Tacoma Narrows Bridge. The con-
figuration of bridges in Konigsberg served as the sub-
ject of mathematical study for Leonhard Euler and is 
sometimes noted as the beginning of graph theory.  

Types of Bridges
There are various types of bridges. Beam bridges consist 
of a horizontal beam with two supports called “piers” 
at the ends. Arch bridges are one of the oldest types of 

bridges and distribute the load of the bridge outward 
along the curve of the arch to the supports at the ends. 
Suspension bridges are light and strong and can span 
longer distances than any other type of bridge, but they 
are expensive to build. Large bundles of cables suspend 
the roadway from one end of the bridge to the other. 
Early Asian suspension bridges were suspended with 
bamboo cables. Cable-stayed bridges look like suspen-
sion bridges, but their cables are secured to towers that 
bear the load of the bridge. They cost less and their 
construction is faster than suspension bridges, since 
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The Mathematics  
of Bridges

A bridge has to support various forms of 
forces: tension, compression, bending, 

torsion, and shear. It has to carry its own weight 
(or “dead load”), the weight of the traffic for 
which it was intended (or “dynamic load”), and 
it should resist various natural forces, such 
as wind or earthquakes. The Tacoma Narrows 
Bridge is often presented in engineering, phys-
ics, or mathematics classes as an application of 
oscillation problems or differential equations. It 
was a 1.1 mile (1.9 kilometer) long suspension 
bridge and collapsed in 1940—four months af-
ter being opened—because a 35–46 mile per 
hour wind produced an oscillation, which ulti-
mately broke the entire construction.

The Tacoma Narrows Bridge



they need fewer cables and builders can use pre-cast 
concrete sections. Movable bridges can be occasion-
ally levered for making way for ships or other kinds of 
traffic. Double-decked bridges have two levels and are 
used for multiple forms of traffic—subway, pedestrian, 
automobile, or bicycle.

The Seven Bridges of Konigsberg
Mathematician Leonhard Euler posed the problem of the 
seven bridges of Konigsberg in a 1736 paper. The town 
of Konigsberg contained an island with two branches of 
a river flowing around it. There were seven bridges span-
ning the river, and the question was whether a person 
could start at some point and follow a path that would 
cross each bridge exactly once and return to the starting 
point. Euler proved that there was no such path.

Famous Bridges
Millau Bridge, France, is 1125 feet high—higher 
than the Eiffel Tower. Hangzhou Bay Bridge, China, 
is 22 miles long. The Rolling Bridge, England, is 39 
feet long and rolls itself up until the two ends meet, 
using a hydraulic press. Tower Bridge, England, is a 
landmark of London and opens in the center, allow-
ing ships to sail through. Ponte Vecchio, Italy, is con-
sidered by some to be the oldest stone arch bridge 
in Europe. Lake Pontchartrain Causeway, Louisiana, 
is 24 miles long. Vasco da Gama Bridge, Portugal, is 
10.5 miles long. Confederation Bridge, Canada, is 8 
miles long. Golden Gate Bridge, California, is one of 
the most famous symbols of San Francisco. Evergreen 
Point Floating Bridge, Washington, is a 1.5-mile-long 
floating bridge.
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Budgeting
Category: Business, Economics, and Marketing.
Fields of Study: Measurement; Number and 
Operations.
Summary: Creating a viable budget requires 
mathematical analysis.

The word “budget” originally meant a small pouch. 
By the end of the sixteenth century, people used the 
word to refer to the contents as well as the bag. The 
connection with finance dates back to at least 1733. In 
general, a budget is a balanced plan for spending and 
saving that includes expected incomes and expendi-
tures. Individuals or families use budgets to manage 
earnings; pay bills; save for events like retirement, col-
lege, or vacations; and to plan for large purchases like 
a car or a home. 

Businesses manage revenues and expenses for mate-
rials, taxes, advertising, and payroll using budgets. 
They may also have smaller budgets for individual 
projects. City, state, and national governments use 
budgets to distribute incomes from taxes and other 
sources among expenditures like infrastructure, social 
programs, national defense, and debt. Mathematicians 
play a large role in developing mathematically sound 
budgets at all levels, especially accountants and actu-
aries. In the past, budgeting in classroom settings was 
confined largely to home economics classes, but now 
budgeting activities are often used to teach various 
mathematical principles in context.

Some budgets are created using known amounts. 
Other times, the values are forecasts of income or 
expenditures based on data or mathematical mod-
els. Budgets themselves can also be used for modeling 
and production. For example, a static budget is a fixed 
budget created before any input and output values are 
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known, while a flexible budget can be adjusted based 
on information about actual activity. A metric called 
“flexible budget variance” compares flexible budgets 
to actual results to determine the effects of economic 
variables on business operations. Sales volume vari-
ance compares flexible budgets to static budgets to 
determine the effect a company’s activity had on its 
operations. Budget accuracy ratios also quantify dif-
ferences between various budgets or actual produc-
tion. These can be used to create more accurate future 
budgets and to plan operations. Budgeting concepts 
can also apply to resources other than money. Lisa 
Sullivan, a senior budget analyst working for the U.S. 
Department of the Navy, regularly uses algebra, statis-
tics, mathematical modeling, and operations research 
to explore resource allocation problems that affect 
budgeting. She often works on unique mathematical 
problems that do not occur in private industry, such 

as determining the optimal number of Navy surgeons 
needed in wartime.

Budgeting Basics
Creating a spending plan can be complicated; how-
ever, the easier the plan, the more likely it is to be 
followed. One of the simplest budgets used is the 10-
10-80 principle. John D. Rockefeller, the first person 
in the world to amass a fortune of $1 billion and the 
wealthiest American ever when adjusted for inflation, 
is reported to have used the 10-10-80 principle. The 
crux of the principle is simple: give 10% of your earn-
ings to charity, save 10% of your earnings, and live on 
the remaining 80%.

Anytime you receive income (for example, paycheck, 
gift, or prize), first multiply that amount by 10%. Find-
ing 10% of an amount is a relatively easy process: move 
the decimal point to the left one place value. For exam-
ple, if you received earnings of $342.57, multiplying by 
10% would yield $34.257 (rounded to $34.26). Based 
on the 10-10-80 principle, you should first give $34.26 
away to charity. Many people donate this money to 
religious institutions or charities such as the Red Cross 
or the United Way. One argument for giving, besides 
being altruistic, is to show ourselves that we have con-
trol of our money. By freely and willingly giving some 
of it to others instead of tightly holding onto it, we gain 
confidence that we have enough and can therefore live 
on what we are given.

The next 10%, or $34.26 in this example, is given to 
yourself into some sort of savings vehicle like a savings 
account or a money market fund. Ideally, this money is 
never needed as it becomes part of your long-term sav-
ings. This money may go toward retirement or an emer-
gency fund in case of job loss or major disaster. Many 
people are tempted to use this long-term savings for 
expenses like taking vacations, buying a car, or replac-
ing an appliance. However, these foreseeable expenses 
should be budgeted as part of the remaining 80%.

Once you have given 20% of your income away 
(10% to others and 10% to yourself), the remaining 
80% can be used for living expenses (including short-
term savings). How that 80% is spent can vary depend-
ing on many factors including how many people are 
being supported (for example, you do not need to buy 
as much food for a single adult as you do for a family of 
five). Usually the biggest expenditures are for housing 
and transportation.
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Combined, these two categories should not account 
for more than 50%, or half, of your income. Of course, 
the less you spend on these the more you have to spend 
on other areas. Housing, by itself, should account for 
less than 35% of your income. In the previous exam-
ple, 35% of $342.57 is $119.91. Set aside this $119.91 to 
cover any housing expenses you have. 

Housing expenses include not only the obvious rent 
or mortgage but also utilities (heat, electric, plumb-
ing, sanitation, telephone, and Internet), insurance, 
property taxes, and property maintenance (property 
maintenance is usually about 5% of the property value 
each year).

If housing and transportation together should be 
50% (or less) of your income, then 15% should be used 
on transportation. In the example, 15% of $342.57 is 
$51.39. This amount becomes earmarked to cover all 
transportation expenses. These expenses include car 
payments, insurance, license, gasoline, parking, and 
maintenance (car maintenance is usually about 10% of 
your transportation costs).  

If you spend 50% of your income on housing and 
transportation, this leaves a mere 30% for everything 
else. If you have been spending more than you earn, 
you probably have credit card debt or other personal 
debt. Ideally, your debts (not including housing or 
transportation debts) do not account for more than 
5% to 10% of your income. What remains should be 
used to pay for food, life insurance, medical insurance, 
medical and dental expenses, clothing, entertainment, 
short-term savings (for vacations and replacement 
costs), and other miscellaneous spending.

Further Reading
Johnson, Kay. The Mathematics of Budgeting: 

Mathematics for Everyday Living. Erie, PA: Meridian 
Creative Group, 1999.

Joshi, Mark. The Concepts and Practice of Mathematical 
Finance. 2nd ed. Cambridge, England: Cambridge 
University Press, 2008.

Shim, Jae. The Art of Mathematics in Business: Analyzing 
Facts and Figures for Smart Business Decisions. 
Sterling, VA: Global Professional, 2009.

Chad T. Lower

See Also: Comparison Shopping; Coupons and 
Rebates; Home Buying; Money.

Burns, Ursula
Category: Business, Economics, and Marketing.
Field of Study: Connections.
Summary: The CEO of the Xerox Corporation 
and Forbes’ 20th most powerful woman in the 
world, Ursula Burns (1958–) is an accomplished 
mathematics education advocate.

Ursula Burns was the first African-American woman to 
be named chief executive officer (CEO) (2009) and ul-
timately chairman (in 2010) of a Fortune 100 company. 
Burns has a bachelor of science degree in mechanical 
engineering from Polytechnic Institute of NYU and a 
master’s of science degree in mechanical engineering 
from Columbia University. In addition to her work at 
the Xerox Corporation, she has been passionate about 
mathematics, science, and engineering education.

Career
Burns has dedicated her entire professional life to the 
Xerox Corporation. She began her career with the 
company in 1980 as a mechanical engineering sum-
mer intern. After completing her master’s degree, she 
joined the company as a full-time employee. In her 
early career, she worked in product development and 
planning, and later in manufacturing and supply chain 
operations. She noted, “This company was my family.” 
In 2007, she was appointed president of the company, 
and in 2009, at the age of 50, she succeeded another 
female CEO, Ann Mulcahy, to become the first African-
American woman named CEO of a Fortune 100 com-
pany. She advises students, “Find something that you 
love to do, and find a place that you really like to do it 
in.…I’m a mechanical engineer by training, and I loved 
it. I still do.…I got to work on these great problems.”

Commitment to Mathematics and Science
In addition to her business successes, Burns advocates 
for stronger educational efforts in science, technology, 
engineering, and mathematics. In a 2010 interview with 
Fortune magazine, she reflected, “If you get kids when 
they’re young from just about any background, you 
can create people who are capable of utilizing science, 
technology, math, and engineering to solve problems.  
If you look at the list of the top nations and try to find 
out where we are in reading, math, and any science, it 
is stunning. I don’t look at the list anymore because it’s 
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an embarrassment.  We are the best nation in the world.  
We created the Internet and little iPods and copying 
and printing machines and MRI devices and artificial 
hearts.  That’s all science and engineering.  Who’s going 
to create those things?” Her concern is supported by 
data from sources such as the Trends in International 
Mathematics and Science Study (TIMSS).

In response to her strong dedication to mathematics 
and science learning, in 2009, President Barack Obama 
appointed Mrs. Burns a member of Educate to Inno-
vate, a White House Initiative on Science, Technology, 
Engineering, and Mathematics Education (STEM) to 
help lead a national program to improve student learn-
ing in these fields. This committee was also charged 
with creating public-private partnerships to foster 
innovation and creativity in the STEM fields.

This program was expanded in 2010 to include 
Change the Equation, a CEO-led initiative. Funded in 
part by the Bill and Melinda Gates Foundation and the 
Carnegie Corporation of New York, the group provides 
financial support to assist high school students in pass-
ing advanced placement tests in science and mathemat-
ics, as well as promoting the professional development 
of STEM teachers. Burns has been quoted as saying, “If 
we inspire young people today, we secure our ability to 
innovate tomorrow…[because] [i]nnovation is central 
to our nation’s overall growth.”

Accomplishments
In 2010, Burns was named the 20th most powerful 
woman in the world by Forbes magazine. The award, 
in part, was based on her commitment to mathematics 
and science education. Similarly, Fortune magazine has 
ranked her as number nine on its list of the 50 most 
powerful women for 2010. In addition to her position at 
Xerox, she is on the board of directors for several orga-
nizations including the American Express Corporation, 
FIRST Robotics, the National Academy Foundation, 
MIT, and the University of Rochester. Burns credits her 
success in part to the lessons in life she learned from her 
mother. She is often quoted as saying, “Don’t ever do 
anything that won’t make your mom proud.” Clearly, 
her accomplishments would please any mother.
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Bus Scheduling
Category: Travel and Transportation.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement; Number and Operations.
Summary: Mathematical modeling can be used 
study and create optimal bus schedules.

Public transportation systems, like buses, are the pri-
mary mode of transportation for millions of people 
worldwide. Many people advocate for the increased 
use of buses to alleviate problems such as pollution 
and roadway congestion. Most public bus systems use 
fixed routes and schedules that specify the times and 
places at which the bus will stop so that people can plan 
their travel. However, most bus riders have had an oc-
casion when their bus arrived late or have seen several 
buses arrive in quick succession. At peak times, buses 
may also be too full to admit new riders. Operations 
research is a subdiscipline of mathematics that focuses 
on these sorts of scheduling problems and mathemati-
cians in a wide variety of areas work on related theo-
ries, problems, and applications. 

Since buses usually travel several circuits in the same 
closed loops, and since there may be several buses fol-
lowing the same path, scheduling buses is similar to 
the problem of people waiting in a line or queue at 
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the grocery store or the movies. Queuing theory uses 
mathematical techniques and concepts such as Markov 
chains, boundary models, series and cycles, numeri-
cal methods, simulation, and stochastic modeling to 
optimize scheduling. These problems can be challeng-
ing because of the need to quantify human behavior. 
Of particular interest to some mathematicians is the 
amount of slack that must be allowed in the schedule 
to allow buses to complete their routes in a timely and 
efficient fashion while accounting for natural variabil-
ity and unexpected events. A related phenomenon is 
“bunching,” which happens when buses traveling the 
same route get too close together. Both result in delays, 
lack of reliability, and customer dissatisfaction. In 2006, 
engineers Maged Dessouky, Jiamin Zhao, and T. S. Buk-
kapatnam published a mathematical model that created 
curves to correlate average delay times and slack time 
ratios with passenger waiting times. The curves were 
used to estimate optimal slack as a function of total 
round-trip travel time. They found an exact solution for 
the simplified case of a single bus on a closed loop with 
a known distribution of travel delays, with approximate 
extensions for more buses. In contrast, physicists Petr 
Seba and Milan Krbalek studied unscheduled, privately 
owned buses in Mexico. Passengers waited at known 
stops, and the drivers competed for passengers rather 
than assigning specific pickup times. While this system 
may appear to be chaotic, it has been shown in some 
studies to be more efficient than scheduled stops, and it 
can be modeled with a mathematical concept known as 
random matrices. Theoretical physicists have used these 
matrices since the 1970s to model complex quantum 
systems. They also have applications such as describ-
ing the distribution of prime numbers, and the possible 
arrangements of shuffled playing cards.

Queues
Both the problems of scheduling and queuing have 
commonality and are studied under the title “Queues” 
or “Queuing Theory.” To think of the simplest problem 
is to consider a single customer service counter where 
the server takes a random amount of time serving each 
customer, and customers come one by one to the coun-
ter. A customer arriving at the counter is served straight 
away if the counter is idle when the customer arrives. 
If a customer is being served when additional custom-
ers arrive, then these new customers have to wait in 
a queue for their turn to be served. This method by 

which a queue forms leads to several interesting ques-
tions. How does one model the arrival pattern of cus-
tomers? What is the expected time of service for dif-
ferent customers in the queue? What is the expected 
length of the queue as a function of time? How many 
customers will be served in a day given a model for the 
random service times? 

This queuing problem can be translated to sched-
uling a bus to run in a city. Various specific questions 
arise in this scenario. When should the bus start? Which 
route should it take so that the service is available to 
the maximum number of commuters? How much time 
should the bus wait in intermediate bus stops? How 
often should the bus repeatedly go in the same route? 
Here, the objectives may be to maximize the utility of 
people who commute using the bus, minimize the fuel 
costs for running the bus, and optimize the use of the 
available buses. The problem of finding the optimal 
routes is called a “routing problem” or “bus schedul-
ing problem.” Given information about the number 
of buses available, the layout of the city, and the num-
ber of commuters who are likely to use the bus facil-
ity in the city, the scheduling problem can be posed as 
an optimization problem. To find out the number of 
commuters who may use the facility, one can perform 
a pilot study to ascertain the views of the people who 
may be interested in using a bus for their transport. 

Modeling bus schedules is necessary to predict the 
arrival time of a bus at a particular station. Stochas-
tic modeling must be employed since many random 
factors are involved like possible delay in the starting 
station because of commuter rush, and unexpected 
hurdles in the route because of weather. Modeling also 
helps in avoiding the clustering of buses at some points 
in a route. Another application of modeling is to track 
the buses and monitor the speed of buses on the routes. 
Once the bus scheduling is completed, service reliabil-
ity has to be studied so as to make adjustments in the 
bus scheduling for improving the service. Efficient bus 
scheduling also helps in increasing the profitability of 
running bus service. 

Scheduling Factors and Models
Bus scheduling involves a lot of random factors. Some 
of the factors are the number of people who will use 
the service, the amount of time the bus takes to cover 
a particular route, the delay caused by traffic jams, the 
number of commuters getting on and off at a particular 
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bus station, the monthly income generated by the bus 
service along a particular route, and the maintenance 
costs for the bus. This necessitates stochastic modeling 
for the bus schedules. Models can be proposed based 
on historical data, pilot studies, and experiments. One 
of the important parameters considered in bus sched-
uling is the waiting time of commuters at a particu-
lar station. The objective of scheduling should be to 
minimize the waiting times of commuters at several 
points along a route, and for this, it is necessary to pro-
vide the most accurate bus schedules possible so that 
commuters get the maximum benefit. Queuing theory 
addresses most of these problems discussed and is a 
good source for solutions to problems in bus schedul-
ing. Data mining techniques can also be used to look at 

patterns of commuter behavior across routes and this 
may be helpful in improved bus scheduling. 

Further Reading
Eastaway, Rob, Jeremy Wyndham, and Tim Rice. Why 

Do Buses Come in Threes? The Hidden Mathematics of 
Everyday Life. Hoboken, NJ: Wiley, 2000.

Gross, Donald, John Shortle, James Thompson, and Carl 
Harris. Fundamentals of Queueing Theory. 4th ed. 
Hoboken, NJ: Wiley, 2008.

Ravi Sreenivasan

See Also: Animation and CGI; Data Mining; 
Probability.

	 Bus Scheduling	 135





137

Calculators in  
Classrooms
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Number and Operations.
Summary: Calculators can be used in classrooms to 
augment rather than replace learning mathematical 
calculations.

Calculators have a long history. They can be traced 
back to the ninth century when the original compact 
calculator, the abacus, was developed in China. Nowa-
days, calculators are small (often handheld), electronic, 
digital, and inexpensive devices to perform various 
operations of mathematics. There are many kinds of 
calculators. Simple calculators just perform the basic 
operations of arithmetic. 

Advanced calculators include scientific calculators 
and graphing calculators. Scientific calculators can 
work on complex operations such as trigonometric, 
logarithmic, and statistical calculations; some are even 
able to perform computer algebra. Graphing calcula-
tors usually have similar abilities to scientific calcu-
lators; however, they can be used to graph functions 
defined on the real line or higher dimensional Euclid-

ean space. Since the advent of handheld calculators in 
the 1970s, the daily lives of people have been changed 
profoundly. Almost each business office and every high 
school student has at least one calculator. People can 
solve tedious computations in a few seconds by calcu-
lator, which was impossible before 1970.

Calculators in Primary  
Mathematics Classrooms
The availability of inexpensive calculators in primary 
classrooms has been increasing rapidly. However, 
the debate on their effectiveness in student learning 
and their role in mathematics instruction  continues. 
Whether calculators should be used in primary 
classroom remains a controversial issue. On one 
hand, some people worry that calculators may hinder 
students’ learning and obstruct the development 
of basic arithmetic operations such as addition, 
subtraction, multiplication, and division. On the other 
hand, research has shown that calculators can promote 
problem solving in students with a strong foundation 
in basic skills.

In primary classrooms, the use of calculators aims 
at facilitating the learning of mathematics rather than 
replacing mental arithmetic and written calculation. 
Pupils can use calculators to explore number patterns, 
construct concepts, and check different methods 
and results of problem solving. With the help of 
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calculators, children can strengthen their abilities in 
mental arithmetic and estimation, as well as judge 
the sensibleness of the results of calculation. For 
instance, pupils may be asked to estimate the sum 
of 9 + 99 + 999 and explain how they get the answer. 
One method of estimating the sum is the calculation 
10 + 100 + 1000 − 3. 

After they have done the estimate mentally, they 
can check their estimation by calculator. Depending 
on their abilities, pupils may be asked to estimate 
the sum of more complicated operations such as  
999 + 9999 + 99,999 + 999,999 + 9,999,999 and then 
check the answer by calculator. This kind of activity 
facilitates the development of inquiry mind and higher 
order thinking in children. When pupils are allowed to 
use calculators to check the answers they have come 
up with by themselves, they have immediate feedback, 
have more time for solving additional problems, and 
make fewer errors. Calculators help pupils concentrate 
on thinking rather than on computation.

Pupils cannot benefit much if they are requested to 
compute traditional calculations such as 2 + 7 or 3 × 5 
by using a calculator. However, when they are asked to 
explore what calculations would give an answer of 10 
with the aid of calculator, the effect can be very positive. 
Pupils may find patterns such as 1+9, 2+8, 3+7, . . . ; 
11−1, 12−2, 13−3, . . . ; and 10÷1, 20÷2,  30÷3,  . . . ; 
and so on. Such open-ended tasks provide opportunities 
for children to explore basic arithmetic operations, 
natural numbers, fractions, and decimals. Through these 
exploratory activities, children can develop number sense 
and strengthen inquiry mind by making and testing 
conjectures. Calculators help children quickly detect and 
correct their misunderstandings experientially.

There are many good calculator activities that will 
enrich the learning experience for pupils. Different 
activities may be suitable for different classrooms; 
however, the focus should be on the mathematics 
rather than the calculator.  

Calculators in Secondary  
Mathematics Classrooms
The use of scientific and graphing calculators in sec-
ondary school causes much less controversy than the 
use of simpler calculators in elementary schools. In 
fact, many countries allow their secondary students 
to bring in approved calculators for their university-
entrance examinations.

Over the past 10 years, many innovative methods of 
teaching secondary mathematics have been developed 
with the advancement of handheld calculators and the 
needs of society. Many of the ideas require only basic 
calculators, but scientific and graphing calculators 
open up more possibilities—particularly for the learn-
ing of complicated functions, shapes, and graphs.  

A graphing calculator typically refers to a class 
of handheld calculators that are capable of plotting 
graphs, solving systems of equations, and perform-
ing numerous other tasks with variables. For instance, 
graphing calculators allow students to explore the 
effect of varying the coefficients in the quadratic equa-
tion y = ax2 + bx + c by plotting graphs for different set 
of values of a, b and c in seconds. Plotting quadratic 
graphs by paper and pencil would consume a lot of 
time and effort, which would slow down the learning 
pace and reduce learning interest in the topic. 

Graphing calculators save students from laborious 
work and provide opportunities to facilitate indepen-
dent learning and give scope for open-ended explo-
ration. If students go further in their investigation, 
they may generalize the conditions under which only 
one solution is obtained for the quadratic equation 
0 = ax2 + bx + c. 

The power of calculators advances rapidly. Some 
people worry about the use of symbolic calculators 
that can perform symbolic computations. They have 
argued that the use of symbolic calculators can cause 
core mathematical skills to wither, or that such use 
can prevent understanding of advanced concepts. It 
is not unusual that students use a symbolic calculator 
to find
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without realizing the mathematical principle or skills 
involved.

Concerns on Usage
From time to time, calculators are accused of making 
children lazy and replacing the need for them to use 
or remember number facts. They provide a means for 
getting answers without understanding mathematical 
processes. Some people worry that the extensive use 
of calculators in mathematics instruction interferes 
with students’ mastery of basic mathematical skills 
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Calculators in Society
Category: Communication and Computers.
Fields of Study: Algebra; Measurement; Number 
and Operations.
Summary: Advancements in calculator technology 
have profoundly changed society and mathematics 
education.

In the decades since the invention of a truly hand-
held calculator, these devices have evolved from four-
function curiosities costing hundreds of dollars to 
sophisticated machines capable of performing a wide 
range of mathematical and statistical functions at the 
same cost as that “four-banger” from the early 1970s. 
The effect on society has been considerable, as the 
laborious arithmetic involved in routine scientific or 
financial calculations can be done by nearly anyone 
with minimal effort and accuracy that was unthink-
able in the 1950s. A variety of technological advances 
and a new market for calculating power during the 
1970s led to the “calculator wars” among a variety 
of manufacturers, and frequent major advances in 
the power of a calculator were marketed to a willing 
society. These powerful calculators have changed the 
school mathematics curriculum in a variety of ways 
and brought a new focus to the Advanced Placement 
(AP) calculus exams.  

Early History of Calculators 
In their 1951 textbook Mathematics of Investment, 
Paul Rider and Carl Fischer made occasional reference 
to the ability of “computing machines” to facilitate 
involved calculations in financial mathematics. How-
ever, since such machines were by no means common 
in the 1950s, the book includes 123 pages of numeri-
cal tables, roughly one-third of the book’s total length. 
These references were essential to actuarial calculations 
for many years, and their analogous tables of values of 
trigonometric functions, exponentials, and logarithms 
were a staple of mathematics textbooks for a compa-
rable time period.

The rapid rise of low-cost electronic calculators—a 
generation beyond the electric computing machines 
to which Rider and Fischer referred—reduced those 
tables to a mere historical curiosity within a genera-
tion. In 1958, Texas Instruments (TI) engineer Jack 
Kilby invented the integrated circuit, which became 

and the understanding they need for more advanced 
mathematics.

In reality, the calculator is a tool that, if used in the 
right way, can support and encourage children’s math-
ematical thinking. It is not calculators themselves that 
matter but when and how they are used that is impor-
tant. To avoid overemphasis on the use of calculators, 
students should be guided to recognize the functions 
and limitations of calculators, so as to strengthen their 
abilities in exploring and solving mathematical prob-
lems. For instance, in a classroom activity, all pupils 
are given the same set of calculation questions, such as 
789 + 0, 25 × 4, 17 × 8, and 299 × 10. Pupils work 
in pairs; one is requested to find the answers by mental 
computation while the other uses a calculator. 

At the end, they have to record the time needed and 
the number of correct answers. Pupils have to discuss 
and identify which calculations can be easily done 
mentally and which cannot. This activity can facilitate 
pupils’ communication in mathematics and under-
standing that mental calculation sometimes is more 
powerful than the calculator.

Research also suggests that inadequate guidance 
in the use of calculating tools can restrict the kind of 
mathematical thinking that students engage in. There-
fore, it is important that schools implement a balanced 
program that develops students’ understanding of the 
appropriate use of the calculator.
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known as the “calculator on a chip,” that revolutionized 
the world of calculating devices. Large electromechani-
cal desktop calculators soon gave way to more compact 
electronic machines, which culminated with the devel-
opment of the Cal-Tech handheld calculator in 1965 
at Texas Instruments. The Cal-Tech was a simple four-
function calculator that used a paper tape for output. 
With a new standard for what was possible, the rush 
to advance calculating machines, both handheld and 
desktop, was on.

Engineers at Hewlett-Packard (HP) merged the old 
with the new in 1968 with the development of the HP-
9100A, the first fully electronic desktop calculator. The 
9100A was considerably larger than the Cal-Tech but 
was much more versatile. Its function set included all 
of the functions found on a modern scientific calcula-
tor—trigonometric functions, logarithms, reciprocals, 
and others—and it was fully programmable. On view-
ing the 9100A, company founder Bill Hewlett included 
among his words of praise for the developers the chal-
lenge that the world needed a similar machine that 
would fit into a shirt pocket.

In 1972, Texas Instruments introduced the Data-
math, a four-function calculator released under the TI 
name. This was a departure for the company, which until 
then had confined its calculator work to manufacturing 
parts for other companies’ machines. Indeed, the Cal-
Tech was built primarily to show other manufacturers 
what the company’s parts could do, not as an eventual 
consumer product. In that same year, Hewlett-Packard 
engineers developed the HP-35, a fully scientific calcu-
lator that could fit into a shirt-pocket. With these two 
companies at the forefront of a rapidly advancing tech-
nology, and with many other manufacturers in close 
competition, the “calculator wars” began. The rapid 
evolution of affordable competing calculators from 
a variety of manufacturers went on throughout the 
1970s and into the early 1980s. 

A major innovation was TI’s introduction of the 
TI-30 scientific calculator, which sold for under $30 
beginning in 1976. The full scientific function set of 
the TI-30 on a low-priced machine was a huge advance 
over the $395 price tag of the original HP-35, and the 
TI-30 was regarded for many years as the best-selling 
calculator of all time.

HP introduced the first handheld programmable 
calculator, the HP-65, in 1974 (fewer than two years 
after its first scientific calculator), and followed it up in 

1977 with the HP-67. TI countered with the SR-52 in 
1975, which was succeeded by the TI-58 and TI-59 in 
1977. Each of these milestone calculators allowed the 
user to specify a sequence of steps into a special mem-
ory. These steps could then be repeatedly executed as 
many times as desired. The HP models and the 52 and 
59 provided the option of recording programs onto 
small magnetic cards for permanent storage, while 
the 58 and 59 came equipped with a slot for read-only 
memory (ROM) cartridges with space for dozens of 
specialized prewritten programs that were stored on 
the chip and could be run as needed without the need 
for repeated keying. 

Special-Purpose Calculators
Special-purpose calculators are preprogrammed with 
functions and formulas that are specific to a particular 
profession or interest. Among the earliest were calcula-
tors designed for financial mathematics, with keys and 
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routines for solving the time value of money problems 
and automating interest calculations—and here was 
where Rider and Fischer’s prediction was exceeded. 
These business calculators were considerably more 
sophisticated than could have been imagined in 1951.

By far the most successful business calculator is 
Hewlett-Packard’s HP-12C, which was introduced in 
1981 and is still in production 30 years later. In most 
senses, the 12C is the industry standard financial cal-
culator, and it has been the key to HP’s successful focus 
on the business calculator market. In 2003, the 12C got 
a facelift—and a faster processor—as the HP 12C Plati-
num Edition.

Unit conversion calculators inspired by the push 
in the 1970s to introduce the metric system in the 
United States live on in a variety of construction cal-
culators, many of which have been produced by a 
small company, Calculated Industries (CI). CI was 
founded in the 1978, and its first product was a real 
estate calculator dubbed “The Loan Arranger.” Future 
financial calculators from CI would expand in capabil-
ity to accommodate more sophisticated calculations, 
and a separate line of CI financial calculators is spe-
cific to Canadian interest calculations. Later product 
lines from CI included the Construction Master and 
Measure Master lines—which were specialized for the 
building industry. CI also produces a series of electri-
cal engineering calculators and a pair of professional 
plumbing calculators.  

CI also manufactures special-purpose calcula-
tors for a variety of niche markets. Do-it-yourselfers 
can find the calculations they need preprogrammed 
into the ProjectCalc series. Several of these have been 
rebranded by Sears under the Craftsman line. The 
KitchenCalc Pro is preset to convert cooking measure-
ments and includes a built-in timer. The Quilters’ Fab-
riCalc is one of the company’s most successful hobbyist 
calculators and automates the considerable mathemat-
ics involved in quilting. Most recently, the Mr. Gasket 
Hot Rod Calc was developed to serve performance 
automotive enthusiasts with a collection of functions 
for use in assessing an automobile’s performance.  

Calculators in the Classroom
In 1976, Texas Instruments released the Abstract Link-
ing Electronically (ABLE) calculator system, which rep-
resented the first attempt to manufacture a calculator 
specifically designed for elementary school classrooms 

beginning in the earliest grades. The ABLE system con-
sisted of a standard four-function calculator with six 
interchangeable faceplates. These faceplates blocked 
access to some of the calculator’s functions and could 
be switched out to allow a richer selection of options as 
a child’s mathematical sophistication grew.  

There was then, and continues to be, considerable 
tension over the question of calculator use in school 
mathematics. The conflict is generated by the ability of 
inexpensive calculators to automate routine arithme-
tic problems, which had led one side of the debate to 
suggest that there is no need to require computational 
automaticity, such as memorizing multiplication tables, 
which a calculator can handle. These advocates then 
assert that calculators free up room in the curriculum 
for what are called “higher-order” mathematical think-
ing skills. Those opposed to this view assert that higher-
order skills are not useful without a sound foundation 
based on mastery of routine calculations. Sensible mid-
dle ground exists between these two viewpoints, and a 
variety of combinations of these approaches are advo-
cated in textbooks and available to teachers.

In 2000, TI expanded the Explorer line to include 
the TI-15 Explorer calculator, which was designed for 
use in grades 3–6. This calculator contains specialized 
keys for computations like place value calculations and 
fraction operations without cluttering the keyboard 
with higher-level computations, like trigonometric 
functions, that are not studied in elementary school. 
Additionally, the TI-15 Explorer includes two keys that 
can be programmed to repeat simple operations, a 
randomized arithmetic tutor, and tools for exploring 
inequalities. A simpler companion calculator, the TI-
10, was introduced in 2002 and is aimed at kindergar-
ten through third grade classrooms.

At higher grade levels, one effect was far less contro-
versial. With the advent of inexpensive powerful scien-
tific calculators, there was no longer a need for exten-
sive tables of functions in precalculus textbooks.  

Graphing Calculators
In 1985, Casio introduced the first graphing calculator, 
the fx-7000G. In addition to serving as a fully functional 
scientific calculator, the fx-7000G had a large (1.4-
by-2-inch) LCD screen on which graphs of functions 
could be displayed. This allowed students to work with 
functions from both numerical and graphical perspec-
tives, and set the stage for a revolution in mathematics  
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teaching. Graphing calculators soon came to be seen as 
one of the primary components of this shift in teaching 
and learning.

Hewlett-Packard advanced handheld capacity fur-
ther with the HP-28C, introduced in 1987. In addition 
to numerical and graphical approaches to functions, 
the 28C was able to perform symbolic algebra and cal-
culus, working with variables directly without the need 
for numbers. Texas Instruments released its first graph-
ing calculator, the TI-81, in 1990, and the TI-85 soon 
after. The TI-82, 83, 84+, 86, and 89 have extended this 
successful product line, while the TI-80 and 73 have 
reached downward into middle schools.

As graphing calculators and computer algebra sys-
tems, such as Derive and Mathematica, competed 
for space in calculus classrooms around the world, it 
became clear that standardized testing would have to 
accommodate these new devices. Beginning in 1995, 
the Advanced Placement calculus exams have required 
the use of a graphing calculator on part of the exam, 
one that can plot graphs of functions, solve equations 
numerically, compute numerical derivatives, and eval-
uate definite integrals numerically. The College Board, 
which administers the AP exams, draws the line at cal-
culators with a typewriter-style QWERTY keyboard, 
such as the TI-92 (introduced in 1996) and Voyage 
200 (introduced in 2002) from Texas Instruments. 
The concern here is for the security of the tests, as the 
typewriter keyboard and text-processing capability are 
thought to make it too easy to collect confidential test 
questions and remove them from the testing site.  

The Future of Calculators
It is unclear what new ground remains to be broken in 
future calculators. Three-dimensional graphing is avail-
able on a variety of TI and HP machines, but the size 
of the screen and the challenge from computer algebra 
systems, such as Mathematica, have limited the reach of 
this feature. Calculating power is finding its way into a 
variety of other handheld devices. Just as many people 
no longer wear watches because they can get the time 
from their cell phones, calculator applications for cell 
phone platforms may render the cell phone an attrac-
tive alternative to a specialized calculator. While there 
are cost and durability issues to be considered in this 
comparison, CI has recognized this alternate platform 
by marketing its Construction Master Pro software for 
the iPhone.  
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Calculus and  
Calculus Education
Category: History and Development of Curricular 
Concepts.
Fields of Study: Calculus; Communication; 
Connections.
Summary: Once reserved for upper-level majors, 
the study of derivatives and integrals of functions has 
been mainstreamed by its applications.

Calculus, which takes its name from the Latin word 
for “pebble,” is one of the most important branches 
of mathematics and one of the cornerstones of math-
ematics education. In ancient history, pebbles were 
used for counting, and “calculus” initially referred to 
that. The word now represents the method of calcula-
tion linked often with the study of change attempting 
to investigate motions and rates of change. From its 
mathematical development to the philosophy of calcu-
lus education, calculus has been fraught with rigorous 
debate and change. 

Its appreciation and deeper understanding is a 
fundamental requirement in order to proceed toward 
a more advanced mathematical education and be 
involved with topics such as mathematical analysis. 
The topic finds its use and application in a vast number 
of different applied disciplines, such as biology, engi-
neering, physics, population dynamics, statistics, and, 
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in general, any scientific area that involves the study of 
instantaneous change.  

Calculus education has a rich and varied his-
tory. Takakazu Seki is remembered as an influen-
tial teacher who passed his form of calculus on to 
his students. However, during the seventeenth cen-
tury, secrecy surrounded rival schools in Japan, so 
it is difficult to determine his exact contributions. 
Successful calculus textbooks date back to at least 
Maria Gaetana Agnesi in the eighteenth century. She 
wrote Analytical Institutions, probably as a textbook 
for her brothers. She mastered many languages, which 
were useful when she integrated the knowledge of the 
time. She also added her own examples and exposi-
tions. Her book was widely translated and used all 
over the world, making the concepts of calculus more 
accessible. 

Calculus education underwent many changes in 
the twentieth century. Early on, calculus was often an 
upper-division college course in North America while 
it was a pre-college course in France. U.S. President 
John F. Kennedy’s race to the moon impacted calculus 
education in the United States. More engineering stu-
dents were recruited, and as a result, calculus shifted 
earlier in the college curriculum. Another change was 
an emphasis on set theory in such texts as Tom Apos-
tol’s Calculus. Beginning in the latter half of the twen-
tieth century, high schools offered AP Calculus. The 
shift of calculus to lower-level students also occurred 
in other countries, such as in Japan. 

However, students who did not have the apti-
tude to succeed in competitive programs were fil-
tered out in lower-level college courses, and edu-
cators debated this problem internationally. A 
calculus reform movement in the United States 
originated in the late 1980s, epitomized by the slogan 
“Calculus should be a pump, not a filter.” Teachers 
debated the roles of lectures, technology, and rigor. With 
minimal theoretical support for the choice of teaching 
strategies, mathematicians relied on empirical studies to 
determine what would help calculus students succeed. 
Educators tested many different approaches, such as 
those emphasizing active learning, graphing calcula-
tors, computer algebra software, historical sources, 
writing, humanistic perspectives, real-life applications, 
distance education, or calculus as a laboratory science. 
New teaching approaches were met with widespread 
acceptance on some campuses and rejection and back-

lash on others. Some schools reported a decline in 
the number of students failing calculus. In the early 
twenty-first century, mathematicians continue to dis-
cuss and refine the calculus course.

Calculus—A Journey Through History
Even though counting as a process appears from the 
very first stages of humanity and its traces are lost in 
history of various civilizations, calculus was officially 
introduced as a realization of the deeper need to set 
rules and construct generally approved techniques 
that would assist toward quantification of any kind of 
change in time or space.  

It could also perform modeling of systems that con-
tinuously evolve, and hence aid the interpretation and 
deduction of the consequences of the existence of such 
systems. Basic ideas of calculus involve limits, continu-
ity, derivatives, and integrals. 

Archimedes is one of the main scholars of ancient 
history who is linked with the ideas of calculus (c. sec-
ond century b.c.e.). However, two important scholars 
of the seventeenth century made significant contribu-
tions to the introduction and the establishment of cal-
culus as a quantitative language. Isaac Newton (1642–
1727) and Gottfried Wilhelm Leibniz (1646–1716) are 
both recognized as fathers of modern calculus. Even 
though they worked independently and were influ-
enced by two different areas—Newton by physics and 
Leibniz by geometry—they both reached into discov-
ering the same fundamental ideas of calculus. 

Differential Calculus
If x is a variable that changes with time (for example, 
x x t= ( )  is a function of time t) then one denotes

 

�x
dx

dt
=

the first derivative of the function x, which represents 
the rate of change of x t( )  with respect to time t. New-
ton used the notation �x  while Leibniz used 

dx

dt
.

In case of a moving object in one dimension, x t( ) 
represents the position of the object and �x t( )  its 
velocity. 

	 Calculus and Calculus Education	 143



The term “function” was first introduced by Leib-
niz and is one of the fundamental terms of mathe-
matics. In practice, a quantity y is defined as a func-
tion of another quantity t if there is a rule (method or 
process) in which a unique y will be assigned to any t. 
Leonhard Euler (1707–1783) introduced the notation 
y f t= ( )  to identify a function f. 

“Method of fluxions” is the term Newton used for 
his set of techniques to study the continuous flow 
of change. The process of finding a formula for the 
function x, given the formula for the function of x, is 
known as “differentiation” and the methods used for 
this belong to the field of differential calculus.

Rate of Change 
There is a particular interest in studying the change 
of a quantity and by extension the rate of change 
of a quantity as another quantity changes in a very 
small amount. As Newton and Leibniz were develop-
ing calculus, they both used “infinitesimals” in order 
to emphasize the idea of such a small quantity that is 
not zero and that cannot be measured (“infinitesimal 
calculus” or “calculus of infinitesimals”). Hence, the 
infinitesimal number dx was considered to be different 
from zero and less than any positive real number. 

Their approach raised criticism among other well-
known scholars such as George Berkeley (1685–1783), 
and the idea of using infinitesimals became gradually 
unpopular. The introduction of “limits” from Augus-
tin Louis Cauchy (1789–1857), Karl Theodor Wilhelm 
Weierstrass (1815–1897), and Georg Friedrich Bern-
hard Riemann (1826–1866) led in a better realization 
of the fundamental ideas of calculus and reestablished 
the topic within a more sound framework. However, 
nonstandard analysis (Abraham Robinson, 1960) and 
smooth infinitesimal analysis as introduced in the 
twentieth century have brought back into use the idea 
of infinitesimals.

Limit
The definition of limit is a cornerstone for advanced 
mathematics and especially for mathematical analysis. 
Limit is what distinguishes calculus from other areas 
of mathematics, such as algebra, geometry, and num-
ber theory. Even though mathematics has a history of 
more than 3000 years, limits were treated as a special 
area of mathematics only from 1823 c.e. when the con-
cept was published for the first time in Cauchy’s book 

Résumé of Lessons of Infinitesimal Calculus. The first 
appearance of the term belongs to the Greek mathe-
matician and philosopher Zeno of Elea (495–435 c.e.). 
However, the definition that was finally accepted and 
used by the mathematical community is the (ε, δ) defi-
nition as stated by Weierstrass. 

Weierstrass Definition 
Assume that L is a real number and that f x( )  is defined 
in an open interval where x

0 
belongs. Then the limit of 

f x( )  as x  tends to x
0
 is equal to L and is denoted with

lim
x x

f x L
→

( ) =
0

if the following is true: for any real number ε, there 
exists another real number δ  such that for all x  in the 
interval x x x0 0− ≤ ≤ +δ δ  the value f x( )  of f lies 
within the range from L− ε to L+ ε. 

In terms of infinitesimals, the limit is defined as 
follows: L is the limit of f x( )  as x  tends to x

0 
 and is 

denoted as

lim
x x

f x L
→

( ) =
0

if the following is true: for any infinitesimal number 
dx, the value of f a dx( )+  is finite, and the standard 
part of f a dx( )+  equals to L.

Equation of Tangent 
The term “derivative” as introduced from Newton 
and Leibniz signified a new era in mathematics. The 
term assisted mathematicians in finally solving rigor-
ously the problem of constructing a unique tangent 
passing from a point of a curve. Historically, math-
ematicians since Archimedes’ period were constantly 
trying to solve the prob   lem of a unique tangent on 
a point of a curve. Ancient Greeks believed first that 
the tangent at a point of a circle should be the line 
that passes from the particular point and is vertical to 
the radius of the circle. Archimedes devoted a signifi-
cant part of one of his books to this specific problem, 
which is known as “Archimedean spiral.” However, it 
was because of the introduction of the first derivative 
that the researchers could actually provide the equa-
tion for the tangent line of a curve C y f x: = ( )  at a 
point x f x0 0, ( )( )  as

 ε( ) = ( ) + ′( ) −( ): y f x f x x x0 0 0  where
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′( ) = ( ) − ( )
−→

f x
f x f x

x xx x0
0

0
0

lim   

is the rate of change of the function at that point

x f x0 0, ( )( )

corresponds and defines the slope of the line tangent to 
the curve C at point

x f x0 0, ( )( )

if and only if the limit exists.

Higher Order Derivatives 
Thinking of the example of a moving object in time, it 
can be easily identified that there is a need for estimat-
ing the acceleration of the object. Acceleration is the 
rate at which an object changes its velocity. Therefore, 
acceleration in mathematical terminology is nothing 
else but the derivative of the derivative of x denoted

 

x
d x

dt
=

2

2

and called “second derivative.” Since the first derivative 
provides information on the rate of change of a func-
tion, the second derivative refers to the rate of change 
of the rate of change. In general, a higher order deriva-
tive is denoted as

 
d x

dt

n

n
.

In a more geometric framework, the first and second 
derivatives can be used to determine the concavity; in 
other words, the way that the slopes of tangent lines 
of a curve y f x= ( )  change as x changes in an interval
a b,( ). 

If f is a differentiable function and ′f  is increas-
ing on a b,( ), then f is concave up on a b,( ). The slopes 
of the tangent lines of the graph of f increase as x 
increases over a b,( ); a concave up graph looks like a 
right-side up bowl. 

If ′f  is decreasing on a b,( ), then f is concave down 
on a b,( ). The slopes of the tangent lines of the graph 
of f decrease as x  increases over a b,( ); a concave down 
graph looks like an upside-down bowl.

Points where the concavity changes are known as 
inflection points of  f. Given that a function is increas-
ing throughout an interval, if its first derivative is posi-
tive throughout the interval and vice versa, and given 
that ′f  is differentiable, then the following can be 
obtained: If

> 0′( )′ ( )f x  

for all x in a b,( ), then ′f  is increasing on a b,( ) and 
therefore f is concave up on a b,( ). If

′( )′ ( ) <f x 0  

for all x in a b,( ), then ′f  is decreasing on a b,( ) and 
therefore f is concave down on a b,( ). A natural appli-
cation of this concept is to find the maximum or the 
minimum of a function in a case in which the function 
is concave down or concave up throughout the whole 
domain respectively. This can be used further to solve 
problems where an optimal solution is requested. 

According to Hans Hahn (1879–1934), the funda-
mental problem of differentiation can be expressed 
by two problems: (1) if the path of a moving object is 
known, estimate its velocity, and (2) given the existence 
of a curve, estimate its slope. Therefore, the inverse of 
these problems are (1) if the velocity of a moving object 
at every instance is known, estimate its path, and (2) if 
the slope of a curve is known, find the curve. 

Integral Calculus
Generally, the process to find a formula for a function 
of x given the formula for the derivative of the function 
of x is known as “integration” and the methods used to 
find the formula belong to the field of integral calculus.

Historically, integral calculus was motivated by the 
geometric problem of estimating the area of a region 
in xy-plane bounded by the graph of f, the x-axis, and 
the vertical lines x = a and x = b. The solution of this 
problem came as a realization for the need of integral 
calculus and is linked with

f x dx
a

b ( )∫  

which is known as the “definite integral.” 
It is not known exactly for how long the aforemen-

tioned problem troubled the mathematical world. In 
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1858, Alexander Henry Rind (1833–1863), an Egyp-
tologist from Scotland, discovered parts of a hand-
written papyrus document that is considered to have 
been written in 1650 b.c.e. The Rind Papyrus, as it is 
known today, consisted of 85 problems by the Egyptian 
scribe Ahmes, who claimed that he had copied these 
problems from an older document. Problem number 
50 indicates that before 4000 c.e., Egyptians knew how 
to compute the area of a circle by using the formula 
Area = 3.16 × radius 2. 

Eminent interest toward computations of areas of 
regions bounded by different kinds of curves is also 
seen in ancient Greece. Archimedes, whom several 
scholars consider as the “father of integral calcu-
lus” because of his method to estimate that the area 
bounded from the parabola y = x 2 and the rectangu-
lar lines  x = 1 and y = 0 would be equal to 1/3. His 
method, which is known as the “method of exhaus-
tion,” was an attempt to approximate the area of a 
curve by inscribing first in it a sequence of polygons 
and computing afterward their area, which must con-
verge to the area of the containing curve. However, 
this method was first developed by Eudoxus; Archime-
des just applied this method in order to establish the 
said area. This method was later generalized in what is 
known now as “integral calculus.”

The fundamental problem of integration focuses 
on finding the actual function (or, equivalently, its 
indefinite integral) if the derivative of the function is 
known. 

Assume that function f exists. If there is a function 
F y F x: = ( ) such that

′( ) = = ( )F x
dF

dx
f x

then F is called the indefinite integral or antiderivative 
of f  and it is denoted as

F x f x dx f I( ) = ( ) = =∫ ∫
where I stands for the first letter of the word “integral.” 

Cauchy was most probably the first mathematician 
who provided a rigorous definition for the integral by 
using the limit of a sum. Riemann, later on, influenced 
by the theory of trigonometric series of the form

a nx b nxn ncos sin( ) + ( )( )∑  

continued Cauchy’s work and defined the integral in 
a similar way, with the only difference that he studied 
the whole family of functions that can be integrated—
functions for which the integral exists. During Cauchy 
and Riemann’s period, mathematicians were mainly 
concerned with integrating bounded functions. How-
ever, the need for integrating functions that cannot be 
bounded was soon apparent. Carl Gustav Axel Har-
nack (1883) and Charles De La Vallée-Poussin (1894) 
were among the first mathematicians to be occupied 
with such a problem. However, Henri Léon Lebesgue 
(1875–1941) is the one who, with his Ph.D. thesis titled 
“Integral, Length and Area” published in 1902, brought 
integral calculus into a new level. He defined the Lebe-
sgue integral, which is a generalization of the Riemann 
integral, and defined a new measure known today as 
the Lebesgue Measure, which extends the idea of length 
from intervals to a large class of sets. 

Other important scholars whose names are tightly 
linked with the development of modern calculus are 
Frigyes Riesz (1880–1956), Johann Radon (1887–1956), 
Kazimierz Kuratowski (1896–1980), and Constantin 
Caratheodori (1873–1950). They succeeded in gener-
alizing and extending even further Lebesgue’s work.  

The symbol ∫, which is used for integration, is a big 
S (the first letter of the German word summe, mean-
ing “sum”) and was used for the first time by Leibniz. 
There are several theories regarding the origin of the 
symbol. F. M. Turrell has supported the theory that 
almost every botanist knows that if an apple is peeled 
by hand, and, with the help of a knife, starting from 
the stem and continuing in circles around the cen-
tral axis without cutting off the apple skin until the 
opposite end is reached, then a spiral is produced that 
creates an extended S once placed on the top of a hori-
zontal surface with the inner part of the skin facing 
upward. This observation, according to Turrell, could 
possibly explain the symbol of integration. Finally, the 
Greek letter Σ is strongly linked with ∫ as Euler used it 
to denote a sum.

The fundamental theorem of calculus asserts that 
differentiation and integration are inverse problems. 
If a function f is continuous on the interval [a,b] and 
if F is a function whose derivative is f on the interval 
a b,( ), then

f x dx F b F a
a

b

( ) = ( ) − ( )∫ .
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This realization has proved to be a very useful tech-
nique to estimate definite integrals in an algebraic way. 
Isaac Barrow, Newton, Leibniz, and Cauchy worked on 
the concepts and early proofs, and Riemann and Vito 
Volterra explored what conditions on functions were 
necessary in the theorem. Lebesgue’s definition of inte-
grals avoided some of the previous problems.

Probability theory and statistics are disciplines that 
use calculus. A valuable application is to determine the 
probability of a continuous random variable from an 
assumed density function and define the average of the 
variable and a range of variation around it. The basic 
method used to approach the underpinning problems 
is to find the area under the corresponding curves 
(compute an integral). 

For the study of joint distributions of several ran-
dom variables (multivariate distributions), students 
and researchers need to be familiar with the funda-
mental ideas of multidimensional calculus. Optimiza-
tion in statistics is another area where calculus is sig-
nificant; when, for instance, there is a demand to find 
an estimator of an unknown parameter that satisfies an 
optimality criterion, such as minimum variance. 

Other Types of Calculus
Other calculi that are linked strongly with the under-
graduate and postgraduate curriculum, indicating the 
broadness of the topic, are vector calculus and calculus 
of variations. 

• Stochastic calculus is tightly linked with 
financial calculus. It is mostly found in 
higher levels of mathematical education as 
it requires knowledge of measure theory, 
functional analysis, and theory of stochastic 
processes. 

• Malliavin calculus or stochastic calculus of 
variations was initiated by Norbert Wiener 
(1894–1964) in an attempt to provide a 
probabilistic proof of Hörmander’s “sum 
of squares” theorem. It is an infinite-
dimensional differential calculus on a 
Gaussian space with features that can be 
applied in a wide variety of advanced topics 
of stochastic analysis. Its development has 
enormously facilitated the study of stochastic 
differential equations where the solution is 
not adapted to the Brownian filtration. 

• Quantum and quantum stochastic calculus, 
which have gained the interest of quantum 
mechanics specialists, use infinitesimals 
rather than limits. 

• π-calculus and λ-calculus offer a simpler 
syntax, which is highly appreciated by those 
in computing, offering an easier development 
of the theory of programming languages: 
network calculus and operational calculus.

Calculus, with its all variations, can be character-
ized as the mathematical language that unifies science 
by linking different disciplines together; this is why it 
plays a central role in the mathematical curriculum 
with students exposed to its basic ideas from the high 
school level. 

The appreciation of the influence of calculus upon 
the vast majority of disciplines promotes a simultane-
ous intuitive approach by providing sufficient exam-
ples that illustrate the applicability of the topic. Mod-
ern technology in the form of computers and graphical 
calculators provides the tools that can assist not only 
in applying the mathematical techniques but also in a 
smooth transmission of the scientific ideas and basic 
mathematical concepts. 
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Calculus in Society
Category: School and Society.
Fields of Study: Calculus; Connections.
Summary: Since its introduction in the seventeenth 
century, calculus has been applied to more and 
more practical endeavors, from engineering and 
manufacturing to finance.

Since its initial development in the seventeenth cen-
tury, calculus has emerged as a principal tool for solv-
ing problems in the physical sciences, engineering, and 
technologies. Applications of calculus have expanded 
to architecture, aeronautics, life sciences, statistics, 
economics, commerce, and medicine. Contemporary 
society is impacted continually by the applications of 
calculus. Many bridges, high-rise buildings, airlines, 
ships, televisions, cellular phones, cars, computers, 
and numerous other amenities of life were designed 
using calculus. 

Since the 1970s, calculus in conjunction with com-
puter technology has resulted in the emergence of new 
areas of study such as dynamical systems and chaos 
theory. Such vast applications have established the 
study of calculus as essential in preparation for numer-
ous careers. Indeed, calculus is considered among the 
greatest achievements of humankind, making it wor-
thy of study in its own right in a society that places 
rational thought and innovation in highest esteem. 
Recent curricular and pedagogical reforms in calcu-
lus have made it more academically accessible to the 
school population. 

What Is Calculus? 
Calculus originated from studying the physical motions 
of the universe, such as the movement of planets in the 
solar system and physical forces on Earth. It involves 
both algebra and geometry, in combination with the 
concepts of infinity and limits. In contrast to algebra 
and geometry, which focus on properties of static 
structures, calculus centers on objects in motion. There 
are two principal forms of calculus, differential calcu-
lus and integral calculus, which are inversely related. 
At its most basic level, differential calculus is used in 
determining instantaneous rates of change of a depen-
dent variable with respect to one or more independent 
variables; integral calculus is used for computing areas 
and volumes of nonstandard shapes.  

Who Invented Calculus?
In the late seventeenth century, Isaac Newton (1646–
1727) of England and Gottfried Wilhelm Leibniz (1646–
1716) of Germany independently invented calculus. 
Isaac Newton began his development of calculus in 1666 
but did not arrange for its publication. He presented his 
derivations of calculus in his book, The Method of Flux-
ions, written in 1671. This book remained unpublished 
until 1736, nine years after his death. Gottfried Leibniz 
began his work in calculus in 1674. His first paper on 
the subject was published in 1684, 50 years earlier than 
Newton’s publication. Because of these circumstances 
and fueled by the eighteenth-century nationalism of 
England and Germany, a bitter controversy erupted 
over who first invented calculus. Was it Isaac Newton or 
Gottfried Leibniz?   

Investigators found that Leibniz had made a brief 
visit to London in 1676. Supporters of Newton argued 
that during that trip, Leibniz may have gained access 
to some of Newton’s unpublished work on the subject 
from mutual acquaintances within the mathematics 
community. However, these two prominent and out-
standing mathematicians used their own unique deri-
vations and symbolic notations for calculus, with New-
ton developing differential calculus first and Leibniz 
developing integral calculus first. For many decades, 
the calculus feud divided British mathematicians and 
continental mathematicians, and it remains a historical 
mystery into the twenty-first century. It was an unusual 
controversy in that it erupted rather late in the devel-
opment of calculus and was ignited by the respective 
followers of Newton and Leibniz. In the twenty-first 
century, the general consensus is that both Newton 
and Leibniz invented calculus, simultaneously and 
independently.  

Isaac Newton (1646–1727): The Man
Isaac Newton was revered in England during his life-
time and is recognized as one of the foremost math-
ematicians and physicists of all time. In addition to his 
invention of calculus, Newton is famous for designing 
and building the first reflecting telescope, formulat-
ing the laws of motion, and discovering the white light 
spectrum. He held many prestigious positions, includ-
ing Fellow of Trinity College, Lucasian Professor of 
Mathematics, Member of Parliament for the University 
of Cambridge, Master of the Royal Mint of England, 
and many others. Even though Newton was extremely 
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productive and admired universally for his work, on a 
personal level he was humble, cautious of others, and 
angered by criticism. His modest nature is embodied 
in his famous statement, “If I have seen farther than 
others, it is because I stood on the shoulders of giants.” 
His works in mathematics and physics were recognized 
throughout Europe when he was honored as Fellow of 
the Royal Society of London in 1672. He subsequently 
served as the Society’s president from 1705 until his 
death. In 1705, Newton was knighted in Cambridge by 
Queen Anne of England for his contributions to the 
Royal Mint. In 1727, Newton’s name was immortalized 
in English history by his burial in London’s Westmin-
ster Abbey and by the accompanying monument hon-
oring his contributions to mathematics and science. 

Gottfried Leibniz (1646–1716): The Man
Gottfried Leibniz is recognized as one of Germany’s 
greatest scholars of philosophy, history, and math-
ematics. He was the son of a philosophy professor and 
a leader in the philosophy of metaphysics. His opti-
mism is reflected in his words, “We live in the best of 
all possible worlds.” On a personal level, Leibniz was 
considered likeable, friendly, and somewhat boister-
ous.  Professionally, Leibniz was employed by a succes-
sion of German princes in the capacities of diplomat 
and librarian. He planned and founded several acad-
emies throughout Europe. For his knowledge of law, he 
was appointed Councilor of Justice for the Germanic 
regions of Brandenburg and Hanover. Similarly, Rus-
sian Tsar Peter the Great appointed Leibniz as Court 
Councilor of Justice for the Habsburgs. For his work 
in mathematics (derivations in calculus and invention 
of the binary number system), in 1673, Leibniz was 
appointed Fellow of the Royal Society of London, a 
society honoring outstanding mathematicians and sci-
entists throughout Europe. By 1706, however, Leibniz’s 
stellar reputation had begun to disintegrate. Accusa-
tions of plagiarism regarding the invention of calculus 
were unrelenting until Leibniz’s death in 1716. In con-
trast to Newton, the only mourner at Leibniz’s funeral 
was his secretary. Eventually, more than a century after 
his death, Leibniz’s outstanding contributions to math-
ematics were recognized in Germany when a statue was 
erected in his honor at Leipzig, one of Germany’s major 
centers of learning and culture.  

Interestingly, it is Leibniz’s symbolic notations for 
calculus, namely dy/dx and ∫y dx, that have stood the 

test of time. These notations are most prevalent in cal-
culus classrooms in the twenty-first century because 
of their consistency with the operations of differential 
equations and dimensional analysis. The most signifi-
cant contribution to mathematics by Newton and Leib-
niz was their derivations of the Fundamental Theorem 
of Calculus, a theorem that unites both differential and 
integral calculus.  

Building on Newton’s and Leibniz’s Work
Following the invention of calculus, additional contri-
butions to calculus were made by John Wallis (1616–
1703), Michel Rolle (1652–1719), Jacob Bernoulli 
(1654–1705), Guillaume de l’Hôpital (1661–1704), 
Brook Taylor (1685–1731), Colin Maclaurin (1698–
1746), Joseph-Louis Lagrange (1736–1813), Bernard 
Bolzano (1781–1848), Augustin-Louis Cauchy (1789–
1857), Karl Weinerstrasse (1815–1897), and Bernhard 
Riemann (1826–1866).  

The Power of Calculus
The power of calculus in contemporary society rests 
primarily in its applications in the physical sciences, 
engineering, optimization theory, economics, geo-
metrical measurement, probability, and mathemati-
cal modeling. 

The following is a sampling of basic applications 
using the two major branches of calculus.

Applications of Differential Calculus
• Environmental science: An oil tanker runs 

aground and begins to leak oil into the 
ocean and surrounding land areas, resulting 
in potentially devastating consequences. 
Differential calculus can be used to supply 
information essential for assessing the leakage 
and resolving the problem. For example, the 
rate and volume at which the oil is leaking 
can by determined using calculus. 

• Business and economics: Important 
applications of calculus in business and 
economics involve marginal analysis 
(known as the first derivative). Marginal 
costs, revenues, and profits represent rates 
of change that result from a unit increase 
in product production. This information is 
valuable in developing production levels and 
pricing strategies for maximizing profits. 
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• Medicine: Calculus can be used for evaluating 
the effectiveness of medications and dosage 
levels. For example, calculus can be used in 
determining the time required for a specific 
drug in a patient’s bloodstream to reach its 
maximum concentration and effectiveness.

• Biology and chemistry: Assessments 
of chemical treatments for reducing 
concentration levels of biological 
contaminants (such as insects or bacteria) 
can be determined by calculus. For instance, 
calculus can be used in measuring the 
concentration levels, effectiveness, and time 
necessary for a chemical treatment supplied 
to a body of water to reduce its bacterial 
count to desired minimal levels.

• Physics (velocity and acceleration): For 
moving objects (such as rolling balls or 
hot-air balloons), their maximum velocities, 
accelerations, and elevations can be 
determined using calculus.

• Politics: The number of years required in 
a city for the rate of increase in its voting 
population to reach its maximum can be 
determined using calculus.  

• Manufacturing: The design of containers, 
meeting specific constraints, can be 
determined using calculus. For example, 
calculus will supply the dimensions of a 
container that will maximize its volume or 
minimize its surface area.

Applications of Integral Calculus
• Inverse of differential calculus: In mathematics, 

most operations have inverse operations. 
In calculus, the inverse of differentiation 
is integration. Therefore, a fundamental 
application of integral calculus is to find 
functions that produce the answers to a 
problem in differential calculus.

• Measurement, area, and volume: Integral 
calculus can be used to find (1) the areas 
between the graphs of functions over specified 
intervals, (2) the surface areas of three-
dimensional objects, and (3) the volumes of 
three-dimensional objects. 

• Centroids: The centroid (or center of mass) 
of an object can be found using integral 

calculus. For two- and three-dimensional 
objects, the centroid is the balancing point of 
the object. Calculus can be used to locate the 
position of the centroid on the object. 

• Fluid pressure: Integral calculus is essential 
in the design of ships, dams, submarines, 
and other submerged objects. It is used 
in determining the fluid pressure on the 
submerged object at various depths from the 
water’s surface. This information is essential 
in the design of submerged objects so they 
will not collapse.

• Physics (work): When a constant force 
is applied to an object that moves in the 
direction of the force, the work produced 
by the force is found by multiplying the 
force by the distance moved by the object. 
However, when the applied force is not 
constant or is variable, calculus can be used 
in determining the work produced by the 
variable force (for example, the variable 
force needed to pull a metal spring, or the 
force exerted by expanding gases on the 
piston in an engine).

The aforementioned applications are examples of 
the most elementary applications of calculus. In the 
technological world of the twenty-first century, applica-
tions of calculus continue to evolve. The consequences 
of calculus are ubiquitous in contemporary society and 
impact every walk of life.  

Recommendations for Mathematics  
Curriculum Reform
In 1983, following a harsh report from the National 
Commission on Excellence in Education, U.S. soci-
ety began to question seriously the effectiveness of 
its educational systems. The report, titled A Nation 
at Risk: the Imperative for Educational Reform, was 
commissioned by U.S. President Ronald Reagan. The 
report cited U.S. students for their poor academic 
performance in every subject area at every grade level 
and their underachievement on national and inter-
national scales. The Commission warned the United 
States that its education system was “being eroded 
by a rising tide of mediocrity.” In the years that fol-
lowed, the Commission’s explicit call for educational 
reform in U.S. schools served to generate numerous 
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curricular reform efforts at the pre-college and col-
lege levels.  

In response to this call for reform, in 1987, the 
Mathematical Association of America (MAA) and the 
National Research Council (NRC) co-sponsored a con-
ference held in Washington, D.C., titled Calculus for a 
New Century. The conference was attended by more 
than 600 college and pre-college calculus teachers. The 
conference focused on the nature and need for calculus 
reform in college and pre-college institutions through-
out the nation. During that conference, the phrase 
“Calculus should be a pump, not a filter in the pipeline 
of American education” became a national mantra for 
calculus reform.

National educational assessments conducted in 
1989 further supported initiatives for calculus reform. 
During the 1980s, approximately 300,000 U.S. college 
students were enrolled annually in science-based cal-
culus courses. Of that number, only 140,000 students 
earned grades of D or higher. Thus, more than 50% of 
U.S. college students were failing the calculus courses 
required for their majors, which included mathemat-
ics, all of the natural and physical sciences, and com-
puter science. These bleak statistics served to motivate 
concerned calculus teachers to examine the traditional 
calculus curriculum, as well as their own teaching 
methodologies, with the intention of increasing course 
enrollments, student achievement, and enthusiasm for 
the subject. 

Their efforts resulted in major calculus reform ini-
tiatives as early as 1989. The first set of recommenda-
tions for reform in school mathematics (grades pre-
kindergarten–12) came from the National Council 
of Teachers of Mathematics (NCTM). These recom-
mendations were delineated in NCTM’s publication, 
Principles and Standards for School Mathematics (also 
known as NCTM Standards). 

Four overarching standards (called Process Stan-
dards) were identified for improving mathematics 
instruction at all levels. These standards identified 
problem solving, reasoning and proof, connections, 
and communications as the four primary foci for 
mathematics instruction. During the 1990s, most 
U.S. states adopted this document as their curriculum 
framework for school mathematics. Decisions regard-
ing the mathematics curriculum, textbook selections, 
and instructional strategies were revised in accordance 
with the recommendations of the NCTM Standards. 

Interestingly, the same document served to inspire 
pedagogical reform in mathematics at the college level, 
especially in calculus.  

Traditional Calculus Versus  
Reformed Calculus
Until 1990, the calculus curriculum had remained 
basically the same for decades. The traditional cal-
culus curriculum reflected formal mathematical lan-
guage, mathematical rigor, and symbolic precision. 
Computations with limits, mathematical proofs, and 
elaborate mathematical computations were common 
practice in calculus classrooms. Students took care-
ful notes, asked clarifying questions, and completed 
voluminous amounts of homework in preparation for 
test questions similar to those completed for home-
work. Instruction was teacher-centered and delivered 
through a lecture approach. Relevant applications 
were seldom considered, and graphing calculators and 
computers were rarely used in calculus instruction, 
and students were not allowed to use them for com-
putations, graphing, or problem solving. Mathemat-
ics educators attributed the dismal performance of the 
majority of students in the nation’s calculus classes to 
this traditional calculus curriculum. Consequently, by 
the mid-1990s, calculus reform movements had been 
initiated in many of the colleges and pre-college class-
rooms throughout the nation.  

Calculus reform efforts at the college level in the 
1990s often applied the pedagogical recommenda-
tions found in NCTM Standards. These pedagogical 
recommendations were also reflected in the revised 
Advanced Placement Calculus (AP Calculus) and 
International Baccalaureate Calculus (IB Calculus) 
courses offered in the nation’s high schools. A mea-
sure of the subsequent success of the calculus reform 
movement at the pre-college level can be seen in the 
dramatic increase in numbers of students who took 
these courses from the 1980s into the twenty-first 
century. Specifically, the National Center for Educa-
tion Statistics reported that the percentage of students 
completing calculus in high school had risen from 6% 
to 14% in the years from 1982 to 2004. The number 
of students completing calculus in high school con-
tinues to grow exponentially, at an estimated rate of 
6.5% per year. 

Several reform calculus curricula originated in the 
1990s, and continue into the twenty-first century. The 
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following examples are prominent reform calculus 
projects: Calculus, Concepts, Computers and Coopera-
tive Learning (C4L) conducted at Purdue University; 
the Calculus Consortium at Harvard (CCH) conducted 
at Harvard University; and Calculus and Mathemat-
ica (C&M) conducted at the University of Illinois at 
Urbana-Champaign and at Ohio State University.

While these three reform calculus projects differ 
from each other in significant ways, they share the fol-
lowing characteristics:

• They use graphing calculators, computers, 
and computer algebra systems (CAS) 
extensively for instruction, exploration, 
and visual representations. Supporters 
argue that technology serves to alleviate the 
huge burden of algebraic computation so 
characteristic of traditional calculus. The 
rationale for this reform is that technology 
facilitates instructional processes that focus 
on the principles of calculus rather than on 
computational procedures. Moreover, the 
graphical and visual representations provided 
by these technologies offer alternative 
modalities for learning that accommodate 
students’ different learning styles. The 
curricula for CCH and C4L focus heavily on 
graphing calculators, whereas the curriculum 
for C&M relies heavily on the computer 
software, Mathematica.

• The teacher serves as a facilitator of 
learning rather than the main conveyor of 
knowledge. While the teacher continues to 
initiate instruction and answer questions, 
mathematical situations are often explored 
by groups of students, using cooperative 
learning strategies. Using the principles of 
constructivist learning, students are guided 
to discover mathematical properties for 
themselves in a laboratory setting.

• A major focus is placed on real applications 
from multiple disciplines. The intention is 
to raise students’ interest in the subject and 
motivate them with relevant applications.

• Mathematical rigor and formal language 
are de-emphasized. The abstractions of 
mathematical proof and rigor are postponed 
for several semesters to provide sufficient 

time for students to gain practical and 
intuitive knowledge of the subject. 

• Assessment focuses heavily on students’ 
writing, explanations of problem solutions, 
and open-ended projects. Sometimes 
students’ explanations are valued as highly as 
the accuracy of their answers. 

Whereas all of the above instructional practices have 
shown varying degrees of success in reform calculus 
classrooms, some areas of concern have been identified 
by those involved in the projects. Specifically: 

• Focusing heavily on relevant applications 
sometimes results in the omission of 
important calculus content that cannot 
always be motivated by applications. 

• The use of everyday language sometimes 
results in imprecise and incorrect 
mathematical definitions. 

• Overuse of technologies for computation 
and graphing can weaken the development 
of students’ quantitative reasoning and 
computational skills in calculus. 

• Real-world problems are sometimes too 
complex and frustrating to students because 
of the extraneous and irrelevant information 
they usually contain.

• Short-answer problems for assessment are 
often easier for students than describing their 
problem-solving procedures in writing.

• Constructivist approaches are often too 
time consuming, allowing insufficient time 
for covering the entire calculus curriculum 
during class time. 

Resolution of these concerns will surely be addressed 
in future curriculum revisions, and changes or modi-
fications will be made accordingly. However, these 
accommodations are consistent with the historical 
evolution of calculus, which is the study of change and 
systems in perpetual motion.  

Summary
In the past, calculus was taught in ways that made it 
accessible to only a small proportion of the population. 
However, recent curricular and pedagogical reforms in 
calculus, both at the college and pre-college levels, have 
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served to increase student success, include twenty-first-
century-technologies, and triple course enrollments. 
Statistics indicate that calculus enrollments will con-
tinue to increase exponentially. These findings suggest 
that calculus instruction in the United States is respond-
ing positively to the academic needs of society.  

Indeed, by combining the power of technology with 
calculus, new areas of mathematics are emerging (for 
example, fractals, dynamical systems, and chaos the-
ory). These new branches of mathematics have allowed 
humans to mimic nature’s designs of mountain ranges, 
oceans, and plant growth patterns—which once were 
considered random acts of nature. In conclusion, calcu-
lus as a subject is still growing, and its applications are 
continually expanding to meet the needs of a dynamic, 
diverse, and technologically driven society.  

Further Reading
Barnett, Raymond, Michael Ziegler, and Karl Byleen. 

Calculus for Business, Economics, Life Science, and Social 
Science. Upper Saddle River, NJ: Prentice-Hall, 2005.

Bressoud, David M. “AP Calculus: What We Know.” 
June 2009. http://www.maa.org/columns/launchings/
launchings_06_09.html#Q1.

Calinger, Ronald. A Contextual History of Mathematics. 
Upper Saddle River, NJ: Prentice-Hall, 1999.

Calter, Paul, and Michael Calter. Technical Mathematics 
with Calculus. 4th ed. Hoboken, NJ:  Wiley, 2007.

Dubinsky, Edward. “Calculus, Concepts, Computers and 
Cooperative Learning.” May 2004. http://www.pnc 
.edu/Faculty/kschwing/C4L.html.

Ferrini-Mundy, Joan, and K. Graham. “An Overview of 
the Calculus Curriculum Reform Effort: Issues for 
Learning, Teaching, and Curriculum Development.” 
The American Mathematical Monthly 98, no. 7 (1991).

Gleaso, Andrew M., and Deborah H. Hallett. The 
Calculus Consortium Based at Harvard University. 
Spring 1992. http://www.wiley.com/college/cch/
Newsletters/issue1.pdf.

International Baccalaureate Organization. Diploma 
Programme Mathematics HL. Wales, UK:  Peterson 
House, 2006.

Johnson, K. “Harvard Calculus at Oklahoma State 
University.” The American Mathematical Monthly 102, 
no. 9 (1995).

Murphy, Lisa. “Reviewing Reformed Calculus.” http://
ramanujan.math.trinity.edu/tumath/research/
studpapers/s45.pdf.

Rogawski, Jon. Single Variable Calculus. New York: W. H. 
Freeman, 2008.

Silverberg, J. “Does Calculus Reform Work?” MAA Notes 
49 (1999).

Steen, Lynn A. On the Shoulders of Giants: New 
Approaches to Numeracy. Washington, DC: National 
Academy Press, 1990.

Tucker, Thomas, ed. Priming the Calculus Pump: 
Innovations and Resources. Washington, DC: 
Mathematical Association of America, 1990.

Sharon Whitton

See Also: Algebra and Algebra Education; Archimedes; 
Calculus and Calculus Education; Function Rate of 
Change; Functions; Geometry and Geometry Education.

Cameras
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Calendars
Category: Space, Time, and Distance.
Fields of Study: Measurement; Number and 
Operations; Representations.
Summary: Various calendars use different methods 
of resolving the need for “leap” days, months, or years.

Even the earliest human beings must have noticed the 
astronomical cycles: the alternation of day and night, 
the pattern of the changes in the moon’s shape and 
position, and the cycle of the seasons through the solar 
year. It must have been frightening every autumn as the 
days became shorter, causing concern that the night 
might become permanent. This led to celebrations of 
light in many areas as the days began to lengthen again. 
Once the repetitions of the patterns were recognized, 
people could count them to keep track of time. Lon-
ger cycles helped avoid difficulties in keeping track of 
large numbers—once approximately 30 days had been 
counted, people could, instead, start counting “moons.” 
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This same technique of grouping also occurred in the 
development of counting systems in general—leading 
to place-value structures in numeration systems. 

The problem was that the shorter cycles did not fit 
evenly into the longer cycles. Trying to fit the awkward-
length cycles together actually led to some mathemati-
cal developments: two different cycles would come 
together at the least common multiple of the lengths 
of their cycles; modular arithmetic and linear con-
gruences were methods of handling leftover periods 
beyond the regular cycle periods.

The Julian and Gregorian Calendars
The Romans developed the Julian calendar (named 
for Julius Caesar), recognizing that the exact num-
ber of 365 days in one year was slightly too short and 
would soon throw the calendar off the actual cycle of 
the solar year. They found a remedy by assuming the 
solar year to be 365.25 days. To handle the one-quar-
ter day, they added one full day every four years—the 
day that we call “leap-year day” on February 29 of 
years whose number is a multiple of four. This gives 
3 365 366 1461( ) + =  days in four years, or an aver-
age of 365.25 days per year as desired. However, the 
actual solar year is 365.2422 days long (to four decimal 
places), about 11 minutes less than the Romans’ value. 
Even in a human lifetime, this is negligible. Over cen-
turies, however, the extra time builds up so that by the 
1500s, the calendar was 10 days off from the solar cycle 
(for example, the vernal equinox seemed to be coming 
too late). 

In 1582, Pope Gregory XIII assembled a group of 
scholars who devised a new system to fit better. It kept 
the Roman pattern except that century years (1600, 
1700), which should have been leap years in the Roman 
calendar, would not have a February 29 unless they were 
multiples of 400. For example, 1900 was not a leap, 
year but 2000 was. In the full 400-year cycle, there are 
(400 × 365) regular days + 97 leap-year days = 146,097 
days, making an average of 365.2425 days per year. This 
cycle is only .0003 days (about 26 seconds) too much; 
in 10,000 years, we would gain three extra days. This 
system was called the Gregorian calendar. Since the lon-
ger Julian calendar had fallen behind the solar year by 
about 10 days, the changeover to the Gregorian required 
jumping 10 days. 

Various countries in Europe changed at different 
times, with each switch causing local controversy 

as people felt they were being “cheated” out of the 
skipped days. The effects of the change are noticed 
in history. When Isaac Newton was born, the calen-
dar said it was December 25, 1642; but later England 
changed the calendar, so some historians today give 
Newton’s birthday as January 4, 1643. The Russians 
did not change their calendar until after the 1917 
October Revolution, which happened in November 
by the Gregorian calendar. 

The Lunar Calendar
The other incongruity of calendar systems is that the 
moon cycle of 29.53 days does not fit neatly in the 
365.2422 days of the year. Twelve moon periods is 11 
days shorter than a year, and 13 “moons” is 18 days too 
long. It is interesting to note that of the three major 
religious groups of the Middle East—the Christians, 
the Muslims, and the Jews—each chose a different way 
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to handle “moons/months.” The Christians (actually, 
originally, the Romans) ignored the moon cycle and 
simply created months of 30 and 31 (and 28 or 29) 
days. The Muslims considered their year to be 12 moon 
cycles and ignored the solar year. This means that dates 
in the Muslim calendar are shifted back approximately 
11 days each year from the solar calendar, and Muslim 
festivals move backward through the seasons.

People in the Jewish faith chose to keep both the 
solar and lunar cycles. After 12 lunar months, a new 
year begins—as in the Muslim calendar—11 days “too 
early.” However, after the calendar slips for two or three 
years—falling behind the solar calendar by 22 or 33 
days—an extra month is inserted to compensate for the 
loss. There is a 19-year pattern of the insertion of extra 
months, which keeps the year aligned with the solar year. 
Interestingly, the traditional east Asian calendar follows 
a pattern very similar to the Jewish calendar.  

The Mayan Calendar
The Mayans of Central America had a very complex 
pattern of cycles leading to a 260-day year for reli-
gious purposes, and a regular solar year that was used 
for farming and other climate-related activities. Their 
base-20 numeration system, which should have had 
place-value columns of 1-20-400-8000, was adjusted 
to 1-20-360 to fit into the 365+ days of the year. They 
were also notable for developing massive cycles of years 
lasting several millennia, including one ending in late 
2012 of the Gregorian calendar.

Further Reading
Aslaksen, Helmer. “The Mathematics of the Chinese  

Calendar.” http://www.math.nus.edu.sg/aslaksen 
/calendar/chinese.shtml.

Crescent Moon Visibility and the Islamic Calendar. 
http://aa.usno.navy.mil/faq/docs/islamic.php.

Duncan, David Ewing. Calendar: Humanity’s Epic 
Struggle to Determine a True and Accurate Year. New 
York: Harper Perennial, 2001.

Rich, Tracey R. “Judaism 101: Jewish Calendar.”  
http://www.jewfaq.org/calendar.htm.

Richards, E. G. Mapping Time: The Calendar and Its 
History. New York: Oxford University Press, 2000. 

Stray, Geoff. The Mayan and Other Ancient Calendars. 
New York: Walker & Company, 2007.

Lawrence H. Shirley

See Also: Astronomy; Incan and Mayan Mathematics; 
Measuring Time.

Canals
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Number and 
Operations; Problem Solving.
Summary: Modern canal design, particularly the 
challenges of a lock system, depends on partial 
differential equations and other mathematics.

Canals are human-made channels for water, includ-
ing both waterways big enough to be traversed by ship 
(built for transportation), and aqueducts (built for 
water supply and irrigation). The building of canals 
was critical to the formation of many ancient civili-
zations, which needed to manipulate water access in 
order to enable an early urban lifestyle. Many ancient 
mathematics texts address such large-scale ancient 
engineering projects. 

A number of the surviving Babylonian tablets dealing 
with geometry were composed for canal projects: they 
calculated the number of workers necessary to build 
the canal in a given number of days, the dimensions of 
the canal, and the total wage expenses so that the ruler 
for whom they were built would know how much the 
project would cost. Mathematical problems related to 
the construction of canals can also be found in the fifth 
chapter of The Jiuzhang Suanshu (Nine Chapters on the 
Mathematical Art), one of the earliest surviving ancient 
Chinese mathematics texts. Mathematicians and engi-
neers have long investigated canals. 

For instance, Jacopo Riccati worked on hydraulics 
and constructed dikes in Venice, and Barnabé Brisson 
employed descriptive geometry in the design and con-
struction of ship canals. Mathematicians like George 
Green and Joseph Boussinesq analyzed and modeled 
wave motion in canals. John Russell tested and studied 
steam-powered canal transportation and wave cre-
ation for the Union Canal Company. Mikhail Lavren-
tev created a theoretical foundation for large projects 
on the Volga, Dnieper, and Don rivers. Mathematics 
theories and techniques are critical when engineers, 
mathematicians, and software programmers model the 
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changing flow rates and levels of a canal. They rely on 
mathematics like the Saint-Venant equations (partial 
differential equations that are named after mechanic 
and mathematician Jean Claude Saint-Venant).

The simplest canals are merely trenches through 
which water runs, usually lined with some kind of 
construction material. Canals need to be level in order 
to be navigable (a ship cannot move “uphill”). When 
the land itself is not level, a lock system must be used. 
Locks are systems for raising and lowering boats from 
one stretch of water to a stretch of water at a different 
level. The most common type of canal lock—used in 
ancient China, and most likely in the ancient West, and 
still common today—is the pound lock, which consists 
of a watertight chamber with gates at either end to con-
trol the water level in the chamber. 

Engineer Chiao Wei-Yo is credited with the design 
of the lock system, which he used on the Grand Canal 
in the tenth century. In the pound lock system, a ship 
enters the chamber (the “pound”) from one length of 
canal; water is raised or lowered to bring the ship to 
the level of the next length of canal; and the ship exits 
the chamber. The necessity of locks added much com-
plexity, time, and room for error to the construction of 
canals, which would have been sufficient to discour-
age Napoleon’s aims. In 2010, the Panama Canal com-
memorated its one-millionth transit, and engineers 
plan to expand the canal by adding more locks. It has 
been referred to as one of the seven wonders of the 
industrial world.

Further Reading 
Bernstein, Peter. Wedding of the Waters: The Erie Canal 

and the Making of a Great Nation. New York: W. W. 
Norton, 2006.

Karabell, Zachary. Parting the Desert: The Creation of the 
Suez Canal. New York: Alfred A. Knopf, 2003.

Montañés, Jose. “Mathematical Models in Canals.” In 
Hydraulic Canals: Design, Construction, Regulation 
and Maintenance. New York: Taylor & Francis, 2006.

Parker, Matthew. Panama Fever: The Epic Story of One 
of the Greatest Human Achievements of All Time. New 
York: Doubleday, 2007.

Bill Kte’pi

See Also: Floods; Tides and Waves; Tunnels; Water 
Distribution.
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Major Canals

S ignificant	canals	include	the	Erie	Canal	in	
the	United	States,	the	Suez	Canal	in	Egypt,	

the	Panama	Canal	 in	Panama,	and	the	Grand	
Canal	in	China,	each	of	which	was	constructed	
as	a	major	operation	for	the	sake	of	hastening	
trade	 and	 transport.	 Judge	 Benjamin	 Wright,	
who	some	call	the	father	of	American	civil	engi-
neering,	 was	 appointed	 the	 chief	 engineer	 of	
the	Erie	Canal.	Astronomer	and	mathematician	
Guo	Shoujing	(also	known	as	Kuo	Shou-ching)	
was	the	head	of	the	Water	Works	Bureau	in	the	
thirteenth	century.	He	made	 improvements	 to	
control	 the	water	 level	 in	 existing	 canals	 and	
built	new	ones.	

The	Suez	Canal	was	imagined	long	before	
it	was	completed,	and	the	Egyptians	were	mas-
ters	of	large-scale	engineering	projects.	Napo-
leon	Bonaparte,	during	the	French	invasion	of	
Egypt,	reportedly	discovered	ruins	of	an	ancient	
canal,	which	inspired	him	to	order	a	preliminary	
survey	exploring	the	possibility	of	a	north–south	
canal	 joining	 the	 Mediterranean	 and	 the	 Red	
Sea	(the	ancient	canal	had	been	east–west	and	
was	intended	to	link	the	Red	Sea	and	the	Nile).	
The	project	was	abandoned—possibly	because	
of	the	belief	that	the	Red	Sea	was	higher	than	
the	Mediterranean—and	so	the	canal	remained	
unbuilt	for	70	years.	

The Gatun (above) and Miraflores Locks of the 
Panama Canal can be viewed from a webcam.



Carbon Dating
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Exponential and logarithmic functions 
are used in carbon dating—a method of determining 
the age of plant and animal fossils.

As is demonstrated throughout this encyclopedia, 
mathematics provides explanations for many interest-
ing physical phenomena, and enables humankind to 
better understand its surrounding world. One of our 
ongoing intellectual projects is simply to make sense 
of the world we inhabit, based on the evidence that 
surrounds us. As anthropologists, archaeologists, and 
geologists have worked to determine the age of the 
earth and to track the evolution of species, radioac-
tive isotopes have played a prominent role in efforts 
to create a timeline that charts a wide range of his-
torical developments. In particular, carbon-14 dating 
has provided a fundamental test enabling scientists to 
accurately date certain plant and animal fossils that are 
approximately 60,000 years old or less. Willard Libby 
was one of the first to research radiocarbon dating, and 
he won a Nobel Prize in chemistry. Carbon dating is 
not an exact science, and statistical methods are used 
to enhance the reliability of the methods.

The Mathematics of Carbon Dating
Left alone, a radioactive quantity will decay at a rate 
proportionate to the amount of the quantity present at 
a given time. More specifically, a radioactive chemical 
element (such as uranium) is one that is unstable; as 
it decays, it emits energy and its fundamental makeup 
changes as the mass of the element is changed to an 
element of a different type. Because such an element 
is losing mass at a rate proportionate to the available 
mass at time t, an exponential function may be used to 
model the amount of the isotope that is present.

Letting M(t) represent the mass of the element at 
time t, it turns out that M t M e

kt( ) = −
0 , where M

0
 is 

the mass at initial measurement (at time t = 0), and k 
is a constant that is connected to the rate at which the 
element decays. Furthermore, k is tied to the isotope’s 
half-life (the amount of time it takes for 50% of the 
mass present to decay). In the given model, if h repre-
sents the half-life, then when t = h, it follows that 

That is, the equation

M
M e

kh0

02
= −

must hold. Dividing both sides by M
0
, yields

1

2
= −e kh

and using the natural logarithm function, one may solve 
for k and thus rewrite the most recent equation as

− = 





kh ln
1

2
.

This can be rewritten as

 k
h

=
− 





ln
1

2
.

A property of the natural logarithm is that

− = ( )ln ln
1

2
2

so that in slightly simpler terms, 

k
h

=
( )ln 2

.

Therefore, the model for radioactive decay of an ele-
ment having half-life h is

M t M e
h t( ) = − ( )( )

0

2ln
.

With this background in place, one is now ready to 
understand how carbon dating works.  

All living things contain carbon, and the prepon-
derance of the carbon present in plants and animals is 
its stable isotope, carbon-12. At the same time, every 
living being takes in radioactive carbon-14, and this 
carbon-14 becomes part of our organic makeup. While 
carbon-14 is constantly decaying simply by doing the 

M h .
M( ) = 0

2
M h .

M( ) = 0

2
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normal things that come with being alive, each living 
organism continuously replenishes its supply of car-
bon-14 in such a way that the ratio of carbon-12 to 
carbon-14 in its body is constant. 

When no longer living, a plant or animal lacks the 
ability to ingest carbon-14, and thus the ratio of carbon-
12 to carbon-14 starts to change, and this ratio changes 
at the rate that carbon-14 decays. Chemists have long 
known that carbon-14 has a half-life of approximately 
h = 5700 years, and this knowledge, together with the 
exponential model

M t M e
h t( ) = − ( )( )

0

2ln

enables people to determine the age of certain fossils. 
Consider, for example, the situation where a bone is 
found that contains 40% of the carbon-14 it would be 
expected to have in a living animal. With less than half 
the original amount present, but more than 25%, it can 
be determined that the bone is somewhere between one 
and two half-lives old; that is, the animal lived between 
5700 and 11,400 years ago. 

Through our understanding of exponential func-
tions and logarithms, this estimate can be made much 
more precise.

Specifically, let t = 0 be the year the animal died. 
The present year t satisfies the equation M t M( ) = 0 4 0. , 
since 40% of the initial amount of carbon-14 remains. 
From the model, it is known that t must be the solution 
to the equation

0 4 0 0

2 5700
.

ln
M M e

t= − ( )( )
.

First, divide both sides by M
0 

to get 0 4
2 5700

.
ln= − ( )( )

e
t
 

and then, taking the natural logarithm of both sides 
ofthe equation, it follows that 

ln .
ln

0 4
2

5700
( ) =

− ( )
t .

Thus, solving for t yields 

t =
− ( )

( ) ≈
5700 0 4

2
7500

ln .

ln
≈ years

and the skeletal remains have been dated according to 
their carbon content.

Limitations of Carbon Dating
Carbon dating does have some reasonable limitations. 
One of these involves the complications of measuring 
only trace amounts of carbon-14, and emphasizes the 
behavior of functions that model exponential decay. For 
each half-life that passes, half of the most recent quan-
tity of the element remains. That is, after one half-life,

M0

2
 remains; after two, half of that amount, 

or 
M0

4
 is left; 

after three, 
M0

8
 is present. 

The quantity rapidly diminishes from there. For 
instance, after 10 half-lives have elapsed, there is

M M0
10

0

2 1024
=  or approximately 

0.0009766M
0 

left. Because each living organism only 
contains trace amounts of carbon-14 to begin with (of 
all carbon atoms, only about one-trillionth are carbon-
14), after 10 half-lives elapse, the remaining amount 
of carbon-14 is so small that it is not only difficult to 
measure accurately, but it is difficult to ensure that the 
measured carbon-14 actually remains from the organ-
ism of interest and was not somehow contributed from 
another source. Ten half-lives is approximately 60,000 
years, so any organism deemed older than that needs to 
be dated in another manner, typically using other radio-
active isotopes that have considerably longer half-lives.

Finally, because radiocarbon dating depends on nat-
urally occurring radioactive decay, its accuracy depends 
on such decay not being accelerated by unnatural 
causes. In the 1940s, the Manhattan Project resulted in 
humankind’s development of synthetic nuclear energy 
and weapons; subsequent nuclear testing and accidents 
have released radiation into the atmosphere that makes 
the accuracy of carbon-14 dating more suspect for 
organisms that die after 1940.

New Developments
The exponential model M t M e kt( ) = −

0
 of radioactive 

isotope decay has enabled humans to better understand 
our surrounding world, and to know with confidence 
key information about the history of the existence of 
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plant and animal life on Earth. Even today, there are 
new developments in the science of radiocarbon dat-
ing as experts work to understand how subtle changes 
in Earth’s magnetic field and solar activity affect the 
amounts of carbon-14 present in the atmosphere. In 
addition to continuing to help analyze fossil histo-
ries, carbon-14 dating may prove an important tool in 
ongoing research in climate change.

The Accelerator Mass Spectrometry method of dat-
ing directly measures the number of carbon atoms 
rather than their radioactivity, which allows for the 
dating of small samples. Other methods under devel-
opment include nondestructive carbon dating, which 
eliminates the need for samples. A group of Russian 
mathematicians have proposed a new chronology of 
history based on other methods for dating; however, 
many have dismissed their work as pseudoscience. 
Physicist Claus Rolfs explores methods to accelerate 
radioactive decay in the hope of reducing the amount 
of radioactive material.

Further Reading
“Archaeological ‘Time Machine’ Greatly Improves  

Accuracy of Early Radiocarbon Dating.” Science News 
Daily (February 11, 2010) http://www.sciencedaily 
.com/releases/2010/02/100211111549.htm.

Brain, Marshall. “How Carbon Dating Works.” http://
www.howstuffworks.com/carbon-14.htm.

Comap. For All Practical Purposes:  Mathematical  
Literacy in Today’s World. 7th ed. New York: W. H. 
Freeman, 2006.

Connally, E. et al. Functions Modeling Change: A 
Preparation for Calculus. Hoboken, NJ: Wiley, 2007.

Matt Boelkins

See Also: Algebra and Algebra Education; Calculus 
and Calculus Education; Exponentials and Logarithms; 
Functions.

Carbon Footprint
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement; Representations.

Summary: A carbon footprint is a mathematical 
calculation of a person’s or a community’s total 
emission of greenhouse gases per year.

Carbon footprint is intended to be a measure of the 
ecological impact of people or events. It is a calculation 
of total emission of greenhouse gases, typically carbon 
dioxide, and is often stated in units of tons per year. 
There is no universal mathematical method or agreed-
upon set of variables that are used to calculate carbon 
footprint, though scientists and mathematicians esti-
mate carbon footprints for individuals, companies, and 
nations. Many calculators are available on the Internet 
that take into account factors like the number of miles 
a person drives or flies, whether or not he or she uses 
energy efficient light bulbs, whether he or she shops for 
food at local stores, and what sort of technology he or 
she uses for electrical power. Some variables are direct, 
such as the carbon dioxide released by a person driving 
a car, while others are indirect and focus on the entire 
life cycle of products, such as the fuel used to produce 
the vegetables that a person buys at the grocery store 
and disposal of packaging waste. 

The notion of a carbon footprint is being consid-
ered in a wide range of areas, including the construc-
tion of low-impact homes, offices, and other buildings. 
The design must take into account not only the future 
impact of the building in terms of carbon emissions, 
but carbon-related production costs for the materials, 
labor, and energy used to build it. Mathematical mod-
eling and optimization helps engineers and architects 
create efficient, useful, and sometimes even beautiful 
structures while reducing the overall carbon footprint. 
Mathematicians are also involved in the design of tech-
nology that is more energy efficient, as well as meth-
ods that allow individuals and businesses to convert 
to electronic documents and transactions rather than 
using paper. These methods include using improved 
communication technology, faster computer networks, 
improved methods for digital file sharing and online 
collaboration, and security protocols for digital sig-
natures and financial transactions. Manufacturers are 
increasingly being urged and even required to examine 
their practices, since manufacturing processes produce 
both greenhouse gasses from factory smokestacks and 
waste heat. Mathematicians and scientists are working 
on ways to recycle much of this heat for power gen-
eration. One proposed device combines a loop heat 
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pipe, which is a passive system for moving heat from 
a source to another system, often over long distances, 
with a Tesla turbine. Patented by scientist and inventor 
Nikola Tesla, a Tesla turbine is driven by the bound-
ary layer effect rather than fluid passing over blades 
as in conventional turbines. It is sometimes called a 
Prandtl layer turbine after Ludwig Prandtl, a scientist 
who worked extensively in developing the mathemat-
ics of aerodynamics and is credited with identifying the 
boundary layer. 

These are in turn related to the Navier–Stokes equa-
tions describing the motion of fluid substances, named 
for mathematicians Claude-Louis Navier and George 
Stokes. The Navier–Stokes equations are also of inter-
est to pure mathematics, since many of their mathe-
matical properties remain unproven at the beginning 
of the twenty-first century.

Carbon Footprints of People
A calculation of the carbon footprints of different 
aspects of people’s lives, and then the aggregate for 
a year, is always an estimate. For example, different 
towns use different methods for generating electric-
ity. Entering data for an electric bill allows for a rough 
estimate of the household’s carbon footprint, but not 
exact numbers, which would depend on the electric-
ity generating methods. Houses contribute to carbon 
footprints through their building costs, heating and 
cooling, water filtration, repair, and maintenance—all 
of which use products with carbon footprints. 

Travel is another major contributor to peoples’ car-
bon footprints. Daily commutes and longer trips with 
any motorized transportation contribute to carbon 
dioxide emissions. When computing carbon footprints, 
fuel production and storage costs have to be taken into 
consideration.

The food that people eat contributes to the carbon 
footprint if it is transported by motorized vehicles 
before being eaten. The movement of locavores (peo-
ple who eat locally grown foods) aims to minimize 
the carbon footprint of food. Also, different farming 
practices may contribute more or less to the carbon 
footprint of food.

The objects people use contribute to their carbon 
footprints. Recycling and reusing reduces the need 
for landfills, waste processing, and waste removal, all 
of which have carbon footprints. There are individu-
als and communities who avoid waste entirely; several 

countries, such as Japan, have plans to mandate zero-
waste practices within the next few decades. 

Economy and Policy
There are two main strategies for addressing carbon 
footprints. The first strategy is to lower the carbon 
footprint by modifying individual behaviors, such as 
traveling by bike, eating locally, and recycling. The sec-
ond strategy is to perform activities with negative car-
bon footprints, such as planting trees, to match carbon 
footprints of other activities. 

Some companies incorporate activities that offset 
the carbon footprint of their main production into 
their business plans, either lowering their profit mar-
gins or passing the cost to their customers. There are 
economic laws and proposals that attempt to integrate 
carbon footprint considerations into the economy, 
usually through taxes on use of fuel, energy, or emis-
sions. Carbon dioxide emissions, in economic terms, 
are a negative externality (a negative effect on a party 
not directly involved in the economic transaction). 
Money collected through carbon taxes is generally used 
to offset the cost to the environment.

Emissions trading is another mathematics-rich area 
of dealing with carbon footprints economically. Gov-
ernments can sell emission permits to the highest-bid-
ding companies, matching their carbon footprints, and 
capping the total emission permits sold. This method 
allows prices of permits to fluctuate with demand, in 
contrast with carbon taxes in which prices are fixed 
and the quantities of emissions can change. Econo-
mists model the resulting behaviors, and advise policy-
makers based on the models’ outcomes.

Marginal Abatement Cost Curve
“Marginal cost” is an economic term that means the 
change of cost that happens when one more unit of 
product is made, or unit of service performed. For 
physical objects, the curve is often U-shaped. The first 
units produced are very costly because their cost pro-
duction involves setting up the necessary infrastructure. 
As more units are produced, and the infrastructure is 
reused, the price goes down until the quantities of pro-
duction reach such levels that the logistic difficulties 
drive the price per additional units higher again. 

A marginal abatement curve shows the cost of reduc-
ing emissions by one more unit. These curves are usu-
ally graphed in percents. For example, such a curve can 
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be a straight line, with the cost of eliminating the first 
few percent of emission being zero or even negative. 
This happens because it can be done by changing prac-
tices within existing economic infrastructures,  such 
as cheap smart switches into the residential sector’s 
lighting grids. Additional lowering of the carbon foot-
print, however, requires deeper and costlier changes to 
the way of life. For example, there are relatively high 
costs involved in switching to wind and solar power, 
or switching to the use of crop rotations that do not 
require high-carbon fertilizers.

Country by Country
The average carbon footprint of citizens varies by 
country. For example, in late 2000s, the average annual 
carbon footprint of a U.S. citizen was about 30 metric 
tons per year, and a Japanese citizen about 10 metric 
tons per year. However, these calculations are extremely 

complicated because of global trade. For example, 
many developed countries “export” or “outsource” 
their carbon emissions to developing countries. Prod-
ucts imported from developing countries account for 
anywhere from a tenth to a half of the carbon foot-
prints of developed nations.

International calculations indicate a strong correla-
tion between the average carbon footprint of a coun-
try’s citizen and the average per capita consumption. 
The higher the consumption rates, the higher the aver-
age carbon footprint. 

The categories used for calculation for countries are 
similar to those used for individuals and include con-
struction, shelter, food, clothing, manufactured prod-
ucts, services, transportation, and trade. The ratios of 
these items to one another in the carbon footprints 
vary by country. For example, the greatest item in the 
U.S. carbon footprint is shelter (25%), with mobility 

Carbon footprints are calculated to include travel, fuel production, transportation, and storage. In Canada, 
mobility is the highest contributor to the national carbon footprint.
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being second (21%). In contrast, Canada’s greatest 
item affecting carbon footprint is mobility (30%), and 
its second greatest is shared between shelter and service 
(18% each). 

Further Reading
Berners-Lee, Mike. How Bad Are Bananas? The Carbon 

Footprint of Everything. Vancouver, BC: Greystone 
Books, 2011.

Goleman, Daniel. Ecological Intelligence: How Knowing 
the Hidden Impacts of What We Buy Can Change 
Everything. New York: Broadway Books, 2009.

Maria Droujkova

See Also: City Planning; Climate Change; Electricity; 
Energy; Farming; Fuel Consumption; Green Design; 
Green Mathematics; Recycling; Traffic; Wind and Wind 
Power.

Careers
Category: Mathematics Culture and Identity.
Fields of Study: All.
Summary: There are a wide variety of careers 
in many disciplines available to those with a 
mathematics background.

“What can one do with a mathematics degree other 
than teaching?” It is a question asked by many aspiring 
mathematicians. In fact, a more accurate question to ask 
should be “What can’t one do with a math degree?” Actu-
ally, the study of mathematics extends far beyond mere 
number crunching and doing fast mental arithmetic in 
grocery stores. The fact is that studying mathematics can 
prepare one for numerous careers. 

In general, companies believe that studying mathe-
matics develops analytical skills and the ability to work 
in a problem-solving environment. These are the skills 
and experiences that are essential assets to one’s success 
in the workplace. Precisely, mathematics is often the 
quintessential element to fluently communicate with 
people of various backgrounds. It is the ability to effi-
ciently process a manifold of information and deliver 
the technical details to a general audience that makes 

mathematicians valuable. Having a mathematics back-
ground not only helps people broaden their pool of 
career options, it also helps to land some of the best 
jobs available.

According to an article published in the Wall Street 
Journal on January 26, 2009, a “mathematician” is con-
sidered to be the best occupation in the United States. 
This ranking was determined based on five criteria 
inherent to every job: environment, income, employ-
ment outlook, physical demands, and stress. In fact, 
five out of the six “best jobs’’ in terms of low stress, 
high compensation, autonomy, and hiring demand in 
the Job Related Almanac by Les Krantz are all math-
ematics related: (1) mathematician, (2) actuary, (3) 
statistician, (4) biologist, (5) software engineer, and (6) 
computer systems analyst. In this entry, a collection of 
possible career opportunities appropriate for someone 
with a mathematics background is provided, and a list 
of resources is given on how to find a job with different 
levels of academic degrees. The lists are by no means 
exhaustive and should only be used as a reference.  

Analytical Thinking
Why is mathematics a required subject in school cur-
ricula at all levels? Why is mathematics so essential for 
the proper functioning of everyday tasks in society? 
Why do most people who excel in their field credit 
their success to their formal training in mathematics? 
One possible reason is that a proper training in mathe-
matics provides people with abilities to think and solve 
problems critically in novel settings. 

A Web site sponsored by the Department of Math-
ematics at Brigham Young University provides a list of 
possible career options for someone with a background 
in mathematics. Some of the more common profes-
sions include actuary, architect, chemical engineer, 
college professor, computer scientist, cryptanalyst, 
economist, mechanical engineer, quantitative financial 
market analyst, and statistician; some less well-known 
career options include air traffic controller, animator, 
astronaut, epidemiologist, geologist, hydrologist, law-
yer, market research analyst, composer, physician, tech-
nical writer, and urban planner. Certainly, a fixed set of 
mathematics curriculum will not prepare one for all 
the jobs listed here. What will be consistent is gaining 
the ability to solve problems analytically and critically. 

Not many people know that the San Antonio Spurs 
Basketball Hall of Famer David Robinson had a B.S. 
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in mathematics from the U.S. Naval Academy. Even 
Michael Jordan toyed with the idea of being a math-
ematics major in his early college years. It is perhaps 
not surprising that one of the world’s most influential 
bankers and financiers, J. P. Morgan, majored in math-
ematics, but not many would think that mathematics 
would find its way into entertainment. For example, 
American actress Danica McKellar, who had a leading 
role in a television comedy-drama The Wonder Years, 
is a well-known mathematics author and education 
advocate. The popular television drama, Numb3rs fea-
tured a mathematician who helped his brother in the 
FBI to solve crimes with his mathematical genius. A few 
popular movies that successfully portray mathemati-
cians in society include Good Will Hunting (1997), A 
Beautiful Mind (2001), and Proof (2005).

Although it is seemingly impossible to categorize 
every branch of mathematics in society, career options 
available for those who study under common branches 
of mathematics include the areas of applied mathemat-
ics, actuarial mathematics, financial mathematics, and 
other emerging fields.

Applied Mathematics
Applied mathematicians often solve problems that 
originate in physics, chemistry, geology, biology, or 
various disciplines of engineering. Mathematics is 
used to model physical phenomena, to answer ques-
tions derived from observations, to learn characteris-
tics of large quantities, and to make predictions and 
improvements for future events. A representative 
mathematical training includes coursework in numer-
ical analysis and methods, computer programming, 
computer languages, applied and experimental statis-
tics, and probability theory, as well as a few courses in 
another field of interest. 

Often, a typical applied or computational mathemat-
ics problem is interdisciplinary in nature and derived 
from realistic demands in industry. People who wish 
to gain a general sense of what these types of problems 
entail are encouraged to attend mathematics-in-indus-
try workshops that are available in Europe and some 
parts of the United States and Asia. Mathematics in 
Industry and International Study Groups maintains a 
Web site that provides updated information for future 
study groups and meetings. The Society for Industrial 
and Applied Mathematics (SIAM) maintains a list of 
example organizations, corporations, and research 

institutions that hire mathematicians and computa-
tional scientists with an applied mathematics training. 
These organizations, corporations, and research insti-
tutions include the following: 

• Aerospace and transportation equipment 
manufacturers such as  Aerospace Corp., 
Boeing, Ford Motor Co., General Motors, 
Lockheed Martin, and United Technologies

• Chemical and pharmaceutical manufacturers 
such as DuPont, GlaxoSmithKline, Kodak, 
Merck & Co., Pfizer, and Wyeth

• Communications service providers such 
as Clear Channel Communications, Qwest 
Communications and Verizon

• Electronics and computer manufacturers such 
as Bell Laboratories, Alcatel-Lucent, Hewlett-
Packard, Honeywell, IBM Corporation, 
Motorola, Philips Research, and SGI

• Energy systems firms such as Lockheed-
Martin Energy Research Corporation and the 
Schatz Energy Research Center (SERC)

• Engineering research organizations such 
as AT&T Laboratories—Research, Exxon 
Research and Engineering, and NEC 
Laboratories America

• Federally funded contractors such as the 
Mitre Corporation and RAND

• Medical device companies such as Baxter 
Healthcare, Boston Scientific, and Medtronic

• U.S. government agencies such as the 
Institute for Defense Analyses, NASA’s 
Institute for Computer Applications in 
Science and Engineering, National Institute 
of Standards and Technology, Naval Surface 
Warfare Center, Supercomputing Research 
Center, and the U.S. Department of Energy

• U.S. government labs and research offices 
such as the Air Force Office of Scientific 
Research, Lawrence Berkeley National 
Laboratory, Los Alamos National Laboratory, 
Oak Ridge National Laboratory, Pacific 
Northwest National Laboratory, and Sandia 
National Laboratories

• Producers of petroleum and petroleum 
products such as Amoco, Exxon Research  
and Engineering, and Petróleo Brasileiro  
S/A, Petrobras
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Actuarial Mathematics 
An actuary is a risk management professional who 
helps design insurance plans by recommending pre-
mium rates and making sure companies are designating 
enough funds to pay out on claims. Actuaries may also 
help create new investment tools for financial institu-
tions. The main type of mathematics an actuary uses on 
a daily basis is applied statistics, which involves arith-
metic, basic algebra, and practical applications such as 
using numbers and math to generate tables and graphs. 
Actuaries should also have a general understanding of 
business, economics, and corporate finance, all of which 
have mathematical components. 

Most actuaries have at least a four-year degree in 
mathematics, business, economics, statistics, or, in some 
cases, a specific degree in actuarial science. As computer 
modeling replaces traditional graphs and tables, com-
puter and programming skills have become increas-
ingly important as well. The last step to becoming a 
licensed actuary is to get certified by passing a series of 
exams sponsored by either the Society of Actuaries or 
the Casualty Actuarial Society. The list of possible job 
choices for someone with an actuarial background is 
relatively small compared to that of the applied math-
ematicians. These include the following:

• Consulting firms such as Daniel H. Wagner 
Associates, Deloitte Touche Tohmatsu, Ernst 
& Young, Hewitt, McKinsey & Company, and 
KPMG

• Banks or related financial institutions 
such as AIG, ING, Capital Management, 
Chase Manhattan Bank, CitiGroup, Fidelity 
Investments, Goldman Sachs & Co, HSBC, JP 
Morgan Securities, Lehman Brothers, Mercer 
Investment Consulting, Merrill Lynch, 
Morgan Stanley & Co, Standard and Poor’s, 
TD Ameritrade, and Wachovia Securities

• Brokers such as Acordia, Benfield, Cooper 
Gay, Heath Lambert, HLF Group, March & 
McLennan, and Willis Group

• Actuarial software development companies 
such as Actuarial Resources Corp. (ARCVal, 
HealthVAL, STAR, UltraVAL, CARVM), 
BLAZE SSI Corp., EMB America, Integrated 
Actuarial Services (Total Solution, RAAPID), 
TAG, and WySTAR Global Retirement 
Solutions (DBVAL, DCVAL, OPEVS)

• Miscellaneous jobs in large companies 
and government agencies such as ACTEX 
Publications, Casualty Actuarial Society, 
Coca-Cola, Ford Motor Co., International 
Actuarial Association, National Association  
of Insurance Commissioners, and the Society 
of Actuaries

• Insurance companies including both 
property and liability insurance, and life and 
health insurance such as AFLAC, AAA of CA, 
Allstate, Blue Cross and Blue Shield, Safeco, 
Sun Life, Universal Care, and WellPoint

Financial Mathematics
Financial mathematics is the development of math-
ematical tools and computational models used in the 
financial industry and on Wall Street. People in this 
profession are referred to as “quantitative analysts,” or 
“quants.” As new quantitative techniques have trans-
formed the financial industry, banks, insurance compa-
nies, investment and securities firms, energy companies 
and utilities, multinationals, government regulatory 
institutions, and other industries have all come to rely 
on applied mathematics and computational science. 

Sophisticated mathematics models and the compu-
tational methods and skills needed to implement them 
are used to support investment decisions, to develop 
and price new securities, and to manage risk, as well 
as for portfolio selection, management, and optimi-
zation. For example, modern hedge funds depend on 
these sophisticated techniques, as do pricing of bonds 
and commodity futures. Typically, someone who is 
interested in working in financial service and invest-
ment firms such Citibank, Moody’s Corporation, Mor-
gan Stanley, or Prudential will need to have a solid 
background in mathematical modeling, numerical and 
computational mathematics, applied statistics, busi-
ness, economics, and finance. 

Emerging Fields
Biomathematics and Bioinformatics. This emerging 
field can be thought of as a computer science/mathe-
matics/biology hybrid that integrates mathematics and 
computer technology in the study of biological sciences. 
Broadly speaking, bioinformatics is the recording, 
annotation, storage, analysis, and searching/retrieval of 
nucleic acid sequence (genes, RNAs, and DNAs), pro-
tein sequence, and structural information. Mathemati-
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cians in this area contribute to the development of new 
algorithms with which to detect patterns and assess 
relationships among members of large data sets.

Computer Visions and Computer Graphics. Mathema-
ticians in the field of computer vision work on develop-
ing theoretical machine learning algorithms to extract 
meaningful information from images. The images take 
on various forms such as waveforms from voice recorders 
or three-dimensional images from a magnetic resonance 
imaging (MRI) device. Its example applications include 
(1) artificial intelligence and controlling processes (for 
example, industrial robots and autonomous vehicles), (2) 
pattern recognition and verification (for example, public 
surveillance and biometric identification), (3) model-
ing and processing (for example, medical image analy-
sis and terrain modeling), and (4) communication (for 
example, brain-computer interface for people with dis-
ability). Mathematicians in the field of computer graph-
ics develop ways to represent and manipulate image 
data to be used by computers. The most well-known 
applications under this category are the video game and 
computer animation industries, where various trans-
formation matrices and interpolation techniques are 
used to create smooth and believable subjects in succes-
sive frames. Companies such as Pixar and DreamWorks 
hire mathematicians in their research divisions to come 
up with innovative ways to enhance visual effects to 
be more aligned to reality. Other companies that hire 
mathematicians with backgrounds in computer vision 
and graphics include Siemens, Hewlett-Packard (HP), 
Honeywell, Flash Foto, GeoEye, Nokia, Microsoft, Apple 
Inc., Amazon.com, and Google.

Operations Research. This is a highly interdisciplin-
ary branch of applied mathematics that uses methods 
such as mathematical modeling and optimization to 
solve problems that require a complex decision-mak-
ing process. Mathematical areas such as game theory 
and graph theory have become useful tools in solving 
problems under the umbrella of operations research 
(OR). Examples of disciplines that use OR are financial 
engineering, environmental engineering, manufactur-
ing and service sciences, policy-making and public sec-
tor work, revenue management, and transportation. 
Almost all companies hire operations research analysts 
to use mathematics and computers to develop software 
and other tools that managers can use to make deci-
sions such as how many people to hire and retain in 
order to maximize productivity and minimize costs. 

It is worth reemphasizing that having a mathematics 
degree or a mathematics-related degree increases one’s 
chance of securing a position in nearly any company. 
Even areas that are traditionally viewed as pure math-
ematics such as combinatorics, number theory, topol-
ogy, algebraic and differential geometry, analysis, and 
algebra often turn out to have real-world applications; 
for example, number theory in cryptography, Fourier 
analysis in speech recognition, and differential geom-
etry in face recognition. Some additional career choices 
are as follows:

• Nonprofit organizations such as the 
American Institute of Mathematics (AIM), 
and SIAM 

• Publishers and online products such as 
Birkhauser, Springer, and Elsevier Science

• University-based research organizations 
such as the Institute for Advanced Study, 
the Institute for Mathematics and Its 
Applications (IMA) and the Mathematical 
Sciences Research Institute (MSRI)

• Government agencies such as the National 
Security Agency (NSA) and the U.S. 
Department of Defense (DoD)

• Teaching at academic institutions. To 
teach at the high school level, one needs 
a bachelor’s degree in mathematics and a 
teaching credential; to teach at the community 
college level, one needs a Master of Science 
or Master of Art degree in mathematics; to 
teach at the college level, one needs a Ph.D. in 
mathematics, mathematics education, applied 
mathematics, or statistics

Online Mathematics Jobs Listings
The American Mathematical Society (AMS) has an 
extensive set of resources to help someone in the mar-
ket for academic positions and is the premier source for 
information on careers in mathematics. This includes 
a list of job postings organized by country and state. It 
has useful features such as an e-mail service that notifies 
applicants of all new job listings and an online storage 
of curriculum vitae (academic resume) and transcripts 
that can be used repeatedly for different applications. 
In addition, it allows one to register for the job fairs 
at the annual AMS meetings and has a list of graduate 
programs for students. 
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The Math-Jobs Web site lists international and 
national job openings for mathematicians in both 
industry and academics. 

The Mathematical Association of America (MAA) 
has a comprehensive set of resources for students, fac-
ulties, professional mathematicians, and all who are 
interested in the mathematical sciences. In particular, 
MAA Math Classifieds helps people to find career in 
the diverse field of mathematics. 

The Chronicle of Higher Education has academic and 
nonacademic job advertisements. Use the searchable 
index to find mathematics jobs. 

The Mathematical Sciences Career Information by 
AMS-SIAM has information on nonacademic jobs, 
profiles of mathematicians in industry, job search tips, 
and links to many online job-posting services. 

Further Reading 
Lambert, Stephen, and Ruth J. DeCotis. Great Jobs for 

Math Majors. Chicago: VGM Career Horizons, 1999.
Sterrett, Andrew. 101 Careers in Mathematics. 2nd ed. 

Washington, DC: The Mathematical Association  
of America, 2003.

Tyler, Marya Washington. On-the-Job Math Mysteries: 
Real-Life Math From Exciting Careers. Waco, TX: 
Prufrock Press, 2008. 

Jen-Mei Chang

See Also: Accounting; Mathematics, Applied; Problem 
Solving in Society; Professional Associations.

Caribbean America
Category: Mathematics Around the World.
Fields of Study: All.
Summary: The diverse islands of Caribbean America 
have produced notable mathematicians.

The Arawaks, Caribs, and other pre-Columbian peoples 
lived in the area of the Caribbean Sea before Spanish, 
French, English, or Scottish sea traders settled there. Lin-
guists explore the different languages that were spoken 
in the Caribbean, traces of which can be found in the 
twenty-first century. Along with these languages, there 

were possibly different numerical systems. Sea merchants 
needed bookkeepers and accountants to keep track of 
their business, and although Port Royal and other places 
in the seventeenth-century Caribbean were notorious 
for piracy and lawlessness, there were also many count-
ing houses and legitimate business operations. 

The development of schools and universities led to 
more mathematical opportunities. According to the 
United Nations, the Caribbean America region encom-
passes Anguilla, Antigua and Barbuda, Aruba, the Baha-
mas, Barbados, the British Virgin Islands, Cayman 
Islands, Cuba, Dominica, the Dominican Republic, Gre-
nada, Guadeloupe, Haiti, Jamaica, Martinique, Montser-
rat, Netherlands Antilles, Puerto Rico, Saint-Barthélemy, 
Saint Kitts and Nevis, Saint Lucia, Saint Martin (French 
part), Saint Vincent and the Grenadines, Trinidad and 
Tobago, Turks and Caicos Islands, and the U.S. Virgin 
Islands. By the end of the twentieth century, there were 
numerous Caribbean mathematicians, and The Carib-
bean Journal of Mathematical and Computing Sciences 
has published volumes of research articles. 

Mathematicians in the Caribbean, and around the 
world, have also worked on mathematics history and 
research that is specifically related to the Caribbean area, 
like C. Allen Butler, who investigated optimal search 
techniques for smugglers in the Caribbean. Mathemati-
cians have also discussed the high numbers of university 
graduates who have left the Caribbean, and they have 
created educational initiatives and mathematical texts 
designed for Caribbean children. The Caribbean and 
Central America areas combine for a joint Mathemati-
cal Olympiad. The most well-known mathematician in 
the region is perhaps Keith Michell from Grenada who, 
after completing his doctoral thesis from the American 
University, was a professor at Howard University, and 
then returned to Grenada, becoming prime minister in 
1995, a position he held until 2008.

Barbados
On the island of Barbados, although education was 
an important facet of colonial life from the late nine-
teenth century on, few students were able to continue 
with mathematics. One exception was Merville O’Neale 
Campbell, who had become fascinated with math-
ematics at an early age and won a scholarship to study 
at Cambridge University in England. He then went to 
teach at the Gold Coast (now Ghana), completing his 
doctoral thesis, “Classification of Countable Torsion-
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Free Abelian Groups,” from the University of London, 
and is noted as the first Barbadian to have a Ph.D. in 
mathematics. His daughter, Lucy Jean Campbell, also 
completed her doctoral thesis in mathematics, and spe-
cializes in geophysical fluid dynamics, nonlinear waves, 
and a variety of numerical and analytical methods at 
Carleton University in Ottawa. Other prominent Barba-
dian mathematicians include Charles C. Cadogan, who 
has edited the Caribbean Journal of Mathematical and 
Computing Sciences and has contributed papers in jour-
nals around the world; and Hugh G. R. Millington, who 
completed his doctorate, “Cylinder Measures,” from the 
University of British Columbia and then worked at the 
University of the West Indies, Cave Hill, Barbados. 

British Caribbean
Well-known mathematicians from the British Carib-
bean include those from Jamaica. Earl Brown, who was 
the head of the Department of Science & Mathemat-
ics at University of Technology (Jamaica) from 1997 to 
2000, completed his doctoral thesis at the Massachu-
setts Institute of Technology. Joshua Leslie completed 
his doctoral thesis from the Sorbonne in Paris, and 
was the chair of the Mathematics Department at How-
ard University; and Kweku-Muata Agyei Osei-Bryson 
from Kingston completed his doctoral thesis, “Multi-
objective and Large-Scale Linear Programming,” at the 
University of Maryland—College Park in 1988, and 
from 1993 until 1997 was the Faculty Fellow (Informa-
tion Systems) for the U.S. Army, The Pentagon. Other 
prominent mathematicians from Jamaica, or whose 
ancestors were from Jamaica, include Garth A. Baker, 
Charles Gladstone Costley, Leighton Henry, Fern Hunt, 
Lancelot F. James, Clement McCalla, Bernard Mair, 
Claude Packer, Paul Peart, Donald St. P. Richards, and 
Karl Robinson. 

Elsewhere in the British Caribbean, there have also 
been a number of mathematicians who held senior 
positions in the region and in the United States includ-
ing Ron Buckmire from Grenada, who has specialized 
in computational aerodynamics; Edward Farrell from 
Trinidad, who has published extensively on polynomi-
als; and Velmer Headley from Barbados, who has con-
centrated on the study of differential equations.

Cuba
One notable Cuban mathematician is Argelia Velez-
Rodriguez, who was born in Havana and won her first 

mathematics competition when she was 9. She was the 
first Afro-Cuban to complete a doctorate from the Uni-
versity of Havana but left Cuba two years later to live in 
the United States. Since the 1959 Revolution, there has 
been an increased emphasis on the education system 
in Cuba, and Cuban students have long shown a high 
aptitude for mathematics.

French Caribbean
French Caribbean mathematicians include those from 
Haiti, with a desperately poor education system, and 
Guadeloupe. Louis Beaugris completed his doctoral 
thesis, “Some Results Related to the Generators of 
Cyclic Codes Over Zm,” at the University of Iowa. Serge 
A. Bernard completed his doctoral thesis, “A Multi-
variate EWMA Approach to Monitor Process Disper-
sion,” at the University of Maryland—College Park; 
and Jean-Michelet Jean-Michel completed his doctor-
ate at Brown University. Alex Meril from Guadeloupe 
completed his thesis at the University of Bordeaux and 
worked at the University of Guadeloupe.

Further Reading
Nieto Said, José, and Rafael Sánchez Lamoneda. “Ten 

Years of the Mathematical Olympiad of Central 
America and the Caribbean.” World Federation of 
National Mathematics Competitions 22, no. 1 (2009).

University of the West Indies. “Caribbean Journal of 
Mathematical and Computing Sciences.” http://www 
.cavehill.uwi.edu/fpas/cmp/journal/cjmcs.htm.

Williams, Scott. “Mathematics Today in the Caribbean.” 
http://www.math.buffalo.edu/mad/Caribbean 
/Caribbean.html.

Justin Corfield

See Also: Central America; North America; South 
America.

Carpentry
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Precise measurement is the foundation of 
the building trades.
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While the word “carpentry” originally comes from the 
Latin root for chariot maker, today, the term refers to a 
number of trades that use wood for the construction of 
buildings and other articles. As there is a wide range of 
activities involved in carpentry tasks, carpenters must 
possess many different manual and intellectual skills to 
function in the profession.

Types of Carpenters
Carpenters who work on houses often fall into one of 
two broad categories: framing carpenters who work on 
the rough frame of a building, and finish carpenters 
who complete trim, stairs, railings, shelves, and other 
detail work. However, in practice, many carpenters end 
up doing some of each type of work, and carpenters 
who specialize in remodeling may not only do framing 
and finish carpentry but also tasks that are not strictly 
carpentry at all, such as plumbing, wiring, sheetrock 
finishing, and painting. There are also carpenters who 
specialize more narrowly, such as cabinet makers or car-
penters who work on the specialized joinery between 
large posts and beams required in timber frame and log 
cabin construction.  

Tasks of the Carpenter
Carpentry requires a variety of skills, including read-
ing blueprints, measuring, cutting, fastening, and fin-
ishing. In addition, a carpenter must have knowledge 
of materials, including a variety of wood products and 
fasteners; and tools, including measuring devices, saws, 
drills, hammers, planes, and sanders. Carpenters who 
work on their own or as subcontractors on larger jobs 
must also have skills in cost-estimation and billing.  

Consider, for instance, a carpenter who has been 
hired to add a covered deck onto a house. This carpen-
ter might begin by working with the homeowner to 
determine the size and shape of the deck, possibly using 
a Computer Assisted Design (CAD) program to gener-
ate three-dimensional representations of how the fin-
ished project will look. After deciding on a design, the 
carpenter will need to use structural engineering tables 
to assess structural issues related to the design, such as 
the dimensions required for posts, the placement and 
size of cross-bracing, and the sizes of timbers that will 
be needed to span the distance between posts. From the 
calculations, the carpenter will then generate a price 
estimate, based on a materials list and an estimate of 
labor. The actual construction will include pouring 

concrete footers for the posts, measuring and cutting 
posts and joists with a circular saw, fastening materi-
als to one another and to the house, screwing decking 
materials to the framing, framing a roof, installing roof-
ing materials, constructing a railing, and building and 
finishing a set of stairs from the yard to the deck.

A Carpenter’s Calculations
In the process of creating a simple covered deck, this 
carpenter will be making many measurements, calcula-
tions, and decisions regarding:

Layout: The initial position of the deck must be laid 
out so it is square to the house. To do this, the carpenter 
will construct a set of batter boards that are set outside 
the corners of the proposed deck and allow strings to 
be pulled to mark the edges of the deck. Employing the 
rule that the diagonals in a rectangle are equal to one 
another, the carpenter adjusts the strings to bring the 
corners to 90 degrees. Corner square may also be estab-
lished and checked using the Pythagorean theorem.

168	 Carpentry

Carpenters need to be able to read blueprints, and 
measure, cut, fasten, and finish a variety of materials.



Footers: Each post will be anchored to a concrete 
footer that will prevent it from moving or sinking into 
the ground. The bottom of the holes for these footers 
must be dug below the freeze level for the geographic 
area where the deck is being built so that the footers will 
not be heaved out of place by the freezing and resulting 
expansion of the soil. By consulting the building code, 
the carpenter will determine the appropriate area for 
the footer in square feet; multiplying by the height will 
give the cubic feet. If this is a large project, where the 
concrete will be delivered, the carpenter will have to 
convert cubic feet to cubic yards, as this is the unit in 
which concrete is ordered. 

Raising the Posts: After pouring the footers, the car-
penter will raise the posts for the deck being built. Since 
these posts will also support the roof in this example, 
they must be cut carefully to take into account any vari-
ation in the height of the footers. This measurement 
will be done by using a transit, a laser level, or a water 
level to assess the difference in the height of the footers. 
The carpenter will then add or subtract length to the 
height of each post to compensate. Once the posts are 
cut, they can be raised into position, ensuring each is 
plumb (perfectly vertical) using a level.

Joists and Decking: The sizing for all the wooden 
parts of the deck is determined by calculating how 
long a distance must be spanned and the weight the 
span will carry. The timber that is parallel to the house 
and runs between the posts must be sized to be strong 
enough to carry all the weight between each pair of 
posts; the longer the span between posts, the larger this 
timber must be. Similarly, the floor joists that butt into 
this timber will need to be large enough to carry the 
weight over their length, and the decking will be sized 
so that it does not sag between the joists.  

Fasteners: In our example, the deck will be fas-
tened to the building using bolts, and held together 
using nails, while the decking itself will be screwed 
on. The carpenter has many fasteners to choose from 
with many different finishes. Each type of fastener has 
special characteristics that make it useful for certain 
tasks. Nails are typically sold by the pound and come 
in sizes from large 20d framing nails (often called 20 
penny nails) to small 6d finish nails. Screws are also 
sold by the pound but are sized by length and by a 
number that can be converted, using a chart, to their 
diameter. Bolts are sold by diameter and length; as 
is the case with all fasteners, there are many differ-

ent types among them, lag bolts, carriage bolts, and 
through bolts.

The Roof: The roof over the deck will be set at an angle 
so water runs off it and away from the house. The pitch 
of a roof is typically measured in “rise over run,” with the 
denominator of this fraction always given as 12. Thus, a 
roof that goes up four feet over a run of 12 feet is said 
to be a “4:12 roof.” The carpenter will use a special tool 
called a “speed square” that allows the direct conversion 
of roof pitch to angles and mark rafters for cutting.

Stairs: While stairs can be constructed to be more 
or less steep, a carpenter must keep in mind a basic 
mathematical relationship between tread length and 
riser height that will make a set of stairs comfortable 
to ascend. It turns out that because of the characteristic 
of the human gait, the steeper a stair, the less wide each 
tread should be. The formula that carpenters use is that 
for each stair, twice the rise plus the run should equal 
24–26 inches.

Of course, once the carpenter is done with the project, 
there are still numerous other tasks to complete, includ-
ing building railings and benches, as well as finishing 
and waterproofing the surfaces. If the homeowner were 
to want an outdoor grill area, with built-in cabinets, 
the carpenter would have a whole new set of challenges 
worthy of a cabinet maker and finish carpenter.

Further Reading
Gerhart, James. Mastering Math for the Buildings Trades. 

New York: McGraw-Hill, 2000.
Webster, Alfred P. Mathematics for Carpentry and the 

Construction Trades. 2nd ed. Upper Saddle River, NJ: 
Prentice Hall, 2001.

Jeff Goodman

See Also: Geometry in Society; Measurement, Systems 
of; Pythagorean Theorem.

Castillo-Chávez, Carlos
Category: Mathematics Culture and Identity.
Fields of Study: Algebra; Connections; Data 
Analysis and Probability; Measurement.
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Summary: Carlos Castillo-Chávez works in the field 
of mathematical epidemiology, which deals with the 
spread, treatment, and eradication of diseases.

Carlos Castillo-Chávez (1952–) is a Mexican-American 
applied mathematician, eminent in the field of math-
ematical epidemiology. His research and writing has 
advanced human understanding of the mechanisms by 
which diseases spread and by which they can be con-
tained. The specific diseases that he has worked with 
extensively include human immunodeficiency virus 
and acquired immune deficiency syndrome (HIV/
AIDS), tuberculosis, influenza, and many others.

He grew up in Mexico, where he excelled academi-
cally. Motivated in part by the Tlatelolco massacre 
in which hundreds of Mexican students were killed, 
he emigrated to Wisconsin in 1974. In 1984, he was 
awarded a Ph.D. in mathematics from the University of 
Wisconsin—Madison. He spent 18 years as a professor 
at Cornell University before coming to Arizona State 
University, where he is both professor of mathematical 
biology and executive director of the Mathematical and 
Theoretical Biology Institute, as well as the Institute for 
Strengthening the Understanding of Mathematics. He 
is considered an important voice of the mathematical 
biology community and has served on many influen-
tial committees and panels, including the National Sci-
ence Foundation, the National Institutes of Health, the 
Society for Industrial and Applied Mathematics, and 
the American Mathematical Society.

Mathematics and Biology
In the past decades, mathematics and biology have 
enjoyed an increasingly symbiotic relationship. Math-
ematical biology is a wide area of applied mathematics, 
focusing principally on modeling. A “model” of a bio-
logical process or phenomenon is a mathematical sys-
tem that obeys certain rules and properties abstracted 
from what we know (or suspect) about the biology in 
the real world. Two primary mathematical tools for 
mathematical biology are the study of dynamical sys-
tems and differential equations, since we are often most 
interested in how certain quantities change in response 
to other quantities.

A distinguishing feature of mathematical biology 
is the mutual feedback between the mathematicians 
and the scientists involved. A model based on today’s 
understanding of a certain disease (or of the action of 

neurons, or of cellular growth) may make certain pre-
dictions, suggesting that certain experiments be per-
formed. The results of these experiments can improve, 
correct, and refine scientists’ understanding of the 
underlying biology. Mathematicians can then incorpo-
rate this new knowledge into more sophisticated, more 
accurate models.

Carlos Castillo-Chávez is a leader in the area of 
mathematical epidemiology, the branch of mathemati-
cal biology dealing with the spread, treatment, and 
eradication of diseases. Mathematical epidemiologists 
can use mathematical modeling techniques to predict 
how certain diseases might affect the population. More 
sophisticated models can incorporate the effects of var-
ious proposed treatment and control options. Properly 
applied, these techniques can enable epidemiologists to 
effectively predict the effects of methods of prevention, 
allowing for a more effective allocation of resources in 
responding to disease threats.

Minorities in Mathematics and Science
Carlos Castillo-Chávez is an outspoken advocate of 
minorities, women, and other underrepresented groups 
in mathematics and the sciences. He has expressed the 
belief that people from different backgrounds may 
bring different perspectives to mathematics and sci-
ence, leading them to directions of research that may 
have gone unnoticed or uninvestigated. Since math-
ematics and the sciences are driven by the questions 
that participants pursue, asking a richer set of ques-
tions leads to a fuller body of knowledge; supporting 
students from underrepresented groups minorities is 
therefore a matter both of social justice and of enhanc-
ing the discipline.

Dr. Castillo-Chávez has supported these beliefs with 
his actions at all stages of his career. As a Ph.D. student 
in Milwaukee, he spent his summers teaching math-
ematics to Latino students in the area. He has served as 
a mentor to numerous female and minority students, 
helping and encouraging them at all stages of educa-
tion. He is also an active member of the Society for the 
Advancement of Chicanos and Native Americans in 
the Sciences (SACNAS); during his time at Cornell, he 
was the founding president of a northeast chapter of 
SACNAS and was instrumental in initiating a special 
summer program intended to provide Latino, Chi-
cano, and Native American students with mentorship, 
encouragement, and training in the sciences. Carlos 
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Castillo-Chávez is highly acclaimed for his work in 
this regard.

Further Reading
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Castles
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Mathematics has been used to both 
construct and study castles.

Castle are fortified structures, used as residences by 
European nobles in the Middle Ages. Early castles were 
often made of wood, but with the development of better 
attack methods, castle builders switched to stone as the 
main building material. With the extensive use of artil-
lery, residential castles became indefensible. They were 
replaced by purely military forts (not used for admin-
istrative and residential purposes) and decorative resi-
dences resembling castles (not used during wars). The 
geometry of a castle was often dictated by defense con-
siderations. Architect Benjamin Bramer fortified castles 
and published a work on the calculation of sines. 

The Alhambra, a fourteenth-century palace and for-
tress, is well known for its mathematical tiles. In the 
early twenty-first century, the American Institute of 

Mathematics proposed a headquarters in California 
that would be modeled after the Alhambra, popularly 
referred to as a “math castle.” 

Castles are frequently found in fantasy and hor-
ror literature. One common image is that of Dracula’s 
castle. Dracula author Bram Stoker earned a degree in 
mathematics. Some mathematics teachers use castles 
like Cinderella’s castle or sand castles to explore con-
cepts such as ratios, fractions, volume, statistics, and 
geometric shapes. Scientists, including physicist Mario 
Scheel, explore the physical properties of sand-like 
material, and researchers in experimental archaeology 
model and design castles. 

Geometry of Castle Defense
Both the layouts of castles and the shapes of their parts 
were dictated by defense needs. For example, concentric 
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castles consisted of several concentric walls. The bar-
bican (the outer wall) had relatively many entrances, 
while the inner wall had few, making the attacking 
army crowd between walls and, thus, become vulner-
able to defenders.

Keeps and towers were mostly round to allow for 
a larger arc of shooting coverage from each arrowslit. 
In addition, the isoperimetric theorem states that for a 
given area, the circle has the least perimeter among all 
shapes, thus minimizing the amount vulnerable walls 
(not to mention reducing the costs of building materi-
als). Each corner introduced blind spots where enemies 
could avoid arrows, and circles have no corners. Also, 
corners are more vulnerable for mining.

Cylindrical towers led to the invention of spiral 
staircases. Most castle staircases were built so attack-
ers would ascend clockwise, making the central shaft of 
the staircase interfere with their right hands—often the 
hand that held the sword.

Stonemasons building castles used simple tools, such 
as compasses, dividers, and straightedges. Their manu-
als included descriptions for creating a variety of shapes 
with these tools. For example, pointed and rounded 
arches, including Tudor, lancet, and horseshoe arches, 
could be traced with compasses and straightedges.

Shooting from high towers allowed for better view, 
and also used gravity to add acceleration to arrows and 
other projectiles. When glass windows were installed in 
circular towers, they were made by blowing glass inside a 
cylinder, cutting it, and then connecting multiple pieces 
with lead to match the curvature of the castle wall.

Castle builders used terrain geometry to support 
defense. In addition to the height advantage of the cas-
tle walls and towers, castles were frequently situated on 
hills (either natural or artificial) or on earthen mounds 
called “mottes.” Defensive ditches around castles, called 
“moats,” prevented siege towers from coming close. 
When moats were filled with water, they could also make 
digging tunnels for mining the walls more difficult.

The construction of moats led to the invention of 
drawbridges and the mechanisms of raising and lower-
ing them. The drawbridge mechanisms involved levers 
and pulleys.

Logistics and Finance
Building a large castle was a major financial undertak-
ing spanning many years, and occasionally bankrupted 
the ruler attempting it, such as King Edward I. Supply-

ing the castle, especially with enough supplies to with-
stand lengthy sieges, presented another organizational 
problem. A siege was a common method of castle attack 
in which the attackers surround the castle grounds and 
waited for the defendants to starve.  The siege process 
could sometimes last for months or even years.

Experimental archaeology is a new field of study 
that combines archaeological research, computer mod-
eling, and actual building. Observations in building 
experiments allow for conclusive results of how models 
can be made to work. For example, Project Gueledon 
is a real-size castle built recently to help give people a 
deeper understanding of how castles were constructed 
in medieval times. The researchers used building meth-
ods and materials similar to those used by thirteenth-
century castle builders, with a team of 50 workers from 
various professions.

Further Reading
Holden, Constance. “A Castle Fit for a Mathematician.” 
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Caves and Caverns
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Geometry; Representations.
Summary: Several metrics are used to describe caves 
while mathematical measurements can detect them.

Caves are underground spaces large enough for a human 
to enter. The science of studying caves is called speleol-
ogy and the practice of exploring caves is spelunking. 
Caves can be formed through a variety of ways, such as 
solutional caves (made by rocks dissolving in acids in 
water) or littoral caves (made by waves pounding cliffs). 
They are also categorized by the passage patterns, such 
as angular networks or ramiform caves. Mathemati-
cal techniques are used to model and understand the 
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structures and ages of caves and caverns. For instance, 
the topology of the cave highlights the number of tun-
nels and how they are connected while the geometry 
shows accurate distances, curvatures, and steepnesses. 
Statistical methods as well as fractal concepts of self-
similarity have been used to estimate the number of 
entranceless caves. Archaeology has revealed that caves 
are among the oldest known human habitations. 

Some researchers analyze ancient cave paintings for 
mathematical, astronomical, or geographical inter-
pretations. Mathematical objects and mathematicians 

have also been connected to caves and caverns. The 
Lebombo bone was discovered in a Swaziland cave in 
the 1970s. It dates to approximately 35,000 b.c.e and 
is thought to be the oldest known mathematical arti-
fact. The bone holds 29 tally notches and it has been 
compared to calendar sticks that are still in use in 
Namibia. In France, numerous mathematicians trained 
at École des Mines including Henri Poincare, who was 
employed as a mine engineer and was eventually pro-
moted to inspector general. 

Visitors today can enter Pythagoras’ cave in Samos, 
where he apparently lived and worked on mathematics. 
In The Republic, Plato imagines chained prisoners in a 
cave who can only see shadows of the movement behind 
them. Similar metaphors continue to be explored in 
order to explain higher dimensional realities and other 
concepts in mathematics, physics, and philosophy, 
including investigations of quantum caves.

Geophysical Detection of Caves
The mapping of hidden caves and smaller karst forma-
tions is done for scientific and recreational explora-
tions, as well as to ensure the stability of constructions, 
such as houses and bridges. Geophysical detection 
methods use contrasts in a physical property, such as 
electric resistance or density, between different parts 
of the underground medium. To detect variations, sci-
entists measure microscopic changes in gravity caused 
by empty spaces, or transmit electromagnetic waves 
into the ground and measure their reflections. Another 
method is to transmit an electric current and measure 
changes in ground resistance. Seismic tomography 
depends on collecting massive amounts of data from 
inducing stress through boring holes, but it can be very 
accurate. All these methods depend on mathematical 
models of changes in physical properties between dif-
ferent surfaces.

All geophysical techniques require contrasts of 
some physical property (density, electrical resistivity, 
magnetic susceptibility, seismic velocity) between sub-
surface structures. 

Cave Patterns
The geometry of a cave depends on many geological 
factors, such as the structures dominant in the rock 
and the sources of water for solution caves. Sponge-
work caves consisting of large, connecting chambers 
formed in porous rocks. If the rock also fractures easily, 
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Cave Measurement  
and Records

T here	 are	 several	 metrics	 used	 to	 mea-
sure	 caves,	 including	 total	 length	 of	 pas-

sages,	depth	from	the	highest	entrance	to	the	
lowest	 point;	 total	 volume,	 or	 height,	 depth,	
length,	 area;	 and	 volume	 of	 individual	 pas-
sages,	shafts,	and	rooms.	The	deepest	cave	is	
2191	meters	meters	(7188	feet)	deep	and	the	
greatest	 total	 length	 cave	 is	 591	 kilometers	
(67	miles)	 long.	 These	 numbers	 are	 updated	
as	more	parts	of	caves	are	explored	and	new	
caves	are	discovered.



large chambers will be interspersed with long passages 
formed by fracturing in a pattern called “ramiform” 
(branchlike). Nonporous rock that fractures will pro-
duce a distinct pattern called rectilinear branchwork, 
with straight passages at angles to one another. Lava 
tubes are round in cross-section, long, and relatively 
even; they are formed by a lava flow that develops a 
hard crust.

Cave Meteorology and the  
Geothermal Gradient
Heat in caves comes from water or air entering the 
cave, or from overlying and underlying rock. Overlying 
rock does not transmit the surface heat well. For exam-
ple, a difference of 30 degrees Celsius between day and 
night on the surface translates into 0.5 degrees Celsius 
difference one meter (3.28 feet) deep into limestone. 
Seasonal fluctuations penetrate deeper but still become 
negligible at depths of 10 or so meters (32.8 feet).

In most parts of the world, the temperature increases 
by about 25 degrees Celsius for every kilometer of 
depth, because of the molten interior of Earth, the 
rate called “geothermal gradient.” As one goes deeper 
into a cave that starts at a sea level, the temperature 
first drops because of insulation from the surface but 
then increases because of the geothermal gradient. In 
areas of high volcanic activity near the surface, caves 
can be very hot, or even contain molten lava. Some of 
the deepest caves in the world are cold, because their 
entrances are high in the mountains.
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Cell Phone Networks
Category: Communication and Computers.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Mathematics is involved in the design 
of the cell network and the assignment of calls to 
frequencies, as well as in data compression and error 
compression.

Cell phones have grown from a novelty, to a luxury, to 
a virtual necessity since the 1990s, with the number 
of cell phone subscribers in the United States grow-
ing from about 91,000 in 1985 to 276 million in 2009. 
Part of the reason that cell phones have become so 
reliable, cheap, and secure has to do with mathemat-
ics. Mathematics is involved in the design of the cell 
network and the assignment of calls to frequencies 
(or channels), as well as data compression and error 
compression that allow a large number of clear calls 
to be carried over a small bandwidth. The concept of a 
tree from graph theory can be used to understand cell 
phone networks, which are challenging because of the 
large amount of data and links. Mathematicians like 
Vincent Blondel analyze millions of users and months 
of communication.

Cellular Radio Networks
Cell phones work by communicating via radio signal 
with a nearby cell phone tower. In a cellular radio net-
work, the type of system used for cell phone coverage, 
the land area to be supplied with coverage is divided 
into regular shaped regions (or “cells”), each of which 
has a corresponding radio base station or cell tower. 
Phones within a particular cell connect via radio signal 
to the tower for that cell, which then connects to the 
public telephone network through a switch. The range 
of a tower may be about one-half mile in urban areas 
up to about five miles in flat rural areas.  

Because of this relatively short transmission range, 
cell phones and towers can use low power transmit-
ters. In addition to allowing phones to be small and use 
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smaller batteries, the low power also means the radio 
frequencies can be reused by towers not too far away 
from each other without any interference between the 
transmissions. This function allows cell phone networks 
to carry a larger number of calls in a smaller bandwidth. 
Typically, cell companies will divide their coverage area 
into regularly shaped cells or regions with each one cov-
ered by a single tower. In fairly flat areas, these regions 
are usually hexagonal in shape—an idea developed by 
Bell Labs engineers W. Rae Young and Douglas Ring in 
the middle of the twentieth century. 

The frequencies used by a particular tower for 
transmissions in its region cannot be used by any of 
the six regions with which it shares a boundary. The 
Four Color Theorem from graph theory indicates that 
only four frequencies are needed to ensure that regions 
that share a boundary do not use the same frequency. 
However, companies usually want to further buffer the 
distance between reuse of the same frequency, so they 
divide the frequencies up into seven bundles and use a 
different one on each of the six cells sharing a bound-
ary with a given cell.

Cell Phone Channels
During the twentieth century, there were many discus-
sions among professionals at the Federal Communica-
tions Commission regarding the possibility of opening 
up frequencies for phone use. Cellular networks began 
to appear around the world. For instance, Japan offered 
a 1G system in 1979, and, in 1983, AT&T and Ameri-
tech tested a commercial cellular system in Chicago. 
Much of the advancement in cell network technology 
has been focused on the frequency band within a cell, 
which must be divided up to carry several calls at the 
same time. In first-generation cell technology, calls 
were transmitted in analog, which allowed only one 
call per frequency. Typically, a cell phone carrier was 
assigned 832 radio frequencies to use in a city. Each call 
was full duplex, meaning that it used two frequencies: 
one to transmit and one to receive. 

Thus, typically there were 390 voice channels with the 
remaining 42 radio frequencies used for control chan-
nels that were used to locate and communicate with 
phones but not to carry calls. If the 395 voice channels 
were divided into seven frequency bundles, that made 
56 voice channels per region. So if more than 56 calls 
were in progress in a given region at a given time, then 
one of the calls would be disconnected or dropped. 

Fortunately, first-generation technology is no longer 
in use. With second-generation (2G) cell technology, 
calls were no longer analog signals but were converted 
to a digital (0 and 1) format. This shift is similar to 
the change from cassette tapes to compact discs in the 
recording industry. 

The greatest advantage to digital technology is that 
it allows for sophisticated data compression techniques 
to be used without losing acceptable call quality. Data 
compression allows for between three and 10 digital calls 
to be carried in the bandwidth necessary for a single 
analog call. Further advancements in compression have 
allowed for even newer third-generation (3G) technol-
ogy. 3G networks have much faster transmission speeds 
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and allow the use of smartphones that can transmit data 
fast enough to surf the Internet, send and receive e-mail, 
and even instant message with a cell phone. Newer 4G 
technology adds even more speed and capacity to cell 
phone networks.  

Further Reading
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Census
Category: Government, Politics, and History.
Fields of Study: Data Analysis and Probability; 
Measurement; Representations.
Summary: Conducting a valid and reliable census 
depends on mathematical and statistical methods.

The term “census” comes from the Latin word censere, 
meaning “to assess.” A census is a systematic collection 
of data about an entire population of interest. Usually 
the population is people but historically it has also been 
done for land, livestock, and trade goods. Sometimes a 
census is a one-time event, or it may be repeated peri-
odically, like the decennial census in the United States. 

There are also two primary philosophies of data col-
lection that can affect the outcome of a census: de jure 
and de facto. De jure counts people at their usual place 
of residence, while de facto counts people where they 
are on the day of the census. 

For example, one biblical account of the birth of 
Jesus involves a census in which individuals were 
required to return to their town of origin rather than 
being counted where they lived, as opposed to the U.S. 
census, which is centered about people’s permanent 
residences. Archaeological records indicate that many 
ancient civilizations conducted censuses, the purpose 

of which was often taxation or military recruitment. 
The constitutionally stated purpose of the U.S. census 
is to determine each state’s congressional representa-
tion, though it has grown to include additional descrip-
tive and predictive activities. The U.S. Census Bureau 
is one of the largest employers of mathematicians and 
statisticians, who not only collect and analyze data  but 
also lead the way in developing new data collection and 
analysis methods. 

Statisticians work internationally as well. For 
example, in 1949, British statistician Frank Yates was 
appointed to the United Nations Commission on Sta-
tistical Sampling and published Sampling Methods for 
Censuses and Surveys, which is widely acknowledged to 
have been influential in establishing sound principles 
and technical terminology. Overall, mathematical and 
statistical procedures improve the quality, reliability, 
and representation of census data, and the methods 
used by census-takers are constantly evolving.
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Census Controversies

W hile	the	aim	of	collecting	census	data	is	
to	 provide	 complete	 record	 of	 data	 on	

a	population,	there	can	be	many	difficulties	in	
obtaining	such	comprehensive	data.	Past	prob-
lems	have	included	members	of	the	population	
objecting	to	the	potentially	 intrusive	nature	of	
such	a	full-scale	inquiry,	which	has	the	poten-
tial	to	be	misused,	and	difficulties	reaching	the	
entire	population.	

This	second	problem	was	especially	prob-
lematic	 in	 the	 1990	 decennial	 census	 and	
spurred	a	great	deal	of	developmental	activity	
with	regard	to	statistical	survey	methods.	Even	
further	in	the	past,	there	was	a	heated	debate	
among	the	U.S.	Founding	Fathers	about	how	to	
account	for	slaves	in	the	U.S.	census,	as	these	
counts	had	 the	potential	 to	dramatically	 shift	
the	 balance	 of	 representative	 power	 between	
the	northern	and	southern	colonies.	Even	now,	
evolving	 social	 constructs	 and	 definitions	 of	
significant	 demographic	 variables,	 like	 race,	
can	be	a	controversial	topic.



The History of the Census
The practice of completing a census for an entire popu-
lation occurred in many ancient civilizations. Records 
suggest that the Babylonians conducted a census in 
about 3800 b.c.e., and that Egyptians did so in the sec-
ond millennium b.c.e. Male Roman citizens had to reg-
ister for a census every five years and declare both family 
and property. Elected censors oversaw and coordinated 
the census process. The censors would then summon 
every tribe in the country to appear before them so 
they could record the relevant details. In ancient Rome, 
the census recorded the names of the family members, 
along with details of any property or land they owned. 
This provided the leaders of the country at the time the 
ability to tax their citizens according to the amount they 
owned. William the Conqueror carried out a census in 
Britain in 1086 c.e. for taxation purposes. This census 
took years to complete and attempted to compile a 
comprehensive list of all land and property in Norman 
Britain. Such a comprehensive exercise was previously 
unheard of in Europe, and it preceded an early example 
of a modern census by nearly 600 years.

Instructed by King Louis XIV in 1666, Jean Talon, a 
French colonial administrator, conducted a census in 
order to expand the colony in New France, North Amer-
ica. Talon used the de jure method and visited many of 
the colonial settlers personally, compiling data on set-
tlers’ names, age, sex, and occupation. The aim of this 
census was to help the colony settle by using the sta-
tistics to decide how best to develop agriculture, trade, 
and manufacturing industry. In all, Talon managed to 
compile details of 3215 inhabitants and paved the way 
for the development of a number of further censuses 
in the New World. In Britain, a 1798 paper written by 
demographer Thomas Malthus discussed the possibility 
that not knowing the population size and growth rate 
(demographics), of a country could lead to food short-
ages and overuse of other resources, resulting in fam-
ine and disease as the population is unable to sustain 
itself. These revolutionary modeling ideas led the Brit-
ish government to pass through parliament the Census 
Act of 1800. The first modern British census took place 
in 1801; the process has been repeated decennially since 
then, except for in 1941 during World War II. 

The Modern-Day Census—Data Collection
The U.S. census is required by constitutional law to 
take place every 10 years and involves sending forms to 

every residence in the United States and Puerto Rico. 
The data are then analyzed in order to determine how 
each state is represented in the U.S. House of Repre-
sentatives and to provide the correct resource alloca-
tion for the current population, that is, how much of 
the federal fund is given to hospitals, schools, and other 
public services. Individual responses to the U.S. census 
are kept confidential for 72 years.

A similar process is used in the United Kingdom, 
although the census details are kept confidential for 
100 years. A key difference in the census forms in the 
United Kingdom (UK) and the United States is that the 
U.S. form has just 10 questions and is two pages long. 
The UK census form for 2011 contained 43 questions 
in a 32-page booklet.

In Canada, a national census is taken every five 
years. Each household receives a census questionnaire, 
to either be filled out online or returned in the post. 

Practical Problems With Census Taking
A number of problems can arise when attempting to 
take a census of an entire population. For the data to be 
useful, the characteristics of the whole population need 
to be reflected. This requirement means that any non-
response could jeopardize the quality of the data. Non-
responses can happen, for example, when an address 
list is not comprehensive, or people fail to fill in their 
forms fully and return them. There are a number of 
measures used to prevent this, including following up 
with nonrespondents in a face-to-face interview, and 
setting fines for nonrespondents. 

A statistical technique called “imputation” was used 
by the U.S. Census Bureau in its 2000 census to create 
data using the nearest neighbor “hot deck” method. 
Where a gap in the counting (for example, an entire 
household’s data was missing) was identified, data 
from the geographically closest neighbor were used 
instead. Where a household had not completed every 
question fully, the missing data were imputed from a 
nearest neighbor record where the households are of 
the same size. Where a respondent within a house-
hold gave incomplete data, the characteristics were 
imputed from the characteristics of other household 
members. This technique enabled the U.S. Census 
Bureau to produce a more complete set of data on the 
U.S. population.

In order to overcome the obstacle of an incomplete 
address list, a number of different address lists can be 
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combined to get a more complete list—thus ensur-
ing a wider population is reached, and improving the 
reliability of the data. Alternatively, another statistical 
method, called “sampling,” can be used to estimate 
features of the population. A forward-thinking statis-
tical sampling plan was proposed by many mathema-
ticians and statisticians after the 1990 census turned 
out to be particularly problematic in terms of issues 
such as undercoverage of certain subpopulations. 
The U.S. Supreme Court refused to permit sampling 
to completely substitute for counting. These math-
ematical methods are used, however, for other types 
of estimation and to gauge how much undercoverage 
or other biases might exist.

Analysis of Census Data
A number of mathematical and statistical techniques 
can be used to draw the most descriptive and predic-
tive information possible from raw census data. For 
example, to identify resource need, data can be ranked 
in such a way to identify areas where there are more 
children, thus enabling the government to plan where 
to locate schools. Alternatively, areas with a high per-
centage of elderly people could be identified and pro-
vided with more social care. Since the 1990s, census 
data have become a major resource for both amateur 
and professional genealogists now that older records 
are being digitized. Census data are also used to find 
ways to make future collections efforts better. 

Edna Lee Paisano grew up on a Nez Perce Indian 
Reservation in Sweetwater, Idaho. Talented in both 
mathematics and science, she attended the University 
of Washington and earned a graduate degree in social 
work, studying statistics in the process. In 1976, she 
was hired by the U.S. Census Bureau to work on issues 
regarding Americans and Alaskan Natives, and was the 
Bureau’s first full-time Native American employee. 

Using data from both the 1980 census and a survey 
she developed, Paisano discovered that Native Ameri-
cans in some locations were undercounted. This was 
a serious issue, as allocation of federal funds to tribal 
units is based on census figures. She used statistical 
methods to improve the accuracy of the census and 
encouraged others in the Native American community 
to become educated in mathematics-related fields such 
as computer science, demography, and statistics. The 
1990 census showed a 38% increase in U.S. residents 
counted as American Indians.
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Central America
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Mesoamericans were sophisticated 
mathematicians, and mathematics continues to be 
important in the area.

Central America is defined as the southern part of 
the North American continent, reaching from Mexico 
to Panama. The portion of the region in which corn, 
beans, and squash were reliable crops during the pre-
Columbian era is referred to as “Mesoamerica,” reach-
ing from the mountains of Mexico to Guatemala and 
down the Pacific coast into Nicaragua. Teotihuacan, 
Olmec, Maya, and Aztec were among the many cultures 
sharing the same prehistoric land and cultural legacy. 

The development of the area and its perspective on 
mathematics were shaped in part by the origins of civi-
lization isolated from the other large centers of civiliza-
tion in the Eastern Hemisphere. Spanish colonization 
in the sixteenth century brought the first introduction 
to European cultures. Efforts at spreading Christianity 
resulted in the loss of much of their rich, ancient heri-
tage. The area had gained independence by the mid-
nineteenth century, variously structured as separate 
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nations and unified groups. Struggles to achieve stabil-
ity continue into the twenty-first century in many parts 
of the region. Education and mathematics are highly 
valued as keys to further progress. 

Ancient Mesoamerica
Without the benefit of influence from other cultures, 
the ancient Mesoamericans built large city-states some-
times supporting several hundred thousand people, 
and extensive empires, with no domesticated large 
mammals and with no use of the wheel, other than in 
children’s toys. They mastered basic arithmetic, with a 
concept of zero evident a millennium before European 
civilizations. They shared a counting system based on 20 
rather than 10. Numeral representations included dots 
for units, bars for five, and a circle or seashell for zero. 
Ancient ruins show evidence of meticulous accounting 
of trade and personal lives. The construction of impos-
ing pyramids and other structures aligned to astronom-
ical features and adorned with harmonic geometric 
design reveal an advanced level of engineering, archi-
tecture, and astronomy to rival that found in Europe at 
the same time. From as early as 2000 b.c.e., the people 
of the area had sophisticated calendars, which were 
used in tandem to mark time reflecting both human 
and solar cycles. Ethnomathematicians continue to 
study ancient and modern Central America, and many 
teachers use Mesoamerican mathematics concepts as 
the basis of lesson plans and assignments.

Modern Central America
Central America is defined by the United Nations to 
include the modern countries of Belize, Costa Rica, El 
Salvador, Guatemala, Honduras, Mexico, Nicaragua, 
and Panama. The countries share ethnic, economic, and 
geological features. The peoples are primarily Spanish, 
Amerindian, or Mestizo (a mixture of the two). The 
climate ranges from mountainous to tropical coastline. 
While significant portions of the population are cen-
tered in large urban areas, much of the population of 
the region is located in small villages, sometimes iso-
lated by rugged terrain.  

Education
Central Americans are continuously improving their 
education systems, and efforts at reform often include 
careful inclusion of children from both urban and 
rural areas with the use of radio, television, and com-

puter technologies. Teacher salaries and the contrasts 
of management of schools by local or federal admin-
istrators are recent areas of research. United Nations 
data report high participation in formal schooling. Pri-
vate schools usually are more prestigious than public 
schools in most areas. 

As calendars held power in ancient Mesoamerica, 
knowledge of mathematics is held to be essential for 
the people in modern Central America. High school 
graduates receive extensive content instruction in 
mathematics and science but historically with little 
emphasis on mathematics applications. Teachers are 
encouraged to teach mathematics in context rather 
than as an isolated, esoteric discipline both for the 
better understanding and for the application of learn-
ing to solve problems and promote progress. Recent 
research in mathematics from the region includes a 
diverse range of areas like topology, noncommutative 
geometry, and applied mathematics.

Mathematics researchers gather for conferences, 
research seminars, educational forums, and social 
events. For example, the Sociedad Matemática Mexi-
cana (Mexican Mathematical Society) was founded in 
1943. The society’s goals include encouraging math-
ematical research, including cooperation with related 
scientific disciplines; improving mathematics educa-
tion at primary, secondary, and college levels; and pro-
viding various forums for discussion and dissemina-
tion, including journals and conferences.
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Cerf, Vinton
Category: Communication and Computers.
Fields of Study: Connections.
Summary: Computer Scientist Vinton Cerf helped 
create the Internet and continues to be a leader in 
Internet innovation.

Vinton Gray Cerf is an American computer scientist 
and is one of the creators of the Internet. He worked 
on Internet architecture and the design of TCP/IP pro-
tocols in the 1960s and 1970s, eventually moving from 
academia, to government, and to corporations like MCI 
and Yahoo. He continues to work in advancing Internet 
applications and policies, such as laws regarding “net 
neutrality.” He has won many prestigious awards in 
conjunction with collaborator Robert E. Kahn, includ-
ing the U.S. National Medal of Technology, the Associa-
tion for Computing Machinery’s Alan M. Turing Award 
(sometimes called the “Nobel Prize of Computer Sci-
ence”), and the Presidential Medal of Freedom, which is 
the highest civilian award given in the United States. In 
December 1994, he was also listed as one of People mag-
azine’s “25 Most Intriguing People.” Cerf and his wife, 
Sigrid, have been married since 1966, and he has spoken 
of her support regarding his education and career. They 
have two sons, and, at times, his family’s needs have 
influenced where he has decided to work. Since 2005, 
he has been a vice president at Google, and continues to 
be a leader in Internet innovation.

Reflecting on his own education, Cerf traced his 
interest in mathematics to primary school. He cited his 
fifth grade mathematics teacher as being an influential 
force. When Cerf complained of boredom with the stan-
dard curriculum, the teacher introduced him to more 
advanced mathematics. Cerf said, “I fell in love with 
algebra. It was wonderful.…Frankly, I liked the word 

problems the best because they were like little mystery 
stories.…I still love word problems. To this day, give me 
an algebra word problem, and I’ll have a great old time 
with it.” Outside the classroom, Cerf also enjoyed the 
camaraderie and challenge of his high school math club 
and mathematics competitions led by a young teacher 
named Florence Reese. Of the experience, he noted 
positively, “It would be weeks and weeks of just work-
ing problems, and then the morning of the event we’d 
all get up and have a big steak and egg breakfast at 7:00 
in the morning.…You didn’t want to dull your brain 
with a lunch of any kind.” He went on to earn a B.S. 
in mathematics from Stanford University, then a M.S. 
and a Ph.D. in computer science from the University of 
California, Los Angeles, along with multiple honorary 
doctoral degrees from universities around the world. 
Regarding his change of field from undergraduate to 
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graduate school, Cerf said, “I had already figured out 
that I wasn’t going to be a world-class mathematician. I 
sort of broke my pick on Riemannian geometry.…” At 
the same time, he credited his education in geometry 
with developing his thinking skills, saying, “…I enjoyed 
the reasoning part of it, which is probably one of the 
reasons why I’ve enjoyed being a programmer, because 
you have to go through the same line of thinking.”

As a graduate student, Cerf was part of Professor 
Leonard Kleinrock’s data packet networking group 
when they conducted the first connection tests and dem-
onstrations of the Advanced Research Projects Agency 
Network (ARPANet), one predecessor to today’s Inter-
net. ARPANet was created as a joint project between 
MIT and the Defense Department’s Defense Advanced 
Research Projects Agency (DARPA). After earning his 
doctorate, Cerf returned to Stanford as an assistant 
professor from 1972 to 1976, where he continued to 
work on packet networking and worked with Robert 
E. Kahn—who was instrumental in ARPANet’s hard-
ware design—to develop the TCP/IP protocol for the 
Department of Defense. Various protocols had to be 
developed to enable computers to communicate with 
one another. TCP/IP was a suite of two such protocols: 
the Transmission Control Protocol, used to exchange 
data; and the Internet Protocol, which handles rout-
ing and addressing. The early version of TCP/IP was 
introduced in Cerf and Kahn’s 1974 paper “A Protocol 
for Packet Network Interconnection,” published by the 
Institute of Electrical and Electronic Engineers (IEEE). 
In the twenty-first century, it continues to be the pro-
tocol that most Internet applications rely on, including 
e-mail, file transfer, and the World Wide Web.

Cerf left Stanford in 1976, to work for DARPA 
directly until 1982, roughly the dawn of the personal 
computer era, when he was hired as vice president of 
MCI Digital Information Services (which has since 
been acquired by Verizon Communications). Cerf over-
saw the development of MCI Mail, the first commercial 
e-mail service, which was officially in service from 1983 
to 2003. Messages over MCI Mail were sent over any 
standard telephone landline with the use of a modem 
and could be delivered to any other MCI Mail user, a 
telex, or an MCI Mail print site—an important option 
in days when access to a personal computer was often 
limited. Eventually, messages could be sent to any e-
mail user regardless of his or her service, as well as to 
FAX dispatchers. He also led teams at MCI that devel-

oped Internet solutions for data, voice, and video trans-
missions. As the Internet became more widespread, he 
continued to be an advocate for its use and develop-
ment. For example, from 1999 to 2000, he served on the 
board of the Internet Corporation for Assigned Names 
and Numbers, and some attribute the group’s survival 
to Cerf ’s business prowess, technical knowledge, and 
ability to work with players at all levels of Internet gov-
ernance. He has consulted with NASA’s Jet Propulsion 
Laboratory to develop an Internet standard for planet-
to-planet communication and testified before the U.S. 
Senate in favor of “net neutrality” as that has become an 
increasing concern of the twenty-first century.

In 2005, Google hired Cerf as vice president and 
“Chief Internet Evangelist,” which has given him a 
prominent platform from which to address issues from 
environmentalism, to artificial intelligence, to the immi-
nent transformation of the television industry’s deliv-
ery model. When asked about the process of innovation 
and where innovators like him get their ideas, Cerf said, 
“Part of it is being willing to think literally, out of the 
box.…The people I find most creative are also the ones 
who really know a lot about what they’re doing. They 
either know a lot of physics, or a lot of math.” In addi-
tion, he noted that “depth of understanding” means not 
only knowing the terms of a formula but being able to 
convey the intuitive meaning of the mathematics. 

Further Reading
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Cheerleading
Category: Games, Sport, and Recreation.
Fields of Study: Geometry; Number and Operations. 
Summary: Cheerleading demonstrates and depends 
on an understanding of gravity and other forces.
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Cheerleading is an activity that can be considered both 
recreation and a competitive sport, depending on the 
context. It typically consists of choreographed rou-
tines that require energy, discipline, and stamina, and 
may include chants, dance, tumbling, and other physi-
cal stunts. Cheerleaders make what they do look easy 
when, in reality, the underlying mathematics, such as 
symmetry, sequences, and physics, helps them to con-
quer gravity and fly. In 2008, the show Time Warp on 
the Discovery Channel analyzed the physics of cheer-
leading and gymnastics using slow-motion cameras.  

History
In 1898, University of Minnesota football student Jack 
“Johnny” Campbell became the first person to lead 
football fans in cheers, using a megaphone, which had 
been invented by Thomas Edison in 1878, in order to 

spur his school’s football team to victory. This cheer-
ing gave rise to organized cheerleading. Women joined 
the sport in the 1920s, bringing an opportunity to add 
gymnastics and throws to the cheerleading repertoire. 
Showmanship and pom poms were later added to the 
sport. The Dallas Cowboys cheerleaders’ skimpy outfits 
in the 1970s changed the outward appearance of cheer-
leaders, while the 1980s brought the pursuit of more 
technical stunt sequences. In the new millennium, the 
Bring It On movies highlight the sport’s challenges as 
well as its technical aspects. Although college squads 
are currently about 50% male, youth cheerleading is 
predominantly female. Cheerleaders are now found all 
around the world. 

The Physics of Cheerleading
Cheerleaders are focused on center of mass and axes of 
rotation in order to maintain balance and complete piv-
ots, jumps, and flips. Focusing on symmetry not only 
helps both their formations and individual poses have 
a more appealing look but also keeps them focused on 
maintaining an equal distribution of weight when they 
act as “bases” for a “climber” or “flyer. “

Cheerleaders need a firm grasp of gravity and the 
physics involved in their work, including Newton’s 
Third Law, which states that for every action there is 
an equal and opposite reaction. For example, in a “full 
extension,” the climber pushes off the two bases’ shoul-
ders and pulls up with his or her own shoulders to bear 
some the weight. The two bases move into a “chest 
prep” with their knees locked, their arms extended and 
locked, holding the climber’s feet at chest level; the 
climber is now referred to as a flyer. The back person, 
or “spotter,” will often be used as an additional holder 
to both hold some of the flyer’s weight as well as to 
solidify the overall hold. 

As the bases bend their knees, preparing to exert 
upward force in order to toss the flyer, each base’s arms 
hold half the flyer’s weight—uneven distribution of 
weight is seen when the bases’ hips are uneven, exhib-
iting a loss of symmetry. The bases will extend their 
knees, letting go of the flyer’s feet, to give the flyer 
upward force; the flyer lands exerting greater force 
on the way down, so the bases bend their knees and 
lock hands to cushion the catch. If the bases have not 
evenly distributed the weight, or have exerted unequal 
amounts of force, the flyer will not go straight up and 
the bases will need to move to catch the flyer.
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In preparing to execute a flip, the cheerleader bends 
his or her knees to exert the upward force. To execute, 
the cheerleader needs to stay tight, keep the axis of 
rotation steady, point the feet, and land lightly, snap-
ping together to a final pose to stop his or her momen-
tum. The cheerleader’s angular speed can change by 
changing the distance of mass to the axis of rotation; 
the cheerleader gets momentum from the push off as 
well as from reducing the distance from mass to axis of 
rotation by tucking the body in as he or she rises from 
the ground.
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Chemotherapy
Category: Medicine and Health.
Fields of Study: Algebra; Measurement. 
Summary: Mathematical modeling has improved 
chemotherapy protocols and saved patients’ lives.

Chemotherapy is the use of chemical drugs to kill can-
cerous cells in the body. Although cancerous cells are the 
target of chemotherapy, traditional chemotherapies do 
not distinguish between “good” and “bad” cells. Hence, 
chemotherapy often results in side effects, such as hair 
loss and toxicity damage to body organs. Because of 
these chemotherapy side effects, chemotherapy proto-
cols attempt to kill as much of the tumor as possible 
while incurring as little damage to the patient as can be 
managed. Thus, chemotherapy regimens are managed 

according to different variables, including how much 
drug is given in a treatment, how frequently treatments 
are given, and the total number of treatments given. 
Historically, chemotherapy protocols were designed 
only through experimental data from clinical trials and 
practice. However, such experiments can be costly or 
even pose ethical dilemmas. Chemotherapy variables 
are quantitative—each lends itself to a mathematical 
understanding and description that can be used to 
model and simulate treatment experiments, adding to 
the information gained in clinical settings.  

Mathematics in Cancer Chemotherapy News
Mathematics is becoming an increasingly powerful 
tool in cancer chemotherapy treatments, especially in 
the dosing and management of chemotherapy proto-
cols. For example, in 2004, Dr. Larry Norton received 
the American Society of Clinical Oncology’s David 
A. Karnofsky Award, which is given for an outstand-
ing contribution to progression in cancer treatment. 
Norton’s award is notable because of his quantitative 
contribution to the field of chemotherapy dosing. The 
National Cancer Institute has a Center for Bioinfor-
matics that addresses the issue of systematically study-
ing the vast amounts of data associated with cancer 
growth and treatment response. 

Cancer Geometry and Treatment
Cancer cells appear visibly different in shape and struc-
ture than normal healthy cells. This fact helps prac-
titioners identify unhealthy cells. Quantitative mea-
surements are associated with the geometry and the 
complexity of cancer cells. These measurements are 
related to fractal geometry. Tumor fractal dimensions 
reflect more complex structures generally because of the 
arrangement of blood vessels in the tumor. Abnormal 
blood vessel arrangements inhibit the tumor’s uptake 
of therapeutic drugs. This understanding has led to the 
use of anti-angiogenic drugs that inhibit the produc-
tion of new blood vessels and lower the measurement of 
the tumor’s complexity. These drugs can now be used in 
concert with other cancer treatments in order to create 
a more effective cancer-fighting regimen. 

Cancer Growth and Chemotherapy Treatment
Historically, it was believed that cancer cells grew in an 
exponential manner over the entire period of a tumor’s 
growth. In exponential growth, the doubling time of 
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a population is constant. This belief affected the way 
that chemotherapy was delivered, since chemotherapy 
works by attacking rapidly dividing cells. If a tumor’s 
growth rate were constant, there would be no differ-
ence in how many cells were killed during any chemo-
therapy treatment, regardless of the size of the tumor. 
This is the “log-kill” model of tumor growth. 

However, in the mid-twentieth century, it was 
experimentally discovered that many tumors exhibited 
a different kind of population growth: “Gompertzian 
growth,” named for Benjamin Gompertz. When popu-
lations grow in a Gompertzian fashion, they grow very 
rapidly at first—when the population is small. As the 
population size increases, the growth rate of the popu-
lation slows. Thus, many tumors would have a smaller 
doubling time when smaller, and a larger doubling 
time when larger. Because chemotherapy attacks the 
most rapidly dividing cells, smaller tumors would be 
more susceptible to chemotherapy treatments. Thus, 
if a tumor has been reduced in size by one chemother-
apy treatment, it would be better to give a second che-
motherapy treatment as soon as possible without cost-
ing the patient in terms of healthy cell function. This  
Norton–Simon hypothesis, named for Larry Normal 
and Richard Simon, has led to a change in the frequency 
of standard chemotherapy regimens—the time between 
treatments was decreased in order to take advantage of 
the more rapid growth rate in the smaller tumor that 
had resulted from the previous treatment. This change 
in treatment timing has increased the survival time of 
patients undergoing chemotherapy treatments.

Looking Ahead
Although the Norton–Simon hypothesis is a promi-
nent example of how mathematics has helped improve 
cancer chemotherapy treatments, there are ongoing 
studies by mathematicians to further improve treat-
ment of cancer. Using a field of mathematics known 
as optimal control, some mathematicians study how 
to make chemotherapy treatments as ideal as possible. 
Although practitioners can make (and have made) 
use of the Norton–Simon hypothesis, the increase of 
chemotherapy treatments for a patient, while better, is 
not necessarily best. Using optimal control theory on 
mathematical models of cancer and cancer treatment, 
researchers can investigate the best timing and dos-
ing strategies for chemotherapy based on the variables 
mentioned above. This work may even lead to deter-

mining cancer treatment plans based on a particular 
individual or a particular kind of cancer in the future.
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Chinese Mathematics
Category: Government, Politics, and History.
Fields of Study: Algebra; Connections; Geometry; 
Representations.
Summary: Chinese mathematicians have a long 
history of investigation and discovery, sometimes 
predating similar findings in other cultures.

Chinese mathematics has a very long history, and its 
development is quite independent of other civiliza-
tions before the thirteenth century. Roughly speaking, 
it has four periods of developments before the middle 
of the Qing dynasty, namely

• The early development period: from ancient 
times to the Qin dynasty (2700–200 b.c.e.)
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• The foundation period: from the Han dynasty 
to the Tang dynasty (200 b.c.e–1000 c.e.)

• The golden period: from the Sung dynasty to 
the Yuan dynasty (1000–1367)

• The east meets west period: from the Ming 
dynasty to the middle of the Qing dynasty 
(1367–1840)

Early Chinese mathematics is problem based and 
is motivated by various practical problems, including 
astronomy, trade, land measurement, architecture, and 
taxation.

The Early Development Period
It is written in Yi Jing (I-ching or Book of Changes) that, 
“In early antiquity, knotted cords were used to govern 
with. Later, our saints replaced them with written char-
acters and tallies.” In other words, the ancient Chinese 
used knotted cords to record numbers. Later, written 
symbols and tallies were used instead. In the Shang 
dynasty (1600–1050 b.c.e.), numerals were invented 
and inscribed on oracle-bones or tortoiseshells for 
recording numbers. It was a decimal system and was 
widely used at the time. 

In the Zhou dynasty (1050–256 b.c.e.), mathemat-
ics was one of the Six Arts (Liu Yi), which were taught 
by teachers at schools. The other five arts were rites, 
music, archery, charioteering, and calligraphy. From 
this dynasty onward, the ideas of Taichi, Ying Yang, Tri-
grams, and Hexagrams largely influenced the develop-
ments of sciences, mathematics, philosophy, arts, archi-
tecture, and many other areas in Chinese culture. For 
example, Luoshu (3× 3 magic square) is closely related 
to the eight Trigrams. It has both ceremonial and meta-
physical importance, which plays a significant role in 
Chinese philosophy for several thousands of years.

From the Kingdoms of Spring and Autumn (720–
480 b.c.e.) to the period of Warring States (480–221 
b.c.e.), the Chinese used counting rods to do calcula-
tions. Numbers were expressed by nine symbols, and 
blanks were used to denote zeros. The numeration sys-
tem was already a decimal place-valued system. 

The first definitive work on geometry in ancient 
China was the Mo Jing, which was compiled after the 
death of Mozi (470–390 b.c.e.). Many basic concepts 
of geometry can be found in this book. For example, 
the Mo Jing defines a point to be the smallest unit that 
cannot be divided, and points on a circle to be equi-

distant from the center. The book also mentions the 
definitions of endpoints, straight lines, parallel lines, 
diameter, and radius.

In the Qin dynasty, the famous Great Wall and many 
huge statues, tombs, temples, and shrines were built, 
which required sophisticated skills and mathemati-
cal knowledge for calculating proportions, areas, and 
volumes. Unfortunately, not much is known about the 
actual mathematical development in the Qin dynasty 
now, because of the burning of books and burying of 
scholars ordered by Emperor Qin Shi Huang.

The Foundation Period
In 1984, a Chinese mathematics text called Suan Shu 
Shu, completed at about 200 b.c.e., was discovered in 
a tomb at Zhangjiashan of the Hubei Province. It is 
about 7000 characters in length, and is written on 190 
bamboo strips. Its content is mainly concerned with 
basic arithmetic, proportions, and formulas of areas 
and volumes. The next complete surviving text is the 
Zhou Bi Suan Jing, written between 100 b.c.e. and 100 
c.e. Although it is a book on astronomy, it contains a 
clear description of the Gougu Theorem (the Chinese 
version of the Pythagorean theorem), which is very 
useful in solving problems in surveying and astronomy. 
This work is perhaps the earliest recorded proof of the 
Pythagorean theorem.

After the book burning in 212 b.c.e., the Han dynasty 
(202 b.c.e.–220 c.e.) began to edit and compile the 
mathematical works lost in the Qin dynasty. The most 
important one is the Nine Chapters on the Mathemati-
cal Art (Jiuzhang Suan Shu), completed at around 179 
c.e. Although the editor is unknown now, this book 
had a great impact on the mathematical developments 
in China and its neighboring countries, such as Japan 
and Korea. It contains a collection of 246 mathematical 
problems on agriculture, engineering, surveying, part-
nerships, ratio and proportion, excess and deficit (the 
method of double false positions), simultaneous linear 
equations, and right-angled triangles. 

The general method of solutions is provided, but no 
proof is given in the Greek sense. Most of the methods 
are of computational nature, and they can be applied 
to solve problems algorithmically. For instance, square 
roots, or cubic roots, can be found in a finite number 
of steps by using a procedure called Kai Fang Shu. For 
skillful users of this method, the answers can be com-
puted efficiently by manipulating the counting rods. 
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For circular measurements, the approximated value of 
π is taken as 3. Some problems are expressed in terms 
of a system of linear equations and then solved by alge-
braic techniques. For instance, a problem in Chapter 
Eight leads to the system 

3x + 2y + z = 39

2x + 3y + z = 34

x + 2y + 3z = 26

which can be solved by a method like the matrix 
approach described in modern textbooks. 

In the third century, Liu Hui wrote his famous com-
mentary on the Nine Chapters on the Mathematical Art. 
He also wrote a book called The Sea Island Mathemati-
cal Manual (Haidao Suan Jing), to demonstrate how 
to apply the Gougu Theorem. He was the first Chi-
nese mathematician to deduce that the value of π lies 
between 3.1410 and 3.1427, by repeatedly doubling the 
number of sides of a regular polygon inscribed in a cir-
cle. It is called the method of dissection of a circle. Liu 
Hui also discovered the Cavalieri’s Principle and used 
it to find the volume of a cylinder. About two centuries 
later, Zu Chongzhi (430–501) and his son, Zu Geng, 
found that the value of π lies between 3.1415926 and 
3.1415927, based on the pioneer works of Liu Hui. He 
also obtained the remarkable rational approximation 
355 113  for π, which is correct to six decimal places. 
Working with Zu Geng, he successfully applied the 
Cavalieri’s Principle to deduce the correct formula for 
the volume of the sphere by computing the volume of 
a special solid called Mouhe Fanggai (the double vault) 
as proposed earlier by Liu Hui. 

Unfortunately, his own work called Zhui Shu was 
discarded from the syllabus of mathematics in the Song 
dynasty and was finally lost in the literature. Many 
believed that Zhui Shu probably describes the method 
of interpolation and the major mathematical contribu-
tions by Zu Chongzhi and Zu Geng.

At the beginning of the Tang dynasty, Wang Xiao-
tong (580–640) wrote the Jigu Suanjing (Continuation 
of Ancient Mathematics), a text with only 20 problems 
that illustrate how to solve cubic equations. His method 
was a first step toward the Tian Yuan Shu (the method of 
coefficient array), which was then further developed by 
other mathematicians in the Sung and Yuan dynasties.

In the sixth century, mathematics was a subject being 
included in the civil service examinations. Li Chunfeng 
(602–670) was appointed by the Chinese emperor as 
the chief editor for a collection of mathematical trea-
tises for both teachers and students. The collection is 
called the Ten Classics or the Ten Computational Can-
ons, which include the Zhou Bi Suan Jing, the Jiuzhang 
Suan Shu, the Haidao Suan Jing, the Sunzi Suan Jing, 
the Wucao Suan Jing, the Wujing Suan Shu, the Shushu 
Jiyi, the Xiahou Yang Suan Jing, the Zhang Qiujian Suan 
Jing, and the Jigu Suan Jing. The book Zhui Shu by Zu 
Chongzhi had been included in the Ten Classics at the 
beginning, but it was later replaced by the Shushu Jiyi 
because of it being lost in the Sung dynasty.

The Golden Period
No significant advances in mathematics were made 
between the tenth century and the eleventh century. 
However, Jia Xian (1023–1050) improved the meth-
ods for finding square roots and cube roots, and also 
extended them to compute the numerical solutions of 
polynomial equations by means of the Jia Xian Triangle 
(the Chinese version of the Pascal Triangle). 

The golden period of mathematical development in 
China occurs in the twelfth and the thirteenth centu-
ries, which is called the “Renaissance of Chinese math-
ematics” by some authors. Four outstanding math-
ematicians appeared in the Sung dynasty and the Yuan 
dynasty, namely Yang Hui (1238–1298), Qin Jiushao 
(1202–1261), Li Zhi (also called Li Yeh, 1192–1279), 
and Zhu Shijie (1260–1320). Yang Hui, Qin Jiushao, 
and Zhu Shijie all used the Horner–Ruffini method to 
solve quadratic, cubic, and quartic equations. Li Zhi, 
on the other hand, revolutionized the method for solv-
ing problems on inscribing a circle inside a triangle, 
which could be formulated as algebraic equations, and 
solved by using the Pythagorean theorem. Another 
mathematician, Guo Shoujing (1231–1316), worked 
on spherical trigonometry for astronomical calcula-
tions. Therefore, much of the modern mathematics in 
the West had already been studied by Chinese math-
ematicians in this period. 

Qin Jiushao (1202–1261) invented the symbol for 
“zero” in Chinese mathematics. Before this invention, 
blank spaces were used to denote zeros. Qin Jiushao 
also studied indeterminate problems and generalized 
the method of Sunzi to become the now-called “Chi-
nese Remainder Theorem.” He wrote the Shushu Jiu-
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zhang (Mathematical Treatise in Nine Sections), which 
marks the highest point in indeterminate analysis in 
ancient China.

Yang Hui was an expert in designing magic squares. 
He discovered elegant methods for constructing magic 
squares with an order greater than three. Some of the 
orders are as high as 10. He was also the first in China 
to give the earliest clear presentation of the Jia Xian 
Triangle in his book Xiangjie Jiuzhang Suanfa.

The famous work of Li Zhi is the Sea Mirror of the 
Circle Measurements (Ce Yuan Hai Jing). It is a collec-
tion of some 170 problems. He used Tian Yuan Shu or 
the Method of Coefficient Array to solve polynomial 
equations of degree as high as six. He also wrote the 
book Yi Gu Yan Duan (New Steps in Computation) in 
1259, which is an elementary book related to solution 
of geometric problems by using algebra.

The most important text in the thirteenth century 
is the Precious Mirror of the Four Elements (Si Yuan 
Yujian), written by Zhu Shijie in 1303. This book marks 
the peak of the development of algebra in China. The 
unknowns that appeared in equations are called the 
four elements, namely heaven, Earth, man, and matter. 
This book describes how to solve algebraic equations 
of degrees as high as 14. The method is the same as 
the Horner–Ruffini method. Zhu Shijie also used the 
matrix methods to solve systems of equations. He was 
also an expert in summation of series. Many formulas 
on summation of series can be found in the Precious 
Mirror of the Four Elements. He also wrote an elemen-
tary mathematics text called the Introduction to Compu-
tational Studies (Suanxue Qimeng) in 1299, which had 
a significant impact on the development of Japanese 
mathematics later.

The East Meets West Period
In the Ming dynasty, not much original mathematics 
work emerged in China. Even the famous work Suanfa 
Tongzong (General Source of Computational Methods) 
by Cheng Dawei (1533–1606) was an arithmetic book 
for the abacus only. Its style and content were still influ-
enced very much by the Nine Chapters on the Math-
ematical Art. It was only when the Italian Jesuit Mat-
teo Ricci (1552–1610) came to China in 1581 that the 
development of mathematics in China was influenced 
by the West from this time onwards. For instance, Xu 
Guangqi (1562–1633) and Matteo Ricci translated a 
number of Western books on sciences and mathemat-

ics into Chinese, including the famous Euclid’s Ele-
ments, the influence of the Western culture on China 
became more apparent.  

However, the Chinese mathematicians also did an 
excellent job in editing and recording their traditional 
mathematics and science works in the early Qing 
dynasty, so that much of them can come down to us 
now. For example, Mei Juecheng (1681–1763) edited 
the famous mathematical encyclopedia Shuli Jingyun in 
1723, and Ruan Yuan (1764–1849) edited the Chouren 
Zhuan (Biographies of Astronomers and Mathemati-
cians) in 1799. Both of these works are very valuable 
and useful references for historians to study the math-
ematical developments in China before the middle of 
the Qing dynasty.   

Achievements in Chinese Mathematics
After the decline of Greek mathematics in the sixth 
century, Western Europe was undergoing the period of 
Dark Ages. On the other hand, many of the achieve-
ments of Chinese mathematics predated the same 
achievements before and shortly after the Renais-
sance. For instance, before the fifteenth century, China 
was able to (1) adopt a decimal placed-value numeral 
system, (2) acknowledge and use negative numbers, 
(3) obtain precise approximations for π, (4) discover 
and use the Horner–Ruffini method to solve algebraic 
equations, (5) discover the Jia Xian Triangle, (6) adopt 
a matrix approach to solve systems of linear equa-
tions, (7) discover the Chinese Remainder Theorem, 
(8) discover the method of double false position, and 
(9) handle summation of series with higher order. It 
was only after the fourteenth century that the develop-
ment of Chinese mathematics began to decline and lag 
behind the Western mathematics in the Ming and Qing 
eras. However, it is worthy to note that the traditional 
Chinese mathematics still can find its contribution in 
mechanized geometry theorem proving in the twenti-
eth century, because of its algorithmic characteristics.  
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City Planning
Category: Architecture and Engineering.
Fields of Study: Geometry; Number and 
Operations; Problem Solving.
Summary: Mathematics is used to model optimal 
city designs and reduce problems of traffic congestion, 
sanitation, and water distribution.

Also called “urban planning” and “town planning,” 
city planning is a discipline that focuses on the various 
economic, environmental, historical, physical, politi-
cal, and social characteristics of the urban environ-
ment and their harmonious organization. It encom-
passes a variety of projects, processes, and goals that 
involve multiple disciplines and fields of expertise, 
such as physical design, and quantitative and qualita-
tive research, as well as analysis, forecasting, strategic 
planning, negotiation, and public mediation. Since the 
late nineteenth century—and especially during the sec-
ond half of the twentieth century—the profession has 
increased its reliance on statistics and mathematics.

Early History
The early origins of urban planning can be traced in 
the physical design and purposeful spatial organiza-
tion of some ancient cities in Mesopotamia, Egypt, the 

Mediterranean Basin, South and Central America, the 
Yellow River Basin, and along the Indus Valley. Many of 
these settlements present a hierarchical system of paved 
streets, often following a rectilinear grid, with water 
supply and drainage systems. The Middle Ages was not 
a propitious era for urban planning. It became popular 
again during the Italian Renaissance with the design of 
ideal cities. Influenced by the belief that a perfect form 
was the image of a perfect society, designers opted for 
radial or centrally planned cities frequently uniting 
the perfect geometric figures of the square and circle 
into a star-shape layout. In the seventeenth century, 
the rise of nation states and absolutism was conducive 
to the development of the monumental baroque city 
with its straight and endless avenues, unbroken hori-
zontal rooflines, and repetition of uniform elements, 
which glorified the ruling power. Simultaneously, the 
advances of warfare techniques led to the disappear-
ance of the old city walls and the adoption of new 
complicated systems of fortification with considerable 
outworks and bastions in spearhead forms. 

The Industrial Era
The modern origins of city planning have their roots in 
the industrial city of the mid- and late nineteenth cen-
tury. In both Europe and the United States, rapid tech-
nical progress, tremendous industrial development, 
and massive displacements of rural population to 
urban areas created considerable problems that threat-
ened to disrupt the existing social order. The dread-
ful conditions experienced by masses of people living 
in abject poverty and misery in overcrowded slums 
sprawling around wealthier districts became a source 
of concern for the general public health. In 1854, Dr. 
John Snow—the father of modern epidemiology—
identified the source of a cholera outbreak in London 
by studying the patterns of the disease and using sta-
tistics and a spot map illustrating the clustered death 
cases of cholera around the Broad Street pump. The 
fears of major epidemics resulted in the rise of a social 
movement for urban reform and planning, which first 
focused on water supply and sanitation improvement, 
and later on housing provision. 

In the 1880s, the basic lack of information regard-
ing the extent and distribution of poverty in London 
led English philanthropist Charles Booth to develop a 
comprehensive and scientific social survey investigating 
the incidence of pauperism first in East London, and 
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later in the entire city. His quantitative statistical analy-
ses and qualitative research presented in 17 volumes 
with accompanying colored maps indicating the levels 
of poverty and wealth by street received considerable 
attention. They were also influential in demonstrat-
ing the importance of social surveys for public policy, 
demographics, and sociology as well as in improving 
census data collection. 

Similar problems affected Paris and, after visiting 
London, Napoléon III placed considerable emphasis 
on urban planning to modernize the medieval capital 
into the capital of light. The large-scale restructuring 
program under the direction of Baron Haussmann 
affected not only the center of Paris but also its sur-
rounding suburbs. At the time, it was the largest urban 
renewal project ever implemented. The plan created a 
network of large, easily accessible avenues and boule-
vards with radiating vistas terminated by prestigious 
public edifices and monuments. In addition to the 
building of 71 miles of new roads, the layout of 400 
miles of pavement, and the doubling of the number 

of trees lining the streets, the city’s infrastructure was 
entirely renovated. The construction of more than 340 
miles of sewers and hundreds of miles of aqueducts 
increased the water supply by 400%. Haussmann also 
created two major urban parks and two large natural 
preserves on the periphery. This urban metamorpho-
sis influenced the design of numerous cities world-
wide and in particular the “White City” of the World’s 
Columbian Exposition of 1893 in Chicago, which was 
the first large-scale project of the City Beautiful move-
ment in the United States. The aim of expanding civic 
consciousness and raising the standards of civic design 
culminated in the publication of the famous Plan of 
Chicago in 1909, which coincided with the first uni-
versity course in city planning at Harvard and the first 
National Conference on City Planning. In 1917, the 
American City Planning Institute was founded.

The Twentieth Century 
Nevertheless, with the growth of the automobile as a 
favorite mode of transportation, it was the “Garden City” 
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concept invented by Ebenezer Howard that became the 
leading model for the development of U.S. suburban 
residential communities. As the old city centers became 
increasingly congested, transportation planning became 
increasingly important to ensure an efficient balance 
between land-use activities and the potential com-
munications between them. Transportation planners 
regularly collect data, which they analyze and process, 
to forecast future traffic using various techniques such 
as land-use ratio methods, multiple regression mod-
els, category analysis, growth-factor methods, synthetic 
models, modal split analysis, diversion curves, and geo-
graphic information systems (GIS).

After the U.S. Department of Commerce published 
“A Standard State Zoning Enabling Act” and “A Stan-
dard City Planning Enabling Act” in the 1920s and the 
U.S. Supreme Court upheld the constitutionality of 
zoning in 1926, most U.S. cities established planning 
departments to adopt master plans and zoning regu-
lations that allowed them to control land-use devel-
opment, protect property values, and segregate uses. 
Cities also started implementing subdivision controls 
and regulations. These new tools contributed to the 
belief in part of the planning community of the pos-
sible rational and scientific management of cities. On 
the other hand, idealists such as Frank Lloyd Wright 
and Lewis Mumford criticized the new pragmatic and 
technological approach, preferring a philosophy of city 
development for humanistic and social ends as epito-
mized in the design of Radburn, New Jersey. Over time, 
zoning regulations revealed some drawbacks. They 
often increased traffic congestion, and sometimes pre-
vented the construction of affordable homes. Some 
courts struck them down as exclusionary. 

City planning in the post–World War II era was dra-
matically affected by four significant federally funded 
programs: public housing, urban renewal, home mort-
gage insurance, and highway building. The miserable 
failure of urban renewal—and the urban crisis of the 
1960s that ensued—required new approaches to urban 
planning. During the second half of the twentieth cen-
tury, city planning became increasingly defined as a 
cyclical process attempting to balance conflicting social, 
economic, environmental, and aesthetic demands while 
implementing selected objectives and goals. Therefore, 
regular monitoring became necessary to test, evaluate, 
and review the strategies and policies adopted on a con-
tinuous basis. City planners regularly use a wide range 

of models ranging from basic descriptive statistics to 
more complex mathematical models that allow them 
to understand the nature of various urban components 
and forecast the consequence of change. 

Because of the tremendous complexity of urban sys-
tems, models can provide only a simplified representa-
tion of the studied phenomena. Consequently, there is 
considerable attention and controversy regarding the 
choice of variables, and their level of aggregation and 
categorization, as well as the handling of time, specifi-
cation, and calibration. Although deterministic mod-
els are the dominant type of predictive models used 
by urban planners, there has been some attempt at 
developing stochastic models. Urban planners are also 
concerned with the accuracy, validity, and constancy 
of the models they use. Most models tend to be topic 
specific, focusing, for example, on population, hous-
ing, employment, shopping, transport, or recreation, 
but integrated forecasting systems have become more 
common as there has been an increasing recognition of 
the interdependence of the various subfields of a city.
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Civil War, U.S.
Category: Government, Politics, and History.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations; Problem Solving.
Summary: The U.S. Civil War saw numerous 
advances in firearms, cryptography, and strategy.

The U.S. Civil War, also sometimes known as the War 
Between the States, was a conflict fought from 1861 
to 1865 between 11 southern U.S. states that seceded 
from the Union to form the Confederate States of 
America and the remaining United States. Precipi-
tating causes of the war centered on economic issues 
and states’ rights versus federal power, often symbol-
ized by the central dividing issue of slavery. More 
than 600,000 men on both sides died, which is greater 
than the combined U.S. losses in all subsequent wars 
and military conflicts through the beginning of the 
twenty-first century, though World War II exceeds 
this count if the metric is combat deaths versus deaths 
from all causes. Some also refer to the Civil War as the 
first “industrialized war” because of the extensive use 
of the telegraph, railroads, and mass-manufactured 
goods and weaponry. 

Mathematics was instrumental in this war in many 
ways. Introduction of the Spencer repeating rifle has 
been cited by many as the turning point toward the 
eventual Union victory. Ciphers and code-breaking 
efforts were important in communicating military 
strategies and plans. The U.S. Army Signal Corps, 
founded in 1860, used both telegraphy and line-of-
sight methods, such as the wig-wag signaling system 
in which the left, right, or upward positions of a single 
flag represented the numbers 1–3 and specific number 
combinations corresponded to letters. The ranks of 
leaders on both sides were filled with mathematically 
educated graduates of schools like the Unites States 
Military Academy at West Point. Mathematics educa-
tion and research were also impacted by the war.

Weaponry
Changes in small arms and artillery that were occur-
ring in Europe and the United States at this time had 
a tremendous impact on the war. Many different types 
of smoothbore or rifled artillery were used during the 
Civil War. One way in which they were distinguished 
was by their bore size, which was the diameter of their 

barrels, usually expressed in inches. Another differen-
tiating feature was the weight of the projectiles they 
fired, in pounds. Different classes of weapons also had 
different trajectories. Cannons known as “guns” had 
relatively flat trajectories. Mortar rounds followed a 
steeply arcing path. Howitzers fell between the other 
two because the possible angles of inclination and 
powder charges could be varied more than the other 
two types. 

  The most common artillery piece was the Napo-
leon, a howitzer named after Napoleon Bonaparte, an 
avid student of mathematics who had revolutionized 
infantry and artillery warfare. Artillery ammunition 
included solid shot or balls, grape, canister, shell, and 
chain shot. Canister and grape shot could be particu-
larly devastating to humans, since they disintegrated 
into smaller, scattering projectiles along a number of 
trajectories when fired. At the start of the war, both 
sides relied primarily on muzzle-loading rifled mus-
kets such as the 58 Springfield, though some smooth-
bore muskets were also in use. Rifled weapons had 
greater range—nearly half a mile—versus the 100-yard 
range for smoothbores, which affected infantry tactics. 
The breech-loading Spencer repeating rifle was a major 
innovation, and was considered the most advanced 
weapon of its time. It used metal cartridge ammuni-
tion and it could hold seven cartridges at a time, which 
greatly increased rate of fire and accuracy, though the 
Union was initially concerned about the correspond-
ing increase in the demand for ammunition. 

Revolvers also replaced muzzle-loading pistols, with 
similar effects. Minié ball ammunition, named for 
French military officer Claude Minié, was used exten-
sively in the Civil War. Previously, rifles had been dif-
ficult to load because the bullets fit tightly in the bore 
of the weapon, which was necessary for them to be pro-
pelled effectively by explosive powder charges. Despite 
being called a “ball,” the Minié projectile was conical. It 
was smaller in diameter than older ammunition, and 
also had grooves that allowed it to fall smoothly and 
quickly into the barrel of the rifle. A hollow indenta-
tion extending from the base caused it to expand to the 
size of the gun’s bore when fired, optimizing the com-
bination of loading time and accuracy.

Cryptography
One problem addressed by mathematical prob-
lem-solving approaches was the terrible problem of 
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“hacking.” Increasingly, communications were being 
relayed by the newest technology—the telegraph 
and Morse code. It was relatively easy for someone 
to climb the telegraph pole, connect a telegraph key 
to the wires, and intercept messages that were being 
relayed back and forth from the front lines to the base 
camp. Messages needed to be coded so that intercep-
tors could not interpret them, which was not a new 
problem. The problem of encoding military messages 
can be dated to at least Julius Caesar and earlier to the 
Spartan military.  

The governors of Ohio, Indiana, and Illinois were 
close enough to the Confederate border that they felt 
the need to have their messages encoded. Governor 
William Dennison of Ohio asked Anton Stager to pre-
pare a cipher (a code) that could be used by these three 
governors. Stager adapted a transposition coding sys-
tem that had been used in Great Britain years earlier. 
Words were rearranged into a grid. The first word of the 
message was the “key” to indicate how many columns 
were to be formed and in what order they were to be 
read. Instructions for these codes were printed on cards 
about the size of a standard index card, which were the 

precursors of codebooks. Included on the cards were 
the route, the keys, the code words, and words used to 
check the cipher. 

This system underwent a number of modifications, 
and Stager’s route cipher was eventually adopted as 
the Union’s official cipher. Increasingly sophisticated 
ciphers were created during the war and, as a result, 
the instructions could no longer fit on cards. Some of 
the resulting codebooks were 48 pages long. The mes-
sages were intercepted by the Confederacy and sent to 
Richmond, Virginia, the capital of the south. By twenty-
first-century coding standards, they appear to have been 
relatively easy codes to break, but evidence suggests that 
the south did not have either sufficient manpower or 
mathematical knowledge to decode them.  

By contrast, the Union forces had a team to work 
in breaking the southern codes, including many times 
President Abraham Lincoln. The codes used by the 
south at the beginning of the war were not standard-
ized, resulting in many messages that were unreadable. 
The Confederacy eventually settled on a code from 
1587, the Vigenère cipher, named for Blaise de Vige-
nère—although others before him, such as Giovan 

192	 Civil War, U.S.

A 12-pdr. howitzer gun captured by 
Butterfield’s Brigade of the 12th Maine 
Infantry in May 1862.



Bellaso, are also noted as having invented it. This code 
consisted of a tableau of staggered alphabets. The ease 
of this code was that the code did not have to change 
if a coded message was captured, only the code phrase. 
The problem with the Vigenère code came in errors in 
transmission over the telegraph. Even though the code 
was harder to break than the Union cipher, it was more 
difficult to implement because a missed letter would 
result in an incoherent message. For instance, General 
Edmund Smith reportedly spent 12 hours trying to 
decode a message from General Joseph Johnston dur-
ing the Vicksburg campaign. The message requested 
reinforcements, but Smith was unable to read it. He 
eventually sent a courier, but it was too late for rein-
forcements; Johnston’s army was already cut off. Revi-
sions to the code to avoid this problem in the future 
made deciphering easier as well. 

Mathematically Educated Leaders
Many of the military leaders for both the north and 
the south were graduates of the U.S. Military Academy 
at West Point, which was the United States’ only engi-
neering school for an extended period of time. The 
Civil War was fought with 359 generals who gradu-
ated from West Point. They served on both sides, 
217 for the Union and 142 for the Confederacy. This 
list of elite officers and leaders includes many well-
known officers. Ulysses S. Grant had plans to return 
to West Point to teach mathematics, and these plans 
were changed by the outbreak of the Mexican War. 
Robert E. Lee graduated second in his class in 1829 
and served as an assistant professor for mathematics 
for his first two years at West Point. Edmund Kirby 
Smith (1845) taught mathematics at the University 
of the South after the war, where he joined another 
West Point graduate, Josiah Gorgas. Other well-
known graduates who served both sides during the 
Civil War included Confederate President Jefferson 
Davis, Braxton Bragg (1837), John Bell Hood (1853), 
Thomas Jonathan “Stonewall” Jackson (1846), Albert 
Sidney Johnston (1826), James Longstreet (1842), 
George E. Pickett (1846), J. E. B. Stuart (1854), Wil-
liam Tecumseh Sherman (1840), George G. Meade 
(1835), George McClellan (1846), Joseph Hooker 
(1837), Abner Doubleday (1842), George Armstrong 
Custer (1861), and Don Carlos Buell (1841). 

All these men were mathematically educated, which 
was unique for that point in U.S. history and likely 

played a role in many aspects of the war. For exam-
ple, the maps and messages of the military in the Civil 
War show the influence of what is now referred to as 
“descriptive geometry,” which was created by Gaspard 
Monge and was incorporated into the curriculum after 
engineer Claudius Crozet brought it to the Military 
Academy. Mathematics textbooks used by most of the 
leaders on both sides of the Civil War include those 
written by mathematicians Charles Davies and Albert 
Church, some of which were adaptations of earlier 
French works. This education of the leaders of both 
sides of the conflict may have had a great deal to do 
with the long length of the conflict and allows histo-
rians the opportunity to study other differences in the 
two sides.

It was not just the military leaders during the Civil 
War who made use of mathematics. Lincoln purport-
edly had a great reverence for Euclid of Alexandria and 
geometry. Some historians assert that he kept a copy 
of Euclid’s Elements in his saddlebag and studied it 
by lamplight to develop his logic and reasoning skills. 
Phrasing in Lincoln’s well-known 1863 address at the 
Gettysburg battlefield has sometimes been compared 
to Euclid.

Education
While mathematics undoubtedly influenced the course 
and outcome of the war, the Civil War also affected 
mathematics education and research. Antebellum 
college curriculum in schools such as The Citadel or 
Harvard consisted of classes in mathematics that were 
filled with “practical applications,” such as mercantile 
transactions, navigation, surveying, civil engineering, 
mechanics, architecture, fortifications, gunnery, optics, 
astronomy, geography, history, and “the concerns of 
Government.” These topics were all expanded in one of 
the common textbooks of the day, An Introduction to 
Algebra, by Jeremiah Day. Geometry and trigonometry 
were also commonly taught, and analytic geometry, 
conic sections, and calculus were often optional classes. 

The problems discussed and worked in these 
classes, both in surveying and in navigation, were 
carefully chosen and adapted to make them easily 
done but not extremely realistic. Thus, the navigators 
and the surveyors being prepared for the Army were 
ultimately ill prepared to handle the realistic situa-
tions of making measurements under fire or in harsh 
seas. According to the work of Andrew Fiss, the Union 
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army regulations required that surveyors plot the best 
course for the army to take. The topographical engi-
neers worked so slowly that many of the generals took 
to asking local citizens for the best directions. By two 
years into the war the topographical engineers were 
incorporated into the Army Corps of Engineers. Like-
wise, the Navy found that the U.S. Naval Academy, 
founded near the middle of the nineteenth century, 
could prepare navigators better than a mathematics 
department. However, the academy was negatively 
impacted by the temporarily relocation from Mary-
land to Rhode Island during the war. 

After the war, many universities started offering 
higher level mathematics courses, and some increas-
ingly focused on research. Harvard and John Hopkins 
University graduated doctorates in mathematics within 
the next decade.
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Climate Change
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Calculus; Data Analysis 
and Probability; Problem Solving; Representations.
Summary: Mathematicians and scientists use 
sophisticated models to track and predict global 
climate change.

The term “climate change” refers to the changing distri-
bution of weather patterns. Climate is considered to be 
the average of 30 years of weather. In other words, cli-
mate is the distribution from which weather is drawn. 
Global warming refers to the change in climate in such a 
way that warmer weather is increasingly likely. In fact, it 
is not just the warming itself that is of concern but also 
the rate of change of the warming process since ecologi-
cal systems typically cannot adapt to a rapidly changing 
climate. According to the 2007 Synthesis Report by the 
Intergovernmental Panel on Climate Change (IPCC), 
“Warming of the climate system is unequivocal, as is 
now evident from observations of increases in global 
average air and ocean temperatures, widespread melt-
ing of snow and ice and rising global average sea level.” 
The main cause of changing climate is the increasing 
atmospheric concentrations of greenhouse gases (car-
bon dioxide, methane, and nitrous oxide), which effec-
tively act as a blanket over the atmosphere. 

The IPCC report noted, “There is very high con-
fidence that the net effect of human activities since 
1750 has been one of warming.” The evidence for the 
warming of the climate includes more than the mea-
surement of global average temperatures, as physical 
evidence such as glacier melt also exists. Most predic-
tions of global warming are based on data models, and 
mathematics is used extensively to measure and quan-
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tify atmospheric carbon dioxide and aerosols, which are 
believed to add to the problem. The National Oceanic 
and Atmospheric Administration (NOAA) and the 
U.S. National Aeronautics and Space Administration 
(NASA) are two large federal agencies that are involved 
in the collection, analysis, and dissemination of climate 
data. They employ a diverse range of mathematicians, 
statisticians, scientists, and others, and they have part-
nerships with many academic institutions, government 
agencies, and businesses around the world. Researchers 
do agree, however, that the current and future conse-
quences of climate change disproportionately impact 
the world’s poor. 

Climate as a Distribution
In order to understand global warming, it is important 
to understand that the term refers to a distribution. It is 
easy to dismiss the notion of global warming on a cold 
winter’s day, a mild summer day, or any day where the 
weather is cooler than expected. In fact, an unusually 
hot or cold event is not evidence for or against global 
warming. To aid in understanding climate as a distri-
bution, consider a set of 20 cards numbered 1–20. One 
card will be drawn at a time with replacement. The 
value 10.5 is the average of these cards; a card selected 
below 10.5 will represent a below-average temperature 
for the day, and one selected above 10.5 will represent 
an above-average for the day. Further, the farther away 
the value of a card is from 10.5 will represent a larger 

deviation from average temperature. This example 
represents a stable climate. Some days are colder than 
average, and others are hotter than average. But, over 
time, roughly an equal number of colder days and hot-
ter days occur. Moreover, if the value of the cards were 
unknown, basic statistical sampling ideas could be used 
to estimate the average.  

To represent a changing climate, start with the same 
set of cards and consider values below or above 10.5 as 
a colder or hotter day. But this time, every time a card is 
drawn and replaced, the next higher card will be added 
to the set. For example, after the first card is drawn, a 
21 will be added to the set, then a 22 will be added after 
the second draw, then a 23 after the third, and so on. 
At first, this change would be barely noticed if at all 
since the cards drawn will be roughly equal above and 
below 10.5. After some time, however, one would start 
to question the assumption that 10.5 is the average. In 
this case, if the values of the cards were unknown, basic 
statistical sampling techniques could not be used to 
estimate the average since the average is in fact chang-
ing. In this example, if 10.5 is taken as the average, then 
values below 10.5 still occur but are becoming less 
likely. In other words, record lows can still occur—and 
will still happen—even though climate is warming.  

To complicate this example further, consider this 
same experiment being performed simultaneously by 
2000 people to represent different locations around 
Earth. When the set of cards have values from 1 to 100, 

one individual would have only 
a 10% chance of drawing a card 
below 10.5, but it is expected 
that approximately 200 of the 
2000 experiments will draw a 
card below 10.5. In other words, 
even though climate is warming, 
there will still be places that have 
colder than average days. 

In terms of actual weather, 
consider Figure 1, which provides 
the average monthly temperature 
anomalies in degrees Celsius for 
December 2009 compared to the 
average from 1951 to 1980. The 
month of December was slightly 
colder for most of the United 
States. The overall average for the 
world was 0.60 degrees Celsius 

Figure 1. Global temperature anomalies for December 2009.
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higher than the baseline years. One month, or even one 
year or a few years, of above average temperatures does 
not provide conclusive evidence for or against global 
warming as these abnormalities could be explained as 
normal variations in weather.

Evidence of Warming
Calculating global mean temperatures each year pro-
vides one form of evidence for global warming. For 
example, Figure 2 displays mean global temperature 
anomalies dating to 1850. Even though the overall trend 
is upward, variation from one year to the next can go 
in either direction. Gerald Meehl, who has a Ph.D. in 
climate dynamics and works at the National Center for 
Atmospheric Research (NCAR), collected information 
from 1800 weather stations across the United States that 
have been operating since 1950. He and his colleagues 
looked at the ratio of record highs to record lows and 
grouped the ratios by decade. From the 1950s through 
the 2000s, the ratio of record highs to lows was 1.09:1, 
0.77:1, 0.78:1, 1.14:1, 1.36:1, 2.04:1. From the 1950s 
through the 1980s, the ratios might be considered to be 
in the range of normal variation for a stable climate. On 
the other hand, by the 2000s, it certainly appears that 
the observations no longer represent normal variation, 
and that the climate distribution is getting warmer. 

In Figure 2, the baseline is the average from 1961 to 
1990, with regression lines for different time periods 
from 1850 to 2009, 1910 to 2009, 1960 to 2009, and 1985 

to 2009. The data are the HadCRUT3 data set provided 
by the University of East Anglia Climatic Research Unit.

Beyond data, a warming climate should present 
physical evidence in the form of melting ice. Figure 3 
is one of a number of glacier image pairs, which are 
pictures of glaciers taken from the same vantage but 
40–100 years apart. The change is striking. Where there 
was once ice, there is now ocean water with the gla-
cier retreating about seven miles. In the foreground, 
thick vegetation exists where there was once rock. This 
change is because of microclimate changes since the ice 
is no longer cooling that area. Along with melting gla-
ciers, Arctic sea ice is decreasing rapidly and permafrost 
is melting. In fact, the entire village of Newtok, Alaska, 
must be relocated because the loss of permafrost has 
allowed the banks of the Ninglick River to erode.

Melting ice is just one source of evidence of a chang-
ing climate. During most of the twentieth century, sea 
level was rising at a rate of 0.07 inches per year, but by 
the 1990s that rate increased to 0.12 inches per year. 
In 2006, the National Arbor Day Foundation updated 
its plant hardiness zone maps, and most of the zones 
shifted northward. In other words, many plants can now 
be grown where they could not before because of their 
cold hardiness. There have already been observed shifts 
in species ranges, a northward shift, as well as shifts in 
phenology (seasonal biological timing) toward events 
such as early blooming. In fact, many species have sea-
sonal behavior that is occurring 15–20 days earlier than 
the behavior occurred in the mid-twentieth century.

The general trend of warming is only part of the 
story. If the planet warmed a degree or two over mil-
lions of years, then ecological processes could adapt 
and societies could migrate. Figure 2 has least squares 
regression lines calculated over the time periods of 
1850–2009, 1910–2009, 1960–2009, and 1985–2009. 
The four regression lines are as follows:

y t t159 0 0041 8 67281( ) = −. .

y t t100 0 00750 14 75315( ) = −. .

y t t50 0 01364 26 96187( ) = −. .

y t t25 0 01801 34 67615( ) = −. .

In each case, the slope of the line, with units of 
degrees Celsius per year, is increasing as the time peri-
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ods are shortened toward more recent years. More 
importantly, the 95% confidence intervals for the slopes 
are (0.00387, 0.00495), (0.00657, 0.00844), (0.01151, 
0.01577), (0.01254, 0.02347), respectively. The first 
three intervals do not overlap, and so the slopes of the 
lines are significantly different. This provides evidence 
not only for overall warming but also that the rate of 
warming is increasing. Some species, trees for example, 
will simply not be able to adjust their ranges quickly 
enough to adapt to the warming climate.

Climate Science
Climate models, which incorporate mathematical top-
ics such as dynamical systems, statistics, differential 
equations, and applied probability, are used to predict 
future global average temperature. 

Mathematician Ka-Kit Tung, in his book Topics 
in Mathematical Modeling, provides a simple climate 
model. The model is

R
t

T Qs y y I y D y
∂
∂

α= ( ) − ( )( ) − ( ) + ( )1 .

The left-hand side represents change in tempera-
ture. There are three basic terms on the right-hand 
side that contribute to temperature change. The first 
term has incoming solar radiation at the top of Earth’s 
atmosphere, 

Qs y( ), 

where the s y( )  term distributes the radiation differ-
ently depending on the latitude y = sinθ  with θ repre-
senting latitude. The term also takes into consideration 
how much radiation is absorbed

1− ( )( )α y

where α y( )  is the fraction reflected or albedo. The 
next term,

I y( )

represents outward radiation, and the last term,

D y( )

represents heat transportation from warmer latitudes 
to colder latitudes. In Tung’s textbook, this simplified 
model is analyzed to gain understanding of possible 
locations in ice lines.

The more complex computer simulations that model 
climate are built with assumptions related to popula-
tion growth and societal choices, such as energy use or 
technological change. These assumptions are then used 
to predict how greenhouse gases will increase. The effect 
of increased greenhouse gases in trapping heat is well 
understood, and in terms of the simple climate model 
above, the increase in greenhouse gases decreases out-
ward radiation. Beyond that, the increase in carbon lev-
els itself is a problem as oceans work to absorb some of 
this carbon in the form of carbonic acid. The increase 
in carbonic acid in the oceans increases the acidity lev-
els, which damages coral, crustaceans, sea urchins, and 
mollusks.

For each scenario, many different models are con-
sidered, and the predictions are averaged to produce 
the graph on the left side of Figure 4. The three higher 
curves illustrate the average warming. On the right side 
of the graph is a range based on the various models. A 
distribution has been created, and based on the graph, 

one could say that, by 2100, 
global mean temperatures 
will increase between approx-
imately 1.5 degrees Celsius 
and 3.5 degrees Celsius, but 
the distribution around the 
three scenarios presented is 
from approximately 1 degree 
Celsius to 6 degrees Celsius. 
The right side of Figure 4 
presents the predicted tem-
perature changes as a distri-
bution across Earth, and it is 
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predicted that the Arctic region will warm more than 
the equatorial region.

A key complication in climate modeling is the exis-
tence of feedback loops. A feedback loop is created when 
a change in one factor causes a change in a second factor 
that then either reinforces or diminishes the change in 
the first factor. While each scenario sets out greenhouse 
gas levels, the models must then attempt to take into 
account how warming may, in fact, increase warming 
or decrease warming. For example, one positive feed-
back loop involves melting ice. As ice melts, the Earth’s 
albedo (reflectivity) changes so that less solar radiation 
is reflected out to space. In the climate model above, the 
α y( )  term is decreased so that more solar radiation is 
absorbed. In other words, as the planet warms, ice melts. 
However, there are now fewer reflective white surfaces 
and more dark surfaces, which will then absorb even 
more solar radiation and increase the planet’s warming. 
Another potential positive feedback loop arises from 
melting permafrost. As the permafrost melts, partially 
decomposed organic matter will decompose more fully 
and release carbon into the atmosphere. Even more 
uncertainty arises with the effect of clouds. Low clouds 
tend to cool by reflecting more energy than they trap, 
while the reverse is true for high clouds. As surface tem-
perature increases, there is increased evaporation from 
the oceans, creating more water vapor and hence clouds. 

But the type of clouds that arise will depend on whether 
this is a positive or negative feedback loop.

Of course, to many people, an increase of a few 
degrees Celsius does not seem to be drastic enough 
to impact life on Earth significantly. But consider that 
during the twentieth century, global average tempera-
tures increased by less than 1 degree Celsius. Never-
theless, there has already been observed disappearing 
glaciers, loss of Arctic sea ice, changing species habitat 
and phenology, and a new plant hardiness map. In fact, 
a difference of approximately 0.2 degrees Celsius was 
the difference between the Medieval Warm Period (c. 
950–1250) and the cooling period (c. 1400–1700). The 
warm period led to the Norse migrating to Greenland 
and bountiful harvests and population increases in 
Europe. This period was followed by a cooling period 
that led to the collapse of the Norse Greenland society 
and starvation in Europe.

Impacts of Climate Change
The general consensus in the scientific community in 
2010 is that warming has occurred and will continue 
to take place even with changes. Debate continues on 
precisely how much warming will occur and the exact 
nature of the ramifications. The questions are by how 
much, and what should people expect to happen? Spe-
cies ranges are already changing, and, in some cases, 

Figure 4. Climate model predictions of future average global temperature and distributional changes  
of temperature.
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species ranges are disappearing as appears to be the 
case for polar bears. Unfortunately, the speed of warm-
ing will lead to some species not being able to change 
their range quickly enough, resulting in extinction. The 
changing phenology is already causing ecological dis-
ruption. Some plants are blooming earlier, but the spe-
cies that feed on them are not arriving earlier, leading 
to decreased food supply. 

As Figure 3 shows, ice is melting and more of that 
is expected. The loss of Arctic ice will decrease polar 
bear populations. The melting glaciers of the Tibetan 
Plateau are of particular importance. These glaciers 
are responsible for supplying water to about 2 billion 
people, and data suggests that the Tibetan Plateau is 
warming twice as fast as the global average. Once these 
glaciers are gone, so is the water supply. The melting of 
glaciers and land ice, along with the thermal expansion 
of water, will raise sea levels. One example is Bangla-
desh, which faces severe threats from sea level increases 
since millions of people live along a coastline that may 
be underwater in the future.

There are additional predictions as of 2010, based 
on models and scientific expertise. An increase of 2 
degrees Celsius from pre-industrial levels would lead 
to a fall in agricultural yields in the developed world, a 
97% loss of coral reefs, and 16% of global ecosystems 
transformed. With an increase of 3 degrees Celsius, 
few ecosystems could adapt and an additional 25–40 
million people would be displaced from the coasts 
because of sea level rise. If global average temperatures 
rose to 4 degrees Celsius above pre-industrial levels, 
entire regions would be out of agricultural production, 
including Australia.

Climate Change and Societies
The joint science academies’ statement on sustainabil-
ity, energy efficiency, and climate protection issued in 
2007 by the G8 nations and Brazil, China, India, Mex-
ico, and South Africa, said that, “Many of the world’s 
poorest people, who lack the resources to respond 
to the impacts of climate change, are likely to suffer 
the most.” The warming of the planet will have some 
advantages and disadvantages, although there will be 
more disadvantages. Some warmer climate species 
will have expanded ranges and be able to thrive, while 
arctic species may lose their entire ecosystem. Some 
countries will be impacted more than others, and the 
wealthier countries will have a better ability to adapt. 

The examples that have been given here of societies 
that already have been or will likely be impacted are all 
examples of poorer societies. 

The people of Newtok, Alaska, are poor; in 2010, 
Bangladesh ranked 183 in the world in terms of GDP 
per capita; and there is considerable poverty in regions 
in and around the Tibetan Plateau. Part of the tragedy 
is that these are not the people who are largely respon-
sible for increasing greenhouse gases. China and the 
United States are the largest emitters of carbon dioxide, 
but on a per capita basis, the United States far exceeds 
China. In general, it is the industrialized nations that 
contribute the most to greenhouse gases. Figure 4 pro-
vides different models for future climate change, and 
these are primarily based on the models that predict 
future greenhouse gas emissions, and it is the more 
industrialized nations that have the resources to make 
reductions in these emissions.
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Climbing  
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry; Problem Solving.
Summary: Effective climbing relies on mathematical 
principles, and there are connections between 
climbing and mathematical problem solving. 

Climbing is the use of the human body and assisting 
equipment to ascend or descend steep surfaces. Climb-
ing can be done professionally, such as for construction 
or in the military, for exercise or competition, or for 
performance—in the case of parkour. There are differ-
ent styles of climbing depending on the object, such as 
bouldering, ice, tree, and rope climbing. If the weight 
of the climber is supported by equipment, it is called 
aid climbing; when the weight is supported only by the 
climber’s muscles, it is called free climbing. Mathemat-
ics plays a role in successful climbing and in analyzing 
various aspects of the discipline. Mathematician Skip 
Garibaldi said, “Climbing has a lot of puzzles that have 
to be solved. It’s not just strength or skill.”

Anthropometry in Climbing 
Anthropometry is the mathematical study of body 
measurements in order to understand human vari-
ability. For example, studies show that elite climb-
ers, on average, tend to have small stature, low body 
mass, and a high handgrip-to-mass ratio compared to 
the population as a whole. Compared to nonclimber 
athletes with similar physical conditioning, they are 
frequently linear, with narrow shoulders relative to 

hips. Ape index is the ratio of a climber’s arm span to 
height. In adults, it is usually close to one, as illustrated 
in Leonardo da Vinci’s “Vitruvian Man.” An ape index 
greater than one is reputedly advantageous for climb-
ing, and some researchers have found ape index to be a 
statistically significant predictor of climbing success.

Fall Factor and Impact
Fall factor quantifies how hurtful a fall may be to a 
roped climber. Mathematicians such as Dan Curtis have 
derived the fall factor (F

max
) using differential equa-

tions. It is a function of the ratio of the total distance 
the climber falls (D

T
) to the length of the unstretched 

rope (L) between the climber and belayer or anchor at 
the rope’s other end. It is also a function of the climb-
er’s mass (m), the elasticity or “stretchiness” of the rope 
(k), and gravity (g). Algebraically, it is represented as

F mgk
D

L
T

max = 2 .
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Climbing ropes must pass a statistically designed 
drop test to be certified for sale and use. Other critical 
safety equipment is also designed using mathematics. 
One example is the curve of cams used in the “friend” 
devices that secure ropes to crevices in rock walls, which 
may be optimized using systems differential equations, 
sometimes with polar coordinates. The devices them-
selves are an application of logarithmic spirals.

Climbing Theories and Modeling
Many people have drawn parallels between climbing 
mountains and solving mathematical problems, espe-
cially great challenges like summiting Mount Everest 
and solving a problem like the Riemann hypothesis, 
first proposed by mathematician Bernhard Riemann. 
Analyses have shown that Everest climbers engage 
in multistep problem solving with altitude changes, 
rates, percentages, conversions, approximations, and 
division of large numbers. Mathematician-climber 
John Gill said that problems in both mathematics and 
climbing are often solved by “quantum jumps of intu-
ition.” Patterns found in the natural features of some 
popular climbing locations can very mathematical. 
The Navajo Sandstone formation includes rounded 
domes and saddle shapes with remarkably precise-
looking contour lines. 

At the same time, the geometric diversity and com-
plexities of climbing surfaces and the variety of tech-
niques used by climbers have made developing a single 
theory of optimal climbing strategy difficult. However, 
several methods are used to quantify characteristics of 
different climbs and probabilistic models can be used 
to make decisions. Competitive climbers assign climb-
ing grades to climbing routes, using objective and sub-
jective criteria, to describe their difficulty. Other sys-
tems assess the technical difficulty of required moves, 
the stamina necessary, exposure to the elements, or 
the frequency of difficult moves. Mathematician Alan 
Tucker demonstrated using graph theory that the clas-
sic Parallel Climbers mathematical puzzle has a solu-
tion for any mountain range.
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Clocks
Category: Space, Time, and Distance.
Fields of Study: Measurement; Number and 
Operations; Representations.
Summary: Clocks are devices for timekeeping and 
are used for a variety of mathematical calculations, 
including finding one’s longitude.

The term “clock” in a generic sense is applicable to a 
broad range of devices for timekeeping usually con-
cerning fractions of the natural unit of time—the day. 
Modern clocks operate through various physical pro-
cesses. It does not matter what kind of periodic sig-
nals a clock produces—ringing a bell, firing a cannon, 
flashing a light, moving a hand, displaying a number, 
or generating electric impulses. Mathematics has been 
fundamental both in the design of clocks and in the 
measurement of their accuracy. Modular arithmetic, 
an algebraic concept involving cycles, is sometimes 
informally known as “clock arithmetic.” In the realm of 
biology, mathematicians have also worked on theories 
related to the operation of humans’ internal biological 
clocks and bacterial genetic clocks.

History of Clocks
In everyday English language, watches and other time-
pieces that can be carried individually sometimes 
continue to be distinguished from clocks. Via Dutch, 
Northern French, and Medieval Latin, the word “clock” 
is derived from the Celtic clagan and clocca meaning 
“bell.” Those old clocks had a striking mechanism for 
announcing intervals of time acoustically. The history 
of clocks is much deeper, however. It started in early 
prehistoric times with sundials (often a vertical post 
or pillar on horizontal ground exposed to the sun or a 
post parallel to the Earth’s axis) that were the first and 
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oldest scientific instruments of archaic humankind. 
They worked only in the daytime. In the terminology 
of ancient Greece, such a device was called a gnomon, 
and the entire branch of science on sundials is gnomon-
ics. Famous Egyptian obelisks—now reerected in some 
European capitals—were also sundials. 

Timekeeping devices of different types were called 
horologium by the Romans. In its corrupted forms, this 
term later on entered many languages of the world. A 
noticeable step in the history of timekeeping was the 
invention of a “water clock” (the specific Greek name is 
the clepsydra). Water clocks could be used at night. Some 
of the water clocks in China and the Near East were quite 
large. Another type of simple clock was the “sandglass.”

The modern era of clock-art started with the inven-
tion of weight-driven mechanical clocks (sometimes 
known as “chimes”). The inventor of such a novelty 
is unknown. Because daily prayer and work schedules 
in medieval times were strictly regulated, religious 
institutions required clocks, and it is certain that the 
earliest medieval European clockmakers were Chris-

tian clerics. Mechanical clocks were designed en masse 
in the thirteenth century in Western Europe. They 
were bulky and appeared on cathedral towers in many 
countries. Some of them have survived up to now and 
are among the great artifacts of the medieval epoch.

After the invention of tower clocks, efforts were 
made to design smaller pieces for tabletops and per-

sonal “pocket” clocks (watches) for 
individuals. Peter Henlein (c. 1480–
1542), a locksmith from Nuremberg, 
Germany,  is often credited as the fore-
runner of the first portable timekeeper, 
but this claim is disputed. His drum-
shaped Taschenuhr was too big for a 
pocket. The first individual clocks were 
usually worn on the neck or beneath 
the knee. Timepieces of this type were 
often known as “Nuremberg eggs.” The 
earliest clocks are very expensive now 
and are subjects for collectors.

Clocks for Navigation
A great chapter in clock-making began 
in conjunction with the rapid develop-
ment of seafaring after the European 
discovery of the Americas. In order to 
determine one’s position at sea, it is 

necessary to calculate two geographical coordinates: 
latitude and longitude. Latitude is easily computed 
directly from trivial astronomical considerations (the 
latitude of a locale is equal to the altitude of the celes-
tial pole). As for longitude, it is equal to the difference 
between local time and the time of a prime meridian 
chosen specifically for cartographic purposes; naviga-
tors used different prime meridians in different coun-
tries in different epochs. To discover one’s longitude, 
an observer must know the time at the prime meridian, 
which requires the art of “transporting” accurate time.

The search for accurate and convenient timekeep-
ing became one of the most impressive scientific and 
technological challenges of the seventeenth century. 
Numerous mathematical and astronomical methods 
were proposed, such as observations of the moon. 
However, the computations would have been difficult 
for the typical sailor and the mathematical methods 
were not yet well-developed enough to provide an 
accurate prediction. This problem was among the foci 
of scientific activities of Galileo Galilei of Italy (1564–
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1642), who discovered the key property of pendulums 
that makes them useful for timekeeping: isochronism, 
which means that the period of swing of a pendulum is 
approximately the same for different sized swings. Gal-
ileo developed the idea for a pendulum clock in 1637, 
but did not have enough time to complete the design.

Dutch scholar Christian Huygens (1629–1695) suc-
cessfully built a pendulum clock in 1656 and patented 
it the following year. Its design incorporated concepts 
derived from mathematical work on cycloids. The 
introduction of the pendulum—the first harmonic 
oscillator for timekeeping—increased the accuracy 
of clocks enormously, from about 15 minutes per day 
to 15 seconds per day. In addition to building a clock, 
Huygens investigated the properties of synchronization 
of identical pendulum clocks. Researchers have been 
interested in the subject of synchronization of clocks 
and oscillators since that time.

The design of the first marine chronometer was 
performed by the self-educated English carpenter and 
clockmaker John Harrison (1693–1776). This device 
dramatically revolutionized and 
extended the possibility of safe 
long-distance sea travel. At the 
time, the problem was consid-
ered so intractable that the Brit-
ish Parliament offered a prize of 
20,000 British pounds sterling 
(comparable to about $4.72 mil-
lion in modern currency) for the 
solution. Sailors and astronomers 
continued to be the principal con-
sumers of accurate timekeeping. 
Precise clocks became essential 
equipment for each and every 
astronomical observatory.

Modern Clocks
The problem of “transportation” 
of accurate time to determine 
longitudes lost its actuality with 
the invention of the telegraph 
and, later on, with utilization 
of radio signals. But with the 
advancement of the twenti-
eth century, new scientific and 
applied challenges demanded 
increasingly accurate time reck-

oning. As a result, new clocks were created based on 
newly discovered physical principles that were opera-
tionalized using mathematics. The crucial step in this 
direction was the invention of so-called quartz clocks. 
A quartz crystal has the unusual property of piezoelec-
tricity—when stimulated with voltage and pressure, it 
oscillates at a constant frequency. 

The vibration of a quartz crystal regulates the clock 
very precisely. Quartz crystal clocks were designed in 
1927 by two engineers at Bell Telephone Laborato-
ries: the Canadian-born telecommunications engineer 
Warren Marrison (1896–1980) and an electrical engi-
neer from the Massachusetts Institute of Technology 
(MIT), Joseph Warren Horton (1889–1967). Since the 
1970s, quartz clocks have become the most widely used 
timekeeping technology. Atomic clocks followed quartz 
clocks toward the end of the century. The U.S. National 
Bureau of Standards (now the National Institute of 
Standards and Technology) based the time standard of 
the land on quartz clocks between the 1930s and the 
1960s. Eventually, it changed to atomic clocks, the best 

of which are accurate to 5 10 15× −  sec-
onds per day. Researchers are now devel-
oping optical clocks that can be up to 100 
times more accurate than the best atomic 
clocks. Further, satellite-based global 
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positioning systems are now a primary source of time 
for some scientists and people in everyday life. This sys-
tem provides almost unlimited transportation of time 
using variety of mobile devices in space and on Earth. 

Today, the reckoning and keeping of precise and 
super-precise time continues to be requisite for numer-
ous scientific and applied problems. Astronomers are 
still important users of this data. It is important, for 
instance, in cosmic navigation, in the measurement of 
variations of the rotation of Earth, and in the imple-
mentation of a particular technology into everyday life, 
such as radio interferometry with a hyperlong base. 
Every developed country now has a specialized national 
service for addressing questions regarding precise 
timekeeping and time reckoning. For a long time in the 
Paris Observatory, there was the Bureau International 
de l’Heure (The International Time Bureau), which 
played an important role in the research of timekeep-
ing. In 1987, the responsibilities of the Bureau were 
taken over by the International Bureau of Weights and 
Measures (BIPM) and the International Earth Rota-
tion and Reference Systems Service (IERS).

Further Reading
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See Also: Calendars; GPS; Measuring Time.

Closed-Box Collecting
Category: Arts, Music, and Entertainment.
Fields of Study: Data Analysis and Probability; 
Number and Operations.

Summary: Collecting objects in sets is a popular 
pastime that can require a great deal of effort 
and such collections have inspired mathematical 
investigations. 

A set of closed-box collectibles is a set of similar objects 
that are sold interchangeably. The objects might be any-
thing; for example, cards, figurines, or trinkets. The term 
“closed-box” means that the consumer purchases each 
item without knowing exactly which thing the consumer 
will get—the package will contain a random item from 
the collection. Because some collectibles may be more 
rare or more valuable than others and because individual 
preferences vary, side markets for these collectibles may 
emerge, with an identified item selling for many multi-
ples of the price of a random one. Baseball cards, collect-
ible card games, and other trading cards give a familiar 
example of closed-box collectibles. Toy prizes in cereal 
boxes and Kinder Surprise eggs are other examples. This 
problem is one of the classics of probability theory. It has 
many extensions and can be solved by many methods, 
including combinatorics and generating functions. It is 
also known as the Coupon Collector Problem.

Promotional Contests
There have been many contests based on closed-box 
collecting used for promotional purposes by various 
businesses and products. Two well-known examples 
include McDonald’s annual Monopoly game and Sub-
way’s Scrabble game. In these cases, certain purchases 
come with one or more random game pieces, which 
will be one of a large number of types. The game pieces 
come in various groups; a complete group of collect-
ibles can be exchanged for a contest prize.

From the perspective of the business running such 
a promotion, the contest design creates certain math-
ematical problems. What proportion of the game pieces 
should be manufactured of each type? A main goal is to 
minimize unpredictability. If too many grand prizes are 
collected, the company may have to pay out a substan-
tial amount of money; this might be too great a risk to 
tolerate even if it is very rare. On the other hand, if too 
few major prizes are awarded, the public may become 
dissatisfied, negating the public relations goals of the 
promotion. The usual solution for the significant prizes 
is to make one type of piece in each group extremely 
rare, manufacturing only as many as they intend to pay 
out prizes. The other types can then be made relatively 
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common without risk. This system generally has the 
effect of maintaining public interest by giving a large 
number of people the “feeling” of getting closer to win-
ning a big prize as they accumulate common tokens in 
the group, without risking a huge payout.

Expectations in Closed-Box Collecting
Suppose that a consumer is interested in one partic-
ular collectible from a set, and the consumer decides 
to purchase collectibles one at a time until getting the 
desired one. Assume each collectible purchased will 
be the desired kind with probability p, independently 
of the others. (In real life, this assumption will not be 
strictly valid, but the discrepancy is negligible if the 
number of collectibles purchased by an individual is 
small compared to the total number in existence.) The 
chance that it is not the kind desired is then 1−p, and 
this scenario is modeled by a geometric random vari-
able. The probability of getting the desired item on the 
first try is p, on the second try is p p1 −( ), on the third 
try is p p1

2−( ) , and so on. Then the expectation is

p p
n

n

1
1

1

−( ) −

−

∞

∑ .

Standard techniques of basic analysis now show that 
the expected number of purchases needed is 1/p.

It should be emphasized that this is the expectation 
in the sense of probability theory and that there are 
some common misconceptions about what it means. 
If the probability of getting the desired item is 1/100, 
this does not mean that 100 is the most likely number 
of purchases, nor that the 100th item is any more likely 
to be the desired type than any other. It means that on 
average—in the long run—it will take 100 tries to get 
the desired item. This also means, for example, that 
when rolling a fair die, it will take an average of six tries 
to roll a 1, squaring well with intuition.

Another important issue in understanding the 
dynamics of closed-box collecting is the expected 
number of purchases to collect a complete set. Sup-
pose that there is a set of 100 collectibles, each item 
purchased being equally likely to be any of the hun-
dred types. If a consumer purchases collectibles one 
at a time until obtaining a complete set, how many 
purchases will be made? It will take one purchase to 
get one item. With one item type, each purchase will 
add to the collection with probability 0.99, so the con-

sumer expects to purchase 100/99 more items to get 
the second item. With two item types, each purchase 
will add to the collection with probability 0.98, so the 
consumer expects to purchase 100/98 more items to 
get the third item. This process continues until the 
consumer has all the items but one; then each pur-
chase will complete the collection with probability 
.01, so the consumer expects to purchase 100/1 more 
items to get the last type, completing the collection. 
This process indicates a total of 

100

100

100
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100
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purchases, about 519. In general, if there are n types, 
then the expectation is 
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For large n a good approximation is 

n n n oln( ) + + + ( )γ 1

2
1  purchases

to collect all n objects. The constant γ ≈ 0.5772156649 
is the Euler–Mascheroni constant, named for Leonhard 
Euler and Lorenzo Mascheroni, while o(1) is a constant 
used in computer science meaning a function that con-
verges to zero for very large inputs, such that the value 
is effectively zero for very large n.

This illustration gives insight into why it seems harder 
and harder to make further progress in collecting, the 
further you get. In the example of collecting a complete 
set of 100 collectibles, with each purchase equally likely 
to be any of the hundred types, the expected purchases 
needed is about 519. Suppose now that one has accumu-
lated a collection of 50 different items; is that really half-
way to a complete collection? By a similar analysis, the 
expected number of additional purchases to collect the 
remaining 50 items is about 450. So there is a meaning-
ful sense in which 450/519 of the collecting task is still 
undone; a more accurate description of the progress is 
that the collection is 13.3% completed. In the sense of 
expectation, one is not really halfway through collect-
ing 100 items until obtaining the 93rd item. While the 
assumption that all types are equally likely does not usu-
ally hold in practice (some types are rarer, some more 
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common), the qualitative conclusion applies in general, 
unless a few of the items are extremely rare.

Further Reading 
Myers, Amy, and Herbert Wilf. “Some New Aspects of 

the Coupon-Collector’s Problem.” http://arxiv.org/
abs/math/0304229v1.

Ross, Sheldon. A First Course in Probability. 8th ed. 
Upper Saddle River, NJ: Prentice Hall, 2010.

Michael “Cap” Khoury

See Also: Coupons and Rebates; Expected Values; 
Probability.

Clouds
Category: Weather, Nature, and Environment.
Fields of Study: Data Analysis and Probability; 
Geometry.
Summary: The formation and behavior of clouds 
can be mathematically modeled and studied.

Mathematics has been called “the science of patterns.” 
In clouds and the atmosphere, generally there is no end 
to the patterns that may be observed, quantified, and 
more clearly understood using mathematics. Mathema-
ticians have long modeled the behavior and structure 
of clouds. 

Applied mathematicians continue to develop ways 
to detect clouds and quantify motion, composition, 
density, top altitude, and the distance between clouds, 
among other characteristics. In 1999, the U.S. National 
Aeronautics and Space Administration (NASA) 
launched the Multi-Angle Imaging SpectroRadiometer 
to measure environmental and climate data from nine 
different angles, including cloud data. 

The U.S. National Oceanic and Atmospheric 
Administration (NOAA) is one of the largest organi-
zations specializing in the study of the environment. 
In 2010, a NOAA team led by physicist Graham Fein-
gold reported its findings that clouds form synchro-
nous patterns, meaning that individual clouds in a 
group respond to signals from other clouds, an effect 
also observed in chirping crickets or flashing fireflies. 

This research has implications for interpreting climate 
change data. There are also mathematical objects such 
as point clouds that are of interest in geometry, imag-
ing, and efficient distribution mining. Fractal clouds 
are appreciated for their mathematical properties and 
their artistic qualities.

Water in the Air
Air is composed primarily of nitrogen (78%) and 
oxygen (21%). Argon comprises nearly 1%, leaving 
little room for the remaining gasses, including carbon 
dioxide, ozone, and neon. This recitation, however, is 
for dry air. Water vapor, the invisible gas from which 
clouds are constructed, can account for 0% to 4% of 
any given parcel of air. In order to form a cloud, water 
vapor must change phase to either liquid water drop-
lets or ice crystals.  

The Transformation of Water into Clouds
The amount of water vapor that can be held in a parcel 
of air is determined primarily by the temperature of 
the air; warm air can hold more and cold air less. The 
amount of water vapor held in a parcel of air is identi-
fied by the mixing ratio: 

w
grams of water vapor in a parcel

kgs of dry air in the same parcel
= .

The amount of water vapor a parcel of air can hold 
is called the “saturation mixing ratio”:

w
grams of water vapor in a saturated parcel

kgs of dry air in the same parcel1 = .

Relative humidity is a measure of how much vapor a 
parcel of air is holding compared to how much it could 
possibly hold and is expressed algebraically as 

RH = 100
1

w

w
.

The dew point is the temperature at which a parcel of 
air becomes saturated. At this point, the saturation mix-
ing ratio and the actual mixing ratio are equal to one 
another, and the relative humidity is therefore 100%. A 
further drop in temperature should produce condensa-
tion as water changes phase from vapor to liquid cloud 
droplets or solid ice crystals—a cloud is born.  
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The Unstable Atmosphere
Clouds are often the result of lifting in the atmosphere. 
When a parcel of air rises, it generally cools, and this 
cooling produces condensation. The way in which the 
lifting is accomplished can lead to dramatic differences 
in the appearance of the cloud. When whole layers of air 
are gently lifted in an atmosphere that is stable, stratus 
clouds are formed, whereas the more dramatic vertical 
structure of a cumulus cloud comes from runaway con-
vection, a self-perpetuating process that can build clouds 
more than 12 kilometers (km) or 40,000 feet tall.  

What is a stable atmosphere? Temperatures generally 
decrease with height. The rate of change is, of course, vari-
able but it is referred to as the “lapse rate” (Γ) of the atmo-
sphere. A parcel of air, distinct from the air that surrounds 
it, may be forced to rise or descend and will cool or warm 
as a result. Pressure generally decreases with height, 
and a parcel that rises into a zone of lower pressure will 
expand, doing work on the environment and therefore 
cooling. The rate at which a parcel of air cools as a result 
of this sort of ascension is known as the “dry adiabatic 
lapse rate” (Γ

d
) which is approximately 10 degrees Celsius 

per km. When the dew point is reached in the parcel and 
condensation occurs, latent heat is released as a result of 
the phase change and the parcel is warmed. 

The result is a lower lapse rate, the saturated adia-
batic lapse rate (Γ

s
). The saturated lapse rate depends on 

the amount of moisture being condensed but 6 degrees 
Celsius per km may be used as a rough estimate.  

Now if Γ Γ< d , the atmosphere is stable because 
unsaturated air that is made to rise will cool at approxi-
mately 10 degrees Celsius per km and will find itself in 
air that is increasingly warmer than itself. The greater 
the difference Γ Γd − , the greater the force restoring 
the parcel to its previous altitude. The force may be 
quantified as 

g z

T
dΓ Γ−( )δ

where g is the gravitational constant, T is temperature, 
and δz is a small upward displacement of the parcel 
from its equilibrium level. Consider the implications of 
a temperature inversion in which temperature actually 
increases with height and Γ is a negative quantity. Now 
consider a situation in which the atmosphere cools 
strongly with height, that is Γ

 
> Γ

d
. Then, the restoring 

force becomes negative. Air that rises becomes warmer 

than its surroundings and so continues to rise. This 
leads to the runaway convection that builds the tower-
ing cumulonimbus clouds that can produce thunder-
storms, lightning, and hail.

Further Reading
Adam, John. Mathematics in Nature: Modeling Patterns  

in the Natural World. Princeton, NJ: Princeton  
University Press, 2003.

Feingold, Graham, et al. “Precipitation-Generated 
Oscillations in Open Cellular Cloud Fields.” Nature 
466, no. 12 (August 2010).

Wallace, John M., and Peter V. Hobbs. Atmospheric  
Science. Burlington, MA: Academic Press, 2006.  
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See Also: Energy; Forecasting; Hurricanes and  
Tornadoes; Wind and Wind Power.

Clubs and  
Honor Societies
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections.
Summary: Various clubs and honor societies 
add a social dimension to the enjoyment of doing 
mathematics and can provide networking and 
scholarship opportunities for talented students.

Mathematics clubs are often designed to provide a fun 
atmosphere outside of the classroom environment 
in order to promote mathematics and create a sense 
of community and camaraderie. Clubs exists for stu-
dents of all ages as well as adults. Many undergradu-
ate mathematics clubs are affiliated with organizations 
like the Mathematical Association of America, the 
Society for Industrial and Applied Mathematics, or the 
Association for Women in Mathematics. These clubs 
are open to all students, regardless of gender, race, 
color, religion, age, national origin, sexual orientation, 
or disability. However, other student extracurricular 
activities like semester or summer programs or camps 
may use a variety of selection criteria for membership. 

	 Clubs and Honor Societies	 207



Mathematical honor societies like Pi Mu Epsilon often 
consider both mathematical GPA and overall schol-
arship in their selection of candidates. Participants 
in mathematics clubs, programs, and honor societies 
seem to be attracted to the social aspects and related 
food opportunities; pizza or donuts are often a com-
ponent of such activities. Researchers have investigated 
the impact of participation on achievement. There is 
some evidence that participation may be correlated 
with an increase in retention, positive attitudes about 
mathematics, and higher grade point averages. 

Activities and Participation
People in mathematics clubs enjoy a wide range of activ-
ities together. Clubs may participate in mathematical 
contests, homecoming activities, mathematical murder 
mysteries, π-day celebrations, mathematics Jeopardy, or 
recreational mathematics. Some clubs bring in outside 
speakers, work on problems together, or write and per-
form mathematical plays or poetry. Other clubs per-
form service activities, like volunteering to be tutors. 
Faculty and teacher advisors run or help student mem-
bers organize clubs at all levels, from primary school 
through graduate school, although some clubs may be 
completely run by student members. Adults also orga-
nize mathematical clubs for themselves. For instance, 
in Los Angeles, California, Math-Club’s catchphrase is 
“Be there and be square.” Listed members are employed 
in a wide variety of careers and include professional 
Hollywood writers, actors, designers, journalists, and 
musicians. 

Clubs may be funded from schools and private dona-
tions or they may raise funds from activities like the 
sale of mathematical T-shirts with slogans like “Know 
your limits—don’t drink and derive,” “Math club is as 
sweet as π,” or “Nerds now, rich later.” In fact, some 
journalists have noticed that members of mathemat-
ics clubs may enjoy embracing their status as “nerds” 
or “intellectuals.” This may be connected to the same 
occurrence in popular culture, where nerds are some-
times hip. Clubs are often open to anyone who wishes 
to join. Specific clubs also exist for members with more 
specialized interests, like for prospective mathematics 
teachers or mathematical knitters.

Honor Societies
Members of honor societies are recognized for their 
successful pursuit of mathematical understanding. 

The most well-known mathematics honor society in 
the United States may be Pi Mu Epsilon. As of April 
2010, there were 343 chapters. The organization pro-
motes student scholarly activity through a student 
research journal as well as grants for contests, confer-
ences, and speakers. 

Another college society is Kappa Mu Epsilon, which 
listed 144 chapters and more than 75,000 members in 
35 states as of March 2009. The organization focuses 
on the power and beauty of mathematics and the con-
nections between mathematics and society through a 
journal and regional conventions. Mu Alpha Theta is 
an honor society for high schools and two-year colleges, 
which listed more than 75,000 members in more than 
1,500 schools as of October 2010. There are also math-
ematics honor societies for the homeschool community 
as well as for some states, schools, and colleges.

Other Programs
There are many other opportunities for students to 
engage in club-like or honor society–like activities. 
The Budapest Semesters in Mathematics (BSM) study-
abroad program holds courses in English and is seen 
by many as a prestigious program for students bound 
for graduate school. In the summer, students may par-
ticipate in a variety of mathematics camps, workshops, 
or research programs, such as the U.S. Space & Rocket 
Center’s mathematics camp, Clarkson University’s 
Roller Coaster Camp, or Research Experiences for 
Undergraduates. Some programs charge money for 
such activities, and others are funded by grants.

Further Reading  
Cohen, Moshe. “How to Start…and Maintain Your 

School’s Math Club.” Math Horizons 14 (September 
2006).

Mathematical Association of America. “MAA Student 
Webpage.” http://www.maa.org/students.

Tanton, James. Solve This: Math Activities for Students 
and Clubs. Washington, DC: The Mathematical 
Association of America, 2001.
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Cochlear Implants
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Cochlear implants use signal processing 
and algorithms to transmit electrical impulses to the 
brain to simulate hearing.

A cochlear implant is an electrical device that can 
help provide a representation of sound to a deaf or 
severely hard-of-hearing person. Unlike a hearing aid, 
a cochlear implant does not amplify sound; instead, 
it directly stimulates the auditory nerve, which sends 
these signals to the brain, where they can be inter-
preted as sound. Development of the cochlear implant 
relied in part on discoveries by French mathematician 
Joseph Fourier (1768–1830), whose studies in heat 
transfer led to the development of mathematics that 
can also be used to describe sound. Fourier analy-
sis allows mathematicians to describe complex wave 
patterns, including the pressure waves that produce 
sound, as the combination of a number of component 
waves. Cochlear implants also draw on the discovery 
by the Italian physicist Alessandro Volta (1745–1827) 
that electrical current could be used to stimulate the 
auditory system and produce 
the sensation of sound. Practical 
work on cochlear implants dates 
back to the mid-twentieth cen-
tury, and cochlear transplants 
were first approved by the U.S. 
Food and Drug Administration 
in 1984 for adults and in 1990 for 
children age 2 years and older (a 
limit since lowered to 12 months 
for one type of implant). 

Sound Waves and Hearing
In a person with normal hear-
ing, sound waves are collected 
by the outer (visible) ear (pinna) 
and sent down the ear canal to 
the eardrum (tympanic mem-
brane). Movement of the ear-
drum is amplified by three small 
bones in the middle ear, com-
monly referred to as the “ham-

mer,” the “anvil,” and the “stirrup,” before being passed 
on to the cochlea in the inner ear. In the cochlea, this 
information is converted into electrical impulses by 
the hair cells of the organ of corti, and these impulses 
are sent on to the brain, where they are interpreted 
as sound. The cochlea has a spiral shape (sometimes 
likened to that of a snail shell) and scientists have 
recently discovered that the shape itself is significant 
in the cochlea’s function. The spiral shape produces 
a “whispering gallery” effect as the energy of the fre-
quency waves accumulate against the outer edge of the 
chamber, increasing humans’ ability to detect low-fre-
quency sounds. 

Signal Processing
Most sound, including speech, is complex, meaning 
that it consists of multiple sound waves with different 
frequencies. In a person with normal hearing, the ear 
acts as a kind of Fourier analyzer, which decomposes 
sound into components. A cochlear implant attempts 
to mimic this activity, translating sound waves into 
electrical impulses and transmitting them directly to 
the brain. Two basic signal-processing strategies have 
been used in designing cochlear implants: filter bank 
strategies, which use Fast Fourier Transforms to divide 
sound into different frequency bands and represent 
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this information as an analog or pulsatile waveform; 
and feature-extraction strategies, which use algorithms 
to recognize and emphasize the spectral features of dif-
ferent speech sounds.

A cochlear implant somewhat simulates normal 
hearing rather than restoring it, and individuals who 
receive an implant require special training in order to 
learn to recognize the signals as sound. In addition, 
cochlear implants are not advisable for every type of 
hearing loss, and a number of factors should be consid-
ered by the individual and his or her physician before 
committing to an implant. These factors include cur-
rent age, age at which the person became deaf, how 
long the person has been deaf, the availability of sup-
port (including financing) to see him or her through 
the training period, and the health and structure of the 
individual’s cochlea. 

Although cochlear implants are growing in popular-
ity and being used for younger and younger children, 
they are also controversial for several reasons, some of 
which were discussed in the 2000 documentary film 
Sound and Fury. One is based on the cost of the opera-
tion and follow-up therapy necessary to help the recip-
ient learn to process the electrical impulses as sound. 
Another is that the surgery requires destroying what-
ever hearing may remain in the ear where the implant 
will be placed; for this reason, it is common to have the 
implant in one ear only. In addition, the surgery is done 
on children as young as 1 year in order to take advan-
tage of peak language learning periods, so parents must 
make this decision for their children. Finally, many 
members of the deaf community feel that they should 
not be regarded as being defective or handicapped, that 
they can function successfully in the world using sign 
language and lip reading. They fear that widespread 
adoption of cochlear implants will ultimately destroy 
a distinctive and flourishing deaf culture. 
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Cocktail Party  
Problem  
Category: Friendship, Romance, and Religion.
Fields of Study: Data Analysis and Probability; 
Measurement.
Summary: A metaphorical cocktail party is the setting 
for a source separation problem and other challenges.

The eponymous Cocktail Party Problem is a source 
separation problem in digital signal processing, 
wherein digital systems have difficulty separating out 
one signal among many—the metaphorical conversa-
tion in a noisy cocktail party, which is comparatively 
easily handled by the human brain. More broadly, dis-
tinguishing signal from noise is a data analysis chal-
lenge with many specific applications. The metaphor 
of the cocktail party also lends itself to a number of 
other problems in combinatorics, graph theory, prob-
ability, and functional analysis.

Conversations and Background Noise
With all the noise at a party, it can be difficult to focus 
on one conversation, although many people are able 
to do so. Telecommunication professor Colin Cherry 
conducted experiments in this area, and he is consid-
ered by some to be a pioneer in cognitive science. Many 
people can even recognize the sound of their name 
from across a noisy room. However, this is not as easy 
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when heard on a recording. One cocktail party prob-
lem arises from concerns about separating each indi-
vidual’s voice characteristics in a recording from the 
other voices and background noise. People in surveil-
lance and intelligence are inherently interested in such 
a problem, and scientists and engineers have worked 
on solutions since at least the 1950s. One common 
method is mathematical signal processing. Mathema-
ticians and engineers digitize a signal using a Fourier 
transform, named for Joseph Fourier. They process it 
using a variety of methods to remove noise and other 
extraneous information, and then reconstruct the sig-
nal using the inverse transform. 

While the process may result in an improved record-
ing of one person’s voice, early twenty-first-century 
technology and methods do not provide perfect sepa-
ration, so the recording still includes at least some dis-
tracting background noise. However, engineers have 
conjectured that the signal should be able to be recon-
structed without the noisy phase. Mathematicians Radu 
Balan, Peter Casazza, and Dan Edidin made progress on 
the problem in 2006, when they showed—using a neu-
ral net—that it is mathematically possible to retain the 
voice characteristics without the noise. Scientists con-
tinue to work on developing algorithms for practical 
use. Casazza made another fundamental mathematical 
discovery during his work on the cocktail party prob-
lem. He and his wife, Janet Tremain, also a mathemati-
cian, showed that the Kadison–Singer problem, named 
for mathematicians Richard Kadison and Isadore “Iz” 
Singer, is equivalent to other unsolved problems in 
areas of pure and applied mathematics and engineer-
ing, such as operator theory, harmonic analysis, and 
signal processing.  

 Mathematicians also investigate other party 
problems, like the probability that when people at a 
party are chosen to be partners for a card game—like 
bridge—no randomly chosen partners will contain 
spouses or members of the same family. The solutions 
require finding specific combinations or permutations 
of the guests. Under certain constraints, the maximal 
probability for some problems may be bounded at less 
than certainty as the number of people at the party 
grows. There are also connections between this ques-
tion and the card game War, as well as with a related 
set of problems that focus on orders and arrangements 
of guests around a single dinner table or in various 
groupings, with applications in areas like queuing 

theory and assignment problems. The classic dining 
philosophers problem is yet another variation that has 
applications in resource sharing and task allocation in 
computer science.

Another party problem asks how many people must 
be present at a party in order to ensure that there will 
be a group of three people who share the character-
istic of being acquaintances or strangers. There is no 
guarantee that three people will all know each other 
or will be strangers in parties of five or less people 
since counterexamples exist. The Java game HEXI, 
named so because the game is played on the vertices 
of a hexagon, is modeled on this question. The six 
vertices are connected by edges and each player takes 
a turn coloring an edge his or her color. One color 
represents acquaintances, and the other represents 
strangers. The goal of the game is to avoid making 
a triangle of the same color. Mathematicians model 
this question using graph theory, and show that in 
any group of at least six people, it is possible to find a 
group of three people satisfying one of the mutually 
exclusive relationships. Hence HEXI will always have 
a loser. Instead of people at a party or vertices of a 
polygon, one could explore other objects like nations 
embroiled in a conflict, sequences of randomly gen-
erated numbers, or stars. Mathematicians investi-
gate problems like these concerning the existence of 
regular patterns in sets of objects in Ramsey theory, 
named for Frank Ramsey.
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Coding and Encryption
Category: Communication and Computers.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations; Representations.
Summary: Mathematical algorithms are used in 
modern encryption and decryption.

Human beings have a propensity to preserve and share 
secret information. Cryptography, from the Greek 
kryptos (hidden) and graphein (to write), is the art and 
science of coding and decoding messages containing 
secret information. Encryption is the algorithmic pro-
cess that converts plain-text into cipher-text (looks like 
a collection of unintelligible symbols), while decryp-
tion is the reverse process that converts the cipher-text 
back to the original plain-text. A cipher algorithm 
and its associated key control both directions of the 
sequence, with the code’s security level directly related 
to the algorithm’s complexity. The two fundamental 
types of cryptography are symmetric (or secret keys) 
or asymmetric (or public-key), with multiple varia-
tions. Claude Shannon, an American mathematician 
and electronic engineer, is known as the father of 
information theory and cryptography. Some claim that 
his master’s thesis, which demonstrates that electrical 
applications of Boolean algebra can construct and 
resolve any logical numerical relationship, is the most 
important master’s thesis of all time.

Around 2000 b.c.e., Egyptian scribes included non-
standard hieroglyphs in carved inscriptions. During 
war campaigns, Julius Caesar sent coded information 
to Roman generals. Paul Revere’s signal from a Boston 
bell tower in 1775 is even a simple example of a coded 
message. Success of the Allies in both World Wars 
depended on their breaking of the German’s Enigma 
code. With the world-wide need for more sophisticated 
coding algorithms to transmit secure messages for mili-
tary forces, businesses, and governments, people began 
capitalizing on the combined powers of mathematics, 
computer technology, and engineering.       

The simplest examples of ciphers involve either 
transpositions or substitutions. In 450 b.c.e., the Spar-
tans used transposition ciphers when they wound a 
narrow belt spirally around a thick staff and wrote a 
plain-text (or message) along the length of the rod. 
Once unwound, the belt appeared to be a meaningless 
sequence of symbols. To decipher the cipher-text, the 

receiver wound the belt around a similar staff. Varia-
tions of transposition ciphers are the route cipher and 
the Cardan grill.

Julius Caesar used substitution ciphers, where each 
letter of the plain-text is replaced by some other letter 
or symbol, using a substitution dictionary. For exam-
ple, suppose:

Original Alphabet: 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Key Dictionary:     
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

where the key dictionary is made by starting with 
“code” letter K and then writing the alphabet as if on a 
loop. To encode the plain-text, “The World Is Round,” 
each letter is substituted by its companion letter, pro-
ducing the cipher-text “CRO FXAUN SB AXDWN.” 
To disguise word lengths and to add complexity, the 
cipher-text was sometimes blocked into fixed-length 
groups of letters such as “CROF XAUN SBAX DWN.” 
To decipher the cipher-text, one needed to know only 
the “code” letter. Though simple and initially confus-
ing, substitution ciphers now are easily broken using 
frequency patterns of letters and words. Variations of 
the substitution cipher involve the suppression of letter 
frequencies, syllabic substitutions, or polyalphabetic 
substitutions such as the Vigenère or Beaufort ciphers.

The Playfair Square cipher used by Great Britain in 
World War I is a substitution cipher, but its encryption 
of letter pairs in place of single letters is more powerful 
yet easy to use. The cipher-key is a 5 × 5 table initiated 
by a key word, such as “mathematics.”

M A T H E

I C S B D

F G K L N

O P Q R U

V W X Y Z

The table is built by moving left to right and from 
top to bottom (or other visual pattern as in a spiral) 
by first filling in the table’s cells with the keyword’s let-
ters—avoiding duplicate letters. Then, the subsequent 
cells are filled with the remaining letters of the alphabet, 
using the “I” to represent the “J” to reduce the alpha-
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bet to 25 letters (instead of 26). Both the coder and the 
decoder need to know the both the keyword and the 
conventions used to construct the common cipher-key.

The coder first breaks the plain-text into two-letter 
pairs and uses the cipher-key via a system of rules:

• If double letters occur in the plain-text, insert 
an X between them.

• Rewrite the plain-text as a sequence of two-
letter pairs, using an X as a final filler for last 
letter-pair.

• If the two letters lie in the same row, replace 
each letter by the letter to its right (for 
example, CS becomes SB). 

• If the two letters lie in the same column, 
replace each letter by the letter below it (TS 
becomes SK and PW becomes WA).

• If the two letters lie at corners of a rectangle 
embedded in the square, replace them by 
their counterpart in the same rectangle (TB 
becomes SH and CR becomes PB).

Using this cipher-key, the plain-text “The World Is 
Round” becomes first 

 TH  EW  OR  LD IS RO UN DX

which when encoded, becomes 

 HE  ZA  PU  BN CB UP ZU ZS.

The same cipher-key is used to decode this message, 
but the rules are interpreted in reverse. It is quite dif-
ficult to decode this cipher-text without access to both 
the keyword and the conventions to construct the com-
mon cipher-key, though very possible.

The problem with all substitution and transposi-
tion encryption systems is their dependence on shared 
secrecy between the coders and the intended decoders. 
To transmit plain-text via cipher-text and then decode 
it back to public-text successfully, both parties would 
have to know and use common systems, common key-
words, and common visual arrangements. In turn, pri-
vacy is required, since these systems are of no value if 
the user learns the key-word or is able to use frequency 
techniques of word/letter patterns to break the code. A 
more complicated and secure encryption process was 
needed, but it was not invented until the 1970s.

The revolutionary idea in encryption was the idea of 
a public key system, where the encryption key is known 
by everyone (that is, the public). However, the twist was 
that this knowledge was not useful in figuring out the 
decryption key, which was not made public. The RSA 
public-key cipher, invented in 1977 by Ronald Rivest, 
Adi Shamir, and Leonard Adleman (“RSA” stands for 
the names of the inventors), all of whom have bache-
lor’s degrees in mathematics and advanced degrees in 
computer science, is still used today thanks to powerful 
mathematics and powerful computer systems. 

In a RSA system, the “receiver” of the intended mes-
sage is the driver of the process. In lieu of the “sender,” 
the receiver chooses both the encryption key and the 
matching decryption key. In fact, the “receiver” can 
make the encryption key public in a directory so any 
“sender” can use it to send secure messages, which only 
the “receiver” knows how to decrypt. Again, the latter 
decryption process is not even known by the “sender.”

Because the problem is quite complex and uses both 
congruence relationships and modular arithmetic, only 
a sense of the process can be described as follows:

• As the “receiver,” start with the product n 
equal to two very large prime numbers  
p and q.

• Choose a number e relatively prime to  
(p −1)(q −1).

• The published encryption key is the pair (n,e).
• Change plain-text letters to equivalent 

number forms using a conversion such as 
A = 2, B = 3, C = 4, . . . , Z = 27.

• Using the published encryption key, the 
“sender” encrypts each number z using 
the formula m z ne≡ ( )mod , with the new 
number sequence being the cipher-text. 

• To decode the text, the “receiver” not only 
knows both e and the factors of n but also the 
large primes p and q as prime factors of n.

• Then, the decryption key d is private but 
can be computed by the “receiver” using an 
inverse relationship ed p q≡ −( ) −( )1 1 1mod , 
which allows the decoding of the encrypted 
number into a set of numbers that can be 
converted back into the plain-text.

The RSA public key system works well, but the 
required primes p and q have to be very large and often 
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involve more than 300 digits. If they are not large, pow-
erful computers can determine the decryption key d 
from the given encryption key (n,e) by factoring the 
number n. This decryption is possible because of the 
fact that, while computers can easily multiply large 
numbers, it is much more difficult to factor large num-
bers on a computer.

Regardless of its type, a cryptographic system must 
meet multiple characteristics. First, it must reflect the 
user’s abilities and physical context, avoiding extreme 
complexity and extraneous physical apparatus. Second, 
it must include some form of error checking, so that 
small errors in composition or transmission do not 
render the message into meaningless gibberish. Third, 
it must ensure that the decoder of the cipher-text will 
produce a single, meaningful plain-text. There are many 
mathematicians working for government agencies like 
the National Security Agency (NSA), as well as for pri-
vate companies that are developing improved security 
for storage and transmission of digital information 
using these principles. In fact, the NSA is the largest 
employer of mathematicians in the United States.
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Cold War
Category: Government, Politics, and History.
Fields of Study: All.
Summary: The Cold War had a broad influence on 
mathematics, including education, coding theory, 
game theory, and many applied fields.

The Cold War was a 45-year-long period of bitter com-
petition between two large groups of nations. It lasted 
from the end of World War II in 1945 to the collapse of 
the Soviet Union in 1991. The two groups never came 
to direct combat—hence the term “cold”—but it was 
a war in every other way, fought with deadly ferocity 
in the political, economic, ideological, and technologi-
cal arenas. It was also a time of unprecedented invest-
ment in new mathematical ideas, driven in part by 
the desire of each side to dominate the other through 
nuclear intimidation, economic strength, espionage, 
and political control. The Cold War had a great impact 
on mathematics education, on the study of codes and 
code-breaking algorithms, and the development of 
new fields such as game theory. More generally, the 
term “cold war” can be applied to any fight-to-the-
death competition between nations in which the two 
sides avoid direct military combat.

In the original Cold War (1945–1991), the two 
groups of nations divided along ideological lines. One 
side, the Soviet bloc, adhered to the communist politi-
cal and economic philosophy of Karl Marx and Vladi-
mir Lenin. The other side, the Western bloc, adhered to 
the older free-market capitalist philosophy originated 
by Adam Smith.

The two sides of the Cold War were essentially forced 
to avoid military conflict by the recent invention of 
the atomic bomb, because neither side wanted to risk 
combat that might give rise to an unstoppable military 
escalation. The inevitable result of such an escalation 
would have been worldwide nuclear war, with most 
large cities destroyed in an instant by nuclear war-
heads, followed by massive clouds of radioactive ash 
circling the globe and causing the death of hundreds of 
millions of innocent people.

Mutually Assured Destruction (MAD)
Prior to the development of the atomic bomb, there 
were no weapons capable of destroying the population 
of an entire city in a single blow. Wars were fought as 
purely military conflicts, without risking the life of civ-
ilization itself. This nature of conflict changed forever 
with the advent of nuclear weapons.

Prior to the Cold War, the dominant mathematical 
model of warfare was a simple predator–prey model 
invented by Frederick Lanchester during World War 
I. Perhaps not surprisingly, given the slow, grinding 
progress of World War I, the Lanchester model places 
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primary emphasis on the rates of attrition of the mili-
tary forces. The side that survives this deadly attrition 
process wins the battle. In a nuclear-armed battle, how-
ever, it is survival rather than attrition that is the vital 
concern, and the Lanchester equations are irrelevant.

In the earliest years of the Cold War, only the United 
States possessed the theory and technology to construct 
an atomic bomb. The presence of the bomb in the arse-
nal of one side but not the other made possible a strat-
egy known as “nuclear blackmail.” The owners of the 
atomic bomb could threaten to use the bomb if their 
adversaries did not comply with their demands. For 
example, newly declassified documents have revealed 
that in 1961, Great Britain threatened China with 
nuclear retaliation if China were to attempt a military 
invasion of the British Crown Colony of Hong Kong. 
The United States backed up this threat, and China 
refrained from invading Hong Kong.

Clearly, the ownership of the secret of the atomic 
bomb by just one nation in 1945 had destabilized 
the military balance of power among the victors of 
World War II. Great Britain and France allied them-
selves with the United States and were given access to 
atomic secrets. The Soviet Union chose to develop its 
own versions of the atomic bomb, or to steal the secrets 
through espionage. Thus arose the great division of the 
Cold War, between the respective allies of the Soviet 
Union—known as the Warsaw Pact—on one side, and 
the United States—through the North Atlantic Treaty 
Organization (NATO)—on the other.

The Soviet Union tested its first nuclear weapon 
in 1949, ending its four-year period of vulnerability 
to nuclear blackmail. The military doctrine that took 
its place was known as mutually assured destruction 
(MAD). As long as each side in the Cold War could 
assure the other that it would be utterly destroyed in 
a nuclear exchange, then—so it was hoped—military 
conflict could be prevented. MAD did indeed prevent 
the two nuclear powers from directly attacking each 
other, but it had two unfortunate consequences: the 
people of both sides lived in terror of nuclear annihila-
tion, and both superpowers engaged in so-called proxy 
wars, using much smaller nations as their proxies in 
localized military conflicts.

Albert Wohlstetter was an influential and contro-
versial strategist who was a major force behind efforts 
to deter nuclear war and avoid nuclear proliferation. 
He worked as a consultant to the RAND Corporation’s 

mathematics division starting in 1951. Initially, he col-
laborated on problems related to modeling logistics, 
but then he was asked to turn his skills to a problem 
posed by the U.S. Air Force regarding the assignment 
and location of bases for Strategic Air Command 
(SAC). On the surface, it was a common logistics 
problem, but ultimately SAC’s method of basing its 
medium-range manned bombers, which were one of 
the country’s major deterrents against a Soviet inva-
sion of western Europe, had far greater implications. 
This work drew him into global strategy. He and his 
wife. Roberta Wohlstetter, a historian and intelligence 
expert, received the Presidential Medal of Freedom in 
1985. Wohlstetter was also reputedly one of the inspi-
rations for the film Dr. Strangelove.

The Arms Race as a Nash Equilibrium
From its very outset, neither of the Cold War’s two 
superpowers—the United States and the Soviet 
Union—believed that they could stop developing new 
and ever more powerful nuclear weapons. The MAD 
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doctrine applied only as long as the forces of each 
side could pose a credible nuclear threat to the other. 
Therefore, each side worked to create new weapons as 
fast as possible. Throughout the 1950s and well into the 
1960s, both nations tested ever more powerful nuclear 
weapons. This became known as the “arms race.”

In the mathematical theory of games, the military 
arms race brought about by the MAD doctrine is an 
example of a Nash equilibrium, named for mathemati-
cian John Nash. In the decades-long arms race between 
the two Cold War competitors, each side could be seen 
as playing a simple noncooperative game. Each player in 
this game has a choice: to construct new and more ter-
rible nuclear weapons, or not. If either player chose not 
to develop further weapons, while the other did, then 
the first player would face the very real risk of eventu-
ally facing nuclear blackmail. Each player understood 
the other’s dilemma all too well, and so both continued 
to develop new weapons as fast as possible.

The persistence of this behavior comes from the fact 
that neither player can benefit by changing strategy 
unilaterally. When this occurs in a game, then it is in a 
form of equilibrium whose existence was first proved 
in the general case by Nash in 1950.

Game theory itself was a child of the Cold War, 
having been created in 1944 by John von Neumann, a 
mathematician who also played a key role in the devel-
opment of the first atomic bomb, and Oskar Morgen-
stern, an economist. Throughout the Cold War, the 
theory of games was studied and elaborated, both by 
the military and by economists, as a means for better 
understanding the fundamental nature of competition, 
cooperation, negotiation, and war.

The fundamental irrationality of the nuclear arms 
race, in which each side became able to kill every single 
person on the planet many times over, was apparent 
to almost everyone. This realization did little to stop 
the arms race, because of the power of the Nash equi-
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librium to trap the players of the game into modes of 
behavior that, individually, they deplored.

In some critical respects, an arms race resembles 
a famous game known as the Chicken: two cars race 
toward each other down a narrow road, with the driver 
who first swerves away to avoid a crash being the loser. 
The key to winning a game of chicken is to act in such 
a way that your opponent comes to believe that you are 
so irrational as to be willing to die before swerving. In 
other words, the “rational” solution to the game is to be 
utterly and convincingly irrational. The same principle 
holds in a nuclear arms race.

The game of Chicken and other apparent paradoxes 
of rationality within the theory of games led to the 
development in the 1970s of meta-game analysis. This 
and other mathematical forms of strategic analysis 
played an important role in the eventual winding down 
of the arms race with a series of strategic arms agree-
ments between the major powers of the Cold War.

Political Competition in the Cold War
The bitter competition of the Cold War was at least 
as much political and economic as military, and new 
mathematical ideas contributed mightily to this com-
petition. In the economic arena, the Cold War was 
fought between the proponents of multiparty, free-
market economies on the Western side, and the pro-
ponents of single-party, command economies on the 
Soviet side.

Both sides claimed to be democratic in the Cold 
War, but they used different meanings for the word. 
In the West, the word “democracy” retained its historic 
meaning, a political system in which leaders are cho-
sen in free elections. In the Soviet system, “democracy” 
meant a “dictatorship of the proletariat” in which all 
political power rested in a hierarchy of labor councils, 
known as soviets, and the supreme soviet could dictate 
any aspect of public affairs. Soon after the Russian Rev-
olution, however, the Communist Party seized control 
of the soviets, and after that, no election in the Soviet 
system was free.

The intense political competition between these two 
systems of government led to great interest in the West 
in how to conduct elections in the fairest possible way. A 
large body of mathematical theory of elections emerged, 
much of it devoted to the study of election systems that 
come the closest to meeting a measure of fairness known 
as the Condorcet criterion. In an election, the Condorcet 

winner is the candidate who can beat any of the other 
candidates in a two-person run-off election. Many 
forms of preference balloting, in which voters rank the 
candidates, come quite close to the Condorcet criterion, 
but none is without problems. Arrow’s Paradox, dis-
covered and proved by Kenneth Arrow in 1950, states 
that when voters have three or more choices, then no 
voting system can convert the ranked preferences of 
the voters into a community-wide ranking that meets 
a particular beneficial set of criteria. This Cold War 
mathematical discovery is the starting point of the 
modern theory of social choice, the foundation of the 
mathematical theory of political science.

Economic Competition in the Cold War
There are many forms of socialism known in eco-
nomic theory, but the form practiced by the Soviet bloc 
of nations was particularly severe. In its purest form, 
Soviet socialism entailed state ownership of all means 
of economic production: all industrial plants, all com-
mercial businesses, all farms, and all financial insti-
tutions. Soviet socialism was a command economy, 
meaning that the state had to tell every plant, business, 
and institution how much to produce, and at what 
price they should sell their goods and services.

In order to come up with the enormous number of 
production and price commands that had to be sent 
out every month and year, the Soviet system of govern-
ment employed a vast bureaucracy. The system used by 
these bureaucrats was developed in the 1920s, during 
the early years of the Soviet Union, without the benefit 
of mathematics. Known as the “method of balances,” 
this system attempted to function so that the total out-
put of each kind of goods would match the quantity 
that its users were supposed to receive.

In practice, the Soviet “method of balances” func-
tioned very much like the U.S. War Production Board 
during World War II, and by its counterparts in the 
war economies of Great Britain and Germany. The 
first production decisions were made with respect to 
the highest priority items (ships, tanks, airplanes) and 
those were balanced with the available amounts of stra-
tegic resources (iron, coal, electricity), and so on down 
to the lowest-priority items. The command system was 
thought to be crude and error-prone, and its mistakes 
and imbalances were widely noticed.

In the West, the response of mathematicians to 
these failures of the wartime command economy was 
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the development of the field of engineering known 
as operations research. The mathematical technique 
known as “linear programming”—originally a little-
known Russian discovery—was successfully developed 
by George Dantzig and John von Neumann in 1947 
to optimize production quantities under linear con-
straints on supplies. The Soviet economy was very slow 
to adopt these ideas, preferring for ideological reasons 
to stick with the inefficient and error-prone method of 
balances until very late in the Cold War.

After World War II, the nations of the West ended 
their wartime command economic systems and 
reverted back to using the free market to make price 
and production decisions. The Soviet Union and its 
allies, however, continued to rely on a large army of 
bureaucrats to make all economic decisions without 
the aid of good operational theory.

Wassily Leontief, a Russian economist working in 
the United States, solved one of the fundamental prob-
lems of a command economy in 1949 with his method 
of input–output analysis. This method required the 
creation of a very large matrix showing the contribu-
tion of each component or sector of the economy to 
every other component. When properly constructed, 
the required inputs of raw materials to the economy 
can be calculated from the desired outputs by matrix 
inversion. The Soviet Union failed to quickly see the 
significance of Leontief ’s achievement, and did not 
incorporate his ideas into its planning system for 
many decades.

It is one of the great ironies of the Cold War that 
the mathematical theories that were required to make 
a command economy function properly were per-
fected in the West, where they are now universally 
employed within industrial corporations—some 
now larger than the entire economy of the old Soviet 
Union—to run their operations in the most efficient 
way possible. In the end, the economy of the Soviet 
Union and its satellites was not able to keep pace with 
the West, and in 1991, it suffered catastrophic politi-
cal and economic collapse.

Further Reading
Arrow, Kenneth. Social Choice and Individual Values. 2nd 

ed. New Haven, CT: Yale University Press, 1963.
Erickson, Paul. “The Politics of Game Theory: 

Mathematics and Cold War Culture.” Ph.D. 
dissertation, University of Wisconsin-Madison, 2006.

Howard, Nigel. Paradoxes of Rationality. Cambridge, MA: 
MIT Press, 1971.

Johnson, Thomas. “American Cryptography During the 
Cold War.” National Security Agency. http://www.gwu 
.edu/~nsarchiv/NSAEBB/NSAEBB260.

Karp, Alexander. “The Cold War in the Soviet School: 
A Case Study of Mathematics Education.” European 
Education 38, no. 4 (2006).

Kort, Michael. The Columbia Guide to the Cold War. New 
York: Columbia University Press, 2001.

Leontief, Wassily. “The Decline and Rise of Soviet 
Economic Science,” Foreign Affairs 38 (1960).

Loren Cobb

See Also: Atomic Bomb (Manhattan Project); Game 
Theory; Predator–Prey Models; World War II.

Combinations
See Permutations and Combinations

Comic Strips
Category: Arts, Music, and Entertainment.
Fields of Study: Communications; Connections.
Summary: Mathematics plays a role in comic strip 
formats and is sometimes even the subject of comics.

The comic strip is a combination of word and picture 
in a narrative structure, unique from forms of com-
munication based solely on the one or the other. The 
standard comic strip format presents its creator with 
two unique mathematical puzzles: to tell a story that fits 
into the pattern unconsciously expected by the reader, 
and to organize the illustrations of a Sunday strip into a 
format of exacting geometric and narrative demands.

Origins
The term “comic strip” entered the English language 
in 1922, via a poem by Carl Sandburg, describing the 
single-strip, black-and-white cartoons published in 
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daily newspapers. Scholars disagree on the origins of 
the comic strip. Daily strips first appeared circa 1903, 
as part of the racing tips section of the newspaper. This 
was some 20 years after the appearance of the first full- 
or half-page color comics in supplemental sections, a 
reaction to protests against publishing on Sundays.

Color cartoons were a continuation of the Euro-
pean tradition of sociopolitically inspired prints that 
date back to the widely circulated wood block broad-
sheets of fifteenth-century Germany. Some scholars go 
further, tracing ancestry as far back as La Tapisserie 
de La Reine Mathilde, narrative scrolls of China and 
Japan, Trajan’s Column, Bronze Age logographs, or 
even ancient petroglyphs and cave paintings. Regard-
less of the exact origins, the current format presents 
the cartoonist with two challenges of special interest 
to the mathematician.

Story and Art
The original supplements carried full- or half-page 
features with detailed drawings and developed stories. 
Older strips would not be legible if published at cur-
rent smaller sizes. As a result, the expansive serial strip 
has been replaced almost entirely by the gag strip.

Theorists suggest that humor is based on pattern rec-
ognition. If the audience recognizes a pattern, it begins 
to anticipate what will come next. A deviation from the 
pattern, if done correctly, is perceived as humorous. In 
gag strips, between two-thirds and three-quarters of the 
space is spent establishing the pattern. The deviation 
happens next, sometimes followed by a character reac-
tion to the deviation, sympathetically reinforcing the 
audience reaction, or providing additional deviation. 

Not only have comic strips become smaller, all 
color comics must fit into an extremely limited tem-
plate. Syndicates require a minimum of six panels, but 
some newspapers elect not to publish one or both of 
the first panels. Character poses and scene layouts in 
the two-dimensional plane are designed to lead the 
reader’s gaze from one point of interest to another, 
driving the story forward. Deciding on the orientation 
of visual images and their relationships can be difficult 
when the artist does not know where one panel will be 
in relation to the next.

Mathematics in Comic Strips
Mathematics is used not only to decide the layout and 
flow of comic strips but can be used within comic 

strips as an element of humor. Many comics reveal 
or satirize widely held societal attitudes and beliefs 
about mathematics. Bill Amend, creator of the widely 
circulated Foxtrot comic strip, has a degree in phys-
ics, and his strip frequently features mathematically 
based humor. The same is true of Randall Munroe’s 
Web comic xkcd, which is subtitled “A webcomic of 
romance, sarcasm, math, and language.” Comic strips 
may be used in classrooms as motivators for serious 
discussions about mathematics concepts and analysis 
of peoples’ attitudes about mathematics. There are 
also entire comic books and graphic novels intended 
to teach mathematics. The work Logicomix dramatizes 
the life story of philosopher and mathematician Ber-
trand Russell, who spent his life trying to establish an 
indisputable logical foundation for mathematics. In 
the course of the novel, he encounters many math-
ematicians of note, including Gottlob Frege, David 
Hilbert, Kurt Gödel, and Ludwig Wittgenstein.
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Communication  
in Society
Category: School and Society.
Fields of Study: Communication; Connections.
Summary: Communication helps mathematicians 
and others be informed of past and current research 
and to formulate and organize their own ideas. 
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Communication is fundamental to mathematics as a 
discipline, the mathematics community, mathematics 
education, and society as a whole, since communica-
tion is an essential part of everyday life and any social 
interaction. Effective communication is inherent in 
validating mathematics. Using a common language 
and a set of notions and drawing upon a shared body 
of knowledge, mathematicians communicate with each 
other—both orally and in writing—about their math-
ematical ideas, perceptions, or methods. 

For example, mathematicians exchange ideas with 
their colleagues, write technical reports, publish origi-
nal research papers and expository articles in profes-
sional journals, or give oral presentations. Some associ-
ate good mathematics communication with beautiful 
expository lectures or clear writing, while others focus 
on the quality of the interactions between people, such 
as those working in a group on mathematics. A peer 
review process is frequently part of mathematics com-
munication and dissemination, ensuring some degree 
of consensus on what constitutes appropriate or valid 
mathematics. In this way, the standards of mathemat-
ics are socially developed. In addition to interacting 
with their colleagues, mathematicians need to com-
municate with the rest of the society using a language 
and terminology that are more familiar to the general 
public. For instance, mathematicians explain to the 
public how the discipline of mathematics contributes 
to society or demonstrate the various applications of 
mathematics in fields such as engineering, medicine, 
and communication technologies. 

The role of communication in the education of 
mathematics is similar to the vital role communication 
plays in the discipline of mathematics. Drawing upon 
mathematical language and notation, teachers and stu-
dents talk about mathematics; share, explain, and jus-
tify mathematical ideas; or analyze, discuss, and inter-
pret mathematical concepts. Communication about 
mathematics and communication using mathematical 
language do not occur only in the mathematics com-
munity or in mathematics classrooms. Regardless of 
one’s profession, wise decision making in personal lives 
and participation in civic and democratic life increas-
ingly demand mathematical communication skills. For 
example, people need to communicate with mortgage 
companies when buying a house and interpret various 
mathematical concepts (such as percentage and rate) 
presented in the media. Thus, communication with 

mathematics and about mathematics is an essential 
part of daily life. 

Communication Media
In the twenty-first century, there are a wide variety of 
electronic and print venues for communicating mathe-
matics, and the evolution of electronic media and data-
bases has vastly changed the way people access math-
ematics. Historically, mathematicians communicated 
by letters, during visits, or by reading each other’s pub-
lished articles or books once such means became avail-
able. Some mathematical concepts were developed in 
parallel by mathematicians working in different areas 
of the world, such as German Karl Friedrich Gauss and 
American Robert Adrain, who both made advances 
in the theory of the Normal distribution in the early 
nineteenth century. Some mathematicians were not 
aware of each other’s progress because they did not 
have the venues of communication that are available 
in the twenty-first century. In an effort to increase the 
accessibility of mathematics research articles, reviews 
began appearing in print journals like Zentralblatt 
für Mathematik, which originated in 1931, and Math-
ematical Reviews, which originated in 1940. Since the 
1980s, electronic versions of these reviews have allowed 
researchers to search for publications on a specific 
topic. In 2010, MathSciNet, the electronic version of 
Mathematical Reviews, listed more than 2 million items 
and more than 1 million links to original articles. In 
2011, the database Zentralblatt MATH listed more 
than 3 million items from approximately 3500 journals 
and 1100 serials. Both contain work dating back to the 
early 1800s. There are also thousands of mathematics 
journals that are not listed in these collective databases, 
such as most mathematics education research. 

Some mathematicians publish open access drafts of 
their papers on their personal Web pages before offi-
cial publication in peer-reviewed and other journals, 
or in other online settings such as the ArXiv.org e-print 
archive. Co-authors from around the world can work 
together using e-mail or other Web-based collaborative 
tools. Mathematics students, teachers, and researchers 
often discuss mathematics ideas and share resources on 
blogs, through online chats, or using other forums. For 
instance, what began in 1992 as the Geometry Forum 
was extended in 1996 to become the Math Forum. There 
are many additional resources for sharing and teaching 
mathematics content, both in print and in electronic 
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media. Some electronic examples include the National 
Council of Teachers of Mathematics Illuminations Web 
site; Wolfram MathWorld, which was developed by Eric 
Weisstein; and Math Fun Facts, developed by Francis 
Su. Social and historical context is also often addressed 
in sites such as The MacTutor History of Mathemat-
ics archive, developed by John O’Connor and Edmund 
Robertson, or Mathematicians of the African Diaspora, 
created by Scott Williams. 

One important question related to online commu-
nication is how to represent and display mathematical 
notation, which is an important part of mathematical 
validity and understanding. Some Web pages contain 
fixed images for each equation or graph. Others use 
Java applets for dynamic display. The Mathematical 
Markup Language (MathML) is one way to encode 
mathematics. TeX was created by Donald Knuth in 

order to typeset scientific and mathematical research. 
TeX-based software such as LaTeX has become the 
standard in printing mathematics. Another issue is the 
validation of online resources, which may be created or 
published without peer review. On one level, this issue 
is an extension of the existing issue of peer review for 
print media, as mathematics journals already employ 
varying degrees of rigor when reviewing and publish-
ing papers. At the same time, there is in increasing trend 
of creating printed works from electronic sources or 
using electronic sources as references, which creates an 
added difficulty in ensuring the collective accuracy of 
the body of mathematics communication.

With so many options available, the specific nature 
of mathematics communication depends in large part 
on the purpose and intended audience. There are some 
mathematics publications and communications aimed 
at a general audience, others aimed at students, and yet 
others intended for researchers. Mathematicians, edu-
cators, and other communications specialists work to 
match the form and venue of the mathematics com-
munication to the need. Some careers that are regu-
larly involved in communicating mathematics include 
technical writers or publication editors. The Society for 
Technical Communication and the Council of Science 
Editors are two professional associations that address 
this need. In 2007, Ivars Peterson became the director of 
Publications and Communications at the Mathematical 
Association of America, which, like other professional 
associations, publishes items for both the specialist and 
the nonspecialist. He previously wrote MathTrek for 
Science News. In 1991, he received a Joint Policy Board 
for Mathematics (JPBM) Communications Award for 
his “exceptional ability and sustained effort in commu-
nicating mathematics to a general audience.” He also 
served as East Tennessee State University’s Basler Chair 
of Excellence for the Integration of the Arts, Rhetoric, 
and Science in 2008 and taught a course there called 
Communicating Mathematics. In a talk on the topic of 
communication in mathematics, he noted: 

The importance of communicating mathematics 
clearly and effectively is evident in the many ways 
in which mathematicians must write, whether 
to produce technical reports, expository articles, 
book reviews, essays, referee’s reports, grant pro-
posals, research papers, evaluations, or slides for 
oral presentations.

National Council of 
Teachers of Mathematics 

T he	National	Council	of	Teachers	of	Mathe-
matics	(NCTM)	emphasizes	clear	and	coher-

ent	communication	of	mathematical	ideas	and	
thinking	as	a	skill	that	students	need	to	learn	
from	pre-kindergarten	through	grade	12.	Given	
the	essential	 role	of	communication	 in	 teach-
ing	 and	 learning	 of	 mathematics,	 NCTM	 has	
set	forth	process	standards	for	communication	
for	primary	and	secondary	mathematics	curri-
cula.	The	Principles	and	Standards	for	School	
Mathematics	 (2000)	 states	 that	 instructional	
programs	from	pre-kindergarten	through	grade	
12	should	enable	all	students	to

•	Organize	and	consolidate	mathematical	
thinking	through	communication

•	Communicate	their	mathematical	
thinking	coherently	and	clearly	to	peers,	
teachers,	and	others

•	Analyze	and	evaluate	the	mathematical	
thinking	and	strategies	of	others

•	Use	the	language	of	mathematics	to	
express	mathematical	ideas	precisely
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Communication in Schools
Communication, both oral and written, is an essential 
part of mathematics education. The act of communi-
cation allows students to systematize and incorporate 
their mathematics thinking and understanding, both 
for learning mathematical theory and mathematical 
problem solving. For example, when students com-
municate their own mathematical thinking and under-
standing, they are required to rationalize and organize 
their reasoning and also formulate puzzling or com-
plex questions well enough to present them as clearly 
as possible to a reader. As a result, the process guides 
students toward greater insights to their own thinking 
and learning. Focused reflection, which is conceptu-
ally intertwined with communication, helps students 
to increase the benefits of communicating their ideas 
with peers, teachers, and others. Written or oral reflec-
tions in which ideas are shared among peers, teachers, 
and others provide students multiple perspectives that 
sharpen ideas explored. The American Society of Math-
ematics (ASM), which is also known as the American 
Society for the Communication of Mathematics, spon-
sors problem-solving contests and the U.S. National 
Collegiate Mathematics Championship.

Proofs
One topic that illustrates the importance and the 
diverse nature of mathematics communication is the 
notion of proof. Researchers have proposed a wide 
variety of roles for proof in mathematics, such as 
establishing the truth of a statement, communicat-
ing mathematical knowledge, opening the way for 
further understandings and discoveries in mathemat-
ics, providing new techniques for doing mathematics, 
and organizing statements into systems of axioms and 
theorems. Throughout history, proofs and communi-
cation via proof have been incorporated in many dif-
ferent ways in mathematics education in the United 
States. The National Council of Teachers of Math-
ematics’ (NCTM) 2000 Principles and Standards for 
School Mathematics emphasized the role of proof in 
mathematics learning for all students and helped to 
formalize its curricular importance and place in pre-
kindergarten though high school education. Further, 
as proof became more systematized in K–12 educa-
tion, some mathematics education researchers began 
to more deeply explore students’ understanding of the 
definition or nature of proof, the role of proof as a 

mode of communication, and peer acceptance of the 
validity of a given proof, as well as how proof is taught 
in classrooms. 

As the concept of proof came under investigation, 
an important issue was the conceptualization and the 
roles of proof in school mathematics. The NCTM 
defined proof in Principles and Standards for School 
Mathematics as “arguments consisting of logically rig-
orous deductions of conclusions from hypotheses.” 
One element in the definition of proof is the accept-
ability of an argument as proof, which is referred to 
as “logically rigorous.” An important question that 
NCTM’s definition entails is who decides if a proof is 
logically rigorous enough to be accepted. To concep-
tualize the definition and identify the roles of proof in 
school mathematics, mathematics education research-
ers have referred to the qualifications and function of 
proof in the discipline of mathematics and investigated 
how it is implemented in mathematics classrooms. 

Research has demonstrated the social nature of 
argumentation and justification in the classroom and 
beyond, and communication and validation by peers 
plays an important role in proof within and out-
side the classroom. This social dimension of proof 
is grounded in sociocultural theories of mathemati-
cal learning and is believed to reflect the process of 
becoming a mathematician. Yu Manin argued that 
within mathematics community, “A proof becomes a 
proof after the social act of ‘accepting it as a proof.’” 
Erna Yackel and Paul Cobb concluded that acceptable 
justifications in mathematics education are interac-
tively constituted by individual teachers and students 
in each classroom, where the teacher is the represen-
tative of the mathematical community. Mathematical 
justifications and argumentations are regulated by the 
general expectations and the regulations of the class-
room community. 

Thus, they are a part of the classroom norms and, 
more specifically, the sociomathematical norms, 
which are the extension of general classroom social 
norms to specifically focus on the normative aspects 
of mathematical discussions as students participate in 
mathematical activities. Yackel and Cobb argued that: 
“Normative understandings of what counts as math-
ematically different, mathematically sophisticated, 
mathematically efficient, and mathematically elegant 
in a classroom are sociomathematical norms.…The 
understanding that students are expected to explain 
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their solutions and their ways of thinking is a social 
norm, whereas the understanding of what counts as an 
acceptable mathematical explanation is a sociomath-
ematical norm.” This idea plays a role in mathemat-
ics educator Andreas Stylianides’s conceptualization 
of proof. He proposed four aspects that are required 
to consider an argument a proof: foundation, formu-
lation, representation, and social dimension. He pre-
sented an example in which an elementary school stu-
dent constructed a mathematical argument that was 
founded on definitions of mathematical constructs, 
formulated using deductive reasoning from these defi-
nitions, and then represented verbally. Regarding the 
social dimension of the proof, although the student’s 
argumentation was logically rigorous and would have 
been accepted as a proof in the wider mathematical 
community, it generated counterarguments among her 
classroom peers and her argument was not accepted as 
a proof by the classroom community.

Indeed, the conceptualization of mathematics, in 
particular the social dimension that is appropriate for 
school mathematics, requires more research to develop. 
Mathematical discourse is an important factor in the 
development of shared understanding of mathemati-
cally valid justifications. However, students at various 
levels, particularly younger elementary school stu-
dents, may have different levels of understand regard-
ing the rules and norms of mathematical discourse, and 
understanding is not necessarily shared by all. Thus, as 
was the case in Stylianides’ study, a valid mathemati-
cal argument was not accepted as valid by all students. 
In such cases, the teacher, acting as an authoritative 
representative of the mathematical community, could 
intervene and explain why the argument is indeed 
valid by broader standards. However, in some ways this 
action would negate the social dimension aspect that 
is used to evaluate mathematical acceptability, at least 
with respect to the classroom environment. Thus, the 
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subtleties in what constitutes a valid argument within a 
mathematics classrooms and the relation to a teacher’s 
role as the communicator of other mathematical norms 
as they acculturate students in the processes of prov-
ing need to be explored. It is important to note that 
teachers need to know when, how, and how much to 
intervene so as to not play an authoritarian role, thereby 
creating a learning environment in which students are 
forced into authoritarian schemes and communication 
is essentially unidirectional, from teacher to student.

Mathematical Applications in  
Communication Technologies
In the increasingly digital world of the twenty-first 
century, the safe communication of information has 
become a major issue for discussion and research in 
mathematics and science, in large part because of theft 
and fraud often perpetrated using new technologies. 
Mathematics plays an important role in making com-
munication as safe as possible. Cryptology is a tech-
nique used to ensure that messages or data are trans-
mitted safely to the receiver. Dating to the substitution 
ciphers used in ancient Rome and other civilizations, 
this field has always drawn heavily from mathematics. 
Research in mathematics and other disciplines, such as 
computer sciences and engineering, has resulted in an 
increasingly sophisticated array of coding techniques 
and technologies, as well as code-breaking methods. 
Some of the most common and known applications 
of cryptography include encryption of credit card 
numbers or passwords for electronic commerce and 
encryption of e-mail messages for secure communi-
cation. Confidentiality, authenticity, and integrity in 
electronic commerce or communication have become 
an apparent and sensitive issue for people who engage 
in online transactions such as buying or selling items 
online, online banking, and online communications, as 
well as for applications like medical records. If proper 
action is not taken for data transmission, information 
sent over an open network can be stolen by hackers. 
Such an action can reveal secret information or mes-
sages containing personal information, like a credit 
card number, a password, or online banking informa-
tion, facilitating crimes like identity theft. A hacker can 
use digital data to clone a person’s identity and use a 
victim’s resources for the hacker’s own good. Even 
worse, this information could be a national secret, and 
it may cause more serious problems. For that reason, 

the National Security Agency (NSA) uses its crypto-
logic heritage in the midst of challenging times to pro-
tect national security systems, and the NSA is one of 
the leading employers of mathematicians in the United 
States at the start of the twenty-first century. 

Along with digital security, mathematics also plays 
a fundamental role in both the hardware and software 
that make the increasingly wireless, globally connected 
world possible. The Advances in Mathematics of Com-
munications journal publishes research articles related 
to mathematics in communication technologies. Math-
ematicians and mathematical methods contribute to 
many aspects, including the Internet’s computer server 
backbone and communications protocols; vast cell 
phone networks; and smartphones that act as mobile 
platforms for an array of communications methods, 
such as voice, text, photo, e-mail, and Internet. Music, 
movies, dance, art, theater, and many other methods 
people use to convey ideas to one another involve math-
ematics as part of the creative endeavor. Humans can 
communicate with neighbors next door, with people on 
the opposite side of the world, with satellites orbiting 
the planet, or even with probes that have been sent into 
the far reaches of the solar system thanks to mathemat-
ics. Some would in fact argue that mathematics is itself 
a universal language or method of communication. 
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Comparison Shopping
Category: Business, Economics, and Marketing.
Fields of Study: Geometry; Measurement; Number 
and Operations.
Summary: Both simple and complex algorithms are 
used to compare consumer prices and contextualize 
mathematics instruction.

The globalization of the marketplace has resulted in a 
plethora of choices for any given item at both the local 
store and via the Internet. People comparison shop for 
both very expensive items like a car or a plane ticket 
and fairly inexpensive purchases like a box of cereal. 
Comparison shopping is perhaps one of the most 
widely used applied mathematics lessons, both in K–12 
and lower-level college courses. 

Mathematics is at the forefront of comparison shop-
ping through unit pricing, which makes use of division 
and fractions. Geometric methods can be used to com-
pare volume or weight. Notions from pre-algebra and 
algebra model financial decisions such as purchasing 
a cell phone plan or taking out a car loan. Students 
explore parameters in order to make balanced and 
informed choices. Mathematics educators not only use 
these examples in classrooms, but they also study their 
effectiveness. Researchers and online shopping agents 
take advantage of mathematical methods to extract, 
compare, and mine huge amounts of data. Compari-
son techniques also include data envelopment analysis 
and multiple regression.

Unit Pricing
One method of comparing differently priced items 
in different sized containers is through unit pricing. 

Dividing the price by the quantity or amount of items, 
such as how many ounces, will yield a cost per unit 
term that can be used for comparison purposes. For 
example, an 11.5 oz box of cereal might cost $4.49, 
while a 24 oz box of cereal costs $4.99. The unit price of 
the first box is $4.49/11.5 ≈ $0.39 per ounce, while the 
second box is $4.99/24≈ $0.21 per ounce. Some items 
are already priced by their weight, like meats, fruits, 
vegetables, or coffee, and others are priced accord-
ing to their volume, that is, by the container size. For 
those items that are not priced by weight or volume, 
unit pricing is listed on the shelf tag in many stores. 
However, the unit price is not the only important fea-
ture in comparison shopping. Personal preferences 
and other important factors must also be taken into 
consideration, like whether one will be able to use up 
a larger quantity before the expiration date. Unit pric-
ing examples proliferate in lessons on fractions and in 
classes like pre-algebra and developmental mathemat-
ics. Students also compare scenarios in which sales 
occur or other discounts are applied.

Debt and Interest
Another common classroom scenario is found in com-
paring house and car purchases in financial mathemat-
ics segments. For instance, students can use the loan 
payment formula to calculate the monthly payment R 
in terms of the monthly interest rate r, the loan amount 
P, and the number of months, n

R
rP

r
n

=
− +( )−
1 1

.

Then they can calculate the total interest by mul-
tiplying the monthly payment and the number of 
months and subtracting the loan amount. One com-
parison scenario is determining how the monthly pay-
ment and total interest change as the price of the car or 
house changes or the interest rate fluctuates. Another is 
determining whether one should take out a smaller loan 
versus paying loan points to buy down the interest rate. 
Students also compare car prices to income level using 
the debt-to-income ratio. The debt-to-income ratio is 
the debt divided by the income, which is the percentage 
of debt. Banks use the debt-to-income ratio in making 
decisions about mortgage or car loans. From the Great 
Depression in the 1930s until the deregulation of bank-
ing restrictions in the 1970s, an upper limit of 25% was 
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typical. However, that level rose after deregulation and 
with the increase in consumer credit card debt. In the 
twenty-first century, it is common for an upper limit to 
range between 33% and 36%. Given a monthly car pay-
ment, house payment, and other monthly debts, stu-
dents can add up the total debt and solve for the neces-
sary income level in order to stay below 36%. They can 
also compare the way that debt and the needed income 
change as the interest rates vary.

Contextualizing Instruction
Mathematics educators use purchasing scenarios in 
the classroom and study and debate their effectiveness. 
Some studies have found that the contextualization 
of mathematics using examples from shopping helps 
students. Terezinha Nunes, Analucia Schliemann, and 
David Carraher compared the mathematical abilities 
of children who were selling items in Brazilian street 
markets to questions in school. They found that the 
closer to the real-life situation, the more successful the 
student. Other studies have also found that there can 
be a disconnect between performance in the supermar-
ket and performance in school. Some researchers assert 
that the contextualization may disguise the mathemat-
ics and be problematic in elucidating the underlying 
mathematical processes. 

Mathematical Models for  
Comparison Shopping
Businesses and researchers employ a variety of mathe-
matical techniques in order to compare large shopping 
data sets. Online shopping agents use mathematical 
methods in situations such as a Web search for airplane 
ticket prices or hotel rooms. Historically, dating back to 
at least the nineteenth century, travel agents sold vaca-
tions to consumers on behalf of suppliers. Travel agen-
cies grew in popularity with the increase in commercial 
aviation after World War I. At the end of the twentieth 
century, the Internet vastly changed the way in which 
consumers compared and purchased vacation travel. 
Airlines, hotels, and other vacation companies offered 
online services directly to consumers, bypassing travel 
agents. In response, some travel agencies created travel 
Web sites that would compare options. Their computer 
programs extracted comparative price data from Web 
sites in order to build comparison shopping engines. 
Researchers continue to develop advanced comparison 
shopping techniques including methods in data min-

ing, data envelopment analysis, and multiple regres-
sion. They create sophisticated algorithms to analyze 
data and find patterns. In data envelopment analysis, 
networks can be viewed as decision-making units, and 
efficient configurations are selected. In multiple regres-
sion, several variables are combined in an attempt to 
create a meaningful predictor or measure. Mathemati-
cal methods are also important in predicting shopping 
preferences and consumer behavior.

Further Reading
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Competitions  
and Contests
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections; 
Problem Solving.
Summary: Mathematics competitions and contests 
help encourage students to practice and study 
mathematics and develop problem-solving abilities.

Well-designed mathematics contests provide excellent 
vehicles for students to hone their skills, expand their 
knowledge, develop their ability to focus, practice cre-
ative problem solving, and join a community of peers 
who love mathematical challenges. Mathematicians 
and educators organize competitions, help students 
prepare for them, participate on committees to grade 
the results, and assess contests’ long-term impact. Some 
mathematics competitors are known as “mathletes.”

MATHCOUNTS and USAMTS
There are a number of well-known mathematics com-
petitions in the United States for middle school and high 
school students. MATHCOUNTS, a mathematics com-
petition for sixth, seventh, and eighth graders, empha-
sizes problems from geometry, combinatorics, and alge-
bra. The competition includes written and oral rounds 
with both individual and team competitions, and stu-
dents advance from school, to chapter, to state, and to 
national levels. The USA Mathematical Talent Search 
(USAMTS) is an open mathematics competition for 
U.S. middle and high school students. USAMTS consists 
of two rounds of six problems per round and operates 

on the honor system, since participants are given a full 
month to work on the problems. The goal of USAMTS 
is to help students develop their proof writing ability, 
improve their technical writing abilities, and mature 
mathematically while having fun. The organizers strive 
to foster insight, ingenuity, creativity, and perseverance. 
The American Mathematics Competitions (AMCs) pro-
vide three levels of competitions. Students who perform 
well on the AMC 10 or AMC 12 exams, for students in 
grades 10 or 12 and below, respectively, are invited to 
participate in the American Invitational Mathemat-
ics Examination (AIME). Approximately the top 270 
performers on the AIME and the AMC 12 advance to 
the United States of America Mathematical Olympiad 
(USAMO), which is the final round of the AMC series 
of contests. The top 230 AIME and AMC 10 only par-
ticipants take part in the USA Junior Mathematical 
Olympiad (USAJMO). The top 30–40 performers on 
the USAMO, along with a dozen or so others from the 
USAJMO, attend the Mathematical Olympiad Summer 
Program, a training program from which the six mem-
bers of the U.S. International Mathematical Olympiad 
(IMO) team are selected. Students who do well on the 
AIME typically receive scholarship offers from presti-
gious colleges and universities.

IMO
The International Mathematical Olympiad (IMO) 
is an annual two-day, six-problem, mathematical 
competition for pre-collegiate students that began in 
1959. Approximately 100 countries send teams of up 
to six students. The problems are extremely difficult 
and involve ideas that are not usually encountered in 
high schools or colleges. Many IMO participants have 
become world-class research mathematicians, such 
as Noam Elkies, who eventually became the youngest 
full professor in Harvard University’s history at the 
time of his promotion. Filmmaker George Csicsery 
documented the 2006 U.S. IMO team in Slovenia. The 
documentary also included segments on families and 
schooling, girls, and the Olympiad, as well as the prob-
lems and their solutions. Melanie Wood, who was the 
first female to represent the United States in the IMO, 
noted: “Math competitions are great. They introduce 
all these new ideas and in particular give students who 
are at school the first chance to see how you can be cre-
ative in solving a problem.” She went on to obtain her 
Ph.D. in mathematics in 2009.
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William Lowell Putnam  
Mathematical Competition
College students also participate in mathematical 
contests. The William Lowell Putnam Mathematical 
Competition is an annual mathematics competition 
for mathematically talented undergraduate college 
and university students in the United States and Can-
ada administered by the Mathematical Association of 
America. The competition, in which both individuals 
and teams compete, consists of morning and afternoon 
three-hour exams, each with six problems. Although 
the problems are extraordinarily difficult and require 
highly creative thinking, they can typically be solved 
with only knowledge of college-level mathematics. 
The problems are so challenging that a median score 
for the 120-point exam is often 0 or 1. Of the more 
than 120,000 times the exams have been taken since the 
competition’s inception in 1938, there have been only 
three perfect scores as of 2010. 

In recent years, about 4000 students and 400 teams 
have participated. The top five teams and individual 
scorers receive thousands of dollars in prize money. 
Many top five scorers, named as Putnam Fellows, have 
become distinguished researchers in mathematics and 
other fields, including Fields Medalists (the highest 
award in mathematics for people younger than 40) 
John Milnor, David Mumford, and Daniel Quillen, and 
Nobel laureates Richard Feynman and Kenneth G. Wil-
son. Several Putnam Fellows have been elected to the 
National Academy of Science. In 2010, Putman Fellow 
David Mumford received the National Medal of Sci-
ence, bestowed by President Barack Obama. 

MCM
Unlike other competitions, which place a premium on 
speed and individual performance, the Mathematical 
Contest in Modeling (MCM) contest rewards teamwork, 
research skills, programming skills, organizing ability, 
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writing ability, and stamina. The MCM is a 96-hour 
mathematics competition held annually since 1985 by 
the Consortium for Mathematics and Its Applications 
and sponsored by the Society of Industrial and Applied 
Mathematicians, the National Security Agency, and the 
Institute for Operations Research and the Management 
Sciences. Approximately 1000 international teams of 
three undergraduates each produce original mathemati-
cal papers in response to one of two open-ended model-
ing problems. The students may use any references and 
the Internet but are not permitted to discuss their prob-
lem with anyone not on their team. Approximately 1% 
to 2% of the teams are designated Outstanding Winners. 
The skills required in the modeling contest are those 
typically most valued by employers. Many students who 
do not excel in problem-solving contests excel in the 
modeling competition.

Value and Benefits
The value of mathematics competitions is that they 
pique interest in mathematics and encourage students 
to pursue intellectual activities. The benefits of partici-
pating in mathematics competitions are very much like 
the benefits derived from athletic contests or becom-
ing accomplished in playing a musical instrument. The 
intention is that those engaged in such activities develop 
a sense of accomplishment and a positive self-image. On 
the other hand, some object to mathematics being pre-
sented as a competition. While some students may thrive 
in a competitive environment, others may be discour-
aged. For some, the competitive environment highlights 
mutual interests, which can help create lasting bonds 
and friendships. 

Like sports, participants in mathematics contests 
may learn to set goals and work toward them, be highly 
motivated, be able to focus, have self-discipline, per-
form under pressure, cope with success and failure, 
and have a competitive spirit. As in music, participants 
in mathematics contests must learn self-discipline, 
develop the ability to concentrate, pay attention to 
detail, and practice many hours. Perhaps the impor-
tant lesson learned from participating in mathematics 
contests is that success is the fruit of effort.

Further Reading 
Csicsery, George. Hard Problems: The Road to the 
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Mathematical Association of America, 2008.

Flener, Frederick O. Mathematics Contests: A Guide for 
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Rusczyk, Richard. “Pros and Cons of Math 
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See Also: Careers; Clubs and Honor Societies; 
Professional Associations; Succeeding in Mathematics.

Composing
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Number and Operations; 
Representations.
Summary: Mathematics and music developed in 
tandem and composition is firmly grounded in 
mathematics.

Throughout the history of Western music, compos-
ers have utilized mathematical techniques in creating 
musical works. From Pythagoras, Plato, and Ptolemy 
in ancient Greece to the sixth-century music theorist 
Boethius, music was thought to be a corollary of arith-
metic. With the widespread development of modern 
standardized musical notation thought to have begun 
in the Renaissance, compositional craft became more 
highly developed. Compositions intertwined with math-
ematical patterns were particularly highly regarded. 

The eighteenth-century composer and theorist Jean-
Philippe Rameau was unequivocal in his views on the 
connection between mathematics and music in his 1722 
Treatise on Harmony, writing, “Music is a science which 
should have definite rules; these rules should be drawn 
from an evident principle; and this principle cannot 
really be known to us without the aid of mathemat-
ics.” Fugal composition techniques in the high Baroque 
period were highly mathematical. The classical and 
romantic eras, characterized by a movement away from 
polyphonic music, produced less obvious mathemati-
cally oriented composition technique. In the twentieth 
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century, however, mathematical formalisms were funda-
mental as replacements for the tonal structures of the 
romantic era. There are even subgenres of rock music 
(started in the 1980s) called “math rock” and “math-
core” (after metalcore, a fusion of heavy metal and hard-
core punk), which uses complex and atypical rhythmic 
structures, angular melodies, unusual time signatures, 
and changing meters. Metalcore, in particular, also uses 
harmonic dissonance. In another example, Robert Sch-
neider composed a mathematical score for a play in 
2009. He said: 

I wrote a composition called ‘Reverie in Prime Time 
Signatures,’ that is obviously written in prime time 
signatures, that is, only prime numbers of beats per 
measure. Also the piece has kind of a sophisticated 
middle section that encodes some ancient Greek 
mathematics related to prime numbers in musical 
form, that I am proud of.

The Renaissance Canon
During the Renaissance, mathematical devices were 
developed to a considerable degree by Northern Euro-
pean composers. In the canons of Johannes Ockeghem, 
a single melodic voice provides the basis by which one 
or more additional voices are composed according to 
various mathematical transformations of the original: 
mirror reflection of musical intervals (inversion), time 
translation, mirror reflection in time (retrograde), or 
a non-unit time scaling (mensuration canon). Com-
posers of this period understood the word “canon” to 
mean a rule by which secondary voices could be derived 
from a given melody, in contrast to our modern usage 
of the word, which means a simple duplication with 
later onset time, as in the nursery rhyme round “Row, 
Row, Row Your Boat.”

Mathematical Transformations in Composition
In addition to standard musical notation, music can be 
represented mathematically as a sequence of points in 
an algebraic structure. A musical composition can be 
represented as a sequence of points from the module 
M over the cyclic groups of integers Z

p

M Z Z Z Zp p p p= × × ×1 2 3 4,

with the coordinates representing (respectively) onset 
time, pitch, duration, and loudness. For example, the 12 

230	 Composing

Bach: The Canon Master

J ohann	 Sebastian	 Bach	 was	 a	 master	 of	
canonic	 composition.	 Bach’s	 canons	 chal-

lenged	 performers	 to	 solve	 puzzles	 he	 set	
before	 them.	 Examples	 abound	 in	 A Musical 
Offering	(BWV	1079),	written	in	1747.	The	first	
of	 two	Canon a 2	 (canon	for	 two	voices)	 from	
Musical Offering	appears	to	have	two	different	
clef	symbols:	one	at	the	beginning	of	the	first	
measure,	and	one	at	 the	end	of	 the	 last.	The	
first	singer	had	to	read	from	beginning	to	end,	
and	the	second	had	to	start	at	the	same	time	
and	read	in	the	opposite	direction.	In	this	small	
piece,	Bach	provides	an	example	of	retrograde	
or	cancrizan	(crab)	canon.	The	puzzle	in	the	sec-
ond	Canon a 2 is	even	more	cleverly	concealed: 
a	single	line	with	two	clef	signs	in	the	first	mea-
sure,	one	upside	down.	The	cryptic	instruction	
Quaerendo invenietis	(“Seek	and	ye	shall	find”)	
is	inscribed	at	the	top	of	the	manuscript.	

The	second,	inverted	clef	sign	indicates	that	
the	second	voice	of	the	canon	is	to	proceed	in	
inversion,	 and	 the	 performer	 is	 left	 to	 “seek”	
the	 appropriate	 time	 translation	 at	 which	 the	
second	 voice	 should	 begin.	 Another	 example	
of	Bach’s	masterful	canonic	treatment	is	BWV	
1074: Kanon zu vier Stimmen,	 which	with	 its	
numerous	 key	 signatures,	 clefs,	 and	 repeat	
signs can	be	played	from	any	viewing	angle.



notes of the chromatic scale would be represented in the 
second coordinate by Z12. In this schematic, if a point 
(x

1
, x

2
, x

3
, x

4
) in a musical motif were repeated later at 

a different volume level, the repetition would differ in 
the first and last coordinate and would be represented as 
( x x x x x+ +α β, , , ,1 2 3 4 ), where α is the time shift and 
β is the amount of the volume difference. 

Inversion takes the form (x
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, 2α − x

2
, x

3
, x

4
). Men-

suration, as in the canons of Ockegham, is written  
(x

1
, x

2
, α ⋅ x

3
, x

4
). Transformations of this form were 

used extensively in the Renaissance and Baroque eras 
and played a fundamental role in post-tonal era of the 
twentieth century.

Mathematical Structure in Atonal Music
At the turn of the twentieth century, music theorists 
and composers looked for new organizing principles 
on which atonal music could be structured. Ground-
breaking composer Arnold Schoenberg turned to the 
idea of “serialism,” in which a given permutation of the 
12 chromatic pitches constitutes the basis for a com-
position. The new organizing principle called for the 
12 pitches of this “tone row” to be used—singly, or as 
chords, at the discretion of the composer, always in the 
order specified by the row. When the notes of the row 
have been used, the process repeats from the beginning 
of the row. 

Composers like Anton Webern, Pierre Boulez, and 
Karlheinz Stockhausen consciously used geometric 
transformations of onset time, pitch, duration, and 
loudness as mechanisms for applying the tone row in 
compositions. In the latter half of the twentieth century, 
set theoretic methods on “pitch class sets” dominated 
the theoretical discussion. 

Predicated on the notions of octave equivalence 
and the equally tempered scale, Howard Hanson and 
Allen Forte developed mathematical analysis tools 
that brought a sense of theoretical cohesion to seem-
ingly intractable modern compositions. Another math-
ematical approach to composition without tonality 
is known as aleatoric music, or chance music. This 
technique encompasses a wide range of spontaneous 
influences in both composition and performance. One 
notable exploration of aleatoric music can be seen in 
the stochastic compositions of Iannis Xenakis from the 
1950s. Xenakis’s stochastic composition technique, in 
which musical scores are produced by following vari-
ous probability models, was realized in the orchestral 

works Metastasis and Pithoprakta, which were subse-
quently performed as ballet music in a work by George 
Ballanchine.

Further Reading
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See Also: Geometry of Music; Harmonics; Scales; 
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Computer-Generated 
Imagery (CGI)
See Animation and CGI

Congressional  
Representation
Category: Government, Politics, and History.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Though the Constitution dictates 
proportional representation by state, there are multiple 
methods for attempting to achieve fair apportionment.

Apportionment is the process of distributing a fixed 
resource on a proportional basis, particularly associ-
ated with government. The legislative branch of the 
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U.S. federal government—and most U.S. states—is 
bicameral, meaning that two separate bodies deliber-
ate on laws. Reflecting a great political compromise of 
American government, these bodies are formulated on 
two distinct representative principles. The U.S. Senate 
has equal representation from each state to ensure that 
states have equal voices. For the House of Representa-
tives, the U.S. Constitution requires that “Representa-
tives…shall be apportioned among the several States 
which may be included within this Union, according to 
their respective Numbers.” 

This requirement ensures that larger states have a 
voice that fairly represents their greater constituencies. 
The primary mathematical challenge in most systems 
of representation is that typically not all representa-
tives will represent the same number of citizens, and 
calculations rarely result in integers. Deciding a fair 
system of rounding for representative numbers for 
fractional constituencies has proven surprisingly chal-
lenging, and Congressional apportionment has gener-
ated substantial controversy throughout the history of 
the United States. 

Numerous serious apportionment methods have 
been proposed. Most have names associated with the 
people who proposed them, such as third U.S. president 
Thomas Jefferson, and are generally classified as “divi-
sor methods” or “quota methods.” Many systems have 
been used in the United States, and mathematicians 
have long investigated fair apportionment. In 1948, at 
the request of the National Academy of Sciences, math-
ematicians Luther Eisenhart, Marston Morse, and John 
von Neumann recommended the Huntington–Hill 
method, proposed by mathematician Edward Hun-
tington and statistician Joseph Hill. Apportionment is 
a prominent aspect of social choice theory, extensively 
studied by mathematicians such as Peyton Young and 
Michel Balinski. There have also been innovative links 
between apportionment and other areas of mathemat-
ics, like just-in-time sequencing and scheduling prob-
lems for manufacturing.

Apportionment Methods
A state’s proportion of the total population of a coun-
try can be found by dividing the state’s population by 
the total population. The state’s fair share of the total 
seats in the nation’s legislature, called its “standard 
quota,” is the product of this proportion and the total 
seats. Alternatively, the standard quota can be found by 

using the standard divisor, which measures the average 
number of people per seat on a national basis, and is 
found by dividing the total population by the number 
of available seats.  

For example, suppose that a small country consists 
of four states (A, B, C, D), with populations given as

State Population
A 791
B 892
C 6987
D 530

The total population of this country is 9200, and 
State A has 791/9200 or approximately 8.6% of the 
population. If there are 25 seats in the country’s legis-
lature, then State A’s standard quota is

791

9200
25 2 149( )≈ . .

seats. State A’s population therefore warrants slightly 
more than two seats but less than three. The standard 
divisor in this case is 9200/25 = 368 people per seat, 
and State A’s standard quota can also be represented 
as 791/368. Similarly, the standard quotas for States 
B, C, and D are calculated as 2.424, 18.986, and 1.440, 
respectively.

The requirement that each state be assigned an 
integer number of representatives forces a country to 
impose a systematic method for rounding standard 
quotas to whole numbers. It is reasonable to expect 
that any reasonable method will assign each state either 
its lower quota or its upper quota—its standard quota 
rounded down or up, respectively. This requirement 
is known as the Quota Rule. One method that arises 
naturally is to round up those standard quotas that are 
closest to the next number of seats. Specifically, one 
may choose to initially apportion each state its lower 
quota, which will always yield leftover seats. These sur-
plus seats are distributed to the states whose standard 
quotas have the largest fractional part. This method 
is known as Hamilton’s Method, Vinton’s Method, 
or the Method of Largest Remainders, named for the 
first Secretary of the Treasury Alexander Hamilton and 
Congressman Samuel Vinton. In the above example, 
after assigning each state its lower quota, only 23 of the 
25 seats have been apportioned. The first surplus seat is 
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assigned to State C, whose standard quota is very close 
to 19, while the other surplus seat is assigned to State 
D (See Table 1).

Some apportionment methods solve the problem 
of apportionment by using a specific rounding rule 
and modifying the standard divisor if necessary. In Jef-
ferson’s Method, for example, all quotas are rounded 
down to the integer part of the quota. As with Hamil-
ton’s Method, this yields unassigned seats in an initial 
apportionment. Rather than distributing those surplus 
seats as Hamilton’s Method does, Jefferson’s Method 
instead modifies the divisor by making it smaller. This 
method makes it easier for the states to obtain a seat 
and allows the states’ quotas to grow larger. In a suc-
cessful Jefferson apportionment, a modified divisor is 
found so that when the modified quotas are rounded 
down, the total number of seats apportioned is the 
desired number.  

Adams’ Method, named for sixth U.S. president 
John Quincy Adams, is similar to Jefferson’s Method. 
Rather than rounding down, however, quotas are 
instead rounded up to the next largest integer. In this 
case, the initial attempt at apportionment results in 
too many seats being distributed and a modified divi-
sor must be chosen that is larger than the standard 
divisor, reflecting a need to make it more difficult to 
obtain a seat.  

Other divisor methods differ from the methods of 
Jefferson and Adams only in how the rounding is con-
ducted. In Webster’s Method, named for Senator and 
Secretary of State Daniel Webster, for example, all quo-
tas are rounded conventionally—to the nearest whole 
number. If a state’s quota has a fractional part that is 
0.5 or greater, the quota is rounded up. Otherwise, it 
is rounded down. In other words, one can think of 
the tipping point for rounding in Webster’s method as 

being the arithmetic mean of a state’s lower and upper 
quota. In the Method of Huntington–Hill, a state’s cut-
off for rounding is the geometric mean of the state’s 
lower and upper quotas. For this method, if a state’s 
lower quota is L and its upper quota is U, then the cut-
off for rounding is 

LU .

If the quota is less than the cutoff, then it is rounded 
down, otherwise it is rounded up. In Dean’s Method, 
named for mathematician and astronomer James 
Dean, the cutoff for rounding is the harmonic mean of 
the lower and upper quota, expressed algebraically as 

2

1 1

L U
+

.

Applying any of these methods requires searching 
for a modified divisor so that when the modified quotas 
are calculated and rounded according to the given rule, 
the number of seats distributed is the correct total.

Applying these divisor methods to the sample situa-
tion given above results in the apportionments seen in 
Table 2. A number of important aspects of apportion-
ment can be seen in the table. First, the apportionment 
method makes a difference; different methods can yield 
different apportionments. Jefferson’s Method has a sub-
stantial bias toward larger states. Adams’s Method, on the 
other hand, is biased toward smaller states and can cause 
lower quota violations. Quota rule violations can occur 
with Webster’s Method as well, though they are relatively 
rare. Webster’s Method demonstrates little bias overall. 
The HuntingtonHill Method and, to a greater degree, 
Dean’s Method, have biases toward smaller states.

Table 1: Distribution of Congressional Seats

State Population Standard Quota Lower Quota Apportionment

A 791 2.149 2 2

B 892 2.424 2 2

C 6987 18.986 18 19

D 530 1.440 1 2
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History of U.S. Apportionment
The U.S. Constitution mandates a decennial census. 
Congressional representatives are reapportioned every 
10 years based on the results. Though the Constitution 
provided for an initial distribution of U.S. Congressio-
nal representatives, it specified no particular apportion-
ing method. Following Constitutional ratification in 
1787 and the census of 1790, the first apportionment 
was carried out. In 1792, Congress passed a bill insti-
tuting Hamilton’s Method, which George Washington 
vetoed. Congress then approved Jefferson’s Method, 
which was used through 1832 when a Quota Rule viola-
tion was observed. New York State had a standard quota 
of 38.59 seats, so New York should have received either 
38 or 39 seats. However, Jefferson’s Method assigned 
New York 40 seats. John Quincy Adams and Daniel 
Webster immediately put forth separate bills calling for 
the adoption of the apportionment methods that carry 
their names. Though both bills failed, this was the last 
apportionment in which Jefferson’s Method was used. 

Webster’s Method was used for the apportionment 
of 1842, but in 1852, Hamilton’s Method was adopted 
as “permanent” by Congress. In 1872, Hamilton’s 
Method was not applied correctly. In 1882, additional 
difficulties arose with the method itself. While consid-
ering different sizes for the House of Representatives, 
observers noted that with a House size of 299, Alabama 
would receive eight seats under Hamilton’s Method, but 
with a House size of 300, Alabama would receive only 
seven seats. This flaw, whereby increasing the number 
of seats to apportion can, in and of itself, cause a state 
to lose a seat, became known as the “Alabama paradox.” 
Congress sidestepped this issue in 1882 by increasing 
the size of the House to 325 seats, but the flaw led to 
their discarding Hamilton’s Method in 1901. Webster’s 

Method was used in the apportionments of 1901, 1911, 
and 1931, though no apportionment was completed 
after the 1920 census. In 1941, Congress adopted the 
Huntington–Hill Method as “permanent,” with the 
House size of 435 seats, which is the method still in use 
at the start of the twenty-first century, though contro-
versy continues.

Impossibility
Many mathematicians and others have asked whether 
there is an “ideal” apportionment method that solves 
the apportionment problem in a reasonable way and 
is free of flaws such as the Alabama paradox and quota 
rule violations. In the 1970s, Balinski and Young proved 
that no such method exists. Every apportionment 
method will either potentially violate the quota rule or 
cause either the Alabama paradox or another problem-
atic paradox called the “Population paradox,” whereby 
one state whose population is growing at a faster rate 
can lose a seat to a state with a slower growth rate. The 
search for perfection in apportionment is an inherently 
impossible task, but mathematicians continue to study 
the problems and paradoxes and seek new approaches 
to reduce bias.

Further Reading 
American Mathematical Society. “Apportionment:  

Introduction.” http://www.ams.org/samplings/ 
feature-column/fcarc-apportion1.

American Mathematical Society. “Apportionment II: 
Apportionment Systems.” http://www.ams.org/
samplings/feature-column/fcarc-apportionii1.

Balinski, Michel, and Peyton Young. Fair Representation: 
Meeting the Ideal of One Man, One Vote. 2nd ed. 
Washington, DC: Brookings Institution Press, 2001.

Table 2. Dean’s Method.

State
Standard 

Quota
Jefferson Adams Webster

Huntington–
Hill

Dean

A 2.149 2 2 2 2 2
B 2.424 2 3 2 2 3
C 18.986 20 18 20 19 18
D 1.440 1 2 1 2 2

Valid Range  
of Divisors

333–349 396–411 357–358 365–374 396–411
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Frederick, Brian. Congressional Representation &  
Constituents: The Case for Increasing the U.S. House of 
Representatives. New York: Routledge, 2009.

Stephen Szydlik
Matt Kretchmar

See Also: Census; Gerrymandering; Government and 
State Legislation; Voting Methods.

Conic Sections
Category: History and Development of Curricular 
Concepts.
Fields of Study:  Algebra; Communication; 
Connections; Geometry.
Summary: Conic sections have many interesting 
mathematical properties and real-world applications.

Conic sections, or simply “conics,” are the simplest 
plane curves other than straight lines. Students in the 
twenty-first century begin to study these curves in 
middle school. In coordinate geometry, they can be 
expressed as polynomials of degree 2 in two variables 
while straight lines are polynomials of degree 1 in two 
variables. Conic sections can further be divided into 
three types: ellipse, parabola, and hyperbola. Conics 
were named and systematically studied by Apollo-
nius of Perga (262–190 b.c.e.). At that 
time, the study of conics was not merely 
to explore the intrinsic beauty of the 
curves but to develop useful tools neces-
sary for applications to the solution of 
geometric problems. Today, the theory 
of conics has numerous applications in 
our daily lives including the designs of 
many machines, optical tools, telecom-
munication devices, and even the tracks 
of roller coasters.

Representations of Conics  
and Their Applications 
One can generate a two-sheet circular 
cone by fixing a straight line as the axis of 
the cone in the space first. Choose a fixed 

point on it as the vertex of the cone. Rotating another 
straight line through the vertex that makes a fixed 
angle with the axis, we obtain the desired cone as the 
trace of the rotating line. Any straight line on the trace 
is called a “generating line” of the cone. Conic sections 
are obtained by intersecting the two-sheet cone with 
planes not passing through its vertex as shown in Fig-
ures 1A–C.

The three types of conic sections are generated 
according to the positions of the intersection. 

Ellipse
When the intersecting plane cuts only one sheet of the 
cone and the intersection is a closed curve, an ellipse 
is created. A circle is obtained when the intersecting 
plane is perpendicular to the axis of the cone; an ellipse 
is obtained when the intersecting plane is not perpen-
dicular to the axis of the cone. A circle, as such, can 
be considered as a particular case of an ellipse (Figure 
1A). As illustrated in Figure 2, an ellipse is the collec-
tion of points in a plane that the sum of distances from 
two fixed points F1  and F2 , the foci, to every point in 
the collection is constant. 

On the coordinate plane, if the foci are located on 
the x-axis at the points ( , )−c 0  and ( , )c 0  and the con-
stant distance between F1  and F2  is 2a, the equation of 
an ellipse can be derived as

x

a

y

b

2

2

2

2
1+ =  with b a c a2 2 2 2= − < .
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Parabola
When the intersecting plane cuts only one sheet of the 
cone and is parallel to exactly one generating line of the 
cone, the intersection is a non-closed curve—a parab-
ola (Figure 1B). A parabola is the collection of points in 
a plane that are equidistant from a fixed point F (called 
“focus”) and a fixed line (called “directrix”). The graph 
of the parabola is illustrated in Figure 3A. The graph is 
symmetric with respect to the line through the focus 
and perpendicular to the directrix. This line of sym-
metry is called the “axis” of the parabola. The inter-
section of the graph with the axis is called the “vertex” 
of the parabola. On the coordinate plane, if the vertex 
is located at the origin O, and the focus at the point 
( , )0 p , then its directrix will be on the line y p=−
(Figure 3B), and the equation of the parabola can be 
derived as x py2 4= .

Hyperbola
When the intersecting plane meets both sheets of the 
cone, the intersection is a hyperbola, which consists of 
two identical non-closed parts, each located in one of 
the two sheets of the cone (Figure 1C). A hyperbola is 
the collection of all points in a plane that the difference 
of distances from two fixed points F1  and F2 , the foci, 
to every point in the collection is constant. The graph 
of a hyperbola is drawn as shown in Figure 4A. 

On the coordinate plane, if the foci ( , )− c 0  ( , )c 0
are located on the x-axis and the differences of dis-
tance is ±2a, then the equation of the hyperbola can 
be derived as 

x

a

y

b

2

2

2

2
1− =  with c a b2 2 2= +  (See Figure 4B)

A Brief History of Conic Sections
Between 460 b.c.e. and 420 b.c.e., three famous geom-
etry problems were posed by the ancient Greeks. These 
problems were (1) the trisection of an angle, (2) the 
squaring of the circle, and (3) the duplication of the 
cube. The last problem merely asks that given any cube 
of side length a, can one construct another cube with 
exactly twice the volume, 2a3. Hippocrates of Chios 
(circa 470–410 b.c.e.) had the idea of reducing that 
problem by finding two quantities x and y such that

a

x

x

y

y

a
= =

2
.

Then, x2 = ay, y2 = ax, and xy = 2a2. 

As such, x is the required solution for the prob-
lem. This solution is equivalent to solving 
simultaneously any two of the three equations  
( x ay2= , y ax2 2= , and xy a= 2 2 ) that represent 
parabolas in the first two and a hyperbola in the third. 
However, no explicit construction of the conic sections 
was given. Menaechmus (380–320 b.c.e.) is believed 
to be the first mathematician to work with conic sec-
tions systematically, which is theorized to have arisen 
because of curves traced out by sundials. At his time, 
the conic sections were formed by cutting a right circu-
lar cone with a plane perpendicular to a side. 

The sections were named according to whether 
the vertex angle was acute, right, or obtuse (Figure 5). 
Menaechmus constructed conic sections that satisfied 
the required algebraic properties suggested by Hip-
pocrates and thus obtained the points of intersection 
of these conic sections that would lead to the solution 
of the problem of the duplication of the cube.
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The breakthrough in the study of conics by the 
ancient Greeks was attributed to Apollonius of Perga. 
His eight-volume masterpiece Conic Sections greatly 
extended the existing knowledge at the time (one of 
the eight books has been lost to history). Apollonius’ 
major contribution was to treat the conic sections as 
plane curves and use their intrinsic properties to char-
acterize them. This method allowed conic sections to 
be analyzed in great detail by the ancient Greeks.  

Abu Ali al-Hasan ibn al-Haytham studied optics 
using conic sections in the tenth and eleventh centu-
ries. Omar Al-Khayyami (Omar Khayyam) authored 
Treatise on Demonstration of Problems of Algebra in 
the eleventh century. This work showed that all cubic 
equations could be classified using geometric solutions 
that involve conic sections. Later, in the seventeenth 
century, Gerard Desargues (1591–1662) and Blaise 
Pascal (1623–1662) connected the study of conic sec-
tions to developments from projective geometry. At 
the same time, René Descartes (1596–1650) and Pierre 
de Fermat (1601–1665) also connected it with the 
developments from coordinate geometry. Eventually, 
problems of conics in geometry could be reduced to 
problems in algebra.

Johan Kepler (1571–1630) revolutionized astron-
omy by introducing the notion of elliptical orbits. 
According to Isaac Newton’s later law of universal 
gravitation, the orbits of two massive objects that 
interact are conic sections. 

If they are bound together, they will both trace out 
ellipses; if they move apart, they will both follow par-
abolic or hyperbolic trajectories. 

The Applications of Conic Sections
Besides applications in astronomy, conics have many 
other applications.

In an ellipse, any light or radiation that begins at 
one focus will be reflected to the other focus (Figure 6 
on following page). This property can be used in the-
ater designs. In an elliptical theater, the speech from 
one focus can be heard clearly across the theater at the 
other focus by the audience. It can also be applied in 
lithotripsy, a medical procedure for treating kidney 
stones. The patient is placed in an elliptical tank of 
water, with the kidney stone fixed at one focus. High-
energy shock waves emitted at the other focus can be 
directed to pulverize the stone. Also, elliptical gears 
can be used for many machine tools.
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In a parabola, paral-
lel light beams will con-
verge to its focus (see 
Figure 7 on following 
page). Parabolic mir-
rors are used to con-
verge light beams or 
heat radiations, and 
parabolic microphones 
are used to perform a 
similar function with 
sound waves. 

In reverse, if a light 
source is placed at the focus of a parabolic mirror, the 
light will be reflected in rays parallel to said axis. This 
property is used in the design of car headlights and in 
spotlights because it aids in concentrating the parallel 
light beam. Hyperbolas are used in a navigation system 
known as Long Range Navigation (LORAN). Hyper-
bolic—as well as parabolic—mirrors and lenses are 
also used in systems of telescopes.

Further Reading 
Akopyan, A. V., and A. A. Zaslavsky. Geometry of Conics. 

Providence, RI: American Mathematical Society, 2007.
Courant, R., and H. Robbins. What Is Mathematics? New 

York: Oxford University Press, 1996.
Downs, J. W. Practical Conic Sections: The Geometric 

Properties of Ellipses, Parabolas and Hyperbolas. 
Mineola, NY: Dover, 2003.

Kendig, K. Conics (Dolciani Mathematical Expositions). 
Washington, DC: The Mathematical Association of 
America, 2005.

Kline, M. Mathematical Thought From Ancient to Modern 
Times. New York: Oxford University Press, 1972.

Suzuki, Jeff. A History of Mathematics. Upper Saddle 
River, NJ: Prentice Hall, 2002.

Ka-Luen Cheung

See Also: Curves; Geometry of the Universe; Greek 
Mathematics.

Connections in Society
Category: School and Society.
Fields of Study: Connections.
Summary: An integrated approach to mathematics 
stresses the importance of making connections among 
various perspectives and applications.

While mathematics in educational settings is often 
separated out into differing subjects, it is important 
to understand that mathematics is an interconnected 
field of study. While most individuals are aware that 
they must be familiar with basic addition and subtrac-
tion to ensure the proper handling of money, very few 
individuals give any thought to the multitude of deeper 
mathematical connections they experience daily. In fact, 
both the National Science Foundation and the National 
Council of Teachers of Mathematics have recently 
begun to strongly advocate for the use of an intercon-
nected curriculum in K–12 mathematics education. An 
integrated approach to mathematics education stresses 
the importance of making connections among math-
ematical perspectives, as in algebra and geometry, mak-
ing connections to other fields, as in physics or religion, 
and connecting mathematical concepts to society as a 
whole, as in applications and usefulness in daily living. 

The purpose of an interconnected curriculum 
is to help students better understand how the vari-
ous branches of mathematics are connected and how 
mathematics is connected to the real world. By teach-
ing mathematics as a unified whole, rather than mul-
tiple discrete subjects, students may better understand 
that mathematics is not a set of indiscriminate rules 
and isolated skills; rather, it involves a rich interplay 
between mathematical concepts, as well as complex 
interactions with other academic subjects. It is this 
integrated approach to mathematics that seeks to 
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answer that question, “When are we ever going to use 
this in real life?” When this objective is met, students 
often show an increased appreciation and enthusiasm 
for mathematical principles.

People use many different interrelated approaches 
to process ideas, analyze objects, make decisions, or 
solve problems. For example, one might calculate the 
optimal viewing distance of a painting in order to see 
the depth that the artist intended, examine the sur-
face of the painting to appreciate the finer details and 
glazes, or stand back to appreciate the overall effect and 
balance of colors. Real-life situations are not divided 
the way they are in textbooks by their applicability to 
a certain topic or technique, like exponential models. 
In fact, throughout the twentieth century, employers, 
such as engineering firms, complained about the lack of 
connections made in school between different subjects. 
Mathematician Eliakim Moore discussed this problem 
a century ago in his 1902 address as the president of the 
American Mathematical Society. In 1989, the National 

Council of Teachers of Mathematics published a set of 
national standards for mathematics that included con-
nections as a significant component.

Whereas traditional mathematics curricula in the 
twentieth century separated subject areas like algebra 
and geometry, an integrated approach involves present-
ing mathematical subjects as one interrelated whole 
that also connects to other subjects and real-world 
experiences. In antiquity, the square of a number was 
defined as the area of a square with the same side length. 
People with interdisciplinary interests were perhaps 
more common at that time—Greek mathematicians 
were also astronomers, inventors, engineers, and phi-
losophers. Throughout history, mathematicians such 
as Carl Friedrich Gauss contributed to so many areas 
of mathematics and to other fields, like geodesy; but 
in the twenty-first century, researchers who specialize 
in a subdiscipline are more common. However, con-
nections among multiple mathematical perspectives 
are still important in the development of mathemat-
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M athematics	is	also	used	in	one	of	the	most	
popular	 sporting	 events	 in	 the	 world:	 the	

FIFA	 World	 Cup	 Finals.	 Thirty-two	 teams	 qualify	
for	 the	World	Cup	Finals,	and	 they	are	assigned	
to	 eight	 groups	 of	 four	 teams.	 The	 top	 seven	
teams	 in	 the	world	and	 the	host	country’s	 team	
are	seeded	based	on	the	FIFA	World	Rankings	and	
recent	World	Cup	performances	and	put	into	the	
eight	different	groups.	The	rest	of	the	teams	are	
put	into	different	pots	based	on	their	geographical	
location,	and	then	teams	from	each	pot	are	ran-
domly	assigned	to	the	eight	groups.	In	the	group	
stage	of	 the	World	Cup	Finals,	each	 team	plays	
every	other	team	in	its	group.	

A	 team	 earns	 three	 points	 for	 a	 win,	 one	
point	 for	 a	 tie,	 and	 zero	 points	 for	 a	 loss.	 In	
each	group,	the	two	teams	with	the	most	points	
advance	 to	 the	 knockout	 stage.	 If	 teams	 are	
equal	in	points,	the	greatest	goal	difference,	the	
greatest	number	of	goals	scored,	and	other	vari-
ous	statistics	can	be	used	to	determine	the	top	

two	teams	to	advance	to	the	next	stage.	Sixteen	
teams	advance	to	the	knockout	stage,	which	is	a	
single-elimination	tournament.	At	the	end	of	the	
tournament,	 FIFA	 crowns	 one	 World	 Cup	 cham-
pion,	as	well	as	several	individual	awards,	such	
as	 the	Golden	Ball	 for	 the	 best	 player	 and	 the	
Golden	Boot	for	the	top	goal	scorer.	The	winner	
of	the	Golden	Ball	award	is	based	
on	a	vote	of	media	members.	
The	Golden	Boot	award	 is	
given	 to	 the	 player	 with	
the	 greatest	 number	
of	 goals	 scored,	 as	
well	 as	with	 the	 great-
est	number	of	assists.	
Mathematics	is	used	in	
important	calculations	of	
sports	 statistics,	 college	
and	world	rankings,	tourna-
ment	rankings,	and	awards	for	
individual	performances.

Mathematics and the FIFA World Cup Finals



ics. Algebra and geometry remain linked and the field 
of algebraic geometry is active today. Many researchers 
use techniques from a variety of different mathemati-
cal fields. Geometers may heavily rely on concepts from 
analysis, linear algebra, number theory, or statistics, for 
example. Other researchers work in the intersection of 
fields like statistical analysis.  

Mathematics can easily be connected to other sci-
entific disciplines, like physics or biology. Mathemat-
ics is sometimes referred to as the “foundation” or 
“language” of science. However, there are many other 
types of links between mathematics and the sciences. 
Some researchers work on problems at the interface of 
mathematics and a scientific field, while others translate 
ideas from the sciences to solve problems in mathemat-
ics and vice versa. Scientific disciplines like physics are 
often referred to as partner disciplines for mathematics. 
Researchers have met for a conference named “Connec-
tions in Geometry and Physics” that explores the inter-
disciplinary facets. In geometry and physics there is a 
concept called a “connection,” which is an operator that 
allows for comparison at different points in a space via 
parallel transport. Mathematics has been interwoven 
with physics since antiquity. There have also been his-
torical linkages between mathematics and biology, but 
the interdisciplinary field of mathematical biology has 
grown rapidly in the early twenty-first century.

Students may have difficulty appreciating the impor-
tance of mathematics in nonscientific disciplines, but 
the connections between mathematics and subjects like 
business, art, music, or religion are multilayered and 
multifaceted. For example, mathematics has played a 
part in religious life since the earliest documented cul-
tures. The ancient Mesopotamians, embracing a poly-
theistic faith, developed the time system we use today 
with bases of 60 (60 seconds make up a minute, and 
60 minutes comprise an hour). Adherents of Christian-
ity, Judaism, and Islam have all embraced elements of 
mathematics in the conceptualization of sacred time. 
Given the importance of religion today, this time is still 
of great value for humankind. Mathematics plays a key 
role in the calculation of religious celebrations around 
which many faiths flourish. The week and solar day 
provide a delineation of sacred days that are different 
from the others—Sunday for Christians, Saturday for 
Jews, and Friday for Muslims. In other ways, numeric 
or geometric symbolism plays a significant part of reli-
gious practice.

There are countless examples that highlight the 
importance of mathematics in daily tasks. In the 
twenty-first century, it is almost impossible to find 
a task that does not connect to mathematics, either 
directly or through the tools and technologies in which 
mathematics plays an important role. In turn, math-
ematicians formulate new theories and concepts in 
order to meet the needs of society.

Mathematics as a Universal Language
Many people consider mathematics as the only truly 
universal language, regardless of gender, culture, or 
religion. For example, while the precise number of dig-
its that are used in applications may differ, the ratio of 
the circumference to the diameter of a circle is still π, 
irrespective of the cultural context. Calculating the cost 
of groceries involves the same mathematical processes 
whether one is paying for those groceries in dollars, 
pesos, or pounds. With the universal language of math-
ematics, regardless of the unit of exchange, humans are 
likely to arrive at similar mathematical results. In fact, 
there are many examples of researchers in different 
areas of the world who independently arrived at the 
same theorems. Thus, mathematics as a universal lan-
guage provides a common ground, creating the capac-
ity for human beings to connect to one another across 
continents and across time.

Nutrition Labeling
An important way that mathematics can be found in 
our everyday life is on nutrition facts panels, which 
are mandated by the Nutrition Labeling and Educa-
tion Act of 1990 to be placed on nearly all multiple-
ingredient foods. The nutrition facts label on foods 
must list the fat, saturated fat, trans fat, cholesterol, 
sodium, total carbohydrate, fiber, sugar, protein, Vita-
min A, Vitamin C, calcium, and iron content of the 
food. Other nutrients may be listed voluntarily. These 
labels also include a column that lists the percent Daily 
Value (% DV) to help consumers decide whether the 
nutrient content of a serving of the food product is 
a lot or a little. Mathematics is used to calculate the 
calories per serving and the % DV of a serving listed 
on the nutrition facts label.

As shown in Figure 1, at the top of the nutrition facts 
label, the serving size, as well as the number of servings 
per container, is listed directly underneath “Nutrition 
Facts.” In this case, a serving size is ½ cup and there are 
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eight servings per container. This 
means that there are four cups (½ 
cup × eight servings = four cups) 
of food in this package. If a person 
consumed half the container, or two 
cups of food, he or she would have 
had four servings (the amount of 
food consumed divided by a serv-
ing size, or two cups divided by ½  
cup per serving = four servings).

Next, the calories per serving 
and the calories from fat per serv-
ing are listed. In this food, there are 
200 calories per serving and 130 
calories from fat in one serving. 
If the person consumed four serv-
ings and there are 200 calories per 
serving, then he or she consumed 
800 calories (four servings × 200 
calories/serving = 800 calories). 
Similarly, this person consumed 
520 calories from fat (four serv-
ings × 130 calories from fat/serv-
ing = 520 calories from fat).

Following the calorie content, 
the nutrition facts label also lists 
the number of grams of total fat, 
total carbohydrate, and protein, which are calorie-
yielding nutrients. A gram of fat contains nine calories, 
which is listed at the very bottom of the label. In this 
food, a single serving contains 14 grams of fat, which 
yields 126 calories (14 grams of fat × 9 calories/gram 
of fat = 126 calories from fat). This calculation was 
done to create the number of calories from fat listed 
on the panel (they rounded up to 130). As previously 
mentioned, if a person ate four servings, he or she con-
sumed about 520 calories from fat.

The number of calories from carbohydrates and 
proteins can also be calculated. Both carbohydrates 
and protein yield four calories per gram, which is 
also listed at the very bottom of the nutrition label. In 
this food, there are 17 grams of carbohydrates, which 
provides 68 calories (17 grams × 4 calories/gram = 
68 calories). In four servings, a person would ingest 
about 272 calories from carbohydrates (68 calories/
serving × 4 servings = 272 calories from carbohy-
drates). There are three grams of protein in one serv-
ing, which means there are 12 calories from protein in 

one serving (3 grams × 4 calories/
gram = 12 calories) and 48 calo-
ries from protein in four servings  
(12 calories/serving × four serv-
ings = 48 calories).

On the right side of the nutrition 
facts panel, the % DV is also listed. 
These daily values are based on a 
2000-calorie diet, which is stated 
on the label next to the asterisk. 
Near the bottom of the label, it lists 
the maximum number of grams or 
milligrams of total fat, saturated fat, 
cholesterol, or sodium that a per-
son should consume per day if on 
a 2000-calorie diet. It also lists the 
number of grams of total carbohy-
drate and fiber a person should eat 
if on a 2000-calorie diet. 

If there are 14 grams of fat in 
one serving of this food and a per-
son on 2000-calorie diet should 
consume no more than 65 grams 
of fat per day, then one serving of 
this food yields 22% of a person’s 
DV of fat (14 grams of fat/65 
grams of fat = about 22%). If this 

person has consumed four servings, then he or she has 
eaten 88% of his or her DV of fat (22%/serving × four 
servings = 88%). The same calculations can be made 
for the saturated fat, cholesterol, sodium, total carbo-
hydrate, and fiber. Similar calculations are also made 
for the vitamins listed on a nutrition facts panel.

As demonstrated, mathematics is used in the calcula-
tions surrounding calorie content and % DV on nutri-
tion labels. The mathematics used can affect a person’s 
choice of foods and, in turn, a person’s health.  

Sports
Mathematics is used in numerous other everyday 
activities, such as sports. It is common in popular 
sports to calculate statistics to measure performance. 
In baseball, a common statistic is a batting average. A 
batting average is a simple calculation: the number of 
“hits” divided by the number of “at bats.” This statistic 
is used to estimate an individual’s batting skills. In pro-
fessional baseball, a batting average of .300 is consid-
ered an excellent batting average. 
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Figure 1. A Common Nutrition 
Facts Label.



A similar statistic to the batting average is in vol-
leyball, which is called a hitting percentage. However, 
it is slightly different because it tries to measure an 
individual’s hitting or attacking skills and takes errors 
into accounts. It is calculated by taking the number 
of kills, subtracting the number of errors, and then 
dividing the difference by the number of attempts. 
A “kill” is when a hitter’s attack results directly in a 
point (the ball falling into the opponent’s area of the 
court, an opponent not being able to return the ball, 
or the opponent making a blocking error as a result 
of the attack). An “error” is when a player hits the 
ball and it goes into the net (does not cross to the 
opponent’s side) or out of bounds. An “attempt” is 
anytime the player tries to attack the ball. For exam-
ple, if a player had 10 kills, 3 errors, and 17 attempts, 
the player’s hitting percentage would be about .412  
( 10 3 17 0 412−( ) = . ), which would also be considered 
a good hitting percentage, similar to the guidelines to 
the batting average.

Mathematics is important in the calculation of col-
lege football Bowl Championship Series (BCS) rank-
ings as well. A mathematical formula is used to calculate 
these rankings, which order the top 25 NCAA Division 
I-A football teams based on their performance during 
the prior week. At the end of the season, the top two 
teams play each other in the national championship 
bowl. Mathematical formulas are also used to calculate 
which teams will play in the other bowls, taking into 
consideration the conference the team comes from and 
how many fans and advertising dollars the team is likely 
to bring in as well. 

More specifically, the main factors that go into these 
rankings are subjective polls, computer rankings, the 
difficulty of a team’s schedule, and the number of losses. 
The subjective poll numbers come from the average of 
two rankings from the Associated Press (AP) and the 
USA Today/ESPN Coaches Poll Ratings. Sports writ-
ers and broadcasters vote in the AP poll and a select 
group of football coaches vote in the USA Today/ESPN 
Coaches poll on which football teams they think are 
the best, and then these two rankings are averaged. The 
computer rankings are based on eight different com-
puter rankings that are calculated based on a team’s 
statistics for that week (strength of the opponent, final 
score, win-loss record, and so forth). The strength of a 
team’s schedule is based on a cumulative win-loss record 
of its opponents, as well as their opponent’s opponents. 

The calculation of the number of losses is straightfor-
ward. Each loss that a team suffers corresponds to one 
point, which is added to its final score. Points from each 
category are assigned to the team, and then these val-
ues are added to create a team’s final score. The team 
with the lowest point total is ranked “number one” in 
the rankings.  

Speedometers
Mathematics is also used in cars. All cars have a speed-
ometer, which is a device used to calculate an instanta-
neous speed of a vehicle. It is important for a driver to 
know the speed of the vehicle at all times to ensure the 
safety of passengers and pedestrians and to abide by 
local traffic laws. In the United States, speedometers are 
read in terms of miles per hour. The calculation of the 
speed of the vehicle requires significant mathematics.

In many vehicles, an eddy current or mechanical 
speedometer is used, which is the speedometer with a 
needle that points to the speed that the vehicle is travel-
ling. In these cars, there is a drive cable that runs from 
the speedometer to the transmission, which has a gear 
that tracks the rotational speed of the wheels. In other 
words, the gear tracks the number of revolutions the 
wheel makes within a certain time frame. Digital speed-
ometers calculate miles per hour slightly differently, 
using a vehicle speed sensor. The vehicle speed sensor 
is in the transmission and also tracks the rotations of 
the wheels. From this information, the vehicle’s speed 
is calculated and displayed on either a digital screen or 
a traditional needle-and-dial display.  

The calculation of a vehicle’s speed is dependent 
on the size of the tire as well. For example, if the tire 
rotates x times per minute, then the vehicle’s speed 
can be calculated in miles per hour. Knowing the 
diameter of the tire, the circumference of the tire can 
be calculated (diameter × π). Therefore, the vehicle 
travels the distance of the number of revolutions 
times the circumference of the tire, within a certain 
time frame. This ratio can then be converted to miles 
per hour by converting the units. Because all of these 
calculations are based on an assumed tire diameter 
and circumference, it is very important for drivers to 
ensure that the correct size tires are on their vehicle. If 
a car’s wheels are too large or too small, the speedom-
eter will read slower or faster than the vehicle’s actual 
speed, which may lead to accidents, speeding tickets, 
or just slower driving. 
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Conclusion
Mathematics can be found in everyday situations that 
have a real and important effect on our lives. All areas 
of one’s life are in some way connected to mathematical 
principles. Only a small number of examples have been 
presented here—the list can be expanded infinitely. 
In fact, one would be hard pressed, in today’s techno-
logically advanced world, to present even a handful of 
activities that do not involve some mathematical con-
cepts, if even at the unconscious level. By bridging the 
disconnect between “school mathematics” and “real-life 
mathematics,” individuals gain a greater appreciation 
for—and curiosity of—mathematical applications. 

By viewing mathematics as an integrated whole 
and understanding its connectedness to society, indi-
viduals become active participants, rather than passive 
recipients, of information. When one becomes aware 
of mathematical connectedness, rather than viewing 
math as a series of isolated and disconnected concepts 
to be learned though rote memorization, an individual 
develops the understanding of mathematics as a crucial 
and meaningful tool that can aid in the understanding, 
predicting, and quantifying of the world around us.
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Continuity
See Limits and Continuity

Contra and  
Square Dancing
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Geometry; 
Representations.
Summary: Square and contra dancing employ many 
mathematical principles, including symmetries and 
permutations.

Square dance is geometry and combinatorial mathe-
matics in motion. A caller directs the dancers through 
a set of choreographed dance movements unique to 
each type of square dancing. The dancers are sorted 
and shuffled in a myriad of ways by the caller and then 
returned to their original positions. Not only do the 
participants create mathematical forms as they move, 
mathematics is used to analyze different aspects of 
square dancing and its related form, contra dancing. 
For example, graph theory, matrix theory, and group 
theory can be used to represent the various structures 
and symmetries. Mathematics has also been used to 
analyze optimal calling patterns depending on the spe-
cific combinations of movements in the dance. Square 
dancing is a popular pastime for many people with an 
interest in mathematics. Several colleges have square 
dancing clubs, such as the Square Roots at North Cen-
tral College in Illinois. That college has also offered a 
course called “The Mathematics of Square Dancing,” 
which combined advanced dance patterns with dis-
cussions of mathematics theory, including parallelo-
gram or hexagon dancing.  

The Basic Square
The basic square consists of four couples. A square is 
symmetric under rotations of 90, 180, 270, and 360 
degrees. Some or all of the dancers in the basic square 
can rotate in a circular movement according to these 
symmetries. Including the mirror reflections about 
each of the two lines of symmetry passing through the 
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center of the square and parallel to an edge, there are 
six different targets of movement for the dancers. Fur-
ther, in respect to each male (m)-female (f) pair, there 
are 10 possible movements. Thus, f1 could be directed 
to replace either f2 or m

2
, m1 could replace either f2 or 

m2, or both f1 and m1 could replace f2 and m2. Since 
there are four pairs, there are 240 possible movements 
among the dancers (6 × 10 × 4 = 240). Dance is about 
movement and not positions; thus, dance movements 
are not transitive. A movement of f1 to f2 is not the 
same as a movement of f2 to f1, although the outcome is 
the same arrangement. The two cases differ in respect 
to who initiates the action and who must react to the 
other’s actions. 

Secondary Squares
Besides the basic square, several other squares are part 
of square dancing. First, each m-f pair is a square. Sev-
eral calls direct the movements of these dancers rela-
tive to one another. Thus, in a Do-Si-Do, the two mem-
bers dance a square around one another and return to 
their initial positions. Alternatively, the basic square 
can be divided into a square within which a circle is 
inscribed. Four of the dancers constitute the square, 
while the remaining dancers move inward so that they 
are contained by the larger square. These can then be 
instructed to move according to the four symmetries. 
This arrangement can be inverted. The pairs can move 

toward a center point and form the radii of a circle, 
while the square that contains the circle is implicit. 
Again, the four symmetries constrain these move-
ments. Instead of being expanded, the square can be 
constricted. The larger square can be divided into two 
smaller squares, each with four dancers. The dancers 
can be instructed to form smaller squares with the pair 
on the right, the pair opposite, or the pair on the left. 

Further Reading
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Cooking
Category: Arts, Music, and Entertainment.
Fields of Study: Number and Operations; 
Measurement.
Summary: A good cook must be able to compute 
conversions, costs, and measurements.

In his Renaissance play, The Staple of News, Ben Jonson 
likens a master cook to—among other things—a mathe-
matician. Although many people would think this com-
parison is an exaggeration, the mathematical require-
ments placed on the modern cook are significant. 

In the past, cooking skills were passed on orally 
and through apprenticeship from generation to gen-
eration; today, inexperienced cooks are expected to 
learn to cook from recipes, which consist of a list 
of measured ingredients followed by instructions 
that refer to temperatures, times, and possibly more 
esoteric measurements. In addition to being able to 
scale recipes, the cook in our global world encounters 
many interesting recipes from diverse cultural tradi-
tions, which use a variety of systems of measurement. 
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Decomposing Squares 
Into Columns and Lines

B esides	arranging	dancers	in	squares	and	
circles,	 the	caller	can	also	arrange	them	

into	 columns	 and	 lines.	 A	 column	 arrange-
ment	occurs	when	all	the	couples	are	aligned	
one	behind	the	other.	A	caller	can	shuffle	this	
arrangement	 into	 any	 of	 24	 possibilities.	 A	
column	of	 dancers	 can	 then	be	bisected	 lon-
gitudinally	into	two	lines	or	crosswise	into	two	
smaller	squares.	There	are	two	kinds	of	lines:	
one	in	which	all	dancers	face	the	same	direc-
tion,	and	another	(a	wave)	in	which	they	alter-
nate	the	direction	they	are	facing.



Cooks must also be able to plan healthy and cost-
effective menus.

Measurement of Ingredients
In recipes written in the United States, quantities for 
both liquid and dry ingredients are often specified by 
volume, and are measured in terms of teaspoons, table-
spoons, or cups, in which there are 3 teaspoons to 1 
tablespoon, 16 tablespoons to 1 cup, and 2 cups to 1 
pint. Special measuring cups are made that permit the 
leveling of dry ingredients to ensure precise measure-
ment. For measuring liquid ingredients, different cups 
are used that have graduation marks down the side and 
a convenient pouring spout. Measuring spoons are used 
for smaller quantities of both liquid and dry ingredi-
ents. For an experienced cook, the quantities given in 
recipes serve as general indications; however, in baking, 
when certain chemical reactions are expected to be bal-
anced, precision is needed.

For more consistent outcomes, quantities are speci-
fied by weight. Ingredient densities vary. For example, a 
cup of water weighs 8 ounces, whereas a cup of flour—
depending on how it was scooped—weighs about 5 
ounces. Tables to assist in conversion between weight 
and volume can be found on the Internet. There can be 
confusion with the word “ounces,” which can refer to 
either weight or volume. Ounces used for dry ingredi-
ents refer to one-sixteenth of a pound. Ounces measur-
ing liquid ingredients refer to either one-sixteenth of a 
pint or to one-twentieth of a pint, depending on what 
is being measured.

Modern recipes written outside the United States 
provide measurements in the metric system. Liquid 
ingredients are specified in liters (volume) while dry 
ingredients are specified in grams (mass). Since kitchen 
scales actually measure weight, most cooks view grams 
as measuring weight. One liter of water weighs approxi-
mately 1000 grams. A liter is 1000 cubic centimeters, or 
about 1.057 quarts. A kilogram, 1000 grams, is approxi-
mately 2.205 pounds. A deciliter is one-tenth of a liter 
and is often used for recipes designed for home use. The 
metric system—based on multiples of 10—is designed 
to simplify calculations and scaling of measurements 
and is becoming the preferred system for cooks.

Scaling a Recipe
Recipes often specify the number of portions that they 
produce. To alter the number of portions generated, the 

recipe is scaled. This involves multiplying the quantity 
of each ingredient by a scale factor. To double a recipe, 
the scale factor is 2, while to halve a recipe, the scale fac-
tor is 1/2. At times, a more complex scaling is required. 
For example, imagine a baker is following a recipe that 
calls for 125 grams of pre-fermented dough. The rec-
ipe to make pre-fermented dough calls for 1000 grams 
of flour, 10 grams of yeast, and 0.6 liters of water and 
results in 1610 grams of dough. Since only 125 grams 
of pre-fermented dough are needed, the required scale 
factor is 125/1610 = 0.078. 

A naïve scaling results in 78 grams of flour, 47 grams 
of water (.047 liters), and the absurdly small amount 
(0.78 grams) of yeast. An experienced cook would add 
more yeast. Most recipes written for home use can 
only be scaled up or down by less than a factor of 4. 
Additionally, some ingredients, like spices, gelatin, and 
leavening agents, should not be scaled proportionately. 
Most good general cookbooks will give advice on scal-
ing recipes. A good collection of professional recipes 
for large numbers of portions is available from the 
Armed Forces Recipe Service.

Measuring Temperature
Controlling temperatures on most modern stovetops 
is easier than doing so on wood-burning stoves. How-
ever, techniques vary significantly among gas, electric, 
and induction cookers and are best described by the 
manufacturer. In some instances, such as deep fat fry-
ing or candy making, temperature on the stovetop is 
measured by a thermometer. In making candy sugar 
syrup, temperature can also be measured by “feel” 
or by the way a drop of the syrup interacts with cold 
water. Books on making candy describe the relation-
ships among these methods. The temperature of an 
oven is accurately monitored by a thermostat, which 
can be set. Often, an oven thermometer is also used 
to check the oven thermostat. Most recipes give the 
required temperature in either Fahrenheit or Celsius 
(previously called centigrade). The formula for con-
verting from Fahrenheit to Celsius is given by

C = −( )5

9
32F  

and from Celsius to Fahrenheit by

F C= +( )9

5
32 .
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Thus, an oven temperature of 350 degrees Fahrenheit 
is about 177 degrees Celsius. Temperatures in some 
older British recipes are given in gas mark settings, in 
some older French recipes in numbered settings, in 
some older German recipes as Stufe settings, and in 
some much older recipes as verbal descriptions such 
as Very Slow or Doux. Tables showing conversions 
among these various approaches to measuring tem-
perature can be found in general cookbooks and on 
the Internet.

Other Important Measurements
Other important quantities that need to be measured 
when cooking include time, acidity, and density. Time 
measured in seconds, minutes, and hours—a system 
based on 60—is now probably universal. Because esti-
mating the passage of time is fraught with error, early 
recipes specified important times “as measured by the 
clock.” Acidity is measured on the pH scale. Water, 

which is neutral, has a pH of 7. An acidic solution, like 
orange juice, might have a pH of 3, while a basic solu-
tion of baking soda in water might have a pH of 9. 
In home cheese making, the conversion of lactose to 
lactic acid is tracked by monitoring pH levels of the 
milk; however, traditional cheese makers will use the 
Dornic scale. 

Measuring the density of a solution is important 
in wine and beer making, and in candying fruits. For 
example, the density of fresh grape juice indicates 
the ripeness of the grapes and the alcohol content of 
the finished wine. Candying fruit in sugar water can 
take many days. The daily gradual increase of sugar 
in the syrup where the fruit is steeping maximizes the 
amount of sugar absorbed by the fruit. The density 
of the syrup is carefully checked to ensure the correct 
increase of sweetness. Density of syrups is measured 
with a hydrometer, and a variety of scales, including 
Brix, Baumé, and specific gravity, have been used in 
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Molecular gastronomy is a new trend in cooking with a scientific slant. A chef plates a dish called strawberry 
ravioli created using reverse spherification, and places so-called caviar spheres of sauce with chop-sticks. 



recipes. Although older French recipes will refer to the 
Baumé scale, since the 1960s, most recipes have used 
specific gravity. For syrups that are denser than water, a 
simple approximate conversion from Baumé to specific 
gravity (sg) is given by: 

sg
B

=
−°

145

145
.

Menu Planning and Budgeting
Cost and nutrition are also important factors for cooks. 
Many modern recipes, in addition to giving calories 
per serving, will give grams of carbohydrates, protein, 
fat, cholesterol, sodium, and calcium. This informa-
tion, along with labels on prepared food, helps guide 
the cook in making nutritional choices. A cook might 
also be interested in knowing the cost of a portion size. 
For example, consider a portion of boneless chicken 
breast. The cost as purchased is what the chicken breast 
with bone costs per pound. Once the breast has been 
boned, what remains weighs less and results in a higher 
cost per pound of the edible portion. During cook-
ing, the breast will shrink, resulting in an even higher 
cost per pound of the breast as served. Being aware 
of these costs, along with labor costs and inventory 
costs, helps the cook determine the cost of each item 
served. Although the home cook probably does not go 
through all these computations, a good home cook will 
have an idea of monthly food expenditures and how 
these costs are distributed among the various kinds of 
food served.
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Coordinate Geometry
Category: History and Development of  
Curricular Concepts.
Fields of Study: Algebra; Communication; 
Connections; Geometry.
Summary: The development of coordinate geometry 
revolutionized mathematics, has a wide variety of 
applications, and is now widely used in many areas of 
mathematics.

The discovery that plane geometric configurations 
could be entirely described by real number pairs and 
two-variable equations revolutionized geometry and 
many other important fields of mathematics that 
emerged later, including real analysis, vectors, calcu-
lus, linear algebra, and matrix theory. Also referred to 
as “analytic geometry” or “Cartesian geometry,” named 
for the great philosopher and mathematician René Des-
cartes, the subject of coordinate geometry is the study 
of geometry using the Cartesian coordinate system with 
algebraic operations. In twenty-first century classrooms, 
children in primary school begin to examine coordinate 
systems and create plots on graph paper. 

The level of sophistication of knowledge builds 
through high school and college through the use of var-
ious coordinate systems including Cartesian, polar, and 
spherical systems and by representations in two- and 
three-dimensional geometry. Some calculus courses 
are titled “Calculus and Analytic Geometry.” Various 
coordinate system standards are in use in physics or 
mathematics, for surveyors, or at the state or company 
level. High school and college students learn to convert 
between some of these representations. Coordinate 
geometry has many applications and is used in every 
conceivable area of mathematics, science, and engi-
neering to calculate precise locations and boundaries, 
distances and bearings from reference points, and to 
define graphs and curves using a point location, radius, 
and arc-lengths.  

The fundamental building block of coordinate 
geometry is the Cartesian coordinate system, which 
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includes an infinite collection of points on a plane 
determined by an ordered pair of numerical coordi-
nates (x, y). The x-coordinate (called “abscissa”) rep-
resents the horizontal position, and the y-coordinate 
(called “ordinate”) represents the vertical position. 
These positions can be expressed as signed distances 
from the origin (0, 0), a point that is at the intersection 
of two perpendicular reference lines called the “coordi-
nate axis” (see Figure 1). 

Once points are determined by ordered pairs (x, y) 
on the coordinate plane, one can then obtain analytic 
formulas for various geometric quantities on the plane. 
For example, an application of the Pythagorean theo-
rem then yields the distance between any two points 
(x

1
, y

1
) and (x

2
, y

2
) given by

d x x y y= − + −( ) ( )
2 1

2
2 1

2 .

Early Variations
Coordinate-like types of systems arose in cartography 
well before Descartes. Maps with grids date back to 
ancient times, including those by Dicaearchus of Mes-
sana and Eratosthenes of Cyrene. Claudius Ptolemy 
attempted to create coordinates of well-known places 
in the world, essentially their latitude and longitude, 
from spherical projections, although the astronomi-
cal and mathematical methods to accurately calculate 
these would not be completely developed until much 
later. Islamic Mathematicians in the medieval Islamic 
world, such as Abu Arrayhan Muhammad ibn Ahmad 
al-Biruni, who compared the work of Ptolemy and Abu 
Ja’far Muhammad ibn Musa Al-Khwarizmi, provided 
coordinates for more than 600 geographical locations. 
Al-Biruni also used rectangular coordinates to represent 
three-dimensional space as well as ideas that some con-
sider as a precursor to polar coordinates. In the twenty-
first century, the global positioning system calculates 
the coordinates of a user from a system of satellites.

Other aspects of coordinate geometry can also be 
found in various early contexts. Some have noted that 
the mathematical work of ancient Greek mathemati-
cian Menaechmus could be interpreted as one that 
used coordinates. However, there was no algebra in 
ancient Greece, and others have highlighted the chal-
lenge that mathematics historians face in judging his-
torical works. Coordinate geometry is a natural leap for 
the historians but probably not for Menaechmus, crit-
ics assert. Graphing techniques were developed in the 

fourteenth century in publications of Nicole d’Oresme 
and a work titled De latitudinibus formarum (The Lati-
tudes of Forms), which some attribute to d’Oresme. 
Others assert that this attribution is an error and that 
the author is unknown. These works may have influ-
enced coordinate geometers. 

Transformations of coordinate-like systems devel-
oped along with perspective drawing techniques of 
curves and shapes, like in the works of Leone Battista 
Alberti and Piero della Francesca. Polar coordinates 
were motivated through the work of mathematicians 
such as Bonaventura Cavalieri on spiral curves like 
the Archimedean spiral, named for Archimedes of 
Syracuse.

Development
Descartes and Pierre de Fermat are both credited 
with independently introducing coordinate geom-
etry. They each introduced a type of single-axis sys-
tem or ordinate geometry. Distances could be mea-
sured at a fixed angle to the reference line. In Fermat’s 
work, curves are generated as loci rather than by 
plotting points. Historian of science Michael Sean 
Mahoney noted: “There is connected with the system 
an intuitive sense of motion or flow wholly in keep-
ing with the intuition which underlies the notion of 
an algebraic variable.” Descartes’ published work on 
coordinate geometry dates to 1637 in the appendix 
(La Géométrie) of a short book entitled Discourse 
on the Method. Descartes defined the five algebraic 
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operations of addition, subtraction, multiplication, 
division, and extraction of square roots as geomet-
ric constructions on line segments and showed how 
these operations could be performed in the Euclidean 
plane by straightedge-and-compass constructions. 
He also developed geometric techniques for solving 
polynomial equations by intersecting curves, such as 
conic sections, with each other or with lines to obtain 
solutions algebraically. Coordinate geometry helps to 
classify conic sections, which are curves correspond-
ing to the general quadratic equation

ax bxy cy dx ey f2 2 0+ + + + + =

where a, b, c, d, e, and f are constants and a, b, and c 
are not all zero. Coordinate geometry became useful 
in a wide variety of mathematical and physical situa-
tions. Sir Isaac Newton and others investigated various 
coordinate systems as well as how to convert between 
them. In the nineteenth century, Christof Gudermann 
investigated the sphere, and Julius Plücker published 
numerous volumes on analytic geometry.  

Variations
In situations where there is no obvious origin or ref-
erence axes, mathematicians developed local coordi-
nates or coordinate-free approaches. For instance, the 
Frenet–Serret frame is named for Jean Frédéric Frenet 
and Joseph Serret. It is a type of coordinate axis system 
for a curve in three-dimensional space and represents 
the twists and turns of a curve as three vectors that 
move along the curve. Jean-Gaston Darboux explored 
the analog for a surface. 

Another example is “isothermal coordinates” on 
surfaces in the work of mathematicians, like Carl 
Friedrich Gauss. Engineer, mathematician, and physi-
cist Gabriel Lamé is noted as the first to use the term 
in his 1833 work on heat transfer. August Möbius 
introduced barycentric coordinates, which utilizes 
notions related to the center of mass and the centroid 
of a triangle, and these coordinates can be found in 
computer graphics. Möbius’ work used both the posi-
tion and magnitude. 

Other mathematicians developed similar systems, 
including vectors, which allowed for compact nota-
tion. Hermann Grassmann and William Hamilton 
created the algebra of vectors. The development of 
vectors was especially useful when extending the 

geometry or physics to higher dimensions. A point  
(x, y) in the plane can also be represented by a vector 
as r = xî + y ĵ where î and ĵ are unit vectors. Mathe-
maticians including Jean-Victor Poncelet and Michel 
Chasles developed synthetic projective geometry, 
which focused on axioms instead of coordinates. Gre-
gorio Ricci-Curbastro and Tullio Levi-Civita explored 
a coordinate-independent calculus, which led to the 
development of tensor analysis that later became 
important in general relativity. Bernhard Riemann’s 
work on geodesics and Riemannian geometry led to 
geodesic coordinates, which also became important 
in relativity.

Education
Coordinate geometry took on an increased promi-
nence in schools in the nineteenth and twentieth cen-
turies. One reason was the development and curricular 
use of graph paper. A patent for printed graph paper 
dates back to Dr. Buston in the late eighteenth century. 
Graph paper makes it easier to plot points and create 
curves, and it was found to be useful in surveying and 
civil engineering projects. 

Mathematicians in the nineteenth century, like E. H. 
Moore, advocated the use of paper with “squared lines” 
in algebra classes. Coordinate geometry topics were 
also included in algebra textbooks and in textbooks 
devoted to the subject. 

One notable textbook was published by Scottish 
mathematician Robert J. T. Bell in 1910. His treatise 
on coordinate geometry in three dimensions became a 
very successful textbook on the subject and was trans-
lated into numerous languages. 
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Coral Reefs
Category: Weather, Nature, and Environment.
Fields of Study: Connections; Data Analysis and 
Probability; Geometry.
Summary: Mathematics helps describe and explain 
the formation of coral reefs.

Coral reefs are complex stony structures made of exo-
skeletons of coral polyps. Colonies of polyps form cor-
als, with their stony parts consisting of calcium carbon-
ate. All polyps in a single coral are genetically identical. 
Polyps get their energy from photosynthesis of their 
internal symbionts, one-cell algae living in the polyps. 
Some corals also have stinging tentacles for catching 
plankton, and can be painful for people to touch. The 
development and growth of coral reefs and atolls was 
fiercely debated in the nineteenth and early twentieth 
centuries. Charles Darwin argued in his 1842 publica-
tion Structure and Distribution of Coral Reefs, based on 
his personal observations, that the geometry of coral 
reefs resulted from the natural geological subsidence of 
oceanic islands. 

In other words, coral reefs formed around islands, 
growing as the islands sank away. Darwin’s chief 
opponent in this debate was Alexander Agassiz, who 
advocated the theory that coral reefs were not wholly 
dependent on subsistence for their formation but 
rather arose from a variety of geological and biologi-
cal factors. Agassiz collected data from nearly every 
coral reef on Earth before his death in 1910, but 
none of his research had been published at that time. 
Contemporaries of both Darwin and Agassiz were 
inhibited by the inability to collect data other than 
observations and relatively shallow rock samples. In 
the 1950s, geologist Harry Ladd conducted tests in 
conjunction with the U.S. War Department, including 
boring thousands of holes in the coral of Eniwetok 
Atoll. Ladd’s drill went to a depth of nearly 5,000 feet 
before finally passing completely through the coral 
into the soil below, confirming in many scientists’ 
minds that the atoll had been built up as the land had 
sunk away. Ladd purportedly erected a sign on Eniwe-
tok that read, “Darwin was right!”

Measurements and Variables
The shape of a coral reef is determined by the sea floor 
and the historical changes in sea levels. Reef scientists 

recognize three main shape types: fringing reefs, bar-
rier reefs, and atolls. Fringing reefs stay close to shores, 
and their shape is determined by the shore they circle. 
Barrier reefs start as fringing reefs, but as the water 
levels rise relative to the shore, there are deep, large 
lagoons separating the shore and the reef. When volca-
nic islands completely subside underwater, their fring-
ing or barrier reefs can stay near the surface, forming a 
circular lagoon. Such reefs are called “atolls.” 
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Reefs need clear waters for photosynthesis and can 
be modeled as interesting hyperbolic structures.



In most places, sea levels rise over the land. The speed 
of reef growth depends on multiple variables, includ-
ing temperature, water salinity, water clarity necessary 
for photosynthesis, and wave action. Reefs can grow up 
to 25 centimeters (about 10 inches) per year in height. 
Reefs cannot grow faster than sea levels rise, because 
the polyps can survive out of water only for a short 
time—for example, during the low tide. When the 
speed of reef growth matches the rise of the sea level, 
they are called “keep-up reefs.” When the speed of reef 
growth is slower than the rise of the sea level temporar-
ily, reefs may become either “catch-up reefs” when the 
speeds eventually match, or “drowned out” reefs that 
die as they are submerged too deeply. Global warming 
threatens to increase the rate at which sea levels rise 
beyond the speed of reef growth.

Because reefs need clear waters for photosynthesis, 
they grow in the parts of the ocean that are relatively 
nutrient-poor. However, reefs themselves support 
rich and diverse ecosystems—the contradiction called 
“Darwin’s paradox.” Reefs underlie less than 1% of the 
world’s ocean beds but host about 25% of the marine 
species. They are called “underwater rainforests” 
because of their active biomass production, measured 
in weight per area per day. 

Coral reefs have high fractal dimensions; in other 
words, their surface is rough, wrinkled, and uneven. 
This characteristic explains why corals thrive in mov-
ing waters. The fractal-like coral surfaces break the still 
water barrier surrounding them, with any agitation of 
water creating and amplifying turbulence. This turbu-
lence means more water moves through the polyps, 
delivering nutrients to them and removing sediments 
that could prevent photosynthesis.

Mathematical Models
Coral reefs are vulnerable to storms, tsunamis, and 
other strong natural events. By modeling reef damage, 
it is possible to intervene, and to preserve some reefs 
that would otherwise be destroyed. Existing models 
include equations that measure the forces applied to 
reefs, and the forces reefs can withstand. 

The ratio between the area of attachment of a reef 
and its total surface area plays a role in the models. The 
higher the surface area of the reef, the higher the pres-
sure storms apply to it. On the other hand, the higher 
the area of attachment, the more force it takes to detach 
the reef. By modifying these variables, as well as the 

force of the storm, oceanologists can predict what hap-
pens to particular reefs. Moreover, with more compu-
tation power comes the opportunity to model detailed 
shapes of reefs, individual currents, and other local 
variables, making predictions more precise. 

Dynamic systems of differential equations are the 
area of mathematics applicable to complex ecosystems 
such as coral reefs. More deterministic models such as 
algebraic or simple differential equations do not cap-
ture the reality as well. 

Hyperbolic Crochet Coral Reef Project
The crocheted coral reef is a collaborative project with 
hundreds of contributors and several exhibits world-
wide, and is coordinated by the Institute for Figuring. 
It demonstrates hyperbolic geometry, which is a non-
Euclidian geometry discovered about 200 years ago 
and found in nature—including corals. “Hyperbolic 
crocheting,” the process for modeling corals, was first 
described in the late 1990s. It involves a simple repeat-
ing algorithm with introduced “mutations” that pro-
duce varied forms. 

The models explore mathematical entities that can 
be found in coral reefs, such as the hyperbolic radius 
of curvature, pseudospheres, hyperbolic planes, and 
geodesics.

Further Reading
Dobbs, David. Reef Madness: Charles Darwin, Alexander 

Agassiz, and the Meaning of Coral. New York: Pantheon 
Books, 2005.

Institute for Figuring. “Hyperbolic Crochet Coral Reef.” 
http://crochetcoralreef.org.

Sale, Peter. Coral Reef Fishes: Dynamics and Diversity in  
a Complex Ecosystem. San Diego, CA: Academic  
Press, 2002.

Maria Droujkova

See Also: Animals; Crochet and Knitting; Geometry of 
the Universe; Surfaces; Tides and Waves; Transformations.

Counterintelligence
See Intelligence and Counterintelligence
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Coupons and Rebates
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Measurement.
Summary: Mathematical differences between coupons 
and rebates provide different rewards to consumers.

Offering price reductions through coupons and rebates 
is a popular means of increasing the number of sales of 
a product, attracting customers to retail stores (both 
physical and online), and promoting public awareness 
of a brand name or product. One of the first known 
instances of a coupon was in 1894, when the Coca-Cola 
Company gave out handwritten tickets for samples of 
its new soft drink. The next year, Charles Post, of Post 
Cereal, started issuing coupons to help sell groceries. 
By the 1930s, these coupons were increasingly popular 
for saving money during the Great Depression. Some 
researchers claim that by the mid-1960s, half of Ameri-
can households used coupons. 

In the twenty-first century, coupons are available on 
the Internet, or as permanent discount cards, in addi-
tion to their traditional paper form. In the age of online 
shopping, coupons for free shipping are cited by some 
as one of the most important factors in determining 
where to shop.  For the customer, coupons and rebates 
bring savings on regularly purchased items and provide 
an incentive to try new products or services. In general, 
coupons are small discounts (a few dollars or cents) 
redeemed at the time of payment. The term “rebate” 
generally refers to larger reimbursements or discounts 
where the price reduction is either applied at the time 
of sale (an instant rebate) or reimbursed after required 
documents are mailed in by the customer. The specific 
type of coupon or rebate affects the calculation of both 
the discount and any applicable sales tax.

Coupons
Coupons may be issued by a product manufacturer or 
a store, and the redemption is somewhat different for 
the two types. When a customer presents a manufac-
turer coupon to a retailer, the customer pays any appli-
cable tax on the full price of the item before the coupon 
is applied. For example, if a retailer charges $50 for a 
product with an 8% sales tax  and a customer presents 
a manufacturer coupon for $10, then the cost to the 
customer at the time of purchase would be $44; that 
is, the original $50, plus sales tax of $4 ($50 × 0.08), 

minus the $10 coupon. Typically, the manufacturer 
reimburses the retailer for the amount of the coupon 
plus handling.  

Sometimes a retailer like a grocery store, pizza res-
taurant, or automobile detailer will offer its own store 
coupons or rebates on its products or services. When 
a customer uses a store coupon, tax is computed on 
the balance after the coupon is deducted. If the $10 
manufacturer’s coupon is replaced by a $10 store cou-
pon, the cost to the customer would be less: $43.20 
versus $44.00.

Many retailers issue plastic cards that customers 
present to take advantage of weekly card specials or 
to receive a certain percentage discount on purchases 
made with the card. These cards not only allow shop-
pers to save money, but also the data collected when 
these cards and the associated purchases are scanned 
allow stores to better track their sales and inventory, 
and sometimes offer additional discounts tailored to a 
specific buyer’s purchasing patterns. Sometimes these 
cards are free, but other times they require an initial 
or annual fee. 

A retailer may offer a card at a cost of $10 that can 
be used for a 10% discount on all purchases at that 
store for one year. If a first-time customer checks out 
with a balance of $110 before tax, the customer can 
determine whether to purchase the card and take the 
10% reduction. Although the card costs $10, the cus-
tomer would save $11 on the initial balance (10% of 
the $110 total), resulting in a final cost of $109. The 
tax would be marginally less as well, since the total was 
reduced. Thus, the card would pay for itself at the first 
purchase, even before any other savings occur.

Another form of coupon is a card that is stamped each 
time the customer purchases a specified type of product, 
until a certain number of stamps are accrued. The cus-
tomer then receives the next purchase of the specified 
product type free of charge, except for—possibly—sales 
tax. This form of coupon may be offered by certain res-
taurants, food markets, coffee shops, or bookstores.  

Rebates
For a manufacturer rebate, an electronics retailer may 
sell a computer for $1,500, together with a free $100 
printer after a mail-in rebate. The customer pays the 
tax on both the computer and the printer, and the 
manufacturer reimburses the customer $100 after the 
rebate is processed. With 8% sales tax, the cost to the 
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customer after the rebate would be $1,628 (where the 
sales tax was 8% of $1,600, or $128).

Historically, economists have viewed consumer 
spending as a function of income. Politicians often 
cite this principle when pushing for tax rebates, believ-
ing they will increase consumption. However, there is 
little empirical evidence to support this notion, and in 
some cases there is contrary evidence. In 2001, the U.S. 
Congress enacted a tax rebate, giving $300 to anyone 
who had paid income taxes the previous year ($600 
for couples). Economic indicators showed no associ-
ated increase in spending but rather a spike in saving. A 
survey of a sample of households that received a rebate 
reported that roughly one in five of those asked said they 
would spend the money. The Wall Street Journal ran the 
headline “Rebates Boost Incomes, But Not Spending.” A 
study of the 2008 rebate found similar results.

Coupon Collector’s Problem
There is a classic probability problem known as the Cou-
pon Collector’s Problem, which has been explored by a 
number of mathematicians, including the prolific Paul 
Erdos. The problem supposes that there is some number 
of different coupons (n) a person needs to collect to win 
a prize and asks how many coupons will he or she have to 
acquire, one at a time, to get a complete set. Usually, the 
coupons are equally likely to be drawn, and getting one 
of the n coupons does not prevent another of the same 
type from being drawn. Solutions to the problem can be 
found in a number of ways, including harmonic num-
bers, probability generating functions, and simulation. 
Extensions of the Coupon Collector’s Problem are very 
useful in manufacturing quality control, for situations in 
which a number of product types must be sampled. 

Further Reading
Better Business Bureau. “Mail-In Rebates: Now Available 

in Paper or Plastic.” http://www.bbb.org/us/article 
/mail-in-rebates-now-available-in-paper-or 
-plastic-13249.  

Spencer, K., and S. Rose. How to Shop for Free: Shopping 
Secrets for Smart Women Who Love to Get Something 
for Nothing. Philadelphia: Da Capo Press, 2010.

Barbara A. Shipman

See Also: Budgeting; Comparison Shopping; Market 
Research.

Credit Cards
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Number and Operations; 
Data Analysis and Probability.
Summary: Credit card issuers use mathematical 
models to determine credit lines and interest rates, as 
well as to detect fraud and analyze offers. 

Credit card issuers use statistical analysis in a wide 
variety of ways. Statistical models of risk help the 
banks decide whom to approve for card membership 
and what interest rate to charge. Models also help issu-
ers manage the risks of their existing customers and 
detect fraudulent transactions. Credit card issuers 
use designed experiments to help decide which offers 
have the largest potential to be profitable. Typically, 
the bank tries out the new offer on a sample of people 
(while leaving others in a control group) before decid-
ing whether the new offer will be successful if given to 
the entire customer base. Data mining techniques help 
banks look at customers’ past transactions in order to 
model future uses of the card and to help decide which 
customers are most likely to want which other prod-
ucts and services that the bank offers.

History
The first credit card was born when businessman Frank 
McNamara realized that he had forgotten his wallet at 
a New York City restaurant. After his wife rescued him 
by bringing cash to the restaurant, he vowed he would 
never face that embarrassment again. The Diners Club 
card was born a few months later in 1950 and became 
the first widespread alternative to cash. The first busi-
nesses honoring Diners Club purchases were charged 
7% of each transaction (typical costs are now 2% to 
5%), and subscribers were charged $3 per year. 

Bank of America pioneered its BankAmericard 
program in Fresno, California, in 1958, and Ameri-
can Express issued the first plastic card in 1959. Carte 
Blanche was another early card. The idea of a credit 
“card” really gained momentum when a group of banks 
formed a joint venture to create a centralized system 
of payment. National BankAmericard, Inc. (NBI) took 
ownership of the credit card network in 1970 and for 
simplicity and marketability changed its name to Visa 
in 1976. (One reason for the name “Visa” is that it is 
pronounced nearly the same way in every language.) 
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That year, Visa processed 679,000 transactions—a vol-
ume that is processed on average every four minutes 
today. The Visa system is currently able to handle a load 
of about 6800 transactions per second, a capacity nearly 
exceeded on December 23, 2005, during the height of the 
Christmas shopping season. Visa is the largest merchant 
network, although MasterCard, American Express, and 
others process many transactions as well. 

The Fair Isaacs Company (FICO) has grown in par-
allel with the credit card industry. It was founded in 
1956 by mathematician Earl Isaac and engineer Bill 

Fair with the idea that data, used intelligently, can be 
used to make better business decisions. The next year, 
Conrad Hilton hired FICO to design and implement 
a complete billing system for his Carte Blanche card. 
FICO next developed the methodology to “score” the 
credit rating of customers but was unable to sell the 
idea to credit card banks until the 1970s. By the early 
1990s, nearly every credit card bank was using some 
form of credit card scoring to help decide which cus-
tomers to approve for credit and at what price. In 1995, 
both Fannie Mae and Freddie Mac, the two largest 
mortgage brokers in the United States, recommended 
using FICO scores for use in evaluating U.S. home 
mortgages. Today, U.S. citizens can access their various 
credit scores through online credit bureaus and, in fact, 
the U.S. government developed a policy allowing con-
sumers to find out their scores once a year for free. 

Credit Scoring
Credit bureaus use statistical analysis on past transac-
tions, as well as income and other demographic infor-
mation, to generate a credit score, usually referred to 
as a FICO score. This number is on an arbitrary scale 
that generally runs from 350 to 850 (with slight varia-
tions).  The three main credit bureaus are Experian, 
TransUnion, and Equifax. Credit scores on the same 
individual may differ among the credit bureaus because 
of slight variations in the statistical model used to gen-
erate the number and slightly different data reported to 
the various bureaus. In all cases, the credit score is a pre-
diction of how likely a borrower is to pay back the loan. 
For credit card companies, the score is used to decide 
both whether to issue the card, and what price (annual 
percentage rate) to charge on a balance that’s carried 
over from month to month.

Data Mining 
Credit card transactions, while vital to the running of 
the credit card bank, also contain information on the 
cardholder’s spending patterns. These databases are 
very large, containing the records of tens of millions of 
customers, and dozens to hundreds of transactions per 
record. Using statistical models (often logistic regres-
sion models), banks can use these vast data reposito-
ries to identify the customers who are predicted to have 
the highest probability of enrolling for a new product 
or service. These offers may be made via a number of 
different channels. The offer may be given while the 
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Fraud Detection

C redit	card	banks	use	statistical	algorithms	
to	detect	 fraudulent	use	of	 credit	 cards.	

During	the	few	seconds	that	it	takes	to	approve	
or	deny	a	credit	card	transaction	at	a	merchant’s	
site,	 information	 about	 the	 card	 is	 sent	 to	 a	
processing	center.	 Typically	at	 this	point,	only	
cards	that	are	known	to	be	stolen,	fraudulent,	
delinquent,	or	other	states	that	can	be	looked	
up	 will	 cause	 a	 denial.	 After	 the	 transaction	
has	been	approved,	algorithms	examine	trans-
actions	to	see	if	the	pattern	is	suspicious.	The	
cardholder	may	be	contacted,	usually	by	 tele-
phone,	to	verify	that	the	transaction	was	made	
by	the	cardholder.	The	algorithms	that	identify	
a	suspicious	transaction	can	be	quite	sophis-
ticated	and	are	based	on	the	past	behavior	of	
the	cardholder.



cardholder is calling a call center (800 number) with 
an issue concerning his or her card (in which case, the 
statistical algorithm will notify the operator that this 
customer should get the specific offer), by e-mail, by an 
outbound telemarketing call, by a targeted ad that pops 
up while the customer is visiting the issuer’s Web site, 
or as direct marketing (so-called junk mail).  

Experimental Design 
To evaluate whether a new type of offer (the so-called 
“challenger”) will be more effective (as measured by 
higher enrollment, revenue, profit, or other criteria) 
than the current offer (the “champion”), banks often use 
statistically designed experiments. The simplest such 
experiment is randomized at two levels, also known as a 
champion/challenger design. In this design, a sample is 
selected at random from the entire customer database. 
A proportion of those are chosen as the control group. 
They receive the current offer (the champion), and the 
rest are chosen to receive the challenger. The data are 
then collected, and the differences in response between 
the two groups are evaluated. The design can be compli-
cated by blocking (stratification) on card type, region, 
income, or other demographic variables. Designs can 
be complicated by adding more factors, more levels, 
and by asymmetries introduced by infeasible treatment 
combinations. In the credit card industry, analysis is 
also complicated by the fact that one cardholder may be 
getting more than one experimental treatment (offer) 
simultaneously from different groups within the same 
organization and from different organizations. Capital 
One Bank claims to run upward of 40,000 such experi-
ments a year on its cardholders.

Further Reading 
Box, G. E. P., J. S. Hunter, and W. Hunter. Statistics 

for Experimenters. 2nd ed. Hoboken, NJ: Wiley 
Interscience, 2005.

McNamee, Mike. “Credit Card Revolutionary.” Stanford 
Business 69, no. 3 (2001). 

Paterson, Ken. “Credit Card Issuer Fraud Management.” 
Mercator Advisory Group, 2008. http://www.sas.com/
new/analyts/mercator_fraud_1208.pdf

Richard De Veaux

See Also: Accounting; Budgeting; Data Mining;  
FICO Score; Money.

Crime Scene  
Investigation
Category: Government, Politics, and History.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement; Number and Operations; 
Problem Solving.
Summary: Crime scene investigation uses 
sophisticated mathematical models to determine 
what events took place at a crime scene, based on the 
available physical evidence.

Crime scene investigation (CSI) is the rigorous pres-
ervation and documentation of physical evidence at a 
specific location related to a criminal event. Investiga-
tors meticulously collect and measure crime-related 
evidence for scientific and mathematical analysis, 
reconstruction, and courtroom presentation. Overall, 
crime scene investigation and reconstruction involve 
the application of basic mathematical formulas and 
equations, as well as physics, geometry, and analytical 
thinking. Applied mathematical procedures based on 
well-collected data produce accurate results that gener-
ate reliable evidence for presentation in a criminal trial. 
Analysis of bullets, blood patterns, fingerprints, vehicle 
skid marks, chemical traces, and other data yield quan-
titative results that are invaluable in finding, arresting, 
and convicting suspects. 

According to mathematician Chris Budd, “Many 
of the mathematical techniques used by forensic sci-
entists are similar to those used in medical imaging 
for brain tumors, oil prospecting and remote sensing 
by satellites.…It is remarkable how often ideas which 
might be thought of as pure mathematics often find 
very real and important applications.”

Mathematical Modeling of Projectiles
An automated ballistic identification system (ABIS) 
is a computer system designed to capture, store, and 
compare digital images of bullets and cartridge casings. 
A scanner captures images of bullets and cartridges 
so that a mathematical algorithm can extract their 
unique shapes, marks, and striation patterns (signa-
tures), which are compared to a vast database of stored 
images. Both wavelets and statistical correlation tech-
niques play a role in these analyses. Forensic ballistics 
involves the study of a projectile in motion, from the 
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time of shooting to the time of impact with the target. 
Mathematics is used to analyze and describe a projec-
tile’s path though both the air and any obstructions, 
such as a body, as well as the mechanical characteristics 
of the weapon that fired the projectile. 

Unobstructed projectile motion through air is typi-
cally parabolic, but a bullet may trace a complex path if 
deflected or stopped by an object, which requires more 
advanced mathematics, such as fractional differential 
equations, to describe. Blood droplets are another sort 
of projectile found at crime scenes, and the blood spray 
patterns are analyzed with geometric and trigonomet-
ric methods to determine the point of origin and other 
crucial characteristics. Along with ballistics and blood 
spatter, precise wound descriptions, which are closely 
related to fields like surveying and topography, can be 
mathematically modeled to suggest the type of weapon 
or bullet most likely to have made the wound.

Locations and Relationships
The locations and relative relationships among the vari-
ous pieces of evidence are also important in making sense 
of a crime scene. Precise measurements allow investiga-
tors to place every item of evidence in its original loca-
tion with some degree of certainty. These may be repre-
sented in a two-dimensional diagram, or in a computer 
reconstruction that uses two- or three-dimensional rep-

resentation. Newer laser technology can record distance 
very quickly and precisely, as well as compute height 
using trigonometry. Mathematical computer algorithms 
can then combine data from multiple measures of a 
single object, taken from many angles, to produce three-
dimensional models with minimal error. Another exam-
ple of imaging used to solve a famous ancient “murder 
mystery” is the case of King Tutankhamen. X-rays from 
the 1960s, which could only provide two-dimensional 
images, were inconclusive. However, using CAT scans, 
which can mathematically construct three-dimensional 
images, scientists concluded that the king probably died 
from an infection in a broken leg.

Probability
Though the phrase “innocent until proven guilty” is 
often heard in connection with criminal investiga-
tions, in many cases the available evidence allows only 
a statement of what probably happened versus abso-
lute certainty. Homicide investigators must logically 
infer or deduce what transpired at the crime scene by 
using evidence to reconstruct events and by matching 
a crime scene’s characteristics to other examples. They 
may hypothesize a timeline or scenario and then apply 
scientific analysis to verify or refute the sequence of 
events to a high degree of probability. 

This process requires critical scientific thinking and 
logical analysis. Investigators may use con-
trolled experimentation, such as firing sev-
eral bullets from the same weapon to look 
for variations in the pattern. Increasingly, 
they can also use computerized reconstruc-
tions of crime scenes and data to manipu-
late critical variables and conduct multiple 
“what if” simulations to eliminate unlikely 
scenarios and narrow the set of possible 
suspects and causes. Probability also comes 
into play in DNA analysis, where results 
are given the form of probability matches, 
and scientific tests such as gunshot resi-
due, which are not 100% accurate and may 
occasionally result in a false outcome.

Conclusion
In summary, crime scene investigation 
requires investigators to apply many sci-
entific and mathematical analyses to deter-
mine an accurate sequence of events and 
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reconstruct what actually happened at a crime scene. 
Physical evidence helps investigators focus on a suspect 
and the manner in which the crime was committed. 
Successful crime scene investigations, reconstructions, 
and interpretations are the result of sound hypothesis 
formulation, experimentation, laboratory examina-
tion, and logical analysis. Applied mathematics pro-
vides the logic and rational simulations for scientific 
reasoning and assumptions. 

Further Reading
Adam, C. Essential Mathematics and Statistics for Forensic 

Science. Hoboken, NJ: Wiley, 2010.
Budd, C. “Crime Fighting Maths.” +Plus Magazine  

37 (2005).
Devlin, Keith, and Gary Lorden. The Numbers Behind 

NUMB3RS. New York: Penguin, 2007.

Thomas E. Baker

See Also: Fingerprints; Intelligence and 
Counterintelligence; Mathematics, Applied; Measuring 
Time; Medical Imaging; Probability.

Crochet and Knitting
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Measurement; 
Representations.
Summary: Crochet and knitting can be used to 
create models of mathematical surfaces.

Crochet and knitting are techniques for turning one-
dimensional yarn or thread into two-dimensional fab-
ric by knotting it in a regular pattern. Both produce 
flexible, elastic fabric, although crochet is firmer than 
knitting. Historically, crochet and knitting were used 
to produce both functional and ornamental textiles by 
hand, but both are now hobby pursuits. 

Since both techniques produce regular arrays of 
stitches, they can be used to display a wide variety of 
symmetric patterns. Furthermore, both can be used to 
make intrinsically curved fabrics. This allows math-
ematicians and others to approximate or replicate the 
geometry of hard-to-visualize objects, including mod-

els of two-dimensional mathematical curved surfaces, 
such as spheres, tori, or sections of the hyperbolic 
plane. Crocheting and knitting circles have been held 
at professional mathematics conferences for both rec-
reation and serious discussion of mathematical con-
cepts. Mathematician Carolyn Yackel has noted, “Knit-
ting and crocheting are helping us think about math 
we already know in a different light.”

Crochet
In crochet, stitches are made by pulling loops of yarn 
through each other with a hook. One stitch is worked 
at a time. Every crochet stitch is attached at its base to 
an earlier stitch. Varying the type of stitch and the way 
new stitches are worked into earlier stitches can produce 
many different patterns. Crochet can be worked back 
and forth in rows or in circular rounds. Working two 
stitches into one base stitch increases the number of 
stitches and makes the fabric wider; decreasing the num-
ber of stitches reduces the width of the fabric. Placing 
increases or decreases at the edges of the work makes flat 
fabric with curved edges. Placing increases or decreases 
in the middle of the fabric makes it intrinsically curved.  

The origins of crochet are not well understood. 
Few—if any—samples are known from before the nine-
teenth century. At that time, it was generally worked in 
fine cotton or linen thread and used for lace edgings, 
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A hexagonal medallion made by crocheting in 
rounds. Crochet can be also worked in rows.



doilies, and other household textiles. From the middle 
of the twentieth century on, crochet has generally been 
worked in thicker yarn. It is often used to make blankets 
known as “afghans.” The hobby of crocheting stuffed 
animals, known as “amigurumi,” has spread around the 
world in recent years; because of the curved shape that 
these toys are crocheted in, they have few seams. 

Several mathematicians have designed crocheted 
models of mathematical curved surfaces. As mathema-
tician Daina Taimina has pointed out, it is especially 
simple to crochet negatively curved surfaces, such as a 
hyperbolic plane; the crocheter simply works an increase 
(an extra stitch) once every two or three (or n) stitches 
in every row. These increases cause the fabric to fold 
back on itself rather than lie flat. The closer together the 
increases are, the more ruffled the fabric. 

The Hyperbolic Crochet Coral Reef, a project by 
the Institute for Figuring in Los Angeles, is intended to 
increase awareness of global warming issues by bring-
ing together mathematicians, marine biologists, and 
community crafters in a highly visible way. The proj-
ect asks volunteers to crochet models of coral reef life 
forms using Taimina’s patterns. This effort and other 
mathematical crochet or knitting projects have been 
used successfully by mathematics educators in their 
classrooms.

Knitting
In knitting, as in crochet, stitches are made by pulling 
loops through each other. Knitting can also be worked 
in either rows or rounds. Two (or more) needles are 
used and many stitches are held on the needles simul-

taneously. The most basic stitches are “knit” and “purl” 
and there are techniques for increasing, decreasing, 
and making textural elements such as holes, cables, 
or bobbles. Knitting produces a flatter, stretchier fab-
ric than crochet. (Indeed, most elastic fabric produced 
today is machine knitted.) As with crochet, increases 
and decreases allow the knitter to change the shape and 
curvature of the fabric. The shaping and elasticity make 
knitting ideal for garments such as socks, hats, gloves, 
and sweaters where both fit and comfort are important. 

Hand knitting was once an important industry in 
Europe. Medieval guilds produced stunning garments 
for the wealthy in the Middle Ages, and a large cottage 
industry knitted stockings in the eighteenth and nine-
teenth centuries. Written patterns become available 
in the nineteenth century, and ornate knitting in fine 
thread became a popular pastime for ladies. 

Hand knitting resurged in popularity in the first 
decade of the twenty-first century. Many current design-
ers of garments and home textiles take their inspiration 
from mathematics, using symmetry and geometry to 
create attractive garments and household items. 

Like crochet, knitting can be used to produce curved 
mathematical surfaces. Wide, soft, knitted Mobius 
bands are often knitted for use as scarves. 

Further Reading
 Belcastro, Sarah-Marie, and Carolyn Yackel, eds.  

Making Mathematics With Needlework. Wellesley, MA: 
A K Peters, 2008.

Bordhi, Cat. A Treasury of Magical Knitting. Friday 
Harbor, WA: Passing Paws, 2004. 
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Falick Books, 2006.

Obaachan, Annie. Amigurumi Animals: 15 Patterns  
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Creatures. New York: St. Martin’s Press, 2008. 
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Crosswords
See Acrostics, Word Squares, and Crosswords

Crystallography
Category: Weather, Nature, and Environment.
Fields of Study: Geometry; Measurement; Number 
and Operations; Representations.
Summary: Various mathematical principles are 
inherent in the structure of crystals and are used to 
study and classify them.

Crystallography is the study of the periodic structural 
arrangements of particles in solids. The first discover-
ies of the crystallographic structure of materials were 
made in the early twentieth century with the X-ray dif-
fraction technique pioneered by Max van Laue. Solids 
that have crystal structures have a sharp melting point, 
which distinguishes them from amorphous substances, 
such as glass, which has neither a sharp melting point 
nor a crystal structure. 

All matter tends to crystallize, since a crystal form is 
the lowest energy state. In reality, most physical crys-
tals will have flaws rather than a perfect geometric 
structure. The chemical composition of a substance 
does not determine its crystal form. Calcareous spar, 
for example, has at least three distinct crystal types. 
Although crystals exist in three dimensions, some sub-
stances, such as graphite, form strong bonds between 
molecules in a plane, and only weak bonds between 
parallel planes. Mathematics is inherently connected 
to crystallography, as mathematicians describe and 
classify crystal structures and also use crystallographic 
methods to solve mathematical questions, such a pack-
ing problems. Despite almost a century of the existence 
of the modern science of crystallography, scientists do 
not have a good understanding of how local ordering 
principles produce large-scale order.

Lattices
The first consideration in crystal structure is the lattice, 
also known as the Bravais lattice, after August Bravais. 
There are 14 types of lattices. In a crystal structure, a 
translation is a motion in space in a certain direction 

through some distance. The arrangement of atoms, 
ions, and molecules must be periodic, and there must 
be three nonunique axes of translation. An axis of 
translation specifies a direction in which the structure 
repeats. If the whole structure is moved the proper dis-
tance in the direction of an axis, it will exactly cover 
itself. The lattice can be considered to be all the points 
to which any given particle can be translated by a trans-
lation, which also moves the entire crystal structure 
onto itself. Thus, the lattice consists of all the points 
that a given point or particle is moved to by a transla-
tion. From every point in the lattice, the view of the rest 
of the crystal is exactly the same. The portion of the 
crystal obtained by starting with a particle and mov-
ing it the smallest possible distance in each of the three 
translation directions is known as the unit cell.

Symmetries in Crystals
The geometry of a crystal structure is characterized 
by its symmetries. Besides translations, other symme-
tries include reflections in a plane, rotations through 
an angle about an axis, glide reflections (translation 
combined with a reflection), and screw translations 
(translation with a rotation). A crystal structure can 
only have rotations that are one-half, one-third, one-
fourth, or one-sixth of a complete revolution. Math-
ematically speaking, two crystallographic structures 
are the same if their symmetries are the same. A collec-
tion of symmetries for an object is called a “symmetry 
group.” Yevgraf Federov and Arthur Schoenflies, in the 
late 1800s, independently discovered that there are 230 
distinct crystallographic symmetry groups in three-
dimensional space.

Other Crystals
Wilson Bentley provided a wealth of insight into the 
structure of snow crystals using a photographic micro-
scope, taking thousands of photographs of individual 
snowflakes over the course of 50 years. His photographs 
show that although snowflakes always have a basic hex-
agonal symmetry, they exhibit an endless variety of 
detail and seem to have a limitless number of forms. 
The simpler snowflakes grow slowly at high altitudes 
in low temperatures, and the more complex ones form 
at higher temperatures at greater humidity. Besides 
direct examination, information about the structure of 
snowflakes has been deduced by the forms of halos that 
they cause around the sun and moon.
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In recent years, substances such as various alumi-
num alloys have been discovered to have regularity of 
structure but no translational symmetry. These sub-
stances are called “quasicrystals,” and unlike true crys-
tals, they can have 5-fold, 8-fold, 10-fold, or 12-fold 
rotational symmetry.

Further Reading
Bentley, W. A., and W. J. Humphries. Snow Crystals. New 

York: Dover Publications, 1962.
Burke, John G. Origins of the Science of Crystals. Berkeley: 

University of California Press, 1966.
Engels, Peter. Geometric Crystallography. Dordrecht,  

Holland: D. Reidel, 1986.
Kock, Elke, and Werner Fischer. “Mathematical 

Crystallography.” http://www.staff.uni-marburg 
.de/~fischerw/mathcryst.htm. 

Lord, Eric A., Alan L. Mackay, and S. Ranganathan. New 
Geometries for New Materials. Cambridge, England: 
Cambridge University Press, 2006.

Steven R. Edwards

See Also: Molecular Structure; Nanotechnology;  
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Cubes and Cube Roots
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication; 
Connections; Geometry.
Summary: Cubes and cube roots have been the 
subject of classical problems in mathematics, some of 
which were not solved for centuries.

Cubes and cube roots of numbers have played an 
important part in the development of mathematics. 
Middle school students are taught cubes and cube 
roots in order to solve equations and to calculate vol-
umes of solids. In calculus, the cube root function is 
a common example of a function that is continuous 
everywhere but has an infinite derivative at one of its 
points. In addition, the cube function is an example 
of a function that is strictly increasing everywhere but 

has a point where the derivative is zero. The cube rule 
relates the percentage of popular vote in an election 
with the expected percentage of seats won in a two-
party election. The power needed to overcome wind 
resistance is directly proportional to the cube of the 
wind speed. One model shows the heart rate in mam-
mals is inversely proportional to the cube root of the 
weight of the animal. People in many different cultures 
have studied cubes and cube roots, and numerous 
interesting stories are found in its history. These simple 
objects have also generated many new ideas and new 
fields of mathematics.

Definition
To cube a particular number x, multiply it by itself 3 
times—this is denoted x3. If x is a number such that 
x y3 =  for some other number y, then x is a cube root of 
y, written as x y= 3 . Since −( ) = − × − × − = −5 5 5 5 125

3
, 

−5 is the cube root of −125, and the notation is

− = −125 5
3

.

The cube of any real number is unique; however, every 
real number has exactly one cube root that is a real 
number and two cube roots that are complex numbers.  

Early History
As with squares, the earliest uses of cubes of numbers 
involved common geometric objects, specifically the 
cube, which is a three-dimensional object with six 
sides, all of which are congruent squares. The volume 
of a cube is the cube of the length of one of its sides. 
The volume of a sphere is directly proportional to the 
cube of its radius. One of the classical problems in 
Greek mathematics was the problem called “Duplica-
tion of the Cube.” The problem was to find the length 
of an edge of a cube that has double the volume of a 
given cube using the tools of the time, the ruler and 
compass. It is now known that if x is the length of the 
side of the given cube, then 23 × x  is the length of the 
cube with twice the volume. One possible origin of this 
problem is that, in 430 b.c.e., it was proclaimed through 
the oracle at Delos that the cubical altar to Apollo was 
to be doubled in volume in order to alleviate a plague 
that had befallen the people. Another possibility is 
that the Pythagoreans successfully doubled the square 
and doubling the cube was a natural extension. In any 
event, many great mathematicians throughout history 
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worked on this problem, and, in the nineteenth cen-
tury, it was proven that a solution was impossible. 

Cube roots can be exact numbers if the cube root is 
an integer or a fraction. However, the cube root of most 
numbers is irrational (it has a infinite non-repeating 
decimal expansion) and its value can only be approxi-
mated. The easiest method to approximate the real 
cube root of a real number is to raise the number to 
the 1/3 power on a calculator. Obviously, the calcula-
tor is a recent invention, and other methods have been 
developed for approximating a cube root. Some of the 
earliest known methods are found in the Chinese text 
Nine Chapters on the Mathematical Art (c. first century 
c.e.) and in the book Aryabhatiya by the Indian math-
ematician Aryabhata (b. 476 c.e.). Both methods use 
the formula a b a a b ab b+( ) = + + +3 3 2 2 33 3  repeat-
edly to generate the successive digits of the cube root. 
Approximations to cube roots can also be computed 
with the Chinese abacus, the suànpán, which dates to 
200 b.c.e. In many cases, scribes would create tables 
of cube roots, which people would use to look up val-
ues for use. Barlow’s Tables, named for mathematician 
Peter Barlow, who originally published in 1814, give the 
value of cubes and cube roots to nine decimal places 
and are still in print in the twenty-first century. Rec-
reational mathematicians have found it fun to devise 
ways to compute cubes and approximations to cube 
roots in their head without outside assistance.

Cubic Equations
Cubic equations are equations that involve positive 
integer powers of x where the highest power is 3. Math-
ematicians have been trying to solve these equations 
from the earliest times. The Babylonian text BM 85200 
(c. 2000 b.c.e.) contains many problems that compute 
the volume of an excavated rectangular cellar by setting 
up and solving a cubic equation. Another Babylonian 
tablet contains, among other things, a table of integers 
and the sum of each integer’s square and cube, and it 
was presumably used to solve cubic equations.

Archimedes of Syracuse (c. third century b.c.e.) 
considered the problem of passing a plane through a 
sphere such that the volumes of the two pieces had a 
certain ratio. This problem gives rise to what would be 
a cubic equation. A manuscript, thought to have been 
written by Archimedes, was found centuries later that 
gave a detailed solution to the problem that involved 
finding the intersection of a parabola with a hyper-

bola. Omar Khayyam (c. eleventh century c.e.) was 
the first to find a positive root of every cubic equation 
having one. Before this time, numbers were thought of 
as specific quantities of objects, so very little was done 
with negative numbers—and certainly not complex 
numbers. As with Archimedes, Khayyam’s solutions 
involved intersecting conic sections.

By the fifteenth and sixteenth centuries, negative 
numbers and zero were accepted, and many of the 
Greek mathematical texts were translated to Latin. 
The field of algebra had been developed, and people 
could study equations as expressions with variables 
that can be manipulated (as is done in the twenty-
first century). As the solution of the general quadratic 
equation had been discovered, Italian mathematicians 
focused their attention to the solution of the general 
cubic equation ax bx cx d3 2 0+ + + = . During this 
period, academic reputations and employment were 
based on public problem-solving challenges, and dis-
coveries were kept secret so they could be used to win 
one of these challenges. 

The solution of certain cubic equations provided the 
backdrop to one of the more entertaining chapters in 
the history of mathematics. On his deathbed in 1526, 
Italian mathematician Scipione del Ferro told one of 
his students, Antonio Maria Fior, how to solve a specific 
type of cubic equation. Nine years later, Fior submitted 
30 cubic equations of this type to mathematician Nic-
colo Tartaglia in a public challenge. During the contest, 
Tartaglia himself discovered the solution and won the 
contest. After hearing of the contest, Girolamo Cardano 
contacted Tartaglia to inquire about his method. Tar-
taglia told him his solution, only after Cardano agreed 
to keep it secret as Tartaglia indicated he was going 
to publish it (thinking he was the first to discover it). 
Years later, Cardano found out that del Ferro actually 
discovered the formula and published it as del Ferro’s 
method in addition to solutions to the cubic equation 
in all cases that he and his assistant, Lodovico Ferrari, 
discovered. Tartaglia was extremely angry and felt Car-
dano had broken his promise. In the twenty-first cen-
tury, the formula for the solution of the cubic is known 
as the Cardan(o)–Tartaglia formula. 

Uses and Applications
The cubic equation also played an essential role in the for-
mulation of complex numbers. In his 1572 text, Algebra, 
Rafael Bombelli considered the equation x x3 15 4= + . 
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Applying the formula of Tartaglia and Cardano, one 
obtains a solution

x = + − + − −2 121 2 121
3 3

.

However, Bombelli knew the solution was actually 4 
and that, somehow, the square root of −121 could be 
manipulated in a way to reduce this expression to 4. 
He developed an algebra for working with these roots 
of negative numbers (thought to be of no use to earlier 
mathematicians), and complex numbers and the field 
of complex analysis was born. With complex numbers, 
one can show that any cubic equation has exactly three 
solutions, two of which must be complex and one real.

In 1670, it was discovered that French mathema-
tician Pierre De Fermat claimed that for all natural 
numbers n >2 there are no nontrivial solutions of 
positive integers a, b, c such that a b cn n n+ = . Andrew 
Wiles proved this theorem in 1994 using objects called 
“elliptic curves.” Elliptic curves are defined by a cubic 
equation of the form y x ax b2 3= + + , whose graph 
has no cusps or self-intersections. These curves are 
studied in the twenty-first century and used in both 
number theory and cryptography (the study of cod-
ing information). Even though Fermat’s equation has 
no positive integer solutions for n = 3, other problems 
involving sums of cubes have been studied.

In 1770, Edward Waring proposed the following 
question: for every positive natural number k, does there 
exist a natural number s such that every natural num-
ber N can be written as the sum of at most s numbers 
which are kth powers? If k =3, the question becomes: 
can every positive number be written as a sum of at 
most s cubes? Some examples are 5 =13+ 13+ 13+ 13+ 13 
and 23 =23+ 23+ 13+ 13+ 13 + 13 + 13+ 13+ 13.

As 23 shows, one requires at least 9 cubes. In 1909, 
David Hilbert proved that 9 is the maximum num-
ber of cubes that are required for any positive natural 
number. The Waring-Goldbach problem asks a similar 
question, except it requires at most s cubes of prime 
numbers. Some progress has been made, but this ques-
tion remains unsolved as of 2010. 

One of the more interesting recent mathematicians 
is Srinivasa Ramanujan from India (1887–1920). He 
was mostly self-educated and was able to prove theo-
rems in number theory that shocked one of the eminent 
mathematicians of the time, G. H. Hardy. Once when 
Hardy visited Ramanujan, he mentioned he arrived in 

a cab numbered 1729, which did not seem very inter-
esting. Ramanujan responded that 1729 is a very inter-
esting number in that it is the smallest positive integer 
that can be represented by a sum of two cubes in two 
different ways, 1729 1 12 9 103 3 3 3= + = + , which is cor-
rect. The taxicab numbers are generalizations of this 
idea. The nth taxicab number, denoted Ta n( ), is the 
smallest positive integer that can be written as two dif-
ferent cubes in n different ways. By Ramanujan’s com-
ment, Ta 2 1729( ) = . It is also true that Ta 1 2( ) = , since 
2 = 13+ 13 and Ta 3 87 539 319( ) = , , , since

87 539 319 167 436 228 423

255 414

3 3 3 3

3 3

, , = + = +
= +

87 539 319 167 436 228 423

255 414

3 3 3 3

3 3

, , = + = +
= +

The first 6 taxicab numbers are known, but Ta 7( ) 
and beyond are all unknown as of 2010.

Further Reading
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Currency Exchange
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Measurement; 
Representations.
Summary: Mathematical models seek to price 
financial products in the foreign exchange market.

The term “currency exchange” refers to the business 
transaction that trades one currency for another. Such 
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a transaction happens in the foreign exchange (FX) 
market and is measured by foreign exchange rates, 
which are often called exchange rates. Exchange rates 
fluctuate all the time. There are many factors that 
influence the movements of exchange rates. After all, 
foreign exchange rates are largely determined by the 
supply and demand in the FX market. Numerous 
mathematical models have been proposed by financial 
mathematicians and financial engineers to price differ-
ent financial products in the FX market. Some of them 
have been used successfully by practitioners. 

Exchange Rate Definition
There are many different currencies in the world. A 
measurement of the value of one currency in terms of 
another is called a (foreign) “exchange rate” or a “cur-
rency rate.” In simple terms, an exchange rate of K cur-
rency X to currency Y means the value of K units of cur-
rency X is equivalent to the value of 1 unit of currency 
Y. It is often quoted as the price of currency X divided 
by currency Y is K. For example, the price of “euros/U.S. 
dollars is 1.3578” denotes an exchange rate of 1.3578 
U.S. dollars to euros. In other words, it means the value 
of 1 euro is the same as that of 1.3578 U.S. dollars. 

Types of Exchange Rates
A fixed exchange rate (also known as “pegged rate”) 
means one currency is pegged to 
a major currency such as 
the U.S. dollar. Usually, 
the government or 
the central bank 
of a country 

will intervene in the market to peg its currency to a 
major currency to maintain a fixed exchange rate.

In contrast, a floating exchange rate is determined 
by the market forces of demand and supply. 

Exchange Rate Fluctuation
Fluctuation of exchange rates, like fluctuation of stock 
prices, interest rates, and many other economic indices, 
is a ubiquitous phenomenon. Many factors drive the 
exchange rates up and down. These factors include but 
are not limited to capital flows, international trades, 
speculation, political factors, government or central 
bank intervention, and interest rates. However, the 
fundamental driving force is the invisible hand—the 
demand and supply—of the market.  

Besides those quantifiable drivers of the FX mar-
ket, there are other nonquantifiable ones such as the 
expectation of the investors. Attempts have been made 
by economists to account for those driving forces as 
well. Some economists have put the theory of exchange 
rate into a behavioral finance framework. Others used 
information theory and game theory. 

FX Markets and FX Financial Products
The FX market is where the currency exchange hap-
pens, and is one of the largest financial markets in 
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the world. Its major participants include commercial 
banks, investment banks, companies, investors, hedg-
ers, speculators, traders, governments, and central 
banks. A variety of financial instruments are traded 
in the FX market, including currencies, currency 
forward contracts (also known as “FX forward con-
tracts”), currency futures contracts (also known as “FX 
futures contracts”), currency options (also known as 
“FX options”) and currency swaps (also known as “FX 
swaps”). Thus, the FX market has several important 
submarkets: the FX spot market, the FX forward mar-
ket, the FX futures market, the FX options market, and 
the FX swaps market.  

Although hundreds of financial products exist in 
the FX market, the basic ones are currencies, currency 
forward contracts, currency futures contracts, currency 
options, and currency swaps. Currencies are priced by 
the exchange rates. Both currency forward contracts 
and currency futures contracts are agreements made 
between two parties to exchange a specified amount of 
currency for a specified price at a specific future date. 
The main difference is that a currency forward contract 
is traded over the counter, whereas a currency futures 
contract is traded on an exchange. They both are finan-
cial derivatives. Their prices can be determined using 
simple algebra and are expressed in terms of exponen-
tial functions. Currency options and currency swaps 
are also financial derivatives. A currency call/put option 
gives one party the right—but not the obligation—to 
buy or sell a specific amount of the currency at a price 
(called “strike price”) at a specific time in the future. 

A European option can be exercised only at matu-
rity, whereas an American option can be exercised at 
any time up to maturity. The cash flows of currency 
options are more complicated than those of the cur-
rency forward and currency futures contracts. The 
pricing requires sophisticated mathematical tools from 
stochastic calculus. Fisher Black, Myron Scholes, and 
Robert C. Merton made fundamental contributions in 
option pricing by giving the basic pricing formulas of 
European options. Scholes and Merton were awarded 
the Nobel Prize in Economics for this accomplishment 
in 1997 (Black was not awarded the prize because he 
had passed away). 

A currency swap is an agreement between two par-
ties to exchange the principal and interests of one cur-
rency at an interest rate for the principal and interests 
of another currency at another interest rate for a certain 

period of time. For example, suppose party A enters 
into a currency swap contract with party B today. For 
the next five years, party A will pay party B the interest 
of a principal of $1 million at an annual interest rate 
of 5%. In return, party B will pay party A the interest 
of a principal of 95 million Japanese yen at an annual 
interest rate of 4.5%. The two parties will also exchange 
the principals at the end of the fifth year. Like currency 
forward and currency futures contracts, the currency 
swap can also be priced using simple algebra. 
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Curricula, International
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Comparisons of mathematics curricula 
worldwide help facilitate growth and development. 

A long history exists of comparisons between under-
graduate mathematics curricula in other countries and 
the United States, and in recent decades, similar com-
parisons are being made at the primary and second-
ary levels. A recent movement in mathematics educa-
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tion has shifted the focus of how mathematics at all 
grade levels is taught. This movement was in large part 
spurred by the results of international testing. Since 
1995, the Trends in International Mathematics and 
Science Study (TIMSS) has collected data on student 
achievement for fourth-, eighth-, and twelfth-grade 
students around the world. 

The TIMSS was designed to allow for international 
comparisons, and has motivated educators to examine 
more closely those countries that consistently show 
success in educating students. Another international 
assessment, the Programme for International Student 
Assessment (PISA), focuses on measuring the mathe-
matical literacy of 15-year-olds. The results of the PISA 
reflected those of the TIMSS, prompting educators in 
less successful nations to explore how some countries, 
such as Singapore, Japan, and Korea, educate students 
in mathematics. One area that has been explored as a 
result of the TIMSS and PISA is that of curricula. Lip-

ing Ma’s 1999 book Knowing and Teaching Elementary 
Mathematics, which compared teaching methods in 
the United States and China, has also spurred numer-
ous discussions about curricula and teaching methods, 
including teacher education and preparedness of teach-
ers for presenting mathematical concepts at all levels.

It is important, first of all, that a distinction be made 
between curriculum and instructional programs. “Cur-
riculum” is generally defined as a set of standards or 
objectives that guides what is taught at a particular age 
or grade level. “Instructional programs,” on the other 
hand, are resources that are available to teach the cur-
riculum, such as textbooks. On the international stage, 
a variety of instructional programs exist and are in use, 
but mathematics curricula across nations remain sur-
prisingly similar.

An analysis of 16 countries’ curricula conducted by 
Graham Ruddock demonstrated that different nations 
used the same basic mathematical principles as a foun-

	 Curricula, International	 265

Since 1995, the Trends in International Mathematics and Science Study (TIMSS) has collected international data 
on student achievement in mathematics for fourth-, eighth-, and twelfth-grade students. 



dation for building mathematics curricula: number, 
algebra, geometry, measures, probability, and statis-
tics. While some of the principles may be combined 
together into a single topic (for example, probability 
and statistics), these basic principles existed in the cur-
ricula of all nations that were studied. However, Rud-
dock pointed out that it is important to realize that just 
because nations use the same label, it does not mean 
that the content included in the principles is consis-
tent across nations, nor does it mean that each nation 
explores each of the principles with equal rigor.

Nations also generally agree which principles of 
mathematics should be taught in the lower grades. 
Number is the primary focus for younger students, 
with a shift in focus toward algebra as students move 
into the middle grades. Nations vary widely in their 
mathematics curricula for upper grades, because of the 
nature of the different educational systems. For exam-
ple, Japan uses an integrated approach to mathemat-
ics through the upper grades, where all principles are 
taught in varying degrees at all grade levels, while the 
United States utilizes a traditional division of mathe-
matics topics (for example, algebra, geometry, calculus 
as separate courses).

Recent Pedagogical Changes
Interestingly, most nations at the beginning of the 
twenty-first century incorporate what is known as a 
“spiral curriculum,” which is designed so that students 
revisit topics that were previously learned. This form 
of curriculum represents a shift in thinking in math-
ematics education that occurred during the 1990s. The 
purpose of the spiral curriculum is to assist students 
in making connections between mathematical ideas 
as well as ensure that students retain the knowledge 
that has been previously taught. A well-designed spiral 
curriculum is designed to encourage students to view 
mathematics as an integrated whole, rather than as dis-
crete, unrelated topics.

An additional pedagogical shift has come as math-
ematics educators consider the value of conceptual 
understanding versus procedural understanding. Cur-
ricula in various nations have been adapted to include 
a stronger focus on the conceptual understanding of 
mathematics, rather than rote memorization and mas-
tery of basic math skills. For example, curricula in 
Japan, Korea, and Singapore, all of which have consis-
tently performed well on the TIMSS and PISA, have 

shifted from the learning of basic skills through rote 
memorization to an emphasis on problem solving and 
critical thinking. Curricula in other nations have fol-
lowed this example.

National Mathematics Curricula
Some nations, such as England, France, Italy, and 
Japan, have required national mathematics curricula. 
Other nations, such as the United States, Austra-
lia, Canada, and Germany, view education as a local 
responsibility; therefore, a national mathematics cur-
riculum does not exist. However, organizations such 
as the National Council of Teachers of Mathematics 
have developed national standards as suggested guide-
lines for what mathematics should be taught at differ-
ent grade levels. 

The greatest difference between nations regarding 
curricula is that of implementation. Curricula imple-
mentation varies widely among different nations, 
with some nations, like Hungary and Spain, plac-
ing a focus on local implementation while Japan has 
national guidelines for how teachers are to implement 
the curricula into their classrooms. From this variety 
of approaches comes the question of intended ver-
sus enacted curriculum. In other words, are teachers 
implementing the mathematics curriculum as it was 
designed? While the intended curricula across nations 
appear to have some strong similarities, especially at 
the lower grades, the enacted curricula may be quite 
different, thus resulting in substantial differences in 
student learning.

Current Trends in Curriculum Approaches
In recent years, the Singapore mathematics curriculum 
has garnered a great deal of attention because of the 
impressive performance of Singapore students on the 
TIMSS. The Singapore curriculum focuses on develop-
ing concept mastery through an in-depth exploration of 
a few mathematical topics each year. Also emphasized 
are the use of visual strategies in problem solving and 
establishing connections between mathematical topics. 
The Singapore mathematics curriculum has undergone 
a variety of changes since it was first developed in 1981, 
with the latest version including the introduction of cal-
culators at a younger age and a reduction in emphasis 
on mental mathematics. Several countries, including the 
United States and Canada, have begun to implement 
curricula that mirror the Singapore mathematics cur-
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ricula in the hopes of acquiring similar levels of student 
achievement on national and international assessments.

The International Baccalaureate (IB) Programme 
has also gained in popularity in recent years. The IB 
is designed to be a broad-based international curricu-
lum, and is offered at three different levels: the Pri-
mary Years Programme (PYP), the Middle Years Pro-
gramme (MYP), and the Diploma Programme (DP). 
While the IB does not focus specifically on mathemat-
ics, all three levels include mathematics as an integral 
part of the IB experience, as “mathematics is a univer-
sal language with diverse applications.” Mathematics 
in the IB is viewed as a key connection to students’ 
understanding of culture and history, and as a pri-
mary method of developing students’ logic and criti-
cal thinking skills.

Since World War II, a growing number of foreign-
educated students in mathematics and other related 
fields have chosen to attend graduate school or seek 
postdoctoral positions at American universities, with 
the largest growth occurring in the 1990s. For example, 
studies show that in 2002, nearly one-third of all grad-
uate students enrolled at U.S. universities came from 
abroad. Many reasons are cited for this effect, includ-
ing the quality of research universities, the availability 
of funding, and the existence of desirable job oppor-
tunities. A phenomenon colloquially known as “brain 
drain” reflects the significant migration of students 
with mathematical and technical skills away from their 
native countries, diminishing these countries’ ability to 
compete in the global marketplace. In response, coun-
tries are beginning to expand their efforts to retain 
these students. For example, China has reorganized 
some current universities and built new ones, as well as 
engaged in significant curriculum reform. This reform 
includes new partnerships, such as a new Danish-Chi-
nese University Centre for collaborative technology 
research, which was formalized in 2010.
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Curriculum, College
Category: School and Society.
Fields of Study: All.
Summary: Collegiate mathematics education 
is determined by the student’s choices within 
the constraints of graduation and department 
requirements.

For thousands of years, mathematics has been con-
sidered an important part of a liberal arts education. 
Examples of this idea abound, including schools and 
scholars in ancient Greece, China, and the medieval 
Islamic world, as well as in the rise of North American 
colleges in the seventeenth century. 

Debate has existed for decades about which top-
ics should be a part of the college curriculum and 
how best to teach them. Common curricula, such as 
geometry, or educational tools, like the abacus, have 
been replaced by other focuses as societies’ needs have 
changed and technology has advanced. 
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New discoveries in mathematics and emerging 
disciplines also result in curriculum changes. In the 
twenty-first century, the mathematics curriculum at 
the university level varies depending on the educa-
tional goals of the student. In the United States, the 
types and the number of mathematics courses required 
in the curriculum are typically based on a student’s 
major subject of concentration. In this regard, there 
tend to be three broad categories into which a typical 
college student may be classified: a student who needs 
to fulfill a general education requirement in the math-
ematical sciences; a student majoring in a partner dis-
cipline, such as the physical sciences, the life sciences, 
computer science, engineering, economics, business, 
education, and the social sciences; and a student whose 
major is in the mathematical sciences, including pure 
(theoretical) or applied mathematics, statistics, actuar-
ial sciences, and mathematics education. At most col-
leges and universities, curriculum is approved by both 
internal governing bodies, such as curriculum commit-
tees, and external accrediting agencies. Local, national, 
and specialized accrediting agencies may approve pro-
grams at the department or college level. 

History
There is a rich history of mathematics in higher educa-
tion contexts. From the schools of ancient Greece to 
the universities of the Renaissance, mathematics was 
an important component of the seven liberal arts, and 
mathematics was seen as a way to understand real-
ity. Three of the liberal arts, the Trivium, consisted 
of grammar, rhetoric, and logic. In the Quadrivium, 
the other four liberal arts, arithmetic was the study 
of numbers, geometry was the study of numbers in 
space, music was the study of numbers in time, and 
astronomy or cosmology was the study of numbers in 
space and time. The first college in the United States 
was Harvard University, founded in 1636. Harvard and 
other institutions of higher learning included math-
ematics in their curriculum. Around the time of the 
Revolutionary War, advanced mathematics included 
topics in surveying, algebra, geometry, trigonometry, 
and calculus. In 1776, Congress advised that disabled 
veterans, “[w]hen off duty, shall be obliged to attend 
a mathematical school, appointed for the purpose, to 
learn geometry, arithmetic, vulgar and decimal frac-
tions, and the extractions of roots.” This obligation led 
to the official founding of the United States Military 

Academy in 1802. After World War II and the begin-
nings of the Cold War, the growing emphasis on com-
puter technology greatly impacted the mathematics 
curriculum in the United States.  

Teachers have long explored different methods to 
help students succeed in mathematics. The philosopher 
Socrates is known for the Socratic Method, and in the 
early part of the twentieth century, topologist Robert 
Lee Moore developed a Socratic style of teaching that 
became widely known as the Moore Method. Versions of 
the Moore Method, or a modified Moore Method, con-
tinue to be used in twenty-first-century undergraduate 
and graduate mathematics classrooms. In some imple-
mentations, students work on problems and present 
proofs or solutions they develop on their own, with the 
class being responsible for corrections and the teacher 
acting as a guide. In the 1980s, a calculus reform move-
ment that is often referred to as the “calculus wars” 
spurred debates among mathematicians regarding vari-
ous aspects of teaching, including the use and balance of 
lectures, technology, and rigor in calculus classrooms. 

Calculus education had already undergone many 
changes in the twentieth century, such as a shift to calcu-
lus being taken earlier in the college curriculum. Follow-
ing the ethos of “calculus should be a pump, not a filter,” 
educators explored many different approaches, often 
based on empirical studies. Some campuses embraced 
new approaches, while others soundly rejected them. In 
the early twenty-first century, mathematicians continue 
to discuss and refine the calculus course as well as other 
mathematics courses. There are also discussions at both 
the college and federal level of the possibility of stan-
dardized college mathematics assessments.

General Education Mathematics Requirement 
For the college student majoring in a subject area that 
does not require specific mathematics courses, the 
extent of the mathematics curriculum may consist of 
mathematics courses that satisfy general education core 
requirements. At most colleges and universities, these 
courses enroll almost twice as many students as all 
other mathematics courses combined. These students 
represent a broad variety of majors, including students 
from the humanities, fine arts, elementary education, 
and several branches of the social sciences.

Courses that fall into this category may be termed 
or described as one of the following: quantitative liter-
acy; liberal arts mathematics; finite mathematics; col-
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lege algebra with modeling; or introductory statistics. 
These courses are designed to have students learn to 
think effectively, quantitatively, and logically, and may 
actually also be requirements for a student’s major. 
Such courses often serve as students’ final experience 
of college mathematics. While these courses may be 
terminal, such courses could also entice students to 
study mathematics further, and therefore, such course 
offerings may act as a springboard or gateway through 
which a student chooses to continue the study of the 
mathematical sciences. 

There is a wide variety of topic options in these 
courses. Some professors incorporate topics directly 
from daily life, like financial mathematics, while others 
focus on algebraic or statistical techniques that might 
be important in future coursework. General education 
courses are also seen as the final place to impact stu-
dents’ perceptions about mathematics and its role in 
society. In the same way that a survey course on impor-
tant literature might include works by William Shake-
speare, some mathematicians select course topics from 
the masterpieces of mathematics, which might include 
great theorems, like Euler’s theorem, named for Leon-
ard Euler; interesting applications, like Chvátal’s art 
gallery theorem, named for Václav Chvátal; interdisci-
plinary topics, like fractals, perspective drawing, or the 
philosophy of mathematics; or beautiful mathematical 
topics, like the golden mean. Some classes focus on the 
breadth of mathematics, while others try to cover a few 
topics in depth. There is also a wide variety of teaching 
methodologies and pedagogy. In some classrooms, the 
focus is on lectures, while in others it is on discussion 
or presentations. Technology may be a fundamental 
part of the class, or the class might focus on pencil-
and-paper methods. 

Mathematics and Partner Disciplines
During the second half of the twentieth century and 
into the twenty-first, there has been an enormous 
growth and development of scientific and technological 
disciplines, and, consequently, the role of mathemat-
ics is increasing in an expanding array of subject areas 
and professional programs. Students may be required 
to take specific mathematics courses that complement 
their major field of study. These partner or client dis-
ciplines include physics, chemistry, biology, computer 
science, engineering, business, finance, economics, 
nursing, psychology, and education. Partner and client 

discipline courses may impact mathematics as well as 
the respective discipline. 

Some of these courses are taught in mathematics 
departments; others are taught as a quantitative course 
in the major, as in some psychology departments. This 
system provides numerous opportunities for faculty 
and students in mathematics departments to collabo-
rate with their counterparts in other academic depart-
ments on campus. It is not uncommon for students 
who major in these partner disciplines to also study 
advanced mathematics, often resulting in dual majors 
or a minor in mathematics. One emerging area in 
the twenty-first century has been calculus for the life 
sciences. Cutting-edge pedagogies may come from 
mathematics or a client discipline. Faculty in either 
mathematics or a client discipline may lead efforts in 
interdisciplinary curricular development, or depart-
ments may resist changes because of staffing or philo-
sophical considerations, sometimes leading to friction 
between departments.   

Such courses need not be limited to calculus-based 
courses. For example, students in the sciences often 
benefit from the skills and techniques used in intro-
ductory statistics and discrete mathematics courses, 
which may not have a calculus prerequisite. The ability 
to visualize in three dimensions is also valued by part-
ner disciplines, and courses that emphasize geometric 
and graphical reasoning, linear systems, and vector 
analysis may also be required.    

Precise, logical thinking is an essential part of 
mathematics. While it remains a component of the 
mathematics courses taken by students who study the 
aforementioned partner disciplines, additional needs 
specific to such fields of study are also imbedded in the 
courses taken by these students. Logical and deductive 
reasoning skills may need to be developed in a spe-
cific context, and certain disciplines may or may not 
have a need for the use of formal proof found in the 
mathematics courses. Also, the level and type of logi-
cal reasoning may vary depending on discipline. For 
example, business majors may require more quantita-
tive or statistical analysis, while engineering students 
need to engage in more formal analysis in a course like 
multivariable calculus. Students studying the natural 
sciences benefit from heuristic arguments and data 
analysis, while computer scientists and software engi-
neering students need the ability to use logic to write 
simple proofs. The courses that bridge various other 
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subject areas with mathematics attempt to balance the 
rigorous proof and deductive reasoning inherent to 
mathematics with the skills these partner disciplines 
require of their students.

Students who are preparing to teach elementary or 
middle school mathematics also fall into this category. 
The curriculum designed for future primary mathemat-
ics teachers varies state by state, with many requirements 
set by schools or teacher program accrediting agencies. 
They often aim to provide these students with a firm 
foundation in various mathematical topics, such as 
number and operation, algebra and functions, geometry 
and measurement, and data analysis, probability, and 
statistics. These topics are studied at a level above and 
beyond that which they will eventually teach. Courses 
are designed to provide students with an understanding 
of these broad areas as well as an ability to make connec-
tions among various mathematics topics and with other 
subjects taught in the elementary and middle school 
curriculum. The intent is that the future teachers will 
be able to guide their students in ways that instill math-
ematical breadth and depth and “plant the seeds” of 
ideas that will come later. From 2003 to 2009, the Math-
ematical Association of America ran a program that was 
funded by the National Science Foundation called Pre-
paring Mathematicians to Educate Teachers (PMET). 
PMET strove to improve the mathematics education of 
teachers by targeting the development of faculty aware-
ness and teaching as well as instructional materials.      

Concentration in the Mathematical Sciences
For students who choose to major in the mathemati-
cal sciences, their college curriculum is centered on 
this goal of study. Major programs in the mathematical 
sciences include courses that focus on pure (theoreti-
cal) mathematics, applied mathematics, statistics, actu-
arial sciences, or secondary mathematics education. 
Depending on the college or university, the programs 
and faculty for statistics or applied mathematics, as 
well as actuarial sciences and mathematics education, 
may be housed in a department distinct from the tradi-
tional mathematics department.  

The actual course of study for mathematics majors 
will differ depending on the specific college or univer-
sity. In general, students in their first years of study will 
take a sequence of courses in calculus consisting of sin-
gle- and multivariable calculus, which include the topics 
of differentiation and integration, sequences and series, 

vector analysis, and differential equations. Beyond cal-
culus, mathematics students often take a transition 
course that includes an introduction to proof-writing 
techniques demonstrated by a study of various founda-
tional topics in mathematics, such as logic, set theory, 
functions and relations, and cardinality. 

Other commonly required courses for the math-
ematics major include linear algebra, abstract algebra, 
and real analysis (or advanced calculus). Several other 
advanced courses in mathematics that make up the 
major include ordinary differential equations, partial 
differential equations, discrete mathematics, prob-
ability and statistics, modern geometry (Euclidean and 
non-Euclidean geometry), complex analysis, topology, 
combinatorics, and number theory. Students who are 
interested in learning more applied mathematics may 
take courses in dynamical systems, numerical analysis, 
cryptanalysis, and operations research. A course in the 
history of mathematics may also be offered, especially 
for those students preparing to teach mathematics. 

Because there are numerous topics that connect 
mathematics with other disciplines, various interdis-
ciplinary courses may also be offered by mathemat-
ics departments in conjunction with other academic 
departments on campus. Some schools use common 
syllabi or exams for certain courses, and other schools 
allow more flexibility in what is taught and how it is 
taught. Regardless, there are at least some common 
expectations because mathematical definitions, ideas, 
and proofs build upon one another across courses, 
and so earlier courses in the major impact later ones. 
For example, a single-variable calculus class impacts 
multivariable calculus, and an analysis course impacts 
courses in complex analysis and topology.

The curriculum for students majoring in math-
ematics is designed so that there is a progression from 
the study and practice of computational methods and 
procedures toward an extensive understanding of the 
subject, which may include logical reasoning, general-
ization, abstraction, sophisticated applications, and for-
mal proof. Students majoring in mathematics are also 
encouraged to demonstrate their mathematical knowl-
edge in both written and oral formats. Students should 
also gain experience in the analysis of data, gaining the 
ability to move between context and abstraction—an 
especially important ability for students whose course of 
study focuses on applied areas of mathematics as well as 
for those becoming mathematics teachers. While math-
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ematics students may prefer one area of mathematics 
over another, they are encouraged to gain a broad view 
of the subject, recognizing the complementary nature 
of the following concepts: theory versus application; 
discrete versus continuous; algebraic versus geometric; 
and deterministic versus probabilistic.  

In addition to specific mathematics courses, stu-
dents majoring in mathematics may take courses in 
computer science. On some college and university 
campuses, mathematics and computer science are clas-
sified in the same department or division. The natural 
affinity between the skills used by mathematicians and 
computer scientists makes this partnering possible, 

since the application of logical reasoning to the task 
of programming enhances the learning of both dis-
ciplines. For mathematics majors who are preparing 
to enter the nonacademic workforce, experience with 
teamwork, creativity, and problem synthesis skills is 
enhanced by computer programming coursework. 

Undergraduate Research in Mathematics
Many mathematical science departments require their 
mathematics majors to engage in some form of research 
at the undergraduate level. This research can take many 
forms, such as a capstone course, a thesis, or some other 
form of a project during the senior year of college. The 

M athematics	departments	need	to	serve	all	
students	well—not	only	those	who	major	in	

the	mathematical	or	physical	sciences.	The	follow-
ing	steps	will	help	departments	reach	this	goal.

•	 Design	undergraduate	programs	to	
address	the	broad	array	of	problems	in	
the	diverse	disciplines	that	are	making	
increasing	use	of	mathematics.

•	 Guide	students	to	learn	mathematics	
in	a	way	that	helps	them	to	better	
understand	its	place	in	society:	its	
meaning,	its	history,	and	its	uses.	
Such	understanding	is	often	lacking	
even	among	students	who	major	in	
mathematics.

•	 Employ	a	broad	range	of	instructional	
techniques,	and	require	students	to	
confront,	explore,	and	communicate	
important	ideas	of	modern	mathematics	
and	the	uses	of	mathematics	in	
society.	Students	need	more	classroom	
experiences	in	which	they	learn	to	think,	
to	do,	to	analyze—not	just	to	memorize	
and	reproduce	theories	or	algorithms.

•	 Understand	and	respond	to	the	impact	
of	computer	technology	on	course	
content	and	instructional	techniques.

•	 Encourage	and	support	faculty	in	this	
work—a	task	both	for	departments	and	
for	administrations.

The	CUPM	Guide	2004	presents	six	general	
recommendations	to	assist	mathematics	depart-
ments	 in	 the	design	and	 teaching	of	all	of	 their	
courses	and	programs:	

1.	Understand	the	student	population	and	
evaluate	courses	and	programs.

2.	Develop	mathematical	thinking	and	
communication	skills.

3.	Communicate	the	breadth	and	
interconnections	of	the	mathematical	
sciences.

4.	Promote	interdisciplinary	cooperation.
5.	Use	computer	technology	to	support	

problem	solving	and	to	promote	
understanding.

6.	Provide	faculty	support	for	curricular	and	
instructional	improvement.

From the Introduction of “Undergraduate Pro-
grams and Courses in the Mathematical Sciences: 
CUPM Curriculum Guide 2004” by Committee on the 
Undergraduate Program in Mathematics (CUPM) of 
The Mathematical Association of America (MAA).

Mathematics Departments
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area of study for such research may connect knowl-
edge of previous courses in an advanced manner. Such 
research often culminates in both a written paper and an 
oral presentation. This presentation provides the oppor-
tunity for mathematics students to not only study the 
mathematics, but write and speak about their results in 
the fashion conventional to the discipline.

Separate from major program requirements, 
research in mathematics at the undergraduate level 
can also be performed at National Science Founda-
tion (NSF) programs, such as Research Experiences 
for Undergraduates (REUs) held at various schools 
across the country, often during the summer months. 
These opportunities allow students to become actively 
involved in current mathematical research projects 
under the guidance of faculty, and thus demonstrate 
how mathematical research is done and how it differs 
from research done in other fields. Programs such as 

REUs demonstrate how the activities of a professional 
mathematician are performed, including the various 
stages: formulating and solving a problem, writing a 
mathematics paper, communicating the results in a 
talk or poster (perhaps at a local or national mathe-
matics conference), and possibly publishing a research 
article. The topics of study in REUs go beyond the stan-
dard undergraduate curriculum and also draw upon 
previous coursework and experience. By conducting 
research before they graduate from college, students 
get a taste of what happens in graduate school pro-
grams in mathematics, specifically the research com-
ponent of the dissertation requirement.   

Two-Year Colleges 
A significant percentage of students who receive a 
bachelor’s degree in the mathematical sciences have 
taken some of their mathematics courses at two-year 
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colleges. While many college students may fulfill their 
general education requirement in mathematics by tak-
ing such courses at a two-year college prior to attend-
ing a four-year college or university, many potential 
mathematics majors complete a variety of mathemat-
ics courses that satisfy requirements in the major pro-
gram. Such courses include developmental mathemat-
ics, precalculus, introductory calculus, multivariable 
calculus, linear algebra, differential equations, discrete 
mathematics, and statistics. While an associate’s degree 
in mathematics may not be obtainable from a two-
year college, it is becoming more common that future 
mathematics majors are beginning their mathematics 
career at these schools, including students who are also 
preparing to become mathematics teachers at the vari-
ous school levels.  

Technology
With the advances made in science and technology 
during the latter half of the twentieth century, many 
new instructional techniques are being designed and 
utilized in the mathematics classroom at all levels, 
including the collegiate. With an emphasis on critical 
thinking and deductive reasoning and a movement 
away from rote memorization of mathematical theo-
ries and algorithms, there has been an increase in the 
use of technology for teaching and learning advanced 
mathematics. Accurate visualization of graphs and 
geometric objects and easy manipulation of algebraic 
constructs are some of the benefits of current technol-
ogy available for mathematics education. 

Computational technology changed rapidly during 
the latter part of the twentieth century. At the begin-
ning of the twenty-first century, computer algebra 
systems (CAS), such as Mathematica, MATLAB, and 
Maple, are often helpful tools for both in-class dem-
onstrations and independent student assignments. 
These software packages are commonly implemented 
in a variety of courses, such as calculus, linear alge-
bra, differential equations, statistics, real analysis, and 
complex analysis. 

Other software packages, such as Geometer’s 
Sketchpad and Exploring Small Groups (ESG), are 
more course-specific to geometry and group theory, 
respectively. In addition to desktop or laptop com-
puter technology, the development of handheld 
graphing calculators, such as the various models pro-
duced by Texas Instruments (TI-83+, TI-84, TI-86, 

and TI-89), has also influenced the use of this tech-
nological tool in the classroom. Computer programs 
and graphing calculators are also being used at the 
secondary school level, and the transition to using 
such technology in the mathematics classroom at the 
collegiate level is often a smooth experience for the 
mathematics student. 
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Curriculum, K–12
Category: School and Society.
Fields of Study: All.
Summary: Curricular standards of mathematics have 
undergone a series of changes in the twentieth and 
twenty-first centuries in response to various national 
concerns.

The term “curriculum” has been variously defined 
as a coherent program of study in a specific subject 
area consisting of a set of courses and learning expe-
riences provided by an educational institution. Since 
the beginning of the twentieth century, the school cur-
riculum (grades K–12) of the United States has under-
gone numerous changes, particularly in mathematics. 
Indeed, the U.S. school curriculum has been more pro-
foundly influenced by the demands of society than any 
other country in the world. 

Twenty-first-century debates over the school cur-
riculum are essentially debates on how best to prepare 
students to live in a just, democratic society; be com-
petitive in a global economy; and thrive in a technolog-
ically literate workforce. Employers in both explicitly 
technical and nontechnical fields seek candidates who 
can use mathematics content, logical reasoning, and 
other problem-solving skills that are ideally acquired 
by the end of high school. Both government and pri-
vate employers have publicized the various require-
ments for different career paths. Differences of opin-
ion often stem from opposing views about the nature 
of learning, the needs of society, and the purposes of 
schooling. The evolution of the school curriculum in 
the United States and the changing nature of its math-
ematics component are most easily understood from 
an historical context.

Change in the Mathematics Curriculum
Since the inception of the United States, the predomi-
nant view has been that education is necessary for the 
common good of society and the survival of democ-
racy. Although mathematics has always been recog-
nized as an essential component of the K–12 curricu-
lum, the role of mathematics in public schools and the 
nature of its content have fluctuated over the years. 
Benjamin Franklin was one of the nation’s first leaders 
to understand the need for mathematics instruction 
beyond basic arithmetic and measurement. For exam-

ple, in 1751, he helped institute an academy in which 
geometry and algebra were among curricula designed 
to meet the practical needs of merchants, seamen, 
builders, and artisans.   

Common School Movement
Throughout the 1800s, the curricular and educational 
trends of Europe influenced the mathematics curricu-
lum of the United States. The focus of the mathematics 
curriculum was on basic arithmetic skills in the early 
grades and algebra and geometry in the upper grades. 
In 1837, the Common School movement was instituted 
by Horace Mann (1796–1859) from Massachusetts. He 
worked to develop a statewide common-school (pub-
lic school) system. The philosophy was that education 
is a major “human equalizer” that balances the social 
structure of a country. For this reason, Horace Mann is 
often considered the “father of American public educa-
tion.” The curriculum of the common schools of the 
1800s served to reflect the values and needs of a demo-
cratic society and instituted free education for all U.S. 
citizens, making mathematics education much more 
broadly available

The Progressive Movement
For the majority of the twentieth century, U.S. educa-
tors consistently promoted a “Progressive Education” 
agenda, spearheaded by John Dewey (1859–1952). Pro-
gressive educators believed that the school curriculum 
should be determined primarily by the needs and inter-
ests of children. Dewey advocated a school curriculum 
that encouraged students to be thinkers and problem 
solvers. He encouraged instructional methods that 
were experiential and child-centered, covering content 
arising naturally within the child’s environment. This 
method is in contrast to traditional instruction which 
is usually classroom-based and teacher-centered, cov-
ering predetermined content. During the Progressive 
movement, mathematics instruction emerged primar-
ily when needed within the real-life experiences of the 
child and was thus widely varying

By the 1940s, an alternate version of Progressive 
Education called “Life Adjustment” had gained popu-
larity among some U.S. schools. The curriculum of Life 
Adjustment schools was designed to prepare many of 
the students for the working world and everyday liv-
ing, though some opponents claim it was motivated by 
anti-intellectual philosophies. These students focused 
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on practical concerns, such as home budgeting, con-
sumerism, taxation, health, and citizenship, and math-
ematics courses, such as algebra, geometry, and trigo-
nometry, were deemphasized.  

By the end of World War II, rapid societal and tech-
nological changes abruptly came to the forefront. Pub-
lic knowledge of the impact of atomic energy, radar, 
cryptography, and other scientific and technological 
advances underscored the need for a strong national 
curriculum in mathematics and science to maintain 
national security, to retain the nation’s lead in technol-
ogy, and to prepare students for jobs in the sciences. 
As a consequence, Progressive Education came under 
severe attack following World War II.  

New Math
A momentous event occurred in 1957 that impacted 
the nation’s mathematics and science curricula at all 
levels. U.S. society was stunned by the launching of 
the first space satellite, Sputnik, by the Soviet Union. 
Sputnik was considered a national embarrassment and 
a potential security threat. Its mere existence suggested 
that the Soviet Union was technologically superior and 
had a military capacity of launching offensive missiles 
at the United States. It also underscored an overall 
weakness in the U.S. educational system, particularly 
in mathematics, science, and technology.  

The U.S. Congress responded to the nation’s panic 
and the implications of a security threat by passing 
the 1958 National Defense Education Act, intended 
to increase the quantity and quality of mathematics 
and science professionals. That same year, the Ameri-
can Mathematical Society (AMS) established the 
School Mathematics Study Group (SMSG), headed 
by Edward G. Beg1e of Yale University, to develop a 
new mathematics curriculum for the nation’s high 
schools. The aim was to produce the most highly 
capable mathematics students in the world, with 
a view toward regaining the nation’s technological 
superiority and bolstering its defense system against 
the Soviet Union. This marked the beginning of the 
New Math movement.  

Funded by the National Science Foundation, the 
SMSG created a new, more-rigorous high school 
mathematics curriculum for college-bound students 
and wrote textbooks supporting the new curriculum. 
The SMSG curriculum was developed by mathematics 
professionals consisting of working mathematicians, 

university professors, high school teachers, and school 
supervisors. The SMSG soon expanded its curriculum 
to include mathematics for grades K–12. Similar math-
ematics curricula emerged in the early 1960s, mod-
eled after the original work of SMSG. These curricula 
were products of other federally funded projects such 
as the Ball State Project, Greater Cleveland Mathemat-
ics Program, the University of Maryland Mathematics 
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U.S. Mathematics  
Curriculum Evolution

T he	 evolution	 of	 the	 mathematics	 cur-
riculum	 in	 the	 United	 States	 has	 been	

unstable.	Over	the	years,	 it	has	responded	to	
the	 demands	 of	 society,	 professional	 educa-
tors,	 and	 national	 organizations,	 often	 at	 the	
expense	 of	 the	 needs	 of	 the	 country.	 While	
unpopular	 in	 some	 segments	 of	 society,	 the	
New	 Math	 movement	 responded	 favorably	 to	
the	national	panic	following	the	Soviet	Union’s	
launch	 of	 Sputnik.	 The	 New	 Math	 movement	
was	 responsible	 in	 large	 measure	 for	 regain-
ing	 the	 nation’s	 international	 lead	 in	 technol-
ogy	and	winning	 the	 race	 to	 the	moon.	Since	
the	 1980s,	 the	 National	 Council	 of	 Teachers	
of	Mathematics	has	contributed	significantly	to	
the	nation’s	mathematics	curriculum	by	devel-
oping	a	series	of	well-articulated	standards	that	
have	informed	the	curriculum	and	assessment	
strategies	for	every	state.	

Student	 assessment	 has	 also	 gained	 a	
more	 prominent	 role	 in	 federal	 funding	 and	
curriculum	 development.	 Specifically,	 the	 suc-
cess	 of	 states	 in	meeting	 national	 education	
standards	will	be	measured	by	students’	per-
formance	on	high-stakes	tests.	A	positive	con-
tribution	of	the	Common	Core	State	Standards,	
initiated	by	the	nation’s	state	governors,	will	be	
the	establishment	of	a	national	school	curricu-
lum.	According	to	U.S.	Secretary	of	Education	
Arne	Duncan,	“For	the	first	time,	a	child	in	Mis-
sissippi	and	a	child	 in	Massachusetts	will	be	
judged	by	the	same	yardstick.”			



Project, and the Minnesota School Science and Math-
ematics Center. Each curriculum mirrored the rigor-
ous mathematics content and educational philosophy 
of the New Math movement.

The New Math curriculum included advanced 
content that had never before been covered in public 
schools, such as set theory, Boolean algebra, base arith-
metic, field axioms, algebraic structures, and formal 
math language and symbolism. The curriculum was 
designed to provide the theoretical foundations for 
studying calculus and abstract algebra in college, with 
the intent of producing as many mathematics, science, 
and engineering majors as possible.  

Even though there were numerous successes in the 
New Math movement, after a decade of implementa-
tion, it was slowly removed from the nation’s public 
schools. Some believed its downfall was a result of exces-
sive rigor and mathematical formalism at the expense 
of basic skills and problem solving. Many parents and 
school administrators were confused by the unfamiliar 
mathematics content and advanced symbolism. More 
importantly, a large number of the nation’s older teach-
ers were unable to implement the New Math curricu-
lum because they, themselves, were not academically 
prepared to deal with the content. Notwithstanding, 12 
years following the launching of Sputnik, the United 
States succeeded in placing the first man on the moon 
with its 1969 Apollo 11 mission. 

Back to Basics
By the early 1970s, the New Math movement was over. 
The National Science Foundation discontinued its fund-
ing of New Math programs, and the U.S. public called 
for a return of a “Back to Basics” curriculum, under a 
Progressive agenda. Mathematical rigor and advanced 
symbolism were discouraged; teachers experimented 
with child-centered instructional approaches, such as 
Individualized Instruction, Continuous Progress, and 
Open School environments. The failures of such prac-
tices were soon exposed as standardized mathematics 
test scores of U.S. students steadily declined through-
out the decade.

Fueled by the failure of the Back to Basics move-
ment, the lowering of college entrance requirements, 
and reduced enrollments in higher-level mathematics 
courses, by the end of the 1970s, the U.S. school curric-
ulum was once again under severe public attack. Two 
publications by U.S. federal agencies had a significant 

impact on public perceptions of the U.S. educational 
system, An Agenda for Action and A Nation at Risk. 

An Agenda for Action
Based on multiple national assessments, the National 
Council of Teachers of Mathematics (NCTM) pro-
duced the 1980 An Agenda for Action, which provided 
recommendations for reform in mathematics educa-
tion. Its primary recommendation was that problem 
solving should be the primary focus of the mathemat-
ics curriculum, supported by the following instruc-
tional practices:

• Calculators and computers should be used in 
K–12 classrooms.

• Estimation and approximation should be an 
integral part of instruction.

• Team efforts in problem solving should be 
encouraged in the elementary classroom.

• Manipulatives should be used to develop new 
mathematical concepts and skills.

• Instructional strategies should provide for 
situations requiring student discovery and 
inquiry.

• Mathematics programs and student 
performance should be evaluated on a 
broader range of measures than conventional 
testing.

A Nation at Risk
Although An Agenda for Action provided innovative 
and lofty recommendations for reform in the school 
mathematics, it was overshadowed by the 1983 pub-
lication of A Nation at Risk, a report by the National 
Commission on Excellence in Education. In graphic 
terms, it warned Americans, “The educational foun-
dations of our society are presently being eroded by a 
rising tide of mediocrity that threatens our very future 
as a nation and a people,” and, “If an unfriendly for-
eign power had attempted to impose on America the 
mediocre educational performance that exists today, 
we might well have viewed it as an act of war.” 

A variety of educational issues and specific weak-
nesses in the mathematics curriculum were addressed. 
Specifically, the commission found that the textbooks 
used for instruction were void of rigorous content, 
the curriculum lacked continuity and depth, and high 
school teachers were typically underprepared in math-
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ematics and academically weak. Despite out-dated 
information, A Nation at Risk is still often quoted in 
the twenty-first century and remains an influential 
publication. 

National Standards-Based Curriculum
The publication of A Nation at Risk and similar reports 
of the dismal performance of U.S. students on inter-
national assessments have all served to provoke U.S. 
society and government to demand higher academic 
standards in public schools. International assessments 
provided strong evidence that mathematics teaching 
and its school curriculum must change if U.S. students 
are to be competitive in the global economy and able 
to deal with the complex decisions they will confront as 
responsible citizens and members of a technologically 
literate workforce.  

In 1989, NCTM took a giant step in recommending 
a national agenda for curriculum reform, resulting in 
NCTM’s 1989 publication of Curriculum and Evalua-
tion Standards for School Mathematics. This document 
initiated a national standards-based curriculum move-
ment, influenced by its earlier work reported in An 
Agenda for Action.  

Within five years, NCTM also produced two sup-
porting documents: the 1991 Professional Standards 
for Teaching Mathematics and the 1995 Assessment 
Standards for School Mathematics. These documents 
recommended teaching standards, instructional meth-
odologies, and an array of assessment strategies for 
accommodating the new standards-based curriculum. 

An updated version of NCTM’s original 1989 Stan-
dards was published in 2000, having a new title: Prin-
ciples and Standards for School Mathematics. These 
three standards documents continue to be profoundly 
influential in the twenty-first century in matters of 
curriculum and assessment decisions for U.S. school 
mathematics. Specifically, Principles and Standards 
for School Mathematics provides six principles for 
school mathematics, five process standards, and five 
content standards. 

The six principles for school mathematics are as fol-
lows:

• Equity—high expectations and strong 
support for all

• Curriculum—courses and learning 
experiences focused on important 

mathematics, well articulated across  
the grades

• Teaching—instruction that is challenging, 
supportive, and focused on what students 
know and need to learn

• Learning—develops understanding by 
building new knowledge on students’ 
experiences and prior knowledge

• Assessment—provides useful information 
to teachers and students and supports the 
learning of important mathematics

• Technology—essential for teaching and 
learning mathematics, influences the 
mathematics that is taught, and enhances 
student learning

The five process standards considered essential for 
teaching all mathematics, are problem solving, rea-
soning and proof, communication, connections, and 
representation. These processes were expected to be 
integrated into the teaching of all of mathematics, 
regardless of the topic or the grade level. 

The five content standards include each of the fol-
lowing: number and operations, algebra, geometry, 
measurement, and data analysis and probability. Each 
content area is expected to be covered to some degree 
of integrity at every grade level.

Overall, given the breadth of mathematics applica-
tions found in modern society, both in work and every-
day life, schools were encouraged to widen their math-
ematics offerings. For example, one recommendation 
for the high school curriculum was that calculus should 
not always be the primary goal for the mathematics 
curriculum. Instead, discrete mathematics, probability, 
and statistics should also be considered valuable goals. 
The curriculum must prepare students for a variety of 
career paths that use mathematics; for example, actu-
arial science (probability), engineering and electronics 
(technical mathematics), economics and behavioral 
science (statistics and decision theory), theoretical or 
nuclear physicist (calculus), and numerous others.

In 2006, NCTM released another supporting docu-
ment, Curriculum Focal Points for Prekindergarten 
through Grade 8 Mathematics: A Quest for Coherence, 
which articulated the specific topics that should be the 
focus for each grade level pre-K–8. The curriculum 
focal points acknowledged that NCTM’s five content 
standards are not equally weighted and should have 
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greater emphasis at different grade levels. These topics 
are identified in this document.

In 2009, NCTM released Focus in High School Math-
ematics: Reasoning and Sense Making. This publica-
tion was designed to provide teachers with curricu-
lum guidance and content focal points for high school 
mathematics, modeled after NCTM’s 2006 pre-K–8 
document, Curriculum Focal Points. In this 2009 docu-
ment, NCTM stresses that reasoning and sense mak-
ing should be the focus of all high school mathematics, 
spanning all content areas, and evident in the teach-
ers’ instructional strategies and assessment practices. 
The goal is for mathematics to be viewed as a logical, 
problem-solving tool, rather than a set of meaningless 
procedures, disconnected from everyday life and deci-
sion making. It is stressed that students should have 
experiences with reasoning and sense making within a 
broad curriculum that may deviate from the textbook. 
Such experiences should be designed to meet students’ 
future needs and prepare them for citizenship, the 
workplace, and future careers.  

Twenty-First-Century Mathematics Curriculum 
History has shown that as national needs and societal 
perceptions change, so does the school curriculum. 
Pervasive and radical changes have occurred through-
out the world since the 1990s, such as genetic engi-
neering, nanotechnologies, global economies, envi-
ronmental disasters, global warming, depleting energy 
sources, and countless others. It is clear that U.S. citi-
zens must be prepared to deal creatively and compe-
tently with a multitude of rapid changes and to tackle 
complex problem situations. The school curriculum 
must respond accordingly to provide students with the 
content knowledge, problem-solving skills, and learn-
ing experiences that are necessary for students to meet 
these immense challenges.  

Unfortunately, the U.S. mathematics curriculum 
still has a long way to go in preparing students to meet 
these challenges. In fact, international assessments 
report serious deficiencies in the mathematical perfor-
mance of U.S. students. In 2009, the Programme for 
International Student Assessment (PISA) reported that 
15-year-olds from the United States ranked 18 among 
33 developed nations in mathematical literacy and 
problem solving. In sum, compared to other devel-
oped nations, students from U.S. schools score in the 
lower 50th percentile in mathematics. Furthermore, 

the National Center for Education Statistics reported 
in 2003 significant racial achievement gaps in the 
United States. Societal concerns for economic stability, 
national security, and equity in instruction all demand 
immediate and substantial reforms in the U.S. mathe-
matics curriculum and educational system as a whole.  

No Child Left Behind
Research has shown that the school curriculum is 
closely tied to assessment. One governmental attempt 
to address the school curriculum and the lagging aca-
demic achievement of U.S. students is the No Child Left 
Behind (NCLB) Act of 2002. NCLB includes a number 
of mandates designed to promote significant gains in 
student achievement and to hold states and schools 
accountable for meeting curricular goals. NCLB sup-
ports a standards-based curriculum and was founded 
on the belief that setting high standards and measur-
able objectives would result in improved teaching and 
learning in the nation’s schools.  

As a provision for federal funding, the NCLB Act 
requires that states develop assessments in basic skills 
for students at specific grade levels and that each state 
set its own curriculum, content standards, and achieve-
ment benchmarks. The Act further mandates that 
100% of the students in each school be proficient in 
reading and mathematics by the year 2014. As a con-
sequence, any school not showing significant progress 
toward meeting these goals will be subject to sanctions, 
culminating in the closing of the school and termina-
tion of the faculty and staff. 

The underlying theory is that schools will show sig-
nificant improvement if children in grades 3–8 are held 
accountable for their academic achievement, as mea-
sured by their test scores every year. As of 2011, more 
than 10,000 schools have been labeled as “failures”; 
thousands of teachers have been fired; and numerous 
schools, heretofore considered “very good,” are being 
forced to close. To meet NCLB goals, many schools have 
eliminated studies in art, history, science, foreign lan-
guages, physical education, and geography from their 
offerings. The majority of school time is now devoted 
to preparing students for high-stakes tests in the basic 
skills, the results of which will determine if the school 
remains open for the following year.  

The consequences of students’ test performance are 
so punitive that some districts have experienced record 
amounts of cheating. Some states have even lowered 
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the passing score on their annual mathematics exams to 
increase the pass rates for their schools. Reactions such 
as these to the mandates of the NCLB Act underscore the 
fact that testing alone will not increase student achieve-
ment nor improve instruction. Regardless of how well 
the curriculum is constructed, meaningful instruction 
will be abandoned for the sake of test preparation. 

Common Core State Standards
Several of the nations to which the United States is 
often compared academically do have national curri-
cula, such as Great Britain, Germany, France, and Japan. 
Even though NCTM has provided national guidelines 
for mathematics education, until 2010, nearly every 
state had its own unique set of mathematics standards 
and curriculum for each grade level. In some cases, 
decisions about curricula were made by county and 
local school districts and boards. Consequently, state 
mathematics standards have varied considerably from 
state to state, and valid comparisons are difficult to 
make with respect to student performance. Because 
of the absence of a common set of standards among 
states, 48 of the nation’s state governors and their chief 
school officers set forth to create the Common Core 
State Standards (CCSS), released in 2009.  

The CCSS were developed in collaboration with con-
tent experts, college professors, public school teachers, 
school administrators, and parents. They are designed 
for a curriculum that includes rigorous content and 
applications; requires high-order thinking skills; and 
prepares students to succeed in a global economy. They 
are also aligned with the mathematics curricula of top-
performing countries in the world. As of 2011, 41 of 
the 50 states have adopted CCSS.

Race to the Top
The rapid adoption of the CCSS by nearly every state 
in the nation was surely spurred by the Race to the Top 
(RTTT) program funded the Educational Recovery 
Act of 2009. RTTT is a $4.35 billion U.S. Department 
of Education program offering competitive grants 
designed to promote educational reforms in state edu-
cation. The underlying federal agenda is to establish 
national standards, tests, and curricula. Even though the 
principle of states’ rights ensure that individual states 
have total control over their educational systems, the 
promise of RTTT’s discretionary funding of hundreds 
of millions of dollars is a huge incentive for states to 

adopt the CCSS, which is prerequisite to RTTT funding. 
When states receive RTTT discretionary federal fund-
ing, they must agree to implement the CCSS as well as 
comply with other stipulations. 

Consistent with NCLB, state assessments for RTTT’s 
funding are highly reliant on students’ test scores as 
the sole measure of student achievement. Additionally, 
many states intend to use students’ test scores to evalu-
ate their teachers’ performance and determine salaries 
and bonuses. As of 2011, there is also a rising movement 
among state governors to push for an end to teachers’ 
unions, tenure, and rights to due process, many of 
which have existed since at least the early twentieth cen-
tury. It appears that if these movements continue in the 
twenty-first century, teachers will soon have no orga-
nized voice for addressing teaching conditions, budget-
ary concerns, or program and curricular issues. 
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Curves
Category: History and Development of Curricular 
Concepts.
Field of Study:  Algebra; Calculus; Communication; 
Connections; Geometry.
Summary: Curves have many different definitions 
and applications in various fields of mathematics. 

Intuitively, a curve might be thought of as a path, like 
that of a curveball. A curve is viewed and defined in 
several ways depending on the branch of mathematics. 
A curve can be defined as the one-dimensional contin-
uous trajectory of an object in space moving in time, 
the intersection of two surfaces in space, the image of 
the unit interval under a continuous function, or the 
graph of a solution of a polynomial equation. Each of 
these approaches captures the intuitive idea of a curve 
in their respective domains; the first is more physical, 
the second is geometric, the third is topological, and 
the last is an algebraic view of a curve. Curves can 
be used to create figures, model paths of motion, or 
express relationships between variables. 

There are many types of curves that are the focus of 
classroom investigations, including yield curves, which 
are important to investors, and the normal distribution 
or bell-shaped curve. Felix Klein is noted to have said, 
“Everyone knows what a curve is, until he has stud-
ied enough mathematics to become confused through 
the countless number of possible exceptions.” In edu-
cation, a “learning curve” is a phrase that is meant to 
informally capture the notion of the change in knowl-
edge over time. Algebraic and geometric curves are also 
important in school. Children study lines and circles 
in primary and middle school. They investigate their 
lengths and areas. By high school and college, they 
learn about parametric equations of curves and the 
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area under a curve. In order to enrich classroom learn-
ing, mathematicians and mathematics historians cre-
ated the National Curve Bank Web site.

Early History of the Study of Curves
The Greeks initiated the study of curves and discovered 
numerous interesting curves. Apollonius of Perga stud-
ied conic sections as the intersections of a plane and a 
cone by changing the angle of intersection. Diocles of 
Carystus invented the cissoid curve and used it in his 
attempts to solve the problem of doubling the cube. 
Nicomedes invented the conchoid curve and used it 
in his attempts to solve the problems of doubling the 
cube and trisecting an angle. Some have noted that 
aspects in the design of the columns of the Parthenon 
may resemble a conchoid of Nicomedes, although oth-
ers present different curves as the model. Canon of 
Samos invented the spiral that was eventually called the 
“Archimedean spiral.” 

This curve was utilized by Archimedes of Syracuse as 
a method to attempt to trisect an angle and square the 
circle. The Greek view of curves was geometric, since 
Greek mathematics was, essentially, geometry-centered. 
Hence, their study of curves usually was through some 
elaborate and often ingenious methods of construc-
tion. Besides the lack of analytical tools, their insistence 
of having concrete or mechanical methods of construc-
tion, and—more importantly—their attempts to solve 
some important problems of antiquity that later were 
shown to be unsolvable by ruler and compass construc-
tions are some of the factors contributing to the Greek 
concept of curves.

Mathematicians, philosophers, and others intro-
duced and investigated the geometry of many interest-
ing curves long after the ancient Greeks. For example, 
Nicholas of Cusa lived in the fifteenth century. He is 
noted as the first of many to explore the cycloid, which 
was eventually known as the path of a point on a wheel 
as the wheel rolls along a straight line.  

Developments Since the  
Seventeenth Century 
With the introduction of analytic geometry in the 
seventeenth century, the theory of curves received a 
new impetus—expressing curves by equations would 
make their study much easier compared to doing it via 
elaborate geometrical constructions. Analytic geom-
etry enabled mathematicians to focus on the intrinsic 



features of curves; discover and investigate new curves; 
study curves in a more systematic way, leading to their 
classification into algebraic versus transcendental cat-
egories; and apply the results to various physical prob-
lems, such as the long-standing problem of determin-
ing the orbits of planets or solving the problem of a 
hanging chain, which was posed by Jacob Bernoulli. 
Gottfried Leibniz, Christiaan Huygens, and Jacob 
Bernoulli’s brother Johann Bernoulli responded to the 
elder Bernoulli’s challenge with the equation of the cat-
enary. In the eighteenth century, Guido Grandi inves-
tigated rhodonea curves that resemble roses and what 
was later to be known as the Witch of Agnesi, named 
because of a mistranslation of the example in Maria 
Agnesi’s famous calculus textbook.  

Beginning with the seventeenth century, smooth 
curves have been an intense subject of investigation 
leading to determination of various features. Smooth 
curves, like lines, circles, parabolas, spirals, and helices, 
possess properties that make them amenable to numer-
ous applications besides lacking any jagged behavior. 
For example, younger students learn that a straight line 
is the shortest path between two points in the plane, 
and mathematicians in the seventeenth century won-
dered about an analog for surfaces. A geodesic curve is 
locally a minimizing path; as a result, it is important in 
advanced mathematics and physics classes. Leonhard 
Euler published differential equations for geodesics in 
1732. Mathematicians also investigated the classifica-
tion of smooth curves. One invariant is the length of 
a curve. In general, length does not distinguish two 
different curves. It turns out that two other invariants, 
called the “curvature” and “torsion,” work much bet-
ter for this purpose. Broadly speaking, at any point on 
the curve, the curvature measures the deviance of the 
curve from being a straight line, and the torsion func-
tion measures the deviance of the curve from being a 
plane curve. Furthermore, the fundamental theorem of 
curves states that these invariants determine the curve, a 
result that is proved in twenty-first-century college dif-
ferential geometry classrooms using the Frenet–Serret 
Formulas. These are named for Jean Frédéric Frenet 
and Joseph Serret, who independently discovered them 
in the nineteenth century.  

With further investigations by prominent math-
ematicians, like Carl Friedrich Gauss, Gaspard Monge, 
Jean-Victor Poncelet, and their students, the theory 
of curves, particularly smooth curves, matured into 

an active field of research. The findings in the theory 
of curves not only enriched the realm of curve stud-
ies, they also contributed to the development of new 
ideas that ended up revolutionizing mathematics in 
the nineteenth century. Broadly speaking, the general 
definition of a curve is topological; namely, a curve 
is defined as a continuous map from an interval to a 
space. Curves can be algebraic (those defined via alge-
braic equations). For instance, a plane curve can also 
be expressed by an equation

F x y,( ) = 0

and a space curve can be expressed by two equations

F x y z, ,( ) = 0  and G x y z, ,( ) = 0 .

A curve is algebraic when its defining equations are 
algebraic—a polynomial in x and y (and z). The cardi-
oid, a heart-shaped curve whose Cartesian equation is

x y ax a x y2 2
2

2 22 4+ −( ) = +( )
and the asteroid, whose Cartesian equation is

x y a
2

3

2

3

2

3+ =

where a is a constant, are algebraic curves.
Before analytic geometry, each of these curves had 

been expressed using geometric investigations; for 
example, a circle turning around a circle that sweeps 
out the cardioid, or wheels turning within wheels that 
form the asteroid. Transcendental curves cannot be 
defined algebraically and include the brachistochrone 
curve, also known as the “curve of fastest descent”; very 
complicated looking fractal curves, such as the Koch 
snowflake, named for Helge von Koch, who explored 
the geometry in a 1904 paper; and paradoxical sound-
ing space-filling curves, discovered by Giuseppe Peano 
in 1890. The last two types of curves can be extremely 
jagged curves with no smooth components.  

An algebraic curve of the form y x ax b2 3= + + , 
where a and b are real numbers, satisfying the relation 
4 27 03 2a b+ ≠ , is called an “elliptic curve.” Geometri-
cally, this condition ensures that the curve does not 
have any cusps, self-intersections, or isolated points. 
On the points of elliptic curves (including the point 
at infinity), one can define an operation by three 
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points sum to zero, if and only if they are collinear. 
This interesting feature of elliptic curves, besides being 
an important algebraic structure to be studied on its 
own, also has found some astonishing applications, 
such as in cryptography for developing elliptic curve-
based public-key cryptosystems. Elliptic curves are also 
important in number theory; they are effective tools 
in integer factorization problems. They also turned up 
as an instrumental tool in the proof of Fermat’s Last 
Theorem, named for Pierre de Fermat.

Further Reading
Boyer, C. B. “Historical Stages in the Definition of Curves.” 

National Mathematics Magazine 19, no. 6 (1945). 

Lockwood, E. H. A Book of Curves. New York; Cambridge 
University Press, 1963.

National Curve Bank. http://curvebank.calstatela.edu/
home/home.htm.

O’Connor, John, and Edmund Robertson. “MacTutor: 
Famous Curves Index.” http://www-history.mcs 
.st-andrews.ac.uk/Curves/Curves.html.

Dogan Comez
Sarah J. Greenwald
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See Also: Conic Sections; Limits and Continuity; 
Normal Distribution; Planetary Orbits; Polynomials.
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Dams
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Mathematics is vital to the design,  
monitoring, maintenance, and safety of dams.

Dams are embankments across a waterway for control 
of water or for water storage; they have served many 
functions in societies throughout history. The earli-
est dams were primarily used for irrigation and as a 
water source for livestock. Today, smaller dams provide 
water for livestock, fish and wildlife habitat, and recre-
ation. Larger dams can provide flood control in places 
below sea level, like New Orleans and the Netherlands; 
municipal and industrial water supply; irrigation for 
crops; hydroelectric power; commercial navigation; 
and recreation. They are typically earthen dams, con-
crete structures, or some combination. Older dams 
were sometimes made of timber, masonry, or steel. 
Mathematicians and engineers investigate many aspects 
of the construction and maintenance of dams using 
geometry, trigonometry, and stochastic and limit-state 
analyses. For instance, Boris Galerkin, who had degrees 
in applied mathematics and mechanics, studied stress 
in dams, and Pelageia Polubarinova, who had a degree 
in mathematics, contributed to the theory of seepage 
flow of groundwater through porous materials that 

included earth dams. Some well-known dams are the 
Itaipú Dam in Brazil and Paraguay, the Hoover Dam 
in the United States, the Aswan Dam in Egypt, and the 
Dneproges Dam in the Ukraine. 

Considerations for building a dam must take into 
account both positive and negative impacts. There are 
a variety of benefits of a dam that are closely related 
to its uses—providing water supply, flood control, 
hydroelectric power, and navigation. Hydroelec-
tric power provides an important source of electri-
cal power around the world. Commercial navigation 
through river systems provides efficient and economi-
cal transportation of agricultural products and com-
mercial goods. Many dams that control flood plains 
provide farmers with an increased crop yield because 
land that would once have been flooded is now con-
trolled upstream by the dam. Negatively, some dams 
may hinder fish movement; for example, along some 
streams, salmon are not able to get back to their native 
spawning areas because of the dam. Additionally, dams 
affect the natural order of a stream—its sediment load 
and flooding characteristics.  

Purposes and Design
Dams are constructed with a definite purpose in mind 
based on the function(s) they are to serve. Dams are 
built to control watershed areas (all the area upstream 
of the dam, which provides runoff to the structure). 

D



Engineers use a variety of mathematics skills as they 
plan, design, construct, and operate a dam. During the 
planning stage, engineers work with sponsors to scope 
out the needs and develop a basic design for the struc-
ture including design issues such as location, height, 
and base flow of the structure. Base flow is calculated 
with the formula Q = v × A where Q is the base flow 
rate, v is the velocity of water, and A is the area. Another 
important part of the planning stage is determining the 
economic feasibility of building the dam by calculating 
a benefit-to-cost ratio. Using a mathematical model, 
both the benefits of the dam over its life and the total 
cost of building and maintaining the dam are calculated. 
Ideally, for the construction of a dam to be feasible, the 
benefit-to-cost ratio needs to be greater than 1.  

As a part of the design process, engineers must cre-
ate detailed blueprints for the structure and an accom-
panying cost sheet that includes items such as quanti-
ties or volumes of a variety of materials (for example, 
cubic yards of concrete) and the cost of the removal 
and placement of earthen materials, which can be mil-
lions of cubic yards in the case of large dams. During 
the construction of the dam, the blueprints must be 
followed with precision and detail to ensure the integ-
rity of the dam. Once the dam is constructed, regular 
monitoring is important to ensure the most efficient 
use of the available storage. Engineers monitor the 
amount of water leaving the dam through its spillway, 
as well as the amount of water entering the watershed. 
These inflows and outflows must be balanced in order 
to maintain storage needs and prevent flooding or low 
flows in the river downstream.

Safety
A major consideration in the planning, design, con-
struction, and maintenance of any dam is safety. Engi-
neers determine a hazard rating for each dam, with 
the highest hazard rating dealing with potential loss of 
human life. A breach in a dam can be catastrophic. A 
breach in a dam can be caused by a flaw in the design 
of the structure, extreme rainfall, lack of or poor main-
tenance of the structure, or a geological occurrence. 
Regular inspection and maintenance are important to 
ensure the safety of those downstream from the dam.

Further Reading
Hiltzik, Michael. Colossus: Hoover Dam and the Making 

of the American Century. New York: Free Press, 2010.

Macy, Christine. Dams. New York: W. W. Norton  
& Company, 2009.

Prabhu, N. U. Stochastic Storage Processes: Queues,  
Insurance Risk, Dams, and Data Communication.  
2nd ed. New York: Springer, 1998.

Juliana Utley

See Also: Engineering Design; Floods; Water 
Distribution.

Data Analysis and 
Probability in Society
Category: School and Society.
Fields of Study: Connections; Data Analysis and 
Probability.
Summary: Today, most industries depend on data 
analysis for some aspect of their work.

Data analysis can be thought of as the process of collect-
ing, transforming, summarizing, and modeling data, 
usually with the goal of producing useful information 
that facilitates drawing logical conclusions or making 
decisions. Virtually any field that conducts experiments 
or makes observations is involved in data analysis. 

There are many mathematical data analysis meth-
ods, including statistics, data mining, data presentation 
architecture, fuzzy logic, genetic algorithms, and Fou-
rier analysis, named for mathematician Joseph Fourier. 
Probabilistic statistical methods are among the most 
widely applied tools, and they are what many people 
think of when they hear the term “data analysis.” The 
use of probability, statistical analysis, and other mathe-
matical data analysis methods is widespread, especially 
given technological advances and computer software 
that facilitate rapid, automated data collection and effi-
cient, effective processing of massive data sets. Accord-
ing to forecasts included in the U.S. Bureau of Labor 
Statistics’ 2010–2011 Occupational Outlook Handbook, 
the demand for statisticians and individuals with 
mathematical data analysis skills is expected to grow. 
Jobs that involve data collection, probabilistic model-
ing, statistical data analysis, data interpretation, and 
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technical and nontechnical audiences, and statistical 
thinking or literacy. People with bachelor’s degrees in 
mathematics, statistics, or related mathematical fields, 
like operations research or decision sciences, can often 
find entry-level data analysis positions in government 
and industry, but research-related jobs and teaching at 
the community college level typically require master’s 
degrees. Teaching or research-related jobs at four-
year colleges and universities usually require doctoral 
degrees. Work experience or qualifying exams, such 
as those administered by the Society of Actuaries, are 
often necessary for employment in some industries. 
Training and certification programs like Six Sigma 
Black Belt also signify a certain level of data analysis 
skill and knowledge. 

Government
Virtually all federal organizations have data analy-
sis specialists or entire statistical subdivisions that use 
mathematical and statistical models. Since ancient 
times, governments have collected data and used math-
ematical methods to perform necessary functions. 
Archaeological evidence suggests that many ancient 
civilizations conducted censuses to enumerate their 
populations, often for taxation or military recruitment. 
Livestock, trade goods, and other property were some-
times counted in addition to people. Mathematics facil-
itated decisions regarding the distribution of resources 
like land, water, and food. The German word for this 
process of “state arithmetic” is cited as the origin of the 
English word “statistics,” which first appeared in Statis-
tical Accounts of Scotland, an eighteenth-century work 
by politician John Sinclair that included data about 
people, geography, and economics. In the United States, 
counting of the population is required by the U.S. Con-
stitution, and congressional representation for the U.S. 
House of Representatives is determined by the decen-
nial census population values. 

Over the decades, many mathematicians and stat-
isticians worked on planning and implementing the 
census, like Lemuel Shattuck, who also co-founded 
the American Statistical Association in 1839. Since its 
creation in 1902, the duties and activities of the U.S. 
Census Bureau have grown beyond the mandated 10-
year census to include collecting and analyzing data on 
many social and economic issues, and the U.S. Census 
Bureau is one of the largest employers of mathemati-
cians and statisticians in the country. At the start of 

data dissemination are found in both the public and 
private sector, as well as in a diverse array of disciplines, 
including agriculture, biology, computer science, digi-
tal imaging, economics, engineering, education, for-
estry, geography, insurance, law, manufacturing, mar-
keting, medicine, operations research, psychology, and 
pharmacology. 

Many specialized data analysts are known by job titles 
or classifications other than statistician, such as actuary, 
biostatistician, demographer, econometrician, epidemi-
ologist, or psychometrician. In the twenty-first century, 
both probability and data analysis are components of 
U.S. primary and secondary mathematics education, 
usually starting in the earliest grades and continuing 
through high school. This curriculum has been advo-
cated by the National Council of Teachers of Mathemat-
ics in its Principles and Standards for School Mathematics, 
published in 2000, as well as by professional organiza-
tions such as the American Statistical Association and 
the Mathematical Association of America. 

Professional Education
The first college statistics department was founded 
in 1911 at University College London. Other depart-
ments in universities around the world followed. In 
the twenty-first century, more than 200 colleges and 
universities in the United States offer undergraduate 
statistics degrees, and many more schools offer minors 
and courses in probability and statistics, data mining, 
and other mathematical data analysis methods. These 
courses may be taught either in mathematics and sta-
tistics departments or, often, in one of many partner 
disciplines, such as psychology, biology, or business. 
Graduate degrees in statistics do not necessarily require 
an undergraduate degree in statistics or mathemat-
ics, but most graduate degree programs prefer strong 
mathematical or statistical backgrounds with courses 
in areas like differential and integral calculus, mathe-
matical modeling, probability theory, statistical meth-
ods, vector analysis, linear algebra, and mathematical 
statistics. Historically, computational methods were a 
primary focus of statistics education. With the evolu-
tion of technology and the growing role of statistics in 
everyday life, statistics education has shifted to focus 
on conceptual understanding, analysis of real data 
in context, survey sampling and experimental design 
methods, technology for analysis and presentation, 
communication of methodology and results to both 
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the twenty-first century, various agencies of the U.S. 
government employed approximately 20% of the 
statisticians in the country. An additional 10% were 
employed by state and local governments, including 
state universities.

Statisticians and other mathematical data analysts 
working within many federal agencies are also respon-
sible for developing new and innovative methods for 
gathering, validating, and analyzing data, especially the 
massive, messy, or incomplete data sets that are increas-
ingly common in technological and industrialized 
societies. They also work to reduce bias and more accu-
rately model issues that affect individuals and organi-
zations. Many countries and governing entities around 
the world have agencies that perform similar functions. 
One major area of interest for most governments is the 
economic health of the country and the well-being of 
its workers. In the United States, the Bureau of Labor 
Statistics measures and forecasts factors such as labor 
market activity, productivity, price changes, spend-

ing, and working conditions. They began collecting 
data at the federal level in 1884. The Current Popula-
tion Survey, implemented by the U.S. Census Bureau, 
is a monthly survey of about 50,000 households that 
has been conducted for more than 50 years, and the 
Current Employment Statistics Survey gathers data from 
about 410,000 worksites to summarize variables such 
as hours worked and earnings. 

While the Bureau of Labor Statistics focuses mostly 
on manufacturing and services, the U.S. Department of 
Agriculture’s Economic Research Service, established 
in 1961, is responsible for data about farming, natural 
resources, and rural development, addressing issues 
like food safety, climate, farm employment, and rural 
economies. Its online Food Environment Atlas includes 
indicators that describe the U.S. “food environment” 
and model concepts like people’s geographic proxim-
ity to grocery stores or restaurants and food prices. 
The National Agricultural Statistics Service, also estab-
lished in 1961, conducts the Census of Agriculture. It 
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can be traced in part to a 1957 Congressional decision 
to approve probability survey methods for agriculture 
research. The U.S. Internal Revenue Service’s Statistics 
Income Division, created in 1916, was among the first 
federal agencies to use stratified random sampling and 
machine summarization of data, both in the 1920s. In 
the twenty-first century, it assesses the tax impact of 
federal legislation.

Beyond their workforces, governments are also typi-
cally interested in the overall health, safety, and education 
of members of the broader society. The U.S. National 
Center for Health Statistics, established in 1960, com-
piles public health statistics, tracks federal health ini-
tiatives, and helps assess trends related to health care 
and health behaviors. For example, it has monitored 
efforts to reduce obesity and teen pregnancy. Other data 
include health care delivery and changes, such as the use 
of prescription medications and emergency rooms. The 
Bureau of Justice Statistics, founded in 1980, is primar-
ily responsible for crime and criminal justice data col-
lection, analysis, and dissemination in the United States. 
One of its principal reports is the annual National Crime 
Victimization Survey. The Federal Bureau of Investiga-
tion, founded in 1908, creates the annual Uniform Crime 
Report. The National Center for Education Statistics is 
mandated by the 2002 Educational Sciences Reform Act 
to collect and analyze “statistics and facts as shall show 
the condition and progress of education in the several 
states and territories” of the United States. The U.S. Con-
gress uses data from this agency to plan education pro-
grams and to apportion federal funds among states.

In the twentieth century, issues like the energy cri-
sis of the 1970s, climate change, and concerns over the 
future availability of oil focused more attention on U.S. 
energy resources and infrastructure. The Energy Infor-
mation Administration (EIA) was established in 1977 
to independently and impartially collect and analyze 
data to disseminate information about energy resources, 
uses, infrastructure, and flow, as well as their impacts on 
and responses to economic and environmental variables. 
The goals are to assist in creating policies and making 
energy decisions as well as educating the public about 
all aspects of energy. The EIA’s “Energy Kids” Web site 
contains educational materials for primary and middle 
school students, and its “Energy Explained” Web site is 
aimed at the older students and the general public.

While government is one of the largest producers 
and users of statistics, not everyone agrees on their 

validity or utility. Many have criticized politicians for 
selectively using or deliberately misusing data and 
statistics, while others have suggested that the issue is 
insufficient training or understanding of mathematical 
data analysis—though statistical methods are increas-
ingly part of political science degree programs. For-
mer North Carolina Representative Lunsford Richard-
son Preyer once said: “Statistics do not always lie, but 
they seldom voluntarily tell the truth. We can argue 
any position on this bill on a set of statistics and some 
study or another.” At the same time, some propose that 
effective democracy depends on citizens being able to 
access and understand current statistics. The burden 
and responsibility to produce credible information 
then rests with both the public, which has an obli-
gation to provide valid data and seek to understand 
the outcomes, and the government, which must col-
lect, analyze, and publicize information in a reliable, 
timely, and nonpartisan manner. 

Industry and Manufacturing
The notion of interchangeable parts—pioneered by 
individuals like eighteenth-century army officer and 
engineer Jean-Baptiste Vaquette de Gribeauval and 
inventor Eli Whitney—followed by the mass produc-
tion of goods during the Industrial Revolution, ushered 
in a new era of data collection and analysis to ensure the 
quality of manufactured products. In the early twenti-
eth century, physicist and statistician Walter Shewhart 
pioneered data analysis methods in manufacturing 
that led some to call him the “father of statistical qual-
ity control.” Among other accomplishments, he devel-
oped specialized charts using data and probability to 
sample and track the variability in processes to iden-
tify both natural, random process deviations and non-
random deviations in order to eliminate the latter and 
thus improve consistency in the product. 

W. Edwards Deming expanded on these notions 
to help develop the industrial management practice 
known as “continuous quality control” or “continu-
ous quality improvement.” Deming is credited with 
significant contributions to Japan’s post–World War 
II reputation for high-quality products, and his data-
based control methods have been widely adopted in 
the United States. For example, Motorola’s Six Sigma 
program, founded in the 1980s, focused on training 
managers and employees at various levels in statistical 
methods and practices designed to identify and remove 
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causes of product defects with the overall goal of mini-
mizing process variability. The program name derives 
from statistical notation: sigma (σ) is commonly used 
to represent standard deviation, a measure of vari-
ability. Six standard deviations on either side of the 
mean in a bell-shaped or normal curve encompasses 
virtually all of the data values. If there are six standard 
deviations between the process mean and the nearest 
product specification limit, only three or four items per 
million produced will fail to meet those specifications. 
General Electric and other companies adapted and 
evolved the original Six Sigma ideas by merging them 
with other management strategies. For example, in the 
1990s, concepts from a manufacturing optimization 
method known as “lean manufacturing” resulted in a 
hybrid program called “Lean Six Sigma.” 

Data analysis and probability are also used in adver-
tising and market research. Many of the common mar-
ket research practices used in the twenty-first century 
are traced to the work of engineer and pioneer tele-
vision analyst Arthur Nielson. These practices include 
data analysis to quantify market share and determin-
ing sales patterns by combining consumer surveys with 
sales audits.

Medicine and Pharmacy
In the nineteenth century, some in the medical commu-
nity began to investigate the idea of using data analysis 
for medical applications. Physician William Farr applied 
data analytic methods to model epidemic diseases. He 
is often credited as the founder of epidemiology. Phy-
sician John Snow gathered data to trace the source of 
an 1854 cholera outbreak in London. Along with his 
census work, Shattuck helped implement many public 
health measures based on data analyses. Florence Night-
ingale invented her own graphical data presentations in 
order to summarize data on the health impacts of poor 
hygiene in British military hospitals. In the twenty-first 
century, agencies like the U.S. Centers for Disease Con-
trol and Prevention and the World Health Organiza-
tion collect, analyze, and model data in order to, among 
other goals, track the spread of infectious disease; assess 
the impact of preventive measures, like vaccinations; 
and test the virulence of infectious agents. 

Clinical trials or experiments are also performed to 
determine the effectiveness and safety of new medical 
procedures and drugs. In the eighteenth century, phy-
sician James Lind tested remedies for scurvy aboard a 

British navy ship, which can be cited as one of the first 
recorded cases of a controlled medical trial. Statistician 
and epidemiologist Austin Bradford Hill helped pioneer 
randomized, controlled clinical trials in the twentieth 
century and also worked to develop the Bradford-Hill 
criteria, a set of logical and mathematical conditions that 
must be met to determine causal relationships. Approval 
and patenting of pharmaceuticals and medical devices 
by federal agencies like the Food and Drug Administra-
tion, part of the U.S. Department of Health and Human 
Services, require extensive experimentation and data 
analysis. For example, when a television commercial 
for a drug states that it is “clinically proven,” this usually 
means that it has gone through experimental testing and 
that appropriate analyses of data have determined that 
it is very probably effective and safe, according to mea-
sures like the Bradford-Hill criteria.

Finance and Insurance
Probability is essential for quantifying risk, a concept 
that underlies most financial ventures and drives inter-
est, credit, loan, and insurance rates. Data analysis can 
be used to derive probabilities and create financial 
models or indices like Fair Isaac Corporation (FICO) 
scores, the Dow Jones Industrial Average, and nations’ 
gross domestic products. Engineer and economist Wil-
liam Playfair is considered to be one of the creators of 
graphical data analysis. Beginning in the eighteenth 
century, he researched trade deficits and other types 
of economic and financial data. Mathematician Louis 
Bachelier is known as the “father of financial math-
ematics” for his use of Brownian motion to model stock 
options at the turn of the twentieth century. Brownian 
motion, named for botanist Robert Brown, is a stochas-
tic (probabilistic or random) process. The international 
Bachelier Financial Society is named for Louis Bach-
elier. Its goal is “the advancement of the discipline of 
finance under the application of the theory of stochastic 
processes, statistical and mathematical theory,” and it is 
open to individuals in any discipline. Actuarial scientists 
or actuaries are also widely employed to develop models 
of the financial impact of risk. For example, they may 
use a combination of theoretical probability and data 
analysis to determine appropriate premiums for life or 
health insurance using variables such as life expectancy, 
which is adjusted for characteristics or behaviors that 
modify risk, like gender or smoking. Astronomer and 
mathematician Edmund Halley, for whom Halley’s 
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Comet is named, is also often cited as the founder of 
actuarial science. He calculated mortality tables using 
data from the city of Breslau, Germany (now Wrocław, 
Poland). Published in 1693, these tables are the earliest 
known works to mathematically quantify the relation-
ship between age and mortality.

Entertainment and Gambling
Archaeological evidence suggests that games of chance 
have existed since antiquity. Probability appears in 
different forms in written works throughout the cen-
turies, like the body of Talmudic scholarship and the 
1494 treatise of mathematician and friar Luca Pacioli 
known as Summa de arithmetica, geometria, proportioni 
et proportionalita. The mathematical study of probabil-
ity as it is known in the twenty-first century is tradi-
tionally traced to seventeenth-century mathematicians 
Blaise Pascal and Pierre de Fermat, who were inspired 
to formulate their mathematical “doctrine of chances” 
by problems in gambling. In the twenty-first  century, 
gambling is a multibillion dollar industry. In Las Vegas 
and other places, oddsmakers use probability to deter-
mine risks, point spreads, and payoff values for games 
of chance, sporting events, and lotteries. Players often 

use betting systems that are based on data analysis or 
probability to attempt to beat the odds and increase 
their chances of winning. 

One example was a group of students from the Mas-
sachusetts Institute of Technology and other schools 
who used card counting techniques and mathemati-
cal optimization strategies in blackjack, which was the 
basis of the 2008 movie 21 and a television documen-
tary Breaking Vegas. The television game show Deal or 
No Deal, which has aired versions in approximately 80 
countries around the world, has been studied by math-
ematicians, statisticians, and economists as a case of 
decision making involving probability and data anal-
ysis concepts, like expected value. Probability-based 
random number generation is incorporated into many 
popular video games to increase realism and create 
multiple scenarios, while moviemakers are exploring 
probability-based artificial intelligence systems to gen-
erate realistic behavior in large, computer-generated 
battle scenes. The pioneering Lord of the Rings mov-
ies used a program developed by computer graphics 
software engineer Stephen Regelous and named Mul-
tiple Agent Simulation System in Virtual Environment 
(MASSIVE), which uses probabilistic methods like 
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T he growing importance of statistical data anal-
ysis in global twenty-first century society was 

highlighted by the first World Statistics Day, which 
was held on October 20, 2010 (“20.10.2010” in 
common international date notation). In his letter 
to world leaders, United Nations Secretary Gen-
eral Ban Ki-moon emphasized the importance of 
data and statistical analysis to the current and 
future welfare of global society: “Let us make 
this historic World Statistics Day a success by ac-
knowledging and celebrating the role of statistics 
in the social and economic development of our 
societies and by dedicating further efforts and 
resources to strengthening national statistical 
capacity.” More than 130 countries and areas, 
as well as professional statistical organizations, 
universities, and other groups, held celebrations. 

Several international organizations also hosted a 
World Statistics Day conference in Geneva, Swit-
zerland. That gathering brought together data 
analysis professionals from academia, govern-
ment, and business, along with various end-us-
ers of statistics, to discuss the essential role 
of statistical data analysis in everyday life and 
in solving humanity’s most pressing social, eco-
nomic, and environmental issues. In the United 
States, President Barack Obama cited the impor-
tance of such methods: “Statistical data drives 
countless decisions which impact our nation. It 
guides representation in the United States Con-
gress; informs our economic, social service, and 
national security outlook; and helps determine 
where infrastructure like schools, hospitals, and 
roads should be built.

World Statistics Day



fuzzy logic, derived from the fuzzy set theory of com-
puter scientist and mathematician Lotfi Zadeh. Most 
sports collect a wide variety of data about their play-
ers, but in the latter twentieth century, advanced math-
ematical modeling, such as sabermetrics, developed by 
statistician George William “Bill” James, gained popu-
larity for analyzing player and team performance and 
making predictions.
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Data Mining
Category: Business, Economics, and Marketing.
Fields of Study: Data Analysis and Probability; 
Measurement; Number and Operations.
Summary: Data mining is the relatively recent practice 
of using algorithms to distill patterns, summaries, and 
other specific forms of information from databases.

Advances in technology in the latter half of the twen-
tieth century led to the accumulation of massive data 
sets in government, business, industry, and various 
sciences. Extracting useful information from these 
large-scale data sets required new mathematical and 
statistical methods to model data, account for error, 
and handle issues like missing data values and differ-
ent variable scales or measures. Data mining uses tools 
from statistics, machine learning, computer science, 
and mathematics to extract information from data, 
especially from large databases. The concepts involved 
in data mining are drawn from many mathematical 
fields such as fuzzy sets, developed by mathematician 
and computer scientist Lotfi Zadeh, and genetic algo-
rithms, based on the work of mathematicians such as 
Nils Barricelli. Because of the massive amounts of data 
processed, data mining relies heavily on computers, 
and mathematicians contribute to the development of 
new algorithms and hardware systems. For example, 
the Gfarm Grid File System was developed in the early 
twenty-first century to facilitate high-performance 
petascale-level computing and data mining.

History
Data mining has roots in three areas: classical statis-
tics, artificial intelligence, and machine learning. In the 
late 1980s and early 1990s, companies that owned large 
databases of customer information, in particular credit 
card banks, wanted to explore the potential for learn-
ing more about their customers through their transac-
tions. The term “data mining” had been used by statis-
ticians since the 1960s as a pejorative term to describe 
the undisciplined exploration of data. It was also called 
“data dredging” and “fishing.” However, in the 1990s, 
researchers and practitioners from the field of machine 
learning began successfully applying their algorithms 
to these large databases in order to discover patterns 
that enable businesses to make better decisions and to 
develop hypotheses for future investigations. 
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Partly to avoid the negative connotations of the term 
“data mining,” researchers coined the term “knowledge 
discovery in databases” (KDD) to describe the entire 
process of finding useful patterns in databases, from 
the collection and preparation of the data, to the end 
product of communicating the results of the analyses 
to others. This term gained popularity in the machine 
learning and AI fields, but the term “data mining” is still 
used by statisticians. Those who use the term “KDD” 
refer to data mining as only the specific part of the KDD 
process where algorithms are applied to the data. The 
broader interpretation will be used in this discussion. 

Software programs to implement data mining 
emerged in the 1990s and continue to evolve today. 
There are open-source programs (such as WEKA, 
http://www.cs.waikato.ac.nz/ml/weka and packages in 
R, http://www.r-project.org) and many commercial 
programs that offer easy-to-use graphical user inter-
faces (GUIs), which can facilitate the spread of data 
mining practice throughout an organization.

Types of Problems
The specific types of tasks that data mining addresses 
are typically broken into four types:

1. Predictive Modeling (classification, regression)
2. Segmentation (data clustering)
3. Summarization
4. Visualization

Predictive modeling is the building of models for a 
response variable for the main purpose of predicting 
the value of that response under new—or future—val-
ues of the predictor variables. Predictive modeling 
problems, in turn, are further broken into classification 
problems or regression problems, depending on the 
nature of the response variable being predicted. If the 
response variable is categorical (for example, whether 
a customer will switch telephone providers at the end 
of a subscription period or will stay with his or her cur-
rent company), the problem is called a “classification.” 
If the response is quantitative (for example, the amount 
a customer will spend with the company in the next 
year), the problem is a “regression problem.” The term 
“regression” is used for these problems even when tech-
niques other than regression are used to produce the 
predictions. Because there is a clear response variable, 
predictive modeling problems are also called “super-

vised problems” in machine learning. Sometimes there 
is no response variable to predict, but an analyst may 
want to divide customers into segments based on a vari-
ety of variables. These segments may be meaningful to 
the analyst, but there is no response variable to predict 
in order to evaluate the accuracy of the segmentation. 
Such problems with no specified response variable are 
known as “unsupervised learning problems.”

Summarization describes any numerical summaries 
of variables that are not necessarily used to model a 
response. For example, an analyst may want to exam-
ine the average age, income, and credit scores of a large 
batch of potential new customers without wanting to 
predict other behaviors. Any use of graphical displays 
for this purpose, especially those involving many vari-
ables at the same time, is called “visualization.”

Algorithms
Data mining uses a variety of algorithms (computer code) 
based on mathematical equations to build models that 
describe the relationship between the response variable 
and a set of predictor variables. The algorithms are taken 
from statistics and machine learning literature, including 
such classical statistical techniques as linear regression 
and logistic regression and time series analysis, as well 
as more recently developed techniques like classification 
and regression trees (ID3 or C4.5 in machine learning), 
neural networks, naïve Bayes, K-nearest neighbor tech-
niques, and support vector machines. 

One of the challenges of data mining is to choose 
which algorithm to use in a particular application. 
Unlike the practice in classical statistics, the data miner 
often builds multiple models on the same data set, 
using a new set of data (called the “test set”) to evaluate 
which model performs best. 

Recent advances in data mining combine models 
into ensembles in an effort to collect the benefits of the 
constituent models. The two main ensemble methods 
are known as “bootstrap aggregation” (bagging) and 
“boosting.” Both methods build many (possibly hun-
dreds or even thousands of) models on resampled ver-
sions of the same data set and take a (usually weighted) 
average (in the case of regression) or a majority vote 
(in the case of classification) to combine the models. 
The claim is that ensemble methods produce models 
with both less variance and less bias than individual 
models in a wide variety of applications. This is a cur-
rent area of research in data mining. 
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Applications
Data mining techniques are being applied everywhere 
there are large data sets. A number of important appli-
cation areas include the following:

1. Customer relationship management (CRM). 
Credit card banks formed one of the 
first groups of companies to use large 
transactional databases in an attempt to 
predict and understand patterns of customer 
behavior. Models help banks understand 
acquisition, retention, and cross-selling 
opportunities.

2. Risk and collection analytics. Predicting both 
who is most likely to default on loans and 
which type of collection strategy is likely to 
be successful is crucial to banks. 

3. Direct marketing. Knowing which customers 
are most likely to respond to direct marketing 
could save companies billions of dollars a 
year in junk mail and other related costs. 

4. Fraud detection. Models to identify fraudulent 
transactions are used by banks and a 
variety of government agencies including 
state comptroller’s offices and the Internal 
Revenue Service (IRS).

5. Terrorist detection. Data mining has been 
used by various government agencies in an 
attempt to help identify terrorist activity—
although concerns of confidentiality have 
accompanied these uses.

6. Genomics and proteomics. Researchers use 
data mining techniques in an attempt to 
associate specific genes and proteins with 
diseases and other biological activity. This 
field is also known as “bioinformatics.”

7. Healthcare. Data mining is increasingly used 
to study efficiencies in physician decisions, 
pharmaceutical prescriptions, diagnostic 
results, and other healthcare outcomes. 

Concerns and Controversies
Privacy issues are some of the main concerns of the 
public with respect to data mining. In fact, some kinds 
of data mining and discovery are illegal. There are fed-
eral and state privacy laws that protect the information 
of individuals. Nearly every Web site, credit card com-
pany, and other information collecting organization has 

a publicly available privacy policy. Social networking 
sites, such as Facebook, have been criticized for shar-
ing and selling information about subscribers for data 
mining purposes. In healthcare, the Health Insurance 
Portability and Accountability Act of 1996 (HIPAA) 
was enacted to help protect individuals’ health infor-
mation from being shared without their knowledge. 
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Daubechies, Ingrid
Category: Mathematics Culture and Identity.
Fields of Study: Algebra; Number and Operations; 
Representations.
Summary: The first female president of the 
International Mathematical Union, Belgian Ingrid 
Daubechies revolutionized work on wavelets.

Ingrid Daubechies is a physicist and mathematician 
widely known for her work with time frequency analy-
sis, including wavelets, and their applications in engi-
neering, science, and art. Some people even refer to 
her as the “mother of wavelets.” In 1994, Daubechies 
became the first tenured woman professor in the Math-
ematics Department of Princeton University, and in 
2004 she was named the William R. Kenan, Jr. Profes-
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sor of Mathematics at Princeton. 
Daubechies has achieved many 
honors internationally and was 
the first woman to receive a 
National Academy of Sciences 
Award in Mathematics. In 2010, 
she became the first woman 
president of the International 
Mathematical Union.

Daubechies was born in 
Houthalen, Belgium, in 1954. As 
a child she enjoyed sewing clothes 
for dolls, saying about her expe-
riences, “It was fascinating to 
me that by putting together flat 
pieces of fabric one could make 
something that was not flat at all 
but followed curved surfaces.” 
She also computed powers of 
two in her head before sleeping, 
a childhood activity that coinci-
dentally her future husband also 
engaged in. She had the support 
of her parents, which she appre-
ciated. Her father, a coal mine engineer, answered her 
mathematical questions, and she tried to do the same 
with her own children. She attended a single-sex school 
and was not exposed to the idea that there might be 
gender differences in mathematics, saying, “So it didn’t 
occur to me.…Later on, I did meet people who felt 
or even articulated very clearly that women were less 
‘suited’ for mathematics or science, but by then I was 
confident enough to take this as a sign of their nar-
row-mindedness rather than let it influence me.” She 
earned her bachelor’s degree in 1975 in physics, and her 
Ph.D. in physics in 1980 from the Free University (Vrije 
Universiteit) in Brussels, Belgium. She held a research 
position at the Free University until 1987, when she 
accepted a position as a member of the technical staff of 
the Mathematics Research Center at AT&T Bell Labora-
tories in the United States. She remained at the Bell Labs 
until 1994, although she took two leaves of absence for 
research: one for six months at the University of Michi-
gan, and another for two years at Rutgers University

Wavelet Analysis
Daubechies is best known for her work in wavelet 
analysis, a cross-disciplinary field that allowed her to 

combine her interest in math-
ematics with her training in 
physics. She has stated that she 
now considers herself a math-
ematician rather than a physicist 
because her work in physics was 
always highly theoretical and 
mathematical, and because she 
is interested in applications out-
side physics, particularly in engi-
neering. A wavelet is an oscilla-
tion that has an amplitude that 
moves from zero to some point 
and then decreases back to zero 
(similar to an oscillation on a 
heart monitor). A wavelet trans-
form is a mathematical function, 
similar to a Fourier transform, 
which allows data to be divided 
into frequency components and 
may be used to analyze signals 
that contain discontinuities and 
spikes. Jean Morlet and Alex 
Grossman developed the con-

tinuous wavelet function in the 1980s, and Daubechies, 
working with Yves Meyer and Alex Grossman, devel-
oped a discrete approach that allowed the reconstruc-
tion of wavelets from discrete values. 

Applications of Wavelet Analysis
Wavelet analysis has many practical applications, par-
ticularly in creating and storing digital images. For 
instance, the U.S. Federal Bureau of Investigation (FBI) 
has used wavelet analysis since 1993 to encode digitized 
fingerprint records. This application is due in large part 
to the fact that a wavelet transform of an image reduces 
the amount of computer memory required to store it by 
as much as 93% compared to conventional image stor-
age methods. Another application of wavelet analysis 
is in medical imaging systems, such as magnetic reso-
nance imaging and computerized tomography. These 
technologies use scanners to collect digital information 
that is then assembled by a computer into a two- or 
three-dimensional picture of some internal aspect of 
the patient’s body. Data processing methods involv-
ing wavelet transforms “clean up” and smooth digital 
information to yield a sharper image. Using wavelet 
transforms in medical scanning also reduces the time 
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used to take the scan (thus reducing the patient’s expo-
sure to radiation) and makes the process of acquiring 
usable images faster and cheaper. 

Further Reading
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Deep Submergence 
Vehicles
Category: Travel and Transportation.
Field of Study: Algebra; Measurement; Number 
and Operations.
Summary: Submergence vehicles must be carefully 
designed to take into account undersea conditions.

Deep submergence vehicles are primarily designed to 
aid researchers in exploring the depths of Earth’s oceans. 
Much is unknown about the suboceanic environment, 
and exploration of these depths requires transport vehi-
cles that can withstand tremendous pressures. Modern 
submergence vehicles can not only dive to great depths 
but can also stay submerged for hours at length, and are 
equipped with external lights and tele-operated robotic 
manipulators to gather deep sea samples for further 
research. Besides researching marine life, deep submer-
gence vehicles also play vital roles in the oil exploration 
and the telecommunications industries where robotic 
submarine vehicles known as “autonomous underwater 
vehicles” detect faulty cables and help in oil field explo-
ration. English mathematician William Bourne may 
have been the first to record a design for an underwater 

navigation vehicle in 1578. In addition to mathemat-
ics and mathematicians impacting deep submergence 
vehicles, submarines have also impacted the develop-
ment of mathematics. Mathematicians examined the 
optimal way for airplanes to search for submarines, and 
the field of operations research was born.

Physical Characteristics of the Abyss
Pressure. At any given depth under the sea level, the 
pressure on a body can be calculated as

P g h= × ×ρ

where P is pressure, ρ is the density of the seawater, g is 
the acceleration because of gravity, and h is the depth 
at which the measurement is being taken.

The atmospheric pressure at sea-level is about 100 
kPa (~ 14.6 psi), the same amount of water pressure at 
about 10 meters (33 feet) below the surface, making the 
combined pressure experienced by a body at a 10 meter 
depth almost double of that at the surface.

Light. Most of the visible light entering the ocean is 
absorbed within 10 meters (33 feet) of the water’s sur-
face. Almost no light penetrates below 150 meters (490 
feet). Solid particles, waves, and debris in the water affect 
light penetration. The longer wavelengths of light, red, 
yellow, and orange, penetrate to 15, 30, and 50 meters 
respectively, while the shorter wavelengths—violet, 
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blue, and green—can penetrate further. The depth of 
water where sunlight penetrates sufficiently for photo-
synthesis to take place is called the Euphotic Zone and 
is normally around 200 meters (655 feet) in the ocean. 
The zone where filtered sunlight only suffuses in the 
water is known as the Disphotic Zone and extends from 
the end of the Euphotic Zone to about a depth of 1000 
meters. Below that, no sunlight ever penetrates, and this 
is known as the Aphotic Zone.

Temperature. There is a significant difference in 
the temperatures between the Euphotic and Aphotic 
zones. However, in the Aphotic Zone, the tempera-
ture remains almost constant, hovering around 2 to 4 
degrees Celsius. The only exception occurs when deep-
sea volcanoes or hydrothermal vents exist, which cause 
significant warming of the waters.

History
The earliest deep-sea submersibles were known as 
“bathyspheres” (from bathys, Greek for “deep”). They 
were raised in and out of the water by a cable. They 
were fitted with oxygen cylinders inside to provide air 
to the divers, and had chemicals to absorb the expelled 
carbon dioxide. The early bathyspheres were not 
maneuverable—the only degree of freedom they had 
enabled them to go up and down.

The notable Swiss physicist Auguste Piccard (1884–
1962) was influential in making the next design iteration 
to the bathysphere, called the “bathyscaph.” The vessel 
was not suspended from a ship but instead attached to 
a free-floating tank filled with petroleum liquid. This 
tank made it buoyant (lighter than water). The bathy-
scaph had metal ballasts that, when released, allowed the 
vessel to surface. Auguste and his son Jacques designed 
the next generation bathyscaph, the Trieste. The Trieste 
set a new world record when it reached the lowest point 
on Earth, the Marianas Trench (35,800 feet).

Improvements in electronics and materials engi-
neering have led to the design of Alvin, a deep-sea ves-
sel capable of accommodating up to three people and 
diving for up to nine hours. Alvin sports two robotic 
arms that can be customized depending on the mis-
sion it is undertaking. Alvin’s most notable contribu-
tion was its role in exploring the RMS Titanic.

Further Reading
Arroyo, Sheri, and Rhea Stewart. How Deep Sea Divers 

Use Math. New York: Chelsea House, 2009.

Morse, Philip and George Kimball. Methods of 
Operations Research. Kormendi Press, 2008.

Mosher, D. C., Craig Shipp, Lorena Moscardelli, Jason 
Chaytor, Chris Baxtor, Homa Lee, and Roger Urgeles. 
Submarine Mass Movements and Their Consequences. 
New York: Springer, 2009.

Ashwin Mudigonda

See Also: Coral Reefs; Marine Navigation; Robots; 
Tides and Waves.

Deforestation
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Measurement;  
Problem Solving.
Summary: Mathematicians study and model many 
aspects of deforestation.

Deforestation is the removal of forests by logging or 
burning. While some deforestation can occur acciden-
tally as a result of wildfires, most is deliberate. Trees may 
be sold for lumber or charcoal, and land may be cleared 
for housing, farming, or pasturing livestock. Trees may 
also be removed for beneficial purposes, such as direct-
ing water flow or controlling future forest fires. Many 
people believe that deforestation is a significant factor 
in climate change and biodiversity loss, and research 
has shown that deforested regions are much more vul-
nerable to soil erosion and desertification. 

While logging is linked to deforestation in the popu-
lar imagination, the United Nations Framework Con-
vention on Climate Change actually found that in the 
early twenty-first century, logging actually accounted 
for less than 20% of deliberate deforestation. In con-
trast, commercial agriculture claimed about one-third 
of deforested lands and subsistence farming nearly 
one-half. This statistic indicates one reason why defor-
estation is increasing primarily in relatively poorer 
countries. However, within an industrialized coun-
try, like the United States, logging and clearing land 
for housing or other real estate development account 
for far more deforestation than subsistence farming, 
which few Americans have practiced since the dawn 
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of the twentieth century. Mathematicians study and 
model many aspects of deforestation, including pos-
sible causes and the biological, geological, social, and 
economic effects; uses of deforested land; patterns of 
regrowth and biodiversity in areas where the forest has 
been allowed to return; and spatial mapping and visu-
alizations of geographical regions before, during, and 
after deforestation. Data collection, statistical analyses, 
and spatial dependency analyses, as well as stochastic 
spatial modeling, linear programming, geometry, and 
digital image analysis, are all mathematical methods 
that have played a role in such analyses.

Environmental Effects
Deforestation is implicated in numerous environmen-
tal problems. The relationship between the forest and 
atmospheric carbon dioxide, for instance, is compli-
cated. While they are alive and actively growing, trees 

remove carbon dioxide from the atmosphere, store it 
as carbon, and release oxygen back into the atmosphere 
through respiration. This process reduces the amount 
of greenhouse gases in the atmosphere, and this basic 
dichotomy—plants breathing in carbon dioxide and 
releasing oxygen, while humans and animals do the 
opposite—has long been taught to schoolchildren as 
the critically interdependent relationship between flora 
and fauna on Earth. In the early twenty-first century, the 
world’s forests store roughly three-quarters or greater of 
aboveground and soil carbon. When trees are cut down 
and burned, they release their stored carbon back into 
the atmosphere. When trees die and decay, they do the 
same, as fungi and bacteria break down the carbon prod-
ucts into carbon dioxide and methane. Their effect on 
the world’s oxygen supply is actually very minor—the 
amount of oxygen they release is not as significant as the 
amount of carbon dioxide involved in a tree’s lifespan.
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But cutting trees down and turning them into long-
lived products (using them to build houses, for instance) 
stores the carbon just as efficiently. For forests to con-
tinue to take carbon dioxide in from the atmosphere, 
the trees must be harvested regularly—with new trees 
planted—so that there are always actively growing trees. 
Left to their own devices, mature forests cycle through 
periods as carbon dioxide sources (when the carbon 
dioxide released by decaying or wildfire-burned trees 
exceeds that taken in by growing trees) and sinks (when 
the net carbon dioxide release is negative). 

The greatest amount of carbon dioxide is taken in 
by deciduous trees when spring leaves are growing, 
which results in an observable dip in the Keeling Curve 
(a graph that tracks variation in the concentration of 
atmospheric carbon dioxide from 1958 onward). The 
dip is mirrored by a rise corresponding to the release of 
carbon dioxide back into the air every fall when these 
leaves fall and decay. The curve is named for Charles 
Keeling, a University of California, San Diego, oceanog-
rapher whose observations helped bring global atten-
tion to anthropogenic climate change. Measurements 
continue to be taken at Mauna Loa, in Hawaii, and 
those data have shown a roughly 20% to 25% increase 
in the amount of atmospheric carbon dioxide between 
1958 and 2010. There have been no declining trends 
in that time, countering the pre-Keeley claim that an 
apparent rise in carbon dioxide atmospheric concen-
tration was the result of random fluctuations. Periodic 
local decreases and increases of about 1% to 2% are 
associated with seasonal cycles.

Anti-Deforestation Efforts
Recent efforts to reduce greenhouse gas emissions, and 
international agreements binding countries to do so, 
have brought more focus to the task of accurately mea-
suring those emissions. It came to light in 2010 that 
Australia’s efforts to reduce emissions in order to com-
ply with the Kyoto Protocol goals were hampered by 
their inaccurate measurement of deforestation emis-
sions. Since 1990, Australia has had the highest rate of 
deforestation in the developed world, and thus is the 
only developed country targeting deforestation emis-
sions as its primary way of reducing overall emissions. 
But its inability to generate an accurate figure of what 
those emissions currently are, to establish a baseline, 
or reliably measure them in the future, has thrown a 
wrench in its efforts.

Data Collection and Mathematical Modeling
The highly complex nature of forest ecosystems and 
even individual trees makes it virtually impossible to 
collect complete data on the system dynamics of nat-
ural forests. As a result, investigations of long-term 
dynamics rely heavily on scientific inference. One way 
of making any estimate, heavily relied on when con-
sidering the environmental costs of possible actions, is 
through ecosystem modeling, which constructs math-
ematical representations of ecosystems. The entire 
ecosystem need not be represented (though this leaves 
open the possibility of unforeseen consequences in 
parts of the ecosystem not modeled). Typically, models 
are constructed to examine the inventory of a specific 
chemical in the environment, like carbon, nitrogen, 
phosphorous, or a toxin. The ecosystem is reduced to a 
set of state variables that describe the state of a dynamic 
system, like the population of a specific species or the 
concentration level of a particular substance. 

Mathematical functions define the relationships 
between those variables, such as the relationship 
between new leaf growth and carbon dioxide intake. 
A usable model typically requires many variables and 
much fine-tuning to affirm that the relationships have 
been defined accurately, and, in some cases, a model 
may be constructed simply to test a hypothesis about 
those relationships, by comparing the behavior of the 
model ecosystem to the real one. For example, math-
ematician and ecologist Nandi Leslie developed math-
ematical models using techniques such as spatial statis-
tics, mean field and pair approximation, and the theory 
of interacting particle systems to investigate questions 
about forest fragmentation and degradation, ecology 
and biodiversity in lands reclaimed by forests, and 
landscape-level impact of land-use activities in Bolivia 
and Brazil. Leslie is included on a Web site called Math-
ematicians of the African Diaspora and is the daugh-
ter of mathematician Joshua Leslie, who has published 
widely in the fields of algebraic and differential geom-
etry. The applications of modeling in deforestation are 
as broad as the types of models. Some mathematicians 
have used calculus to measure tree density, includ-
ing the number of trees per acre and the quantity of 
foliage. Logistic functions have been used to estimate 
insect density or infestations. Many linear and nonlin-
ear modeling techniques, like regression analysis, are 
widely employed to help reveal and explain associa-
tions between multiple variables, such as social choices 
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and government policies; economic measures; envi-
ronmental measures; geographic features, like altitude 
and slope; and human constructions, like roads. These 
models are then frequently used to forecast important 
quantities of interest, like deforestation rates and the 
overall proportion of deforested land. However, inap-
propriate extrapolations and generalizations can lead 
people to make inaccurate predictions or conclusions. 
For example, extrapolations from exponential models 
tend to lead to overestimation of future values. This 
has an impact on contentious and world-reaching sci-
entific debates, such as global warming.
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Deming, W. Edwards
Category: Business, Economics, and Marketing.
Fields of Study: Connections.
Summary: W. Edwards Deming (1900–1993) was 
an American applied statistician who revolutionized 
Japanese management as part of the rebuilding effort 
after World War II.

W. Edwards Deming was an internationally renowned 
consultant whose work led Japanese industry into 
new principles of management and revolutionized 
quality and productivity in Japanese companies. He 
believed: “Innovation comes from freedom. It comes 

from those who are obligated to no one. It comes from 
people who are responsible only to themselves.” He 
was born October 14, 1900, and died on December 20, 
1993. His undergraduate degree in engineering was 
from the University of Wyoming in 1921. He earned a 
M.S. in physics and mathematics from the University 
of Colorado in 1925 and a Ph.D. in physics from Yale 
University in 1928. He had a wide and varied career, 
which included his first scientific paper on the nuclear 
packing of helium, mathematical and statistical work 
for the Department of Agriculture in Washington, 
D.C., and work on sampling issues for the U.S. Cen-
sus Bureau. He noted that he also worked on many 
different studies, including: “application of statistical 
theory to problems that arise in industrial produc-
tion, in tests of physical materials . . . motor freight, 
rail freight, accounting . . . average life of returnable 
bottles, comparison of medical treatments, compari-
son of methods of diagnosis, social, and demographic 
problems created by physical or mental handicaps. My 
part in any study is the design thereof, followed by 
evaluation of the statistical reliability of the results.” 
He received many honors and awards and was also an 
active member in professional societies, such as the 
American Statistical Association and as president of 
the Institute of Mathematical Statistics in 1945.

In 1999, the Los Angeles Times recognized him as 
one of the 50 people who most influenced business in 
the twentieth century because of his work in rebuild-
ing Japan after World War II. He urged Japanese 
companies to concentrate on constant improvement, 
improved efficiency, and doing things right the first 
time. The essence of his ideas was based on the con-
cepts of statistical process control, a process originally 
developed by Walter A. Shewhart in the 1920s. It has 
since been expanded to include the total quality man-
agement approach. 

The essence of Deming’s process was to record the 
number of product defects, statistically analyze why 
those defects occurred, institute changes to correct the 
defects, record how much the quality then improved, 
and to continue to refine the production process until 
it was done correctly. He said: “If you don’t have a 
method, you were goofing off. A system must be man-
aged and must have an aim.”

Deming first successfully applied his ideas in the 
United States during World War II in improving the 
manufacture of munitions and other strategically 
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important products. As mentioned above, he brought 
those same ideas to Japan in the 1950s and early 1960s. 
During that time period, “Made in Japan” went from 
being a joke and a synonym for poor quality to a sym-
bol of some of the highest quality products. The focus 
on quality that he emphasized was defined as the ratio 
of results of work efforts with total costs. If a company 
or manager focuses on quality, Deming’s work demon-
strated that, over time, quality will increase and costs 
will fall.  On the other hand, if the focus is primarily on 
costs, then costs will rise and quality will decline.

Two major publications have outlined his theories 
and the processes he developed. In his 1982 book Out 
of the Crisis, Deming discusses his 14 key principles 
for management for transforming business execu-
tives. Deming felt that if his 14 points were applied 
in a meaningful way, they would lead to a process 
of continual improvement. The New Economics, 
published in 1993, emphasized that the solution to 
problems comes from cooperation, not competition. 
This concept is accomplished through a new type of 
management, which Deming identified as profound 
knowledge and which includes four parts: apprecia-
tion for a system, knowledge about variation, theory 
of knowledge, and psychology.

Deming also had an interest in music. He composed 
several pieces, mostly liturgical. He also composed a 
new rendition of the Star Spangled Banner with the 
same words set to a different tune. He had always felt 
that the “pub” music of the original version was not 
appropriate for a national anthem.

Further Reading
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Center for Advanced Engineering Study, 1993.

———. “The W. Edwards Deming Institute: Dr.  
Deming’s 1974 CV—from his Study.” http://deming 
.org/index.cfm?content=621.

Paton, Scott. “Four Days With W. Edwards Deming.” 
http://deming.org/index.cfm?content=653.

Jim Austin

See Also: Data Analysis and Probability in Society; 
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Diagnostic Testing
Category: Medicine and Health.
Fields of Study: Data Analysis and Probability; 
Measurement; Number and Operations.
Summary: Diagnostic tests rely on statistics from 
clinical research to predict the presence or severity of 
a disease in a specific patient.

The ability of humans to detect and treat diseases has 
advanced considerably in the past two centuries, with 
the discovery of underlying causes, such as microor-
ganisms, and treatments, like antibiotics, as well as 
methods for diagnosing injury and disease. In medi-
cine, a diagnostic test is in an instrument used to detect 
or predict the presence or absence of disease or the 
severity of disease. 

The instrument used may take a variety of forms, 
including a patient inventory or a mechanical device. 
In clinical research, it is common practice to assess the 
quality of such instruments relative to established gold 
standards. 

Here, the intention is often to replace a traditional 
method by a newer one that offers greater benefits to 
health providers or patients, including cost reduction 
and less physical or psychological discomfort. 

It may be of interest to use the diagnostic tool to 
predict outcomes based on existing symptoms. In this 
case, the gold standard is used to confirm patient out-
comes for comparison with test predictions based on 
surrogate measures. 

Common measures of instrument quality include 
reliability, validity, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value 
(NPV). Strictly speaking, these measures apply spe-
cifically to the scores forthcoming from the instru-
ments rather than the instruments themselves, as they 
are based on studies applied to a specific sample of 
patients. Mathematicians and statisticians are essen-
tial partners in creating many diagnostic tools, such 
as magnetic resonance imaging, as well as for devel-
oping and refining the measures that allow clinicians 
and researchers to determine the efficacy of diagnos-
tic instruments. They also help design experiments in 
which new instruments are tested and compared. 

Nursing and other healthcare education programs 
frequently require courses in mathematics or statis-
tics, and the field of biostatistics is one of the fastest-
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growing occupations in the late twentieth and early 
twenty-first century.

Reliability represents the reproducibility of the test 
outcomes. A simple case involves estimation of the 
extent of chance-corrected agreement in the inter-
pretation of categorical findings from medical images 
derived from patients. Here, agreement might be mea-
sured across different clinicians based on a single imag-
ing procedure or alternatively, across different imaging 
procedures. In such cases, an appropriate choice of 
Kappa statistic or intra-class correlation coefficient 
may prove helpful. For continuous data, the Bland–
Altman method has also proved particularly popular 
in measuring agreement across different methods. 
This is especially so within medicine, where for exam-
ple, there may be a need to compare residual tumor 
sizes obtained using magnetic resonance imaging, and 
pathologic findings (the gold standard) in breast can-
cer patients who have undergone neoadjuvant (preop-
erative) chemotherapy. 

The remaining measures above represent the accu-
racy of the test outcomes. Validity, which is a function of 
reliability, represents the extent to which the diagnostic 
test measures what is intended and is particularly rel-
evant in psychological testing. Sensitivity (specificity) 
measures the proportion of genuine instances of disease 
(absence of disease, respectively), which are detected as 
such by the diagnostic test. By contrast, the PPV (NPV) 
measures the proportion of cases diagnosed by the test 
as instances of disease (absence of disease, respectively) 
which are, or will turn out to be, genuine. In assessing 
test accuracy, it can prove misleading to focus exclu-
sively on sensitivity and specificity. 

The PPV and NPV for a disease are influenced 
strongly by disease prevalence (the pre-test probability 
that a randomly chosen person from the study cohort 
has the disease). The PPV increases with increasing 
prevalence and where prevalence is particularly low 
(less than 5%), the PPV can be markedly improved by 
moderate increases in test specificity. In interpreting a 
published PPV, it is essential not only to consider the 
CI but also to verify whether disease prevalence for the 
published study is representative of that for the types 
of patient currently under consideration. This require-
ment is also particularly true of the NPV.

Further, it is typically the case that an initial stage 
has occurred whereby diagnostic test measurements 
in continuous form have been classified into catego-

ries. This categorization requires the derivation of a 
threshold value for differentiating between diseased 
and non-diseased patients. The clinician may be inter-
ested in finding the threshold value that offers an 
optimal combination of values for sensitivity and (1-
specificity). Examples of scores that have been used in 
this way include

• The GRACE (Global Registry of Acute 
Coronary Events) score in predicting death 
and myocardial infarction for patients with 
Acute Coronary Syndrome

• The APACHE (Acute Physiology and 
Chronic Health Evaluation) II score and GS 
(Glasgow Severity) score in the prediction of 
each of onset of severe pancreatitis, MODS 
(multiorgan dysfunction syndrome), and 
death in patients presenting with acute 
pancreatitis

• The MELD (Model of End-Stage Liver 
Disease) and UKELD (United Kingdom 
MELD) scores in the assessment of risk of 
acute liver failure and hence the prediction of 
waiting list mortality in patients awaiting liver 
transplants

The underlying procedure for deriving the thresh-
old value involves the segregation of the test instru-
ment scores into two groups, as determined by the 
gold standard, namely those who do and those who 
do not have the condition of interest. The accuracy 
of the diagnostic test is in turn assessed on the basis 
of these two groups. This assessment involves gener-
ating a series of threshold values and corresponding 
values for sensitivity and 1-specificity. The ROC curve 
(Receiver Operating Characteristic) involves a plot of 
sensitivity versus 1-specificity. If the intention is to 
compare the performance of competing diagnostic 
tests, ROC curves for the different tests can be plotted 
on the same graph. For any one plot, the numerically 
optimal combination of sensitivity and specificity 
values is represented by the point on the curve that 
is closest to the top left-hand corner. However, the 
trade-off between sensitivity and specificity must also 
be carefully weighed. 

For example, if the test is confirmatory, as might 
be the case in human immunodeficiency virus (HIV) 
testing, it may be preferable to choose a slightly dif-
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ferent point, which further reduces the proportion 
of false positives (1-specificity) with a small cost to 
sensitivity. In comparing the accuracy of two tests by 
means of ROCs, it is common to use the area under 
the curve (AUC). 

Where the diagnostic test identifies cases falling into 
the upper (lower) range of a test score, the AUC may 
be interpreted as a measure of the likelihood for a ran-
domly chosen diseased patient and disease-free patient 
that the diseased patient will have a higher value (lower 
value, respectively) than the disease-free patient. 

Where ROCs do not overlap, therefore, the greater 
the area under the curve, the more effective the diag-
nostic tool. Where they do overlap, the curve with 
the lower overall AUC may have a peak at an optimal 
combination of sensitivity and specificity values not 
attained by the other curve. It may therefore make 
sense to compare the partial areas under the curves 
within one or more ranges of specificity values.
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Dice Games
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Probability is the key factor for winning 
any dice game.

Dice games use one or more dice as central components 
of the activity, which excludes board games using dice 
solely as random devices to determine moves. The defi-
nition can be murky, as in the case of Backgammon, 
dice outcomes determine a player’s moves and are inte-
gral parts of game strategies. Historically, dice games 
involving gambling led to the creation of probability. 

History
Archaeological evidence from as early as 6000 b.c.e. 
shows that dice games were part of early cultures, where 
dice were cast to invoke personal divinations. The notion 
of “luck” was not involved, with the dice rolls controlled 
by the gods. Gamblers still refer to Fortuna, the Roman 
goddess and Jupiter’s daughter, as their “Lady Luck.”

The ancient die differed from the six-sided cube 
bearing pips, as the number of sides varied with the 
materials used, including fruit pits, nut shells, pebbles, 
and animal knucklebones. The latter, with four sides 
involving different probabilities, led to the phrase “roll-
ing the bones.”

Compulsive gambling and dice games have always 
been connected, being traced to Egyptian pharaohs, 
Chinese leaders, Roman emperors, Greek elite, Euro-
pean academics, and English kings. On the request of 
professional gamblers in the fifteenth and sixteenth 
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centuries, mathematicians such as Fra Luca Bartolo-
meo de Pacioli and Girolamo Cardano began to study 
the probabilities of winning dice games. In the seven-
teenth century, correspondence between Blaise Pascal 
and Pierre Fermat ultimately solved the “problem of 
points” and established basic principles of probability.

The problem of points involves a dice game 
between two players; multiple rounds are played with 
each player having an equal chance of winning on 
each roll. If the game was interrupted before either 
player had won the necessary number of rounds, gam-
blers could not determine the “fair” division of stakes 
based on current scores. Fermat and Pascal’s solution 
analyzed the probability of dice rolls and each player 
winning the pot.

Types of Dice Games
The simplest dice game involves a single die, where 
the winner is the person rolling the highest number. 
This can be extended to rolls of multiple dice, with the 
player’s score being the sum or product of the numbers 
shown. Since these dice games involve only luck, gam-
blers prefer variations with elements of strategy. 

The dice game craps involves strategy, as the 
“shooter” controls the number of dice rolls and betting 
options. Though craps is complex, key elements can be 
explained. Mathematically, each roll of two dice has 36 
possible outcomes with shown totals ranging from “2” 
to “12”. However, the probabilities of the totals vary, as 
the probability of a “2” (known as “snake eyes”) or “12” 
(known as “boxcars”) is 1/36, while the probability of a 
“7” is 6/36. Prior to the first “come out roll,” players bet 
on the “Pass Line” or “Don’t Pass Line.” If the “shooter” 
then rolls a “7” or “11,” the “Pass Line” bet wins dou-
ble their amount and the “Don’t Pass Line” bet is lost. 
However, if the initial roll is a “2,” “3,” or “12,” the “Pass 
Line” bet is lost, while the “Don’t Pass Line” bet is 
doubled if a “2” or “3” shows and is returned if a “12” 
(“push”) shows. A sum of “4,” “5,” “6,” “8,” “9,” or “10” 
becomes the “point” number, which the shooter tries 
to duplicate on the second roll. If the point number is 
made, the point bet is won and additional rolls can be 
made. But, if a “7” is rolled before the point number, 
the shooter “craps out” and a different shooter starts a 
new round. Craps games involve many other options, 
such as “Come/Don’t Come Bets” and “Horn Bets.”  

Other dice games are used for gambling, each 
with their own multiple versions and strategies. For 

example, in the dice game Ship, Captain, and Crew, 
a players gets three rolls of five dice to gain a ship 
(“6”), a captain (“5”), and a crew (“4”) in that order 
(or simultaneously). When those special numbers are 
rolled, that die is removed from play, with a success-
ful player’s score being the sum of a roll of the two 
remaining dice. 

In Buck Dice, a player throws one die to determine 
the “point number.” Another player then rolls three 
dice, continuing the rolls as long as one of the dice 
equals the point number. When this doesn’t occur, the 
player’s score for that round is the number of rolls. 

The dice game craps is thought to have developed 
from a simplification of the Old English game Hazard.
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A“big buck” occurs when all three dice equal the point 
number, and the player withdraws from the game. A 
“little buck” occurs if all three die do not equal the 
point number, which adds 5 points to the player’s 
score. Any player with exactly 15 points withdraws 
from the game; any score forced higher than 15 nul-
lifies a roll, and the player must reroll. The loser is the 
last person without reaching 15.

In Aces, a player starts with at least five dice, which he 
or she loses according to the numbers thrown. All rolled 
“1”s are placed in the table’s center and eliminated. All 
rolled “2”s are passed to the player on the left, while all 
“5”s are passed to the player on the right. Turns continue 
with rolls of the remaining dice until players either do 
not throw a “1,” “2,” or “5,” or have lost all of their dice. 
Play continues around the table until the last die rolled 
is a “1,” and the player who threw it is the winner.

Farkle begins with a player rolling six dice. Each “1” 
adds 100 points, each “5” adds 50 points, and if three 
dice show the same number, the player adds 100 times 
that shown number. A player can stop after any roll 
and keep the current total. Alternately,  a player can roll 
again to possibly increase his or her score. But, if the 
next dice do not produce a positive score, the player lose 
all accumulated points for that round. The winner is the 
first to reach 10,000 points. Some variations of Farkle 
give 1000 points for shown runs of “1–5” or “2–6.”

In line with their history, multiple versions of dice 
games exist and will continue to be used by gamblers. 
Thus, the players who understand the probabilities 
involved will always have the advantage.
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Digital Book Readers
Category: Communication and Computers.
Fields of Study: Geometry; Measurement; Number 
and Operations; Representations.
Summary: The twenty-first-century surge in e-books 
began with the advent of “electronic ink” and future 
innovations include sketchpad-like functionality.

People have been reading digital content on computer 
screens since the 1970s, but the technology used for most 
computer screens at the end of the twentieth century 
made them somewhat less useful for replacing paper 
books, magazines, and newspapers. In 1971, volunteers 
started digitizing and archiving books for Project Guten-
berg, whose goal was to encourage the development of 
electronic books. Research on electronic paper began in 
the 1970s. Many open and proprietary digital document 
formats were devised for potential use in e-books, like 
Adobe’s Portable Document Format (PDF), created by 
mathematician and engineer John Warnock. However, 
most early attempts at digital books were unsuccessful 
or aimed at niche technical audiences. 

In the early twenty-first century, the E Ink company 
introduced electronic ink technology, which revolu-
tionized digital books. The company was co-founded 
by several individuals, including physicist Joseph Jacob-
son and Russell Wilcox, who has a degree in applied 
mathematics. The resulting “electronic paper” has a 
high contrast ratio similar to standard paper, and for 
most users it closely matches the experience of reading 
on standard paper. One early application was flexible, 
changeable store signs. The 2004 Sony Librié, released 
in Japan, was the first e-reader to make the technology 
widely available, while the Amazon Kindle is credited 
with popularizing it in the United States. As of 2010, 
there were many variations on e-readers with the ability 
to display multiple e-book formats. Some of the most 
popular included the Sony Reader, the Amazon Kindle, 
and the Barnes & Noble Nook. Motorola’s FONE F3 
was the first portable phone to include this technology.

Electronic Ink
Electronic ink technology is based on microcapsules, 
which were already in use for applications like scratch-
and-sniff stickers and time-release medications. Rotat-
ing microcapsule spheres for electronic ink are filled 
with a clear liquid containing a mix of small, electrically 
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charged black and white particles. Some implementa-
tions contain on the order of 100,000 spheres per square 
inch. Electronic paper is a sheet of plastic coated with 
millions of microcapsules and equipped with an elec-
tronic device to draw the black and white particles into 
desired patterns of black and white dots. 

When viewed from a distance, the patterns create 
words and pictures. The dots can also be mixtures of 
black and white, resulting in a range of grayscale tones. 
To change the image, computer programs in the reader 
send an electronic pulse to rearrange the pattern. 
Microcapsules are bistatic, which means they stay in 
place once they are arranged without drawing continu-
ous electrical power. This factor contributes to long bat-
tery life. Electronic paper also has no backlighting like 
personal computer screens; it uses light reflection for 
viewing, just like ordinary paper. Scientists are investi-
gating red, green, and blue filters to produce full-color 
electronic ink images. A version of the Barnes & Noble 
Nook released in 2010 uses a liquid crystal display 
(LCD) screen for color and touch-screen functionality. 
Some praise this, while others consider it to be a step 
backward in e-reader technology.

Early twenty-first-century digital book readers 
embody several other features that make them well-
suited alternatives for leisure reading and textbooks in 
schools. One important aspect is their portability with 
high-capacity storage. Typical readers have the capa-
bility to store hundreds of books, so all required text-
books could be stored in single digital reader. Connec-
tivity via wireless networking allows the downloading 
of a variety of books or teacher-created documents, 
including RSS feeds for blogs and Web content. RSS 
was developed by programmers like David Winer, 
who has degrees in mathematics and computer sci-
ence. The reading experience is customizable; some 
e-readers have touch-screen navigation, adjustable 
font levels, the ability to take notes directly on screen 
or highlight text sections, built-in dictionaries, or 
search functions. 

Readers that debuted in 2010 featured applica-
tions to allow users to write or draw, like a tablet 
PC, which would be important for many mathe-
matical subjects, like geometry. Some mathemat-

ics educators have explored the use of electronic ink 
to support mathematics distance education. For exam-
ple, electronic ink tools in a chat program allowed stu-
dents and instructors to post and edit mathematical 
formulas, diagrams, and graphs while communicating 
in real time. 

Further Reading
Howard, Nicole. The Book: The Life Story of a Technology. 

Westport, CT: Greenwood Press, 2005.
Kipphan, Helmut. Handbook of Print Media: Technologies 

and Production Methods. New York: Springer, 2001.
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See Also: Cell Phone Networks; File Downloading 
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Digital Cameras
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Measurement; Number 
and Operations; Representations.
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Summary: Rapid advances in digital camera 
technology have led to their widespread use.

From the invention of modern photography in the 
1800s to the rise of digital photography in the twenty-
first century, the function of the camera has been the 
same: to record patterns of light. The word “photogra-
phy,” coined by Sir John Herschel in 1839, is from the 
Greek phos (light) and gráphein (to write). Simple pin-
hole cameras were described as early as the fourth and 
fifth centuries b.c.e. by Chinese philosopher Mo Ti and 
Greek mathematicians Aristotle and Euclid of Alexan-
dria. Mathematician and physicist James Maxwell cre-
ated the first color photograph in 1861. Not long after, 
American inventor and Kodak founder George East-
man developed inexpensive equipment and film that 
made photography practical for common use. Until 
recently, cameras recorded images on media coated in 
photosensitive compounds. Incoming light was reg-
istered as a chemical change that could be seen upon 
development in specialized photochemistry. Digital 
cameras use an electronic chip that is sensitive to light. 
The chip, either a charge coupled device (CCD) or 
complementary metal-oxide-semiconductor (CMOS), 
converts the light into an electrical signal, and a small 
computer in the camera then transforms that signal 
into the “ons” and “offs” (or “1”s and “0”s) of binary 
code for storage on a digital storage device. The digital 
information that represents an image can easily be cop-
ied onto a computer, manipulated, published electron-
ically, and printed. Researchers also investigate math-
ematical questions like how many images one should 
shoot in order to be reasonably confident that no per-
son in the photograph blinks. For groups under 20 
people, the number of images is approximately equal 
to the number of people divided by one-half.

The Lens and the Shutter
Like most cameras, a digital camera begins the process 
of taking a photograph by letting light in through a 
lens (a curved piece of glass or plastic) that bends light 
through the principle of refraction and focuses the 
image. The light then passes through an opening called 
an “aperture” whose size can be adjusted to let more 
or less light pass. Apertures are described by an f-stop 
number, which is proportional to the focal length of the 
lens over the diameter of the entrance pupil. Since it is 
a ratio, larger f-stop numbers refer to smaller apertures. 

Each doubling or halving of the f-stop number trans-
lates to a change in amount of light let in by a factor of 
four. Thus, an f-stop of 11 lets in four times more light 
than an f-stop of 22. Finally, the light comes to a shutter 
that opens for a period of time when the shutter release 
is triggered, allowing light into the camera body. Usually, 
a shutter speed is a fraction of a second, though long 
shutter speeds can be used in low light, or for a variety 
of effects. With especially long shutter speeds, heat can 
build up in the CCD or CMOS, causing electrical inter-
ference that interferes with accurate, binary recording of 
the image, resulting in error or “noise,” though camera 
manufacturers are developing a number of processes 
that have made this less of a problem over time.

The CCD or CMOS
In order to capture an image, the light that comes into 
the camera falls on the CCD or CMOS chip, which 
changes the image into electric current. A CCD is made 
up of tiny regions called “picture elements” or “pixels” 
that will correspond to the points in the photograph. 
A CMOS works similarly, though the specific underly-
ing technology is a bit different. Some cameras have 
one CCD for all three primary colors of visible light, 
red, green, and blue; each pixel records only color of 
light from the scene. More advanced cameras use three 
different CCDs, one for each primary color, resulting 
in a more accurate image. Ultimately, the electric cur-
rent from the CCD is encoded by a small computer in 
the camera into a stream of binary information in the 
form of “ons” and “offs” that ultimately will be stored 
on a flash memory card.

Sensitivity and ISO
In film cameras, different formulations of film are used 
for different light conditions, with more sensitive films 
employed in low light. In a digital camera, the signal 
from the CCD can be boosted to handle low light lev-
els; however, doing so introduces noise in the signal. 
The setting for camera sensitivity is described as its 
“ISO number,” an international standard for measuring 
the speed of color film. It uses both an arithmetic and 
logarithmic scale to combine two previous film stan-
dards. In the arithmetic scale, which is commonly the 
only one given, each doubling of the ISO representing 
a doubling of the sensitivity. Thus, a camera set to ISO 
100 will be half as sensitive to light—and will require 
twice as long an exposure for a given scene to achieve 
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the same result, given the same f-stop setting—as one 
with an ISO of 200.

Pixel Dimensions
One of the factors that determines the picture quality of 
an image produced by a digital camera is the number of 
pixels it records. This is especially relevant when images 
are blown up to large dimensions, as the individual 
pixels begin to become visible. Pixels are the individual 
binary units into which the image is “broken up” and 
stored during the electronic conversion process by the 
camera’s chip. For example, the Droid Incredible phone, 
released in 2010, contains an 8 megapixel camera, 
which means its photographs are composed of about 
8 million individual pixels, with each picture having a 
possible resolution of roughly 3264 pixels wide by 2468 
pixels high. However, in practice, there are many fac-

tors that affect picture quality. The size of the electronic 
chip plays a large role. When the photosensitive regions 
of a camera’s chip are packed too tightly together, they 
create electronic interference in their neighbors, poten-
tially affecting the binary storage, and ultimately affect-
ing the accuracy and quality of the stored image.

Further Reading
Stone, J., and B. Stone. A Short Course in Digital 

Photography. Upper Saddle River, NJ: Prentice Hall, 
2009.

Svenson, Nic. “Velocity Science in Motion:  Blink-free 
Photos, Guaranteed.” http://velocity.ansto.gov.au/
velocity/ans0011/article_06.asp.
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See Also: Digital Images; Digital Storage; Movies, 
Making of.

Digital Images
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Geometry; Number and 
Operations; Representations.
Summary: Digital images are recorded as a binary 
account of pixels, which algorithms may compress.

Digital images are not images at all but rather are visual 
information encoded as binary data. Viewing a digital 
image requires a computer to decode binary informa-
tion and display it on a screen in the form of an array of 
discrete lights called “picture elements” or “pixels.” The 
first computer-generated digital images were produced 
in the early 1960s. The needs of the Cold War, medicine, 
and the space race drove many developments in digital 
imagery, some of which were achieved in the context of 
projects on satellite imagery, medical imaging, optical 
character recognition, and photo enhancement. The 
advent of microprocessors in the 1970s and advances 
in digital storage and display technologies made pos-
sible sophisticated imaging tools, like computerized 
axial tomography (CAT scanning). 

The degree of mathematical sophistication that CAT 
scans introduced into medical imaging, such as integral 

Cameras in Mathematics 
Classrooms

C ameras have grown in popularity since 
Eastman first made them readily available. 

Digital cameras are relatively inexpensive, and, 
in fact, are now standard features on many cell 
phones. Educators have seized on the digital 
camera as a very useful tool in the classroom 
for introducing concepts, making connections, 
and enriching educational experiences in a very 
hands-on way. For example, students in middle 
grades and above have been asked to use digi-
tal cameras to record their own examples of 
geometric concepts found in the world. They 
can then use the photographs, along with vari-
ous mathematics concepts such as scaling and 
trigonometry, to answer questions like “Is the 
Houston Astrodome really round?” or “What is 
the slope of a roof?” In other cases, students 
use photos to record and measure themselves 
and their classmates—either once or repeat-
edly over time—to provide data for many inter-
esting mathematics activities and discussions, 
such as variability and the importance of re-
peated sampling.
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geometry, optimal sampling, and trans-
port equations, was unheard of at that 
time. It is reflected in further advances 
such as magnetic resonance imaging 
as well as developments in other fields 
that use similar imaging techniques, like 
seismic and electron microscopy. At the 
same time, scanners to digitize analog 
images began to be used in a diverse array 
of fields, such as archaeology and law 
enforcement. The first fully digital cam-
era was released in 1995, and by the end 
of the twentieth century, charge-coupled 
devices (CCDs) largely displaced ana-
log film and tape for photography and 
videography. Willard Boyle and George 
Smith shared the 2009 Nobel Prize in 
Physics for their invention of the CCD, an 
idea they first brainstormed at Bell Labs 
in 1969. Improved computing power also 
allowed for production of near-photore-
alistic images. All areas of digital imagery 
(creation, compression, restoration, rec-
ognition, and display) involve mathe-
matics. In the twenty-first century, digital 
images are regularly used in both math-
ematics research and teaching.

Bitmap Graphics
In most digital images, each pixel has been defined 
numerically and this number has been converted into 
a string of “1”s or “0”s. This system is the approach of 
“bitmap graphics” (also known as “raster graphics”), 
and it is how digital cameras work. Depending on the 
number of bits used to represent each pixel, more or 
less color information is given. For example, a one-bit 
system would allow only a black or white pixel, as the 
only choices would be a “0” or a “1.” A two-bit system 
would gives four choices per pixel, “00” (black), “01” 
(dark grey), “10” (light grey), and “11” (white). Typi-
cally, in photo editing programs of the early twenty-
first century, each pixel is described by 24 bits of infor-
mation, yielding more than 16 million possible colors.  

Resolution
Bitmap images contain information for a given num-
ber of pixels. The larger the pixel number, the more 
information is in the image and the higher the resolu-

tion; typically, this also results in a bigger file. Screens 
are all made of pixels, whether they are on comput-
ers or cell phones; if an image is viewed at full size, 
each pixel in the image will show up as one pixel on 
the screen. However, if a viewer zooms in beyond this 
point, the pixels in the file are actually represented by 
big blocks of pixels on the screen, and the image is said 
to become “pixelated.” 

Thus, if an image is to be viewed on a screen, it will 
ideally have the same number of pixels as the size one 
wants it on the screen; any more than that is wasted 
file space, and any fewer will result in an image that 
appears pixelated. If images are going to be printed, 
however, more pixels will translate into sharper pic-
tures, limited only by the resolution of the printer. 
Again, the larger the print, the more pixels you will 
need for a sharp print.

File Types and Compression
Bitmap graphics can be stored in a variety of file for-
mats depending on how they will be used. Raw files, 
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which store all the raw data for the light that hits each 
CCD pixel, are commonly used by photographers who 
wish to have maximum flexibility and are not worried 
about file size. In order to make files smaller, com-
puters use mathematical algorithms to compress the 
files. For example, instead of recording values for each 
pixel, the values for some could be calculated by the 
difference between a pixel and its surroundings, thus 
yielding substantial file size savings where blocks of 
pixels are the same as their neighbors. Some kinds of 
compression are considered “lossless,” because all the 
information from the original can be re-created when 
the file is decompressed. However, there are a number 
of compression schemes such as the popular jpeg for-
mat in which the mathematical approximations do not 
quite match the original. In these cases, accuracy is sac-
rificed in order to save file size, and these approaches 
are said to be “lossy.” However, the algorithms used to 
compress and decompress files are generally so good 
as to be unnoticeable in many cases. The JPEG 2000 
image compression standard for both lossless and lossy 
compression uses biorthogonal wavelets, which extends 
from the work of mathematician Ingrid Daubechies, 
known as the “mother of wavelets.”

Vector Graphics
Certain kinds of images, especially those created in 
computer graphics programs, use a different method 
for describing the content of the image. Instead of 
denoting each pixel with a number, these vector graph-
ics are described mathematically as a set of equations 
representing the lines and curves that make them up. 
When a viewer zooms in on a vector graphic, the image 
does not become pixelated, because the computer 
recalculates the curve or line based on the new image 
size. While vector graphics are not appropriate for pho-
tographs, photo editing programs may use them when 
overlaying text or graphics on a digital image.

Image Reconstruction
The basic problem of image reconstruction is to build 
a “best-guess” object out of averaged data and then 
estimate how close the reconstruction is to the actual 
object. For example, in a single-angle X-ray of a per-
son, the amount of radiation going in and coming 
out the other side can be measured and visualized on 
X-ray film. The difference between the values is how 
much was absorbed, but there is limited information 

about the inner structures that blocked the radiation. 
This limitation can make diagnoses difficult. However, 
if the same person is X-rayed from several directions 
and angles, the resulting information can be compiled, 
averaged, or mathematically modeled to estimate what 
the internal structure looks like.

Further Reading
Alsina, Claudi. Math Made Visual: Creating Images for 

Understanding Mathematics. Washington, DC: The 
Mathematical Association of America, 2006.

Hoggar, S. G. Mathematics of Digital Images: Creation, 
Compression, Restoration, Recognition. Cambridge, 
UK: Cambridge University Press, 2006.
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Digital Storage
Category: Communication and Computers.
Fields of Study: Algebra; Measurement; Number 
and Operations.
Summary: Information can be stored digitally—a 
process that requires information to be translated into 
binary code.

Digital information is information in binary code. In 
order to create, manipulate, and store this digital code, 
it must be created in physical form. This creation is 
done by using media that can exist in one of two dis-
tinct states and assigning one state to each of the two 
digits (“0” and “1”) in binary code. Within a computer, 
the “1”s and “0”s are represented as “ons” and “offs”; on 
a magnetic hard disk, they are tiny magnets pointing one 
way or another; and on a CD, the two states are shiny 
and dull spots. Engineers used metal tape on reel-to-reel 
machinery to record audio signals in the early twentieth 
century. In 1952, IBM introduced a tape drive with iron 
oxide–coated plastic tape. Reel-to-reel tape drives were 
the standard for data storage by the mid-1970s. IBM 
also created magnetic hard disks in the late 1950s, but it 
took decades to overcome size and access speed issues to 
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make hard disk drives (HDDs) feasible for applications 
like personal computers. Solid-state drive (SSD) technol-
ogy, such as flash memory, was the necessary next step 
to overcoming the lagging mechanical speeds of HDDs. 
Mathematicians in many fields have been essential in all 
stages of development and continue to address emerg-
ing issues. Ingrid Daubechies, “the mother of wavelets,” 
is perhaps best known for her work with wavelet-based 
algorithms for compressing digital images. Irving Reed 
and Gustave Solomon developed algebraic error-detect-
ing and error-correcting codes. These Reed–Solomon 
codes are widely used in digital storage and communi-
cation, from satellites to CDs.

Bits and Bytes
The smallest unit of stored digital information, cor-
responding to a single “1” or “0,” is called a “bit.” The 
term “bit,” a contraction of “binary digit,” is commonly 
attributed to statistician John Tukey, working in con-
junction with mathematician John von Neumann. Bits 
are collected into 8-unit chunks called “bytes,” and 
these collections of 8 bits can represent various types of 
information. The lowercase letter “a,” for instance, can 
be represented as 01100001, and “b” as 01100010.  The 
music on a compact disc is encoded as a set of 44,100 
reading (or samples) per second, with each reading 
represented by 2 bytes containing 16 bits. 

Storage Size
Sizes of files, and the capacity of storage devices, are 
often referred to as multiples of the byte. A kilobyte (KB) 
is approximately 1000 bytes, enough information to 
store about 150 words, or about half a page of text from 
a paperback book. As larger units are used, the naming 
system employs other metric prefixes, with each step up 
representing a multiple of either 1000 or 1024, depend-
ing on the device. Thus, a megabyte (MB) is approxi-
mately 1000 KB, and a gigabyte (GB) is approximately 
1000 MB. Units beyond the gigabyte include the terabyte 
(TB), petabyte (PB), and exabyte (EB).  

Magnetic Storage
Since grains in a magnetic medium can be magnetized 
with the north pole pointed in either of two directions, 
magnetism is an ideal medium for representing binary 
information. In addition, since information stored in 
this way is relatively stable, it is useful for long-term 
storage. Finally, since this magnetism can be reset eas-

ily using an electromagnet, magnetic media are easy to 
erase and rewrite.  

A magnetic hard disk employs one or more spin-
ning platters coated in a magnetic medium. An arm 
with tiny electromagnetic heads floats over the surface 
of the disk and is used to magnetize regions of the disk 
corresponding to the “1”s and “0”s of binary code. To 
retrieve information, the disk spins past the heads, gen-
erating current that corresponds to the code stored on 
the disk. While the principle is straightforward, it has 
been a remarkable feat of engineering to create disks 
that spin up to 7200 revolutions per minute with arms 
that can travel across the surface of a platter 50 or more 
times per second as they seek and write information. 
Even so, writing and retrieval speeds have not increased 
over time at the same exponential rate as the amount 
of information that can be stored on such disks, result-
ing in undesirable lags.

Even in the early twenty-first century, long-term 
backup of computer information is often done on low-
cost magnetic tape, with bits of information laid down 
as magnetic regions on moving tape. However, since 
the information is laid down on a long piece of tape, 
there can be no random access of information, limiting 
its usefulness in everyday applications. Until recently, 
digital camcorders used magnetic tape to record video; 
however, the desire to have random access of footage 
and recent advances in hard drive and other storage 
techniques have brought on a new generation of tape-
less camcorders.  

CDs, DVDs, and Flash Memory
Both CD and DVD players are optical devices that use 
lasers to read the shiny and dull spots encoded on a 
plastic disk. Information is recorded by burning non-
reflective pits into the surface of the disk to represent 
“0”s and leaving the reflective surface to represent “1”s. 
When the disk is played, it spins past a laser. When 
the light encounters a pit, it is not reflected, and the 
player registers an “off” signal (“0”), and when the light 
bounces back off a shiny region, the player registers an 
“on” signal (“1”). This information is interpreted by a 
small computer in the player.

Many devices, including digital cameras, camcord-
ers, video game consoles, and cell phones, use flash 
memory, which can store large amounts of informa-
tion on small cards that have no moving parts. This 
technology employs an array of microscopic transistors 
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through which current may pass. Whether this current 
passes through or not is controlled by what is called a 
“floating gate,” and the path through the transistor can 
be electrically opened or closed. This method allows the 
transistor to have the two states needed for binary code. 
Sections of flash memory can easily be reset (erased) by 
flushing out the electrons trapped in the floating gate. 
One of the primary benefits of this technology is that 
information can be stored on a card with no moving 
parts, improving both access speed and portability.  

Data Rot and Error Correction
Tape, hard disks, CDs, and flash memory store and 
retrieve information accurately most of the time, but 
they are not problem-free. Errors and noise can hap-
pen in an electromechanical recording system—“1”s 
that should have been “0”s, and vice versa—which 
diminish information accuracy. Mathematical meth-
ods are used to check for and correct errors. For 
example, cyclic redundancy check (CRC) coding 

algorithms calculate a fixed-length binary sequence 
(code) for each block of data using polynomial divi-
sion in a finite field. The codes and data blocks are 
stored together, and they can be checked after trans-
mission or retrieval. CRC was invented by mathema-
tician W. Wesley Peterson, who also devised many 
error-correcting codes.

Even if the recording is perfect, the media that hold 
binary code can degrade in a variety of ways over time. 
For instance, magnetic media can lose their magnetic 
orientation, especially if they are subjected to a strong 
magnetic field. In addition, the substrates on which 
the magnetism is stored—the platters on hard drives 
and plastic backing on magnetic tape—will invariably 
degrade over time. Even the plastic on CDs and DVDs 
will begin to break down, and flash memory floating 
gates will ultimately leak the electrons that maintain 
data in their flash memory transistor states. Even if the 
storage media and binary information survive over 
time, there is a real chance that in the future there may 

USB flash drives are smaller, faster, and have thousands of times more capacity than floppy disks or CD-ROMs. 
Flash memory stores and retrieves information accurately most of the time, but the devices are not problem-free.
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not be hardware available to read information encoded 
in an outdated media. 

Further Reading
Somasundaram, G., and Alok Shrivastava. Information 

Storage and Management. Hoboken, NJ: Wiley, 2009.
Wicker, Stephen. Error Control Systems for Digital 

Communication and Storage. Englewood Cliffs, NJ: 
Prentice Hall, 1994.
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See Also: Digital Images; MP3 Players; Personal  
Computers.

Disease Survival Rates
Category: Medicine and Health.
Fields of Study: Data Analysis and Probability; 
Number and Operations.
Summary: Sophisticated mathematics is used to 
calculate disease survival rates and to help doctors and 
patients make treatment decisions.

Disease survival rates indicate the seriousness of a cer-
tain disease, and the prognosis of a person with the 
disease based on the experience of others in the same 
situation (in terms of the stage of the disease, gender, 
and age). “Overall survival rate” is defined as the per-
centage of people who are alive after a specific period 
of time after diagnosis with the disease, which is com-
puted using the following formula: Overall Survival 
Rate = 100 (Number alive at the end of a time period ÷ 
Number alive at the start of a time period).

Standard time periods such as one, five, and 10 years 
are often used. For instance, the five-year overall sur-
vival rate for stage-I breast cancer is said to be “95%” 
if 95% of all people who are diagnosed with stage-I 
breast cancer live for at least five years after diagnosis. 
Conversely, 5% of these people die within five years. 

Survival rates depend on many factors, including 
both the type and stage of disease, as well as age, gen-
der, health status, lifestyle, and treatment. Doctors and 
researchers use survival rates to evaluate the efficacy of 
a treatment, compare different treatments, and develop 

treatment plans. For example, the treatment having 
the highest survival rates over time is usually chosen. 
If treatments have similar survival rates but different 
numbers of side effects, the treatment with the fewest 
number of side effects is often selected. 

Other Types of Survival Rates 
Overall survival rates have some limitations. First, they 
do not distinguish causes of mortality within a given 
time period. For instance, a death may be caused by 
a car accident rather than by the disease. Second, they 
fail to indicate whether the disease is in remission or 
not at the end of the time period. Moreover, they do 
not directly provide the prognosis for a specific patient. 
For instance, the 95% five-year survival rate for stage-
I breast cancer does not guarantee that every patient 
will survive more than five years. When considering 
only deaths caused by the disease, relative survival rate 
or cause-specific survival rate is often used. Relative 
survival rate is the ratio of the overall survival rate for 
people with the disease to that for a similar group of 
people in terms of age and gender without the disease. 

One advantage is that relative survival rates do 
not depend on the accuracy of the reported causes of 
death. On the other hand, cause-specific survival rate 
is computed by treating deaths from causes other than 
the disease as withdrawals so that they do not deflate 
the survival rate due to the disease. When using this 
rate, there is no need to involve a similar group of 
people without the disease. Sometimes more detailed 
survival rates in terms of the status of a disease after a 
given period of time, such as disease-free survival rate 
and progression-free survival rate, are of interest. The 
computation for disease-free survival rate is similar to 
that of the overall survival rate except that the numer-
ator is the number of patients who are cured at the 
end of the time period. Similar computation applies 
to the progression-free survival rate except that the 
numerator is the number of people who are alive and 
still have the disease, but the disease is not progressing 
at the end of the time period. As before, disease-free 
and progression-free survival rates can be adjusted by 
filtering out the effect of deaths from causes unrelated 
to the disease. 

Survival Function
Related to survival rates, the survival function is a 
mathematical function that uniquely determines the 
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probability distribution of a random variable. In sur-
vival analysis, the random variable of interest is sur-
vival time or time to a certain event, denoted by T. For 
instance, survival time could be time until recovery 
from a disease, or time to death. The survival function 
for T is a function of time point t defined as

 
S t P T t( ) = >( )

which is the true probability that the survival time of 
a subject is beyond time t. The survival rates with an 
adjustment for deaths because of unrelated causes are 
estimates of the survival function at some t based on 
existing data. For a study with n patients, the survival 
function can be estimated by the empirical survival 
function:

S tn ( ) = Number of patients not experiencing the 
event up to t/n.

In follow-up studies, however, a patient with a cer-
tain disease may withdraw, die from other causes, or 
still be alive at the end of the study. In such cases, the 
survival time T of the patient is not exactly observed 
but only known to be greater than a certain time (with-
drawal time, death time, or time at the end of the study) 
called “censoring time.” Then T is said to be right-cen-
sored, and the resulting set of data is called right-cen-
sored data. Based on right-censored data, the survival 
function can be estimated by

S tKM ( ),

the K-M estimator developed by statisticians Edward 
Kaplan and Paul Meier in 1958. As a special case, 

S tKM ( ) coincides with S tn ( ) when there is no censoring. 

When estimating survival probability,

P T t>( )  at a given time t,  

S tKM ( )  or a cause-of-death-adjusted survival rate 
introduced earlier can be used. Taking a more sophis-
ticated approach, P T t>( )  can be estimated using a 
confidence interval. For example, one may conclude 
that, with 95% confidence, P T t>( )  is between two 
numbers, say 0.80 and 0.90. Such a confidence inter-

val can be constructed using S tKM ( ) and its variance 
estimate from statistician Major Greenwood’s for-
mula based a normal distribution.
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Diseases, Tracking  
Infectious
Category: Medicine and Health.
Fields of Study: Communication; Data Analysis 
and Probability. 
Summary: Physicians and mathematicians have long 
worked together to develop and use models that track 
the spread of infectious diseases in order to develop 
appropriate countermeasures and responses to halt 
the disease spread.

The health of societies relies on quickly and correctly 
tracking and predicting the growth and spread of dis-
ease in populations. Epidemiology is a mathematically 
rich area. Exposure and infection are both probabilistic 
processes, and tracking infectious diseases is a dynamic 
application of mathematics. The World Health Orga-
nization (WHO) and other organizations concerned 
with public health use mathematical models in their 
decision-making, such as when WHO analyzed the 
risks and benefits of travel restrictions during the early 
twenty-first-century H1N1 (swine flu) epidemic. Epi-
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demiology has a long history with important societal 
connections. Some trace one early use of mathemati-
cal modeling for disease to eighteenth-century math-
ematician Daniel Bernoulli. He presented an analysis 
of smallpox morbidity and mortality to demonstrate 
the efficacy of vaccination. 

Nineteenth-century physician William Farr is often 
called the “father of epidemiology” and was respon-
sible for the collection of official medical statistics in 
England and Wales. His most important contribution 
was to set up a system for routinely recording causes of 
death. Physician John Snow is frequently cited as using 
graphical methods to propose a mechanism of trans-
mission and the source of a cholera epidemic in nine-
teenth century London. Epidemiologists using math-
ematical and statistical models have been influential in 

research, treatment, and some methods of prevention 
for potentially devastating diseases, like tuberculosis, 
smallpox, typhus, and malaria.

Infectious diseases are a leading cause of death 
for humans. In order to understand the dynamics of 
tracking infectious disease at the population level, it is 
important to understand the responsible mechanisms 
at the individual level. Infectious disease is caused by 
a pathogenic agent (for example, a virus, bacterium, 
or parasite) transmitted through one of many meth-
ods, such as air or body fluids. One method scientists 
have developed for investigating why outbreaks of 
disease take place and how to contain or end them is 
to design a system of surveillance and data collection 
from individual cases, which can then be used to model 
the infection’s trajectory through a population. Other 
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times, they may use data from past similar situations to 
extrapolate possible solutions. 

Surveillance of Infectious Disease
Central public health institutions have created com-
puter systems to monitor emerging outbreaks of ill-
nesses. Traditional notification has relied on disease 
reporting by laboratories and hospitals. However, the 
first indications of an outbreak usually occur before a 
formal diagnosis. People respond to illness with a vari-
ety of behaviors to illness that can often be tracked; for 
example, the number of visits to emergency rooms, or 
purchases of over-the-counter drugs. Other people’s 
behaviors are more difficult to track, such as those 
people who continue their daily routines even though 
they feel sick. Systems of surveillance may compile 
data from many sources to look for unusual patterns 
or significant increases in activities like emergency 
room visits. Another approach, based on Internet 
search queries, collects disease-related searches. The 
searches are linked to geographic mapping tools and 
are used to identify clusters of symptoms. Further 
analysis and modeling using mathematical and sta-
tistical methods are needed to estimate the potential 
impact of a disease outbreak.

Modeling Infectious Disease
Quantitative analysis describes probable disease trajec-
tories for predicting impact over time. The parameters 
may include the variables of time, geographic location, 
population density, contact rate, and saturation, as well 
as the personal characteristics of those who contract 
the disease. For example, eighteenth-century mathe-
matician Daniel Bernoulli created mathematical mod-
els for smallpox to support the use of inoculations. At 
the turn of the twentieth century, British physician 
Ronald Ross began to develop mathematical models to 
help him understand malaria’s trajectory, rate of pro-
gression, and probability of infection. He received the 
Nobel Prize in Physiology or Medicine in 1902, indicat-
ing the importance of his mathematical contributions 
to epidemic theory. Another early twentieth-century 
model is the Reed–Frost epidemic model, which was 
developed by scientists Lowell Reed and Wade Hamp-
ton Frost. It models disease transmission via person-
to-person contact in a group and includes concepts like 
a fixed probability of any person coming into contact 
with any other individual in the group. 

Quantitative research continued throughout the 
twentieth century and continues to be active in the 
twenty-first century. There are many large agencies 
that use epidemiological models, such as WHO and 
the U.S. Centers for Disease Control and Prevention 
(CDC). As medicine and technology advance, new 
variables become important in models; for example, 
global air travel, which brings previously isolated pop-
ulations into greater contact with one another, along 
with new vaccinations and vaccination policies. Dif-
ferential use of longtime practices, like quarantining 
sick and potentially exposed individuals, may also be 
a factor. 

Other models incorporate seasonal information, 
such as varying contact rates, which can be affected 
by societal structures, such as school schedules. In the 
latter twentieth century, computer networking and 
the subsequent spread of computer viruses have led 
mathematicians and others to extend epidemiological 
models to research and model the spread of comput-
ers worms and viruses using mathematical techniques, 
such as directed graphs and simulation. In such an 
active field of research, new technologies and methods 
for quickening the pace of identifying patterns of dis-
ease are expected to be developed.

Further Reading
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Domes
Category: Architecture and Engineering.
Fields of Study: Geometry; Measurement.
Summary: Domes have been used throughout 
history to cover open spaces.

In architecture, a dome is a hemispherical structure 
with a circular, polygonal, or elliptical base that is usu-
ally used to cover a large open space. It developed as a 
generalization of the full revolution of an arch around 
a vertical axis.

Early domes appeared in small buildings and tombs 
of the ancient Middle East, India, and the Mediterra-
nean. Because these domes consist of horizontal layers 
of materials progressively cantilevered inward until 
they reach the top of the roof, they are considered 
“false domes” and called “corbel domes.” True domes 
present the characteristic of having a continuously 
changing slope ranging from being vertical at the base 
to horizontal at the top, which requires adaptable roof-
ing materials.

Large-scale masonry domes were first introduced by 
the Romans in public buildings, such as baths, temples, 
mausoleums, and basilicas. With an interior diameter 
of 142 feet, the Pantheon, built during the second cen-
tury in Rome, remained the largest dome until 1881 
and is still the world’s largest unreinforced concrete 
dome. Built on a rotunda, it exerts tremendous thrusts 
on the perimeter walls. It is not only an engineering 
triumph but also a tremendous achievement in sacred 
geometry and cosmography. Its hemispherical ceiling 
has regularly been compared to the vault of heaven.

Carried on four pendentives, the 102-foot central 
dome that covers Hagia Sophia in Istanbul is a mas-
terpiece of Byzantine architecture. Built in the sixth 
century, it exemplifies the full development of the 
pendentive (a triangular segment of a sphere) as a 
constructive solution allowing the construction of a 
dome over a square nave. Volumetric transitions and 
intersections are critical components of the geometry 
of architecture.

Built from 1420 to 1436 under the direction of 
Brunelleschi, the dome of Santa Maria del Fiore in Flor-
ence succeeded Hagia Sophia as the largest masonry 
dome in the world, a record it stills holds. Brunelles-
chi designed an eight-sided double dome shell without 
exterior buttresses that did not require any support-

ing framework during construction. Standing at about 
165 feet above ground level, the interior of the dome 
is approximately 100 feet tall and spans 139 feet. The 
dome weighs more than 40,000 tons and required the 
use of more than 4 million bricks.

Domes became increasingly popular during the 
Renaissance, the Baroque era, and the nineteenth cen-
tury. Influenced by the Pantheon and Santa Maria del 
Fiore Bramante, Michelangelo designed St. Peter’s Basil-
ica in Rome. 

It has the world’s tallest dome, and it inspired one of 
the most famous landmarks of Baroque architecture: the 
dome of the Invalides designed by Mansart. Completed 
in 1711, Wren’s three-layer dome for St. Paul cathedral 
in London influenced the construction of the dome of 
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the U.S. Capitol in Washington, D.C., which ultimately 
inspired the design of most U.S. state capitols. 

Since the late nineteenth century, different mate-
rials, such as steel, wood, membrane, and reinforced 
concrete, have allowed the building of domes covering 
much larger spaces. The two monumental arches sup-
porting the retractable roof of the Cowboys Stadium 
in Arlington, Texas, reach a height of 292 feet and span 
of 1225 feet—making it the largest domed stadium in 
the world. 

Geodesic domes represent another modern type of 
dome, rejecting the classical arch principle. This type 
of dome is usually a partially spherical structure con-
stituted of a network of triangular or polygonal facets 
that are in tension and compression. Because the thrust 
is equal in all directions, the dome can be anchored 
directly on the ground. Because of their cost-effective-
ness and structural strength, hundreds of thousands of 
geodesic domes have been built all over the world—
most often as a solution to provide shelter for poor 
families in developing countries, or to house people 
in extreme weather conditions. In 1960, Buckminster 
Fuller, who developed the mathematics of this type of 
dome, designed a geodesic dome two miles in diameter 
and one mile high at its top that would have covered 
Midtown Manhattan, and provided the whole district 
with permanent climate control.
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Doppler Radar
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Geometry; 
Representations.
Summary: Doppler radar uses the mathematical 
characteristics of waves to track and predict weather 
patterns.

Radio detection and ranging, commonly known by the 
acronym “radar,” was initially developed to detect and 
determine the distance of enemy aircraft when visual 
methods were insufficient, such as in poor weather or at 
night. It is commonly traced to the nineteenth century 
work of physicist Heinrich Hertz, who investigated the 
reflection of radio waves from metallic objects. Dop-
pler radar is a type of radar that uses the Doppler effect 
to judge the speed and direction of distant objects. 
The Doppler effect (also known as “Doppler shift”) is 
a physical property that applies to all types of waves, 
including sound and light. Mathematician and physi-
cist Christian Doppler presented a paper on this effect 
in 1842, describing how frequencies of waves change 
in correspondence to the relative movement between 
source and observer. In 1948, Hippolyte Fizeau inde-
pendently discussed the shift in the wavelength of light 
coming from a star in similar terms. Doppler radar has 
applications in many fields including aviation, meteo-
rology, sports, and traffic control. For example, Dop-
pler radar is widely used for detecting severe weather, 
and it is a critical component in wind-shear detection 
and warning systems for airports.

Mathematics of Waves
The Doppler effect relies on the mathematical prop-
erties of waves. Transverse waves, which disturb a 
medium perpendicular to the direction the wave is 
traveling, are described in terms of their wavelength 
and amplitude. Wavelength is the distance between 
two wave crests or troughs, while amplitude is the 
height of the wave. An example of this is light. Lon-
gitudinal waves produce a series of compressions and 
rarefactions in a medium and are described by their 
amplitude and frequency. An example is sound, where 
amplitude corresponds to intensity (or “loudness”) 
and frequency corresponds to pitch. 

A car with a siren emits a series of sound waves of 
constant frequency. If the car moves toward a station-
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ary observer, the waves will seem to be “bunched up” 
(to have greater frequency), thus a higher pitch. The 
same siren moving away will have waves that appear 
“stretched out,” with lower frequency and pitch. Simi-
larly, an oncoming light source will appear more blue, 
while one moving away will appear more red, corre-
sponding to higher and lower frequencies on the elec-
tromagnetic spectrum. The amount of change in fre-
quency is relative to both speed and direction of the 
moving object. The speed of a moving object can be 
measured by shooting waves of a known frequency at 
the object, and then observing the frequency of the 
waves that bounce from the object to the source. The 
difference between the outgoing and incoming fre-
quencies is used to calculate speed. Common examples 
are the handheld radar guns used to measure the speed 
of automobiles or a thrown baseball. Edwin Hubble, 
for whom the Hubble Space Telescope was named, 
used the Doppler effect to help measure the distances 
to other galaxies. Light from other galaxies looks more 
red, indicating they are moving away. This “redshift” is 
commonly used as evidence in favor of the Big Bang 
theory of the origin of the universe.

Weather Detection
Many consider Doppler radar to be the best tool avail-
able for detecting tornadoes, hurricanes, and other 
extreme weather in the twenty-first century. Weather 
stations commonly emit radio waves that strike objects 
like clouds or heavy rain, and reflect back. Meteorolo-
gists use this data to determine the speed and direction 
of a weather system, as well as for probabilistic models 
to predict the path and potential severity of a storm 
in a given geographic area. Mathematical algorithms 
produce color-coded weather maps, weather anima-
tions, and other visualizations for new programs or 
Web sites, indicating how a storm system is predicted 
to move through a geographic area. Some researchers 
have used input data from a single radar station and 
knowledge of the mathematical structure of hurricanes 
to construct three-dimensional maps. 

In the twenty-first century, a system of 21 Atlantic 
and Gulf coast radar stations, starting in Maine and 
ending in Texas, gathers real-time data to mathemati-
cally estimate the characteristics of hurricanes within 
120 miles of the coast. Previously, forecasters had to fly 
aircraft into oncoming hurricanes and throw instru-
ments overboard to collect data, giving them a lead 

time of about half a day before hurricane landfall. Other 
mathematicians have explored numerical weather pre-
diction using Doppler radar and a technique known 
as “four-dimensional variational data assimilation,” 
which estimates model parameters by optimizing the 
fit between the solution of a given model and a set of 
observations the model is intended to predict.
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See Also: GPS; Traffic; Weather Forecasting. 

Drug Dosing
Category: Medicine and Health.
Fields of Study: Algebra; Measurement; Number 
and Operations.
Summary: Mathematicians and scientists calculate 
optimal drug dosages to help ensure patient health.

Drug dosing is the administration of a particular 
amount of medication according to a specific schedule. 
There are two kinds of drugs: prescription drugs and 
nonprescription drugs (over-the-counter medicine). 
For prescription drugs, medical doctors normally pre-
scribe the amount and time to take the medication. For 
over-the-counter drugs, information of drug dosing 
is usually recommended on the label of the medicine. 
Drug dosing is common in everyday life, but an error 
in drug dosing may claim lives or create serious medi-
cal burdens. According to a conservative estimate in 
2006, drug errors injure more than 2 million Ameri-
cans per year. 

	 Drug Dosing 317



Dosage Measurements
Some drug dosing errors stem from inaccurate mea-
surements and administering improper amounts of 
chemical compounds to the patient. The first math-
ematics-related issue is the measurement systems in 
treatment dosing. Drug dosing normally utilizes the 
metric system, the apothecary system, or the house-
hold system. These are the three main forms of mea-
surement systems in the pharmaceutical industry.

The apothecary system is historically the oldest sys-
tem in medicine measurement. It consists of grains, 
drams, ounces, and minims. 

60 grains (gr) =  

1 dram 

8 drams =  

1 ounce (oz) 

1 fluid dram = 

60 minims.

Although the apothecary system was widely used 
during earlier times, it is rarely used in the twenty-first 
century. The most widespread dosing measurement in 
liquid drugs in the twenty-first century is the house-
hold system, which is rooted on the apothecary system 
but uses relatively common items as measurement 
units. The household system primarily consists of tea-
spoons (tsp), tablespoons (tbsp), ounces (oz), pints 
(pt), juice glasses, coffee cups, glasses, measuring cups, 
drops, quarts (qt), and gallons (gal).

1 tablespoon (tbsp) =  

3 teaspoons (tsp)

 1 teaspoon (tsp) =  

60 drops

1 ounce (oz) =  

2 tablespoons 

1 juice glass =  

4 ounces

1 coffee glass =  

6 ounces 

1 glass =  

8 ounces

1 measuring cup (c) =  

8 ounces 

1 pint (pt) =  

2 measuring cups

1 quart (qt) =  

2 pints 

1 gallon (gal) =  

4 quarts

The household system is convenient and commonly 
understandable, but it is just an equivalent measure 
without specific precision; for instance, the size of a cof-
fee cup may vary. A more scientific and precise way is to 
measure with the metric system. The metric system is 

accurate, simple, and popular in most scientific experi-
ments, including drug measurements, even though it is 
not as handy as the household system. It essentially con-
sists of length, volume, and weight measures.

The basic metric length measure is meter (m). Along 
with the meter are the following:

1 kilometer (km) = 

1000 meters 

1 decimeter (dm) = 

0.1 meter

1 centimeter (cm) = 

0.01 meter

1 millimeter (mm) = 

0.001 meter

The basic metric volume measure is liter (L). Along 
with the liter are the following:

1 kiloliter (kL) =  
1000 liters 

1 milliliter (mL) = 
0.001 liter

The basic metric weight measure is gram. Along 
with the gram are the following:

1 kilogram (kg) = 

1000 grams 

 1 milligram (mg) = 

0.001 gram

1 microgram (mcg) = 

0.001 milligram 

Each measuring system has its advantages and dis-
advantages. Administering a drug with a wrong mea-
surement system could result in a fatal error. It is criti-
cal to distinguish the different systems and use them 
appropriately. The following are some basic conver-
sions among the three drug measuring systems.  

480 grains =  
1 ounce (oz) 

1 minim =  
1 drop

1 milliliter (mL) = 
15–16 drops

1 tablespoon =  
15 milliliters

Dose Response, Drug Dosing, and Statistics
Besides dosage measurement, another important 
aspect in drug dosing is to understand that because 
of the immune system and drug resistance, efficacy 

318 Drug Dosing



does not necessarily increase as dosage increases. Fac-
tors such as body weight and age affect the shape of 
the dose response curve for each individual. To take 
account of population diversity, the expected effect 
within a population is principally considered as the 
guideline for the recommended drug dosage. For 
example, over-the-counter medication normally uses 
age or body weight of the patient as the guide to rec-
ommend efficient dosages.

Similar to the efficacy of a drug, for some medicines, 
side effects or toxicity of a drug need to be simultane-
ously considered in drug dosing. If the side effect or 
toxicity is too strong, administering the medicine may 
kill (rather than cure) the patient. In this regard, it is 
necessary to identify the maximum tolerated dose of a 
drug. The maximum tolerated dose is the largest dos-
age at which the toxicity/side effect has not reached the 
level to cause the specific harm to the patient, while 
the minimum effective dose is the smallest dosage to 
reach the expected treatment effect of the drug. If the 
minimum effective dose exceeds the maximum toler-
ated dose, the drug is normally not permitted. If the 
minimum effective dose is smaller than the maximum 
tolerated dose, the dosage range in which the drug is 
both safe and effective is called the therapeutic window 
of the drug. For example, if the minimum effective 
dose of a drug is 5 mg daily and the maximum toler-
ated dose is 12 mg daily, then the therapeutic window 
of the drug is 5–12 mg daily. 

To make an inference on the efficacy and toxicity of 
a drug at the same time, statistical methods are used. 
After clinical trials (such as the double-blind experi-
ment), simultaneous inference methods are used to 
estimate the minimum effective dose and the maxi-
mum tolerated dose. One of the well-known meth-
ods in identifying dose effects is Dunnett’s method 
for multiple comparisons with a control, developed 
by statistician Charles Dunnett in the mid-twentieth 
century. Other effective techniques for identifying the 
therapeutic window of a drug have been explored by 
mathematicians and statisticians since that time.  

Shelf Life
Mathematics and statistics also intertwine with drug 
dosing on the shelf life of a drug. For medications that 
emit chemical compounds over time, the drug effect 
may be affected by chemical half-lives well before the 
expiration date. In the United States, the Food and 

Drug Administration (FDA) requires companies to 
conduct stability analyses to establish the shelf life of 
new products. The same is true in many other coun-
tries around the world. The conclusions are generally 
based on statistical sampling and mathematical model-
ing of data, using estimation methods such as simulta-
neous confidence segments over time.

Further Reading
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See Also: Data Analysis and Probability in Society; 
Measurement in Society; Probability. 

DVR Devices
Category: Communication and Computers.
Fields of Study: Measurement; Representations.
Summary: Mathematics is essential to the 
functioning of DVRs, including image processing, 
compression, and error correction.

Digital video recording devices (DVRs) have become 
an increasingly prominent factor in the television 
industry in the twenty-first century. The basic function 
of a DVR is to record television to a digital format on 
a disk drive, allowing it to be played back later. Com-
bined with the timer and basic replay functions, this 
feature allows standard DVRs to perform many func-
tions: store and play back television shows; automati-
cally record specific television programs; and buffer 
live television to allow pausing and skipping. 

Many DVRs can play and record the same program 
at the same time, a function earlier video recording 
devices lacked. A 1991 patent by father–daughter team 
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Eric and Romi Goldwasser is one of the earliest known 
for digital video recorders. One well-known brand of 
DVR is TiVo, introduced by engineer Michael Ramsay 
and computer scientist James Barton in 1999. Both 
previously worked at Silicon Graphics, Inc., which was 
a pioneer of computer workstations. Because of these 
roots in computers and the technology they utilize, 
some consider DVRs to be computers. Mathematics is 
essential to the functioning of DVRs, including image 
processing, compression, and error correction. It also 
plays a role in digital watermarking, which is widely 
used to enforce copyright laws. 

Statistical analyses of television viewing habits by 
companies, such as ACNielsen, suggest that DVR use 
combined with online viewing are significantly chang-
ing the pattern of television delivery and assessments 
of popularity and marketability in the early twenty-
first century. TiVo’s Ramsay noted, “. . . it’s forcing the 
industry to embrace the Internet . . . and once they 
embrace it, they will find that their business models 
change and new opportunities will arise.”

Process and Functions
In DVRs, images are captured and stored in binary 
form. This process differs from older electromechani-
cal systems, like videocassette recorders (VCRs). Raw 
video files tend to be very large and require sizable 
storage space, so DVRs use mathematical compres-
sion algorithms. Files must then be decompressed 
before viewing. Decompression is accomplished by 
hardware or software codec technology, which imple-
ments specific formats or standards. Motion Pictures 
Experts Group (MPEG) created the MPEG-1 for-
mat for digital storage in 1993 and MPEG-2 in 1994, 
which made high-definition television (HDTV) and 
digital versatile discs (DVDs) possible. The MPEG-4, 
released in 1999, facilitated digital video for Internet 
streaming and replaced some proprietary codecs in 
DVRs to facilitate file transfer. 

MPEG compression is typically asymmetric; algo-
rithmic encoders are more complex than their paired 
systematic decoders. Optimized compression to pre-
serve image quality is achieved by mathematically con-
trolling bit rates subject to constraints on variables like 
file size or transmission bandwidth. Quality applies 
not only to individual frames but also to the smooth-
ness of transitions between frames, which affects the 
user’s visual experience of motion. This approach can 

be formulated as a Lagrange minimization problem, 
named for mathematician Joseph Lagrange. Two- or 
three-pass encoding schemes are often used. A first 
pass collects complexity data for the entire video. Sub-
sequent passes perform the actual encoding based on 
the information. Algebraic structures known as Galois 
fields, after mathematician Evariste Galois, are help-
ful in coding and error correction, and are sometimes 
paired with Fourier transforms, named for mathema-
tician Joseph Fourier. This pairing is especially true 
in recorders that incorporate nonbinary, cyclic error 
correction, such as Reed–Solomon codes, named for 
mathematicians Irving Reed and Gustave Solomon, as 
well as for pseudo-random digital dither and random-
ized channel codes. Recording and compression are 
also affected by digital watermarking, where extra vis-
ible or invisible information is embedding in a digital 
signal. It can be used to identify ownership, track the 
file, and prevent recording. Watermarks may be classi-
fied by the embedding method, like quantization-type 
watermarks, which rely on quantization matrices.

Perhaps the best-known brand of DVR is TiVo, 
introduced in 1999. One of TiVo’s features is its abil-
ity to employ statistical techniques, such as data min-
ing, to generate recommendations. Viewers can rate 
shows they watch, and TiVo tracks the ratings, which 
are then examined for patterns. As of 2004, TiVo had 
accumulated more than 100 million user ratings on 
30,000 different programs. The TiVo algorithm uses 
a collaborative filtering architecture, which relies on 
comparing viewer profiles and a viewer’s past patterns 
using several thousand key details, like favorite actors 
and genres. 

However, some users have complained about 
unusual or extreme matches resulting from this meth-
odology and have intentionally subverted the algo-
rithms by giving false or contradictory ratings. The 
server architecture is scalable and throttleable, which 
means as more server resources and user data become 
available, the system is faster for everyone and perhaps 
more efficient in finding recommendations for harder-
to-match viewers.
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Earthquakes
Category: Weather, Nature, and Environment.
Fields of study: Data Analysis and Probability; 
Measurement.
Summary: Earthquakes are measured in several  
ways, the most famous of which is the logarithmic 
Richter scale.

Earthquakes are the movements of Earth’s crust result-
ing from tectonic plates colliding against each other. This 
sudden release in energy causes seismic waves that cause 
destruction. Depending on their severity, earthquakes 
range from being barely noticeable to causing perma-
nent damage to infrastructure along with a significant 
loss of life. Most earthquakes are caused by the action 
of geological faults but they can also be caused by mine 
blasts, volcanic activity, and subterrestrial activity, such 
as injecting high-pressure water for geothermal heat 
capture. The focal point of the earthquake is called the 
“hypocenter.” The point on the ground directly above 
the hypocenter is known as the “epicenter” of the earth-
quake. Philosophers, mathematicians, and scientists 
have long attempted to understand earthquakes. Thales 
of Miletus thought that earthquakes occurred because 
Earth rested on water. Mathematician, astronomer, and 
geographer Zhang Heng invented the first seismograph 
for measuring earthquakes in the second century. Math-

ematician Harold Jeffrey theorized that Earth’s core is 
liquid after analyzing earthquake waves. Geologists use 
statistical methods to try to predict earthquakes.

Seismic Waves
A tremendous amount of energy is released from the 
epicenter radially outward. As the energy spreads, it 
is manifested in three forms: compression waves (P 
waves), shear waves (S waves), and surface waves.

P waves are felt first and do minimal damage. S 
waves follow the P waves and do minimal damage. It is 
the slower surface waves (also known as “Love waves”) 
that cause the majority of the damage. 

Measurement 
The goal of earthquake measurement has been to 
quantify the energy released. Seismographs are highly 
sensitive instruments employed to record earthquakes. 
Conventionally, earthquake magnitudes are reported 
in the Richter scale. The Modified Mercalli Intensity 
Scale is commonly used to ordinally quantify (or rank) 
the effects of an earthquake on humans and infrastruc-
ture. Body wave or surface wave magnitudes are also 
used to measure earthquakes.

Richter Scale
The Richter scale quantifies the amount of seismic energy 
released during a quake. It is a base-10 logarithmic scale, 

E



which means that the difference between an earthquake 
of rating 2.0 on the Richter scale and 3.0 correlates to a 
tenfold increase in measured amplitude. Specifically, the 
Richter scale is defined as

M A BL = +log
10

where A is the peak value of the displacement of the 
Wood–Anderson seismograph (mm) and B is the cor-
rection factor. The wave intensity measurements are 
also logarithmic functions, using variables such as the 
ground displacement in microns, the wave’s period in 
seconds, and distance from the earthquake’s epicenter.

Modified Mercalli Intensity Scale
The Modified Mercalli Intensity Scale has 12 grada-
tions: instrumental, feeble, slight, moderate, rather 
strong, strong, very strong, destructive, ruinous, disas-
trous, very disastrous, and catastrophic.
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See Also: Exponentials and Logarithms; Geometry 
and Geometry Education; Weather Forecasting;  
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Educational  
Manipulatives
Category: School and Society.
Fields of Study: Connections; Problem Solving; 
Representations.

Summary: Some educators use objects to engage 
students’ attention and encourage them to learn 
sensorially and experientially.

Educational manipulatives are physical, technological, 
or virtual objects that are intended to help students 
learn concepts by taking advantage of tactile and visual 
explorations.

Mathematical tools and technologies are common 
in mathematics education. Entire companies and sales 
catalogues are devoted to such mathematical products, 
and national and state curriculum standards empha-
size their importance in schools. There is a rich his-
tory of tools and manipulatives in mathematics class-
rooms, and these have changed over time along with 
curricular, industrial, and technological needs and 
innovations. For instance, in the seventeenth century, 
the slide rule replaced logarithmic tables in scientific 
calculation and mathematics classrooms but these in 
turn became obsolete in the twentieth century because 
of calculators and computers. Educators, including 
classroom teachers and university researchers, along 
with professional designers, continue to create and 
refine manipulatives and research their effectiveness. 
Some also work for companies to develop or market 
these products and materials.

History
Two early developers of collections of learning manip-
ulatives included Friedrich Fröbel (1782–1852) and 
Maria Montessori (1870–1952). Fröbel was a Ger-
man educational researcher who is also referred to as 
the “inventor of kindergarten.” He developed a set of 
manipulative tools called the Fröbel Gifts, which were 
intended for kindergarten play and learning in the nine-
teenth century. The fuller development of the manipu-
latives occurred after Fröbel’s death. The Fröbel Gifts 
set contained objects such as balls, cubes, tiles, sticks, 
and framed figures that were built out of toothpicks 
and peas. They were designed to help young students 
explore mathematical concepts in two and three dimen-
sions. Some of the surfaces were hung from string in 
order to highlight their cross-sections and symmetries. 
One focus of Frobel’s kindergarten philosophy was free 
play, which was also carried out in different settings with 
other objects. For example, the Milton Bradley Com-
pany, an American game company established in 1860, 
sold a curvilinear set of pieces that could form a cylin-
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the physical manipulatives like pattern blocks, which 
teach similar concepts while providing different sorts of 
tactile and visual stimulation.

Effectiveness
There are diverse opinions regarding the effectiveness 
of manipulatives in mathematics education. In 2005, 
mathematician David Klein warned, “Too much use 
of them runs the risk that students will focus on the 
manipulatives more than the math and even come to 
depend on them.…Yet many state standards recom-
mend and even require the use of a dizzying array of 
manipulatives in counterproductive ways.” In the final 
report of the National Mathematics Advisory Panel in 
2008, the panel cautioned that

Despite the widespread use of mathematical 
manipulatives such as geoboards and dynamic 
software, evidence regarding their usefulness in 
helping children learn geometry is tenuous at best. 
Students must eventually transition from concrete 
(hands-on) or visual representations to internalized 
abstract representations. The crucial steps in mak-
ing such transitions are not clearly understood at 
present and need to be a focus of learning and cur-
riculum research. 

Developmental psychologists and educators David 
Uttal, Kathyrn Scudder, and Judy DeLoache noted that

. . . the sharp distinction between concrete and 
abstract forms of mathematical expression may not 
be justified. We believe instead that manipulatives 
are also symbols; teachers intend for them to stand 
for or represent a concept or written symbol. 

Other researchers and teachers counter the claims that 
there is insufficient evidence; they cite a vast amount 
of educational literature and anecdotes regarding the 
benefits of hands-on activities, software, and manip-
ulatives. Many students report that they enjoy the 
tactile manipulation. Students may also feel satisfied 
when they discover or confirm mathematical rela-
tionships, and this may help them connect to math-
ematics. Mathematics educators continue to study the 
effects of various manipulatives and the potential dif-
ferences between physical and virtual manipulatives 
on student learning.

der. In addition to free play, students ultimately learned 
to draw what they observed. Ideally, children would 
revisit concepts they learned using the manipulatives 
in increasingly sophisticated ways as they progressed 
through school. For example, in 1869, Edward Wiebe, 
who was an early proponent of kindergarten educa-
tion in the United States, suggested that children could 
explore concepts like the Pythagorean theorem, named 
for Pythagoras of Samos, long before they understood 
the square of a number. Frank Lloyd Wright acknowl-
edged the influence of Fröbel’s Gifts on his career as 
an architect. Aspects of Fröbel’s legacy continue to be 
found in manipulative design and in schools, although 
they have been greatly modified and adapted. 

In the twentieth century, Italian physician and 
educator Maria Montessori, who is well known for 
the Montessori method of education, also focused 
on the importance of manipulatives in classrooms. 
She developed an integrated set of sensorial learning 
materials that included cylinders, cubes, rods, circles, 
triangles, polygons, boxes, and binomial and trinomial 
cubes. Montessori designed activities with educational 
outcomes in mind. Her ideas became popular in the 
United States and are still used in the twenty-first cen-
tury. Montessori schoolteachers challenge students to 
arrange objects in specific ways so that the students will 
uncover concepts.

Examples
There have been a wide number and variety of other 
educational manipulatives created in the twentieth and 
twenty-first centuries, including polyhedral dice with 
varying numbers of sides for studying probability; mul-
tiplication blocks; algebra tiles that represented poly-
nomials and polynomial operations; multicolored and 
interlocking Unifix cubes intended to teach number and 
operations concepts; pattern blocks for studying tessel-
lations and fractions; tangrams for exploring geometry; 
and geoboards, which are pegged boards on which rub-
ber bands could be placed and stretched to investigate 
concepts like perimeter and area. The abacus or count-
ing frame that had been in use since antiquity found its 
way into U.S. schools in the nineteenth century. While it 
has mostly disappeared from twenty-first century class-
rooms, it remains important in a few educational con-
texts, like in classrooms for visually impaired children. 
Virtual manipulatives have replaced physical objects in 
some cases. There are even applets that mimic some of 
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Educational Testing
Category: School and Society.
Fields of Study: All.
Summary: Mathematicians and researchers are 
constantly exploring the validity and reliability of 
educational testing.

Purpose of Testing
Educational testing is pervasive in modern education 
at the local, state, and federal levels, and mathematics 

is one of the most frequently tested areas. The pur-
pose of educational testing is broad and multifaceted: 
to assess student progress and school accountability; 
to identify students’ strengths and weaknesses, as well 
as their eligibility or need for special services; to make 
educational decisions about individuals and groups of 
students; to choose curriculum and instructional tech-
niques; to reward teachers or schools for performance; 
and to formulate educational legislation and policies. 
Students are often placed in courses and special pro-
grams as a result of educational testing and may be 
required to pass tests to graduate from high school or 
be admitted to schools at all levels, especially colleges 
and universities. 

While some educators, parents, and politicians cite 
standardized tests for their presumed objectivity in 
measuring achievement and other skills or attributes, 
these tests are frequently a source of anxiety and com-
petitive pressure for students. There is an entire indus-
try dedicated to helping students prepare for and pass 
or score well on these tests. At the same time, researchers 
are constantly exploring the validity and reliability of 
tests with regard to fairness for subgroups of students, 
as well as their actual predictive ability. For example, 
there is a broad body of research on whether measures 
like high school grade point average, SAT math scores, 
or mathematics placement tests are predictors of suc-
cess in college mathematics courses.

Types of Testing
The decisions that can be made based on testing infor-
mation depend on the type of test that is administered. 
There are two different types of tests that provide dif-
ferent types of information: norm-referenced tests 
(NRT) and criterion-referenced tests (CRT).

NRTs are created for the purpose of comparing stu-
dents to a norming group, which is composed of stu-
dents who are similar to the student being tested. The 
scores of the norming group create the very familiar 
normal (bell-shaped) curve. NRT scores are typically 
reported as percentiles, which indicate that a student 
scored above a certain percentage of the norming 
group. For example, a student at the 84th percentile 
scored the same or higher than 84% of the students 
in the norming group. It is a common misconception 
with NRTs that students are compared to all other stu-
dents who have taken the test; however, most NRTs are 
normed every several years using a new norming group 

326 Educational Testing



with which test-takers are compared. NRTs are typi-
cally very general in nature, covering a broad range of 
objectives. Items that have a variety of difficulty levels 
are chosen for NRTs, as these types of items encourage 
a wide variability in the scores, thus allowing evalua-
tors to more accurately determine how a student com-
pares to others. The SAT and many intelligence tests 
such as the Wechsler Intelligence Scale for Children 
are norm-references tests.

Unlike NRTs, which are used to compare students to 
each other, CRTs are used to determine if a student has 
mastered a given set of standards. CRTs are typically 
narrow in focus, testing only a few objectives, and are 
generally focused on those objectives that are deemed 
most important. Scores for CRTs are typically reported 
as percentage correct or as scaled scores. Proficiency is 

determined by comparing a student’s score to an estab-
lished cut point. Many schools regularly administer 
end-of-grade or end-of-course tests through which 
student achievement in mathematics subjects is mea-
sured.

Issues in Educational Testing
Two primary concerns with educational testing are 
the validity and reliability of the assessment. “Validity” 
in this context refers to whether a test is appropriate 
for the population being tested, as well as whether it 
appropriately addresses the content it is intended to 
measure. Educators from around the United States 
have expressed concern as to whether the tests that 
are currently being used to measure student achieve-
ment are valid and reliable. In an effort to address this 
concern, many states have undergone revisions of their 
tests in the past several years.

An additional concern with educational testing is 
in how student progress is measured over time. Stat-
isticians have developed a variety of growth models 
to determine if individual students are improving as 
they move through school. These models may focus on 
improvement from grade level to grade level, or they 
may focus on student progress within a single school 
year (referred to as “value-added” or “teacher impact”). 
An ongoing issue with measuring student progress 
over time lies with the relationship between the assess-
ments and the statistical measures that are used to ana-
lyze assessment data. Growth models are all based on 
certain assumptions about the assessments, which may 
or may not be met. In order to determine the impact of 
schools on student learning, one must ensure that the 
assessments and the statistical models used to analyze 
the data are compatible.

Test Analysis
Standardized educational tests undergo a variety of 
analytical procedures to evaluate their effectiveness at 
measuring a construct. Item analysis is frequently con-
ducted to determine if items are functioning the way test 
developers intended. This analysis of student responses 
to items provides the difficulty index and the discrimi-
nation index. The difficulty index is simply the ratio of 
the number of students who answered the item correctly 
to the number of students who attempted the item; a 
higher difficulty index indicates an easier item. The dis-
crimination index provides information on how well 
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an item differentiates between students who performed 
well on the test and students who did not. A positive 
discrimination index indicates that those students who 
performed well overall on the test were more likely to 
answer the item correctly, while a negative discrimina-
tion index indicates that those students who performed 
poorly overall were more likely to answer the item cor-
rectly. For NRTs, item discrimination is particularly 
important, and test developers attempt to develop items 
that will have a high discrimination index.

Modern test analysis also uses a process called “item 
response theory” (IRT) to determine the effectiveness 
of a test or test item. IRT evaluates items based on 
the parameters of item difficulty, discrimination, and 
guessing and provides test developers with the prob-
ability that a student with a certain ability level will 
answer an item correctly. In addition, IRT allows for a 
more sophisticated measure of a test’s reliability.

Trends in Educational Testing
Recent trends in educational testing have been focused 
around making international comparisons of student 
achievement. The most well known of these comparisons 
are the Third International Mathematics and Science 
Study (TIMSS), conducted in 2007, and the Program for 
International Student Assessment (PISA), conducted in 
2006. The TIMSS included fourth-grade students from 
36 countries and eighth-grade students from 48 coun-
tries. Participating countries submitted items for the 
test and the test was developed by a committee of edu-
cational experts from various nations. The TIMSS also 
collected information on students’ background, includ-
ing attitudes toward mathematics and science, academic 
self-concept, home life, and out-of-classroom activities. 
The PISA focused on problem solving in mathemat-
ics and science and on reading skills. The 2006 PISA 
included 15-year-olds from 57 countries. The goal of 
PISA is to determine students’ abilities to analyze and 
reason and to effectively communicate what they know. 
Additional international studies involving educational 
testing include the International Adult Literacy Survey, 
the Progress in International Reading Literacy Study, 
and the Civics Education Study.

In the United States, the National Assessment of 
Educational Progress (NAEP) is used to compare stu-
dent achievement across states. NAEP includes students 
from grades 4, 8, and 12 and is designed to provide an 
overall picture of educational progress. Schools are 

randomly chosen to participate and students within 
those schools are also randomly chosen. The NAEP 
tests students in mathematics, reading, science, writ-
ing, civics, economics, and history.

The public focus on educational testing in the 
United States sharpened with the implementation of 
the No Child Left Behind (NCLB) Act in 2002. For the 
first time in American history, schools were publicly 
designated as “meeting” or “failing to meet” state stan-
dards, and issues of educational testing were brought to 
the forefront. Organizations like Achieve began closely 
examining how schools were preparing students for 
college and the work force and began working with 
state officials and business executives to improve stu-
dent achievement. Educational testing is a valuable tool 
for these types of organizations, providing information 
on the effectiveness of American schools.

Controversies in Educational Testing
Not everyone believes educational testing is useful or 
meaningful, and there are many arguments against 
the use of such tests. For example, studies have sug-
gested that the SAT is both culturally and statistically 
biased against African Americans, Hispanic Americans 
and Asian Americans. Others have found that socio-
economic status is correlated with performance on 
the SAT, which is believed to be related to the fact that 
students from wealthier families can afford expensive 
test preparation courses or multiple retakes of the test, 
both of which have been demonstrated to improve test 
scores in some cases. Others have documented a gen-
der gap in SAT mathematics scores that is not easily 
explained by issues like the difference in the number of 
male and female test takers. 

On many tests, stereotype threat or vulnerability has 
also been shown to affect test scores when race, gender, 
or culture are cued before a test. In response, some have 
advocated that self-identification should occur after a 
test. Researchers have also shown that the structure or 
methodology of the test can have an effect on perfor-
mance. For example, female test scores on tests of spatial 
ability can improve when “I don’t know” is removed as 
an answer, or when ratio scoring or un-timed tests are 
used. Finally, there are many who believe that there are 
concepts that cannot be adequately measured by stan-
dardized assessments, even when the answers are not 
exclusively multiple choice and that using standard-
ized tests as a primary method of assessment leads to 
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“teaching to the test” rather than a broader educational 
experience for students.

Further Reading
Allerton, Chad. Mathematics and Science Education: 

Assessment, Performance and Estimates. Hauppauge, 
NY: Nova Science Publishers, 2009.

Crocker, Linda, and James Algina. Introduction to 
Classical and Modern Test Theory. Chicago, IL: 
Harcourt College Publishers, 1986.

Kubiszyn, Tom, and Gary Borich. Educational Testing & 
Measurement: Classroom Application and Practice. 9th 
ed. Hoboken, NJ: Wiley, 2010.

Mertler, Craig A. Interpreting Standardized Test Scores: 
Strategies for Data-Driven Instructional Decision 
Making. Thousand Oaks, CA: Sage, 2007.

Wright, Robert J. Educational Assessment: Tests and 
Measurements in the Age of Accountability. Thousand 
Oaks, CA: Sage, 2008.

Calli A. Holaway

See Also: Curriculum, K–12; Diagnostic Testing; 
Learning Exceptionalities; Learning Models and 
Trajectories.

EEG/EKG
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and  
Probability.
Summary: EEGs and EKGs visually convey important 
information about a patient’s heart and brain.

Electrocardiography (ECG or EKG) and electroen-
cephalography (EEG) are graphic representations of 
bioelectric activities of the heart and brain, respectively. 
EKG quantifies the rhythm of heart contraction—mea-
surements that can be used to identify damage to vari-
ous myocardial muscles. EEG is used in the diagnosis of 
epilepsy, seizure, and encephalopathy. The production 
of EKG and EEG signals is grounded in mathematical 
analysis. Diverse mathematical and statistical tech-
niques, including applications of calculus and chaos 
theory, are also used to analyze and interpret signals re-

lated to conditions such as sleep disruptions, seizures, 
and mental illness.  

EKG
EKG is a graphic representation of the myocardial con-
traction (systole) and relaxation (diastole) caused by 
depolarization of the heart. In the myocardial muscles, 
depolarization is an increase of membrane potential, 
and repolarization is a decrease of membrane poten-
tial. A typical EKG consists of P, Q, R, S, and T waves. 
Atrial depolarization normally begins at the SA node 
and is represented as the P wave. The depolarization 
proceeds to ventricles, which causes the ventricular 
depolarization (QRS complex) and then ventricular 
repolarization (T wave). 

EKG was first systemically studied in humans by 
Augustus Walker in 1887. In 1903, Willem Einthoven 
created a reliable EKG device based on the galvanom-
eter. Einthoven was awarded a Nobel Prize in 1924 for 
his invention. EKG provides information on heart con-
traction and the abnormality of EKG has been used to 
diagnose the area of myocardial damage. Heart rate 
variability is a quantification of fluctuations of EKG 
complex; a healthier heart has higher variability.

The production of EKG signals can be explained 
by an idealized model in which both intracellular and 
extracellular currents are confined to the direction par-
allel to the propagation of the plane wavefront. When 
there are no external currents, the relationship between 
the potential inside the membrane Vi and the potential 
outside the membrane Vo can be represented as
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where the direction of positive current is defined as the 
direction of the positive x-axis. For the depolarization 
of cardiac tissue, a double layer appears at the wave-
front with the dipole orientation in the direction of 
propagation.
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A pair of electrodes can be used to produce one EKG 
signal; the output from the pair is called a “lead.” Usu-
ally more than two electrodes are used and combined 
into pairs. Clinically, a 3-lead or 12-lead EKG is used to 
diagnose heart diseases. For a traditional 3-lead EKG, 
leads I, II, and III are defined as

I = −V VLA RA

II = −V VLL RA

III = −V VLL LA

where LA, RA, and LL denote left arm, right arm, and 
left leg, respectively. 

EEG
EEG is a recording of the electric potential of thou-
sands or millions of neurons within the brain. The 
electrodes are placed on the scalp at certain anatomi-
cal locations. EEG was first systematically analyzed by 
Hans Berger in 1920, who introduced the term “elec-
troencephalogram” to indicate fluctuations recorded 
from the brain. EEG waves are usually irregular and 
cannot be classified in the normal brain. 

However, four characteristic frequencies have been 
identified: Alpha (8-13Hz), Beta (14-30Hz), Theta (4-
7Hz), and Delta (below 3.5Hz) waves. Under patho-
logical conditions, like epilepsy, distinct patterns can 
be observed and used to help predict the onset of the 
condition. 

Using a simplified model of the brain and surround-
ing tissues as a sphere with several shells, it is possible 
to compute the EEG based on the measured intrace-
rebral currents at the scalp. The field potential can be 
represented as a function of intracerebral currents or of 
the membrane potential. In an infinite, isotropic, and 
homogeneous medium, because of injected current 
densities ji

 at a point r
�

, the electrical potential at a 
point r0  lying at a distance, R, from r

�
 ( R r r= −| |0 )is 

the following:
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where σ is the conductivity of the medium; the opera-
tor div indicates differentiation of a vector. When the 
injected current densities originate at the cell mem-

brane, by assuming that the neuronal membrane is 
equivalent to a double layer with an intracellular mem-
brane potential Vm, the potential at a point r0  is given 
approximately by
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where σ
i
 is the intracellular conductivity, σ

e
 the extra-

cellular conductivity, and

d r rΩ( )− 0

is the solid angle subtended by an infinitesimal surface 
on the membrane surface and seen from the extracel-
lular point r0 .
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Egyptian Mathematics
Category: Government, Politics, and History.
Fields of Study: Connections; Geometry; 
Measurement; Number and Operations; 
Representations.
Summary: Ancient Egyptians were adept at 
engineering and geometry and deeply dependent on 
accurate measurements of the annual Nile flood.
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Our knowledge of Egyptian mathematics (3000–1000 
b.c.e.) is based on hieroglyphic writings found on 
stone or as script (hieratic and demotic) in multiple 
papyri. Preserved in tombs and temples in the Nile val-
ley, a papyrus is a narrow scroll of paper, about 15 feet 
in length, made by interweaving tiny strips of a water 
reed called papu. The key documents are the Moscow, 
Rhind, Rollin, and Harris papyri. These works are gen-
erally thought to be textbooks used by scribes to learn 
mathematics and solve problems. 

In ancient Egypt, mathematics was used for many 
purposes necessary to everyday life: measuring time, 
drawing straight lines, measuring and recording the 
level of the Nile floodings, calculating land areas, and 
managing money and taxes. The Egyptians were also 
one ancient culture that came closest to determin-
ing the true length of Earth’s year with mathematics. 
Perhaps most well known to the modern world are 
the fantastic tombs, pyramids, and other architectural 
marvels constructed using mathematics. Though their 
knowledge ranged from arithmetic calculations to 
algebraic rules to geometrical formulas to numerical 
ideas, historians consider the Egyptians’ mathematical 
achievements to be somewhat less advanced compared 
to the Babylonians.

Egyptian Number System
Egyptian numbers are written using a simple group-
ing system whose symbols denote powers of 10. Their 
symbols included a vertical staff (100), heel bone (101), 
scroll (102), lotus flower (103), pointing finger (104), 
tadpole (105), and astonished man (106):

Using these symbols, a number was expressed addi-
tively. For example, the base-10 number 4501 was 
represented by a visual collection of 4 lotus flowers, 5 
scrolls, and 1 vertical staff. As no place-value system is 
involved, these symbols can be written in any order or 
arrangement visually—they equal a numerical value as 
a group. Though able to represent large values of num-
bers with these symbols, the Egyptians’ lack of place 
values deterred their ability to calculate proficiently 
using algorithms. 

Again represented by hieroglyphic symbols, Egyptian 
fractions were restricted to unit fractions (numerator of 

1) except for the special fraction 2/3. For example, the 
unit fraction 1/3 was represented by an ellipse (or dot) 
placed visually over 3 vertical staffs. The Egyptians had 
no symbol for zero as a place holder but such was not 
really needed because of their simple grouping system 
and use of distinct symbols for each power of 10. 

Egyptian Arithmetic 
Addition and subtraction are quite easy using the Egyp-
tian numbers, involving only the union or removal 
of the grouped symbols. In addition, a symbol that 
appeared 10 times was replaced by the next higher level 
symbol; for example, 10 vertical staffs could be replaced 
by 1 heel bone. Similarly, in subtraction, a symbol could 
be traded in for 10 of the next lesser symbol if such was 
necessary. For example, to perform 23−8, a heel bone 
could be traded for 10 vertical staffs so that 8 vertical 
staffs could be taken from the 13 vertical staffs. 

Egyptian multiplication involved repeated addition, 
using a doubling process along with a counter. For 
example, to multiply 23 × 13, their process (in modern 
notation) would look like the following, with the coun-
ter on the right:

 23 1*
 46 2 
 92 4*
 184 8*

Using the starred counters (1 + 4 + 8 =13), the 
product is obtained by adding the associated numbers 
(23 + 92 + 184 = 299). The key to this multiplication is 
the distributive process, since

23 13 23 8 4 1 23 8 23 4 23 1

184 92 23

× = × + +( ) = ×( ) + ×( ) + ×( )
= + + = 299.

Thus, base two notation also is the underlying prin-
ciple, since

13 1 2 1 2 0 2 1 2 .3 2 1 0= ( )( ) + ( )( ) + ( )( ) + ( )( )
These processes of duplation and mediation (dou-

bling and halving) remained as standard algorithms in 
Western mathematics until the 1500s.  

Division required an inversion of the multiplica-
tion process. For example, to divide 299 by 23, the 
Egyptian scribe determined what number times 23 
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would produce 299, using a process like the following 
(in modern notation):

 23* 1
 46 2 
 92* 4
 184* 8

Using the starred sums, 23 + 92 + 184 = 299, the 
desired factor (or quotient) is obtained by adding the 
associated numbers, or 1 + 4 + 8 =13. The division pro-
cess becomes complicated when no combination of the 
starred numbers equals the desired sum (for example, 
300 divided by 23), requiring the use of unit fractions:

 23* 1
 46 2 
 92* 4
 184* 8
 1*       1/23

For more difficult divisions (for example, 301 divided 
by 23), considerable creativity was needed.

To aid in their computations, the Egyptians created 
tables for doubling and halving numbers, comple-
mented by special 2/n tables that would help avoid 
odd-number situations. For example, the Rhind papy-
rus had a 2/n table for the odd numbers 5–101.

Egyptian Algebra
Though without an algebraic notation, the Egyptians 
solved numerous types of algebraic equations, known 
as “aha” calculations. The majority of their problems 
were linear equations with one unknown (called the 
“heap”). Their solution process involved the method 
of false position, where an initial guess is made, exam-
ined, and then adjusted to obtain the correct solution. 
This same process is now fundamental to the area of 
numerical analysis and is used extensively for scientific 
computing using computers. 

Consider this Egyptian problem, “Heap and a sev-
enth of the heap together give 19.” In modern notation, 
the associated linear equation is x + x/7 = 19, while 
their step-by-step solution was the following:

Make a guess for heap, for example, 7

Then
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The processes of multiplication and division, as well 
as the law of associativity, play very important roles: 
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 = 19.

The majority of the Egyptians’ “aha” problems cre-
ated practical situations requiring the use of ratios and 
proportions, such as determining feed mixtures or com-
binations of grains to make bread. In some instances, 
the Egyptians did use special hieroglyphic symbols as 
part of their algebraic work, including “plus” (legs walk-
ing left to right), “minus” (legs walking right to left) and 
other ideograms for “equals” and the “heap.”

Egyptian Geometry 
The Egyptians’ geometry was rooted in an algebraic 
perspective, devoid of any evidence of generalization 
or proof. Approximately one-fourth of the problems 
found in the papyri are geometrical—focusing on 
practical measurements, such as the calculation of land 
areas, or volumes of storage containers. Similar to the 
Babylonians, the Egyptians used prescriptive formulas. 
For example, they viewed a circle’s area as equal to that 
of a square erected on 8/9 of the diameter. That is,

A r r= ( )





=8

9
2

256

81

2
2

implying their value of π approximated 3.160493827. 
Historians agree that the Egyptians knew key formu-

las for computing the area of a triangle, the volume of a 
cylinder, some curvilinear areas, and even the volume of 
the frustum of a square-based pyramid. These formu-
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las were apparently put to great use by the Egyptians in 
their accurate construction of the pyramids, feats that 
required a solid understanding of ratios, proportions, 
dihedral angles, and even astronomy. No evidence sug-
gests the Egyptians knew of the relationships described 
by the Pythagorean theorem. Some of their geometri-
cal prescriptions were also incorrect. For example, 
the area of a general quadrilateral (with ordered side 
lengths a, b, c, d) was calculated by the formula

A a c b d= +( ) +( )1
4

which is correct only if the quadrilateral is a rectangle 
or square. 

Signs of Advanced Mathematical Thinking
Egyptian mathematics was utilitarian in its direct ties to 
the solution of practical problems. Also, because their 
numeration system involved simple grouping with 
no place values, it is not reasonable to expect that the 
Egyptians had explored ideas such as factors, powers, 
and reciprocals. This limitation perhaps explains why 
no record has been found of tables involving Pythago-
rean triples. Nonetheless, they did apparently use some 
number tricks; when multiplying a number by 10, they 
merely replaced each hieroglyphic symbol by the sym-
bol representing the next higher power of 10 (that is, 
replacing each vertical staff with a heel bone, each heel 
bone with a scroll, and so forth). 

Problem 79 in the Rhind Papyrus suggests that the 
Egyptians did some recreational mathematics that 
had no real-world applications. The problem states, “7 
houses, 49 cats, 343 mice, 2401 ears of spelt, 16,807 
hekats.” Historians assume that the scribe was creat-
ing a problem involving seven houses, each with seven 
cats, each of which eats seven mice, each of which had 
eaten seven ears of grain, each of which had sprouted 
seven grains of barley…wanting to know the total 
number of houses, cats, mice, ears of spelt, and grains. 
Mathematically, the solution of this problem would 
require some knowledge of powers of 7 and geometric 
progressions.

Further Reading
Aaboe, Asger. Episodes From the Early History of 

Mathematics. Washington, DC: Mathematical 
Association of America, 1975.

Friberg, Jöran. Unexpected Links Between Egyptian and 
Babylonian Mathematics. Singapore: World Scientific 
Publishing, 2005.

Katz, Victor J., ed. The Mathematics of Egypt, 
Mesopotamia, China, India, and Islam: A Sourcebook. 
Princeton, NJ: Princeton University Press, 2007.

Van der Waerden, B. L. Science Awakening. Oxford,  
England: Oxford University Press, 1985.

———. Geometry and Algebra in Ancient Civilizations. 
Berlin: Springer, 1983.

Jerry Johnson

See Also: Arabic/Islamic Mathematics; Babylonian 
Mathematics; Chinese Mathematics; Greek Mathematics.

Einstein, Albert
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement; 
Representations.
Summary: One of the most well-known physicists, 
Albert Einstein’s work continues to influence  
many fields.

During the twentieth century, research in the fields of 
mathematics, physics, chemistry, information technol-
ogies, and engineering exploded. People’s perception 
concerning the world and the universe around them 
changed dramatically within a faster and faster chang-
ing world. If one were to choose a single influential sci-
entist to represent this era, some might choose Albert 
Einstein. During “the Age of Einstein,” he introduced 
many original concept widely used in various fields, 
such as mathematics, science and technology, world 
politics, economics, and philosophy.

Early Life and Education
One common myth about Einstein was that he failed 
mathematics as a child. Albert Einstein was born at 
Ulm (Württemberg, Germany) on March 14, 1879. 
He studied in various places, including Munich, Italy, 
and Switzerland. His uncle, an engineer, presented him 
with questions about mathematics, such as a challenge 
to find a proof of the Pythagorean theorem. Einstein 
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noted, “After much effort I succeeded.” After viewing a 
Ripley’s Believe It or Not headline about his proposed 
failure in mathematics, biographers note that Einstein 
replied, “I never failed in mathematics. Before I was 15 I 
had mastered differential and integral calculus.” In 1896, 
he entered the Swiss Federal Polytechnic School in Zur-
ich to study physics and mathematics. In 1901, he began 
working at the Swiss Patent Office. In 1905, he obtained 
his doctorate degree. He was a professor at various uni-
versities in Europe until 1933, when he immigrated to 
America because of anti-Jewish laws in Germany.

Accomplishments
One notable quotation attributed to Einstein is: “Do 
not worry about your difficulties in mathematics, I 
assure you that mine are greater.” During his life, Ein-
stein published a great amount of papers in several 
fields of the sciences. Many equations and laws are 
named for him, including: Einstein’s absorption coef-
ficient, Einstein photoelectric law, Einstein frequency 
condition, Einstein diffusion equation, Einstein–Bohr 

equation and Einstein coefficients, Einstein frequency 
and Einstein elevator, Einstein–Planck law, Einstein 
mass–energy relation, and so on. In chemistry, a syn-
thetic radioactive chemical element having the symbol 
Es, the atomic number 99, and atomic weight 252.08 
is called “einsteinium.” Einstein’s principle of relativity, 
the basic postulate of Einstein’s special relativity the-
ory, states that the laws of nature have the same form 
in all inertial frames of reference. Einstein based his 
general theory of relativity on mathematical ideas like 
mathematician Bernhard Riemann’s geometric formu-
lations. Gravity was now described to be curved spacet-
ime, “Matter tells spacetime how to curve and curved 
spacetime tells matter how to move.” He was also phil-
osophical about the applicability of mathematics, say-
ing, “How can it be that mathematics, being after all 
a product of human thought which is independent of 
experience, is so admirably appropriate to the objects 
of reality? Is human reason, then, without experience, 
merely by taking thought, able to fathom the proper-
ties of real things?” Einstein’s field equations from gen-
eral relativity and their solutions have been a fruitful 
research area in mathematics and physics, leading to 
concepts like metrics for black holes and the notion of 
Einstein manifolds, named for him. However, he com-
plained that he had difficulty understanding the theory 
of relativity after mathematicians “invaded” it.  

Conservation of Mass and Energy
While twenty-first-century researchers continue to 
investigate Einstein’s field equations, Einstein’s most 
famous equation is probably E mc .= 2  In his paper 
on the equivalence of matter and energy, he deduced 
the equation. It meant that conservation laws can be 
unified into a single law of the conservation of mass-
energy. This equation also predicted the development 
of nuclear power. However, Einstein was an opponent 
of nuclear weapons. In 1939, Einstein wrote and signed 
a letter to U.S. President Franklin D. Roosevelt to warn 
him about research on uranium and the possibility of 
the development of an atomic bomb. The president 
took his words seriously, which was the beginning 
of the Manhattan Project—the effort to construct 
a nuclear bomb. In a 1954 letter to his friend, Linus 
Pauling, Einstein confessed that his letter to Roosevelt 
was the one great mistake of his life. During his life, he 
made many contributions for peace. Einstein stated, 
“We have to divide up our time like that, between our 
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politics and our equations. But to me our equations 
are far more important, for politics are only a matter 
of present concern. A mathematical equation stands 
forever.” Just before his death, in a letter to Bertrand 
Russell, he still urged all nations to give up nuclear 
weapons. 

A Public Person 
Einstein was in his whole life a public person. Being a 
good-humored speaker, he took part in a large number 
of conferences and traveled in many countries. His name 
became the brand for “genius,” and a large number of 
sayings and anecdotes are told on his account, such as 
“Pure mathematics is, in its way, the poetry of logi-
cal ideas.” He always seemed to have a clear view of 
the problems to solve and the will to solve them. He 
remained a very curious person and taught his pupils 
not to be afraid of asking, trying, and failing. Failures, 
together with achievements, are merely stepping stones 
for the next adventure of discovery, he said. 

In the 1949 publication of Autobiographical Notes, 
he stated, “In the beginning (if there was such a thing), 
God created Newton’s laws of motion together with 
the necessary masses and forces. This is all; everything 
beyond this follows from the development of appropriate 
mathematics methods by means of deduction.” After 
his retirement from Princeton, he continued to work 
on a theory of unification of the basic concepts of 
physics, natural sciences, mathematics, and religion. 
Albert Einstein received a Nobel Prize in physics along 
with honorary doctorate degrees in science, medicine, 
and philosophy from many universities. A crater on the 
moon is named after him.
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Elections
Category: Government, Politics, and History.
Fields of Study: Communication; Data Analysis 
and Probability; Number and Operations.
Summary: Mathematics can help explain and predict 
elections.

Long the domain of economists, political scientists, and 
philosophers, systems of government has emerged as a 
field ripe for the application and study of mathemat-
ics. Elections are typically classified under an emerging 
branch of mathematics called “social choice theory,” 
though there are historical connections and applica-
tions in a number of areas, such as combinatorics and 
probability theory. Economist Duncan Black’s 1958 
book The Theory of Committees and Elections is cred-
ited with helping to revive modern interest in using 
mathematics to study election questions. 

In a democratic society, such as the United States, 
elections are the primary vehicle for providing citizens 
a fair and equal voice in the machinations of federal, 
state, and local governments. As such, it is fundamen-
tally important that elections be conducted in a man-
ner that is perceived to be fair by the citizenry; that is, a 
governing body derives its legitimacy from the equita-
ble interpretation and application of the voting power 
of the public.  

Beyond the widely known popular elections (elect-
ing the candidate with the most first-place votes) there 
are a number of alternative voting methods; many of 
these allow voters to express more information about 
their preferences of various candidates. Since it is pos-
sible for different methods to produce different win-
ners given the same voter preferences, a number of 
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voting properties have been postulated. Each property 
states a desired outcome or effect that a voting system 
should express. For example, a voting system should be 
“anonymous” in that individual voters should be able 
to exchange ballots without affecting the outcome; in 
other words, one person’s ballot should not have special 
significance. A more challenging property is “indepen-
dence from irrelevant alternatives,” which requires the 
relative outcome of an election to remain unaffected if 
candidates are added or removed from consideration 
(provided this addition or removal does not change 
the relative way voters feel about the other candidates). 
Economist Kenneth Arrow demonstrated mathemati-
cally in his doctoral dissertation that no voting system 
can satisfy all the desired properties. Arrow’s Impos-
sibility Theorem was later published in his 1951 book 
Social Choice and Individual Values.

A particular type of voting system, weighted vot-
ing, arises when voters are assigned different numbers 
of votes. This system is usually employed to reflect a 
situation where some voters should have greater say or 

representation than others. The Banzhaf Power Index, 
named after John Banzhaf, is a tool that elucidates the 
voting power enjoyed by the voters in a weighted vot-
ing scheme and reveals that voting power is not always 
commensurate with a voter’s number of votes. It is also 
sometimes called the Penrose–Banzhaf Power Index to 
include its original inventor, Lionel Penrose. 

The U.S. Electoral College, an example of a weighted 
voting system, is used to elect a winner in U.S. presi-
dential elections. The U.S. Electoral College illustrates 
a drawback of weighted voting in that a winning presi-
dential candidate may not have received a majority of 
popular votes. This has sparked much interest in replac-
ing the U.S. Electoral College in favor of the popular 
vote method but smaller states that enjoy more voting 
power with the U.S. Electoral College are likely to block 
attempts at Constitutional reform.  

Exit polling, invented by statistician Warren Mitof-
sky, allows social demographers to understand the 
dynamics of an election and to predict the winner. 
Exit polling has become an increasingly important tool 
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for media and news outlets as they scramble to retain 
and inform viewers on the eve of an important elec-
tion. A number of studies have investigated the influ-
ence of exit polling while an election is taking place; for 
instance, polls broadcast in real time may influence vot-
ers who have yet to vote and hence possibly change the 
outcome of an election. Exit polling has also garnered 
interest in recent presidential elections when errone-
ous predictions caused media sources to prematurely, 
or incorrectly, identify a winning candidate.  

The Ballot Box Problem is an interesting math-
ematical puzzle, proposed by Joseph Bertrand, which 
seeks answers about how an election may unfold as 
ballots are removed from the ballot box and counted. 
The solution to Bertrand’s theorem is a Catalan num-
ber, named for Eugène Catalan. An elegant proof was 
derived by Désiré André.

Types of Elections
Though most people are familiar with the plurality 
election (also known as “popular vote”) in which the 
candidate with the most votes (most first-place votes) 
wins, there are a number of alternative election meth-
ods. One of the most prominent is the Borda method, 
named for Jean-Charles de Borda, where voters are 
required to rank all candidates from their first choice 
to their last; points are then assigned to each candidate 
based on the candidate’s rank on the each ballot. The 
sum of a candidate’s total points is used to determine 
the winner. This method allows voters to specify more 
information about how they view the candidates, other 
than merely selecting their favorite.  

In the Sequential Pairwise method, two of the can-
didates vie in a head-to-head competition (an imagi-
nary election with only the two candidates) where the 
losing candidate is eliminated and the winner proceeds 
forward to battle another candidate. Again, voters 
rank candidates in preference listings, which are used 
to determine the winner between a particular pair of 
candidates. The winner can be inferred from the pref-
erence lists by assuming each voter would select the 
candidate that is higher on his or her list. A drawback 
of this method is that the order in which the candidates 
are selected for the individual competitions can change 
the ultimate outcome of the election.

A Condorcet Winner is a candidate who beats every 
other candidate in a head-to-head election. When one 
exists, a Condorcet Winner will obviously win the 

Sequential Pairwise election but not all sets of voter 
preference rankings produce a Condorcet Winner. The 
method is named for Marie Jean Antoine Nicolas de 
Caritat, Marquis de Condorcet.

In an Instant Run-off election, a plurality vote is 
taken and the candidate with the least number of first-
place votes is eliminated. Then the election is repeated 
with the remaining candidates until only one winner 
remains. Again, voter preference rankings can be used 
to simulate the repeated elections in order to determine 
the winner without holding a series of actual elections.  

Weighted Voting
Much of rationale behind the U.S. system of govern-
ment is based on the principle of “one person, one 
vote” (each citizen should have equal say in the sys-
tem of government). There are times, however, when 
it is appropriate to give certain individuals (or groups) 
more voting power than others. This type of voting sys-
tem, often called “yes–no voting” or “weighted voting,” 
occurs when voters are assigned a different number of 
votes or “weights” to their votes. Elections are between 
two alternatives; the winner is selected if the vote total 
exceeds a predetermined threshold. Each voter must 
use all available votes toward the same candidate or 
choice—votes cannot be split between the candidates 
or choices.  

An example of a weighted voting system was the 
European Economic Community (EEC) established 
in 1958 as a precedent to the current European Union. 
The original six members were assigned votes in pro-
portion to their population size:
  

Country # Votes
France 4
Germany 4
Italy 4
Belgium 2
Netherlands 2
Luxembourg 1

A threshold is established to determine the number 
of total votes necessary to win an election. Though this 
threshold is often simple majority, in the EEC example, 
a threshold of 12 (of the total 17 votes) was established 
to pass certain types of legislation. 

An interesting question arises as to the dynamics 
of weighted voting systems and, more specifically, an 
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entity’s ability to influence the outcome of an elec-
tion. Several theorists have shown that voting power 
is not necessarily proportional to an entity’s vote 
count. For example, it would be misleading to assume 
that France enjoys 23.5% (4/17) of the voting power 
in the EEC example.  

Banzhaf applied a power index to argue a landmark 
case in Nassau County, New York, in 1965.  His voting 
power calculations demonstrated the disenfranchise-
ment of certain entities within weighted voting schemes 
and thus questioned the system’s constitutionality.  

Banzhaf ’s computation is based upon the notion 
of a winning coalition (a collection of voters whose 
vote total exceeds the threshold). Such a coalition (or 
“voting block”) can win an election by all voting the 
same way. A voter is critical to a winning coalition if 
by removing that voter, the coalition no longer exceeds 
the threshold. A voter’s Banzhaf Power Index (BPI) is 
related to the number of times that voter is a critical 
member of a winning coalition.  

In the EEC example, France, Germany, Italy, and 
Belgium form a winning coalition since their vote total 
of 14 exceeds the threshold of 12. France, Germany, 
and Italy are all critical members because the coalition 
ceases to win without their votes. However, Belgium is 
not a critical member since France, Germany, and Italy 
together still form a winning coalition. The number of 
times each voter appears as a critical member of some 
winning coalition is computed as follows: 

Country # Critical BPI
France 10  10/42  =  23.8%
Germany 10  110/42 =  23.8%
Italy 10  10/42  =  23.8%
Belgium 6  6/42  =  14.3%
Netherlands 6  6/42  =  14.3%
Luxembourg 0  0/42  = 0%

Each country’s BPI is the number of times it is 
critical compared to the total number of critical 
instances. Here, there are 42 total instances where 
an entity is critical; Belgium has 6 of them and thus 
14.3% (6/42) of the voting power. Thus, Belgium 
commands 14.3% of the voting power even though it 
has 11.8% of the votes. In this scheme, Luxembourg 
has no voting power—it is not able to influence the 
outcome of any possible election. It is common in 
weighted voting schemes of smaller size (20 or fewer 

members) for entities with a greater number of votes 
to possess greater voting power, while small enti-
ties (with a fewer number of votes) possess less vot-
ing power. As the number of voters increase, voting 
power tends to better approximate the proportion of 
votes. But such weighted voting systems are subject 
to arbitrary swings of voting power as new voters are 
added or removed, or as seemingly subtle changes to 
the weights are made.  

An equally popular voting power computation was 
proposed by Lloyd Shapely and Martin Shubik in 1954. 
Instead of critical members in winning coalitions, their 
system identifies pivotal voters as the ones who enter 
a coalition and cast the deciding vote by doing so. A 
similar calculation ensues in which voting power is 
correlated with the percentage instances in which each 
entity plays the pivotal role.  

U.S. Electoral College
The voting system responsible for electing the presi-
dent of the United States, the U.S. Electoral College, is 
essentially a weighted voting scheme. A state’s electors 
(or “votes”) arise from the sum of their congressional 
representation: one vote for each of a state’s two sena-
tors and one vote for each representative to the House 
of Representatives. The District of Columbia receives 
three electors to form a total of 538 (100 senators, 435 
representatives, and three from Washington, D.C.). A 
presidential candidate needs a majority of the electoral 
votes—at least 270—to claim victory.  

Under such a system, it is possible that the winning 
candidate need not garner a majority of first-place 
votes. In fact, U.S. presidential elections in 1824, 1876, 
1888, and 2000 all produced a winner who lost the 
popular vote total.  

Those elections and other issues have created an 
endless interest in reforming or removing the U.S. 
Electoral College and replacing it with a popular vote 
system. As recently as 2004, the Every Vote Counts 
Amendment proposed to replace the U.S. Electoral 
College with a popular vote initiative. Such a reform 
requires a Constitutional change and thus approval of 
75% of the states. 

It is unlikely such a measure would ever be adopted 
because small states enjoy significantly more voting 
power in the U.S. Electoral College than they would in 
a popular vote system. A state with few votes, such as 
South Dakota, would likely be ignored by campaign-
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ers since the voting population is too small to make a 
difference under a popular vote election.  

The National Popular Vote Compact is an alternative 
attempt at election reform. In this compact, individual 
states would cast their electoral votes according to the 
national popular vote, not simply the tallies within the 
state. This has the effect of choosing a president elected 
by popular vote within the Electoral College system 
and thus bypassing the hurdle of constitutional reform. 
To date, this compact has been adopted by five states 
(61 electoral votes) with a number of others consid-
ering the compact in state legislature—enough states 
to compile 270 electoral votes would have to sign on 
to the compact in order to have the intended effect of 
electing a president by popular vote.  

Exit Polling
An important factor associated with elections is the 
attempt to predict election outcomes through the sur-
veying of voters as they leave the voting areas, a proce-
dure known as “exit polling.” This procedure contrasts 
with pre-election polls in that actual voters who have 
(presumably) just cast a vote are being sampled and 
thus results are typically more accurate than surveying 
people prior to an election who are “likely” to vote, or 
who may change their mind between being polled and 
actually casting a vote.  

Although the science of predicting election out-
comes has been around as long as elections themselves, 
it is at the beginning of the twenty-first century—
with widespread electronic media coverage and more 
sophisticated polling techniques—that exit polling has 
garnered more national attention. A number of papers 
have been written about the effects of exit polling being 
broadcast in real time; the researchers hypothesize 
that exit polling influences voter behavior primarily 
by making an election seem closer or not closer than 
was previously perceived. This effect is especially true 
in the United States where, as a function of different 
time zones, voters in western states have access to more 
complete results of a national election unfolding across 
the country.   

Exit polling has garnered an additional spotlight 
with the controversial presidential elections of 2000 
and 2004. In both cases, especially the 2004 election, 
exit polling differed significantly from the actual vote 
tally, causing many media outlets to incorrectly, or pre-
maturely, announce a victor.  

Ballot Problem
There are several interesting mathematical puzzles 
based on elections and voting; perhaps the most well 
known of them is the Ballot Problem, originally pre-
sented by Joseph Bertrand in the late nineteenth cen-
tury. Consider an election between two people, Alice 
and Bob, where Alice has received A votes and Bob B 
votes. Let A > B so that Alice wins the election. The 
puzzle arises from the counting of the votes: what is 
the probability that as the votes are pulled randomly 
from the ballot box and tallied one by one, that Alice 
and Bob are tied in their vote total at some point after 
the first vote is read?  
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Survivor!

T he popular television series Survivor nicely 
illustrates a ballot-box type of problem. In 

individual tribal councils, as well as the final 
vote for an overall winner, ballots are drawn 
from a ballot box and read aloud. It is easy to 
hypothesize that the ballots are not drawn in a 
random order but instead are selected so as 
to maximize the suspense of the election out-
come. Another interesting question, related to 
information theory, is that ballots are read only 
until the election outcome is certain; unread 
ballots are not presented to the remaining tribe 
members, thereby depriving them of strategic 
information about the voting behavior of their 
fellow competitors.



The puzzle’s solution is a creative argument based 
on combinatorics and probability. Sequences, a listing 
of votes as they are pulled from the ballot box, can be 
identified as those with ties and those without. The fol-
lowing is a sequence from an election with nine voters 
(A = 5, B = 4): 

b b a b a a b a a.

In this sequence, the first tie occurs with the reading 
of the sixth vote, though there is also a subsequent tie. 
There is also a “matching” partial sequence in which 
the a’s and b’s exchange places up through the point of 
the first tie: 

a a b a b b b a a.

Every such sequence of strings that produces a tie 
somewhere in the intermediate vote tally comes in match-
ing pairs as shown. Out of each pairing, one sequence 
must start with an a while its match starts with a b. Since 
Alice wins the election, some of the sequences starting 
with an a will result in a tie but not all of them. However, 
every sequence that starts with a b must at some point 
achieve a tie since ultimately there will be more as than 
bs. There are three categories of sequences:

• sequences that start with an a but never have  
a tie

• sequences that start with an a and achieve a 
tie at some point 

•  sequences that start with a b and achieve a tie 
at some point 

The probability that any sequence is found starting 
with a b is

B

A B+

since there are B ballots out of A + B total ballots where 
a b can be the first vote drawn. There are exactly as 
many sequences that start with an a and also achieve 
a tie because each one is matched with exactly one b-
starting sequence. Therefore, the probability of reading 
the votes and achieving a tie along the way is exactly 

2 B

A B+ .

This problem has spawned a number of related 
problems with interesting ties to Catalan numbers.
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Electricity
Category: Architecture and Engineering.
Fields of Study: Algebra; Representations.
Summary: Electricity, arising from the flow of 
electrons, can be described mathematically.

Daily operations of modern industrial societies, includ-
ing transportation, communication, heating, cooling, 
lighting, computing, and medical technology, rely on 
the use of electrical power. Power from batteries and 
electrical outlets is derived from the flow of electrons, 
known as “electric current.” The term “electricity” re-
fers to a variety of physical effects, both static and dy-
namic, that arise from electric charge. The mathemati-
cal description of electric and magnetic phenomena 
developed in the eighteenth and nineteenth centuries 
contributed to a rapid expansion of electrical technol-
ogy, which is powered today by a vast grid of electric 
power stations and distribution systems.  

Electric Charge and Coulomb’s Law
Electric charge is a property of matter that can be nega-
tive (as in electrons), positive (as in protons), or zero. 
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Most matter has a net charge of zero, containing essen-
tially the same number of electrons as protons. Two 
objects whose charges are both positive or both negative 
repel each other, while objects with opposite charges 
attract each other. Static electricity is created when elec-
trons build up on or are depleted from the surface of a 
material, often by rubbing materials together. Effects of 
static electricity are seen, for example, in a rubbed bal-
loon clinging to a wall, or in hair standing on end. In 
metals, electrons are not strongly bound to individual 
atoms but move freely through the lattice of protons. 
Materials with freely moving charges are known as “con-
ductors.” The force between two charged particles at 
rest is described by Coulomb’s Law, named after French 
engineer Charles-Augustin de Coulomb (1736–1806). 
Coulomb’s Law states that the magnitude F of the force 
exerted by one charged particle on the other is

F
kqq

r
=

′
2

where q and ′q  are the magnitudes of the charges of 
the particles, r is the distance between the two particles, 
and k is a constant. This equation shows, for example, 
that if one charge is tripled, then the force is tripled, 
and if both charges are tripled, then the force becomes 
nine times as large. On the other hand, tripling the dis-
tance r between the particles multiplies the right-hand 
side of the equation by 1/32, or 1/9, reducing the force 
to a ninth of its previous value. 

Electric Field and Electric Current
The presence of charged particles creates an electric 
field that exerts a force on other charged particles in the 
region. An electric power generator, usually driven by 
a steam turbine fueled by coal or a nuclear reactor, cre-
ates an electric field between two terminals by building 
an over-supply of electrons (negative charge) in one 
terminal and a deficit of electrons (positive charge) in 
the other. The flow of electrons from a negative toward 
a positive terminal along a conducting path, such as 
a wire, is an electric current. In lightning, electrons 
from negatively charged clouds in the atmosphere are 
attracted to positively charged objects on the ground 
beneath the cloud. Here the electric field is so strong 
that electric current passes through air, which usually 
acts as an insulator that prevents the flow of electrons.
Batteries operate by producing an electric current 

between oppositely charged terminals of chemical cells. 
A battery produces direct current (DC), where elec-
trons flow in one direction, while a power generator 
creates alternating current (AC), where the direction of 
electron flow alternates rapidly, typically at a frequency 
of 60 hertz (cycles per second). The hertz is named for 
German physicist Heinrich Hertz (1857–1894), who 
made important advances in understanding the con-
nection between electric and magnetic fields.

Ohm’s Law
The energy that an electric field imparts to a unit charge 
moving from one terminal to another is the number 
of volts (V) between the terminals, named after Ital-
ian physicist Alessandro Volta (1745–1827). On electric 
bills, energy usage is typically given in kilowatt hours 
(kWh). The watt, named for British engineer James 
Watt (1736–1819), is a unit of power, or energy per 
time, and 1 kilowatt is 1000 watts. Multiplying power 
(in kilowatts) by time (in hours) yields energy, in kilo-
watt-hours. In an electric current, the current intensity 
(I) is abbreviated as “current” and is the quantity of 
charge that moves past a cross-section of the conduct-
ing path per unit time. As electric current flows through 
a material, the motion of the electrons is hindered by 
positive ions, creating electrical resistance (R). Resis-
tance in the path of a current creates heat and light, as 
in appliances, such as stoves and light bulbs. Electrical 
energy can be transformed into mechanical energy to 
power motors as in cars, airplanes, power tools, kitchen 
blenders, and hair dryers when electric current passes 
through a coil of wire, inducing a magnetic field that 
sets the coil in motion. 

Ohms’s Law, formulated by German physicist Georg 
Ohm (1789–1854), states that for a metal conductor at 
constant temperature, the voltage (V) is V = IR, where 
I is the current, and R is the resistance. This equation 
shows, for example, that if the resistance is cut in half, 
then to maintain the same voltage, the current must be 
doubled. If too little resistance is present, the current 
may become so strong as to damage electrical equip-
ment. Circuit breakers then sever the path of the cur-
rent to avoid damage.   

Electric Power from Generator to Consumer
High voltage generated at power stations is propa-
gated along power lines almost instantaneously, over 
many miles, to substations near cities and towns. At 
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the substations, the voltage is reduced and transmit-
ted to electric distribution centers that channel the 
voltage to homes, offices, and other facilities. In stan-
dard electrical outlets in the United States, there are 
120 volts between the wires leading to the two verti-
cal slots. When an appliance is plugged into the outlet, 
the vertical prongs of the plug make contact with these 
wires, creating a pathway of current through the appli-
ance. The third slot in the outlet carries a protective 
ground wire. In appliances with a three-pronged plug, 
the ground wiring is designed to provide a preferred 
pathway for escaped current so that it will not travel 
through the body of the person holding the appliance.

Large appliances, including most drying machines 
and ovens, operate at 240 volts, using a different type of 
outlet. Touching one or more openings in an electrical 
outlet or touching the prongs of a plug as it is inserted 
into the outlet may pass an electric current through the 
body that can be harmful or even deadly. At electrical 
facilities, “High Voltage” signs warn of the danger of 
electric shock because of the presence of high voltage.

Further Reading
California Energy Commission. “What Is Electricity?” 

http://energyquest.ca.gov/story/chapter02.html.
Herman, Stephen L., and Crawford G. Garrard. Practical 

Problems in Mathematics for Electricians. 6th ed. 
Albany, NY: Delmar, 2002.
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Statistics and Analysis. “Electricity.” http://www.eia 
.doe.gov/fuelelectric.html.
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See Also: Elementary Particles; Light; Light Bulbs; 
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Elementary Particles
Category: Space, Time, and Distance.
Fields of Study: Data Analysis and Probability; 
Number and Operations; Representations.
Summary: Various branches of mathematics are 
employed to study elementary particles, the smallest 
particles in the universe.

Particle physics is a branch of physics that seeks to de-
scribe and explain the universe on the smallest scales. 
The particles thought to be the fundamental build-
ing blocks of matter and force are called “elementary 
particles.” Like all branches of physics, the study of el-
ementary particles relies heavily upon many branches 
of mathematics, including calculus, geometry, group 
theory, algebra, and statistics. Particle physics also con-
tributes to mathematical research by posing questions 
that give rise to new mathematical theories. 

History
For thousands of years, scientists and philosophers have 
been asking the questions, “What is the universe made 
of?” and “Are there fundamental units that make up 
space, matter, energy, and time, or are these infinitely 
divisible?” As early as the fifth century b.c.e., Greek 
philosopher Democritus (c. 460–370 b.c.e.) hypoth-
esized that all matter is made of indivisible, fundamen-
tal units called “atoms.” Despite these early hypotheses, 
there was very little progress in this field until the dawn 
of the twentieth century. 

The twentieth century saw the emergence of sev-
eral new branches of physics. Among these was par-
ticle physics, a field that seeks to explore the universe 
on the smallest scales. Particle physicists try to identify 
the particles that form matter and force, describe their 
properties, and understand how these particles relate 
to each other. Some of these particles are not composed 
of any other particles and are therefore called “elemen-
tary particles.” These elementary particles form the 
basic building blocks of the universe. 

The understanding of particle physics at the begin-
ning of the twenty-first century is embodied in the 
Standard Model of Particle Physics, an elaborate 
yet still incomplete model that attempts to list and 
describe all existing particles. Jokingly referred to as 
“The Particle Zoo,” the Standard Model lists dozens of 
particles and includes elementary particles with exotic 
names such as “gluon,” “muon,” and “quark.” Many 
of the particles in the Standard Model have yet to be 
detected experimentally, and their existence is conjec-
tured based on theoretical work.

Mathematics Used in the  
Study of Particle Physics
Like all physical theories, particle physics relies heav-
ily upon mathematics, which provides the theoreti-
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cal framework physicists use to explain and describe 
physical phenomena. Mathematics also enables physi-
cists to make predictions that can later be tested using 
modern tools, such as particle accelerators. 

One of the most useful branches of mathematics 
is calculus, a field that has applications in practically 
all branches of the natural sciences, as well as in engi-
neering and even in the social sciences. It is therefore 
not surprising that calculus occupies a central role in 
the theory of elementary particles. Differential calcu-
lus may be used to describe properties of particles at 
an instant, while integral calculus is used to describe 
cumulative effects of a particle or a system of particles 
over time and space. 

Calculus is but one branch of the mathemati-
cal field of analysis that is useful in particle physics. 
Other branches of analysis—partial differential equa-
tions, complex analysis, and functional analysis—play 
important roles as well. 

Geometry has traditionally been used to describe 
the universe on the grandest scales, those of galaxies, 
galaxy clusters, and the universe as a whole. Recently, 
geometry has found a place in elementary particle 
research as well. French mathematician Alain Connes 
(1947–) has described a theoretical model for particle 
physics that is based on noncommutative geometry, 
which is a geometrical representation of noncommuta-
tive algebras—systems in which the order of factors in 
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an operation determines the value of the operation. For 
example, if a and b are real numbers, then it is always 
true that a × b = b × a, as multiplication is commuta-
tive for real numbers. However, if A and B are matrices, 
then generally A × B ≠ B × A. Matrix multiplication is 
therefore noncommutative.  

Symmetry, Group Theory,  
and Quantum Mechanics
One of the most fundamental mathematical concepts 
in elementary particles is symmetry. In mathematics, 
symmetry is defined as an operation on an object that 
leaves some of the object’s properties unchanged. As an 
example, consider a square drawn in the plane and an 
axis of rotation that passes through the square’s cen-
ter, perpendicular to the plane. If the square is rotated 
by 90 degrees around that axis, the square will appear 
unchanged. Rotation by 90 degrees is thus called a “sym-
metry” of the square. The set of all symmetries of an 
object forms a mathematical construct called a group 
(a set with an operation that obeys several axioms). 
Group theory, a branch of algebra, plays an important 
role in particle physics, as properties of many elemen-
tary particles can be explained and described by the use 
of symmetry.

The chief group-theoretic structure in particle phys-
ics is the Lie (pronounced “Lee”) group, named after 
Norwegian mathematician Sophus Lie (1842–1899). 
Lie groups are groups that posses the properties of 
geometric constructs known as “differentiable mani-
folds.” Lie groups thus provide yet another connection 
between geometry and elementary particles.  

One of the most important physical theories of the 
twentieth century is quantum mechanics, a theory that 
holds that, at the atomic and subatomic levels, behav-
ior of particles is a statistical rather than a determin-
istic phenomenon. Since elementary particles obey 
quantum-mechanical laws, statistics and probability 
are invariably major components of the mathematical 
framework of elementary particles.   

While physicists use mathematics as a tool for 
exploring the universe, the relationship between par-
ticle physics and mathematics is not one-directional. 
Research in particle physics drives the emergence of 
new mathematical theories, just as mechanics drove 
the emergence of calculus in the seventeenth century. 
In 1990, American theoretical physicist Edward Wit-
ten (1951–) won the Fields Medal, the highest honor 

in mathematics, for his many contributions to math-
ematics. He is the only non-mathematician ever to 
win the prestigious award. As both mathematicians 
and physicists continue to explore new horizons, the 
cross-fertilization of ideas will benefit both fields in 
decades to come. 

Further Reading
Griffiths, David. Introduction to Elementary Particles. 

Weinheim, Germany: Wiley-VCH, 2008.
Hellemans, Alexander. “The Geometer of Particle 

Physics.” Scientific American 295, no. 2 (2006).
Mann, Robert. An Introduction to Particle Physics and the 

Standard Model. Boca Raton, FL: CRC Press, 2010.
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See Also: Gravity; Relativity; Symmetry.

Elevation
Category Space, Time, and Distance.
Fields of Study: Geometry; Number and 
Operations.
Summary: Various aspects of elevation can be 
calculated using mathematical techniques.

Trigonometry has long been used to measure height. 
Elevation is often the height of a point relative to sea 
level, and its measurement is called “hypsometry.” El-
evation affects air pressure, temperature, and gravity, 
all of which have noteworthy effects on people. As-
tronomers and mathematicians such as Blaise Pascal 
and Edmund Halley investigated relationships between 
barometric pressure and elevation. 

Historical surveys of elevation include those who 
used barometers, like John Charles Frémont, who was 
at one time professor of mathematics of the Navy, and 
physician Christopher Packe. However, this method is 
sensitive to a number of variables. In the twenty-first 
century, detailed elevation data are available. Mount 
Everest is known as Earth’s highest elevation. Topo-
graphical maps represent elevation by using contour 
lines, each line following a path of constant elevation. 
Transits were developed in the nineteenth century, 
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and they can be used to calculate changes in elevation. 
Contour integrals and generalized contours for func-
tions of two variables are investigated in multivariable 
calculus classrooms. Mathematicians and computer 

scientists have helped create realistic computer mod-
els of land elevation, called “digital elevation models.” 
They have explored ideas like irregular-mesh grids or 
shifting nested grids in surface reconstruction. Other 
types of elevation studies also benefit from mathemat-
ical techniques, like using the ocean wave spectrum 
to investigate sea surface elevation peaks, or statisti-
cal techniques to investigate the impacts of elevation 
changes. Mathematician and astronomer Nilakantha 
Somayagi investigated the elevation of lunar cusps in 
the sixteenth century. The term “angle of elevation” in 
high school classrooms represents the angle between 
where an observer is standing and the line of sight to 
an object. The angle of elevation is found in many con-
texts, including in the Pyramids of Egypt, in the astro-
labe, and in global positioning systems.  

Topographic Maps
A topographic map is a two-dimensional map that 
conveys elevation information as well as other features 
of an area. Contour lines are the key to capturing eleva-
tion changes from a three-dimensional world on a two-
dimensional map. A contour line is a path that follows 
a constant elevation. Early uses of contours date to the 
eighteenth and nineteenth centuries and include the 
work of engineer Jean-Louis Dupain-Triel and astron-
omer and mathematician John Couch Adams.

A contour line is drawn each time a predetermined 
elevation change is achieved. For example, a map may 
use 100-foot elevation increments, with one contour 
line following points having an elevation of 100 feet 
and the next marking an elevation of 200 feet. Con-
secutive contour lines always differ by 100 feet in eleva-
tion. As the mapped terrain climbs more steeply, the 
contour lines on the map will be closer together. The 
lines can mark elevations that increase and decrease, 
representing terrain that rises and falls intermittently. 
Contour lines can represent elevations that are zero, or 
negative numbers as when mapping an ocean floor.

A topographic map of an area with constant eleva-
tion at its boundary, such as an island bounded by 
the sea, will not have contour lines extending off the 
map’s edge. In such cases, all contour lines will appear 
as closed curves. A curve is closed if it loops back to 
where it started. Typically, contour lines appear as 
simple closed curves that do not cross themselves. The 
pattern of contour lines as nonintersecting rings lying 
one within another is common on topographic maps. 
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Highest Elevations  
on Earth

E levations are nearly always computed rela-
tive to sea level, the average height of the 

ocean’s surface. Sea level is an inexact mea-
sure since tides, temperature, wind, salinity, 
and air pressure affect the oceans. Mount Ever-
est (above) in the Himalaya Mountains near the 
border of Nepal and Tibet is the highest moun-
tain on Earth at an elevation of 29,035 feet as 
of 2010. Everest gains more than two inches 
of elevation per year because of the collision of 
tectonic plates and there are discrepancies in 
its listed height.

Earth is not spherically symmetric; its 
radius near the equator is more than 13 miles 
greater than its radius near the poles. Conse-
quently, Mount Chimborazo in Ecuador holds 
the distinction of having the summit farthest 
from Earth’s center. Lying about one degree 
south of the equator, where Earth is widest, 
Mount Chimborazo is approximately 20,561 
feet above sea level, enough to make its sum-
mit more than a mile farther from Earth’s cen-
ter than Mount Everest’s summit.



Also common is to have two separate sets of noninter-
secting rings contained within a single contour line, 
as when two hills are surrounded by a larger path of 
constant elevation.

The U.S. Geological Survey (USGS) has created a 
complete large-scale topographic map of the United 
States in more than 56,000 pieces. The National Eleva-
tion Dataset is noted as the “the primary elevation prod-
uct of the USGS.” The data set is updated regularly, and 
historic data sets are also available for investigations.

There is an ever-growing growing need for digitized 
maps, which allow a computer user to read elevation 
at any spot on the map. Some digitized maps enable 
the user to view a landscape from different perspec-
tives, creating a three-dimensional view of the area’s 
elevation changes, similar to what would be seen at the 
actual location. Data from existing topographic maps 
and aerial photography are used to create digitized 
maps. Improvements in technology will continue to 
affect the science of map making.

Effects of High Elevation
As elevation increases, air temperature drops because 
of a decrease in air pressure. At about 18,000 feet above 
sea level, for example, the air pressure is half that at 
sea level. In the troposphere, the lowest layer of Earth’s 
atmosphere, a general rule of thumb is that air temper-
ature drops 6.5 degrees Celsius for every 1000 meters 
of elevation gain, or roughly one degree Fahrenheit 
for every 280 feet of elevation gain in standard condi-
tions. This phenomenon, which can be modeled with 
an equation, can be seen directly when an observer 
standing at a low elevation on a warm day views a tall 
mountain covered with snow.

Another consequence of this cooling is that water 
vapor in the air condenses, sometimes causing increased 
rainfall on the windward side of a mountain range and 
a “rain shadow” downwind from the mountains. Many 
deserts lie just downwind from a mountain range. For 
example, sand dunes in Death Valley, California, lie in 
the rain shadow of Mount Whitney, the highest peak in 
the continental United States.

Because of these differences in temperature and 
precipitation, tall mountains can have multiple cli-
matic zones, with different plant species thriving near 
the summit than at lower elevations. Some animal 
species, such as Roosevelt elk, migrate seasonally to 
take advantage of elevation effects, climbing to cooler 

locations in the summer and descending to warmer 
valleys in winter. 

The lower atmospheric pressure at high elevations 
makes breathing more difficult. Mountain climbers at 
high elevations use special apparatus to breathe. Some 
competitive distance runners train at high elevations 
in order to challenge their cardiovascular systems. 
When they race at a lower elevation, the air feels rela-
tively dense and oxygen-rich, giving them a competi-
tive advantage. 

With the less-dense atmosphere at high elevations, 
the sun’s rays can penetrate more easily, making sun-
burn possible even on cold days. Engines of naturally 
aspirated cars get less horsepower at higher elevations. 
Projectiles travel farther, a phenomenon known to golf-
ers and baseball players. Standard equations for pro-
jectile motion sometimes assume a sea-level location; 
adjustments must be made to account for elevation.

The effect of gravity is reduced with travel to high 
elevations; mass remains the same but weight decreases 
slightly, primarily because of the increase in distance 
from Earth’s center of mass. A person’s weight would 
be less atop Mount Chimborazo than anywhere else 
on Earth.

Further Reading
Smith, Arthur. “Angles of Elevation of the Pyramids of 
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Thrower, Norman. Maps & Civilization: Cartography in 
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Elevators
Category: Architecture and Engineering.
Fields of Study: Algebra; Number and Operations.
Summary: Mathematics is used to quantify aspects 
such as the maximum speed and distance range of 
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elevators as well as model vibration 
and optimize traffic flow.

An elevator is a mechanism for vertical 
transport of persons or cargo. Mathe-
matics is used to quantify aspects such 
as the maximum speed and distance 
range of elevators, determined by their 
purpose, such as lifting passengers, 
cars, or aircraft. Applied mathemati-
cal models focus on the dynamics and 
vibrations within different types of el-
evator mechanisms, such as hydraulic 
or rope systems. Mathematicians also 
investigate questions related to aspects 
such as waiting time, using probabil-
ity models. Systems of multiple eleva-
tors are modeled as high-dimensional 
spaces using dynamical systems. The 
number of passengers in an elevator 
system constantly changes, making an 
optimal policy for what is referred to 
as an “elevator group control” mathe-
matically interesting. At the end of the 
nineteenth century, scientist Konstan-
tin Tsiolkovsky conceived of a space el-
evator. He was self-taught and worked 
as a mathematics teacher.

Hydraulic Elevators
The main concept related to why hydraulic eleva-
tors work is Pascal’s Law, stating that when the pres-
sure increases anywhere in a confined fluid, it equally 
increases everywhere. This, together with the fact that 
pressure (P) is equal to force (F) per unit area (A), can 
be exploited for an advantage of force. The elevator car 
stands on top of a piston ending in a wide shaft filled 
with oil, connected to a narrow shaft with oil. When a 
pump increases pressure in the narrow shaft, by apply-
ing a relatively small force, the equal pressure applies to 
the floor of the cabin, producing higher force because 
of the larger area: P1

= P2, and
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A

F
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2
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Hydraulic elevators are only used in relatively low 
buildings since the piston has to be as tall as the build-

ing to extend to the top floor but fully fit under the 
building when the elevator is on the ground floor. Dig-
ging as deep as a skyscraper is high to install an eleva-
tor is impractical. These elevators are mostly used for 
heavy loads in places such as car mechanic shops.

Roped Elevators
A mathematically interesting concept related to roped 
elevators is the conservation of energy. A roped elevator 
consists of two ends of a steel cable going around a pul-
ley attached at the top, called a “sheave.” The elevator 
car is attached to one end of the cable, and the coun-
terweight, which weighs about the same, is attached to 
the other end. 

When the elevator car is at the bottom of the shaft, 
the counterweight is at the top, and its potential energy 
converts to force, helping move the elevator car up. 
When the elevator car is higher than the counter-
weight, their roles are reversed. This way, it takes very 

	 Elevators 347

The National Aeronautics and Space Administration (NASA) holds 
an annual engineering competition to design a space elevator.



little additional force to make the sheave rotate and the 
elevator car move up and down.

Logistics
In modern buildings with multiple elevators, computer 
programs determine how to dispatch elevators to mini-
mize wait time and to save energy. For example, a sensor 
may detect that an elevator is near capacity and will not 
stop it for any additional passengers. An elevator going 
down may not open its doors for people who want to go 
up, avoiding carrying them back and forth. More sophis-
ticated elevator software can take into account typical 
traffic patterns, directing elevators to the busiest floors. 

Space Elevator
A space elevator is a structure for escaping the grav-
ity well of a planet, transporting objects between the 
surface and a geostationary orbit. This proposed struc-
ture would consist of a large satellite counterweight 
in orbit and a cable connecting it to the ground. The 
inertia of the counterweight rotating around the planet 
will balance the gravitational pull on the cable, keep-
ing the cable taut. The National Aeronautics and Space 
Administration (NASA) is working on several efforts 
related to construction of a space elevator, including 
an annual engineering competition. The technological 
problems include avoiding meteorites and dangerous 
atmospheric weather systems, developing materials 
strong enough for the cable, designing the counter-
weight, protecting passengers from radiation, and 
powering the elevator cars. In 2008, Japan announced 
plans to build a space elevator in the immediate future. 
Space elevators have frequently appeared in science fic-
tion since the early twentieth century.

Further Reading
Bangash, M. Y. H., and T. Bangash. Lifts, Elevators, 

Escalators and Moving Walkways/Travelators. Leiden, 
The Netherlands: Taylor and Francis, 2007.
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Wuffle, A. “The Pure Theory of Elevators.” Mathematics 
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Energy
Category: Space, Time, and Distance.
Fields of Study: Algebra; Measurement.
Summary: Mathematics is used to study energy and 
energy conservation as well as to develop new sources 
of energy.

The concept of energy and transportation of energy 
are central to the survival of any civilization. As math-
ematical physicist Ludwig Boltzmann noted, “Available 
energy is the main object at stake in the struggle for ex-
istence and the evolution of the world.” At the start of 
the twenty-first century, human beings have accessed 
or created many forms of energy and power produc-
tion, including coal-fired and oil-fired power plants, 
solar heating plants, wind farms, nuclear power plants, 
geothermal sources of heat, hydroelectric power pro-
duced by dams, biofuels that store solar energy, and 
tidal energy produced by gravitational interactions be-
tween Earth and the moon. 

There are also potentially disruptive energy sources, 
including natural events, such as lightning, volcanoes, 
and earthquakes. Some global sources of energy and 
power that remain to be tapped by humans include the 
atmosphere’s expansion and contraction, ocean cur-
rents, and sea level differences. Various calculations of 
energy, including chemical reactions and nuclear reac-
tions, invoke the principle of conservation of energy. 
In relativistic or quantum terms, the conservation 
of mass-energy is also important. Energy, work, and 
quantity of heat are all expressed in “joules,” a mea-
sure of work named for physicist James Joule. There 
is a vast array of energy problems that mathematicians 
research, and mathematics makes many contributions 
to energy issues.

Energy, Defined
Energy is found in nearly every system or process in 
the universe: mechanics, chemicals, heat, electricity, 
nuclear processes, and quantum effects. Mathemati-
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cian and scientist René Descartes studied mechanics; 
centuries later, mathematician and philosopher Gott-
fried Leibniz criticized his ideas and developed what 
are referred to today as “kinetic energy,” “potential 
energy,” and “momentum.” In mechanics, the kinetic 
energy (E) of an object is expressed as

E mv=
1

2
2

where m is the object’s mass and v is its velocity. 
Another form of energy found in mechanics is the 
energy of position called “potential energy.” It has the 
units of joules. An example is the potential energy 
defined as work done in the compression of a coiled 
spring. The sum of all the kinetic and potential ener-
gies within a system comprises the mechanical energy 
of the system. Energy may be a conserved quantity 
within a closed system, or it may change forms, such 
as mechanical energy being converted to heat by fric-
tion. How energy in a system is measured is important. 
As noted, mechanical energy is measured as the sum 
of kinetic energy and potential energy, or energies of 
motion and position. Chemical energy is measured by 
the heat energy released in chemical reactions. Electri-
cal energy is measured by work done in a system. 

Energy Conservation
In general, the amount of energy of various types can 
be equated to an equivalent amount of heat energy. 
On an experimental scale, heat energy is the ability 
of work done to raise the temperature of water. The 
joule is a measure of thermodynamic energy and is the 
common unit of energy. James Joule is credited with 
experiments in the mid-1800s that demonstrated that 
work done on a system can be converted into heat. 
His experiments and those of others eventually led 
to the realization and statement of the “principle of 
conservation of energy” as a hypothesis, which was 
proved in certain restricted settings and generalized 
by induction. In 1865, mathematical physicist Rudolf 
Clausius worked on thermodynamics and stated his 
first law as, “The energy of the universe is constant.” 
The principle of conservation of energy applies not 
only to certain mechanical systems but is also seen 
widely in systems where other forms of energy are 
considered. Thus, heat energy is produced by com-
bustion and friction, radiant energy is from light 
and other forms of radiation, and chemical energy 

is stored in fuels and electrical energy. The principle 
is continually tested in new situations. This testing 
led to discoveries in the twentieth century in atomic 
physics. In the International System of Units, Le Sys-
tème International d’Unités (SI), a joule is defined as a 
newton-meter, named for Isaac Newton. The system-
atic study of the relation of various physical quantities 
through an analysis of their dimensions is the subject 
of dimensional analysis. Richard Feynman noted, 
“For those who want some proof that physicists are 
human, the proof is in the idiocy of all the different 
units which they use for measuring energy.”

One energy issue that has been important to math-
ematicians, philosophers, and physicists is the rela-
tionship between matter and energy. Some physicists 
wanted to assign matter-like properties to energy, such 
as Wilhelm Wien, who considered that energy might 
have a traceable motion. Mathematician William Clif-
ford thought of matter and energy as types of curva-
tures. In the theory of special relativity of 1905, Albert 
Einstein proved an equivalence of mass and energy as 
expressed in his famous equation E mc= 2, where E 
is the energy equivalent of mass m, and c denotes the 
speed of light, 299,792,458 meters per second. There is 
no process available to human beings at the start of the 
twenty-first century in which matter can be converted 
completely into radiant energy. 

For example, in a nuclear explosion, only a tiny frac-
tion of nuclear material is converted into energy. The 
only known process of annihilating matter is to pair a 
particle of matter with a particle of anti-matter, with 
the result that two photons are formed with energies 
that are equivalent to the energies of the particles. This 
process is on a quantum scale. Fusion is one process 
for partially converting mass into energy and occurs 
naturally in stars. Many controlled fusion experiments 
have been performed but in the process of producing 
fusion, a greater amount of input energy is needed for 
the reaction than is ultimately released by the reaction. 
Only in uncontrolled thermonuclear explosions are 
large amounts of energy released by fusion.

Fusion
Scientists continue to explore novel sources of energy 
and power from sources that entail motion, heat, quan-
tum uncertainty and other natural physical phenom-
ena. One possible source of power is controlled fusion 
reactions, hot or cold. Controlled hot fusion reactions 
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have not yet reached a break-even point where the 
energy of the reaction exceeds the energy input needed 
to trigger the reaction. 

There are ongoing fusion experiments that use vari-
ous solids and liquids with energy pumped into them 
by lasers in which fusion occurs but the fusion is not 
self-sustaining. The main problem is the energy input 
and inherent danger in heating suitable substances to 
temperatures at which fusion between atoms of hydro-
gen isotopes can occur. The hydrogen is in the form 
of deuterium or tritium, and the temperatures reached 
through compression must be on the order of millions 
of degrees, and there are often energetic byproducts 
that are dangerous to objects and people. In contrast 
to hot fusion, cold fusion (also known as “low-energy 
nuclear reactions” among the twenty-first-century 
research community) is the fusion of atoms at close to 
room temperature, generally through the use of super-
saturated metal hydrides. These reactions produce heat, 
helium, and a very low level of neutrons. The energy 
output is greater than the input, leading many scien-
tists and others to investigate this process as a viable 
solution to the energy needs of the future. Chemists 
Martin Fleischmann and Stanley Pons were the first, 
in 1989, to publicly announce that they had achieved 
cold fusion. Many competing scientific and mathemat-
ical models have been developed to explain how cold 
fusion works but many researchers and others remain 
skeptical regarding its existence or viability. 

Other Mathematical Applications
Mathematicians and other scientists have long studied 
the various aspects of energy. The concept of energy 
is fundamental to many scientific and business theo-
ries, applications, and disciplines. For instance, math-
ematicians have modeled energy trading in financial 
markets, which is quantitatively interesting because, 
in such applications, energy possesses unique attri-
butes as a non-storable and non-fungible commodity. 
They have also worked to design efficient shutdown 
schedules for electronic systems to address concerns 
related to energy conservation. Mathematics is impor-
tant for explaining the cosmic phenomenon of dark 
energy. This type of energy, often modeled as a sca-
lar field and inferred in large part from observation 
and mathematical analysis of gravitational fields, has 
implications for theories and measurement of uni-
verse expansion and dark matter. On the other hand, 

mathematicians such as Blake Temple have used 
mathematics to attempt to disprove the existence of 
dark energy and posit alternative explanations. Others 
have investigated the geometry of symplectic energy. 
Mathematicians are also influential in energy research 
and policy making via work at federal agencies like the 
U.S. Department of Energy. Mathematician J. Ernest 
Wilkins was a fellow at the Department of Energy’s 
Argonne National Laboratory and physicist and math-
ematician Hermann Bondi was the chief scientific 
adviser to the Department of Energy. Mathematical 
analysis and computational methods have also been 
used to study energy problems related to equilibrium, 
stability, and energy transport.
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Engineering Design 
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Engineering design is a carefully regulated 
process to create optimal solutions for given problems.

Engineers design everything from automobiles and 
bridges to prosthetic limbs and sporting equipment. 
Designing is different than simply building in that it 
requires the adherence to a very systematic, yet itera-
tive, process known as the “engineering design pro-
cess.” This process is to engineers what the scientific 
method is to scientists—guiding steps that help ensure 
that the end result is the best it can be. When a new 
product is created without following the steps of the 
engineering design process, there is a higher likelihood 
that the product designed will lack some important 
aspect: the end product may not appropriately ac-
count for the needs of its users, it may cost too much 
to manufacture, or it may not have been tested to en-
sure safety. Accordingly, the term “designing” refers to 
the entire process, such that an engineer “does design.” 
The use of the term “design” as a noun may be used at 
different points in the process but may have very dif-
ferent meanings depending on what phase of the pro-
cess the engineer is in. Design may really mean “design 
idea” during the brainstorming phase of the process or 
“model or prototype of the design” during the build-
ing phase of the process. 

The engineering design process requires the applica-
tion of mathematics in many of the steps. Throughout 
the process, engineers use basic mathematics concepts, 
including addition and multiplication to calculate costs; 
geometry to calculate surface areas for material needs; 
and measurements to ensure appropriate dimension-
ing. However, more sophisticated projects may require 
the application of higher-level mathematics, such as 
calculus and differential equations, to solve the techni-
cal engineering problems certain designs pose.

The Engineering Design Process
The engineering design process refers to the steps that 
are required to create the best possible solution to a 
problem. It is a process often undertaken by a team 
of engineers who work together, though it can be per-
formed by an individual—trained or untrained as an 
engineer. Though there is no consensus as the exact 

breakdown and name of each step, the general design 
process is universally accepted. 

In the first step of the engineering design process, 
the engineering team is presented with some type of 
problem or unmet societal need to be solved. Often, 
this problem is presented to the engineering team by 
a company that is trying to offer a product that bet-
ter meets its customers’ needs. The engineer must ask 
many questions to both the client and the user, as well 
as conduct background research, in an effort to estab-
lish the objectives and constraints of the design. The 
objectives are what the solution to the problem (the 
final designed product) should aim to accomplish. 
The constraints are the factors that limit the possible 
designs, such as time, money, or material restrictions. 
Time and money constraints are particularly important 
as they often drive the project and must be monitored 
throughout to ensure that the project is completed on 
time and within budget. At the end of this step of the 
design process, the engineering team fully understands 
the problem and has developed objectives and con-
straints to guide their possible solutions.

In the next step of the engineering design process, 
the engineers generate design ideas to solve the newly 
refined problem. Idea generation normally occurs 
through group brainstorming methods, with the goal 
of producing as many ideas as possible. There are a 
number of methods used to enhance the innovation 
and creativity of the ideas that come from the brain-
storming session, including ensuring group diversity, 
drawing from existing stimulus and building off of 
each other’s ideas. In this step of the process, some of 
the generated ideas will evolve into rough hand-drawn 
sketches. These sketches need to show perspective and 
relative size clearly. 

The next step of the engineering design process is 
design selection. A method known as “decision analy-
sis” is most commonly used for design selection. Deci-
sion analysis is a systematic process to objectively and 
logically choose the best idea to move forward with 
from the many generated through brainstorming. It is 
important because it reduces the likelihood of a design-
er’s bias in selecting a design. As a first step, the brain-
stormed ideas must initially be narrowed down through 
discussion or other means to only the handful of ideas 
that appear to be most promising. These ideas are then 
compared through decision analysis. For the decision 
analysis, it is first necessary to create a list of design 
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criteria and weight them based on their relative impor-
tance. As an example, as safety is paramount in design, 
the criteria of “safety” would be the most important cri-
teria and would be weighted as 1.0 on a scale of 0 –1. 
The criteria of “portability,” on the other hand, might 
be desirable but not necessary, so it would be weighted 
as 0.5. There is no standard as to what weighting scale 
should be used but it is important to be consistent in its 
application. For each criterion, in addition to the deter-
mined weighted importance, a numerical range must 
also be established for rating each design with respect 
to the criterion. When possible, this range should be as 
objective and quantifiable as possible. 

Each design being considered is then “scored” using 
the range for each criterion. The score is then multi-
plied by the relative criteria weight for a total score for 
each criterion and for each design. The total scores 
for each criterion are then summed for each design. 
The summed scores can be used to compare multiple 
designs, with the one scoring the highest being the one 
most likely to be successful. 

After identifying a design to move forward with, 
refinement of the design is necessary. This step 
includes determining dimensions and materials that 
will be used to construct the chosen design. Detailed 
sketches, often drawn from multiple perspectives, 
are created and include the dimensions of each part 

to be made. Determining these 
dimensions often requires in-
depth estimation and calcula-
tion. At the most simplistic level, 
dimensioning requires tak-
ing into account any necessary 
clearances or gaps in the design, 
especially when multiple parts 
need to be fitted together. It may 
also be necessary to determine 
the combinations of dimen-
sions that ensure a specified 
surface area requirement is met, 
in which case algebra can be 
helpful. More in-depth designs 
may require that dimensions 
come from established tables 
of normative dimensions, such 
as anthropometric tables, pro-
viding typical measurements of 
different-sized people, or from 

engineering analysis, such as stress or buckling calcu-
lations. Deriving dimensions from engineering analy-
sis methods often requires high-level mathematics and 
a technical background in engineering but ensures a 
stronger, safer product.

Once the design has been refined and the dimen-
sions are known, building begins. For most designs, 
a scale model or a simplified prototype is created first 
to test for feasibility of the design before further time 
and money is invested. To create a scale model, all 
dimensions of the detailed sketches must be reduced 
by multiplying by some chosen scaling factor, often 
1:2. Regardless of whether a full-size design or scale 
model is used, it is necessary to calculate the amount 
of each material that needs to be purchased to build 
the design. This requires thought and calculation, in 
particular when multiple parts could be cut from one 
piece of wood, metal, or fabric. Often, surface area is 
calculated according to the part’s geometry to deter-
mine the total amount of material needed. Once mate-
rial has been secured, building of the design can occur. 
Throughout building, it is essential to make careful 
measurements for all parts because almost all designs 
are made from multiple components that must fit 
together to function as one product. For example, if a 
piece of wood to be used for one leg of a chair is mea-
sured even ¼ inch shorter than the other legs, it will 
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likely mean the finished chair will rock and wobble, 
and the design will be undesirable. 

As a next step in the engineering design process, the 
constructed design is experimentally tested to deter-
mine its performance. This step helps to identify design 
strengths and weaknesses, which can be used to make 
recommendations for future refinement of the prod-
uct. The specific experimental test performed is deter-
mined by the type of product designed and the design 
objectives. Regardless of the type of test conducted, 
measurements are taken throughout the experiment to 
record some aspect of the design’s performance. Often, 
multiple trials will be taken, generating many data 
points. The data obtained from these measurements 
are then used to draw conclusions about the success of 
the design. Statistical analysis may also be employed to 
further assist in the interpretation of the data. 

Almost always, the data collected during testing 
will suggest that the design could perform better if 
refined in some way. As such, it is common for the 
engineering team to return to the building stage and 
then iteratively cycle between it and testing steps 
until satisfied. At times, it may also be necessary to 
return to earlier steps in the engineering design pro-
cess. Once the team is satisfied with the final product, 
final documentation is prepared to explain the design 
and share it with others. This is often done through 
computer-aided design (CAD) drawings and written 
technical reports. 
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Equations, Polar
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication; 
Connections; Geometry; Representations.
Summary: Polar coordinate systems were developed 
in the seventeenth century and have numerous 
modern applications.

The polar coordinate system is a coordinate system 
for the plane in which each point is determined by a 
distance from a fixed point, called the “pole,” and an 
angle from a fixed direction, called the “polar axis.” 
In normal usage, the pole is analogous to the origin 
in the Cartesian coordinate system, named for René 
Descartes. Both polar and rectangular (Cartesian) co-
ordinates require two bits of data to place a point in 
the plane. While the Cartesian coordinate system re-
quires knowing and placing two chosen lines to serve 
as axes, polar coordinates requires knowing one fixed 
point and one fixed ray. This characteristic makes polar 
coordinates useful in navigation. Students in twenty-
first-century high schools are introduced to polar co-
ordinate systems and the topic is further developed in 
college mathematics and physics classrooms.

History
The concept of using an angle and a radius may be 
dated to the first millennium b.c.e. There are refer-
ences to Hipparchus of Rhodes (c. second century 
b.c.e.) using a type of polar coordinates to establish 
the positions of the stars that he studied. Archimedes 
of Syracuse describes his namesake spiral in the book 
On Spirals, as where the distance from a given point 
depends on the angle from a given radius. 

In a number of articles about the development of 
polar coordinates, most notably the 1952 article “Ori-
gin of Polar Coordinates” by Julian Lowell Coolidge, 
further development of polar coordinates was gener-
ated by studying the Archimedean spiral. According 
to Coolidge’s history, the first mention should go to 
Bonaventura Cavalieri in his 1635 treatise Geometria 
indivisilibus continuorum in which he studies the spiral 
of Archimedes. Cavalieri studies the area inside the spi-
ral and relates it to other known areas. 

Like all good stories in the history of mathematics, 
this assertion is not without disagreement. In 1647, 
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Grégoire de Saint-Vincent in his work Opus Geomet-
ricum claimed that he was familiar with the method 
and had sent his work to Christopher Grienberger in 
1625. Grienberger had died in 1636, and the priority 
of the work was the subject of an article by Moritz 
Cantor in 1900.

Spiral curves were of interest to many mathemati-
cians, including Gilles Personne de Roberval, James 
Gregory, Descartes, and Pierre Varignon. Gregory, Des-
cartes, and Varignon all used a type of transformation 
of coordinates that heralded the complete develop-
ment of polar coordinates. It appears to be Jacob Ber-
noulli and Isaac Newton who most completely devel-
oped these transformations. Bernoulli worked on the 
lemniscate and introduced the terms “pole” and “polar 
axis.” Newton investigated transformations between 
coordinate systems, including polar coordinates, in his 
work Method of Fluxions, which was written in 1671 
but not published until 1736. 

Applications
Polar coordinates are the basis for navigation and radar, 
since the direction of travel can be given as an angle 
and distance from the origin. The radar screen that is 
used in air traffic control uses the location of the radar 
transmitter/receiver as the pole and magnetic north as 
the polar ray, zero degrees. This aspect and the fact that 
the angles continue in a clockwise direction instead of 
a counterclockwise direction are the major differences 
between a navigational use and the mathematical sys-
tem. This same radar is the basis for all weather radar 
that is available for viewing either on television or from 
the Internet. Each radar location (there are 178 National 
Weather Service Doppler weather radar locations that 
cover the United States) sets a pole and covers a specific 
area. Storms are located and their paths are computed 
using the overlaps. This information must be trans-
formed from the polar system (how far from the radar 
site and at what angle) into GIS coordinate system and 
then placed on a map to go to television or to the Inter-
net. One well-known measuring device is the polar pla-
nimeter, created by mathematician and physicist Jacob 
Amsler in the nineteenth century. It measured the area 
enclosed by a curve. Amsler switched careers to focus 
on mathematical instruments, and he produced thou-
sands of Amsler planimeters.

Other examples of the use of polar coordinates are 
very simplified uses in planning sprinkler systems in a 

building, as well as in irrigation systems in landscape 
and farming. Each of the sprinkler heads serves as a 
pole, and different walls, boundary lines and such serve 
as polar axes.

Different microphones have different recording pat-
terns depending on the specific purpose.  The omni-
directional microphone is used when sound from all 
directions is to be recorded, such as a choir or a large 
group. A cardioid microphone is a unidirectional 
microphone, which would be used to record a per-
former but not the crowd. Bidirectional microphones 
are used in an interview situation where the voices 
of both the interviewer and interviewee need to be 
recorded. The pattern of sounds that are picked up by 
the microphone are a lemniscate—the figure studied 
by Bernoulli.

Further Reading
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Escher, M.C.
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Measurement; 
Representations.
Summary: The works of M.C. Escher are frequently 
used by mathematicians and mathematics educators 
to explore mathematical concepts.

Maurits Cornelis Escher (1898–1972) was a Dutch 
graphic artist perhaps best known for creating artwork 
with illusional and conceptual effects including wood-
cuts, lithographs, and mezzotints with meticulous de-
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tail. Despite the fact that he did poorly in mathematics 
in school, he accurately illustrated mathematical con-
cepts in many of his works, which are frequently used 
by mathematicians and mathematics educators to il-
luminate and explore those concepts. He also wrote a 
paper called “Regular Division of the Plane with Asym-
metric Congruent Polygons.” About his own work and 
processes, Escher said:

By keenly confronting the enigmas that surround us 
and by considering and analyzing the observations 
that I had made, I ended up in the domain of math-
ematics. Although I am absolutely without training 
or knowledge in the exact sciences, I often seem to 
have more in common with mathematicians than 
with my fellow-artists.

Early Work
As a student, Escher did not excel at any subject except 
drawing. After failing the final secondary school exami-
nations, he enrolled in the Haarlem School of Architec-
ture and Decorative Arts in 1919. Encouraged by one 
of his teachers, he shifted his interest from architecture 
to graphic arts. His first trip to the Mediterranean in 
1922 made a strong impression upon him. He decided 
to leave the school and settle in Rome, where he mar-
ried Jetta Umiker in 1924. In the following years, his 
fascination with Italian landscapes, combined with his 
passion for printmaking, resulted in a series of realistic 
woodcuts, Castrovalva being one of the most notable.

Hand with a Reflecting Globe (1935) marks the 
beginning of a period when the exploration of what he 
called an “inner vision” replaced his interest in the out-
ward appearance of things. After fleeing from politi-
cal turmoil to Switzerland, he testified that he was no 
longer inspired by his surroundings. During a visit to 
Spain in 1936, he worked extensively on copying the 
motifs from the Moorish mosaics in the Alhambra 
castle in Granada. The idea of creating patterns that 
would not only involve abstract shapes but also animal 
and human figures strongly obsessed him.

Art and Mathematics
In 1937 Escher created Still Life and Street, his first 
“impossible reality” image. In the same year, he moved 
with his family to Belgium, where he began to consider 
divisions of the plane using the work of mathematicians 
such as George Pólya regarding the 17 distinct plane 

symmetry groups. Using his own techniques, Escher 
explored questions such as the possible shapes for tiles 
that can produce a regular division of the plane, along 
with the various isometries that relate the edges of such 
tiles. Escher mapped adjacent tiles using translations, 
rotations and glide-reflections, all of which require the 
tiles’ edges to be straight segments. This aspect became 
one of the central ideas of his art.

German occupation forced him to flee to Baarn, 
The Netherlands, in 1941, where he settled perma-
nently. Two articles in Life and Time magazines in 
1951 brought the world’s attention to his work. Besides 
increasing demand for prints and numerous commis-
sions, this recognition enabled him to start exchanges 
with many world-renowned scientists.

Escher’s first ideas about infinity revolved around 
depicting decreasing figures as one moves toward the 
center of an image, as seen in his woodcut Development 
II. An article by a Canadian geometer Harold Scott 
MacDonald Coxeter made him reverse his point of view 
by creating a tessellation of a disc with tiles decreas-
ing while moving toward the boundary of a disc. This 
approach produced some of his later prints, including 
Circle Limit III, and his last work, The Snakes (1969).

British mathematical physicist Roger Penrose, fas-
cinated by Escher’s lithograph Relativity, developed 
impossible objects known as the “Penrose tribar” and, 
together with his father, Lionel Penrose, the “Penrose 
staircase.” After exchanging his ideas with the art-
ist, these objects inspired lithographs Waterfall and 
Ascending and Descending. Mathematicians continue to 
investigate the mathematical details of Escher’s work. 
Number theorist Hendrik Lenstra used the theory of 
elliptic curves and complex exponential functions to 
analyze aspects of Escher’s Print Gallery.

Escher’s most ambitious work, a 22-foot-wide 
woodcut, Metamorphosis III, was based on tessella-
tions. Many other mathematical topics were also imple-
mented in Escher’s work: topology in depictions of the 
Möbius strip, the principle of self-reference in Draw-
ing Hands, numerous polyhedra, concave and con-
vex objects, irregular perspective, spherical geometry, 
optical illusions, and visual paradoxes, among others. 
Escher’s creative interpretation of these subjects erased 
the boundaries between mathematics and art. He said, 

At first I had no idea at all of the possibility of 
building up my figures. I did not know any “ground 
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rules” and tried, almost without knowing what I 
was doing, to fit together congruent shapes that I 
attempted to give the form of animals. Gradually, 
designing new motifs became easier as a result of 
my study of the literature on the subject . . .espe-
cially as a result of my putting forward my own 
layman’s theory, which forced me to think through 
the possibilities.

Legacy
M.C. Escher felt closer to mathematicians than to his 
peers. Although he frequently stated that he was a mere 
craftsman, not an artist, some of the images he created 
found their place in popular culture and mathematics, 
becoming icons of the twentieth century. Escher’s son 
George noted that his father often did not seem to com-
prehend that his process of creation and exploration of 
the mathematical concepts he used in his work was in 
fact very much like a mathematician. His work tackles 
human understanding of the order of the universe and 
unveils it with unexpected beauty and refinement.

Further Reading
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Ethics
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections; 
Problem Solving.
Summary: Since the time of Plato, mathematicians 
have been analyzing and confronting ethical problems.

Mathematics and ethics have a long and tangled his-
tory. Philosophy has nurtured mathematical forms 
of thought that, in turn, have had a profound influ-
ence on ethical theorizing. For example, mathematics 
served as a model for Jeremy Bentham (1748–1832) 
whose goal in utilitarianism was to develop a calculus 
of pleasure and pain. 

Several contemporary ethical theories are tied to the 
mathematics of game theory, especially the work of John 
Rawls (1921–2002). Ethical issues arise in mathemat-
ics teaching, research, industry, and government work. 
Mathematicians such as Lee Lorch challenge discrimi-
natory practices and fight for human rights, justice, and 
equality. Other mathematicians have refused to work on 
projects they find ethically problematic. Ethical norms 
often change over time and for various contexts, leading 
to controversial applications of mathematics research, 
like the atomic bomb. In the face of increasing market-
ability of mathematical results, some have questioned 
the disparity between the academic tradition of mak-
ing knowledge freely available and personal ownership 
of intellectual property. Many professional associations 
have developed, maintained, and revised ethical guide-
lines for their members, and mathematicians who wish 
to perform experiments must submit a proposal to an 
institutional review board for ethical review. In 2010, 
the National Science Foundation issued a program 
solicitation for an Ethics in Science, Mathematics, and 
Engineering Online Resource Center.

Mathematics and Ethics in Plato  
(429–347 b.c.e.)
Plato’s Republic is the first systematic treatment of eth-
ics. The best preparation for acquiring ethical knowl-
edge is a firm foundation in mathematics. However, 
the connection between mathematics and ethics is 
much deeper. Methodologically, Plato develops his 
argument by building a simplified model of the state 
in the same manner in which a study of any geometri-
cal figure is done in mathematics. Justice in the state is 
merely justice in the individual writ large. Thus, Plato 
appeals to similarity transformations. The argument is 
that, as a result of a uniform scaling operation, justice 
in the individual is similar to justice in the state. Fur-
ther, within the Platonic tradition, mathematical and 
ethical knowledge have the same formal characteristics. 
They are both examples of purely intelligible objects 
grasped entirely by reason in an intellectual intuition 
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and known as a result of a process of recollection. 
Thus, they are examples of immutable and unchange-
able truths, which could not be other than what they 
are. Plato’s very definition of justice contains a math-
ematical element, because justice is a type of equality. 
Justice is a matter of treating equal individuals equally 
and unequal individuals unequally. According to Plato, 
different political orders arise from the different con-
ceptions of equality. 

Mathematics and Ethics in Aristotle  
(384–322 b.c.e.)
For Aristotle, mathematics does not provide a model 
for ethics. However, mathematical concepts function 
in an analogical sense. Aristotle used a distinction 
between arithmetic and geometric proportion in his 
discussion of justice. Distributive justice is based on 
geometrical proportion, while rectificatory justice is 

based on arithmetical proportion. Issues of rectifica-
tory justice arise when a judge must rectify a situation 
by attempting to restore equality to someone who has 
been injured. Issues of distributive justice arise when 
something has to be divided among two individuals. 

Modern Moral Euclidian Philosophers
Both Thomas Hobbes (1588–1679) and Baruch Spi-
noza (1632–1677) incorporated the mathematical 
method of Euclid of Alexandria into their treatment 
of ethics. Hobbes thought that mathematical modes 
of thought could produce clarity in ethics and poli-
tics. However, it was Spinoza who most rigorously 
and consistently imitated Euclid’s method. He begins 
each section of his Ethics with a set of definitions and 
axioms, which he then uses to demonstrate a series of 
propositions about the universe, human nature, and 
basic ethical precepts. 

Mathematical Ethics
The guidelines of professional mathematical associa-
tions cover a wide range of topics. Creation, attribu-
tion, publication, and presentation of research, espe-
cially with regard to falsification and plagiarism, as 
well as skewed interpretations and one-sided “advertis-
ing” style arguments, are commonly addressed. These 
guidelines extend into the classroom, along with data 
sharing or loaning and responsible group work. Atten-
tion is also given to the nature of teacher-student and 
colleague relationships in which one individual has 
some level of authority over the other, especially when 
they involve professional decisions like hiring, granting 
tenure, issuing promotions, and conferring degrees. 

Mathematician Philip Davis noted that ethics are typ-
ically derived from past experiences and so may do little 
good in addressing many future or even current dilem-
mas. Further, judging the past based on current criteria 
leads to additional difficulties. Arguments abound, for 
example, about whether statistical data gathered from 
Nazi medical experiments should be used or destroyed, 
or whether mathematicians can be held responsible for 
any future unanticipated uses of their work, such as 
computer viruses or code-breaking algorithms usurped 
by data thieves. The Manhattan Project exemplifies 
many of the moral dilemmas faced by mathematical 
scientists. Many participants have expressed profound 
regrets; others have not, citing the undeniable advances 
made in numerous fields and the need at the time to 
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bring an end to the greater destruction of World War 
II. For example, the cyclotron was invented by Ernest O. 
Lawrence in 1931, who received the Nobel Prize in 1939 
for this invention.

Further Reading
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Journal 22 (2007).
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Europe, Eastern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Eastern Europe has a long tradition of 
both mathematics research and education. 

Throughout history, the countries of Europe have 
had shifting political and social boundaries. Eastern 
European mathematics evolved within the context of 
many mathematics traditions, including Soviet Union 
mathematics, over the past centuries. Historically, 
gifted young scholars from regions around the world 
completed their mathematical studies at Europe’s well-
known and respected universities. Studies of mathema-
ticians’ letters and scientific papers show that they often 
maintained connections with people in other countries 
who shared their fields of interest. The Soviet Union 
exercised broad social and political influence over most 
of eastern Europe and also impacted U.S. mathemat-
ics in the twentieth century. Within the Soviet Union, 
students from the far reaches of the nations within its 
boundaries were often brought to Russia for work or 
education, as well as sent to other parts of the Soviet 
Union to teach or to establish research centers. In the 
twenty-first century, students in the United States and 

around the worked attend study abroad programs, 
such as the Budapest Semesters in Mathematics. In 
the twenty-first century, the United Nations Statistics 
Division classified the following countries belonging 
to eastern Europe: Belarus, Bulgaria, Czech Republic, 
Hungary, Moldova, Poland, Romania, Russia, Slovakia, 
and Ukraine. The CIA World Factbook adds Estonia, 
Latvia, and Lithuania, which were among the member 
nations of the Soviet Union, though the United Na-
tions classifies them as belonging to northern Europe. 
Geographical boundaries continued to change in the 
twentieth century because of post–World War II struc-
tures and, later, the breakup of the “Eastern Bloc” na-
tions, which were once under the Soviet Union’s po-
litical influence. Therefore, mathematics contributions 
of some people from eastern Europe may be included 
within the histories of other regions or countries.

History of Russian and Soviet  
Mathematics Education
When examining past and present states of mathemat-
ics in Belarus, Moldova, Russia, Ukraine, Estonia, Lat-
via, and Lithuania, it is pertinent to acknowledge that 
they share a common sociopolitical root: they are all 
former member states of the Soviet Union. Further, the 
broader Eastern Bloc of Soviet Union allies included 
Bulgaria, Romania, Hungary, East Germany, Poland, 
Albania (until the early 1960s), and Czechoslovakia 
(which later split into the Czech Republic and Slova-
kia). The Eastern Bloc is sometimes known histori-
cally as “eastern Europe,” versus the “western Europe” 
countries allied with the United States, a rival of the 
Soviet Union. During its several decades of existence in 
the twentieth century, the Soviet Union included many 
mathematicians who made significant contributions to 
the body of modern mathematical knowledge. Further, 
Russian and Soviet mathematicians were influential on 
many other countries. 

One important landmark in mathematics education 
in Russia is the creation in 1701 of the School of Math-
ematical and Navigational Sciences in Moscow. Peter 
the Great, who had traveled widely in other parts of 
Europe to study the state of mathematics and science as 
part of his effort to modernize Russia and expand the 
empire, founded this school. It educated students in 
basic mathematics as well as more specialized subjects, 
such as astronomy and navigation. Notably, students 
from all social classes except serfs were admitted, and 
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financial assistance was available. Graduates worked in 
the navy, as engineers, and as teachers in a variety of 
settings, so the school had a multiplier effect in terms 
of spreading mathematics education throughout Rus-
sia. Peter the Great also founded the Saint Petersburg 
Academy of Sciences in 1724, influenced in part by 
correspondence with mathematician Gottfried Leib-
niz, who also purportedly recommended a three-tiered 
educational system of schools, universities, and acad-
emies. Many eminent foreign mathematicians, such as 
Leonard Euler, Christian Goldbach, and Daniel Ber-
noulli, worked at the Saint Petersburg Academy.  

As part of her goal of modernizing Russia in the 
European style, Empress Catherine the Great, who was 
born in Germany, established the first gymnasiums in 
Russia. These gymnasiums were schools meant to pre-
pare students for higher education and were created in 
most major Russian cities in the nineteenth century. 
Nicolai Ivanovich Lobachevsky, one of the first Rus-
sian mathematicians to achieve international recogni-
tion, was a beneficiary of this expanded educational 
opportunity. He graduated from Kazan Gymnasium 
and Kazan University (in Tatarstan) and is most noted 
for his work in hyperbolic geometry, a form of non-
Euclidean geometry. However, despite this considerable 
expansion, access to education was far 
from universal until the Soviet era. The 
Soviet Union was founded by revolution 
in 1917, when the monarchy of the Rus-
sian Empire was overthrown, but was 
not made official until 1922. The Saint 
Petersburg Academy of the Sciences 
evolved into the Russian and then Union 
of Soviet Socialist Republics (USSR) 
Academy of the Sciences. It reverted to 
the Russian Academy of Sciences follow-
ing the dissolution of the Soviet Union, 
and remains an influential organiza-
tion in the twenty-first century. Acad-
emies of sciences were also founded in 
most of the states of the Soviet Union. 
Universal compulsory education was 
established in 1919. Soviet schools had 
both political and educational goals but 
the expectation that all children would 
attend school rapidly increased literacy 
and played a key role in modernizing 
and industrializing the country. 

In the Soviet Union, the study of mathematics and 
the sciences was emphasized, a choice that not only fos-
tered rapid economic growth but also became a point 
of national pride, as by mid-century the Soviet Union 
was frequently seen to rival or even surpass the United 
States in scientific and applied research. When the 
Soviet Union successfully launched the satellite Sput-
nik in 1957, it raised concern in the United States not 
only because of the possibility that the Soviet Union 
was developing weapons for which the United States 
had no counter but also because it put into question 
the common assumption that the United States was the 
world leader in mathematics and science. One result of 
Sputnik in the United States was a substantial increase 
in federal funding for scientific education and research 
in the hope of catching up and surpassing the Soviet 
Union in the “space race.”  

As part of this concern that the Soviet Union was 
surpassing the United States, many studies were com-
missioned of the Soviet educational system and how it 
differed from the American system. Among the differ-
ences noted by researchers were the facts that in Soviet 
schools, specialists taught mathematics from the fourth 
grade onward, a uniform curriculum was used across 
the entire country, and much greater emphasis was 
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placed on developing the talents of students who were 
identified as gifted in mathematics. The Soviet Union 
had “special schools,” which were free boarding schools 
at high school level for gifted students and specialized 
in particular subjects. Four such schools were devoted 
to mathematics. Correspondence courses in advanced 
mathematics were also available to increase the number 
of students studying those subjects. American observers 
noted that the level of mathematics required for uni-
versity admittance during the Soviet period was much 
higher than what would be expected for entering fresh-
men in the United States. At the same time, other authors 
have noted that English-language sources often do not 
reflect the full scope and influence of Russian and Soviet 
mathematics. These omissions may be because of Cold 
War influences and a period of Soviet isolationism from 
the United States and much of Europe, a policy that con-
trasts strongly with earlier Russian connections and the 
growing collaborations following the Soviet era.

Notable Soviet and Russian Mathematicians
Andrey Kolmogorov (1903–1987) is known for his 
work in the fields of probability theory and topology, 
including the Kolmogorov axioms, Kolmogorov’s zero-
one law, and Kolmogorov space.

Stefan E. Warschawski (1904–1989) studied at the 
University of Königsberg and Göttingen. His doctoral 
thesis was on the boundary behavior of conformal 
mappings. 

Sergei Lvovich Sobolev (1908–1989) worked in 
mathematical analysis and partial differential equa-
tions. Sobolev spaces (named after him) can be defined 
by growth conditions on Fourier transforms.

Israel Moiseevich Gelfand (1913–2009) worked in 
the field of functional analysis. He is known for the Gel-
fand representation in Banach algebra theory; the rep-
resentation theory of the complex classical Lie groups; 
contributions to distribution theory and measures on 
infinite-dimensional spaces; integral geometry; and 
generalized hypergeometric series. His name is linked 
to the development of mathematical education.

Igor Shafarevich (1923–) is the founder of the 
major school of algebraic number theory and algebraic 
geometry in the Soviet Union. He has also written well-
known textbooks.

Grigori Perelman (1966–) declined the Fields medal, 
a prestigious award in mathematics often equated to 
the Nobel Prize, for his work on the Poincaré conjec-

ture, named for Henri Poincaré. He cited inequities 
and reportedly noted, “If the proof is correct then no 
other recognition is needed.” 

Other well-known Soviet or Russian twentieth- 
century mathematicians include Boris Pavlovich Demi-
dovich, who worked on problems in mathematical anal-
ysis, and Yakov Isidorovich Perelman, who was a science 
writer and author of many popular science books.

Czech Republic and Slovakian Mathematicians
Kurt Gödel (1906–1978) proved fundamental results 
about axiomatic systems. Gödel’s Incompleteness The-
orems are named for him. 

Stefan Schwarz (1914–1996) studied semigroups, 
number theory, and finite fields and founded the 
Mathematico-Physical Journal of the Slovak Academy 
of Sciences in 1950.

Hungarian Mathematicians 
Hungarian mathematicians of the twentieth century are 
well known in the mathematical world. Many of them 
immigrated to the United States after World War II.

Frigyes Riesz (1880–1956) was a founder of func-
tional analysis. He produced representation theorems 
for functional on quadratic Lebesgue integrable func-
tions, named for Henri Lebesgue, then introduced the 
space of q-fold Lebesgue integrable functions. He also 
studied orthonormal series and topology.

George Pólya (1887–1985) worked in probability, 
analysis, number theory, geometry, combinatorics, and 
mathematical physics. He wrote books about prob-
lem-solving methods, complex analysis, mathematical 
physics, probability theory, geometry, and combinator-
ics. He was regarded by many as a great teacher and 
influenced many mathematicians.

Cornelius Lanczos (1893–1974) worked on relativ-
ity and mathematical physics. He invented what is now 
called the Fast Fourier Transform, named for Joseph 
Fourier. He published more than 120 papers and books. 

John von Neumann (1903–1957) worked in quan-
tum mechanics, game theory, and applied mathemat-
ics, as well as helping pioneer computer science. His 
doctoral thesis was on set theory. His definition of 
ordinal numbers is the one commonly used in the early 
twenty-first century. 

Rózsa Péter (1905–1977) is known for teaching, for 
her books on the history of mathematics, and for her 
series of theorems about primitive recursive functions.
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Paul Erdos (1913–1996) is well known among math-
ematicians for his insatiable ability to pose and solve 
problems. It is often said that he lived on mathematics 
and coffee, touring the circle of his friends and pupils 
and giving lectures on combinatorics, graph theory, 
and number theory. He advocated for elegant and ele-
mentary proof. One of the most prolific mathemati-
cians in history, he wrote more than 1500 papers. 

Paul Richard Halmos (1916–2006) is known for his 
contributions to operator theory, ergodic theory, func-
tional analysis (in particular Hilbert spaces, named for 
David Hillbert), and for his textbooks. 

Alfréd Rényi (1921–1970) worked on probability 
theory, statistics, information theory, combinatorics, 
graph theory, number theory, and analysis. 

László Lovász (1948–) published his first paper 
called On graphs not containing independent circuits 
when he was only 17 years old. He is a prominent figure 
of post–World War II mathematicians. 

Notable Polish Mathematicians
Stefan Banach (1892–1945) worked on the theory of 
topological vector spaces, measure theory, integration, 
and orthogonal series. His doctoral thesis “On Opera-
tions on Abstract Sets and their Application to Integral 
Equations” (1920) marks the birth of modern func-
tional analysis. He defined the “Banach space.”

Benoit Mandelbrot (1924–2010) is known as the 
father of fractal geometry. The Mandelbrot set, a con-
nected set of points in the complex plane, is named 
after him. 

Mathematicians From Romania
János Bolyai (1802–1860) is perhaps the most famous 
Romanian mathematician because of his treatise on 
a complete system of non-Euclidean geometry in his 
book  Appendix. In his own words, he created a new 
world out of nothing. 

Caius Iacob (1912–1992) worked in the fields of 
analytic geometry, descriptive geometry, analysis, and 
complex functions. 

Grigore C. Moisil (1906–1973) worked on differen-
tial equations, the theory of functions, and mechanics. 
He set up the first Romanian computer science course. 
Moisil was appreciated for his philosophy and humor. 

Other important Romanian mathematicians 
include Dimitrie Pompeiu, Ferenc Radó, Isaac Jacob 
Schoenberg, Simion Stoilow, Gheorghe Titeica, Gheo-

rghe Vranceanu, Octav Onicescu, Ion Colojoara, and 
Dan Barbilian.

Competitions and Contests
Building on eastern Europe’s strong mathematics tra-
ditions, many mathematical contests are hosted fre-
quently or entirely within the region, such as Inter-
national Mathematical Olympiad, Romanian Master 
of Sciences (formerly called the Romanian Masters in 
Mathematics—it was expanded to include physics), 
Czech-Polish-Slovak Match, Bulgarian Competition 
in Mathematics and Informatics, Romanian National 
Olympiad, and the International Kangaroo Mathemat-
ics Contest (often called “Math Kangaroo”) among 
others. Individuals from all over the world participate 
regularly in these competitions. There are also several 
winners of the Fields Medal who were born or worked 
in eastern Europe.
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Europe, Northern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Since the Enlightenment, Northern 
Europe has made considerable contributions to 
mathematics research and continues to do so.

	 Europe, Northern 361



Northern Europe has produced many outstanding 
mathematicians and scholars in related fields, from the 
development of calculus by Isaac Newton in the seven-
teenth century to the cosmological models developed 
by Stephen William Hawking in the twentieth and 
twenty-first centuries. 

Northern Europe also led the way in developing 
many practical applications of mathematics and later 
statistics, including taking a national census like the 
Domesday Book undertaken in England in 1183 and 
developing mathematical ways to measure the influ-
ence of personal habits on health as in the studies of 
Richard Doll and Austin Bradford Hill on the rela-
tionship between smoking and disease. In the twenty-
first century, the United Nations category of north-
ern Europe includes the Åland Islands, the Channel 
Islands, Denmark, Estonia, Faeroe Islands, Finland, 
Guernsey, Iceland, Ireland, the Isle of Man, Jersey, 
Latvia, Lithuania, Norway, Svalbard and Jan Mayen 
Islands, Sweden, and the United Kingdom of Great 
Britain and Northern Ireland. However, the chang-
ing political boundaries in many of these countries 
throughout history, as well as the rise and fall of the 
Soviet Union, which included countries like Esto-
nia, Latvia, and Lithuania, mean that mathematical 
contributions of some individuals may be included 
within the histories of other regions.

Sir Isaac Newton was one of the most influential 
mathematicians of the modern era. He shares credit 

with Gottfried Leibniz for developing integral and dif-
ferential calculus, and he also made major contribu-
tions in the fields of physics and astronomy. Newton’s 
1687 book Philosophiae Naturalis Principia Math-
ematica laid the groundwork for classical mechanics 
including a description of the three laws of motion and 
remains one of the most influential books in the his-
tory of science. He also built the first reflecting tele-
scope and developed a theory of color based on the vis-
ible spectrum displayed when visible light is refracted 
through a prism. Through his work with the laws of 
gravity and Kepler’s laws of planetary motion, named 
for Johannes Kepler, Newton was able to demonstrate 
mathematically the validity of heliocentrism, which 
is the scientific principle that Earth and other planets 
revolve around the sun. 

The nineteenth century saw several major break-
throughs in mathematics by scholars from northern 
Europe. In England, philosopher and mathematician 
George Boole developed the system now known as 
“Boolean logic,” which has many practical applications 
and was instrumental in the development of modern 
digital computers. His most famous works are The 
Mathematical Analysis of Logic (1847) and The Laws 
of Thought (1854). His slightly younger contemporary, 
Norwegian Niels Henrik Abel, invented the field of 
group theory (contemporaneously with Frenchman 
Evariste Galois), which has many applications in math-
ematics and physics. Abel is well known for a proof he 
wrote at age 19 that there can be no general algebraic 
solution of an equation greater than degree four. In 

Ireland, Sir William Rowan Hamilton provided an 
important reformulation of Newtonian mechanics 
and invented an extension of the number system 

called “quaternions.” 
In the period 1910–1913, the British scholars Ber-

trand Russell and Alfred North Whitehead wrote 
the influential Principia Mathematica in which they 
attempted to derive the foundations of mathematics 
from a set of axioms and inference rules. Russell was 
also a prominent writer and political activist who won 
the Nobel Prize for Literature in 1950, while Whitehead 
was also noted as a philosopher. More recently, Andrew 
Wiles, who was born and educated in the United King-
dom but immigrated to the United States, achieved 
fame for proving Fermat’s Last Theorem (named for 
Pierre de Fermat), one of the most famous previously 
unsolved problems in mathematics. 
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Honors
There is no Nobel Prize for mathematics but several dif-
ferent international awards are offered that have been 
termed the “Mathematics Nobel Prize” because of their 
prestige. The Fields Medal is awarded every four years 
to one or more mathematicians of age 40 or younger by 
the International Mathematical Union. Winners from 
the United Kingdom have included Klaus Roth (1958), 
Michael Atiya (1966), Alan Baker (1970), Simon Don-
aldson (1986), Richard Borcherds (1988), and Timothy 
Gowers (1998). Lars Ahlfors of Norway won in 1936, the 
first year the medal was given; Atle Selberg of Norway 
won in 1950; and Lars Hormander of Sweden won in 
1962. Another major mathematical prize, the Abel Prize, 
is named after Norwegian mathematician Niels Henrik 
Abel and is awarded annually by the Norwegian Academy 
of Science and Letters. The Abel Prize has been awarded 
since 2003. Northern European winners include Michael 
F. Atiyah of the United Kingdom and Lebanon in 2004 
and Lennart Carleson of Sweden in 2006. 

The Wolf Prize in Mathematics has been awarded 
almost annually by the Wolf Foundation since 1978 
and more than one prize may be given per year. 
Northern European winners include Lars Ahlfors of 
Finland (1981), Atle Selberg of Norway (1986), Lars 
Hormander of Sweden (1988), Lennart Carleson of 
Sweden (1992), Andrew Wiles of the United Kingdom 
(1995/1996), and David B. Mumford of the United 
Kingdom (2008). 

Northern European countries have been regular 
competitors in the International Mathematical Olym-
piad, an annual competition held since 1959 for high 
school students. Each competing country sends a team 
of six students who are assigned six questions to solve. 
Individual students are awarded medals based on their 
scores, and countries are also compared based on the 
total score for their team. 

There have been many medal winners from north-
ern European countries. The United Kingdom began 
participating in 1967 and even hosted the 1976 and 
2002 competitions. Ireland first participated in 1988. 
The northern Europe countries from the former Soviet 
Union—Estonia, Latvia, and Lithuania—first partici-
pated in 1993, which coincided with the removal of 
Russian troops from the area and other political reorga-
nization throughout the former Soviet Union. Among 
the Scandinavian countries, Sweden first participated 
in 1967, Norway in 1984, Finland in 1965, Denmark 

in 1991, and Iceland in 1985. Sweden hosted the 1991 
competition, and Finland hosted it in 1985.
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Europe, Southern
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Modern Western mathematics was 
developed in southern Europe and continues to  
thrive there.

The system of modern mathematics originated in 
southern Europe, with the ancient Greeks undoubtedly 
building on traditions already used in Egypt and by the 
Phoenicians. Like many areas of the world, the nations 
of southern Europe have had many different boundar-
ies, names, and political alliances throughout history, 
and so the mathematical contributions of some indi-
viduals may be included within the histories of other 
regions. For example, many nations were member 
states of the former Soviet Union. The United Nations 
now includes Albania, Andorra, Bosnia and Herzegov-
ina, Croatia, Gibraltar, Greece, Holy See, Italy, Malta, 
Montenegro, Portugal, San Marino, Serbia, Slovenia, 
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Spain, and the former Yugoslav Republic of Macedonia 
in Southern Europe.

Ancient Greeks and Romans
The earliest Greek school of mathematics is ascribed to 
Thales (c. 640–550 b.c.e.), who came from Miletus, in 
present-day Turkey, and Pythagoras (c. 569–500 b.c.e.) 
who hailed from the Mediterranean island of Samos 
and later moved to Sicily. Archytas, who subscribed to 
the Pythagorean philosophy and worked on the har-
monic mean, was from Tarentum in modern-day Italy. 
One of the most well-known Greek mathematicians 
of the ancient world, Euclid of Alexandria (c. 330–260 
b.c.e.), was also not from the Greek mainland. He lived 
in Alexandria, in modern-day Egypt, and his work 
proved hugely influential to subsequent mathemati-
cians with his detailed hypotheses and proofs. The 
great mathematician Archimedes of Syracuse (c. 285–
212 b.c.e.) also studied in Alexandria but was from Sic-
ily, where he spent most of his life.

These early Greek mathematicians were undoubt-
edly an influence on the Romans but the Romans 
themselves were seemingly more interested in applied 
mathematics—especially how it related to engineer-
ing and building—than in the pure mathematics that 
was favored by the Greeks. Mathematics was certainly 
taught in Roman schools and historians have long 
pondered why Roman mathematicians did not have 
more influence. This dearth of mathematical advance-
ment has generally been ascribed to the Romans’ lack 
of a designation for “zero” and their awkward system of 
numbers, which may have prevented any great advances 
in theory. The Roman Empire did, however, see a con-
tinual flourishing of mathematics in Greece and the 
Greek diaspora, in particular the city of Alexandria. 
Anicius Manlius Severinus Boethius (c. 475–525) was a 
well-known Roman mathematician who worked dur-
ing the declining years of the Roman Empire.

The Renaissance
The Bishop of Seville, Isidorus Hispalensis (570–636), 
helped develop mathematics in Spain and there were 
great advances made in arithmetic with the Moorish 
invasions of Spain and the incorporation of many of the 
advances made in the Muslim world. The great trading 
cities of Genoa and Venice soon established themselves 
as important centers of finance, as did Florence dur-
ing the Renaissance. Venice, in particular, because of 

its geographical position and its connections with the 
Arab world, saw the importation of many books and 
manuscripts on Arab mathematics—at that stage well 
advanced in pure mathematics theories compared to 
Europe. This Arab influence saw Leonardo Pisano Big-
ollo (c. 1170–1250), the son of an Italian merchant in 
North Africa, develop theories—the most well-known 
being the Fibonacci numbers, which were termed after 
his assumed name. 

Several centuries later, the advent of the printing 
press also led to a republication of the works of Greek 
mathematicians such as Euclid, albeit in Latin trans-
lation. Cardinal Bessarion, the former Archbishop of 
Nicaea, helped bridge the link between Byzantium and 
Rome, helping to preserve some of the Greek learning 
that was lost when the city of Constantinople was cap-
tured and sacked in 1453. Leonardo da Vinci (1452–
1519) developed mathematics theories, testing out 
some of them in siege machines designed for Cesare 
Borgia and others. Girolamo Maggi (c. 1523–1572), 
another Italian mathematician, was involved in design-
ing military defenses in Cyprus. He was captured by 
the Ottoman Turks and executed in Constantinople 
but not before writing two major treatises from mem-
ory while in prison there.

The Renaissance saw a new interest in mathemat-
ics in Italy, with Galileo Galilei (1564–1642) being a 
well-known mathematician and scientist. He was a 
great influence on many subsequent mathematicians, 
including Alessandro Marchetti (1633–1714). Evan-
gelista Torricelli (1608–1647) invented a barometer; 
Giovanni Ceva (1647–1734) proved Ceva’s theorem 
in elementary geometry; and the Jesuit Franceso Cetti 
(1726–1778) helped connect mathematics to other sci-
entific discoveries. Later Italian mathematicians include 
Giulio Ascoli (1843–1896) who taught in Milan, and 
Carlo Emilio Bonferroni (1892–1960) who developed 
the theory of Bonferroni inequalities. The Italian Math-
ematical Union was established in 1922 by Salvatore 
Pincherle and others, and its journal, the Bollettino 
dell’Unione Matematica Italiana, is widely respected 
around the world.

Professional Associations
Professional associations in the region other than 
the Italian Mathematical Union include the Bosnian 
Mathematical Society; the Croatian Mathematical 
Society; the Cyprus Mathematical Society; the Mon-
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tenegro Mathematical Society; the Portuguese Society 
of Mathematics; the Mathematical Society of Serbia; 
the Mathematics, Physics, and Astronomy Society of 
Slovenia; and the Royal Spanish Mathematical Soci-
ety. Mathematicians also gather from all over Europe 
in the European Mathematical Society. The Interna-
tional Mathematical Olympiad is a competition for 
high school students that originated in 1959. Albania 
first participated in 1993, Bosnia and Herzegovina in 
1993, Croatia in 1993, Greece in 1975, Italy in 1967, 
Montenegro in 2007, Portugal in 1989, Serbia in 2006, 
Slovenia in 1993, Spain in 1983, Yugoslavia in 1963, 
and the former Yugoslav Republic of Macedonia in 
1993. Greece was a host of the competition in 2004, 
Slovenia in 2006, Spain in 2008, and Yugoslavia in 
1967 and 1977.
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Europe, Western
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Western Europe has been home to many 
of the important astronomical and mathematical 
discoveries of the early modern age.

Historically, the term “western Europe” has had cul-
tural and political definitions. For example, during the 
Cold War it was often used to designate a collection 
of noncommunist countries allied in some way with 

the United States. In the early twenty-first century, the 
United Nations Statistics Division for western Europe 
contains Austria, Belgium, France, Germany, Liech-
tenstein, Luxembourg, Monaco, the Netherlands, and 
Switzerland. There is a rich history of mathematics 
scholarship, education, and achievement in western 
Europe. Important work in a diverse array of math-
ematical areas like calculus, number theory, analytical 
geometry, probability, statistics, functional analysis, 
graph theory, logic, and number theory was pro-
duced by people from this geographic region, as well 
as many mathematical contributions to related dis-
ciplines like physics, astronomy, optics, engineering, 
and surveying.

Historical Contributions
Western European mathematicians have made major 
contributions to the development of mathematics 
and the application of mathematical theory to prac-
tical problems, from German mathematician and 
astronomer Johannes Kepler, who worked with Dan-
ish astronomer Tycho Brahe and helped established 
the laws of planetary motion, to French mathemati-
cian René Thom, who founded the study of catastro-
phe theory.

Much of modern science and mathematics has 
its roots in work done in Europe in the seventeenth 
century. Johannes Kepler studied at the University of 
Tubingen, where he learned both the geocentric model 
of astronomy (the view that Earth is the center of the 
universe, with the other planets revolving around it) 
and the heliocentric model of German astronomer 
Nicolaus Copernicus (the view that the sun is the cen-
ter of the universe and the planets, including Earth, 
revolve around it). He later worked with Brahe and 
established the laws of planetary motion in several 
influential publications: Astronomia Nova, Harmo-
nices Mundi, and The Epitome of Copernican Astron-
omy. Also in Germany, mathematician Gottfried Leib-
niz developed the field of calculus independent of Sir 
Isaac Newton in England. 

In France, mathematician and philosopher René 
Descartes developed analytical geometry, including 
the development of Cartesian coordinates, did impor-
tant work in optics, and was also one of the fathers 
of modern Western philosophy with influential books 
such as Meditations on First Philosophy, Discourse on 
the Method (which contains the oft-quoted statement 
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cogito ergo sum, or “I think, therefore I am”), and 
Principles of Philosophy. Also in France, the basics of 
probability theory were developed by mathematicians 
Pierre de Fermat and Blaise Pascal, while Fermat also 
did important work in number theory, analytic geome-
try, and optics. Fermat’s Last Theorem, mentioned but 
not proved by Fermat in 1637 in the margin of a book, 
was among the unsolved problems in mathematics 
until British mathematician Andrew Wiles proved it 
in 1994. Pascal invented the mechanical calculator and 
the hydraulic press and is well known among middle 
school students for Pascal’s Triangle, a presentation of 
binomial coefficients.

In the eighteenth century, Swiss mathematician and 
physicist Leonhard Euler spent much of his adult life 
working at the Russian Academy of the Sciences in St. 
Petersburg. He developed the concept of the function 
and the notation f x( ), one of several notation con-
ventions he developed that are still used in the early 
twenty-first century (others include using the letter 
e for the natural logarithm, i for an imaginary unit, 
and the Greek letter sigma (Σ) for summation). He 
also made important contributions to calculus, num-
ber theory, graph theory (he solved the famous Seven 
Bridges of Konigsberg problem), and applied math-
ematics. French and Italian astronomer and math-

ematician Joseph-Louis Lagrange, who was born in 
Italy but worked primarily in France and Prussia, cre-
ated the calculus of variations, developed a method of 
solving differential equations and transformed New-
tonian mechanics into a branch of analysis, which 
facilitated the development of mathematical physics. 
He was also the first professor of analysis at the École 
Polytechnique, an elite engineering school founded 
in France in 1794. Also in France, mathematician and 
astronomer Pierre-Simon LaPlace played a key role 
in the development of Bayesian statistics, named for 
English minister and mathematician Thomas Bayes, 
and mathematical astronomy. He also posited the 
existence of black holes and gravitational collapse in 
the solar system. 

In the nineteenth century, mathematician German 
Carl Friedrich Gauss made important contributions 
to several mathematical and physics fields including 
statistics, number theory, astronomy, surveying (he 
invented the heliotrope), and optics. The well-known 
normal distribution is sometimes referred to as the 
“Gaussian distribution” because he is often credited 
with discovering it. In France, Augustin-Louis Cauchy 
not only worked as an engineer but also pursued math-
ematical studies in his spare time and was appointed to 
the Académie des Sciences in 1816. He made numerous 
contributions to mathematics and physics, including 
his development of complex function theory, clarifica-
tion of the principle of calculus, and development of 
the argument principle. In France, mathematician Eva-
riste Galois proved, in parallel with the work of Norwe-
gian mathematician Niels Henrik Abel, that there was 
no general method for solving polynomial equations 
of degree of greater than degree four. 

In 1900, German mathematician David Hilbert 
gave an influential talk at the International Congress 
of Mathematicians in which he identified 23 unsolved 
problems in mathematics, which served as a spur for 
other mathematicians to focus on those problems (10 
have been solved as of 2010). Hilbert is also well known 
for formulating the theory of Hilbert spaces, which are 
key to functional analysis, and did important work in 
mathematical logic and proof theory. Austrian math-
ematician Kurt Gödel, best known for his two incom-
pleteness theorems, immigrated to the United States to 
escape World War II and spent his later years at Princ-
eton University. A group of primarily French mathe-
maticians, including Jean Dieudonne and André Weil, 
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began publishing anonymously under the pseudonym 
“Nicolas Bourbaki.” They are now known as the “Bour-
baki Group” or “Association des collaborateurs de 
Nicolas Bourbaki” and have published several books in 
which they attempt to ground different areas of math-
ematics in set theory. 

Awards and Honors
There is no Nobel Prize for mathematics but several dif-
ferent international awards are offered that have been 
termed the “Mathematics Nobel Prize” because of their 
prestige. The Fields Medal is awarded every four years 
to one or more mathematicians of age 40 or younger 
by the International Mathematical Union. Winners of 
the Fields Medal from western Europe include Laurent 
Schwartz of France (1950), Jean-Pierre Serre of France 
(1954), Rene Thom of France (1958), Pierre Deligne 
of Belgium (1978), Alain Connes of France (1982), 
Gerd Faltings of Germany (1986), Jean Bourgainof 
Belgium (1994), Pierre-Louis Lions of France (1994), 
Jean-Christophe Yoccoz of France (1994), Laurent Laf-
forgue of France (2002), Wendelin Werner of France 
(2006), Ngo Bao Chau of Vietnam and France (2010), 
and Cedric Villani of France (2010).

The Abel Prize, named after Norwegian mathema-
tician Niels Henrik Abel, is awarded annually by the 
Norwegian Academy of Science and Letters. Western 
European winners include Jean-Pierre Serre of France 
(2003), Jacques Tits of Belgium and France (2008), and 
Mikhail Gromov of Russia and France (2009). 

The Wolf Prize is awarded in several fields, includ-
ing mathematics, by the Wolf Foundation. The first 
prizes were given in 1978 and it is awarded almost 
annually, with the possibility of more than one winner 
in a field in a given year. Western European winners 
include Carl L. Siegel of Germany (1978), Jean Leray 
of France (197), André Weil of France and the United 
States (1979), Henri Cartan of France (1980), Fried-
rich Hirzebruch of Germany (1988), Mikhail Gromov 
of Russia and France (1993), Jacques Tits of Belgium 
and France (1993), Jurgen Moser of Germany and the 
United States (1994/1995), Jean-Pierre Serre of France 
(2000), and Pierre Deligne of Belgium (2008). 

Western European countries have been regular 
competitors in the International Mathematical Olym-
piad, held annually for students younger than 20 who 
have not yet begun tertiary education. There is both 
an individual and a team competition. Each coun-

try sends six students who are assigned six questions 
to solve. Countries are compared based on the total 
score for their team, while individual students may 
be awarded gold, silver, and bronze medals depend-
ing on how many problems they solve correctly. Ger-
many has twice hosted the International Mathemati-
cal Olympiad and has participated since 1977. 

East Germany also twice hosted the Olympiad 
and first participated in 1959, the year the Olympiad 
began. France began competing in 1967 and hosted 
the competition once. Belgium began participating in 
1969. Austria began competing in 1970 and has served 
once as host. The Netherlands hosted the Olympiad 
in 2011 and has been competing since 1969. Luxem-
bourg began competing in 1970, Switzerland began 
competing in 1991, and Liechtenstein began compet-
ing in 2005.
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Expected Values
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Probability.
Summary: The mathematical concept of “expected 
value” arose in the study of fairness in gambling but it 
has many scientific applications. 

When people play lotteries or purchase insurance, they 
are investing money for a chance of some future finan-
cial return that may or may not occur. From the lottery 
or insurance company’s perspective, money comes in 
from multiple purchasers and is paid out to the win-
ners or claimants. Both sides may have questions re-
garding whether the investments are worthwhile or 
the payments are fair. These questions appear to date 
back to antiquity. Evidence of gambling games has 
been found in archaeological excavations of caves and 

in many ancient civilizations, including Egypt, Greece, 
and the Roman Empire. Babylonians used a form of 
maritime insurance and the Romans paid some invest-
ments in annuities. 

A question concerning the fairness of certain gam-
bling games spurred the development of probability 
theory in the seventeenth century. Mathematicians 
Blaise Pascal and Pierre de Fermat addressed fairness 
and related concepts while corresponding about a 
scenario in which two people wanted to quit playing 
a game and divide the winnings fairly, given that one 
player had a better chance of winning the game than 
the other. Mathematician Pierre-Simon Laplace seems 
to have first defined expected value in his 1814 work 
Essai Philosophique sur les Probabilitiés, writing, “This 
advantage in the theory of chance is the product of the 
sum hoped for by the probability of obtaining it.…We 
call this advantage mathematical hope.” Expected value 
is the long-term average of the possible outcomes of 
a random variable or process, like tossing a six-sided 
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C onsider a game in which a player rolls a 
standard six-sided die one time. If the result 

is a six, the player wins $4. If the result is any 
number from one to five, the player loses $1. 
If the player continues to play the game many, 
many times, will the overall outcome be a profit, 
a loss, or will the player break even? Mathemati-
cal calculations of expected value can be used 
to find an answer to this question and determine 
whether the game is fair to both sides. 

Let x = the outcome of a single roll of a six-
sided die, expressed as financial gain or loss

Die 
Roll Outcome x

Probability 
p(x)

1 Lose $1 1/6
2 Lose $1 1/6
3 Lose $1 1/6
4 Lose $1 1/6
5 Lose $1 1/6
6 Win $4 1/6

Expected Value 
The expected value would be

Expected Value = ( ) = ( )
= − − − −

∑E x xp x

1
1

6
1

1

6
1

1

6
1

1

6
$ $ $ $ −− + ≈ −$ $ $ . .1

1

6
4

1

6
0 17

This value means that over a large number of 
times playing the game, the player should expect to 
lose 17 cents per play, on average. However, in the 
short run, a player might win or lose more, since 
a winning a single roll could yield $4 or a series 
of losses could cost several dollars. If the amount 
received for winning were $5 instead of $4, the 
expected value would be $0 and the game would 
be “fair” in the sense that neither side would have 
a monetary advantage. This notion of fairness is 
different than the fairness or equal chances of the 
die rolls, which determine the probabilities and 
could also affect the expected value. 



die. Mathematically, expected value is computed as 
the weighted sum of the outcomes, where the weights 
are the corresponding probabilities. For discrete ran-
dom variables, expected value is a summation; for 
continuous variables, it is an integration. While com-
puting means for data is very common beginning in 
middle school classrooms in the twenty-first century, 
finding expected values for random variables is more 
commonly part of high school and college curricula. 
Though initially motivated by notions of fairness, 
expected values have many important applications in 
probability and statistical theory and practice.

Applications
Scientific problems involving measurement were an 
inspiration for many mathematical advances in prob-
ability and applied data analysis. Astronomers in the 
eighteenth century often computed arithmetic means 
(or averages) for data to estimate parameters and 
describe distributions of “errors,” like those they found 
when taking multiple measurements of the same astro-
nomical distance. These averages were likely to be 
close to the true distance or value, or so they generally 
believed. This technique was used without proof for a 
long time, though mathematician Thomas Simpson had 
shown that an average was a better measure than a single 
observation in a very limited set of cases. Some issues 
in finding a suitable proof stemmed from the fact that 
probability distributions commonly used for describing 
errors at that time presented mathematical difficulties 
when trying to find expected values for averages versus 
expected values for individual observations. Work by 
mathematicians Abraham de Moivre and Laplace led to 
the Central Limit Theorem, derived by Laplace in the 
nineteenth century and later extended by other mathe-
maticians such as Francis Edgeworth. This result is some-
times called the “DeMoivre–Laplace theorem” and was 
given its more common name in work by George Pólya 
in the early twentieth century. The primary impact of 
the Central Limit Theorem with regard to expected val-
ues is that it defined the expected value for the sampling 
distribution of the mean, given sufficiently large sample 
sizes. It established a theoretical basis for estimation and 
a later hypothesis testing for various parameters. 

There are many different probability distributions 
that mathematicians, statisticians, and others have 
found, derived, named, and studied. For many years the 
normal distribution, credited to mathematician Carl 

Friedrich Gauss, played a central role in error mod-
eling and other applications. However, approaching 
the twentieth century, increasing application of prob-
ability and statistics in a wide variety of fields, includ-
ing biology, business, genetics, and psychophysics, led 
investigators like statistician Karl Pearson to research 
non-normal or skewed distributions to better repre-
sent phenomena they encountered. The problem then 
became to estimate parameters for these distribu-
tions and discover their mathematical properties. The 
method of moments estimates parameters like variance 
and skew using expected values. It primarily considers 
deviations of points from the distribution mean, called 
“central moments,” which are conceptually related to 
the idea of moment or torque about a point in physics. 
Deviations are raised to various powers so that the k-th 
moment corresponds to the k-th power. The first cen-
tral moment is zero, since it essentially sums all devia-
tions from the mean or expected value. Variance is the 
second central moment, which is the expected value 
(the weighted sum) of all squared deviations from the 
mean. The third moment quantifies skew or asymmetry 
and is the expected value of all cubed deviations from 
the mean. A symmetric distribution has skew of zero. 
The fourth moment is called “kurtosis” and measures 
whether the distribution is taller or shorter and has 
thicker or thinner tails than a normal distribution with 
the same variance. Mixed moments can be found for 
two variables together to quantify the covariance and, 
by extension, correlation. Measures of skewness and 
kurtosis based on moments are credited to Pearson. 
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Exponentials and  
Logarithms
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication;  
Connections.
Summary: Exponential and logarithmic 
functions are used to study and analyze a variety of 
mathematical relationships. 

Much of the language and notation of mathematics in-
volves a very advanced shorthand. As ideas grow and 
become more complex, mathematicians seek ways to 
express highly condensed thought in relatively simple 
terms. Exponents are an elementary example: if one 
wants to multiply the number 2 times itself 10 times, 
rather than write “2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2” one can 
write “210” instead. From these beginnings, which date 
to ancient Egypt and Babylon, the remarkable worlds of 
exponential and logarithmic functions emerge. When 
one develops the understanding of what it means to 
take 2 to any real number power, one naturally con-
siders the function f x

x( ) = 2 , an example of what is 
called an “exponential function.” For larger and larger 
positive x, the function grows amazingly fast: 210=1024, 
220=1,048,576, and 230=1,073,741,824. 

The exponential function f x ex( ) = , where e is the 
so-called “natural base,” an irrational number whose 
decimal approximation is e ≈ 2.71828, is an important 
exponential function. With e in homage to the great 
Swiss mathematician Leonhard Euler (1707–1783), this 
special exponential function f x e x( ) =  might rightly 
lay claim to the title of “the most important function 
in all of mathematics.” Exponential growth and decay 
functions, along with the number e itself, have a wide 
variety of uses and applications.  

In classrooms in the twenty-first century, the loga-
rithm of a number is defined as the exponent or power 
to which a stated number, called the “base,” is raised 
to obtain the given number. The development of loga-
rithms in the seventeenth century led to a revolution 
in scientific calculation, especially when the slide rule 
replaced tables of logarithms. While the advent of cal-
culators and computers eliminated the need for cal-
culation by logarithms in the latter part of the twen-
tieth century, logarithms remain important in order 

to understand financial and natural processes. For 
instance, the Richter scale to measure earthquakes, 
named for Charles Richter, is a logarithmic scale. In 
chemistry, the pH scale is based on the negative log-
arithm of the concentration of free hydrogen ions. 
Students in the middle grades investigate exponential 
notation while high school students explore exponen-
tial and logarithmic functions.

Archimedes of Syracuse investigated that the addi-
tion of what he called “orders” corresponded with their 
product, known today as the “first law of exponents.” 
The number e may have first appeared in the early sev-
enteenth century in an appendix to John Napier’s work 
on logarithms. This number also arose in the work of 
Christiaan Huygens in the mid-seventeenth century 
when he was exploring the area under the hyperbola 
xy =1. Finally, in the late seventeenth century through 
work involving continuous compound interest, Jacob 
Bernoulli was led to consider the expression 

1
1+



n

n

for large values of n, and this expression approaches e 
as n grows without bound. Mathematicians explored 
many issues related to e and exponentials, including 
such people as Euler, Gotthold Eisenstein, and others, 
who investigated the convergence of sequences of iter-
ated exponentials. Bernoulli may also have been the 
first mathematician to realize that the number e was 
intricately linked to emerging ideas with logarithms.  

The Natural Exponential Function
Because any exponential function can be written 
in terms of e, one finds that functions of the form 
P x Me

kx( ) = , where M and k are constants that depend 
on the context, arise in many natural settings. Expo-
nential cell and population growth, as well as expo-
nential decay in radioactive materials, are modeled 
by functions of this form. Once the values of M and k 
are identified, the function easily indicates the corre-
sponding output for any input value x. For example, if 
a car is initially valued (at time t =100) at $10,000 that 
depreciates at a certain continuous rate, one might use 
the function P t e

t( ) .= −
10000

0 2
 to model the worth of 

the car in year t.  
Functions like this generate very natural questions, 

including ones like “At what time t will the car’s value 
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be $3,000?” Before trying to answer this more com-
plicated question, consider some simpler ones. For 
instance, what value of t makes 10 t=17? Since 101 =10, 
while 102=100, it seems like there ought to be a num-
ber between 1 and 2 such that 10 raised to that power 
is 17. But what is the number? Here, some very consid-
erable mathematical ideas are involved: the function 
y t

t( ) = 10  is continuous; the range of y is all positive 
real numbers; and −y is always increasing, making it a 
one-to-one function. All these facts together combine 
to indicate that one can pick any positive real number 
y and know that there must be one and only one real 
number t that satisfies the equation 10 t=y. In other 
words, there is a function h that takes any positive real 
number y, and to this value y associates the real num-
ber t so that 10 raised to the power t is y. This explana-
tion is how teachers usually describe to students where 
logarithms come from—the logarithm is the very 
function that accomplishes this association. It is all a 
matter of perspective; if t is known and y is sought, the 
exponential function is used, while if y is known and 
t is sought, the logarithm function is used. Expressed 
in words, it is “y equals 10 to the power t” and “t is the 
power to which we raise 10 to get y.” Babylonian clay 
tablets presented similar questions.

Historical Development
Historically, the further development of logarithms 
arose very differently. In the late fifteenth century 
and early sixteenth century, both John Napier and 
Jost Burgi, who were each interested in key problems 
in astronomy, developed logarithms for a much dif-
ferent use: as a new tool to help do arithmetic with 
large numbers. Their approach to logarithms was 
fundamentally geometric, as algebra was not yet suf-
ficiently well developed to aid their work, although 
Napier’s approach was more algebraic than Burgi’s 
methods. Napier noted, “Seeing there is nothing that 
is so troublesome to mathematical practice, nor doth 
more molest and hinder calculators, than the multi-
plications, divisions, square and cubical extractions of 
great numbers, which besides the tedious expense of 
time are for the most part subject to many slippery 
errors, I began therefore to consider in my mind by 
what certain and ready art I might remove those hin-
drances.” In 1624, Henry Briggs published logarithm 
tables in Arithmetica Logarithmica and he is noted by 
some as perhaps the man most responsible for popu-

larizing logarithms among scientists. The development 
of the slide rule made logarithms easy to use, since 
they reduced the reliance on tables.  In 1620, Edmund 
Gunter noted logarithms on a ruler by marking the 
position of numbers relative to their logarithms. Wil-
liam Oughtred placed two sliding logarithmic rulers 
next to each other and by 1630, the portable circular 
slide rule reduced multiplication computations to the 
act of lining up two numbers and reading a scale. Loga-
rithms remain a useful way to deal with large numbers 
in the early twenty-first century, because the logarithm 
of a large number is a much, much smaller one. R. C. 
Pierce Jr. noted, “It has been postulated that logarithms 
literally lengthened the life spans of astronomers who 
had formerly been sorely bent and often broken early 
by the masses of calculations their art required.” Mod-
ern mathematicians have also come to fully understand 
the connection between logarithms and the area under 
the curve xy = 1, which was explored by Huygens in 
the 1600s.

Using Logarithms to Solve  
Exponential Functions
Perhaps the most powerful property of logarithms is 
that they “undo” exponential functions. For example, 
for the natural logarithm of base e, denoted “ln,” one 
obtains ln( )e

5
5= . Remember, ln( )e5  means “the 

power to which one raises e to get e5.” This power, of 
course, is 5. The general property that holds here is that 
for any real number t, ln( )e t

t = . This rule proves to 
be immensely useful in solving exponential equations. 
To see how, consider an earlier example: the function 
P t e

t
( )

.= −
10000

0 2
 (the value of a car in year t). At what 

time t will the car’s value be $3,000? This question is 
equivalent to solving the equation: 

0 3
0 2

.
.= −

e
t .

Taking the natural logarithm of both sides of the 
equation “undoes” the effects of the exponential func-
tion and hence gains more direct access to the variable 
t: ln( . ) ln( ) .

.
0 3 0 2

0 2= = −−
e t

t
.

Dividing both sides of the last equation above by 
−0.2, one finds that 

t =
−

≈
ln( . )

.
.

0 3

0 2
6 0199
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so that the car’s value will be $3,000 in just over six 
years. The natural logarithm of 0.3 is central to answer-
ing the question.

While the motivation for the need for logarithms 
can be seen in relatively elementary terms—solving 
exponential equations—the actual mathematics that 
explains what logarithms really are and how they work 
is deep and is best supported using some sophisticated 
ideas from calculus. Even with exponential functions, 
there are some big questions without answers: how is 
e to the 5th power calculated? How is the natural loga-
rithm of 0.3 computed? Until the invention of personal 
computers in the 1970s, such computations were all 
done by hand, usually with the assistance of elaborate 
tables, or with slide rules. At one point in history, entire 
books were written that held nothing but tables of val-
ues for logarithms. People now use inexpensive hand-
held calculators, computer algebra systems like Maple 
or Mathematica, or even Google, and each returns a 
value almost immediately. These modern technologi-
cal tools rely on a rich and beautiful mathematical the-
ory of exponential and logarithmic functions. Beyond 
their interesting mathematical properties, exponential 
and logarithmic functions remain important for their 
many applications, such as the key role that exponen-
tial functions play in the study of differential equa-
tions, including those that model vibrations in bridges 
and buildings, thus forming a central component of 
modern civil engineering.

Further Reading
Maor, Eli. e: The Story of a Number. Reprint. Princeton, 

NJ: Princeton University Press, 1994.
Nahin, Paul J. An Imaginary Tale: The Story of i (The 

Square Root of Minus One). Princeton, NJ: Princeton 
University Press, 2010 

Pierce Jr., R. C. “A Brief History of Logarithms.” The 
Two-Year College Mathematics Journal 8, no. 1 (1977).

Stoll, Cliff. “When Slide Rules Ruled.” Scientific American 
294, no. 5 (2006).

Strogatz Steven. “Power Tools—NYTimes.com” http://
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Matt Boelkins

See Also: Calculators in Society; Carbon Dating; 
Earthquakes; Functions; Mathematics, Elegant. 

Extinction
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Problem Solving.
Summary: Causes and factors of extinction can be 
quantified and modeled using mathematical and 
statistical techniques.

Extinction occurs when the last member of a species 
dies. A species survives for much longer than any of 
its members. For example, a human can live up to 
about 120 years, whereas the human species (Homo 
sapiens) is thought to have existed for hundreds of 
thousands of years. It is not known how long our spe-
cies will endure and indeed most species on Earth 
have already become extinct. There are many causes 
of extinction, some natural and others as a result of 
human activities. Many factors influence whether an 
endangered species can avoid extinction. These fac-
tors can be quantified and modeled using mathemati-
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Causes of Extinction

A species can become extinct for various 
reasons, including intense competition 

with other species, disease, or failure to adapt 
to changing climatic conditions, as well as the 
disappearance of a species’ prey. Anthropomor-
phic reasons for extinction include over-hunt-
ing by humans, habitat loss from 
human activities such as defor-
estation, and social planning 
(the intentional eradication 
of smallpox).



cal and statistical techniques. A species can disappear 
in some parts of its habitat but not in others. Not all 
species have existed on Earth for the same length of 
time—some appear only briefly while others manage 
to persist for incredibly long periods of time. Human 
activities may be increasing the rate at which other 
species become extinct.

Rise of Extinction
A species is endangered when it consists of a small 
number of members. In such cases, individuals may 
have trouble finding each other because of geographi-
cal separation. For a species that is endangered, it is 
of interest to know whether the species is likely to 
become extinct. It is customary to let N t( )  represent 
the size of a population at time t. The fact that the spe-
cies is endangered implies that N t( )  takes positive 
values close to zero. If N t( )  is eventually measured to 
be zero, then the species has become extinct. However, 
if N t( )  rebounds to larger positive values, then the 
species persists. In general, stochastic effects largely 
determine whether an endangered species will become 
extinct. Given population data N t( )  at different times 
t, one may compute the mean (μ) of the population 
growth rate.

R t
N t

N t
( )=

( )
−( )

ln
1







.

For example, if t =10 then 
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( ) + ( ) + + ( )( )R R R1 2 10
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. . .
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A positive (or negative) value of μ indicates that the 
population is growing (or declining) on average. Com-
bining this information with the standard deviation  
(σ) of R(t) allows one to assess the risk for extinction, 
which is typically highest when μ is negative and σ is 
small. Complex models of population dynamics exist 
to predict whether a species will persist or become 
extinct. These include geometric growth models in 
which a population multiplies at a fixed rate, logis-
tic growth models in which populations slowly attain 
steady-state sizes, and Lotka–Volterra predator-prey 
models for interactions between multiple species, 
named for Alfred Lotka and Vito Volterra.

Local Extinction
A species can become extinct in one area (such as an 
island) and still persist elsewhere (such as a continent). 
If the species is able to recolonize the former area, then 
this is known as a “rescue effect.” If local extinction 
events become synchronized—as a result of global cli-
mate change, for example—then the risk of a species 
becoming globally extinct is much higher.

Rate of Extinction
Scientists estimate that there may be 10 million spe-
cies alive today and yet they account for fewer than 1 in 
1000 species that have ever lived. The average time to 
extinction for a species, as measured from the time of 
its first appearance, is close to 10 million years. When 
the time to extinction for a species is much longer, such 
as more than 100 million years, then later members are 
said to be living fossils. 

Mass Extinction
A mass extinction occurs when a large number of spe-
cies become extinct in a short period of time. Although 
rare, the fossil record indicates that these events have 
occurred at least five times, the most famous being the 
mass extinction of non-flying dinosaurs 65 million 
years ago in what was probably a meteor impact. Many 
scientists believe that we are currently in the midst of a 
sixth mass extinction, with up to 40,000 species becom-
ing extinct each year—a rate that is roughly 100–1000 
times higher than in prehistoric times.

Further Reading
Allen, Linda J. S. An Introduction to Mathematical 

Biology. Upper Saddle River, NJ: Prentice  
Hall, 2007.

Bright, Michael. Extinctions of Living Things (Timeline: 
Life on Earth). Portsmouth, NH: Heinemann, 2008. 

Erickson, J., and A. E. Gates. Lost Creatures of the Earth. 
New York: Facts on File, 2001.

Hallam, T. Catastrophes and Lesser Calamities: The 
Causes of Mass Extinctions. New York: Oxford 
University Press, 2005. 

Hecht, J. Vanishing Life: The Mystery of Mass Extinctions. 
New York: Atheneum, 2009.

Thieme, Horst R. Mathematics in Population Biology. 
Princeton, NJ: Princeton University Press, 2003.

Andrew Nevai
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See Also: Animals; Climate Change; Deforestation; 
Forest Fires; Mathematical Modeling; Predator–Prey 
Models.

Extreme Sports
Category: Games, Sport, and Recreation. 
Fields of Study: Algebra; Geometry.
Summary: The emphasis on fast motion, tricks, 
and personal expression in extreme sports makes 
geometry especially relevant to athletes.

There is no single definition of extreme sports, though 
they generally include dangerous sporting activities 
that involve a substantial risk of injury, like Buildings, 
Antennae, Spans, and Earth (BASE) jumping, cliff div-
ing, street luge, or even the traditional running of the 
bulls in Pamplona, Spain. Extreme sports are believed 
to be attractive to participants because of the challenge 
and adrenaline rush and to spectators because the re-
sults are typically unpredictable. 

The popularity of extreme sports grew rapidly in 
the latter part of the twentieth century. The televi-
sion network ESPN created the Extreme Games, now 
called the “X Games,” in 1995, making extreme sports 
more visible to the general public. Other networks have 
also begun to televise these types of competitions and 
some extreme sports events have been included in the 
Olympic Games. Mathematics is important in extreme 
sports. Knowing and applying concepts from geometry 
and probability helps participants be safe and success-
ful. Innovative equipment manufacturers use concepts 
and techniques from many areas, including geometry, 
statistics, modeling, and simulation, to prototype and 
refine their designs, resulting in greater safety and 
effectiveness.

Skateboarding
Skateboarders perform tricks using a wheeled board, 
either on a flat surface or using equipment like ramps 
or rails. Many stunts rely on differential pressure 
applied by the rider’s feet to various parts of the skate-
board to tilt or flip it, often rotating both board and 
rider in one or more axes. Lip tricks require a verti-
cal orientation and transitional edge like the lip of 

a swimming pool or ramp. In aerial tricks, the rider 
leaves the ground completely, using counterpressure 
of hands and feet to maintain control of the board 
while spinning or flipping.

Tony Hawk is one of the most well-known extreme 
athletes and a vertical skateboarding pioneer. He was 
the first person to competitively perform an aerial turn 
of two and a half rotations, or 900 degrees, at the 1999 
X Games. In the past, he has done 720 degree turns. For 
the 900, he exerted greater takeoff force in the direction 
of the turn, producing more rotational velocity. Tony 
Hawk’s Project 8 video game used motion capture 
technology to smoothly animate professional skaters, 
while Tony Hawk Ride allowed players to simulate the 
sport using a skateboard-like controller. 

Snowboarding
Snowboarding is similar to skateboarding and involves 
standing on a board and sliding down a snow-covered 
hill. Snowboarding became an Olympic sport in 1998, 
with giant slalom and half pipe competitions taking 
place. The giant slalom is a speed race in which ath-
letes speed down a steep hill with gates that require 
them to zigzag between. Determining an optimal path 
from one gate to another without crashing or wast-
ing time requires mathematics, especially geometry. A 
half-pipe consists of two quarter-cylinders connected 
by a flat space and topped by a small lip. The competi-
tion is a more artistic event, with athletes generating 
enough speed using the curves of the pipe to become 
airborne and do tricks. These may include multiple 
rotations, both twisting and somersaulting. At the 
2010 Olympics, Shaun White executed a record-set-
ting 1260-degree trick consisting of two flips and three 
and a half spins.

BMX Biking
In bicycle motocross (BMX), athletes ride specially 
designed smaller bicycles that enable them to shift 
their center of mass to make precision movements. 
BMX courses often use steep hills to launch the rider 
into the air to perform tricks. Other tricks and spins 
may be done on flat ground. The sport was added 
to the list of events for the 2012 Summer Olympic 
Games. Billy Gawrych is a professional BMX com-
petitor who performs intricate routines, often set to 
music, with tricks linked together in a series of con-
nected, flowing patterns. 
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Sports Engineering and Equipment
Sports engineering is a growing interdisciplinary field 
that draws from mathematics, engineering, biology, 
physics, materials science, and many other disciplines 
to study characteristics of athletes and equipment, as 
well as their interaction. The focus is on performance 
and safety. For example, engineer Mont Hubbard 
described the motion of skateboards with riders using 
two mathematical models, and mathematicians develop 
new models using techniques and theories from areas 
like trigonometry, physics, differential equations, and 
probability. Quality function deployment is a method 
of quality control that attempts to translate often sub-
jective customer requirements into mathematical engi-
neering specifications. One research group studied the 
subjective perception of the “feel” of snowboards. They 

used field evaluations and laboratory data to create 
matrices of parameters. Snowboards for freeride and 
freestyle, the two primary types of snowboarding, have 
somewhat different designs; however, issues of flexibil-
ity, torsional stiffness, and curvature were the impor-
tant factors affecting feel and performance for both 
styles. Equipment for sports of all kinds is subjected to 
statistically designed tests to evaluate safety, and data 
from accidents and failures helps fuel further research.

Further Reading
Clemson, Wendy, David Clemson, Oli Cundale, Laura 

Berry, and Matt King. Using Math to Conquer Extreme 
Sports. New York: Gareth Stevens Publishing, 2004.

Estivalet, Margaret, and Pierre Brisson. The Engineering 
of Sport 7. Vol. 1 New York: Springer, 2008.

When a skateboarder performs an ollie, the forces acting on the board are the weight of the rider, the force of 
gravity on the board, and the force of the ground pushing up on the board, which balance out to zero net force.
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Gutman, Bill. Being Extreme: Thrills and Dangers in the 
World of High-Risk Sports. New York: Citadel Press, 
2003.

Sagert, Kelly Boyer. Encyclopedia of Extreme Sports. 
Westport, CT: Greenwood Press, 2008.

Thorpe, Holly. Snowboarding Bodies in Theory and 
Practice (Global Culture and Sport). New York: 
Palgrave Macmillan, 2011.

Tyler, M., and K. Tyler. Extreme Math: Real Math, Real 
People, Real Sports. Waco, TX: Prufrock Press, 2003.

Michele LeBlanc
Nena Amundson 

See Also: Mathematical Modeling; Probability;  
Trigonometry.
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Fantasy Sports 
Leagues
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and  
Probability.
Summary: Fantasy sports leagues employ a variety of 
algorithms to predict player performance and to rank 
players and teams within each league.

In fantasy sports leagues, players act as the owners 
and managers of virtual sports teams that are typi-
cally composed of real players who are active in a 
given sport during a competitive season. Performance 
statistics for individual athletes on a fantasy owner’s 
roster, who usually belong to many different teams in 
the sport in real life, are mathematically combined to 
produce “fantasy points” for the owner. Often, own-
ers may trade athletes or must make other types of 
decisions about who on their roster will be counted 
as “active” for a given period of competition, just like 
real managers. Fantasy baseball and fantasy football 
have historically been the most popular but fantasy 
leagues have evolved for many other sports, including 
basketball, golf, hockey, soccer, auto racing, and even 
cricket. Different leagues, even within the same sport, 
use a variety of formats, statistics, and weighting 

schemes to compute fantasy points. Season winners 
are usually the owners who have accrued the most 
fantasy points. While such games have existed in one 
form or another since at least the end of World War II, 
the development of the Internet drastically changed 
the nature and popularity of fantasy sports leagues 
by providing real-time access to data and tools for 
automated computation, making the activity more 
accessible for a broader range of participants. There 
are estimated to be millions of fantasy sports play-
ers in the United States alone. In the twenty-first cen-
tury, mathematicians and others study fantasy sports 
leagues, and they have become a tool in mathematics 
classrooms as well. 

History
Fantasy sports leagues grew from other types of sports 
simulator games that used data from past seasons and 
random number generation to determine the outcomes 
of simulated games. One of these was Strat-O-Matic, a 
board game using player statistics cards and dice that 
was developed by Hal Richman. It premiered in 1961 
and still exists in both card and computerized forms. 
Richman began developing the game as a child because 
he “loved baseball and numbers” and disliked what he 
saw as unrealistic randomness in other baseball board 
games. He released the game while earning his under-
graduate mathematics degree. John Burgeson, an IBM 
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computer programmer, created a computer fantasy 
baseball simulator in 1960 that used random numbers 
and player statistics to generate a play-by-play descrip-
tion of a game between two teams. Many real baseball 
managers reportedly played fantasy-style games when 
they were young. According to writer Alan Schwartz, 
“That’s how they learned how to apply the mathemat-
ics of risk-taking.”

In the 1970s and 1980s, early fantasy leagues began 
to emerge for baseball and football. Writer Daniel 
Okrent developed Rotisserie League Baseball, which 
was named after the restaurant where players con-
ducted the first draft. “Rotisserie baseball” is now a 
standard term for this widely-used format. It differed 
from most older games by using current-season statis-
tics and data as they occurred rather than past seasons’ 
statistics. This style of play became popular after an 
Inside Sports magazine article described the rules of the 
game and discussed the league’s first season. Statisti-
cian George William “Bill” James also developed the 
analytical methodology of sabremetrics around this 
time and his Bill James Baseball Abstract was widely 
used by fantasy players. Similar mathematical analyses 
were produced for fantasy football by Fantasy Football 
magazine, which evolved into the print and online Fan-
tasy Football Index (and also Fantasy Baseball Index). 
These publications and many others provided math-
ematically modeled variables, such as dollar values, 
statistical projections, and optimization strategies, for 
fantasy players. Sometimes the modeling proved useful 
enough that the writers went on to advise real teams. 

Before the Internet, coordinating fantasy sports 
and calculating points could be time consuming. 
Data came largely from print sources, which were 
time delayed. A standard 162-game baseball schedule 
required near-daily computations for each owner in 
the league. Fantasy football was somewhat less chal-
lenging because of the smaller number of games in a 
season, but most fantasy methods had to restrict the 
number of variables used. Some commercial statistical 
services started to fill this need by compiling databases 
of sports statistics and providing services to calculate 
points—for a fee. Results were mailed or faxed; later, 
they could be sent electronically. The development of 
the World Wide Web in the mid-1990s facilitated and 
often automated the process of tracking player statis-
tics and calculating points and league standings. Fan-
tasy players could also quickly communicate with each 

other using e-mail, message boards, and chat rooms, 
resulting in online communities and worldwide 
leagues. Researchers have modeled this growth using 
sociologist Everett Rogers’s diffusion of innovation 
theory. The curve of fantasy players over time exhibits 
the classic S-shape of slow initial growth among early 
innovators and adopters, a middle period of acceler-
ated growth, and a saturation of the market leading 
to a leveling off or slower growth period. The rapid 
growth of fantasy sports in the late twentieth cen-
tury led to issues related to its potential classification 
as gambling, fairness in prizes, and the legal rights of 
players or teams to control the dissemination and use 
of statistical information about professional athletes, 
especially when outside companies were making a 
profit from such use.

Mathematical and Social Connections
The line between fantasy sports and real sports is often 
blurred and mathematical methods used in one are 
often applied to the other. For example, mathemati-
cians have explored a concept often called the “magic 
number” or elimination number, which quantifies 
the number of games a team must win to avoid being 
eliminated from the championship. The problem is 
popular in computer science classes. A common solu-
tion is to compare the number of games a team has left 
to play to the win-loss difference of the nearest rival. 
Researchers found that the numbers for all teams may 
be found simultaneously as they are a function of the 
number of games won plus the number of games left to 
play. Other mathematicians investigate optimal strate-
gies for drafting players to teams using methods such 
as stochastic dynamic programming and deterministic 
dynamic programming coupled with various types of 
mathematical modeling and decision making. Some 
have researched the extent to which players rely on 
mathematical modeling and statistical methods instead 
of on heuristics and personal preferences. Mathemat-
ics teachers have found some success in using fantasy 
sports to motivate students and to help them succeed. 
Additional evidence suggests that fantasy sports may 
help reduce gender gaps in mathematics achievement. 
Some girls have stated that fantasy sports are “cool” 
and help them relate to boys as equals, and women 
are involved in the creation and management of fan-
tasy leagues. For example, Jordan Zucker, who has an 
undergraduate degree in mathematics, created the 
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research institutions in the world. Methods pioneered 
by Fisher are still widely used in the twenty-first century, 
including hypothesis testing, analysis of variance, maxi-
mum likelihood estimation, and factorial experimental 
design. Mathematician Michael Weiss has worked in 
several mathematical areas with applications in agricul-
ture, including nonlinear and chaotic dynamics, fuzzy 
set theory, and topological and algebraic entropy. Some 
applications of his work include a model of crop yields 
as a two-dimensional stochastic process, called “ran-
dom surfaces,” and assessing revenue risk as a proba-
bilistic function of foodborne disease outbreaks. Preci-
sion farming models spatial variability in farmland and 
the resulting changes in yields as geometric surfaces. 

Numerical characteristics of the farmland, such as 
fertilizer needs, are assigned to surfaces by functions 
and mapped to other surfaces by operators using mod-
eling software. The so-called cobweb theorem relates 
price and production for situations in which there is a 
time lag between the marketing of a product and ini-
tially obtaining price information to determine pro-
duction. This is common in agricultural markets, since 
prices in one year tend to influence planting in subse-
quent years.

The Role of Agriculture in the History  
of Mathematics and Science
Agricultural development shaped the history of human-
kind, including the growth of science in mathematics. 
This impact is acknowledged in the historical tradi-
tion of naming major farming breakthroughs “revo-
lutions,” since the changes they produced in society 
were large and relatively fast. The neolithic revolution 
started circa 8000 b.c.e. and included the development 
of permanent settlements. The resulting architecture 
and centralized management systems required abstract 
thought and systems of knowledge, including writing, 
mathematics, and science. The Arab agricultural revo-
lution took place in the eighth through the thirteenth 
centuries c.e. and included the development and dis-
tribution of international knowledge exchange, sophis-
ticated algebra and geometry, and astronomy for farm-
ing and navigation, as well as the scientific method 
and the modern number and computational system 
in mathematics. The British agricultural revolution 
started in the seventeenth century. It codeveloped with 
the Industrial Revolution and included the heavy use 
of mechanical tools and developments in the natural 

Girls’ Guide to Fantasy Football Web site and manages 
an all-female fantasy football league.

Further Reading
Fantasy Sports and Mathematics. http://www.fantasy 
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Press, 2004.
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See Also: Baseball; Betting and Fairness; Ethics; 
Football; Lotteries; Rankings.

Farming
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Geometry; Measurement.
Summary: As a fundamentally important human 
activity, agriculture has long been a motivator for 
mathematical and statistics research.

Farming, also called “agriculture,” is the production 
and distribution of plant and animal products. Farm-
ing methods range from organic farming to industrial 
agriculture. Farming operations are also categorized by 
their products, including foods, pets, decorative plants, 
pharmaceuticals, building materials, fibers, resins, and 
bioplastics. Agriculture has long been a motivator for 
mathematical and statistic research. Mathematical con-
cepts and models have helped advance many agricul-
tural methods beyond simple arithmetic calculations of 
quantities of seed and fertilizer. Many consider Ronald 
Fisher to be the father of modern statistics. Much of his 
research in statistical methods originated from his work 
with more than 60 years of agricultural data at Rotham-
sted Experimental Station, one of the oldest agricultural 
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sciences, including chemistry and biology. This indus-
trialization of agriculture continued into the twentieth 
century, driving the research in organic chemistry and 
genetics known as the green revolution. 

Domestication of local crops, such as rice in China 
around 8000 b.c.e., allowed for both population growth 
and population concentration in villages and, later, 
towns. Planting, harvesting, and other timed activities 
required relatively exact time and weather observation, 
which in turn led to the development of astronomy 
and the development of sophisticated time measure-
ment tools and calendars. Circa 5000 b.c.e., the people 
of Mesopotamia employed intensive farming methods, 
including monocrop fields, aggregation of crops for 
trade, and complex irrigation. Such methods 
called for and enabled major technologi-
cal developments, such as better plows. It is 
hypothesized that the complex division of 
labor, distribution, and observation of water 
levels and calendars required for this type of 
agriculture led to the development and rela-
tively widespread use of writing. 

Mesopotamian clay tables show that qua-
dratic and cubic equations, the Pythago-
rean theorem, and other topics currently 
found in algebra, geometry, and calculus 
were already widely used circa 2000 b.c.e. 
in problems related to agriculture, such as 
astronomy-based calendars to time flooding 
and harvesting or the distribution of prod-
ucts. Some of this knowledge later was lost 
and then rediscovered by other cultures, and 
some continued to be used in the original 
form. For example, the practice of measur-
ing time based on 60 minutes in an hour 
and 60 seconds in a minute comes from the 
Babylonian sexadecimal (base 60) number 
system. The number “60” was a convenient 
one for the Babylonians being highly com-
posite (with more divisors than any number 
less than 60).

Agriculture promoted the development 
and spread of increasingly complex mecha-
nisms, such as waterwheels in China. Excess 
crops supported the development of trade 
and transportation, from the domestication 
of draft and pack animals in ancient times 
to sophisticated spice trade fleets circa the 

sixteenth century. Starting in the eighth century c.e., 
Muslim traders established an extensive network of 
trade routes among Asia, Europe, and Africa, enabling 
the diffusion of agricultural techniques and crops 
beyond their places of origin. This Arab agricultural 
revolution led to the development and distribution of 
science and mathematics, including the Arabic numer-
als used around the world in the twenty-first century. 
For example, one of the first documented uses of the 
scientific method comes from thirteenth-century 
work on medicinal plants and agronomy (the farming 
of plants).

The Industrial Revolution, starting in the eigh-
teenth century, included the increasing mechaniza-

380 Farming

Combines harvesting crops at precise intervals with each row 
overlapping slightly. Combines were invented in 1834.



tion of agriculture. Agricultural machines, such as the 
tractor, both decreased the number of people required 
for farming and increased productivity. The scientific 
advances associated with these developments primar-
ily took place in engineering and chemistry. The green 
agricultural revolution of the second half of the twenti-
eth century promoted advances in chemistry, genetics, 
and bioengineering, which led to high-yield, disease- 
and pest-resistant cultivation of major crops. The sus-
tainability of these practices is not yet clear at the start 
of the twenty-first century.

Measurements in Agriculture
Metrics used in farming focus on average production of 
different cultivars of plants, breeds of animals, or farm-
ing methods; resource intensity of practices; efficiency 
of distribution; nutritional value of food products and 
industry-specific values of fibers, fuels, and lumber; 
environmental impact and sustainability; and the role 
of agriculture in local and global economy. 

The global production levels, by crop type, are mea-
sured in tons per year. For example, cereals was the 
number one category of agricultural product, with 
worldwide production at around 2 billion tons per 
year in the early twenty-first century, while meat pro-
duction at this same time was around 250 million tons 
per year. The total and per capita rates of production 
are frequently compared between years. For example, 
the total agricultural production grew by a factor of 
16 between the early 1800s and 1970, while the world 
population grew by a factor of seven. This means that 
per capita consumption of agricultural products more 
than doubled during that period but not necessarily 
because of food items. Fiber or farmed trees for paper 
and construction are also included.

Farm yields are measured in crop weight per area 
for plants; in the ratio of seed input to seed output for 
grains; or in meat, fiber, or egg production per animal 
for animals. The yields are estimated using statisti-
cal methods of random sampling, or total outputs of 
a farm. In the United States, for example, corn yields 
averaged about 30 bushels per acre in the early 1900s 
and around 130 bushels per acre in the early 2000s. 
Food anthropologists estimate the minimal ratio of 
grain input to output necessary for sustaining farm-
ing as the main source of food as 1:3. For each grain 
planted, farmers get three grains, one of which is 
planted and two of which are either eaten by people 

or fed to farm animals. Yield metrics can be used to 
compare different methods of farming. For example, 
irrigation can raise corn yields by a factor of four or 
five. Industrial farming in developed countries pro-
duces yields that are about 10% greater than organic 
farming in nondrought years and about 70% less in 
drought years, netting about the same average yields 
over decades.

Resource intensity is measured by the outside input 
required per area of crops, per individual animal in 
meat or egg farms, or per unit of farm product output. 
For example, it takes about 1000 liters of water to pro-
duce 1 liter of corn-based ethanol. Resource intensity 
is one of many sustainability metrics used in farming. 
Other mathematical metrics of sustainability include 
nutrient leaching into water systems, which may cause 
proliferation of algae; biodiversity of farms; and pol-
lution of soil, water, and air with herbicide and pesti-
cide residues; as well as the carbon footprint of farm-
ing practices. For example, livestock production is 
currently responsible for about one-fifth of the total 
carbon footprint of humanity.

Farming and the Economy
Agricultural systems include production, processing, 
packaging, distribution, marketing, and consumption. 
The proportion of resources and energy required for 
these activities varies with farming practices. For exam-
ple, eating local foods reduces the resources expended 
in transportation; operating monocrop farms reduces 
labor per unit of production; eating processed foods 
increases packaging costs.

Agricultural economics is the study of resource allo-
cation and distribution related to agriculture. It uses 
mathematical statistics for data analysis and trend pre-
diction and mathematical modeling for research and 
development. Many general economic mathematical 
models were first developed in agricultural econom-
ics, for example, the cobweb model, which explains 
the cycles of price fluctuations through analyzing lags 
within the production chains, such as planting and 
harvesting. 

Factory farming uses economies of scale by raising 
livestock in confinement and with high population 
densities. The calculations involved in factory farm-
ing include cost-output analysis and bioengineering 
of animals to optimize product output as well as the 
logistics of supplying food in to each animal in place 
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and disease prevention through administering antibi-
otics. There are several measurements of factory farm-
ing impacts. For example, there are metrics involved 
with animal welfare, such as the degree of confinement, 
measured in area of pen per animal. Human health 
impact measures and research include studies of pes-
ticide, antibiotic, and growth hormone levels in farm 
products and statistical studies of the impact of food 
on human health. Environmental impact measures 
are standard for all operations and include levels of 
specific air, water, and soil pollutants produced by the 
farm and its carbon footprint. Capital redistribution 
is the measure of movement of money among com-
munities, which is relatively high for factory farming 
because of its centralized nature.

Industrial marketing and distribution models 
do not work well for organic farming because most 
organic products are not scalable. In the early 2000s, 
organic farmers developed a variety of peer-to-peer 
credence and distribution models, network marketing 
models, and sharing economy (mesh) models. Such 
modern models support decentralized production and 
disintermediated distribution. Some organic farmers 
join together in cooperatives and use economies of 
scale. Community-supported agriculture (CSA) is an 
economic model that provides a way to share the ben-
efits and risks of farming. In a typical CSA, consumers 
buy farm shares and receive a weekly delivery of farm 
outputs. 

Further Reading
Alspaugh, Shawn. “Farmer Ted Goes 3D.” Mathematics 

Magazine 78, no. 3 (2005).
Glen, John. “Mathematical Models in Farm Planning:  

A Survey.” Operations Research 35, no. 5 (1987).
Street, Deborah. “Fisher’s Contributions to Agricultural 

Statistics.” Biometrics 46 (1990).
Weiss, Michael. “Precision Farming and Spatial 

Economic Analysis: Research Challenges and 
Opportunities.” American Journal of Agricultural 
Economics 78, no. 5 (1996).
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See Also: Animals; Arabic/Islamic Mathematics;  
Calendars; Carbon Footprint; Chinese Mathematics;  
Deforestation; Green Design; Industrial Revolution; 
Measuring Tools; Nutrition; Quality Control.

Fax Machines
Category: Communication and Computers.
Fields of Study: Number and Operations; 
Representations.
Summary: Fax machines revolutionized the process 
of sending and receiving documents.

A fax machine enables documents, including illustra-
tions and other graphical elements, to be transmitted 
over a distance and reproduced by the receiver. The 
roots of the word “facsimile” are from the Latin words 
facere, meaning “to make,” and similis, meaning “like.” 
In the nineteenth century, Alexander Bain developed 
what some refer to as the first fax machine. His sys-
tem transmitted information using analog telegraph 
lines. The sending and receiving equipment was timed 
using matched pendulums. At the receiving end, an 
electrically powered stylus recorded messages on a roll 
of paper. Current from the stylus turned the chemical 
coating on the paper blue, transcribing the signals’ dots 
and dashes. Frederick Bakewell demonstrated a chemi-
cal fax machine at the 1851 London Exhibition, and 
the first commercial telefax service began operation in 
1865, predating the telephone. 

A more modern ancestor is the radio facsimile, 
developed in 1924, which used radio waves to wirelessly 
transmit images and is still used in the early twenty-
first century to transmit weather information. Modern 
fax machines scan an input sheet line by line to pro-
duce rows of pixels. Algorithms used in fax machines 
take advantage of the fact that there are white and 
black pixels in order to compress the data. For exam-
ple, David Huffman’s variable-length lossless codes 
and their variations, originally invented in the 1950s, 
assign binary codes to patterns of pixels using proba-
bilistic methods. The codes are shorter than the strings 
they replace, reducing overall file size. To optimize 
compression, symbols with higher probabilities or fre-
quencies of occurrence are assigned shorter codes. The 
International Telecommunications Union, based in 
Geneva, Switzerland, makes recommendations for data 
compression standards. To derive one code called the 
“Group 3 code,” the organization applied the Huffman 
algorithm to eight representative samples to assign a 
code to each run length. Fax machines transmit docu-
ments in minutes instead of hours thanks to compres-
sion algorithms.
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Fax Machine Technology
Modern fax machines utilize the technology of the 
telephone and the copy machine. Fax machines devel-
oped in the 1970s could scan a document and encode 
and transmit it over telephone lines to another fax 
machine, which could record and reproduce the docu-
ment. Fax machines became common in offices as 
they replaced the need to send paper documents by 
messenger service or mail, were much quicker than 
retyping a document for telex, and could send any 
type of graphical information. Japan played an impor-
tant role in developing modern fax machines, which 
used electronic circuits to replace mechanical parts 
and greatly increased the speed of transmission and 
reduced the size and price of the machine. Because the 
Japanese language incorporates many Chinese char-
acters (kanji), the ability to transmit graphical images 
was particularly useful in that country. 

Sending a document by fax requires two fax 
machines—one to send the document and one to 
receive it. The sending machine uses a sensor to scan 

the document, usually line by line, and to convert 
the pattern of black and white elements on the page 
into a code (several coding standards exist). The fax 
machine is not “reading” text—in the sense of con-
verting the letters into meaning—but only recording 
their shape. For this reason, fax machines are as adept 
at sending images and diagrams as they are at send-
ing text. The scanned data are compressed in order to 
reduce the number of bits to be transmitted and thus 
to speed up the process. The speed of transmission 
depends in part on how much information, such as 
text or diagrams, as opposed to blank space is con-
tained on the page being scanned. The receiving fax 
machine decodes and uncompresses the information 
and uses it to re-create and to print the sent docu-
ment. In the 1980s, most fax machines used thermal 
printing, which required the use of special paper 
that turns black when exposed to heat. However, in 
the twenty-first century, most fax machines print on 
standard white copy paper using either laser or inkjet 
printing technology. 
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Internet fax (efax, or online fax) technology has sup-
plemented and, in some cases replaced, the use of tra-
ditional fax machines. There are a number of different 
services offering Internet fax capability, and although 
they differ in some details (for instance, can the machine 
receive, send, or both) the principle is the same: they 
provide a means to transmit facsimile documents to 
and from computers either as e-mail attachments or 
through a dedicated phone number or Internet site. 

Further Reading
Brain, Marshall. “How Fax Machines Work.” http://

communication.howstuffworks.com/fax-machine.htm.
McConnell, Kenneth R., Dennis Bodson, and Stephen 

Urban. FAX: Facsimile Technology and Systems. 3rd ed. 
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New York:  Springer, 2002.
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The Changing American Office.” http://www.smith 
sonianeducation.org/scitech/carbons/start.html.
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See Also: Coding and Encryption; Digital Images; 
Internet; Telephones.

Fertility
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Individual fertility cycles can be 
mathematically predicted and national fertility 
rates are a useful statistical measure for analyzing 
population demographics.

The term “fertility” has been used historically in a 
variety of contexts, including the richness of crop-
lands with respect to producing food, the creativity of 
the human mind and imagination, and the ability of 
people to have children. The term “fecundity” is often 
interchanged with fertility when discussing human 
reproduction. However, nineteenth-century physician 
Matthews Duncan, who researched birth statistics and 

fertility, differentiated the two terms by defining fecun-
dity in an essentially binary fashion as the capability of 
bearing children or not, versus fertility, which he used 
to quantify the number of children a woman had borne. 
Demographers often use fertility rate as a standardized 
metric to describe the number of children borne per 
person, couple, or population and to make compari-
sons across populations. Many collections of global 
statistics, like the CIA World Factbook, include fertil-
ity rates, which have been connected by mathematical 
and statistical models to economic measures such as 
individual income or a country’s gross domestic prod-
uct. Others study relationships to medical and social 
variables, such as the availability of birth control and 
assisted reproduction or attitudes about single parent-
ing. Some rates adjust for women in specific age groups 
or other variables. At the start of the twenty-first cen-
tury, organizations such as the United Nations also 
began to turn serious attention to the issue of popula-
tion decline in many nations and its potential effects 
on national economies, workforces, and social security 
systems. Mathematicians, statisticians, demographers, 
and others continue to research the reciprocal relation-
ships between fertility and other measures to attempt 
to determine causes and effects and to forecast future 
trends as well as to contribute to the development of 
technologies related to fertility and reproduction. Stat-
istician Leslie Kish was awarded the American Statisti-
cal Association’s Samuel S. Wilks Award for his work on 
the World Fertility Survey, which “illustrates his impact 
as an international ambassador of statistics and a tire-
less advocate for scientific statistical methods.”

Fertility Rates
In the years immediately following World War II, 
many countries, especially the United States, Canada, 
Australia, and New Zealand, saw a marked increase in 
the number of babies borne. This “baby boom” gen-
eration has been widely researched and continues to 
have an impact on society and social policy. There are 
many ways to quantify fertility. For example, birth rate 
is typically the number of live births per thousand 
people per year for a given population. The total fertil-
ity rate of a population is an estimated measure based 
on observed age-related fertility rates during a given 
time period and assuming a woman lives throughout 
her entire likely reproductive span, or roughly to age 
50. It is intended to represent the average number of 
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live births per woman in a given population. However, 
since human reproduction requires genetic contribu-
tions from both males and females and social conven-
tions typically restrict who may reproduce with whom, 
the male-female ratios in populations can affect actual 
fertility. Net reproduction rate quantifies the number 
of daughters borne to a woman, using statistical esti-
mation methods similar to the total fertility rate. This 
statistic is often used in researching countries that 
exhibit strong preferences for one sex of child over 
another or that practice sex selection. Some other pos-
sible estimates include gross fertility rate, generational 
or cohort fertility rate, or completed family size. 

In 2010, Russian president Vladimir Putin publicly 
addressed the growing concern of Russia’s declining 
population, which he attributed to both declining fer-
tility and high death rates, calling it “the most acute 
problem of contemporary Russia.” Sub-replacement 
fertility rate is a threshold value of the total fertility 
rate where the number of births is not large enough to 
replace or maintain a given population at its current 
level. In theory, each couple must produce two children 
to replace themselves or, referring to net reproduction 
rate, each woman must have one daughter to replace 
herself. In reality, not all people pair and reproduce 
and early mortality and other factors affect popula-
tion sizes. Mathematical and statistical models have 
been used to model average behavior and account for 
such variables. In the early twenty-first century, the 
global replacement fertility rate was about 2.3 children 
per woman: the theoretical value of two, plus a frac-
tional value that adjusts for mortality and other fac-
tors. Anything below this value is sub-replacement, 
leading to a declining overall population. In developed 
countries, the value was about 2.1 children per woman, 
while in some developing nations, the replacement rate 
has been calculated to be as high as 3.3 children per 
woman. Leslie models, named after population biolo-
gist Patrick Leslie, often include fertility matrices based 
on age groups to model population growth. They are 
also related to Euler–Lotka equations of population 
dynamics, named for mathematical demography pio-
neer Alfred Lotka and mathematician Leonhard Euler.

Fertility Cycles
Individuals seeking to improve their own fertility 
often rely on various methods to either predict when a 
woman will be fertile, such as measuring and charting 

basal body temperature, or to study the viability and 
motility of male sperm. In the late nineteenth century, 
physician Mary Putnam Jacobi was among the first 
to observe biphasic patterns in basal body tempera-
ture during menstrual cycles, though the connection 
with ovulation was not made until the early twentieth 
century. Studies by many researchers throughout the 
twentieth century statistically determined patterns in 
ovulation and fertility, such as the frequency of ovula-
tion, the most probable window of ovulation during 
the menstrual cycle, and associations between fertility 
and observable physical characteristics, such as tem-
perature, pain, and mucosal secretions. Many of these 
studies were the basis for calendar-based methods 
of fertility planning, such as basal body temperature 
(BBT) graphs. Beginning in the mid-twentieth cen-
tury, physicians and others mathematically analyzed 
and interpreted BBT charts, though some techniques 
required complete data over long periods, which was 
considered not to be practical for use by individual 
couples. In the 1960s, neurologist John Marshall pro-
posed the “three over six” prediction method: a pattern 
of any three plotted daily temperatures higher than the 
previous six was a sign of likely ovulation. This method 
was still in common use at the start of the twenty-first 
century, though with advances in computing technol-
ogy, mathematical algorithms for detecting patterns 
may be used. Alternatively, the Billings method, named 
for physicians John and Evelyn Billings, is a scoring or 
quantification system for rating and graphing charac-
teristics of cervical mucus to predict ovulation.

Greater understanding of the biomechanics of con-
ception resulted in new studies of the male role in fer-
tility. Male fertility is often quantified by sperm count 
or sperm concentration, which is the number of sperm 
cells per unit fluid volume. The term “oligozoosper-
mia” refers to a sperm count that falls below “normal” 
as compared to statistically derived reference standards 
set by the World Health Organization and other agen-
cies. Sperm cells may also be analyzed for abnormal 
morphology or geometry, which is one of the factors 
that affects their motility (rate of motion). Mathemati-
cal analyses have been used to explore motility. For 
example, mathematicians David Smith and John Blake 
created a mathematical model of a swimming sperm 
cell that they used to explore the fluid dynamic forces 
between sperm cells and surfaces. Understanding nor-
mal sperm motility via such models may help correct 
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motility problems in infertile men and suggest future 
clinical practices. 

Further Reading
Brown, Robert. Introduction to the Mathematics 

of Demography. 3rd ed. Winstead, CT: Actex 
Publications, 1997.

Poston, Dudley, and Leon Bouvier. Population and 
Society: An Introduction to Demography. Cambridge, 
England: Cambridge University Press, 2010.

Sarah J. Greenwald
Jill E. Thomley

See Also: Census; Forecasting; Pregnancy.

Fibonacci Tuning
See Pythagorean and Fibonacci Tuning

FICO Score
Category: Business, Economics, 
and Marketing.
Fields of Study: Algebra; 
Measurement; Representations.
Summary: A person’s 
FICO score helps lenders 
mathematically evaluate risk.

The FICO score is a standard measure for 
credit risk. It was developed in 1989 by the Fair 
Isaac Corporation (commonly referred to as 
FICO, which is also its ticker symbol), a pub-
lic company (traded on the New York Stock 
Exchange) founded in 1956 and based in Min-
neapolis, Minnesota, and Equifax, one of three 
major U.S. credit reporting agencies. The FICO 
score is one of the chief ways lenders evaluate 
the credit risk posed by a consumer, using that 
information to decide whether to advance credit 
or a loan to them and, if so, how much interest 

to charge. Consumers judged to pose greater risk of 
default are generally charged higher interest rates to 
compensate for the high probability that they will not 
repay their debts. Models based on FICO scores are 
blamed in part for the housing crisis that occurred in 
the early twenty-first century. In the 1990s, subprime 
mortgage lenders began relying more on automated 
underwriting and quantitative models. These sug-
gested that subprime borrowers were improving in 
terms of average FICO scores. This suggestion, coupled 
with the historical performance of subprime mortgage 
securities, was interpreted as a sign of strength in the 
subprime market, which proved not to be true.

Calculating the FICO Score
The formula for calculating the FICO score is propri-
etary and is regularly revised, but it can be described in 
general terms. The FICO score is calculated from data 
in a person’s credit report. The importance placed on 
the different categories of information varies but for an 
average customer the weights are approximately as fol-
lows: payment history is 35%, amounts owed is 30%, 
length of credit history is 15%, types of credit used is 
10%, and new credit is 10%. FICO does not calculate 

the report itself; instead, when a lender 
requests a credit rating for an individ-

ual FICO, software is used by one 
of the three major national credit 

reporting agencies (Equifax, 
Experian, and TransUnion) 

to calculate the FICO score. 
These calculations may dif-
fer, since the three credit 

agencies often include dif-
ferent information. The score is 

therefore time dependent, and 
changes in a person’s finan-
cial and credit situation can be 
expected to result in changes to 

their FICO score as well. 
The range of a FICO score 

is from 300 to 850, with higher 
scores denoting greater credit-

worthiness. The median score is 
about 725 and a score above 700 

is considered good; a score above 770 
generally qualifies people for the best credit 

rates. Scores lower than about 660 generally 
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qualify people for only limited credit at much higher 
interest rates.

History of the FICO Score
The FICO score is a modern solution to a long-stand-
ing issue in business: managing the risk of lending 
money to an individual or business not personally 
known to the lender. Systems of credit reporting have 
been in existence for over 100 years and throughout 
their history, credit reporting systems have had to 
deal with the tension between lenders and merchants 
who wanted to protect their assets and consum-
ers and businesses who wanted fair access to credit, 
which would help them expand their businesses or 
purchase major assets, such as a house. Credit report-
ing was largely unregulated until the 1960s, so there 
were no legal restrictions over what could be included 
(information about sexual preference and alcohol 
consumption were sometimes included, for instance) 
and individuals had no right to see what was in their 
records or to challenge incorrect information. Some 
criticize the FICO calculations, saying that the pro-
prietary nature makes them unfair, they are inexact 
and poorly quantify risk for some subgroups of bor-
rowers, information is not updated frequently, and 
the burden of correcting misinformation falls on the 
individual rather than the companies.  

In 1971 Congress passed the Fair Credit Report-
ing Act (FCRA), which gave individuals the right to 
view their records and to dispute or correct any mis-
takes in their records. At the same time, credit reports 
began to include positive information (for instance, 
loans repaid on time) as well as negative information 
and, in 2001, consumers gained the right to see their 
credit scores rather than simply the information in 
their reports. The importance of the ability to view 
and to challenge information in one’s credit report 
was underlined in a 2004 study by the U.S. Public 
Interest Research Group, which found that 79% of 
credit reports have errors (usually outdated informa-
tion or information that pertained to a different per-
son), including about one-quarter with errors serious 
enough to justify the denial of credit. Although there 
are many criticisms of the process of computing credit 
scores, few would be willing to discontinue their use 
because they are an important tool for risk assess-
ment, help ensure equitable treatment, and make the 
credit market more efficient.

Further Reading
Fair Isaac Corporation. “FICO.” http://www.fico.com.
Neal, Dana A. BestCredit: How to Win the Credit Game. 

2nd ed. Boulder, CO: Paladin Press, 2006.
Wozniacka, Malgorzata, and Snigdha Sen. “Credit Scores: 

What You Should Know About Your Own.”  
http://www.pbs.org/wgbh/pages/frontline/shows/
credit/more/scores.html.

Sarah Boslaugh

See Also: Bankruptcy, Personal; Credit Cards;  
Home Buying.

File Downloading  
and Sharing
Category: Communication and Computers.
Fields of Study: Algebra; Measurement; Number 
and Operations.
Summary: Mathematicians work on developing 
compression algorithms and resolving security issues 
to make file downloading and sharing faster and  
more secure.

The words “downloading” and “uploading” began to 
enter mainstream usage in the 1970s. Bulletin board 
systems, a precursor to the Internet, were among the 
first systems that allowed computer users to access an 
external system. At the start of the twenty-first century, 
e-mail was commonly uploaded and downloaded from 
remote servers. The term “file sharing” came into pop-
ular usage later, especially in reference to peer-to-peer 
file sharing systems, like Napster. File sharing refers to 
providing multiple users access to digitally stored infor-
mation, usually from a remote system. Streaming differs 
from downloading, since data that is streamed is not 
stored but used as soon as it is accessed. The amount 
of time that is required to upload or download a file is, 
in part, a function of its size. Compression algorithms 
make data faster and easier to transfer. Mathematician 
Claude Shannon formulated a theory of data compres-
sion in the late 1940s using concepts from entropy and 
probability, including theoretical limits on lossless and 
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lossy compression that depended, in part, on a func-
tion expressing the allowable distortion error. This 
theory is also known as “source coding theory.” Math-
ematicians work on reliability and security issues, such 
as detecting and preventing file sharing worms. Math-
ematical models of file sharing systems created using 
techniques from areas such as graph theory and statis-
tics help study connections, patterns, and probabilities. 
The Gfarm Grid File System was developed in the early 
twenty-first century as a federated and scalable virtual 
file system designed to facilitate the high performance 
petascale-level computing and data mining problems, 
such as those that result from theoretical particle phys-
ics. Mathematicians Duncan Watts and Steve Strogatz 
made mathematical connections between the behavior 
of network nodes using look up protocols and human 
participants in Stanley Milgram’s experiments on the 
small world phenomenon. 

In the early twenty-first century, the term “file 
sharing” is sometimes used specifically with refer-
ence to the illegal proliferation of copyrighted mate-
rial, which may be attributed, in part, to widespread 
publicity about this issue. There are several important 
variables related to the prominence or frequency of 
illegal file sharing: the availability of Internet access; 
the growth of typical Internet connection speeds; 
the development of new file formats that resulted in 
smaller sizes for high-quality music files; and peer-
to-peer file sharing systems. Napster, released in 1999, 
was the first widely used peer-to-peer file sharing sys-
tem. It was developed by Shawn Fanning and enabled 
mostly anonymous sharing of music files with other 
users through a centralized server, including a search 
function to locate songs. Though it was shut down by 
court order only two years later, half a dozen similar 
programs had been released in that time and the Bit 
Torrent client was released shortly thereafter. Napster 
was purchased by Best Buy in 2008 and is now a pay 
service. Mathematicians research topology and traf-
fic in distributed networks, like Napster and Gnutella, 
with methods from graph theory and scheduling 
algorithms, among other tools. They are often seen as 
advantageous because they reduce or eliminate reli-
ance on centralized servers. These highly connected 
network nodes are often critical failure points. They 
also use statistical methods and other types of math-
ematical modeling to study the economic impacts of 
peer-to-peer file sharing on retailers and artists as 

well as user behaviors with regard to their willingness 
to pay for digital music or movies. 

The Bit Torrent client was nearly as large a step for-
ward in file sharing as Napster had been, because it was 
not a service but a protocol, or a method of sharing files, 
and is not exclusive to sharing music files. The essential 
innovation of Bit Torrent, developed by Bram Cohen, 
was that file seekers were connected to many peers at 
once, instead of just a single peer. Pieces of the file are 
simultaneously downloaded and then reassembled on 
the user’s computer. Furthermore, all peers download-
ing the file were capable of sharing the pieces they have, 
even before they have the complete file. A complete copy 
of a file is called a “seed.” There must be at least one seed 
involved for downloads to successfully complete. Once 
a more-popular file has propagated many locations, the 
network of peers broadens, increasing the piecewise 
download speed. Unlike Napster, the Bit Torrent proto-
col does not utilize a central server, making it difficult to 
detect downloading, though servers called “Bit Torrent 
trackers” are the targets of law enforcement. Random 
ports also help users avoid detection. Mathematical 
methods, such as stochastic differential equations, have 
been used to model network environments and peer 
behavior and mathematically based peer-to-peer simu-
lators can be used to evaluate and test new algorithms 
and solutions before they are implemented.

Further Reading
Caviglione, Luca. File-Sharing Applications Engineering. 

Hauppauge, New York: Nova Science Publishers, 2009.
Shen, Xuemin, et al. Handbook of Peer-to-Peer 

Networking. New York: Springer, 2009.

Bill Kte’pi

See Also: Cerf, Vinton; MP3 Player; Servers.

Fingerprints
Category: Medicine and Health.
Fields of Study: Geometry; Representations.
Summary: Mathematical algorithms help 
professionals use fingerprints as a means of 
identification.
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The study of fingerprints could be considered both sci-
ence and art. Fingerprint interpretation and analysis 
have grown over the twentieth and twenty-first centu-
ries along with the development of new technologies 
and mathematical tools for imaging processing. Fin-
gerprinting is a recognized method for personal iden-
tification and is used worldwide.

A fingerprint is an impression left by the raised por-
tion of the epidermis on the fingers. The epidermal 
ridges are small corrugations of the skin (with an aver-
age of 0.5 mm in breadth) without hair or sebaceous 
glands but with numerous sweat glands, also found in 
the toes. The epidermal ridges in a particular area of 
the inner hands and bottom of the feet have two func-
tions: to provide traction to help people grab objects 
(the sweat glands moisten the skin, augmenting the 
security of contact) and to enhance the sense of touch 
by the stimulation of the underlying nerve. Humans 
are not the only species with epidermal ridges; some 
primates, including gorillas and chimpanzees, and 
koala bears have their own unique prints.

Fingerprint Patterns
There are three general groups of fingerprint pat-
terns: arch, loop, and whorl. They may be divided into 
subgroups by means of the smaller differences exist-
ing between the patterns in the same general group. 
Fingerprint groups may be also divided into male and 
female and by age. Historically, the identification of 
these patterns was done manually in a tedious and 
time-consuming approach requiring ink, paper, and 
sufficient knowledge and training of the fingerprint 
examiner. In the early twenty-first century, automatic 
fingerprint identification systems can quickly verify a 
person’s identity by searching millions of records in a 
matter of seconds. Advanced mathematical algorithms 
are used in forensic science and other areas such as 
biometric identification, the science of identifying 
a person using some unique physical characteristic. 
Correlation-based methods rely on identifying charac-
teristics of print patterns and positioning those char-
acteristics within the pattern, using what are called 
“registration points.” Another mathematically inter-
esting problem is to reconstruct a fingerprint from a 
partial print or a blurred print.

Other Advances
Other methods to identify humans are used in addi-
tion to fingerprints: biometric technology voiceprint, 
retina/iris scan, hand geometry, and facial recognition. 
However, fingerprinting is the easiest to use and it pro-
vides an average accuracy of 98%.

Wavelets have become an important mathematical 
tool for fingerprint recognition. This method could be 
an efficient solution for fingerprint recognition systems 
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Brief History  
of Fingerprinting

I n 1788, a German scientist, J. C. A. Mayer, 
presented the theory that each person pro-

duces a unique fingerprint. Almost 50 years 
later, Johannes Purkinje explained that the fin-
gerprints could be classified in patterns that 
could be recognized. It was the beginning of fin-
gerprints being used to identify individuals. In 
1892, anthropologist Sir Francis Galton, cousin 
of Charles Darwin, published that fingerprints 
remain unchanged for a person’s life and they 
are permanent. This led to the official use of 
fingerprints for criminal identification at Scot-
land Yard. In the early twenty-first century, fin-
gerprint verification has been used as one of 
the most reliable personal identification meth-
ods for criminal investigation or to access con-
trol applications. 



because it eliminates the necessity of preprocessing the 
images, reducing the time required for analysis.

Fingerprint identifications play a vital role in many 
criminal investigations but there are still challenges, 
such as identifying the body of a victim of a fire with 
parts of the fingers burned. Mathematical equations 
and operators have been used for the calculation of 
fingerprint probabilities based on individual charac-
teristics, such as only a partial print. The use of digi-
tal fingerprints requires more work in description and 
analysis to avoid ambiguities in identification, such as 
wrongly convicting an innocent person to prison.

Further Reading
Federal Bureau of Investigation. “The Science of 

Fingerprints (Classification and Uses).” http://ebooks 
.ebookmall.com/title/science-of-fingerprints 
-classification-and-uses-hoover-ebooks.htm.

Hawthorne, M. R. Fingerprints: Analysis and 
Understanding. Boca Raton, FL: CRC Press, 2009.

Komarinski, P. Automated Fingerprint Identification 
Systems (AFIS). London: Elsevier, 2005.

Orton, William. “The Mathematics of Fingerprints.” 
School Science and Mathematics 88, no. 1 (1988).
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See Also: Accident Reconstruction; Crime Scene 
Investigation; Daubechies, Ingrid.

Firearms
Category: Government, Politics, and History.
Fields of Study: Algebra; Measurement; Number 
and Operations.
Summary: Mathematicians have long studied and 
analyzed firearms and projectile motion to create 
more accurate weapons.

The successful construction and use of many types of 
offensive weaponry rely on mathematical principles. 
Ancient people typically used body-powered projec-
tiles, like spears and stones thrown from slings, which 
required judgments of force and angles to achieve the 

correct parabolic motion to hit the target. Archimedes 
of Syracuse designed weapons like mechanical cata-
pults to defend Syracuse from attack by the Romans. 
The development of gunpowder-propelled field artil-
lery, the successor to mechanical missile weapons like 
catapults and ballistae, created a demand for sophis-
ticated mathematics. Mathematicians studied and 
solved problems of ballistic velocities and trajectories 
to increase accuracy and impact. Handheld firearms of 
all types rely on similar principles. There are a num-
ber of interesting mathematical properties related to 
firearms, including weapon caliber, rate of fire, rifling, 
muzzle velocity, and propulsion, as well as telescopic 
sights and other characteristics. Mathematics training 
or degrees are suggested for firearms identification and 
bullet matching, which are increasingly used to match 
weapons to crimes, and mathematics skills are one of 
the requirements cited for careers in firearms repair.

Brief History of Firearms
As artillery and projectiles began to play a much 
larger role in warfare, kings, generals, and powerful 
concerns in society began looking for more powerful 
and more accurate weapons. They called upon scien-
tists and mathematicians to address the problem. Nic-
colo Tartaglia, Galileo Galilei, Evangelista Torricelli, 
Rene Descartes, Isaac Newton, and Johann Bernoulli 
are some of the people who worked on the problem 
of projectile trajectories. Two of the foremost math-
ematicians to work in this area were Benjamin Robins 
and Leonhard Euler.

Tartaglia published an important work on cannon 
trajectory in the sixteenth century. Using the science 
and mathematics of the time (Aristotelian dynamics, 
named for Aristotle, and Euclidean geometry, named 
for Euclid of Alexandria), he thought of the flight of 
a cannonball as moving from a line with slope deter-
mined by the angle of the cannon, the final trajectory 
by a vertical line and a circular segment on which the 
apex of the trajectory occurs joining these two lines. In 
his 1537 text La nova scientia and his 1546 text Questi 
et inventioni diverse, he indicated that this was only an 
approximation to the actual trajectory. However, it was 
such a good approximation—and so comparatively 
easy—that it was used by artillery groups well into 
the eighteenth century. His model took into account 
the practical knowledge gained through working with 
gunners and their experience in the field.
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Galileo stated that if there is no air resistance, the 
trajectory of a projectile is a parabola. This conjecture 
appears first in the work of his student Bonaventura 
Cavalieri in 1632 and, later, in Galileo’s 1638 work Dis-
corsi e dimostrazioni matematiche: intorno a due nuoue 
scienze. Torricelli also worked with Galileo. His book 
De motu contained a geometric method for computing 
the range of a projectile. Galileo asserted that the path 
of the trajectory and the shape of a hanging curve (the 
catenary) are the same, leading him to work with the 
idea that the trajectory curve is symmetric. This idea 
results in erroneous computations for range.

In the next era, the important work of Christiaan 
Huygens, Bernoulli, and Newton on air resistance set 
the stage for great strides forward in understanding 
projectile trajectories. The first to explicitly consider 
air resistance was Benjamin Robins, an English math-
ematician who was a student of Henry Pemberton 
and a protégé of Newton. Robins became interested 
in military engineering in the 1730s from his work 
on Newton’s fluxions and their utility in describing 

objects in motion. In 1736, he wrote a detailed critique 
of Euler’s Treatise on Motion and his extensive use of 
algebra versus geometry. He was subsequently barred 
from an appointment as mathematics professor at 
the new Royal Military Academy in Woolrich in 1741 
because of a political dispute. In order to bolster his 
application for this position, he returned to his work 
on ballistics and in 1742 published New Principles of 
Gunnery. In 1747, the Royal Society awarded him its 
prestigious Copley Medal for his work in ballistics. A 
major contribution of Robins was in determining that 
the important consideration for ballistics was the initial 
velocity of the projectile and the effect of air resistance, 
not the range, which was a function of initial velocity. 
Experiments showed that the assumption of Huygens 
and Newton that air resistance was proportional to the 
square of the velocity was true only at low velocities. 
Also, Robins hypothesized that lateral deviations were 
caused by random spinning of the projectile. He advo-
cated the use of rifled barrels with ovoid (rather that 
spherical) bullets to control this effect.
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A collection of World War II firearms. Groups of mathematicians were employed by the war departments both in 
World War I and World War II for tasks such as creating tables of trajectories for army artillery units.



Robins’s work ultimately had a broad impact. In a 
time of very poor English-Continental mathematical 
relations, Euler himself found Robins’ work from 1742 
so important that he translated it into German in 1745 
and made extensive additions. He contributed and 
acclaimed the work of Robins. Napoleon Bonaparte, 
an avid student of mathematics who is widely consid-
ered to have revolutionized the use of field artillery, 
had Euler’s translation translated into French for his 
study. Euler is credited with bringing the study of tra-
jectory motion into the modern mathematics realm. 
In his 1753 work, he described motion in terms of 
second-order differential equations, allowing him to 
make appropriate changes in assumptions about air 
resistance and to give better approximate solutions that 
matched experimental results. Work was undertaken to 
create tables of trajectories for army artillery units. As 
technology advanced, mathematics had to evolve to 
keep pace. There were groups of mathematicians who 
worked for the war departments in both World War I 
and World War II. For example, British mathematician 
John Littlewood improved and simplified calculation 
formulas for range, flight time, and angle of descent 
of projectiles and updated ballistics tables. The Applied 
Mathematics Panel in the United States in World War 
II looked at various trajectory issues, including aer-
ial dogfights and projectile trajectory. The U.S. Navy 
maintained the Aberdeen Proving Grounds after the 
war and had panels of mathematicians there to help 
model projectile motion and explosions.

There are a number of other interesting mathemati-
cal connections related to artillery and firearms, such 
as caliber and barrel rifling. The caliber of a firearm is 
the approximate diameter of the barrel and the projec-
tile used in it, usually measured in inches or millime-
ters. Rifling is traditionally the process of making heli-
cal grooves down the entire length of a firearm’s barrel 
to impart a spin to the projectile. Polygonal rifling is 
another method that shapes the interior of the barrel 
like a polygon with rounded edges to achieve a similar 
effect, most commonly with hexagons but sometimes 
with octagons or decagons. Overall, rifling gives the 
projectile gyroscopic stability and improves its trajec-
tory. Since a rifled barrel is noncircular, as opposed to 
a smoothbore (nonrifled) weapon, there are different 
ways of measuring caliber. In the case of helical rifling, 
measurements may be taken of the bore diameter, which 
is the diameter across the lands or high points in the 

rifling, or the groove diameter, which is the diameter 
across the grooves or low points. Rifling grooves cre-
ate striations on the bullet, which, together with caliber, 
are used in forensics to identify the firearm that shot a 
bullet. Twist rate for rifling is the distance the projectile 
must travel down the barrel to complete one full revo-
lution about its own axis, which is often given in units 
of turns per inches or centimeters. A shorter distance 
indicates a higher turning rate and a faster spin.
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Fireworks
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Number and 
Operations.
Summary: Firework mathematics involves the timing 
and rhythm of burning, rocket flight, and explosions.

Fireworks are explosions for entertainment with design 
elements of light, sound, and smoke. Chemical addi-
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tives are used to color fireworks, which originated in 
ancient China. The province of Liuyang is known as the 
home of fireworks. Fireworks as an art are temporal, 
like dance or animation; therefore, much of firework 
mathematics has to do with the timing and rhythm 
of burning, rocket flight, and explosions. Mathemati-
cians around the world have modeled and quantified 
various aspects related to fireworks, like the path and 
maximum height. In the seventeenth century, Claude 
Dechales published what became a popular textbook 
on mathematics that included pyrotechnics. Engineer 
Amédée-François Frézier, whom some also refer to as 
a mathematician, worked on the theory of fireworks 
in the eighteenth century. The process of mathematical 
induction has been likened to a sequence of con-
nected fireworks. In the United States, the Bureau 
of Alcohol, Tobacco, Firearms and Explosives 
classifies and regulates fireworks.

Patterns of Explosions
Most fireworks shot into the air explode in 
spherical patterns. By modifying the composi-
tion of fireworks, it is possible to add or remove 
tail effects, change the speed of individual parts, 
and produce delayed explosions to parts, filling 
spheres with radial lines or creating expanding 
spheres. Less frequent are fireworks that burn 
sustained, extending, two-dimensional shapes, 
such as rings or hearts.

Ratios and Proportions  
of Shells and Mortars
Many fireworks are packed into shells and fired 
out of special mortars, or small cannons. Larger 
shells are fired out of larger mortars with higher 
speeds and also fly higher. As with any projectile, 
the path and height of the firework shell, until the 
explosion, obey the quadratic equation of gravita-
tional deceleration and the shell flies following the 
path of a parabola. On the other hand, because of 
the physics of the black powder or pyrex used to 
propel the shells out of the mortars, the relation-
ship between the size of shells, mortars, and their 
initial speed is linear. The relationship between 
the size of the shells and the maximum height 
they fly is also linear. Pyrotechnician formulas 
approximate 100 feet of the shell’s maximum 
flight height per every inch of its diameter. The 

explosion of the firework has to be timed so it happens 
when the shell is high up in the air, which is achieved 
through solving the height equation and matching the 
time of chemical reactions in the shell to that height.

Fireworks Color and Temperature Gradients
There are two distinct ways to color fireworks. The first 
method is based on the same physical process used in 
incandescent light bulbs and the second on that used 
in neon lights. The first method uses blackbody radia-
tion—the property of objects to emit more light with 
higher temperature. Blackbody radiation emits light 
over a broad spectrum. As metals heat, they start to 
become red to the human eye because the majority of 
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Many of today’s fireworks are made in much the same way 
they were hundreds of years ago. 



the spectrum is light at infrared wavelengths human 
beings cannot see. When the temperature rises, the 
emission of the light in the visible spectrum increases 
and the object becomes first yellowish and then white, 
the mixture of all visible-light wavelengths. Thus, fire-
works that depend on blackbody radiation for their 
color can only be dull red, pale yellow, or white.

The second method of firework coloring is based on 
the so-called atomic emission. Atoms in the firework 
material, before the firework is fired, are in a stable state, 
corresponding to particular orbits of electrons. If atoms 
are electronically excited, they emit photons to return to 
that stable state. When photons are in the visible spec-
trum, the human eye sees a color as the atomic emission 
takes place. Some elements have a narrow spectral band 
in their atomic emissions, allowing particular pure 
colors to be pinpointed. For example, sodium emits 
bright yellow and barium emits green when electroni-
cally excited. Copper salts emit pure blue but they are so 
unstable at high temperature that people only recently 
learned to use them safely in fireworks.

If the firework material burns too hot, the blackbody 
radiation process takes over. Therefore, to produce pure 
colors of the atomic emission process, pyrotechnicians 
create mixtures that burn relatively cool. The chemis-
try breakthrough allowing this to happen was the sub-
stitution of potassium chlorate, which burns at around 
120 degrees Celsius, for potassium nitrate, which burns 
at 560 degrees Celsius. Fireworks contain coolants that 
prevent burning from reaching higher temperatures, 
for example, by releasing some water and carbon diox-
ide, as sodium bicarbonate does.

Pyrotechnic Competition and Measurements
At competitive events, fireworks are measured based 
on several criteria, mostly qualitative and artistic. The 
quantitative criteria include purity and brightness of 
color and the appropriate explosion height. The timing 
of the intended fireworks effects, such as the change 
of shape and color, is also taken into consideration—it 
has to follow a recognizable temporal pattern and to 
form a pleasing rhythm. 

Competition judges add points for technical diffi-
culty, celebrating innovations in fireworks. For example, 
when strobe effects were first discovered, fireworks using 
them were awarded technical difficulty points at com-
petitions. After a few years, as strobe effects became well 
researched, judges stopped awarding points for them.

Further Reading
Danby, J. M. A. “Fireworks.” The College Mathematics 

Journal 23, no. 3 (1992).
Lancaster, Ronald. Fireworks, Principles and Practice. 4th 

ed. Gloucester, MA: Chemical Publishing, 2005.
Shimizu, Takeo. Fireworks: The Art, Science, and 

Technique. 3rd ed. Post Falls, ID: Pyrotechnics 
Publications, 1996.

Maria Droujkova

See Also: Chinese Mathematics; Energy; Light; 
Temperature.

Fishing
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Geometry.
Summary: Fishing tactics, management, and 
measuring all require the sophisticated use of 
mathematical principles.

Mathematics has proven to be a useful tool in under-
standing the impact of a variety of factors that influ-
ence fish populations. Other mathematical techniques 
have been used to analyze photographs of fish and to 
generate useful estimates of the fish’s weight. Mathe-
matics has also demonstrated its utility in the creation 
of tools for locating and catching fish.

Fishery Management
The estimation and regulation of the striped bass and 
bluefin tuna populations along the East Coast of the 
United States are examples of important fishery man-
agement issues with serious economic implications. 

Mathematics as an ecosystem-based management 
tool has been used to formulate population models 
that attempt to account for very complex environ-
mental factors, including variations in water quality 
and temperature; fluctuations in the availability of 
important forage species upon which the targeted spe-
cies depend for food; the presence (or lack thereof) of 
appropriate spawning areas; the impact of fish farming 
on wild fish populations; the interplay of commercial 
fishing and sport fishing; the introduction of invasive 
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species; and the impact of diseases. Regulations regard-
ing the timing, size, and number of fish that are to be 
harvested are based, in part, on mathematical models. 
Presumably, understanding the likely consequences of 
changes in these and other factors will lead to improved 
management decisions. An alternative management 
approach has been suggested by analysis of the history 
of the sardine fishery in California’s coastal waters. 
Such evidence has led some mathematicians to believe 
that fluctuations in fish populations are best explained 
by utilizing branches of mathematics known as “com-
plexity theory” and “chaos theory.”

Weight Estimation
Mathematicians were called upon when the National 
Freshwater Fishing Hall of Fame faced controversy over 
its listing of the record muskellunge as a fish caught in 
1949, reported to be 63.5 inches in length and weigh-
ing 69 pounds. Three photographs of the angler hold-
ing the fish in front of him documented the catch. The 
question arose, since the height of the angler in the 
photograph was known: could the length of the fish 
be accurately estimated? In fact, projective geometry 
together with some precise measurements gleaned from 
the photographs could provide very good estimates of 
the length of the fish. However, a difficulty remained: 
was there a way of accurately estimating the weight of 
a muskellunge based upon its length, without knowing 
its girth? In fact, an algebraic formula has been devel-
oped for estimating the weight of a muskellunge that 
requires only a precise measurement of the length of a 
portion of the fish’s body. The formula is

W
L=

3

2800

where W is the weight in pounds and L is the length 
in inches. 

Tools for Locating and Catching Fish
The electronic devices often utilized in locating fish 
include flashers, LCD graphs, and global positioning 
systems. Each of these items depends upon mathemat-
ical underpinnings. However, mathematics also plays 
an important role in the creation of the nonelectronic 
tools used in sport fishing. 

The design of reels, fly lines, and fishing rods depends 
upon mathematics. The role of geometry is especially 

apparent in the building of traditional split-bamboo 
fly rods. For example, in a two-piece split-bamboo rod, 
each of the two sections of the rod requires that six 
strips of bamboo be cut and planed to a precise taper 
such that each strip has cross sections along its length 
that are equilateral triangles of diminishing size. When 
these strips are properly glued together, hexagonal cross 
sections result. The rod blank so created is the founda-
tion of a bamboo fly rod. The builder must still decide 
where to place the line guides along the length of the 
blank in order to produce a fishing rod that will both 
cast well and enable the fisherman to quickly capture 
hooked fish. Not only does the distance between con-
secutive guides increase from the rod tip toward the butt 
of the rod but also those distances change in a precise 
way. The initial placement of the guides on the rod is 
accomplished by using an idea from algebra known as 
“arithmetic progression.” The fine-tuning of the guide 
placement on the rod then depends upon measuring the 
arc through which the rod bends when placed under a 
predetermined load. 

Further Reading
Raeburn, Paul. “Using Chaos Theory to Revitalize 

Fisheries.” Scientific American (February 2009).
Yami, Ben. “Mathematics and Selective Fishing.” 

WorldFishing & Aquaculture (June 1, 2009).

Philip McCartney

See Also: GPS; Knots; Marine Navigation; 
Mathematical Modeling; Predator–Prey Models; 
Problem Solving in Society; Tides and Waves. 

Floods
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement.
Summary: Engineering has always been engaged with 
flood protection and the containment of floodwaters; 
mathematics is also used to predict flooding.

Although some floods occur with little to no warning, 
overall patterns of flooding along rivers or streams can 
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be determined based on measurement and the statis-
tical analysis and extrapolation of gathered data, such 
as a river’s historical and current discharge, stage, and 
flood-stage levels. The resulting data can be used to 
find the probability of future flooding. Mathematicians 
and engineers are actively engaged in developing sys-
tems to model, predict, and control floods, especially 
for low-lying areas of the world like the Netherlands 
and the Mississippi Valley in the United States. Flood 
prediction and flood control are vital because of floods’ 
potentially devastating impacts—floods are among the 
leading natural disasters in terms of loss of life and 
property damage.

Flood Prediction
One of the first steps in flood prediction is the mea-
surement of a river’s discharge, stage, and flood stage. 

The size and flow of rivers are measured using a vari-
ety of different methods. Key determinations include 
the discharge or flow, which measures the volume of 
water passing through a section of the river in a par-
ticular time frame, such as cubic feet per second; the 
stage, or water surface level over a set criteria, such as 
sea level; and the flood stage, when a river’s overflow 
will result in widespread inundation or heavy impacts 
on life and property. Determination of the area of 
inundation during a flood stage must also take into 
consideration the topography of the nearby area, such 
as its slope. During a particular flood, analysts also 
determine the peak or crest, when the river reaches its 
highest stage. 

Scientists then create flood forecasts based on cal-
culations determined from the statistical analysis of 
the gathered data. The mathematical calculation of 
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the relationship between an area’s precipitation levels 
and the discharge of nearby rivers and streams relies 
on a number of complex factors. Geographical factors 
can include the topography; types of bedrock, soil, and 
vegetation; and area of the drainage basin. Meteoro-
logical factors can include the intensity and duration 
of precipitation on average, as well as before and dur-
ing a particular storm. Because of the complexity of the 
data, forecasters rely on calculating probability based 
on historical data of peak discharge frequency. 

Statistical analysis of the probability of exceeding 
the average annual peak discharge in a specified time 
frame can be made for drainage basins for which a 
series of records of maximum annual discharges 
(peak flow) are available and ranked from larg-
est to smallest. The calculated probabilities include 
the probability that a peak flow will be equaled or 
exceeded within one year, known as the “exceedence 
probability” and expressed as a decimal fraction; and 
the recurrence interval, which is the average number 
of years between past events. The recurrence interval 
can also be defined as the number of years in which 
analysts expect a one-time flow that will equal or 
exceed a peak flow. 

The recurrence interval for a particular location can 
be used to determine the probability of a flood at that 
location, expressed by the formula

P
T

= 1

where P is the probability of a flood and T is the recur-
rence interval. For example, a 100-year recurrence 
interval would produce a 1% probability of a flood of 
equal or greater magnitude in a given year. Engineers, 
scientists, forecasters, and the public must be aware, 
however, that the resulting probability is an aver-
age. For example, a 100-year flood is not statistically 
expected to occur exactly once every 100 years and two 
such floods may occur in close proximity. 

Graphing and Modeling Floods
Analysts use these statistics in the construction of 
graphs and tables known as “frequency distributions,” 
which show the probability of various discharges for 
particular locations and thus the probability of a flood 
in a particular area. Analysts can utilize a variety of 
mathematical equations to carry out the statistical 

analysis needed to create frequency distributions. The 
most common equations include Normal Distribu-
tion, Log-Normal Distribution, Gumbel Distribution, 
and Log-Pearson Type III Distribution.

Different mathematical methods are used to deter-
mine frequency distributions in those locations where 
recorded data of discharge is unavailable or incom-
plete. In some cases, analysts use flood frequency esti-
mates from nearby or similar areas with complete data 
to create estimates for areas that lack data. One com-
monly used method is the rational method, which uti-
lizes the relationship between peak discharge and the 
product of drainage basin area, precipitation intensity 
level, and a standard coefficient based on the drainage 
basin’s land use or ground cover. Other methods allow 
for the incorporation of changes in a river’s discharge 
over time as well as its peak discharge. The increasing 
availability of flood-modeling software allows analysts 
to input data into computers, which then produce 
flood probabilities and frequency distributions as well 
as the effects of environmental impacts, such as defor-
estation and global climate pattern changes, on future 
flood patterns.

Applications of Flood Models
Meteorologists use flood probabilities and frequency 
distributions to aid in the issuance of flood watches 
and warnings. Engineers use flood probability esti-
mates of both magnitude and frequency when con-
structing and managing flood control structures, such 
as dams and levees, as well as nearby structures, such 
as roads and bridges. 

The information is also useful when planning to 
divert or change the course of rivers or streams that 
frequently flood, increase the slope of the surround-
ing topography to lessen inundation, create floodway 
channels, or determine when to lower dam reservoir 
levels. Governments and other groups use flood prob-
abilities and frequency distributions when planning 
the location of residences, towns, and industries along 
rivers and streams. 

Further Reading
Baker, Victor R., and R. Craig Kochel. Flood 

Geomorphology. Hoboken, NJ: Wiley, 1988.
Bedient, Philip B., and Wayne C. Huber. Hydrology  

and Floodplain Analysis. Upper Saddle River, NJ:  
Prentice Hall, 2002.
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See Also: Earthquakes; Forecasting; Hurricanes and 
Tornadoes; Landscape Design.

Football
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Football coaches use statistics to inform 
their decisions while the National Football League 
analyzes the effects of its rules.

Though a physical battle between two teams of talented 
athletes, football can be analyzed using mathematical 
ideas and techniques. Pertinent to coaches, players, fans, 
and betting agents, these analyses focus on all aspects 
of football—the physical aspects and performance of 
players, game elements (passing, running, defense, and 
kicking, as well as strategies), and the geometry-based 
physics surrounding the game. Mathematical analysis 
can impact the game positively or negatively. Nonethe-
less, football remains a physical competition between 
two teams, despite the use of mathematics to identify 
patterns of strengths and weaknesses, suggest optimal 
strategies, provide rankings, stimulate discussions, and 
possibly resolve arguments. 

Quarterback Rating
The National Football League uses a mathematical for-
mula to rate quarterbacks. Data are collected for each 
game and for the season relative to a quarterback’s pass 
completion percentage (P), touchdown pass percentage 
(T), pass interception percentage (I), and average gain 

per attempt (G). Using a few boundary conditions, a 
quarterback’s rating (Q) is determined by the formula

Q P T I G= + − = +( )5

6
4 5 5 2 5. .

The formula’s derivation in terms of four independent 
variables involves multiple regression techniques.  

Overtime Rules
The National Football League also uses Markov chain 
techniques to analyze its overtime rules in response to 
the “statistical fact” that too many football teams were 
winning important games with a field goal on their first 
overtime possession. Thus, the “winning” team, after a 
hard-fought game, is influenced too greatly by a single 
coin flip that determines team possession, with mini-
mal differences accounted for by a team’s ability to score 
on the first possession. Effective in 2011, the rules for 
play-off games were changed to prevent the game end-
ing with a field goal on the first possession of overtime.

Though difficult to implement practically, geom-
etry, trigonometry, and calculus all play strong roles 
within a football game and its situations. Examples 
include the following:

• Use of a quarterback’s physical characteristics 
to determine the best angle and release points 
for throwing a pass, assuming it must reach 
receivers in different field locations and at 
multiple distances

• Use of the law of cosines to both understand 
and improve passing angles, timing, and 
patterns run by receivers

• Determination of an optimal efficiency 
for punters on each kick, or the ratio of 
the actual kick’s distance to the maximum 
possible distance using the same force

• Prior to kicking a field goal, determination 
of success in terms of the angle subtended by 
the two goal posts

• Determinination of a defensive lineman’s 
stance to maximize centers of gravity and 
potential force on impact with an  
opposing linemen

By gathering and analyzing the available data pro-
vided by a game, probabilities can help examine the 
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particular events happening within a game, such as the 
following:

• Likelihood of a team making 0, 1, or 3 points 
after a touchdown score

• Reality of a quarterback having a “hot hand” 
in his or her completion of successive passes

• Success of making a field goal, given it will 
or will not result in a change in who has the 
leading score

• Probability of scoring during a fourth-and-goal
• Monitoring a coach’s decisions in calling 

plays, especially if “conservative” 
• Probability of a record being broken, either 

by a team or by a player

Similarly, mathematical statistics provide perspec-
tives that explain game occurrences, provide compara-
tive rankings of teams and players, and assist in deci-
sion making by coaches and team management. The 
usual sources of statistics are data regarding passing, 
running, defense, kicking, turnovers, and time man-
agement. Examples include the following:

• Use of ratios, means, and medians as 
descriptive statistics for a player, a position, a 
game, or a season

• Use of logistic regression models to calculate 
end-of-game point differentials, based on 
independent variables such as turnovers, 
passing yardage, running yardage, penalty 
yardage, number of first downs, and number 
of completed passes

• Impact of icing a place-kicker at crucial times 
within a game

• Correlations between a player’s characteristics 
and training regimens relative to game 
performance

• Trend analysis, based on either a player’s or a 
team’s performance in specific ways over the 
past 5, 10, and 15 games

• Winning tendencies based on connections to 
lead changes during a game or knowledge of 
the team leading at the end of the third quarter

• Impact of rules changes on team scoring 
and defenses within the sport itself, such 
as observed effects of initial field positions 
subject to penalties or punts out of bounds

• Determining the “best” all-time player in a 
particular position (for example, quarterback, 
tight end, halfback, linebacker, or field-goal 
kicker), at a particular time in a game (such 
as the last quarter) or in an era

• The use of digraphs and “mysterious” 
statistical formulas to determine weekly 
rankings and placement of teams in a 
bracketed tournament (such as the Bowl 
Championship Series), directly affecting 
betting pools with stated odds

• Selection of players by professional teams 
during the annual draft, using historical data 
for each player’s performance in conjunction 
with physical data

• The use of statistical data as part of 
contract negotiations between players and 
management, or even the release or trading 
of players based on team needs

• The questionable yet significant correlation 
between stock market performance and the 
Super Bowl’s winning team

Mathematical game theory is evident in a coach’s 
decision-making process, such as on each play within 
a football game, hoping to choose optimal tactics. The 
specific decisions range considerably and include the 
following: 

• A coach’s choice of designed offensive plays 
and defensive set-ups, relative to the down, 
position on the field, time of game, score, and 
opponent

• A coach’s calling of time-outs and play 
reviews at opportune times

• A coach’s use of techniques to motivate 
specific players

• A team’s selection of players during a draft, 
dependent on the players’ apparent abilities, 
the inferred needs of other teams, and the 
specific draft round

• Contract negotiations involving players, 
agents, and team management

Finally, using these statistical data and mathemati-
cal modeling techniques, one can create realistic simu-
lations of football games, possibly using computer 
animations. 
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At the collegiate and professional levels, coaches 
increasingly use mathematics to remain competitive, 
even hiring mathematical statisticians as important 
parts of their staff. However, some authors and fans 
suggest that the football team with the best players and 
coaching will usually win, despite any use of sophisti-
cated mathematics.

Further Reading
Bennett, Jay, and James Cochran. Anthology of Statistics 

in Sports. Philadelphia, PA: Society for Industrial and 
Applied Mathematics, 2005.
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Eastway, Rob, and John Haigh. Beating the Odds: The 
Hidden Mathematics of Sport. London: Robson  
Books, 2007.

Friedman, Arthur. The World of Sports Statistics: How 
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Information. New York: Athenaeum, 1978.

Gay, Timothy. The Physics of Football. New York: 
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See Also: Baseball; Basketball; Hockey; Kicking a Field 
Goal; Soccer.

Forecasting
Category: Business, Economics and Marketing.
Fields of Study: Data Analysis and Probability; 
Number and Operations; Problem Solving.
Summary: The science of prediction is grounded 
in statistics, data analysis, and modeling, applied to 
such areas as traffic, sales, and the stock market.

Forecasting essentially means predicting. Prediction of 
various phenomena has been of interest to mankind 
ever since humans have inhabited the planet. One pre-
diction of early human beings may have been that the 
sun would rise the next day, along with where animals 
or other food might appear. These predictions would 
be based on observation and experience. Once human 
beings began to investigate natural laws, certain predic-

tions like the rising of the sun came to be regarded as 
certainties by many scientists. Generally, all predictions 
are based on experience but may be formulated with 
varying degrees of mathematical rigor that involve dif-
ferent levels of probability or uncertainty. “Prediction” 
may refer to guessing about the past but “forecasting” is 
always used to mean guessing events that may or may 
not happen in the future. Forecasting may be qualitative 
or quantitative, and events may not occur at all or may 
only occur after a very long period of time. 

Mathematicians and statisticians have explored 
forecasting in a variety of fields, such as traffic flow, 
ocean waves, and asset price forecasts. Many mathema-
ticians have contributed to weather forecasting, such 
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Business Forecasting

F orecasting is used extensively in business. 
Data required for mathematical forecasting 

models in business come from a variety of sub-
jective, judgmental, or objective sources, some 
of which must be coded or quantified. Some 
common problems in business include predict-
ing the following: the number of people who are 
interested in or are likely to buy a particular new 
product, sometimes called a “market survey” or 
“demand forecast”; the amount of sales a com-
pany will make during a given fiscal period, called 
“sales projection”; or “consumer satisfaction.” 
Mathematician John Paulos’s book, A Mathema-
tician Plays the Stock Market, addressed the 
issue of predicting stock market behavior, widely 
regarded as one of the most mathematically 
challenging forecasting problems. 

His discussion included criticisms of some 
mathematical methods of stock market fore-
casting, like Elliott waves. Accountant Ralph 
Elliott studied stock market data and inves-
tor psychology. He theorized that the market 
moved in probabilistic cycles that could be ana-
lyzed and predicted using Fibonacci numbers, 
named for mathematician Leonardo Fibonacci. 
Many investors engage in pattern trading based 
on Elliott wave methods. 



as Johann Werner, James Glaisher, Lewis Richardson, 
Vilhelm Bjerknes, and Edward Lorenz. With regard to 
business, economics, and marketing, in the eleventh 
century, Shen Kua explored price forecasting and the 
theory of supply and demand. Statisticians George Box 
and Gwilym Jenkins in 1970 published a book on time 
series analysis for forecasting. In 2001, George Tiao 
won the Samuel Wilks Award of the American Statisti-
cal Association, in part for his work in forecasting, and 
in 2003, David Wallace won the same award, in part for 
his research on forecasting elections. 

Forecasting Models
Forecasting models are created using a wide variety of 
analytical and computational methods from mathe-
matics and statistics. In general, the quantification and 
reduction of uncertainty are required to make forecast-
ing models accurate enough to help businesses make 
sound decisions. 

Several issues arise while forecasting, including the 
time range of the forecast (the time until which the 
forecast may be applicable) and the availability and 
reliability of the data. Some traditional data analytic 
methods must be modified to account for the serial 
correlation common in data resulting from processes 
observed repeatedly over time. A large class of mathe-
matical forecasting models involves applying weighted 
smoothing methods to fit functions or trends to his-
torical data. Smoothing constants and other param-
eters may depend on choices made by the forecaster, so 
different models based on exactly the same data might 
produce varying forecasts. 

Autoregressive moving average (ARMA) mod-
els, sometimes called “Box–Jenkins models” because 
they are estimated using a methodology developed by 
Box and Jenkins, along with integrated moving aver-
age (ARIMA) models, are widely applied to what are 
known as observable, nonstationary processes with 
serially correlated data. Financial data commonly falls 
into this process category. They may also use adaptive 
filtering, widely found in other applications such as 
signal processing, to remove noise. 

Decomposition forecasting models mathematically 
separate overall trend, seasonal, and random com-
ponents in data. Scatterplots, simple linear regres-
sion, and curve fitting may be useful for explorations 
and some modeling. Simulation methods facilitate 
dynamic models and exploration of “what-if ” scenar-

ios. The cross-impact matrix method explicitly takes 
into account the fact that the occurrence of one event 
can impact the likelihood of other events, so probabil-
ities can be assigned to produce an intercorrelational 
structure to examine relationships between system 
components. Multiple regression is also used to exam-
ine multifactor influences. In general, the greater the 
interdependence of components, the more difficult it 
becomes to make a prediction about any single com-
ponent. Decision trees, game theory, and chaos theory 
are other mathematical areas that have been used to 
explore systems to make forecasts. 

Forecasting Validity
Ultimately, forecasts are usually judged by their accu-
racy, often in a subjective manner, and there are many 
theories regarding how to measure the utility of fore-
casts. One criterion is to assess whether the forecast dif-
fers from pure randomness. Another is to quantify the 
magnitude of error. Decision scientist Spyros Makrida-
kis has stated that in many situations, judgmental fore-
casting by human experts has been shown to be superior 
to mathematical models. However, in terms of optimi-
zation, he also noted that forecasting many complex 
problems is unfeasible without computer modeling. For 
example, simultaneously forecasting inventory levels for 
thousands of items for sale at a major retailer or needed 
by a manufacturing company is likely beyond the scope 
of subjective judgmental forecasting. Computer tech-
nology also allows for the creation of complex decision 
algorithms with subsystems and feedback loops. 

Stability in the system being modeled is also an 
important factor in determining whether model 
extrapolation will be valid and reliable for forecasting. 
Developmental inertia is the idea that some systems 
are less variable and therefore more easily predictable 
than others. For example, the rapidly changing fash-
ion industry is a low-inertia or unstable system and 
new trends are difficult to predict mathematically. 
Decisions also need not be dichotomies but rather 
probabilities along multiple paths. Mathematical con-
cepts from decision theory and utility theory, such as 
expected value, have also been incorporated into fore-
casting modeling and decisions. 

Forecasting Ethics
An ethical consideration raised by forecasting is 
whether probabilistic inferences actually create the 
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future, since decisions made today by individuals, busi-
nesses, and policy makers undoubtedly affect actions 
taken later. In his 1970 novel Future Shock, sociologist 
Alvin Toffler discussed the impact of evolving technol-
ogy on humans and asserted the need for value impact 
forecasting, which is the idea that social forecasting 
must incorporate cultural and societal values. Math-
ematicians and others continue to study and debate 
these theories and problems and to seek ways to quan-
tify psychological and qualitative variables considered 
essential by many forecasters.

Further Reading
Chase, Charles. Demand-Driven Forecasting: A Structured 

Approach to Forecasting. Hoboken, NJ: Wiley, 2009.
Hanke, John. Business Forecasting. 9th ed. Upper Saddle 

River, NJ: Prentice Hall, 2008.
Howe, Leo, and Alan Wain. Predicting the Future. New 

York: Cambridge University Press, 2005.
Morlidge, S., and S. Player. Future Ready: How to Master 

Business Forecasting. Hoboken, NJ: Wiley, 2010.
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See Also: Data Mining; Ethics; Inventory Models;  
Predicting Preferences; Probability; Scheduling.

Forecasting, Weather
See Weather Forecasting

Forest Fires
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry; Measurement.
Summary: The spread of forest fires has been 
modeled for decades to guide firefighting decisions.

Forest service officials have often used controlled 
burns to reduce the risk of fires spreading by burning 
the dry vegetation that builds up on the forest floor. 

Predicting the spread of a fire, whether a controlled 
burn or a wildfire burning out of control, is of great 
interest in forest management. Mathematical models 
take into account various parameters, indices, and 
activity levels.

Brief History of Forest Fire Modeling
According to Forest Service (a branch of the U.S. Depart-
ment of Agriculture) documents, the first mathematical 
model of the spread of fires was developed in 1946 by 
W. R. Fons. Fons’s model was based on approximating 
the spread as a series of ignitions, with the key elements 
being ignition time and the distance between particles. 
Over the years, fire models became more sophisticated, 
using increasingly complicated mathematical equa-
tions, as in Richard C. Rothermel’s 1972 differential and 
integral equation model of fire spread. 

With the development of high-speed computers in 
the last quarter of the twentieth century, simulation 
models that use large numbers of relatively simple 
probabilistic and geometric relationships have become 
more common. In these models, forest fires are repre-
sented by a grid of trees where a variety of parameters 
are set for each tree. 

Examples of Forest Fire Models
A very simple simulation of a forest fire can be modeled 
with a grid of evenly spaced trees and a number cube. 
Set a forest dryness factor—a set of numbers that, when 
rolled on a six-sided die, indicate that a tree will catch 
fire if one of its four neighbors is on fire. For example, 
a dry forest might be represented by the numbers 1, 2, 
3, and 4. In this example, 4/6 or 2/3 of the time, the fire 
would spread to neighbor trees.

To see how such a simple model works, set the tree 
in position (3,2) on fire in the grid below and then roll 
the number cube for the trees in positions (3,1), (2,2), 
(3,3) and (4,2) to see if they will catch fire as the origi-
nal tree “burns out.”
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Suppose the number cube rolls are 5, 2, 3, and 2, 
respectively; then the fire would spread as pictured, 
with the tree in position (3, 1) remaining unlit.

To complete the simulation, continue rolling the 
number cube to see if the trees adjacent to the three 
now on fire will burn. As with all models involving 
probabilities, it is important to run the simulation a 
large number of times and to look at the average or 
most common results rather than to rely on one run of 
the simulation, such as the forest fire simulation screen 
shot below: 

The simulations in use today to model forest fires 
are very sophisticated. They include thousands of trees 
and hundreds of parameters, such as tree size, distribu-
tion, and dryness; wind speed and direction; humidity 
and ambient air temperature; leaf litter buildup; heat-
ing, ignition, and burn time; and the geometry of the 
terrain. These parameters contribute to the calculation 
of the probability that a tree will catch fire when its 
neighbors are on fire.  Computer visualization software 

of the early twenty-first century allows programmers 
to build sophisticated user interfaces for these mod-
els in which the spread of the fire can be watched on 
screen and users can interact with the model, clearing a 
firebreak or starting a backfire.

Applications of Forest Fire Models
These models can be used to predict how a hypotheti-
cal fire might behave or to determine the best interven-
tion in an existing fire, provided the parameter values 
used in the model accurately reflect the real conditions 
in the forest. Estimating these parameters poses a chal-
lenge to forestry officials—terrain and tree size and 
distribution are constant in a given forest at a specific 
time but other parameters, such as tree dryness, wind 
speed and direction, humidity, and ambient air tem-
perature, vary over time, sometimes significantly. 

Failure to accurately gauge parameters in a model 
can lead to disastrous results. In 2000, the National 
Park Service developed a fire plan for a controlled burn 
at the Bandolier National Monument in New Mexico. 
Now known as the Cerro Grande fire, the wind shifted 
and strengthened unpredictably, causing the fire to 
rage out of control, damaging more than 200 homes 
and 48,000 acres of land in and around the town of 
Los Alamos. 

Agencies and firefighters use a wide variety of 
National Fire-Danger Rating System (NFDRS) indi-
ces and activity levels to monitor and make decisions 
about fires. For example, the Occurrence Index pre-
dicts the potential fire incidence within a rated area. 
Fire behavior researchers, like George Byram, defined 
many quantitative measures of fire behavior, such 
as the definition for fire intensity as the rate of heat 
energy release per unit time per unit length of fire 
front, which is defined independently of the depth or 
width of the fire. The Burning Index (BI) is commonly 
used to indicate the amount of effort that is needed to 
contain a given fire. The BI is calculated based on the 
material that is burning and other factors, including 
a modification of an equation defined by Byram for 
flame length. Some people have criticized agencies for 
failure to use historic data in making future predic-
tions of wildfire hazards, such as recent burn areas in 
which wildfire is rarely likely to spread.

Newer mathematical models may improve fire 
forecasts and replace indices like the BI. Statistician 
Frederic Schoenberg collected and analyzed historic 
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wildfire data in order to build statistical models that 
clarify relationships such as the apparent linear asso-
ciation between wildfire hazard and average tempera-
ture for those that fall below 21 degrees Celsius. While 
drought is a demonstrated predictor of fires, climatol-
ogy statistician Sam Shen, atmospheric physicist Rob-
ert Field, and earth scientist Guido van der Werf also 
linked fires in Indonesia with changes in land use and 
population density. These types of studies have led to 
quips that only mathematics can prevent forest fires.
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Fuel Consumption
Category: Travel and Transportation.
Fields of Study: Algebra; Measurement.
Summary: Vehicle fuel consumption and efficiency 
are often mathematically investigated.

Fuel consumption can be defined as the amount of 
fuel used for each unit of measurement (usually time 

or distance). An often mistaken meaning is fuel econ-
omy, which is the reciprocal of fuel consumption: the 
amount of distance or time for each unit of fuel used. 
In addition to people in all walks of life using math-
ematics to measure fuel consumption, mathematicians 
research fuel optimization. 

In one case, Pontryagin’s Maximum Principle, 
named after mathematician Lev Pontryagin, character-
izes optimum values that determine a trajectory, such 
as fuel consumption or flight time. On the other hand, 
the counterintuitive assertion that greater fuel effi-
ciency often results in increased fuel consumption is 
sometimes known as the Jevons Paradox, after econo-
mist and logician William Jevons. Mathematicians are 
also involved in research for alternative fuel sources for 
vehicles, such as biodiesel and electrical power.

Fuel consumption is calculated for various reasons, 
including budgeting and maintenance. If a business 
that uses fuel knows the average amount of time or 
average distance traveled by its machines and the fuel 
consumption for each unit, it can calculate the approx-
imate amount of money needed for purchasing fuel 
over the next fiscal period. Tracking fuel consumption 
on a regular basis can indicate a potential breakdown 
of internal engine parts before the issue becomes a 
major repair or hazardous situation.

Calculating Fuel Consumption
Calculating fuel consumption is a fairly simple pro-
cess if you have a way to measure both the time or dis-
tance the machine was used and the amount of fuel 
used to refuel the machine. For example, machines 
that are designed for travel, like cars, trucks, vans, 
or tractor-trailers contain an odometer to record the 
number of miles or kilometers traveled. Many even 
have a trip odometer that can be reset after refueling. 
To calculate fuel consumption, start by having the 
vehicle completely filled with fuel and the odometer 
reading recorded or reset. 

After using the vehicle, fill its tank with fuel and 
measure the amount of fuel that has been added. The 
assumption here is that the amount of fuel added to 
bring the tank back to its full position would approxi-
mate the amount of fuel used since the last time the 
vehicle was fueled. At the same time that the vehicle 
is refueled, also record the odometer. A trip odometer 
indicates the exact distance traveled since the last fill-
up (the distance traveled since it was last reset). If not 
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using a trip odometer, take the current total distance 
traveled and subtract the previous reading taken at the 
last fill-up.

Now that the distance and amount of fuel has been 
measured, calculating fuel consumption is the simple 
division problem C = F ÷ D, where C is the fuel con-
sumption, F is the amount of fuel used, and D is the 
distance traveled.

For example, a vehicle that traveled 400 miles 
on 20 gallons of fuel has a fuel consumption of  
20 ÷ 400 = 0.05 gallons per mile, meaning that five-
hundredths of a gallon (6.4 fluid ounces) of fuel was 
used to travel each mile. In Europe, Australia, and other 
countries (like Canada and China) fuel consumption is 
calculated in liters per 100 kilometers traveled. 

A vehicle that traveled 600 kilometers on 75 
liters of fuel would have a fuel consumption of  
75 ÷ 600 = 0.125 liters per kilometer. To get liters per 
100 kilometers, multiply the result by 100 to get 12.5 
liters per 100 kilometers. When looking at fuel con-
sumption, a lower number is better than a higher 
number, meaning you use less fuel to achieve the 
same distance.

Some countries use fuel economy; for example, the 
United States uses miles per gallon and Japan uses kilo-
meters per liter. The formula for fuel economy (E) is  
E = D ÷ F.

In the above examples, 400 ÷ 20 = 20 miles per gal-
lon (mpg), and 600 ÷ 75 = 8 kilometers per liter. For 
fuel economy, a larger number is desired, meaning a 
greater distance can be traveled using the same amount 
of fuel.

Not all machines were designed to travel, such 
as forklifts and construction equipment. Generally, 
these machines do not measure the distance they 
have traveled but rather the number of hours the 
machine has been in use. Many of these machines 
have an “hour meter” that measures the time the 
machine operates. For example, if a forklift uses 5 
gallons of fuel over an 8-hour shift, fuel consump-
tion is found by the formula C = F ÷ T where T is 
the time the machine is in use. In the above example,  
5 ÷ 8 = 0.625 gallons per hour.
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Function Rate  
of Change
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Calculus; 
Communication; Connections.
Summary: The rate of change of a function is a key 
focus of differential calculus.

Though calculus has a reputation for impenetrabil-
ity compared to algebra and geometry, one of its two 
main branches, differential calculus, is concerned with 
derivatives, or rates of change. Rate of change is intui-
tively understood: the stock market is falling, but how 
fast? The rolling ball is slowing down, but when will it 
stop? A derivative is the rate of change of a mathemati-
cal function, discovered through a process called dif-
ferentiation.

History and Language of the  
Study of the Rate of Change
The ancient Greeks wrestled with the concept of 
change. Parmenides of Elea asserted that change is 
impossible, while Heraclitus of Ephesus believed that 
everything changes and nothing remains still. Aris-
totle accepted some forms of change but he denied 
a “change of change” related to motion. Historians 
have commented that a lack of recognition of a rate of 
change of a velocity was the major stumbling block to 
the development of calculus by Archimedes of Syra-
cuse almost 2000 years before Sir Isaac Newton. 
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The language that describes changing quantities can 
still be confusing. A politician announces that a pro-
posed spending bill will “cut the deficit” because it will 
“lower the rate at which the deficit is growing.” Geolo-
gists announce that global oil production continues 
to increase and that “the rate at which production is 
growing is decreasing.” Does this mean that the rate 
of global oil production itself may soon also decrease? 
Reflecting on a particular twenty-first century reces-
sion, economists shared that “the rate at which jobs 
are being lost is decreasing.” Are these announcements 
good news or bad news?

Average and Instantaneous Rates of Change
In order to understand these statements, several key 
ideas about functions must be investigated; in par-
ticular, it is important to know what it means to say 
that a function is “increasing” or “decreasing,” as well 
as whether a function’s rate of change is increasing or 
decreasing. A familiar physical situation is helpful to 
consider. Let a ball be tossed into the air and follow its 
height above the ground at time t. 

In the late 1600s, Sir Isaac Newton correctly con-
jectured that the ball’s height can be modeled by a 
certain quadratic function. Consider the function 
y h t t t= = − + +( ) 16 32 42 , where h is measured 
in feet and t is measured in seconds, and observe its 
graph below. The goal is to study how the function 
changes as time moves forward and, hence, to under-
stand what is meant formally by “the rate of change of 
the function.”

From our understanding of quadratic functions, we 
can observe that at time t = 0, when the ball is tossed, its 
height is h 0 4( ) =  feet. The ball lands when its height 
is h = 0, which occurs for the positive value of t that 
satisfies − + + =16 32 4 0

2
t t ; the quadratic formula 

indicates that the positive t that satisfies this equation 
is t = + ≈1 5 2 2 118/ .  seconds. 

Finally, since the vertex of the parabola occurs at 
t = − ⋅ − =32 2 16 1/( ( )) , it follows that the maximum 
height the ball reaches is h( )1 16 1 32 1 4 20

2= − ⋅ + ⋅ + =  
feet. Clearly the ball is going up on the interval from  
t = 0 until t = 1, and the ball is going down thereafter. 
Perhaps a more interesting question is “how is the ball 
going up and going down?” Or, “how fast is the ball 
rising or falling at a particular moment?” For instance, 
consider the interval [ 1

2 , 1]. 
On that interval, the ball rose 4 feet, since 

h h1 1 2 20 16 4( ) − ( ) = − = . In addition, half a second 
of time elapsed. This knowledge shows that the func-
tion’s “average rate of change” on the time interval  
[ 1

2 , 1]is

h h1

1

20 16
4 8

1
2

1
2

1
2

2
1

( ) − ( )
−

= − = × =
 

feet per second.

The units on this quantity are important: the 
numerator is measured in feet, while the denominator 
is in seconds, so the overall units are “feet per second,” 
reflecting the rate of change of height with respect to 
time. The algebraic form of the average velocity on the 
time interval [a, b],

h b h a

b a

( ) − ( )
−

is reminiscent of another familiar quantity: the slope 
of a line that passes through the points x y1 1,( ) and 
x y2 2,( )  is given by

y y

x x
2 1

2 1

−
−

Straight line segments are used to model and 
approximate the parabolic function, for example, 
from point B to point C in the graph. Hence, it is seen 
that the average rate of change of the function h on a 
given interval is understood visually to be the slope 
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of a line that passes through two points on the graph 
of h. 

The average rate of change of the function quanti-
fies how fast the ball is rising or falling and will vary 
on different intervals. This accurately reflects that the 
ball is “falling faster,” since its average rate of change 
is more negative than on the preceding interval. For 
instance, on the interval [ , ]0 1

2
, the average rate of 

change of h is

h h( ) ( )1
2

1
2

1
2

2
1

0

0

16 4
12 24

−
−

= − = ⋅ = feet per second,

while on the interval [ , ]1
2

1 , the average rate of change 
is

h h( ) ( )1

1

20 16
4 8

1
2

1
2

1
2

2
1

−
−

= − = ⋅ =  feet per second.

These quantities confirm numerically what we can 
see visually from the graph: the ball is rising faster dur-
ing the first half-second than it is during the second half-
second. What happens in the subsequent half-second?

Similar computations, shows that on the time inter-
val [ , ]1 3

2
, the average rate of change is

h h( ) ( )3
2

3
2

1
2

2
1

1

1

16 20
4 8

−

−
= − = − ⋅ = − feet per second.

Here, for the first time, a negative average rate of 
change is encountered; the minus sign is extremely 
important, as it is the numerical indicator that the ball 
is falling. From the symmetry of the parabola, one can 
expect (and can calculate to check) that on [ , ]3

2
2 , the 

average rate of change of h is −24 feet per second. This 
result accurately reflects that the ball is “falling faster,” 
since its average rate of change is more negative than 
on the preceding interval.

It is next natural to seek to understand the differ-
ence between the ball’s average rate of change on a 
time interval and its “instantaneous” rate of change at 
a single value of t. By taking average rates of change 
on smaller and smaller time intervals, one encounters 
a remarkable phenomenon. For instance, consider the 
average rates of change on [0.5, 1], [0.5, 0.6], [0.5, 0.51], 
and [0.5, 0.501]. The average rate is 8 feet per second 

on the first interval; on the next interval, the function’s 
average rate of change is

h h( . ) ( . )

. .

.

.
.

0 6 0 5

0 6 0 5

17 44 16

0 1
14 4

−
−

= − =  feet per second.

On [0.5,0.51], similar computations reveal that the 
average rate of change is 15.84 feet per second, while 
on the final interval, [0.5, 0.501], the rate is 15.984. 
Here, despite the fact that one is dividing by num-
bers that are getting closer and closer to zero (0.5, 0.1, 
0.01, 0.001), it can be seen that the resulting quanti-
ties themselves seem to be settling down, nearer and 
nearer a single number. Calculus is the mathematics 
that allows these ideas to be made precise. The notion 
of limits and other key related ideas allow mathema-
ticians to move from the notion of average rate of 
change to instantaneous rate of change and indeed 
the instantaneous rate of change of the ball’s height 
with respect to time at the time t = 0.5 is 16 feet per 
second. By considering the corresponding line seg-
ments that pass through two points on the curve, the 
so-called secant lines actually approach a single line 
that is “tangent” to the curve at the point (0.5, 16), as 
pictured in the graph as point B. The red line touches 
the curve only at (0.5, 16), has slope 16, and represents 
the instantaneous rate of change of the ball’s height 
with respect to time at the moment t = 0.5.

The Beginnings of Calculus
This idea of moving from average rates of change to 
instantaneous ones is the starting point for the entire 
subject of differential calculus. Abu Arrayhan Muham-
mad ibn Ahmad al-Biruni investigated instantaneous 
velocity and acceleration approximately 1000 years ago, 
and Isaac Barrow may have been the first to draw tan-
gents to curves in 1670. The development of calculus 
led to a rich collection of concepts centered on the idea 
of a rate of change, many of which were introduced 
by Isaac Newton in his attempts to develop a universal 
theory of gravitation. For instance, Newton attempted 
to avoid the use of the infinitesimal by forming calcu-
lations based on ratios of changes and he determined 
the area under a curve by extrapolating the rate of 
change. In fact, Newton’s second law states that the rate 
of change of momentum of a body is equal to the force 
acting on the body in the same direction. Gottfried 
Leibniz also investigated concepts related to rate of 
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change. He explored maxima, minima, and tangents in 
1684, but mathematicians had difficulty understand-
ing his six-page work.

Other notions of rate of change are also important 
in mathematics and in real-life applications. For exam-
ple, in 1847, Jean Frédéric Frenet assigned a frame of 
vectors to each point on a curve and described the 
twists and turns of the curve by the rate of change of 
the frame. Joseph Alfred Serret independently consid-
ered similar ideas in 1851. The Frenet–Serret frame 
continues to be useful in the early twenty-first cen-
tury when it is impossible to assign a natural coordi-
nate system. 

Many real-life problems, such as population growth, 
can be expressed and modeled as an equation involv-
ing a quantity and its rate of change. All of these ideas 
rest in some way on the fundamental concept of slope, 
which is investigated beginning in the middle grades, 
while the notion of rate of change is first developed 
in high school. Other methods to solve these types of 
problems are studied in the field of differential equa-
tions, which is usually introduced in college. 

Applications of Rates of Change
Returning to two of the original questions about the 
meaning of certain statements and whether they are 
good news or bad news: a proposed spending bill will 
“cut the deficit” because it will “lower the rate at which 
the deficit is growing.” This is not great news, since the 
deficit is still growing, but a deficit growing at a decreas-
ing rate is better than one growing at an increasing rate. 
It would be much better to hear that the budget deficit 
itself was decreasing. Next, the information that “the 
rate at which oil production is growing is decreasing” 
may likely mean that the rate of oil production could 
be leveling off and soon start to decrease—the concept 
of “peak oil” (when the rate of daily global oil produc-
tion reaches its maximum)—and many analysts believe 
humans have just passed this peak and that the rate of 
oil production will only continue to fall from here. 

With the Earth’s human population growing at a 
present rate of 83 million people per year, as well as 
so many other changing quantities, collective efforts 
to understand resource allocation and management 
require sound understanding of rates of change and 
trends in data. Calculus and its language of change are 
a key tool in building a sustainable future for humanity 
and the planet.
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Functions
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication;  
Connections.
Summary: There are many different types of 
functions that arose in a variety of historical contexts.

A mathematical function expresses the idea that one 
quantity can be completely determined by another 
quantity. As such, a function is a well-defined rule 
between two sets, A and B, where each element x of 
A is assigned to one element y of B. The careful study 
of the implications and applications of this definition 
comprises much of mathematics. Functions are ubiq-
uitous throughout nearly all fields of mathematics and 
their importance cannot be overstated. Since a func-
tion expresses a relationship between an independent 
variable and a dependent variable, many real-world 
phenomena are modeled using functions. Functional 
correspondence between variables can be expressed 
verbally, algebraically, or graphically. Although the for-
mal definition of a function is a relatively recent devel-
opment, this concept has been implicit since the begin-
ning of mathematics.  
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Examples of Functions
Functions can be classified in various ways and many of 
these specific classes of functions are the bases of entire 
fields of study within mathematics. Below are a few 
examples to illustrate some areas encompassed by the 
definition of a function. The algebraic equation y = x2 
expresses y as a function of x. No matter what value has 
been chosen for x, only one y value will be produced. 

The expression y = ± x does not represent y as a 
function of x. If x = 1 is entered into the equation, then 
two y values are obtained, y = −1 and y = 1.

The expression y x= ( )cos  is a trigonometric func-
tion. For any given angle expressed in radian measure, 
the cosine function uses a rule from trigonometry to 
produce a real number from −1 to 1.   

An example of an exponential function is given by 
the formula y = 2x. For instance, when x = 2, y = 4. Expo-
nential functions are useful for situations in which the 
rate of growth of a population is directly proportional to 
the size of the population, such as modeling the growth 
of bacteria or the decay of a radioactive sample.  

A piecewise function is defined by different formulas 
for different values of x that are entered into the func-
tion. The Heaviside function is an example of a piece-
wise function: y = 1 for x ≥ 0, and y = 0 for x < 0. 

If one assigns “on” to 1 and “off” to 0, this function 
models the behavior of turning on a switch at x = 0 and 
leaving it on. It is also used in the study of electric cir-
cuits to indicate the surge of an electric current.  

A barcode scanner at a supermarket can be thought 
of as a function. After a particular barcode is scanned, 
only one price will be displayed.

A computer program that obtains the five-digit zip 
code for an address acts as a function because every 
address in the United States has only one zip code 
assigned to it.  

Equivalent Formulations
A helpful way to think about a function is as a machine 
that produces exactly one output y for each input x. 
This “machine” could simply be a description or a list 
of the pairings between x and y. Although this may be 
easier conceptually, in practice it is unfeasible to list all 
of the pairings when there is a large number (or even 
an infinite number) of x values. When one considers 
an infinite number or a large number of x values, it 
is more advantageous to have a mathematical formula 
that precisely relates x and y.  

Graphs of Functions
Another way to represent a function is by using a graph. 
One begins with a set of x values from any subset of 
the real number line and a function. The function then 
specifies a y value for each x. This results in a collection 
of pairings (x, y). Each of these pairs denotes a point, 
which is plotted on the xy-plane in the two-dimensional 
Cartesian coordinate system. The collection of all points 
produced by this process is the graph of the function.  

By virtue of the definition of a function, every x 
value on the graph is paired with, at most, one y value. 
Thus, any vertical line that is drawn will cross the 
graph of the function at most one time. This is known 
as the “vertical line test”: a curve in the xy-plane is the 
graph of a function if—and only if—no vertical line 
crosses the curve more than once. As a consequence of 
the vertical line test, given a curve, it is relatively easy 
to determine if it is the graph of a function. All non-
vertical straight lines are graphs of functions. Circles 
are not graphs of functions.  

History 
The notion of a function has been implicit through-
out the history of mathematics. Addition is the most 
fundamental arithmetical operation and, although it 
was not initially formulated as such, it is a function 
of two variables. The pair of numbers to be added is 
the input and the resulting sum is the output of the 
addition function. Ancient cultures, such as the Baby-
lonians, developed extensive tables of mathematical 
calculations of the reciprocals and square roots of 
positive whole numbers. These calculations involve 
specific functions but were not formulated using the 
function concept.  

In the fourteenth century, Nicole Oresme had a 
rudimentary grasp of the idea that one changing quan-
tity can be dependent upon another. He depicted this 
relationship graphically using a method he called the 
“latitude of forms.” This depiction was the first known 
attempt of the graphical representation of a function. 
Throughout the Middle Ages, the latitude of forms 
continued to be studied; however, further development 
of the function concept was hampered by the absence 
of a suitable algebraic framework.     

The formal study of functions began in the late 
seventeenth century with the discovery of calculus. 
Although in 1692, Gottfried Leibniz first introduced 
the word “function” in association with the tangent 
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problem in calculus, its first definition did not emerge 
until 1718 with Johann Bernoulli. The primary repre-
sentation of a function at that time was from curves 
that were connected to physical problems.  

As the eighteenth century unfolded, algebraic equa-
tions were increasingly being used to represent two-
dimensional curves. As a result, the emphasis and focus 
of the function concept evolved from a graphical setting 
to that of algebra. This shift was evident in Leonhard 
Euler’s 1748 treatise on functions, Introductio in ana-
lysin infinitorium. Euler’s definition of a function was 
that of an “analytic expression” or an algebraic formula 
that could contain any combination, the five arithme-
tic operations: exponentials, logarithms, trigonometric 
ratios, derivatives, and integrals. Euler’s emphasis on 
the algebraic formulation of functions was evident, as 
the first volume of the Introductio contains no graphs.    

The middle of the eighteenth century saw a devel-
opment of the function concept when a controversy 
arose over the solution to the Vibrating String Prob-
lem. Given an elastic string with fixed endpoints and 
deformed into an initial shape, the string was released 
and began to vibrate. The problem was to determine 
a function that would describe the shape of the string 
at any future time. In 1747, Jean Le Rond d’Alembert 
produced a solution in the form of an algebraic equa-
tion. A year later, Euler verified that this solution was 
correct but he disagreed that it was the most general. He 
claimed that d’Alembert had neglected several initial 
shapes of the string that could be drawn freehand and 
for which there were no algebraic expressions. Euler also 
pointed out that other initial shapes could be obtained 
by piecing together simpler curves. This critique led to 
the acceptance of functions produced from freehand 
drawing for which there may not be any algebraic for-
mula and piecewise defined functions.  

Another solution to the Vibrating String Problem 
further complicated matters. In 1753, Daniel Ber-
noulli solved the problem differently than Euler and 
d’Alembert and arrived at a seeming contradiction: 
different mathematical expressions defined the same 
function. The controversy was not resolved at the time; 
it remained for Joseph Fourier to expand upon Ber-
noulli’s idea. Fourier’s solution to the Heat Conduc-
tion Problem in 1807 resulted in a revolution of the 
understanding of a function. Fourier demonstrated 
that a function could be expressed as an infinite series 
of sine and cosine functions, now known as a Fourier 

series. These series demonstrated that two different 
expressions could define the same function. Follow-
ing the development of Fourier series, the connection 
between the geometric and algebraic forms of a func-
tion was further solidified. Furthermore, ideas from 
calculus were reexamined in a new light.   

In 1837, Lejeune Dirichlet suggested a definition of 
“function” that was closely related to the modern defi-
nition. Dirichlet emphasized that a function provides 
a relationship between two variables but allowed for 
freedom in describing the rule that describes how x 
and y are related. To show how pathological a function 
can become, Dirichlet introduced the function y = c for 
x an irrational number, and y = d ≠ c for x a rational 
number.  

This badly behaved function cannot be sketched 
and there is no algebraic equation defining it.  

Since the nineteenth century, it was a natural evolu-
tion to recast Dirichlet’s definition by using set theory. 
The modern definition for a function now provides a 
correspondence between two sets, which may or may not 
be numerical; for example, functions between algebraic 
structures like groups or geometric objects like surfaces.
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Functions, Recursive
Category: History and Development of Curricular 
Concepts.
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Summary: Recursive functions describe the output 
value of a function in terms of other output values of 
the function.

Recursive functions, by iterating certain defined pro-
cedures, can provide a succinct way of describing a 
multistep algorithm or calculating an intricately 
defined number. Long used in mathematical problem 
solving, recursive functions became indispensable 
with the advent of computer programming, as they 
provide a method of concisely encoding repetitive 
processes. 

Many mathematicians explored ideas related to 
recursive functions, including nineteenth-century 
mathematicians Richard Dedekind and Giuseppe 
Peano. In the early and middle part of the twentieth 
century, the development of recursion theory is tied to 
questions about computability and the foundations of 
mathematics. 

Alan Turing and Kurt Gödel preferred the term 
“computable” over “recursive” but the latter terminol-
ogy has been common since the 1930s. Mathematician 
Rosza Peter is noted as a founding mother of recursion 
theory who, along with other researchers like Alonzo 
Church, Gödel, Jacques Herbrand, Stephen Keene, 
Andrey Markov, Emil Post, and Turing, developed the 
area. In the twenty-first century, high school students 
explore recursive functions in mathematics classes, and 
college students apply ideas from a related topic, the 
principle of mathematical induction, in proofs.

What Is a Recursive Function?
Recursive functions describe the output value of the 
function in terms of other output values of the func-
tion, usually for smaller input values. In this case, to 
avoid an infinite recursion loop, one must explicitly 
specify at least one specific output value. For instance, 
one could say that the value of a certain function at 
some counting number is equal to that input value 
multiplied by the value of the function at the next 
smaller input value—algebraically, 

f n n f n( ) = × −( )1 . 

Then one would need to define a specific value of the 
function. Say, at 0, the function is equal to 1; that is,  
f 0 1( ) = . This specification effectively defines the value 
of f at each whole number, although it may require a 

few steps to get there. For example, if one wanted to 
determine f f3 3 2( ) = × ( ), one would first see that

f f3 3 2( ) = × ( ) .

However, f f2 2 1( ) = × ( ) , and f f1 1 0 1( ) = × ( ) = .

So, working backwards, f 1 1( ) = , f 2 2( ) = , and 
f 3 6( ) = . This example, known as the “factorial func-
tion,” plays a key role in combinatorics and probability, 
where f (n) is written n! and equals the number of ways 
to arrange n objects in an ordered list.

Early Uses of Recursion 
Dating from ancient Egypt (c. 1650 b.c.e.), Problem 79 
of the Rhind (or Ahmes) Papyrus describes an estate 
containing 7 houses, 49 cats, 343 mice, 2401 heads of 
wheat, and 16,807 hekat measures (of grain) and gives 
the total of all these numbers as 19,607. The list contains 
powers of the number 7. In 1907, Moritz Cantor inter-
preted this list as a possible precursor of a modern nurs-
ery rhyme. He proposed: an estate has 7 houses; each 
house has 7 cats; each cat can catch 7 mice; each mouse 
eats 7 heads of wheat; and each head of wheat produces 
7 hekats of grain. What is the total of these numbers? Or, 
for a different question, because of all the mouse-eating 
cats in all the houses, how many hekats of grain were 
saved on the estate? This calls to mind the familiar “As I 
was going to St. Ives” nursery rhyme, with its final ques-
tion, “. . . kits, cats, sacks, wives, / How many were going 
to St. Ives?” [The answer is one.]

The Rhind Papyrus problem can be posed as a simple 
recursive function via iteration in which the output of a 
function is used as the same function’s next input value 
and this process is repeated a preordained number of 
times. In this case, one could use the function that mul-
tiplies the input value by 7: f x x( ) = 7 . To obtain the 
number of houses, input the number of estates into the 
function, obtaining f 1 7( ) = . Then, to determine the 
number of cats, input the number of houses into the 
function: f 7 49( ) = . 

Thinking recursively, this is calculating f f 1( )( ) . 
The number of mice is then

 f f f f f f1 7 49 343( )( )( ) = ( )( ) = ( ) = , and so on.

Simply put, to obtain the next term in the sequence, 
perform the function on the previous term.
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A similar problem appeared in Leonardo Fibonac-
ci’s 1202 work, Liber Abaci. In the same work, he also 
posed another famous problem to determine how 
many pairs of rabbits there would be at the end of 12 
months, starting with one mature breeding pair and 
assuming that each mature pair breeds one pair of off-
spring each month and that the new offspring must 
wait one month until they become a mature breed-
ing pair. The sequence of the total numbers of pairs of 
rabbits in each month proceeds 1, 1, 2, 3, 5, 8, 13, . . . . 
Fibonacci noted that the number of rabbit pairs, from 
the third month on, is equal to the sum of the number 
of pairs in each of the two previous months. Today, 
this sequence is called the “Fibonacci sequence” and its 
entries are called “Fibonacci numbers.”  

Often, the Fibonacci sequence is defined as a recur-
sive function, this time with two starting values: f 1 1( ) =  
and f 2 1( ) = . Then, the Fibonacci sequence is

 f n f n f n( ) = −( ) + −( )1 2  

for all positive integer values of n greater than 2. The 
Fibonacci sequence has appeared in botany, specifi-
cally in phyllotaxis, the method of leaf formation. The 
number of spirals in a sunflower head, a pineapple, or 
a pinecone are often Fibonacci numbers.

Recursion in Computer Programming
Recursive functions play a key role in computer pro-
gramming, as they allow the programmer to encode 
a possibly lengthy algorithm in a relatively short 
number of steps. For instance, to calculate the facto-
rial function mentioned above using a computer, the 
“non-recursive” approach could be to store several 
values of the function in memory and return those 
values when needed. 

This approach could take an unlimited amount of 
memory, because each value of the function would 
require its own memory space. The recursive approach 
is simpler—the factorial of a number can be encoded 
in two statements, thus allowing the computer to cal-
culate the factorial function for any positive integer 
efficiently. Some sample “pseudocode” follows:

Function Factorial(input):
If input = 0, then Factorial(0) = 1;
Else, Factorial(n) = n × Factorial(n – 1);
End Factorial.

Some computer games require players to demonstrate 
recursive programming skills. For example, Robozzle 
asks the player to program a spaceship to collect all the 
stars on the screen but to do so with a limited number 
of commands. The Tower of Hanoi puzzle, marketed 
by French mathematician Edouard Lucas in 1883, is 
often used as an example of recursion in classrooms. 
Often, recursion is necessary to complete the task. For 
instance, to move the rocket ship forward indefinitely 
using recursion, one could simply enter a command to 
move the ship forward and a command to go back to 
the beginning of the program, which would then move 
the ship forward and then go back to the beginning of 
the program again and again. It is often surprising to 
see the intricate patterns that can be programmed rela-
tively succinctly using recursive functions.
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Game Theory
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Number and Operations.
Summary: Game theory models various real-world 
and hypothetical situations as “games,” the play and 
strategy of which can be analyzed mathematically.

Game theory is the branch of mathematics dedicated 
to analyzing strategic behavior in different situations. 
It attempts to describe situations in which several peo-
ple or entities must make choices even when the out-
comes of their decisions rely on the choices made by 
others. While game theory can be used to address situ-
ations typically thought of as games, such as checkers 
and poker, it can also be used to study situations that 
are extremely practical and important, such as strate-
gies to use in military operations or auctions and the 
evolution of species. As with many areas of mathemati-
cal modeling, approaching a problem in game theory 
first typically involves quantifying the objectives and 
options in terms of algebraic equations and then find-
ing the choice that gives the highest possibility of maxi-
mal success.

History of Game Theory
People have studied games and strategies for centu-
ries, but game theory came into its own as a branch of 

applied mathematics when John von Neumann proved 
what is known as the “minimax theorem” in 1928. This 
theorem considers games played between two players 
in which each player chooses one of a finite number of 
options, and—depending on the choice made by each 
player—one of the players gives a certain amount of 
money to the other player. This is commonly referred 
to as a “zero-sum game,” as the losses incurred by one 
player exactly equal the gains won by the other player. 
Von Neumann was able to prove that there is a unique 
strategy that will maximize a player’s winnings (or 
minimize losings), and one can find this strategy by 
considering the worst-case outcomes of each of the 
player’s choices and choosing the best-possible, worst-
possible outcome. In particular, one would typically 
like to choose an option that leaves the player indif-
ferent to the choice made by his or her opponent. This 
work was later expanded by von Neumann and Oskar 
Morgenstern in their book Theory of Games and Eco-
nomic Behavior, which introduced game theory as a 
valuable tool for economists.

Rock-Paper-Scissors
An example of the type of strategy that von Neumann 
wrote about comes up when playing the children’s 
game of rock-paper-scissors. In this game, each of two 
players chooses one of three possible options (rock, 
paper, or scissors), and—depending on the choice 

G



made by each player—one of the two is declared the 
winner. In particular, rock beats scissors, scissors beats 
paper, and paper beats rock. If the two players make 
the same choice, the game is declared a tie. No mat-
ter which choice an opponent makes, one of a player’s 
three options will result in a win, one will result in a 
loss, and one will result in a tie. Therefore, if the player 
does not have any inside knowledge of what the oppo-
nent will choose, the player will do best by choosing 
one of the three options at random, each with a prob-
ability of one-third.  

The Prisoner’s Dilemma
The most famous problem in game theory is the Pris-
oner’s Dilemma. The Prisoner’s Dilemma is a non-zero-
sum game in which there are two participants, each 
choosing one of two possible outcomes. It is most often 
described by the following type of story: two criminals, 
Alice and Bob, are arrested after committing a crime. 
The police isolate the two prisoners and interrogate 
them separately. Each criminal must choose whether to 
confess or to deny the crime, without communicating 
with the other prisoner. If both confess, they will each 
get three years in jail. If both deny the crime, there will 
not be enough evidence to convict them of the felony, 
but both will get one year in jail. If Alice confesses and 
Bob denies the crime, then Alice will go free and Bob 
will go to jail for five years, but if Bob confesses and 
Alice denies the crime, then Bob will go free and Alice 

will go to jail for five years. One can see that no matter 
what Alice chooses to do, Bob will be better off confess-
ing and no matter what Bob chooses to do, Alice will 
be better off confessing. Because they cannot commu-
nicate, one is led to suspect that they will both end up 
confessing, even though they would both be better off 
if they both chose to deny the crime. This situation’s 
key principle is how much the criminals trust their 
partner to deny the crime, rather than do what is in 
their own self-interest. While this story may seem con-
trived, it turns out to have many applications in areas 
such as economics, biology, and political science.

Applications of Game Theory
Much of the research on the Prisoner’s Dilemma, as 
well as other areas of game theory, has taken place at 
the RAND Institute, a nonprofit think tank originally 
set up by the United States Army and the Douglas Air-
craft Company with a mission “to help improve policy 
making through research and analysis.” Along with 
then defense secretary Robert McNamara, they devel-
oped the game theoretic concept of mutually assured 
destruction (MAD), which leads to a military doctrine 
of nuclear deterrence. The idea is that if one country 
launches a nuclear attack on another, then the conflict 
quickly escalates until the whole planet is destroyed, 
and, therefore, such an attack will never take place. This 
concept has been critiqued by many scholars, but is still 
an influence on foreign relations today.
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J ohn Forbes Nash, Jr., is a mathematician who 
worked extensively in game theory, in addi-

tion to work in algebraic geometry and topology. 
His best-known work involved finding solutions 
to games that are not zero-sum games so that 
players can collectively get better outcomes if 
they work together than they will get if they work 
against one another. Nash was born in Bluefield, 
West Virginia, in 1928 and received his under-
graduate degree from Carnegie Mellon University. 
His dissertation, completed in 1950 at Princeton 
University, defined the concept that has become 
known as “Nash Equilibria,” which are pairs of 

choices that two players can make in which nei-
ther player is tempted to change their choice. His 
theory was that most games will eventually work 
their way to such a situation if they are played 
repeatedly. 

This work, along with subsequent work in 
this area, led to Nash’s being awarded the Nobel 
Prize for Economics in 1994. In addition to being 
a mathematician, Nash was a schizophrenic and 
has spent much of his life dealing with treatments 
for paranoid schizophrenia, including several pro-
longed stays in mental hospitals. His life story is 
the subject of the book and film A Beautiful Mind.

John Forbes Nash, Jr. 
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Garfield, Richard
Category: Games, Sport, and Recreation.
Fields of Study: Connections.
Summary: Mathematician Richard Garfield applied 
his understanding of combinatorics to create 
Magic: The Gathering, the game responsible for the 
collectible card game craze.

Richard Garfield was born on June 26, 1963, and is a 
mathematician and an inventor of card and board 
games. He holds a B.S. degree in computer mathemat-
ics and a Ph.D. in combinatorial mathematics and has 
worked as a professor at Whitman College. Garfield is 
probably best known for creating Magic: The Gather-
ing, the first widely popular collectible card game, but 
he has also designed board games and many other card 
games—collectible or not.

It should not be surprising that a mathematical 
background would be useful in designing games. The 
connections between mathematics and music, archi-
tecture, dance, and other forms of art is somewhat 
well understood. The role of mathematics in the art 
of game design is at least as direct. The aesthetics of 
a game come from the dynamics and combinatorial 
interaction of its rules and various components. This 
principle is especially true of so-called collectible card 
games, such as Magic: The Gathering, in which each 
player’s creativity in designing his or her own deck is 

While most games in the real world deal with situ-
ations in which the players do not have full informa-
tion or in which there is an element of chance, there 
is also a strong mathematical study of perfect infor-
mation games such as checkers and Go. One famous 
example of such a game is Nim, a game played between 
two players starting with a number of objects in differ-
ent piles. On each player’s turn, they can remove any 
number of objects from a single pile. The players alter-
nate turns, and the player to remove the final object 
loses. This game has been extensively studied and writ-
ten about by game theorists, such as Elwyn Berlekamp 
and John H. Conway. It turns out that one of the two 
players is guaranteed to have a winning strategy, but 
which player it is depends on the number of piles and 
the number of objects.
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A Game of Pistols

T hree people have decided to settle a con-
flict by firing at each other with pistols. Mr. 

Pink has a one-third chance of succeeding and 
killing his opponent, while Mr. Blue has a two-
thirds chance, and Mr. Orange is guaranteed to 
succeed. To even this score, the men will take 
turns with Mr. Pink taking first shot, followed by 
Mr. Blue, and then Mr. Orange. A natural ques-
tion in this situation is whether Mr. Pink should 
shoot at Mr. Blue or Mr. Orange first. It turns 
out that the answer is neither. Using game the-
ory, one can show that Mr. Pink has a better 
chance of surviving if he shoots into the air and 
intentionally misses both of the other players.



part of the game. The rules and the library of cards 
must have sufficient flexibility to accommodate a large 
variety of strategies and styles (keeping play interest-
ing and dynamic), but sufficient control to prevent a 
single overpowered card or combination of cards from 
“breaking” the game.

Collectible Card Games
In a collectible card game, such as Magic: The Gath-
ering, players buy packages containing random cards 
from a large universe of possible cards. Some cards are 
much more rare and others much more common. Play-
ers organize their cards into decks according to certain 
guidelines and play casually against friends or com-
petitively at official tournaments. In order to keep the 
game dynamic, the universe of cards periodically grows 
as expansions are released and older cards are retired. 
Expansions are still developed today, though Garfield’s 
direct involvement is limited and intermittent.

Much has been written about the mathematics that 
underlies the gameplay of Magic: The Gathering.  Many 
relevant mathematical ideas come from combinatorics 
and probability, and a recurring theme is trade-offs. 
Including many copies of a card increases the chances 
of drawing it at a crucial time, but at the expense of 
having a smaller variety of different cards to deal with 
unexpected situations. An important game mechanic 
in Magic is that cards come in five different colors. 
Different-colored cards tend to have different types of 
effects and require different “energy” in order to func-
tion. Multicolored decks can be much more flexible, 
but at the expense of being much more likely not to 
have the energy you need at a key moment.

Richard Garfield created several other collectible 
card games, including Vampire: The Eternal Struggle, 
Netrunner, BattleTech CCG, and the Star Wars Trading 
Card Game. Though these have enjoyed some success 
and favorable opinions from critics, none can boast 
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Players at the 2009 Magic: The Gathering World Championships. Most countries sends their top four players to 
the tournament, though nations with smaller Magic-playing communities may send just one player. 



the mainstream attention that Magic: The Gather-
ing received. In Richard Garfield’s most famous board 
game, Robo Rally, players navigate robots around an 
obstacle course. Players construct programs for their 
robot out of instruction cards like “turn left” and 
“forward two spaces,” then all robots simultaneously 
attempt to execute their instructions. If a player has 
miscalculated, or if multiple robots attempt to use the 
same paths at the same time, the results can be unex-
pected. This is a challenging game, requiring players 
to develop skills in game theory, logic, sequential and 
spatial reasoning, and the basic concepts of computer 
programming.

Not all of Richard Garfield’s creations require the 
player to use mathematical skills in a conscious way. 
In The Great Dalmuti, players match cards from a spe-
cial deck, racing to empty their hands and get the most 
prestigious status among the group. After each hand, 
players’ relative rank may change, causing changes to 
the seating order and their privileges within the game. 
The elegance of the game is that it is easier to advance 
to a higher rank than it is to consistently hold on to the 
highest  rank. In this case, the mathematical structure 
operates “quietly in the background,” ensuring that the 
game remains dynamic and engaging.

In some cases, the mathematics in Richard Garfield’s 
games is more explicit. One such game is Complex 
Hearts, a complex-number-themed variation on the 
classical game of Hearts. As in the original game, play-
ers score points based on which cards they take. How-
ever, in this version, the scores can be positive, negative, 
or imaginary, depending on the cards and card combi-
nations, so that each player’s total score is a complex 
number. The goal of the game is to keep the magnitude 
of one’s score as low as possible.

Further Reading
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Genealogy
Category: Friendship, Romance, and Religion.
Fields of Study: Algebra; Connections; Data 
Analysis and Probability; Geometry; Representations.
Summary: Mathematical methods are used to 
investigate genealogies in a variety of ways, including 
creating probability models and simulations to 
determine the likelihood of common ancestors.

Genealogy is the study of families, often motivated by 
the desire to tell the story of lineage and to place fam-
ily history in a larger historical context. For instance, 
among Americans there is often a great interest in 
determining one’s pre-American roots. The study of 
genealogy requires not only an understanding of his-
tory and the ability to work with historical primary 
sources of data but also mathematical structures. 
Ancestral charts double with every generation, and this 
geometric progression grows to large numbers quickly, 
so mathematical techniques have been fundamental in 
organizing and presenting family connections, both 
visually and in numerical formats. Mathematicians 
may use probability models and simulations to inves-
tigate the likelihood of common ancestors. Mathema-
ticians also construct their mathematical genealogy, 
where parentage is redefined using the adviser and 
student relationship.

Genealogy Graph and Visualization Formats
Though people tend to think of a “family tree,” genea-
logical graphs may overlap or be shaped differently 
than tree-like structures. Other representations of the 
data include hourglass charts, which are centered on 
an individual, and spread both upward and downward 
to show direct ancestors and descendants, eliminat-
ing relations like cousins. Exponential crowding and 
edge crossing are common challenges in visualizing 
family data, and some researchers propose a multitree 
arrangement. 

Genealogical software typically presents a variety 
of visualization options. Numbering systems have 
long been used to identify individuals. Methods from 
graph theory are important in analyzing the data for 
connections and patterns. Another genealogical chal-
lenge is the integration of information from disparate 
sources, such as census information and individual 
recordkeeping. 
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While standardized software and Genealogical 
Data Communication (GEDCOM) files may on one 
level make it easier to share information, the dynamic 
nature of huge online genealogical graphs presents new 
mathematical challenges. One method used to simplify 
such graphs has been to deemphasize individuals who 
enlarge a tree but do not increase the complexity. 

Brief History of Genealogy
Historically, most genealogy was the study of the 
kinship and descent of royal and noble families—in 
this form, many of the earliest histories in Egypt and 
ancient Rome are genealogies mixed with mythology. 
As a study of royalty, genealogical research generally 
had the ultimate goal of demonstrating or under-
cutting claims of legitimacy or determining a line 
of succession. Early American genealogical research 
was associated with efforts to prove kinship to noble 
families and was thus part of the British class system, 
which the egalitarian republic had outgrown. The 
New England genealogist and historian John Farmer 
(1789–1838) may have been the first to change this, as 
his work on local histories was seen as a way to honor 
and glorify the work of early Americans and the story 
of America’s growth from loosely affiliated royal colo-
nies to an independent nation. Farmer referred to his 
work—the combination of genealogy and local his-
tory—as “antiquarianism.” 

The trend he helped to popularize led to the cre-
ation of the New England Historic Genealogical Society 
(NEHGS), the oldest genealogical society in the United 
States, in 1845, six years after his death. Many such 
societies opened throughout the country, notably the 
Genealogical Society of Utah (1894), now associated 
with the Church of Jesus Christ of Latter-day Saints 
(LDS), which has since developed the most extensive 
genealogical records in the world. Because LDS beliefs 
focus strongly on the sealing of family units together 
so that they may copersist in eternity, genealogy is an 
especially critical concern for the faith and necessary 
for religious ceremonies. Later in the twentieth cen-
tury, the revival of interest in ethnic identity and in 
ties to ethnic roots long abandoned or forgotten in the 
1960s and 1970s led to a revival of interest in genealogy. 
This interest was furthered in the following decades as 
software and genetic research provided new genealogi-
cal tools, while the Internet provided a new source of 
information sharing.

Genealogical Numbering Systems (GNS)
A variety of numbering systems are used to quantify 
family relationships. One descending numbering sys-
tem that traces the line of an earlier ancestor is the Reg-
ister System, which was developed by NEHGS in 1870, 
for the purpose of simplified recordkeeping in the New 
England Historic and Genealogical Register. 

The system groups generations separately and uses 
both Arabic and Roman numerals, assigning each 
parent a unique Arabic numeral and using lower-
case Roman numerals to enumerate progeny of each 
parent:

1 Parent
 2  i Child
  ii Child (no progeny)
 3 iii Child 

(2nd Generation)
2 Child
 4 i Grandchild
3 Child
  i Grandchild (no progeny)

(3rd generation)
4 Grandchild
 5  i Great-grandchild

Along with the Register System, the most popular 
GNS in the United States is the NHSQ System, named 
for the National Genealogical Society Quarterly, and 
often called the Record System. It is derived from the 
Register System but assigns Arabic numbers to children 
without progeny as well. If a new child is discovered, 
the family numbers must be recalculated. 

An older GNS is the Ahnentafel (“ancestor table”), 
published by historian Michael Eytzinger in 1590. 
Unlike the Register and Record systems, the Ahnentafel 
is an ascending numbering system, beginning with “1” 
in the present generation and increasing as generations 
are traced backward through time:

1 Subject
2 Father
3 Mother
4  Father’s father
5 Father’s mother
6 Mother’s father
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7 Mother’s mother
8 Father’s father’s father

The Ahnentafel results in the following mathemati-
cal relationship: the number of an individual’s father is 
double that individual’s number, while the number of 
the individual’s mother is double plus one. Apart from 
#1, all even-numbered persons are male, and all odd-
numbered persons are female. It is plain to see why 
this version did not become the dominant system in 
the United States: it is principally concerned with dem-
onstrating to which families one has a blood relation, 
without accounting for siblings in any generation: nor 
can it be continued through the subject’s children and 
their descendants. It was a popular system for Euro-
pean nobility to display the noble families to whom 
they were related, along with their coats of arms.

Common Ancestors
Common ancestors are individuals who are the genea-
logical ancestors of every person in some given set of 
people. Genealogists and mathematicians often try to 
determine how many generations into the past a tree 
must be traced to find such common ancestors. These 
models rely on statistical estimates, such as the aver-
age human lifes pan at different points in time, and 
average length of time between successive generations, 
as well as rates of reproduction. In the early twenty-
first century, computer scientist Douglas Rohde, writer 
and editor Steve Olson, and statistician Joseph Chang 
collaborated to create mathematical models to esti-
mate the most recent common ancestor (MRCA) of 
every human currently alive. Their initial probabilis-
tic model, designed primarily for theoretical insight, 
assumed an unrealistic random mating scheme to 
facilitate an explicit analytical solution. A second, more 
realistic model required the researchers to mathemati-
cally express historical population dynamics and con-
duct Monte Carlo simulations to produce a distribu-
tion of feasible results with associated probabilities. 
According to these models, the MRCA likely lived just 
a few thousand years ago, perhaps during the reign of 
Tutankhamen, or even as recently at the start of the 
first century c.e.

In 2008, the genealogical Web site Geni allowed 
people with common ancestors to merge trees. Privacy 
was maintained by defining a set distance from the 
ancestor in which the information would be viewable. 

This defined distance has changed over time. The rate 
at which the trees enlarged often increased as the size 
of the tree increased. One particularly large, connected 
component of Geni’s graph is known as the “big tree” 
and represented over 35 million people in 2010.
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Genetics
Category: Medicine and Health.
Fields of Study: Data Analysis and Probability; 
Number and Operations.
Summary: Bioinformatics and probability theory 
come into play in the study of genetics.

Issues related to genetics are no longer exclusively dis-
cussed in academic circles. The lay community every 
day accesses a large amount of information through 
the mass communication vehicles that enable the 
socialization of knowledge related to heredity and 
biotechnology. Paternity tests, transgenic plants, early 
diagnoses in medicine, gene therapy, and cloning are 
no longer exclusive subjects of specialized research 
centers and can be easily researched in the media and 
found in movies, cartoons, and on the Internet. These 
are examples of how closely aligned this area of science 
is to modern society and how broad the possibilities 
are for development. Mathematical tools are essential 
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for the analysis and interpretation of data related to 
these genetic processes that otherwise would become 
empty of real meaning. From the simple knowledge 
of probability to the most powerful algorithms associ-
ated with genetic engineering techniques, probability is 
necessary to elucidate the most difficult questions sur-
rounding the genetics field. Sharon Grossman is one 
mathematician who has notably contributed to genet-
ics research through her investigations of gene group-
ings based on geographic location.

Genetics is the field of biology that studies the chem-
ical nature of hereditary material and the mechanism 
responsible to transfer information contained in genes. 
In general, reproduction is constituted by a series of 
events that result in a randomized combination of 
gametes. This process involves the mixing of thousands 
of information packets and results in the production of 
a new living being. 

Early Findings
The first steps of genetics were performed by Austrian 
Gregor Mendel (1822–1884), who, for many years, 
crossed varieties of peas. After obtaining numerous 
generations of these plants, he observed differences in 

the types of progeny formed and identified the propor-
tion of each of these features in future generations. His 
main findings showed that specific factors were trans-
mitted by parents to offspring. He also found that these 
factors occur in pairs and that their descendants receive 
one from each parent. Crosses made with peas (called 
“hybrids”) had particular characteristics, like seed 
color. By calculating their frequencies, Mendel realized 
that the prevalence of these factors was different in sev-
eral generations. Some manifest themselves only when 
appearing in double dose (recessive), while others in a 
single dose determined the characteristic (dominant). 
These findings served as the basis for developing laws 
on inheritance, which came to be called the “first and 
second laws of Mendel.” 

Genetic Probability
Probabilities are used to express the chance of occur-
rence of an event. They represents a possibility, not a 
conviction. The probabilities can be expressed in sev-
eral ways, including fractions, percentages, and deci-
mals. For example, the chance of occurrence of a bio-
logical event can be expressed as “50%,” “0.50,” or “1/2.”  
Many genetics calculations are solved using probabil-

ity. Mendel used mathemati-
cal rules previously used for 
common events, such as a coin 
toss (individual events), or 
combined events, such as the 
simultaneous release of mul-
tiple dice. 

Genotype is the set of genes 
from one living being, the fre-
quency of these genes, and can 
be calculated mathematically. 
The calculations performed in 
the theory of probability do 
not determine the appearance 
of a particular genotype—they 
merely represent the chance 
this event will occur. In prac-
tical terms, genetic calcula-
tions allow one to determine 
the probability, for example, of 
two individuals with dark eyes 
to conceive a child with blue 
eyes (a recessive gene). This 
event is possible if both parents 
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are hybrids, in which case the probability in each preg-
nancy is 25%.

The application of rigorous scientific method and 
careful statistical research of some characteristics led 
Mendel to conclusions that still underlie modern 
genetics in the early twenty-first century. Not until in 
1900 could the work of three independent research-
ers—Hugo de Vries, Karl Correns, and Erich Tscher-
mak—show that Mendel’s conclusions were correct.

Modern Genetics Research
For a long time it was believed that protein was the mol-
ecule that contained genetic information. Biochemical 
studies allowed the identification of a molecule able 
to replicate and thereby allow a flow of identification 
information: deoxyribonucleic acid (DNA)—the mol-
ecule associated with heredity. In 1953, James Watson 
and Francis Crick published in Nature the model of 
the DNA molecule. Understanding the complex spa-
tial geometry of DNA allowed researchers in the early 
1960s to prove that the code was formed by groups of 
three nucleotides that were repeated in complementary 
sequences. It was noticed that sequences of the DNA 
molecule were able to be expressed as proteins with the 
participation of another nucleic acid: ribonucleic acid 
(RNA). Studies of the most primitive life forms, like 
bacteria, also led to knowledge related to peculiarities 
of DNA activity, as well as its transmission and their 
biochemical behavior.

The challenge became the elucidation of the genome 
(the entire set of genetic information that is found in the 
chromosomes) from a living organism. After advanc-
ing with some simple life forms, such as bacteria and 
protozoa, the Human Genome Project (1988–2003) 
arose. International cooperation efforts were neces-
sary to decipher the sequence of 3 billion base pairs of 
DNA subunits found in human chromosomes. Power-
ful computer programs and the use of combinatorial 
analysis revealed that most of the DNA molecule is not 
involved in protein-coding. It is now known, however, 
that the role of this DNA is very significant, especially 
for matters pertaining to evolution, and it is respon-
sible for many adaptive differences between species.

Genetic Variability
The prevalence of certain genes in a population 
depends on how the expression of a particular feature is 
selected by the environment and is related to the pres-

ence of other genetic variation factors, such as genetic 
mutations, numbers of crosses, or natural events that 
abruptly decrease the frequency of certain genes in a 
population (for example, earthquakes, fires, or floods). 

How is it possible to evaluate this natural dynamic 
that sometimes takes decades or even centuries to occur? 
Since a group within the set of genes undergoes a ran-
dom process of transmission, it cannot be adequately 
studied without resorting to mathematical tools to 
assess the frequency of certain genes in a population 
and the possible consequences of this variability for that 
group. Wild populations (animals, plants, or, specifi-
cally, humans) are subject to phenomena—such as gene 
recombination, mutation, and gene conversion, which is 
the change of position of genes within a chromosome—
that lead to the emergence of genetic variability. Genetic 
mathematics aims to understand how genetic changes 
occur for individuals both within species and over time.

Several phenomena are responsible for genetic varia-
bility. Crossing-over, for example, is a phenomenon in 
which parts of chromosomes are broken and glued in 
different positions, generating a larger mix of informa-
tion and expression of phenotypes (physical or phy-
siological), which results in an increased possibility of 
adapting to the environment in which the individual 
belongs. Random events observed in gene transfer result 
in the formation of functional characteristics and pat-
terns that may often cause trouble and injury, but that is 
partly responsible for the possibility of evolution.

Bioinformatics
Genetics is an area of study that uses the theories of 
probability and the handling of large volumes of data. 
The difficulties in performing complex calculations—
far more advanced than the calculations made by Men-
del—necessitated the use of information technology 
in studies of biological and genetic research. Bioinfor-
matics is the application of computer systems in the 
processing of biological and biomedical data. It is an 
interdisciplinary science that aims to develop and apply 
computational techniques to study genetics, molecular 
biology, and biochemistry. Without this tool, it would 
be impossible to perform thousands of mathematical 
operations in real time.

In bioinformatics, gene sequences are analyzed and 
stored in databases, manipulated, and analyzed using 
specific software. Databases allow scientists to get 
information from other laboratories and also to share 
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the genetic sequences. Despite the efforts of interna-
tional collaboration in this area, the patenting of genes 
clashes science with ethical issues regarding the deten-
tion of the natural heritage of knowledge as private 
property. Laws regarding other issues related to cloning 
and gene manipulation vary according to country.

Genetic engineering uses principles formulated 
many years ago. The development of refined meth-
ods using molecular biology techniques allowed the 
manipulation of genetic material, known as “recombi-
nant DNA technology” or “genetic engineering.” Once 
DNA fingerprinting had become associated with the 
identification of individuals, great hopes arose regard-
ing the possibility of isolating and cloning genes to 
replace defective genes as therapy.
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Geometry and  
Geometry Education
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry.
Summary: Geometry has been studied since ancient 
times and continues to develop today.

The word “geometry” is derived from the ancient Greek 
words geo (Earth) and metron (a measure). In addi-

tion to its practical origins, it is also associated with 
the language and theory of geometric figures, spaces, 
and forms. Ancient and medieval civilizations from 
all around the world contributed to the development 
of geometric concepts, including mathematicians in 
Babylonia, Egypt, China, India, Mesoamerica, Greece, 
and the Islamic and Arabic world. At times, the prom-
inence of geometry has declined, such as in Western 
Europe during the Middle Ages and in certain research 
areas and undergraduate courses in North America in 
the twentieth century. Some curricular concepts that 
were once the focus of investigations have declined 
in relevance, such as spherical trigonometry, having 
been replaced in curricula by new fields or notions. 
Geometry research and education continue to evolve 
in response to changing emphases. At the beginning of 
the twenty-first century, students explore the proper-
ties of geometric objects and transformations. They 
learn about deductive geometry, coordinate geometry, 
and algebraic connections. Visualization and geometric 
history and applications are also a focus. Some of the 
curricular topics have been fundamental for millennia, 
like the Pythagorean Theorem, named for Pythagoras 
of Samos (c. 569–475 b.c.e.), while others, like vertex-
edge graphs, are relatively recent inclusions.

Early Geometry
Some of the first indications of geometry in terms of 
geometric patterns appeared about 25,000 years ago. 
These indications have been found in a number of 
prehistoric sites, such as Stonehenge, spirals in Europe 
(Ireland and Italy), and various places in Mesoamer-
ica and North America. Geometry also appears in the 
designs of the pottery, baskets, and mat weaving of 
many older civilizations and aboriginal peoples in the 
world. For instance, African tapestry and pottery are 
filled with symmetric figures. Civilizations around the 
world, including Egypt, Mesopotamia, China, India, 
Mesoamerica, and later civilizations, also used geom-
etry to help produce calendars, which, at the zenith of 
their power, were quite accurate. The Greek historian 
Herodotus of Halicarnassus (c. fifth century b.c.e.) 
credited the Egyptians with having originated the sub-
ject of geometry, but there is evidence that the Baby-
lonians, the Hindu civilization, and the Chinese knew 
much of what was passed along to the Egyptians. The 
earliest extant written records of geometry come from 
the predynastic Egyptians and Sumerians as early as 
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the fifth millennium b.c.e. Many have connected these 
papyri and cuneiform stone tablets to art, decoration, 
and construction rather than to the systematic investi-
gation of figures, patterns, forms, and quantities that 
has come to be associated with deductive geometry. 
Some historians and mathematicians caution against 
interpretations that examine earlier knowledge with-
out considering the contextual language and culture or 
through the lens of later work in geometry. In many 
cases, the evidence that survives likely represents an 
incomplete geometric record. 

Egypt
The Egyptians were extremely accurate in construction, 
making the right angles in the Great Pyramid of Giza 
precise to what is noted as one part in 27,000. Most 
of what is known about Egyptian mathematics comes 
from two Egyptian documents from about 1650 b.c.e., 
the Rhind Papyrus and the Moscow Papyrus. There are 
only a limited number of problems from these ancient 
Egyptian works that concern geometry. The examples 
therein demonstrate that the ancient Egyptians com-
puted areas of triangles, rectangles, and circles; surface 
areas of hemispheres; and volumes of cylindrical gra-
naries, rectangular granaries, and pyramids.

Babylon
In the late twentieth and early twenty-first centuries, 
scholarly work on some of the thousands of extant 
Babylonian mathematical clay tablets has led to revi-
sions and insight in the understanding of Mesopota-
mian mathematics and geometry. Some tablets illus-
trate problems related to lengths and areas of fields, 
trapezoids, rectangles, right and isosceles triangles, cir-
cles, and irregular quadrilaterals. A number of clay tab-
lets provide evidence of knowledge of the Pythagorean 
theorem long before the Greeks. The Babylonians also 
computed volumes and used geometric techniques to 
solve algebraic problems, like completing the square.  

China
In the Story of Civilization series, Will and Ariel Durant 
state that “Chinese mathematicians apparently derived 
algebra from India, but developed geometry for 
themselves out of their need for measuring the land.” 
Geometry was also an integral part of cosmology and 
astronomy in China. For instance, astronomers from 
the Confucian time had correctly calculated eclipses 

and created a basis for the Chinese calendar. One early 
work is from the Mohists, where one finds a definition 
of point as the smallest indivisible component, one that 
cannot be divided into smaller parts. In contemporary 
terminology, they also explored the congruency of two 
lines of equal length and provided definitions for the 
comparison of lengths, parallels, circumference, diam-
eter, radius, and volume. There remain some disagree-
ments about document dating in the history of math-
ematical development in China. For example, some 
have dated Zhoubi suanjing (The Arithmetical Clas-
sic of the Gnomon and the Circular Paths of Heaven) 
from approximately 1200–1000 b.c.e. during the Han 
dynasty, but many scholars believed that early versions 
were written during 300–250 b.c.e. The Zhoubi suan-
jing has a diagram of the Gougu Theorem (Pythagorean 
Theorem) that is well-known in twenty-first-century 
classrooms. The best known of the Chinese mathemati-
cal classics may be the Jiuzhang suanshu (Nine Chapters 
on the Mathematical Art). The book had many applied 
geometry problems, such as finding areas for squares 
and circles, the volumes of various solids, and the use 
of the Pythagorean theorem. Included are mathemati-
cal surveying techniques in order to calculate distance 
measurements of depth, height, width, and surface area. 
There are also formulas for the areas of planar figures 
and the volumes of solids that were known by the time 
of the Han dynasty (202 b.c.e.–9 c.e.). Jesuit mission-
aries introduced the Chinese to Western mathematics 
during the Ming dynasty. As part of the Jesuit’s program, 
part of Euclid’s Elements was translated into Chinese in 
1607. The translation of this ancient Greek textbook on 
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deductive geometry led to research and comparison of 
early geometric knowledge in both cultures, work that 
continues in the twenty-first century.

India
The Sulbasutras (c. 700–400 b.c.e.), which can be 
translated as “cord-rules,” are often referenced in the 
twenty-first century as a source of ritual geometry 
from India. This and earlier texts gave precise rules 
for the construction of sacrificial fire altars. The Sul-
basutras, specifically the Baudhayana Sulbasutra, may 
contain the earliest extant expression of the Pythago-
rean Theorem: “The rope which is stretched across the 
diagonal of a square produces an area double the size 
of the original square.” Many historians agree that the 
statement predates the Pythagoreans in Greece. Some 
of the material in the Sulbasutras may have originated 
from the Babylonians or the Chinese or been passed 
to the Chinese or Greeks. The Sulbasutras also contain 
other geometric constructions that preserve areas, as 
well as lists of Pythagorean triples and statements about 
squaring the circle or “circling the square” needed to 
construct certain altars for the rituals. There are vari-
ous theories about the association between the geo-
metric constructions and the religious rituals, such as 
whether the rituals inspired the geometry or vice versa. 
Aryabhata’s Aryabhatiya (499 c.e.) includes the com-
putation of numerous areas and volumes. Brahma-
gupta wrote his astronomical work Brahmasphuta-
siddhanta in 628, which included his famous theorem 
on the diagonals of a cyclic quadrilateral as well as 
his formula for the area of a cyclic quadrilateral. The 
Bakhshali manuscript written on birch bark and found 
in 1881 near the village of Bakhshali in what is now 
Pakistan is another mathematical manuscript from the 
Indian subcontinent. The date is uncertain, but many 
scholars agree that it contains information that is older 
than the document itself. It includes some geometric 
items such as the volumes of irregular solids.

Greece
The ancient geometry was passed on to the Greeks, 
who furthered and transformed the field into an essen-
tial component of a liberal arts education. The begin-
nings of deductive and axiomatic geometry have tradi-
tionally been attributed to Thales of Miletus (624–547 
b.c.e.). Having studied in Egypt, he was likely familiar 
with the computations handed down from Egyptian 

and Babylonian mathematics. The deductive approach 
was continued over the next two centuries by Pythago-
ras of Samos (569–475 b.c.e.) and his disciples. Their 
foundation of plane geometry was brought to a con-
clusion around 440 b.c.e. in a treatise by the math-
ematician Hippocrates of Chios (470–410 b.c.e.). 
Plato (427–347 b.c.e.) founded “The Academy” in 387 
b.c.e., which flourished until 529 c.e. and is noted to 
have included an inscription at the entrance stating the 
importance of geometry as prerequisite knowledge: 
“Let no one who is unversed in geometry enter here.” 
Theætetus of Athens (417–369 b.c.e.) was a student of 
Plato, who developed solid geometry and the Platonic 
solids. Menaechmus (380–320 b.c.e.) discovered and 
developed the conic sections. He was the first to show 
that ellipses, parabolas, and hyperbolas are obtained by 
cutting a cone in a plane not parallel to the base.

Euclid of Alexandria (325–265 b.c.e.) collected the 
theorems of Pythagoras, Hippocrates, Theaetetus, and 
other predecessors and included discoveries of his own 
into a logically connected formal axiomatic system, the 
Elements. So completely did Euclid’s work supersede 
earlier attempts at presenting geometry that few traces 
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M esoamerican civilizations apparently had 
no written language, which is a measure 

of a civilization. The mathematics that can be 
identified in the Olmec, the Mayan, the Incan, 
and the Aztec civilizations is quite remarkable. 
In addition to sophisticated calendars, these 
civilizations were great builders, and there are 
indications that the Aztec builders had a com-
pass as one of their standard tools, though very 
little is known about how they used it. Additional 
research has shown that they were knowledge-
able of right triangles with the angles that would 
result in a 3-4-5 right triangle. Fractal geometry 
patterns have also been observed. Too little is 
known or left existing in the twenty-first century 
for historians to be able to be more certain 
about the full extent of geometric knowledge in 
Mesoamerica.



remain of these efforts. His approach to geometry has 
dominated the teaching of the subject for over 2000 
years. Moreover, the axiomatic method used by Euclid 
is the prototype for what is now called “pure math-
ematics.” Euclidean geometry was certainly conceived 
by its creators as an idealization of physical geometry. 
The entities of the mathematical system are concepts 
suggested by, or abstracted from, physical experience 
but differing from physical entities as an idea of an 
object differs from the object itself. Centuries later, the 
philosopher Immanuel Kant even took the position 
that the human mind is essentially Euclidean and can 
only conceive of space in Euclidean terms. 

Some attributed the eventual decline of Greek 
mathematics to events like the destruction of the 
library at Alexandria and political and economic fac-
tors, and others to a lack of algebraic notation, which 
was developed by Arabic and Islamic mathematicians 
and was later to revolutionize geometry theory and 
applications. However, some Greek mathematicians 
after Euclid continued to explore concepts that became 
a fundamental part of school curricula. For instance, 
Archimedes of Syracuse (287–212 b.c.e.) is regarded as 
one of the greatest Greek mathematicians. He found 
the areas and volumes of many objects and explored 
semiregular polyhedra. Apollonius of Perga (262–190 
b.c.e.) was known as “The Great Geometer” for his 
work on conics and other geometric concepts. Menel-
aus of Alexandria (70–130) developed spherical geom-
etry in his only surviving work, the Sphaerica. Pappus 
of Alexandria (290–350) is considered one of the last of 
the great Greek geometers. His major work in geometry 
was the Synagoge, or The Collection, a handbook on a 
wide variety of topics: arithmetic, mean proportionals, 
geometrical paradoxes, regular polyhedra, the spiral 
and quadratrix, trisection, honeycombs, semiregular 
solids, minimal surfaces, astronomy, and mechanics. 

Islamic World
Mathematicians in the medieval Islamic and Arabic 
world preserved and extended classical geometry and 
astronomy from India, Persia, Syria, and Greece, and 
developed and applied geometric concepts. Geometric 
design was found in mosaic tessellations in mosques. 
Mathematicians extended the astrolabe by adding 
circles for azimuths on the horizon in order to solve 
problems in spherical astronomy and trigonometry. 
Scholars, such as Abu Ja’far Muhammad ibn Musa al-

Khwarizmi (c. 780–850) and Omar Khayyam (1048–
1131), developed algebraic and trigonometric con-
cepts and applied them to geometric notions. Arabic 
and Islamic mathematicians explored many geometric 
topics, including conic sections, constructions, spheri-
cal projections, and the parallel postulate. Scholars 
like Ibrahim Ibn Sinan (908–946) wrote works on 
geometric analysis and problem solving. Abu Array-
han Muhammad ibn Ahmad al-Biruni (973–1048) 
calculated an extremely accurate radius of Earth using 
the law of sines. There are examples of Greek works 
that would have been lost if not for copies that were 
preserved in Islamic libraries or translated as a part 
of Arabic treatises and commentaries. As Europe 
emerged from the Dark Ages, these works were trans-
lated into Latin and this paved the way for geometry’s 
return to Europe.

The Changing Nature of Geometry Education 
and Research Since the Seventeenth Century
While Euclid’s Elements has been standard in math-
ematics education for thousands of years, geometry 
curricula were impacted by the development of many 
new research areas since the seventeenth century. For 
example, René Descartes (1596–1650) and Pierre de 
Fermat (1601–1665) explored analytic geometry in the 
seventeenth century. This exploration allowed for the 
representation of geometric objects in terms of coor-
dinates and two-variable equations, a topic that begins 
in primary schools in the twenty-first century and is 
fundamental in many real-life applications. In addi-
tion, analytic geometry is typically paired with calcu-
lus courses. However, axiomatic or synthetic perspec-
tives continued, such as through the work of Girard 
Desargues (1591–1661) and Jean-Victor Poncelet 
(1788–1867) on projective geometry. While projective 
geometry declined in some contexts, such as in under-
graduate education in the twentieth century, students 
continue to learn about both coordinate geometry and 
deductive perspectives. Gaspard Monge (1746–1818) 
emphasized descriptive geometry at the École Poly-
technique, a French technical university, by exploring 
three-dimensional geometry through two-dimensional 
images. Descriptive geometry remained important in 
architecture, engineering, and mathematics classes.

The discovery of non-Euclidean geometry, which 
can be found in some twenty-first-century high school 
and college classrooms, was a revolution in geometry. 
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It fell to three different mathematicians independently 
to show that Euclid’s fifth postulate is not provable 
from the other axioms and what is derivable from 
them. These mathematicians were Karl Friedrich Gauss 
(1777–1855), Nicolai Ivanovich Lobachevsky (1792–
1856), and János Bolyai (1802–1860). Gauss’s work 
appears only in a letter to Franz Taurinus (1794–1874) 
in 1824, but he seems to have foreseen the results of the 
other two. Lobachevsky published his work in a Russian 
journal in 1826, and it was not until 1848 that it came 
to be published more widely in German. Bolyai’s work 
received the widest initial distribution, being published 
in 1831 as an appendix to his father’s algebra textbook. 
Each of these men, independently, assumed the negation 
of Euclid’s fifth postulate and developed a consistent 
geometry: “worlds out of nothing,” as Bolyai described 
it. Following the pioneering work of these mathemati-
cians, the pieces of geometry began to fall into place. 
More was learned about non-Euclidean geometries—
hyperbolic and elliptic, or doubly elliptic (spherical). 
For instance, Eugenio Beltrami (1835–1900) helped rig-
orously establish the subject, and the elliptic geometry 
studied by Bernhard Riemann (1826–1866) gave rise to 
Riemannian geometry and manifolds, which gave rise 
to differential geometry and then to relativity theory. 
Students may explore Henri Poincaré’s (1854–1912) 
disk model of hyperbolic geometry. Some undergradu-
ate and graduate students take courses in differential 
or Riemannian geometry. Mathematicians also started 
looking at finite geometries (from the standpoint of an 
algebraic geometry and from an axiomatic process), 
which led to areas of combinatorics and graph theory 
that are a curricula part of schools and colleges.

Geometry research continued to revolutionize 
school geometry. For instance, Felix Klein (1849–1925) 
greatly influenced geometry through his Erlangen Pro-
gram, which attempted to unify geometry through 
symmetries; middle grades students in the twenty-first  
century explore transformations and symmetries. Kurt 
Godel’s (1906–1978) work on consistency shook the 
foundations of axiomatic geometry, and David Hil-
bert’s (1862–1943) axioms are now explored in some 
high school classrooms. Donald Coxeter (1907–2003) 
was noted as preserving the tradition of classical geom-
etry, which then remained a core area in primary school 
through high school. Likewise, following World War I, 
the French mathematicians Pierre Fatou  (1878–1929) 
and Gaston Julia (1893–1978) began looking at objects 

that later came to form the foundation of fractal geom-
etry, introduced in the late twentieth century by Benoît 
Mandelbrot (1924–2010). Some middle grades stu-
dents are exposed to fractals, and undergraduate stu-
dents may take courses focusing on fractal geometries.

Educational theories about geometric learning also 
had an effect on school geometry. For example, English 
educator John Perry (1850–1920) advocated an intui-
tive, inductive approach to teaching geometry, such as 
graph paper measurements to test Euclid’s proposi-
tions. George Bruce Halsted (1853–1922) noted that 
geometry “always relied upon for training in the logic 
of science, for teaching what demonstration really is, 
must be made worthy [of] the world’s faith. There 
must be a text-book of rational geometry really rigor-
ous.” Halsted’s textbook was based on Hilbert’s axioms 
rather than on Euclid’s. One well-known geometric 
learning model was the van Hiele model of geometric 
thought, which originated in 1957 through the work of 
Dutch educators Dina van Hiele-Geldof (d. 1959) and 
Pierre van Hiele (1909–2010). The model encompassed 
five levels: visualization, analysis, informal deduction, 
deduction, and rigor. Educational research on the van 
Hiele model in the Soviet Union during the 1960s and 
1970s led to curriculum based on the theory. Some 
have criticized the structure of the levels and created 
other geometric learning models. 

Recent Developments
In the twentieth century, geometry education was fun-
damentally transformed because of computers, calcu-
lators, and other devices. Geometry for navigation, like 
spherical trigonometry computations, was built into 
computer programs or global positioning systems, and 
so the related topics were eliminated from the curricu-
lum. Other geometric topics were introduced, such as 
fractal geometry and computational geometry. Math-
ematicians at places like the Geometry Center for the 
Computation and Visualization of Geometric Struc-
tures produced videos and applets. Teachers and math-
ematicians discussed topics and shared resources on 
the Internet. For instance, what began as the Geometry 
Forum in 1992 was extended in 1996 to the Math Forum. 
The development of dynamic geometry software pro-
grams encouraged mathematical discovery. Students 
could manipulate geometric constructions while pre-
serving the mathematical relationships that defined 
the figure. This method enabled students to uncover 
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invariants like the angle sum in a triangle and allowed 
for inductive educational approaches. Two school pro-
grams that originated in the 1980s and remain in use 
at the beginning of the twenty-first century are Cabri 
Geometry and the Geometer’s Sketchpad. Jean-Marie 
Laborde (1945–) headed a team to develop Cabri in 
order to explore geometric relationships. Nicholas 
Jackiw (1966–) created Sketchpad as part of a visual 
geometry project headed by Eugene Klotz and Doris 
Schattschneider (1939–). Geometry educational soft-
ware continues to be developed, including open source 
versions. Graphing calculators and computer algebra 
programs allowed for easy visualization of sophisti-
cated curves and surfaces.

There has long been debate in geometry education 
regarding which topics should be taught, including a 
tension between practical applications and theoreti-
cal considerations. For instance, in some locations and 
time periods around the world, educators concentrated 
on geometric techniques for construction, survey-
ing, and navigation, while in others Euclidean geom-
etry was the focus in order to train the mind. Teachers 
point to Euclid’s philosophy, as noted by commentator 
Proclus Diadochus (411–485): “They say that Ptolemy 
once asked him if there were a shorter way to study 
geometry than the Elements, to which he replied that 
there was no royal road to geometry.” Educators con-
tinue to debate how to teach geometry, such as whether 
two-dimensional perspectives should be taught before 
three-dimensional perspectives.
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Measuring Tools; Painting; Parallel Postulate; 
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Geometry in Society
Category: School and Society.
Fields of Study: Connections; Geometry.
Summary: Geometry permeates society from its 
many applications in daily life to its usefulness as a 
framework for deductive inquiry.

Geometry has long been useful in society for both 
practical purposes and as deductive inquiry. The word 
itself is a combination of two ancient Greek words: geo 
(Earth) and metron (a measure). 
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Thus, a direct translation might be “Earth-measur-
ing.” Geometry developed from practical needs in anci-
ent cultures, such as the taxation of lands and the con-
struction of monuments. In many settings, geometry 
played an important role in both aesthetic quality and 
stability. For instance, in art and architecture, beauti-
ful geometric figures tiled surfaces. Stability notions, 
like the center of mass, could be calculated using geo-
metry, and a camera’s tripod has three legs because 
three points determined a plane, so three legs made it 
more convenient to find a stable position on an arbi-
trary surface. The Greeks explored geometry as an axi-
omatic system, and for thousands of years geometry 
was an essential part of a liberal arts education. Along 
with fields such as algebra and analysis, it also formed a 
core area in research. However, the role of geometry in 
school has changed over time, reflecting the priorities 
of society, researchers, and industry. In addition, educa-
tors have long debated which geometric topics should 
be taught. In some college settings in the twentieth 
century, the prominence of geometry declined. Some 
topics from courses like discrete geometry were taught 
in other departments, like computer science. Emerg-
ing fields, like algebraic geometry, were associated with 
algebra programs. While geometry was no longer a core 
area in some undergraduate mathematics curricula, it 
remained important in all levels of school in one way 
or another because it could be used in so many occupa-
tions. Construction, design, and architecture are just a 
few of the jobs that make use of geometry.

Early History
One development from the history of geometry and 
measurements of length, area, and volume can be found 
about 3000 years ago, when peoples in ancient Egypt 
farmed along the Nile River. King Sesostris is noted as 
having divided the land into rectangles. He taxed farm-
ers based on the area of the land they occupied. But 
there was a problem: every year, the Nile River flooded 
the surrounding area. After flooding, a large portion of 
the lands allocated to farmers was destroyed. Hence, 
Sesostris had to exempt the tax on the destroyed lands. 
To do this, he had to measure the exact area of destroyed 
land. Another problem that naturally arose was how to 
divide the land among a number of farmers. Covering a 
given region by pieces is called a “tessellation” or a “til-
ing” of the region. Precisely, a tessellation of the plane is 
a set of plane figures or tiles that cover the plane with-

out any overlaps and gaps. Tessellations were also found 
in mosaics as well as in floor and wall coverings.

Historians theorize that axiomatic investigations 
arose in ancient Greece because there was a prevalence 
of debate and justification in Greek society. However, 
even though the Greeks are noted as transforming 
geometry into a deductive branch of mathematics, 
they were still interested in practical applications. Plato 
is noted as believing that “for the better apprehension 
of any branch of knowledge, it makes all the difference 
whether a man has a grasp of geometry or not.”

Geometry Education Since the  
Seventeenth Century
Ideas about the utility of geometry have spurred some 
changes in the way that geometry has been taught over 
the years. Most students who went to college prior 
to 1800 came from some type of preparatory school 
or had private tutors. As more universities opened in 
the United States and Europe, the preparation of the 
students needed to be considered. In some locations, 
Euclidean geometry was taught directly from a transla-
tion of Euclid of Alexandria’s Elements as a second-year 
course in college. Students were expected to learn how 
to prove everything in the Elements in the same way that 
Euclid had outlined the proof. This process developed a 
strong sense of proof and logical structure 
in the student, but may not have pre-
pared students for geometric 
problems that fell out of 
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performs a geometric construction with a compass.



the direct line of proofs in the Elements. The argument 
about the utility versus the deductive nature of geometry 
was reflected in the diverse foci of geometry education 
around the world: was geometry to prepare students in 
the formal axiomatic method offered by geometry, or 
was geometry to teach students about how geometry 
could be used? In some locations, solid geometry and 
spherical geometry and trigonometry for surveying and 
navigation were the focus, while in others, it was Euclid’s 
planar geometry and axiomatic perspectives.  

In 1794, Adrien-Marie Legendre wrote a textbook 
in which he rearranged the material from Euclid and 
added other concepts, such as measurement. This text-
book was adopted by Claude Crozet and brought to 
the United States Military Academy (USMA) in 1817. 
In 1819 Charles Davies, a mathematics professor at 
the USMA, translated this textbook into English and 
started making changes to include the type of geometry 
useful in mensuration and navigation that the United 
States Army and Navy wanted of its leaders. This type 
of geometry was adopted by most of the other mili-
tary schools in the United States. This course came to 
be known as “descriptive geometry,” which then led to 
engineering drawing. By the 1840s, universities decided 
that students who desired entrance needed to have had 
a course in Euclidean geometry in high school. This 
requirement moved the course in geometry into the 
K–12 curriculum. 

Bernhard Riemann, for whom “Riemannian geom-
etry” is named, considered that: “It is well known that 
geometry presupposes not only the concept of space 
but also the first fundamental notions for construc-
tions in space as given in advance. It only gives nomi-
nal definitions for them, while the essential means of 
determining them appear in the form of axioms. The 
relationship of these presumptions is left in the dark; 
one sees neither whether and in how far their connec-
tion is necessary, nor a priori whether it is possible. 
From Euclid to Legendre, to name the most renowned 
of modern writers on geometry, this darkness has been 
lifted neither by the mathematicians nor the philoso-
phers who have laboured upon it.” At the turn of the 
twentieth century, Felix Klein, who revolutionized the 
understanding of geometric spaces by investigating 
them through their transformations or symmetries, 
noted: “Everyone who understands the subject will 
agree that even the basis on which the scientific expla-
nation of nature rests is intelligible only to those who 

have learned at least the elements of the differential 
and integral calculus, as well as analytical geometry.” 
The debate about how geometry should be taught has 
continued into the twenty-first century.

Applications
Geometry is a broad subject, hence it casts a broad 
shadow. Henri Poincaré, whose name is attached to the 
Poincaré disk in hyperbolic geometry, stated “by natu-
ral selection our mind has adapted itself to the condi-
tions of the external world. It has adopted the geometry 
most advantageous to the species or, in other words, the 
most convenient. Geometry is not true, it is advanta-
geous.” Recent work has shown that geometry may be 
innate and form some core knowledge in the brain. For 
example, some researchers have reported that indig-
enous tribes in the Amazon River basin have a much 
deeper geometric intuition—without any formal edu-
cation—than Western schoolchildren. Studies of ani-
mals, including fish and chimpanzees, have indicated 
that they may have a Euclidean map of their home terri-
tory in their brains. There are several types of geometry 
that illustrate the wide variety of applications:

• Euclidean plane geometry is the plane 
geometry of Euclid. It has close connections 
with computational geometry, computer 
graphics, discrete geometry, and some areas 
of combinatorics. It is the geometry of 
engineering drawing and architecture.

• Euclidean solid geometry describes three-
dimensional space. It is used in solid 
modeling, constructive solid geometry, 
computer graphics, engineering design, and 
architectural design, among other fields.

• Differential geometry has become increasingly 
important to mathematical physics and 
cosmology because of the work of Albert 
Einstein on general relativity. The objects 
that are considered in differential geometry 
are smooth objects—objects without sharp 
corners or edges. Differential geometry is 
used in econometrics in economy; to solve 
problems in digital signal processing in 
engineering; to analyze and describe geologic 
structures in geology; to analyze shapes in 
computer vision; and to analyze and process 
data in image processing.
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• Discrete geometry  focuses on the properties 
of finite or discrete objects, like lattice points. 
It is used in robotics, computer graphics, 
crystalline theory, packing theory, and 
configurations of objects, among others.

• Computational geometry is a field that 
includes researchers from computer science 
and mathematics and investigates algorithms, 
data structures, and computational 
issues related to geometric structures and 
operations. It is used in robotics, computer 
graphics, geographic information systems 
(GIS), computer-aided design, medicine, and 
machine learning, among others.

Geometry in Design and Manufacturing
Geometry is used in the planning, layout, and produc-
tion of most items that are manufactured. The design 
process may involve finding the optimal way to lay out 
a pattern on a piece of cloth or on a piece of wood, 
plastic, or metal so as to minimize waste. Computers 
are used to find the best place to divide large sheets 
of wood in the manufacture of cabinets, flooring, and 
paneling so as to generate the maximal use from that 
wood. Areas that use geometry in this manner are quite 
diverse and include the following:

Architecture includes home planning, interior 
design, and landscape architecture.

Assembly planning involves objects manufactured 
using an automated assembly line or robotic manipu-
lations. In robotic manufacturing, the constraints of 
the robots determine the motions that can be made, 
and the motions can determine the programming and 
design of the robotics to be used.

Computer-aided design (CAD) includes many com-
mercial and open source programs used by architec-
tural and manufacturing firms to complete the design 
of items from motherboards to cars. 

Grasping and fixturing answers the question: where 
does one place obstacles, such as robot fingers or fix-
tures, to prevent some object from moving?

Machinists are professionals who work on computer 
numerical control (CNC) machines to make parts in 
the manufacturing process. They can understand the 
process better if they have a deeper understanding of 
solid geometry. The cutter on one of these machines 
is controlled by the computer that is reading from a 
design that has been programmed—probably digitized 

and programmed. Because of the manner in which the 
machine operates, most instructions do not come from 
reading in the standard Cartesian coordinate system, 
but in cylindrical or spherical coordinates, or at times 
in a newly developed coordinate system designed just 
for that machine. The tool and die makers for manu-
facturers across the nation must take designs—and 
sometimes the designs are only outlines—from the 
engineer and create a prototype for the part. These 
prototypes can now be designed in the computer using 
CAD and then printed on a three-dimensional printer. 
The geometry for “printing” these parts is complicated, 
but allows for faster prototyping and manufacture.

Geometry in Graphics and Visualization
Computer graphics is an area that continues to expand 
from its beginnings attempting to represent geometric 
shapes (consider the 1982 movie Tron) to the extensive 
work of Pixar and other computer-generated imag-
ery (CGI) groups in the movie industry to bring to 
life entire worlds that look realistic (consider the 2009 
movie Avatar). Shapes and figures are first designed, 
digitized, and then rendered as nets. Once the basic fig-
ure is digitized, it is manipulated by computers accord-
ing to the movie script. Once the entire script is done, 
the figures are finalized to give them a more realistic 
appeal. Advances in this area seem relatively simple, yet 
the example of making Sulley’s hair move realistically 
in the 2001 movie Monsters, Inc. or the realistic appear-
ance of the water in the 2005 movie Madagascar took a 
great deal of effort to develop.

Printing and the graphic arts involve issues of layout 
and form. The optimal use of geometric shapes on a 
page or palette, relative size of objects, and perspective 
are some of the relevant geometric considerations. 

Geometry in Information Systems
Cartography and geographic information systems 
(GIS) are used by most local and state governments in 
the United States for maintaining property and road 
records and for making maps. 

Voronoi diagrams answers the question: given a 
collection of objects (for example, fire stations) to be 
located throughout a city, how does one allocate these 
objects so that each person in the city is closer to one 
than any of the others? The Voronoi diagram, named 
for Georgy Voronoi, is a geometric partition of a space. 
Voronoi diagrams are used in situations such as models 
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of crystal and cell growth, locations of limited facilities, 
and reservoir simulations.

Geometry in Medicine and Biology
Protein and virus modeling investigates the shape of 
a protein or virus and its motions, which are impor-
tant in understanding its behavior and in developing 
treatments.

Medical imaging uses lower dimensional informa-
tion, such as two-dimensional images, to reconstruct 
the shapes of organs, bones, or tumors. The recon-
struction of three-dimensional shapes from slices is a 
geometric problem.

Geometry in Physical Sciences
Astronomy is one of the oldest uses for solid geom-
etry. Computational geometry problems come about 
in observation planning and shape reconstruction of 
irregular shapes, such as asteroids.  

Scientific computation involves the application of 
computer visualization and simulation.  

Physics has long been intertwined with geometry. 
For example, symmetry is an important concept in 
both fields. Physicists have used geometric ideas to 
model the world and the universe, and geometers have 
investigated physical problems.

Robotics 
Computer vision is the ability of a robot’s computer to 
recognize the shape and geometric features of an object 

before it can interact with the object, such as picking 
up a part from a manufacturing line to be used in the 
assembly of a larger component.

Robot motion planning is an issue in robot design. 
While the engineer and the planner know what they 
want the robot to do in a manufacturing or other type 
of process, the composition of the robot and the com-
ponents used in its manufacture put restrictions on 
what movements it can actually perform. An under-
standing of this “movement space” and what can be 
reached, held, moved, and so forth is a consideration of 
the geometry of the robot.

Geometry in Fashion Design
In March 2010, there was a fashion show of a Japa-
nese fashion designer, Dai Fujiwara for Issey Miyake. 
It was not an ordinary fashion show but a place where 
fashion and advanced mathematics met. Dai Fujiwara 
was inspired by a legendary mathematician, William P. 
Thurston. Human bodies are beautiful geometric fig-
ures, which are curved in quite complicated ways. Cov-
ering these geometric objects with pieces of clothing 
in various types is certainly a place where mathematics 
can have a great influence. 

A body is a surface of variable curvature. The top of 
the head, or shoulders, are positively curved parts, like 
spherical surfaces. The armpit is an example of a nega-
tively curved part of the body, like a hyperboloid or 
saddle shape. Divide a circle into three arcs with equal-
length and three points, A, B, and C, form endpoints of 
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the arcs. Suppose there are hinges at A, B, and C so that 
the angle between two adjacent arcs can be changed. 
By changing the angle, one can make the deformed 
circle fit to a part of some surface. If the curvature is 
locally constant on some neighborhood of a point on 
the surface, and the size of the circle is small enough to 
be contained in that neighborhood, then this is pos-
sible. The curvature of the surface there should be 
same with the sum of all angle changes at the hinges. 
This idea was originally proposed by the great German 
mathematician, Carl Friedrich Gauss. A similar idea 
was proposed by Thurston. His idea was the following. 
Instead of a circle, consider Y-shape pieces. The three 
legs have the same length, and the angle between each 
pair of adjacent legs is 120 degrees. Suppose the size of 
the Y-shape piece is small enough. Connect endpoints 
of many Y-shape pieces by adding hinges, and let the 
hinges have some appropriate angles, and the result 
could fit on various types of surfaces. The angles that 
the hinges make determine the local curvature of the 
surface. If the surface is curved dramatically or the cur-
vature of the surface is very large, then much smaller 
Y-shape pieces would be needed. This is one of the sim-
plest ways to obtain a tessellation of a surface. Fashion 
designers have made use of these ideas in order to make 
beautiful coverings for the human body. 

Geometry in Other Applications
In character recognition, a document is scanned and 
read on a computer; a computer is able to distinguish 
characters since they have certain configurations. If 
the image is clear, the recognition is simple. When the 
image is not clear, recognition becomes a much harder 
problem and geometry is brought to bear to try to dif-
ferentiate characters. The algorithms used must be fast, 
however.

Social network theory involves the connections 
that people make in their social networks, which form 
a part of what can be studied using finite geometries. 
A 2009 survey of “friends” on Facebook showed that 
there was an average of 6.5 connections between any 
two randomly chosen participants. 

Occupational Connections
Geometry is connected to a number of occupations 
and is used often in industry. 

Carpenters, cabinetmakers, and construction man-
agers are professionals who need to know, understand, 

and use the concepts of angle measurement, paral-
lel lines, quadrilaterals, the Pythagorean Theorem 
(named for Pythagoras of Samos), area, and volume 
and need to know how to make and read three-dimen-
sional drawings. 

Surveyors, cartographers, photogrammetrists, and 
surveying technicians are professionals who need to 
know, understand, and use the concepts of angle mea-
surement, congruent triangles, the triangle inequality, 
parallel lines, quadrilaterals, similarity, the Pythago-
rean Theorem, right-triangle trigonometry, circles, 
constructions, area, volume, and transformations and 
need to know how to make and read three-dimen-
sional drawings.

Firefighters are professionals who need to know, 
understand, and use the concepts of area and volume.

Forest, conservation, and logging workers are pro-
fessionals who need to know, understand, and use the 
concepts of angle measurement, congruent triangles, 
right-triangle trigonometry, area, and volume and need 
to know how and read three-dimensional drawings.

Automotive service technicians and mechanics are 
professionals who need to know, understand, and use 
the concepts of angle measurement, area, and volume.

Geometry has been useful in a wide variety of other 
professions also, including printing and the graphic 
arts, heavy equipment operation, fashion and apparel 
design,  navigation, painting and paperhanging, engi-
neering, home planning, plumbing and pipe fitting, 
outdoor advertising, landscape technology, and archi-
tecture and drafting, as well as optical technicians, 
machinists, cement workers, electricians, general con-
tractors, and surveyors. 

In the twenty-first century, geometry is connected 
to many occupations and fields within and outside 
mathematics. Students investigate geometric topics 
throughout their school experiences. Sometimes these 
experiences are in separate geometry courses, but often 
they are integrated with numerous mathematical per-
spectives and applications. In the nineteenth century, 
algebraist James Joseph Sylvester explained that

Time was when all the parts of the subject were 
dissevered, when algebra, geometry, and arithme-
tic either lived apart or kept up cold relations of 
acquaintance confined to occasional calls upon 
one another; but that is now at an end; they are 
drawn together and are constantly becoming more 
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and more intimately related and connected by a 
thousand fresh ties, and we may confidently look 
forward to a time when they shall form but one 
body with one soul.
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See Also: Animation and CGI; Engineering Design; 
Geometry and Geometry Education; Geometry of 
Music; Geometry of the Universe; Medical Imaging; 
Origami; Painting; Pythagorean School; Sacred 
Geometry; Symmetry; Visualization.

Geometry of Music
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Connections; 
Geometry; Representations.
Summary: The mathematical principles of 
symmetry and scaling play important roles in  
musical composition.

Musical information can often be represented natu-
rally with shapes, allowing insights to be gained from 
geometric techniques. 

One indication of the close connection between 
music and geometry comes from the fact that Euclid 
of Alexandria, who wrote Elements of Geometry (300 
b.c.e.), a founding document of geometry, also wrote 
a comprehensive treatise on the mathematics of musi-
cal pitches, Theory of Intervals. The eighteenth-century 
mathematician Leonhard Euler also developed geo-
metric tools for music analysis.

Symmetry is one of the most powerful ideas in 
geometry. No less so in the geometry of music, where 
symmetries abound. Geometric techniques can be 
applied to musical scales, chords, and melodic lines.  
Because of the concept of octave equivalence, the 12 
pitches of the equally tempered chromatic scale are 
inherently cyclic in nature. Thus, the geometric theory 
of cyclic groups plays a major role in the mathemati-
cal description of scales and chords. Similarly, geom-
etry can play a role in the analysis of musical rhythm, 
particularly in musical forms based upon a repeating 
rhythmic motif. In twentieth-century atonal music, 
geometric ideas have been proposed as unifying theo-
retic structures to fill the role once played by tonal 
harmonic concepts.  

Symmetries in the Twelve Pitches  
of the Equally Tempered Scale
Two fundamental principles of modern musical analy-
sis are “octave equivalence” and “equal temperament.” 
Octave equivalence refers to the perception, believed 
to be universal in developed music cultures, that two 
pitches separated by an octave are members of the same 
“pitch class.” Equal temperament refers to the system 
of musical intonation by which the 12 chromatic half 
steps within the octave represent uniform frequency 
scaling—given a pitch with frequency f, the pitch one 
half step above has frequency 21/12 f. In the equally tem-
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pered scale, enharmonically spelled notes, such as C♯ 
and D♭, represent the same pitch.  

The twelve pitch classes are inherently cyclic. This 
principle is represented in the left view of Figure 1, 
which is identical to an analog clock face, with the 
traditional “12” replaced by “0.” The diatonic scale is 
represented by the vertices of the inscribed polygon 
in the center view of Figure 1. This arrangement of 
the seven diatonic pitches is the most even spacing 
possible for seven pitches in the 12-tone octave. The 
evident symmetry about the 2–8 axis puts the compli-
cated diatonic sequence of half steps and whole steps 
into a simpler conceptual framework. The figure illus-
trates that the Dorian Mode (which begins and ends 
on the second diatonic scale degree, given here as “D” 
or “2”) is unique among the diatonic modes in that it 
follows the same sequence of intervals both ascending 
and descending.

The six pairs of diametrically opposite pitch classes 
in the clock representation are separated by the inter-
val of a “tritone,” so named because it contains three 
whole steps. In tonal music, the tritone is considered 
the most dissonant-sounding interval. If the three 
odd-numbered pitch class pairs on the clock face 
are reflected diametrically, the result is the “circle of 
fifths” shown in the right view of Figure 1. The cir-
cle of fifths is familiar to music students as a mne-
monic device for learning the musical key signatures: 
the number of sharps increases by one (or alterna-
tively, the number of flats decreases by one) at each 

step in the clockwise direction, while the number of 
flats increases (or sharps increase) at each step in the 
counterclockwise direction. The circle of fifths is used 
extensively as an analytical tool for twentieth-century 
music in the work of American composer and music 
theorist Howard Hanson.

Representing Musical Structure in  
Geometric Spaces 
Beginning with the musical writings of Euler and con-
tinuing at least through the work of the influential music 
theorist Hugo Riemann (not to be confused with the 
mathematician Bernhard Riemann) in the nineteenth 
century, the representation of harmonic concepts in a 
two-dimensional array called a “Tonnetz” (Tonal Net-
work) has guided the understanding of tonal harmony. 
In the tonnetz shown in Figure 2, the rows are simply 
the entries of the circle of fifths, while the columns 
are the 12 diatonic pitch classes arranged chromati-
cally (by half steps). The result is that the diagonals 
are made up of pitch classes separated by minor thirds 
(in the southeast direction) and major thirds (in the 
northeast direction). In this arrangement, the sonori-
ties of tonal harmony can be represented by polygonal 
groupings of the adjacent symbols: triangles for major 
and minor triads, parallelograms for major and minor 
seventh chords, and similar structures for diminished, 
augmented, and dominant seventh chords. The musi-
cal theory of “modulation” (changing from one tonal 
center to another in the course of a musical composi-
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Left: The 12 pitches of the equally tempered chromatic scale arranged on a circle. Center: The vertices of the 
inscribed polygon represent the pitches of the diatonic scale. The diatonic arrangement is the most evenly spaced 
distribution of seven vertices in a 12-sided figure. Note the symmetry inherent in the Dorian Mode, which begins 
and ends on pitch 2 (D). Right: Diametric reflection of the odd-numbered pitches results in the circle of fifths. 

Figure 1. The 12 pitch classes.



tion) is aided by the geometric perspective of a Ton-
netz. Tonal networks such as the one shown here are 
precursors of the contemporary musical theory of 
“pitch class spaces.”

Recently, chords have been modeled as points in 
geometric spaces called “orbifolds.” Music theorists 
analyze the symmetry of chords inside of the space 
with respect to translation, reflection, or permutation 
and look at short line segments between structurally 
similar chords.

Rhythmic Symmetry
Like the 12 pitch classes, the metrical organization of 
music in time is also highly cyclic, allowing similar 
geometric techniques to be applied to rhythm. The left 
view of Figure 3 shows the eighth-note subdivisions of 
a 4/4 measure. The vertices of the inscribed polygon 
represent the rhythmic placement within the measure 
of the handclap rhythm from the iconic 1956 Elvis 
Presley recording of “Hound Dog.” This complicated 
rhythm has a simple symmetric structure when viewed 
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Left: The vertices of the inscribed polygon represent the handclap rhythm heard in the Elvis Presley recording 
of “Hound Dog.” Center: The vertices of the inscribed polygon represent the well-known clave rhythm heard 
in Afro-Cuban music. Right: The bossa nova cowbell rhythm heard in Quincy Jones’s “Soul Bossa Nova.”

Figure 3. Eighth-note subdivisions of rhythmic units arranged around a circle.

The pitch classes of the circle of fifths are arranged horizontally. The vertical alignment of the pitch classes is 
chromatic. Diagonals in the southeast direction progress by intervals of the minor third. Northeast diagonals 
progress by major thirds. All tonal sonorities are given in this representation by polygons containing adjacent 
pitches. For example, major triads are given by triangles with vertex at top and minor triads are given by 
triangles with a vertex at the bottom, as shown above for the C major and A minor triads.  

Figure 2. The first eight rows of a Tonnetz (or Tone Network).
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geometrically. Similarly, the center view in Figure 3 
shows the clave rhythm familiar to listeners of Afro-
Cuban music, with its line of symmetry. The left view 
of Figure 3 shows a characteristic bossa nova rhythm 
(which can be heard on the cowbell in Quincy Jones’s 
“Soul Bossa Nova”) and its line of symmetry.
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320 (2008). 

Johnson, Timothy. Foundations of Diatonic Theory: 
A Mathematically Based Approach to Music 
Fundamentals. Lanham, MD: Scarecrow Press, 2008.
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See Also: Composing; Harmonics; Scales.

Geometry of  
the Universe
Category: Space, Time, and Distance.
Fields of Study: Geometry; Measurements; 
Representations.
Summary: Characteristics of the universe such as 
size, shape, and composition have long concerned 
mathematicians and astronomers and over the course 
of history various models have been offered.

The shape of the universe and its geometry have been 
the topic of human interest for millennia. Research-
ers in scientific disciplines such as physics, astronomy, 
and cosmology, along with mathematicians, especially 
those working in geometry, are seeking to discover 
what shape the universe is, whether it is finite or infi-
nite, and how many dimensions it has. Not only do 
researchers investigate this topic; it is also popular for 

philosophical debates in the media and educational 
settings, for example, as the theme of Mathematics 
Awareness Month in 2005. Generally speaking, the 
density of the universe determines its geometry. The 
shape of the universe could therefore be estimated by 
measuring the average density of the matter within 
it, assuming that all matter is evenly distributed—
though there might be considered distortions caused 
by very dense objects with mass accumulated locally, 
such as galaxies. This assumption is well justified by 
cosmological observations showing that, while the 
universe appears to be weakly inhomogeneous and 
anisotropic locally, on average it is homogeneous 
and isotropic. Therefore, all considerations about the 
geometry of the universe have to be seen from two 
perspectives: the local geometry that is related to the 
observable universe and the global geometry related 
to the universe as a whole, where also that is included 
which humans have yet to be able to measure in the 
early twenty-first century. 

Measurements are closely related to the origins of 
geometry, a discipline flourishing more than 5000 
years ago from the early stages of the human civiliza-
tion in ancient Egypt and later in ancient Greece, and 
are practical and necessary in connection to the geo-
detic measurements of Earth. Later, developed as a 
theoretical abstract branch of mathematics, geometry 
offered mathematical background for the description 
of geometric abstract spaces with more dimensions, 
which cannot be visualized in the three-dimensional 
spaces, but can be used as models in modern physi-
cal and cosmological theories describing the possible 
form, structure, and principal laws of the universe.

From the History 
For thousands of years, people believed that the uni-
verse revolved around Earth, and astronomers cre-
ated mathematical models to explain observations in 
the sky. Eudoxus of Cnidus created a model contain-
ing rotating spheres centered about Earth. With this 
model, Aristotle was able to partially explain some of 
the planetary motions by rotating the spheres at dif-
ferent velocities, but other observations, such as differ-
ences in brightness levels, could not be resolved.

In the next century after Aristotle, Euclid of Alexan-
dria expressed the parallel postulate. While it was not 
linked with models of the universe at the time, it was to 
eventually take on an important role in the geometry 
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of the universe. Euclid is the author of the famous Ele-
ments, one of the earliest and most influential works 
in the history of mathematics, consisting of 13 books. 
Here, all principles of the geometric space, today called 
“Euclidean,” were deduced in the form of mathemati-
cally proved propositions and constructions from a 
small set of postulates and definitions. Postulates were 
not proved or demonstrated, but considered to be self-
evident and true. They described all basic relations and 
measures between ideal geometric figures as points, 
lines, triangles, circles, or solids, and also numbers that 
were treated geometrically as line segments with vari-
ous lengths. The introduced list of postulates referred 
to the following five groups of relations: incidence, 
congruence, order, continuity, and parallelism.

The fifth postulate about parallelism says: “If a 
straight line falling on two straight lines makes the inte-
rior angles on the same side less than two right angles, 
the two straight lines, if produced indefinitely, meet on 
that side on which are the angles lesser than the two 
right angles.” From the time of its publication until the 
late nineteenth century, this postulate, apparently dif-
ferent from all others and of more complicated form, 
attracted mathematicians, who strived to prove it as a 
consequence of the first four groups. New equivalent 

formulations of this famous parallel postulate appeared. 
The most familiar form is this: “Through a point not on 
a given straight line, at most one straight line can be 
drawn that never meets the given line” (see Figure 1). 

All efforts to prove the fifth parallel axiom appeared 
to be pointless. On the contrary, different possible for-
mulations of this special property were introduced, as 
the negations of Euclid’s postulate, revealing thus the 
existence of new kinds later called “non-Euclidean” 
geometries with unusual properties emerging from 
these formulations. 

Geometric Spaces
Even in the face of overwhelming evidence, it took a 
long time for humanity to accept that Earth is not at the 
center of the universe because this revolution required 
an imaginative leap that surpassed problematic reli-
gious and philosophical implications. In his famous 
work, the Almagest, Claudius Ptolemy, a second-cen-
tury philosopher, refined and improved an Earth-cen-
tered model based on the earlier work of Apollonius 
of Perga and Hipparchus of Rhodes. In the Ptolemaic 
universe, planets now moved along epicycles, which 
had circles attached to the spheres around Earth, and 
yet this model still did not completely resolve contra-
dictions with astronomical observations. Aristarchus 
had suggested a heliocentric system, and in the six-
teenth century, Nicolaus Copernicus gave substance to 
Aristarchus’s ideas by carrying out the detailed math-
ematical calculations. His model still utilized epicycles 
in order to explain the circular motion of the planets, 
but it placed a motionless sun close to the center of the 
universe. Johannes Kepler revolutionized astronomy 
by finally overthrowing the stranglehold of purely 
circular motions. His introduction of elliptical orbits 
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Figure 1. Axiom on parallelism.

Triangles in Different 
Geometric Spaces

A mong many consequences of the valid-
ity of Euclid’s postulate on parallelism, 

the most striking one is about the sum of the 
triangle interior angles. The measures of the 
interior angles of a triangle in the Euclidean 
space always add up to exactly 180 degrees. 
This property is related to the planar triangles 
located in a flat plane. Examples of triangles 
in non-Euclidean geometries are spherical 
triangles and hyperbolic triangles. Here, the 
sum of measures of the interior angles of a 
triangle is always more than 180 degrees in 
the elliptical non-Euclidean space, while in the 
hyperbolic non-Euclidean space it is always 
less than 180 degrees.
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together with his other two laws of planetary motion 
form the basis of celestial mechanics to this day. They 
were also critical in the formulation and verification 
of Sir Isaac Newton’s laws of gravity and of motion, 
which in turn became the basis for cosmology for the 
following two centuries.

Around 1830, Hungarian mathematician János 
Bolyai and Russian mathematician Nikolai Ivanovich 
Lobachevsky published their papers on non-Euclidean 
geometry, independently and unaware of each other—
hyperbolic geometry is therefore also called Bolyai–
Lobachevskian geometry. The famous mathematician 
Johann Karl Friedrich Gauss explored such geometry 
about 20 years earlier, but he never published his 
work. Lobachevsky developed a theory of a new geo-
metric space, in which the fifth postulate was not true, 
by negating the Euclid’s postulate about the existence 
of a unique parallel to a given line. He stated a new, 
nowadays called the Lobachevsky, axiom of parallel-
ism: “Through a point not on a given straight line, at 
least two different lines can be drawn that never meet 
the given line.” Lobachevsky based this reasoning on 
his own findings received from measuring distances of 
stars calculated from their trajectories traced on the 
celestial sphere because of the movements of Earth 
in the solar system. In his gigantic triangles, the sum 
of the interior angles measured less than 180 degrees. 
Bolyai worked out a geometric theory whereby both 
the Euclidean and the hyperbolic geometry were pos-
sible, depending on a special introduced parameter. 
Bolyai wrote in his work that it is not possible to 
decide whether the geometry of the physical universe 
is Euclidean or non-Euclidean through mathematical 
reasoning alone, and he regarded this to be a task for 
the physical sciences.

Bernhard Riemann was a German mathematician 
who founded a new field of geometry, later called the 
“Riemannian geometry,” in his famous lecture in 1854. 
He constructed an infinite family of non-Euclidean 
geometries by giving a formula for a family of Rieman-
nian metrics on the unit ball in the Euclidean space. His 
theory of Riemannian surfaces—which can be divided 
into three types: hyperbolic, parabolic, and elliptic or 
spherical corresponding to negative, zero, or positive 
curvature—can be generalized by his uniformization 
theorem in terms of conformal geometry. Every con-
nected Riemann surface X admits a unique complete 
two-dimensional real Riemannian metric with con-

stant Gaussian curvature equal to 

€ 

−1, 0, or 1 inducing 
the same conformal structure. The surface X is then 
called “hyperbolic,” “parabolic,” and “elliptic,” respec-
tively, according to its universal cover. 

Later on, Riemann’s remarkable work was elabo-
rated by German mathematician Felix Christian Klein, 
who established a new classification of geometric 
spaces based on algebraic theory of the underlying 
group of transformations and their invariants, which 
is known as the “Erlangen program” presented at the 
University of Erlangen in 1872. Basic properties of a 
specific geometry can be represented as sets of invari-
ant properties of the space figures under a given group 
of transformations. This definition of geometric 
spaces encompassed both Euclidean and non-Euclid-
ean geometry in a unifying theory of geometric spaces, 
taking into consideration not only geometric figures 
and the space dimension, but also specified geometric 
transformations and their invariants. 

The development of non-Euclidean geometries was 
inevitably important to physics in the twentieth cen-
tury. Modern geometry shows multiple strong bonds 
with physics, exemplified by the links between Rie-
mannian geometry and relativity. In 1917, Albert Ein-
stein used Bernhard Riemann’s mathematics in order 
to present a model for the universe that was consistent 
with his theory of relativity. His model was based on a 
finite spherical universe. Geometry, where the curva-
ture changes locally from point to point, is the Rieman-
nian geometry of continuous manifolds. One of the 
youngest physical theories, string theory, is also very 
geometric in flavor. 

Dimensions: Shape of the Universe
There is a direct link between the geometry of the uni-
verse and its shape. The homogeneous and isotropic 
universe allows for a spatial geometry with a constant 
curvature, and three different possible types of geo-
metric spaces can be distinguished, depending on the 
sign of the curvature.

If the density of the universe equals exactly the criti-
cal density, then the geometry of the universe is flat, 
like a plane. One has to consider a geometric space with 
zero curvature and Euclidean geometry as described by 
Euclid. As Euclid’s fifth postulate on parallelism is true, 
the sum of the triangle’s inner angles equals exactly 180 
degrees, and light photons traveling on parallel lines 
never meet each other (see Figure 2).
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If the density of the universe exceeds the critical 
density, then the geometry of space is closed and posi-
tively curved like the surface of a sphere. No parallel 
lines exist, and the sum of the triangle’s inner angles 
is more than 180 degrees. This implies that, initially, 
parallel photon paths converge slowly. Eventually, they 
cross and return back to their starting point if the uni-
verse lasts long enough (see Figure 3). 

If the density of the universe is less than the critical 
density, then the geometry of space is open, negatively 
curved like the quadratic surface called “hyperbolic 
paraboloid.” Infinitely many parallels exist through a 
point to a given line and the sum of the triangle’s inner 
angles is less than 180 degrees. Parallel photon paths 
can be considered as traveling to infinity in different 
directions from one starting point (see Figure 4).

Global geometry describes the topology of the 
whole universe—the observable part and beyond. For 
a flat spatial geometry, any topological property may or 
may not be directly detectable, as the scale of all such 
properties is arbitrary. Probability to detect the topol-
ogy of spherical and hyperbolic geometries by direct 
observation depends on the spatial curvature. Using 
the radius of curvature as a scale, a small curvature of 
the local geometry, with a corresponding scale greater 
than the observable horizon, makes the topology dif-
ficult to detect. In a hyperbolic geometry, the radius 
scale is unlikely to be within the observable horizon, 
while a spherical geometry may have a radius of curva-
ture that can be detected.

There are three primary methods to measure cur-
vature: luminosity, scale length, and density. Luminos-
ity requires an observer to fix some standard source of 
light, such as the brightest quasars, and follow them out 
to high red shifts. Scale length requires determination 

and usage of some standard size, which can be the size 
of the largest galaxies. Density is a number of galaxies 
in a chosen box as a function of distance. Recently, all 
these methods have been inconclusive because the size 
and number of observable galaxies and their brightness 
are changing with time in unpredictable ways. As of 
2011, the cosmological measurements were consistent 
with the model of a flat universe, based on data from 
sources such as NASA’s Wilkinson Microwave Anisot-
ropy Probe (WMAP). NASA has declared the universe 
to be flat within a 2% margin of error.

Two following investigations are decisive in the 
study of the global geometry of the universe:

• Whether the universe is a compact space or it 
is infinite in extent 

• Whether the topology of the universe is 
simply or nonsimply connected

	 Geometry of the Universe 439

Figure 2. Planar parabolic Euclidean geometric space. Figure 3. Spherical non-Euclidean geometric space.

Figure 4. Hyperbolic non-Euclidean geometric space.



Both of these topological properties depend on the 
mass distribution and, therefore, on the total strength 
of gravitation within the universe. However, each of 
them implies a different history and future develop-
ment of the universe: 

1. If the universe is a space with negative 
curvature, there is insufficient mass to cause 
the universe to cease expansion. Therefore, 
the universe has no boundaries, and it will 
continue expanding forever, ending in a 
Heat Death. This model of the universe is 
presented as an “open universe.” 

2. If the universe is a space with zero curvature, 
there is exactly enough mass to stop its 
expansion, but this will take an infinite 
amount of time. In this case, the universe has 
also no bounds and will expand forever; but 
after an infinite amount of time, the rate of its 
expansion will be gradually approaching zero. 
This is a “Euclidean flat universe” model. 

3. If the universe is a space with positive 
curvature, there is more than enough 
mass to stop its expansion. The universe is 
not infinite, but it is endless. The present 
expansion of the universe might eventually 
stop and turn into a contraction, and the 
universe will start collapsing on itself. This 
model is called a “closed universe.” 

Scientists still do not know which of these three sce-
narios of the future of the universe could be correct, as 
they have not yet been able to determine exactly how 
much mass is in the universe.

If the three-dimensional manifold of a spatial sec-
tion of the universe is compact, then the universe has 
a definable volume, as on a sphere. If the geometry of 
the universe is not compact, then the universe is infi-
nite in extent with no definable volume, such as the 
Euclidean plane. Therefore, if the spatial geometry is 
spherical, then its topology is compact, while for a flat 
or a hyperbolic spatial geometry the topology can be 
either compact or infinite.

Particle physics, quantum field theory, and cosmo-
logical theories led to a revolution in thought and new 
paradigms of subatomic matter that require the exis-
tence of a so-called hyperspace, which is an ultimate 
universe of many dimensions. In an ongoing quest 

for a synthesis of quantum mechanics and relativity 
physics into a superstring theory of universe unifying 
four fundamental forces (gravity, electromagnetism, 
and the strong and weak nuclear forces), the idea of 
a Theory of Everything has been born. This unified 
field theory, as it is understood in the early twenty-first 
century, does not preclude any of such hypotheses as, 
for instance, the existence of superstrings, black holes, 
wormholes, other parallel universes, and time travel 
ideas. Modern physics still needs a more powerful 
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Dimensions

D imensionality of the geometric space is an 
intrinsic characteristic that is understood 

and perceived differently for the space inhabit-
ants (locally) than from the global point of view 
of the outside observers. Inhabitants of the 
three-dimensional space cannot easily realize 
the fourth dimension, similarly to the behavior 
and abilities of inhabitants of a two-dimensional 
space, Flatland. English mathematician and 
writer Edwin A. Abbott explored the nature of 
dimensions in his novel Flatland: A Romance 
of Many Dimensions that appeared in 1884, 
where he predicted the possible existence and 
reality of the fourth dimension of the universe. 
Flatlanders are not able to imagine the third 
dimension existing outside their living environ-
ment of the two-dimensional space, which is, 
however, quite natural for the three-dimensional 
space inhabitants. His work inspired mathema-
ticians to develop considerations of how higher 
dimensions could appear to human beings as 
inhabitants of the universe, provided this can 
be considered as a three-dimensional surface 
of a four-dimensional space-time. Many books 
and films appeared, describing the idea of 
dimensionality and its perception; for example 
the short film Flatland produced by Seth Caplan 
in 2007, or the computer animated film Flatland 
directed and animated by Ladd Ehlinger, Jr., in 
Lightwave three-dimensional software. 



mathematical theory and topology of the 10-dimen-
sional space in order to understand completely our 
expanding and evolving cosmos. The theory of hyper-
space introduced by American mathematician Michio 
Kaku may be the leading candidate for the Theory of 
Everything, for which Albert Einstein spent the last 
years of his life searching. 

When, in 1990, scientists sent the Hubble Space 
Telescope into space, they did not expect to find that 
the expansion of the universe was speeding up, nor 
did they realize the existence of the black matter and 
the dark energy that became the dominant force in the 
universe, recently accelerating its expansion. The James 
Webb Space Telescope, NASA’s next orbiting observa-
tory and the successor to the Hubble Space Telescope, 
is scheduled to be launched in 2014 to distant orbits. 
This infrared telescope detecting infrared radiation 
will be capable of seeing wavelengths of light difficult 
to observe from Earth, thus opening new horizons of 
the visible universe. It is hard to imagine and predict 
what discoveries and answers to the mysteries of the 
universe scientists will gain using its observations in 
the future. 
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Geothermal Energy
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement.
Summary: Geothermal energy can be harnessed  
for domestic heating or to produce electricity via 
steam turbine.

“Geothermal” refers to heat from the interior of Earth 
generated from the forces that led to the planet’s cre-
ation and the ongoing slow radioactive decay that 
continues to generate thermal activity. While Earth’s 
surface is relatively cool, temperatures increase dra-
matically with depth, which is known as a region’s 
“geothermal gradient.” The interiors of continents 
tend to have lower gradients than “spreading center” 
regions, where continental tectonic plates are slowly 
separating. A prime geothermal area is along the Ring 
of Fire rimming the Pacific Ocean’s eastern, northern, 
and western coasts. 

High geothermal gradients make prime candidates 
for geothermal energy projects. However, the average 
gradient is approximately 2.5–3 degrees Celsius per 100 
meters. Approximately 6000 kilometers beneath the sur-
face, molten rock reaches temperatures of approximately 
5000 degrees Celsius. A small portion of this extreme 
heat makes its way to the surface as steam through cracks 
and fissures. Geothermal leakage to the surface leads to 
dramatic volcanic eruptions as well as  to the formation 
of hot springs and geysers. Geothermal-warmed, min-
eral-rich waters have long been considered to be sacred 
or to have healing properties by many people. Geysers 
such as Old Faithful in Yellowstone continue to attract 
visitors from around the world. 

Mathematicians, geothermal engineers, geologists, 
and other scientists use mathematical methods to 
research various aspects of geothermal processes, such 
as the deformable, porous properties of soil and rock 
that allow geothermal heat to make its way to the sur-
face. These studies have broad applications in many 
scientific areas, including the way brains deform dur-
ing neurosurgery and in industrial injection mold-
ing. In other cases, Lagrangian–Eulerian flow models, 
named for Joseph Lagrange and Leonhard Euler, are 
used to model characteristics such as precipitation and 
transport, which have applications for engineering 
geothermal reservoirs and isolating radioactive waste. 
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Stochastic models for system optimization and control 
as well as geometric models also help mathematicians 
understand geothermal heat. Many are working on 
computer models to update, integrate, and expand the 
U.S. Geological Survey’s MODFLOW, a three-dimen-
sional finite-difference groundwater flow model first 
published in 1984 and widely used for research and 
industrial applications.

Geothermal Heating
As long ago as the nineteenth century, scientists and 
engineers began to develop geothermal-based appli-
cations for chemistry and heating, though there is 
evidence that even prehistoric people built dwellings 
around naturally occurring geothermal heat sources. 
With abundant geothermal resources, Iceland began to 
emerge by the late 1920s as a world leader in the use 
of geothermal energy for domestic heating and cool-
ing. Advances since that time have led to the develop-
ment of geothermal heat pump systems. During cold 
periods, heat pumps transfer to buildings heat from 
either the ground (beneath the frost line) or from the 
bottom of ponds. During warm periods, the process is 
reversed and heat is taken from buildings and put into 
the ground or ponds. However, purposeful movement 
of water on a large scale can have geological conse-

quences. For example, in Venice, the removal of sub-
surface water resulted in subsidence (settling of loose, 
porous soil), which lowered some buildings. Adding or 
subtracting water from one part of a geothermal field 
can affect all aspects of the field, including system pres-
sure and surface vents. Seismologists use mathematical 
models describing the behavior of deformable porous 
rock and soil to predict where events like earthquakes 
might occur as a result of water-pumping activities.

Geothermal Electricity
Geothermal resources can also be used to produce elec-
tricity. The first geothermal electric power plant was 
built in Larderello, Italy, in 1904. Japan and the United 
States followed suit in 1910 and 1921, respectively. 
The spread of geothermal energy has been slow in the 
decades since. However, because of concerns regarding 
global warming and a quest to develop nongreenhouse 
gas (GHG)–emitting energy technologies, geothermal 
power generation has received more attention. 

There are two types of geothermal power plants, 
both of which rely upon the production of steam to 
drive the conventional turbines that create electricity. 
Electricity can be produced directly from steam if the 
temperatures are at a minimum of 95 degrees Celsius 
(200 degrees Fahrenheit), and higher outputs are pos-

sible after temperatures crest at 
175 degrees Celsius (350 degrees 
Fahrenheit). At the Geysers geo-
thermal power plant in Califor-
nia, steam at a temperature of 
approximately 235 degrees Cel-
sius (455 degrees Fahrenheit) is 
used to directly drive turbines. At 
lower temperatures, geothermal 
heat can still be used, but it relies 
upon specialized fluids that have 
a low boiling point capable of 
producing high pressures, rather 
than natural steam. 

While the capital costs are 
high for both types of geothermal 
electricity, once in production it 
has several advantages over other 
forms of electricity generation. 
Like wind, its fuel costs are negli-
gible. Similar to wind and nuclear 
power, once constructed, geother-
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mal plants produce far fewer GHG emissions than tra-
ditional fossil fuel plants. Geothermal also has advan-
tages over other alternative energy producers. Unlike 
wind, which is intermittent because of its dependency 
on weather conditions, geothermal electricity can be 
relied upon to produce consistent baseload power. Geo-
thermal plants are also less intrusive visually than large 
wind farms and tend to draw less public attention.

Geothermal also has two key advantages over nuclear 
generation. Nuclear power plants are dependent upon 
a finite resource (uranium), and nuclear waste disposal 
is both controversial and costly. In contrast, geother-
mal generation depends on a virtually infinite source 
(heat generated in Earth’s interior), and there are no 
long-term waste issues. 

Popular and government interest in geothermal 
energy and its advantages over both traditional and 
alternative electricity generating options led to a 20% 
increase in global geothermal electricity production 
between 2005 and 2010. In addition, there has been 
a 52% increase from 2007 to 2010 in the number of 
countries developing geothermal resources.

Despite the increasing numbers, geothermal energy 
production continues to significantly lag behind other 
electricity sources at the start of the twenty-first cen-
tury. In part, this lag is the result of a perception that 
there are a limited number of high-quality geothermal 
sites that would enable geothermal energy to become a 
major producer. In addition, there are technical, per-
mitting, and electric transmission issues that drive up 
capital costs and inhibit substantial expansion. 
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See Also: Climate Change; Electricity; Energy; 
Volcanoes; Wind and Wind Power.

Gerrymandering
Category: Government, Politics, and History.
Fields of Study: Data Analysis and Probability; 
Geometry; Number and Operations.
Summary: Mathematical algorithms are used in the 
process of redistricting and to help evaluate whether 
or not gerrymandering has occurred.

Gerrymandering is a form of political boundary 
delimitation, or redistricting, in which the boundaries 
are selected to produce an outcome that is improperly 
favorable to some group. The name “gerrymander” 
was first used by the Boston Gazette in 1812 to describe 
the shape of Massachusetts Governor Elbridge Ger-
ry’s redistricting plan, in which one district was said 
to have resembled a salamander. In the United States, 
congressional and legislative redistricting occurs every 
10 years, following the decennial census. The aim of 
redistricting is to assign voters to equipopulous geo-
graphical districts from which they will elect represen-
tatives, in order to reflect communities of interest and 
to improve representation. 
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Both redistricting and gerrymandering can be char-
acterized as mathematical optimization functions. For 
good-government redistricting, the optimization func-
tion is based on measures of representation and fair 
political outcomes. These measures may include the 
number of expected majority-minority districts and 
the number of competitive districts as well as bias and 
responsiveness of the expected seats-votes response 
curve. In contrast, a gerrymander may aim to mini-
mize the number of districts in which a racial or eth-
nic minority can elect a representative, maximize the 
number of partisan seats, protect incumbents by creat-
ing districts that are not competitive, or obtain some 
other improper advantage. 

Forms of Redistricting
Redistricting is the process of dividing a larger geo-
graphical unit into a fixed number of regions (known 
as districts). The formal aim of redistricting is to cre-
ate the set of districts that yields the optimal results—
as measured by some cost/benefit criteria—while at 
the same time meeting a set of constraints. The gen-
eralized redistricting problem applies to a variety of 
fields, including the assignment of sales territory; 
the site selection for warehouses, fire stations, and 
schools; and the division of political territories into 
election districts. 

In political redistricting, a larger political unit, such 
as a state, is divided into a number of districts con-
taining roughly equal numbers of people (or, in some 
jurisdictions, voters). The voters in each district will 
have the right to elect a fixed number of candidates 
to represent that district. In addition, the district plan 
must satisfy various legal requirements such that dis-
tricts are geographically contiguous; composed from 
undivided subunits, such as counties, or census blocks; 
be nonempty; and do not overlap.

Mathematical Representation
In mathematical terms, both redistricting and gerry-
mandering are readily represented as a type of combi-
natoric partitioning problem. (The optimization prob-
lem is combinatoric because the rules for redistricting 
typically require that districts be constructed only from 
whole census blocks.) There are many specific formu-
lations of this problem—all equivalent—including set-
partitioning, integer-programming, polygon-division-
ing, and graph-partitioning.

The law typically requires that each district is 
contiguous and has roughly equal population. For 
legislative districts, equal population may be within 
10% of the “ideal” population; for congressional dis-
tricts, only minimal differences are permitted. Thus, 
a common characterization of the redistricting prob-
lem is the weighted graph partition problem: find a 
partition of the entire graph (for example, state to be 
redistricted) that induces connected subgraphs (guar-
anteeing contiguity) of equal node-weight (guaran-
teeing equal population) and that maximizes some 
goal function. 

The choice of goal function depends on the objec-
tives of the redistricter. For example, a redistricter 
intent on creating a partisan gerrymander might use a 
goal function that estimates the expected probability of 
one party controlling the legislature under a given plan, 
or alternatively, the expected number of party-con-
trolled seats—a crude estimate of this is the number of 
districts with party registration over 55%. In contrast, 
the goal function for a more fair-minded redistricter 
might be the number of expected competitive seats, 
the expected bias of the expected seats-vote curve, or 
another measure of political representation. 

Computational Issues
The behavior and characteristics of a district can be 
readily predicted based on the properties of the units it 
contains. For example, it is relatively straightforward—
using modern statistical modeling and computational 
methods—to predict the number of seats each party is 
likely to capture in the next election, given a particular 
districting plan. 

However, although each plan may be easy to evalu-
ate, and the problem of choosing the “best” plan is easy 
to formulate, actually finding the best plan is extremely 
difficult. In fact, it is provably “NP-complete.” NP-com-
plete problems are generally considered by computer 
scientists and mathematicians to be computationally 
intractable. Surprisingly common forms of redistrict-
ing to optimize neutral, good-government, or partisan 
objectives (including compact, contiguous, equipopu-
lous plans, proportionally representative plans, and 
partisan-seat maximizing plans) are all computation-
ally intractable.

While algorithms exist to solve these problems pre-
cisely, reliably, and with certainty, the time required 
to obtain such a solution grows exponentially as the 
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number of problems grow. Thus, it is impossible to 
use reliable solution methods for practical problems. 
Redistricting problems are instead solved computation-
ally using heuristics (problem-solving procedures that 
provide no guarantees of yielding “good” solutions, 
although they may produce acceptable solutions in cer-
tain circumstances). In other words, when districts are 
created manually or with a computer, one usually can-
not know whether these are the best districts possible. 

Distinguishing Gerrymandering  
and Redistricting
In theory, and in U.S. law, a gerrymander is distin-
guished from a legitimate redistricting through its 
effect and the intent of the redistricter.  If the intent 
of the redistricter is to produce an improper outcome 
and is effective in achieving that outcome, a gerryman-
der has occurred. In practice—except in more extreme 
cases—distinguishing gerrymanders from ordinary 
redistricting is challenging for three reasons. First, 
although it may seem easy to identify gerrymanders 
by district shape alone (and many measures of shape 
“compactness” have been proposed), in fact, none of 
these measures is related strongly either theoretically 
or empirically to improper political intent or effect. 
Politically relevant groups are not uniformly distrib-
uted in space. Further, partisanship and demographics 
are often strongly correlated. For example, members of 
some parties tend to live in cities, and the poor are often 
clustered in neighborhoods. As a result, geographical 
compactness measures that may seem neutral on their 
face have predictable political biases when applied. 
Thus both scholars and the courts have declined to 
accept measures of geographical compactness for ger-
rymander detection. 

Second, it is not feasible to determine the optimal 
plan for a given objective, or the statistical distribution 
of possible redistricting plans, because the problem is 
too difficult to compute. This makes it challenging to 
determine whether a redistricter intended or achieved 
maximization of a particular goal, or not. Third, there 
is generally a lack of consensus on how to measure the 
various dimensions of political representation. Thus 
even good-government redistricters may disagree as to 
the best “goal function” to use when creating a plan. 
These three issues makes it challenging to use statis-
tical and quantitative methods to determine whether 
the properties of a proposed plan are extreme, to deter-

mine the intent of the redistricter, and to determine 
whether a particular plan has unambiguously violated 
representational values. 
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See Also: Graphs; Packing Problems; Permutations 
and Combinations. 

Global Warming
See Climate Change

Golden Ratio
Category: Arts, Music, and Entertainment.
Fields of Study: Measurement; Number and  
Operations; Representations.
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Summary: The golden ratio of roughly 1.618 is 
found throughout nature and art.

It was Euclid of Alexandria, a well-known Greek math-
ematician, who in his book The Elements (300 b.c.e.) 
first wrote about the golden ratio. The golden ratio is 
denoted by the Greek letter φ (phi) and known also 
as the “golden section,” the “golden mean,” and the 
“divine proportion.” 

This last name was given to φ because of the fre-
quency with which the ratio exists in the natural 
world—leading many to hold it up as a mystical num-
ber. The golden ratio is, as all ratios are, a comparison. 
In his description, Euclid describes the golden ratio 
through the division of a line segment. A line segment 
whose length is A is divided into two smaller pieces, 
one of length B and the other of length C, such that 
the ratio of the original segment to the larger piece 
is equal to the ratio of the larger piece to the smaller 
piece. Mathematically, this ratio would be represented 
as the following:

A

B

B

C
= .

A perfect rectangle is a rectangle in which the ratio 
of the length of the longer sides to the length of the 
shorter sides yields φ. Alternatively, the ratio may be 
expressed as follows: 

1 5

2

+

and it is approximately equal to 1.16180339877. . . . As 
this is an irrational number, there is no end to its digits 
and no pattern among them.

The golden ratio may be used to create a golden spi-
ral. Golden spirals are common in nature and can be 
found on shells, the caverns of the inner ear, the horns 
of various animals, and even some flowering plants. A 
golden spiral is a spiral that gets wider by a factor of φ 
for every quarter turn it takes as it opens outward from 
the point of origin (see Figures 1–2). If one considers 
the origin to be the eye of a hurricane, the spiraling 
out can be seen in the shape of the hurricane (the cir-
cling of winds that opens outward from the eye), and 
this provides yet another example of the golden ratio’s 
appearance in nature.

The golden ratio appears in many other areas as well, 
including science, art, and nature. For example, the 
work of Herodotus (fifth century b.c.e.), considered the 
first historian, indicates the use of the golden ratio in 
the construction of the pyramids (see Figure 3). Phid-
dias (490–430 b.c.e.), a sculptor, is said to have used 
the golden ratio in the creation of sculptures that were 
later found in the Parthenon. The Parthenon itself con-
sists of many uses of the golden ratio, a simple example 
being the length and width of the building. Similarly, 
the golden ratio appears in modern architecture, such as 
the United Nations Building in New York City. Here the 
ratio of the height of every 10 floors as compared to the 
width of every 10 floors also yields the golden ratio.  

The work of Leonardo da Vinci is also said to incor-
porate the golden ratio, including in the definition of 
the proportions in the Mona Lisa (see Figure 4).
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The use of the golden ratio in art and architecture is 
common, especially when one considers that the ratio 
is pleasing to the eye. Gustav Fechner (1801–1887) per-
formed many experiments with respect to this ratio. 
He found that rectangles, books, buildings, and other 
objects were more pleasing to individuals when they 
contained the golden ratio.

Music is another place where the golden ratio plays 
a vital role. Mozart’s piano sonatas use the golden 
ratio in the arrangement of sections of measures that 
make up individual pieces. Mozart’s piano sonatas are 
made up of two sections called the “exposition” and 
the “recapitulation.” In one 100-measure composition, 
Mozart divided the pieces into two sections between 
the 38th and the 62nd measures. The measures in the 
pieces, when compared, yield the closest approximation 
to the golden ratio that can be made when dividing a 
100-measure composition into two sections. However, 
the pieces do not always make use of the golden ratio 
throughout. That is, subsections do not always include 
the golden ratio, leading some to question whether 
Mozart was conscious of his use of it. In addition, in 
many of the most successful musical pieces, the cli-
max of the piece occurs in accordance with φ. That is, 
the ratio between the length of the piece prior to the 
climax compared to that after the climax yields, once 
more, the golden ratio.

Further, the golden ratio is apparent in proportions 
in the human body. If the distance from the navel to a 
person’s foot is considered to be “1,” then the height of 
the person is approximately φ. The ratio of the distance 
from the navel to the top of the head to the length of 
the head also approximates φ. In the idealized human 
face (that which is said to be most beautiful in terms of 
proportions, φ  comes up when comparing the length 
of the face to the width; the length of the mouth and 
the width of the nose, and many other comparisons.

The golden ratio is also related to the Fibonacci 
sequence—a numeric sequence in which each succes-
sive term (except for the first two) is obtained by add-
ing the two prior terms. This yields 1, 1, 2, 3, 5, 8, 13,  
21, . . . . When the ratios between successive terms in the 
sequence are found, they approach the golden ratio.

Some question whether the golden mean is a num-
ber that is preferred or significant in nature or whether 
the number is so prevalent because the mathematical 
meaning of the number influences or biases perceptions 
of the applicability. The diversity of systems in which it 
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Figure 4. The golden ratio in the Mona Lisa.



appears, including multiple developmental markers of 
human growth, suggests that it may be broadly advan-
tageous. Analysis shows that the ratio’s logarithmic 
spiral is a system that could theoretically self-replicate 
indefinitely. It also minimizes wasted space and gives 
new growth maximum exposure to necessary resources, 
such as sunlight. This makes a golden spiral an optimal 
and efficient design for growth in biological systems.

Further Reading
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See Also: Geometry of Music; Hurricanes and 
Tornadoes; Painting; Sequences and Series.

Government and  
State Legislation
Category: School and Society.
Fields of Study: Connections; Representations.
Summary: Legislation shapes the conditions in which 
mathematics education and research take place and 
mathematics quantifies the impact of proposed laws.

Government and state legislation impacts mathemat-
ics and mathematics education in many ways. For 
instance, legislators may guide research or teaching 
or mandate state or federal testing. They set funding 
levels that affect raises, the hiring or firing of teachers, 
and the daily operations at many state-assisted schools, 
colleges, and universities. Federal funding for math-
ematics programs at organizations like the National 
Science Foundation or the Department of Education, 
as well as state funding through Boards of Education, 
is often given as grants with the hope that they will lead 
to innovations in research and teaching. Some schol-

arship programs or economic incentives are designed 
to increase the number of graduates in science, tech-
nology, engineering, and mathematics (STEM). U.S. 
House or Senate resolutions bring attention to math-
ematical events like Mathematics Awareness Month or 
π-Day. Professional mathematical societies organize or 
co-organize policy and advocacy committees that lobby 
the U.S. Congress and provide testimonies on issues 
related to mathematics. Another way that mathematics 
impacts legislation is through the quantitative knowl-
edge of legislators. Scientists and mathematicians also 
serve on state or national committees like those at the 
National Academy of Sciences, which advise the federal 
government on STEM issues. 

Structure and Representation
When citizens are not voting directly on legislation, 
they rely on elected representatives to give voice to 
their preferences. The constitutional democracy imple-
mented in the United States was formulated expressly 
to prevent any one individual or group from exerting 
too much influence over the citizenry. Power sharing 
is manifested in the United States by partitioning gov-
erning responsibilities across the three branches of the 
federal government: judicial, executive, and legislative. 
The familiar system of “checks and balances” allows 
each branch to exert some measure of control over the 
other two. 

Most state governments are structured in a similar 
way. The legislative branches at the federal and state 
levels implement further power-sharing measures in 
that they are often “bicameral,” meaning two separate 
bodies deliberate on laws and policies. Reflecting one 
of the great political compromises of American gov-
ernment, these two legislative bodies are formulated on 
two distinct representative principles. The U.S. Senate, 
for example, has equal representation from each state 
to ensure that each, especially smaller states, has equal 
voice in new policy formation. The U.S. House of Rep-
resentatives features representation that is in propor-
tion to the population size of each state, thereby ensur-
ing that larger states have a voice that fairly represents 
their larger constituency. In a system of representation, 
a single representative usually stands in for a popula-
tion of citizens. The primary technical and mathemati-
cal challenge in this system of representation is that not 
all representatives will represent the same number of 
citizens. That question forms the basis of the appor-
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tionment problem, which is a topic of great historical 
and theoretical mathematics study.

Government-Sponsored  
Mathematics Education
Many federal and state agencies impact STEM fields 
through legislated acts such as those related to fund-
ing or establishment of responsibilities. For instance, 
in 1867, the U.S. Department of Education was created 
in order to collect data on schools. The 1890 Second 
Morrill Act, which required states to prove that race 
was not a factor in granting college admissions or to 
land-grant institutions, led to new responsibilities for 
the Department of Education. As a result of the launch 
of Sputnik, Congress passed the National Defense 
Education Act (NDEA) in 1958: “To help ensure that 
highly trained individuals would be available to help 
America compete with the Soviet Union in scientific 
and technical fields, the NDEA included support for 
loans to college students, the improvement of science, 
mathematics, and foreign language instruction in ele-
mentary and secondary schools, graduate fellowships, 
foreign language and area studies, and vocational-tech-
nical training.” In 1980, Congress established the U.S. 
Department of Education as a cabinet-level agency. 

The Department of Education continues to impact 
mathematics education in the twenty-first century by 
focusing on educational excellence and equal access. 
Legislative funding and policies are an important aspect 
of curriculum changes through state or local agencies 
such as Boards of Education or Departments of Public 
Instruction. For example, in the late 1990s, concerns 
about student achievement led the state of California 
to adopt mathematics standards and the state’s legis-
lature appropriated $1 billion for new instructional 
materials. Local agencies impact mathematics educa-
tion through funding for teachers, charter schools, or 
voucher programs. 

Another important federal agency for mathematics 
is the National Science Foundation. Under President 
Harry Truman, Congress established the National 
Science Foundation in 1950 via Public Law 81-507. 
The National Science Foundation provides grants 
and supports research and education in STEM. The 
agency attributes its founding to a response to the 
contributions of research scientists who helped win 
World War II, for example, with the creation of peni-
cillin and the atomic bomb.  

Professional Organizations
Mathematicians in professional mathematics organi-
zations, such as the National Alliance of State Science 
and Mathematics Coalitions, track federal and state 
legislation, help lobby legislators, and review legisla-
tion for potential positive and negative impacts. One 
well-known example of mathematics legislation with 
mathematical errors at the state level relates to the 
concepts π and squaring a circle. House Bill 246 read: 
“A bill for an act introducing a new mathematical 
truth and offered as contribution to education to be 
used only by the state of Indiana free of cost by paying 
any royalties. . . .” This erroneous bill did not become 
law because of the intervention of mathematics pro-
fessor C. A. Waldo.

Mathematics in Government
The extent of mathematics and scientific knowledge 
among legislators has long been a concern. Plato advo-
cated the idea that learning to calculate “is a kind of 
knowledge which legislation must make a subject of 
study; and we must endeavor to persuade those who 
are in positions of authority in our State to go and 
learn arithmetic, not as amateurs, but they must carry 
on the study until they properly understand the nature 
of numbers; nor again, like merchants or retail-trad-
ers, with a view to buying or selling, but for the sake of 
their military use, and of the mind itself; and because 
this will be the easiest way for it to pass from the world 
of becoming to that of truth and reality.” Under Presi-
dent Abraham Lincoln, an act of Congress established 
the National Academy of Sciences in 1863 in order to 
conduct experiments on scientific issues and advise 
any department of the government that needed them 
to do so. The National Academy of Sciences created the 
National Research Council in 1916.  

An example of how the National Academy of Sci-
ences has impacted legislation related to mathematics 
is the twenty-first-century report “Rising Above the 
Gathering Storm: Energizing and Employing America 
for a Brighter Economic Future,” also known as the 
“Augustine Report.” Congress had requested an eco-
nomic competitiveness study and Normal Augustine, 
also a member of the President’s Council of Advisors on 
Science and Technology, chaired the resulting National 
Academy of Sciences committee. He was educated as 
an engineer and served as chairman and chief execu-
tive officer of Lockheed Martin Corporation. Through 
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the report, the committee highlighted the ties between 
STEM innovations and the global economy and made 
international comparisons. It advocated improved edu-
cation in mathematics and science as well as an increase 
in the number of students in the STEM pipeline. This 
report led to the American Competitive Initiative of 
2006, which was enacted into law in 2007 as the Amer-
ica Creating Opportunities to Meaningfully Promote 
Excellence in Technology, Education, and Science Act, 
or the America COMPETES Act. It sets targeted federal 
funding levels for STEM, such as doubling funding for 
the National Science Foundation.  

Congress has investigated many issues related to 
mathematics, which often first arose out of related 
congressional and National Academy of Sciences com-
mittee work. The twenty-first century Committee on 
Science and Technology or the historic Committee on 
Coinage, Weights, and Measures is one example. Con-
gress passed the Metric Act of 1866: “It shall be lawful 
throughout the United States of America to employ 
the weights and measures of the metric system; and 
no contract or dealing, or pleading in court, shall 
be deemed invalid or liable to objection because the 
weights or measures expressed or referred to therein are 
weights or measures of the metric system.” Additional 
relevant legislative actions include the House Resolu-
tion: Expressing Support for Mathematics Awareness 
Month, or House Resolution 224, that supported the 
designation of March 14 as “π-Day” to help publicize 
mathematical events. Congress has also investigated or 
held hearings on issues such as how to close the gender 
gap in STEM or whether to relax H1B1 visa caps so 
that technology firms can hire more foreign workers. 
Mathematicians, scientists, and business leaders testify 
before Congress on STEM issues. Presidents can also 
issue executive orders related to mathematics, such as 
when President George W. Bush created the National 
Mathematics Advisory Panel in 2006 to advise both 
him and the Secretary of Education regarding best 
practices in mathematics education.

Further Reading
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.org/features/101404sciencepolicy.html.

National Alliance of State Science and Mathematics 
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See Also: Curriculum, College; Curriculum, K-12; 
Educational Testing; Mathematics Literacy and Civil 
Rights; Professional Associations.

GPS
Category: Travel and Transportation.
Fields of Study: Geometry; Measurement; Number 
and Operations.
Summary: Global positioning systems have been 
made available to the private sector but depend on 
satellites originally placed into orbit for military 
purposes and require precise calculations.

The global positioning system (GPS) is a satellite-based 
navigation system comprised of a network of satellites 
placed into orbit by the U.S. Department of Defense in 
1973. GPS was originally intended for military applica-
tions to accurately determine locations worldwide in 
all kinds of weather. In the 1980s, the U.S. government 
made the system available for civilian use. GPS is used 
as a navigation and positioning tool in transportation, 
such as fleet cars and commercial trucking, in survey-
ing, and for almost all outdoor recreational activities. 
In the scientific community, GPS plays an important 
role in geology, meteorology, wildlife studies, archeol-
ogy, and many other areas. Mathematics was critical in 
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the development of this system and mathematicians 
work on many ongoing issues, such as precision and 
error correction.

There are three parts that form the GPS: the space 
segment (satellites), the user segment (the receiver), 
and the control segment (control stations). The control 
segments are on the geoid (a three-dimensional model 
of Earth). The first segment of the system consists of 
a constellation of satellites, orbiting 20,000 kilometers 
above Earth in 12-hour circular orbits. While the exact 
number of satellites in operation varies at any given 
moment, at least six groups of four satellites are neces-
sary to ensure that they can be detected from anywhere 
on Earth’s surface. Each group is assigned a different 
path, creating six orbital planes that completely sur-
round Earth. 

Trilateration
The satellites transmit signal information to Earth. 
GPS receivers take this information and use trilatera-
tion to calculate the user’s exact location. Each satellite 
continuously transmits a data stream containing orbit 

information, equipment status, and the exact time. GPS 
receivers contain computer chips that then calculate the 
difference between the time a satellite sends a signal and 
the time it is received. The unit multiplies this time of 
signal travel by the speed of travel to get the distance 
between the GPS receiver and the satellite. Since these 
are radio waves, the speed used is the speed of light. One 
satellite gives a sphere on which the receiver sits. Two 
satellites give two spheres on which the receiver sits. The 
intersection of two spheres (and they must intersect) is 
a circle. Adding a third satellite gives the receiver one of 
two points at which the sphere will intersect the circle. 
Using the geoid as the fourth solid, the receiver fixes the 
point of location. Despite this, there is still some pos-
sibility for error if the clock on the receiver has a slight 
error. A clock error of only one-thousandth of a second 
causes a position error of almost 200 miles. The solu-
tion is to use geometry. If one more satellite is added, 
then even if the clock in the receiver is off, it is off for 
all of the satellites by the same amount. The receiver 
lies on a line from each of the satellites. If all clocks are 
exact, then the receiver will sit at the intersection of the 
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lines. However, the error in the receiver clock will cause 
the lines to intersect in different points, resulting in a 
polygon surrounding the receiver. The receiver can be 
calculated to be at the center of this polygon.  

GPS Capabilities and Accuracy
A GPS receiver must be locked on to the signal of at 
least three satellites to calculate the latitude and longi-
tude and to track movement. With four or more satel-
lites, the receiver can determine the user’s latitude, lon-
gitude, and altitude. Once the user’s position has been 
determined, the GPS unit can calculate other informa-
tion, such as speed, bearing, track, trip distance, distance 
to destination, sunrise and sunset times, and more. 
Most GPS receivers are accurate to within 15 meters on 
average. Newer GPS receivers often come with wide-
area augmentation system (WAAS) capability that can 
improve accuracy to less than three meters on average. 
No additional equipment or fees are required to take 
advantage of WAAS. Users can also get better accuracy 
with differential GPS (DGPS), which corrects GPS sig-
nals to within an average of three to five meters. The 
U.S. Coast Guard operates the most common DGPS 
correction service. This system consists of a network 
of towers that receive GPS signals and transmit a cor-
rected signal by beacon transmitters. In order to get the 
corrected signal, users must have a differential beacon 
receiver and beacon antenna in addition to their GPS. 

Possible sources of error include the following:

• Ionosphere and Troposphere Delays. Different 
layers of the atmosphere have different 
impacts on the speed of the satellite signal 
through those layers. Mathematicians have 
been working on creating better models of 
these atmospheric layers in order to give 
smaller errors.

• Geoid Error. The receiver uses a mathematical 
model of the surface of Earth, the geoid. 
Better mathematical models can improve the 
accuracy as long as they are relatively easy to 
use in computation.

• Signal Multipath. The GPS signal may be 
reflected off objects, increasing the travel 
time of the signal, thereby causing errors. 
Mathematicians are working on developing 
models to account for multipath based on the 
relative location of receiver.

• Orbital Errors. Inaccuracies in the satellite’s 
reported location are handled by the control 
segment, which tries to keep each satellite  
on track.

• Number of Satellites Visible. If only three 
satellites are visible, the receiver gives a 
position with a warning that it is likely to be 
very inaccurate.

• Satellite Geometry/Shading. Differences in 
the relative position of the satellites at any 
given time may cause errors. Ideal satellite 
geometry exists when the satellites are located 
at wide angles relative to each other. Poor 
geometry results when the satellites are 
located in a line or in a tight grouping.

• Intentional Degradation of the Satellite Signal. 
Selective Availability (SA) is an intentional 
degradation of the signal previously imposed 
by the U.S. Department of Defense. SA was 
intended to prevent military adversaries 
from using the highly accurate GPS signals. 
The government turned off SA in May 2000, 
which significantly improved the accuracy of 
civilian GPS receivers.

GPS Signal Transmission
GPS satellites transmit two low-power radio signals, 
designated “L1” and “L2.” Civilian GPS uses the L1 
frequency of 1575.42 MHz in the UHF band. A GPS 
signal contains three different bits of information: a 
pseudorandom code, ephemeris data, and almanac 
data. The pseudorandom code is simply an identifica-
tion code that identifies which satellite is transmitting 
information. Ephemeris data, which are constantly 
transmitted by each satellite, contain important 
information about the status of the satellite (healthy 
or unhealthy), current date, and time. The almanac 
data tell the GPS receiver where each GPS satellite 
should be at any time throughout the day. Each satel-
lite transmits almanac data showing the orbital infor-
mation for that satellite and for every other satellite 
in the system.

Further Reading
Cooke, D. Fun with GPS. Redlands, CA: ESRI Press, 2005.
Kaplan, Elliot D., and Christopher Hegarty, eds. 

Understanding GPS: Principles and Applications. 2nd 
ed. Norwood, MA: Artech House, 2005.
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See Also: Geometry of the Universe; Marine 
Navigation; Satellites; Trigonometry.

Graham, Fan Chung
Category: Mathematics Culture and Identity.
Fields of Study: Geometry; Representations.
Summary: Fan Chung, a role model to mathematics 
students, has done key work in Ramsey theory.

Known professionally as Fan Chung, Fan R. K. Chung 
Graham (1949–) is a Taiwanese-American mathema-
tician specializing in combinatorics. She earned her 
doctorate from the University of Pennsylvania in 1974, 
where she was a student of Herbert Wilf (1931–), then 
spent two decades at Bell Labs and Bell Corp. In 1983, 
she married Ron Graham, a famous mathematician 
in his own right; she has two children from a previ-
ous marriage. In 1994, she left industry and returned 
to academia as an endowed professor at the University 
of Pennsylvania. Three years later she accepted her cur-
rent position as a professor at the University of Califor-
nia, San Diego.

Fan Chung loved mathematics from a young age 
in Taiwan and decided in high school to be a math-
ematician. She gravitated to combinatorics because the 
problems were fun and “many problems . . . were easily 
explained, you could get into them quickly, but getting 
out was often very hard.” She is a role model to math-
ematics students, especially young women entering 
mathematics. Fan Chung advises students, “Don’t be 
intimidated!” and emphasizes the importance of seek-
ing and exploring the connections between different 
topics in mathematics and applications. “It is like play-
ing a game of Go. . . . If your territory is all connected 
together, then each piece is strong and useful.”

Another theme in Fan Chung’s discussions about 
mathematics is the importance of communication. 
“As an undergraduate in Taiwan, I was surrounded 
by good friends and many women mathematicians. 

We enjoyed talking about mathematics and helping 
each other.” At Bell Labs, she was intimidated at first 
by some of the research mathematicians and scien-
tists with whom she worked. However, her interest 
in diverse mathematical problems led her to inquire 
about others’ work. Then, as she said, “You make 
mathematical friends and share the fun!”

Fan Chung’s primary research interests are in ran-
dom graphs, spectral graph theory, and extremal graph 
theory. She has also made many contributions in dis-
crete geometry, communication networks, and algo-
rithms. Her generalization of the Erdos–Rényi model 
for random graphs has applications to the study of 
large information networks. At the same time, she 
has blended and balanced her work and family lives. 
When she became pregnant with her second child, she 
reassured others, “Since I already had one at home, I 
thought what’s the problem with one more? . . . I just 
took four weeks vacation and wrote one paper in 
between.” She has also said that it is “quite wonderful” 
to have a supportive spouse with whom she can share 
her ideas and challenges. Recreationally she paints, 
including portraits of mathematicians she has known. 
In 1999, the Graham home, which has a unique circu-
lar design, was named “Home of the Year” by Décor & 
Style magazine and was also featured on the television 
program “Extreme Homes.”

Ramsey Theory
Fan Chung’s doctoral dissertation and much of her 
work since come under the general heading of Ramsey 
theory, named for British mathematician and econo-
mist Frank Ramsey (1903–1930). This branch of com-
binatorial mathematics deals with the inevitability of 
certain types of order and patterns. The simplest non-
trivial result says that, in any group of six people, there 
are either three where all know each other or three 
where none know each other. If there are six vertices 
with a line connecting each pair, and each line is col-
ored either red or blue, there will necessarily be either 
a red triangle or a blue triangle. A fundamental result 
of the theory says if there are N vertices, with each pair 
connected by a line, and if each line is colored in any 
of k colors, then there will be some n vertices that are 
all connected in the same color, provided N is large 
enough in terms of n and k. It is very difficult to esti-
mate well how large N must be, given values of n and 
k. Ramsey theory is not limited to people. The objects 
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of study may be, for instance, stars or sequences of ran-
dom numbers. There are also connections to number 
theory and implications in scheduling problems.

Further Reading
Albers, Don. “Making Connections: A Profile of Fan 

Chung.” Math Horizons (September 1994).
Chung, Fan. Spectral Graph Theory. Providence, RI:  

AMS, 1997.
Chung, Fan, and Ronald Graham. Erdos on Graphs:  

His Legacy of Unsolved Problems. Wellesley, MA:  
A K Peters, 1998.

Graham, Ronald, Bruce Rothschild, and Joel Spencer. 
Ramsey Theory. Hoboken, NJ: Wiley, 1990. 

Michael “Cap” Khoury

See Also: Cocktail Party Problem; Graphs; 
Mathematics, Theoretical; Scheduling.

Graphs
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry.
Summary: Graphs and diagrams are one way 
to represent mathematical information and may 
convey it more clearly than other methods or reveal 
interesting patterns and relationships.

Graphical representations have been found since antiq-
uity in such places as cave drawings and maps. Mod-
ern graphs are fundamental to the organization and 
presentation of information. The concept of a graph 
developed along with advances in printing, math-
ematical theory, and empirical observations, espe-
cially in such fields as astronomy, cartography, chem-
istry, crystallography, calculus, geometry, probability, 
and statistics. Quantitative information, such as data 
points or functions, is often exhibited and analyzed in 
graphs. In twenty-first-century classrooms, students of 
all ages explore various types of graphs. Graph theory 
is a branch of mathematics that studies mathematical 
graphs in which vertices or nodes, representing objects, 

are connected by edges that represent relationships 
between the objects.

Early Graphs
Attempts to depict familial relationships led to a vari-
ety of family trees and graphs, some of which survived 
from the Middle Ages. Family trees have long been of 
historical and personal interest in tracing ancestry and 
nobility relationships. The rise of genealogical social 
networks at the beginning of the twenty-first century 
led to huge family trees. Researchers and software 
developers have created new ways to visually represent 
ever-changing family relationships, including divorce 
and remarriage.

Some graphical representations arose in the context 
of puzzles or games. For instance, variants of a game 
known as Men’s Morris have long appeared in carv-
ings on Roman buildings and in cathedrals in medi-
eval England. In the thirteenth century publication of 
Alfonso X of Castile, the Libro de los Juegos (Book of 
Games), an illustration, below, shows a Morris game 
board with nodes that represent the positions of game 
counters and connections between them that repre-
sent the moves. The beginnings of graph theory are 
often attributed to eighteenth-century mathemati-
cian Leonhard Euler. In 1736, he presented a solution 
showing that it was impossible to continuously tra-
verse the seven bridges of Konigsberg, Russia, without 
retracing the same path or lifting the writing uten-
sil. However, his paper does not contain any graphs, 
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although it does contain maps of Konigsberg. Con-
tinuous figure tracing also appeared in Danish folk 
puzzles, as well as in the Angola, Zaire, and Zambia 
region in Africa, and in the New Ireland and Vanuatu 
regions in Oceana. Euler also did not use graphs in his 
1759 work on a Knight’s Tour, where a knight must 
traverse each square on a chessboard without rep-
etition. In 1771, Alexandre-Theophile Vandermonde 
used a graph drawing in this context.

One common notion of a graph is a pictorial repre-
sentation of a function. The graph of a function passes 
the vertical line test, so that each input has one assigned 
output. Egyptologists Somers Clarke and Reginald 
Engelbach noted that an ancient Egyptian architect’s 
diagram showed a curve with vertical lines and coordi-
nate measurements expressed in units of cubits, palms, 
and digits. The graphical depiction of changing quan-
tities where one quantity depends on another can be 
found in the fourteenth-century publications of Nicole 
d’Oresme and in De latitudinibus formarum (the Lati-
tudes of Forms), which may also have been written by 
d’Oresme. The development of coordinate geometry, 
coordinate axis systems, and the notion of a function in 
the seventeenth and later centuries, through the work 
of René Descartes, Pierre de Fermat, Gottfried Leibniz, 
Peter Dirichlet, and others, allowed for the graphical 
representations of algebraic formulas, curves, and other 
mathematical objects. Thomas Hankins noted that 
graphs started appearing in 1770 in the context of  

. . . the statistical atlases of William Playfair, the 
indicator diagrams of James Watt and the writings 
of Johann Heinrich Lambert. . . . That leaves us 
with the question of what is to count as a graph. If 
we include maps and geometrical and astronomi-
cal diagrams, graphs are very old indeed. What 
was new in the late eighteenth century was a dia-
gram with rectangular coordinates that showed 
the relationship between two measured quantities. 
Lambert called them Figuren, Watt called them 
“diagrams,” and William Playfair called them “lin-
eal arithmetic.” William Whewell, who seemed to 
rename everything that he came into contact with, 
called them the “method of curves.”

Gaspard Monge’s eighteenth-century work also influ-
enced the development of graphs as well as fields like 
architecture and engineering. He is known as the “father 

of descriptive geometry,” which studies three-dimen-
sional geometry through two-dimensional images.  

The earliest known uses of the terms “graph,” “graph 
paper,” and “graph theory” originated in the nine-
teenth and twentieth centuries. Mathematician James 
Sylvester is noted as the first to use the term “graph” 
in the publication Nature in 1878 when he described 
a chemical graph. Graphs in chemistry originated ear-
lier, such as in the eighteenth century when chemist 
William Cullen referred to an “affinity diagram” to 
model molecular forces. Alexander Brown depicted 
molecules as graphs in 1864. Mathematician Arthur 
Cayley developed graph theory in the 1870s in the 
context of chemistry. Some have cited Julius Peterson’s 
late-nineteenth-century work as the start of the field 
of graph theory. The Peterson graph that is named 
for him is explored in graph theory classes. George 
Chrystal referred to the “graph of a function” in his 
1886 algebra text: “This curve we may call the graph 
of the function.” Graph paper was originally known 
as “squared paper” or “coordinate paper” and was pat-
ented by Dr. Buxton in the late eighteenth century. 
The use of “graph” as a verb may date to an 1898 work 
on applied mechanics, in which John Perry advised: 
“Students will do well to graph on squared paper some 
curves like the following . . . in each case calculate y. 
Plot the values of x and y as co-ordinates of points 
on squared paper, and draw the curve passing through 
the points. . . .”

Types of Graphs
The study of logical statements, their implications, 
and their relationships resulted in a variety of differ-
ent types of diagrams. Young children use Venn dia-
grams, which represent set containments and intersec-
tions using overlapping circles. These were named for 
philosopher and mathematician John Venn because of 
his nineteenth century work to formalize and gener-
alize them. The concept of a Eulerian Circle, named 
for Euler, is related. Aristotle’s square of opposition 
is named for the ancient Greek philosopher. Aristotle 
analyzed deductive logic among various statements. 
Fourth-century mathematician and philosopher Ani-
cius Manlius Severinus Boethius also explored the logi-
cal relations. 

In some versions, the square of opposition was pre-
sented as a square diagram that contained propositions 
that were represented inside circles. Lines that con-
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nected the circles represented the relationships between 
the propositions. College students and researchers in 
fields like logic, topology, algebra, and geometry use 
commutative diagrams with arrows or other symbols 
to represent mappings or logical relationships. 

Educational Graphs
Students in the twenty-first century investigate a wide 
variety of graphical and diagram representations. In 
primary schools in the United States, students repre-
sent and analyze problems using graphs, charts, data, 
and functions; the graphs also serve as a subject of 
study themselves. William Playfair’s 1786 publica-
tion The Commercial and Political Atlas is noted as the 
beginning of charts, such as bar charts and line charts, 
and perhaps the first appearance of statistical time 
series graphs. He also invented the pie chart in 1801. 
In the middle grades, students also generalize patterns 
with graphs and identify and contrast linear and non-
linear graphs. 

In addition, they convert between symbolic alge-
braic formulas and graphical representations and 
learn about graphical features, such as the slope or 
intercept of a line and the changing quantities in a 
graph.  In high school, students continue to cre-
ate graphical representations and they approximate 
the rate of change of a function from its graph. In 
calculus, students use graphs to further understand 
the properties of functions, such as their derivatives, 
integrals, and the notion of concavity. The integral is 
defined as the area under a curve, and students use 
Riemann sums, named for nineteenth-century math-
ematician Bernhard Riemann, to approximate the 
area using rectangles. 

The widespread use of graphing calculators and 
computer software in the late twentieth century 
changed the way that students explored graphs. They 
were able to quickly graph complex equations and 
large amounts of data to look for patterns. Students 
and teachers explore candidates for categories like the 
most beautiful graph, the funniest graph, or the worst 
graph, which some define as the most misleading and 
others as the most confusing. 

Debate continues regarding what is the desired bal-
ance between by-hand graphing skills versus a reliance 
on graphical methods on the computer or calculator. 
Some teachers argue that if students do not under-
stand how to create graphs, they will not be able to fully 

understand misrepresentations or analyses. Another 
area that has taken on new prominence in twenty-first 
century schools and colleges is discrete mathematics 
and graph theory.
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See Also: Coordinate Geometry; Curves; Function 
Rate of Change; Functions; Maps; Visualization.

Gravity
Category: Space, Time, and Distance.
Fields of Study: Algebra; Measurement.
Summary: Our understanding of gravity has 
changed considerably over time, such that a history 
of gravity is virtually a history of physics. Researchers 
study many different effects and conceptualizations 
of gravity, some of which are very far from Isaac 
Newton’s falling apple.

On the surface of the Earth, every object has some 
weight, which is simply the gravitational force that 
Earth exerts on it. In reality, minuscule gravitational 
forces are exerted on every atom of every object, the 
net effect of which is the same as the effect of a single 
force (the weight) acting at a single point, the center 
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of gravity (CoG). If the object is sitting on a table, the 
downward force of gravity is balanced by the upward 
force provided by contact with the table, and there is 
no movement. Likewise, when a person holds an object 
like a barbell, the person must provide an upward force 
equal to the barbell’s weight to keep it from falling. 
Mathematics shows how Sir Isaac Newton’s second law 
of motion can explain a very complex set of observa-
tions. Scientists and mathematicians also study other 
conceptualizations of gravity, such as energy extrac-
tion from gravitational fields, quantum gravity, topo-
logical gravity, and supersymmetric gravity.

Properties of Gravity
Gravitational force is peculiar in that it does not 
depend on motion (unlike, for example, muscle forces 
or aerodynamic forces). The force of gravity is the same 
whether the object sits on a table or is allowed to fall. 
For an object in free fall, Newton’s second law dictates: 
downward acceleration = net downward force ÷ mass, 
and if aerodynamic forces are small enough to be 
neglected, net downward force is equal to weight, so 
that downward acceleration = weight ÷ mass.

Another peculiarity of gravitational force is that it 
is directly proportional to mass. Therefore (weight ÷ 
mass) is the same for all objects; it is approximately 
9.81 m/s2 near the surface of Earth, called “acceleration 
due to gravity,” generally denoted by g.

Any object accelerates as it falls downward. Starting 
from rest (speed = 0), its speed after t seconds will be 
g × t. So, 

average speed = + × = ×0

2 2

g t g t
.

Therefore, the distance traveled (d) can be calcu-
lated as d = average speed × t, which can be expressed 
algebraically as

d
g t

t
g t= × ( ) = ×

2 2

2
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This gravitational force provides a simple method 
for measuring a person’s visual reaction time: have the 
subject hold a ruler at the top and let it hang vertically. 
Let the subject bring his thumb and forefinger near to 
but not touching a known reading on the ruler, ready 
to grab it when it falls. At a random time, let the ruler 

fall. Measure the distance d it fell before it was grabbed 
and compute t, the reaction time, from the above equa-
tion. For d in centimeters: 

t in milliseconds = 45 15. d .

When gravity is the only force, whether the object 
is moving up, down, or at an angle, its velocity vector 
changes continually but its acceleration vector remains 
constant (magnitude g, pointing downward). The dis-
tinction between the velocity and acceleration vectors 
is fundamental to dynamics. The space shuttle circling 
Earth has constant downward acceleration when it is 
not firing its rockets, though its velocity—never down-
ward—changes direction continually. Mathematics 
allows one to calculate what its speed must be so that 
the change in direction would correspond to the known 
constant acceleration. This speed (about 17,500 miles 
per hour) then determines that the period of making a 
complete circle around Earth is approximately 90 min-
utes. Farther away from Earth, gravity is weaker, so that 
g is smaller. It is proportional to

 
1
2r

where r is the distance from Earth’s center (“inverse 
square law”). Taking this factor into consideration, 
one can determine that a circular orbit at an altitude 
of 22,236 miles will take 24 hours to make a complete 
circle. This is, indeed, where communications satel-
lites are located, so that they would seem not to be 
moving as seen from the rotating Earth. Similarly, 
the distance to the moon’s orbit can be related to its 
period of revolution. 

The same ideas can be applied to the gravitational 
forces between the sun and the planets, leading to 
remarkably accurate descriptions of the shapes the 
orbits of planets can take, the change in speed as the 
orbit is traversed, and the relation between period of 
revolution and distance from the sun. All this follows 
from Newton’s second law and a rule of how much the 
gravitational force weakens with distance. 

Further Reading
Buchbinder, Joseph, and Sergei Kuzenko. Ideas and 

Methods of Supersymmetry and Supergravity. 
Oxfordshire, England: Taylor & Francis, 1998.
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See Also: Interplanetary Travel; Planetary Orbits; 
Satellites.

Greek Mathematics
Category: Government, Politics, and History.
Fields of Study: Algebra; Connections; Geometry; 
Reasoning and Proof; Representations.
Summary: Greece provided the deductive 
foundation for many mathematical concepts.

Historians of mathematics and ethnomathematicians 
have noted that we do not know what all early civi-
lizations did in mathematics. From the evidence that 
is available, however, it seems that ancient Greece in 
the late half of the first millennium b.c.e. was the first 
known civilization to specifically study pure mathe-
matics—mathematics for its own sake, mathematics as 
aesthetically beautiful. There are occasional examples 
of pure mathematics in earlier civilizations, notably 
mathematical proportions in art and design in Egypt 
and elsewhere, but the earlier peoples used mathe-
matics mostly for practical applications, even if those 
applications related to religion and art.  

Most of the earlier civilizations had subsistence 
economies, where successful life depended on success 
in producing food and shelter, so mathematical think-
ing was used to contribute to these ends. Life was dif-
ficult for most people and required full-time concen-
tration, so there was little time for the relaxation that 
would allow contemplation of mathematical relation-
ships as beauty. However, by 600 and 500 b.c.e., Greece 
had become prosperous, with strong markets and trade 
ties around the eastern Mediterranean. There was sub-
sistence work to be done, but the upper-class elite did 
not have these responsibilities and could devote time to 
philosophy and learning for its own sake. The trade also 
brought ideas from other areas, and the open market-

places encouraged the exchange of ideas and the defense 
of one’s own. These encounters set the stage for study-
ing mathematics beyond the everyday uses and also for 
the idea of deduction to prove statements.

Early Greek Mathematicians
One of the earliest mathematicians known by name 
was Thales (624–547 b.c.e.) of Miletus (in modern 
Turkey). He was an early user of formal deduction in 
geometry and was known for demonstrating several 
basic geometric properties: that a diameter bisects 
a circle, that base angles of an isosceles triangle are 
equal, and that vertical angles formed by the inter-
section of lines are equal. He also used angle-side-
angle and angle-angle-side triangle congruences 
and showed that an angle inscribed in a semicircle is 
always a right angle. In practical geometry, he recog-
nized that the North Star (Polaris) could be used for 
navigation, and, most impressively, he is said to have 
predicted a solar eclipse in 585 b.c.e. (though some 
doubt this). He was also a businessman and bought 
oil-press mills when his predictions showed a good 
year for olives.

Pythagoras (572–497 b.c.e.) is more famous, and, 
for many, more interesting. After traveling as a young 
man, he settled in Crotona (in what is now southeast-
ern Italy) and gathered followers in a secretive cultlike 
organization of number worshippers. They believed 
that whole numbers and ratios of whole numbers 
are central to everything—numbers rule the uni-
verse! They studied geometry, astronomy, and music, 
but linked all to numbers (including noticing how a 
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plucked string sounds an octave higher when it is half 
as long, and that other common fractions of the length 
also make harmonic tones). Their worship led them 
to the beginnings of number theory as they studied 
odds and evens, prime numbers, and figurate numbers 
(numbers of objects arranged into squares, triangles, 
or other shapes). Some of the questions of number 
theory that they investigated remain as unsolved prob-
lems even in the early twenty-first century. 

The most famous mathematics connected with 
Pythagoras and his group is the theorem of the rela-
tionship of the lengths of the sides and hypotenuse 
of right triangles. Others, notably the Egyptians and 
the Babylonians, also recognized this relationship, at 
least in simple cases such as the 3-4-5 triangle for the 
Egyptians, more such triples for the Babylonians, and, 
independently, the Chinese. However, the Pythagore-
ans were probably the first to prove the relationship 
in general, and hence, in Western mathematics, it is 
called the Pythagorean Theorem, a2 + b2 = h2, where a 
and b are the lengths of the right triangle legs with the 
right angle between them, and h is the length of the 
hypotenuse across from the right angle. This theorem 
has been described as the first nonobvious theorem of 
mathematics.

The simplest example of the Pythagorean Theorem 
is a right triangle with each leg one unit long. This tri-
angle has a hypotenuse of the square root of 2. Unfor-
tunately for the whole-number-worshipping Pythago-
reans, the square root of 2 can never be expressed as 
the ratio of any two whole numbers. Today, it is called 
an “irrational number,” with an infinite, nonrepeating 
decimal expansion. An irrational number is contrary 
to the beliefs of the Pythagoreans—such a serious dis-
crepancy that they kept this result secret. More broadly, 
the issue of irrational numbers caused a crisis in Greek 
mathematics. Some have even credited this problem to 
the general shift of Greek mathematics from numbers 
to a basic geometry that does not use measurement. 
The geometry of the Greeks became one that allowed 
figures to be constructed using only a compass and an 
unmarked straightedge.

Three Construction Problems
Three construction problems challenged the Greeks 
and many others in later centuries. One was the task 
of constructing a square with exactly the same area as a 
given circle—the hope was that this would aid in find-

ing areas of round shapes. This would require finding 
a way to construct a line π units long. Another was 
to construct a cube of volume double that of a given 
cube, which would need a line of length the cube root 
of 2. The third problem asked for a trisection of a given 
angle—bisecting an angle was easy, but this asked for 
the angle to be cut into thirds. The problems were never 
solved by the Greeks, but their efforts led to interesting 
insights in geometry. The Greek mathematicians were 
redeemed in the nineteenth century when all three 
constructions were proved to be impossible, but there 
are still some skeptics who erroneously claim to have 
produced proofs for these constructions.

Deductive Reasoning and Euclid
This geometry and the use of deductive arguments 
became the standard not only of mathematics but 
also of clear thinking and logic. Plato’s Academy 
posted a sign that said only those with a knowledge of 
geometry could enter—deductive geometry was the 
prerequisite knowledge for philosophy, government, 
and critical thinking in all areas. Greek civilization 
greatly expanded under Alexander the Great late in 
the fourth century b.c.e., reaching as far east as mod-
ern Afghanistan and south into Egypt. The city of 
Alexandria was established at the mouth of the Nile 
and became a center of trade—and a scholarly cen-
ter with the construction of the library (also called 
museum) of Alexandria.  

One of the early leaders of the library was Euclid (c. 
300 b.c.e.), a mathematician whose life is little known, 
but his work is one of the most published works in 
all of mathematics. Probably drawing on the work 
of earlier scholars, he set up an axiomatic, deductive 
structure of geometry that became the basis for much 
future mathematical research. He began with five pos-
tulates that mostly drew upon the rules of geometric 
construction, plus some fundamental obvious truths 
and some basic definitions. From these, he developed 
deductive proofs of more geometric properties. 

From these early theorems, further deductions 
eventually led to a “tree” of proven statements, each 
traceable back to the original theorems. His book, The 
Elements, is said to have been published more than any 
book except the Bible, and remains the framework for 
the introductory study of formal geometry even today. 
His fifth postulate did not come from constructions 
and defined parallel lines, leading to the difficult use 

	 Greek Mathematics 459



of infinity—noting that parallel lines would not even 
meet no matter how far they were extended. It seems 
Euclid himself was worried about the issue of infinity 
and hesitated using this postulate as long as possible. 
Two thousand years later, challenges and changes to 
the fifth postulate would lead to the development of 
non-Euclidean geometries in the nineteenth century.

Archimedes
Archimedes (287–212 b.c.e.) is often considered the 
greatest of the ancient Greek mathematicians and one 
of the greatest in all of history. Unlike many math-
ematicians, he was recognized even in his lifetime. His 
achievements are especially notable in that he worked 
in both pure and applied areas of mathematics. In 
pure mathematics, Archimedes came close to devel-
oping integral calculus more than 1800 years before 
Newton and Leibniz. He wanted to find ways to cal-
culate areas and volumes of round shapes and used 
the idea of dividing the shapes into very small slices, 
much like the similar slices used to integrate areas and 
volumes in calculus. He found volumes of spheres, 
cones, and cylinders and discovered an interesting 
relationship when these shapes have the same diam-
eter and height: the volumes of these special cones, 
spheres, and cylinders form a 1:2:3 ratio. 

Also using calculus-like techniques, he found the 
value of π by inscribing and circumscribing regular 
polygons inside and outside a circle and then increas-
ing the number of sides on the polygons so they would 
close in and estimate the circumference of the circle. 
He calculated the value of π to be between 3 1/7 and 
3 10/71. To help handle large numbers, he greatly 
expanded the numeration system.

Archimedes lived in Syracuse on the island of Sic-
ily, and his applied work often was related to his life 
there. He studied the mechanics of simple machines 
such as levers, pulleys, and screws. He was reputed to 
have used some of this knowledge to help the king 
repulse an invasion from the Romans. Once the king 
asked him to check the authenticity of gold in a crown. 
He knew he could compare densities of pure gold and 
an alloy, but to do so, he needed to know the volume 
of the very irregularly shaped crown. As he entered 
his bath, he noticed the water level rise to compen-
sate for his own volume; from that he recognized that 
he could measure the volume of the crown from the 
amount of water it would displace. The story says he 

jumped out of the bath and ran through town naked 
shouting “Eureka!” (I have found it!) in his excite-
ment at the discovery.

Although Archimedes had helped fight off the 
Romans, they returned when he was an old man. Leg-
end says he refused to leave the geometry he was writ-
ing in the sand when a Roman soldier told him to go. 
At the refusal, the soldier killed him. In some sense, 
this is symbolic, in that not only did Archimedes die 
at the hand of a Roman soldier but much of the Greek 
civilization fell to the expanding Roman Empire. The 
Romans were good engineers and built a network of 
roads and aqueducts, but they mostly used existing 
mathematics and contributed little beyond the work of 
the Greeks.

Other Greek Mathematicians
However, across the Mediterranean Sea, Alexandria and 
its library did not fall. Following from Euclid, the Alex-
andria library continued to be a center for Greek math-
ematics that would continue even several centuries after 
the decline of the overall Greek civilization. Some of 
the work was in astronomy. As early as 200 b.c.e., Era-
tosthenes calculated the circumference of Earth fairly 
accurately (incidentally, also indicating that he knew 
the Earth was round) by comparing the angle of the 
sun at noon in Alexandria and at Cyrene and using geo-
metrical comparisons to do the calculation. 

Later, other Greek astronomers, notably Ptolemy 
(100–178 c.e.), found more measurements of the 
movements of the planets. Some of their work led to 
the erroneous belief that Earth was the center of the 
solar system, but other studies provided a sound math-
ematical basis for early astronomical research.

Three other names of mathematicians bring the 
story of ancient Greek mathematics to a close in the 
early centuries of the Common Era. Hero (also called 
Heron) in the first century designed a device that, if 
constructed, could have been the first steam engine, 
but it did not get built. He also found a remarkable for-
mula for the area of a random triangle when only the 
lengths of the three sides (a, b, and c) are given: 

Area = −( ) −( ) −( )s s s a s b s c

where s
a b c= + +

2
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the semiperimeter. Like the Pythagorean Theorem, 
this formula is considered one of the important early 
non-obvious theorems and is also useful in practical 
applications.

Diophantes, who lived in the mid-third century, 
has sometimes been called the “Father of Algebra.” He 
broke from the Greek interest in geometry and stud-
ied numerical problems with techniques that resemble 
later algebraic methods. He was especially interested in 
problems whose statements and results were all whole 
numbers, thus restricting the range of solutions but 
offering challenges that led to creative work.

Hypatia (370–415) was famous as a mathematics 
researcher and teacher in Alexandria. Notably, Hypatia 
is one of the earliest important women mathematicians 
known in history. Originally taught by her father, who 
was also a mathematician, Hypatia wrote commentar-
ies and expansions on earlier Greek work, a common 
type of mathematical research of the time. She was also 
especially noted as a teacher. However, she inadvertently 
was caught up in the religious politics of her time and 
was captured and killed by a mob. Thus, two phases of 
Greek mathematics ended in tragic deaths: Archimedes 
at the hands of Roman soldiers approximately marked 
the end of Greece’s Golden Age in mathematics, while 
the mob killing of Hypatia came near the very end of 
Greek mathematical work.

Overall, Greek mathematics had continued for 
nearly 1000 years, providing an unequaled example for 
future mathematical work. The Greeks did important 
work in the applied areas but are especially recognized 
for laying the foundations for pure mathematics. 

Further Reading
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Eves, Howard. An Introduction to the History of  

Mathematics. New York: Saunders College  
Publishing, 1990.

Katz, Victor. A History of Mathematics: An Introduction. 
New York: Addison-Wesley, 2008.

Lawrence H. Shirley

See Also: Archimedes; Golden Ratio; Pythagorean 
School; Pythagorean Theorem; Roman Mathematics.

Green Design
Category: Architecture and Engineering.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Green design requires evaluating the life 
cycle of a product or material and the cost of that life 
cycle in energy and other resources.

Green design, also called “environmental” or “sustain-
able design,” is a set of design principles for optimizing 
environmental impact. This includes reducing pollu-
tion, promoting ecological and economical sustainabil-
ity, using reusable resources, and promoting harmony 
between people and natural environments. Mathemat-
ics plays a significant role in both designing green solu-
tions to a variety of problems and measuring the impact 
of green solutions. Many colleges offer degree or intern-
ship programs in green design, which requires strong 
science and mathematical skills.

Impact Measures
Ecological design employs a series of metrics for evalu-
ating the degrees of sustainability. A mnemonic used 
for types of sustainability is “Three Rs”: reduce, reuse, 
and recycle. Reducing waste, pollution, and resource 
use involves calculations of the impact of produc-
tion, packaging, transportation, and disposal, as well 
as renewability of resources. Some design movements, 
such as Tiny Houses, are predominantly based on the 
principle of reducing space and resources. Reuse design 
principles allow objects to be used multiple times, pos-
sibly for different purposes. Recycling is the ability to 
turn objects into materials for making other objects.

The notion of life cycle is central to measuring envi-
ronmental impact. For example, product life cycles 
include research and development, main use, and dis-
posal after use. Different stages in the cycle require dif-
ferent types of impact measures. Green design has to 
address all the stages, from sustainable research prac-
tices to possibilities of reuse and recycling at the last 
stage of the product’s life.

There are numerous rubrics and point systems for 
measuring environmental impacts of industrial, product, 
or architectural designs. For example, products, activi-
ties, or organizations can be measured by their resource 
intensity, with amount of resources used per unit cost. 
A toy designer can calculate liters of water spent during 
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manufacture per dollar of the toy’s cost. The inverse of 
resource intensity is resource productivity, measured in 
quantity or price per unit of resource spent. In this exam-
ple, resource productivity is the price, in dollars, of toys 
produced using one liter of water.

Leadership in Energy and Environmental Design 
(LEED) is an international green building certificate. To 
give a building or a community its score, LEED com-
bines metrics, such as the carbon footprint, as well as 
energy and water efficiency. LEED has separate ratings 
for construction of commercial buildings and homes, 
interior design, maintenance of existing buildings, and 
neighborhood development. In each category, the max-
imum score is 100 points, with certification levels of 
Platinum (more than 80 points), Gold (60–79 points), 
Silver (50–59 points), and Certified (40–49 points).

There is a global mathematical problem involved 
in measuring and reducing environmental impact of 
design. Namely, there are money and environmental 
price differences between different design types, and 
noticeable costs of certification and measurement. The 
overall sustainability measures have to include all these 
costs and optimize the total. Because many current 
economical practices are standardized in nonsustain-
able manners, the economy of scale makes their use 
cheaper than the corresponding green designs. This 
phenomenon is being addressed at the government 
level by changing price and tax structures 
to promote sustainable practices.

Green Urban Design
New urbanism is an example of urban design that 
includes several green principles, including jobs within 
walkable distances, bike-friendly roads, shared public 
and housing spaces, diverse communities, and matching 
local terrain and conditions in landscaping. Geometries 
of new urbanist designs are concentric and include dis-
cernible centers for neighborhoods, such as a historical 
artifact or a town square, with a transit node tied to this 
center for optimized logistics. Houses of different types, 
matching a variety of family and economic situations, 
are situated within the five-minute walk radius (about 
one-half kilometer) from this center, and commercial 
properties surround the houses. The design of roads 
uses network science to slow down car traffic, minimize 
travel, and place important administrative, educational, 
and religious public buildings in traffic network nodes. 
This relatively compact design, the opposite of urban 
sprawl, also helps make electricity, water, and gas dis-
tribution more efficient, because less energy is spent on 
delivering these resources and less is lost in transit.

Models from Nature
One of the principles of green design is the use of mod-
els found in nature to build products or systems. For 
example, thermoeconomics models the design of social 
structures on the laws of thermodynamics. Economi-
cal entities are considered on the basis of energy, mat-
ter, and information involved in them. Production and 
use of goods and services are seen as energy and mass 

exchange, and scarcity has to do with entropy.
The concept of exergy is especially impor-

tant in industrial design. Exergy is the maxi-
mum work theoretically possible as a system 
reaches energy equilibrium with its sur-
roundings. The second law of thermodynam-
ics says that systems tend to dissipate energy 
or increase entropy. This loss of exergy is 

called “anergy.” Green designers use both 
energy and exergy efficiency. Energy effi-
ciency measures how much energy is lost 
during industrial processes. Exergy effi-
ciency has to do with minimizing anergy, 
that is, the loss of exergy.

Some social designers consider the 
total exergy of Earth or even the solar 
system, working toward designs at these 
large scales. For example, burning oil or 
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coal produces heat, but these fuels also required inputs 
of exergy in their making. A mathematical model can 
approximate the history of the fuels and incorporate 
their current use, computing energy and exergy effi-
ciency of our actions with regard to Earth, and the sus-
tainability of Earth, over time.

Biomimicry, biomimetics, and bionics are direct 
uses of design ideas and principles found in nature. 
For example, engineers studied birds and insects to 
develop flying devices. More recent examples have 
to do with efficiency and sustainability. The shape of 
nautilus shells, mathematically related to the Fibonacci 
sequence named for mathematician Leonardo Fibo-
nacci, is used to minimize friction in fans, conserving 
energy. The mechanism of water condensation used by 
desert beetles can be applied on the human scale. The 
ways termites keep their mounds warm at night and 
cool during the day are studied to produce sustainable 
air conditioning in houses.

Designers and engineers rarely repeat natural designs 
completely but rather analyze them to find appropriate 
elements and include elements into the design. There are 
three directions for such analysis. Designers can incor-
porate methods of manufacture found in nature, such as 
the strong material of the mussel’s shell. They can mimic 
mechanical or thermodynamical principles found in 
nature, for example, the way butterfly wings are colored 
as the basis of energy-efficient displays. Finally, designers 
can look at the global organizational principles found 
in nature, such as modeling a robotic cleaner on insect 
scavenging behaviors or building artificial intelligence 
based on the ways brains work.

Further Reading
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The Science of Sustainability and Green Engineering. 
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Green Mathematics
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and  
Probability; Measurement; Number and Operations.
Summary: Modeling, analysis, and computation are 
used to promote environmentally conscious practices.

Green mathematics is the use of mathematical mod-
eling, analysis, and computation to promote ecologi-
cally sound practices, such as sustainable production 
or reduction of pollution. Green mathematics is an 
increasingly popular and controversial topic with ties 
to other contentious social, scientific, and political 
issues, such as recycling laws and global warming. It is 
a rich area of research and development for mathema-
ticians and scientists. For example, computer scientists 
Young Choon Lee and Albert Zomaya have developed 
and patented an Energy Conscious Scheduling (ECS) 
algorithm. The ECS software maps the assignment of 
computational tasks in high-performance computer 
systems as a function of the dynamic voltage scaling 
capability of the processors. It optimizes scheduling to 
decrease task completion time and energy use. Green 
mathematics also appeals to many mathematics educa-
tors at all levels for its apparent applicability, real-world 
connections, and the ability to connect to academic 
curriculum in other areas like history and science. In 
2010, Roger Williams University’s student mathemat-
ics fair was organized around the theme “Designer 
Math Goes Green! Mathematics and the Environ-
ment!” College programs for ecology and sustainable 
development rely heavily on mathematics and statis-
tics for research and applications. On the other hand, 
“green math” can have negative connotations for some 
people, especially when it affects taxpayer dollars and 
restrictive changes in public policy. In some cases, this 
reflects an incomplete understanding regarding the 
basis for such calculations and the methods by which 
final figures are derived, often because such informa-
tion is not presented to the public. In others, this may 
result from inappropriate extrapolation or the political 
“spin” attached to such calculations.

Green Measurements and Metrics
Measurements of sustainability and environmental 
impact apply to persons, groups, products, and events. 
Carbon footprint, for example, is the measure of total 
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emission of greenhouse gases, mostly carbon dioxide, 
involved in an event or in the lives of people over a 
given time, usually a year. Energy consumption mea-
sures how much energy a process or product takes 
over its lifetime and accounts for sources of energy, 
such as atomic or fossil fuels. Ecological metrics may 
also include emissions of chemical pollutants, such as 
heavy metals, strength of potentially harmful electro-
magnetic fields, and intensity of light pollution. The 
units of measure vary by type of pollution; for exam-
ple, weight per volume is used for water quality mea-
surements, but light pollution is measured in changes 
in sky brightness.

Quality standards in ecological measurements 
include some of the same principles that apply to mea-
surement in general, such as precision and accuracy, 
together constituting validity. In addition, the measure-
ment of ecological impact requires holistic, systemic 
approaches, taking into account interactions among 
multiple variables and their relative weight for particu-
lar ecosystems. For example, different ecosystems have 
different resource balances. Polluting a scarce resource, 
such as the only water source in a desert oasis, has 
higher environmental impacts than polluting an abun-
dant resource. This can be reflected in mathematics 
equations by applying different coefficients to different 
types of impacts, according to the particular situation 
within each ecosystem.

It is difficult to weigh different types of environmen-
tal impacts against one another. For example, produc-
ing paper from trees grown for that specific purpose 
takes less energy than recycling paper, but involves 
more water and air pollutants. 

Computational Modeling in Ecology
A mathematical model is an idealized system of vari-
ables, parameters, and equations governing relation-
ships, assumed to be close enough to a real system for 
the purposes of prediction or explanation. Mathemati-
cal models in ecology are typically based on observa-
tions of sets of data from real environments and involve 
hypothesizing about sets of data that would result if 
variables changed. 

Models can predict developments of ecological sys-
tems if the outputs of models, taken over time, fit the 
corresponding changes in variables of the real ecosys-
tem closely enough. Evaluation of a model includes 
its accuracy, based on a statistical metric of closeness 

between observed and predicted data. Nonparamet-
ric statistics is the field that deals with evaluating the 
accuracy of models when the data is limited and not all 
mathematical assumptions can be tested.

The explanatory power of a model is based on the 
claim that the model preserves cause-effect relation-
ships within the ecosystem. In mathematical models, 
such relationships are expressed as algebraic or differ-
ential equations among variables of the model. 

The possibility of general patterns (models) in ecol-
ogy has to do with two global problems, or hypoth-
eses: contingency and complexity. The contingency 
hypothesis says that causal relationships in any given 
ecosystem are so numerous that projection from 
one system to another is not possible. The complex-
ity problem is that the number of variables and their 
weak interactions in any given ecosystem are beyond 
the computational power theoretically available, mak-
ing systems immeasurable, their equations insoluble, 
and the models unable to be interpreted. That is, con-
tingency and complexity are theoretical and philo-
sophical challenges to the possibility and validity of 
ecological modeling.

Environmental Considerations  
by Type of Mathematics
Different areas of mathematics allow different 
approaches to environmental problems. Algebraic 
reasoning, for example, assumes functional depen-
dencies among variables and known operations. It is 
most appropriate in cases where algebraic relationships 
among variables are stable over time and can be estab-
lished with empirical measurements. For example, 
producing one megajoule of energy by burning coal 
emits 92 grams of carbon dioxide. One can compute 
the carbon footprint of heating a house by coal alge-
braically by measuring the energy consumption and 
multiplying it by 92 grams of coal.

Calculus is the study of rates of change in variables 
and limits of change. In green mathematics, calculus 
methods are most appropriate when algebraic relation-
ships between variables and their changes over time are 
measurable. For example, rocket propulsion consumes 
fuel stored within the vehicle, making the vehicle 
lighter with time. The efficiency of rocket engines can 
be computed by applying integrals over time to equa-
tions connecting changes in mass and momentum 
resulting from the engine.
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Differential equations involve the study of unknown 
functions by known values and their rates of change, 
that is, derivatives—a situation frequently encountered 
in ecology. Differential equations are extensively used 
in green mathematics to model interactions within 
systems, such as predator-prey dynamics, fluid dynam-
ics in natural and human-made water and gas systems, 
radioactive decay, or economic growth.

Statistical methods deal with the organization and 
interpretation of data that include random elements. 
Descriptive statistics summarizes patterns in data col-
lected from some group of objects or events, called 
“population.” It may include data calculations such as 
mean or frequency. Descriptive statistics is useful for 
comparing systems that include randomness, such as 
per capita consumption of energy in different coun-
tries or recycling behaviors in neighborhoods of a city.

Inferential statistics predicts patterns in the whole 
population based on data observed in a sample of the 
population. It is extensively used in biology, ecology, 
and economics because collecting data about every 
element in the population is rarely possible. One of 
the most powerful methods of inferential statistics is 
the analysis of correlations within data. For example, 
the levels of air pollution in cities correlate with the 
incidence of asthma among the population. Notably, 
even strong correlations between two variables do not 
necessarily mean particular cause-effect relationships. 
The first variable may depend on the second, or the 
second on the third, or both may depend on another 
factor. For example, in children younger than 6, prob-
lem-solving abilities strongly correlate with foot size. 
The reason is that both foot size and problem-solving 
abilities increase with age.

Data visualization is an interdisciplinary area span-
ning descriptive statistics; grid and graph use from 
algebra and calculus; specific representation methods 
from more narrow areas of mathematics, such as tree 
diagrams from combinatorics; psychology of percep-
tion and learning; and design. Visual literacy combines 
the ability to understand and critically analyze visu-
alizations produced by others and to create quality 
visualizations for the purposes of analyzing and shar-
ing messages. Because green mathematics frequently 
deals with controversial issues, individuals and groups 
promoting different agendas use and often abuse data 
visualization to make their point. Visual literacy is one 
of the “twenty-first-century skills” whose importance 

is growing with heavier use of mathematics in ecology 
and growing emphasis on ecological approaches in all 
areas of life.

Green Economics and Sustainability
Mathematics is used to describe, plan, model, and 
predict green economy, which is economy based on 
ecological and social sustainability. Sustainability is a 
system’s capacity to endure over time, measured by a 
variety of indices and metrics. For example, the biodi-
versity index measures the number of plant and animal 
species in an ecosystem. Using an old-growth forest for 
lumber and replanting trees may produce the same 
amount of biomass, but such “farmed” forest typically 
has a much-lower biodiversity index. Air quality indi-
ces assign point values to combinations of air pollut-
ants, such as dust, ground-level ozone, and sulfur diox-
ide. Higher values of an air quality index correlate with 
higher incidents of asthma and other adverse health 
effects. Factories and other entities and events can be 
evaluated by their effects on an air quality index.

Carrying capacity of an environment, with respect to 
a species, is the number of individuals the environment 
can sustain. In differential equations, carrying capacity 
is the stable state of the system: populations over car-
rying capacities decrease over time, and populations 
under carrying capacities grow. Carrying capacity for 
humans changes depending on their practices. For 
example, hunter-gatherer tribes need larger areas for 
sustenance than groups that practice agriculture. The 
classic mathematical models of carrying capacity were 
developed for animal populations in relatively small and 
closed ecosystems. Because people actively change their 
environments, travel, and exchange resources globally, 
such models need significant modifications for appli-
cations to humans. Current mathematical models are 
based on evaluating population growth and resource 
use over time. For example, mining for groundwater 
can dramatically increase agricultural outputs and thus 
support population growth until the water runs out, at 
which time famine can lead to a population collapse. 

Further Reading
Fusaro, B. A., and P. C. Kenschaft. Environmental 

Mathematics in the Classroom. Washington, DC: 
Mathematical Association of America, 2003.

Hanebuth, Eddie. A Geospatial Industry Series in Science, 
Technology, Engineering, & Mathematics: Green & 
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Sustainability Focus. Ridgeland, MS: Digital  
Quest, 2010.

Pfaff, Tom. “Mathematics and Sustainability.” http://
www.ithaca.edu/tpfaff/sustainability.htm.

Maria Droujkova

See Also: Carbon Footprint; Climate Change;  
Deforestation; Farming; Fuel Consumption; Green 
Design; Nutrition; Probability; Randomness; Recycling; 
Temperature.

Gross Domestic  
Product (GDP)
Category: Government, Politics, and History.
Fields of Study: Data Analysis and Probability.
Summary: Gross domestic product is a figure 
used frequently in economics to discuss a country’s 
complete economic output.

Until the Industrial Revolution, population size was a 
dominant factor in economic output. With the com-
ing of technology, notions of productivity changed. 
The gross domestic product (GDP) is currently the 
most widely accepted and broadest indicator of aggre-
gate economic activity. 

The GDP represents a country’s overall economic 
output, the dollar value of all final goods and ser-
vices produced over a period of time within a nation’s 
domestic boundaries. Many assert that the concept of 
quantifying a nation’s economic output can be traced 
back to newspaper articles written in 1939 by British 
economist John Maynard Keynes, who was concerned 
about how Britain would manage its very limited 
resources at the start of World War II. The Keynesian 
formula for GDP was the sum of a country’s consump-
tion, investment, government spending, and exports, 
minus its imports. 

In the United States, the GDP is calculated and 
released quarterly by the Department of Commerce. 
In general, the GDP is used to define emerging eco-
nomic trends, devise appropriate policies, and gauge 
the effectiveness of current economic policies. More 

specifically, corporations use the data to forecast sales 
and adjust production and investment accordingly. 
Social scientists monitor the GDP as an indicator of 
well-being and as a proxy for individuals’ voting and 
investment decisions. In 2003, economists Sir Clive 
Granger and Robert Engle won a Nobel Prize for 
their innovative, sophisticated methods of statistical 
time series analyses that enhance the understanding 
of market movements and economic trends. In 2010, 
mathematicians developed an objective quality of life 
index that uses linear functions and dimensionality 
reduction to combine four well-studied and widely 
used indices, including per capita GDP, to produce a 
relative ranking of countries.

Economists have devised three distinct methods 
of calculating a nation’s GDP. While these approaches 
derive the same value, each views the GDP differently. 
The “product method” represents the market value 
of final goods and services newly produced within a 
nation during a particular time frame. The “expen-
diture method” is the national expenditure on goods 
and services within a specific time frame. The “income 
method” is the total of wages, rents, dividends, inter-
est, and profits received by producers during a speci-
fied time frame. Regardless which method is used, the 
outcome is referred to as the “nominal” gross domestic 
product. When the nominal GDP is adjusted for infla-
tion, it is called the “real” gross domestic product. The 
real GDP is used to measure the growth of a country’s 
economy and real GDP per capita is often used as an 
indicator of aggregate standard of living.

The Product Approach to Measuring the GDP
The simplest and most direct way to calculate the 
GDP is the product approach. The product approach 
calculates the GDP as the market value of final goods 
and services newly produced within a specific nation. 
Goods and services produced throughout the year 
may be classified as either intermediate or final goods. 
Intermediate goods and services are those that are 
consumed during the production of other goods 
and services and are not counted when calculating 
the GDP; only the final value of a good or service is 
included in total output. This avoids an issue often 
called “double counting,” in which the total value of 
a good is included multiple times in national output. 
The following equation is used to solve for the GDP 
using the product approach:
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GDP P C= −

where P is the market price of final goods and services 
and C is intermediate consumption.

The Expenditure Approach  
to Measuring the GDP
The expenditure approach works on the principle 
that all of the products must be consumed, therefore 
the value of the total product must equal the people’s 
total expenditures. The four main components in cal-
culating the GDP via the expenditure method are con-
sumption expenditures by households (C), gross pri-
vate investment spending (I), government purchases of 
goods and services (G), and net exports (exports minus 
imports, EX − IM). 

The expenditure approach can be represented in the 
following equation:

GDP C I G EX IM= + + + −( ) .

The Income Approach to Measuring the GDP
The income approach to measuring the GDP assumes 
that expenditures on final goods and services are 
eventually received by households and corporations 
as income. A key to calculating the GDP using this 
method is a concept known as “national income.” The 
national income consists of five types of income: com-
pensation of employees (W), proprietor’s income (P), 
rental income (R), corporate profits (C), and net inter-
est (I). Thus, national income = W + R + I + P + C.

Once the national income is calculated, several 
adjustments must be made before arriving at the GDP. 
The first is an adjustment for the taxes paid by busi-
nesses to the government (indirect business taxes). 
Next, depreciation, or the consumption of fixed capi-
tal, is taken into account. Finally, the net foreign factor 
income (NFI) is included as an adjustment. The NFI 
is the difference between payments received from the 
foreign sector and payments made to the foreign sec-
tor for domestic production. The NFI represents the 
key difference between gross domestic product and 
gross national product. The following equation is used 
to solve for the GDP using the income approach: 

GDP = Compensation of Employees + Rent  
+ Interest + Proprietor’s Income + Corporate Profits 
+ Indirect business taxes + Depreciation + NFI.

Nominal Versus Real GDP
If using GDP to examine production over time, the 
effects of price increases and inflation must be taken 
into account. The real GDP is the total value of all goods 
and services adjusted to eliminate the effects of chang-
ing prices. The nominal GDP is calculated by using 
current market prices. Hence, the real GDP is the value 
of all goods and services produced by an economy in a 
given year in dollars of constant purchasing power.

Figure 1. Top 10 Countries by GDP in 2009 
(**International Monetary Fund, World Economic 
Outlook Database).

Country Year Units Scale GDP
United 
States 2009 U.S. $ Billions 14,256.28

Japan 2009 U.S. $ Billions 5,068.06

People’s Rep. 
of China 2009 U.S.$ Billions 4,909.28

Germany 2009 U.S. $ Billions 3,352.74

France 2009 U.S. $ Billions 2,675.92

United 
Kingdom 2009 U.S. $ Billions 2,183.61

Italy 2009 U.S. $ Billions 2,118.26

Brazil 2009 U.S. $ Billions 1,574.04

Spain 2009 U.S. $ Billions 1,464.04

Canada 2009 U.S. $ Billions 1,336.43

Mathematics concepts have also been used in recent 
years to debate related economic concepts that are 
rooted in mathematics, such as the principle of com-
parative advantage. Taken in its simplest form, it states 
that if two or more countries have already expanded 
their respective GDPs as far as possible under some set 
of international trade restraints, they can expand them 
further by relaxing those restraints. This has been for-
mulated and proven mathematically, using techniques 
like convex analysis. However, one June 2000 letter to 
the editor of SIAM News (the monthly magazine of 
the Society for Industrial and Applied Mathematics) 
argues against such practices for “soft” social science 
concepts. Motivated by a then-recent protest of global 
free trade policy, the author stated, “. . . you can criticize 
the application of a theorem not only by questioning 
the validity of the hypotheses, but also by questioning 
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the interpretation of the conclusion. … international 
trade in addictive drugs and guns being only the most 
glaring and brutal counterexamples to the ‘goodness’ 
of increasing GDP.”

Further Reading
Abel, Andrew, and Ben Bernanke. Macroeconomics. 5th 

ed. Upper Saddle River, NJ: Pearson Addison  
Wesley, 2005.

Baumohl, Bernard. The Secrets of Economic Indicators: 
Hidden Clues to Future Economic Trends and 
Investment Opportunities. 2nd ed. Upper Saddle River, 
NJ: Pearson Education, 2008.

Eisen, Peter. Economics: Barron’s Business Review Series. 
Hauppauge, NY: Barron’s Educational Series, 2000.

Frumkin, Norman. Guide to Economic Indicators. 4th ed. 
Armonk, NY: M. E. Sharpe, 2000.

Moss, David. A Concise Guide to Macroeconomics.  
Cambridge, MA: Harvard Business School  
Press, 2007.

Kristi L. Stringer 
Casey Borch 

See Also: Accounting; Mathematics, Applied; 
Measurement in Society; Statistics Education; 
Unemployment, Estimating.

Growth Charts
Category: Medicine and Health.
Fields of Study: Algebra; Measurement.
Summary: Children’s development both mentally 
and physically is modeled using data-based norms, 
some of which are indicated by growth charts. .

When a parent brings his or her child to a physician for 
a checkup, a number of measurements are taken to help 
the physician assess the health and development of the 
child. For children up to 36 months of age, three typi-
cal measurements include height, weight, and head cir-
cumference. The healthcare professional will use these 
measurements to decide whether the child is on track 
developmentally. These measurements are expected 
to vary depending on the gender and age of the child. 

Considering weight, for instance, younger children 
tend to weigh less than older children and girls tend 
to weigh less than boys. However, there is even consid-
erable variability in these measurements for children 
within the same gender and age group. There are indi-
vidual differences from child to child resulting from 
genetic and environmental factors, including diet and 
physical activity habits. 

Percentiles
To make a judgment about whether the child’s devel-
opment is on track, the relevant question to pose is 
where the child’s measurements fit in relation to other 
children of the same age and gender in the population. 
Percentiles are typically used to facilitate this compari-
son and growth charts summarize these quantities in 
graphs. If a young boy’s weight is at the 75th percentile, 
this means that of the boys the same age in the popu-
lation, about 75% of them weigh less and about 25% 
of them weigh more than this boy. If parents are told 
that one of their child’s measurements is at the 99th 
percentile, should they be concerned? Very high or very 
low percentiles may be a sign of something abnormal. 
For example, a child’s weight at the 4th percentile may 
be a sign of malnutrition. Extreme measurements indi-
cate to the healthcare professional that further follow-
up may be necessary. Generally speaking, measure-
ments under the 5th percentile or over 95th percentile 
or growth patterns that shift considerably in terms of 
their percentiles over time require further assessment. 

Growth Charts
Growth charts are graphical summaries of mathemat-
ical functions that are developed based on extensive 
body measurement data collected on large groups of 
children from the population of interest. They pro-
vide benchmarks for comparison and are widely used 
by the health community to monitor and track the 
growth and development of children. According to the 
Centers for Disease Control and Prevention (CDC), 
growth charts have been used in the United States 
since 1977. Prior to 1977, there were child develop-
ment references in use, but they did not adequately 
represent the population. As of 2011, the charts used 
in the United States are the 2000 CDC Growth Charts. 
The infant (0–36 months of age) charts include 
smoothed percentile curves of weight by age, length 
by age, head circumference by age, and weight by 
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length for boys and girls. The children and adolescent 
(2–20 years of age) charts include weight by stature, 
weight by age, stature by age, and body mass index by 
age for each sex. 

In order to find a percentile based on these charts, 
one needs to be able to plot a point on the graph. For 
instance, consider the weight-by-age infant chart for 
boys. Suppose the boy is 18 months and his weight is 25 
pounds. Find 18 months along the horizontal axis and 
25 pounds along the vertical axis of the graph. Mark 
this point. Based on the chart, this point falls between 
the 25th and 50th percentile curves. As demonstrated 
by this example, not all percentile curves are summa-
rized in the charts. If a measurement falls somewhere 
between the 3rd, 5th, 10th, 25th, 50th, 75th, 90th, 
95th, or 97th percentile curve, the professional read-
ing the chart will need to interpolate between curves to 
approximate the percentile value. 

The percentile curves summarized in the 2000 CDC 
Growth Charts were developed by the United States 
National Center for Health Statistics (NCHS) based on 
the results from a number of large health surveys con-
ducted based on representative groups from the U.S. 
population. Data analysis was used to estimate percen-
tiles for the various growth measurements and statisti-
cal modeling was used to smooth the estimates into the 
percentile curves to facilitate comparisons. 

Further Reading
Kuczmarski, R. J., C. L. Ogden, and S. S. Guo, et al. “2000 

CDC Growth Charts for the United States: Methods 
and Development.” National Center for Health 
Statistics. Vital and Health Statistics 11, no. 246 (2002).

World Health Organization (WHO). “The WHO Child 
Growth Standards.” http://www.who.int/childgrowth/
standards/en.

Bethany White

See Also: Disease Survival Rates; Graphs; Life  
Expectancy.

Guns
See Firearms

Gymnastics
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and  
Probability; Geometry.
Summary: Performing gymnastics depends upon an 
understanding of geometry and forces.

Gymnastics is an athletic performance activity that 
depends on balance, flexibility, and strength for pro-
ducing graceful movements. Gymnastics can be recre-
ational or competitive. There are also numerous forms 
of gymnastics, including artistic, acrobatic, and aerobic. 
The main mathematical topics involved in gymnastics 
include the mechanics of motion, patterns in choreog-
raphy, and competition scoring systems. Mathematics 
has sometimes been described as “mental gymnastics.”

Rotations
Many gymnastics routines include rotations. The key 
mathematical characteristic of a rotating body is its 
angular momentum, which is equal to the product of 
the mass, the velocity, and the distance between the 
center of mass and the axis of rotation. When there 
are no external forces, the angular momentum is con-
served—it does not change. Gymnasts cannot change 
their mass, but they can reposition their center of mass 
relative to the axis of rotation, making the speed change 
to preserve the momentum. When a rotating gymnast 
tucks in closer to the center of rotation, the speed 
increases. For example, a gymnast can hold onto a bar 
by the hands and keep the body straight, making a rela-
tively slow rotation around the top uneven bar called 
“giant swing.” As the gymnast tucks his or her limbs 
in closer to the bar, the center of mass becomes closer 
to the axis of rotation, and the gymnast spins faster. 
Mathematics also helps determine the optimal angle at 
which the gymnast should release from the bar in order 
to perform subsequent transitions and maneuvers.

While simpler routines can be performed intuitively, 
through trial and error, competitive gymnasts develop 
complex sequences of moves that involve detailed cal-
culations of mass, momentum, velocity, position of the 
apparatuses, and so on. Conversions between rotation 
and moving along straight lines are a part of many rou-
tines, with speeds and directions determined by con-
servation of momentum laws. For example, a gymnast 
runs to a springboard, accumulating momentum. As 
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the gymnast jumps off the springboard, the vectors 
of the momentum generated by the springs and the 
momentum of the run are added together, propelling 
the gymnast forward at about a 45-degree angle to the 
floor. The gymnast can then push off a horse ahead, 
converting momentum into the angular momentum 
of rotating the body around the horse. At the highest 
point of this rotation, the gymnast can tuck the limbs 
in, moving the mass close to the axis of rotation and 
accelerating for a flip in the air. For example, a triple 
back somersault involves two and three-quarter body 
rotations before landing. Before landing, the gymnast 
straightens out, moving the limbs farther from the axis 
of rotation and slowing down the rotation, allowing 
for a soft, safe landing on the feet.

Scoring of Artistic Gymnastics Competitions
The current system of scoring in artistic gymnastics is 
relatively complex. It assigns a difficulty score to the 
attempted routine and then subtracts from that score 
for mistakes in execution. The score is analytic—it is 
based on decomposing gymnastic routines into indi-
vidual elements. Existing elements are summarized in 
the illustrated Table of Elements, and given difficulty 
ratings from A (0.1 points) to G (0.7 points). Additions 
to the Table of Elements are frequently named after 
gymnasts who first performed them successfully. Such 
new elements are submitted by the competing gym-
nasts ahead of the competition event, to be evaluated 
by an international committee. 

Eight highest difficulty values of the routine, added 
together, form the difficulty value (DV). Skills from five 
required Element Groups are awarded 0.5 points each, 
for the maximum 2.5 points in composition require-
ment (CR). Finally, an additional 0.1 or 0.2 points are 
given for each element if elements are connected, which 
adds to connection value (CV). The difficulty score (D) 
is the sum of these points: D = DV + CR + CV.

In addition to the difficulty score, there is an evalua-
tion of the artistry and execution called “E-score.” The 
judges take away points from the perfect 10.0 E-score for 
technical or artistry mistakes. Each fall costs 1 point. 

Trampolining and Conservation of Energy
Many gymnastic apparatuses are somewhat springy. 
Trampolining is a type of gymnastics that occurs 
entirely on trampolines and uses flight-like moments 
between contacts with the surface for striking routines. 

Trampolining involves the accumulation of energy. 
First, the kinetic energy of the gymnast’s limb flexes 
and motions is converted into the potential energy of 
the stretched trampoline fabric. Then, the gymnast is 
thrown in the air, converting this potential energy into 
the kinetic energy of the motion. As the gymnast gains 
height, the kinetic energy is converted into the poten-
tial energy again. Gravity pulls the gymnast down with 
acceleration, converting to kinetic energy, which con-
verts to the potential energy of the stretched trampo-
line upon contact, and so on. 

From the point of view of mechanics, the trampoline 
is a device for storing the gymnast’s potential energy 
between jumps. This view can explain, for example, why 
gymnasts cannot jump infinitely high, adding more and 
more energy to the trampoline. The maximum stretch 
of the trampoline limits the amount of energy stored 
in it. This can also be used to compute the theoretical 
maximum height of a trampoline jump.

Different types of gymnastics are easier to perform 
with different body types. A lower body-mass-to-
height ratio makes it easier to twist during movements 
and to hide momentum transitions in the twisting, so 
tall, skinny people are better suited for artistic gymnas-
tics. In trampolining, twists and transitions are not as 
crucial as higher rotation speeds and are easier with a 
higher body-mass-to-height ratio. Also, both take-offs 
and landings on trampolines require significant bursts 
of energy and muscle strength. Therefore, shorter, 
stockier athletes are better suited for trampolining.

Further Reading
Jemni, Monem, ed. The Science of Gymnastics. New York: 

Routledge, 2011.
Roper, Tom. “Mathematics and the Motion of the 

Human Body.” The Mathematical Gazette 74,  
no. 467 (1990).

———. “Mathematics and the Motion of the Human 
Body, Continued.” The Mathematical Gazette 74,  
no. 468 (1990).

Sommer, Christopher. Building the Gymnastic Body: The 
Science of Gymnastics Strength Training. Mesa, AZ: 
Olympic Bodies, 2008.

Maria Droujkova

See Also: Body Mass Index; Cheerleading; Joints; 
Transformations.
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Harmonics
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Measurement; Number 
and Operations; Representations.
Summary: Harmonics are sonic components that are 
periodic at and integer multiples of the fundamental 
frequency.

Harmonics are components of a musical sound with 
well-defined frequency relationships to one another. 
For a pitch of frequency f, typically measured in units 
of cycles per second, or hertz (Hz), the nth harmonic 
has frequency n × f . In this context the frequency 
f is referred to as the “fundamental frequency.” Har-
monics are closely related to overtones (or partials), 
which are defined to be secondary pitches that audi-
bly resonate when a fundamental pitch sounds. The 
number and strength of these secondary pitches are 
responsible for the distinct timbres perceived in dif-
ferent instruments or voices. The overtone series in 
music (also called the harmonic series at the risk of 
confusion with the infinite sum of the same name) 
refers to the sequence of ascending harmonics with 
frequencies 2f, 3f, 4f . . . . With only a few exceptions, 
the pitches of the lower harmonics match well with 
the frequencies of 12 pitches of the equally tempered 
scale. Further along the overtone series, the pitch 

spacing becomes very small—smaller than the tradi-
tional half step—and these upper harmonics, if heard, 
would sound distinctly out of tune. With the discovery 
of the overtone series by Jean-Philippe Rameau in the 
eighteenth century, the notion of musical consonance 
as the exclusive natural and rational sonic phenom-
enon—pursued by mathematicians from Pythagorus 
of Samos to Leonhard Euler—began to fade. There 
is a close physical relationship between the harmonic 
frequencies and the length of the vibrating medium. 
This relationship is exploited in the performance 
practices of musical instruments.  

Vibrating Media and the Overtone Series
For vibrating strings (such as violins and guitars) and 
open vibrating air columns (such as the Western con-
cert flute and some organ pipes), the words “harmonic,” 
“partial,” and “overtone” are essentially synonymous, 
with a slight difference in the enumeration: the fun-
damental pitch (frequency f ) is referred to as the “first 
harmonic.” The first overtone (frequency 2f ) refers to 
the second harmonic, and so on. In stopped air col-
umns (such as the clarinet and some organ pipes), the 
overtone series omits certain harmonic frequencies. For 
vibrating membranes (such as percussion instruments), 
overtones may exist at nonharmonic frequencies.

It is therefore a slight abuse of terminology to refer, 
as is commonly done, to the sequence of harmonics as 
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the “overtone series.” Physically, the overtone series is 
seen by observing the motion of a vibrating string of 
length L and natural frequency f. If forced to vibrate 
at frequencies n f×  (for n = 2, 3, . . .), n−1 stationary 
points (nodes) appear along the string, at intervals of  
L/n. In effect, the string moves as n strings of length L/n 
joined end to end. String performers utilize this fact by 
lightly stopping the string at lengths L/2, L/3, . . . L/n to 
produce flute-like harmonic tones (sometimes called 
“flageolet tones”).

From the overtone perspective, only lower harmonics 
are perceptible to the hearer of a fundamental pitch. The 
first six harmonics are perceived by the modern hearer 
as in tune within the 12 pitches of the equally tempered 
scale, in which the octave (the distance between the first 
and second harmonic) is divided into 12 equal half-step 
intervals. The frequency difference between successive 
pitches in this 12-tone system is given by

f fn n+ =1
1 122 .

The second, fourth, and eighth harmonics, at octaves 
above the fundamental, sound perfectly in tune. Upper 
harmonics can sound significantly out of tune, how-

ever. The seventh harmonic sounds uncomfortably flat 
compared to its nearest corresponding equal tempera-
ment pitch. The 11th harmonic has a frequency almost 
equidistant between adjacent notes of the equally tem-
pered scale, causing it to sound very out of tune—like-
wise for the 13th and 14th harmonics. 

These considerations are significant for period-
instrument brass performers, whose instruments, like 
the so-called “natural trumpet,” are nothing more 
than long tubes without the length-changing system 
of valves of modern trumpets. Performers play tunes 
on these instruments by producing overtones, typically 
between the 3rd and 16th in the series. 

While skillful performers can compensate for 
the most problematic overtones, composers in the 
baroque era typically avoided these notes or used their 
sonic character for special effect. Modern composers 
have experimented with specially tuned pianos and 
electronic instruments to directly explore the sonori-
ties of harmonics. The first 24 harmonics are listed in 
Table 1 with fundamental pitch taken as the A below 
middle C. Harmonics with frequencies that differ sig-
nificantly from the equally tempered scale are indi-
cated in bold type.
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Nearest Pitch

(Hz)

Frequency

(Hz)

Harmonic Nearest Pitch

(Hz)

Frequency

(Hz)

Harmonic

A (220) 220 1st harmonic F♯ (2960) 2860 13th harmonic

A (440) 440 2nd harmonic G (3136) 3080 14th harmonic

E (659) 660 3rd harmonic G♯ (3322) 3300 15th harmonic

A (880) 880 4th harmonic A (3520) 3520 16th harmonic

C♯ (1109) 1100 5th harmonic A♯ (3729) 3740 17th harmonic

E (1318) 1320 6th harmonic B (3951) 3960 18th harmonic

G (1568) 1540 7th harmonic C (4186) 4180 19th harmonic

A (1760) 1760 8th harmonic C♯ (4435) 4400 20th harmonic

B (1976) 1980 9th harmonic D(4698) 4620 21st harmonic

C♯ (2218) 2200 10th harmonic D♯ (4978) 4840 22nd harmonic

D (2349)

D♯ (2489)
2420 11th harmonic E (5274) 5060 23rd harmonic

E (2636) 2640 12th harmonic E (5274) 5280 24th harmonic

Table 1. The first 24 harmonics of a selected fundamental frequency. Also listed is the nearest pitch in the equally 
tempered scale. Note that some upper harmonics deviate substantially from pitches of the 12-tone scale.



Hawking,	Stephen
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Stephen Hawking’s work has popularized 
the mathematics of the universe.

Stephen Hawking is a theoretical physicist recognized 
for his groundbreaking scientific work concerning the 
relationship between black holes and the beginning of 
the universe. He studies the basic physical laws govern-
ing the universe in an effort to understand how the 
universe began. Hawking uses complex mathematical 
models to explore his ideas and develop his scientific 
theories. He believes anyone can understand the basic 
ideas of his research and endeavors to share his excite-
ment about science with anyone who is interested, 
regardless of academic background. He is the author 
of several books written for nonscientists explaining 
the concepts of his research on black holes and the 
universe. His best-selling book A Brief History of Time, 
first published in 1988, sold over 9 million copies as of 
2010 and is published in more than 30 languages. His 
personal story is also a human interest story. At the age 
of 21, while attending Cambridge University, Hawk-
ing was diagnosed with amyotrophic lateral sclerosis 
(ALS), also known as “motor neuron disease.” This 
degenerative disease affects voluntary muscle coordi-
nation. ALS does not affect brain function and Hawk-
ing is able to continue working in spite of the disabling 
effects of the disease. His confinement to a motorized 
wheelchair, his use of a computer-generated voice syn-
thesizer, and his many appearances in the media have 
made Hawking one of the most recognized scientists 
around the world.

Born January 8, 1942, in Oxford, England, Hawking 
realized at a young age that he wanted to study science. 
He attended Oxford University and planned to study 
mathematics, but chose to study physics because the 
university did not have a program in mathematics. After 
completing his studies at Oxford, Hawking earned a 
Ph.D. in cosmology from Cambridge University. While 
working as a research associate at Cambridge, Hawking 
became interested in the study of black holes and the 
history of the universe. In his dissertation, Hawking 
theoretically proved that the universe began as a single 
point of infinite density, known as a “singularity.” As a 
theoretical physicist, Hawking relies on mathematical 

Other Uses of the Word  
“Harmonic” in Mathematics
In mathematics, the word “harmonic” appears in a 
number of contexts, all of which trace their origins 
to the overtone series and associated physical vibra-
tions. A harmonic progression is defined as the term-
by-term reciprocal of an arithmetic progression. For 
example, the arithmetic sequence a

1
 = 1, a

2
 = 2, a

3
= 3, 

. . . , a
n
 = n gives rise to the harmonic sequence h

1
 = 1,  

h
2
= 1/2, h

3
=1/3, . . . , where h

n
=1/n. In this example, the 

arithmetic sequence gives the frequency multiples for 
the overtone series, and the harmonic sequence corre-
sponds to the wavelengths of the respective overtones. 
The harmonic mean is the reciprocal of the arithmetic 
mean of reciprocals. 

For example, the harmonic mean of two numbers x 
and y is defined as 2 1 1

1
/ /x y+( )− . The harmonic series 

in mathematics is the infinite sum 1 + 1/2 + 1/3+. . . , 
providing the canonical example of a series whose 
terms approach zero, but nevertheless, the sum 
diverges. The harmonic oscillator is a differential equa-
tion whose solutions are sinusoidal functions that can 
be used to model musical sounds. Harmonic analysis 
is the study of functions (or signals) by decomposi-
tion into fundamental component functions by means 
of the Fourier transform or other techniques. In the 
study of complex variables, harmonic functions are 
generalizations of the sinusoidal functions that model 
fundamental vibrations.
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models to describe and build scientific theory, which 
can then be supported or refuted through observation. 
In particular, Hawking applies known mathematics to 
study particular objects in the universe, called “black 
holes,” and to study the universe itself. His work con-
cerning the origins of the universe is built from the 
mathematical model of the general theory of relativ-
ity. This theory, developed by Albert Einstein and pub-
lished in 1915, describes gravity in terms of its geomet-
ric relationship to space and time.

Using the mathematics of general relativity, Hawk-
ing demonstrated that the equations imply the universe 
had a beginning as a singularity. This moment at the 
beginning of the universe is known as the “Big Bang.” 
However, theoretical physicists such as Hawking have 
been unable to determine the precise conditions that 
enable the Big Bang to occur because the mathematics 
of time and space become undefined at the point of a 
singularity. Singularities also occur when stars collapse 
under their own gravitational force and become black 

holes. Applying the mathematics of general relativity, 
Hawking also demonstrated that time should come 
to an end inside a black hole, although the equations 
are again undefined at the point of a singularity. His 
research into the structure of black holes further led 
to his development of a theoretical model concerning 
radiation emitted from black holes, which is known as 
“Hawking radiation.”

Hawking states he has always been intrigued by life’s 
big questions and wants to find scientific answers to 
those questions. His extensive work in the mathemati-
cal exploration of black holes and the structure of the 
universe has led to profound insights in the fields of 
theoretical physics and cosmology. Among his many 
academic honors and awards, he held the prestigious 
Lucasian Chair of Mathematics at Cambridge University 
from 1979 to 2009, a post once held by Isaac Newton. He 
continues to work toward his goal of achieving a com-
plete understanding of the universe and why it exists as 
it does. He and other theoretical physicists are searching 
for mathematical models to combine quantum mechan-
ics (the study of subatomic particles) and general rela-
tivity. He claims that he does not particularly enjoy 
working with complex mathematical equations because 
he does not find them intuitive. Rather, he thinks about 
his ideas geometrically by envisioning mental pictures 
and visual images. It is these mental pictures and images 
he uses to try to convey his theoretical ideas. Since writ-
ing A Brief History of Time, he has continued his efforts 
to share his ideas and has written several books for the 
nonscientist, including Black Holes and Baby Universes 
and Other Essays and The Universe in a Nutshell. 
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Helicopters
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry.
Summary: Helicopters apply vertical thrust to 
overcome their weight.

A helicopter is a type of aircraft that overcomes gravi-
tational force by employing spinning blades to generate 
vertical thrust. The ideas of vertical flight can be traced 
back to the Chinese and to Leonardo da Vinci. Thomas 
Edison studied several different propeller designs and 
concluded that a feasible helicopter needed a light-
weight engine that could produce a large amount of 
power. Mathematicians such as Theodore Karmen and 
George de Bothezat also worked on helicopter design 
in the early twentieth century. In modern helicopters, 
downward force is supplied by an engine driver rotor. 
A helicopter has many advantages over a fixed-wing 
aircraft, such as the ability to take off and land verti-
cally, to hover, and to fly backwards and laterally in the 
air. As the main rotor spins, it generates a torque that 
could set the helicopter into a fatal spin. To compensate 
for this, helicopters have a smaller rotor and blades on 
their tails.

Flight Controls
A helicopter has four main flight control inputs that 
enable it to perform various aerial maneuvers: the cyclic 
control, the collective pitch control, the anti-torque 
pedals, and the throttle. The cyclic control changes the 
pitch of the rotor blades cyclically, enabling the heli-
copter to move in the desired direction. The collective 
pitch control controls the altitude of the rotorcraft. The 
anti-torque pedals change the pitch of the tail, altering 
the amount of thrust. 

Mathematically Modeling Helicopter Flight
Helicopters fly by sucking air from above their rotors 
and forcing it downwards with a thrust equal to (if 
hovering), greater than (if climbing), or less than (if 
descending) their weight. The pressures at various 
points around a helicopter are given by

P v P v v

P P v

out in out
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2 2 2

2

1

2

1

2
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2
1
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+ = + +

= + +
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here P0 is the rest pressure of the air far above the rotors, 
P + ∆P is the pressure below the rotors, vin is the veloc-
ity of the air as it is sucked in, and vout is the velocity of 
the air as it is forced down.

There are also equations governing the stability and 
flight of a helicopter. These take into account the inertial 
velocities in the moving axes system, the Euler rotations 
defining the orientation of the fuselage axes with respect 
to Earth, and the aircraft mass. In the early twenty-first 
century, mathematicians model areas of helicopter flight 
and performance, such as aerobatic maneuvers that push 
the limits of the system and that help inform improve-
ments and future designs of new helicopters.

Transverse Flow and  
Ground Resonance Effects
In forward flight, because the air is being accelerated for 
a longer period of time as it travels to the rear of the 
rotor system, air passing through the rear portion of the 
rotors has a greater downwash angle than the air passing 
through the forward portion. This pressure difference 
causes a decrease in the angle of attack, resulting in less 
lift in the rear of the rotorcraft, increased angle of attack, 
and more lift in the front. This is called the “transverse 
flow effect” and it causes easily recognizable vibrations.

When a helicopter is resting on the ground with its 
rotor spinning, a destructive harmonic vibration called 
“ground resonance effect” can develop and is caused by 
a reaction of the rotor blades to the lateral motion of 
the helicopter. Ground resonance effect develops when 
the rotor blades move out of phase with each other and 
cause the rotor disc to become unbalanced.
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Highways
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations.
Summary: Highway design requires an adequate 
model of anticipated traffic and a determination of 
the grade.

In the early twentieth century, a series of Federal Aid 
Highway Acts aimed to create a national highway sys-
tem. Considerations for a highway design include gov-
ernment design specifications and speed limits, the 
planned route’s geographical and geological features, 
water drainage requirements, land use issues such as 
environmentally sensitive areas, driver comfort and 
safety, and maximization of the highway’s life span. 
Planners and engineers also gather data and determine 
the minimum and maximum expected traffic volumes 
based on number of standard axles, vehicle types, 
expected uses, driver visibility requirements, and the 
minimum radius of bends and curves. The mathemat-
ics used in designing the combination of horizontal and 
vertical, and straight and curved, sections of a proposed 
highway results in a design plan that construction crews 
follow as they build and maintain the highway. Mathe-
maticians also investigate questions related to highways 
such as mileage, distance, and traffic issues. Mathemati-
cian and physicist Louis Roberts served as director of 
energy and environment at the Transportation System 
Center in Massachusetts, a division of the U.S. Depart-
ment of Transportation that researches and develops 
transportation-related energy conservation practices. 

Modeling Highways
Highway designers utilize mathematics to create a 
three-dimensional layout when planning the horizon-
tal and vertical sections that comprise a highway. The 
plan view (x and z coordinates) shows the proposed 
highway’s horizontal alignment, which is comprised 
of straight sections known as “tangents” and the hori-
zontal curves that connect them. The profile view (y 
axis) shows the proposed highway’s vertical align-
ment, which is comprised of the various slopes known 
as “grades” at points along the highway. Computer 
software programs enable modern engineers to create 
visual models of the plan route and aid in the math-
ematic calculations involved.

One of the key calculations of highway design and 
construction is the determination of the necessary 
grade along the various sections that comprise the 
highway, defined as the measure of the highway’s slope. 
The grade of a section of highway is calculated using 
the equation grade = (rise ÷ run) × 100. This equation 
divides the highway’s height increase along that sec-
tion, known as the “rise,” by the horizontal distance a 
vehicle on a level highway section travels, known as the 
“run.” Designers express distance as stations, whereby 
one station is 100 feet of highway alignment distance. 

The resulting decimal calculation gives the ratio of 
rise-to-run, which is the grade of that particular section 
of highway. The decimal grade is then converted to and 
expressed as a percentage through multiplication by 100. 
Grade calculations are used to ensure smooth traffic flow 
along the highway and along the intersections between 
highways and other roadways as well as to ensure proper 
water drainage. Designing the proper grade can also help 
reduce fuel consumption and prevent accidents. During 
construction, crews move and level the dirt along the 
right-of-way to create the desired grades.

Vertical Curves
There are two types of vertical curves used in highway 
design: sag vertical curves and crest vertical curves. 
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Highway Safety 

V ehicles traveling along a highway must 
be able to safely transition between the 

different gradations and straight sections of 
a highway. Designers incorporate horizontal 
and vertical curves to ensure a gradual tran-
sition. Designers use mathematical calcula-
tions to ensure that the centrifugal forces cre-
ated by driving along curved surfaces will not 
adversely affect the vehicle. The calculations 
involved in designing curves take a variety of 
data into account, including designed vehicle 
speeds, geological features, highway and vehi-
cle types, grade, driver sight line obstructions, 
stopping distance, and connections with other 
roadways. 



The difference between the two is the measurement 
between the tangent grades at the starting and ending 
points of the curve, expressed as a percentage. An end-
ing tangent grade that is higher than the beginning tan-
gent grade defines a sag vertical curve, while an ending 
tangent grade that is lower than the beginning tangent 
grade defines a crest vertical curve. Thus, a sag vertical 
curve has a negative value and a crest vertical curve has 
a positive value. These measurements and calculations 
combine to create the completed highway design plan. 
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Hitting	a	Home	Run
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry.
Summary: Home runs in baseball can be 
mathematically analyzed according to numerous 
factors, including ballpark design, altitude, and  
initial velocity.

A home run in baseball happens when the batter circles 
all the bases in a single play. This typically results from 
the ball being hit over the outfield fence. In modern 
baseball, a home run rarely occurs as a result of hit-
ting the ball so that it is still in a state of play inside 
the field—an “inside the park” home run. Home runs 

are considered to be some of the most exciting plays 
in baseball, and a great deal of time and effort is spent 
trying to help batters achieve this skill.

A number of factors are at work in hitting a home 
run, including the player’s stance and swing, the flight 
path of the ball, and the characteristics of the outfield 
wall, which are not standardized in U.S. baseball sta-
diums. For example, the Boston Red Sox stadium is 
renowned for its left field wall, named “The Green 
Monster,” which is much taller than average outfield 
walls, but it is only a little more than 300 feet from 
home plate—a fairly short distance in professional 
baseball. Probability and statistics are also used to ana-
lyze home runs, though differences in the game over 
time make some mathematical comparisons challeng-
ing. The 1961 race between Roger Maris and Mickey 
Mantle to break George Herman “Babe” Ruth’s home 
run record was widely followed and highly controver-
sial, in part because the increased number of games in 
the season made direct comparisons of the number 
and rate of home runs problematic.

There are various techniques, training schools, and 
methods to improve a batter’s chances of hitting a 
home run. Contributing factors considered in some 
of these methods include the mass of the baseball bat 
and the speed at which the bat is swung. A projectile 
equation is used to model the motion of the ball as a 
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parabola, using these variables as input. The distance 
traveled and the greatest height achieved both depend 
on initial conditions starting from when the ball hits 
the bat: height, angle, velocity in units of distance per 
second, and other factors such as altitude above sea 
level. There is also a great deal of research in sports 
medicine and kinematics. Some of this research 
focuses on batter and performance variables, such as 
age, bat grip, bat speed and velocity, reaction time, 
and visual cues, though the fundamental mathemati-
cal analyses of trajectory do not differ.

Mathematicians and scientists have also developed 
computer simulations designed to model batting. These 
often allow multiple parameters to be modified dynami-
cally and quickly to explore and to visualize results. One 
such simulator shows that when a batter hits a baseball, 
the air resistance, speed, and angle all have an effect on 
where the ball goes. It further allows the user to choose 
a stadium location and then alter the speed, angle, and 
altitude to observe the success or the failure.

Baseball statistics may be more familiar to the wider 
sports audience, from the numbers that appear on the 
backs of baseball cards to the advanced mathematical 
analyses of sabermetrics. For example, in September 
2007, four Los Angeles Dodgers players hit four home 
runs in a row. This was only the fourth time this had 
ever happened in over a century of major-league base-
ball. A sports-business professor calculated the odds as 
1:3,300,000, a number that gained wide attention in 
the media. 

Then, roughly a month later, four Boston Red Sox 
players repeated the exceptionally rare feat, spurring 
alternative calculations and discussions among stat-
isticians and sports analysts. Mathematician Howard 
Penn used statistical hypothesis testing to determine 
whether the Colorado Rockies’ practice of humidify-
ing their baseballs (to counter the beneficial effects of 
high altitude on distance), actually reduced their over-
all number of home runs. He concluded that there was 
a statistically significant decrease, though the park was 
still “home run friendly.”
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HIV/AIDS
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement.
Summary: Epidemiological models track and 
estimate human immunodeficiency virus (HIV) and 
acquired immunodeficiency syndrome (AIDS) while 
immunological studies generate probable values for 
use in immune dynamics models to evaluate possible 
treatments.

The human immunodeficiency virus (HIV) is a type 
of retrovirus that targets the immune system. Retrovi-
ruses replicate by encouraging host cells to make cop-
ies of their own ribonucleic acid (RNA) after invading 
them. The immune system is designed to fight viruses 
and infections, but HIV targets the immune system 
and progressively destroys the body’s ability to fight 
infections and certain kinds of cancer. People with HIV 
may get life-threatening diseases called “opportunistic 
infections,” and they can later develop what is known as 
acquired immunodeficiency syndrome (AIDS). Math-
ematical and statistical techniques are used to track the 
spread of disease, estimate the number of cases, define 
various parameters for describing incidence and prev-
alence, and evaluate the clinical tests that are used to 
identify HIV and AIDS.

Historically, AIDS has been defined as a syndrome of 
several different illnesses that occur when the immune 
system fails. AIDS was first clinically identified in the 
1980s and called “gay-related immune deficiency” 
(GRID), because the illness initially appeared in men 
who had sex with men. The cause was not known, but 
there were many theories, including cytomegalovirus 
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and certain drugs. Later, AIDS cases emerged in both 
males and females who had received blood transfusions, 
suggesting an infectious agent with bodily fluids as a 
transmission vector. As early as 1983, scientists isolated 
a virus later named HIV, which was ultimately corre-
lated with AIDS. As with most diseases, cause is inferred 
though animal testing and by making comparisons 
between people with and without the proposed causal 
agent. In 1993, a more precise definition was adopted by 
the Centers for Disease Control and Prevention (CDC), 
which added the criterion of a person having less than 
200 CD4+ T-lymphocytes/µL or less than 14% CD4+ 
T-lymphocytes. In 2009, evidence suggested the human 
form of HIV developed sometime between 1884 and 
1924, far earlier than originally believed.

Prevalence 
HIV prevalence refers to the overall percentage of a pop-
ulation that has HIV, while HIV incidence refers to the 
rate of new infections that occur in a given year. His-
torically, tracking HIV has been difficult because AIDS 
surveillance registries relied upon AIDS cases that were 
reported, and data were then extrapolated with statis-
tical models to estimate the prevalence in the wider 
population. Other data collection alternatives are avail-
able. Some methods involve surveys of different groups 
of people, including high-risk groups. Others, like pro-
spective cohort studies, track samples of people over 
time. Globally, at the start of the twenty-first century, 
heterosexual women are most at risk of acquiring HIV. 
In Western countries, men who have sex with men are 
considered a high-risk group. Prisoners are also at risk 
because inmates may engage is high-risk behaviors. HIV 
is considered a pandemic, and a typology was developed 
to classify geographic regions according to the type of 
epidemic. Generalized type means that HIV prevalence 
is greater than 1% in pregnant women. Concentrated 
type means the prevalence is greater than 5% in some 
subpopulation but less than 1% in pregnant women. The 
low-level type has a prevalence of less than 5% in any 
subpopulation and less than 1% in pregnant women.

Epidemiology
There are many types of epidemiological models that 
are used in HIV/AIDS tracking and estimation. They 
take into account different variables, including the size 
of the overall population; the proportion of people who 
are already infected; the size of sexually active or other 

at-risk subgroups; the number of people who leave the 
population for various reasons, including deaths from 
AIDS; and the number of new sexual partnerships that 
people may form. They may calculate quantities such 
as risk of transmission between individual members of 
the population or overall population rate of transmis-
sion. A statistic called the “basic reproductive number” 
is often used to quantify transmissibility. A value less 
than 1 for this measure implies that a disease will even-
tually die out, assuming that the values entered into the 
model do not change over time. A value greater than 
one implies that the infection will spread. Very large 
values imply an epidemic, which may be difficult to 
control. Treatments and other interventions can reduce 
the infectiousness of HIV, which affects values like the 
basic reproductive number. 

Many models are simplified, assuming that all individ-
uals in a hypothetical population have the same patterns 
of sexual behavior. Factoring in individual differences in 
sexual behavior may increase realism in statistical mod-
els of HIV risk and infection. Many parameters could 
change, depending on factors like age, particularly sex-
ual behavior and infectiousness of the virus. Some other 
variables that could be considered are types of sexual 
activity, the number and type of sexual partners, con-
dom use, and HIV testing. The role of treatment in miti-
gating transmission could also be considered. Research-
ers from the Amsterdam Cohort Study created a more 
complex mathematical model that described the spread 
of HIV in one high-risk group. The researchers took into 
account many individual behavioral variables and were 
able to show that the majority of new HIV infections 
were because of main partners, not casual partners as 
was previously assumed. This had important implica-
tions for targeting risk-reduction messages to men in 
long-term relationships.

Testing
In the twenty-first century, politicians and report-
ers have questioned whether mandatory HIV test-
ing should be required. In 2003, the CDC initiated 
the Advancing HIV Prevention: New Strategies for 
a Changing Epidemic program and tested the possi-
bility of rapid HIV tests in some emergency rooms. 
HIV tests have a high sensitivity rating, with some 
tests listed as 99.7% accurate, meaning only 0.3% of 
the people with HIV will falsely test negative. The 
remaining people with the disease will correctly test 

	 HIV/AIDS	 479



positive. However, even with this degree of accuracy, 
one concern about universal testing is the possible 
number of false positives (people who test positive but 
do not actually have the disease). The percentage of 
false positives with these tests is also small. Yet, in the 
United States, because most of the population is HIV 
negative, the small percentage would be multiplied 
by the very large number of people in the HIV-free 
population and would result in many false positives, 
perhaps more than true positives. Repeated testing or 
the development of more accurate tests can mitigate 
the impacts of false positive results.

Immunology
Immunology is the study of the immune system’s 
response to a pathogen, and mathematical models of 
HIV immune dynamics can be constructed. Data from 
experiments can be used to find plausible values for the 
mathematical model, such as the expected life of CD4+ 
T-cells. These models are particularly useful when 
evaluating or predicting the success of treatments that 
interfere with the replication of retroviruses. Mathe-
matical models of immune dynamics are very complex 
and require revisions as knowledge about HIV changes. 
Collaboration between mathematicians and clinicians 
is important so that models can be maximally effective 
in preventing HIV spread and improving health out-
comes for people infected with the disease.
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Hockey
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability;  
Geometry; Measurement.
Summary: Playing hockey is an application of 
geometry, as players in constant motion determine 
angles of approach, plot routes through opponents, 
and visualize the vector of the puck.

Ice hockey is a team sport played on an ice rink by skat-
ing players using sticks to move a rubber disk called a 
“puck” into the opposing team’s goal. Field hockey and 
street hockey are usually played on foot, either on grass 
fields or street surfaces, using a ball. There is evidence 
that hockey-style games have existed for millennia, and 
ice hockey has long been popular in parts of the world 
that are cold enough for long-lasting seasonal ice. The 
basic rules of modern ice hockey were developed in 
Canada in the late 1800s, and the National Hockey 
League of North America (NHL) dates back to the 
early 1900s. The growing prevalence of indoor ice rinks 
has allowed hockey to expand into warmer places, like 
Florida and California, with mixed success. Ice hockey 
is highly geometric, in terms of both player action and 
the surface on which it is played. Mathematics and sta-
tistics are also used to model various aspects of game 
play and to develop improved equipment. 

Geometry
A hockey rink is in some ways more geometric than 
other sports surfaces. Overall, the ice is essentially 
rectangular. North American professional rinks have 
corners that are rounded on a circle with a radius of 
28 feet. Rinks have mirror symmetry end-to-end and 
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side-to-side, including five circles used for face-offs. 
The goalie primarily occupies the space in front of the 
goal known as the “crease,” which is a half-circle with a 
six-foot radius in international play. In North Ameri-
can professional rinks, the crease is truncated to eight 
feet wide by transecting lines drawn one foot on either 
side of the six-foot-wide goal. Aside from the crease, 
goalies in some professional leagues may play the puck 
only in the goaltender’s trapezoid. This symmetrical 
region has one 18-foot base formed by the goal line 
and another 28-foot base determined by the boards 
(the wall behind the goal). 

Hockey also requires an awareness of geometry for 
competitive play. Players are in constant motion and thus 
always calculating the best angle at which to approach 
an opponent, based on the opponent’s speed and tra-
jectory, as well as the best route through the moving 
players. Turning and stopping on ice require different 
applications of forces than sports played on foot, with 
arcing turns or various radiuses being more common 
than point pivots and sudden reversals. Being a hockey 
goalie is an ongoing exercise in mathematics and phys-
ics. Geometric ideas like circumferences, radiuses, and 
angles are very important, as is the ability to visualize 
vectors. Goalies shift within the crease in response to 
the continuously changing locations of other players in 
the plane of the rink to simultaneously minimize oppo-
nents’ possible angles of attack and maximize their abil-
ity to intercept the puck. Time series analyses of several 
decades of data have shown that NHL games steadily 
average about 30 shots on goal per 60-minute game. 
There have been vocal critics of the artificial intelligence 
used for hockey goalies in some video games, with asser-
tions that the programming fails to accurately mimic the 
sort of continuous precision adjustments used by real 
goalies. Hockey terminology has been used with some 
students to motivate and teach geometric concepts. 

Statistics
Sports fans have become increasingly interested in 
studying sports statistics for prediction and deeper 
analyses. Operations researchers Jack Brimberg and 
William Hurley investigated the common belief that 
the first goal in the game “sets the tone” for the rest of 
the game. They calculated that the team that scored first 
was more likely to win, especially if the first goal was 
scored later in the game. Others have analyzed the way 
in which the NHL determines which teams will compete 

in the play-offs. There are 82 games in the regular NHL 
season. Points are awarded to the teams as follows: two 
points for winning the game, zero points for losing in a 
regulation 60-minute game, but one point for losing if 
the game went to overtime. No other league rewards a 
team differentially for losing in overtime. The intent is 
purportedly to keep tied teams playing competitively in 
the third period. However, data suggest that teams tend 
to rein in play and allow the game to go into overtime, 
which mathematical game theory suggests is the better 
move, because the reward for winning is the same, but 
the penalty for losing is reduced. A European system 
changes optimal strategy because the winner gets only 
two points in overtime versus three.
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Hockey Equipment 

H ockey equipment also benefits from math-
ematics. Helmets have become manda-

tory in most hockey leagues, and researchers 
are continually seeking ways to better disperse 
the powerful kinetic energy of blows and col-
lisions. Iconic player Robert “Bobby” Hull is 
credited with introducing curved blades on 
hockey sticks, which improves control and 
accuracy. Many players still use traditional 
wooden hockey sticks, but researchers have 
also developed flexible, lightweight composites 
and aluminum sticks, often involving statistical 
analyses and modeling. Physicists have also 
used mathematical models to analyze the char-
acteristics of different hockey shots. 



Other Connections to Mathematics
In climate science, Michael Mann, Raymond Bradley, 
and Malcolm Hughes quantitatively reconstructed tem-
perature trends for the last 1000 years, producing a con-
troversial graph called the “hockey stick graph,” since its 
changes in slope resemble the bend of a hockey stick. 
One theorem regarding diagonals in Pascal’s Triangle, 
named for Blaise Pascal, is also sometimes known as the 
“hockey stick theorem” for the shape it produces.

Further Reading
Brimberg, Jack and W. J. Hurley. “A Note on the 

Importance of the First Goal in a National Hockey 
League Game.” International Journal of Operational 
Research 6, no. 2 (2009).

Gill, Paramjit. “Late-Game Reversals in Professional 
Basketball, Football, and Hockey.” The American 
Statistician 54, no. 2 (2000).

Hache, Alain. The Physics of Hockey. Baltimore, MD: 
Johns Hopkins University Press, 2002.
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Home	Buying
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations; Problem Solving.
Summary: Interest rates on mortgages are set using 
sophisticated mathematical techniques.

Homes are the largest single purchase most people 
make in their lifetimes. Buyers usually take out a 
home loan, called a “mortgage,” rather than pay cash. 
When the desired property is identified and funds for 
a down payment (typically 20%) are acquired, home 
buyers work with a bank or other lender to finance 
the purchase. When determining what a person can 
afford to borrow, lenders consider several variables. 
In the past, these judgments were often highly sub-
jective decisions made by individual lender agents, 
but the increased popularity and availability of credit 

cards in the latter half of the twentieth century, as well 
as federal legislation designed to combat discrimina-
tion in lending, required more objective methods of 
assessment. 

For example, FICO scores mathematically measure 
risk of nonpayment. Created by Fair Isaac Company 
(FICO), founded by engineer Bill Fair and mathemati-
cian Earl Isaac, an individual’s FICO score is a weighted 
combination of variables such as previous credit per-
formance, current debt, and length of credit history. 
Also, lenders may use debt-to-income ratios to indi-
cate the size of payment a borrower can afford. Com-
paring home loans can be challenging because differ-
ent lenders may use this information differently. Also, 
interest rates, closing costs, and additions to the base 
payments need to be considered in the comparison. 
The process of buying a house may involve additional 
expenditures beyond the mortgage. Buyers routinely 
hire a home inspector to independently assess the con-
dition of the home, and many such inspectors charge a 
fee based on the square footage. In some areas, radon 
tests or soil analyses might be required. If problems 
are found, either the buyer or the seller may have to 
hire a structural engineer or other professional to rec-
tify the problem before an agreement is reached or the 
loan approved. Property taxes, based on the assessed 
value of the home and land, and homeowners insur-
ance, which is also a function of the assessed value and 
replacement cost of the home and its contents, are also 
part of almost all home-buying transactions. Home 
buying tax credits or reduced interest rates may offer 
the buyer additional options and are designed to stim-
ulate the economy.

FICO Scores and Credit Ratings
Each of the three major credit bureaus (Experian, Trans-
Union, and Equifax) calculate a credit score based upon 
advice from the Fair Isaac Company, an independent 
company that specializes in business analysis, including 
risk assessment. However, not all three companies use 
identical inputs, and each may yield a different result. A 
FICO score is between 300 and 850, with higher scores 
indicating better risks. The exact formula used for FICO 
score calculation is proprietary and changes periodi-
cally, but the personal data incorporated in the FICO 
formula include, in order of importance, payment his-
tory; amounts owed; length of credit history; new credit 
applied for; and types of credit used. The FICO score 
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influences requests for credit, and many banks charge 
higher interest rates to people with lower scores.

Debt-to-Income Ratio
Most standard loan applications request information 
on both income (annual income, bank account bal-
ances, investments such as stocks and bonds) and debt 
(amount owed on loans, credit cards, and standard 
monthly bills like car payments, utilities, insurance). 
This information can be used to determine the percent-
age of income already committed to be spent each year: 
debt-to-income ratio = total debt ÷ total income. 

If a prospective borrower’s expected debt-to-
income ratio is higher than the bank’s cutoff (most 
banks have a limit between 32% and 40%), a loan may 
be denied, particularly if the prospective borrower’s 
FICO score is low. A high FICO score might result in 
the prospective borrower being granted the loan even 
with a higher debt-to-income ratio. 

Calculating a Mortgage Payment
The principal (amount to be borrowed), the annual 
interest rate, the payment schedule (for example, 
monthly or bimonthly), and the length of the loan 
(10, 15, 30 years, for instance) all factor into the pay-
ment. The formula for the payment (R) is given below, 
where P is the principal, r is the adjusted interest rate 
(the annual rate divided by the number of payments in 
one year), and n is the number of payments to be made 
over the life of the loan

R
rP

r
n

=
− +( )( )−

1 1
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Additions to this base payment include the following:

• PMI: Borrowers paying less than 20% 
down may be required to purchase private 
mortgage insurance (PMI) to protect 
the lender’s investment. The cost of this 
insurance is added to the loan payment.

• Escrow: Many banks require that payments be 
made into an escrow account to accrue funds 
to pay property tax and insurance. 

Finalizing a Mortgage Loan
Transaction fees for processing a mortgage are more 
commonly called “closing costs”; hence finalizing a 

home loan is called “closing.” Charges to be paid when 
closing on a loan typically include an origination fee for 
the lender, appraisal fee for the appraiser, title search 
and recording fees for the attorney, and points. Points 
are up-front interest fees charged by the lender, with 
one point costing 1% of the principal. Banks often give 
borrowers the option of purchasing additional points 
at closing to decrease the interest rate on a mortgage. 

The reduction of interest for purchasing a point can 
vary from bank to bank; one point may reduce the rate 
by as little as 0.1% or as much as 0.25%. The cost of the 
points purchased at closing is tax deductible, as is any 
interest paid over the life of the mortgage.

Amortization of Loans and Fixed Rates
Loan payments include a portion that reduces the prin-
cipal balance and a portion that the lender keeps—the 
interest. The amount of interest included in a pay-
ment varies over the life of the loan, but can be deter-
mined by remembering that each payment includes 
“simple interest payable on the balance.” Calculating 
the schedule of payments, including the split between 
principal and interest for each payment, is referred 
to as “amortizing.” The Latin roots of the term mean 
“death pledge,” indicating linguistically the willingness 
to forfeit something of great value if the debt is not 
paid. In this case, failure to pay the debt results in fore-
closure by the bank and the loss of the property.

To illustrate, suppose a home buyer borrows 
$100,000 at 6% fixed annual interest (the interest 
rate does not change over the life of the loan) payable 
monthly for 30 years (360 payments). Using the loan 
formula, the monthly payment is $599.55, assuming 
no PMI or escrow. Since the homebuyer is paying 6% 
annual interest and 12 payments a year, the adjusted 
(monthly) interest rate is 0.5% for all payments. 

Thus, the homebuyer owes the lender 0.5% of 
$100,000 in the very first payment; $500 will be kept 
by the lender as interest and $99.55 will be used to 
reduce the principal. For the next payment the balance 
is $99,900.45; the interest will be 0.5% of that balance 
or $499.50. These calculations can be summarized in 
an amortization table, which is usually provided to 
the buyer as part of the mortgage agreement. The first 
and last several rows for this example are presented 
in Table 1. As the loan progresses, the interest portion 
decreases and the remaining amount applied to the 
principal increases.
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Variable Rates
The example uses a “fixed” interest rate, but many lend-
ers also offer variable rate loans, meaning that the inter-
est rate may be changed according to some economic 
indicator (called the “index”), such as the prime rate. 
There are legal restrictions on this practice: the lender 
must inform the borrower of the size and frequency of 
such changes (called the “interval”), and the maximum 
(called the “cap”) for the rate. For example, a two-year 
adjustable rate mortgage (ARM) payable monthly over 
30 years might have the following particulars: 6% to 
start indexed on the 6-month U.S. Treasury Bill, and 
adjustments of at most 2% are allowed every two years 
with a cap of 10%.

The initial calculations, such as down payments or 
the payment amount, do not change in this case. For 
this two-year ARM, the first two years of the amortiza-
tion table above does not change. One important ques-
tion to ask the lender when considering an adjustable 
rate loan is what happens to the payment when the 
interest changes? Most redo the amortization calcula-
tions starting at the next payment, so a new rate would 
mean a new payment amount.

The housing crisis of 2007–2009 resulted in many 
homeowners finding themselves with homes whose 
values had decreased to the point that they were worth 
less than the amount owners still owed on their mort-
gages. There were many factors that influenced this 
outcome. Prior to the Great Depression, home owner-
ship was much more rare than in the early twenty-first 
century when homes were often financed with bal-
loon-payment mortgages in which a loan is amortized 
over only part of its lifetime, leaving a large principal 
payment due at the end. The federal push to open the 

housing market using fully amortized, fixed-interest 
mortgages required lenders to assume much greater 
financial risk, which can be mathematically mod-
eled but not perfectly predicted. To manage that risk, 
mortgages became financial commodities in the larger 
financial marketplace. Housing prices, interest rates, 
and other aspects of financial markets are highly vari-
able, and some people blamed the housing crisis on too 
much reliance on sophisticated mathematics. 

In general, it was probably not the models them-
selves but the sometimes-incorrect ways in which the 
models were often used. In addition, many lenders 
ignored reliable risk predictors, such as FICO scores 
and debt-to-income ratios, resulting in more peo-
ple taking on higher loan payments than they could 
afford. Home prices rose from demand to the point 
where properties were extremely overvalued. They 
later decreased in value, so the property was worth 
much less than the balance on the loan, leading to a 
large increase in foreclosures. Homeowners defaulted 
on loans, ruining their credit ratings, and banks paid 
large foreclosure fees. There were also more short sales, 
where banks agreed to accept less than the mortgage 
balances when homes sold to avoid foreclosure charges 
and poor credit ratings for the homeowners.

Further Reading
Johnson, Tim. “Paying the Price.” Plus Magazine  

(July 14, 2009). http://plus.maths.org/content/ 
paying-price.

Perry, Timothy, and Daniel Prouty. The Book of Home 
Purchase: Make Quick, Simple On-Site Room-to-Room 
Calculations of Repair and Replacement Costs.  
Bergamo, Italy: Bergamo Publications, 1998.
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Table 1.

Payment # Interest Owed Payment Principal Paid Balance

Closing   $100,000.00 
1  $500.00   $599.55   $99.55   $99,900.45 
2  $499.50   $599.55   $100.05   $99,800.40 
3   $497.99   $599.55   $101.56   $99,497.24 

. . . . . . . . . . . . . . .
358   $8.90   $599.55   $590.65   $1,190.17 
359   $5.95   $599.55   $593.60   $596.57 
360   $2.98   $599.55   $596.57   $(0.00)



Shestopaloff, Yuri. Mortgages and Annuities: 
Mathematical Foundations and Computational 
Algorithms. Toronto: AKVY Press, 2009.

Holly Hirst

See Also: Bankruptcy, Personal; Budgeting; 
Comparison Shopping; Loans.

Houses	of	Worship
Category: Friendship, Romance, and Religion.
Fields of Study: Connections; Geometry.
Summary: Sacred spaces have often been designed 
with special attention paid to their geometry.

Houses of worship are places dedicated to spiritual 
and religious practices. Because spatial metaphors are 
universally important to humans, many faiths tie their 
religious ceremonies or practices with special architec-
ture, decoration, and visual symbols that promote spir-
itual contemplation or changed states of consciousness 
or, in some cases, serve to teach aspects of the religion. 
Mathematically rich areas of study and practice related 
to houses of worship include sacred architecture and 
sacred geometry. The mathematical patterns from 
these studies are frequently investigated within both 
mainstream science and religions, for example, under 
the umbrella of ethnomathematics. 

Houses of Worship as Motivators for  
Mathematics and Science
Because houses of worship typically had special mean-
ings, they were often constructed differently than other 
buildings. At times, this elevated the architectural and 
aesthetic demands on both designers and builders, who 
found themselves challenged with erecting unusual and 
often very large structures, which promoted applied 
mathematics. Their methods remain a source of debate 
in modern scientific circles, since it is not clear exactly 
which engineering methods were used to lift the enor-
mous monoliths that make up Stonehenge in England, 
to fit together large blocks forming the ancient Egyptian 
Luxor temples or pyramids, or to orient Sumerian tem-
ples with compass directions. However, it is clear that the 

desire for special sacred architecture could provide justi-
fication to spend time, materials, and other resources in 
mathematically rich ways.

A Sampler of Mathematical Features in 
Houses of Worship Through History
Sophisticated mathematical ideas and principles can 
be found in Sumerian ziggurats, which were built in 
ancient Mesopotamia. These structures have a charac-
teristic “gigantic step” shape made of two to seven reced-
ing tiers. The top tier, where historians assume rituals 
were performed, could only be reached through narrow 
ramps. This feature would have isolated the priests and 
made the defense of the top tier easy. This was impor-
tant, as ziggurats also served as city administrative cen-
ters, and the shrine complexes contained within them 
housed kings who performed rituals or who may have 
been considered deities themselves by the people they 
ruled. Such ties between ruler and divinity, or the con-
cept of the divine right of kings, were found in many 
of the ancient cultures, including Egypt, as well as in 
many European monarchies. This principle may also 
have played some role in design. The ziggurat tier shape 
is still frequently used in modern architecture.

In Japan, Shinto shrines and Buddhist temples 
encouraged congregants to bring small wooden tab-
lets called sangaku as offerings to gods. They have been 
traced back to the beginning of the Edo period of the 
seventeenth century. Temple visitors painted colorful 
sangaku to share Euclidian geometry puzzles, named 
for Euclid of Alexandria, or solutions and variations on 
puzzles others shared earlier. 

Hindu temples were based on vedic mathemat-
ics. Their shape was usually square, with sides divided 
into eight or nine parts. This defined 64 or 81 smaller 
squares within the temple, dedicated to different gods. 
The whole temple, in a fractal manner that appears in 
many houses of worship, represented both the universe 
and the inner space of a person and the idea that the 
two are similar. Town plans often followed these temple 
plans, to add another level of recursion. Mathematical 
formulas in India were frequently used as descriptions 
or metaphors for sacred ideas. For example, one of the 
words for “temple” is vimana, which literally means 
“well-proportioned.” Ratios within the temple symbol-
ized the harmony within the universe and were strictly 
followed during construction. Even images within 
temples displayed the sacred ratios of “iconometry.” 
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Ancient Egyptian temples, built strictly along the 
east-west line, were believed to be symbolic models of 
the universe. For example, the floor was slant upward 
from outer to inner courts, symbolizing the rise of the 
world out of primordial waters. Precise measurements 
and astronomical observations were required for con-
struction of the temples, which also served as libraries 
and education centers. 

Islamic architecture typically includes repeating 
geometric patterns, symbolizing Allah’s infinite power. 
The mathematics underlying some of the patterns is 
so intricate that research papers connecting it to recent 
discoveries are still published in the twenty-first cen-
tury. For example, girih design consists of tessellating 
polygons overlaid with networks of lines, described 
by the areas of mathematics now called “quasicrystal-
line structures” and “Penrose tilings,” named for Roger 
Penrose. 

These designs can be infinitely extended without 
repetition. Muquarnas (or stalactite vaults) are nested, 
self-similar structures consisting of niches hanging 
from the ceiling. Their two-dimensional projections 
consist of tessellating shapes of decreasing size, with 
ratios set in such a way that shapes still fit together. 
As with compass orientations and direction in some 
other sacred spaces, the alignment of mosques toward 
Mecca, the direction of which varies by geographical 
location, is another topic that is of interest to math-
ematicians and others.

The sweat lodges used by Native Americans for puri-
fication ceremonies employ the effects of raised tem-
perature, humidity, and plant smoke rather than spe-
cific architectural elements to achieve spiritual effects 
by affecting the body. Sophistication of the lodge expe-
rience comes from matching the rhythm of changes 
in temperature and humidity to the pace of the 
ceremony. 

Traditional southern African settlements 
display a fractal structure based on circles. 
The village is built in a large circle made 
of smaller extended-family circles, 
and the large circle in the middle for 
the chief ’s family that includes cir-
cular huts for honoring the spirits 
of ancestors. Within each house, 
the shape is repeated on a min-
iature scale, with a circular 
sacred altar in the middle.

Light and Sound
Stained glass windows have long been used in temples 
and churches. Geometric elements of stained glass 
windows include reflections, rotations, symmetry, and 
tessellations. The chemical knowledge necessary for 
coloring glass and for connecting it with metal strips 
helped promote scientific development. Dividing 
large stained glass windows into panels for structural 
stability was an engineering problem. The colored 
light, filtering through stained glass, which is vari-
able depending on time of day and weather, is also an 
important element of the internal atmosphere of the 
religious space. Another application of light is in the 
Abu Simbel temples in Egypt, the design of which was 
reportedly astronomically aligned so that the light rays 
would reach the innermost sanctum on the birthday 
of Ramses II.

The dynamic play of light and shadows may also 
lead to mathematical investigations. Mathematician 
Thomas Banchoff has commented on the abundance 
of geometry in houses of worship, which provided 
him with both spiritual and mathematical inspira-
tion. For example, as a student, he noted, “there was 
plenty of time to contemplate the shadows advanc-
ing across the tiles at the base of the altar rail. When 
we first arrived, the narrow of the altar rail covered 
only a small portion of the triangular tiles, and by the 
end of Mass, almost the entire triangle was in shadow. 
When, I asked myself, did the shadow cover half the 
area? I hadn’t studied any formal geometry yet, but I 
figured that if you cut an isosceles right triangle in half 
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by a line perpendicular to the hypotenuse, then one 
of those halves could be rotated to give the triangle 
that remains when the shadow was covering half of the 
original triangle. It surprised me that the line did not 
pass through the centroid of the triangle! To this day, 
I still use that example when I teach calculus students 
about centroids.”

Sound as well as light is an important feature of 
houses of worship. The acoustics of houses of worship 
are determined by the architecture, including the shape 
and size of spaces as well as construction materials. 
Resonance is the property of a system in which it oscil-
lates with larger amplitude at some frequencies than 
at others. Very high ceilings used in many houses of 
worship amplify sound and make group singing more 
resonant and subjectively powerful. 

Domed ceilings and other shapes may reflect sound 
back toward the speakers or singers at many different 
angles at the same time. This reflection causes interfer-
ence and reverberation in the sound waves that may 
make individual words less intelligible, which may pro-
mote a feeling of the merging of individuals into the 
congregation. 

Size
Places of worship tended to be some of the largest 
buildings within each settlement, since they were often 
the only gathering place for the community for both 
spiritual and secular uses. Historically, group trad-
ing and entertainment also attracted large numbers 
of people. To symbolize the higher importance of the 
house of worship compared to secular buildings, some 
places also required it to be the highest building. This 
led to sacred architectures that had tall narrow towers, 
such as steeples on churches and minarets on mosques, 
soaring high over the town. Large constructions could 
also provide security, such as the Sumerian ziggurats. 
Another reason for height was the need for sounds 
related to religious practices to carry through the set-
tlement, such as calls to prayer from minarets or tolling 
bells marking the start of services. 

Conversely, some spiritual practices call for small, 
temporary houses of worship. These ephemeral struc-
tures evoke meanings opposite to large, permanent 
houses of worship, such as unity in hard times or inti-
macy within families; for example, some Native Ameri-
can sweat lodges and the Jewish sukkah—a temporary 
structure decorated with branches and gourds that is 

used for a week-long harvest festival. It symbolizes joy-
ful but temporary shelter from the wilderness.

Unusual Modern Designs
Several houses of worship built in the last decades 
of the twentieth century and the first decade of the 
twentieth-first century feature interesting mathemati-
cal concepts. The Baha’i House of Worship in Delhi, 
India, also known as the Lotus Temple, is based on 
a nine-sided polygon. It looks like a half-open lotus 
flower, with all walls consisting of curved “petals.” 
Modern software allows for the design of such com-
plex surfaces. Wotruba Church, in Austria, consists 
of 152 asymmetrical concrete blocks and resembles 
an abstract sculpture. Balancing such blocks and 
calculating safe loads within the structure presented 
interesting spatial geometry problems. The Cathe-
dral of Christ the Light in California employs many 
traditional features in unique ways. From the outside 
it appears as a truncated cone composed of many 
semiopaque windows in a steel grid. In the tradition 
of stained glass windows, the cathedral uses light to 
create atmosphere and convey images. The church’s 
Omega Window is a representation of a traditional 
Christian symbol known as Christ in Majesty, which 
often includes a mandorla frame. The image was taken 
from an eleventh-century stone sculpture and digitally 
converted into a pixel-like pattern of 94,000 holes that 
were drilled into aluminum panels. The holes’ vary-
ing diameters transmit different degrees of sunlight to 
create the image. 

This is one of many light effects created by the 
curved internal and external geometry and features 
like curved beams, folded gothic-style arches, and slats 
that tilt to manipulate light.

Further Reading
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Math Horizons 3 (February 1996).
Koetsier, T., and L. Bergmans. Mathematics and the 

Divine: A Historical Study. Amsterdam: Elsevier, 2005.
Strachan, Gordon. Chartres: Sacred Geometry, Sacred 

Space. Edinburgh: Floris Books, 2003.
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HOV	Lane		
Management
Category: Travel and Transportation.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement; Problem Solving.
Summary: The decision to designate a traffic lane 
as a High Occupancy Vehicle lane is based on traffic 
analysis, computer simulations, and mathematical 
models showing the effects of implementation.

High occupancy vehicle (HOV) lanes are intended 
to improve automobile transportation efficiency by 
reserving certain traffic lanes for vehicles carrying at 
least two or three people. The idea is to encourage car-
pooling by allowing cars with multiple occupants to use 
a dedicated lane and thus reduce the number of cars 
on the road relative to the number of people traveling. 
Sometimes traffic lanes are designated HOV only at cer-
tain times of the day, or they may be used under special 
circumstances by buses, hybrid power vehicles, or other 
single-passenger vehicles. HOV lanes have been tested 
or used in many countries, including the United States, 
Canada, Spain, the United Kingdom, Norway, Austria, 
Indonesia, Australia, and New Zealand. Mathematical 
modeling, data analysis, and computer simulation are 
widely used for making decisions regarding when and 
where to use HOV lanes, for designing their construc-
tion and geometric properties, and for evaluating their 
safety and effectiveness. Many mathematical modelers 
are using cross-disciplinary concepts and approaches 
to analyze traffic. For example, engineer Morris Flynn 
and mathematicians Aslan Kasimov, Jean-Christophe 
Nave, Rodolfo Rosales, and Benjamin Seibold modeled 
traffic jams using continuous density and flow func-
tions similar to those used for modeling fluid flow and 
the propagation of detonation waves. Analogous to the 
traveling nonlinear wave solutions called “solitons,” 
they christened traffic waves “jamitons.”

HOV lanes are typically most useful in regions that 
have severe traffic congestion and many vehicles car-
rying only the driver. The opportunity to use less-con-
gested, quickly moving HOV lanes is intended as an 
incentive to encourage drivers to decide to use carpool-
ing or to carry passengers, with the overall intent of 
reducing traffic jams and accidents caused by traffic 
volume and lane changing. Studies of HOV lane usage 

and effectiveness showed that, as of 2008, 21 U.S. states 
had HOV lanes for a total of 1,745.14 miles with an 
average density of 833 vehicles per lane per hour and a 
total of over 276 million miles of vehicle travel. Exclu-
sive HOV lanes were most common (993.27 miles) and 
carried the highest density of traffic (an average of 906 
vehicles per hour), followed by normal lanes designated 
HOV in certain periods (545.82 miles, 790 vehicles per 
hour) and shoulder or parking lanes designated HOV 
in certain periods (206.6 miles, 596 vehicles per hour). 

Experience with HOV lanes is mixed, although it 
should be noted that this is a relatively new method 
of organizing transportation and that local variation 
in conditions and implementation could explain why 
some projects were more successful than others. An 
example of a successful HOV implementation was 
that introduced in 1998 near Leeds, United Kingdom 
(the first HOV lanes in the United Kingdom). Prior to 
HOV lane implementation, 30% of the cars had two 
or more occupants, and a journey that should take 
three minutes if traffic were moving freely regularly 
took more than 10 minutes. After implementation of 
the HOV lanes, traffic was reduced 10% to 20%, jour-
neys were quicker for both HOV and non-HOV traf-
fic, lane violations were low, casualties were reduced 
30%, and noise reduction was noticeable—although 
little change was noted in air quality. In the United 
States, an HOV lane scheme near Washington, D.C., 
for vehicles carrying four or more occupants, proved 
successful, with the HOV lanes operating at twice the 
speed of travel of the regular lanes. However, a study 
of HOV lanes in San Francisco, California, found that 
they actually increased congestion. HOV lanes have 
also been criticized on grounds of safety, because of 
the differing speeds of traffic in adjacent lanes, and as 
a violation of the right of motorists to freely use high-
ways paid for with their tax dollars.

Mathematicians continue to investigate issues for 
HOV lane design, implementation, and management. 
Analyses using concepts from fields such as geometry, 
graph theory, and statistics help designers optimize 
features like lane setbacks, entrance and egress paths, 
gates and signals, and shoulder widths. Speed con-
tour plots can be used to visualize recurrent blockages, 
while probability models and scatterplots can be used 
to quantify and display spatial distribution of accidents 
as functions of one or more variables. Other mathema-
ticians seek to simplify existing multiparameter mod-
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els, which may rely on unobservable quantities, using 
smaller sets of physical and measurable variables in 
order to study the impact of design features and traf-
fic behavior. Yet others have used logit-type models to 
investigate economic concerns, like converting HOV 
lanes to high occupancy toll (HOT) lanes.

Further Reading
Kwon, Jaimyoung, and Pravin Varaiya. “Effectiveness 

of High Occupancy Vehicle (HOV) Lanes in the San 
Francisco Bay Area.” Transportation Research Part 
C: Emerging Technologies 16, no. 1 (February 2008). 
http://paleale.eecs.berkeley.edu/~varaiya/papers 
_ps.dir/HOV.pdf.

Menendez, Monica. An Analysis of HOV Lanes: Their 
Impact on Traffic. Saarbrücken, Germany: VDM 
Verlag, 2008.
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See Also: Climate Change; Highways; Smart Cars; 
Traffic; Travel Planning. 

Hunt,	Fern
Category: Mathematics Culture and Identity.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry.
Summary: Fern Hunt is a prominent mathematician 
at NIST with diverse research interests.

Fern Hunt is an applied mathematician employed as 
a prominent researcher in the Mathematical Model-
ing Group at the National Institute for Standards and 
Technology (NIST). The daughter of Jamaican immi-
grants, she earned a Ph.D. in mathematics in 1978 from 
the renowned Courant Institute of Mathematical Sci-
ences at New York University. She recognizes that, “I am 
here because of the sacrifice of other black people. I am 
aware of that and immensely grateful.” Before assuming 
her current position at the NIST, she taught as a pro-

fessor. Her interest in education and in inspiring and 
mentoring students has not diminished; in addition to 
her extensive and varied research, she continues to give 
mathematics lectures at universities across the country 
and to work directly with students during the summer.

Fern Hunt’s research interests and applications are 
highly diverse. Her early work was in mathematical biol-
ogy, including models of behavior of certain bacteria and 
models of the genetic evolution of populations in a dete-
riorating environment. At NIST, she studies the physi-
cal and chemical properties of many materials used in 
industry. She says, “I think of myself as your average Jane 
and the fact that I can discover these connections—every 
now and again!—gives me a great deal of satisfaction. It 
means I’m participating in something that’s at the root 
of the universe. Mathematics gives you the opportunity 
to create.” Her work has drawn from many areas, includ-
ing chaos, dynamical systems, and probability.

A notable example is her work with physicist Robert 
McMichaels on modeling the Barkhausen effect. The 
Barkhausen effect, or “Barkhausen noise,” is a phenom-
enon in which the magnetic output of a metallic object 
has a jumpy, erratic response to a change in magnetic 
force (the term “noise” is appropriate, since these erratic 
jumps can be amplified and heard on a loudspeaker as 
a static-like click pattern). Using sophisticated math-
ematical tools, Fern Hunt developed a new, much more 
accurate statistical model of the phenomenon; the new 
model was able to explain subtle, experimental obser-
vations that the previous model could not. A better 
understanding of this effect has wide practical applica-
tions to all the ferromagnetic data storage devices in 
society, including disk drives and the magnetic stripe 
on credit cards.

Another important set of projects for Hunt deals 
with paints and other surface coverings. She studies 
paints and other such materials at a microstructural 
level, both measuring and modeling properties such 
as light-scattering behavior. One innovation of her 
research program is the use of computer-rendering 
software to understand and control much more closely 
how materials will actually appear to the human eye 
“in real life.” Research of this kind is expected to lead to 
improvements in the materials used by industry.

In addition to the applied research problems aris-
ing from the NIST projects, Fern Hunt actively stud-
ies ergodic theory and dynamical systems. She has 
expressed the belief that some mathematical research 
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for its own sake, not directly connected to a current 
project, is very important—it serves to stimulate cre-
ativity and to strengthen one’s command of math-
ematical ideas. This belief is especially important for 
an applied mathematician such as Hunt, whose NIST 
projects require the use of mathematical ideas from 
very diverse and unpredictable parts of mathematics.

Ergodic theory, Fern Hunt’s primary area of theoreti-
cal mathematical research, is the study of how certain 
types of systems evolve over time. A simple ergodic sys-
tem is the circumference of a circle that is being rotated 
in increments of one radian; if one follows the trajec-
tory of any single point over time, it will eventually come 
arbitrarily close to every point on the circle. Ergodic 
theory turns out to have deep connections to geodesic 
flow, number theory, representation theory, harmonic 
analysis, and probability theory. The connection to 
probability theory, in fact, is through Markov chains, a 
mathematical tool that Fern Hunt has used frequently in 
her research, such as her improvements to existing mod-
els of the Barkhausen effect. This research area is closely 
related to the mathematics of chaos and fractals.

Fern Hunt has been dedicated to service, and is a 
member of a number of important committees and 
boards; she advises, “be in service to others and the 
world itself. Also try to look beyond day-to-day diffi-
culty and look at maximizing opportunities here and 
now. This is what keeps me going.” She has served on 
the board of trustees for the Department of Energy and 
for the Biological and Environmental Research Advi-
sory Committee and has also been part of the Ameri-
can Mathematical Society Committee for Education.

Further Reading
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See Also: Careers; Mathematical Modeling; 
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Hurricanes	and		
Tornadoes
Category: Weather, Nature, and Environment.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement; Problem Solving.
Summary: Mathematical analysis and modeling 
have been used to attempt to predict and simulate 
hurricanes and tornadoes.

Hurricanes and tornadoes are both potentially cata-
strophic types of storms that cause billions of dollars 
in damage and claim many lives each year. Predict-
ing major weather events of these types is difficult, 
though mathematical modeling and computer power 
have allowed mathematicians and scientists to make 
advances in storm science. The term “cyclone” is often 
erroneously applied to tornadoes; it properly refers to 
the class of storms originating over water that includes 
hurricanes, typhoons, and tropical cyclones. Tornadoes 
and cyclones are characterized by revolving forms and 
high winds, but tornadoes are typically smaller, faster 
spawning, shorter lived, and their damage is usually 
more focused. Mathematical analysis and modeling of 
storms draws from many fields. 

For example, vector calculus plays a substantial 
role in analyzing and modeling these storms, since 
both pressure and humidity can be represented as 
scalar fields and wind as a vector field. Theories and 
equations from physics for conservation of mass and 
energy, along with angular momentum and shear, 
are also quite important. Historically, challenges in 
storm description, prediction, modeling, and simu-
lation have often been related to data collection and 
computing power. One of the earliest systematic data 
collection and prediction efforts was conducted in the 
1880s by John Finley of the U.S. Army Signal Corps, 
but for a variety of sociopolitical reasons, federal 
research lagged until about World War II. The emer-
gence of Doppler radar advanced storm science, as did 
computers in the 1970s that were capable of generat-
ing three-dimensional models. However, even in the 
twenty-first century, no one can perfectly predict the 
emergence, path, strength, or damage of a hurricane 
or tornado. Even with multiple stations and satellites, 
data are still sometimes sparse or difficult to integrate 
across sources, and this type of research raises theo-



retical questions about the limits of predictability. At 
the same time, early warning systems that give even a 
few hours of notice regarding approaching storms are 
widely considered to be beneficial, and mathemati-
cians continue to contribute to this area. Actuaries are 
also involved in calculating the costs of these storms, 
in terms of both money and lives.

A tornado is a rotating column of air that is in 
contact with both the ground and a cloud. Tornadoes 
are generally spawned by thunderstorms. The United 
States has the highest incidence of tornadoes of any 
country in the world, in part because of the conflu-
ence of cold air from Canada, warm, moist air from 
the Gulf of Mexico, and dry air from the Southwest. 
A related phenomenon is water spouts, which are 
essentially tornadoes that form over water, especially 
in tropical areas. A hurricane is a powerful, spiraling 
storm that begins over a warm sea, near the equator. 

“Hurricane” is, in fact, just one name for the kind of 
storm scientists refer to as a “strong tropical cyclone.” 
Depending on where they occur, hurricanes are given 
a different label. If they begin over the Atlantic Basin 
(Atlantic Ocean north of the equator, the Caribbean 
Sea, the Gulf of Mexico) or the Northeast Pacific 
Ocean, they are called “hurricanes.” 

When the same kind of storm occurs in the west-
ern North Pacific Ocean, it is called a “typhoon.” In 
the southwest Pacific Ocean and the Indian Ocean, the 
storms are referred to as “cyclones.” No matter what it 
is called when a hurricane, typhoon, or cyclone hits 
land, it can do great damage through fierce winds, tor-
rential rains, inland flooding, and huge waves crashing 
ashore. A powerful hurricane can kill more people and 
destroy more property than any other natural disaster. 
Hurricanes and other cyclones form in the tropics dur-
ing summer and fall. 
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A weather satellite image of Hurricane Katrina in the Gulf of Mexico. Starting as a slight pressure difference, 
hurricanes grow into large spiraling storm systems of low pressure, complete with high winds and driving rain.



Predicting Major Storms
A few very important characteristics of hurricane are 
as follows:

• Hurricanes form under weak, high-altitude 
winds

• Hurricanes have no fronts
• Hurricanes main energy source is the latent 

heat of condensation
• The center of a storm is warmer than the 

surrounding air
• Hurricane winds weaken with height
• Strongest winds are near the Earth’s surface
• Hurricanes weaken rapidly over land

As global weather patterns become more erratic 
as evidenced in the early twenty-first century, it has 
become difficult to accurately forecast hurricanes. 
However, mathematics allows forecasters a thorough 
insight into the mechanisms of weather features, 
including large-amplitude water waves and sustained 
winds cloud structure. Moreover, statistical models 
built from historical data perform with greater preci-
sion. Also, scientists use high-quality time series data 
along with less precise time series data using a Bayesian 
approach, which does not require data to have uniform 
precision. This way, scientists have been able to forecast 
U.S. hurricanes six months in advance.

Wind engineer Herbert Saffir and meteorologist 
Robert Simpson introduced the very popular Saffir–
Simpson wind scale, which is a 1–5 categorization based 
on the hurricane’s intensity at the indicated time. This 
scale is an excellent tool for alerting the public about the 
possible impacts of various-intensity hurricanes. How-
ever, the scale does not address the potential for other 
hurricane-related impacts, such as storm surges, rain-
fall-induced floods, and tornadoes.  

The estimation of hurricane-generated waves and 
surges in coastal waters is of critical importance to the 
timely evacuation of coastal residents and the assess-
ment of damage to coastal property in the event that 
a storm makes landfall. Tornado wind speed or inten-
sity is rated using the Fujita scale, named for Tetsuya 
Theodore Fujita. It is based on the subjective assess-
ment of the damage caused to human and vegetation 
structures by the tornado. Its original development 
was linked to the Beaufort wind force scale, named 
for Francis Beaufort. Ratings range from a minimum 

of “F0” to a maximum of “F6.” It is also sometimes 
called the Fujita–Pearson scale to recognize contri-
butions of Allen Pearson, who was director of the 
National Severe Storms Forecast Center at the time. 
The scale has since been revised by data gathered 
from structural engineers and others that suggested 
that the original wind speeds were too high for cat-
egories F3 and above. 

To provide accurate estimates for wave height, sci-
entists use Wave Model (WAM). WAM is built around 
the solution to the action balance equation in terms of 
an action density function. With the aid of FORTRAN 
and other programming languages today, WAM is an 
extremely efficient model.

Hurricane size (extent of hurricane-force winds), 
local bathymetry (depth of near-shore waters), topog-
raphy, the hurricane’s forward speed, and its angle to 
the coast are all factors that affect the surge that is pro-
duced. Mathematicians and scientists are working hard 
to develop a reliable technique for prediction of storm 
surges. The capability for prediction of hurricane surges 
is based primarily on the use of analytic and mathemat-
ical models, which estimate the interactions between 
winds and ocean, also taking into account numerous 
other factors. One of the models used for storm-surge 
modeling is known as the Advanced Circulation Model 
(ADCIRC). This is a finite-element circulation model 
based on the two-dimensional, depth-integrated shal-
low-water equations representing the conservation 
laws for mass and momentum. The momentum equa-
tions are combined with the continuity equation and 
result in the generalized wave continuity equation. 
ADCIRC is implemented in spherical coordinates for 
this application. As expected, many parameters can be 
set to optimize running the model for specific applica-
tions and locations. 

Further Reading
Adam, John. Mathematics in Nature: Modeling Patterns 

in the Natural World. Princeton, NJ: Princeton 
University Press, 2003.

Elsner, J. B., et al. “Bayesian Analysis of U.S. Hurricane 
Climate.” Journal of Climate 14, no 23 (2001).

Kumer Pial Das

See Also: Climate Change; Clouds; Coral Reefs;  
Geothermal Energy; Green Mathematics.
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Incan and Mayan  
Mathematics
Category: Government, Politics, and History.
Fields of Study: Connections; Measurement; 
Number and Operations; Representations.
Summary: The Incan and Mayan civilizations had 
a variety of mathematical achievements, including 
number systems and calendars.

The Inca Empire existed from 1438 until 1533 c.e., 
when it was conquered by the Spanish and the last 
Inca emperor, Atahualpa, was murdered. At its height, 
the Inca Empire comprised most of present-day Peru, 
Bolivia, and Ecuador, as well as parts of Colombia, Chile, 
and Argentina. It was a culturally diverse but politi-
cally centralized empire, based in the capital of Cuzco. 
Having no written words, the Incas invented a clever 
method of recording numbers, usually for administra-
tive purposes, using knotted cords called a quipu. 

The Maya civilization flourished between 250 and 
900 c.e. The homeland of the Mayans was the Greater 
Yucatan Peninsula, including present-day Guatemala 
and Belize, as well as parts of Mexico, Honduras, and 
El Salvador. In contrast to the Inca Empire, the Maya 
civilization was never a political entity but consisted 
of a multitude of independent city-states. Among the 

many remarkable accomplishments of Mayan culture 
were hieroglyphic writing, a vigesimal and duodevi-
gesimal number system, the invention of a symbol for 
zero, an elaborate system of calendars, and highly accu-
rate astronomical observations.

Incan Quipus
A quipu is a bundle of colored, knotted cords. Every 
quipu has a main cord that is thicker than the others. 
Pendant cords are tied to the main cord, and subsidiary 
cords are tied to pendant cords or other subsidiaries. 
Quipus have been found with as many as 2000 pen-
dants and six levels of subsidiaries. The pendant and 
subsidiary cords carry knots. Three types of knots are 
used: simple knots, figure-eight knots, and long knots 
with two to nine turns. To record numbers, the Incas 
used a decimal number system. Each digit other than 
the units is represented by a cluster of the appropri-
ate number of simple knots. The Incas did not have a 
special knot for zero but simply left an empty space on 
the cord. 

Units are represented by a long knot with the appro-
priate number of turns. If the unit is one, however, a 
figure-eight knot is used, since a long knot with only 
one turn is identical to a simple knot. For example, the 
number 701 is represented by a cluster of seven simple 
knots, an empty space, and a figure-eight knot. The dig-
its are ordered with the units away from the main cord. 

I



Since the units are distinguished from the other digits, 
the same cord can carry several numbers. The colors of 
the cords and the topology of pendants and subsidiar-
ies do not contribute to the numerical information but 
signify the item that is being counted. There are about 
800 quipus in museums today. The largest number 
found on a quipu is 97,357.

Quipus are not suitable for performing arithme-
tic. In 1590, Spanish Jesuit missionary José de Acosta 
described how the Incas carried out difficult compu-
tations by moving around maize kernels. A Peruvian 
drawing from about 1615 shows a tablet, called a 
yupana, that might have been used for this purpose. 
This yupana is divided into smaller squares, each con-
taining 1, 2, 3, or 5 dots, which could be maize kernels. 
Acosta explicitly mentioned the numbers 1, 3, and 8. 
This has led to speculations that the Incas used so-
called Fibonacci numbers in their calculations since  
1, 2, 3, 5, and 8 are the first such numbers.

Mayan Numbers and the Invention of Zero
The Mayan number system is neither a pure group-
ing system, like Roman or Aztec numbers, nor a pure 
positional system, like Hindu–Arabic numbers, but a 
mixture of the two, like Babylonian or Incan numbers. 
Numbers from 0 to 19 are written with dots represent-
ing 1, lines representing 5, and a symbol for 0 resem-
bling an eye. Thus, 17 is written as two dots and three 
lines. For numbers larger than 19, a base-20 and, at 
one place, a base-18 positional system is used. The first 
place represents units, and the second place represents 
multiples of 20. 

The third place, however, does not represent mul-
tiples of 20 × 20 = 400 but multiples of 18 × 20 = 360. 
From then on, the fourth place represents multi-
ples of 20 × 360 = 7200, the fifth place multiples of 
20 × 7200 = 144,000, and so on. Mayan numbers were 
originally written vertically with the units at the bot-
tom. For convenience, Mayanists write them horizon-
tally with the units to the right. Thus, the Mayan num-
ber 9.12.11.5.18 means the following:

9 144 000 12 7200 11 360 5 20 18

1 386 478

× + × + × + × +

=

,

, ,

After the Babylonians, the Mayas or possibly their 
Olmec predecessors were the first culture in the world 
to invent a symbol for zero. The earliest known occur-

rence of this zero symbol is found on a stela in Uaxactun, 
Guatemala (357 c.e.). The earliest indisputable inscrip-
tion using the Hindu–Arabic decimal system including 
a symbol for zero is from Cambodia (683 c.e.).

Mayan Calendars
The Mayas used three different calendars: the Tzolkin, 
the Haab, and the Long Count. A typical Mayan date 
looks like the following: 

9.12.11.5.18 6 Etznab 11 Yax.

Here, “9.12.11.5.18” is the Long Count date, “6 
Etznab” is the Tzolkin date, and “11 Yax” is the Haab 
date. This was the day of death of the great ruler, Pacal, 
of the city-state, Palenque, corresponding to August 29, 
683 c.e.

The Tzolkin calendar is based on two independent 
cycles of 13 and 20 days, respectively. A Tzolkin date 
consists of a number from 1 to 13 followed by one of 
the following 20 names of days:

Ahau  Kan  Lamat Eb  Cib
Imix  Chicchan  Muluc  Ben  Caban
Ik  Cimi  Oc Ix  Etznab
Akbal  Manik  Chuen  Men  Cauac

Both the number and the day name change daily 
such that the calendar runs as follows: 1 Ahau, 2 Imix, 
3 Ik, and so forth. Every possible Tzolkin date occurs 
once during the Tzolkin year of 13 × 20 = 230 days. 
This follows from the so-called Chinese Remainder 
Theorem, which the Mayas must have known at least 
in some special cases, and the fact that 13 and 20 have 
no common divisors.

The Haab calendar consists of 18 months of 20 days, 
followed by five extra days. The length of the Haab year 
is thus 18 × 20 + 5= 365 days. The names of the months 
are the following:

Pop  Tzec  Chen  Mac Kayab 
Uo  Xul Yax  Kankin Cumku
Zip  Yaxkin  Zac  Muan 
Zotz  Mol Ceh Pax

The days of each Haab month are numbered from 
0 to 19. The Haab calendar thus runs as follows: 0 Pop, 
1 Pop, 2 Pop, and so forth. The final five days, called 
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the Long Count date and the Tzolkin day name. If the 
last digit is 0, the day name is Ahau; if the last digit is 
1, the day name is Imix, and so forth. According to 
various Mayan sources, the previous era ended on the 
following date:

13.0.0.0.0 4 Ahau 8 Cumku.

The problem of translating Long Count dates into 
dates in the Gregorian calendar is known as the Cor-
relation Problem and has been a topic of consider-
able controversy. Today, most Mayanists believe that 

Uayeb, are numbered from 0 to 4; these days were con-
sidered unlucky. 

The least common multiple of 260 and 365 is 
73 × 260 = 52 × 365 = 18,980, which means that the 
combined Tzolkin–Haab calendar repeats itself after 73 
Tzolkin years, or 52 Haab years, or 18,980 days. 

The Mayas believed in a cycle of eras of 13 × 144,000 
days or approximately 5125 years, each era ending 
with a time of great change. A Long Count date is a 
five-digit Mayan number recording how many days 
have elapsed since the last transition of cycles. There 
is a unique correspondence between the last digit of 
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13.0.0.0.0 4 Ahau 8 Cumku corresponds to August 
11, 3114 b.c.e. The Mayans thus expected the next 
cycle change upheaval to occur on 13.0.0.0.0 4 Ahau 
3 Kankin, corresponding to December 21, 2012 c.e., 
when the present Long Count cycle ends.

Mayan Astronomy and the Dresden Codex
The Dresden Codex is one of only four original Mayan 
books that have survived to the present day. It contains 
astronomical tables in which the number 584 figures 
prominently; this is the best integer approximation to 
the average period of Venus, as seen from the Earth, of 
583.92 days. In the Codex, 584 is divided into parts of 
236, 90, 250, and 8, reflecting the phases of Venus. 

First Venus appears as the Morning Star for 236 
days, then it disappears on the far side of the sun for 90 
days, then it reappears as the Evening Star for 250 days, 
and finally it disappears again for eight days while it is 
between the Earth and the sun. The difference between 
90 and 8 is explained by the fact that, as seen from the 
Earth, Venus moves more slowly relative to the sun 
when it is on the far side of the sun. The difference 
between 236 and 250 is thought be because of a local 
difference between the eastern and western horizons.

It is a strange coincidence that 584 = 8 × 73 and 
365 = 5 × 73 have the large common prime factor of 
73. This implies that five Venus periods correspond 
very closely to eight Haab years, and indeed the Codex 
contains a Venus table of this length of time. The Mayas 
knew, however, that this correspondence was not exact. 
To compensate, they subtracted either four days after  
days, giving a period of 583.93 days, or eight days after  
days, giving a period of 583.86 days. 

It has been suggested that the Mayas used the first 
correction four times and the second correction once, 
thus subtracting a total of 24 days after 301 × 584 days, 
which gives a Venus period of exactly 583.92 days. This 
explanation, however, was questioned by the famous 
physicist, Nobel laureate, and amateur Mayanist Rich-
ard Feynman.
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Income Tax 
Category: Government, Politics, and History.
Fields of Study: Measurement; Number and 
Operations.
Summary: Mathematics is used to compute income 
tax returns and analyze income-tax fraud.

Albert Einstein once quipped that preparing a tax 
return was an activity too difficult for a mathematician 
and was better suited for a philosopher. Many would 
point to the complex and ever-changing laws regard-
ing taxation, rather than the underlying mathematical 
concepts, as being the problematic part of understand-
ing income taxes. 

Numbers and their operations, along with algebra, 
are very useful in the calculation of the taxes owed by 
individuals and corporations. In addition, probability, 
statistics, and geometry are among the fields used by 
those interested in the analysis of the process and out-
comes of taxation, such as tax irregularities and eva-
sions, tax burden, and the effects of taxation on overall 
economic welfare.

History
In 1861, the U.S. Congress imposed a tax on per-
sonal incomes to help finance the Civil War. Prior to 
that time, it had depended mainly on excise taxes and 
customs duties. The first income tax was a propor-
tional (or flat) tax: anyone who made an income of 
more than $800 per year had to pay a fixed 3% of that 
income in taxes. The next year, a two-tiered progressive 
rate structure was put into place. Taxable incomes up 
to $10,000 were still taxed at 3%, while higher incomes 
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paid 5%, though people were allowed to take various 
deductions from their incomes before calculating the 
tax. Taxes were also withheld by employers for the first 
time. This tiered taxation method became the standard 
for income tax, although some countries in the early 
twenty-first century use a dual income tax system in 
which individuals and corporations are taxed at a low 
rate while labor income is taxed at a high rate. 

Income taxes were abolished in 1872; but after a 
great deal of legal debate, they returned permanently 
with the passage of the Sixteenth Amendment in 1913. 
Everyone who earns income in the United States is 
subject to federal individual income tax and, in most 
cases, state income tax as well. Some municipalities 
also charge local income tax. Employers are required 
to withhold money from taxpayers’ paychecks and to 
remit the funds to the appropriate government agen-
cies. Self-employed taxpayers are required to submit 
quarterly payments.

Calculating the Income Tax
As can be seen from the Internal Revenue Service 1040 
individual income tax form, a series of calculations 
are required to determine the amount of income tax 
owed.

Total Income: All sources of taxable income must 
be added to calculate total income, including not just 
wages but also funds accrued from sources such as tips, 
interest earned, alimony, capital gains, retirement with-
drawals, royalties, and business income. 

Adjusted Gross Income: Certain types of expenses 
can be subtracted from the total income, including 
some expenses related to moving, business, education, 
alimony paid, self-employment, and student loans. 
After subtracting the allowable expenses, the result is 
the adjusted gross income.

Taxable Income: Additional deductions and exemp-
tions are subtracted from the adjusted gross income to 
arrive at the taxable income. 

• Deductions: Taxpayers can elect to take the 
standard deduction, which is a set amount 
depending on filing status, or they can 
itemize their deductions to see if a tally of the 
allowable deductions results in more than the 
standard amount. People who paid mortgage 
interest, significant medical costs, large 

charitable donations, and/or business expenses 
will often find that itemizing produces a larger 
deduction than the standard.

• Exemptions: The federal government allows 
taxpayers to deduct a fixed amount for each 
dependent in the household; in 2009 that 
amount was $3,650 per dependent.

Tax owed: The tax is then looked up in the tax table, 
reading the appropriate column depending on fil-
ing status (single, married filing jointly, married fil-
ing separately, head of household), unless the taxable 
income is over $100,000, in which case a tax computa-
tion worksheet is used. In general, single people pay 
more taxes than married couples filing jointly with the 
same income. 

Understanding the Federal Tax Tables  
and the Tax Computation Worksheet
The government defines a series of tax brackets, which 
are percentages linked to income ranges. The income 
ranges for a specific tax bracket vary depending on the 
filing status of the taxpayer.

The federal government sets different ranges for the 
following categories: single, married filing jointly, mar-
ried filing separately, and head of household. In 2009, 
for example, the tax brackets were 10%, 15%, 25%, 
28%, 33%, and 35%. The range for a single tax payer 
in the 10% bracket was $0 to $8,350 in taxable income. 
For a married couple filing a joint return, the income 
range for the 10% bracket was $0 to $16,700.

The tax table and tax computation worksheet val-
ues do not correspond directly to the tax brackets. 
For example, a single person earning $62,025 in 2009 
would appear to fall into the 25% tax bracket ($33,950 
to $82,250). However the tax shown in the tax table is 
$11,694, which is less than $17,250 (25% of $69,000). 
The tax table value was determined by applying the tax 
brackets to the taxable income in stages. In 2009, the 
tax brackets for a single taxpayer were

• 10% bracket: $0 to $8,350
• 15% bracket: $8,350 to $33,950
• 25% bracket: $33,950 to $82,250

The first $8,350 of the taxable income earned falls 
into the 10% bracket, yielding $835 in taxes. The next 
$25,600 ($33,980 − $8,350) of the taxable income falls 
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into the 15% bracket, yielding $3,840. The last $28,075 
($62,025 −$33,950) falls into the 25% tax bracket, 
yielding $7,018.75.

The total tax is $835 + $3,840 + $7,018.75 = $11,694 
(rounded to the nearest dollar).

The tax tables are provided in $50 increments, so 
anyone earning between $62,000 and $62,050 would 
pay the same amount of tax.

The tax computation worksheet calculations work 
the same way. For a single person with a taxable income 
of $130,000 (28% tax bracket), the worksheet calcula-
tion is to multiply by 0.28 and then subtract $6,280. The 
$6,280 figure is subtracted to compensate for the lower 
taxes paid on the portions of the $130,000 income that 
fall into the lower tax brackets.

Other Methods of Calculating Taxes
Some groups are concerned that the federal tax code is 
too complicated, confusing, and unfair. There are those 
who advocate simplifying the tax code and leaving the 
graduated tax bracket structure, and others who advo-
cate a flat tax—one percentage rate for all with no 
exemptions or deductions. 

Most states follow the federal government’s lead and 
have a series of tax brackets. In 2009, Colorado, Illi-
nois, Indiana, Massachusetts, Michigan, Pennsylvania, 
and Utah all had flat taxes ranging from 3 percent to 6 
percent. Alaska, Florida, Nevada, South Dakota, Texas, 
Washington, and Wyoming did not collect any indi-
vidual income tax.

Mathematical Modeling
The impact of taxation is of great personal and politi-
cal concern. Income taxes, in particular, can generate 
a great deal of debate, and many people feel person-
ally and directly affected by changes in these taxes. 
Mathematical methods are used to model a variety 
of phenomena related to taxes. For example, equilib-
rium modeling seeks to explain and predict the broad 
economic repercussions of different market factors, 
including taxes. 

These complex models take into account the flow 
of cash, commodities, and other goods between vari-
ous people and businesses, which have different moti-
vations and constraints. Other potential variables can 
include prices, interest rates, and taxes. A system (like 
the U.S. economy) is in equilibrium when the inflows 
and outflows, or supply and demand, are balanced. 

These models are computationally intense and gen-
erally solved using numerical methods, graph theory, 
geometry, and stochastic simulation.

Several countries and U.S. states, as well as com-
panies and accounting firms, use software based on 
Benford’s Law to check income tax returns for fraud. 
Benford’s Law is named for engineer and physicist 
Frank Benford. According to stories about Benford, he 
was inspired by the fact that pages of logarithm books 
associated with numbers starting with the digit 1 were 
dirtier and more worn than other pages. Thinking that 
it was unlikely that scientists had some special prefer-
ence for these numbers, he analyzed over 20,000 sets 
of data from a wide variety of sources, such as baseball 
statistics, numbers he found in magazine articles, and 
atomic weights. 

All of these data sets followed a similar pattern in 
terms of the first digits of the numbers. About 30% of 
the time, the first digit of the numbers was a 1. Each 
subsequent numeral 2 through 9 occurred less and less 
often as the initial digit, such that the probability of 
any number n from 1 through 9 being the first digit is 
the following:

log 1
1

+




n

.

One simple way that data can be tested is by com-
paring the observed first-digit counts to Benford’s 
Law. For example, accountant Mark Nigrini examined 
169,662 IRS files and found that they follow Benford’s 
Law, with an allowable statistical margin of error. For-
mer president Bill Clinton and (as of 2010) Secretary 
of State Hillary Rodham Clinton’s tax returns for sev-
eral years were also analyzed. 

Nigrini concluded that the Clintons may have used 
some rounded-off dollar estimates rather than exact 
numbers, but his test did not uncover any fraud. Gen-
erally, studies show that fraudulent data contain too 
few numbers starting with 1 and too many starting 
with 6.

Further Reading
Fu, Michael, Robert Jarrow, Ju-Yi Yen, and Robert Elliott. 

Advances in Mathematical Finance. Basel, Switzerland: 
Birkhäuser, 2007.

Nievergelt, Yves. A Graphic Introduction to Functions: The 
Federal Income-Tax Law. Bedford, MA: COMAP, 1989.
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See Also: Accounting; Data Mining; Sales Taxes and 
Shipping Fees.

Individual Retirement 
Accounts (IRAs)
See Pensions, IRAs, and Social Security

Industrial Revolution
Category: Business, Economics, and Marketing.
Fields of Study: Measurement; Number and 
Operations; Problem Solving.
Summary: New energy sources, management styles, 
and more intensely divided labor revolutionized 
manufacturing and technology.

The term “Industrial Revolution” refers to the great 
social transformation, beginning in the mid-eighteenth 
century, during which manufacturing replaced agricul-
ture as the center of productive activity. This transition 
had profound implications for economic and politi-
cal institutions and international relations, as well as 
for the landscape and environment, family, education, 
and culture. Its two main dimensions were technologi-
cal innovation and the social organization of produc-
tion. The Industrial Revolution was facilitated by the 
increased use of realistic perspectives in painting and 
drawing that flourished in the Renaissance, as well as by 
the invention of the printing press in the fifteenth cen-
tury, which spurred intellectual growth in many fields, 

including mathematics. These developments allowed 
for better visual representation and distribution of 
mathematical ideas and inventions to a much broader 
audience than the older master-apprentice models.  

Characteristics
Some historians question the use of the term “revolu-
tion,” since these developments indisputably occurred 
incrementally over a period of a century or more. 
Nonetheless, their cumulative impact dramatically 
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Watt and Horsepower

A s	 Watt	 marketed	 his	 steam	 engines,	 he	
developed	 the	 standard	 unit	 of	 “horse-

power”	 to	 demonstrate	 the	 superiority	 of	 his	
product	 over	 the	 horses	 traditionally	 used	 to	
power	 a	 mill	 wheel.	 Based	 on	 his	 observa-
tions,	he	calculated	that	one	horsepower	was	
equal	to	approximately	33,000	ft-lb/min.	The	
“watt,”	which	came	into	use	as	a	unit	of	power	
in	the	late	nineteenth	century,	was	named	for	
James	Watt.

Engraving of gears and pumps from James Watt’s 
double steam engine specifications of 1782.



changed virtually every aspect of life, first in Great 
Britain and eventually worldwide. New technologies 
both drew on existing mathematics and prompted 
its further development. New institutions of intellec-
tual life also fostered the emergence of increasingly 
abstract mathematics. 

The key technological feature of the Industrial Rev-
olution was the application of new sources of power: 
first the steam engine (late eighteenth century), and 
later electricity and the internal combustion engine 
(late nineteenth century). As the Industrial Revolution 
spread in the late twentieth century, nuclear energy and 
emerging “green energy” sources have been developed. 
A crucial problem of the early Industrial Revolution was 
the means of transmitting power from the steam engine 
to the machines used in production itself. This problem 
gave rise to the mathematical theory of linkages.

Equally important to the Industrial Revolution was 
the large-scale organization of labor. In England, the 
Enclosure Acts (1760–1845) forced small farmers into 
urban areas, while vagrancy laws, poor laws, and work-
houses (places where those who were not able to support 
themselves could seek shelter and employment) instilled 
labor discipline. A large labor pool was thus created for 
the new factories. Market competition impelled factory 
owners to use the cheapest possible labor—children as 
young as 5 as well as adult women and men—and to 
maximize profits by extending the working day to 14 
hours or more per day, seven days per week.  

The vastly larger scale of production made pos-
sible by mechanization and the steam engine created a 
qualitatively distinct industrial organization of labor. It 
intensified the division of labor, de-skilling some jobs 
and creating new forms of specialization. 

The Industrial Revolution therefore meant pro-
found changes in work, residence patterns, family 
relations, and urban life. This in turn sparked inter-
est in social statistics. Edwin Chadwick (1800–1890) 
and Friedrich Engels (1820–1895) pioneered the use 
of quantitative measures to describe social problems. 
Belgian mathematician Adolphe Quetelet applied the 
statistical techniques previously used in astronomy to 
social problems, further developing them and helping 
to institutionalize the discipline of statistics.

James Watt and the Steam Engine
James Watt (1736–1819), the grandson of a mathemat-
ics teacher, possessed the combination of manual dex-

terity and an aptitude for mathematics. He trained as 
a maker of mathematical instruments, securing a posi-
tion at the University of Glasgow, a major center of the 
British Industrial Revolution, where he first encoun-
tered the inventive yet inefficient Newcomen steam 
engine. While the Newcomen engine served to pump 
water from coal mines, Watt’s improvements turned 
the steam engine into a practical means of supplying 
power to factories and of transporting manufactured 
goods to market.  

James Watt’s parallel motion mechanism (1804), in 
particular, allowed the force of an engine to act in both 
push and pull directions, converting rotary motion 
to linear motion. This provided an empirical, though 
imprecise, solution to the geometrical problem of con-
structing a straight line without tracing a straight line. 
In Euclidean geometry, it is axiomatic that a straight 
line can be produced, but—in contrast to the circle—
no method existed to do so. 

Following Watt, a spatial linkage that traced exact 
straight lines was created by mathematician Pierre-
Frederic Sarrus in 1853 and proved geometrically by 
Charles-Nicolas Peaucellier in 1864. The mathematical 
theory of linkages was further developed by Pafnuty 
Chebyshev, James Joseph Sylvester, Alfred Kempe, and 
Arthur Cayley. 

Mathematics and the Industrial Revolution
The late eighteenth and early nineteenth centuries were 
extremely fruitful in the development of modern math-
ematics. However, the connections between this work 
and the Industrial Revolution are mainly indirect.

A notable exception was Charles Babbage (1791–
1891) and his work on some of the earliest computing 
machines. Numerical tables used in applied mathemat-
ics were calculated by hand and often contained many 
errors. Babbage sought to replace these human “com-
puters” with machines, as so many manufacturing jobs 
were being mechanized. He began work on his first “dif-
ference engine” in 1822, moved on to a programmable 
“analytical engine,” and continued experimenting with 
steam-powered computing machines for much of the 
rest of his life. Ada Lovelace, generally credited as the 
first computer programmer, created a program that 
could have run on Babbage’s machine, had it been built.

Some technical problems that arose in connection 
with the Industrial Revolution proved amenable to 
solution via abstract mathematics developed in other 
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contexts. For example, analysis of electrical circuits, 
waves, and oscillations is simplified by using complex 
numbers, originally explored in relation to the solution 
of algebraic equations.

In France, the École Polytechnique, founded by 
mathematicians Lazare Carnot and Gaspard Monge 
in 1794 to train military engineers, supplied technical 
training and expertise for emerging French industries. 
Its faculty, students, and examiners included many 
of the most influential French mathematicians of the 
nineteenth century, and its textbooks, such as the cal-
culus texts of Adrien-Marie Legendre and Sylvestre-
Francois Lecroix, influenced mathematics instruction 
internationally.

Further Reading
Musson, A. E., and Eric Robinson. Science and Technology 

in the Industrial Revolution. New York: Gordon & 
Breach, 1989.

Sangwin, Christopher. “Revisiting James Watt’s Linkage 
with Implicit Functions and Modern Techniques.” 
Mathematics Magazine 81, no. 2 (2008).

Weightman, Gavin. The Industrial Revolutionaries: The 
Making of the Modern World 1776–1914. New York: 
Grove Press, 2010.

Bonnie Ellen Blustein

See Also: Electricity; Lovelace, Ada; Measurement in 
Society; Painting; Renaissance.

Infantry (Aerial and 
Ground Movements)
Category: Government, Politics, and History.
Fields of Study: Data Analysis and Probability; 
Geometry.
Summary: Mathematics has long played a significant 
role in infantry operations, including influencing 
cryptography, logistics, and military strategy.

The oldest military unit and still the backbone of most 
modern armies, infantry units consist of soldiers who 
engage the enemy face-to-face. Historically, infantry 

units marched from one location to another. In mod-
ern times, infantry units may be deployed in a variety 
of ways, including overland in trucks; by sea, such as the 
troops landing on Omaha Beach on D-Day; or by air, 
either from planes or helicopters. Paratroopers are often 
considered elite among infantry units. In general, infan-
try are distinct from other land-based mobile units, such 
as cavalry, employing different tactics and strategies. 

Mathematics has always played a major role in war-
fare, including infantry movements. Early Babylonian 
clay tablets show evidence of sophisticated mathemati-
cal calculations of the volume of dirt that would be 
needed for siege ramps and what sort of minimum 
manpower would be required to accomplish the task. 
The sophistication of mathematics in ancient Greece 
was no doubt in part because of its usefulness to war—
the Greeks may have left a legacy of philosophy and 
art but spent much of their time and resources at war 
among themselves and with their neighbors. 

Napoleon Bonaparte is widely considered to be a 
military genius who revolutionized the use of light 
infantry and artillery. He was also an avid mathemat-
ics student and was often accompanied in the battle-
field by mathematicians, including Joseph Fourier. He 
discussed his own solutions to mathematics problems 
with notable mathematicians, such as Lorenzo Masche-
roni, Pierre Laplace, and Joseph Lagrange, including 
what is known as Napoleon’s Theorem. He was quoted 
as saying, “The advancement and perfection of math-
ematics are intimately connected to the prosperity of 
the state.” Many modern officers have been educated 
at the U.S. Military Academy at West Point and other 
military academies, which emphasize mathematics and 
engineering in their curriculums, and both military 
and civilian mathematicians continue to play critical 
roles in infantry tactics and deployment, especially in 
the modeling and simulation of twenty-first-century 
combat strategies.

History
Archimedes, one of the most famous ancient mathe-
maticians, applied his knowledge of geometry, the esti-
mation of weights and volumes, and three-dimensional 
rotations to defending the city of Syracuse from siege 
by Roman forces (214–212 b.c.e.). In addition to the 
standard trick of cutting holes into the walls for archers 
to fire arrows through, Archimedes helped to design 
the catapults used by the Syracuse artillery units, and 
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he called for traps to be built in the walls to drop heavy 
stones on approaching ships. Cranes were even used 
to drop grappling hooks onto ships and capsize them. 
The siege took much longer than it otherwise would 
have, and the Roman commander reportedly ordered 
that Archimedes’s life be spared out of respect for his 
intellect—an order that was ignored, and Archimedes 
was killed when the siege finally succeeded.

The Renaissance was a time of flourishing math-
ematics, with applications in a wide variety of sciences, 
including cartography. While the Age of Discovery cer-
tainly was one cause for the demand for increasingly 
more precise maps, so too was the desire to accurately 
direct the movement of troops and ships while at war. 
Accurate chronometers were developed at the order of 
the military, which also called for more precise ways of 
determining latitude in order to increase the usefulness 
and accuracy of maps. 

Modern Warfare
Eventually, mathematics would be used to more accu-
rately determine the velocities and paths of projectiles, 

which in turn influenced not only the behavior of 
artillery units but also the design of infantry firearms, 
which became increasingly critical in conflicts like the 
U.S. Civil War and World War I. 

World War II, because of its extraordinary size and 
resource consumption, put mathematicians to use in all 
areas of the military, a close relationship that has con-
tinued and been further assisted by the development of 
modern-day computers. The advent of paratroopers in 
World War II added a new level of complexity to the 
deployment of infantry troops, taking into account not 
only point-to-point movement on the ground but also 
precision insertion via parachute. Humans leaping from 
a moving plane do not fall straight down, so calculations 
had to be made to take altitude, speed, and other fac-
tors into account in order to determine when, where, at 
what altitude, and at what intervals paratroops should 
deploy to successfully land on a predetermined spot. A 
hybrid transportation algorithm that first mathemati-
cally computes an ideal solution, which is then used for 
stochastic simulations, has been successfully used to 
model deployment of troops and equipment. 
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Scientists such as Luis Alvarez helped create the Identification Friend or Foe (IFF) radar camera, shown above, 
and improved antenna systems to identify friendly aircraft without using visual confirmation.



Other investigations into this problem often 
use numerical methods, fluid dynamic equations,  
3-dimensional flows, mesh resolution techniques, 
and simulation methods. The use of aircraft for com-
bat reconnaissance was also largely pioneered during 
World War II, though it was hampered by their limited 
speed and at times by unreliable radio communica-
tions, which did not facilitate the rapid decisions infan-
try commanders in the field were required to make. 

Modern communication methods allow for rapid 
computer modeling and real-time decision making, 
virtually as soon as the data are collected. Military 
radar was also in its infancy in World War II, though 
work by mathematicians and scientists such as physi-
cist Luis Alvarez would improve its utility. For exam-
ple, Alvarez helped create transponders, then known 
as Identification Friend or Foe (IFF) radar beacons, 
and improved antenna systems, which identified 
friendly aircraft without visual confirmation and 
facilitated precision delivery of troops and bombs 
even in poor weather.

Mathematics at War
The quantification of troops, inventory, and distances 
as well as the order of battle and the estimations of 
travel speeds and damage to fortifications have likely 
always played a role in warfare. The term “order of 
battle” originally referred to the order in which troops 
were positioned relative to the position of the com-
mander but has come to refer to the composition of 
the forces involved in a field operation, including their 
command structure, personnel, disposition (the geo-
graphical locations of the headquarters of units and 
subunits), and equipment. 

In U.S. Army practice, an order of battle prepared 
for an intelligence report also includes information 
on personalities (known enemy personnel and rel-
evant information pertaining to them), unit history 
relevant to the current situation, a logistics report on 
how units obtain supplies, and a combat effective-
ness section that is prepared using combat model-
ing applications based on sophisticated algorithms. 
Orders of battle are fundamental to a military com-
mander’s situational awareness. Commanders depend 
more on combat effectiveness projections as model-
ing techniques have become more sophisticated and 
data from field operations have been applied in order 
to continually evaluate them. 

In essence, the same mathematics responsible for 
governing the artificial intelligence of enemy forces 
in video games like Call of Duty is used—albeit with 
a great deal more data and more powerful process-
ing—to evaluate enemy forces in real life. These mod-
els draw on a diverse array of mathematical methods. 
Game theory in general is concerned with modeling 
strategy. Statistical analysis, Andrey Markov chains, 
business logistics, and fluid dynamics have all played 
significant roles. During World War I, mathemati-
cian Frederick Lanchester devised Lanchester’s Laws, 
which use systems of ordinary differential equations to 
determine which of two sides will remain at the end 
of a battle, as functions of the defenders’ strengths and 
time, assuming neither side breaks off combat. They 
continue to be the basis for many modern simulations. 
Some models simplify problems or address only small 
portions of a vastly complex problem, including try-
ing to quantify “soft” or qualitative aspects of combat, 
though hybrid modeling with both discrete and con-
tinuous components is a growing way to reliably model 
critical subsystems and also their interactions with one 
another. Mathematical analysis of satellite data and 
images is also used for detecting landmines and impro-
vised explosive devices, which are some of the greatest 
threats to troops on the ground. 

Perhaps the biggest impact of mathematics on the 
infantry is that the use of combat modeling means the 
ability to predict—if not always accurately, at least with 
a greater degree of accuracy than in the past—the out-
come of various combat scenarios and, thus, to manage 
risk and reward when allocating troops. Military effec-
tiveness can be maximized at multiple levels, from the 
allocation of funds at the budget stage to recruitment 
techniques to the command structure of the armed 
forces to troop movements.

Further Reading 
Biddle, Stephen. Military Power: Explaining Victory and 

Defeat in Modern Battle. Princeton, NJ: Princeton 
University Press, 2004.

Booß-Bavnbek, B., and J. Høyrup. Mathematics and War. 
Basel, Switzerland: Birkhäuser, 2003.
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Infinity
Category: History and Development of Curricular 
Concepts.
Fields of Study: Calculus; Communication; 
Connections; Number and Operations.
Summary: Infinity is an important part of the 
curriculum and has a rich and interesting history.

Counting comes naturally to humans. Children as 
young as 2 years old begin to associate numbers with 
groups of objects: 1, 2, 3, 4, and 5 are quickly under-
stood. The concept of “plus one” also develops early in 
life. Given any whole number, there is always a “next 
number,” the one achieved by adding one. As such, 
early in life we face the reality that there is no largest 
number, for given a number of any size, adding one to 
it produces a number that is yet bigger. That is, the set 
of natural numbers {1, 2, 3, 4, 5, . . .} is infinite. While 
the concept of infinity is fundamental in mathemat-
ics, cosmology, and theology, many of the advances 
in understanding infinity were met with severe criti-
cism or worse. For example, according to some stories, 
Hippasus, a member of the Pythagorean order, was 
drowned for divulging the existence of infinite non-
repeating decimals. Revolutions in philosophy and 
mathematics resolved many of the fascinating para-
doxes related to infinity, but infinity continues to chal-
lenge and interest us today.

A Hotel Example
Infinity is a concept, but it is not itself a number. To 
illustrate how the notion of infinity is different, it is 
helpful to turn to one of the great mathematicians of 
all time, David Hilbert (1862–1943). In 1900, he spoke 
to the International Congress of Mathematicians about 
23 unsolved problems that he considered to be the 
most important to the progress of mathematics—the 
search for solutions to these problems shaped a great 
deal of twentieth-century mathematics, and some even 
remain open to this day. Besides being a leading math-
ematician, Hilbert was also a thoughtful teacher, and  
he was reputed to have used the following paraphrased 
story to challenge his students to think about the curi-
ous nature of infinity.

A mathematician owned an unusual hotel, one with 
infinitely many rooms. Each room was assigned a 

natural number—Room 1, Room 2, and so on—
and on one occasion, it happened that every room 
in the hotel was filled. A customer seeking a room 
walked into the lobby and asked the manager if 
there were any openings. The manager reported 
that every room was full but that there was a way for 
the customer to get a room.

The occupant of Room 1 was asked to move to 
Room 2; the occupant of Room 2 moved to Room 
3; and in general, the person in Room N stepped 
next door to Room N + 1. The customer who had 
requested a room at the entirely full hotel was now 
able to occupy Room 1.

The next day, when the hotel was still completely 
full, an unusual charter bus arrived, carrying infi-
nitely many passengers, all seeking rooms. At first, 
the members of this group were disheartened to 
learn that the hotel was completely booked. But 
the mathematically savvy manager once again had 
a solution.

The occupant of Room 1 was asked to move to 
Room 2; the occupant of Room 2 moved to Room 
4; the person in Room 3 went to Room 6; and 
in general, the person in Room N stepped down 
the hall to Room 2N. The customers getting off 
the bus were now able to move into all of the 
odd-numbered rooms, as rooms 1, 3, 5, 7. . . were  
all open.

While this story may seem far-fetched because there 
are only a finite number people alive on Earth, it illus-
trates some remarkable properties of natural numbers 
and raises concerns, such as whether more natural 
numbers exist than there are natural numbers.

Infinite Sets
Georg Cantor’s revolutionary ideas on the sizes of such 
infinite sets form the basis of many ideas in modern 
mathematics, including the fields of analysis and cal-
culus. For example, removing the odd natural numbers 
from the set of all natural numbers 

{1, 2,  3,  4,  5,  6 . . . 2n, 2n + 1, . . .}

leaves the set {2,  4, 6 . . . 2n, 2n + 2, . . .}
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which is yet another infinite set. Galileo Galilei believed 
that the sizes of infinite sets could not be compared or 
contrasted. However, Cantor and mathematicians today 
agree that since a first even natural number can be iden-
tified, a second even natural number, and so on, just as a 
first natural number can be identified, a second natural 
number, and a third, then there are the same number 
of even natural numbers as there are natural numbers 
since they can be put in one-to-one correspondence. 
Cantor also proved that there are uncountable sets that 
have a different measure of infinity, such as the real 
numbers. However, Cantor did not receive the recogni-
tion during his lifetime that he has today. Some theolo-
gians believed his work challenged the uniqueness and 
infinity of God, and both mathematicians and theolo-
gians strongly objected to his work at the time.  

Limits
A question that has intrigued many people over the cen-
turies is whether or not the numbers 1 and 0 9.  are the 
same. In fact they are, as the following argument shows. 
If we consider the number 0 9. , observe the following:
 

0 9 0 9999
9

10

9

100

9

1000

9

10000
. .= = + + + +

Certainly, two numbers can be added, three num-
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bers as likened be. From this, observe the following:
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Since this last sequence of numbers converges to 
the number 1, one concludes that the infinite sum is 
1. That is,
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At first glance, this may seem strange to a person 
unaccustomed to the role of limits in mathematics. 
But, as was perhaps first understood by Archimedes in 
antiquity, limits are the bridge from the finite to the 
infinite, and they are indispensable to mathematics 
and the mathematician. Understanding infinity allows 
for the understanding that the numbers 1 and 0 9.  are 
the same. 

Paradoxes
Certainly the concept of infinity presents some chal-
lenges and unusual situations. Greek philosopher Zeno 
of Elea was known for posing paradoxes that chal-
lenged mathematicians for centuries. For instance, in 
Zeno’s Paradox, a person walks toward a wall by each 
time stepping half the remaining distance, thus taking 
time stepping half the remaining distance, thus taking 
an infinite number of steps but (theoretically) never 
actually reaching the wall. 

Another example is Gabriel’s Horn, an infinite sur-
face that can be easily generated by revolving a simple 
curve about an axis. Interestingly, the surface is not 
named after its discoverer, Italian physicist and math-
ematician Evangelista Torricelli, but is rather named 
after the Archangel Gabriel in order to connect the infi-
nite with theology. This infinite surface can be shown to 
contain finite volume yet have infinite surface area. In 
other words, Gabriel’s Horn, if filled with paint, would 
require only a finite volume, yet that paint could not 
cover the surface of the horn. While situations like these 
initially seem impossible, mathematics provides inter-
esting and satisfying explanations of these phenomena.

Modern Developments
In the twentieth and twenty-first centuries, mathema-
ticians continue to grapple with the concept of infin-
ity. French mathematicians Émile Borel, René Baire, 
and Henri Lebesgue explored rationalist ideas, while a 
group of Russian mathematicians led by Dmitry Ego-
rov linked mathematics to philosophy and theology. 
Building upon the French work and using mystical 
insights gained during their religious practice of Name 
Worshipping, they founded descriptive set theory, 
which transformed mathematical analysis. 

However, this did not resolve the contradictions 
of infinitesimals in calculus, which Sir Isaac Newton, 
Gottfried Leibniz, and Bishop Berkeley had wrestled 
with during the development of that subject in the 
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seventeenth and eighteenth centuries. Abraham Rob-
inson created the field of nonstandard analysis in 1960 
when he gave a rigorous definition of an infinitesimal 
number, and mathematicians continue to explore 
the implications of both standard and non-standard 
analysis. Besides there being infinitely many natural 
numbers, there are even infinitely many prime num-
bers. Primes form the building blocks of numbers and 
in many ways the very foundation of mathematics. In 
a similar way, calculus rests upon the notion of limit, 
which at its core involves infinite processes. Because 
so much of the subject naturally involves the infinite, 
mathematicians have had to face, understand, and con-
quer infinity; more than this, the presence of infinity 
in the world guarantees that there will always be more 
mathematics to explore, discover, and comprehend.
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Insurance
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Society has long used mathematical 
methods to quantify risk and protect against loss, and 
professionals like actuaries help make these decisions.

Insurance involves the exchange of a fixed amount of 
money or sequence of payments (called premiums) by 

the insured to an entity or group for indemnification 
of the insured from specified losses. Thus, insurance 
involves trading a small but certain cost (the premium) 
for payment of a potentially large but uncertain loss in 
the future. 

It is used to manage risk of loss in uncertain situ-
ations by hedging the risk (for example, by pooling 
money with others and sharing losses) or transferring 
it to some entity, like an insurer, for a price. Because 
the price paid today must cover future costs and future 
uncertain indemnification payments, the insurance 
industry employs many mathematicians to calculate 
and predict expected future costs and payments.

Importance
Risk transfer and risk pooling via insurance are very 
important. Following the government, insurance is 
probably the second most important mechanism avail-
able to alleviate social upheaval and to reduce risks 
to citizens. Social upheaval is reduced by supplying 
a financial safety net in times of loss. Risk reduction 
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is achieved since insurance establishes risk reduction 
incentives, such as lowering the cost of insurance, 
for those who undertake risk reduction behaviors. 
Examples of risk reduction behavior include premium 
reduction in automobile insurance for defensive driv-
ing classes or having air bags; lowering premiums and 
providing loss control consulting to business firms 
concerning risk exposures; and lobbying governments 
for stronger safety standards. 

Insurance allows entrepreneurs to create new prod-
ucts, explore new energy alternatives, and engage in 
selective risk-taking beneficial to society, such as creat-
ing new pharmaceuticals, which might be too uncertain 
or create potential liability exposure consequences too 
great to be undertake if not insured. Through insurance, 
cash flows of firms are stabilized, bankruptcy likelihood 
is reduced, and the cost of capital to firms is lowered. 

History
Because of the individual and societal benefits of insur-
ance, it is no wonder that the rudiments of insurance 
date back millennia—although the modern approach 
to insurance awaited the development of mathematical 
tools to create the logical underpinning of the industry. 
The Code of Hammurabi (c. 1750 b.c.e.) details how 
early Babylonian merchants who had a loan on car-
gos or vessels could pay a little extra so that if the ship 
were lost at sea, the loan would be forgiven—an early 
example of risk transfer. Early civilizations also had 
arrangements wherein members pooled resources, and 
if one suffered a loss, such as a building burning down, 
others would pitch in and furnish materials and labor 
to rebuild the member’s lost structure—an example of 
risk pooling. Before formal life insurance companies 
were developed, people in England in the seventeenth 
century would band together in groups called friendly 
societies, each contributing a small sum such that if 
an emergency or death occurred, the group would pay 
medical expenses, funeral costs, and sometimes give a 
stipend to the widow. Some of these friendly societies 
later developed into insurance companies.  

Mathematics of Premiums
A crucial element in insurance is determining the 
insurance premium. The premium is the amount of 
money to be paid by the insured whose risk of loss 
is being indemnified, but needs to be an amount suf-
ficient for the insurer selling the insurance to both 

cover potential loss costs and make a profit. Indeed, 
many early insurance-type organizations failed from 
the lack of correct assessments of risk and potential 
exposures to financial loss by the group furnishing 
the insurance—an incorrect quantification of risk. 
Without quantification of risk, the expected lost costs 
cannot be formalized and monitored. It is in this area 
of risk quantification that mathematics of insurance 
arises, mostly in the area of probability and statistics, 
which deal with the quantification of uncertainty.

The mathematics of insurance, known as “actuarial 
science,” had its birth amid the incredible growth in 
mathematics in the seventeenth century. Most major 
mathematicians of the seventeenth and eighteenth 
centuries contributed to insurance mathematics in 
a variety of ways, such as calculating annuity tables 
based on interest rates and tables listing the probability 
of death at each age (called “life tables”). Some, such 
as Abraham DeMoivre, made a living, in part, by con-
sulting on the calculation of annuity values. The first 
life table was constructed in 1694 by mathematician 
and astronomer Edmund Halley, now most famous for 
identifying Halley’s Comet.  

The development of modern probability theory—an 
essential element of the quantification of risk needed 
to price insurance—is usually attributed to French 
mathematicians Blaise Pascal and Pierre Fermat from a 
series of letters from 1654 concerning games of chance 
left unfinished. Using this new mathematical theory, 
the fair price of insurance could be rationally devel-
oped for the first time. For example, if, in the case of the 
occurrence of an event having a probability p, a benefit 
B is to be paid at some future time T, then the fair price 
today is pBvT  where v is the “discount rate” accounting 
for interest available on money invested today and paid 
at time T, expressed algebraically as the following: 

v
i

=
+

1

1
.

In this formula, i denotes the annual interest rate on 
invested money. Subsequent developments in math-
ematics have allowed for uncertainty in B, v, and T, 
enabling one to obtain the fair value of the insurance 
in more-complex risk transfer situations.  

A mathematical foundation for insurance lies in the 
Law of Large Numbers (LLN), developed by mathema-
tician Jacob Bernouli, and the Central Limit Theorem 
(CLT), developed by Abraham de Moivre and extended 
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by mathematician Pierre Simon Laplace. The LLN is 
fundamental to insurance since it proves that the 
empirical relative frequency with which an event occurs 
in a risk pool will, as the size of the sample increases, 
approach the “true” probability of the event. 

This allows insurance companies to objectively 
obtain the likelihood of loss-producing events from 
their experience in large collections of policyholders. 
The CLT proves that the average of a sample of homo-
geneous independent observations, such as losses 
within a pool of risks, will be well approximated by 
the bell-shaped Gaussian distribution as the number 
in the pool increases. From this idea, the setting of pre-
miums for insurers who are appropriately confident of 
remaining solvent can be calculated.  
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Intelligence and  
Counterintelligence
Category: Government, Politics, and History.
Fields of Study: Algebra, Number and Operations; 
Problem Solving.
Summary: Quantitative data, mathematical models, 
cryptography, data analysis, and social network 
analysis have proved powerful tools in intelligence.

The intelligence industry is tasked with gathering 
information and predicting or inferring past, present, 
or future behavior based on that information. While 
code-breaking is the most popularly known intersec-
tion of intelligence and mathematics, lattice theory is 
at least as relevant and various forms of data analysis 
are constantly relied upon. Math can “connect the dots” 
to maximize the usefulness of a small set of data.

“Mathematicians Won the War”
During World War II, the mathematics underlying 
cryptography played an important role in military 
planning. Winston Churchill admired Alan Turing, 
the Cambridge University mathematician who had 
mastered the Nazi codes, recognizing him as the man 
who had perhaps made the single greatest individual 
contribution to defeating Germany. After the first 
frosts of the Cold War descended in the Soviet East, 
approximately $2 billion was spent in the develop-
ment of game theory.

After the Cold War came the “war on terror.” The 
adversary uses rational strategies to attack, so rational 
strategies are needed for defense. 

The “War on Terror”
The National Security Agency (NSA) is a riddle 
wrapped in a mystery inside a code—a black palace 
of glass located in Fort Meade, Maryland. It dwarfs 
the location of the Central Intelligence Agency (CIA). 
Its budget is unknown, and it is the world’s largest 
employer of mathematicians, primarily number theo-
rists, whose work depends integrally on the presumed 
complexity of factoring large numbers.

In May 2006, one of the NSA’s secrets escaped. USA 
Today reported that the phone companies AT&T, Veri-
zon, and Bell South had handed customer records over 
to the agency—not transcripts of calls, they said, just 
who was calling whom. Technically, only telephone 
numbers were being recorded, but one could easily 
obtain a name from a phone number. This information 
was being used to determine who might be a terrorist.  
With the NSA data, one can draw a picture or a graph 
with “nodes” (or dots) representing individuals and 
lines between nodes if one person has called another. 
The field of social network analysis (SNA) deals with 
trying to determine information about a group from 
such graphs, such as who the key players are or who the 
cell leaders might be. 
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Even if everyone in the graph is a known terrorist, 
graphs do not directly portray information about the 
order or hierarchy of the cell. SNA researchers look 
instead for graph features like centrality—they try to 
identify nodes that are connected to many other nodes, 
like spokes around the hub of a bicycle wheel. Indeed, 
Monterey Naval Postgraduate School researcher Ted 
Lewis, in his textbook Critical Infrastructure Protection, 
defines a critical node to be such a central hub.

There are two problems in creating such a graph. 
First, the “central player” might not be as important 
as the hub metaphor suggests. For example, Jafar 
Adibi of the University of Southern California looked 
at e-mail traffic between employees of the company 
Enron before its famous collapse and drew a graph. 
He found that if you naively analyzed the graph, you 
could mistakenly conclude that one of the “central 
players” was CEO Kenneth Lay’s secretary. Second, as 
the journal Studies in Conflict and Terrorism reported 
in 2003, one can capture all the central players in a 

terrorist cell and leave the cell with a complete chain 
of command still capable of carrying out a devastat-
ing terrorist attack.  

Lattice Theory Applied to the “War on Terror”
While it is true that NSA expert Kathleen Carley of 
Carnegie Mellon University was twice able to cor-
rectly predict who would take over Hamas when its 
leaders were assassinated (Hamas, the Palestinian 
Islamic Resistance Movement, is considered a terror-
ist organization by the U.S. government), her analysis 
uses detailed information about the individuals in the 
organization, not just which anonymous nodes were 
linked with which. Since terrorist cells are composed 
of leaders and followers, it is important to utilize lattice 
theory, which takes into account order and hierarchy.

Formal concept analysis (FCA), a branch of applied 
lattice theory, helps identify persons of interest. Indi-
viduals who share many of the same characteristics 
are grouped together as one node, and links between 
nodes in this picture, called a “concept lattice,” indi-
cate that all the members of a certain subgroup with 
certain attributes must also have other attributes. For 
instance, one might group together people based on 
what cafés, bookstores, and houses of worship they 
attend and then find out that all the people who go to 
a certain café also attend the same church, but maybe 
not vice versa. At Los Alamos National Laboratory, the 
laboratory that helped build the first atomic bomb, 
formal concept analysis has been used to mine data 
drawn from hundreds of reports of terrorist-related 
activity and to discover patterns and relationships that 
were previously in shadow—connections that human 
analysts could not have easily found without some-
thing like FCA.

Tools from lattice theory can be applied to help 
intelligence agencies determine whether they have dis-
rupted a terrorist cell. In early June 2005, the Penta-
gon announced plans to revise its strategy in the “war 
on terror.” While then U.S. president George W. Bush 
repeatedly cited that 75 percent of Al Qaeda’s leader-
ship had been killed or captured, Al Qaeda remained 
active. The Pentagon shifted its target to mid-level cap-
tains and foot soldiers. Lattice theory, along with some 
extramathematical analysis, will help law enforcement 
agencies determine which individuals in a terror-
ist cell should be captured first, in order to maximize 
the chances of disrupting a cell by expending as few 
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Protection

T he	 U.S.	 government	 tried	 to	 prevent	 the	
publication	 of	 a	 study	 showing	 how	 the	

U.S.	 milk	 supply	 could	 be	 poisoned	 by	 terror-
ists,	an	analysis	that	uses	queuing	theory.	Simi-
lar	 mathematics	 has	 been	 used	 to	 study	 the	
threat	of	dirty	bombs.

Which	border	do	you	guard?	Which	border	
do	you	want	the	terrorist	to	think	is	weak?	You	
want	to	funnel	him	toward	your	snare,	thinking	
the	 field	 is	 open.	 Reflexive	 theory—a	 branch	
of	mathematical	psychology	developed	by	 the	
Soviet	 military	 and	 funded	 by	 the	 U.S.	 State	
Department—gives	 a	 quantitative	 method	 to	
address	 these	 questions.	 The	 same	 mathe-
matical	 analysis	 could	 potentially	 be	 used	 to	
alleviate	 the	 problem	of	 improvised	 explosive	
devices	 in	 Iraq.	 Phoenix	 Mathematics,	 Inc.	 is	
developing	software	tools	to	help	border	patrols	
allocate	personnel	 and	spread	disinformation	
to	the	adversary.



resources as possible. Lattice theoretical methods tell 
us the probability that a terrorist cell has been disabled 
based on how many terrorists have been captured and 
what rank they held in the organization.

Social choice theory has been applied to the hier-
archical relationships within terrorist cells, deter-
mined from the direction of communications traf-
fic, to model network formation. Researchers at New 
York University have identified two types of coalitions. 
They have found that the detection of one type of cell 
is more effective in disrupting networks, whereas the 
detection of the other type of cell is more effective in 
identifying all the members of the cell. They have also 
used the lattice theory to try to determine the leaders 
from the graph of a terrorist network. Lattice theory 
and graph theory can even account for gaps in one’s 
knowledge of the structure of a terrorist cell by mak-
ing assumptions about how the “perfect” terrorist cell 
must be organized. The knowledge of the structure of 
the perfect terrorist cell could also be used by terror-
ists to counter intelligence efforts.

Winning the Battle for Hearts and Minds
Former U.S. defense secretary Donald Rumsfeld stated 
in a USA Today article on October 22, 2003, “Today, we 
lack metrics to know if we are winning or losing the 
global war on terror. Are we capturing, killing, or deter-
ring and dissuading more terrorists every day than the 
madrassas and the radical clerics are recruiting, train-
ing, and deploying against us?” To model the growth 
of a terrorist network, one could use the same differ-
ential equations that govern the spread of an infection, 
like severe acute respiratory syndrome (SARS). Such 
models could be used to help the government under-
stand, and eventually contain, the spread of a terrorist 
insurgency.

On March 16, 2003, then U.S. vice president Dick 
Cheney predicted on Meet the Press that Americans 
would be “greeted as liberators” in Iraq. Ideas from sta-
tistical physics have been used to model the battle for 
the hearts and minds of the people of Iraq. Just as a 
magnetic pole may be north or south, a person could 
be either for the occupation or against it. The model 
shows that there can be a tipping point in the evolution 
of public opinion. It may seem as if much of the popu-
lation is with one side (for example, the United States) 
but then, dramatically, a wave of hostility sweeps down, 
and one witnesses the birth of an insurgency.

Terrorism of the Futures Market
When bombs explode, the stock market drops. Math-
ematician Stefan Schmidt of the Technical University 
in Dresden, Germany, has attempted to quantify the 
impact on the market of a terrorist incident. The only 
people who know when a bomb will explode are, of 
course, the terrorists. By playing the market, they may 
already have obtained as much money as they need, 
thus stifling U.S. Treasury Department efforts to cut off 
their funding. The terrorism of the futures market may 
be the terrorism of the future.
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Intelligence Quotients
Category: Medicine and Health.
Fields of Study: Algebra; Geometry; Number and 
Operations; Problem Solving.
Summary: Intelligence tests are created and analyzed 
using mathematics.

The term “intelligence” is broadly synonymous with 
the term “cognitive ability.” Intelligence tests are tests 
designed to measure cognitive abilities. According to 
Ian Deary and David Batty, cognitive abilities are men-
tal abilities “that are not principally sensory, emotional 
or conative (related to the will).” Standardized intel-
ligence tests produce a score called the “Intelligence 
Quotient” (IQ). IQ tests are usually copyrighted, and to 
prevent people from practicing for them, they must be 
administered in supervised conditions. Many tests that 
claim to measure IQ have appeared on the Internet but 
may not have been validated by professional psycholo-
gists. Intelligence, or cognitive ability, has been defined 
in different ways but broadly refers to people’s ability 
to process complexity “on the spot.” 

Since psychologists such as Alfred Binet (originator 
of the test that later evolved into the Stanford–Binet) 

and David Wechsler (creator of the Wechsler Adult 
Intelligence Scale and Wechsler Intelligence Scale for 
Children) began measuring cognitive abilities over 100 
years ago, nearly all measures of cognition have been 
shown to correlate. This fact is interpreted as evidence 
for a general factor, called g, representing general intel-
ligence. At the beginning of the twenty-first century, 
no test of cognitive ability has been created that does 
not correlate with other cognitive ability tests. In prac-
tice, this means that people who are good at processing 
complexity in one area tend to be good at processing 
complexity in another. A person’s IQ score is a numeri-
cal representation of their level of g.

Most IQ tests are designed to have a mean of 100 and 
scores are normally distributed. However, the standard 
deviation varies across different tests. The interpreta-
tion of the standard deviation is that it represented the 
average distance from the mean, in either direction. To 
understand and interpret a person’s IQ score, it is nec-
essary to know the standard deviation of the test they 
took. Common standard deviations are 15 or 16, and 
the range of IQ scores is generally between about 55 and 
145 for a test with a standard deviation of 15. Further, 
about two-thirds of individuals will have scores within 
one standard deviation of the mean and about 95 per-
cent will have scores within two standard deviations 
of the mean. For this reason, IQ scores are sometimes 
evaluated using percentile scores, which divide the nor-
mal distribution into 100 parts so that 1% of the scores 
are in each part. For example, admission to the high-IQ 
society Mensa requires a person to score in the 98th per-
centile or higher on several different validated IQ tests. 
This requirement means about one in 50 people would 
be eligible to join. 

Percentile IQ scores can be useful, but they can be 
misinterpreted since the distance between each percen-
tile is not equal. In contrast, standard deviations are the 
same distance apart, sometimes making it more sensible 
to compare individuals in terms of average distance 
from the mean. Also, IQ tests are imperfect measures of 
intelligence because they generally do not produce the 
exact same score for the same person, even if the test is 
taken more than once. This inaccuracy is quantified by 
the standard error of measurement and represents how 
much variability an individual person’s scores would 
have if they took the test many times. For example, if 
a person scored 100 on an IQ test that had a standard 
error of 2, the person’s true IQ score would often be 
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interpreted as being somewhere between 96 and 104. 
Some researchers and others have suggested that the 
average of three IQ tests provides a better indication of a 
person’s true IQ score than a single test.

There are three features of general intelligence that 
are important because they negate arguments that IQ 
scores have no meaning: their stability, their heritability, 
and their correlation with external phenomena. First, 
IQ scores are remarkably stable across the life course 
from childhood to old age. Data to demonstrate this 
are exceptionally rare, but one exception can be found 
in Scotland. During one day in 1932, every 11-year-old 
in the country took an IQ test. They were retested 66 
years later, and the scores were found to correlate highly 
with childhood IQ score (0.76), providing evidence of 
stability of IQ scores over time. Second, IQ scores are 
highly heritable. The heritability of individual differ-
ences has been estimated as between 30% and 80%, 
illustrating that genetics contributes strongly to IQ 
scores. However, no single gene or set of genes has been 
identified. This suggests that the genetic contribution 

to intelligence is multifactorial, as with other observ-
able characteristics (phenotypes), such as height. There 
are no sex differences in IQ, although the distribution 
of males’ scores is slightly wider at both ends of the dis-
tribution. Third, IQ scores correlate with variables that 
can be considered external, or outside the IQ test itself. 
IQ correlates with indicators of socioeconomic status 
(SES)—a indication of factors like educational attain-
ment, income, and occupational social class—and with 
many biological variables, including brain size, height, 
sperm quality, and mortality. The causes of these cor-

relations are disputed. 

Content of IQ Tests
The content of IQ tests differs, depending on the 

specific cognitive abilities they are intended 
to measure. Some tests have been criticized 
as being culturally biased because they ask 

questions that require culturally specific 
knowledge. Tests that do not evaluate “general 
knowledge” are considered more “culture fair.” 

For example, Raven’s Matrices is a test that contains 
no written information, requiring abstract reasoning 
skills. This test contains no culturally specific infor-
mation, so that it is not possible to learn how to take 
the test. Similarly, tests of reaction time are considered 
indicators of g, because they reflect speed of informa-
tion processing. These do not assess culturally specific 
information or knowledge. Clifford Pickover imagined 
how aliens might test human intelligence and designed 
related mathematics and logic puzzles. Other intel-
ligence researchers argue that knowledge is a reliable 
indicator of g and should therefore be included in IQ 
tests. IQ tests also differ in the extent to which it is nec-
essary to complete every question. Traditional IQ tests 
are designed using classical test theory. In these tests, 
the IQ score is more reliable for people with an average 
level of IQ. Since people with high IQs find many ques-
tions easy and people with low IQs find many questions 
difficult, fewer relevant questions are answered by peo-
ple at either end of the IQ distribution. More recently, 
computerized adaptive tests have been developed and 
informed by item response theory, which addresses 
these problems. These tests can alter the difficulty of 
test items, so that people with high IQs receive a larger 
number of difficult items. Reliability is improved and 
testing length can be reduced because respondents do 
not have to answer every question. 

IQ tests are usually copyrighted and must be 
administered under supervised conditions.
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Age and Intelligence
Although IQ scores are relatively stable, cognitive 
decline typically occurs with increasing age. This fact 
is important because cognitive decline may indicate 
mild cognitive impairment and risk of dementia. 
When considered over time, specific kinds of cognitive 
abilities appear to deteriorate at different rates. Fluid 
intelligence, referring to processing speed (particularly 
of new information), declines from age 26 onward. In 
contrast, crystallized intelligence, referring to speed of 
recall of existing knowledge (for example, vocabulary 
and general knowledge) is relatively stable. 

For this reason, standardized tests of word recogni-
tion, such as the National Adult Reading Test (NART), 
are useful at estimating premorbid IQ in patients sus-
pected of having dementia. A discrepancy between IQ as 
estimated by the NART and IQ estimated from another 
test could indicate that cognitive decline has occurred. 
Cognitive decline can result in mild cognitive impair-
ment and dementia or Alzheimer’s disease, which have 
high mortality, morbidity, and treatment and care costs. 

Research into the prevention of cognitive decline 
is ongoing, but several risk factors have emerged con-
sistently, such as cigarette smoking and physical inac-
tivity. Consumption of fish oils, either from oily fish 
or fish oil supplements, may help prevent cognitive 
decline. Prior IQ is a strong protective factor, such that 
a higher initial IQ appears to protect against cognitive 
decline in later life. Claims that IQ can be changed are 
controversial. Although brain plasticity is known to 
be greater than once thought—and there is evidence 
that children exposed to cognitive stimulation enjoy 
increases in IQ—it is not clear how stable these gains 
are. Furthermore, attempts to increase IQ in adults 
have not been successful. 

Lower IQ scores are associated with earlier mortal-
ity and higher morbidity. This association provides 
further evidence for the validity of IQ tests. It is note-
worthy that the relationship between IQ and mortality 
often remains after adjusting for indicators of socio-
economic status (SES), such as income, educational 
attainment, and occupational social class. Given that 
IQ is largely stable after childhood, this relationship is 
unlikely to be explained by societal factors. Evidence 
suggests that IQ contributes strongly to health literacy, 
which, according to the World Health Organization, 
refers to “the cognitive and social skills which deter-
mine the motivation and ability of individuals to gain 

access to, understand, and use information in ways 
which promote and maintain good health.” People with 
inadequate health literacy skills tend to have unhealth-
ier lifestyles, adhere less well to medical regimens, and 
do not understand written health information or the 
need for regular screening for diseases. 

Access to healthcare does not solely explain the IQ-
health relationship because it can also be found in coun-
tries that have free healthcare, such as the United King-
dom, which has the National Health Service (NHS). 
Managing chronic diseases, such as diabetes, involves 
repeating many complex tasks, such as monitoring 
blood sugar and planning activities around meals. 
Without supervision and support, the risk of making 
dangerous mistakes could accumulate over time. Many 
areas of life involve repeating a set of unpredictable, 
complex tasks, which can damage health in the long 
term. The field of cognitive epidemiology studies why 
IQ is linked to worse health outcomes and the role that 
literacy plays in this relationship.
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Interior Design
Category: Architecture and Engineering.
Fields of Study: Algebra; Measurement; Problem 
Solving.
Summary: Mathematics is involved in the layouts 
and color schemes of interior design.

Interior design is a career that combines mathematics 
and art and is the art and craft of making living spaces 
that bring positive emotional and aesthetic effects to 
the inhabitants. Mathematics has long been connected 
to interior design. One of the 10 books of Marcus Vit-
ruvius Pollio’s mathematical work, De Architectura, 
is focused on interior decoration. These books heav-
ily influenced the Western scientific, engineering, and 
mathematical developments in the 2,000 years since 
they were written. Mathematician Jamshid al-Kashi 
approximated the surface area of a muqarnas, a deco-
ration made of flat and curved polygons that covers 
building joints, while the Art Deco design movement of 
the 1920s and 1930s relied on geometric forms. 

Computations to estimate the amount of materials 
and their cost, such as the area of a surface that will be 
covered in fabric, tile, or paint, underlie interior design. 
The International Mathematics & Design Association 
was founded in 1998. It publishes a journal focusing on 
areas such as computer-aided design, computational 
geometry, mathematical modeling, visualization, and 
system media design. 

Design Principles and Elements
Lists of overarching design principles tend to sound 
very mathematical. Figure 1 shows a widely accepted 

example, with mathematical elements listed next to 
each principle. 

The principles are achieved through the combina-
tion of design elements. With the extensive use of soft-
ware and digital media for home decorating, expressing 
design elements in formulas, graphs, tables, and other 
mathematical representations has become common-
place. A typical list of elements includes the following: 
line, shape, direction, size, texture, color, and value.

Shape and Logistics
A circle has the maximum possible area to perimeter 
ratio of all two-dimensional shapes. This characteristic 
is the reason circles were adopted as elements of living 
space structures whenever exposure needs to be mini-
mized. Houseboats may have circular windows to min-
imize leak danger. In noisy cities or harsh natural envi-
ronments, architects opt for circular shapes of houses, 
or their key parts, to minimize the contact with the 
outside. This design was used in many cultures, such 
as in traditional Mongol yurts, Celtic roundhouses, 
Lakota tipis, and Lesotho’s mokhoros.

City and road building dictated cuboid houses 
for several reasons. Many tools and materials make it 
easy to mass-produce rectangular structures, such as 
boards, bricks, and panels. Also, circles do not tessel-
late (tessellation occurs when a repeated shape covers a 
plane without any gaps or overlaps), making it impos-
sible to build circular houses adjacent to one another, 
as is done in cities. While hexagons tessellate, the edge 
of a block of hexagonal houses is not straight, making 
it problematic to build roads. Another tessellating floor 
shape candidate, a triangle, has sharp corners that are 
inconvenient to use and psychologically problematic. 

Figure 1.

Design Principle Corresponding Mathematics

Balance Symmetry, center of mass, and equivalence

Rhythm Pattern, algebraic group, gradient, tessellation, sequence, and growth

Proportion Ratio and proportion, golden ratio, geometric series, scale, and dimensions

Dominance Ratio and proportion, categories (similarities and differences), extreme value, and 

frequency

Unity Categories (similarities and differences), shape, pattern, continuity, similarity, density and 

proximity, vectors, and alignment
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Order in Complexity:  
Tessellations and Fractals
Repeating patterns satisfy the design principles of bal-
ance, rhythm, and unity. Since they are practical to 
make and use with a variety of simple tools, they are 
used in home decorating in all human cultures. Tes-
sellations appear in mosaics, on all parts of buildings, 
and in designs of rugs, coverings, and wall hangings. 
Traditional designs often combine beauty, cultural and 
spiritual meanings, and utility through modular units.

The mathematics known to artisans is still being for-
mally described. This process of rediscovery and formal 
mathematical description is called “ethnomathemat-
ics.” For example, medieval Islamic mosaics masters 
described very complex symmetric, never-repeating 
patterns, made of standard polygons. These patterns 
were rediscovered by mathematicians in the 1970s and 
named “quasicrystalline” and “Penrose tilings.” Many 
traditional African villages are laid out to form fractals, 
with the village shape repeated in the house clusters, 
houses, and interiors of each house. 

These villages were first mathematically described 
in the 1990s. Mandalas—appearing in several cultural 
traditions, such as Hinduism, and in work of mod-
ern artists, such as M.C. Escher—exhibit elements 
of projective geometry, as their tessellating shapes 
shrink toward the edge of the circle. Once the under-
lying mathematical principles of complex patterns are 
understood, software can be programmed for further 
experimentation and discovery. Complex computer-
generated patterns, often incorporating ancient arti-
san traditions, are now ubiquitous in home decorating 
materials such as wallpaper, flooring, textiles, and tiles.

Color Models, Circles, and Schemes
Colors are defined by spectral wavelengths; for exam-
ple, the wavelengths of reds are approximately 630–730 
nanometers. Color models define colors as additions or 
subtractions of primary colors and are used to pinpoint 
precise colors for decorating projects, often using soft-
ware. The additive model known as “red, green, blue” 
(RGB) can be physically implemented in overlapping 
lighting with different colors. The subtractive model 
known as “cyan, magenta, yellow, key black” (CMYK) 
can be implemented by mixing pigments and is used 
in color printing, including wallpaper, yarn, and fab-
ric dyes, as well as in mixing household paints. A color 
wheel is a traditional artist and designer infographic 

used to visualize color models. The wheel has the pri-
mary colors positioned at three equidistant points 
around it and color mixes between the primaries, with 
the position signifying the ratio of the mix.

A color scheme is a combination of two or more 
colors that work well together. Home decorators use 
special terms to describe colors, with each term having 
mathematical meaning in color models. The terms for 
describing colors include “warm,” “cool,” “hue,” “inten-
sity,” “contrast,” and “tone.” On the other hand, colors 
can be described metaphorically, which is used more 
frequently in consumer-oriented product names such 
as “Light in the Leaves” or “Chilled Chardonnay.”

Further Reading
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Internet
Category: Communication and Computers.
Fields of Study: Algebra; Number and Operations; 
Problem Solving.
Summary: Many properties and problems of the 
Internet are studied and modeled using mathematics.
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The Internet is a worldwide computer network con-
necting other computer networks in government, busi-
ness, academia, and other public and private sources. 
Communications are facilitated by the Internet Pro-
tocol Suite (TCP/IP), originally proposed by Vinton 
Cerf and Robert Kahn in 1974. The Internet is used 
for implementing various applications including elec-
tronic mail, pioneered in the late 1960s, and the World 
Wide Web (WWW) of linkable documents. The idea of 
networks connecting information nodes appeared in 
futuristic scientific writings and science fiction begin-
ning in the early twentieth century. 

The work of mathematicians, computer scientists, 
cyberneticists, and many other scientists contributed to 
the emergence of the Internet and the World Wide Web 
by the end of the twentieth century. Researchers and 
teachers in nearly every discipline use the Internet to 
further their work, and many study the properties of the 
Internet itself using mathematics. One problem explored 
by mathematicians and computer scientists is mapping 
the Internet, often undertaken to understand the nature 
of connections and to reduce stress on routers. The field 
of hyperbolic geometry has proven to be highly useful in 
creating such maps, especially with regard to assessing 
global stability and developing efficient routing meth-
ods. Mathematicians also consider the theoretical and 
computational challenges posed by the massive graphs 
that result from Internet mapping, which test the limits 
of even the largest and fastest computers. Others exam-
ine society’s increasing dependence on the Internet for a 
range of critical everyday tasks (like banking and medi-
cal recordkeeping) along with the risks and vulnerabili-
ties (like identity theft) that this reliance may create.  

Codevelopment of Mathematical  
Sciences and the Internet
Mathematicians including John Von Neumann, Alan 
Turing, and Norbert Wiener contributed to the devel-
opment of both the hardware and the software neces-
sary to implement computer networks and the Inter-
net. The precursors of the Internet were networks such 
as the telegraph, telephone, radio, and television. Even 
early electronic computers had systems for data input, 
computation, and output. In the late 1960s, individual 
computer “nodes” were connected to one another, 
building on the technology for connecting subsystems 
within the same computer. These early stages of build-
ing computer networks promoted the development of 

the mathematics-rich fields of cybernetics, informat-
ics, and artificial intelligence. 

Mainframe computers enabled countless historical 
achievements and facilitated research and problem-
solving in mathematical fields such as cryptography, 
simulation, and genetics. In the late 1970s and early 
1980s, the introduction of the first personal comput-
ers changed the face of computing by creating appli-
cations and giving access to new groups of users. In 
the 1980s, the National Science Foundation (NSF) 
funded five supercomputer centers connected by NSF-
NET, which built on Computer Science Net (CSNET) 
and the Department of Defense’s Advanced Research 
Projects Agency Network (ARPANET). Demand dur-
ing the first year was so great that the system had to 
be upgraded almost immediately, and uses for the new 
network continued to expand, as did the mathematics 
research needed to meet user demands for function-
ality. At the same time, national computer networks 
such as ARPANET and NSFNet, the Japanese JUNET, 
and the European CERN remained isolated from one 
another. The big challenge at the time was to make 
these separate networks compatible and interoperable. 

Adoption of several dozen international protocols, 
such as the TCP/IP for the Internet, facilitated inter-
linking. In the early 1990s, the idea of common pro-
tocols enabled the system of file hosting, accessible by 
anyone at all times and called the World Wide Web. 
The explosive evolution of the Internet and the Web 
in the next decade is well documented. In the United 
States, efforts were aided by several pieces of legisla-
tion. For example, the High Performance Computing 
Act (HPCA) of 1991 reset priorities for computing 
research and education. President Bill Clinton stated 
that he believed such legislation enabled collaborations 
“critical for assuring American prosperity, national and 
economic security, and international competitiveness 
in the twenty-first century.” Computer scientists Eric 
Bina and Marc Andreessen developed the first widely 
used graphical browser, Mosaic, released in 1993 and 
funded by a program associated with the HPCA. Tim 
Berners-Lee, the creator of several WWW protocols, 
was knighted in 2004 by Queen Elizabeth II “for the 
invention of the World Wide Web.”

Mathematical Problems
One mathematical problem that had to be solved in 
order to build computer networks was packet switch-
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ing, which is grouping data of all types into blocks 
known as “packets” of size that are appropriate for 
network transmission. Network nodes or routers have 
algorithms that decide how to queue, buffer, and deliver 
individual packets as a function of network traffic pat-
terns. This is a different, mathematically more complex 
model from circuit switching, which was used in older 
telephone networks to transmit information bits at a 
constant rate. Computer scientists Paul Baran, Don-
ald Davies, and Leonard Kleinrock pioneered packet 
switching networks. Baran’s work was shaped in part 
by Cold War concerns about maintaining communi-
cations in the face of nuclear attack. Donald Davies 
worked with Alan Turing at the National Physical Lab-
oratory and is reputed to have found mistakes in Tur-
ing’s groundbreaking paper “On Computable Num-
bers.” Kleinrock, a recipient of the U.S. National Medal 
of Science, said of his work, “Basically, what I did for 
my Ph.D. research . . . was to establish a mathematical 
theory of packet networks.”

In the late 1960s, mainframe computers had mes-
sage systems among their different users, who all had 
to be online at the same time to communicate. In the 
early 1970s, the message system software was modi-
fied to include new computer networks. The ability 
to deliver messages to offline users, make different 
systems compatible, and uniquely identify users were 
significant research problems. The compatibility issue, 
still important in the twenty-first century, was resolved 
in part by creating software and hardware gateways that 
connect different systems. BITNET was cofounded by 
Ira Fuchs and Greydon Freeman primarily for research 
and academic communities, while FidoNet was imple-
mented for personal computers and bulletin board 
systems by Thomas Jennings. Unique identification of 
users is a complex mathematical problem, since for any 
string length there is a finite number of possible letter 
and symbol permutations. 

Similar concepts apply to the study and selection 
of secure electronic passwords. A system developed in 

A mathematical problem that had to be solved in order to build computer networks was packet switching—
grouping data of all types into blocks known as “packets” that are sized appropriately for network transmission.
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the early 1970s assigned registration codes to domains 
and then to users within domains in the form “user@
domain.” This method and the use of “@” are credited 
to Raymond Tomlinson. At the start of the twenty-first 
century, the mathematical structure of domain names 
is a type of tree, with multiple hierarchical levels. Min-
imally, there are two levels. Each domain name ends 
with the top-level domain including generic ones, such 
as “.com” and “.edu,” and country code ones, such as 
“.us” or “.uk,” with a period on the left. To the left of 
that period comes the second level domain name; for 
example, “wikipedia.org” or “google.com.” 

If there are more domain levels, they appear on the 
left of the second-level domain and are separated by 
periods as well; for example, “simple.wikipedia.org” 

or “groups.google.com.” There is no limit to the num-
ber of domain levels. This syntax and structure was 
first published in the 1980s in connection with the 
Advanced Research Projects Agency Network (ARPA-
NET). IP addresses are the numerical representations 
of individual computers, mapped to domain names. 
They consist of four bytes of information displayed 
as numbers. Each byte has eight bits and can be any 
integer from 0 to 255. With the exponential growth 
in Internet users, assigning unique identities to users, 
domains, and computers continues to be a challeng-
ing problem, especially since many users have multiple 
e-mail and IP addresses. For computer users, off-line 
message delivery is achieved by storing messages on 
digital servers until the recipient accesses them. 

E-mail programs typically employ the Internet 
Message Access Protocol (IMAP), developed by Mark 
Crispin, or the older Post Office Protocol (POP) to 
retrieve mail. Simple Mail Transfer Protocol (SMTP) 
is also used for sending and receiving functions. Math-
ematical algorithms enable the queuing, encryption, 
authentication, and filtering of e-mail, and math-
ematicians continue to contribute new developments 
and improvements. Many agencies are responsible for 
making assignments and tracking Internet protocols. 
The Internet Assigned Numbers Authority was headed 
for nearly 30 years by computer scientist Jonathan Pos-
tel, who codeveloped and documented many of the 
key Internet standards, including SMTP and Domain 
Name System (DNS) servers. 

The Growth of Networks
Other mathematical problems of Internet develop-
ment sprang from the incredibly fast growth of net-
works. To compare the rate of growth of different 
networks, researchers use metrics such as time per 
number of users. They have determined, for example, 
that it took only five years for the Internet to reach 
50 million users, versus 13 years for television and 38 
years for radio. As the number of users and domains 
grew, search algorithms became a prominent field in 
computer science and mathematics, with several major 
developments such as clustering and relevance rank-
ings. There are many search engines, many of which 
initially used the content of Web pages to rank results. 
Google’s PageRank method was among the first search 
protocols to use sophisticated mathematical modeling, 
including directed graphs and stochastic matrices, to 

Erdös–Rényi Graphs

One	mathematical	discovery	of	network	sci-
ence	 is	 that	 large-scale	networks	 like	 the	

Internet	 are	 structured	 in	 ways	 that	 do	 not	
appear	 to	 be	 random,	 though	 some	 research-
ers	initially	thought	they	would	produce	Erdös–
Rényi	graphs,	which	are	random	graph	models	
having	 bell-shaped	 degree	 distributions.	 They	
are	named	for	mathematicians	Paul	Erdös	and	
Alfréd	 Rényi.	 Instead,	 large	 social	 networks	
have	 degree	 distributions	 with	 no	 peaks	 and	
heavy	 tails,	 proportional	 to	 a	 power	 function.	
This	means	that	most	nodes	have	very	few	con-
nections,	 and	 only	 a	 few	 nodes,	 called	 hubs,	
have	many	connections.	

For	example,	the	majority	of	Wikipedia	edi-
tors	have	edited	only	one	or	two	articles,	and	
the	majority	of	Web	pages	have	one	or	no	links	
leading	to	them.	In	2004,	physicist	Mark	New-
man	and	his	colleagues	studied	scientific	coau-
thorship	networks	using	 these	models.	Math-
ematician	Paul	Erdös,	acknowledged	by	many	
as	one	of	the	founders	of	graph	theory,	was	a	
highly	prolific	collaborator—a	node	of	very	high	
degree	in	the	network	of	published	mathemati-
cians,	who	often	compute	their	personal	Erdös	
number	to	describe	their	closeness	to	Erdös.
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explore links between pages hierarchically. The Page 
Rank algorithm is named for Google cofounder and 
computer scientist Lawrence Page. 

In 2009, Google research scientist Kevin McCurty 
noted that successful search engines continually improve 
by employing mathematical methods that quickly find 
relevant material and eliminate irrelevant factors that 
can skew results. Along with better ranking schemes, 
Internet speed is critical in effective searching and con-
tent delivery. The original packet switching and data 
routing problems have become even more complex as 
the Internet has grown. Mathematicians and computer 
scientists model Internet traffic flow using many math-
ematical and statistical techniques, taking into consid-
eration many variables, including the type of content 
being exchanged. Photos, videos, music, text, e-mail, 
and online gaming all require different resources. Based 
on these models, algorithms to optimally route traffic 
can be designed and implemented, reducing conges-
tion and slowdowns. For example, the traffic load on 
a given Website’s computers can be reduced by storing 
some content at other servers that provide more optimal 
access patterns, a process known as “network caching.” 

Some twenty-first century models are starting to 
use concepts from disciplines like economics, such as 
equilibrium theory. One example is called “conges-
tion-dependent pricing,” which would route packets 
depending on users’ willingness to pay more for privi-
leged Internet access during periods of congestion. 
Given the number of packets in even a small text file, 
this is a mathematically complex problem that still 
requires a great deal of research.

A separate set of science problems has to do with 
hardware and the various means of connecting to the 
Internet. As of 2010, it is possible to connect to the 
Internet through both land-line and cell phones, radio, 
satellites, dedicated fiber-optic lines, and television 
cables. While similar in many ways, each has a unique 
set of issues related to speed, security, data transmis-
sion, compatibility, and bandwidth, especially when 
considering that people are connecting to the Inter-
net with many devices other than personal computers. 
Mathematicians, computer scientists, and others work 
on both the hardware and the software solutions.

Network Science
Network science predates the Internet, having its root 
in graph theory. It is interdisciplinary and includes 

mathematics, engineering, computer science, biologi-
cal sciences, sociology, and other disciplines interested 
in studying various types of networks. It flourished 
with easy availability of empirical data from computer 
and social networks made possible by the Internet 
and the high demand for applications in all aspects 
related to the Internet. Concepts and methods from 
graph theory, such as centrality, betweenness, and 
closeness are used to quantify and describe networks. 
Centrality is a measure of the importance of a node 
within a network. Betweenness measures the qual-
ity of paths through the node, such as the number of 
shortest paths between pairs of other nodes. Closeness 
is the topological measure similar to distance, usually 
defined as the average number of nodes in the short-
est path between a given node and all other nodes in a 
network that connect to it. 

Maps of networks help mathematicians and others 
analyze vulnerabilities, such as critical nodes that lie 
between many other nodes and whose loss would sever 
connectivity, and deprecated connections, where use of 
outmoded software or features affects speed or leaves 
the users open to attack. In addition to graph theory, 
hyperbolic geometry adds to Internet mapping by con-
sidering geometric coordinates of nodes in space, not 
simply the map of connections. The added informa-
tion can then be used to quantify the issue of closeness 
from a geometric point of view. In graph theory, each 
node of a network has a degree, which is the number 
of other nodes connected to it. Degree distribution is 
a statistical measure showing the probability distribu-
tion of various node degrees over the network. Sta-
tistical sampling strategies are often used in network 
research, since the problems and networks examined 
are typically far too vast for complete data collection. 

Economics and the Internet
In the 1990s, many people believed that the Internet 
would bring about fundamental changes in the land-
scape of the business world. Starting in the mid-1990s, 
venture capitalists were investing heavily in new Inter-
net businesses, sometimes called “dot-coms.” Dur-
ing this time, many Internet companies operated at 
annual losses, expanding in anticipation of future 
revenues. This worked for relatively few companies, 
such as Amazon and Google. In 2001, this “dot-com 
bubble” burst, with many Internet-related businesses 
declaring bankruptcy. 
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The promises of the Internet that survived the dot-
com bubble became clearer toward the end of the first 
decade of the twenty-first century. For example, research-
ers found that in many cases, product popularity obeys 
a frequency distribution law similar to the degree dis-
tribution of network nodes. The majority of customers 
use a few most popular products, with the majority of 
products liked by small minorities of customers. 

In the early 2000s, several companies realized large 
profits by reaching these so-called long tails (named 
after the characteristic shape of the distribution curve) 
of niche customers and redefined their industries. 
Apple changed the music industry by selling individ-
ual tracks online; Netflix had a similar effect on movie 
rentals. Mathematical algorithms for determining cus-
tomer preferences and making recommendations were 
driven in large part by Internet commerce. Recom-
mender systems use complex relevance metrics, evalu-
ating content such as texts or video based on statistics 
of past behavior of all users within the system. 

These systems use explicit data, such as rank pref-
erences given by users, as well as implicit data, such 
as actions other similar users have done before. Over 
time, these systems accumulate large amounts of data 
and increase the accuracy of their recommendations. 
Mathematics involved in creation of these algorithms 
includes statistical analysis and linear algebra for work-
ing with matrices defining closeness of users. Illustrat-
ing how lucrative good algorithms are from the busi-
ness perspective, in 2009 the Netflix Prize awarded $1 
million to the developers of an improved filtering algo-
rithm for recommending movies. 
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Interplanetary Travel
Category: Space, Time, and Distance.
Fields of Study: Geometry; Measurement; Problem 
Solving.
Summary: Space exploration requires mathematics 
to plan trajectories and to navigate in space, as well as 
to measure and to analyze massive amounts of data.

Interplanetary travel can be defined as any space-
flight—manned or remotely guided—to the various 
bodies of the solar system, including planets, their sat-
ellites, and asteroids. Such space exploration required 
new mathematics to plan trajectories and navigate in 
space, as well as to measure and to analyze massive 
amounts of data. These flights have had a great societal 
impact and have radically changed human attitudes 
toward the outer space surrounding the Earth. 

History
A scientific possibility of interplanetary travel was 
discussed for centuries after Isaac Newton wrote 
Principia in 1687, in which he unified terrestrial and 
celestial dynamics by discovering the force of grav-
ity as an important source of motion, including the 
movement of celestial bodies. Step by step, an impor-
tant new mathematical branch of astronomy emerged 
and received the title “celestial mechanics.” In its for-
mative days, celestial mechanics played an outstand-
ing role in the progress of mathematics, demanding 
and inspiring novel and efficient mathematical tools. 
Among the pioneers of celestial mechanics were 
prominent mathematicians such as Leonhard Euler 
(1707–1783), Alexis-Claude Clairaut (1717–1765), 
and Joseph-Louis Lagrange (1736–1813). Today, the 
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branch of celestial mechanics dedicated to spaceflight 
is usually termed astrodynamics.

For many years following Newton’s discovery, the 
topic of interplanetary travels mainly remained the 
subject of science fiction writers. In the nineteenth cen-
tury, among the most influential science fiction writers 
were Jules Verne (1828–1905) with his books From the 
Earth to the Moon and All Around the Moon and H. G. 
Wells (1866–1946) with his book War of the Worlds. 
Verne’s work contained a great deal of mathematics 
discussion, much of which was reasonably accurate 
based on the knowledge of the time. 

To put interplanetary travel into practice, it was 
necessary to realize some significant preconditions, 
including designing spacecraft with the capacity for 
maneuvering, designing technologies for boosters to 
reach escape velocity, developing a theoretical base 
for space navigation, and creating systems for long-
distance radio communications. These technological 
developments were not made until the beginning of 
the space era in 1957.

Mathematical Development
From a mathematical viewpoint, the most interest-
ing part of interplanetary travel is space navigation. 
An appropriate example of a solution with respect to 
navigational problems is the Hohmann transfer orbit. 
In 1925, Walter Hohmann calculated that the lowest-
energy route between any two celestial bodies is an 
ellipse that forms a tangent to the starting and des-
tination orbits of these bodies. Such a transfer orbit 
between the Earth and Mars is graphed in the follow-
ing illustration. A spacecraft traveling from Earth to 
Mars along the Hohmann trajectory will arrive near 
Mars’s orbit in approximately 18 months. Just a small 
application of thrust is all that is needed to put a space 
probe into a circular orbit around Mars. The Hohm-
ann transfer applies to any two orbits, not just those 
with planets involved (see Figure 1). In the figure, 
Hohmann Transfer Orbit (light gray oblong ring), 
Earth’s orbit is represented by the white circle, and 
Mars’ orbit is represented by the darker gray circle. 
A spaceship leaves from point 2 in Earth’s orbit and 
arrives at point 3 in Mars’s.

Another example of navigational technique is rou-
tinely called the “gravitational slingshot.” It utilizes the 
gravitational influence of planets and their moons to 
change the speed and direction of a space probe with-

out the application of an engine. In this case, a space-
craft is sent to a distant planet on a path that is much 
faster than the Hohmann transfer. This would typi-
cally mean that it would arrive at the planet’s orbit and 
continue past it. However, if there is a planetary mass 
between the departure point and the target, it can be 
used to bend the path toward the target, and in many 
cases the overall travel time is greatly shortened. Prime 
examples of the gravitational slingshot are the flights of 
the two spacecraft of the American Voyager program, 
which used slingshot effects to redirect trajectories 
several times in the outer solar system. Astrodynamics 
considers many other interesting approaches. Several 
technologies have been proposed that both save fuel 
and provide significantly faster travel than Hohmann 
transfers; most are still theoretical.

Because of astrodynamics limitations, travel to 
other solar systems bodies is practical only within cer-
tain time windows. Outside of such windows, these 
bodies are essentially inaccessible from Earth using 
current technology. Mathematicians helped design the 
Interplanetary Superhighway, a network of low-energy 
trajectories, in order to find efficient routes through 
space; these mathematical foundations originated with 
French mathematician Henri Poincaré. 
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Achievements and Obstacles
The modern accomplishments in interplanetary travels 
are extraordinary. Remotely guided space robots have 
flown past all of the planets of the solar system from 
Mercury to Neptune, and the National Aeronautics 
and Space Administration’s (NASA’s) spacecraft New 
Horizons is scheduled to fly past the dwarf planet Pluto 
in 2015. The five most distant spacecraft (including 
the American ships Pioneer-10, Pioneer-11, Voyager-1, 
and Voyager-2) were scheduled to leave the solar sys-
tem at the beginning of the twenty-first century. Arti-
ficial satellites have orbited Venus, Mars, Jupiter, and 
Saturn. Spacecraft have landed on the Moon, Venus, 
Mars, Saturn’s moon Titan, and asteroid 433 Eros. The 
first probes to comets (European Giotto, Russian Vegas, 
American Stardust) were fly-by missions. In 2005, the 
Deep Impact probe hit the comet 9P/Tempel to study 
the composition of its interior. 

Great achievements took place in manned inter-
planetary travels once mathematicians, scientists, and 
engineers understood the mathematical principles 
required to launch spacecraft outside Earth’s atmo-
sphere and to maneuver in the microgravity environ-
ment of space. NASA also recruited astronauts with 
strong academic credentials in science and math-
ematics. America’s Mercury and Gemini programs 
put humans into space and Earth orbit and taught 
them how to change trajectory in space to move to a 
new orbital altitude or to dock with other spacecraft, 
while the Apollo program took them to the moon. 
After missions in which men orbited the moon and 
returned, Apollo 11 landed astronauts Neil Armstrong 
and Edwin “Buzz” Aldrin on the moon in 1969. There 
were six successful manned American expeditions to 
the moon from 1969 to 1972. 

Further development of interplanetary travel has 
many obstacles that will require a great deal of math-
ematical analysis to model, simulate, and solve. For 
example, astronauts must be protected from extreme 
radiation exposure in the Van Allen belt, a torus-
shaped region of space surrounding the Earth and 
other planets named after geophysicist James Van 
Allen of Iowa. 

The larger outer radiation belt is about four Earth 
radii (RE) above the surface of the Earth and the inner 
is about 1.6 RE, with a gap at roughly 2.2 RE. Apollo 
astronauts were briefly exposed to this radiation on 
trips to the moon. Conspiracy theorists who disputed 

the notion that humans landed on the moon cited the 
Van Allen belt as evidence that the astronauts would 
have died from radiation, but simple calculations 
and the data collected by radiation sensors worn by 
astronauts (similar to those worn by scientists and 
hospital workers who may be exposed to radiation) 
demonstrated that the speed and design of the Apollo 
capsules protected astronauts during these relatively 
short trips. 

If the Earth was the main focus of many sciences 
(geodesy, geology, geophysics, geochemistry, and 
oceanography) for millennia, interplanetary travel cre-
ated a new important branch of research—compara-
tive planetology—which is essential for understanding 
the history of Earth and its evolution. 

Among many other difficult problems of interplan-
etary travel is developing adequate human life support. 
A breathable atmosphere must be maintained, with 
adequate amounts of oxygen, nitrogen, controlled lev-
els of carbon dioxide, trace gases, and water vapor. It is 
also necessary to solve the problem of food supply.

At some point in time, all of these problems may be 
overcome. Incentives for future expansion of interplan-
etary flights include the possibility of colonizing other 
portions of the solar system and utilizing resources. 
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Inventory Models 
Category: Business, Economics and Marketing.
Fields of Study: Data Analysis and Probability; 
Measurement; Number and Operations.
Summary: Mathematical inventory control models 
help businesses make decisions, and they are widely 
studied in the discipline of operations research.

In an ideal world, retail stores would stock all of the 
products that customers are interested in buying and 
stock these in sufficient quantity to cater to all cus-
tomers. In reality, store area is limited and a company 
would not benefit by stocking an excess of each prod-
uct. The problem, then, is to calculate the optimal 
amount of supply. 

These decisions take into consideration how many 
units should be kept so that most, if not all, custom-
ers can be served on a particular day, because if cus-
tomers do not find what they want, they will shop 
elsewhere. At the same time, a store does not want 
too many units on hand, as there are costs attached 
to storing excess units, and they may remain unsold, 
which also reduces profit. 

The problem can be considered in manufacturing, 
where a product consists of many small components, 
and a business has to decide how many components it 
must order and store so that fabrication runs smoothly. 
Similar examples exist in service industries and mili-
tary ships. Mathematical inventory control models help 
businesses make decisions, and they are widely studied 
in the mathematical discipline of operations research. 

Mathematics of Inventory 
Computational logistics is a mathematical and busi-
nesses field concerned with planning the flow and stor-
age of goods, services, or information from the point of 
origin to the point of use. One key planning consider-
ation is the trade-off between transport and inventory 
costs, a factor recognized at least as early as the mid-
1880s. Mathematicians, computer scientists, and oth-
ers continue to develop new inventory management 
and optimization models as well as the algorithms and 
software necessary to implement them. Mathematician 
Samuel Karlin was awarded the John von Neumann 
Theory Prize in 1987, as well as the National Medal of 
Science in 1989, for diverse mathematical contribu-
tions, including inventory theory.

Inventory models used to calculate optimal order 
quantities and reorder points, often broadly called 
economic order quantity (EOQ) models, existed 
long before the arrival of the computer. Advances 
in mathematical methods and computer technology 
have facilitated more realistic models that account 
for more variables. Optimizing inventory depends on 
factors such as storage space, storage cost, demand 
rate, time between demands, cost of ordering, time 
for retrieving stored item or receiving an ordered 
item, discounts for bulk orders, and many other real-
world costs. 

Just-in-time models are based on the idealized prin-
ciple that items are available exactly when they are 
needed, with zero storage time or delay. Just-in-time 
inventory management and lean manufacturing ideas 
existed as far back as Henry Ford’s Model T factories 
but became widely feasible in the late twentieth century 
with advances in technology that affected variables, like 
the lead time required to place an order for more stock. 
Reduction of process variability, using better monitor-
ing, waste reduction, or inventory buffers, are typically 
seen as key to achieving optimal models under this sys-
tem. A just-in-time model can save money by reducing 
inventory, but tighter constraints make them conse-
quently more vulnerable to disruptions that violate the 
constraints. 

Many basic EOQ models are simplified by assum-
ing that variables such as demand are fixed or uni-
form across some period of time. These deterministic 
models are easy to solve analytically but may produce 
unrealistic results. They are often useful for theoreti-
cal study or businesses with greater variability toler-
ances. Many variables that influence inventories, such 
as demand and delay times for orders of new goods, are 
more realistically modeled as random variables. As a 
result, inventory models are often probabilistic or sto-
chastic. Constraints tend to be operationalized as costs. 
For example, the physical area available for storage, 
such as square footage of shelf space or warehouse vol-
ume, can be reformulated as a cost constraint by cal-
culating a cost per unit area or volume. Cost may also 
be parameterized into components like procurement 
and maintenance costs. Markov chains and linear pro-
gramming techniques are useful for formulating and 
solving various types of inventory models. Statistical 
methods are used to obtain valid data for modeling 
and simulations.
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Jackson, Shirley Ann
Category: Architecture and Engineering.
Fields of Study: Connections.
Summary: Shirley Jackson is a noted physicist 
and mathematician who has performed important 
research in semiconductor systems.

Shirley Jackson (1946–) is an American physicist. She 
was always interested in mathematics, in part because 
her father shared his talent in mathematics and science 
with her. She excelled in school, graduating as valedic-
torian in 1964 after completing accelerated programs 
in both science and mathematics. She advises, “to do 
science takes a cumulative background. You can’t do 
advanced mathematics if you don’t know calculus; if 
you don’t know trigonometry, geometry, algebra and 
you certainly can’t do those things if you can’t add, 
subtract, multiply, divide, no fractions, et cetera.” She 
went on to the Massachusetts Institute of Technology 
for both her bachelor’s degree and, in 1973, a Ph.D. in 
physics under the direction of James Young, thereby 
becoming the first African-American woman to receive 
a Ph.D. from that institution. Her research as a stu-
dent centered on solid-state physics and elementary 
particle theory, both of have continued as motivating 
research interests throughout her career. Shirley Jack-
son’s research interests are diverse, but largely relate in 

some way to semiconductor systems, particularly new 
or unconventional types of semiconductor systems. 
Her research includes electronic, optical, and magnetic 
aspects, as well as Yang–Mills gauge theory, which is 
an extremely important topic in applied mathemat-
ics. Jackson has been highly acclaimed for her achieve-
ments in science, education, and public policy. She 
has been elected to both the American Philosophical 
Society and the American Physical Society, among 
others. She noted, “how does a young woman, eager 
for success, but also desirous of support and respect, 
respond to . . . the limitations associated with racial and 
gender stereotypes? I will tell you. I chose a ‘trade.’ I 
chose physics!” In 1998, she was formally inducted into 
the National Women’s Hall of Fame. In 2002, Discover 
magazine named Shirley Jackson one of the 50 most 
important women in science.

Professional Life
After receiving her doctoral degree, Jackson obtained 
a position as a research associate at the Fermi National 
Accelerator Laboratory in Batavia, Illinois, where her 
work concentrated on hadrons, a class of subatomic 
particles including protons, neutrons, pions, and kaons, 
among others. Later she was a visiting scientist, first at 
the European Organization for Nuclear Research (also 
known as CERN) and subsequently at the Aspen Center 
for Physics. She noted, “I like everything about begin a 
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physicist:  thinking about a problem, solving it, writing 
about it, working with my colleagues, and giving talks all 
over the world.” Jackson was a respected lecturer in phys-
ics at the Stanford Linear Accelerator Center. In 1976, 
Jackson became part of the Theoretical Physics Research 
Department at Bell Laboratories. From 1991 to 1995, 
she was a professor on the faculty of Rutgers University, 
but continued to consult with Bell Laboratories. 

President Bill Clinton appointed Jackson to the posi-
tion of chairman of the U.S. Nuclear Regulatory Com-
mission (NRC) in 1995. At that time, she was both the 
first woman and the first African American to hold this 
position. In 1999, after her term at the NRC expired, 
she became president of Rensselaer Polytechnic Insti-
tute, a private university in Troy, New York, dedicated 
to scientific and technological research. She continues 
to hold this position to the present time and her cur-
rent contract extends until 2020.

She has also served on the boards of directors of 
a large number of organizations, including the New 
York Stock Exchange, FedEx Corporation, Marathon 
Oil Corporation, IBM Corporation, the Massachusetts 
Institute of Technology, and the Smithsonian Institu-

tion. She is an active member of the National Academy 
of Sciences, the National Science Foundation, and the 
American Association for the Advancement of Science. 
She has described her purpose on these committees 
as supporting American innovation by (1) increasing 
support for education, (2) bringing in the best inter-
national talent, and (3) promoting the participation 
of women, minorities, and other underrepresented 
groups in science-based careers. She feels that, “We 
have to have more degreed teachers—teachers with 
actual degrees in science, mathematics and engineer-
ing.” In 2009, she was appointed by President Barack 
Obama to the President’s Council of Advisors, which 
focuses on important matters of public policy.
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Joints
Category: Medicine and Health.
Fields of Study: Algebra, Geometry.
Summary: Joints allow bones to move—a movement 
that is modeled and analyzed using mathematics.

A joint (where bones join) generally allows motion of 
those bones relative to each other. The motion, typically, 
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rotation about the left-right axis (raising the 
arm up, above the head)

• The opposite sequence of rotations, first 
about the left-right axis (twisting the arm 
about its long axis), followed by rotation 
about the vertical axis (bringing the arm 
pointing to the front)

The two sequences lead to different configurations. 
The dependence of the final outcome on the sequence 
of the rotations is expressed by mathematicians as the 
“noncommutativity” of rotations in three-dimensional 
space. It means that rotations can not be described 
simply by three numbers, unless the sequence is also 
specified. Certain ways of specifying the sequence have 
been standardized, such as a rotation being described 
by three “Euler angles” (yaw, pitch, and roll). There are 
also several other mathematical techniques, involving 
matrices, for dealing with rotations in 3-dimensional 
space, as matrices too have the property of noncom-
mutativity (A × B ≠ B × A). Another technique, which 
uses four rather than three numbers to represent 
a rotation, is the method of “quaternions.” These 
abstract entities were proposed originally as exten-
sions of complex numbers. Incidentally, the designers 
of computer visualizations, like video games, utilize 
quaternions for programming the rotational motions 
of the objects.

Forces
Motions about joints result from muscle and exter-
nal forces. It is the moments of these forces that mat-
ter for rotation. In multijoint movements, a muscle 
moment about one joint can cause motions about sev-
eral joints; specifically, even a fully relaxed joint would 
flop when there is motion about nearby joints. This 
phenomenon is described by rather complicated dif-
ferential equations, which the neural control system 
takes into account in its planning. But the force with 
which the bones at a joint push against each other can-
not be determined simply from the moments of forces. 
This force (called “joint loading”) depends upon both 
external and muscle forces, and is typically many times 
greater than any external forces. The wear and tear of 
the joint—natural or artificial—depends upon the 
loading. Also, joints being nearly frictionless, slippage 
occurs if the load has a substantial component paral-
lel to the surface of contact. Noninvasive techniques 

is a rotation about the joint. Such rotations underlie 
almost all the movements humans perform in everyday 
life. Mathematics plays a crucial role in understanding 
the causes and consequences of the joint rotations, sin-
gly or in combination, and also in estimating the forces 
to which the joints are subjected. 

Simple Joint Movement
Suppose, for simplicity, that rotation is confined to the 
elbow joint. Then the forearm would move in a plane, 
and the position of the hand would be represented by 
extrinsic (x, y) coordinates that involve trigonometric—
sine and cosine—functions of the elbow angle. When 
many joints participate, such as the shoulder, elbow, and 
wrist, the description of a hand movement, like reach-
ing for a cup, involves combinations of trigonometric 
functions of the joint angles. The relationship between 
changes in the joint angles and the resulting changes in 
the extrinsic coordinates is expressed in the form of a 
matrix (called the “Jacobian matrix”), consisting of rows 
and columns of trigonometric functions. The methods 
of matrix algebra can be used for understanding the 
consequences of a sequence of changes in joint angles.

The inverse problem of finding the joint angles when 
the extrinsic coordinates are given can have an infinite 
number of solutions, called “kinematic redundancy.” 
For example, there are many ways of configuring an 
arm so as to get a finger to touch one’s nose. Why a 
person chooses a certain configuration is not known, 
though various hypotheses have been proposed. This is 
a crucial issue also in robotics, where “joint” angles have 
to be computed in order to reach a prescribed position 
in space. Various mathematical methods have been uti-
lized for picking an “optimal” solution to this problem. 

Three-Dimensional Joint Movement
The importance of mathematics in understanding 
and describing joint function is further emphasized 
when considering motions in three-dimensional 
space because certain phenomena arise that are far 
from intuitive. As an example, assume the shoulder to 
be a ball-and-socket joint and imagine the following 
two sequences of 90-degree rotations about the right 
shoulder, starting each time with the arm horizontal 
and stretched out to point to the right: 

• Rotation about the vertical axis (bringing 
the arm to point to the front), followed by 
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for estimating the joint loading force are highly com-
putational. Given the external forces and observed 
motions, one determines the needed muscle torques 
at each joint, and then, knowing the anatomical lay-
out of the muscles and their strengths, one estimates 
the distribution of forces among the muscles. With all 
other forces thus known or estimated, one can derive 
the joint loading.  
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Kicking a Field Goal
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and  
Probability; Geometry.
Summary: Probability, statistics, and physics govern 
a football coach’s decision to attempt a field goal.

Football is one of the most popular sports in the United 
States, and successfully kicking a field goal is one of a 
few ways that football teams can score points. Every 
kick that is made is unique, and a solid knowledge of 
mathematics is necessary to tailor the kick to be suc-
cessful. The path of the ball is parabolic in nature and 
may differ based on environmental conditions. Geom-
etry plays a major role in the strategy used when kick-
ing a field goal. Coaching staffs gather large amounts 
of data not only from their own team but from others 
as well to understand how these conditions alter kick-
ing success. The data are used to create information 
about the probability of success to then determine if 
and when a field goal will be attempted. Mathemati-
cians have also studied and modeled these problems 
using a variety of methods such as partial derivatives 
and concepts from algebraic topology. Many models 
focus on such critical variables as goal post placement 
with respect to inbounds lines, goal post height and 
distance between uprights, the kicker’s distance from 

the goal post base, wind factors, and kicking angles. 
These models can also be applied to other sports that 
have goals, like hockey and soccer.

Process
American football has been played for over 100 years 
and has evolved over the years into the game played 
today. Scoring can occur in a variety of ways including 
the field goal, which gives the kicking team three points. 
A field goal is scored when the ball is kicked from the 
ground and through a goal. The goal is made up of a 
horizontal crossbar that is 10 feet off of the ground 
and two upright side posts that are 18.5 feet apart in 
the National Football League and 23 feet 4 inches apart 
for college and high school games. The ball must pass 
between the two upright posts while going over the 
crossbar, which is located 10 yards behind the end zone 
line. The ball is kicked from a position on the field that 
is either where the last down was marked (if the ball 
is in the center of the field) or on hash marks that are 
lined up with the two side posts of the goal. 

Thus, the path the ball must travel to score a goal is 
not a set path, but rather is based on the starting posi-
tion of the ball; as long as the ball clears the crossbar 
between the two side posts, it is successful. If the kick 
is not successful, the other team gets possession of the 
ball at the location of the ball prior to the kick. Because 
of this potential exchange of possession of the football, 
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the likelihood that a kick will be successful must be well 
understood.

Flight Path Factors
The path that the ball travels is very close to a parabola, 
with differences potentially being created by environ-
mental conditions such as wind, rain, or altitude. Wind 
can act to either increase or decrease the distance of 
flight, depending on the wind direction. Rain acts to 
decrease both the ball’s distance of flight and height. 
Higher altitudes mean there is less air resistance, so the 
ball will travel both farther and higher when games 
are played in stadiums high above sea level. Other fac-
tors that influence the ball path include aerodynamic 
forces related to ball spin. These can lead the ball to 
move to one side or the other and make a ball that has 
the appropriate distance and height fail to score. These 
forces can also shorten a ball distance if the ball is spin-
ning backward.

Coaches gather large sets of data about successful 
and unsuccessful kicks in different venues to better 
understand how the environmental conditions might 
alter the kick path. A team with an outdoor stadium 
often has an advantage over a team whose home field 
is in an enclosed dome. Along with venue information, 
coaches study information about their kickers’ prac-
tice kicks and the opponent’s defense to determine the 
probability of a kick leading to a score. Collectively, this 
information helps coaches decide whether they want to 
take the risk of kicking a field goal or whether punting 
the ball down the field is the wiser decision.
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the loop or passing the string through itself. In 1926, 
Kurt Reidemeister demonstrated that all such trans-
formations were made up of a sequence of just three 
basic moves called Reidemeister moves. Deciding 
whether two knots are the same via a sequence of such 
moves is a member of a host of problems involving 
changing one object into another without breaking or 
tearing, which have long stumped topologists. Topolo-
gists find it difficult to assure themselves that failing to 
transform one knot into another truly reflects impos-
sibility, or rather just their own failure.  In modern 
times, mathematical knots are useful in physics and 
biochemistry.

Invariants and Links
To wrestle with this problem, topologists have created 
an assortment of invariants, mathematical entities that 
can be unambiguously computed for each knot. If a 
particular invariant has different values on two knots, 
then those knots are different. Unfortunately, differ-
ent knots can have the same invariants. In 1928, James 
Waddell Alexander II created a method for associat-
ing a polynomial to a knot, now called its Alexander 
polynomial. In 1983, Vaughan Jones, studying a sim-
plified model of phase transitions, such as freezing, 
discovered a second invariant, the “Jones polynomial.” 
Another mathematician, Edward Witten, soon noticed 
that the same polynomial could be computed from an 
invariant on particular three-dimensional spheres, 
providing insight into another difficult classification 
problem. Witten and Jones shared part of the Field’s 
Medal in 1990 for these discoveries. Victor Vassiliev 
has since created a host of new invariants. The Vas-
siliev invariants are infinite in number, and it is con-
jectured that any two different knots will differ in at 
least one such invariant.

Not all invariants are polynomials. Henri Poincaré 
created a topological invariant called the “fundamental 
group.” Applied to knots, it is called the “knot group” 
and is actually computed on the complement of the 
knot, that is, the abstract concept of all space with the 
knot removed. Poincaré’s invariant was the seed of an 
area that grew into a central focus of twentieth-century 
mathematics called “homological algebra.”

Knots, and their close cousins, links, have proven 
useful in a branch of physics called “topological quan-
tum field theory.” For this application, physicists use 
particular guidelines to trace knots in two dimensions. 

Isaksen, Daniel. “How to Kick a Field Goal.” College 
Mathematics Journal 27, no. 4 (1996).

Libassi, Steve. Placekicking Fundamentals and Techniques: 
Mastering the Mechanics and Exploiting the Scoring 
Potential of the Kicking Game. Monterey, CA: Coaches 
Choice, 2001.

Michele LeBlanc

See Also: Hockey; Mathematical Modeling; Soccer.

King, Ada (Countess  
of Lovelace)
See Lovelace, Ada

Knitting
See Crochet and Knitting

Knots
Category: Games, Sport, and Recreation.
Fields of Study: Geometry; Representations.
Summary: Mathematical knots are useful in physics 
and biochemistry.

Since ancient times, knots have been used in sailing, 
building, textiles (“knit” comes from “knot”), climb-
ing, and in recreation, as well as serving as symbols 
for spiritual or religious concepts like eternity or wis-
dom. Topology generalizes the idea of a knot to an 
embedded circle in 3-dimensional Euclidean space. In 
knot theory, a knot is a tangled-up loop, like a piece 
of string with the ends fused together. The simplest 
is the unknot, simply an untangled loop like a rubber 
band. Two knots are the same if one can be manipu-
lated (transformed) into the other without breaking 
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The knot diagrams then portray scenarios in which 
particles are created, interact, and are finally annihi-
lated. By appropriately labeling pieces of knots, mathe-
maticians can realize the Jones and other invariants via 
important modern mathematical constructs, includ-
ing the Yang–Baxter equations and quantum groups. 
Mikhail Khovanov has created a new type of invariant 
on links, keeping this topic at the very forefront of con-
temporary mathematics.

Applications in Biochemistry
The application of knot theory to DNA molecules has 
helped to elucidate their biochemistry. The DNA mol-
ecule of a bacterium closes into a circle, which bends 
and twists itself into a knot. This knotted structure can 
block DNA replication. Using electron microscopy or 
gel electrophoresis, the biologist can determine an indi-
vidual molecule’s crossing and unknotting numbers, 
two numbers that classify knots. Enzymes called “topoi-
somerases” release the knots as a preliminary step to 

DNA replication. By carefully examining the knots that 
arise, molecular biologists have determined that there 
are two different topoisomerase molecules. Topoisom-
erase I releases the knot by cutting both strands of the 
molecule, and  Topoisomerase II nicks just one strand 
and twists the cut strand around the other.

Further Reading
Adams, Colin C. The Knot Book: An Elementary 
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Landscape Design
Category: Architecture and Engineering.
Fields of Study: Algebra; Measurement;  
Problem Solving.
Summary: Landscape design is an application 
of geometry, shaping an outdoor environment to 
something pleasing.

Landscape design is the combination of gardening and 
architecture for making outdoors environments more 
aesthetically pleasing, ergonomic, and useful. 

It is a synthetic occupation, requiring the knowl-
edge and skills of horticulturists, engineers, architects, 
and visual artists. 

Mathematical calculations underlie many aspects of 
landscape design, such as how many plants are needed 
to fill a bed or landscape or how to build a landscaped 
terrace that will resist erosion. Landscape architects 
often include design elements based on symmetry and 
other geometric features of areas, surfaces, and three-
dimensional elements. More advanced mathematical 
forms, such as fractals or labyrinths, are incorporated 
in some landscapes, like crop circles. Peter Schaar was 
an applied mathematician for many years before turn-
ing to a career as a landscape designer. He noted that 
the notion of an elegant solution is common to both 
mathematics and garden design.

Design Elements and Principles
Landscape design, like other forms of design and dec-
orating, uses design principles and elements that are 
mathematical in their nature. The Western traditions 
of landscape design typically use lists of elements, 
including the following:

• Line
• Shape
• Size
• Texture
• Color

Every element is expressed through natural or 
architectural media, including plants, stones, and 
ground shapes. Straight or curved lines and shapes 
are created using hedges, paths, flower borders, and 
shapes of bushes and trees. Sizes of landscape ele-
ments, including stones, plants, and built structures, 
can match or contrast. Textures and color can be nat-
ural, such as foliage, water, grass, and stone, or modi-
fied by people, such as cut bushes, polished stones, 
and painted structures. 

Likewise, the artistic principles, such as repetition, 
balance, and focal points, are achieved with the com-
bination of human-made and natural elements. For 
example, traditional landscaping focal points include 
sculptures, fountains, and flower beds.

L



Sacred Traditions and the  
Development of Mathematics
Building, gardening, and designing landscapes were 
connected to spiritual practices by many cultures 
around the world. The resulting complexity of habitats 
often elevated mathematical and scientific knowledge, 
as well as the arts within the cultures practicing these 
traditions. 

For example, feng shui is the Chinese design tradi-
tion connected with the development of astronomy 
and precise measurement instruments, such as mag-
netic compasses and astrolabes. Mathematical ideas 
involved in feng shui symbols include binary numbers, 
powers, and combinatorics.

Some mid-African cultures use fractal structures in 
village design, where the shape of the village is repeated 
in shapes of house clusters, then houses, then rooms 
within houses. The shape is connected to the beliefs of 
the people and reflected in the lore while at the same 
time being practical for the needs of the village.

Ancient Egyptians used the concept of gnomon, 
which is a specially constructed geometric shape corre-
sponding to a regular polygon, in their area and archi-
tecture calculations. When a gnomon is added, the 
ratio of polygon sides is maintained. Osiris was associ-
ated with this idea of the constant ratio, in the myth 
as the God of Sun, growth, and constant change, and 
was often drawn on a square throne expanded with the 
L-shaped gnomon. These geometric traditions were 
inherited by the Greeks, formalized as Euclid’s geom-
etry, and entered the Western knowledge base.

Budgets and Rates
Landscaping expenses include the price of material and 
labor for construction and maintenance. It is estimated 
that in the United States, a house with its landscape 
design rated “excellent” by experts can sell for 5% to 
10% more than the same house with its design rated 
“good.” Therefore, it may make financial sense to spend 
money landscaping the property. These calculations are 
performed by developers and real estate agents when 
deciding landscaping budgets. 

Further Reading
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Labyrinths and Mazes

A labyrinth is an elaborate landscape struc-
ture consisting of live or stone hedges or 

mosaic ground patterns, with a winding single 
path leading to its center. Unlike mazes, which 
have many possible paths and serve as spatial 
puzzles, labyrinths are easy to navigate. Laby-
rinths are used as pleasing places for conver-
sation or meditation. Mathematically similar 
patterns for labyrinths appear in archaeologi-
cal finds on all continents. Solutions of mazes 
and constructions of labyrinths have to do 
with topology, graph theory, and knot theory in 
mathematics.



Mortality would be just the complement of the propor-
tion of survivors, expressed as: Mortality = (number 
of individuals dead after exposure) ÷ (total number of 
exposed individuals).

Based on common sense, one would expect that the 
mortality would increase with the dose of a toxic com-
pound. Most typically this is indeed the case and the 
mortality obtained from an experiment with a large 
total number of exposed is monotonic, meaning it 
increases with the dose. 

Dose-Response Curve
When mortality is taken as a function of dose, one 
can plot the so-called dose-response curve. Dose-
response curve has lower asymptote at 0 since no 
exposure-related death can occur when no exposure 
is applied. Similarly, it has upper asymptote at 1, since 
exposure-related death will always occur with a large 
enough dose. The asymptotes are shown as horizontal 
dashed lines. 

Note that often one needs to go over several orders 
of magnitude of doses in order to observe transition 
from zero effect to the full effect, so the dose-response 
is then plotted as the mortality versus logarithm of the 
dose. Since the logarithm is a one-to-one function, 
nothing is lost by the transformation, and the plot is 
more readable. 

LD50
Because the dose-response curve is a rather complex 
quantity, many possible features might be compared 
across different compounds. It might be cumbersome 
in practice to compare curves, however. A simple sum-
mary is often all what is needed. Median lethal dose, or 
LD50, is the most popular characteristic. It is defined 
as the dose at which 50% of exposed individuals die. 
When a dose-response curve is available, an LD50 is 
constructed by drawing a horizontal line at 0.5, finding 
its intersection with the dose-response curve, draw-
ing vertical line at the intersection, and reading off the 
value where it crosses the horizontal axis. 

Statistical Estimation
In practice, one does not have the dose-response curve 
at hand. It needs to be estimated from experimen-
tal data by statistical means. In fact, the mortalities 
obtained from two experiments with the same doses 
would be very likely somewhat different, as a result 

LD50/Median  
Lethal Dose
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and  
Probability.
Summary: The median lethal dose of a compound 
is determined through experiment and statistical 
estimation.

Toxicity often needs to be compared across various 
chemical compounds and other noxes. The detailed 
and complex dose-response curve describes the rela-
tionship between the dose of a compound and its 
harmful effect. Frequently, a simple summary in the 
form of a single number is needed for practical pur-
poses. Median lethal dose, or “LD50” is most popular 
in this context. It is defined as the dose at which 50% of 
exposed individuals die. 

In order to be meaningful, such a definition implic-
itly assumes certain features of the dose-response 
relationship, namely its monotonicity, the fact that 
mortality increases with dosage. Although the con-
cept is defined for a theoretical dose-response curve, 
its practical application is strongly related to statistical 
estimation of the dose-response curve model based on 
data obtained from an experiment with many animal 
or other nonhuman organisms randomly assigned to 
various doses.

Toxicological Testing
In toxicology and related disciplines, such as food 
safety and environmental risk assessment, one often 
needs to quantify how toxic or dangerous a substance 
is. A quantification of the harmful effect is needed for 
many practical comparisons; for instance, to compare 
the toxicity of different substances or to compare 
them with a standard. Although there are many pos-
sible aspects of how dangerous a compound is, sur-
vival of exposed individuals is frequently of interest. 
The survival is assessed experimentally in the “quan-
tal response trial.” 

It is based on a set of animal or other nonhu-
man organisms, whose randomly selected groups are 
exposed to different doses of the tested compound. 
The outcomes are summarized as the percentages or 
proportions of those that survived in each dose group. 
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of random errors. For example, different randomly 
selected experimental animals would react differently 
to a given dose. 

Nevertheless, when the size of the experiment 
increases, increasing both the number of animals in 
every dose group and increasing the number of dif-
ferent dose groups, random errors would tend to 
decrease in line with the law of large numbers. In fact, 
for a very large experiment, the mortality estimates 
get close to the probabilities of survival. Since not all 
of the infinite possible doses can be explored in a real 
experiment, a model relating the survival probability 
to the dose is assumed in order to be able to interpo-
late between the doses actually used in the experiment. 
An interpolation is typically needed when calculating 
LD50. Parameters of the model are then estimated by 
various statistical means. Very often, logistic regres-
sion is used to this end. 

Other Uses of LD50
While the definition of LD50 is directly related to 
lethality, the mathematical concepts used in LD50 
testing and modeling can be applied to many other 
less-dramatic outcomes. In general, these models are 
useful when the relationship being explored involves a 
binary response variable, like yes/no or pass/fail, pre-
dicted by a quantitative explanatory variable, as long 
as the relationship is bounded and monotonically 
increasing in the same manner as before. For example, 
rather than finding the dose that induces mortality, 
researchers may wish to model what dose of a medi-
cine will cause 50% of exposed individuals to show a 
certain, nonlethal symptom.

Further Reading
Agresti, A. Categorical Data Analysis. Hoboken, NJ: 
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See Also: Curves; Functions; Limits and Continuity; 
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Learning  
Exceptionalities
Category: School and Society.
Fields of Study: All.
Summary: There are a variety of ways in which 
students can perform especially well or poorly in 
particular areas of mathematics and ways for schools 
to address their needs.

Learning exceptionalities in mathematics include both 
difficulties in learning mathematical concepts and 
mathematical giftedness. In both cases, exceptionalities 
take many forms and may manifest themselves at nearly 
any stage of life. In some cases, students may even excel 
in one area while displaying a deficit in another. The 
neurobiology of learning mathematics is not yet fully 
understood. Research in these areas is ongoing, often 
using sophisticated medical imaging to identify and 
map mathematical associations and processes, such 
as calculations, visualization of polyhedrons, prov-
ing theorems, or pondering number theory problems. 
There are also some difficulties in devising tests to 
reliably identify specific types of exceptionalities, and 
many people, especially those with difficulties, may not 
be diagnosed until very late in their academic careers. 

Educational institutions often struggle with appro-
priate ways to serve students with exceptionalities so 
that all students may reach their maximum potential. 
These range from specific classroom instruction tech-
niques all the way up through broader policies or leg-
islation that addresses the needs of these subgroups of 
students. There are currently many formal systems in 
place by which students are assessed and accommoda-
tion plans are developed, most of which require peri-
odic reassessment and revision. Plans for students with 
disabilities typically fall under Section 504 of the Amer-
icans with Disabilities Act and are commonly referred 
to as “504 Plans.” In recent years, the term “dyscalculia” 
has emerged as a broad term to encompass the set of 
mathematics learning disabilities.

Mathematical Disabilities
Sadly, unlike reading disabilities, many mathematical 
disabilities go undiagnosed, primarily because of social 
acceptance of the idea that certain people either have or 
have not mathematical abilities. For many students, the 
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perception that they are “not good at math” provides a 
reason for them not to strive for success in the math-
ematics classroom. Researchers and practitioners alike 
indicate that if teachers truly want all students to suc-
ceed, a new perspective must be adopted: “all students 
can do math, should do math, and will do math.”

With this new perspective in mind, the focus shifts 
to identifying mathematical disabilities. According to 
David Geary, researchers in the field of mathematical 
disabilities have attempted to identify disabilities by 
studying normal mathematical development theories 
and using those theories to study children who demon-
strate difficulties in mathematics despite having average 
or better IQs. Since most of the research has focused 
on students in the elementary grades, it becomes even 
more important for teachers and parents to be alert for 
mathematical difficulties early in school.

Currently, children with mathematical disabilities 
are defined as children with at least average IQ scores 
who also score at or below the 10th percentile on 
mathematics achievement exams. Research indicates 
that 6% to 7% of elementary school children demon-
strate persistent mathematical difficulties in the area 
of number and arithmetic. It is important to note that 
current research studies indicate these difficulties per-
sist regardless of IQ, motivation, and other factors that 
influence learning. What makes this area of research 
perplexing is that these children may have very specific 
deficits that make only certain aspects of mathematics 
difficult. For example, a child may have difficulty with 
counting but show a strong ability in geometry. Because 
standardized tests, which are frequently used for mak-
ing decisions about whether a child should be recom-
mended for special services, assess a wide variety of 
mathematical skills, a child’s particular mathematical 
disability may not be immediately identified. Adding 
to the difficulty is that children who score at approxi-
mately the same level on standardized tests may have 
vastly different mathematical deficits. Unfortunately, 
current methods of assessing mathematics knowledge 
are not sufficient for identifying mathematical disabil-
ities, as assessments that focus on specific number and 
arithmetic skills are needed.

Learning Basic Numbers
Several mathematical disabilities have been identified. 
First, children may have a disability in learning basic 
number skills. Geary states that the “learning of basic 

number skills is much more complicated than many 
adults would assume.” In order to learn basic number 
skills, children must learn the English number words 
(known as “word tags”) and the Arabic numbers in the 
correct sequence, and learn to translate between the 
two. Children must then learn the quantities associ-
ated with the number words and number symbols, as 
well as develop an understanding that numbers can be 
decomposed into smaller numbers or combined into 
larger numbers. 

The learning of place value in the base-10 system 
is a key component of developing number sense, and 
children with this particular type of mathematical 
disability may not be able to comprehend that 12 is 
actually 10 + 2, leading to later difficulty with basic 
arithmetic skills.

Counting Skills
A second mathematical disability is in the area of 
counting. While children do not typically have diffi-
culty learning the basic counting sequence, they may 
have difficulty learning the basic concepts that enable 
them to count objects effectively. Geary identifies these 
concepts as the following:

• One–one correspondence: When counting, 
one does not count and tag the same  
item twice

• Stable order: The order of the word tags 
remains constant across counted sets

• Cardinality: The value of the final word tag 
represents the quantity of the items in the 
counted set

• Abstraction: The concept that objects of any 
kind can be collected together and counted

• Order-irrelevance: Items within a set can be 
counted in any sequence

Geary notes that having children count does not 
provide an indication of a child’s understanding of 
the counting rules, as children may learn the sequence 
of counting without developing the understanding of 
applying the word tags to objects. An additional com-
plexity to this mathematical disability is that children 
may have difficulty remembering information during 
the act of counting; therefore, they may understand the 
counting rules but may forget numerical information 
during the counting process.
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Arithmetic Skills
A third area of mathematical disability is that of 
arithmetic skills. Children with arithmetic disabilities 
typically have difficulty remembering as many basic 
arithmetic facts as other children and may not recall 
basic facts as quickly. This memory difficulty may 
be the result of children having trouble storing basic 
facts in long-term memory, or it may be the result of 
other arithmetic facts inhibiting the child’s ability to 
recall. For example, a child may see a problem like 
4 + 5, and the child may correctly remember 9, but 
also may remember 20 (or 4 × 5), causing the child 
to take longer to recall the correct fact. Children with 
arithmetic difficulties also may not use highly devel-
oped problem-solving procedures to solve arithmetic 
problems but may rely on procedures typically used 
by younger children. 

In general, children with mathematical disabilities 
use less mature strategies in their approach to mathe-

matics, resulting in more errors and delayed acquisition 
of advanced mathematical thinking. Finally, children 
may verbally show an excellent grasp of mathemati-
cal concepts but have difficulty translating that under-
standing into paper and pencil assessments. These 
children struggle with paying attention to operations 
and sequencing steps in complex operations. Interest-
ingly, many students who show difficulty with arith-
metic skills in the elementary grades become “good 
math students” in the higher grades where conceptual 
understanding is emphasized more heavily.

The Language of Mathematics
Fourth, some children may have difficulty with the 
language of mathematics. These children easily con-
fuse mathematics terminology and struggle with ver-
bally communicating their mathematical thinking. 
This deficit can inhibit students from making progress 
in advanced mathematics, as they may not have the 
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verbal skills necessary to track the steps needed for 
complex calculations.

Visual-Spatial Skills
Finally, children may be disabled in their visual-spatial 
skills. These students frequently have difficulty with 
complex problems, as they may not be able to maintain 
a logical, coherent sequence of steps on a piece of paper. 
Additionally, these students have difficulty with picto-
rial representations, making mathematical topics such 
as graphing and trigonometry especially challenging.

The National Council of Supervisors of Math-
ematics (NCSM) offers several recommendations for 
teachers of students with mathematical disabilities in 
a 2008 position paper. First and foremost, teachers 
must reconsider their perceptions of what students 
with mathematical disabilities can and cannot do and 
maintain high expectations for all students. Teachers 
need to be better educated about mathematical dis-
abilities, particularly about the diagnostic language 
that is used to describe the needs of the mathemati-
cally disabled student. If teachers develop a conceptual 
framework for what students with mathematical dis-
abilities need, they can incorporate effective interven-
tions and accommodations in the classroom. NCSM 
also suggests that mathematics teachers should estab-
lish collaborative relationships with special education 
teachers. Mathematics teachers should focus on using 
teaching strategies that enable students to move from 
the concrete to the abstract and that allow students to 
demonstrate understanding through a variety of meth-
ods. Mathematics education activities should be mean-
ingful and connected to a number of mathematical 
topics, thereby enabling struggling students to make 
connections between mathematical concepts.

Mathematical Giftedness
When learning exceptionalities are mentioned, most 
people automatically think of learning disabilities. 
However, there is another group of students that has 
exceptional needs: gifted mathematics students. These 
students are typically described as having “natural 
mathematics ability” and frequently are left to their 
own devices as teachers spend the majority of their 
time and attention on struggling students. While the 
reality of the classroom is that teachers focus more on 
students with difficulties, the needs of the gifted stu-
dents are just as important.

M. Katherine Gavin points out that three main issues 
exist regarding gifted mathematics students. First, just 
as with students with mathematical disabilities, gifted 
mathematics students demonstrate a wide variety of 
aptitude, and abilities. Some students learn concepts 
quickly, which makes mathematics easier to learn and 
apply. Other students show great persistence in prob-
lem-solving, while still others demonstrate an ability to 
apply mathematical concepts in new ways. 

Second, elementary teachers typically do not have 
specialized training in mathematics and may not 
know how to address the gifted student’s needs in the 
elementary grades. The response of many elementary 
teachers is to keep gifted mathematics students occu-
pied with puzzles or advanced curricular materials, 
which typically do not advance the gifted student’s 
mathematical ability. 

Third, current grade-level curricula are lacking in 
materials that are challenging and substantial enough 
for the gifted mathematics student. Therefore, gifted 
mathematics students may be given materials that do 
not allow for the development of critical thinking skills 
and the conceptual understanding of complex math-
ematics concepts.

For classroom teachers, it can be difficult to meet 
the needs of gifted mathematics students. Dana John-
son offers the following suggestions:

• Pre-assess students to determine which 
students already have mastered the material. 
For students who demonstrate mastery, 
provide instructional materials with advanced 
content and a problem-solving focus.

• Utilize a variety of assessment techniques, 
providing students with opportunities to 
show differences in understanding, creativity, 
and accomplishment.

• Choose textbooks with a variety of enriched 
opportunities. Use multiple resources to meet 
the needs of gifted mathematics students.

• Be flexible in expectations about pacing. 
A student may be gifted in one area of 
mathematics but struggle in another.

• Use hands-on, discovery-based teaching 
strategies as well as higher level questions.

• Provide opportunities for students to 
participate in mathematics contests, such as 
Mathematical Olympiads and Math Counts.
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According to Gavin, the implementation of such 
strategies in the classroom will allow gifted mathe-
matics students to develop their cognitive skills while 
maintaining the joy of doing mathematics.
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Learning Models  
and Trajectories
Category: School and Society.
Fields of Study: All.
Summary: Various models of learning mathematics 
suggest in turn different approaches to teaching.

In October 2010, educator Jill Biden, the wife of Vice 
President Joseph Biden, chaired the first White House 
summit on community colleges. She restated an idea 
that is increasingly in the forefront of both political 

and educational discussions: “The nations that out-
educate us today will out-compete us tomorrow.” This 
idea is considered to be particularly true in the fields 
of science, technology, engineering, and mathematics 
(STEM). The philosophy and methods of mathemat-
ics education are driven not only by perceived soci-
etal needs and events, such as the Industrial Revolu-
tion, the Cold War, the civil rights movement, and the 
coming of the digital age, but by research and theo-
ries on the way people learn. Biologists, psychologists, 
mathematicians, and others have all contributed to 
the current body of knowledge on how both children 
and adults learn mathematics, and research in these 
areas is active and ongoing. In turn, organizations 
like the Mathematical Association of America and the 
National Council of Teachers of Mathematics synthe-
size this knowledge and make recommendations that 
shape curriculum at all levels. 

The Piaget Model
Epistemologist Jean Piaget reportedly believed that 
what distinguishes human beings from other animals is 
the ability to reason with abstract symbols. The model 
of cognitive development that bears his name includes 
four hierarchical stages that mathematics educators 
have analyzed with regard to the development of math-
ematical concepts like spatial skills or abstract reason-
ing. In Piaget’s model, infants in the first stage can 
link numbers with objects and may have some under-
standing of counting. In the second stage, toddlers and 
young children can recognize the concept of closeness 
and other topological ideas, as demonstrated in experi-
ments and puzzle-solving activities. However, percep-
tions at this level are often restricted to one aspect or 
variable at a time. For example, Piaget poured liquid 
from one container into a similar container and then 
into a wider container while children watched. The 
children failed to recognize that the volume of liquid 
was the same because the height of the liquid in the 
new container was lower. In the third stage, elementary 
school children and early adolescents develop logi-
cal operations skills like classification or seriation, the 
ability to order objects based on a variable like height, 
and they can analyze many variables at the same time. 
However, experience and training combine with the 
cognitive stage to determine the level of advancement, 
such as how successfully an early adolescent can ana-
lyze mental images of rotated objects. Hands-on activi-
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ties can help students at this stage to connect abstract 
concepts and symbols with concrete objects. In the 
fourth stage, adolescents and adults can fully develop 
abstract arguments using symbolic notation. They can 
learn to analyze and evaluate logical arguments and to 
apply deductive reasoning. 

Piaget’s theories have had broad impact on math-
ematics education, but not without criticism. His 
ideas are used to develop puzzles that are designed for 
toddlers. Elementary and middle grades students use 
mathematical manipulatives, like blocks, Pythagorean 
theorem puzzles, algebra tiles, or tangrams. Abstract 

courses, like algebra, are usually taught to adolescents 
because Piaget’s model suggests that abstract reasoning 
is developed then. Critics believe Piaget’s model may 
under- or overestimate the abilities of children and 
adolescents. For instance, children ages 3–5 sometimes 
notice incorrect counting sequences and can develop 
ingenious strategies to solve problems related to some 
higher stage concepts if they have age-appropriate task 
design and instructions. Middle grade children may 
not be ready in the way that Piaget asserted, though 
Piaget recognized that the level and time in a develop-
mental stage varies with each child. As a result, differ-
ent representations might be more meaningful to some 
children than to others. 

Neurobiology
Right- versus left-brain learning is often discussed in 
mathematics education. This differentiation appears 
to have some basis in biology, and many people do 
exhibit preferences for one style over the other when 
tested. Critics point to people called “middle-brain” 
thinkers, who flexibly switch between styles depend-
ing on the situation. Some argue that brains, espe-
cially those in children, are much more malleable 
than previously believed, so that anyone can be a 
flexible learner with training or a variety of methods 
of engagement. The neurobiology underlying math-
ematics learning is not yet well understood. In the 
past, researchers relied largely on verbal descriptions 
of how people solved problems. 

Visualization methods like magnetic resonance 
imaging allow researchers to make connections between 
brain components and specific processes, some of 
which have been found to activate parts of both the 
left and the right sides of the brain, often in surprising 
ways. For example, scans of infant brains showed that 
they seem to detect changes in the number of objects 
in an array, suggesting they have number sense. Over-
all, the right brain is commonly associated with holis-
tic, subjective, intuitive learning as well as with artistic 
skills. Mathematics is often considered to be a left-brain 
activity, since the left brain is associated with logically 
and objectively analyzing parts or sequences to under-
stand the whole. People have also researched teaching 
styles according to right- and left-brain theory. Teach-
ers classified as left-brained more often used highly 
outlined lectures and discussions in their classes. They 
also assigned more independent problem solving or 
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The Van Hiele Model

A nother influential model that has espe-
cially impacted geometry curricula is the 

van Hiele model, developed by Dutch educators 
Dina van Hiele-Geldof and Pierre van Hiele. The 
five levels of geometric thinking are visualiza-
tion, analysis, informal deduction, deduction, 
and rigor. The levels are sometimes labeled as 
0–4 and other times as 1–5. Children master 
one model level before progressing to the next. 
This occurs with repeated exposure and expe-
rience. For instance, students do not usually 
satisfy the deductive level after only one proof-
oriented course. Unlike Piaget’s model, the van 
Hiele model is not age dependent. During the 
1960s and 1970s, Russian (Soviet) research-
ers may have been the first educators outside 
Denmark to extensively experiment with the 
theory. They found that grade 8 students in a 
curriculum based on the van Hiele model dem-
onstrated geometric sophistication on par with 
students in grades 11 and 12 under the old 
curriculum. This research and other worldwide 
studies of the van Hiele model have led math-
ematics educators in many countries to develop 
activities, textbooks, and curricular innovations. 
However, some have critiqued the rigidity and 
linearity of the van Hiele structure and asserted 
that students weave between levels or reason 
at multiple levels at the same time. 



research than teachers classified as right-brained, who 
were more likely to use less-structured, hands-on activ-
ities or group projects that included manipulatives, art, 
visuals, role playing, and music. In many educational 
settings, teachers are encouraged to consciously con-
sider both the ways they teach and the ways in which 
their students may learn in order to design a breadth of 
teaching and assessment methods.

Constructivism
Educational reformers in countries such as the United 
States, the United Kingdom, Canada, Germany, and Tai-
wan began strongly promoting constructivism in the late 
twentieth century. The constructivist framework rejects 
objective reality; learning is experiential, and the instruc-
tor is more of a facilitator than a teacher. The foundations 
can be traced to Socrates and the term “constructivism” 
was coined by Giambattista Vico in the eighteenth cen-
tury, though many consider Piaget to be the first edu-
cational constructivist. The United Kingdom mandated 
constructivism in the 1980s and the National Council of 
Teachers of Mathematics 1989 Curriculum and Evalua-
tion Standards for School Mathematics endorsed con-
structivism for U.S. schools. There are many vocal crit-
ics of constructivism, sometimes known as the “back 
to basics” movement. Opponents argue, among other 
things, that constructivism fails to systematically instill 
fundamental skills required for true mathematics mas-
tery. Also, constructivist approaches can be very time 
consuming and difficult to assess fairly, especially in an 
environment of increasingly common standardized tests. 
Many constructivists assert that mathematics is a cogni-
tive process shaped by sociocultural context, as well as 
a sociocultural phenomenon created by the community 
of active learners. Mathematics learning is therefore seen 
as a function of prior knowledge; perceptions of what 
others know; methods of knowledge sharing; norms of 
participation in the classroom or community of learn-
ers; what it means to “do mathematics”; and methods by 
which mathematical validity is determined.

Learning Trajectories
If all learners are unique, then schools must take into 
account the many ways individuals might learn math-
ematics. Educators have to consider what it means to 
know and to do mathematics, both in school and beyond, 
before they can develop curriculum and select teaching 
strategies. In some cases there seems to be a natural pro-

gression, similar to the way children learn to crawl, then 
walk, then run. A hypothetical learning trajectory is a 
hypothesized typical path that students might follow 
when learning a set of interrelated concepts and skills, 
including ways in which learning will be facilitated by 
the instructor. Research suggests that learning trajec-
tories can be effective for early-grades mathematical 
concepts, such as counting and arithmetic. Additional 
research is needed on mathematics topics from later in 
the standard school curriculum, like patterns, as well as 
for more sophisticated ideas addressed in high school 
and beyond. Learning trajectories are also empirically 
linked to teacher development. For example, training 
in learning trajectories increased knowledge in teach-
ers as well as motivation and achievement in students. 
Some researchers assert that students should be explic-
itly included in the formation of learning trajectories to 
better anticipate individual responses and divergences 
from the typical path. 

A hypothetical learning trajectory begins with the 
students’ current knowledge and is targeted toward a 
specific “big idea” or goal, such as the idea that geometric 
shapes can be analyzed, described, transformed, com-
posed, and decomposed into other shapes. The learning 
trajectory also includes a sequence of tasks designed to 
guide students in learning concepts and building upon 
their previous learning, taking into account that some 
students may think about ideas in different ways or learn 
them in a different order. It may also include remedia-
tion for students who begin with insufficient knowledge 
or extensions for students who reach the goals quickly. 
Consider, for example, counting. Young children first 
learn the words and sounds associated with numbers. 
Then they put those words in order, though not always 
completely, before they begin to associate words with 
objects on a one-to-one basis. Eventually they can count 
objects, determine why counting is important and what 
“how many” means, and finally acquire a true sense 
of cardinality. A teacher would select tasks, teaching 
methods, and assessments to address each stage in turn, 
while working with students to determine whether they 
are learning and adjusting accordingly. At most grade 
levels, students are simultaneously involved in multiple 
learning trajectories. 

Scaffolding
Scaffolding is one teaching technique closely associ-
ated with learning trajectories. The term “scaffolding” 
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is a metaphor for the teacher’s supporting role with 
respect to the student. Parents seem naturally to use 
scaffolding with babies and young children. Research 
suggests that scaffolding provides individualized 
instruction that engages and motivates students while 
also improving learning and retention. However, the 
method can take a great deal of time to implement in 
the classroom and relies on trained teachers who have 
access to appropriate educational materials. Further, 
teachers must be willing to relinquish some degree of 
control in order to promote students’ independence 
and those students must be carefully and differentially 
assessed at the beginning and throughout the process. 
In an environment where standardized testing is the 
norm and teachers are assessed based on student per-
formance, or for teachers used to a more traditional 
approach to classroom management, the issue of 
control can be a difficult one to manage. Scaffolding 
is widely used in business and sports applications. In 
many settings, peer working groups serve as teach-
ers. From an employer’s point of view, scaffolding 
seems well suited to promote the lifelong independent 
learning skills that are needed in the rapidly changing 
twenty-first-century job market.

In scaffolding, a student learns independently as 
much as possible. The teacher structures tasks and 
provides help with concepts or techniques that are 
just beyond a student’s current capability. Scaffolding 
usually involves several steps. First the student and 
teacher agree on the goal. Then the student focuses on 
the concepts and tasks as a whole, not as a sequence 
of discrete steps. The teacher is available to provide 
quick help and feedback. Rapid response is intended 
to minimize frustration and wasted time while 
encouraging the student’s self-efficacy. The teacher 
helps only with immediate needs in areas where it 
is truly needed—the teacher does not repeat knowl-
edge the student has already mastered and over time 
intervenes less and less. The teacher may also give an 
explicit example as an “expert model.” All of this takes 
into account different student approaches and the 
student’s current state of knowledge.  

Computer software can also include scaffolding to 
facilitate online or independent learning, though these 
scaffolds often provide static, versus dynamic, interac-
tion with a teacher. Different sorts of scaffolds that have 
been explored for software include conceptual scaf-
folds, which help students organize ideas and connect 

them to related information; strategic scaffolds, which 
help students ask more specific questions about con-
cepts and processes; and procedural scaffolds, which 
clarify tasks. These scaffolds might include suggested 
readings, templates for presentations or note-taking, 
journals, and interactive essays.

An Australian dance conference called Moving On 
2000 included an interesting application of scaffold-
ing. At an initial workshop, participants created the 
beginnings of a dance piece. The dancers met again 
later to further the work. Not every person remem-
bered each step and sequence, so other participants 
assessed what they did know (prior knowledge) and 
then modeled the forgotten components as the learn-
ers followed along. This was done without explicit 
direction from anyone. Eventually the students no 
longer needed the teachers or “experts”; their goal 
of knowing the whole dance had been met. Then the 
dance was extended ever further by participants, who 
later modeled and taught the new moves to others at 
successive sessions. In this context, people were both 
teachers and learners in turn.

Conclusion
Many models and theories continue to shape math-
ematics education. Elements of behaviorism, cogni-
tivism, and humanism appear in some educational 
approaches. One often-promoted theory is psycholo-
gist Howard Gardner’s multiple intelligences, which 
posits that intelligence is divided into several parts, 
including logical-mathematical intelligence and spatial 
intelligence. Italian physician and educator Maria Mon-
tessori’s early-twentieth-century philosophies about 
children’s self-guided, sensory learning also persist. In 
Montessori schools, shaped and textured beads, sandpa-
per numbers, and segmented rods help students explore 
basic mathematical concepts like numbers, place value, 
operations, geometrical relationships, and algebra, such 
as the binomial and trinomial theorems.
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Legislation
See Government and State Legislation

Levers
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry.
Summary: Levers negotiate forces in ways useful in 
engineering.

Levers are rigid beams that pivot around 
a point called the “fulcrum” to mediate 
three forces: an applied effort, a load 
to be moved, and the fulcrum’s reac-
tion. Depending on how the load, effort, 
and fulcrum are placed along the beam, 
either force or travel distance can be 
increased and the other decreased in 
proportion. There are three classes of 
lever, distinguished by the placement 
of the effort, load, or fulcrum. Levers of 
the first class have the fulcrum between 
the effort and load, like a see-saw, for 
changing direction of force and travel 
distance and increasing or decreasing 
either of them. The second class has 
the load in the middle, like a wheelbar-
row for increasing force. The third class 
has the effort in the middle, like a pair 
of tongs for increasing travel distance. 
As these examples illustrate, levers are 

everywhere in the mechanical world and have been for 
the entirety of civilization. 

Levers also occur in animals: the bones in limbs 
function as rigid rods and fulcrums, with muscles pull-
ing hard close to a joint (the fulcrum) to move the 
extremity through greater distances than the contract-
ing muscle can cover but exerting a force weaker than 
the muscle exerts on the bone. A train of three levers—
the hammer, stirrup and anvil bones—magnify tiny 
acoustic displacements as they transmit sound from 
the eardrum to the cochlea.

Early Study
Our present formulation of levers derives from the Equi-
librium of Planes of Archimedes, who determined that 
“Magnitudes are in equilibrium at distances reciprocally 
proportional to their weights.” Using levers, Archimedes 
investigated the volumes of spheres and cones. Archime-
des imagined the cone or sphere divided into thin slices: 
if a slice is hung on one side of a lever, what cylinder 
slice must be hung at what position to maintain equilib-
rium? By working through the entire volume of the cone 
or sphere, Archimedes constructed a cylinder of equal 
volume, thus giving the sphere’s and the cone’s volume. 
Levers also appear in Galileo’s 1638 book of mechanics, 
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Two New Sciences. Whereas Archimedes had abstracted 
the lever as a perfectly rigid line, Galileo considered it as 
a three-dimensional, flexible object, leading to the first 
theory of beams. Combinations of levers, constrained in 
various ways, became a research topic during the Indus-
trial Revolution. “Linkages,” as these devices are called, 
were important for converting the rotation of steam 
engines into linear motion. Researchers in the nineteenth 
century took a mathematical approach to the problem. 
Among the best-known linkages is the Peaucellier cell, 
invented in 1864. The Peaucellier cell also plays theoreti-
cal roles in computer science. 

Applications
Levers feature in mobiles and, notably, in the sculptures 
of Alexander Calder, who often places the fulcrum 
slightly above the beam that assists in balancing. The 
raised fulcrum has long featured in balances for weigh-
ing; the pivot point is above the lever’s center of gravity 
so that, when the pans pull with equal torque, torque 
from the displaced beam’s own weight will pull it level. 
Not all balances rely on this feature. Chinese pharma-
ceutical balances, for example, require the operator to 
look for nonrotation rather than perfect leveling. 

More generally, nonmechanical levers exploit length 
to multiply distance. Optical levers rely on a mir-
ror doubling an angle and a long travel distance for 
the light ray to register a large displacement. Social, 
financial, intellectual, and political resources can be 
metaphorically “leveraged” by using them to achieve 
outcomes larger than the resource itself, though the 
metaphor generally neglects to acknowledge the loss 
required for a mechanical lever to provide any gain. 
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Life Expectancy
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Estimating life expectancy in present 
populations relies on actuarial tables.

Life expectancy for an individual is the average number 
of years remaining until death. It is often used to quan-
tify risk of certain characteristics or behaviors as well as 
to evaluate and compare populations in terms of eco-
nomics and health. For example, in the United States 
the life expectancy for a single female currently age 35 
is 50.1 years using the 2010 Social Security mortality 
table. Life expectancy can also be applied to machines 
or appliances, for product development, to manufac-
turing quality control, and for the determination of 
warranty periods. Most incandescent light bulb pack-
ages have the life expectancy printed on the packaging. 
A typical value is 900 hours of use. In this type of appli-
cation, life expectancy is used as a measure of quality. 
The calculation of life expectancies can be as simple as 
taking averages, but normally it uses more advanced 
mathematics or sampling.  

Human Life Expectancy
For human populations, factors affecting life expectancy 
include resource availability, sanitary practices, health-
care quality, war and sociopolitical factors, cultural 
and behavior factors, genetic and demographic factors, 
environmental factors, and epidemics. An increase or 
decrease in life expectancy may be quoted to describe 
the risk of a behavior or activity. As an example of using 
mathematics to make decisions, mathematician James 
Stein provides the statistic that each hour driven on an 
interstate highway decreases life expectancy by 19 min-
utes, while each hour flying decreases life expectancy 
by only 13 minutes, thus illustrating that flying may be 
a safer mode of transportation. To quantify the risk in 
smoking, the U.S. Centers for Disease Control and Pre-
vention (CDC) states that the average life expectancy 
for a smoker is approximately 14 years less than for a 
nonsmoker. 

Comparing Populations
The life expectancy of newborns is often quoted to 
compare the relative health of populations in different 
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geographic areas as well as for differences between eth-
nic or socioeconomic groups, sexes, historical periods, 
or age groups. The populations being compared may 
differ in time, geographic region, or demographic char-
acteristics. To compare populations from different time 
periods, the life expectancy of a newborn in the United 
States in the early 1900s was about 47 years, improving 
to about 60 years by the mid-1930s, and further improv-
ing to about 78 years by 2009. Life expectancy can vary 
by gender and race. Historically, females have typically 
exhibited a higher life expectancy than males. The life 
expectancy of a newborn female in the United States 
was estimated to be 80.2 years in 2006, compared to just 
75.1 years for a newborn male. Also in 2006, a newborn 
white male had a life expectancy of 75.7 years, com-
pared to 69.7 years for a newborn black male. Accord-
ing to the United Nations World Population Prospects 
2006 Revision, the world life expectancy for a newborn 
in 2005–2010 is estimated to be 67.2 years, with Swazi-
land exhibiting the lowest life expectancy at birth for an 
individual country—approximately 40 years. The latter 
is often attributed to the high HIV/AIDS mortality and 
poor healthcare and socioeconomic conditions in sub-
Saharan Africa.

For populations that lived in the past, the life 
expectancy can be calculated by taking the average of 
the age at death for all of the individuals who lived 
in the population of interest. For this type of calcu-
lation, one normally needs detailed records of dates 
of births and deaths for the entire population. The 
first life tables constructed in this way are attributed 
to John Graunt (1620–1674), who also provided 
estimated life expectancies in his tables. Following 
Graunt, a notable life table constructed from birth 
and funeral data for the purpose of determining life 
annuity values was published in 1693 by Edmund 
Halley (Halley’s Comet is named after him) for the 
city of Breslaw, Poland. Halley used this city for his 
table because he thought Breslaw was representative 
of an average European population at the time. Inter-
estingly, Halley provided his own definition of “life 
expectancy” in describing the third use of his table. In 
Halley’s description, the expected future years a per-
son of a certain age can reasonably expect to live is the 
proposed number of years upon which an even wager, 
which is a bet with a 50-50 chance of being won, can 
be made that the person arrives at that age before he 
dies. Halley’s description is that of the median future 

lifetime, which differs mathematically from the more 
modern definition of life expectancy.

Sampling and Estimation
In the absence of complete data, modern statistical 
methods, including sampling, are used to estimate 
the average age at death. Similar statistical methods 
are used to estimate the life expectancy of appliances, 
components, and machines. In the case of inanimate 
objects, life expectancy may be interpreted as the aver-
age time to failure. To estimate the average time to fail-
ure, a sample may be taken and tested in a laboratory 
environment, or failure statistics may be kept after the 
product goes to market. The failure rates obtained from 
such data not only provide a basis for determining the 
life expectancy of the product, but also can be used in 
determining the cost of a warranty or guarantee issued 
by the manufacturer. 

In modern populations, actuarial tables are devel-
oped that estimate the probability of death at any par-
ticular age. These probabilities are used to calculate the 
life expectancy for an individual at his or her current 
age. For example, suppose a male age 96 is within a 
population whose mortality table indicates the prob-
ability of a male age 96 dying before age 97 is 0.45; the 
probability of surviving to age 97 and dying before age 
98 is 0.35; and the probability of surviving to age 98 
and dying before age 99 is 0.2. Then the expected age at 
death is calculated as the expected value,

96 0 45 97 0 35 98 0 1
1

2
97 25. . . . .( ) + ( ) + ( ) + =

Hence, the life expectancy is 1.25 years. The term  
“1/2” in the expected age at death calculation reflects 
the assumption that the individual dying within the 
year lives on average one-half the year.
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Light
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Representations.
Summary: Now understood as both a particle and a 
wave, light is a recurring subject of interest in physics.

Light, a form of electromagnetic energy, mediates the 
electrostatic interactions between particles. Under 
some experimental conditions, it acts as a particle, and 
under others, as a wave. Attempts by physicists to rec-
oncile this dual nature and to otherwise exploit this 
duality have been the impetus for the development of 
large areas of mathematics.

Particle or Wave?
Isaac Newton advocated the particle nature of light, ini-
tiating the study of geometric, or ray, optics. This form 
of optics treats light as rays that travel in straight lines, 
though capable of bending near objects. It is based on 
two laws. The law of reflection states that when light is 
reflected from a surface, the angle of incidence equals the 
angle of reflection. The law of refraction says that light 
will bend when it passes from one medium to another 
according to Snell’s Law, named for mathematician Wil-
lebrord Snell, a relation between the angles of incidence 
and refraction and light’s speed in the two media.  

At about the same time, Christiaan Huygens dis-
covered polarized light and explained it with a wave 

theory. From this beginning, Thomas Young and 
Augustin-Jean Fresnel developed physical optics. The 
resulting mathematics allowed engineers to construct 
extremely faithful lenses; its close cousin, wave acous-
tics, helped architects design performance halls. Sci-
entists pursued these optics to ever-finer scales. Even-
tually, they developed the electron microscope, which 
permits biologists to see individual DNA molecules. 
Physical biochemists use a related technique called 
“crystallography.” When X-rays are shot through crys-
tals of protein molecules, they form a diffraction pat-
tern, which when transformed by a technique called 
Fourier analysis (named for mathematician and phys-
icist Joseph Fourier) allows the precise determina-
tion of the protein’s atomic structure. Many owe their 
Nobel Prizes to this transformation.

The wave theory of light provides the most natu-
ral explanation for the spectrum of visible light. What 
the physicist calls “light” varies from about 1023 cycles 
per second, corresponding to gamma rays, down to 
roughly 1000 cycles per second for the electron waves 
in plasma. What humans can see is but a small part of 
this, varying from purple at a wavelength of 380 nano-
meters (nm) or 7.8 × 1014 cycles per second, to red at 
about 780 nm, or 3.8 × 1014 cycles per second.

Light Speed
In 1861, James Clerk Maxwell wrote down his famous 
equations describing the interactions between electric 
and magnetic fields in terms of their sources. Four 
years later, he derived from them an electromagnetic 
wave equation, which physicists soon understood to 
be a description of light waves. In 1907, Edward Rosa 
and Noah Dorsey used these equations to calculate the 
speed of light at 299,784 km/sec. The accuracy of this 
calculation was not matched by experiment until 1926, 
when Albert Michelson obtained a value of 299,796 
km/sec. In 1983, the 17th Conférence Général des Poids 
et Mesures established a new standard for the length of 
the meter by fixing the speed of light at 299,792,458 
meters/second.

In the 1890s, Hendrik Lorentz, George Fitzgerald, 
and Joseph Larmor noticed that Maxwell’s equations 
did not change under a certain type of transformation. 
Henri Poincaré called these “Lorentz transformations” 
and noticed that they formed a group of symmetries 
on four-dimensional space-time. Albert Einstein 
incorporated this symmetry into his theory of special  
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relativity. One of the key postulates is that light travels 
at the universe’s speed limit and so nothing can travel 
faster. Hermann Minkowski developed from these the-
ories a four-dimensional geometry called “Minkowski 
space,” in which Einstein’s famous theory is under-
stood as geometric properties of the space.

Quantum Phenomena
Light held yet further mysteries. Nineteenth-century 
physics predicted that heated bodies should radiate 
infinite amounts of energy and that an atomic electron 
should plunge into the nucleus. Max Planck eliminated 
the first problem by postulating the quantization of 
light. Einstein used this idea to explain properties of 
the photoelectric effect, the phenomenon behind solar 
panels. Niels Bohr expanded these ideas into an expla-
nation of why electrons in atoms do not continuously 

radiate light until they collapse into the nucleus. All 
three won Nobel Prizes for their work and quantum 
physics was born.  

John von Neumann developed a mathematical 
description of these quantum phenomena involv-
ing Hilbert spaces and operator algebras. As a result, 
research into Operator Algebras became a major 
research focus of the last half of the twentieth century. 
To further explain quantum behavior, von Neumann 
and Garrett Birkoff developed quantum logic, a subject 
pursued not only by mathematicians but also by many 
philosophers. In a high point of this endeavor, John Bell 
developed the Bell inequalities in 1966. Sixteen years 
later, Alain Aspect confirmed that quantum systems do 
violate these inequalities, and provided strong evidence 
that the mysterious results of quantum mechanics are 
not solely because of our difficulties in measuring sys-
tems on such a fine scale but are because of the very 
nature of these small-scale systems. These experiments 
exploited a quantum property called “entanglement.” 
Richard Feynman hypothesized this entanglement 
might be exploitable as a computational resource. In 
recent decades, Peter Schor, Lov Grover, and others have 
developed algorithms based on Feynman’s idea and cre-
ated the field of quantum computing.

Quantum mechanics has, in the last half century, 
developed into quantum field theory (QFT). QFT 
attempts to explain all particles and forces by equa-
tions that are modeled on Maxwell’s. In developing 
their models, mathematical physicists rely on physical 
properties to perform manipulations mathematicians 
find objectionable because of their lack of rigor. Many 
great mathematicians have taken up the challenge of 
developing a rigorous axiomatic basis for QFT. Lying at 
the intersection of philosophy, mathematics, and phys-
ics, many mathematicians see this as one of the great 
challenges of the twenty-first century.
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Light Bulbs
Category: Architecture and Engineering.
Fields of Study: Algebra; Connections.
Summary: Light bulbs are ideally designed for great 
luminous efficacy, emitting more light than heat.

Light bulbs are common sources of electric light. The 
light bulb’s evolution is not entirely certain. Histori-
ans cite more than 20 contributors, dating back to 
roughly 1800, who made discoveries prior to inventor 
Thomas Edison’s 1879 patent for an incandescent bulb. 
Some attribute Edison’s success to the fact that he also 
invented an entire electricity distribution system. 

Traditionally, light bulbs work on the principle of 
incandescence. The filament inside an incandescent 
bulb resists the flow of electrons supplied by an elec-
trical source, causing the filament to heat up and emit 
radiation. Approximately 90% of the power consumed 
by an incandescent light bulb is, in fact, emitted as heat 
rather than as visible light. The wavelength of the emit-
ted radiation determines the color of the light. In com-
mon household incandescent bulbs, the emitted radia-
tion is primarily in the infrared region of the spectrum, 
which humans cannot see, along with the visible red, 
orange, and yellow wavelengths nearest the infrared. 
This characteristic gives the bulb its characteristic yel-
lowish color. 

Compact fluorescent light bulbs, which are intended 
to replace incandescent bulbs, operate on a different 
principle. Electricity excites mercury vapor to produce 
light, but little heat. The emitted spectrum of tradi-
tional fluorescents is much closer to the blue end of 
the visible spectrum, though there are now a variety 
of models that closely mimic natural light. In addition 
to quantifying the emitted radiation spectrum, math-

ematics is used to calculate other important features of 
light bulbs, such as electrical rating and efficiency.

Rating
Incandescent bulbs are normally rated according to 
their electrical power. Common household sizes in 
the United States range from 15 watts, often found in 
refrigerators and other appliances, to 150-watt bulbs 
used for reading or to light large areas. As the bulb 
is purely resistive (its inductance and capacitance are 
insignificant), the electrical power can be computed as 
P V I= × , or P I R= ×2 , where P is the electric power 
in units of watts, V is the potential difference in volts, 
R is the resistance of the filament in ohms, and I is the 
current in amperes or “amps,” named after André-
Marie Ampère, a French mathematician and physicist 
considered the “father of electrodynamics.” Household 
voltage in the United States is usually 120 volts, so 
higher wattage bulbs require more current to operate, 
which makes them more costly to use. Because com-
pact fluorescents operate on a different principle than 
resistance, they typically draw less current to produce 
the same perceived intensity of light.

Luminous Efficacy
Another metric used to distinguish light bulbs is lumi-
nous efficacy, defined as

 
LES =

F

P

where F, the flux in lumens, is the total useful amount 
of visible radiant light, and P is the power. A weighted 
luminosity function adjusts for the human eye’s 
response to different wavelengths of light when flux is 
calculated. If total electric power consumed by a bulb is 
used in this computation, it is referred to as “luminous 
efficacy of a source” (LES). LES is a good indicator of 
source’s ability to provide visible light from a given 
amount of electricity. For example, a 40-watt incandes-
cent bulb has an LES of roughly 12.6 lm/W, and a flux 
comparable to a 9- to 13-watt compact fluorescent. A 
100-watt bulb has a flux comparable to 17.5 lm/W, ver-
sus a 23- to 30-watt compact fluorescent.

Humor
Light bulbs are also a source of humor, with hundreds 
of light bulb jokes of the general form, “How many 
(fill in the blank) does it take to screw in a light bulb?” 
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Many of these jokes are intended to satirically poke fun 
at the subjects; mathematicians are no exception. For 
example, “How many mathematicians does it take to 
screw in a light bulb?” The answer is “None. A math-
ematician can’t screw in a light bulb, but he can easily 
prove the work can be done.”

Further Reading
Collier, James L. Electricity and the Light Bulb. Tarrytown, 

NY: Marshall Cavendish Benchmark, 2006.
Kaufman, John. IES Lighting Handbook 1981 Reference 

Volume. New York: Illuminating Engineering Society 
of North America, 1981.
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Lightning
Category: Weather, Nature, and Environment.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement; Representations.
Summary: Lightning is studied, modeled, and 
predicted using mathematical techniques.

Lightning is an electrical phenomenon of nature that 
has been observed by people around the world for 
thousands of years. Thunder is the sound of lightning, 
created by the intense heat of a lightning bolt. Many 
people may have learned as children a simple calcu-
lation for estimating the distance of lightning based 
on the sound of thunder. Since thunder travels about 
one mile in five seconds, a 15-second delay between 
the time lightning is seen and the time the thunder 
is heard indicates that the lightning strike was about 
three miles away. 

Lightning strikes occur frequently around the 
globe, with an estimated 25 million cloud-to-ground 
strikes per year in the United States alone. Lightning 
has a large number of religious associations, and it 
is often used as a metaphor for sudden insight or 
inspiration. Mathematician Carl Friedrich Gauss is 
reported to have said, regarding a problem he had 

been working on, “Like a sudden flash of lightning, 
the riddle was solved.” Lightning is studied by math-
ematicians, often in collaboration with scientists in 
other fields, to better understand the various facets of 
this complex phenomenon. 

Among the several types of lightning that occur, the 
most commonly seen and the most dangerous is cloud-
to-ground lightning, caused by the discharge of electrons 
into the Earth from thunderclouds in the atmosphere. 
The voltage released by a bolt of cloud-to-ground light-
ning is on the order of 1 million times the voltage in a 
standard electrical outlet.

The excess of electrons at the base of a thunder-
cloud repels electrons on the ground deep into the 
Earth, inducing a strong positive charge on the ground 
below. While air usually acts as an insulator, prevent-
ing the flow of electric current, the strong electric field 
between a storm cloud and the Earth can reach tens of 
thousands of volts per inch, pulling air molecules apart 
into negatively charged electrons and positive ions. 
This creates pathways of ionized air known as “stream-
ers.” The freely moving charges in the ionized air allow 
electric current to flow through it.  

A lightning strike occurs when a streamer carry-
ing electrons from the cloud toward the Earth meets a 
shorter, positively charged airstream reaching up from 
an object on the Earth. This creates a complete con-
ductive pathway between the cloud and the ground 
and a sudden and massive discharge of electrons into 
the Earth. 

Between an average thundercloud and the Earth, 
there are an estimated 108 volts, reaching 109  (1 bil-
lion) volts in more-intense strikes. For perspective, one 
may compare 1.2 × 108 volts between a thundercloud 
and the Earth to the 120 volts delivered by a standard 
electrical outlet in the United States:

Voltage between cloud and ground
= 1.2 × 108 volts
= 1.2 × 102 × 106 volts
= 120 volts × 106  
= Voltage in standard electrical outlet × 1 million. 

 
The heat created by the electric current in a bolt of 

lightning reaches temperatures up to 30,000 kelvins 
(K), more than five times the temperature of the sur-
face of the sun and hot enough to melt rock and fuse 
soil and sand into glass. The temperature on the Kelvin 
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scale is the temperature in degrees Celsius plus 273.15. 
The intense heat in a channel of lightning causes the 
air within the channel to expand rapidly, sending out 
a shock wave that weakens into the acoustic wave of 
thunder. The electric current and heat of a lightning 
strike can start forest fires, damage a property, destroy 
electrical equipment, and cause serious or fatal injuries 
to people and animals. According to estimates by the 
National Weather Service, lightning causes on average 
about 60 deaths and 300 injuries in the United States 
each year.

Statistics collected by NASA satellites have found 
that most of the eastern half of the United States sus-
tains about eight flashes of lightning per square mile 
per year (decreasing to less than one per square mile 
per year toward the West Coast). Since 1 mi2 = 640 
acres, this translates to eight flashes per 640 acres per 
year, or one flash per 80 acres per year. Accordingly, a 
one-acre lot in this region would be struck by lightning 
on average once every 80 years.  

Mathematical research can help to predict the 
behavior of lightning strikes based on weather pat-
terns and other variables; for example, by modeling 
probabilistic distributions of lightning strikes accord-
ing factors such as time, geography, and strength. The 
mathematical theory of highly optimized tolerance 
(HOT) is useful in controlling forest fires caused by 
lightning. This theory suggests optimal placement 
of fire breaks: if data or other evidence suggests that 
lightning strikes some areas of a forest more fre-
quently than others, then large fires can best be pre-
vented by purposefully cutting fire breaks that create 
sections whose sizes are inversely proportional to the 
rate at which lightning strikes. Other mathematicians 
are interested in studying the patterns and geom-
etry of lightning. Mathematician Benoit Mandelbrot, 
known for his study of fractal patterns, noted that 
lightning does not travel in a straight line but rather 
in patterns reminiscent of fractals. Techniques of 
fractal modeling are used to study fractal patterns in 
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the ionized plasma structures of lightning streamers.  
Morphological filtering and gradient detection can 
be used to help visualize lightning in satellite imagery 
and separate it from other visible effects, such as city 
lights.

Further Reading
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Limits and Continuity
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Calculus; 
Communication; Connections.
Summary: One of the key concepts of calculus, the 
limit is the value a function approaches as its input 
approaches a given value.

The concepts of limit and continuity are fundamental 
in calculus, analysis, and topology. Their inception can 
be traced back more than 2000 years to Greece, China, 
Babylon, Egypt, and other places. During the inception 
of calculus, introduced independently by Isaac Newton 
and Gottfried Wilhelm Leibniz, these concepts were 
still vague and controversial. In the twenty-first cen-
tury, these concepts are explored in high school. The 
modern limit of a function f x( )  is the value the func-
tion tends to when x changes in a structured way; for 
instance, x approaches a specific value. Many differ-
ent definitions of limits in calculus can be combined 
into a single definition of limit in topology. Moreover, 
a function is continuous if it preserves closeness or, 

equivalently, if it preserves limits, and topology is the 
study of continuous functions and the properties they 
preserve. These ideas underpin many mathematical 
results and can be used to organize and simplify math-
ematical processes. Limits are also useful in real life to 
understand such concepts as demographics, finance, or 
terminal velocity. Modeling discrete data with a con-
tinuous function and the notion of continuous pay-
ments are also important. Leibniz defined a principle 
of continuity, or lex continuitatis, which inspired phi-
losophers such as Charles Peirce. The notions of limit 
and continuity are still debated philosophically, as in 
whether growth spurts are continuous over time.

The Ideas of Limit and Continuity  
in the Ancient World
The idea of limit in the ancient world was related mainly 
to two activities: one was more practical, like measur-
ing length, area, and volume, and the other was more 
abstract, such as making sense of numbers that are not 
rational. For example Archimedes from Greece and 
Liu Hui in China used regular polygons, inscribed in a 
circle, increasing the number of sides of the polygons, 
in order to compute the length of the circumference 
and the area of a circle. In the process, approximations 
of π were computed. Eudoxus from Greece created his 
theory of proportions to legitimize irrationals like 2.

This theory is expounded in Book Five of Euclid’s 
Elements. It is also a precursor of the contemporary the-
ory of the real numbers. Ancient mathematicians, such 
as Zeno of Elea and Aristotle, wrestled with the notion 
of continuity. They debated whether motion, time, and 
space are continuous. The paradox about Achilles and 
the tortoise illustrated the interplay between the ideas. 
The paradox states that Achilles can never overtake the 
tortoise if the tortoise is given a head start, because by 
the time Achilles reaches its initial position the tortoise 
has farther advanced and so on; infinitely many seg-
ments of time are necessary.

The Calculus of the Infinitesimals
In the middle of the seventeenth century after sig-
nificant advances in science, particularly in physics, 
mechanics, and geometry, the methods of infinitesi-
mal calculus were introduced independently by Isaac 
Newton in England and by Gottfried Wilhelm Leibniz 
in Germany. Newton assumed that geometric magni-
tudes are generated by continuous motion, and some 
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historians suggest that he may have been the first to 
present a limit argument using an infinitesimal like 
epsilon. Leibniz explored a principle of continuity but 
is not thought to have explored the derivative as a limit.  
He viewed the ocean as continuous.

The quest to find an acceptable, rigorous foundation 
for the new calculus was ongoing. There were attempts 
made to follow the method of exhaustion from the 
Greeks or to use series instead of infinitesimals to 
introduce the derivative. Jean le Rond d’Alembert 
stressed the importance of a firm foundation for limits 
and explored a geometric limit of secant lines. But it 
was Augustin-Louis Cauchy who introduced contem-
porary definitions of limit and continuity and placed 
them as a cornerstone of calculus. It is interesting to 
mention that another mathematician, Bernard Bol-
zano, from Prague and a contemporary of Cauchy, 
came up with the same definitions first, but he was 
more isolated and his work did not get the same recog-
nition that the Cours d’analyse enjoyed. The German 
mathematician Karl Weierstrass solidified the rigorous 
definitions and made significant contributions to the 
development of analysis.

Contemporary Definitions
The limit of a function is a dynamic concept. The input 
of the function varies and the output varies as well. 
Intuitively speaking, one says that limx c f x L→ ( ) =  
when the values of f become closer and closer to the 
number L when c gets closer and closer to c. This intui-
tive concept is easy to grasp and also not difficult to 
observe if one has a graph of the function f. But this 
should be expressed rigorously, so that there is a tool to 
verify whether the limit exists.

Definition: The limx c f x L→ ( ) =  if and only if for 
each ε > 0  there is a δ > 0 , such that if 0 < − <x c δ, 
then f x L( ) − < ε .

This definition enables mathematicians to verify the 
existence of limit or to make an argument that there 
is no limit and is also a tool to prove many properties 
about limits. The number c does not have to be in the 
domain of the function, but one should be able get δ 
close to it from the domain for any positive δ. The con-
cept of limit is used to define a continuous function.  

Definition: A function f is continuous at a point c 
if c is in the domain of the function and for any posi-
tive ε there is a positive δ, such that if x c− < δ, then 
f x f c( )− ( ) < ε .

The concept of limit is used to define the definite 
integral and to measure area.   

Contemporary Developments. 
Limits of other objects, such as sequences and geometric 
spaces, can be defined and are important in many dis-
ciplines of mathematics and continuity is still explored 
in the field of topology. One twentieth-century devel-
opment that goes back to the history of limits occurred 
around 1960 when Abraham Robinson entertained the 
idea that the advantages of infinitesimal calculus can 
be utilized as soon as the infinitesimals are defined in a 
rigorous way. This would eliminate the use of limit in 
the way it is known and make the analysis very much 
like algebra, as soon as the number system is extended 
to permit infinitely small and infinitely large numbers. 
This is exactly what Robinson did using tools from 
logic, a development called “non-standard analysis.”

Further Reading
Edwards, Charles. The Historical Development of 

Calculus. New York: Springer, 1994.
Ilarregui, Begoña, and J. Nubiola. “The Continuity of 
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Linear Concepts
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication;  
Connections.
Summary: Linear relationships are a fundamental 
concept of mathematics.

From ancient civilizations to modern societies, people 
use linear concepts in a multitude of ways, including 
statistical analysis, for advanced mathematics, and in 
scientific applications, many of which are designed to 
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solve real-world problems. The fundamental idea of 
a linear relationship involves comparing two or more 
quantities which form a straight line when graphed. A 
basic linear relationship comparing two quantities is 
represented by the linear equation y = mx + b, where x 
and y are the quantities which vary in direct proportion 
to each other, m represents the slope of the line, and b 
represents the value where the line crosses the y-axis on 
the coordinate plane. This idea implies that the quanti-
ties in a linear relationship depend upon each other. 
One of the most common ways to represent a linear 
relationship is the linear equation. Linear equations 
are equations involving one or more unknown values, 
called “variables,” which are of the first degree. Linear 
equations are the simplest type of equation, since the 
unknown quantities are always raised to the power of 
one. Spaces of lines, such as a plane, are also the sim-
plest type of geometric space. However, linear equa-
tions and the methods of finding the solutions become 
more complex as the number of unknowns increases 
or when solving more than one linear equation at a 
time. Students begin to explore linear concepts in the 
primary grades, and these are built upon and extended 
throughout high school and college.

Linear equations are used extensively in applied 
mathematics, particularly in modeling and represent-
ing real-world phenomena. Linear relationships are also 
used in advanced mathematical applications and mod-
eling, typically by reducing nonlinear equations to linear 
equations or by constraining events within a set, or “sys-
tem,” of linear equations. The development of general 
methods for solving linear equations was a slow process 
because of the limitations of communicating and repre-
senting the unknown quantities in linear relationships. 
These equations were initially solved using the elemen-
tary operations of addition, subtraction, multiplica-
tion, and division. The problems and their solutions 
were written using words. Algebraic methods of solving 
equations were not developed until a system of sym-
bolic notation replaced the use of words. The modern 
practice of using variables in place of unknown values 
did not gain widespread use until the sixteenth century. 
Before that time, problems were typically written using 
only words or by using a limited set of symbols.

Linear Equations
The earliest known linear equations and methods of 
solving them are found in several ancient civilizations. 

These societies used linear equations and systems of 
linear equations to solve problems arising in everyday 
life, particularly based on civic and government needs. 
Although the historical information and records that 
exist from these ancient civilizations are fragmented, 
there exists enough evidence to show how the Babylo-
nian, Egyptian, Chinese, and Islamic civilizations used 
and solved linear problems. Within the Babylonian 
civilization, the need for computational techniques 
beyond simple counting arose in areas of commerce, 
taxation, and construction. The Babylonians wrote 
their problems on clay tablets and included many 
examples of solving linear equations and systems of 
linear equations. These numerical problems were 
expressed rhetorically, without symbolic notation, and 
were provided to show the method of solution for a 
particular example. Reasons and explanations were 
not given, nor were any general methods of solution. 
The Egyptians were also concerned with commerce, 
taxation, and construction. They also described the 
methods used to solve linear equations arising from 
everyday life, such as dividing loaves of bread or a given 
amount of grain. They wrote their problems on papy-
rus, which was made from a reed plant, very few of 
which exist today. The most famous surviving papyri 
are the Rhind Papyrus and the Moscow Papyrus. One 
particular procedure the Egyptians devised for solv-
ing linear equations is known as the “method of false 
position.” This procedure began with guessing a value 
for the unknown and then adjusting the value until the 
correct result was found. This method was also used 
by other ancient civilizations and continued to appear 
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in elementary algebra textbooks until the nineteenth 
century. The Chinese used a similar method of false 
position but made two guesses for the unknown rather 
than one guess. This method is known as the “method 
of double false position” and was later used by Islamic 
mathematicians. This approach continued to be used 
in Europe until the 1600s when advances in symbolic 
notation made solving linear equations a much more 
simple process. It took many years for a symbolic sys-
tem to develop and allow for the development of gen-
eral solutions to linear equations.

Linear Modeling
Linear relationships appear extensively in modeling 
applications. In statistics, simple linear regression is 
commonly used to model the relationship between two 
variables when that relationship appears to be gener-
ally linear. That is, when plotted on the coordinate 
plane, the data tend to cluster about a straight line. 
It can also be used to make predictions for situations 
when the value of one variable is known and the other 
is not. The concept of linear regression was developed 
by Sir Francis Galton in the late nineteenth century 
while investigating genetic inheritance. A description 
of this method was published in the article “Regres-
sion Towards Mediocrity in Hereditary Stature.” The 
term “regression” was actually a reference by Galton to 
observed effects in the data, not to the method itself, 
yet the statistical process of fitting a line to data still 
bears this name. An extension of the method, called 
“multiple linear regression,” is used to model relation-
ships between several variables in n dimensions. 

Many types of advanced mathematical models also 
rely on the use of linear relationships. For example, 
linear programming is used in business applications 
as a way to model important decisions that lead to 
maximum profit. This modeling is accomplished by 
constraining the variables, such as production costs, 
within a system of linear equations. Linear program-
ming is also used in a modeling process known as 
“linear optimization.” This modeling process has 
a wide variety of applications in areas such as busi-
ness, finance, engineering, and industry. Linear pro-
gramming and linear optimization are based on the 
mathematical procedure of defining all of the related 
variables as linear relationships. This process was first 
developed in the 1940s and is one of the few math-
ematical applications that has a wide range of practi-

cal uses as well as a theoretical development of the 
mathematics. 

Many definitions in mathematics rely on linear 
approximations. The derivative of a function of one 
variable at a point is the slope of the tangent line (the 
slope of the line that best approximates the curve at 
a given point). Mathematicians such as Isaac Barrow 
and Sir Isaac Newton made linear concepts a fun-
damental part of their work in the development of 
calculus. In higher dimensions the derivative is a lin-
ear transformation that is represented as a matrix. In 
geometry, a surface is defined as a space that locally 
looks like a plane. Georg Friedrich Bernhard Riemann 
defined higher dimensional spaces, now called “mani-
folds,” as locally looking flat and possessing shortest 
paths that are straight. In 1917, Albert Einstein used 
Riemann’s mathematics in order to present a model 
for the universe that was consistent with his theory 
of relativity. 

Linear Algebra
Linear algebra is a subject that is fundamental to mod-
ern mathematics and applications. It arose from the 
study of coefficients of systems of linear equations, 
and linear concepts are fundamental in this area. For 
example, Arthur Cayley explored linear maps or trans-
formations, and Giuseppe Peano was the first to give an 
abstract definition of the algebraic structure of linear 
vector spaces.

The late development of a symbolic notational sys-
tem used in solving linear equations slowed the devel-
opment of finding general methods for solving these 
equations. The first breakthrough in using algebraic 
techniques to solve linear equations occurred in the 
sixteenth century when Jacques Peletier proposed a 
general rule of algebra. This general rule involved set-
ting up linear relationships as equations and finding 
the roots, a method still used in the teaching of alge-
bra. With the adoption of a system of symbolic nota-
tion, the applications of linear equations continue to 
evolve and to be used in numerous ways, from basic 
equation solving to advanced mathematical techniques 
in both pure and applied mathematics. Linear algebra 
has a long history in mathematics, and linear concepts 
are considered one of the most important concepts in 
mathematics because of their appearances in so many 
levels of both pure and applied mathematics and in a 
multitude of real-world applications.

	 Linear Concepts 555



Further Reading
Bressoud, David. The Queen of the Sciences: A History of 

Mathematics. Chantilly, VA: Teaching Company, 2008.
Coxford, Arthur, ed. The Ideas of Algebra, K–12: 1988 

Yearbook. Reston, VA: National Council of Teachers of 
Mathematics, 1988.

Katz, Victor. A History of Mathematics. Boston, MA: 
Addison-Wesley, 2009.

Kelli M. Slaten

See Also: Algebra and Algebra Education; Algebra 
in Society; Babylonian Mathematics; Egyptian 
Mathematics; Function Rate of Change; Graphs; 
Mathematical Modeling; Scatterplots.

Literature
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Connections.
Summary: Since ancient Greece, literature has drawn 
on mathematical imagery.

Literature and mathematics share many characteristics 
despite their apparently different natures. The work of 
the mathematician is similar to that of the writer, and 
mathematics has inspired many works of fiction, biog-
raphy, satire, and mystery. Because of their intelligence 
and interesting personalities, mathematicians appear 
as characters in many works of fiction. Biographies 
of mathematicians and tales of famous mathematical 
problems also provide fascinating narratives because of 
their interesting characters and the characters’ struggles 
with mathematical and personal problems. 

At times, mathematics has been a target for attack 
by satirists for mathematicians’ tendency to overuse 
mathematics by reducing social and economic issues 
to mere mathematical equations. Literature is also an 
effective tool in mathematics education, especially for 
small children.

The Mathematics–Literature Connection
Few fields of human activity seem, at first glance, as 
distant as mathematics and literature. Mathemat-
ics is a field of rigor, exactness, and absolute truth. 

It involves formulas, equations, laws, and theorems 
that do not leave much room for opinion, subjectiv-
ity, or individuality. On the other hand, literature is 
the realm of emotions, characters, imagination, and 
subjectivity. The author, unconstrained by the strict 
laws of nature, creates worlds, people, and events as 
the imagination desires. The resulting stories are usu-
ally told by a human or anthropomorphic narrator, 
and the narrator’s tone and style affect the story and 
the reader. 

Despite these differences, there are many connec-
tions and commonalities between mathematics and lit-
erature. Mathematics describes relationships between 
numbers, functions, sets, and other mathematical 
objects; literature is concerned with relationships 
between characters. Mathematics tries to describe how 
nature works; literature describes how people behave. 
Mathematics often describes paradoxes, unintuitive 
concepts, and unsolved problems; literature often 
depicts irrational behaviors, impossible situations, and 
other situations that defy explanation.   

The work of a mathematician is similar to that of an 
author in many ways. Both mathematics and literature 
require imagination and creativity, albeit of a some-
what different type; both are mostly individual endeav-
ors; both require intuition and insight; both require a 
significant amount of time, patience, and persistence; 
and both provide an immense sense of accomplish-
ment and exhilaration when the product—be it a novel 
or a proof—is complete. 

Early Influences
The relationship between mathematics and literature 
can be traced back to ancient Greece, the cradle of both 
modern mathematics and the liberal arts. Greek think-
ers were philosophers (lovers of wisdom) and pursued 
knowledge and beauty in all forms. These philosophers 
were thus interested in the arts as well as in scientific 
questions. 

This intellectual environment was conducive to 
cross-fertilization of the arts and sciences, and the 
great mathematician Pythagoras was among the first 
to seek the literary and metaphysical meanings of 
numbers. For the Pythagoreans (followers of Pythag-
oras), numbers were not merely abstract tools for 
counting and measuring but also symbols with mys-
tical meanings. For Pythagoras, all things were essen-
tially numbers. 
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Pythagoras’s notions on the mystical meaning of 
numbers have little relevance in modern science and 
mathematics, but they advance the idea that numbers 
may be used as literary objects. These ideas paved the 
way for other thinkers seeking greater meanings for 
mathematics than those constrained within the realm 
of science. 

Mathematical Imagery in Fiction
Mathematics is a field rich in shapes, structures, and 
relations, and writers may find in mathematics a vast 
resource of imagery, analogy, and metaphor. Exam-
ples of mathematical imagery in fiction abound, and 
while some are explicit and obvious, others require 
varying degrees of mathematical knowledge to be 
fully appreciated. 

Edwin Abbott’s 1884 Flatland is perhaps the most 
famous novel whose characters are mathematical 
objects. This witty and influential novel takes place in a 
two-dimensional universe whose denizens are anthro-
pomorphic lines and polygons. The narrator, a square, 

describes social classes, political unrest, and practical 
issues of life in two dimensions. He then describes vis-
its to lower dimensional worlds and to Spaceland, the 
world of three dimensions. The narrator then conjec-
tures the existence of higher dimensional worlds. The 
novel won renewed recognition near the end of the 
twentieth century in part because of the development 
of physical theories, such as string theory, which sug-
gests that the universe may have more than the three 
spatial dimensions that are visible to us. 

The popular 1865 fantasy novel Alice’s Adven-
tures in Wonderland was written by a mathematician, 
Charles Lutwidge Dodgson, who wrote it under the 
pen name Lewis Carroll. The novel contains several 
mathematical themes, such as apparently faulty mul-
tiplication (4 times 5 is 12) that can be rationalized 
by using a different base (4 times 5 is 12 in base 18). 
Logic (or lack thereof) also plays a role in the novel. 
During a tea party, the Mad Hatter reproaches Alice 
for committing the logical fallacy of assuming that a 
statement implies its converse. There are many other 
possible mathematical themes in the book; however, 
because of the light-hearted and fantastic nature of 
the works, it is impossible to determine which of 
those were intentional. 

Argentinean author Jorge Luis Borges uses many 
mathematical themes in his stories. In his 1941 short 
story Library of Babel, he tells the story of a library 
filled with an infinite number of books, each contain-
ing exactly 410 pages. The story incorporates diverse 
mathematical ideas and concepts ranging from com-
binatorics to geometry and topology. The concept of 
infinity is also a recurring theme in the story. The story 
is so rich in mathematical imagery that it inspired a 
2008 book, William Goldbloom Bloch’s The Unimagi-
nable Mathematics of Borges’ Library of Babel, dedicated 
to the exploration of these themes. 

In his 1869 novel War and Peace, Leo Tolstoy argued 
that history is not driven by major historical characters 
but rather by the infinitesimal contributions of many 
people. He uses an analogy with mathematical integra-
tion, where the sum of an infinite number of infinitesi-
mal terms is taken, thereby giving the integral its value.   

Fictional Mathematicians in Literature
In popular culture, mathematicians are considered to 
be highly intelligent individuals who possess an inves-
tigative mind and a good sense for problem solving. 
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Edwin Abbott’s 1884 witty and influential novel 
Flatland, whose characters are mathematical objects.



Mathematicians also have a reputation for eccentric-
ity and lack of social skills. These attributes appeal to 
many authors and readers and make mathematicians 
interesting literary characters. 

In 414 b.c.e., Athenian comic playwright Aristo-
phanes incorporated a fictional mathematician into his 
play Birds. In the play, the characters decide to build a 
utopia in the sky in order to escape the routine of Athe-
nian life. Meton, a geometer, joins them and proposes 
to survey the skies and parcel them into lots. While 
describing his planned layout, he mentions his plan to 
circle the square, a mathematical problem that occu-
pied several Greek mathematicians.  

The American poet and author Edgar Allan Poe was 
a science and mathematics enthusiast and used many 
scientific and mathematical themes in his stories. In 
the 1843 short story The Gold Bug, the protagonist 
uses mathematical intuition, common sense, and rudi-
mentary principles of cryptanalysis (code breaking) to 
decipher an encoded message that describes the loca-
tion of a buried treasure. 

In Poe’s 1841 story A Descent into the Maelström, 
the narrator uses his knowledge of solid geometry and 
fluid physics to escape death in a giant whirlpool that 
is sinking his ship. Thinking of a fabricated result in 
fluid mechanics that Poe attributes to Archimedes, the 
narrator recalls that solids subject to whirlpool display 
differential flotation based on their shape and that cyl-
inders sink slower than other solids. He then saves his 
life by attaching himself to a water cask and throwing 
himself into the water with the cask.  

Fictional characters may use mathematics as a 
pastime or as a source of pleasant diversion. In John 
Cheever’s 1966 story The Geometry of Love, Charlie 
Mallory distracts himself from his unhappy mar-
riage and unsatisfying professional and personal lives 
by trying to create Euclidean models of his relation-
ships. To Mallory, these models are simple, elegant, 
and stable structures, while his life is often unpredict-
able and turbulent. Through these models, Mallory 
receives the stability and equanimity that are lacking 
in his life. 

Aleksandr Solzhenitsyn’s 1968 book The First Circle 
is a quasi-autobiographical novel set in a gulag in the 
Soviet Union. The novel’s protagonist, Gleb Nerzhin, is 
a mathematician incarcerated in the gulag and forced 
to work with other scientists and engineers on secret 
state projects. The novel takes a close look at the dif-

ficult choices that scientists and mathematicians have 
to make when they have little or no control over their 
lives or the products of their research.  

Arthur Conan Doyle’s iconic detective Sherlock 
Holmes was a master of deductive reasoning. An expert 
at deriving surprising conclusions from evidence and 
clues, Holmes treated crime mysteries as mathemati-
cal puzzles and derived great pleasure from solving 
them. It is fitting that Holmes’s arch-nemesis, Professor 
James Moriarty, was a mathematician. Moriarty was a 
genius villain and head of a large crime organization 
that pervaded England throughout Holmes’s career. In 
the 1893 short adventure The Final Problem, Holmes 
and Moriarty are engaged in hand-to-hand combat as 
they fall to their deaths from a gorge. 
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Literature in  
Mathematics Education

I n recent decades, literature has been 
increasingly used in mathematics educa-

tion, especially with small children. Children’s 
literature provides an approachable path to 
learning mathematics through the use of 
friendly characters, ample graphics, and age-
appropriate narrative. Literature may assist 
children in learning basic mathematical con-
cepts, such as numbers, counting, shapes, 
sizes, and arithmetic.  

Literature can also be used to teach chil-
dren that mathematics is not merely a field of 
dry equations and laws, but rather that it has 
many practical uses in everyday life. By reading 
about characters learning and using mathemat-
ics, children can learn to appreciate the many 
roles mathematics plays in their lives. 

An example of children’s books that may 
be used as mathematics education tools is the 
series Sir Cumference by Cindy Neuschwander. 
The books present children with mathematical 
and geometrical notions such as circumfer-
ence, radius, and diameter through the use of 
similarly named characters, such as the series’ 
namesake.



Not all mathematical geniuses realize their poten-
tial, in fiction or in real life. Aldous Huxley’s 1924 short 
story Young Archimedes is a tragic tale of a mathemati-
cally gifted boy who falls victim to the unscrupulous 
and selfish behavior of adults. Huxley suggests that the 
tragedy is not only the victim’s but also that of a society 
that fails to give its geniuses the environment they need 
in order to thrive. 

Science Fiction 
With its emphasis on science and technology, science 
fiction is a natural genre for mathematical themes. This 
theme is particularly true with the advent of “hard” 
science fiction, a branch of science fiction that stresses 
scientific rigor and theoretically possible technolo-
gies. A notable example of hard science fiction is Greg 
Egan’s 2002 novel Schild’s Ladder, which uses themes 
from advanced mathematics and physics. The novel 
describes a futuristic civilization that is forced into per-
petual migration and the discord that develops within 
that civilization. 

Isaac Asimov’s classic Foundation series of novels 
portrays a fictional mathematician, Hari Seldon, as an 
influential character. Seldon is a brilliant mathemati-
cian who developed a branch of mathematics known 
as “psychohistory,” which he uses to predict the col-
lapse of the Galactic Empire. 

Biographies and Memoirs
Many biographies of mathematicians are available in 
the literary market. While some of these biographies 
appeal mostly to mathematicians and historians, 
many appeal to the general public because of their 
historical narrative and the extraordinary characters 
they describe. 

Perhaps the most popular biography of a math-
ematician is A Beautiful Mind, written in 1998 by Syl-
via Nasar. The book tells the touching and tragic story 
of John Forbes Nash, a mathematical genius who was 
diagnosed with paranoid schizophrenia. Nash’s stel-
lar rise in the ranks of mathematics and his tragic fall 
provide a fascinating juxtaposition of mathematical 
genius and mental illness. Nash won the Nobel Prize in 
Economics in 1994 for his work on game theory.  

Masha Gessen’s 2009 book Perfect Rigor: A Genius 
and the Mathematical Breakthrough of the Century 
tells the story of Grigori “Grisha” Perelman, a Russian 
mathematician who proved the century-old Poincaré 

Conjecture in 2003. Perelman’s proof was ensued by a 
distasteful affair that was fueled in part by Perelman’s 
reclusive personality and eccentric behavior, as well 
as by the controversial conduct of his fellow math-
ematicians. Disappointed and disillusioned, Perelman 
withdrew from mathematics at a fairly young age. Per-
leman’s story sheds light on both the often-overlooked 
world of scientific politics and intrigues and the col-
orful individuals who supply them. In 2006, Perelman 
was awarded the Fields Medal, the most prestigious 
prize in mathematics, for his ground-breaking work. 
He declined the award. 

Memoirs and autobiographies of mathematicians 
also abound. Notable among these is G. H. Hardy’s A 
Mathematician’s Apology, a 1940 philosophical memoir 
that discusses the beauty of mathematics and the life of 
a mathematician, with its inevitable joys and sorrows. 
The memoir is highly influential among mathemati-
cians and among laypersons who want a glimpse into 
the mind of a mathematician.  

Satire
Because of the wide-ranging utility of mathematics, there 
exists a tendency to overuse it and to attempt to reduce 
social, political, and economic problems to mathemati-
cal equations. This attempt at oversimplifying serious 
societal problems raises the ire of some authors, who 
use their pens to strike back. By using reductio ad absur-
dum (reduction to absurdity, also known as “proof by 
contradiction”), a popular technique for proving math-
ematical theorems, authors may attempt to defeat math-
ematicians on the mathematicians’ turf by showing the 
absurd results of the overuse and abuse of mathematics. 
The resulting satires describe these absurd results in an 
entertaining yet serious fashion. 

In the 1726 novel Gulliver’s Travels, Jonathan Swift 
describes the people of Laputa as obsessed with math-
ematics. They describe everything, even the beauty of 
women, in mathematical terms, and their constant 
political bickering reminds the narrator of the math-
ematicians of Europe. Swift made a similar—albeit less 
obvious—attack upon mathematical reductionism in 
his 1729 essay A Modest Proposal in which he proposes 
that the poor sell their children for food. By offering 
a preposterous yet simple solution to the problem of 
poverty, Swift was arguing that not all social problems 
can be solved by the use of deductive reasoning and 
mathematical thinking.  
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In his 1854 novel Hard Times, Charles Dickens criti-
cizes an education system that is based solely on learning 
of facts, with no room for fancy, imagination, feelings, or 
arts. The ideal of fancy is embodied in Sissy Jupe, a poor 
schoolgirl who struggles with a curriculum obsessed 
with facts. Her frustration rises when she is asked to cal-
culate the percentage of dead if 500 of 100,000 voyagers 
perished at sea. Jupe, confused and embarrassed, answers 
that the percentage is nothing, so far as the loved ones of 
those killed are concerned. Sissy Jupe is thus portrayed 
as humane and emotional, a person capable of seeing 
the people behind the numbers. Her schoolteachers, on 
the other hand, are emotionally paralyzed and see num-
bers as satisfactory descriptions of everything. 

Famous Mathematical Problems
Stories of famous mathematical problems, whether 
open or solved, make for fascinating reading material 
for their mathematical content as well as for their nar-
rative. By telling the tale of a particularly difficult math-
ematical problem, the author can braid an exposition of 
a difficult mathematical subject with stories about the 
history of the problem and the lives and personalities of 
famous mathematicians who tried to solve it. 

The Riemann Hypothesis, the most famous open 
problem in mathematics, has inspired several books. In 
the 2003 book Prime Obsession: Bernhard Riemann and 
the Greatest Unsolved Problem in Mathematics, author 
John Derbyshire uses odd-numbered chapters for 
mathematical exposition and even-numbered chapters 
for discussion of the history of the problem and the 
people behind that history. 

In the 1997 book Fermat’s Enigma, author Simon 
Singh tells the story of Fermat’s Last Theorem, a math-
ematical riddle that tantalized mathematicians for four 
centuries. Singh tells the tale of the famous conjecture, 
from its formulation by Fermat in 1637 to its proof 
by British mathematician Andrew Wiles in 1995. The 
book combines mathematical exposition with stories 
about the many mathematicians who struggled with 
the problem throughout the centuries. 

Creativity in Mathematics and in Literature
Fiction writers often face the question “How do you 
come up with your ideas?” Similarly, mathematicians 
are often asked how they concoct the brilliant ideas that 
allow them to solve mathematical problems. Psycholo-
gists and neuroscientists have been trying to identify 

the sources of creativity for a long time. New discover-
ies are published regularly, and advances in technology, 
such as brain-mapping magnetic resonance imaging 
(MRI) machines, may shed further light on the sub-
ject. Until scientists elucidate the sources of creativity, 
the experiences and opinions of creative individuals 
writers, mathematicians, and others—may provide 
glimpses into the workings of creative minds. 

In his 1846 essay Philosophy of Composition, author 
and poet Edgar Allan Poe analyzes the creative process 
he used to compose his famous poem The Raven:

It is my design to render it manifest that no one 
point in its composition is referable either to acci-
dent or intuition—that the work proceeded step by 
step, to its completion, with the precision and rigid 
consequence of a mathematical problem.

Another glimpse into the creative process is pro-
vided by mathematician Jacques Hadamard in his 1945 
work The Psychology of Invention in the Mathematical 
Field, in which he discusses the psychological processes 
of discovery and invention in mathematics. While 
Hadamard acknowledges the crucial role of conscious, 
logical thought, he contends that mathematical inven-
tion is a multi-step process in which intuition, inspira-
tion, and unconscious thought are integral.

Poe’s and Hadamard’s views provide an interest-
ing juxtaposition: while the poet describes his creative 
work in terms of a mathematical problem, the mathe-
matician emphasizes creative processes that are usually 
associated with artistic work.

Further Reading
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Loans
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Number and Operations.
Summary: Determining the terms of a loan so that 
they are fair but compensate for risk is a challenge of 
algebra.

Most people have personal experience with one or more 
types of loans, such as home mortgages, car loans, or 
home equity loans. In each case, the general format of 
the loan is the same: the lender provides temporary 
funds to a borrower, and the borrower repays these 
funds over a prespecified period of time, according to 
a prespecified pattern. As it is for any financial asset 
or liability, mathematics is a critical tool for determin-
ing the appropriate parameters of loans, 
including the periodic payment necessary 
for the borrower to completely pay off the 
loan by the end of the loan’s life. 

Mathematicians work on many problems 
related to loans. For example, individuals 
who take out large loans, like mortgages, 
are often required to purchase insurance for 
those loans. Actuaries use mathematical and 
statistical methods to assess lending risk to 
decide whether insurance is needed and 
how much. They also work on more com-
plex problems related to interest rates and 
credit, such as deciding what constitutes 
usury (unreasonably high interest rates) for 
loans whose yield rate is not fixed or deter-
mining the reliable predictors of credit risk.

History
Loans appear to have been a part of economic activity 
ever since economies began to become sophisticated. 
In response to certain historical unfair lending prac-
tices, a number of proscriptions against usury were 
recorded in ancient sources, such as the Old Testament, 
and works by Aristotle and Tacitus. More generally, an 
active lending market is important to an economy, as it 
facilitates the availability of funds for investment.

Loans, like other financial instruments, are two-
sided transactions. There is a lender and there is a bor-
rower, and cash flows are made between them—what 
one party pays, the other receives. Algebraically, this 
process is usually reflected by identifying the cash flows 
as either positive or negative; a positive cash flow for the 
lender would be a negative cash flow of the same mag-
nitude for the borrower, and vice versa. For the lender, 
the loan transaction is essentially an investment, and 
thus an asset. For the borrower, the loan represents a 
liability and ultimately needs to be paid back.

The most common method in the twenty-first cen-
tury of paying off a loan is via amortization, in which 
interest and a portion of the original borrowed prin-
cipal are paid back in each of the periodic payments. 
There are a number of parameters associated with the 
typical amortization loan, including the following:

• The original amount borrowed (B)
• The length or term (n) of the loan (for 

personal loans, such as mortgages and auto 
loans, the length of the loan is typically 
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For the lender, a loan is basically an investment and an asset. For 
the borrower, the loan is a liability and needs to be paid back.



measured as the number of monthly 
payments to be made by the borrower to the 
lender; theoretically, however, payments can 
be made according to any schedule, such as 
weekly, annually, or uneven periods of time)

• The periodic (for example, monthly) interest 
rate (i) on the loan, which determines the 
amount of interest paid by the borrower to 
the lender

• The periodic (for example, monthly) 
payment (R) made by the borrower to the 
lender

In the most common type of amortized loan, the 
payment made by the borrower each period is con-
stant over time. Each payment consists of two com-
ponents: an interest payment and a partial principal 
repayment. Across the life of the loan, the sum of all 
of the n partial principal repayments is equal to the 
total original amount borrowed, B. As each payment is 
made, the outstanding balance of the loan is lessened 
by the amount of the partial principal repayment in 
that payment.

The effect of this approach is that, while each pay-
ment R is of the same size, the split between the interest 
component and the principal component of each pay-
ment changes over time. More specifically, as time moves 
on, the principal component increases and the interest 
component decreases. This is because the indebtedness 
(the outstanding balance) of the loan decreases over 
time, and thus the periodic interest charged on the loan 
(which is equal to the interest rate multiplied by the 
loan’s outstanding balance) also decreases over time.

To illustrate, suppose that $1,000 is borrowed, and 
this four-year loan is to be paid off with four equal 
annual payments of R, one at the end of each of the 
four years during the life of the loan. Suppose that the 
effective annual interest rate i = 0.10, or 10%. In this 
situation, the annual payment R can be determined by 
the formula
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where i = 0.10, B = $1,000, and n = 4. Thus, R = $315.47.
This value for R can be verified by considering 

the impact of each annual payment separately. For 

example, consider the first payment of R. During 
the first year, the borrower incurs interest charges of 
10% of the outstanding balance at the beginning of 
the year, or $100. Thus, $100 of the $315.47 first pay-
ment covers the interest for borrowing the original 
$1,000 during the first year; the remaining $215.47 of 
the first payment then serves to partially pay off the 
loan, leaving an outstanding loan balance, or indebt-
edness, of $1,000 − $215.47 = $784.53. During the 
second year, the borrower incurs interest of 10% of 
that new outstanding balance, or $78.45. That portion 
of the second payment of R covers this interest, and 
the remainder ($315.47 − $78.45 = $237.02) serves 
to further pay down the loan. Thus, after the sec-
ond payment, the borrower has loan indebtedness of 
$784.53 − $237.02 = $547.51. Continuing this process 
through the fourth and final payment will reveal that, 
after that final payment, the original $1,000 loan has 
been completely and precisely paid off.

Occasionally, people will pay off installment loans 
before their final due date by making early payments 
or paying slightly more than is due at each installment. 
In this case, they may be entitled to a rebate on some 
of the originally computed interest. Rebates can be fig-
ured using several methods, including variables such as 
how the interest was originally computed and the way 
in which the regular and extra payments were divided 
between principal and interest. The actuarial method 
of calculation is generally more favorable to the bor-
rower than rebates calculated under other methods, 
such as the Rule of 78s. 

There are other ways of paying off loans; for exam-
ple, paying the interest regularly and then paying off 
the entire principal at the end of the loan term. In 
fact, this process is essentially how a specific type of 
financial instrument, a bond, works. When corporate 
or governmental entities issue bonds, they are bor-
rowing money. More precisely, they are borrowing an 
amount equal to the price of the bond from the inves-
tor or investors who purchase the bond. The issuing 
organization pays periodic interest to the investors (in 
the form of coupons) and at the expiration date of the 
bond pays back to the investors a lump sum, known as 
the “redemption value.”

Further Reading
Broverman, Samuel A. Mathematics of Investment and 

Credit. Winsted, CT: ACTEX Publications, 2008.

562 Loans



tions and permutations, are used to compute the odds 
or chances of winning, given certain conditions.

Distribution of Winnings
If lottery commissions somehow redistributed all of the 
ticket sale money into winnings for each game, then, 
at least in a cumulative sense, the purchase of lottery 
tickets would constitute fair bets—the average payoff 
would equal the average ticket price. An example of this 
would be if each player paid a dollar for a ticket that 
went into a hat, and then a winning ticket was chosen 
from the hat, with the purchaser of that ticket winning 
all of the money that had been collected. The reality is 
usually more complicated. Typically, multiple players 
can purchase the same ticket (thus having to share the 
winnings if that ticket is drawn) or the winning ticket 
might not have been purchased by anyone. In the latter 
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History of Lotteries

In Athens during the fourth and fifth centuries 
b.c.e., lotteries were used to select political 

office holders. In Rome, the emperor Gaius 
Julius Caesar Augustus rebuilt his empire’s 
infrastructure with money raised through lot-
teries. Lotteries also helped to fund the build-
ing of the Great Wall of China. Governments 
throughout much of Europe, notably in England 
and France, have raised essential funds with 
lotteries over the past few centuries. 

George Washington supported lotteries as 
a means of funding transportation and educa-
tional systems in a fledgling nation. In the United 
States in the twenty-first century, 
most states sponsor lotter-
ies. The jackpots for 
Powerball and for 
Mega Millions, 
two popular 
multistate lot-
teries, sometimes 
run into the hundreds 
of millions of dollars.

Kellison, Stephen. Theory of Interest. New York: McGraw-
Hill, 2008.

Rick Gorvett

See Also: Accounting; Home Buying; Money; 
Pensions, IRAs, and Social Security.

Logarithms
See Exponentials and Logarithms

Lotteries
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability; 
Number and Operations.
Summary: A successful lottery depends on assuring 
the randomness of its selections and maintaining the 
perception of fairness.

Lotteries, which can be thought of as games that involve 
a winner selected by chance, have played an important 
role in the development of societies for more than 
2000 years. Lotteries can include those run by political 
bodies, like states, where the winnings are money, or 
those run by a sports entity, like the National Basket-
ball Association (NBA) Draft Lottery, where teams get 
to select new members. The U.S. government runs a 
Green Card Lottery program and selects winners using 
a computer-generated drawing. In most lotteries, very 
few people win anything substantial, and the purchase 
of a lottery ticket usually amounts to an unfair bet, in 
that the price of a single ticket is less than the average 
payoff across all tickets. 

Nevertheless, lotteries are quite popular and conse-
quently can raise substantial funds or allocate a small 
number of goods, services, or sought-after players among 
a large number of people or teams. The mathematical 
concepts of “randomness” and “expected value” are fun-
damental to the operation of lotteries and perceptions 
of fairness. Probability methods, especially combina-



case, the money is rolled over to the next game, which 
might be better than fair for the players if the jackpot is 
larger than the total investments for that week. Usually, 
however, the game is worse than fair for the players, 
primarily because the state (or whatever organization 
is hosting the lottery) keeps a portion of the proceeds. 
The state of Wisconsin, for example, pays out slightly 
more than half of its lottery revenue as winnings; most 
of the remaining revenue is used for property tax relief. 
Other common uses for funds among state-run lot-
teries include education, transportation, construction, 
and, ironically, help for compulsive gamblers.

Calculating the Chances
Regardless of the question of fairness, a lottery is clearly 
disadvantageous to almost every player. Nevertheless, 
lotteries attract large numbers of players because peo-
ple are willing to pay a small amount of money for the 
small chance of winning a fortune. Powerball, oper-
ated by the Multi-State Lottery Association, provides a 
good illustration. There are nine ways to win with a $1 
Powerball ticket; in four of these ways, the winnings are 
less than $10. The probability of winning something 
is about 1:35, but the probability of winning anything 
more than $100 is less than 1:700,000. The probability 
of winning the big jackpot is 1:195,249,054, as can be 
verified with some basic rules of counting. 

Each Powerball ticket consists of five distinct num-
bers, 1–59, together with a “Powerball” number, 1–39. 
To determine the winning ticket, five balls are randomly 
drawn from a drum containing white balls numbered 
1–59, and then one ball (the Powerball) is drawn from 
a drum containing red balls numbered 1–39. The win-
ning ticket must match all five white balls (irrespec-
tive of the order in which they are drawn) as well as 
the red ball. The probability of winning the jackpot 
is 1 divided by the number of distinct possible tickets 
(the number of possible outcomes of the drawing). 
There are 59 possibilities for the first white ball; for 
each of those there are 58 possibilities for the second 
white ball. Continuing, there are 57 possibilities for 
the third, 56 for the fourth, and 55 for the fifth. If the 
order of drawing these balls were relevant, a total of  
59×58 × 57 × 56 × 55 = 600,766,320 ways of drawing 
the white balls would be counted. This number, how-
ever, is much larger than the true probability, since the 
order of the drawings is not relevant. For instance, the 
possible outcome 2, 4, 8, 16, 32 should be counted once; 

but among the aforementioned count of 600,766,320, 
this collection of balls appears 5× 4 × 3 × 2 × 1 = 120 
times (because ball 2 could be listed in any one of five 
positions, and then ball 4 could be listed in any of the 
remaining four positions, and so on). The earlier count 
should be divided by 120 in order to correct for this 
systematic overcounting. Finally, incorporating the 
possibilities for the red ball, the result should be mul-
tiplied by 39. This calculation yields the 195,249,054 
possible jackpot tickets. 

Winning Strategies?
One way to improve the chances of winning is to buy 
more tickets. A properly run lottery does not lend itself 
to winning strategies. For instance, the Powerball draw-
ings are videotaped and audited, and the equipment is 
stored in a vault and meticulously tested for nonran-
dom behavior. So bribery would be difficult, and knowl-
edge of historical winning numbers would most likely 
be pointless. One could ensure a win by purchasing all 
possible tickets (an attractive option if the jackpot has 
grown very large because of rollovers), but this would 
require a huge initial investment, and it would be quite 
difficult from a practical standpoint to orchestrate the 
purchase. Further, if multiple people purchased the win-
ning ticket, then the jackpot would be divided among 
them. Commonly chosen tickets involve previous win-
ning combinations, numbers below 32 (because they 
could represent birthdays or other significant dates), 
and simple combinations such as 1, 2, 3, 4, 5, 6. The one 
bit of control a lottery player does have is to avoid such 
combinations to reduce the likelihood of splitting the 
jackpot in the event of a win.

Further Reading
Bialik, Carl. “Odds Are, Stunning Coincidences Can  

Be Expected.” Wall Street Journal (September 24, 
2009). http://online.wsj.com/article/SB125 
366023562432131.html.

Hicks, Gary. Fate’s Bookie: How the Lottery Shaped the 
World. Stroud, England: The History Press, 2009.

North American Association of State and Provincial  
Lotteries (NASPL). “Cumulative Lottery 
Contributions to Beneficiaries.” http://www.naspl 
.org/index.cfm?fuseaction=content&PageID=74 
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Lovelace, Ada
Category: Communication and Computers.
Fields of Study: Connections.
Summary: Augusta Ada King, Countess of Lovelace, 
is known as the first computer programmer.

Charles Babbage, the inventor of an early computer, 
called Augusta Ada King, Countess of Lovelace, “the 
enchantress of numbers.” It is through her association 
with Babbage and his calculating machines that King 
influenced the history of mathematics. Ada King is 
widely regarded as the world’s first computer program-
mer for material in her notes on Babbage’s invention, 
the analytical engine. Her contribution to the develop-
ment of mathematics was significant in that she created 
the first set of computer instructions, or algorithm, and 
anticipated many features of modern computers.

Early Life and Eductation
King was born Augusta Ada Byron on December 10, 
1815, in London, England. She was the only child of 
George Gordon Byron (Lord Byron), the renowned 
romantic poet, and his wife Annabella Milbanke Byron. 
Her parents’ marriage was stormy and brief; they sepa-
rated two months after King’s birth, and her father 
left the country for good soon thereafter. Because of 
the strained association with her mother, Lord Byron 
never had a relationship with King, though he made 
several mentions of her in his poetry.

Her parents’ difficult relations ultimately influ-
enced King’s exposure to mathematics. Lady Byron 
required her daughter to study mathematics as a way 
to discipline the passionate side of her nature and to 
eliminate fanciful tendencies suspected to have been 
inherited from her poet father. Over the years, King 
studied mathematics with a variety of tutors and men-
tors, including mathematicians Mary Somerville and 
Augustus De Morgan.

In 1835, she married William King. He became the 
Earl of Lovelace in 1838 and King was thereafter the 
“Countess of Lovelace.” The couple had three chil-

dren; Byron in 1836, Anne Isabella in 1837, and Ralph 
in 1839. 

Work with Calculating Machines
King’s work with Charles Babbage began after the birth 
of her last child. Charles Babbage was the inventor of 
two calculating machines. The first, called the difference 
engine, was created to solve a specific problem involving 
polynomial equations and was displayed in his drawing 
room to amaze guests, along with a silver lady automa-
ton. Babbage’s other machine, the analytical engine, 
was never built; however, Babbage created a number 
of plans and drawings for the machine that excited 
interest in the scientific community. In 1842, Italian 
mathematician Luigi Menabrea published a descrip-
tion of the analytical engine. Menabrea’s paper was 
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written in French, and King translated this work into 
English. Encouraged by Babbage, she compiled a set of 
seven original notes meant to complement Menabrea’s 
explanations. The translation and notes were published 
in 1843. These notes constitute King’s only scientific 
publication, and—though brief—they established her 
modern reputation as the first computer programmer. 

King began the notes by contrasting the difference 
engine, which was well known to the public, and the 
analytical engine, which would be a much more func-
tional and flexible machine. The most significant dif-
ference between the two was that the analytical engine 
would be programmable, whereas the difference 
engine was not. In her notes, King anticipated many 
functions of modern computers and computer pro-
grams. She described the machine’s projected abilities 
to utilize symbolic information, to repeat a series of 
steps multiple times based on a single set of instruc-
tions (as in a modern loop), to give intermediate as 
well as final results, and even to store information 
meant to explain to the machine’s user what was tak-
ing place rather than to give instructions to the engine 
(a form of programming comments). With regard 
to the engine’s capabilities, she said, “The Analytical 
Engine weaves algebraic patterns, just as the Jacquard 
loom weaves flowers and leaves.” King also predicted 
that the analytical engine would facilitate faster and 
more accurate solutions to difficult computing prob-
lems, and that it would enable solution of problems 
theretofore insoluble because of computational com-
plexity. She even foresaw such modern ideas as artifi-
cial intelligence and computer music.  

King’s reputation as the first computer programmer 
comes from note “G,” the final note in the collection. 
In this section, she gave a detailed example of the func-

tionality of the analytical engine, describing how the 
engine would compute the Bernoulli numbers—the 
first computer program.

Ada died from uterine cancer on November 27, 
1852, at the age of 36 and was buried beside her father. 
In reflecting on her own work, she is quoted as saying, 
“I never am really satisfied that I understand anything; 
because, understand it well as I may, my comprehen-
sion can only be an infinitesimal fraction of all I want 
to understand about the many connections and rela-
tions which occur to me . . .” Her work was largely over-
looked for 100 years after her death until she was men-
tioned in a 1952 book on the history of computing.  
Since then, many books and articles have been written 
on her life and work, including a comic in which she 
and Charles Babbage are portrayed as a crime-fighting 
team. In 1980, the U.S. department of defense named 
a computer language “Ada” in her honor. There is also 
an international day of blogging named for her—Ada 
Lovelace Day—whose purpose is to draw attention to 
women in technology.

Further Reading
Baum, Joan. The Calculating Passion of Ada Byron. 

Hamden, CT: Archon Books, 1986.
Warrick, Patricia. Charles Babbage and the Countess. 

Bloomington, IN: AuthorHouse, 2007.
Woolley, Benjamin. The Bride of Science: Romance, 

Reason, and Byron’s Daughter. New York: McGraw-
Hill, 2002.
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Magic
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Number and Operations; 
Representations.
Summary: Many tools of mathematics and 
mathematical properties lend themselves to tricks.

Mathematical magic may seem to be either redundant 
or an oxymoron. Many people equate mathematical 
processes or theorems with magic, such as the magic 
of logarithms or when mathematicians are thought to 
have magical powers with numbers floating around 
their heads in movies and on television. Others view 
it as a collection of sterile algorithms absent of any 
signs of magic. However, the realm of mathematical 
magic counters both of these views, blending together 
elements from mathematics as a structure with an ele-
ment of surprise akin to magic. Invoking mathematics 
of great breadth—arithmetic, number theory, algebra, 
geometry, and topology—the mathematical magician’s 
“tools” are numbers, cards, string, dice, dominoes, cal-
endars, watches, coins, dollar bills, and rubber bands.

Arithmetic Magic
Arithmetic magic depends on the clever use of divi-
sors, multiples, and basic operations. As an example, 
ask a friend to write down his or her age. Then, add 

the age on the friend’s next birthday. Add 9 to this sum. 
Divide that sum by 2. Finally, subtract the friend’s cur-
rent age. Then, magically announce that the answer is 
5. It will always be 5, thanks to mathematics. For exam-
ple, if the friend’s age is 24, the friend would calculate:  
24 + 25 = 49; 49 + 9 = 58; 58 ÷ 2 = 29; 29 − 24 = 5. In 
fact, with a slight modification of the first calcula-
tion (add one more than your starting number), your 
friend could start with any number, such as 3.5, π, or 
even −72.3, and the result will still be 5. 

Card and Dice Magic
Mathematical magic using playing cards capitalizes on 
their properties—numerical values 1–13, four suits, 
two colors, front-back orientation—as well as the fact 
that a deck of cards can be both ordered and shuffled. 
As another example with a friend, shuffle a deck of 
cards, hand it to your friend, and then casually write 
something on a piece of paper, which is folded and set 
aside. Ask your friend to deal the top 12 cards face-
down on the table and then touch any four cards, which 
you turn over. Group the other eight dealt cards and 
return them to the bottom of the card deck. Suppose 
the four face-up cards are a 3, 5, 7, and King (where all 
face cards are to be treated as a 10). Taking the deck, 
deal more cards on top of each card to make 10, count-
ing out loud the sequences (for example, 3, 4, 5, 6, 7, 
8, 9, 10 and 5, 6, 7, 8, 9, 10 and 7, 8, 9, 10). Because the 
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King has the value 10, no cards are dealt on top of it. 
Hand the deck to your friend, ask him to add the val-
ues of the original four cards (3 + 5 + 7 + 10 = 25) and 
then count out that number of cards (25 cards). When 
the last card is turned over, reveal that it matches your 
prediction written on the paper. 

Mathematical magic using dice depends on the fact 
that the pips on the opposite sides sum to 7. As an 
example of a trick, with your back turned, ask a friend 
to throw three dice on a table and add the top faces 
(for example, 2 + 4 + 5 = 11). Then ask the friend to 
pick up any one of the dice and add its bottom num-
ber to the current sum (for example, opposite the 2 
on the first dice is a 5, so 11 + 5 = 16). Finally, ask the 
friend to roll that die again, and add the new top face 
to the current sum (for example, 16 + 6 = 22). Turn 
around and announce that you have no way of know-
ing which die was rolled twice, pick up the 3 dice, 
shake them in your hand, and magically announce 
your friend’s final sum.

Geometric Magic
Mathematical magic involving geometry or topology 
is similar to actual tricks performed by magicians, 
such as the Chinese Linking Rings, Magical Knots, and 
Houdini Escapes. As a simple example, start with an 
8 × 8 grid square and draw 3 lines to subdivide it as 
shown. Cut along the 3 lines, producing 4 pieces, which 
can be rearranged to form the 5 × 13 solid rectangle. 
What is the magic? The initial square with an area of 
64 square units has been transformed into a rectangle 
with an area of 65 square units.

The Magic Revealed
Why do the previous four tricks work? The first arith-
metic trick is explained using algebra, where N is the 
starting number, shown as 

N N
N

+ +( )+
− =

1 9

2
5 .

For the second trick, it is important that the card 
you write on the paper matches the bottom card on 
the shuffled deck at the start. The trick becomes auto-
matic, since the 4 face-up cards and the 8 cards placed 
on the bottom as part of the deck essentially force your 
“secret card” to now be in the 40th position in the orig-
inal deck. The counting mechanism forces this card to 
be the card revealed. For the third trick, determine the 
final sum by adding 7 to the sum of the 3 top faces seen 
as you pick up the dice. Finally, for the fourth trick, the 
magical effect is because of the apparent diagonal of 
the rectangle, as it is not a straight line but is a “thin” 
parallelogram with an area of 1 square unit. To show 
this mathematically, the two line segments forming 
the diagonal have differing slopes of 3/8 and 2/5. As a 
twist to this trick, note that the square had side length 
8 while the rectangle had side lengths 5 and 13, where 
the numbers 5, 8, 13 are part of the Fibonacci sequence. 
In fact, any three ordered numbers (different) in this 
sequence produces this magical effect.   

Magic Squares, Cubes, and Circles 
In any discussion of mathematical magic, one must 
mention magic squares, cubes, and circles. First, sub-
divide a square into smaller squares, each containing 
a number. The magical effect is that the numbers in 
each row, each column, and each diagonal all sum to 
the same constant value. 

8 1 6

3 5 7

4 9 2

This common example is the “Lo Shu” magic square 
with a constant sum of 15, being part of the legend 
(650 b.c.e.) of the Chinese Emperor Yu finding a turtle 
with the same square inscribed on its back. Also, the 
German artist Albrecht Dürer inserted a famous magic 
square in his painting Melancholia, with its constant 
sum of 34 and the painting’s date of 1514 included in 
the bottom row of cells.

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1
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1 1
2 =

11 121
2 =

111 12321
2 =

1111 12343212 =

 

11111 123454321
2 =

111111 12345654321
2 =

1111111 1234567654321
2 =

11111111 123456787654321
2 =

111111111 12345678987654321
2 =

Martin Gardner claimed in his 1956 book Mathe-
matics, Magic and Mystery that mathematical magic has 
a unique but limited audience. In his opinion, math-
ematicians reject mathematical magic as trivial and 
dull, while magicians reject it as pseudomagic. The true 
audience is therefore those who appreciate mathemati-
cal recreations implemented in a creative, entertain-
ing context. A master of such presentations is Arthur 
Benjamin, a combinatorics professor and professional 
magician, who has appeared on many radio and tele-
vision programs, such as the widely popular political 
satire program The Colbert Report, and been profiled 
in entertainment, news, and scientific publications. His 
popular demonstrations and explanations of methods 
for rapid mental calculations, which have been enjoyed 
by audiences of all ages and cultures worldwide, as well 
as his many popular books on mathematical magic 
would appear to belie Gardner’s claim.
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See Also: Dice Games; Mathematical Puzzles; Optical 
Illusions; Puzzles.

Historically, mathematics and magic are intertwined, 
back to the Pythagoreans who revered certain numbers 
with a special mysticism. This “aura” of numbers hav-
ing special magical effects surfaced often throughout 
history in the form of special primes, special products, 
and special properties. For example, one can not dis-
miss the magic of numbers when considering these 
number patterns, all evoking a feeling of “Behold!”

0 9 1 1× + =
1 9 2 11× + =

12 9 3 111× + =
123 9 4 1111× + =

1234 9 5 11111× + =
12345 9 6 111111× + =

123456 9 7 1111111× + =
1234567 9 8 11111111× + =

12345678 9 9 111111111× + =
123456789 9 10 1111111111× + =

1 8 1 9× + =
12 8 2 98× + =

123 8 3 987× + =
1234 8 4 9876× + =

12345 8 5 98765× + =
123456 8 6 987654× + =

1234567 8 7 9876543× + =
12345678 8 8 98765432× + =

123456789 8 8 987654321× + =

9 9 7 88× + =
98 9 6 888× + =

987 9 5 8888× + =
9876 9 4 88888× + =

98765 9 3 888888× + =
987654 9 2 8888888× + =

9876543 9 1 88888888× + =
98765432 9 0 888888888× + =

12345679 9 111111111× =
12345679 18 222222222× =
12345679 27 333333333× =
12345679 36 444444444× =
12345679 45 555555555× =
12345679 54 666666666× =
12345679 63 777777777× =
12345679 72 888888888× =
12345679 81 999999999× =
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Mapping	Coastlines
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations; Representations.
Summary: Fractals can be used to help map 
coastlines.

A map is an infographic representing an area. Maps use 
symbols to represent objects or scale renderings of spa-
tial features. The science of mapmaking is called “car-
tography.” The mapping of coastlines is important for 
navigation and for determining the boundaries of ter-
ritorial waters, which are measured as fixed distances 
from coastlines. Coastline cartography presents spe-
cial mathematics because of connections with several 
actively developing branches of mathematics, includ-
ing fractal theory.

Traditional Mapmaking Mathematics  
and Analytical Cartography
Several mathematical features of maps have been used 
for centuries. Orientation is the correspondence of the 
map’s coordinate system with directions of the terrain. 
When three-dimensional objects are depicted in two-
dimensional media in the process called “projection,” 
such as maps of Earth on paper, some areas are neces-
sarily distorted. Ratios are used to map objects to scale, 
including the systematic changes in the ratios in differ-
ent parts of two-dimensional maps using projections.

With the increasing use of computers in cartogra-
phy, several new areas of modeling and computation 
expertise have appeared over the last few decades. These 
new, mathematics-rich cartography areas include com-
puter-based geographic information systems, interpo-
lation, and photogrammetry. Collectively, these areas 
of expertise are called “analytic cartography.” 

Types of data in analytic cartography include 
numerical data, such as elevation values, images or 
photographs, and attribute data, like tags identify-
ing features near particular coordinates. All data are 
dynamically linked and manipulated in a geographic 
information system; for example, a projection map can 
be generated from a series of aerial photos, rotated and 
zoomed. In contrast, paper maps do not allow dynamic 
data connection and are static, which limits the possi-
bility for mathematical modeling and experimentation 
with variables. Geographic information systems may 

also include remote sensing data; for example, display-
ing changes in coastlines in real time as tides change.

Analytic Cartography and Coastline Changes
Because coastlines change a lot compared to other map 
features, from tides and floods, analytic cartography 
that allows for rapid analysis of real-time data is espe-
cially valuable in mapping coastlines. Using data from 
previous events and mathematical models within geo-
graphic information systems, cartographers can simu-
late floods, tsunamis, or effects of rising water levels 
from global warming on existing coastlines. The same 
software can be used to predict effects of terrain modi-
fication projects over time.

Modeling coastline changes is more complex than 
simply mapping higher or lower water levels onto the 
existing coast elevation data. The models also have to 
take into account erosion, deposits of matter by rivers 
and rainfall runoff, changes in river basins, and other 
systemic factors. 

Fractal Dimension and the Coastline Paradox
A fractal is a self-similar structure that looks the same 
at all zoom levels. Coastlines, while not perfectly fractal 
(not having infinite number of levels), exhibit enough 
fractal features to make some mathematics of fractals 
applicable. The famous 1967 paper by Benoît Mandel-
brot, “How Long Is the Coast of Britain? Statistical Self-
Similarity and Fractional Dimension” started this line 
of thought, though the term “fractal” appeared later.

An important feature of a coast is its fractal dimen-
sion (a measure of how long the coast is compared to 
the area it occupies). Because the area has two coordi-
nate dimensions and the length has one, theoretically, 
a curve filling a unit of area can have infinite length. 
Fractal dimension is a way to compare different coasts, 
from straight coastlines that have the fractal dimension 
of 1 to increasingly complex, space-filling coastlines 
that have higher fractal dimensions between 1 and 2. 
In Mandelbrot’s paper, the relatively smooth coast of 
South Africa has the fractal dimension of 1.02 and the 
highly irregular (long for its area) coast of Britain has 
the fractal dimension of 1.25.

The length of the coast and its fractal dimension 
depend on the units of measure. Because smaller 
units allow the cartographer to capture more detail 
of the coastline, measuring with smaller units pro-
duces higher total length. This is definitely not true 
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about measuring straight lines, and thus it is called the 
“coastline paradox.”

Randomness and Pattern
Perfectly self-similar fractals created by mathematical 
models have limited applicability to coastline mapping 
because real coasts are irregular. Therefore, some math-
ematical models include the element of randomness in 
creation of factors and use statistical methods to com-
pute fractal dimensions. For example, one method for 
generating random fractals is called “random midpoint 
displacement,” produced by using the following cyclic 
algorithm repeatedly:

• Step 1: Start with a straight line. 
• Step 2: Displace the midpoint randomly, 

perpendicular to itself, by the distance within 
the given ratio to its length.

• Step 3: Apply Steps 1 and 2 to the segments 
resulting from the previous steps.

A similar method can be applied to generating ele-
vation of areas. In this case, the algorithm starts with a 
rectangle, displaces its midpoint, and then is applied to 
the four rectangles formed by the lines parallel to the 
original rectangle’s sides and crossing at the midpoint. 

Because these methods are computationally inten-
sive, as the number of computations at each step grows 
exponentially with the number of cycles, their develop-
ment coincides with increases in computing power. In 
addition to mathematical modeling of existing coasts, 
these methods are used to generate fictional terrain for 
computer games, virtual worlds, and digital artworks.

Coast-Mapping Satellites
Several government and private projects connect real-
time satellite data to specialized coastline geographic 
information systems. This connection provides either 
real-time or within-minutes data for ship navigation 
charts, environmental hazards (like oil spills in harbors), 
and natural disaster data (like tracking tsunamis). 

Satellite mapping has to use methods beyond optical 
imagery because data have to come during the night as 
well as in cloudy conditions. Coast-mapping satellites 
use radar sensors that do not depend on light. These 
sensors measure changes in reflected radar pulses. 
Rougher surfaces reflect differently from water, allow-
ing for relatively precise mapping of the coastline.

Further Reading
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University of Chicago Press, 2008.

Seppala-Holtzman, D. N. “International Waters: 
An Anatomy of an Analysis.” Math Horizons 14 
(September 2006).

Turcotte, Donald. Fractals and Chaos in Geology and 
Geophysics. 2nd ed. Cambridge, England: Cambridge 
University Press, 2010.
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Maps
Category: Travel and Transportation.
Fields of Study: Geometry; Measurement.
Summary: Scales and projections are used to display 
geographic features on maps.

The word “map” is the name given to any representa-
tion of the Earth’s features—natural and artificial—
usually on a plane using a given scale and map pro-
jection. In scientific and mathematics applications, the 
term “map” is more broadly interpreted. The purpose 
of a map is to register and transmit information about 
those features and the spatial relations between them. 

A common characteristic of all maps is that they 
are reduced and conventional representations of real-
ity, which makes them significantly different from an 
aerial photograph. While an aerial photograph depicts 
all the physical objects that a sensor could detect and 
register (and only those), a map is a selection of natu-
ral and artificial objects, visible and invisible, chosen to 
fit the cartographer’s purpose and the limits imposed 
by the available space. These objects are represented 
on maps in a conventional way by means of symbols; 
this is not the case with photographs, in which they are 
depicted by the visual image they present when viewed 
from above by the sensor. The symbols in a map are 
designed to categorize features by type and to optimize 
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the document’s legibility. Very often, their size is not 
proportional to the size of the objects they represent. 
For example, roads are symbolized by lines of variable 
thickness and pattern, often much larger than the cor-
responding width of the actual roads, since represent-
ing them to exact scale would often make them too 
thin, even invisible. In other cases, such as with cities, 
features are symbolized by punctual symbols whose 
color and shape depend on the classification scheme 
chosen (such as administrative status or population).

Maps are usually classified in three main categories: 
general reference maps, thematic maps, and charts. A 
general reference map depicts generic geographic infor-
mation of various types considered useful to a large 
spectrum of users. This information may include topog-
raphy, political and administrative borders, and land 
cover. The best example of a general reference map is the 
topographic map. A thematic map, on the other hand, 
represents the geographic distribution of a specific 
theme or group of themes such as geological features, 
population, or air temperature. A chart is a special type 
of map designed to support navigation, either maritime 
(with nautical charts) or aerial (with aerial charts).

History
Maps were first made by the ancient civilizations of 
Europe and the Middle East several centuries before 
the Common Era. One of the oldest known is a Baby-
lonian clay map of the world c. 600 b.c.e., now kept in 
the British Museum. Though it is documented in the 
testimony of Ptolemy of Alexandria (c. 90–169 c.e.) 
and others that maps were drawn in Greece as early 
as the seventh century b.c.e., none are known to have 
survived. However, several medieval manuscript maps 
have survived that represent the ecumene (the known 
inhabited part of the world around the Mediterranean 
basin). Few had any practical purpose, and most were 
symbolic representations inspired by religion and myth 
rather than by reality. In his Geography, published 
for the first time in the second century c.e., Ptolemy 
describes three map projections in detail and presents 
a list of more than 8000 places in the ecumene, defined 
by their latitudes and longitudes. 

This list permitted others to redraw the maps that 
may have accompanied the original text once the work 
was translated into Latin and disseminated through-
out Europe during the fifteenth century. The publi-
cation of several editions of Geography did much to 

bring about the rebirth of scientific cartography. By 
this time, nautical charts had already been used to 
navigate in the Mediterranean for at least two centu-
ries. And while terrestrial cartography quickly adopted 
the geographic coordinates and map projections pro-
posed by Ptolemy, nautical charts remained based 
on the magnetic directions and estimated distances 
observed by pilots at sea. Still, these representations 
were of astonishing accuracy and detail compared 
with the traditional maps of the time. 

It is now known that the first nautical charts, com-
monly known as “portolan charts,” were constructed 
in the first half of the thirteenth century, probably in 
Genoa, after the introduction of the magnetic com-
pass and the adoption of the decimal system in Europe. 
This basic model continued to be used in nautical car-
tography for a long time, though much improved by 
the introduction of astronomical navigation during 
the fifteenth century. The resulting modality, based on 
observed latitudes and magnetic directions, became 
known as the “latitude chart” (or “plane chart”) and 
played a fundamental role in the discoveries and mari-
time expansion periods. In 1569, an important world 
map specifically conceived for supporting maritime 
navigation was constructed by the Flemish cartogra-
pher Gerard Kremer (1512–1594), better known by the 
Latinized name of “Gerardus Mercator.” Contrary to 
traditional portolan charts, this map was based on the 
latitudes and longitudes of places and represented all 
rhumb lines (lines of constant course) as straight seg-
ments making true angles with the meridians. 

Though Mercator did not explain how the plani-
sphere was made, a geometric method was most likely 
used. The mathematics of the projection is not trivial 
and its formalization had to wait until after calculus 
was developed, more than one century later. As for its 
full adoption as a navigational tool, that did not occur 
until the middle of the eighteenth century, when the 
marine chronometer was invented and longitudes 
could finally be determined at sea. 

Mathematical Cartography
Maps may depict only a small part of the whole sur-
face of the Earth. The word “scale” means the quotient 
between a length measured on a map and the corre-
sponding distance measured on the Earth’s surface. 
Because it is not possible to represent the spherical 
surface of the Earth in a plane without distorting the 
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relative position of the places (and thus, the shape of 
all objects), the scale of a map is not constant, always 
varying from place to place and, in the generality of 
cases, also with the direction. In large-scale maps, 
like the plant of a city or the topographic map of a 
small region, these distortions can be ignored and the 
scale considered constant for most practical purposes. 
That is not the case when a large area of the Earth’s 
surface is represented, like in a planisphere or a map 
of a whole continent. Here shapes may be strongly 
deformed and the scale varies significantly from place 
to place. Measurements made on those maps with the 
purpose of evaluating distances between places, using 
their graphical or numerical scale, are only approxi-
mations, as the scale strictly applies only to certain 
parts of the maps (like the central meridian or paral-

lel), and their use in the other regions may lead to 
very large errors. 

“Map projection” refers to any systematic way of 
representing the surface of the Earth on a plane. The 
process consists of two independent steps. First, one 
has to replace the irregular topographic surface, with 
all its mountains and valleys, with a simpler geometri-
cal model, usually a sphere or an ellipsoid where a sys-
tem of geographic coordinates (latitude and longitude) 
is established. Second, one has to project that model 
onto a plane surface. This step may be accomplished 
by some geometric construction or by a mathemati-
cal function that transforms each pair of geographic 
coordinates latitude (j) and longitude (l) into a pair of 
Cartesian coordinates x and y, defined on the plane. 
Depending on the purpose of the map, there are many 
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different map projections to choose from. Knowing 
that none of them conserves the relative position of all 
places on the surface of the Earth, the choice is usually 
driven by the type of geometric property one wants to 
preserve. For example, equivalent or equal-area projec-
tions conserve the relative areas of all objects and are 
typically used in political maps. Conformal projections 
conserve the angles around any point on the map (the 
scale does not vary with direction), as well as the shape 
of small objects, and are utilized in nautical charts and 
topographic maps. Equidistant projections conserve 
the scale of certain lines and are used whenever one 
wants to preserve distances measured along those lines. 
This is the case of the azimuthal equidistant projection, 
where distances measured from the center of the pro-
jection along all great circles are conserved. This prop-
erty is useful, for example, for quickly determining the 
distance of any place in the world measured from a 
chosen location. 

However, it is not possible for a map projection to 
have all these properties at the same time, and the con-
servation of some properties is usually accompanied 
by significant distortions of the others. A significant 
example is the Mercator projection (which is confor-
mal), where all rhumb lines are represented by straight 
segments making true angles with the meridians. How-
ever, the scale increases with latitude in this projection, 
strongly affecting the proportion of the areas. The 
branch of cartography dealing with map projections is 
known as “mathematical cartography.” Though some 
map projections have been well known since remote 
antiquity, when they were often used for representing 
the sky, a more formal approach became possible only 
after the development of calculus. The most important 
contributions in the formalization of mathematical 
cartography were those of Johann Heinrich Lambert 
(1728–1777), Joseph-Louis Lagrange (1736–1813), 
Carl Friedrich Gauss (1777–1855) and Nicolas Auguste 
Tissot (1824–1897).

Computers and geographic information systems 
have made it possible for previously unforeseen num-
bers of users to produce good-quality maps tailored to 
their specific needs and at a reasonable cost. They also 
allow scientists and mathematicians to map increas-
ingly complex systems and concepts, such as the uni-
verse and the World Wide Web. They can also often 
render in three dimensions and beyond. In mathemat-
ics, maps can be used to alternatively express func-

tions or connect mathematical objects. In conceiving 
those systems, as well as in acquiring the geographic 
data necessary to construct the representations within, 
mathematics continues to play a fundamental role. 

Further Reading
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Bugayevskiy, Lev, and John Snyder. Map Projections.  

A Reference Manual. Oxfordshire, England: Taylor & 
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Marine	Navigation
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations.
Summary: With the help of mathematicians, sailors 
throughout history have been able to devise ingenious 
methods for navigation.

Marine navigation is the process of conducting a 
waterborne craft from one point on the surface of the 
Earth to another, using all the associated science and 
techniques. The primary activities required for marine 
navigation may be organized into two closely related 
components: the planning of the craft’s movement, 
including the determination of the course and speed 
needed to reach a chosen destination at a specific time, 
and determining and controlling the craft’s position at 
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sea. Many problems in marine navigation are complex 
because the Earth is spherical. With the help of math-
ematicians and other scholars, sailors throughout his-
tory have been able to devise ingenious methods for 
approximating workable solutions, resulting in great 
voyages. Before the 1400s, many cultures sailed in the 
open ocean, including Pacific Islanders, Persians, Arabs, 
and inhabitants of some Indian Ocean islands. They 
used techniques such as poems or visual imagery to 
remember the positions of the stars, which were their 
primary guide. Polynesians and Micronesians created 
the most elaborate star maps and star compasses, as they 
sailed the longest distances. The Chinese developed a 
magnetic compass in the eleventh century, which then 
spread to India and Europe. However, many problems 
remained numerically and geometrically impractical 
until the development of modern computers, which 
are capable of resolving these problems.

Early Developments
Since the first nautical charts were produced in the 
Mediterranean approximately 800 years ago, the 
basic principles of marine navigation have remained 
unchanged. Still a dramatic improvement of effi-
ciency, accuracy, and safety has occurred during this 
long period, largely as a result of new navigational 
techniques. These developments include astronomical 
methods for measuring latitude (c. 1450), the inven-
tion of the maritime chronometer (c. 1750), and the 
advent of electronic positioning systems (twentieth 
century). Mathematics has played a fundamental role 
in this evolution. Scientific navigation in Europe can 
be traced back to the first quarter of the thirteenth cen-
tury, following the adoption of the decimal numeral 
system, the introduction of the magnetic compass in 
the Mediterranean, and the creation of the first nau-
tical charts. Contrary to traditional medieval maps, 
which represented the world in some schematic or 
symbolic way, these charts were drawn to scale using 
distances and directions measured by pilots at sea. 
Taking into account the relatively crude methods used 
for estimating these quantities, the result is astonish-
ingly accurate and detailed when compared to the ter-
restrial cartography of the time.

The mathematics of navigation is somewhat com-
plicated by the fact that ships move on the spherical 
surface of the Earth, where the calculation of angles 
and distances is considerably more complex than on 

a plane. However, these complications only began to 
be relevant for the routine practice of navigation when 
Europe’s period of great explorations began in the 
middle of the fifteenth century and ships started to sail 
routinely in the open sea. 

Although the spherical shape of the Earth was well 
known to most educated people of the time, including 
the cosmographers of the Middle Ages and the Renais-
sance, the fact could be ignored when sailing in the rel-
atively confined waters of the Mediterranean and west-
ern Europe. This omission was possible because the 
geometric errors from assuming a flat Earth were usu-
ally smaller than those resulting from the crude navi-
gational methods of the time. In these circumstances, 
the mathematics of navigation was largely reduced to 
estimating the distance sailed during a given period, 
based on simple practical rules and pilots’ experience, 
and determining the ship’s position as a function of the 
course steered and the distance sailed. This determi-
nation could be made graphically on a nautical chart 
using the graphical scale of distance and the mesh of 
colored lines radiating from chosen spots, representing 
the directions of the winds, given by the magnetic com-
pass. Because it was not always possible to sail along the 
straight line connecting the point of departure to the 
point of destination, tables and abacuses were created 
to help determine a ship’s position relative to that line. 
These were called the toleta de marteloio and gave no 
more than the solution of the right triangle for some 
different angles and distances between the planned 
track and the present track. 

By the middle of the fifteenth century, ships started 
sailing into the open sea on a regular basis and the tradi-
tional method for determining their position, based on 
distances estimated by the pilots and directions given 
by the compass, was no longer adequate because of the 
long periods of time ships went without sighting land. 
This problem was solved with the introduction of astro-
nomical navigation, c. 1450, which permitted sailors to 
easily determine the latitude by observing the height of 
the sun and stars above the horizon. Before this impor-
tant development could be possible, it was first neces-
sary to construct adequate tables with the positions of 
the heavenly bodies for each day of the year (ephemeri-
des), simplify the instruments of observation used on 
land (the quadrant and the astrolabe), and devise meth-
ods simple and accurate enough to be used on board a 
ship by uneducated people. The toleta de marteloio was 
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then replaced by the regimento das léguas (regiment of 
the leagues), which solved the right triangle formed by 
the track of the ship along its course (the hypotenuse) 
and the arcs of meridian and parallel connecting the 
point of departure to the point of destination. Once 
again, no allowance was made for the spherical shape of 
the Earth, since these components were small enough 
to be considered planar and straight. Soon, though, it 
was necessary to establish a relation between the degree 
of latitude and the corresponding arc of meridian on 
the surface of the Earth so that the length of the degree 
could be expressed in distance units (leagues). Because 
this length was directly related to the size of the Earth 
(a longer degree implied a larger Earth), the problem 
had significant strategic and political implications. For 
example, Columbus always defended a degree smaller 
than the one used by the pilots of his time because this 
made the distance sailing west to the Indies—what he 
proposed to the Catholic Monarchs of Spain—con-
siderably shorter. A similar reason was behind the dis-

pute between Portugal and Spain over the location of 
the spice islands of the Moluccas, in the first quarter of 
the sixteenth century. The new astronomical methods 
were soon reflected in the geometry of the charts used 
for navigation. The new cartographic model, known 
as the “latitude chart (or “plane chart”), was based on 
observed latitudes and magnetic courses rather than on 
estimated courses and estimated distances. It replaced 
the old portolan chart of the Mediterranean for repre-
senting the newly discovered lands.

Though it may contradict common sense, a ship 
sailing with a constant course between two points on 
the Earth’s surface does not usually follow the short-
est track. This paradox is because a line that makes a 
constant angle with all meridians (called a “rhumb 
line” or “loxodrome”) does not coincide with a great 
circle arc (or “orthodrome”). This discrepancy was 
first recognized in 1538 by the Portuguese mathemati-
cian Pedro Nunes (1502–1578), who showed that all 
loxodromes, except the meridians and the equator, 
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are spirals asymptotically approaching the poles with-
out reaching them. This knowledge was later used by 
Gerardus Mercator (1512–1594) in the construction 
of a new world map intended to be used in navigation 
(1569) in which all loxodromes were represented by 
straight segments making true angles with the merid-
ians. This important map, known as the “Mercator 
projection,” is still used today to support marine navi-
gation, though history has shown that the projection 
was developed well before it could be consistently put 
to practical use. Any flat map of the Earth must con-
tain some type of distortion, since it must represent 
features of a spherical object in a flat surface. Despite 
its geometric inconsistencies, the latitude chart, based 
on magnetic courses and observed latitudes, contin-
ued in use throughout the seventeenth and eighteenth 
centuries. This longevity was because determining the 
longitudes at sea remained impossible, and the spa-
tial distribution of the magnetic declination was still 
unknown—both necessary for the construction and 
use of the Mercator projection. Only in the second 
half of the eighteenth century, following the invention 
of the maritime chronometer and the development of 
practical methods for finding the longitude at sea, was 
the latitude chart finally abandoned by the pilots and 
replaced with the Mercator projection.

Knowing that the Earth completes one rotation 
around its axis every 24 hours, the longitude can be 
expressed as the difference between the local time and 
the time at the prime meridian (Greenwich Time), 
from where longitudes are reckoned. Thus, one day 
corresponds to 360 degrees of longitude, one hour to 
15 degrees, and so on. In any method based on this 
principle, an error in the determination of the time 
is thus directly reflected as an error in the longitude. 
Two independent methods for solving the longitude 
problem were developed in the eighteenth century, 
encouraged by an important prize offered by the Brit-
ish Admiralty: the lunar distances method, based on 
measurements of the angular distance between the 
moon and the sun or a given star, from which the 
Greenwich Time was determined; and the chronom-
eter method, where the Greenwich Time was given by 
a very accurate maritime chronometer kept on board. 
In both methods, local time could be determined by 
observing the position of the heavenly bodies in the 
sky. The second method proved to be the more practi-
cal of the two and is still used today. However, at the 

core of both were long and fastidious calculations, 
done by hand using tables of logarithms and trigono-
metric functions.

Significant improvements in the accuracy and effi-
ciency of the astronomical navigation methods were 
made possible in the beginning of the twentieth cen-
tury by the advent of telecommunications, which per-
mitted ships to receive the exact time on board. The 
construction of more sophisticated tables in the second 
half of the century further simplified and significantly 
shortened the required calculations. Finally, the intro-
duction and dissemination of handheld calculators and 
computers in the last quarter of the century permitted 
pilots and other users to easily solve the complex equa-
tions governing the heavenly bodies and to determine a 
ship’s position using the time and astronomical obser-
vations made on board.

The introduction of radio positioning systems, first 
relying exclusively on land stations (Loran, Omega, 
Decca) and later on artificial satellites (GPS, Galileo), 
represents the latest development in maritime naviga-
tion. At the beginning of the twenty-first century, it is 
possible to find the exact position of a ship in the middle 
of the ocean and to control its movements with unprec-
edented accuracy. Although the mathematics involved in 
all the components of the present navigational systems 
is vast and complex, the interface is usually transparent 
enough that the navigator can concentrate his attention 
on other aspects of the ship’s activity and safety. 
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Market	Research
Category: Business, Economics, and Marketing.
Fields of Study: Communication; Data Analysis 
and Probability; Problem Solving.
Summary: Quantitative and qualitative methods are 
used to analyze data and guide business decisions.

Market research is a field of study and practice focused 
on gathering information about markets and custom-
ers for the purpose of improving sales or other business 
outcomes, though similar techniques have been applied 
to public awareness campaigns designed to change 
behavior such as smoking and weight loss. Market 
research draws from a variety of disciplines, with math-
ematics, statistics, actuarial science, psychology, and 
business being particularly influential. Careers in mar-
ket research require strong quantitative skills and mar-
ket researchers may be required to use concepts from 
algebra, trigonometry, geometry, calculus, economics, 
or statistics. Statistical data collection using surveys, 
experiments, and focus groups is widespread. Both 
quantitative and qualitative methods are used to ana-

lyze these data and guide decisions. Mathematical and 
statistical models are also developed to try to explain 
consumer behavior, predict future sales and trends, 
direct the optimal placement of advertising media or 
allocation of advertising funds, make consumer recom-
mendations, and simulate market behavior. The avail-
ability of enormous consumer databases accumulated 
from credit cards, store discount cards, and many other 
sources has spurred the use of data mining techniques, 
like data fusion and clustering, to merge sometimes-
incomplete data sources and then classify subgroups of 
consumers according to selected criteria.

Types of Market Research
Market research is a broad field and it is important to 
understand several distinctions about how and why 
such research is conducted. The first distinction is 
between marketing intelligence and market research 
projects: the former is an ongoing, broad-based process 
of gathering and analyzing information; the latter are 
focused on a particular question or product and gener-
ally have a defined budget and time for completion. A 
second distinction is between exploratory and confir-
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F ormal consumer marketing research got 
its start in the 1920s with the founding of  

ACNielsen Corporation in Chicago by engineer 
Arthur C. Nielsen. Nielsen pioneered many con-
cepts now common in market research, includ-
ing market share and combined consumer sur-
veys with quantitative audits of sales (both from 
account books and by observing what was on store 
shelves) to track sales patterns. Nielsen was also 
involved in early radio marketing research and 
later applied the same methods to measure the 
audiences for different television programs (fore-
runners of the well-known “Nielsen ratings,” which 
are still used today). In the early days of radio 
and television it was common for advertisers to 
sponsor an entire program, rather than to buy a 
short segment of time to deliver a commercial 
message, and so the issue of how many people 
and which particular demographic groups were lis-

tening to specific radio programs (or watching spe-
cific television programs) became crucial because 
the sponsor wanted to deliver their message to 
the right market and be associated with program-
ming that would appeal to that market. 

A famous example is the development of 
“soap operas” on radio and television. These 
were serial programs about domestic life and 
were sponsored by soap companies because 
the programming was developed to appeal to 
female audiences who presumably were the pri-
mary purchasers of household soap products. 
Marketing research was largely limited to inter-
nal departments of mainstream packaged-goods 
companies until the 1980s but since then has 
become a major industry as more companies 
became interested in using market research, and 
independent consulting firms were developed to 
answer this need.

History of Market Research



matory research: exploratory research is usually con-
ducted early in the decision cycle, and its goal is to dis-
cover what options exist; confirmatory research comes 
into play later in the cycle when the goal is to narrow 
options and decide which course of action to follow. 
These distinctions are crucial because the same tech-
nique can be used for different purposes; for instance, 
surveys or focus groups can be part of an ongoing and 
broad-based  data collection effort or may be a one-
time effort focused on a particular product or some 
aspect of a product. Both research techniques may be 
used either to gather a broad array of data whose pur-
pose may not be known (which might be conceptual-
ized as “seeing what’s out there”) or as a tightly focused 
effort at making distinctions to guide decision making 
among a small set of already-known options. 

Another distinction is whether the research will be 
focused on sales to consumers or to other businesses. 
The former is sometimes called “business-to-consumer” 
(B2C), and the latter is called “business-to-business” 
(B2B) marketing. Most people are familiar with con-
sumer market research and may have taken part in it, 
whether they were aware of it or not. Consumer market 
research is focused on the goal of selling a product to 
a large number of people (or, in a more general sense, 
of discovering their preferences). For instance, an entre-
preneur might want to design a sports sneaker that will 
appeal to urban young men of high school age. Because 
of this focus on describing the preferences and judg-
ments of groups, consumer market research often incor-
porates knowledge and techniques from social sciences, 
such as psychology, sociology, and anthropology. Tech-
niques include surveys, focus groups, and ethnographic 
observation (observation of how people make choices 
or use products without interfering in that process). 

B2B refers to commercial transactions between 
businesses. For instance, a wholesaler may sell goods 
to a retailer (who will then sell them to the public), or 
a supplier may provide goods necessary for business 
operations, such as paper, computers, and other office 
supplies for business. Although B2B accounts for a high 
volume of sales, the process of market research is dif-
ferent because the consumers may be assumed to have 
a high degree of knowledge about the product they 
will be buying, and usually a single individual or small 
department can make the decision for large purchases 
of goods. For these reasons, B2B market research may 
be focused differently, for instance, on discovering how 

a corporation views its own brand and how a product 
may be allied with that effort. However, as with con-
sumer marketing, the goal is still to gain information 
that will allow businesses to develop and market prod-
ucts that meet the needs and desires of potential pur-
chasers.

Another distinction is between qualitative research, 
which generally collects verbal data, and quantitative 
research, which collects information that may be trans-
lated into numbers. Qualitative research is often used 
for exploratory research and to gather information 
very early in the research process; for example, focus 
groups and unstructured interviews may be used to 
gather reactions to a new idea or product. When the 
research effort has progressed sufficiently that a few 
questions have been selected for further investigation, 
more structured quantitative research (for instance, 
a questionnaire-based survey) may be used to gather 
precise information relating to these questions.  

The Research Process
The process of market research proceeds in a man-
ner similar to much social science research, with the 
main difference being the ultimate goal. In the social 
sciences, it is generally to add to human knowledge, 
while in market research, it is generally to make an 
optimal business decision. In either case, the first step 
is to identify the question to be answered or the prob-
lem to be solved, a process that is particularly impor-
tant when the research will be conducted by a separate 
department or a consulting group. The next step is to 
elaborate on the problem—exactly what information 
is required or what questions much be answered in 
order for a decision to be made? The third step is to 
identify which research techniques are most appro-
priate for answering the questions, including con-
sideration of the time and other resources available. 
Once these steps have been completed, a study can be 
designed, including specification of a time frame and 
the data sources to be used. 

In research, the distinction is often made between 
primary and secondary data sources. Primary sources 
are data that are collected by an individual or organi-
zation for its own use, for instance, conducting focus 
groups to see how people react to several versions of a 
new product a business is planning to introduce to the 
market. Secondary sources are those collected by some-
one else and then made available to others. Examples 
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include government data sets such as the U.S. Census 
and data collected by private or university researchers 
for specific projects that are later made available for use 
by others. 

Both primary and secondary data have their advan-
tages and disadvantages. Collecting primary data 
allows the research team to specify exactly what data 
they want, for instance, color and design preferences 
among housewives in a specific urban area. They are 
generally more expensive because the researchers 
must collect the data themselves and they are neces-
sarily more limited in scope. It is generally cheaper 
to use secondary data, and the scope is often much 
broader (for example, it may have been collected on 
a national or international basis) than could be col-
lected by a small research team. However, secondary 
data may be several years out of date by the time it is 
available and may not focus specifically on the ques-
tions of interest for a particular marketing research 
project. Often, both types of data are combined in the 
same research project; for instance, U.S. Census data 
about neighborhoods (racial composition, median 
household income, etc.) can easily be combined with 
information from a primary, purpose-designed sur-
vey of individuals. 
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Marriage
Category: Friendship, Romance, and Religion.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Sociologists and others have made many 
demographic studies of marriage, even modeling it.

Many kinds of arrangements have existed through-
out history under the umbrella of marriage, with the 
expectations and responsibilities of married partners 
and their rights both to enter into marriage and within 
the marriage changing considerably over time and 
across (or within) cultures. It has always included legal 
and economic dimensions, which have played into the 
changing demographics of the married.

History of Marriage
The modern concept of “marriage for love” is a rela-
tively recent development in the history of marriage; 
for several millennia, marriage was an important soci-
etal convention fulfilling critical economic, legal, and 
political functions. Among elite people, marriage was 
a tool for the control and consolidation of wealth and 
power by forming strategic alliances between fami-
lies. Political and military agreements were sometimes 
forged in the context of a marriage. In middle and 
lower classes, marriage played a similarly important 
societal role, especially economically. Marriage’s eco-
nomic role was further reflected in conventions such as 
illegitimacy, the dowry, and large families of children, 
which proved a vital source of labor and economic gain 
for the family. Marriage was also the societal device for 
conferring a host of legal rights.  

The sexual marriage, a marriage that is freely 
arranged between two people on the basis of love, 
is a newer development that evolved from cultural 
changes that occurred during the Enlightenment and 
were further developed by the Industrial Revolution. 
The economic and legal changes that grew from this 
period gradually eroded the historical reasons behind 
arranged marriages. This gradual change in marriage 
perhaps culminated with the 1950s concept of the 
“Leave It To Beaver family”; however, this short-lived 
paradigm of marriage experienced dramatic shifts in 
the socially turbulent decades to come.

The legal and political advances for women in the 
early twentieth century, coupled with important eco-
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nomic and demographic advances in the latter half of 
that century, paved the way for important changes in 
the way people approach marriage. Women made sig-
nificant strides economically and socially that allowed 
them the possibility of viable, independent lives apart 
from marriage. The innovation of birth control also 
played an important role in the evolution of marriage 
by allowing women to effectively separate sex and 
child rearing.

Statistically Analyzing Marriage
Marriage in the United States has undergone critical 
demographic changes that are closely allied with edu-
cation level and socioeconomic status. Data spanning 
five decades of the latter twentieth century and early 
twenty-first century demonstrate a steady decline in 
marriage rates. In 1970, 84% of adults aged 30–44 years 
were married compared with only 60% in 2007. The 
decline in marriage rates mirrors corresponding rises 
in the divorce rate and a greater tendency of couples to 
find alternate arrangements, such as short-term rela-
tionships and cohabitation.  

Table 1. Percentage of married adults 30–44.

1970 84%
1980 77%
1990 69%
2000 65%
2007 60%

Marriage is associated with well-established eco-
nomic benefits. Most obvious is the economy of scale 
realized when a couple can share major assets, like a 
house, a car, or furniture, that they would otherwise 
each need to purchase individually. This economy 
of scale is still a significant advantage even when the 
additional economic cost of raising children is fac-
tored in.  

However, economic benefits are also realized when 
a spouse marries someone with a higher income. In 
2007, individual income for married men was an 
average of 12% higher than for single men. Mar-
ried women outearned their single counterparts 
even more substantially, with a 53% higher average 
income. However, this statistic is not a simple causal 
relationship between being married and accruing 

greater wealth; these economic gains are closely tied 
to education level and earning power. Essentially, 
people with a higher educational level are more likely 
to be married, more likely to be married to a spouse 
of a similar educational level, and more likely to real-
ize and compound the economic benefits of mar-
riage. Interestingly, this is a trend not present in the 
1970 data, where the marriages rates across the socio-
economic spectrum were nearly identical. The period 
since the 1970s has seen significant changes in the 
number of women attending college and their choices 
in forming relationships.  

Research literature also indicates important health 
and emotional benefits associated with marriage. 
These benefits stem not only from lifestyle changes 
(for example, the healthier diet of a married couple 
or the shared division of household labor); contem-
porary studies suggest an even more important fac-
tor is the mitigation of stress and its effects on health. 
Married people live longer, experience less illness, and 
are less prone to many diseases. Importantly, studies 
clearly indicate that the quality of the marriage is an 
important factor; poor marriages have been shown to 
be even unhealthier than being single. There are also 
clear gender differences in the extent and the way in 
which spouses realize the health benefits of marriage.    

Mathematically Modeling Marriage 
Marriage statistics are extensively tabulated like many 
other social statistics, but researchers also use math-
ematical modeling to study marriage. The 2003 book 
The Mathematics of Marriage: Dynamic Nonlinear 
Models was authored by an interdisciplinary team 
including mathematicians. It used mathematical ideas, 
such as difference equations, phase space, null clines, 
influence functions, inertia, and stable steady states 
(attractors), to model marriage, with applications to 
other psychological phenomena. In 2009, a team of 
mathematicians  from the United Kingdom and the 
United States analyzed the behaviors of 700 couples 
over the course of 12 years to develop a probabilis-
tic model that accurately predicted which marriages 
would last. It was based on classifying couples into 
one of five types using behavioral variables. Only one 
type suggested a long-lasting marriage. In 2010, Span-
ish economist José-Manuel Rey developed an equa-
tion based on optimal control models and the “sec-
ond thermodynamic law for sentimental interaction,” 
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which states a relationship will disintegrate unless it 
receives input “energy” or effort.

As with the Birthday and Cocktail Party Problems, 
mathematicians have identified a similar social puzzle 
in the Stable Marriage Problem. First introduced as a 
matching problem by D. Gale and L. S. Shapley in 1962, 
the stable marriage problem consists of equal numbers 
of single men and women. Every man creates a pref-
erence ranking of each woman as a potential match; 
similarly, every woman ranks each of the men. The goal 
is to pair the men and women in couples so as to create 
stable, happy marriages.  

The technical challenge is to avoid an “unstable 
matching,” which arises when a man and woman who 
are not paired under the matching would each prefer to 
be with each other over their paired spouse. The imme-
diately interesting question—whether there always 
exists a stable matching given a set of preference rank-
ings for each individual—was answered in the same 
seminal work. The Stable Matching Algorithm provides 
a solution to this problem and, furthermore, is guar-
anteed to always produce a stable matching. Curiously, 
this algorithm maximizes one gender’s happiness while 
minimizing the other’s, depending upon which gender 
does the proposing and which does the accepting. This 
same algorithm has other applications, for example, in 
matching medical school applicants with schools and in 
pairing roommates for college residence halls.  
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Martial	Arts
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Geometry.
Summary: The motions and stances of martial artists 
can be analyzed for their efficiency and use of force.

In the martial arts, humans use repetitive training to 
standardize their response to threat. The original bare-
handed style of ritualized combat training that evolved 
into the modern martial arts is believed to have devel-
oped in China at about the same time as the intro-
duction of bronze, agricultural sciences, and Chinese 
philosophy, and later spread to Korea and Japan. Many 
regions of the world have their own native forms of 
combat training, which are now also called “martial 
arts” in English, but the English term comes originally 
from the Japanese. 

While techniques and philosophies differ, the under-
lying goal of all martial arts is the same: that through 
deliberate physical and mental training, forces can be 
concentrated or dissipated across time and space in 
order to either attack or defend. In the modern world, 
most martial artists train for sport or health promo-
tion. Mathematics can be used to describe and model 
the stances and movements of martial arts forms and 
practitioners, such as the geometry of balance and the 
forces concentrated across time and space in the form 
of kicks, blocks, and strikes. 

Etymology
The term “martial arts” first appeared in English in 
1933. The Japanese Railway Ministry released the Offi-
cial Guide to Japan, including a reference to the Butoku-
kai in Kyoto, which they translated as the “Association 
for Preserving the Martial Arts.” “Martial arts” became 
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an umbrella term describing the fighting skills dis-
played by Japanese practitioners of jiu jitsu who had 
been invited to give demonstrations in England and the 
United States in the late nineteenth century and the judo 
practitioners who followed soon after. When American 
troops returned from the occupation of Japan in the 
1940s and 1950s, they brought along 
some knowledge of and interest in 
karate. In the 1960s, the Chinese 
Martial Arts came to be recognized 
in the West and were grouped under 
that increasingly pan-Asian umbrella term. 
Since then, many modern and traditional martial arts 
have been recognized to varying degrees, and the term 
has become international.

The Mathematics of Attack and Defense
An attack is the concentration of force across time and 
space. An ideal blow multiplies the mass of the entire 
body by the speed at which the striker moves and deliv-
ers the resultant force to a precisely determined sur-
face. This may be done to inflict damage directly or to 
interfere with the opponent’s intent by disrupting his 
or her balance. Defense is the opposite, dissipating the 
attacking force across both time and space by either 
absorption, deflection, preemption, or avoidance. The 
same principles that allow defense against an attack 
can be used to dissipate an entire conflict. 

Variables that affect the force delivered or deflected 
include center of gravity or mass, kinetic energy, linear 
and angular (rotational) momentum, velocity, inertia, 
and acceleration (as governed by Isaac Newton’s laws 
of motion). Mathematicians have studied and modeled 
many aspects of martial arts. Analysis of data has shown 
that kicks are typically three to six times as powerful as 
punches; the speed of a fist during a forward punch is 
a nonlinear function of arm extension; and a smaller 
fighter can punch as hard as a larger one by moving 
faster. Some of these models approximate body parts 
with geometric forms, such as cylinders for arms, in 
order to simplify the calculations involved. Geometry 
is also important for examining the basic stances and 
movements of all martial arts. Stability for both attack 
and defense comes from maintaining the correct align-
ment and balance in three dimensions. The mathemat-
ics becomes even more complicated once the practi-
tioner starts moving. Correct form requires a specific 
angle between body parts when kicking or punching. 

These angles 
have been determined 
through generations of 
practice and can be measured very specifically by the 
avid student who enjoys applied mathematics. In this 
way, experts in many martial arts have learned that 
correcting the angle of one’s foot or knee or wrist by 
just a few degrees makes all the difference for gaining 
leverage or applying the maximum amount of force. 
These small differences, best measured mathematically, 
can make the difference between a novice and a martial 
arts master.

There are many martial arts, but they all present both 
attacker and defender with the challenge of maintain-
ing one’s own intent while interfering with the intent 
of one’s opponent. This is like balancing an equation, 
where the intent of the two or more people involved 
in a confrontation can be reduced like the terms in an 
exercise in algebra. A parry on one side negates a strike 
from the other, and so on. This is why martial artists 
are sometimes seen standing almost still and looking 
at each other before a fight begins. In their minds, they 
are balancing out the equation. Usually this ends when 
one or the other thinks he or she see a way to make 
the balance work out in their favor and they start the 
action. Sometimes, however, the equation is so unbal-
anced that both sides can see it, and the fight ends 
without any violence at all.
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Math	Gene
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections; 
Problem Solving.
Summary: The idea of the so-called math gene 
is false; mathematical ability is not genetically 
predetermined. 

Some believe that mathematical problem-solving abil-
ity is encapsulated in a “math gene” that endows some 
people with the ability to solve mathematical prob-
lems, while those who lack that gene are doomed to 
mathematical illiteracy. This notion is false; the ability 
to solve mathematical problems is influenced (but not 
determined) by many interacting genes, not a particu-
lar one. The term “math gene” is often used to indicate 
an innate facility for mathematics, not a specific gene. 

The math gene concept has a negative impact on 
society; it discourages students from working harder 
by making failure at mathematics socially acceptable. 
Because of the many benefits of mathematical literacy, 
research suggests that the related genes are under a pos-
itive selection force, and thus mathematical ability is to 
a significant degree heritable. However, mathematical 
ability is also influenced by many nongenetic (envi-
ronmental) factors. It is this complex web of interac-
tions of genes and environment that is responsible for 
a person’s mathematical ability. 

Impact
The concept of a math gene is especially prevalent in 
places like the United States in the late twentieth and 

early twenty-first centuries. Research shows that stu-
dents who believe in the concept may perceive that 
it is “others” who do mathematics, rather than people 
with whom they identify. Mathematics educators deem 
positive attitudes as critical for success in mathematics. 
“Impostor syndrome” is a well-documented phenome-
non in mathematics in which students feel like outsiders, 
with an accompanying fear of being “found out.” How-
ever, the notion of a math gene does not proliferate in all 
areas of the world. For example, it is rare in Japan in the 
early twenty-first century, where students are expected 
to work harder if mathematics does not come easily. 

Parents, teachers, and students who believe that 
biology is more influential than education, practice, 
and effort may find it socially acceptable to use the 
notion of a math gene as an excuse for poor mathemat-
ics performance. Politicians and industry leaders in the 
United States have stressed the importance of math-
ematical training and success to the global economy. 
Some educators have suggested that instead of being 
complicit in students’ failures, society should reject the 
concept of a math gene and encourage a positive atti-
tude toward learning mathematics.

Genes and Environment
Almost all human cells contain molecules of deoxyribo-
nucleic acids (DNA) that are arranged into functional 
units called “genes.” Information encoded in genes is 
transmitted from parents to their children, thereby 
forming the process of heredity. All humans possess 
approximately the same set of genes, with the excep-
tion of genes located on sex chromosomes. This set of 
genes is the called the “human genome.” Individuals 
carry different variants, called “alleles,” of these genes. 
Different alleles are responsible in part for differences 
in phenotypes, the observable characteristics of indi-
viduals. Characteristics influenced by different alleles 
include both physical characteristics such as eye color 
and height and psychological and emotional character-
istics such as intelligence and personality.  

Despite the important role of genes, the genome 
should not be viewed as a predetermined recipe in 
which each gene determines a specific trait or character-
istic. There are many nongenetic factors that influence 
a person’s traits; these are broadly termed “environ-
mental factors.” These factors include nutrition, soci-
etal and cultural influences, education and upbringing, 
exposure to chemicals and radiation, and other factors 
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of nongenetic origin. Many of these factors exert their 
influence from the moment of conception. 

Genes interact with each other and with their envi-
ronment, thus forming a remarkably complex network 
of interdependence, regulation, and feedback. Many 
of these pathways and networks are still poorly under-
stood. It is therefore practically impossible to point to 
one gene that controls a particular trait. Instead, the 
human genome should be viewed as a complex, non-
deterministic, flexible blueprint that is influenced by 
environmental factors. 

Although neither genes nor environment alone are 
responsible for any phenotype, it is nonetheless pos-
sible to estimate the relative contributions of genetics 
and environment to the development of any particular 
trait. While some traits are influenced largely by genet-

ics, others are due mostly to environment. Determin-
ing the relative contribution of genetics and environ-
ment is a complicated problem, particularly in the case 
of mathematical ability. 

Genetic and Evolutionary Influences
The process of solving mathematical problems involves 
the use of abstract reasoning to seek generalizations 
and relationships and to derive conclusions from given 
facts and known laws. By its nature, abstract reason-
ing is nonspecific and can be useful in many situations 
ranging from solving everyday problems to answer-
ing questions arising from complex scientific research 
projects. Hence, mathematical ability constitutes more 
than the ability to manipulate numbers and equations; 
it is the ability to understand and solve problems that 
arise in many walks of life.  

Consequently, mathematically literate individuals 
are able to solve problems and to adjust to their envi-
ronment better than those who lack mathematical abil-
ity. In modern societies, those who are mathematically 
literate are also able to pursue careers of high socio-
economic status, thereby adding to the benefits of their 
mathematical ability. Since adaptation to environment 
is a major force of evolution, gene variants that influ-
ence mathematical ability have enabled their possessors 
to thrive throughout human history. Thus, mathemati-
cal ability is to some degree genetic and hereditary.

Nevertheless, mathematical ability is also influ-
enced by genes that have little or nothing to do with 
reasoning or with cognition. Since the process of 
learning and doing mathematics is a long and ardu-
ous one, it requires personality traits such as persis-
tence, diligence, patience, and self-discipline. Gene 
variants that promote these qualities tend to improve 
mathematical problem-solving ability in those who 
possess them. 
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Environmental  
Influences

W hile the ability to excel in mathematics 
is to a degree inherited, environmental 

factors play an important role in the develop-
ment of mathematical ability. Foremost among 
these environmental factors are education and 
upbringing. There is substantial evidence that 
mathematically gifted individuals are often per-
sons who have been exposed to mathematics 
from a very young age—at home or at school. 
Support from parents and teachers plays an 
important role in this process, as is the availabil-
ity of books and other educational materials.  

Other environmental factors are also crucial. 
These factors include adequate nutrition and the 
absence of environmental toxins, both of which 
are necessary to ensure proper brain develop-
ment and function. Since environmental factors 
interact with each other as well as with genes, it 
is difficult to elucidate the precise way in which 
these factors affect mathematical ability. Fur-
ther research may reveal other environmental 
factors that are unknown at present. It may also 
reveal new ways in which environmental factors 
interact with each other and with genes.
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Mathematical		
Certainty
Category: History and Development of Curricular 
Concepts.
Fields of Study: Problem Solving; Reasoning and 
Proof; Representations. 
Summary: Mathematics is arguably the most stable 
and rigorous source of knowledge; yet any system of 
mathematical reasoning is incomplete.

At one end of the spectrum in mathematics, it seems as 
if people can be absolutely certain, using mathematical 
proofs of concepts. At the other, in statistics and many 
applied mathematics fields, it is virtually impossible 
to be certain, but people can make probabilistic state-
ments with regard to degrees of uncertainty inherent 
in a given calculation or statement. 

The Greeks may have been the first to attempt a 
rational explanation of nature. The crucial tool in 
their investigations was mathematical reasoning. 
They assumed that all questions about nature can 
be answered by reason and that all these answers are 
knowable and can be discovered, a property known 
as “completeness.” They also assumed that all answers 
are compatible, which is called “consistency.” How-
ever, the evolution of mathematical certainty revealed 
that these assumptions can never be fully realized. 
The notion of what is certain and what is uncertain 
is a fundamental component that is threaded in vari-
ous ways throughout twenty-first-century mathemat-
ics curricula. For example, in primary school, stu-
dents investigate the differences between “likely” and 
“unlikely” events. Students also develop inductive and 
deductive reasoning by exploratory investigations and 
examples as well as by proofs.

Axiomatic Systems
The Pythagoreans (c. 585–500 b.c.e.), a school influ-
enced by Pythagoras of Samos, offered a mathemati-
cal plan of nature. The Greeks’ goal was to rationally 
explain why things are the way they are. They con-
fronted a fundamental question: can all knowledge be 
verified? Aristotle (384–322 b.c.e.) answered “no,” since 
there are self-evident truths (called “axioms”) that can-
not be explained. Moreover, in geometry, Aristotle said 
a proposition is proven when it is shown to logically 
follow from the axioms and other proven propositions. 
Euclid of Alexandria (323–285 b.c.e.) knew of these 
developments and incorporated them into his text, Ele-
ments. It is recognized as the prototype for how math-
ematics should be done: well-thought out axioms, pre-
cise definitions, carefully stated theorems, and logically 
coherent proofs.

Formulation of the axioms or “postulates” (the 
Greek term for axioms about geometry) is the crucial 
step in building an axiomatic system. These statements 
should be intuitively self-evident, and, from these, it 
must be possible to deduce the important properties 
of the objects of study. Later, mathematicians found 
assumptions used in Elements that were not explicitly 
stated in the axioms. Credit for completely and suc-
cessfully axiomatizing Euclid’s geometry is generally 
given to David Hilbert.

The Parallel Postulate and  
Non-Euclidean Geometries
Euclid’s fifth (or parallel) postulate states that, “through 
a given point, not on a given line, only one parallel line 
can be drawn to the given line.” Almost immediately, 
this postulate was controversial. Many did not find it 
to be self-evident and thought it required a proof. Over 
two millennia, countless mathematicians tried to derive 
the parallel postulate from the others, all with no suc-
cess. These futile efforts had important consequences 
in all of mathematics. Beginning in the eighteenth cen-
tury, some mathematicians began to use indirect meth-
ods to “prove” this postulate. 

Though unsuccessful, the indirect methods led to 
the discovery of non-Euclidean geometries—using 
the other axioms but denying the parallel postulate. 
Attempts to prove non-Euclidean geometries were 
invalid were essentially attempts to show that they were 
inconsistent. Eventually, it was determined that Euclid-
ean and these other geometries were consistent and 
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complete. The discovery of non-Euclidean geometries 
revealed that mathematics could deal with completely 
abstract axiomatic systems, which no longer had to 
correspond to beliefs based on real-world experiences. 

The Consistency and  
Completeness of Mathematics
It became clear that the most important considerations 
for an axiomatic system were its consistency and com-
pleteness, and at the International Congress of Math-
ematicians in 1900, Hilbert addressed these problems. 
He felt all mathematics should be put on a sound basis 
using the axiomatic method. In 1904, Hilbert con-
structed an arithmetic model of Euclidean geometry, 
showing that geometry was a subset of arithmetic. 
Mathematicians then set out to show the consistency of 
arithmetic, from which it would follow that Euclidean 
geometry was consistent. 

These efforts ended in 1931 with the results of Kurt 
Gödel. His first Incompleteness Theorem showed that 
in any axiomatic system rich enough to include the 
arithmetic of the natural numbers, it is possible to 
prove some statements that are false, showing the sys-
tem is inconsistent; or it is not possible to prove some 
statements that are true, showing the system is incom-
plete. In his second Incompleteness Theorem, Gödel 
showed the question of whether an axiomatic system 
is consistent cannot be determined within the system. 
Gödel’s results revealed that any mathematical reason-
ing system based on axioms as rich as arithmetic can 
never be fully realized—such systems must be either 
incomplete or inconsistent. Modern mathematicians 
operate under the assumption that mathematics is 
incomplete and not inconsistent.

Different Axioms Lead to  
Different Mathematics
One axiom of set theory, the axiom of choice (AC), 
was used implicitly for years before it was explicitly 
described. The AC states that for any collection of non-
empty mutually exclusive sets, finite or infinite, there is a 
set that contains exactly one element from each set. The 
AC with Zermelo–Fraenkel (ZF) axiomatic set theory, 
named for Ernst Zermelo and Abraham Fraenkel, is the 
basis of modern mathematics. In 1938, Gödel proved 
that if ZF set theory without the AC is consistent, then 
ZF set theory with the AC is also consistent. So, just as it 
is possible to choose between different acceptable geom-

etries in which the parallel postulate may or may not be 
true, it is possible to choose between different accept-
able ZF set theories in which the AC may or may not be 
true. On one hand, theorems requiring the AC are fun-
damental in such areas as modern analysis. Then again, 
by adopting the AC, results such as the Banach–Tarski 
paradox, named for Stefan Banach and Alfred Tarski, 
can be derived, which says a golf ball can be divided into 
a finite number of pieces and then rearranged to make 
a solid sphere the size of the Earth. Thus the decision 
as to which axiomatic system to adopt cannot be made 
lightly—different mathematics can be derived from 
these different axiomatic systems.

Valid Proofs
The idea of a valid proof depends on one’s philosophi-
cal approach to mathematics. A number of schools of 
thought have evolved, including (1) the logistic school, 
which holds mathematical proofs derive from logic; (2) 
the intuitionist school, which maintains mathematics 
takes place in the human mind and is independent of 
the real world—it composes truths rather than derives 
implications of logic; (3) the formalist school in which 
proofs follow from the application of a system of axi-
oms; and (4) the set theoretical school, which derives 
proofs from the axioms of set theory. 

Mathematics remains our most rigorous form of 
knowledge. As proofs grow more complicated, math-
ematicians worry they will have to accept a greater 
degree of uncertainty in solutions. For example, the 
entire proof of the Classification Theorem for Finite 
Simple Groups consists of an aggregate of hundreds of 
research papers and over 10,000 printed pages. Addi-
tionally, the Four-Color Problem solution has been 
achieved only on the computer and involves checking a 
prohibitively large number of cases. Some mathemati-
cians believe that since it is not reasonable and possible 
for any one individual to check all these cases, then a 
valid proof has not been provided for such problems.
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Mathematical		
Friendships	and		
Romances
Category: Friendship, Romance, and Religion.
Fields of Study: Communications; Connections.
Summary: The shared and often highly specialized 
interests of mathematicians naturally lead to bonding.

While mathematics is often thought of as independent 
work, collaboration among mathematical peers is evi-
dent throughout the history of mathematics and 
in contemporary research settings. In the twenty-
first century, many mathematicians write papers 
together, and most graduate students share 
offices and work with an adviser. These types 
of collaborative interactions may foster 
a sense of shared bonding that some-
times leads to friendship or romance. In 
his book Nicomachean Ethics, Aristotle 
posits the widely held view that friend-
ships may be based on pleasure, profit, or 
similar values. Mathematical partnerships 
may be rooted in a common desire to pro-
duce mathematical results or to discuss the 
frustrations and difficulties that arise from 
work. However, successful partnerships do 
not exist just for pleasure or profit but for the 
mutual good. 

During the seventeenth century, many natu-
ral philosophers engaged and developed their 
mathematical knowledge and shared their theo-

ries via letter writing. One prolific example was the 
Minim monk Marin Mersenne (1588–1648) who had 
about 200 correspondents, including René Descartes 
(1596–1650), Pierre de Fermat (1601–1665), and 
Blaise Pascal (1623–1662). Because of his connections 
with so many mathematicians and philosophers of the 
time, and as he lived in Paris near the Place Royale, 
Mersenne became the hub of a social network that 
often assembled at his residence. This gathering even-
tually evolved into the Paris Academy around 1635 
and fostered a community of learning.

Mathematical friendships or romances may blos-
som from a mentorship between professor and stu-
dent, although this violates the faculty guidelines of 
many twenty-first-century institutions. There is the 
potential for abuse because of the power and authority 
the mentor or instructor has over the student in terms 
of grades, evaluations, letters of recommendation, and 
other educational and professional outcomes. Johann 
Bernoulli (1667–1748) and Leonhard Euler (1707–
1783) developed a mutually beneficial relationship that 
began when Euler was studying at the University of 
Basel. This friendship spawned another between Euler 
and Johann’s son Daniel Bernoulli (1700–1782), who 
later encouraged Euler to join him at the St. Peters-
burg Academy. Eventually, Euler not only joined the 
academy but, during his early years in Russia, resided 

with Daniel Bernoulli. Together, these two men 
engaged in learned discussions of their shared 
research interests in mathematics and physics, 
particularly hydrodynamics. 

Another friendship between mathema-
ticians that developed from a student–
teacher relationship was that of Karl Wei-
erstrass (1815–1897) and Sonia Kovalevsky 
(1850–1891), who met in Berlin. Because 
women could not take courses at the Uni-
versity of Berlin, Weierstrauss agreed to 
privately work with the 20-year-old Rus-
sian. Based on her strong independent 
research and Weierstrass’s recommenda-
tion, Kovalevsky earned her doctorate 
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Similar to the Six Degrees of Kevin Bacon 
game, mathematicians have defined a 
number that signifies how closely related 
one is to Paul Erdös (left).



in mathematics from the University of Göttingen in 
1874. The mathematical collaboration between these 
two friends continued even when Kovalevsky returned 
to Russia, where she also connected with other former 
students of Weierstrauss. 

During the nineteenth century, collaboration or 
marriage between scientists was one way for women to 
gain acceptance by the scientific community. However, 
in the twentieth century, mathematicians like Mary 
Ellen Rudin (1924–), married to fellow mathemati-
cian Walter Rudin (1921–2010), found it difficult to 
obtain jobs because of antinepotism rules. In 1992, it 
was widely reported that approximately 80% of female 
mathematicians were married to other mathematicians. 
This statistic may be explained in part by the fact that 
advanced study of any type is time-consuming, and 
people may move away from home for educational or 
career opportunities, such that their social circle often 
overlaps substantially with their work circle. It may also 
be true that people find personal connections arising 
from professionally shared interests. Scientific couples 
refer to the difficulty of finding jobs together as the 
“two-body problem,” which is also a problem in classi-
cal mechanics involving the motion of two particles.

Mathematical friendship is famously found in the life 
of Paul Erdös (1913–1996). The mathematical genius’s 
passion for the subject is illustrated by his more than 
1475 academic publications with more than 500 coau-
thors. Erdös traveled around the globe, arriving at the 
homes of his friends to work on problems with them. 
Many such visits resulted in a mathematical research 
paper authored by Erdös and his host/hostess. Among 
these collaborators, mathematician husband and wife 
Ronald Graham (1935–) and Fan Chung (1949–) were 
particularly close friends who handled many of Erdös’s 
temporal affairs, day-to-day scheduling, and financial 
matters. Erdös stayed with Graham and Chung regu-
larly, and they even built an addition onto their New 
Jersey home for Erdös to stay during his annual month-
long visits. Similar to the Six Degrees of Kevin Bacon in 
social network analysis, mathematicians have defined 
a number that signifies how closely related one is to 
Erdös. A mathematician has an Erdös number of 1 if he 
or she has written a paper with Erdös himself; an Erdös 
number of 2 if he or she published with someone who 
coauthored a paper with Erdös; an Erdös number of 
3 if he or she published with someone who published 
with someone who coauthored with Erdös; and so on.  
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Mathematical		
Modeling
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Problem Solving; Representations.
Summary: Modeling reformulates scenarios to 
mathematical elements for analysis and problem 
solving.

Mathematical modeling has been in use since prehis-
tory and was likely the first kind of mathematics ever 
employed. Mathematical modeling can be thought of 
as the activity involved in finding a solution to a real-
life problem by working with a mathematical structure 
that captures the important characteristics of the situa-
tion. In the twenty-first century, mathematical model-
ing is found in many areas of mathematics, engineer-
ing, science, social science, and business and has often 
resulted in the formation of recognized “subdisciplines” 
within these fields. Research and applications occur in 
a diverse range of theoretical and real-world problems, 
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and modeling is used in schools starting in the primary 
grades to help students visualize and solve problems, 
create alternative representations of various concepts, 
and make connections between different areas of 
mathematics. The advent of computers has facilitated 
mathematical modeling and allowed researchers to 
conduct simulations or find numerical solutions to 
problems that may be difficult to solve analytically. 
However, there are those who argue against overuse 
of mathematical models, citing issues of faulty data, 
unwarranted extrapolation, and the inherent error of 
attempting to quantify many complex or qualitative 
real-world phenomena. These types of criticisms have 
been applied to models associated with the financial 
and housing crises of the early twenty-first century and 
evidence on both sides of the global warming debate. 

Anyone who has ever attempted to solve a story 
problem has dabbled in modeling. Consider the fol-
lowing story problem: 

I asked my dad for some money. He gave me 24 coins 
with three times as many dimes as quarters, for a 
total of $3.30. How many of each coin do I have? 

To solve the problem, one converts the verbal state-
ments into equations. The set of equations is the math-
ematical model, which can be solved to determine an 
answer. When formulating the mathematical equations, 
assumptions would be made, such as which denomina-
tions of coins to include in the model.

Process
Modern treatises on the modeling process often por-
tray the steps involved in modeling using a diagram 
similar to Figure 1.

Starting with a problem statement, the first action 
is to determine the assumptions that should be made, 
information in the problem that is extraneous and can 
be neglected, quantities that are known (parameters) 
and unknown (variables), and relationships between 
the quantities. This work may entail using a variety of 
strategies, including developing or using existing phys-
ical laws, proportionality arguments, equations from 
the current experts in the field, or equations empiri-
cally determined from experimental data.

That first step will lead to a mathematical representa-
tion of the real-world situation. The mathematics may 
take the form of equations, inequalities, recursive rela-
tions, matrices, graphs, integrals, differential equations, 
geometric structures, or other mathematical objects.

The next action is to “solve” the mathematics, lead-
ing to an answer. That answer may be an exact solution, 
a simulation, or an approximation. The answer must 
then be interpreted in the context of the problem, and 
any approximations must be checked (validated) to see 
if the solution is correct. Lastly, the explanation of the 
answer in the context of the situation should be used to 
verify or predict the solution to the problem. 

In practice for complex real-world problems, the 
modeling process is really a cycle that is traversed 
repeatedly as the model is refined to produce more 
realistic behavior. It is common to find that these pro-

cesses involve multidisciplinary teams of profes-
sionals, including mathematicians and scientists, 
who participate in a dialogue to clarify and refine 
the assumptions based on the success of the last 
step in the process: analyzing the mathematics in 
the context of the problem. 

History
There is archeological evidence from more than 
10,000 years ago of simple mathematical ideas 
being developed to solve problems related to 
counting objects, measuring land area and dis-
tance, and recording time. More complex math-
ematical problem solving appears around 3000 
b.c.e., when the cultures of Asia, the Middle 
East, and North Africa began using arithme-
tic, algebra, and geometry to solve problems in 
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astronomy, building construction, and financial situa-
tions, such as taxation. The design and construction of 
complex pyramids and temples and the development 
of sophisticated astronomical calendars in Central and 
South America in the first century c.e. point to the 
development of mathematical ideas to solve problems. 
It can be argued, in fact, that most of the mathematics 
developed before 1800 was conceived to help model a 
situation in the real world. 

Before the mid-nineteenth century, many of the 
real-world problems that were approached using math-
ematics would be classified today as astronomy, phys-
ics, or engineering. For example, Archimedes (287–212 
b.c.e.) was instrumental in modeling physical tools, 
such as levers, and in the development of models for 
hydrostatics (the properties of water at rest, such as 
pressure). Eratosthenes (276–194 b.c.e.) used a geo-
metric model and his knowledge of how the sun casts 
shadows to determine the circumference of the Earth. 
Abu Ali Hasan Al-Haitham, known more commonly 
as Alhazan (965–1040), developed the first principles 
of optics for spherical and parabolic lenses. Blaise Pas-
cal (1623–1662) developed the ideas fundamental to 
probability while helping a gambling friend by mod-
eling a dice-rolling game. Isaac Newton (1642–1727) 
is perhaps the best-known “mathematical modeler” 
who ever lived, famous for his ground-breaking work 
on the classical laws of motion and gravitation. Build-
ing on equations of fluid flow developed by Leonhard 

Euler (1707–1783), Claude Henry Navier (1785–1836), 
and George Stokes (1819–1903) produced the Navier–
Stokes equations, which model velocity, pressure, tem-
perature, and density of a moving fluid. The Navier–
Stokes equations, a set of nonlinear partial differential 
equations, were truly understood only after the advent 
of modern digital computers in the 1960s.

The nineteenth century saw an expansion into bio-
logical and social science modeling. Thomas Malthus 
(1766–1834) wrote about population growth and the 
familiar exponential model for population growth is 
named after him. Pierre Verhulst (1804–1859) took 
Malthus’s ideas and developed the logistic, limited 
growth model (see Figure 2).

Late Nineteenth Century Through  
Twentieth Century
From the late nineteenth century forward, mathemati-
cians have become more concerned with the develop-
ment of theoretical—sometimes called “pure”—math-
ematics: abstract structures derived from fundamental 
axioms and built through proving theorems following 
logical precepts. However, this interest in mathematics 
for its own sake did not slow down the development 
and use of mathematics as a tool to model the real 
world. The application areas have become increasingly 
diverse, and the twentieth century saw the process of 
mathematical modeling adopted in many fields outside 
physics and engineering.
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In the first two decades of the twentieth century, 
Albert Einstein (1879–1955) developed his theories of 
relativity, mathematical models that predict gravita-
tional processes on the planetary scale more accurately 
than Newton’s—now called “classical”—mechanics. 
Alfred Lotka (1880–1949) and Vito Volterra (1860–
1940) worked in the 1920s on models of the interac-
tion between predator and prey species, each arriving 
at the same model using different assumptions and 
arguments about how variables interact. Population 
models continue to be explored and refined through 
the present day. George Danzig (1914–2005) developed 
the simplex algorithm in 1947 to solve the mixing, sup-
ply chain, and other logistical problems that arose in 
World War II; these problems could be modeled with 
the well-understood linear programming approach, 
but the problems had so many variables and con-
straints that they were too complex to solve without 
computers. Linear programming is arguably the math-
ematical model most used in business and agriculture 
today. Edward Lorenz (1917–2008) developed one of 
the first nonlinear models for the atmosphere in the 
early 1960s, a precursor to the sophisticated climate 
models of today. His model displayed a very interesting 
sensitivity to initial conditions, and the study of this 
and similar models led to the field of chaos theory.

Twenty-First Century
In the twenty-first century, the use of mathematical 
modeling is ubiquitous across many research areas and 
academic disciplines. The Society for Mathematical 
Psychology publishes research in mathematical models 
used to examine psychological problems in neurology 
and cognition. The Society for Mathematical Biology 
concerns itself with applications of mathematics to 
modeling complex ecological systems, genetics, medi-
cine, and cell biology. The Journal of Mathematical 
Chemistry is published by Springer-Verlag to provide a 
venue for researchers to share results from mathemati-
cal models of molecular behavior and chemical reac-
tions. The American Sociological Association Section 
for Mathematical Sociology meets regularly to share 
research that uses “the language of mathematics to 
describe the structure, explain the events, and predict 
the dynamics of the social world.” The American Insti-
tute of Physics publishes the Journal of Mathematical 
Physics, which focuses on applications of mathematical 
modeling to classical mechanics and quantum phys-

ics. The field of operations research, also called “man-
agement science,” has evolved with the goal of solving 
mathematical models to determine the best business 
decision (often the maximum profit or minimum cost) 
given a situation in which there are limited resources. 
The Institute for Operations Research and the Man-
agement Sciences (INFORMS) is one of many organi-
zations that publish results from this discipline.

The research presented through these venues tack-
les a diverse range of real-world problems. In medicine, 
mathematical models for physical principles of flow and 
pressure have been adapted and expanded to model the 
heart as a double-chambered pump. The flow of blood 
through the vessels can be examined and the parameters 
for flexibility of the vessels can be changed to investi-
gate health conditions, such as hardening of the arteries 
brought on by aging. The ideal gas law and equations 
governing transport have been used to model how the 
lungs function to transport oxygen from the air inhaled 
to the blood in the aveoli in exchange for carbon dioxide. 
In the social sciences, Markov processes (mathematical 
matrices of transition probabilities) have been used to 
model social mobility and vacancy chains (the notion 
that a vacancy in a company or a house causes a chain 
reaction as others move in to fill the vacancy) as well as 
recidivism (the likelihood that a criminal will become a 
repeat offender). Generalizations of the Navier–Stokes 
and Lorenz models have been used to model the Earth’s 
atmosphere, including sources of pollution and other 
greenhouse gases in an effort to prove and to predict 
the presence (or absence) of global warming. Scientists 
at NASA’s Goddard Institute for Space Studies conduct 
research in three-dimensional atmospheric circulation 
models and in coupled atmosphere-ocean models in an 
effort to understand climate sensitivity.

With the advent and development of computers, 
increasingly sophisticated situations can be modeled 
and approximate solutions or simulations obtained 
using numerical algorithms. With modern computers 
to do the heavy computational work solving or simu-
lating the mathematics, the most challenging step in 
the process is often the formulation of the mathemati-
cal model.
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Mathematical	Puzzles
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Geometry; Reasoning  
and Proof.
Summary: The emphasis on problem solving in 
mathematics lends itself well to puzzles.

When considering mathematical puzzles, there are 
really two different types of puzzles available. Some 
puzzles are mathematical in nature, but require no 
mathematics to solve—similar to games like checkers, 
chess, and tic-tac-toe. Other puzzles are mathematical 
in nature and require a certain level of mathematics to 
solve—similar to games like cryptograms and Sudoku. 
Sometimes mathematical puzzles are referred to as 
“brainteasers.”

Tower of Hanoi
One of the oldest mathematical puzzles is the Tower of 
Hanoi. This puzzle was developed in 1883 by French 
mathematician Édouard Lucas. In the game, the player 
has several disks of different sizes and three pegs. The 
object is to move all of the disks from the starting peg 
to a different peg, according to the rule that a disc can 
only be placed on an empty peg or on top of a larger 
disc. In the legend believed to have inspired the game, 
there is a Vietnamese temple in Hanoi that contains a 
large room with three posts surrounded by 64 golden 
disks. The temple priests perpetually move the disks, 
according to the rules of the puzzle. According to the 
legend, when they are done, the world will end. If the 
legend were true, and if the priests moved disks at a 
rate of one per second, it would take them a minimum 
of 18,446,744,073,709,551,615 turns to finish—585 
billion years. In general, the number of starting disks 
will determine the minimum number of moves to 
solve the puzzle.

To move a single disk requires only one move. To 
move two disks (D

1
 and D

2
 with the smaller number 

being the smaller, or topmost, disk) would require three 
moves: (1) D

1
 to an empty, (2) D

2
 to an empty, and (3) D

1
 

onto D
2
. Three disks would require seven moves: move 

the top two disks as described above (three moves), move 
the last (bottom) disk to the empty, then move the two-
disk stack onto the third disk (another three moves). 
A fourth disk would similarly require 7 + 1 + 7 = 15 
moves. Using this pattern, the minimum number of 
moves for an additional disk will be double what the 
previous number of layers took plus one. However, to 
find the minimum number of moves for 10 disks, one 
needs to know what the minimum number of moves 
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for nine disks would be. For nine disks, one needs to 
know the minimum number of moves for eight disks, 
and so on. Although a working recursive formula exists, 
it is not helpful for large numbers of disks. However, 
there is a pattern that can be found looking at the mini-
mum number of moves for a certain number of disks 
that can be used to determine the minimum number 
of moves for any number of disks. In general, if there 
are n disks, the minimum number of moves to solve the 
tower problem will be 2n – 1.

Two-Container Problem
Another old mathematics puzzle that was used in the 
1995 movie Die Hard with a Vengeance involves two con-
tainers of different sizes that are used to measure a dif-
ferent third value. For example, in the movie, the char-
acters were given a 5-gallon and a 3-gallon container 
and needed to measure exactly 4 gallons of water. It is 
assumed that there is an unlimited amount of water to 
pour into either container, and that contents of either 
container can be poured down a drain. Other versions 
of this puzzle can be formed by changing the size of 
the original containers or the quantity needed at the 
end. If the containers have capacities that are relatively 
prime to one another (greatest common factor is one), 
then any number less than the bigger container can be 
achieved. If the capacities are not relatively prime, then 
only certain values can be obtained. For this specific 
version, if x equals the number of times the 5-gallon 
container is filled and y equals the number of times the 
3-gallon container is filled, the problem can be rewrit-
ten as an equation in two variables: 5x + 3y = 4.

Any ordered-pair solution to this equation will be a 
solution to the problem, although the method would 
still have to be determined. In the movie, the solution 
they found was (2, –2). The five-gallon bottle needed to 
be filled two times and the three-gallon bottle needed 
to be emptied twice (hence, the negative number). To 
actually solve the problem, they would have to fill the 
five-gallon container (first fill) and use it to fill the three-
gallon container, leaving two gallons in the five-gallon 
container. The three-gallon container would then be 
emptied (first empty) and the remaining two gallons 
poured into the three-gallon container. The five-gallon 
container would then be filled again (second fill) and 
used to pour into the three-gallon container. Since the 
three-gallon container would have two gallons of water 
already inside, it would only hold one more gallon, 

leaving four gallons in the five-gallon container. The 
three-gallon container would then be emptied (second 
empty), leaving exactly four gallons. An alternate solu-
tion to this equation is (–1, 3).

Cabbage, Goat, Wolf
Another type of mathematical puzzle involves three 
objects and a keeper. As long as the keeper is present, 
all objects will remain safe, but if the keeper were to 
leave certain pairs of objects together unsupervised, at 
least one would be destroyed. For example, a farmer 
needs to transport cabbage, a goat, and a wolf across a 
river. The farmer is the only one who can row the boat 
and the boat is only large enough to carry the farmer 
and one other object. The goat and the cabbage cannot 
be left alone together as the goat would eat the cabbage. 
Similarly, the wolf and the goat cannot be left together 
as the wolf would eat the goat. The wolf has no interest 
in the cabbage, so that pair can be left alone together. 
The task is to determine how the farmer will get all 
three objects across the river.

On the initial row, the farmer’s only option is to take 
the goat. If he takes the cabbage, the goat is eaten. If he 
takes the wolf, the cabbage gets eaten. Once the goat is 
on the other side, the farmer leaves the goat and returns 
across the lake alone. The farmer must now choose to 
take either the cabbage or the wolf to the other side. 
The farmer returns to the first side with the goat and 
swaps the goat for the last object on the original side. 
Upon crossing the river, the farmer now leaves both the 
cabbage and the wolf on the opposite side of the river 
and returns to the original side with an empty boat 
in anticipation of picking up the goat. One final row 
allows the farmer and all three objects to be on the far 
side of the river.

Squaring a Double-Digit Number
Some mathematics puzzles take the form of math-
ematics magic. For example, if a spectator calls out 
any two-digit number, the mathematician can square 
the number without a calculator in a short amount of 
time—with practice, faster than a human verifying it 
on a calculator. Finding the square of some numbers 
is easy; for example, any multiple of 10 (such as 10, 
20, or 30). All that is needed is to square the 10s digit 
and concatenate two zeros to the right. For instance, 
70 squared would be 4900. A number that has a five 
in the ones digit is also easy to square; merely take the 
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10 digit, multiply it by the next-highest integer, and 
concatenate a 25 to the right. For example, to find 75 
squared, take 7 × 8 = 56, then append 25 to get 5625. 
However, there are 90 possible two-digit numbers that 
could be called out and only 18 that fit one of the pat-
terns above. For the remainder, the mathematician can 
employ a principle referred to as “squaring a binomial,” 
which is expressed algebraically as

A B A AB B+( ) = + +2 2 22 .

If one needs to square a different two-digit number, 
such as 43, mentally rewrite 43 as 40 3+( ). Using the 
above formula, the square can be found by

43 40 3 40 2 40 3 3

1600 240 9 1849

2 2 2 2= +( ) = + ( )( ) +
= + + =

As mentioned above, 40 is a multiple of 10 and easy 
to square; similarly, 3 is easy to square. The more dif-
ficult part of the formula to calculate in one’s head is 
the middle—take 40 times 3 and double it. Then, add 
those three numbers together to get the square of the 
original number.

Squaring a number that has a 5 in the ones digit is 
a special case of squaring the binomial. If t equals the 
tens digit, then 10t + 5 is the original number. Squaring 
the binomial yields

10 5 10 2 10 5 5

100 100 25

2 2 2

2

t t t

t t

+( ) = ( ) + ( )( ) +

= + +

Factoring 100t from the first two terms yields 

100 1 25t t +( ) + .

Martin Gardner and Recreational Mathematics
Martin Gardner (1914–2010), an American mathema-
tician, specialized in recreational mathematical games. 
From 1956 to 1981 he wrote Scientific American maga-
zine’s Mathematical Games column and is credited by 
many for almost single-handedly sustaining and nur-
turing interest in recreational mathematics for much of 
the twentieth century. The kind of mathematical games 
Gardner wrote about are still being promoted not only 
for training children’s minds for mathematics, both in 
and out of school, but also for helping older citizens 
maintain sharp minds. In addition to paper and pen-

cil books, there are many Web sites aimed at seniors 
that have mathematical puzzle collections, and popular 
handheld gaming devices (like the Nintendo DS) are 
now being targeting at consumers in all age groups for 
mathematics and memory games.
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Mathematician		
Defined
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections.
Summary: Mathematicians work in a variety of fields 
and contribute widely to society.

Broadly construed, a mathematician is anyone who 
actively researches or studies mathematics. Many math-
ematicians work in academia as professors, involved in 
teaching, new research, or (most commonly) a com-
bination of both. However, mathematicians are also 
employed in large numbers by industry, and there are 
innumerable amateur mathematicians who are drawn 
to mathematics, pursuing its study and research as an 
avocation. Some mathematicians, called “applied math-
ematicians,” use mathematical ideas to solve problems 
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arising in other disciplines; others, “pure” or “theoretical 
mathematicians” focus on furthering mathematics for 
its own sake. Of course, many mathematicians belong 
to both categories. The image of the mathematician is 
somewhat stereotyped in popular culture, but, in fact, 
mathematicians comprise an extremely diverse group. 
Mathematicians are women and men, girls and boys, old 
and young, and come from every country and culture.

If mathematicians are introduced to other math-
ematicians, they are unlikely to describe themselves 
as just “mathematicians.” More often they would use 
a more precise term indicating their primary research 
interests, such as “number theorist,” “analyst,” “algebra-
ist,” “combinatorialist,” “probabilists,” or “logicians.” 
The degree of specialization varies widely from one 
mathematician to the next. A mathematician may have 
only one area of research interest or may work across 
several. It is now seen as impossible for any single per-
son to be expert in all areas of mathematics, but there 
are still so-called “generalists” who work in as many 
branches of mathematics as possible.

Mathematicians, Scientists, and Poets
While there are some overlap and blurred boundaries 
between the terms “mathematics” and “science” as these 
terms are used in ordinary discourse, the terms “math-
ematician” and “scientist” are usually used with more 

clearly distinct meanings. Scientists apply the scientific 
method, a continual process of investigating phenom-
ena, collecting empirical data, formulating explanation 
hypotheses, and testing them by experiment; for scien-
tists, experiments and empirical data provide the ulti-
mate test of a theory. While mathematicians may also 
use experiments as part of their work, this is chiefly as 
a source of inspiration, as an aid in formulating conjec-
tures and understanding complex concepts. Some might 
make the distinction that the scientist is generally an 
inductive reasoner, while the mathematician is generally 
a deductive reasoner. However, many applied mathema-
ticians and statisticians may be more like scientists in 
this regard. To many people, it might seem that math-
ematicians and poets are polar opposites, or at the very 
least unrelated. It is remarkable, as such, how often great 
mathematicians and great poets speak of the vocations as 
intertwined. For example, Russian mathematician Sonia 
Kovalevsky (1850–1891) wrote, “It is impossible to be a 
mathematician without being a poet in soul.” Likewise 
German mathematician Karl Weierstrass (1815–1897) 
wrote, “A mathematician who is not also something of 
a poet will never be a complete mathematician.” From 
the other direction, the great English poet John Dryden 
(1631–1700) wrote, “A man should be learned in sev-
eral sciences, and should have . . . , in some measure, a 
mathematical mind, to be a complete poet.” Of course, 
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A well-known joke definition among the math-
ematics community says that “A mathemati-

cian is a device for turning coffee into theorems.” 
This aphorism evokes the image of mathemati-
cians holed up alone in offices, drinking coffee 
by the pot as they fill blackboards and notebooks 
with computations and it is often attributed to 
the famous mathematician Paul Erdös. Though 
Erdös certainly did popularize this quip, it is 
more likely that it originated with his friend and 
colleague Alfréd Rényi. This notion comes from 
the then-nascent popularity of coffeehouses as 
gathering places for the European mathemati-
cians. The stimulative effects of caffeine on the 
mathematician’s brain, now well known, were still 

a relatively recent discovery in the early-to-mid 
twentieth century.

Paul Erdös (1913–1986) was a legendarily pro-
lific Hungarian mathematician and author of more 
published mathematical papers than any other 
mathematician. He collaborated with hundreds of 
mathematicians in diverse areas of mathematics, 
including combinatorics, number theory, classical 
analysis, graph theory, and probability.

Alfréd Rényi (1921–1970) was another Hun-
garian mathematician, a frequent collaborator and 
a friend of Erdös. He was primarily a probability 
theorist, but is also remembered for important 
contributions to number theory, graph theory, and 
combinatorics.

Rényi’s and Erdös’s Joke



there are many major differences between the job of the 
mathematician and that of the poet. For one, poetry is 
in some sense purely subjective, while the mathemati-
cian is judged on grounds both objective (for example, 
“is this proof correct?”) and subjective (for example, 
“are these ideas beautiful? Important?”). Let mathema-
tician G. H. Hardy (1877–1947) have the last word here: 
“A mathematician, like a painter or a poet, is a maker of 
patterns. If his patterns are more permanent than theirs, 
it is because they are made with ideas.”
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Mathematicians,		
Amateur
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections; 
Problem Solving.
Summary: Mathematics has appealed to amateurs as 
a recreation and even without the rigor of the academy 
and peer review they have made strong contributions.

Historically, amateurs around the world have made 
significant contributions to mathematics in amazing 
and diverse ways. Can anyone now contribute to the 
development of contemporary mathematics, or can 
only professionally trained individuals do so? Answer-
ing this question requires reflection on both the ways 
in which mathematical research develops and the 
nature of the community that defines who is accepted 
as a mathematician.

The Nature of Mathematics
There are many examples of self-taught mathema-
ticians or part-time mathematicians whose main 
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Rota and What  
Mathematicians Do

M athematician and philosopher Gian-
Carlo Rota wrote, “We often hear that 

mathematics consists mainly in ‘proving theo-
rems.’ Is a writer’s job mainly that of ‘writing 
sentences’? A mathematician’s work is mostly 
a tangle of guesswork, analogy, wishful think-
ing, and frustration. . . .” Rota goes on to write 
that the proofs emerge only later, after the 
mathematician has explored the problem. The 
proofs allow mathematicians to be sure that 
they are doing more than guessing and also 
encapsulate the relationships among different 
mathematical concepts and objects. It is these 
relationships among ideas, patterns, and struc-
tures that mathematicians are chiefly involved 
in exploring. Here Rota is writing against the 
wide gulf between what mathematicians do and 
what nonmathematicians typically imagine that 
mathematicians do. There is an also an implicit 
comparison of mathematicians and other pro-
fessionals (such as writers) whose role also 
involves making meanings, exploring patterns, 
and explaining ideas.

Gian-Carlo Rota (1932–1999) was an Ital-
ian-American mathematician and philosopher, 
unique in holding professorships in both sub-
jects at the Massachusetts Institute of Tech-
nology. His mathematical work was chiefly in 
functional analysis and combinatorics; his main 
philosophical work was in phenomenology.



professions or training was in another field. Some 
of these are well known in the history of mathemat-
ics, like Albert Einstein (1879–1955), who showed an 
early interest in mathematics by teaching himself geo-
metric concepts at the age of 12. Gottfried Leibniz’s 
(1646–1716) and Pierre de Fermat’s (1601–1665) 
initial formal training was in law, not mathematics. 
Srinivasa Ramanujan (1887–1920) is cited as a math-
ematical genius who was self-taught. 

People such as these raise the question about the 
nature of mathematical ability. Experiments on very 
young children have indicated that all individuals have 
the innate ability to recognize quantitative differences 
when the quantities are small. Further, lesions in the 
angular gyrus within the inferior parietal cortex of 
the brain can significantly impair mathematical abil-
ity, while the inferior parietal lobe region of Einstein’s 
brain was 15 times larger than normal. In approach-
ing the physical world, humans utilize number sense, 
pattern identification, and spatial awareness. These 
concepts contribute to mathematical reasoning. Con-
temporary mathematics as an academic discipline 
often requires high-level abstraction and complex 
symbolization. 

Mathematicians like Reuben Hersh and Ian Stewart 
hold that abstract mathematical objects are cultural 
creations. Although it is true that any contribution to 
mathematics must take an account of 
the cultural context, this still leaves 
open the question whether only 
individuals professionally trained in 
these traditions can make contribu-
tions to the development of math-
ematics. For example, Leibniz sought 
a tutor, and Einstein immersed him-
self in these cultural traditions. Fur-
ther, over the course of the twentieth 
century, mathematics has become 
increasingly professionalized. Pro-
fessions consist of individuals with 
specialized training who, as a result, 
are granted a large degree of auton-
omy and self-policing oversight in 
determining what does and does not 
constitute acceptable mathematical 
thought by setting the appropriate 
standards, methods, and problems 
of the discipline. These functions are 

embodied in institutions, such as mathematics depart-
ments in universities and mathematical periodicals, 
societies, and conventions. 

Some conference talks are by invitation only, and, 
in other cases, a conference or session organizer 
selects from submissions. Journal editors and review-
ers decide what is appropriate for publication. In this 
way, the people in the mathematical community deter-
mine standards and recognition or rejection of ideas 
and results. Over the twentieth century, mathematics 
developed through higher levels of generalization and 
abstraction using the axiomatic method, by cross-
fertilization among different mathematical fields, by 
developing new mathematical theories in an attempt 
to solve a given mathematical problem, and by exam-
ining the foundations of mathematics as a mathemati-
cal problem. All of these processes require immersion 
within the discipline. 

Amateur Contributions
It seems that by the mid-twentieth century, barring 
any new approaches, the mathematical universalist 
was a thing of the past, which leads to the question of 
whether this leaves any space for the amateur math-
ematician. The mathematical profession generally 
holds that an individual without formal credentials in 
mathematics could not engage in significant mathe-

matical research or make any mean-
ingful contributions to the discipline. 
However, there are several areas that 
are, in theory, still open to amateurs. 
The development of new forms of 
mathematics from nonmathemati-
cal considerations, the applications 
of abstract mathematics to real 
world problems, and discoveries of 
solutions to specific mathematical 
problems are three possible ways in 
which amateurs can make contribu-
tions. Further, amateurs can identify 
mathematical problems, topics, and 
subject matters that professionals do 
not recognize. They can conceptual-
ize mathematical problems in ways 
that the professionals do not with 
new definitions or proofs. They can 
develop new symbolic notations that 
assist in solving existing mathemati-
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Albert Einstein taught 
himself geometry as a child.



cal problems. Finally, they can develop new methods 
for solving mathematical problems. 

High school students have published their discov-
eries, such as Ryan Morgan in 1994. Someone outside 
the profession can have fresh, fruitful insights. Indeed, 
it has been argued that disciplines go through periods 
of normal change in which there is development of 
existing paradigms and revolutionary periods in which 
basic paradigms change. Often, the revolutionary stage 
is initiated by individuals outside or at the margin of 
the discipline. Stock market analyst Robert Prechter, 
Jr.’s (1949–) love of mathematics, deep belief in the 
mathematical structure of the universe, and search for 
innovative ways to apply mathematics to develop an 
understanding of the real world make him an interest-
ing amateur mathematician. One of Prechter’s goals 
has been to identify Fibonacci growth patterns in the 
stock markets. Prechter stated, “We would love to see 
Leonardo Fibonacci (c. 1175–1240) at least make the 
list of contenders for the real Man of the Millennium.”

Obstacles
However, an individual may face an uphill battle to have 
his or her work understood and accepted. This battle is 
made even more difficult by the existence of a plethora 
of what are often called “mathematical cranks” (individ-
uals who claim to be able to solve all sorts of mathemati-
cal problems, but often just produce aimless ramblings). 
English philosopher Thomas Hobbes (1588–1679), who 
claimed to be able to square the circle, was such a per-
son. Others have submitted proofs of Fermat’s Last The-
orem. Notable mathematicians are bombarded by such 
claims, making them less receptive to genuine amateur 
innovators. For instance, Ramanujan wrote letters about 
his work to mathematicians outside India. However, his 
mathematical writing was not the same as the standard 
communication at the time, and he was ignored until 
Godfrey “G. H.” Hardy (1877–1947) looked beyond the 
stylistic and notation issues and recognized his genius. 
This recognition was the beginning of a fruitful and 
well-known collaboration between them. Hardy noted: 

What was to be done in the way of teaching him 
modern mathematics? The limitations of his 
knowledge were as startling as its profundity. Here 
was a man who could work out modular equations 
and theorems of complex multiplication, to orders 
unheard of, whose mastery of continued frac-

tions was, on the formal side at any rate, beyond 
that of any mathematician in the world, who had 
found for himself the functional equation of the 
Zeta-function, and the dominant terms of many of 
the most famous problems in the analytic theory 
of numbers; and he had never heard of a doubly 
periodic function or of Cauchy’s theorem, and had 
indeed but the vaguest idea of what a function of a 
complex variable was. His ideas as to what consti-
tuted a mathematical proof were of the most shad-
owy description. All his results, new or old, right or 
wrong, had been arrived at by a process of mingled 
argument, intuition, and induction, of which he 
was entirely unable to give any coherent account.

Oliver Heaviside’s (1850–1925) operator calculus 
work was not well received until Thomas Bromwich 
(1875–1929) justified the theory. Radio engineer and 
high school teacher Kurt Heegner’s (1893–1965) alge-
braic number theory result was initially dismissed, but 
number theorist Harold Stark (1939–) filled in the gaps 
and the Stark–Heegner theorem is named for them. 
Another notable example is Thomas Fuller (1710–
1790), a slave who could perform remarkable mental 
calculations. In 1788, abolitionists interviewed Fuller in 
order to demonstrate the superior intellectual abilities of 
African Americans. Historians do not know exactly how 
Thomas Fuller performed his calculations. However, 
they theorize that the algorithms he used were probably 
based on traditional African counting systems. 

Dutch graphic artist M.C. Escher (1898–1972) and 
a San Diego homemaker, Marjorie Rice (1923–), have 
been cited as amateur mathematicians. They developed 
innovative approaches to geometric tiling and tessella-
tions, which were introduced to the mathematical com-
munity by mathematicians like Doris Schattschneider 
(1939–). Some self-taught mathematicians are noted 
both for their work and for their other contributions to 
the mathematical community, such as Artemas Martin 
(1835–1918), who not only published articles but also 
was cited as having founded journals like the American 
Mathematical Monthly that paved the way for others 
who followed.

Some mathematicians have given stylistic advice to 
those who want to be taken seriously. Others identify 
mathematical puzzles or problems that could be solved 
by the amateur. For instance, some have noted that the 
question of whether P = NP in theoretical computer 
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science might be solved by an amateur, and others have 
noted the Beal Conjecture, named for Andrew Beal 
(1952–), a self-made billionaire and banker. Mathema-
ticians and historians continue to publicize results from 
amateurs who might not otherwise be as known to the 
community, such as Mehmet Nadir (1856–1927), who 
is noted as an amateur mathematician in Ottoman 
Turkey, and geometric theorems on Japanese wooden 
tablets in temples that predate the work of Western 
mathematicians.
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Mathematicians,		
Religious
Category: Friendship, Romance, and Religion.
Fields of Study: Communication; Connections.
Summary: Despite the emphasis in mathematics on 
logic, empiricism, and proof, many mathematicians 
have been influenced by religion.

In large part because of writings from the ancient 
world, cosmological and metaphysical dimensions of 
mathematical reasoning became closely connected 
with theological concerns, particularly in the West. 
Consequently some mathematical practitioners, com-
municators, and professionals used their knowledge 
to illuminate religious beliefs and doctrines. Others 
responded to spiritual convictions in ways that shaped 
their view of mathematics. Many influential mathema-
ticians are religious, even in the twenty-first century. 
Noted Islamic mathematician Abu Ja’far Muhammad 
ibn Musa Al-Khwarizmi’s ninth-century algebra trea-
tise Hisab al-jabr w’al-muqabala originated the term 
“algebra,” and the pious preface illustrates his Muslim 
beliefs. Brahmin mathematician Srinivasa Ramanujan 
(1887–1920) attributed his mathematical ability to 
the Hindu goddess Namagiri, his family deity. In the 
twenty-first century, some religious mathematicians 
have established formal groups, such as the Association 
of Christians in the Mathematical Sciences. There are 
also examples of religious leaders like Bharati Krishna 
Tirthaji, who also wrote mathematical works. Through-
out history, there are mathematicians who have been 
persecuted because of religion. For example, math-
ematician Ludwig Bieberbach spoke out against Jewish 
professors in Germany, beginning in 1933. Mathemati-
cal historians and others have examined the contribu-
tions of people of various religions, such as the Incan 
religion or the percentage of Jewish mathematicians 
who have received mathematics’ highest awards. Over-
all, there are numerous cases of those who dedicated 
themselves to working at, as well as commenting on, 
the intersection of religion and mathematics.

Roger Bacon
The legacy of Classical thinkers, most notably Plato 
and Aristotle, significantly influenced perspectives 
on mathematics through the Early Modern period 
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(through the sixteenth century). One particular con-
cern addressed during this long period involved 
articulating the appropriate relationships between 
mathematics and natural philosophy. Roger Bacon 
(1214–1294) dedicated much of his writing to estab-
lishing mathematics as an essential starting point for 
investigating fundamental areas of knowledge, which 
included both science and moral philosophy. Making 
such a claim had important theological implications 
that Bacon was keen to make explicit. Specifically, he 
maintained that those dedicated to the promotion of 
Christianity were obliged to teach mathematics, as this 
knowledge is prerequisite for the complete and correct 
interpretation of the scripture. For Bacon, the effective 
execution of both exegesis and church administration 
required the development of mathematical skills.

Nicholas Cusanus
Nicholas Cusanus (1401–1464), though primarily 
remembered for his philosophical and theological trea-
tises, expended considerable effort on the problem of 
squaring the circle. His dedication went beyond that 
of many; for him the problem was replete with spiri-
tual significance. For example, he admitted the impos-
sibility of solving the problem exactly, yet continued 
to develop compass and ruler constructions that could 
provide a solution within a specific degree of accu-
racy. Any apparent inconsistency in these attitudes is 
explained by Cusanus’ understanding of the divine. 
Specifically, humankind has no means for knowing 
God with certainty, although it can strive for increas-
ingly more exact approximations of such unattainable 
knowledge. Much of Cusanus’ exposition emphasizes 
practical reasoning based on geometrical figures. It 
does so as a way of underscoring the limitations of 
conjectural knowledge that, while inescapable, consis-
tently encourage more fulsome reflection.

Blaise Pascal 
His many achievements notwithstanding, Blaise Pas-
cal (1623–1662) claimed that acquiring mathemati-
cal knowledge is of lesser significance than attaining 
spiritual knowledge. Still, his understanding of math-
ematics supports the positions he adopted on several 
theological matters. For example, the emerging notion 
of mathematical probability he helped to develop sug-
gested to him that even though deterministic processes 
governed human salvation, individual outcomes could 

not be predicted with certainty. His belief that human-
kind should seriously consider the difference between 
seeking pleasure in this life and eternal happiness after 
death as a wager is indicative of influences that gave 
rise to probabilistic theorizing.

John Wallis
A theologian by training, John Wallis (1616–1703) was 
also the third Savilian Professor of Geometry at Oxford. 
His long-running dispute with philosopher Thomas 
Hobbes (1588–1679) partly focused on the nature of 
the infinite—in its potential and actual manifesta-
tions—and ranged across the domains of both math-
ematics and religion. Mathematical considerations also 
feature, if largely as a source of analogy, in his defense 
of Trinitarianism within the Anglican tradition. Like 
other mathematical divines who followed him, Wallis 
ultimately sought to promote religious doctrine in the 
face of new developments in mathematics and science 
that might undermine fundamental tenets.

Evidence of the ways in which Gottfried Leib-
niz (1646–1716) melded mathematical and religious 
thinking can be found across various essays and tracts. 
The essential feature of his position holds that the per-
fection of mathematics serves to reflect the perfection 
of God. Moreover, he believed that reason provided the 
most effective means of promoting true religion. The 
calculus ratiocinator emerges in relation to this fun-
damental belief. He maintained that reasoning based 
on the strict use of rules and symbols could serve reli-
gion in its capacity to convince nonbelievers. Addition-
ally, Leibniz considered the binary representation of 
numbers to be strongly associated with the Creation, 
in which God created everything from nothing. That 
the binary representations of numbers exhibit periodic 
patterns in their digits was further evidence of the har-
mony embedded within God’s creation.

The use of infinitesimals in Leibniz’s development 
of calculus also exemplifies aspects of his theological 
position. They were essential to attaining knowledge of 
the infinite complexity of God’s creation. For Leibniz, 
the contingent truths of the world were like irrational 
numbers insofar as they could only be approximated 
with finite methods.

Isaac Newton
Isaac Newton (1643–1727) opposed the metaphysical 
speculation of Leibniz and others, advocating instead 
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the purer considerations associated with natural phi-
losophy. Consequently, disagreements with Leibniz 
took on theological as well as mathematical dimen-
sions. Newton was also a Unitarian—he did not sub-
scribe to the notion of the Holy Trinity. This theologi-
cal position bears on tensions he felt as the Lucasian 
Chair of Mathematics that he held at Cambridge 
(1669–1702). His heretical view made the idea of ordi-
nation in the Church of England, then a requirement 
of all fellows of Cambridge and Oxford, untenable. 
Even so, his 1687 text, Philosophiae Naturalis Principia 
Mathematica, reflects Newton’s belief in an omnipres-
ent God who created the universe and can intervene 
in its affairs. The rationalism represented by the text 
appealed to deists, who took a slightly different view. 
While sharing Newton’s belief in His omnipresence, 
they denied that God takes an active role in the affairs 
of His creation.

Maria Agnesi
The contributions to mathematics made by Maria 
Agnesi (1718–1799) lie primarily in compiling and 
disseminating its knowledge. Her efforts also served 
a religious function as part of the Catholic reform 
movement of the eighteenth century, which sought 
to incorporate new modes of thought into teaching 
without jeopardizing church orthodoxy. The move-
ment also called for extending educational opportuni-
ties, especially for women. Agnesi’s efforts to present 
a practical account of analytic geometry and calculus 
are underpinned by these reformist commitments, as 
well as beliefs she shared with others regarding the 
power of mathematics, and its distinctive infallibility 
to religious contemplation. Her decision to develop her 
popular 1784 textbook Analytical Institutions, in ways 
that privilege geometric reasoning, which contrasts 
with the Leibnizian approach adopted by many of her 
Continental contemporaries, reflects these beliefs.

George Boole
Sensitive to the professional expectations of his day, 
mathematician and logician George Boole (1815–
1864) carefully controlled expressions of his conten-
tious and eclectic religious beliefs during his lifetime. 
There is little doubt, however, that an important aspect 
of his 1854 work, the Laws of Thought, was influenced 
by particular events and views having spiritual signifi-
cance for him. Through an acquaintance with a Hebrew 

scholar during his youth, Boole became familiar with 
the Judaic tradition of describing the Divine in terms 
of an all-encompassing, if unknowable, unity. Later 
revelations, some mystical in natural, regarding this 
unitary perspective bore on his efforts to recast logic as 
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Other Religious  
Philosophies

L ike John Wallis before them, George 
Salmon (1819–1904) and Ernest Barnes 

(1874–1953) commanded respect in their 
day as both mathematicians and theologians. 
Salmon, who long enjoyed a productive asso-
ciation with Arthur Cayley (1821–1895), main-
tained a tradition of guarding religious faith from 
speculations that attended new innovations in 
mathematics and science. He was particularly 
concerned with threats to the discipline’s long-
standing commitment to Platonic idealism and 
Euclidean geometry, as these constituted much 
of the common ground between mathematics 
and religion. Consequently, Salmon publicly 
criticized mathematicians like William Kingdon 
Clifford (1845–1879), who used new geomet-
ric knowledge as a platform for advocating a 
form of secular humanism. Some years later, 
Barnes attempted to make investigations into 
non-Euclidean geometry relevant to religion. In 
particular, he promoted the geometric under-
standing of a finite, yet unbounded, universe 
as part of a spiritual message that reflected 
the modernist as well as the cynical tendencies 
of the early twentieth century.  

Mathematicians became more reluctant to 
comment on religious matters as the degree 
of professionalization within the discipline 
increased from the nineteenth century onward. 
Additionally, the failure to identify an uncontested 
foundation for mathematical certainty presented 
other philosophical obstacles. Recent research, 
however, has begun to consider the religious 
beliefs of mathematicians and the extent to 
which these relate to their work.



an algebraic system. In particular, the use of the symbol 
1 to denote any universe of thought is an essential fea-
ture of the Boolean system. According to his wife, the 
source of much of the reliable bibliographic informa-
tion on her husband, Boole was working on an unpub-
lished text that was intended to emphasize the spiritual 
significance of the Laws of Thought during the final 
years of his life.
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Mathematics,	Applied
Category: Mathematics Culture and Identity.
Fields of Study: Connections; Representations.
Summary: Virtually all human pursuits depend 
on or were made possible by some application of 
mathematics, and historically applied mathematics 
often preceded the study of pure mathematics.

In the 1920s, the German military adapted, from a then 
recently developed business device, and began using 
an encryption code device known as the “Enigma” 
machine. Believing it to be an unbreakable encryption 
device, they continued to employ it into World War 
II. A significant effort to crack the Enigma code was 
undertaken, first by Polish mathematicians prior to the 
German invasion of Poland and then by British math-
ematicians at Bletchley Park, culminating in the break-

ing of the code in 1940. This success was instrumental 
in the ultimate Allied victory and in shortening the war 
significantly.

To this day, a key role of many applied mathemati-
cians still involves encryption and cryptography, not 
just for military and defense purposes, but for a wide 
range of life activities, including computer and ATM 
security. In fact, more generally, there is almost no area 
of science, technology, and culture that is not heav-
ily dependent upon the application of mathematical 
concepts and techniques. Applied mathematics there-
fore represents, in many ways, the ultimate multidisci-
plinary subject. 

Historical Context 
Although archaeological evidence is spotty and incom-
plete, it appears that the first mathematical efforts of 
civilized society involved either commerce, includ-
ing accounting for transactions and inventories, or 
the measurement of land holdings for agricultural 
purposes. For these purposes, ancient Egyptians and 
Babylonians developed and applied basic concepts and 
techniques in arithmetic and geometry. Both peoples 
also used geometry in support of their building efforts 
and in the placement of monuments.

A large part of what is known about Egyptian math-
ematics comes from examination of the Rhind Papy-
rus. This document includes practical mathematical 
examples and exercises. It is apparent that the early 
development and purposes of mathematics were in 
response to, and in support of, practical, real-world 
problems, often of an engineering nature.

As with so many aspects of human culture and cog-
nition, ancient Greece represented a shift—or, at least, 
the beginnings of a shift—in its approach to and philos-
ophy regarding mathematics. There were certainly still 
applied mathematics problems, for example, involving 
navigation and astronomy. However, apropos of the 
birth in Greece of philosophical thought and reason-
ing, there was also some movement toward a reasoned 
approach to advancing mathematical knowledge. Thus, 
a divergence between pure and applied mathematics 
began to emerge.

There were several areas of mathematics in which 
inroads were made by the Greeks, for example, in 
geometry, trigonometry, logic and proof, and algebra 
(although work in algebra began with later Greeks). 
The Greeks also noted and struggled with irrational 
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numbers (numbers that cannot be expressed as a 
ratio of integers). One can imagine, in an age where 
immediate physical needs and practical problems were 
paramount, that the inability to precisely measure a 
length (for example, not being able to precisely express 
the length of the diagonal of a square in terms of the 
known length of the sides) would have provided a 
conundrum. 

Because of the Greek willingness to consider the 
theoretical, they were able to deal with, or accept, such 
situations to a degree. These situations led, however, to 
certain philosophical problems or paradoxes, such as 
Zeno’s paradox, named for Zeno of Elea, that continue 
to challenge mathematicians. It can still be difficult 
for modern people, who initially in life are cognitively 
dependent upon experience and observation, to make 
the jump from the world of physically demonstrable, 
practical, applied mathematics to that of abstract and 
representative theory.

The Roman Empire had a largely practical, engi-
neering-oriented approach to life, and this was mani-
fested in their approach to mathematics. They were 
not particularly interested in expanding the horizons 
of mathematical theory. Instead, they used mathe-
matics for applied engineering purposes from which 
emerged remarkable achievements that have survived 
through history.

A key application of mathematics beginning in the 
seventeenth century involved trying to understand 
and mathematically model the natural world. Cer-
tainly, there had been earlier efforts in that direction 
going back thousands of years—perhaps most nota-
bly by Ptolemy of Alexandria, with his extensive sys-
tem of cycles and epicycles geared toward explaining, 
and ultimately predicting, the movements of heavenly 
bodies. But in the seventeenth century, with math-
ematicians and physicists such as Galileo Galilei and 
Isaac Newton, the modern effort to explain the world 
began in earnest.

Into and through the nineteenth century, a mathe-
matician, like a scientist, was largely capable of under-
standing and keeping up with mathematical develop-
ments. With the explosion of mathematical activity 
in the twentieth century, it became impossible to do 
so, leading to a splitting of different specializations 
and mathematical disciplines and also a split between 
pure and applied mathematics, particularly in aca-
demic institutions. Interestingly, toward the end of 

the twentieth century and beginning of the twenty-
first century, that separation seems to have lessened 
as each area began to appreciate more the usefulness 
of the other.

Substance of Applied Mathematics
It is difficult to comprehensively identify the substance 
of applied mathematics. In part, the difficulty is because 
of the overlap, which can take several forms, between 
pure and applied mathematics. First, a mathematical 
discovery or technique that initially seems without a 
practical application can, over time, become adopted 
and embraced by science and technology for practical 
application. Thus, to complain that an area of math-
ematics has no current usefulness can be potentially 
shortsighted; no one knows what future advances in 
society might be welcoming of—or possibly even made 
possible by—those pure mathematical excursions.

Another way in which pure and applied mathemat-
ics can overlap is simply in how such things are labeled. 
It is impossible to draw a clear line of demarcation 
between pure and applied mathematics. A new proof 
or technique made in a pure mathematics context 
may have very real practical applications, either now 
or later. Similarly, a practical, real-world problem may 
result in the development of a new approach with con-
ceptual implications for theoretical mathematics. Fur-
thermore, while many jobs require mathematical skills 
and techniques, such as architecture and engineering, 
they may not be technically classified as “applied math-
ematics” careers. 

For example, a mathematical subject area such as 
number theory would generally not be considered an 
area of applied mathematics; and yet, it has significant 
implications and relevance for certain types of indus-
trial applications, such as encoding. Similarly, abstract 
algebra would not, on the surface, seem to be applied; 
nevertheless, physicists now use group theory to bet-
ter understand the world of elementary particles and 
quantum physics.

An important organization for applied mathematics 
is the Society for Industrial and Applied Mathematics 
(SIAM). According to its Web site, SIAM was organized 
in 1952 “to convey useful mathematical knowledge to 
other professionals who could implement mathemati-
cal theory for practical, industrial, or scientific use,” 
and its membership in 2011 consisted of some 13,000 
individuals and nearly 500 institutions.
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A listing of some of the activity groups within SIAM 
serves to indicate the wide range of mathematics with 
important applications:

• Computational science and engineering
• Control and systems theory
• Dynamical systems
• Financial mathematics and engineering
• Geosciences
• Imaging science
• Life sciences
• Mathematical aspects of materials science
• Nonlinear waves and coherent structures
• Optimization
• Supercomputing

Example of an Applied Mathematics  
Discipline: Actuarial Science
Mathematics can be—and is—applicable to most 
any discipline. An example of an important and well-
respected applied mathematics profession (which is 
generally ranked in the top five and sometimes at the 
very top of job-ratings surveys) is actuarial science. 
This applied mathematics career is representative of 
others and gives a sense of the general nature of applied 
mathematics work as well as its impact on society.

The ability to manage risk—not necessarily to 
eradicate or even reduce it, but at least to “manage” 
its potential impact—is critical in a complex socio-
economic environment. Without a way to manage risk, 
for example via an effective insurance industry, many 
activities that humans rely on might never happen 
(bridges might not be built and surgical procedures 
might not be undertaken) without the protection to 
society, organizations, and individuals that insurance 
provides. The ability to offer protection against the 
impact of risks is based on some key statistical ideas: 
the Law of Large Numbers and its related concepts. 
Only with a sophisticated understanding and applica-
tion of probability and statistics can an effective risk 
management industry be sustained.

Actuarial science developed as the mathematical 
discipline underlying the analysis of risk contingen-
cies. There are basically three types of actuaries: (1) 
life actuaries, who deal primarily with human mor-
tality issues and life insurance; (2) pension actuaries, 
who focus on pension and retirement systems; and (3) 
property-casualty actuaries, who deal with other areas 

of risk and insurance, such as auto, homeowners, work-
ers compensation, and medical malpractice insurance. 
Actuarial science is, in some ways, the ultimate inter-
disciplinary field. 

Since risk applies to any type of endeavor or situ-
ation, an actuary attempting to quantify risk should 
potentially understand at least the fundamentals asso-
ciated with almost all topics. One cannot adequately 
comprehend or evaluate a set of data without under-
standing where it came from and under what specific 
conditions it emerged. Thus, being an actuary or a risk 
analyst involves not only the relevant mathematics but 
also asking questions and learning about the context 
of the situation and using the findings to tailor math-
ematical methods appropriately. Furthermore, as with 
any quantitative discipline that uses sophisticated tech-
niques, an effective actuary must be a very good com-
municator—able to translate mathematical concepts 
and techniques into understandable descriptions for 
nonmathematicians.

Becoming an actuary is a significant accomplishment. 
After earning an undergraduate degree (most often in 
either actuarial science or mathematics), actuaries spend 
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several of their first careers both working at a job and 
studying for an extensive series of professional exams in 
an attempt to earn a designation or certification. These 
exams cover a variety of relevant areas, including spe-
cific actuarial techniques, finance and economics, and 
business processes.

On the job, actuaries use mathematics in an attempt 
to model real-world stochastic processes, such as the 
frequency and size of insurance losses, as well as eco-
nomic and financial variables, such as interest rates, 
inflation, and investment performance. For example, 
based largely on historical data, an actuary might 
estimate that the frequency, or number, of claims that 
will occur in a given year is well-represented by a cer-
tain statistical distribution, such as a Poisson, named 
for Siméon-Denis Poisson, or a Negative Binomial. 
Similarly, given that a claim has occurred, historical 
loss information might suggest that the dollar size of 
a particular claim probabilistically follows another 
type of distribution, such as a Normal, Gamma, Log-
normal, or Pareto, named for Vilfredo Pareto. Such 
decisions are largely based upon a thorough analysis 
of historical data, but other factors are also taken into 
account, including a qualitative understanding of 
the nature of the risks and hazards that the insurer is 
indemnifying and the entire socioeconomic context 
of the insurance activity. Once a model is developed, 
it provides a basis for not only prediction and analy-
sis of appropriate future insurance policy rates but 
also testing the potential impact of making a variety 
of possible strategic or operational decisions, such as 
changes to the types of policyholders targeted and 
changes in policy provisions.

In the last few decades of the twentieth century, 
actuarial science and risk management became more 
technically sophisticated and more enterprise-wide 
in perspective. Part of the actuary’s job is to under-
stand the behavior of economic and financial vari-
ables and how they may impact the insurance and 
risk management process. For example, Brownian 
motion equations and concepts, named for Robert 
Brown, are frequently used to model the movements 
of interest rates and equity prices over time. Because 
insurance companies take in premiums but may not 
pay out corresponding losses for months or years, it 
is important to model how the insurer’s investments 
may perform in the future. Insurers may even decide 
to sell some of their policies at an underwriting loss 

because they know that they have the opportunity to 
earn an adequate return on equity from the potential 
investment earnings on the premiums they take in as 
well as on their equity. By considering all aspects of an 
insurer’s operations, including the effect of economic 
and financial conditions, the actuary’s job has become 
much more holistic, or multidisciplinary.

Overall, an actuary’s or risk analyst’s job is one that 
is completely predicated upon mathematical tech-
niques and quantitative skills, but it is also a business 
position. Skills involving communications, problem 
solving, project management, and teamwork are also 
essential for success in this environment.

Other Applied Mathematics  
Fields and Careers
The above description of actuarial science is repre-
sentative of a variety of areas of applied mathematics. 
There are several other areas, including the following:

• Biomathematics and biostatistics. Applications 
of mathematics to biology have the 
potential to advance society and the human 
condition in substantial ways. Some of that 
advancement will come from mathematical 
modeling and analysis of genome and DNA 
mapping and sequencing. Another important 
area involves applying network analysis and 
dynamical systems techniques to the potential 
spread of infectious disease. Other areas 
include using geometry, topology, and other 
mathematical tools to examine and image 
brain activity; using differential equations 
and geometry to locate and attack tumors; 
and modeling human organs to allow testing 
of new surgical or other medical techniques.

• Operations research. Anything involving 
sequential processes can potentially be 
made more efficient and effective with the 
application of mathematical techniques and 
modeling. A few examples of such processes 
to be modeled include queue lines to limited 
resources, such as ATMs or grocery checkout 
machines; automobile traffic patterns; 
and Internet traffic. Like much of applied 
mathematics, the ultimate goal of operations 
research is to improve operational and 
strategic decision making.
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• Natural hazard modeling. Hurricane and 
earthquake modeling are examples of 
interdisciplinary applied mathematics 
areas. Modelers need not only appropriate 
quantitative skills, such as geometry and 
systems of differential equations, but also an 
understanding of the appropriate science or 
technology, such as atmospheric sciences or 
geosciences.

• Software, computers, and data. Applied 
mathematics disciplines make use of 
computers, and some are very heavily 
dependent upon computational techniques 
and resources. In addition, numerous areas of 
mathematics play a role in careers in software 
engineering, data analysis, digitization, and 
compression.

Looking Forward
Ian Stewart, in the 2002 book The Next 50 Years: Science 
in the First Half of the Twenty-First Century, offers an 
essay titled “The Mathematics of 2050.” In that chapter, 
he opines that several areas of mathematical explora-
tion will undergo, and indeed are already undergoing, 
upswings or even revolutions. Among those he men-
tions are several areas of applied mathematics, includ-
ing biomathematics and financial mathematics. Bio-
mathematics certainly seems to be coming of age, and 
people’s lives, and those of their immediate descen-
dants, are being overwhelmingly affected by develop-
ments in this area.  

One might argue, after the financial and economic 
crises of the first decade of the twenty-first century, 
that financial mathematics sustained a “black eye” that 
will suppress its credibility and potential. However, 
these same crises certainly made clear the importance 
of understanding the nature and potential impact of 
“risk” in the world, perhaps especially economic and 
financial risks. Being able to identify, quantify, and 
manage risk is critical to the smooth operation and 
advancement of society. This ability is simply impos-
sible without a good understanding of the mathemati-
cal underpinnings of economics and finance and their 
attendant risks, as well as the ability to model different 
approaches and solutions to managing those risks.

It is, of course, difficult to hazard any guesses about 
long-term societal developments.  However, one pro-
spective application from the realm of science fiction 

is interesting to note. Isaac Asimov, in his Foundation 
series of stories and books, posited a mathematics-
based “psychohistory.” The stories focus on the legacy 
of Hari Seldon, a mathematician who built psychohis-
tory into a statistical basis for modeling and predicting 
how human society will likely respond to various factors 
and stimuli. In the early twenty-first century, applied 
mathematicians are far from exhausting the potential 
of mathematics to change and advance society.

Further Reading
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http://www.siam.org/careers/thinking.php.
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Cengage Learning, 2008.
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Mathematics,	Defined
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections; 
Reasoning and Proof; Representations.
Summary: Mathematics often begins with 
definitions; however, it is much more difficult to 
succinctly describe the whole of mathematics.

For most students, the subject of mathematics is stud-
ied on an almost daily basis from kindergarten through 
high school. But if asked, “What is mathematics?” the 
majority might struggle to formulate a meaningful 
answer, perhaps saying that mathematics is “arithme-
tic” or “algebra.” But saying that the essence of math-
ematics is arithmetic is akin to saying that the essence 
of chemistry is the periodic table; mathematics and 
chemistry are both so much more. Not only may stu-
dents have difficulty describing what mathematics is, 
but even professional mathematicians struggle to pro-
vide a succinct, convincing description of the nature of 
their subject of expertise.

In his delightful 1940 essay, A Mathematician’s Apol-
ogy, G. H. Hardy (1877–1947) spends about 150 pages 
presenting a passionate case for the meaning, essence, 
and importance of mathematics and the professional 
mathematician. Along the way, he offers many keen 
insights into the nature of mathematics:

A mathematician, like a painter or a poet, is a maker 
of patterns. If his patterns are more permanent than 
theirs, it is because they are made with ideas. . . . The 
mathematician’s patterns, like the painter’s or the 
poet’s, must be beautiful; the ideas, like the colours 
or the words, must fit together in a harmonious way. 
Beauty is the first test: there is no permanent place 
in the world for ugly mathematics.

This quote may appear odd; most people do not 
view mathematics as a creative endeavor, much less 
one that can be rightly considered “beautiful.” Often, 
students who learn the subject view the discipline as 
one that is rigidly bound by rules, one in which there is 
always one right answer, and perhaps even that there is 
only one right path to follow. But mathematicians have 
a decidedly contrary viewpoint. Faced with an inter-
esting problem to solve, the mathematician strives to 
have his full cadre of creativity flowing, perhaps ask-

ing: “What unusual approach might I take to solve this 
problem, one that nobody else has yet considered?” 
“How might I alter the problem to a new, related one 
that I might be able to solve first?” and “Is there new 
language or notation that I might introduce that makes 
the problem easier to understand or similar to another 
problem that is already well understood?”

More than this, as Hardy’s quote alludes, math-
ematics is about more than individual problems; 
rather, it involves the study of patterns. If mathemati-
cians can solve one particular problem, they are next 
interested in knowing if their methods extend to solv-
ing an entire collection of related problems. If a theo-
rem can be proved to explain a wide class of situa-
tions, is it possible to extend the result to include even 
more possible scenarios? In this way, mathematics 
and mathematicians seek to recognize, understand, 
and explain patterns. Some of these patterns occur 
in the world around us; others may be purely theo-
retical. Once a pattern is understood or explained, 
mathematicians wonder if they have found the best 
explanation. What is “best”? While that is somewhat a 
matter of individual taste, most mathematicians agree 
that the best mathematics is clear, brief, and elegant. 
In Hardy’s words, “the ideas . . . must fit together in 
a harmonious way.” It usually takes a great deal of 
creative insight (creative thinking, creative writing, 
and creative problem solving) to make the ideas fit 
together in a harmonious way.

Philosophers on Mathematics
Philosophers have argued for centuries, even millennia, 
over the nature and meaning of mathematics. There 
are entire schools of thought—referred to with names 
like “intuitionism,” “logicism,” and “formalism”—that 
seek to explain what mathematics is. However, each 
somehow comes up short. Perhaps mathematics itself 
is simply too big to describe with a formal philosophi-
cal system. Some parts of mathematics do rely on our 
intuition and understanding of physical happenings 
in the surrounding world; other aspects of the sub-
ject rely considerably on the foundations of logic; and 
part of mathematics grows from the formal rules that 
seem to many to lie at its very core. But no one of these 
perspectives encompasses the entire subject nor sat-
isfactorily describes its essence. Nor does any one of 
these perspectives fully answer the question of where 
mathematics exists. Is it embedded in the surrounding 
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world, or is it a mental construct that rightly belongs to 
humanity’s collective brain?  

Nobel prize–winning physicist Eugene Wigner 
(1902–1995) was one scientist who recognized the 
beauty, power, and harmony of mathematics while still 
being somewhat mystified by its nature. In his own 1960 
essay on the question of what mathematics is, titled “The 
Unreasonable Effectiveness of Mathematics,” Wigner 
tells the story of a statistician sharing with a friend his 
work in analyzing population trends. In one of his key 
formulas, the symbol π arises. The friend asks, “What 
does that symbol represent?” The statistician notes that, 
as usual, the symbol is the familiar π associated with cir-
cles—the ratio of a circle’s circumference to its diameter. 
The friend is incredulous, for how can the relationship 
between a circle’s circumference and diameter have any-
thing to do with how a population is distributed?  

This story that opens the essay illustrates Wign-
er’s broad point: mathematics is unreasonably effec-
tive, with abstract mathematical ideas emerging in 
remarkable and surprising places. As a scientist trying 
to understand the workings of the physical universe, 
Wigner was particularly mystified by how well math-
ematics helped him describe observable phenomena. 
In his words, “the enormous usefulness of mathematics 
in the natural sciences is something bordering on the 
mysterious and there is no rational explanation for it.” 
He goes on to argue that somehow the very nature of 
mathematics, even though it is abstract and a mental 
construct, leads the way in describing the surrounding 
world and that somehow this is indicative of a deeper 
truth. He concludes the essay by observing, “the miracle 
of the appropriateness of the language of mathematics 
for the formulation of the laws of physics is a wonder-
ful gift which we neither understand nor deserve. We 
should be grateful for it and hope that it will remain 
valid in future research and that it will extend, for bet-
ter or for worse, to our pleasure, even though perhaps 
also to our bafflement, to wide branches of learning.”

To the pure mathematician, mathematics may be a 
quest to recognize, understand, and explain abstract 
patterns that arise in considered ideas. To the applied 
mathematician, mathematics may be a language that 
aptly describes patterns that emerge in some sort of 
physical reality. Somehow, it is the same mathemat-
ics in both cases, and the subject seems not to care 
whether or not it is used for abstract or applied pur-
poses. The history of mathematics is filled with stories 

that show how mathematics emerges from the mental 
doodling of interested people, only later to find rich 
connections with other areas of mathematics itself, 
and then finally to spectacularly describe some deep 
physical reality.  

As an example, the Greeks (c. 350 b.c.e.) came to 
know a beautiful number with marvelous abstract 
properties, today called the “golden ratio” 

ϕ =
+( )1 5

2
.

This number, approximately 8/5, arises naturally 
from considering line segments or rectangles that can 
be divided in ways that are self-similar and possesses 
a wide variety of interesting geometric and numeric 
properties. Roughly 1500 years later, people in India (c. 
1150) first encountered the so-called “Fibonacci num-
bers”: (1, 1, 2, 3, 5, 8, 13, 21, 34, . . .), which come from 
starting with a pair of 1s, and then adding the preceding 
two numbers to create the next. Spectacular patterns and 
relationships exist among the Fibonacci numbers, and 
mathematicians have been fascinated with them since. 
An early observation showed that the ratios of con-
secutive Fibonacci numbers (5/3, 8/5, 13/8, 21/13, . . .) 
forms a sequence of numbers that converges to

ϕ =
+( )1 5

2
.

Much later, near the end of the twentieth century, 
mathematicians and biologists came to understand 
the apparent role that both Fibonacci numbers and 
the golden ratio play in explaining seed distributions 
in plants, such as coneflowers and sunflowers: the 
golden ratio appears to be the constant angle at which 
seeds are “born,” and the relationships the golden ratio 
enjoys with the Fibonacci numbers help explain why 
this phenomena occurs, which one can better under-
stand when the seeds in the flower are numbered.  

What is Mathematics?
There is a great deal of delightful reading one can pur-
sue to learn more about the nature of mathematics. 
Such investigation will help each person decide indi-
vidual answers to the question “What is mathematics, 
really?” For the novice mathematician, Steven Strogatz 
has written the quintessential modern sequence of 
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essays on the topic, essentially in the form of a blog 
for the New York Times. Strogatz, a prominent applied 
mathematician who has done groundbreaking work in 
the field of dynamical systems, begins with the won-
derful 2010 essay “From Fish to Infinity,” where his 
overall goal for the series is to be “writing about the 
elements of mathematics, from pre-school to grad 
school, for anyone out there who’d like to have a sec-
ond chance at the subject—but this time from an adult 
perspective. It’s not intended to be remedial.” For the 
reader with a bit more mathematics background, one 
can consider the American Mathematical Society’s 
Online Feature Column, a monthly column that takes 
a look at accessible mathematical research and (often) 
its applications. To begin, the interested reader might 
read David Austin’s immensely popular 2006 explana-
tion of Google’s PageRank algorithm, “How Google 
Finds Your Needle in the Web’s Haystack.” For a more 
historical view, it is hard to beat the marvelous writing 
of Professor William Dunham in his 1990 book Jour-
ney Through Genius, which surveys some of the great 
theorems of mathematics.

An encyclopedia entry is a tiny start to describing 
the essence of mathematics. Each person must read, 
explore, think, and investigate to seek understanding 
of what mathematics really is. It is a beautiful exam-
ple of the depth and complexity of mathematics itself 
that so many different perspectives on the subject ring 
true and that each person can find something unique 
in the subject.
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Mathematics,	Elegant
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Reasoning  
and Proof.
Summary: A mathematical accomplishment may be 
considered elegant because of its conceptual depth, its 
aesthetic appeal, its importance and implications, its 
rigorousness, or the surprise of its results.

Elegant mathematics is an elusive idea, often being 
an aesthetical judgment determined subjectively as a 
reflection of one’s knowledge and understanding of 
mathematics. That is, an intricate proof in number the-
ory or analysis may be deemed “elegant” by mathema-
ticians, but it would be mere nonsense to a struggling 
high school student. In turn, the visual “completing of 
the square” as a proof of the quadratic formula may be 
deemed elegant by high school students, but it would be 
too simplistic and inefficient to mathematicians. Thus, 
it is necessary to dig deeper into the meaning of “ele-
gant mathematics,” trying to focus on the many forms 
of mathematics—its methods, its visual aspects, and its 
role as a language.

The word “elegance” often is defined as an attri-
bute that is effective and simple. Elegant mathematics 
can then be defined as mathematics that is effective 
and simple. However, this definition can be deceptive 
because one of the primary roles of mathematics is as a 
language, capitalizing on its ability to effectively record 
and model ideas and situations using a symbolic nota-
tion that is both effective and simple. Thus, since math-
ematics is broader than a mere language, the view of 
aspects of mathematics as elegant should include other 
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attributes, such as surprise, nontriviality, consistency, 
power, conceptual depth, and even beauty.

When discussing elegant mathematics, mathemati-
cians usually refer to proofs as prime examples, shift-
ing the focus from the correctness of the proof ’s logi-
cal structure to its effectiveness and simplicity. Specific 
elements that suggest elegance are the following:

• Uses a minimal number of necessary 
assumptions

• Is unusually succinct yet understandable 
• Avoids complex or laborious calculations
• Offers a surprising path from assumptions to 

conclusion
• Models “out-of-the-box” thinking
• Achieves a difficult result with a minimum  

of work
• Includes original conceptual insights that 

clarify both the “how” and the “why”
• Can be generalized to a broader context or set 

of problems
• Displays the power of mathematics as both a 

method and a language

An example of an elegant mathematical proof is 
Euclid’s proof that an infinite number of primes exist. 
Using the process of “reductio ad absurdum,” assume 
that the number of primes is finite, which may be writ-
ten as p1, p2 , p3, . . . , pn. Let 

N = p1 p2 p3 . . . pn−1 pn + 1

which cannot be prime because N > pn. Thus, N must 
be composite and have a prime factor. However, all of 
the known primes p1, p2 , p3, . . . , pn are not factors of N 
because on division they leave a remainder of 1. Thus, 
there must exist another prime q > pi for all i, such that 
q is a factor of N. But, this is a contradiction of the 
original assumption, and the number of primes is infi-
nite. Euclid’s proof is mathematically elegant because 
it is effective, simple, powerful, and surprising. Many 
other mathematical proofs are regarded as elegant, 
such as these examples:

• Archimedes’s use of mechanical concepts  
to prove that the volume of a sphere is 
two-thirds the volume of its circumscribing 
cylinder

• The Chinese “Behold!” proof of the 
Pythagorean Theorem

• Fourier’s use of series to prove that the 
number e is irrational

• Euler’s proofs involving infinite series
• Cantor’s diagonal proof of the countability of 

the rationals, as well as his related proof that 
the reals are not countable

Paul Erdös, a Hungarian mathematician, often 
referred to an imaginary book in which God had 
included all the most beautiful or elegant proofs in 
mathematics. Then, when he came across a proof 
that he felt was elegant, Erdös would suggest, “This 
one’s from The Book!” In the 1990s, Martin Aigner 
and Günter Ziegler capitalized on Erdös’s ideas and 
published Proofs From THE BOOK. The most recent 
edition (2009) includes 30 sections involving elegant 
proofs from number theory, geometry, combinatorics, 
analysis, and graph theory.

Inelegant Proofs
A mathematics proof that is not elegant is viewed as 
ugly, laborious, awkward, or pedantic. Inelegant mathe-
matical proofs often involve computer-based computa-
tions that cannot be easily replicated by mathematicians 
within a reasonable time frame. These inelegant yet 
effective proofs are akin to proofs by exhaustion involv-
ing a great number of cases, thereby disguising any ele-
ments of brevity or simplicity. A primary example of 
such a proof is Kenneth Appel and Wolfgang Haken’s 
proof of the Four Color Theorem in 1976. Despite their 
use of some clever categorizing techniques, the final 
steps in the proof required more than 1000 hours of 
computer time to check 1,936 maps of reducible con-
figurations as possible counterexamples. In fact, some 
mathematicians do not accept the proof because of its 
reliance on computers. Yet, the Four Color Theorem as a 
conceptual statement is itself considered to be elegant.  

Elegant Versus Ugly
Famous mathematicians such as Bertrand Russell, 
G. H. Hardy, Richard Feynman, and Paul Erdös also 
have shared their opinions relative to the distinctions 
between elegant and inelegant proofs (or mathematics, 
in general), often taking strong stands. For example, 
in a letter to Max Wertheimer, Albert Einstein even 
discussed the distinctions between elegant and ugly 
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proofs. For him, a proof was ugly if it depended on the 
artificial introduction of additional elements, such as 
constructing auxiliary lines, which distracted the reader 
from the flow and “symmetry” of a proof. In his letter, 
Einstein provides both elegant and ugly examples of 
proofs of Menelaus’s Theorem on Colinearity.

Authors have jumped on this “elegant versus ugly” 
bandwagon, extending it by their evaluations of both 
the proof and the conceptual claims associated with 
a mathematical theorem. The result is published 
resources such as The Most Beautiful Mathematical 
Formulas (1992) and An Introduction to the World’s 
Most Elegant Mathematics (2006). 

Unfortunately, the sorting process is not as straight-
forward as these authors suggest. Often, mathemati-
cians vacillate, being unsure in the classification of a 
proof as either elegant or inelegant. A current example 
of this indecision is Andrew Wiles’s proof of Fermat’s 
Last Theorem, which conjectures that no three whole 
numbers a, b, and c can satisfy the equation an + bn = c n 
for any integral value of n >2. On one level, Wiles’s 
approach was ingenious (and thereby elegant) in his 
use of elliptic curve theory and modular forms to solve 
this famous extension of the Pythagorean Theorem. 
And on the other hand, Wiles’s final proof is inelegant 
because it involves more than 100 pages of very dif-
ficult mathematics that deters both mathematicians 
and non-mathematicians. The same can be said for the 
proof of the Monster Group.

Elegance
Moving the focus beyond proofs alone, mathematicians 
tend to classify mathematical ideas, such as theorems 
and concepts, as “elegant” if they establish insightful 
connections between two areas of mathematics that 
were assumed to be unrelated. The most famous exam-
ple perhaps is Leonard Euler’s identity that relates spe-
cial mathematical constants: eiπ + =1 0 .

Framed copies of this fascinating identity often will 
be found hanging on the walls of mathematicians’ 
offices. It exudes simplicity and explains unexpected 
connections of several different mathematical ideas.

The symbolic simplicity of the above identity also 
illustrates the elegance of mathematics as a language. 
In fact, combinations of mathematical symbols with 
words can convey mathematical ideas that are simulta-
neously complex and powerful. Combined further with 
mathematical graphics, the elegance of mathematics as 

a language is enhanced by the ability to convey com-
plex ideas efficiently, consistently, and with economy.  

And, partially because of its elegance in form, math-
ematics also is the preferred language of the sciences 
and many other disciplines that involve quantitative 
models. Awareness of this elegance led physicist Eugene 
Wigner to write his famous essay, “The Unreasonable 
Effectiveness of Mathematics in the Natural Sciences” 
in 1960. He concludes his paper with the statement that 
“The miracle of the appropriateness of the language of 
mathematics for the formulation of the laws of physics 
is a wonderful gift which we neither understand nor 
deserve.”

It is expected that the idea of elegant mathematics 
will remain an elusive one, because it is a subjective 
judgment of the aesthetics of proof and ideas within 
mathematics. Though the quandary will lead to argu-
ments, it should not have any impact on the continu-
ing development of mathematics. That is, because of 
the nature of both elegance and mathematics, it is not 
possible to merge them as a thinking strategy. Rather, 
as history has demonstrated, the mathematics is first 
developed and proven and only then can the aesthetic 
judgments (elegant versus ugly) begin. And one can-
not ignore the quality of the considerable mathematics 
that lies between these two extremes. 
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Mathematics,	Greek
See Greek Mathematics 

Mathematics,	Green
See Green Mathematics

Mathematics,	Roman
See Roman Mathematics

Mathematics,		
Theoretical
Category: Mathematics Culture and Identity.
Fields of Study: Connections; Reasoning and Proof; 
Representations.
Summary: The complement to applied mathematics, 
theoretical mathematics advances the field without 
necessarily focusing on potential applications.

Often mathematics, as a discipline, is categorized in 
two general areas: theoretical mathematics and applied 
mathematics. When this is done, it is common to con-
sider theoretical mathematics (or “pure” mathematics) 
as the part of mathematics that is carried out for the 
sheer pleasure of “doing mathematics,” for the intrinsic 
beauty that lies in the study of the logical patterns and 
abstract relations that can be found when organizing 
space (geometry and topology), structures (algebra), 
quantities (number theory), approximations (analy-
sis), and the thought behind these actions (logic and 
foundations). However, in many historical cases, the 
results found in theoretical mathematics have had a 
practical or “applied” value, often not foreseen—or 
even understood—until many years after their discov-
ery. Such is the case, for example, of the non-Euclidean 

geometries that were seen to be coherent within their 
axiomatic systems but were not thought of as repre-
senting physical reality. Riemannian geometry, named 
for mathematician Bernhard Riemann who lived in the 
first part of the nineteenth century, became the math-
ematical context for Albert Einstein’s General Theory 
of Relativity and led to other non-Euclidean applica-
tions in twentieth-century physics.

In much of the research done in theoretical math-
ematics, the focus is upon extending the field in which 
the particular mathematician involved is a specialist. 
Real world applications are not usually relevant to the 
activity of the pure mathematician, as these belong to 
the realm of applied mathematics. However, research 
in pure mathematics often involves the “application” of 
results to other mathematical objects. It is also impor-
tant to emphasize that new knowledge in mathematics 
does not come about by experimentation but by proof. 

Algebra: The Study of Structure
People often associate algebra with their experience 
in secondary school. Algebra studied at this level is 
known as “elementary algebra,” and, while it is a big 
step in abstraction for the young student, it still focuses 
upon real numbers and arithmetic operations in which 
unknown variables are substituted for numbers. How-
ever, the abstract algebra studied and developed by the-
oretical mathematicians generalizes the structure of the 
real number system and its arithmetic operations by 
means of axioms and works with structures that have 
little to do with the numbers and operations learned in 
school.  Some of the structures most studied in alge-
bra include groups, rings, modules, vector spaces, and 
fields. These structures are defined by properties and 
operations. Theoretical mathematicians study the rela-
tions that are established between different representa-
tions of the same structure, or even between different 
structures. Once again, even though the exploration, 
discovery, and development of all these structures is the 
motivation and a goal in itself, these abstract structures 
have found applications in areas as diverse as crystal-
lography, computer science, music, and physics.

Geometry and Topology: The Study of Space
The study of symmetries and rigid transformations, 
such as rotations, reflections, and translations, is associ-
ated with the Euclidean geometry that everyone stud-
ies in a secondary school program. Euclidean geometry 
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arose from the need to measure and survey as territorial 
delimitation began to be registered and ancient civiliza-
tions developed sophisticated towns and cities. Euclidean 
geometry, with its study of flat space (where the short-
est distance between two points is a straight line), was a 
faithful representation of “how the world really is.” The 
discovery of the “other geometries” in the 1800s, when 
some theoretical mathematicians removed the paral-
lel postulate from the axioms of Euclidean geometry, 
opened a world of possibilities (or possible geometrical 
worlds) for exploration on the level of theoretical math-
ematics. However, it was to be seen that the universe, 
both on the macrolevel (as in, for example, astronomy) 
and the microlevel (as in, for example, particle physics), 
could be much more faithfully described with non-
Euclidean geometrical properties. 

In general, geometry studies the properties that 
change when an object is deformed, while topology 
studies the properties that do not change when an 
object is deformed. For the topologist, a circle and a 
square are essentially the same, because there exists 
a continuous function that transforms one into the 
other. This is the reason that topology is often called 
“rubber band geometry.” Whereas in geometry an 
object remains the same only under rigid transforma-
tions, in topology, as long as adjacent points continue 
to stay adjacent (which means that the object cannot 
be cut or twisted), the object is considered the same. 
The rubber band can be stretched, shaped as a square, 
ellipse, or circle; but points that are close remain close, 
and the rubber band itself does not change.

Although the study of topology is very axiomatic 
and theoretical, its results have had important appli-
cations in physics, biology, computer science, and 
robotics. For example, the study of DNA topology by 
applied mathematicians, together with biologists and 
chemists, uses results from the theoretical study of 
“rubber geometry.”

Number Theory: The Study of Quantities
Number theory, also known as “higher arithmetic,” stud-
ies the properties of the natural numbers and the inte-
gers as well as the properties of those structures that are 
a generalization of natural numbers and integers—those 
structures that maintain certain fundamental properties 
that these numbers possess. Some of these properties are 
as familiar as divisibility, prime factorization, or congru-
ence, while others have arisen through conjectures that 

theoretical mathematicians have made. Some of these 
conjectures are extraordinarily easy to understand by 
any nonmathematician or young student, but they are 
also extraordinarily difficult to prove. 

Such is the case, for example, of the now famous 
“Last Theorem of Fermat.” The theorem states that  
x n + yn = zn can be true only for n = 1 or 2. For over 350 
years, some of the best mathematical minds worked 
on this problem and could not find a proof. In 1995, 
a proof was presented, but it used some of the most 
sophisticated and modern mathematical concepts from 
other areas of pure mathematics to be found. 

Number theory has been considered by some math-
ematicians as a paradigm of pure mathematics. How-
ever, since the appearance of computer science, number 
theory has been applied in a very practical way, espe-
cially in cryptography (the encoding of information) 
and random number generation for statistical analysis; 
it has even been applied in quantum mechanics.

Analysis: The Study of Approximation
Mathematical analysis began as the process of formal-
ization and axiomatization of calculus, whose depen-
dence on infinitesimally small quantities that “tend” to 
zero did not have a rigorous foundation. Today, analysis 
has branched out into different areas of interest. Real 
analysis is the study of the properties of sequences and 
functions of real numbers using notions such as limit, 
continuity, differentiation, and integration. There is also 
complex analysis, which studies similar notions in the 
context of the complex numbers, and functional analy-
sis, which studies these notions and others properties of 
functions that are seen as objects in a “function space.” 
Probability theory is also considered an area of analysis. 
Indeed, probability theory is a very abstract and axiom-
atic subject, based on set theory and measure theory.

It is worthwhile mentioning that in the 1960s an 
alternative axiomatization of the infinitesimal, known 
as “nonstandard analysis,” was developed. There are 
mathematicians who advocate the use of this formal-
ization as a basis for teaching calculus, given that the 
concept of “limits” is often difficult to comprehend 
for the beginning student. As seems to be the rule in 
theoretical mathematics, although the mathematician 
does not look for applications and the main goal is to 
expand the particular field of study, applications of 
analysis have found their way into science, engineer-
ing, and economics.
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The Theoretical Mathematician:  
Training and Workplace
The educational systems in the world are not homo-
geneous, although once a student is at the level of 

graduate studies, equivalences are usually recognized. 
In many countries outside of the United States, an 
undergraduate program consists of a complete sub-
mersion in the field and virtually no courses outside 
the field are taken. In the United States, the majority 
of fields, mathematics included, are offered as majors 
at the undergraduate level; therefore, the number of 
courses taken in the particular area is less, as there are 
other general education requirements that need to be 
fulfilled. It is also common for students to take a minor 
in another area or even a double major.

However, people with undergraduate degrees in any 
part of the world will not be formally considered the-
oretical mathematicians. Theoretical mathematicians 
will have a graduate degree, almost always a Ph.D., and 
graduate studies are fairly homogeneous worldwide. 

People trained in mathematics will have taken a full 
calculus sequence (single variable and multivariable), 
followed by an analysis sequence. As undergraduates, 
they often will have taken linear algebra, abstract alge-
bra, discrete mathematics, and usually some topology 
or geometry. Once a student has opted to study pure 
mathematics, and is in a master’s program, the student 
will orient electives to an area of interest. At the Ph.D. 
level, students still have to present doctoral compre-
hensive exams in the subjects of analysis, algebra, and, 
often, topology as requisites, independently of his or 
her area of specialization. Students will also present a 
comprehensive exam in their field of interest, and then 
they will do doctoral research, culminating in their 
doctoral dissertation. There are, of course, variants to 
this process. Some students will specialize in several 
fields; some will have done research in their master;s 
program and have produced master’s theses.

The University of Cambridge established the Sadle-
irian Chair in pure mathematics and, since 1863, there 
have been eight professors who have held it. This posi-
tion is usually considered a landmark in the recogni-
tion of pure mathematics as separate from applied 
mathematics. Universities, in general, do not have a 
standard approach to the separation of theoretical and 
applied mathematics. Some universities have a single 
mathematics department; some have mathematics and 
statistics departments in which applied mathematics 
is considered a concentration in mathematics. Some-
times computer science is part of the mathematics 
department, although this is not common at research 
universities. 
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Foundations of  
Mathematics:  

The Study of Thought

T he study of the foundations of mathemati-
cal knowledge includes areas such as 

mathematical logic, axiomatic set theory, model 
theory, and category theory. The quest for 
understanding the foundations of mathematics 
is also part of the philosophy of mathematics.

Much of the development of certain areas 
of theoretical mathematics occurred in the 
twentieth century; for example, topology has 
been based on set theory, which was pre-
sented in its axiomatic precision in the late 
nineteenth century. The axiomatization and 
actual arithmetization of infinite cardinalities 
was essential to much of the development of 
theoretical mathematics as well. 

On the other hand, category theory, which 
abstracts the sets and functions from set 
theory to objects and morphisms and relies 
heavily on arrow diagrams to model mathemat-
ical behavior, has played an important role in 
pure mathematical areas, such as algebraic 
topology and algebraic geometry. These areas 
cross the rather artificial boundaries into which 
theoretical mathematics has been divided. For 
this reason, the importance of category the-
ory can be seen, as this theory provides the 
notions that permit transit between different 
mathematical structures. At the end, theoreti-
cal mathematics is founded on the idea of the 
demonstration. The importance of Euclid, inde-
pendently of geometry in itself, rests on the 
fact that he was the first to formalize the way 
that, to this day, theoretical mathematics is 
done and thought about.



The natural ambience of theoretical mathematicians 
is academia. In this context, they can transmit their 
knowledge, which is the product of many years of study, 
reflection, discovery, and creation, to future generations. 
Academia is also the place where theoretical mathemati-
cians can have the time and resources to dedicate them-
selves to research. There are also institutions, albeit few, 
that support theoretical mathematicians to do research, 
usually at a stage in which they have already produced 
results and it is clear that they have a big probability of 
successfully obtaining new ones.

Employment in government and industry is usu-
ally reserved for the applied mathematician. However, 
there are theoretical mathematicians who also have 
applied knowledge that makes them attractive for these 
positions. The theoretical mathematician who ends 
up in an applied context can often provide insights, 
because of training, that will bring about novel ways of 
approaching concrete problems. 

It is interesting that there is very little difference 
in the type of work and perspectives of theoreti-
cal mathematicians worldwide. The differences have 
more to do with the size and extension of the univer-
sity systems in different countries, but the “culture” 
and daily life of the pure mathematician is remark-
ably homogeneous.

The Germ of Theoretical Mathematics  
in School Mathematics
In many universities in the world, prospective school-
teachers who will be teaching mathematics must take a 
course, or courses, that analyze elementary mathematical 
concepts from an advanced point of view. This require-
ment is because many of the concepts that are present 
from the very beginning of mathematical instruction are 
very deep, although not necessary to understand for the 
young student who begins the procedure of basic math-
ematical operations. Felix Klein (1849–1925) is known 
for his work in geometry, where he demonstrated that 
the Euclidean and non-Euclidean geometries could be 
considered as special cases of projective geometry, that 
algebra (group theory) can be basic to the study of geom-
etry, and other achievements in theoretical mathematics. 
The “Klein Bottle,” a two-dimensional object from topo-
logical studies that can only be understood as a whole 
in a four-dimensional context, is named after him. His 
book Elementary Mathematics from an Advanced Stand-
point: Arithmetic, Algebra, Analysis is made up of lectures 
to future teachers over a 20-year period.

At the elementary school level, for example, the con-
cept of “infinity” is present from the moment that chil-
dren learn to count with natural numbers. The notion 
of dimension appears when two- and three-dimensional 

objects are introduced geometrically, 
and abstraction is required when these 
physical objects are represented by for-
mulas, often a first contact with alge-
bra. The notions of number theory 
are omnipresent, for example, in the 
concept of “divisibility” and integer 
numbers. The concepts of “equiva-
lence class” from algebra, and “limit” 
from analysis are also fundamental to 
work with both rational numbers and 
roots and real numbers and approxi-
mations. Notions from set theory and 
logic are implicit in teaching meth-
ods and explanations about many of 
the operations and concepts that are 
expected to be taught and learned at 
the school level. For this reason, the 
schoolteacher who is expected to com-
municate mathematical ideas should 
have a basic understanding of many of 
the concepts of theoretical mathemat-
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ics. Further, schoolteachers who understand the broader 
theoretical and applied contexts of the mathematics that 
they teach can answer student questions and plant the 
seeds of ideas and connections that will later become 
important. It is the job of mathematicians at universi-
ties’ mathematics departments to transmit these ideas to 
students who, while not pursuing a degree or career in 
pure mathematics, must understand some of its funda-
mental components. 

Theoretical Mathematicians:  
Their Work and Their Views
It is usually agreed upon that until the middle 1800s, 
there was no clear division between theoretical and 
applied mathematics. Even though, arguably, Euclid’s 
Elements could be considered pure mathematics, the 
majority of mathematicians from ancient times until 
the 1800s were interested in solving problems. It is also 
true that some of these problems, such as finding the 
roots of polynomials of varying degrees (which led to 
the development of Group Theory), might not seem to 
have much practical application. However, in general, 
mathematicians as renowned as Isaac Newton, Gott-
fried Leibniz, Leonhard Euler, Carl Friedrich Gauss, 
brothers Jacob and Johann Bernoulli, Joseph Fourier, 
Joseph-Louis Lagrange, Evariste Galois, or Niels Abel, 
in their contributions to the ideas now considered part 
of theoretical mathematics, usually were also involved 
in research in which direct applications were the cen-
tral objective.

In the 1800s, the axiomatization of calculus, with its 
convenient but mysterious infinitesimals, was carried 
out by Augustin-Louis Cauchy (1789–1857) and Karl 
Weierstrass (1815–1897). George Boole (1815–1864) 
tried to formalize the laws of thought using algebra and 
initiated the algebra of logic, called Boolean algebra, in 
which algebraic symbols represent logical forms. It is 
interesting that this theoretical endeavor actually laid 
the ground for the construction of computers and elec-
tric circuits, given that these circuits can represent com-
plex logical operations. These mathematicians would 
now be considered theoretical mathematicians, as their 
work was oriented to expanding the mathematical areas 
in which they worked, not to practical applications.

Although the computer does not play the same 
role in the work of the theoretical mathematician as it 
does in that of the applied mathematician, it would be 
false to think that the theoretical mathematician has 

remained untouched by the advent of the computer. 
In number theory, for example, if there is a conjecture 
about properties of, for example, prime numbers, the 
numbers can be generated to billons or trillions in a 
short interval of time, detecting in this way if some 
counterexample could appear. Before this possibility 
arose, theoretical mathematicians could sometimes 
spend a lifetime trying to prove a false conjecture 
because it would have taken several lifetimes to gen-
erate enough numbers to arrive at the counterexam-
ple. In purely theoretical areas such as commutative 
algebra and algebraic geometry, computer programs 
have been developed that permit the calculation of, 
for example, Gröbner bases, named for Wolfgang 
Gröbner, that help to further theoretical results. The 
proof of the Four Color Theorem, which had been 
attempted by theoretical mathematicians for over 100 
years, was done with the aid of the computer, which 
carried out the multiple calculations that would not 
have been possible to do by hand in a lifetime. 

Of course, there are those who say this proof (of 
the Four Color Theorem) does not correspond to pure 
mathematics. This very interesting debate is a product 
of the transition at the beginning of the twenty-first 
century that coexistence with computers has become a 
reality. A quote from theoretical mathematician David 
Cox, who has played an important role in bridging this 
gap, is very illustrative: 

My fascination with algebra led me to algebraic 
geometry, which was then among the most abstract 
areas of pure mathematics. At the time, I never 
would have predicted that 25 years later I would be 
writing papers with computer scientists, where we 
use algebraic geometry and commutative algebra to 
solve problems in geometric modeling.

Often, quotes from actual theoretical mathemati-
cians best give an idea of how they themselves conceive 
their work. These quotes may illustrate a perception 
of pure theoretical mathematics, perhaps not so well 
known to a general public, rather than absolute impor-
tance of these mathematicians over any others—an idea 
that will always be debatable and impossible to define: 

It is not of the essence of mathematics to be occu-
pied with the ideas of number and quantity. 

—George Boole (1815–1864)
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No matter how correct a mathematical theorem 
may appear to be, one ought never to be satisfied 
that there was not something imperfect about it 
until it also gives the impression of being beautiful.

—George Boole (1815–1864)

Mathematics is entirely free in its development, 
and its concepts are only linked by the necessity of 
being consistent, and are co-ordinated with con-
cepts introduced previously by means of precise 
definitions.

 —Georg Cantor (1845–1915)

In mathematics the art of proposing a question 
must be held of higher value than solving it.

—Georg Cantor (1845–1915)

Often theoretical mathematicians are motivated by 
the knowledge that their abstract research and discov-
eries will eventually find their way to applications in 
technology, medicine, or economics.  Theoretical math-
ematics can very well be conceived of as an art by those 
who find aesthetic pleasure in its logic and patterns, but 
there is no doubt, as historically has been seen time and 
time again, that mathematics is science as well.
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Mathematics,	Utility	of
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections; 
Representations.
Summary: Though doing mathematics does not 
necessarily require utility as an outcome, there are 
many examples of applications in various fields.

To discuss the utility of mathematics, there must be 
some agreement on the definition of the term “math-
ematics.” Many may agree that mathematics is a pure 
creation of the human mind. It is a body of knowledge 
at which one arrives by pure reason and does not rely 
upon any observations of the phenomenal world. This 
characteristic makes it free from the limitations imposed 
by the particular way that human minds create experi-
ence from their understanding of the underlying phe-
nomena. The argument comes down to the following: is 
mathematics the complete construction of the human 
mind or is it universally inherent, only being discov-
ered/uncovered by mathematicians? Many books have 
been written to discuss this question, and no decision 
has been (or will be) made on one side or the other.

There are examples of people in the mathematics 
community, such as G. H. Hardy in A Mathematician’s 
Apology, who see a difference between pure and applied 
mathematics based solely on utility and revel in the fact 
that nothing that they will do will be useful to human-
ity. This statement was in part a response to the work 
of Andrew Littlewood and a group of mathematicians 
who worked strenuously for the British War Depart-
ment during World War I.

There are ample examples in the historical record 
of mathematics, done for its own sake, that were later 
discovered to be applicable to real-world problems. The 
theory of tensors by Giovanni Ricci-Curbastro and Tul-
lio Levi-Civita proved to be a cornerstone for some of 
Albert Einstein’s work on relativity. The purely algebraic 
area of twistor theory in physics, which predicted the 
existence of certain subatomic particles in the 1980s, 
started in the area of finite algebraic geometry. Areas that 
in the 1980s and 1990s were considered pure mathemat-
ics now find themselves at the forefront of application: 
algebraic topology used to study distribution of sensors; 
hyperbolic geometry used to study the extent and reach 
of the Internet; number theory used in architecture and 
cryptography; and category theory used in studying 
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social behavior. Where will the applicable mathematics 
of the mid-twenty-first century come from?

What sort of mathematics should be taught in 
schools? This question dates back to at least the early 
1800s in the United States and is discussed in the work 
of Charles Davies. E. R. Hedrick again raised the same 
question in his address to the New York Section of the 
Mathematical Association of America in 1933. The 
question arises with each new generation. Should only 
the mathematics that is currently known to be appli-
cable be taught to those who will only use the tool, or 
should they be exposed to the whole of mathematics?

The purpose of asking this question lies in the pur-
pose of mathematics. Should mathematics, or is math-
ematics, done only for its own sake? If that is the case, 
then why has mathematics been so useful to science? 
This is the question raised by Eugene Wigner in his 
1960 work The Unreasonable Effectiveness of Math-
ematics in the Natural Sciences. The question and his 
answer have again brought to the fore this long stand-
ing argument. 

Historical Context
From the earliest recordings in Babylonian and Egyp-
tian mathematics, historians and archaeologists find 
problem books with problems created to train the 
mathematical neophytes—possibly young priests—in 
the algorithms that were used for building, surveying, 
and the like. The problems were not all applied prob-
lems but did include some examples of mathematics 
being done for mathematics’ sake. This was not the 
rule, though. Most mathematics of these earlier eras 
seemed to have been for inherently practical purposes.  

From the Western perspective, it was the Greeks 
under the Pythagoreans who took the idea of math-
ematics and made it deified. The question of the “util-
ity of mathematics” does not skip the Platonic school. 
There is a quote, ascribed to Euclid in Stobaeus’ Extracts 
“A youth who had begun to read geometry with Euclid, 
when he had learnt the first proposition, inquired, 
‘What do I get by learning these things?’ So Euclid called 
a slave and said ‘Give him three pence, since he must 
make a gain out of what he learns.’” Already the teacher 
has to answer the long-asked question, “What is this 
good for?” The Platonic school may have been one of 
the first in which mathematics was studied for its own 
beauty and internal structure—not being required to 
have any other purpose. Archimedes saw the utility of 

mathematics; whether he held the same philosophical 
beliefs as did the Platonists, we cannot be certain.  

The Romans were extremely interested in the utility 
of mathematics to warfare, navigation, and architec-
ture. It was the Greeks and the Alexandrians, though, 
that kept mathematics moving forward until it was res-
cued from the fate of much of the ancient world’s sci-
ence by the Islamic mathematicians. Not only did they 
need mathematics for navigation and geometry, but 
they also imbued into the geometry the need to glorify 
Allah with the perfectness of the geometric form.

In the Renaissance in the late thirteenth century, the 
early scientist, Roger Bacon, made statements about 
the utility of mathematics, “Mathematics is the door 
and key to the sciences,” and “. . . mathematics is abso-
lutely necessary and useful to the other sciences.”

Perhaps the best summary can be found in various 
quotes:

The Universe is a grand book which cannot be read 
until one first learns to comprehend the language 
and become familiar with the characters in which it 
is composed. It is written in the language of math-
ematics. . . .

 — Galileo Galilei (1564–1642)

Mathematics is a game played according to certain 
rules with meaningless marks on paper. 

— David Hilbert (1862–1943)

(Cantor’s work on set theory) . . . the finest prod-
uct of mathematical genius and one of the supreme 
achievements of purely intellectual human activity.” 

— David Hilbert (1862–1943)

From the intrinsic evidence of his creation, the Great 
Architect of the Universe now begins to appear as a 
pure mathematician. 

— James Hopwood Jeans (1877–1946) 

I have never done anything “useful.” No discovery 
of mine has made, or is likely to make, directly or 
indirectly, for good or ill, the least difference to the 
amenity of the world. 

— G. H. Hardy (1877–1947)

. . . enigma that researchers of all times have worried 
so much about. How is it possible that mathematics, 
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a product of human thinking independent of any 
experience, so excellently fits the objects of physical 
reality?

 — Albert Einstein (1879–1955) 

As far as the propositions of mathematics refer to 
reality, they are not certain; and as far as they are 
certain, the do not refer to reality. 

 — Albert Einstein (1879–1955) 

The unreasonable effectiveness of mathematics in 
the natural sciences . . . that the enormous useful-
ness of mathematics in the natural sciences is some-
thing bordering on the mysterious and that there is 
no rational explanation for it.

— Eugene Wigner (1902–1995)

. . . [enumerating cases where structures needed 
in physics have already been found and developed 
by mathematicians] . . . long before any thought of 
physical application arose. It is positively spooky 
how the physicist finds the mathematician has been 
there before him or her.

 — Steven Weinberg (1933–)

This universality of application [of mathematics] 
can be traced back to the fact that all aspects of 
Nature and areas of life are governed by the same 
principles of order and intelligence that have been 
discovered subjectively by mathematicians by refer-
ring back to the principles of intelligence in their 
own consciousness. 

— Maharishi Mahesh Yogi (1914–2008)

Was it not the Pisan scientist who maintained that 
God wrote the book of nature in the language of 
mathematics? Yet the human mind invented math-
ematics in order to understand creation; but if 
nature is really structured with a mathematical lan-
guage and mathematics invented by man can man-
age to understand it, this demonstrates something 
extraordinary. 

— Benedict XVI (1927–)
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Summary: One of the central questions of the 
philosophy of mathematics is that of mathematical 
realism.

Mathematicians engage in a great many activities, 
including investigating and extending old and new 
concepts within the field, as well as developing new 
techniques to solve problems in mathematics and other 
disciplines. The question is, when they carry out this 
activity, do they discover existing laws or do they invent 
and create? If invention is involved, is it individual or 
is it social? This question is a polemical topic that has 
been subject to strong controversy and refers to ideas 
that have emanated everywhere from ancient Greek 
personages, such as Plato, up to modern advocates of 
artificial intelligence (AI).

Platonists
Those who subscribe to the discovery position are usu-
ally classified as Platonists. Plato expressed that math-
ematical ideas are discovered, existing independently 
of human observation or changes of a physical nature. 
However, the general trend known as “mathematical 
realism,” which includes formalism and logicism, also 
catalogued within the discovery perspective. Mathe-
matics is seen as the science of logic with its laws based 
on enduring truths, whether they have been discovered 
or not. Those who subscribe to this position cite, for 
example, the existence of universal constants, such as  
π, φ, Euler’s e, or Feigenbaum’s α and δ in bifurcation 
theory. It is put forth that the circumference of a circle 
has always measured π times diameter, whether or not 
that fact had been discovered by a particular society or 
culture. 

It is also claimed that the discovery of mathemati-
cal laws, objects, and relations occurs simultaneously, or 
over time, in distant places. The most famous examples 
include the simultaneous, but independent, discovery 
of calculus by Isaac Newton and Gottfried Leibniz in 
the seventeenth century and the independent discovery 
of the universal constant π by the Babylonians, Greeks, 
Chinese, and others at different historical moments. 
Many of the structures from very abstract areas of 
mathematics are often found to model phenomena in 
the physical world, such as the case of Cantor’s set, orig-
inally an abstract construct, which serves as a model for 
error distribution of the noise in transmission lines (for 
example, electric power lines or telephone wires). This 

case is also taken as evidence that mathematics is, apart 
from a consistent logical system when accepting the  
axioms, a language that describes the physical universe, 
whether  or not that description was intended by the 
mathematician who discovered the pattern, technique, 
theorem, or other relevant mathematical object.

Criticisms of Platonists
This idea adds another element to the discussion. For 
the realists, it is important to distinguish between 
mathematics itself, as a timeless science of logic, 
together with the laws that govern its existence, and the 
practice of mathematics, which includes many aspects 
that are language-like and that, they agree, are created, 
such as particular symbolism, notation, formalization, 
and nomenclature. Often the Platonists are dismissed 
by arguments that ridicule or simplify Plato’s allegory 
of the cave to an alleged discovery of an almost physical 
mathematical realm. This simplification seems because 
of a literal, instead of a metaphorical, interpretation of 
the way that many working mathematicians refer to 
their subject, a way of expression that reflects the actual 
feeling of “concreteness” that is provoked by daily con-
tact, manipulation, and struggle with their abstract 
objects. Roger Penrose, for example, who identifies 
with the Platonist perspective, speaks of the Mandel-
brot set as a structure whose constant surprises, within 
its self-similarity, are waiting to be explored.

Diversities of Non-Platonists
On the other hand, those that challenge Platonism and 
mathematical realism in general are not a homoge-
neous group.

One of these positions asserts that the existence of 
mathematics can be understood only as part of human 
culture. It is argued that the reality of mathematics is 
a sociocultural and historical phenomenon and that 
mathematics exists only because there are human 
beings who create it. Advocates of this position argue 
that mathematics is in the same category as law, reli-
gion, and money. It is only human consciousness and 
society with its conventions that makes them real.

Philosopher Ludwig Wittgenstein regarded math-
ematics as a type of “. . . communication; people play 
‘language-games’ and ‘sign-games’ to invent, rather 
than discover, mathematics.” The Social Constructiv-
ists, supporters of this position, argue that mathemati-
cal development is guided by fashions and trends in 
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human societies. They claim that mathematical truth 
is invented and depends on the sociocultural context. 

The term “quasi-empirism” is used for the type of 
modern mathematical research that relies on computers 
and other quasi-experimental methods that seem to con-
tradict the deductive nature of mathematics and ques-
tion the existence of absolute and eternal mathematical 
truth. The Social Constructivists assert that this activity 
demonstrates the fallibility of mathematical activity and 
removes it from the realm of any absolutes, thus sup-
porting their claim that mathematics is “man-made.” 

The embodied theories consider mathematics as 
an exclusively human endeavor, invented according to 
the physical and cognitive human reality. Exponents 
of this position privilege the biological evolution of 
the human brain and consider mathematical objects 
as a reflection of human cognition. Hence, accord-
ing to this perspective, mathematics is constructed by 
the human brain, and its apparent truths were created 
because they actually work efficiently in the universe in 
which we find ourselves.
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Summary: The connection between religion 
and mathematics is intricate, spanning cultures 
and centuries, with mathematics itself sometimes 
manifesting religion-like features.

Mathematical knowledge has been intertwined with 
spiritual or religious contemplation since humans 
began to develop numerical, spatial, and symbolic 
reasoning in order to understand the world and 
humanity’s place within it. Both practical and abstract 
knowledge have been significant to cosmological and 
theological considerations. Another way that math-
ematics is linked to religion is by those who suggest 
that mathematics is a religion.

Mathematics provides tools that underpin com-
putation, prognostication, organization, and design. 
Consequently, mathematical knowledge—as consti-
tuted by practical arithmetical (computational), alge-
braic (numerical problem solving). and geometric 
(spatial) knowledge—has been an essential ingredi-
ent in divination as well as in ritual constructions and 
practices. The influences of mathematical knowledge, 
broadly construed, on cosmology can be found in dif-
ferent times, places, and cultures. They are evident in 
a variety of contexts that include Pythagorean, Judaic, 
and Chinese number mysticism; Vedic rituals; Islamic 
trigonometry; and pattern drawings that some South 
Pacific Islanders believe are essential to entering the 
land of the dead.

Beyond skill-based practicality, mathematics as a 
way of obtaining infallible knowledge of transcen-
dental objects engendered and strengthened spiritual 
considerations that became more closely aligned with 
doctrine. It did so to such an extent that the develop-
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ment of new mathematical knowledge often instigated 
immediate responses from religious authorities. Such 
symbiotic yet ever-evolving relationships between 
mathematical epistemology and theological contem-
plation are a central feature of the Christian tradition 
across the ages.

Implicit Practices, Divination,  
and Pattern Drawing
In the oldest cultures it is difficult to separate math-
ematical and ritual practices. Shamans and priests, 
from ancient Babylonia to Mesoamerica, used arith-
metical and geometrical knowledge as part of their 
efforts to organize time and space so as to facilitate 
particular observances. In some cultures, the draw-
ing of geometric patterns was integral to storytelling 

that conveyed origin myths as well as aspects of the 
afterlife. For both ancient and contemporary peoples, 
mathematics is not identifiable as a constituent of an 
explicitly distinctive knowledge. Rather, mathematics 
as it is recognized today is seen as implicitly embedded 
within customs of cultural significance that included 
spiritual well-being.

Divination, as practiced in various times and places, 
typically involves both randomness and structure. The 
objects required for the foretelling of events, while spe-
cific to custom, are subjected to a process that produces 
a random outcome. The diviner’s skill comes into play 
when interpreting the result. Doing so involves adher-
ing to rules that apply to the particular procedure. 
Consequently, divination often involves strictures that 
can be resolved into numerical or logical systems, sys-
tems that often reflect binary considerations. Such can 
be found today in the methods of divination practiced 
by the Caroline Islanders of the South Pacific (knot 
divination), the Yoruba people of Africa (Ifa), and the 
Malagasy (Sikidy).

Pattern drawing has often accompanied cultural 
narratives regarding both ancestors and the afterlife. 
Such traditions continue into the modern era with 
the Tshokwe people of Angola and the Malekula of 
Vanuatu. In each case, intricate patterns are drawn 
in a continuous, uninterrupted fashion. While mod-
ern mathematics conceives of such in terms of graph 
theory and Eulerian circuits, there is little evidence 
to suggest that the cultures discussed here have an 
explicit or external framework within which such pat-
terns are considered. Indeed, Tshokwe have relatively 
few patterns that accompany their origin myths, and 
knowledge of their production is limited. The cul-
tural situation for the Malekula is considerably dif-
ferent. Their patterns number in the hundreds and 
all require that the tracing begin and end at the same 
point without repetition of any edge. Knowing how 
such patterns are produced, which constitutes a form 
of implicit mathematical training insofar as it recog-
nizes various systematic elements within the draw-
ings, is part of what men pass on to their sons. The 
ability to reconstruct a pattern correctly earns one 
access to the land of the dead.

Like the Tshokwe and Malekula, Tamil women in 
southern India draw patterns as a way of marking pas-
sages or transitions. The ritual designs produced by 
them, which are known as kolam, are used to decorate 
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the entrance to a house. They vary according to the 
events being marked, many of which relate to life- or 
worship-cycles. Recently kolam have attracted the atten-
tion of computer scientists who are interested in the 
formulation and formalization of picture languages.

Classical and Judeo-Christian Traditions
The mathematics of Greek antiquity marked a distinc-
tive break with the implicitly integrated practices asso-
ciated with various cultures across time. Moreover, it 
laid the foundation for more explicitly considered con-
nections between the mathematical and the spiritual. 
The perspective held during the earliest portion of the 
Pythagorean-Platonic period is often simply charac-
terized as follows: number is religion and religion is 
number. That is, numbers provided the lens through 
which the Pythagoreans viewed the cosmos. In this way 
mathematics links the mundane and the sacred in ways 
exemplified in different ages and cultures. Mathemati-
cal reasoning, which at this time might more closely 
have aligned with numerology or number mysticism, 
provided a means of bringing order and harmony to 
the universe. 

The realization that certain numbers are irrational 
(that is, that some measures are incommensurable) 
represented a serious challenge to Pythagoreans, for 
it contradicted the assumption of a cosmic harmony. 
While the need to resolve paradoxes instigated monu-
mental discoveries, it soon became apparent, as it would 
again in the years to come, that using mathematics as a 
means of demystifying the world could engender new 
and even greater mysteries.

According to Plato, arithmetic and geometry consti-
tuted areas of study essential to higher education, and 
thus they became part of the quadrivium of Western 
education, which included astronomy and music. That 
philosophical discussions found in his dialogues turn 
to and on mathematical reasoning underscores the sig-
nificance of mathematics to Platonic conceptions of 
the good and true. It represented an “a priori,” if for 
many a latent, body of knowledge through which one 
accessed eternal and perfect forms rather than tran-
sient and imperfect perceptions of these.

While he maintained a distinction between the 
physical and the otherworldly, Aristotle differed from 
those who believed that mathematics provided a 
special conduit to transcendental realms. Rather, his 
perspective of mathematics as abstraction based on 

physical reality reverses the mystical point of view. 
Aristotelian thinking underpins a more humanistic 
and, in later ages, secular understanding of math-
ematics. Underscoring the difference between process 
and object, classical Greek mathematics attempted to 
distinguish between the potential and the actual when 
discussing infinity. Powerful analytic arguments and 
famous paradoxes hinged on the process of infinite 
subdivision that gave rise to infinitesimal consid-
erations. Amid this conceptual ambiguity, Aristotle 
maintained that the actual infinite—the infinite as a 
completed object—is unknowable. 

Euclid’s Elements is especially significant among 
classical texts that helped to solidify, as well as per-
petuate, connections between mathematical and meta-
physical reasoning. As a compendium of geometric 
knowledge of its day, Elements is most significant for its 
presentation of timeless and unassailable conclusions 
rigorously deduced from self-evident truths. It speaks 
to absolute certainty and provides geometry as a model 
for attaining such. Consequently, the influences of the 
Elements on mathematics and Christian theology echo 
across the centuries. 

Aurelius Augustinius (354–430), or Saint Augustine, 
helped to begin the process of transforming Pythago-
rean–Platonic conceptions into Christian doctrines 
during the Middle Ages (fifth through twelfth centu-
ries). His contributions, among many things, served 
to imbue Christian symbolism, including the Ark of 
the Covenant with its divinely prescribed dimensions, 
with numerical and geometric significance. Such sym-
bolism was considered necessary for analogizing and 
simulating the majesty of God’s power in ways com-
prehensible to a faithful laity. Following classical tradi-
tions, numbers represented an ideal conduit for tran-
scendental contemplation. Shapes, on the other hand, 
could both signify the sacred and convey divine wis-
dom. The successful adaptation of Hellenistic math-
ematical cosmology to Christian theology owes much 
to Saint Augustine and others. 

Scholastic theologians of the Early Modern period 
(twelfth through sixteenth centuries) built upon the 
connections between mathematics and Christian faith 
promoted by Saint Augustine. Setting the tone for 
the age, Giovanni di Fidanza (1221–1274), or Saint 
Bonaventure, extended Aristotle’s prohibition against 
attempting to understand the infinite by claiming 
that it existed in God only. Even so, one could aspire 
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to a better appreciation of the divine. To this end 
Nicholas Cusanus (1401–1464), or de Cusa, believed 
that mathematics emulates the creative power of God 
insofar as it is a manifestation of humankind’s abil-
ity to create knowledge and to completely understand 
this creation. By virtue of this manifestation, math-
ematics served as an essential and mutually benefi-
cial component of Cusanus’s theology. Specifically, 
practicing mathematics is a way by which humankind 
can become closer to the divine. Whereas the platonic 
dialogues use mathematics to underpin conceptions 
of the Good, the Neoplatonic theology of Cusanus 
redirects mathematical attention toward conceptions 
of the divine.

Rendering perspective in painting by means of a 
vanishing point is one of the most important markers 
of Renaissance art. Anticipating the aesthetic signifi-
cance of this development, Roger Bacon (1214–1294) 
encouraged the incorporation of geometric innovation 
in painting, believing it offered a way of better commu-
nicating God’s majesty through more powerful visual 
imagery. As such sentiments make clear, the connec-
tions between mathematics and religion could be both 
rendered and read visually, thereby making such con-

cepts accessible to lay audiences who were not neces-
sarily conversant with the particulars of either.

Alongside Neoplatonic scholasticism, the late Mid-
dle Ages saw a resurgence of interest in gematria, a 
practice by which one attempts to reveal and interpret 
divine secrets through the association of alphabetic 
characters with numbers. Truth seeking by means of 
numerically organized systems was not a new devel-
opment; it has a long history in the Jewish religious 
tradition and is central to Kabbalism. Among the 
more shocking identifications established by Michael 
Stifel (1486–1567) through gematria was Pope Leo X 
with the Beast of the Apocalypse. Similar ideas under-
pin recent interest in topics such as the Bible Code.

While breaking with the intellectual traditions of 
the past, mathematicians associated with the Scientific 
Revolution (c. sixteenth through eighteenth centuries) 
and the Modern period (from c. eighteenth century) 
continued to connect the discipline’s reasoning and 
knowledge with theological concerns. René Descartes 
(1596–1650) promoted the individual’s power of rea-
son through geometry. His rationalism was a reaction 
against the constraints of scholasticism and, therefore, 
many considered it a threat to religious authority. Nev-
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M odern mathematics is seen by some people 
to have features  similar to those of reli-

gion;  for example, that mathematical foundations 
are accepted on belief rather than logic and com-
prehension. Analogies between mathematics and 
religion also include discussions about their omni-
present nature, their pivotal role in society, and 
their dependence on teaching the next generation. 
Some people point to aspects of mathematics that 
may appear unresolved or include contradictions, 
such as the axiom of choice or Kurt Gödel’s incom-
pleteness theorems, which showed that there are 
limitations to axiomatic systems. For example, in 
1999 John Barrow wrote, “If a ‘religion’ is defined 
to be a system of ideas that contains unprovable 
statements, then Gödel has taught us that, not 
only is mathematics a religion, it is the only reli-
gion that can prove itself to be one.”

Religious terms have been applied to math-
ematical theorems or mathematicians. For exam-
ple, mathematical discoveries are sometimes 
described in terms of a revelation, epiphany, or her-
esy. In 1985, mathematician Paul Erdös asserted 
that it was important to believe in The Book, an 
imagined type of bible containing elegant proofs. 
This assertion inspired the 1998 work Proofs 
from The Book by Martin Aigner and Günter 
Ziegler. Some people have referred to mathemati-
cians, including Erdös, as priests of mathematics 
who share their gospel. Mathematicians, philoso-
phers, and theologians also consider whether a 
divine force is needed to explain such concepts 
as how the universe was formed or whether the 
underlying mathematical and physical principles 
are sufficient, which is Stephen Hawking’s asser-
tion in his 2010 book The Grand Design. 

Mathematics as Religion



ertheless, and like others of the age, including Gottfried 
Leibniz (1646–1716), he used humankind’s ability to 
reason mathematically as the basis for discussions that 
ultimately asserted the existence of God.

Unlike some inclined to rationalism and deism, 
Blaise Pascal (1623–1662) believed that mathematical 
reasoning could not be applied to prove the existence 
of God. Another critic of mathematics’ influence on 
theology, George Berkeley (1685–1753) pointed out 
that accepting the mysterious notion of infinitesimal 
quantities so essential to the development of calculus 
was tantamount to an act of faith. Consequently, he 
contested deism by asserting that mathematical knowl-
edge could not provide a more exact, or more accept-
able, model for theological reasoning.

Immanuel Kant (1724–1804) asserted that geome-
try is a contentful, or synthetic, knowledge that adheres 
to a universal, “a priori” form of spatial intuition. He 
did not, however, use this to gird theological specula-
tion. Indeed, he attacked proofs of God’s existence in 
his Critique of Pure Reason (1781) and Critique of Prac-
tical Reason (1788). Rather, Kant posited morality as a 
distinct form of intuition. The knowledge built upon 
this intuition leads to an understanding of the divine. 
Though independent forms of intuition, the geometric 
and the moral knowledge built upon these exemplified 
a common epistemological perspective. 

The power of Kant’s argument is evident in responses 
to the development of non-Euclidean geometries in the 
nineteenth century. With this development, the abso-
lute certainty long associated with geometric reasoning 
gave way to contingent knowledge. Along with more 
familiar paradigm shifts, most notably Darwinian 
evolution, new mathematical knowledge contributed 
significantly to the Victorian crisis in faith. Euclid’s 
Elements anchored mathematical and theological spec-
ulation for centuries; its promise of eternal and neces-
sary truths was much in doubt.

Considerations outside geometry also exacerbated 
religious anxieties. Though obsessed with the notion 
of an all-encompassing infinite informed by the Ein 
Sof of the Jewish religious tradition, Georg Cantor 
(1845–1918) further destabilized relations between 
mathematics and spirituality with investigations that 
sought to establish the cardinality of the real contin-
uum. Correspondences with Pope Leo XIII provide 
evidence that Cantor himself was concerned with the 
contentious potential of his work. The distinction 

between process and object so clearly delineated in 
antiquity meant that Christianity could safely adjudi-
cate conceptions of the infinite as these pertained to 
the divine. Cantor’s identification of infinite sets as 
objects of mathematical interest represented a clear 
threat to this religious privilege.

Some claim that new and contingent perceptions of 
mathematical certainty evident from nineteenth-cen-
tury innovations instigated a period of deseculariza-
tion. Failure to secure mathematics on a firm episte-
mological foundation through Formalism, Logicism, 
and Constructivism suggested that its knowledge is the 
confirmation of intuitions and creative possibilities, 
even if such cannot be constrained by any particular 
formal systems. Reminiscent of relationships articu-
lated by Aristotle and Cusanus centuries earlier, mod-
ern mathematical thinking provided a new model for 
theological contemplations attuned to divine imma-
nence inherent in processes and potentialities as much 
as to transcendental conceptions.

Chinese, Indian, and Modern  
Esoteric Traditions
Chinese engagements with mathematics have long 
been intertwined with cosmological and spiritual con-
cerns. Astrology and divination depended on compu-
tational abilities. Consequently, one finds strong asso-
ciations between mathematical practices and number 
mysticism, relationships not unlike those found in 
antiquity and throughout Europe during the Middle 
Ages. Even so, the desire to predict astronomical and 
calendrical events inspired the need to solve systems 
of modular congruences. Such solutions date to the 
thirteenth century and form the basis of the Chinese 
Remainder Theorem. 

Mathematical practices historically associated with 
the Indian subcontinent also evidence spiritual influ-
ences. Ancient Vedic observances required geometric 
knowledge in the construction of altars that were built 
in various shapes with fixed areas. Similar mathemati-
cal prescriptions eventually extended to the building of 
temples. Vedic literature also suggests the incorpora-
tion of a symbol for zero, which became part of the 
Hindu–Arabic system later adopted in Europe. The 
symbol emerged from the considerations of Brahma as 
universally divine and immanent even in nothingness.

Though distinct traditions, Hinduism and Jainism 
attended to numerical computations as a way of con-
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templating the complexity and extent of the universe, 
including the number of ways that things might be 
combined. One verse from the Jainaic sthananga sutra 
(c. 300 b.c.e.) identifies algebra, geometry, and combi-
natorics as constituents of mathematical expertise in 
a way that reflects the Platonic prescription of math-
ematics as an essential form of knowledge.

The emergence of modern theosophy in the nine-
teenth century was precipitated in part by the Vic-
torian crisis in faith and obsession with orientalism. 
Mathematics occupied a special place in theosophy, 
particularly in the numerological interests of the 
ancients. More contemporary concerns, however, also 
commanded attention within this esoteric movement. 
The notion of higher dimensional space, which gained 
credibility and notoriety through the development of 
algebraic methodologies and non-Euclidean geom-
etries, was a topic of considerable discussion among 
theosophists. Some appealed to it by way of analogy to 
support beliefs in a universal present that connected 
the past with the future. Others made claims of broth-
erhood based on the notion that all of humankind 
is the manifestation of a single universal being that 
could be accommodated in an expanded conception 
of space. Peter Ouspensky (1878–1947) provided one 
of the most fulsome accounts of such thinking in his 
Tertium Organum. 

Islamic Tradition
Islamic mathematics incorporated and extended 
ancient Greek and Indian knowledge. More signifi-
cantly Muslims transmitted this expanding body of 
knowledge widely during the period that saw their 
cultural and intellectual influence spread from the 
Middle East to Spain (c. 700–1500). As with other cul-
tures, astronomical considerations focused attention 
on geometry and trigonometry. Further, requirements 
associated with daily prayers, one of the Five Pillars 
of Islam, served to connect religious and mathemati-
cal practices. Interest in accurately establishing the five 
daily prayer times, which are set according to the Sun’s 
position as determined by shadow length, provides 
one connection with the trigonometry of astronomi-
cal computations. Additionally, the problem of locat-
ing the direction of Mecca, toward which the faithful 
must face when praying, meant the Muslim mathema-
ticians were equally concerned with the trigonometry 
of geography.

The significant relationships between the offering of 
prayers and trigonometry notwithstanding, discourses 
explicitly linking mathematical and theological concerns 
are not common features of Islamic texts dating from 
the Middle Ages. Patterns incorporated as architectural 
ornamentation may reflect natural observations rather 
than the realization of mathematical knowledge. How-
ever, some have suggested that the algorithmic pattern 
making so prevalent in Islamic architecture may reflect 
cosmological and theological contemplation. Specifi-
cally, it could provide a visual representation of creation 
that was understood in the context of number, especially 
in the generation of the many (numbers) from a singu-
lar unit (one). The use of multiple geometrical patterns, 
each integral yet distinct, may also serve a visual invita-
tion to reflect on the parables of the Qur’an. While theo-
logical intentions might be difficult to document, math-
ematical expertise was certainly involved in rendering 
the elaborate spherical tessellations that adorn many of 
the domes found in Islamic architecture. Such knowl-
edge is contained in Islamic texts such as Those Parts of 
Geometry Needed by Craftsmen (c. tenth century).
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Mathematics		
Genealogy	Project
Category: Mathematics Culture and Identity.
Fields of Study: Communications; Connections.
Summary: The Mathematics Genealogy Project maps 
professional relationships among mathematicians.

Two fundamental components of the fabric of human 
societies are family and community. For reasons like 
innate socialization, sense of responsibility, and loy-
alty, an individual is compelled to be a part of a larger 
organization. In a similar way, the desire to distin-
guish one’s place in the community, the wanting to 
carve out a place in the family, the urge to preserve 
the past for future generations, and numerous such 
factors motivate an individual to seek a family his-
tory. Consequently, throughout history individuals 
have spent much time and effort on genealogy in pur-
suit of their own ancestries and to reconstruct trees 
of ancestors.  

Similarly to an individual’s desire of constructing 
family genealogy, many professionals also have the 
desire and motivation to pursue their professional his-
tory. This desire is particularly the case for the profes-
sions or crafts in which some form of “apprentice” and 
“master” relationships are the main mode of transfer-
ring knowledge or skills from one generation to the 
next. Professional mathematics is a prime example of 
such a vocation. Particularly since the Renaissance, a 
prospective mathematician usually studies and con-
ducts research under the supervision or tutelage of 
a master mathematician whose guidance and knowl-
edge are major factors in obtaining successful certi-
fication to become a recognized mathematician—the 
Ph.D. degree. 

Mathematicians usually have very high regard for 
this type of transfer of knowledge and profession; 
hence, Ph.D. advisers are given special respect. Indeed, 
in mathematical events, novice mathematicians’ intro-
ductions typically include their adviser’s name, or nov-
ice mathematicians introduce themselves as students 
of their adviser. Some even go as far as calling their 
Ph.D. adviser as their “mathematical” parent. In such 
an environment, it is natural for mathematicians to 
inquire about their mathematical ancestries. Another 
factor that contributes to this curiosity is, in the vast-

ness of mathematics, finding the intertwining connec-
tions between the various subdisciplines and tracing 
back the original sources and motivations of the prob-
lems or concepts being studied.  

Birth of the Project 
The Mathematics Genealogy Project is a natural out-
come of such curiosity and is the brainchild of Pro-
fessor Harry B. Coonce. Although several small groups 
of mathematicians or some individual mathematicians 
had information on the genealogy of numerous promi-
nent mathematicians, until Coonce’s initial work in the 
late 1990s, no attempt was undertaken to construct a 
genealogy tree for a large group of mathematicians. In 
1997, realizing that there was no central location where 
the information on mathematics Ph.D. students and 
their advisers was available, Coonce (whose adviser 
was Malcolm S. Robertson) started a Web site for this 
purpose. Upon his retirement in 1999, he devoted 
all his time to the project and began systematic data 
collection and formation of a genealogy tree for all 
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mathematicians, which has become the Mathematics 
Genealogy Project (MGP). In 2003, the MGP moved to 
North Dakota State University (NDSU) and has been 
housed there since. The project’s primary responsibil-
ity rests with the NDSU Department of Mathematics. 
In late 2009, Coonce retired from being the managing 
director of the project; and in October 2009, the Amer-
ican Mathematical Society became the sole designated 
partner of NDSU for MGP.

Construction of a genealogy tree is a complex pro-
cess that uses historical records and other reliable 
sources to demonstrate kinship. Because of its unique 
position and its desire to provide the family tree for 
all mathematicians, this task is particularly difficult for 
the MGP. It is essentially a searchable database in which 
information for each entry contains all relevant profes-
sional information about that individual. The project’s 
mission statement, quoting from the project Web site, 
indicates this ambitious goal clearly: 

The intent of this project is to compile information 
about ALL the mathematicians of the world. We 
earnestly solicit information from all schools who 
participate in the development of research level 
mathematics and from all individuals who may 
know desired information. It is our goal to list all 
individuals who have received a doctorate in math-
ematics. For each individual we plan to show the 
following: the complete name of the degree recipi-
ent; the name of the university which awarded the 
degree; the year in which the degree was awarded; 
the complete title of the dissertation; and the com-
plete name(s) of the advisor(s).

In order to provide all this information as accurately 
as possible, the project managers gather data from reli-
able sources. The main sources of data are information 
provided from the Ph.D.-awarding institutions and 
the Dissertation Abstracts. Another important source is 
the mathematical community itself; voluntarily, many 
mathematicians provide valuable information that 
is not accessible to the project managers. In any case, 
before any entry is included in the project database, it 
is scrutinized for possible errors. However, some erro-
neous information can still be found; some of this is 
because of changes in the individuals’ records, such as 
name changes because of marriage, revised spellings 
because of move, and name changes of institutions, and 

some are genuine errors. These errors are other reasons 
that the project administrators rely on the mathemati-
cal community for monitoring the entries and report-
ing and correcting the errors found.

Besides providing the information on the geneal-
ogy of mathematicians, the MGP aims to be a source 
of other relevant data and a hub of connections to 
other related projects. Therefore, the project Web site 
(http://genealogy.math.ndsu.nodak.edu) also con-
tains interesting features of this kind. It provides links 
to databases or search tools, like MathSciNet, and links 
to other institutions that carry relevant information. 
One can also find some interesting information on the 
mathematicians who are most prolific and have a large 
number of descendants. 

Mathematicians, naturally, are inclined to seek a 
mathematical structure within any object on which 
they cast their eyes. As is seen in the Extrema section 
of the project Web site, the MGP tree happens to have 
a special nonplanar graph structure. Researchers are 
using the data to investigate graph theoretic and visu-
alization issues as well as social issues, like the advisers 
with the most students or descendants and the role of 
mentoring in advisee productivity. It is even possible 
that a new research area of mathematics on the study 
of structures within the MGP tree may emerge.
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Mathematics	Literacy	
and	Civil	Rights
Category: School and Society.
Fields of Study: Connections; Problem Solving.
Summary: The opportunity to learn mathematical 
knowledge and problem solving abilities is a right that 
should not be denied to any social groups.

Mathematical literacy is the conceptual understand-
ing and, especially, the operational skills to deal with 
mathematical situations encountered in all areas of 
daily life. At a higher level, it is also the ability to use 
mathematical knowledge and problem-solving ability 
in more sophisticated uses of mathematics in careers 
and technical applications. This mathematical knowl-
edge includes having a “number sense” of compara-
tive sizes of numbers, being able to estimate and to do 
mental arithmetic, and being able to use technology 
necessary for modern life and jobs. Beyond basic arith-
metic, skills identified by professional organizations 
also include an understanding of basic statistics—at 
least enough to read and understand graphs, to inter-
pret statistics reported in the media, and to beware of 
attempts to mislead with statistics. Similarly, algebra 
teaches the symbolic and logical sense of problem solv-
ing necessary to understand the mathematical issues of 
modern life.  

Significance
Some basic mathematical knowledge, such as count-
ing, comparisons of size, and even the fundamentals 
of arithmetic, may be innate or at least learned eas-
ily at an early age from the experience of working 
with numbers and mathematical concepts. However, 
beyond the very basic fundamentals, usually math-
ematical understanding needs to be taught as the 
processes become more intricate. All people need to 
use certain mathematical ideas, such as counting and 
measuring. In the absence of formal schooling, chil-
dren learn these skills from experience or from older 
mentors, perhaps even as apprentices. However, mod-
ern society usually considers the teaching of basic 
mathematics as one of the more important tasks of 
elementary and middle schools.

More than most school subjects, mathematics is 
cumulative. Each higher level of mathematics content 

builds on lower levels studied earlier. Even as school 
mathematics curriculum may spiral, returning to ear-
lier topics, each cycle returns at a higher, more sophis-
ticated level. Consequently, any review that takes place 
leads to further growth in understanding the content 
and newer applications. Mathematics is known to 
open doors for careers in many areas from nursing to 
accounting to engineering and science. Since no one 
can predict the future mathematical needs of indi-
vidual students in elementary or middle school, it is 
important that all have every opportunity to be ade-
quately prepared for whatever mathematical direction 
they may go. If a student misses out at understand-
ing a particular topic or has a gap in the coverage of 
material, he or she may be hindered in the process of 
learning the next step. Students in high school or col-
lege who develop a late interest in scientific or math-
ematical careers often require additional preparatory 
coursework, time, and assistance in learning if their 
academic backgrounds lack the necessary content of 
the field. This requirement can be seen in the growth 
of remedial courses in colleges.

These considerations make it important to be 
watchful for any loss of opportunity that can occur 
along the path of mathematics learning. A key transi-
tion for students is the move from the basic mathemat-
ical literacy of elementary school to the start of more 
specialized mathematics that usually begins in middle 
school. Sometimes children themselves opt to move 
away from mathematics. They may be discouraged by 
a lack of success, pushed by peer pressure, or not fully 
engaged by the methods of presentation they experi-
enced in their early classrooms. Even for successful stu-
dents, mathematics classes may not completely capture 
their interest, especially if much repetition occurs with 
the intent of filling in content that was missed earlier. 
Enrichment material and new challenges that address 
different styles of learning can help show successful 
students that mathematics is fun and interesting, and 
mathematics competitions allow them to be cheered 
and congratulated. Other students may need extra care 
to learn the concepts and procedures they had missed 
before, especially if the presentation can be made in 
new ways to provide extra clarity and interest. 

Perhaps of greater concern are the students who 
feel pressure that mathematics is not for them. Often 
girls may get the impression that mathematics is only 
for boys (sometimes from the attitudes of their par-
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ents, peers, the media, or society at large). Children 
of other underrepresented groups may not see people 
who look like them doing mathematics and therefore 
come to believe that they are ruled out of these pur-
suits. Enrichment in school mathematics needs to go 
beyond additional challenging content, but also to 
demonstrate that everyone can do mathematics, and 
that mathematical careers welcome anyone with the 
interest and motivation to pursue them. Guest speakers 
from underrepresented groups who have been success-
ful in mathematical careers (or at least stories about 
their successes) can provide examples of achievement 
for children of these groups. 

Tracking
In many school districts, children as early as the fourth 
or fifth grades are evaluated, sometimes from one-time 
tests that may not reflect their overall performance. 
The evaluations direct or “track” children into various 
types of mathematics classes as they move into middle 
schools. Some go immediately into prealgebra or alge-
bra classes, while others remain in arithmetic classes, 
often recycling content from earlier grades. Once a 
student is put into the lower-level track, it becomes 
increasingly unlikely that they will be able to move 
into faster streams or have the opportunities to take 
advanced mathematics in high school—even if they 
are doing well and demonstrating high abilities.

Conclusion
In today’s increasingly technical world, ordinary citi-
zens need to understand more mathematics than in the 
past, just to do the ordinary tasks of daily life. At the 
same time, the fields of science, technology, engineer-
ing, and mathematics need to recruit new workers who 
can pick up and carry on with this growth. In short, 
people need more mathematics, and mathematics 
needs more people. The pipeline of children in math-
ematics in elementary schools becomes narrower and 
narrower as one moves through the levels of schools to 
graduate degrees in mathematics. If today’s successes 
in mathematics are to continue, doors must be opened 
for all students to study and learn more mathematics. 
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Civil Rights

R obert Moses was a civil rights activist as 
a young adult and later became a math-

ematics educator, but continued his concern 
for civil rights. He argued that the opportunity 
to study algebra is a civil right. 

As the beginning of the cumulative series 
of mathematics courses beyond arithmetic, 
algebra is the gateway to further mathemat-
ics. Many advanced mathematics courses, 
and the resulting career choices and opportu-
nities, depend on the successful completion 
of a course in algebra; and, of course, com-
pletion depends on the opportunity to take 
algebra at an appropriate point in the school 
program. If children are being put into tracks 
that delay or deny their study of algebra, they 
are being hurt. If tracking occurs based on 
gender, race, or socioeconomic status—as 
some believe—then it amounts to actual dis-
crimination.

Robert Moses founded the Algebra Project to 
help bring math literacy to low-income students.



Moses, Robert P., and Charles E. Cobb, Jr. Radical  
Equations: Civil Rights From Mississippi to the Algebra 
Project. Boston: Beacon Press, 2001.

National Council of Teachers of Mathematics. “The 
Equity Principle.” In Principles and Standards for 
School Mathematics. Reston, VA: National Council of 
Teachers of Mathematics, 2000.

Steen, Lynn Arthur. “Mathematics for All Americans.” 
National Council of Teachers of Mathematics,  
Teaching and Learning Mathematics (1990 Yearbook). 
Reston, VA: National Council of Teachers of  
Mathematics, 1990.

Trentacosta, J., and M. J. Kenney, eds. Multicultural and 
Gender Equity in the Mathematics Classroom: The 
Gift of Diversity 1997 Yearbook. Reston VA: National 
Council of Teachers of Mathematics, 1997.

Lawrence H. Shirley

See Also: Curriculum, K–12; Minorities; Women.

Mathematics	Research,	
Interdisciplinary
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections; 
Problem Solving; Representations.
Summary: There is a sense in which mathematics 
is always interdisciplinary but there can be special 
benefit to approaching it collaboratively with 
researchers from different disciplines bringing 
disparate skills, knowledge, and methodologies  
to bear.

In our increasingly complex society, the problems 
that need to be solved often lie beyond the scope of a 
single academic discipline. Interdisciplinary research 
crosses these traditional boundaries. Frequently, this 
boundary crossing involves bringing together indi-
viduals with a variety of knowledge and skills into col-
laborative working groups. Interdisciplinary research 
can also refer to an individual who regularly works 
in a field that is inherently interdisciplinary, such as 
mathematical physics. Interdisciplinary research can 

be both highly productive and truly inspiring, creat-
ing connections that lead to new knowledge, both at 
the intersection of the participating disciplines and 
within the individual fields involved in the collabora-
tion. Mathematics plays a role in collaborations with a 
wide variety of disciplines, and many early mathema-
ticians were multidisciplinary researchers and explor-
ers. In the twenty-first century, the sciences, social sci-
ences, businesses, and even the liberal and fine arts are 
working ever more closely with mathematicians on 
interdisciplinary problems. Despite the apparent ben-
efits and future promises of interdisciplinary research, 
those who are interested in pursuing such activities 
often face obstacles and disincentives. 

Sometimes these are barriers of communication 
or culture, since different disciplines have their own 
vocabularies and ways of working. Other barriers are 
related to the tradition of organizing academic insti-
tutions into discipline-based departments, which 
sometimes carries over into support and professional 
structures like funding organizations, professional 
societies, and journals. At the same time, mathemati-
cians with interdisciplinary skills and experience are 
highly sought by employers, resulting in a shift toward 
creating departments or programs that exist on these 
interdisciplinary boundaries. There are also interdis-
ciplinary centers and workshops to educate new and 
current mathematicians in both the rewards and chal-
lenges of interdisciplinary research.

Funding and Support
Funding agencies for research are generally supportive 
of interdisciplinary research because they feel more con-
fident that expert input will be available in all necessary 
fields and that the results will be usable. They also want 
to help researchers learn from each other. However, it is 
not easy to publish interdisciplinary research, as it may 
not seem sufficiently novel to each discipline. A bigger 
problem is the lack of academic employment oppor-
tunities. One solution is to create a new discipline, for 
example, mathematical biology, sports science, science 
policy, or computational science. In times of budgetary 
constraint, disciplines may be reluctant to share scarce 
resources in interdisciplinary activities. However, this 
can be a difficult endeavor, as a new discipline may 
not immediately be seen as legitimate until it has been 
established within the peer community—and perhaps 
in society at large—that its results are valid and impor-
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tant. Enthusiasm for interdisciplinary mathematics 
research is reflected in a wide range of interdisciplinary 
societies, Web sites, and emerging venues for interdis-
ciplinary publication and presentation.

Benefits
Interdisciplinary mathematics research can reveal the 
connections between methods used in different disci-
plines hidden beneath different representations. The 
engineer’s assessment of smoothness by spatial correla-
tion is basically the same as the economist’s assessment 
of temporal change by autocorrelation. Even within 
the mathematics community, nomenclature and 
approaches can differ. The term “normal” means one 
thing to a statistician and something entirely different 
to an algebraist, and the use of the term “dimension” 
within linear algebra somewhat differs from many 
other applications of the term. Proper communication 
is essential to clarify and accommodate these linguistic 
and conceptual differences. However, this is also true 
for single-discipline research. The extra effort put into 
ensuring good understanding and communication 
makes a successful outcome more likely.

All participants in an interdisciplinary group can 
benefit from the diverse perspectives of the various 
fields that are represented, but care must be taken to 
avoid incompatible levels of detail and complexity as 
well as confusion over discipline-specific use of lan-
guage or jargon. For example, clarification of confi-
dence intervals can save much misunderstanding in 
the public sector, and understanding how government 
works is very useful to mathematicians. In the field of 
algebraic geometry, algebraic problems may be trans-
lated to geometric problems that are more easily solved 
in that setting, or vice versa. 

Lean Six Sigma, a business management strategy 
that draws heavily on modern quality-improvement 
techniques, statistical process control, and broader sta-
tistical methods, is a good example of interdisciplinary 
mathematics research. Company staff are trained in a 
range of statistical methods and have to apply their 
knowledge in work-based projects. Computational 
science emerged from the multidisciplinary overlap of 
computer science, mathematics, and scientific appli-
cations. At first it was seen only as the intersection of 
these disciplines. As it grows in scope, computational 
science is seen as an independent discipline with 
unique issues and content. Mathematics and biology 

have long been intertwined, but the increasing col-
laboration and interdependence will no doubt enrich 
not only the interdisciplinary field but also both of its 
parent disciplines.

Interdisciplinary researchers also influence math-
ematics by analyzing and forecasting disciplinary 
trends. For example, technology forecaster Alan Porter 
and science and technology policy researcher Ismael 
Rafols examined whether science was becoming more 
interdisciplinary. They analyzed work between 1975 
and 2005 over six research domains using established 
metrics, a new “index of interdisciplinarity,” and a sci-
ence mapping visualization method. 

Their analysis showed large increases in the number 
of cited disciplines, references, and coauthors per arti-
cle, but the citations tended to be in close disciplinary 
areas. This suggested that science has in fact become 
more interdisciplinary, but incrementally—first to 
closely related fields and only later to more disparate 
areas. This is consistent with the fact that close disci-
plines are more likely to share methods and vocabu-
lary, as well as peer reviewers, conferences, and venues 
for publication.
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Matrices
Category: History and Development of Curricular 
Concepts.
Fields of Study: Number and Operations, Algebra, 
Communication, Connections, Representations.
Summary: Matrices are useful for a variety of 
calculations and applications.

Matrices are used throughout modern mathematics and 
statistics and their applications in the natural and social 
sciences. Matrix theory and the closely related theory of 
vector spaces form what is now known as “linear alge-
bra”: the study of systems of linear equations and their 
solutions in n-dimensional space. A matrix is a rectangu-
lar array of numbers representing the coefficients of the 
unknowns in a linear system. The first example of such 
a system and its solution using matrix operations dates 
from more than 2000 years ago in China. The closely 
related concept of “determinants” was introduced inde-
pendently in Japan and Europe in the seventeenth cen-
tury. The systematic development of basic matrix theory, 
in both its algebraic and geometric aspects, took place in 
the nineteenth and early twentieth centuries. This the-
ory played a major role in the development of quantum 
mechanics, the branch of physics underlying many of 
the technological advances of the  twentieth and twenty-
first centuries. Matrices have been commonly explored 
in high school since linear algebra became a standard 
topic in the mathematics curriculum during the middle 
of the twentieth century. Contemporary applications of 
matrix theory are cryptography, Internet security, and 
Internet search engines, such as Google.

Origin of the Term
The word “matrix” comes from Latin, meaning “womb,” 
deriving from mater (mother). The mathematical 
use was introduced by James Joseph Sylvester as “an 
oblong arrangement of terms consisting, suppose, of 
m lines and n columns, a Matrix out of which we may 
form various systems of determinants.” At present, the 
word “matrix” refers to a rectangular array of numbers 
regarded and manipulated as a single object.

Linear Systems and Row Operations
The first calculation with such an array dates from the 
Han dynasty in ancient China, in Nine Chapters of the 
Mathematical Art, a practical handbook on surveying, 

engineering, and finance. One problem posed in the 
handbook is this: 

There are three types of corn, of which three bun-
dles of the first, two of the second, and one of the 
third make 39 measures. Two of the first, three of 
the second, and one of the third make 34 measures. 
One of the first, two of the second, and three of the 
third make 26 measures. How many measures of 
corn are contained in one bundle of each type? 

In modern notation, this becomes a system of linear 
equations, with unknowns x, y, and z representing the 
three types of corn:

3 2 39

2 3 34

2 3 26

x y z

x y z

x y z

+ + =
+ + =

+ + = .

The ancient Chinese author writes the coefficients in a 
rectangular array and solves the system by performing 
operations on this array. In modern notation, start with 
the 3-by-4 matrix of coefficients, and then (1) multiply 
row 2 by 3 and subtract 2 times row 1; multiply row 3 
by 3 and subtract row 1; (2) multiply row 3 by 5 and 
subtract 4 times row 2:

3 2 1 39
2 3 1 34
1 2 3 26

3 2 1 39
0 5 1 24
0 4 8 39
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3 2 1 39
0 5 1 24
0 0 36 99

The third row of the last array represents the equa-
tion 36z = 99, giving z = 11/4. The second row repre-
sents 5y + z = 24, giving y = 17/4. The first row repre-
sents 3x + 2y + z = 39, giving x = 37/4. 

Gaussian and Gauss–Jordan Elimination
This simplification of linear equations by using one 
variable to cancel another is called “Gaussian elimina-
tion.” Carl Friedrich Gauss used it systematically in the 
early nineteenth century in his study of the orbit of 
the asteroid Pallas. An even more reduced version of 
a system, called “row echelon form” or “Gauss–Jordan 
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form,” was first published in a handbook on geodesy 
written by Wilhelm Jordan. At that time, elimination 
methods were considered a tool for geodesy instead of 
a part of mathematics. 

Other Historical Developments
The closely related concept of determinants originated 
during the late seventeenth century simultaneously in 
work of Seki Kowa, in Japan, and Gottfried Leibniz, in 
Germany. From the modern point of view, the deter-
minant is a function of a matrix, so it is remarkable 
that the study of determinants originated more than 
a century before the study of matrices. A systematic 
theory of matrices, determinants, and systems of linear 
equations was developed by European mathematicians 
during the nineteenth century: the most important 
contributors were Augustin Cauchy, Arthur Cayley, 
Ferdinand Eisenstein, Ferdinand Frobenius, Charles 
Hermite, Edmond Laguerre, and Karl Weierstrass. 
Thomas Hawkins, a historian of mathematics, who has 
done much research on these developments, argues 
that the most important motivation for this develop-
ment was the Cayley–Hermite problem of determining 
all linear substitutions of the variables of a quadratic 
form, which leave the form invariant. 

A famous memoir by Cayley introduced the single-
letter notation for matrices together with the opera-
tions of matrix addition and multiplication and clari-
fies the relation between matrices and systems of linear 
equations: “a set of quantities arranged in the form of 
a square, for example,

a a a
b b b
c c c

′ ′′
′ ′′
′ ′′

















is said to be a matrix. The notion of such a matrix 
arises naturally from an abbreviated notation for a set 
of linear equations, viz. the equations

X ax by cz

Y a x b y c z

Z a x b y c z

= + +
= ′ + ′ + ′
= ′′ + ′′ + ′′

X ax by cz

Y a x b y c z

Z a x b y c z

= + +
= ′ + ′ + ′
= ′′ + ′′ + ′′

Matrix Theory
In the twentieth century, Olga Taussky-Todd became 
what she later referred to as “a torchbearer for matrix 

theory.” During World War II, she worked on 6-by-6 
matrices related to the flutter analysis of aircraft. She 
used a theorem by Russian mathematician Semyon 
Aranovich Gershgorin to simplify the amount of 
calculation and computations. The theory of solv-
ing matrix systems continues in the early twenty-first 
century as numerical analysts search for efficient algo-
rithms. In addition to Taussky-Todd’s own theoretical 
and applied work in the area, she encouraged others to 
join in its development. Eventually, partly because of 
her influence, matrix theory became a true branch of 
mathematics instead of just a tool for applications.

Contemporary Applications
The theory of matrices is an essential part of linear 
algebra, which is a highly developed branch of math-
ematics, with many applications to the natural and 
social sciences. For example, matrix mechanics, the 
first definition of quantum mechanics, led to the study 
of infinitely large matrices. Matrices also represent dig-
ital images on a computer, and, in musical set theory, 
matrices are used to analyze or to create compositions. 
Matrices containing entries other than numbers and 
the calculus of matrices have found importance in sta-
tistics and engineering. Typical applications discussed 
in modern linear algebra textbooks are network flow, 
electrical resistance, chemical reactions, economic 
models, dynamical systems, vector geometry, computer 
graphics, least squares approximation, correlation and 
variance, optimization, and cryptography.
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Mattresses
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Modern mattresses are superior to 
older designs because of the geometry and pressure 
distribution of the coil springs that define them. 
Mattresses last longer when rotated through four 
configurations.

The modern mattress is a cushion for sleep-
ing and sits on top of a box spring that pro-
vides support and reduces wear and tear. 
While straw, coconut fiber, horsehair, feath-
ers, pea shucks, and water have all been 
used to stuff mattresses in the past, in the 
twenty-first century most are filled with 
artificial fibers or foam rubber and derive 
much of their resilience and support from 
coil springs, which are either connected by 
interconnecting wires or encased in fabric. 
The first innerspring mattress is attributed to 
Heinrich Westphal in 1871, and its popularity 
may be because of hygiene and comfort consid-
erations. The geometry of the coils impacts the 
durability and firmness. Manufacturers use calcu-
lations like the average load limit of a floor and the 
volume and weight of a waterbed. NASA attributes 

the 1960s invention of soft memory foam with high-
energy absorption properties to aeronautical engineer 
Charles Yost, who was working under a NASA contract. 
Many studies employ statistics, such as those involv-
ing quality of sleep, amount of snoring, and the impact 
of sleeping positions. Mathematical techniques and 
models of mattresses have also been useful in study-
ing factors such as pressure distribution, deformation, 
combustible behavior, and mattress flipping. 

The gauge of the coils is one of the factors that 
impacts the mattress’s firmness and, therefore, its sup-
port and durability. Counterintuitively for the lay-
man, lower gauges mean larger cross-sectional diam-
eters—the number of passes through the drawing dies 
that are required to create a wire of a given thickness. 
Lower gauge means fewer passes, meaning thicker 
wire. Bonnell coils, named after the inventor, may have 
been adapted from the coils used for buggy seats in 
the nineteenth century. The configuration of adjacent 
hourglass coils connected by helical wire, called “heli-
cals,” increases the spring’s resistance proportionally 
to the load. Cylinder pocket springs systems are indi-
vidual cylinder pieces held together by clips. Continu-
ous coils are rows formed from a single piece of wire. 
However, while the head-to-toe rows of continuous 
coils offer good support while still responding to shifts 
of position and weight, the movement of the coils in 
response to those shifts is noisier and more noticeable 
than in other mattresses.
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Wear and tear on a mattress is disproportionate 
because of the fact that the sleeper and the mattress 
are not the same shape, and thus some coils will bear 
more load than others. Compressing and decompress-
ing gradually weakens a mattress; it may show notice-
able changes after a few years. Use of a firm box spring 
helps prevent the sagging that would set in quickly, and 
rotating and/or flipping a mattress twice a year helps to 
more equally distribute wear and tear over the course 
of the mattress’s life. The actual technique of mattress 
flipping has been the subject of some discussion for 
years because the interval is great enough that it is dif-
ficult to remember in which direction the mattress was 
last flipped or rotated without making some kind of 
mark on the mattress as a reminder. 

A mattress can be rotated along three orthogonal 
axes (x, y, and z); or to compare a mattress to an air-
plane, roll, pitch, and yaw. The roll axis parallels the 
longest dimension, the pitch the next-longest, the yaw 
the shortest. Because a mattress has two sides suitable 
for sleeping on, and each of those sides has two pos-
sible orientations, this means that there are four pos-
sible mattress configurations. One mattress-flipping 
technique that cycles through these four configura-
tions is called the “Klein 4-group,” named for math-
ematician Felix Klein, which is a group describing the 
symmetries of a rectangle in three-dimensional space. 
Absent a mnemonic device to remember the previous 
and next configuration, random selection may be the 
best choice to maximize the efficiency of mattress flip-
ping. Over the course of 10 years of random selection 
every six months, for instance, the most-used orien-
tation will be used about 31% of the time, and the 
least-used about 19%—a 6% deviation from perfectly 
distributed usage.
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Mayan	Mathematics
See Incan and Mayan Mathematics

Measurement,		
Systems	of
Category: History and Development of  
Curricular Concepts.
Fields of Study: Communication; Connections; 
Measurement.
Summary: Various systems of measurement have 
been used and debated throughout history, with  
accuracy and precision becoming increasingly  
important.

Some define “measurement” as the process of 
determining the magnitude of a quantity. The 
word comes from ancient Greek metron, meaning 
“proportion,” but the process itself is as old as mankind. 
Long before humans used calculus or algebra, they 
were measuring length, area, volume, time, and mass. 
Measures were needed to make furniture, buildings, 
and ritual places or in landscaping, time keeping, and 
making skycharts and calendars. Evidence of standard-
ized systems of weights and measures dating back to 
approximately 3000 b.c.e. has been found, showing 
that, though measurement systems have become more 
refined over the centuries, the concept of measurement 
is an ancient one. By 1600 b.c.e., people offered silver 
and gold sticks in exchange for products, and in this 
manner money became a way to measure value. 

Mathematicians generalized the notion of measure-
ment in a number of ways, such as in length spaces, 
metric spaces, and in the field of measure theory. 
Numerous mathematicians have measures named after 
them, like the Lebesgue measure, named for Henri Leb-
esgue, and the Borel measure, named for Emile Borel. 
Scientists and mathematicians developed systems of 
measurement in order to quantify objects that were 
once thought impossible to measure. For instance, they 
have developed measurements for infinite sets, ways 
to measure π that are accurate to huge numbers of 
decimals, measures for hyperbolic geometry in which 
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the Pythagorean theorem no longer holds, tiny-scale 
measurements on the quantum level or in nanotech-
nology, large-scale measurements of the universe, and 
even measurements of political opinion. Some of these 
measurements remain controversial, like how to assess 
educational achievement. Mathematicians and statisti-
cians continue to design, refine, and improve them. In 
twenty-first-century mathematics classrooms, students 
in prekindergarten through college investigate measur-
able attributes, including formulas, models, and pro-
cesses as well as units and systems of measurement.

Early Measurement Systems
Historical records indicate that the concept of mea-
surement was vital for ancient civilizations, as humans 
needed to build dwellings, make clothing, and bar-
ter for goods. Historical study has indicated that the 
people of ancient Egypt, Mesopotamia, and the Indus 
Valley all developed systems of measurement, some of 

which were remarkably precise. For example, the Indus 
Valley people used measurements of length where the 
smallest division was approximately equal to 1/16 inch, 
as well as “yard sticks” that were exactly 33 inches in 
length. These measurements, while ancient in origin, 
were used in traditional Indian architecture and remain 
in use in the twenty-first century. Ancient humans typ-
ically used body parts as instruments for measuring 
length. The most standard unit of length that devel-
oped from ancient cultures is the cubit. The cubit was 
commonly defined as the length of the forearm from 
the elbow to the tip of the middle finger. 

However, ancient Egyptian culture also defined the 
Sacred Cubit, which was a common cubit plus an extra 
hand span. The Sacred Cubit was used for construct-
ing buildings and monuments in ancient Egypt and for 
surveying land. As ancient civilizations progressed and 
trade became more vital, standardization of measure-
ment systems became more of a concern. Ancient peo-
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ples attempted to solve this problem by creating a rod 
or bar of a given length (usually a cubit) that was des-
ignated as the standard unit of measure. The rod was 
usually normed on a ruler’s dimensions. The original 
rod was typically kept in a temple or other safe place, 
and other identical rods were created and distributed 
throughout the community. The number of seeds that 
filled a clay jar or gourd served as a measure for volume. 
Some civilizations also used water instead of grain. 
Later, stones or sometimes lumps of metal of a certain 
weight were used for larger units. Like the rods used 
for length, these stones or lumps of metal were typi-
cally kept in temples or other safe places as the official 
standard of weight. However, duplication of the weight 
provided opportunities for the deception of custom-
ers, as it was fairly easy for merchants to remove weight 
from a lump of metal. Therefore, inspections of weight 
measures became common practice, and this practice 
still continues through the twenty-first century. Some 
current forms of measurement, such as the carat, were 
developed out of this ancient tradition. 

Standardized Measurement Systems
The English system of measurement was developed 
from the systems of a variety of cultures, includ-
ing Babylonian, Egyptian, and Roman. From the 
Roman culture came the use of the base 12 system 
(for example, 12 inches in one foot); studies in the 
etymology of the English measurement units show 
strong Roman influence. The English system was 
widely used through the nineteenth century because 
of royal edicts that helped standardize measurements. 
For example, King Henry I issued a decree that the 
distance from the tip of his nose to the end of his out-
stretched thumb should be designated as one yard. 
This standardization made the English system very 
popular in various parts of the world. However, not 
all areas of the world recognized and utilized the Eng-
lish system, which motivated some to call for a single 
worldwide standardized system of measurement.

The idea of a single worldwide system of measure-
ment is generally credited to Gabriel Mouton (1670). 
While several proposals of how such a system might be 
established were presented at the time, Mouton’s pro-
posal used a decimal system based on the length of one 
minute of arc of a great circle of the Earth. Gottfried 
Leibniz proposed a similar system in 1673, leading to 
the concept of a seconds pendulum. However, little was 

done for more than 100 years to further establish this 
system of measurement.

The metric system as it is known in the twenty-first 
century has its origins in the French Revolution, as the 
National Assembly of France commissioned the French 
Academy of Sciences to develop a standard of measures 
and weights. The system that was created was based on 
establishing a portion of the Earth’s circumference as 
the unit of length. This unit of length was designated 
a “meter,” derived from the Greek word for “a mea-
sure.” Units of volume and mass were derived from the 
basic unit of length. The unit of mass, the gram, was 
found by examining the mass of one cubic centimeter 
of water at its temperature of maximum density. The 
unit of volume, the liter, was designated as the amount 
of water in a cubic decimeter (a cube 10 centimeters on 
each side). What made the metric system unique was 
the integral relationship between units of length, mass, 
and volume. Additionally, the metric system was based 
on the concept that smaller and larger increments were 
created by multiplying or dividing the basic units by 
powers of 10. Working with a base-10 system made the 
metric system easy to use, as previous measurement 
systems had used base-12 or base-16 systems.

The first countries that actually used the new sys-
tem were Belgium, the Netherlands, and Luxembourg, 
around 1820. France made its use mandatory in 1840. 
Additionally, the metric system quickly became the 
standard for scientific and engineering work, which 
increased its use throughout the world as nations 
developed technologically. In 1875, 17 countries signed 
the “Treaty of the Meter,” which officially established 
the standards for metric length and mass. In addition, 
this agreement established mechanisms for recom-
mending and adopting refinements to the system. The 
metric system was officially accepted by 35 nations by 
1900 and is the standard system of measurement in 
most nations at the start of the twenty-first century. 
However, traditional units are still used worldwide and 
conversion tables and programs ensure successful cal-
culation. Confusion between the two systems can lead 
to devastating consequences, such as the 1999 crash of 
the Mars Climate Orbiter, which NASA attributed to 
the failure to convert from English to metric values.

Modern-day developments in measurement have 
focused on developing more precise measurement units 
within the metric system. In 1960, the original nations 
of the “Treaty of the Meter” convened as the General 
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Conference on Weights and Measures to develop a 
revision and simplification of the system. From this 
convention, seven units of measure were established as 
the base units of the system: meter for length, kilogram 
for mass, second for time, ampere for electric current, 
Kelvin for thermodynamic temperature, mole for sub-
stance, and candela for luminous intensity. Also from 
this convention came the name of Système Interna-
tional d’Unitès (SI), or International Systems of Units, 
prompting the international abbreviation of SI for the 
metric system. 

Since that time, the General Conference on Weights 
and Measures has continued to develop more precise 
and more easily reproducible definitions of measure-
ment units. For instance, the meter was originally a 
fraction of the distance from the equator to the North 
Pole, but this measurement was complicated by the 
fact that the Earth is not a perfect sphere. The late-
eighteenth-century expedition of mathematician and 
astronomer Jean-Baptiste-Joseph Delambre and sur-
veyer Pierre Méchain to calculate the geodesic mea-
surement was fraught with difficulties. Later, a stan-
dardized platinum and iridium meter bar was used. In 
1983, the meter was redefined to relate to the speed of 
light, and it became defined as the distance light travels 
in a vacuum in 1/299,792,458 seconds. Improvements 
to the metric system have been ratified by the General 
Conference eight times since the 1960s with the most 
recent taking place in 1995.
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Measurement		
in	Society
Category: School and Society.
Fields of Study: Connections; Measurement.
Summary: Accuracy and precision are important in 
the many systems of measurements used in various 
spheres in society.

Imagine how chaotic the world would be if people could 
not measure anything! People would not be able to keep 
track of time, would not know weights or heights of 
people (or of anything else in the world), could not cal-
culate the distance between any two points, and would 
not have recipes to cook properly. Indeed, the list of 
everyday activities that would be impossible to do in 
the absence of measurement is endless. Thus, measure-
ment is an essential part of everyday life. Measurement 
is a fundamental part of mathematics research and cur-
ricula and there are many types of measurements in 
society. Some measurements elucidate productivity or 
change. Others measure large-scale aspects of society, 
like gross domestic product (GDP). Area measurements 
have practical applications in areas like surveying and 
interior design. Measurements are fundamental in drug 
dosing labels, quality control, missile launches, and in 
many other applications and fields. Because of its critical 
and practical importance, measurement is an extensively 
studied concept in pre-K–12 mathematics education. 

Measurement Systems
Numerous measurement systems have been developed 
and used since ancient times, the earliest of which used 
body parts as the unit of measurement. The many, 
diverse measurement systems were a source of confu-
sion, not only among nations, but also among different 
fields within a nation. To establish common units of 
measurement and promote their use, a treaty titled the 
“Convention of the Metre” was signed by 17 countries 
on May 20, 1875. The Convention of the Metre estab-
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lished three international organizations—the Interna-
tional Bureau of Weights and Measures (BIPM), the 
General Conference on Weights and Measures, and 
the International Committee for Weights and Mea-
sures—to oversee issues related to measurement in the 
member nations. 

In 1960, the 11th General Conference on Weights 
and Measures developed and adopted a unified mea-
surement system named International System of Units 
(SI) to promote a worldwide measurement system. The 
SI is based on seven dimensionally independent units: 
meter (the unit of length; abbreviated as m), kilogram 
(the unit of mass; abbreviated as kg), second (the unit 
of time; abbreviated as s), ampere (the unit of electric 
current; abbreviated as A), kelvin (the unit of thermo-
dynamic temperature; abbreviated as K), mole (the 
unit for amount of substance; abbreviated as mol), and 
candela (the unit of luminous intensity; abbreviated as 
cd). Although the spelling of the base units may differ 
in different languages, the symbols are the same world-
wide. The SI is an evolving measurement system to keep 
up with ever-growing measurement needs. The BIPM, 
which is comprised of many countries, ensures that 
measurements throughout the world are traceable to 
the SI. The BIPM is related to other significant interna-
tional organizations such as the International Commis-
sion on Illumination, the International Atomic Energy 
Agency, the International Laboratory Accreditation 
Cooperation, the World Health Organization, and the 
International Organization of Standardization. Such a 
worldwide organization to oversee the uniformity of 
measurements explains clearly the reason for the crucial 
emphasis on measurement in mathematics curricula.

The United States has its national standards for 
measurement and measuring devices explained in the 
U.S. Code. Because measurement and measurement 
devices are a part of everyday life and are used in vari-
ous businesses and for commercial purposes, the U.S. 
Code, published by the Office of the Law Revision of 
the House of Representatives, includes a chapter titled 
“Weights and Measures and Standard Time” under 
the Title 15. The chapter sets standards for weight and 
measurement devices to enforce accuracy and to ensure 
equity in the marketplace. In the early twenty-first cen-
tury, the acknowledgement of measurement in the U.S. 
Code as a chapter containing 267 sections under nine 
subchapters is a sound indicator of the importance of 
measurement in human life.

Accuracy and Precision in Measurement
Any measurement is an approximation to the real 
value of a quantity. The length of the previous sen-
tence might be 12 centimeters (cm), but in millimeters 
(mm) it would be 121 mm; 12 cm is not equal to 121 
mm. The reason behind the difference between these 
two measurements is the second measurement is more 
accurate than the first one. Can it be measured more 
accurately? This question yields to the need for accu-
rate measurement. One millimeter in this example can 
be ignored, but an inaccuracy of a mere millimeter in a 
missile launch may result in a disaster. Improvements 
in measurement systems are extremely important to 
make measurements as accurate as possible.

In measurement, the most accurate and precise 
results are desired. “Accuracy” in measurement refers 
to the extent to which a measured value matches the 
correct value. “Precision,” on the other hand, refers to 
the reliability of a measurement and how close indi-
vidual measurements are to each other. Measurement 
units and devices in different fields of study are not 
static; rather, they evolve to improve accuracy and pre-
cision. In the United States, the National Institute of 
Standards and Technology (NIST) is a federal agency 
that employs mathematicians and scientists, among 
others, whose main tasks include the advancement of 
the science of measurement and measurement stan-
dards. NIST, together with partners from the govern-
ment, industry, and academia, also develops measure-
ment tools for different sciences. The services of NIST 
include verification of the accuracy of measurements, 
instrument calibration (for example, calibration of 
dimensional, mechanical, or electromagnetic instru-
ments) to improve measurement quality, and the devel-
opment of innovative measurement methods.

Although accuracy and precision are always desir-
able in measurement, in some fields quality of mea-
surement is more crucial. For example, the National 
Aeronautics and Space Administration (NASA) uses 
various instruments to measure temperature, pres-
sure, load, and acceleration, and to make other critical 
measurements for its test programs. The Measurement 
Standards and Calibration Laboratory of the White 
Sands Test Facility, which supports an extensive num-
ber of test programs, performs instrument calibrations 
to ensure measurement quality is compatible with rec-
ognized national standards that are traceable to NIST. 
In NASA’s test programs, any error in measurements 
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in any equipment may cause not only the deaths of 
highly trained astronauts but also the loss of millions 
of dollars. Accurate and precise measurement therefore 
underpins the success of NASA missions, including 
launching spaceships and ensuring their safe return 
to Earth.

Another field where measurement accuracy has crit-
ical importance is the health industry. Cancer is one 
of the most serious diseases that the human race has 
faced so far. Almost 13% of all deaths in the world were 
caused by cancer in 2004. Radiotherapy, which uses 
high-energy radiation to kill cancer cells, is one of the 
most frequent methods used to treat cancer patients. 
However, radiotherapy not only kills cancer cells but 
kills healthy cells as well. Before the start of a cancer 
treatment, doctors conduct a simulation to locate the 
patient’s tumor and the normal tissues around it. In 
order to provide effective treatment, the next step is 
to measure the dose of the radiotherapy required and 
the safest angles to deliver the radiation to kill cancer 
cells. Measurements taken for radiotherapy have to be 
as precise as possible because the amount of radiation 
required to kill a cancer cell differs by the type of cancer 
cell and there is a risk of damaging the normal tissue 
during the radiation delivery. Sophisticated computers 
capable of making sensitive measurements are used for 
radiotherapy planning. Thus, human error in measure-
ment is decreased. Advancements in technical equip-
ment used in cancer treatment help to increase the 
effectiveness of the treatment and decrease the deaths 
caused by cancer. Monitoring the patient’s temperature 
and thermal dosage in real time provides doctors the 
opportunity to treat tumors as closely as possible while 
keeping the adjacent healthy tissues safe.

Measurement in Everyday Life
Measurement is a pervasive mathematical concept in 
everyday life, so it has many applications to a variety 
of careers, such as health sciences, architecture and 
construction, interior design, carpentry, meteorology, 
and public safety. Precise measurement is crucial in 
healthcare, as monitoring patient condition has criti-
cal importance. Thus, choosing effective measurement 
devices and obtaining accurate measurements (for 
example, of weight, blood pressure, or blood sugar) 
are essential aspects of healthcare professions. Also, 
healthcare professionals frequently use measurement 
conversion on the job. Doctors, nurses, and pharma-

cists convert between English and metric systems, or 
between Celsius and Fahrenheit, when they collect 
patient information on weight or temperature or when 
calculating appropriate medication dosages to admin-
ister. Measurement conversion is a particularly impor-
tant competency for pharmacists, as they convert 
among different measurement systems such as metric, 
apothecary, and avoirdupois systems when they calcu-
late medication dosages and fill orders. 

Measurement is among the essential mathemat-
ics concepts applied in architecture, construction, and 
related careers. From the design and scale models of a 
project to its actual construction, precise and accurate 
measurement is vital. Measurement is also used exten-
sively by interior designers as they improve the aesthet-
ics and function of interior spaces. Interior designers 
have to determine precise measures of virtually all parts 
of a space to most effectively utilize the space and to 
decide the type, size, and placement of furniture or fix-
tures. Designers need to have precise area measures of 
walls, floors, or countertops to determine the size and 
number of tiles needed to cover these surfaces. Indeed, 
site measure and survey is an essential routine for inte-
rior designers in which they get measures of a space and 
draw an outline of the space, including dimensions.

Carpentry is another occupation for which mea-
surement is substantially important. An old saying 
emphasizes the significance of measurement in car-
pentry: “Measure twice, cut once.” Because precise 
measurement is at the heart of good carpentry work, 
carpenters use various specialized measurement tools, 
such as a combination square (to accurately measure 
45 degree and 90 degree angles), carpenter’s square 
(to plot right angles), and T-bevel (to set and transfer 
angles), in addition to the regular metal tape measures 
and folding rulers. 

Although most people are familiar with thermom-
eters and their uses, many may not know about various 
other measurement scales meteorologists use to orga-
nize and record weather conditions. Meteorologists 
use anemometers to measure wind speed or pressure, 
ceilometers to measure the thickness and height of 
clouds, barometers to measure atmospheric pressure, 
and  high-tech sensors to measure humidity. People 
have always been interested in reliable and long-term 
weather forecasts. Although weather predictions are 
increasingly accurate and can be made for increasingly 
longer terms, meteorologists are continuously search-
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ing for methods to improve weather predictions. In 
this effort, innovative measurement devices in meteo-
rology are being developed using the most up-to-date 
technology to make more accurate and precise weather 
and climate predictions.

Measurement also has significant applications 
in public safety. To maintain public travel safety, the 

Transportation Security Administration (TSA) utilizes 
the most advanced imaging technology, such as mil-
limeter wave scanners to screen passengers for metallic 
and nonmetallic threats that might be anywhere on the 
body without physical contact. Millimeter wave scan-
ners use electromagnetic waves to produce a black-
and-white image in seconds. These scanners transmit 
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Length
meter, m: The meter is the length of the path trav-
elled by light in vacuum during a time interval of 
1/299,792,458 of a second. 

It follows that the speed of light in vacuum, c0, 
is 299,792,458 m/s exactly.

Mass
kilogram, kg: The kilogram is the unit of mass; it 
is equal to the mass of the international prototype 
of the kilogram.

It follows that the mass of the international 
prototype of the kilogram, m(K), is always 1 kg 
exactly.

Time
second, s: The second is the duration of 9,192, 
631,770 periods of the radiation corresponding 
to the transition between the two hyperfine levels 
of the ground state of the cesium 133 atom.

It follows that the hyperfine splitting in the 
ground state of the cesium 133 atom, v(hfs Cs), 
is 9,192,631,770 Hz exactly.

Electric Current
ampere, A: The ampere is that constant current 
that, if maintained in two straight parallel con-
ductors of infinite length, of negligible circular 
cross-section, and placed 1 meter apart in a 
vacuum, would produce between these conduc-
tors a force equal to 2 × 10–7 newton per meter 
of length.

It follows that the magnetic constant, μ0, 
also known as the permeability of free space, is  
4π × 10−7 H/m exactly.

Thermodynamic Temperature
kelvin, k: The kelvin, unit of thermodynamic tem-
perature, is the fraction 1/273.16 of the thermo-
dynamic temperature of the triple point of water.

It follows that the thermodynamic tempera-
ture of the triple point of water, Ttpw , is 273.16 K 
exactly.

Amount of Substance
mole, mol: 

1. The mole is the amount of substance of 
a system that contains as many elementary enti-
ties as there are atoms in 0.012 kilogram of car-
bon 12.

2. When the mole is used, the elementary 
entities must be specified and may be atoms, 
molecules, ions, electrons, other particles, or 
specified groups of such particles.

It follows that the molar mass of carbon 12, 
M (12C), is 12 g/mol exactly.

Luminous Intensity
candela, cd: The candela is the luminous inten-
sity, in a given direction, of a source that emits 
monochromatic radiation of frequency 540 × 1012 
hertz and that has a radiant intensity in that direc-
tion of 1/683 watt per steradian.

It follows that the spectral luminous efficacy, 
k, for monochromatic radiation of frequency 540 
× 1012 Hz is 683 lm/W exactly.

(Adapted from the Bureau International des Poids 
et Mesures (BIPM) Web site at http://www.bipm 
.org/utils/common/pdf/si_summary_en.pdf)

Definitions of the Seven Base Units of SI



extremely high radio frequencies, a wavelength of 1–10 
mm, from two antennas to construct a three-dimen-
sional image of the person scanned. The energy each 
radio wave reflects back from the passenger’s body to 
the scanner is transmitted to a computer. Then, soft-
ware measures the energy for each radio wave reflected 
from the passenger’s body to construct an accurate and 
precise three-dimensional image of the passenger for 
security check. With the help of such detailed three-
dimensional images, any hidden object can easily be 
identified by security. For such an imaging technology 
to be used in areas requiring high security needs, like 
airports, the technology needs to provide fast, accu-
rate, and reliable images. Further, imaging technology 
developers should consider the amount of radiation 
emitted by a person who is screened. With more accu-
rate and reliable measurements using advanced imag-
ining technologies, human life can be protected both 
by eliminating possible threats to public safety and by 
decreasing side effects of such screening technologies.

Measurement in Pre-K–12  
Mathematics Curricula
The study of measurement starts before kindergarten, 
and most children of pre-K and kindergarten age can 
acquire considerable knowledge of measurement. Pro-
viding young children with motivating opportunities 
to explore measurable characteristics of objects such as 
size, weight, and length and engaging them in activi-
ties that require comparing and ordering objects by 
these characteristics can help them develop the con-
cept of measurement. For example, children can order 

their toys by their size, make short and long (or big 
and small) animals using clay, or match items of the 
same size. An activity that can help children start devel-
oping an understanding of area might be covering a 
large flat surface using small sizes of the same surface 
(such as leaves or cookies) and making comparisons 
between surface areas (for example, a larger leaf or a 
smaller cookie). Children can develop a general idea of 
volume as they pour water from a wider to a narrower 
container, or from a taller to a shorter container. Par-
ents can also contribute to their children’s learning of 
early measurement concepts and appropriate measure-
ment terms by making comparisons using terms such 
as “big,” “bigger,” “small,” “smaller,” “light,” “lighter,” 
“heavy,” “heavier,” “tall,” “taller,” “short,” and “shorter” 
when referring to objects or people in their daily con-
versations. In their daily routines, children encounter 
various opportunities to develop an understanding of 
time and its measurement. For example, children can 
understand the day and night cycle and sequences of 
their daily activities (washing hands before meals and 
brushing teeth after meals). The waiting periods for 
major events that children look forward to, such as spe-
cial days and holidays, can provide opportunities for 
children to understand concepts of day, week, month, 
and year. Young children can learn various measure-
ment devices within daily contexts as they associate 
money with buying things, clocks and calendars with 
time concepts, or thermometers with temperature.

In addition to making comparisons and order-
ing familiar objects, children should experience the 
process of measurement. Before being introduced to 
standard units of measure, such as inches or feet (or 
equivalent units in the metric system), children typi-
cally start measuring using nonstandard measurement 
units. For linear measurement children can measure 
the length of a table using their hands, the height of 
a chair using paper clips, or the distance between two 
points using their feet. Children can explore measur-
ing area as they cover different sizes of flat objects with 
uniform blocks. An activity for children to learn about 
volume measurement is placing uniform cubes in a 
box and counting the number of cubes used to fill up 
the box. Balance scales can be used to provide children 
with comparisons of weights of different objects, such 
as comparing an eraser’s weight to a pencil’s weight. 
Children can also weigh objects with nonstandard 
units using balance scales. They can weigh a book 
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using unifix blocks or a pencil using paper clips. The 
Illuminations Web site of the National Council of 
Teachers of Mathematics (NCTM) provides various 
lesson samples that can be used in preschool class-
rooms or at home to teach children measuring with 
nonstandard units. When measuring with nonstan-
dard units, students can conceptualize that they deter-
mine the total length, area, volume, or any attribute 
of interest as they repeatedly measure using the same 
measurement unit.

After children experience the measurement process 
using nonstandard units, they will be better prepared 
to explore measuring with standard measurement 
tools and units. Measuring with standard units as well 
as nonstandard units is among NCTM’s measurement 
standards for grades pre-K–12. According to NCTM 
standards, pre-K–12 students also should be able to 
choose appropriate measurement units and tools to 
measure different attributes. Students can be intro-
duced to standard measurement tools, such as tape 
measures, scales, or rulers, with activities that allow 
them to experiment with the measurement process. For 
example, to learn measuring weight using a scale and to 
gain an idea about weights of different objects, students 
can weigh themselves and various items such as a bag, 
a book, or fruit on a scale and record the weights. As 
students weigh using the scale, they will recognize the 
units of measurement. After students gain some expe-
rience with measuring weights, an enjoyable activity 
might be to ask students to estimate weights of things 
that they identify in the classroom. 

Throughout elementary and middle school, stu-
dents learn conversions within a measurement system; 
measure time, area, volume, temperature, and angle 
size using appropriate measurement units and tools; 
find the areas of rectangles, triangles, parallelograms, 
circles, and irregular shapes; and calculate volumes and 
surface areas of rectangular solids, cylinders, and trap-
ezoids. In later grades, students are expected to analyze 
measurement precision and accuracy and approximate 
measurement error.

An important concept that students need to learn 
when they study measurement is “estimation.” Stu-
dents in early grades can determine common or per-
sonal referents (for example, the width of an index 
finger is 1 centimeter) as they estimate different attri-
butes, such as length and weight of common objects. 
As students move on to higher grades, they should be 

prompted to estimate perimeters, areas, and volumes 
using benchmarks. Students in college explore the the-
ory of measurement. For instance, they use techniques 
from calculus to represent the length of a curve and 
the notion of a metric space is defined in topology. 
Mathematicians measure hard-to-define quantities, 
like the length of a coastline, refine and improve sys-
tems of measurement, and also research related con-
cepts in the field of measure theory.
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Measurements,	Area
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry.
Summary: Measuring area is an important  
mathematical calculation that has been studied for 
thousands of years.
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“Area” is often thought of as the amount of a plane that 
a two-dimensional figure occupies. The name comes 
from the Latin word area, which means a vacant piece 
of level ground, reflecting the fact that formulas to cal-
culate area were often developed to facilitate surveying 
and the calculation of the size of land plots for tax or 
other purposes. Some formulas to perform area cal-
culations for simple geometric shapes were known in 
ancient times, while other calculations like the area of 
curved figures could only be approximated before the 
development of calculus and a greater depth of under-
standing regarding the constant π. 

In the twenty-first century, primary school students 
explore attributes such as area and how it changes 
when the shape of an object changes. They also use 
formulas to find the areas of rectangles, triangles, 
and parallelograms and investigate the surface areas 
of rectangular solids. In the middle grades, the sur-
face areas of prisms, pyramids, and cylinders are also 
a focus. In high school, students calculate the area 
and surface area of various geometric figures such as 
cones, spheres, and cylinders. In calculus classes, stu-
dents develop a deeper understanding of area through 
integration techniques. 

Ancient History: Egypt, Babylon, and India
The Moscow Mathematical Papyrus (c. 1850 b.c.e.) 
and the Ahmes, or Rhind, Papyrus (c. 1650 b.c.e.) pro-
vide evidence that Egyptians of this period had sys-
tems for calculating the areas of different geometric 
shapes, including triangles, rectangles, and circles. The 
approach to these calculations is frequently expressed 
using methods based on the interrelationship between 
different geometric figures. For instance, one problem 
in the Ahmes Papyrus notes that the area of a circular 
field of diameter 9 is the same as the area of a square 
field with a side of length 8. Historians of mathemat-
ics have converted these calculations to an estimate of 
π that is about 3 1/6 (compared to the correct value 
of 3.141592 . . .). No differentiation is made between 
exact and approximate formulas, and there is nothing 
resembling a proof or theorem in the modern sense—
the papyrus presents ways to perform calculations. 

The ancient Babylonians also had methods, pre-
served on clay tablets written in cuneiform, for calcu-
lating area. Historians have these tablets and inferred 
from the calculations values of π, such as 3 and 3.125. 
As with the Egyptians, methods to calculate area were 

often expressed by the relation between different geo-
metric figures, and there is no evidence of proofs. 

Practical needs also motivated the mathematics 
presented in the Sulbasutras, appendices to the Vedas  
(Hindu scriptures), which explain how to construct 
sacrificial altars. These scriptures include methods for 
constructing circles from squares and vice versa, indi-
cating 577/408 as an approximation of 2. 

Ancient Greeks
The ancient Greeks were able to estimate or derive 
many areas, in some cases building upon earlier work 
done by people from other cultures and civilizations. 
Antiphon the Sophist (480–411 b.c.e.), Eudoxus of 
Cnidus (408–355 b.c.e.), Archimedes of Syracuse 
(287–212 b.c.e.), and others approximated the area 
of figures like the circle by using inscribed and cir-
cumscribed polygons, a technique referred to as the 
“method of exhaustion.” Using polygons, Archimedes 
was also able to show that the surface area of a sphere 
is four times the area of “the greatest circle in it.” In 
mathematics classrooms, students may discover this 
relationship by peeling an orange and fitting the peel 
pieces into four circles that have the same diameter 
as the equator of the orange. Expressed in modern 
terminology, each circle has area πr2 where r is the 
radius, so the surface area is 4πr 2. In ancient Greece, 
the Pythagorean theorem, named for Pythagoras of 
Samos, was expressed in terms of areas of squares 
rather than the lengths of the sides of a right triangle; 
the square figure on the hypotenuse had the same 
area as the sum of the other two squares. Euclid of 
Alexandria (325–265 b.c.e.) collected the theorems 
of Pythagoras and other predecessors into the treatise 
now known as the Elements, which has proven to be 
one of the most influential mathematical textbooks 
in history. Heron of Alexandria (10–70 c.e.) pub-
lished the Metrica, a treatise that collected formulas 
for calculating the area and volume of many different 
geometric figures and also presented what is known 
today as “Heron’s formula” for expressing the area of 
a triangle in terms of its sides:

K s s a s b s c= −( ) −( ) −( )

where K is the area of the triangle, a, b, and c are the 
length of the sides, and s is the semiperimeter (half the 
sum of the lengths of the sides).
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Seventeenth Century
In the seventeenth century, German astrologer and 
mathematician Johannes Kepler applied the ideas of 
calculus to compute the area and volume of conic sec-
tions and casks. Reportedly, his interest was sparked 
while at his own wedding reception; Kepler became 
interested in finding a method for calculating the vol-
ume of wine in barrels that were not perfect cylin-
ders (they were wider in the middle than at the top 
and bottom), meaning that the simple formula for 
the volume of a cylinder could not be applied. Devel-
opment of differential and integral calculus, neces-
sary to find the area of curved figures, is attributed 
to both German mathematician Gottfried Leibniz 
and English mathematician Sir Isaac Newton, in the 
seventeenth century. Also in the seventeenth century, 
the French mathematician Albert Girard published 
a treatise that was the first to use the abbreviations 
“sin,” “cos,” and “tan” for the sine, cosine, and tangent 
and demonstrated that the area of a spherical trian-
gle depends on its interior angles, which is known as  
“Girard’s Theorem.” 

Recent Developments
In the nineteenth century, the ancient area problem of 
squaring the circle was finally resolved. The challenge 
had been to construct a square that had the same area 
as a circle using only a ruler and compass. In 1882, Ger-
man mathematician Ferdinand von Lindemann proved 
that π is a transcendental number, meaning that it is 
not equal to any finite sequence of algebraic operations 
on integers. This characteristic also meant that ruler-
and-compass methods of constructing a square with 
area the same as the area of a circle of radius 1 were 
also doomed to failure. However, methods other than 
ruler and compass constructions can be used to obtain 
such a square.

In 1917, the Japanese mathematician Soichi Kakeya 
posed what is known as the “Kakeya problem,” which 
asks whether there is a minimum region in a plane in 
which a needle (line segment) can be freely rotated. 
This area minimization problem was solved in 1927 
by Russian mathematician Abram Samoilovitch Besi-
covitch and also in 1928 by German mathematician 
Oskar Perron. In the 1930s, American mathematician 
Jesse Douglas and Hungarian Tibor Rado published 
solutions to “Plateau’s Problem,” which requires find-
ing the area of a minimal surface bounded by a curve. 

The problem is named for nineteenth-century Belgian 
physicist Joseph Plateau, although it was first posed in 
the eighteenth century by Joseph-Louis Lagrange. 

Further Reading
Boyer, Carl. B. A History of Mathematics. 2nd ed. Rev. Uta 

C. Merzbach. Hoboken, NJ: Wiley, 1991. 
Darling, David. The Universal Book of Mathematics:  

From Abracadabra to Zeno’s Paradoxes. Hoboken, NJ: 
Wiley, 2004.

National Council of Teachers of Mathematics. 
“Principles & Standards for School Mathematics: 
Higher Standards for Our Students . . . Higher 
Standards for Ourselves.” http://standards.nctm.org.

Washington State Department of Transportation. “The 
Metrics International System of Units.” http://www 
.wsdot.wa.gov/reference/metrics/factors.htm. 

Zebrowski, Ernest, Jr. A History of the Circle: 
Mathematical and the Physical Universe. New 
Brunswick, NJ: Rutgers University Press, 1999. 

Sarah Boslaugh

See Also: Measurement, Systems of; Measurements, 
Volume; Measuring Tools; Polygons and Units of Area.

Measurements,	Length
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Measurement; Number and Operations; 
Representations.
Summary: The challenge of measuring lengths 
spurred numerous mathematical developments.

The origin of length measurements certainly predates 
any recorded history. One can imagine a hunter in the 
Pleistocene making arrows whose length only margin-
ally exceeds the draw length of his bow, or perhaps 
measuring spear-throwing distance so that when hunt-
ing, throws are not wasted on animals out of range. The 
introduction of new technologies invariably increased 
the demand on the range and precision of measur-
ing abilities. To build a house, beams need to be cut to 
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specific lengths and notched at nearly exact positions. 
To build a cart or any wheeled object, lengths need to 
be gauged with remarkable precision in order for the 
wheel to have the freedom to rotate while still having 
weight-bearing support in all directions.

As older technologies were improved and new 
inventions arose, the terms and mathematics of 
length measurement were forced to keep pace. In 
order to convey the perception of length without hav-
ing to give an example—indicating, for example, the 
width of a farming field to a friend, or the height of 
a horse to a potential buyer—it quickly became use-
ful to adopt certain units (agreed-upon conventions 
for fixed lengths that could be used for reference when 
desired). Many of these units originated from roughly 
constant measurements of parts of the body, sim-
ply because this turned every person into a walking 
measuring stick. The foot and the hand are perhaps 
the most obvious examples of body-related units of 
measure. In fact, the width of the palm of the hand is 
roughly 4 inches (including the thumb when closed 
against the palm), and is still used today to indicate the 
height of horses. The inch was originally the width of 
a thumb. The cubit was perhaps the first standardized 
unit of length and is defined to be the length from the 
elbow to the tip of ones longest finger. There is some 
evidence indicating that the yard was defined by King 
Henry I to be the distance from the tip of the king’s 
nose to the end of his outstretched thumb.

History of Standardized Measures
The adoption of widespread and official standardization 
began, as far as is known, in Europe during the reign 
of Richard the Lion-Hearted in the late twelfth cen-
tury. At this time it was decreed that, “Throughout the 
realm there shall be the same yard of the same size and it 
should be of iron.” During the reign of Edward I, in the 
late thirteenth century, additional terms were created:  

It is remembered that the Iron Ulna of our Lord 
the King contains three feet and no more; and the 
foot must contain 12 inches, measured by the cor-
rect measure of this kind of ulna; that is to say, 
one thirty-sixth part [of] the said ulna makes one 
inch, neither more nor less . . . . It is ordained that 
three grains of barley, dry and round make an 
inch, twelve inches make a foot; three feet make an 
ulna; five and a half ulna makes a perch (rod); and 

forty perches in length and four perches in breadth 
make an acre.

This quest for standardization lasted through mul-
tiple revisions of terms and new techniques for repre-
senting the meter or the yard. In fact, measurements of 
weight and time evolved in very similar ways with sim-
ilar revisions. These efforts occasionally reached giant 
proportions. In 1791, after a protracted debate over the 
most natural and elegant way to define these units of 
length, the French National Assembly decided that the 
meter should be defined as one ten-millionth of one-
quarter of the circumference of the Earth. Using geo-
metric techniques, they had already been able to esti-
mate this distance to be very similar to the previously 
held definition of the meter. France then sent surveyors 
all over the globe to more exactly measure this distance. 
Although the surveyors often encountered hostility, 
occasionally being arrested as French spies, in 1799 the 
project was completed and a platinum bar representing 
the definition of the meter was created and stored in a 
safe location.

As technology improved, so did the definitions 
of units of length. In the mid-twentieth century, the 
meter was redefined using the wavelength of light 
emitted by fluorescing krypton atoms. This defini-
tion, although much more complicated, had the enor-
mous advantage that meter could now be reproduced 
almost exactly by any laboratory that had sufficiently 
advanced equipment. No longer was the definition for 
the meter something that lived in isolation, requiring 
careful guarding. Once the laser was invented in 1960, 
it became practical to redefine the meter in terms 
of the speed of light, often considered the ultimate 
physical constant. Thus the meter became, precisely, 
the distance traveled by light in a vacuum during 
1/299,792,458 seconds—a definition that continues to 
be used at the beginning of the twenty-first century. 
This definition, of course, gives rise to the question of 
exactly how a second is defined.

Other Considerations
During this time, however, there were many more 
complicated considerations than simply how to define 
a unit of length. Once the units of length were defined, 
it was invaluable to have the ability to calculate the 
lengths of objects that seemed difficult to measure or 
to predict the lengths of objects that did not yet exist. 
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When building a house, the builder must decide first 
how wide and how deep and how high the house is to 
be, and then the builder will cut down trees of the right 
size, and trim them down to obtain the needed logs. 
But how can the builder be sure that a tree is of the 
right size? If a builder is planning to cut down a tall 
tree, it is usually impractical to climb it just for the sake 
of measurement. Because of this impracticality, peo-
ple adopted several clever methods for estimating the 
height of a tree without having to leave the ground. 

Native Americans had a particularly clever tool-free 
method. They would bend over and look through their 
legs at the tree. Then they would walk away from the tree 
and repeat this process until they found a point where 
they could just barely see the top of the tree. It turns out 
that the distance from this point to the base of the tree is 
almost exactly the height of the tree (provided the mea-
surer is an average-sized person). The reason for this 
measurement technique is that a normal person look-
ing between one’s legs sees at about a 45-degree angle 
upward. Geometric principles indicate that since a tree 
makes roughly a 90-degree angle with the ground, then 
the measurer, the base of the tree, and the top of the tree 
make a 45-45-90 triangle. Such a triangle has equally 
long legs, which means that the height of the tree is equal 

to the distance from the base to 
where the measurer is standing. 
The Native Americans probably 
did not think about it in these 
exact terms, of course; they 
most likely discovered this trick 
by trial and error. Nonetheless, 
the ability to make these calcu-
lations is extremely important 
when it comes to building large 
structures.

Measuring Triangles
Ancient civilizations have long 
known that when building 
structures that need to hold 
weight, triangular supports are 
very effective. A natural ques-
tion, then, is how long to make 
the triangular piece. Say a per-
son is building a simple box 
to stand on. The box will be 1 
meter wide, 1 meter deep, and 

1 meter tall. If the person builds just the box, there is a 
danger it will collapse when stood upon, so triangular 
supports are included. Specifically, this person decides 
to build each of the four “wall” sides to be a square with 
a single piece added in diagonally to form two triangles. 
Since each of the squares is 1 meter tall and 1 meter 
wide, how long should the single piece of wood be so 
that it can join opposite edges of the square?

Pythagoras, a Greek philosopher and mathemati-
cian who lived around 500 b.c.e., developed a simple 
formula, the Pythagorean Theorem, that can be used to 
answer the question. His formula states that for a trian-
gle where one of the angles measures to be 90 degrees, 
and a, b, and c are the side lengths where c represents 
the hypotenuse (the side across from the 90-degree 
angle) then a b c2 2 2+ = . Using this formula, the square 
can be imagined as two triangles, each of which has a 
90-degree angle, and it can be seen that c2, the length 
of the hypotenuse squared, must be equal to 1 1 22 2+ = . 
Therefore, the length of the piece of wood needed is 
1/7, which is approximately 1.4 meters.

When Pythagoras answered this question, it pro-
vided a huge boost to the ability to manufacture pre-
cisely engineered constructs. But practically and math-
ematically, it also raised additional questions. How can 
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one determine the length of the triangular piece if the 
triangle does not possess a 90-degree angle? What are 
the properties of triangles that are best at supporting 
weight? The mathematical field of trigonometry (from 
the Greek words trigonon, meaning “triangle” and 
metron, meaning “measure”) was invented to answer 
these questions.

Measuring Curves
The ancient Greeks were obsessed with geometry and 
incorporated it into many nonmathematical aspects 
of their lives. This incorporation led to the aesthetic, if 
intellectually dubious, concept of sacred geometry that 
infuses some spiritual movements. Perhaps the single 
most prevalent concept in geometry is that of a circle. 
The concept of relating various geometric shapes to 
circles can be seen anywhere, from images showing tri-
angles (or more complicated shapes) connecting to a 
circle in various ways to Leonardo DaVinci’s drawing 
of the Vitruvian Man. Although the circle relates heav-
ily to the measurements computed via trigonometry, it 
is the source of a different and altogether more elusive 
measurement of length—the length of curves.

Of course when one thinks of the measurement of 
length, one generally considers the length of straight 
line segments. But even thousands of years ago, it was 
obvious to some mathematicians that it made sense to 
ask about the length of a curve. It is easy enough to draw 
a circle, take a piece of string, mold it to nearly the same 
shape as the circle, cut it off at the right point, and then 
remove the string, lay it in a straight line, and measure 
it. This measurement gives, roughly, what is called the 
“arc length” of the circle. To attempt to compute this 
length using pure mathematics, mathematicians would 
undergo a tedious process where they would approxi-
mate the curve using dozens, or hundreds, of small 
line segments. Then they would measure each tiny line 
segment and add up the results to get, again, roughly, 
the arc length of the curve. It was through this process 
that mathematicians discovered the remarkable fact 
that—although circles could be made with very large 
or very small arc lengths—for any circle, its arc length 
(also called “circumference” when refering to a circle) 
divided by its diameter was always a fixed number. This 
fixed number is π, which is approximately equal to 3.14. 
This fact was known to the ancient Egyptians, who, like 
the Greeks, had a penchant for incorporating mathe-
matical references into culture, literature, and architec-

ture. In fact, the Great Pyramid at Giza was built with 
a perimeter of 1760 cubits and a height of 280 cubits. 
1760 ÷ 280 is almost exactly equal to 2π.

Calculus
In part because of the appeal of discoveries made 
about the arc length of circles and in part because of 
the practical application, there was more research done 
into calculating arc lengths of curves, and in general 
calculating other abstruse quantities, such as the area 
enclosed by a curve, or how wind would change the 
velocity of a balloon. The bulk of the theory necessary 
to make these computations was the mathematical field 
of calculus, coinvented by Isaac Newton and Gottfried 
Wilhelm Liebniz.  

The fundamental concept inherent in calculus is to 
break up an object into a very large number of very 
small pieces and to put those pieces back together 
again. The advantage calculus has over the cumber-
some approach used by earlier mathematicians (break-
ing up a curve into many individual line segments, 
measured individually) is twofold. First, instead of 
using large numbers of small pieces, they actually used 
infinitely many infinitely small pieces. This means that 
instead of getting only an approximation, the error was 
infinitely small, and so the methods of calculus would 
actually yield exactly the correct answer. The second 
advantage is that calculus incorporates many methods 
to simplify these calculations involving infinity. These 
techniques are so simple that many high school and 
college students routinely master the subject.  However, 
a lingering flaw in calculus after Newton and Leibniz’s 
development was the fact that the notion of “infinitely 
small” and “infinitely big” was vague and never pre-
cisely defined.  

Mathematician Augustin-Louis Cauchy, in the mid-
1800s, created the precise definition of these elusive 
concepts. An infinitely small quantity was defined to be 
a sequence of numbers that got arbitrarily close to zero; 
for example, 1, 1/2, 1/3, 1/4, 1/5, . . . . To make this even 
more precise, Cauchy pointed out that this sequence 
had a special property. To illustrate, pick as small a 
positive number as you can, for example, 1/1,000.000.
Draw a circle around the point 0 of that small radius. 
At some point along the sequence, all the terms past 
that point will lie inside that circle—in other words, 
all the terms past that point will have distance from 
the point 0 less than the specified number. Even if you 
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chose a new number, much smaller than the first one 
you picked, that would still be true—you would simply 
have to traverse farther along the sequence before you 
would find that special point. This property is called 
convergence—and clearly relies heavily on the notion 
of distance for its definition.

In the late 1800s and early 1900s, there was a large 
amount of work done in improving the techniques and 
perfecting the details of calculus. The mathematical 
operation that allowed one to find the area enclosed 
by a curve was called an “integral.” One of the more 
important improvements to calculus, created by Henri 
Lebesgue in 1901, was the Lebesgue integral, a concept 
that extended and strengthened the original idea and 
allowed the development of more robust mathematical 
machinery. An interesting feature of this new integral 
was that it was so general it could be applied to curves 
that in some sense couldn’t even be graphed. Soon after 
the development of the Lebesgue integral, a mathema-
tician named Maurice Frechet, impressed by the gener-
ality of Lebesgue, invented metric spaces.  

A metric space is a very general idea. It is the concept 
that one begins with a group of objects about which 
absolutely nothing is known, except that the distances 
between them are measurable. This idea turned out to 
be enormously powerful because it was able to capture 
the precise definitions made by Cauchy while at the same 
time being so general that they could apply to almost 
any mathematical system that people wished to study. 
The genius of the idea was in the realization that in so 
much of the complicated mathematics that was now 
being done, the one idea always relied on was that of 
measuring distance. Cauchy defined an infinitely small 
quantity to be a collection of numbers that becomes 
arbitrarily small. But this definition can be general-
ized to a collection of these objects, where the distance 
between them becomes arbitrarily small. Metric spaces 
quickly permeated all areas of mathematics, and metric 
space theory remains one of the foundational compo-
nents of the mathematical area of analysis, the branch 
of mathematics used most heavily by scientists. 
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Measurements,	Volume
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry; Measurement.
Summary: Volume has been measured in numerous 
ways throughout history, with calculus playing an 
integral role.

Volume is the amount of space that is occupied by an 
object. In other words, volume is a three-dimensional 
analogue of the area. Volume is important in con-
struction, engineering, and physics. Early on, weight 
was easier to measure than volume, especially because 
crops and other real-life objects often had irregular 
shapes. One early volume calculation can be found 
in an ancient Egyptian mathematical work called the 
“Moscow Papyrus,” named for the country where it 
resided in the twentieth century. It dates back to almost 
2000 b.c.e., and its author is unknown. 

One problem provides a method for calculating 
the volume of a truncated pyramid. However, math-
ematicians developed a variety of methods to calculate 
volume, including via the displacement of water, the 
method of exhaustion, and connections to determi-
nant and integration methods. In twenty-first-century 
mathematics classrooms, students investigate volume 
relationships and formulas. Students calculate the vol-
ume of geometric objects like cylinders, cones, and 
spheres. The volume of a cylinder (πr 2h), is obtained 
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by multiplying the area of the base, πr2 where r is the 
radius of the given circle, by the height (h). The volume 
of a cone is one-third that amount, and the volume of 
a sphere is 

4

3
3πrπr3.

However, these formulas took a long time to develop 
and could only be approximated before the develop-
ment of calculus and a fuller understanding of π. Stu-
dents also compare quantities of water or sand-filled 
relational geosolids and examine volume integrations 
and the volume interpretation of determinants.

Early Methods
The method of exhaustion has long been used to esti-
mate volumes. Democritus of Abdera is noted as the 
first to state that the volume of a cone is one-third that 
of a cylinder of the same height and radius and that the 
volume of a pyramid is one-third of the corresponding 
prism. Eudoxus of Cnidus developed the method of 
exhaustion that uses what would now be referred to as 
“limits” of sums of well-known areas or volumes. He 
justified Democritus’ relationships and explored other 
areas and volumes. Some of Eudoxus’s work appears 
in Euclid of Alexandria’s Elements. In ancient China, 
volume calculations were published in the Nine Chap-
ters on the Mathematical Art. In his commentary of 
263 c.e., Liu Hui calculated the volume of figures like a 
tetrahedron and the frustum of a cone. The volume of 
the sphere was challenging and he noted: “Let us leave 
the problem to whoever can tell the truth.” Archi-
medes of Syracuse researched the volume of various 
figures, including surfaces of revolution. He showed 
that the volume of a cylinder equals the sum of the 
volume of a cone of the same height and the volume 
of a sphere of the same height. Here, the height can be 
expressed as twice the radius. Archimedes is reported 
to have considered this as one of his greatest achieve-
ments because a related inscription appeared on his 
tombstone. In twenty-first-century classrooms, stu-
dents understand Archimedes’ statement by pouring 
sand or water from a cone and a sphere into a cylin-
der to fill it up. They also investigate the related for-
mulas. Archimedes also reportedly noticed that water 
displacement could be used to measure volume while 
famously expressing: “Eureka!”  

Using Calculus and Integration
Computing volume by integration allowed for the cal-
culation of the volume of irregular objects. In 1615, 
Johannes Kepler published Nova Stereometria Dolio-
rum Vinarorum (New Solid Geometry of a Wine Bar-
rel). He apparently became interested in the volume 
of casks on his wedding day. Methods of integration 
and volume calculations developed along with calcu-
lus before the related analysis was well understood. 
Cavalieri’s principle is named for seventeenth-century 
mathematician Bonaventura Cavalieri. Cavalieri com-
bined the method of exhaustion with Kepler’s work 
and computed volumes by comparing cross-sectional 
areas. This method predates the analysis that was 
needed to put it on a sound footing, and Cavalieri was 
criticized for his ideas. Some results seemed counter-
intuitive and provided additional fodder for critics. 
For example, the surface of revolution obtained from 
revolving the region under 1/x between 1 and infinity 
has finite volume. In the seventeenth century, mathe-
matician Thomas Hobbes is noted as having remarked 
about this result: “To understand this for sense it is not 
required that a man should be a geometrician or a logi-
cian, but that he should be mad.” 

Mathematicians eventually developed the analysis 
rigorously. The Riemann integral is named for nine-
teenth-century mathematician Bernhard Riemann. 
Measuring the area below a graph of the function is 
accomplished by dividing the region under the graph 
into extremely small rectangles and adding these rect-
angles up. Roughly, the volume of a region in space 
would be computed with a similar idea. The given space 
would be divided into small rectangular boxes. Each 
piece would have the volume dx dy dz× ×( ), and the 
volume of the whole space would be computed by a 
triple integral. However, this method supposes that one 
understands the functions that make up the surface. 
Many mathematical theories about approximation of 
the boundary surface have been developed for a long 
time, and they have played an important role since they 
are indeed extremely useful in actual computation. 

Other Methods
Another method of computing volume that is explored 
in linear algebra and physics classes is by the determi-
nant. In a 1773 paper on mechanics, Joseph Lagrange 
calculated the volume of a tetrahedron in terms of the 
locations of the coordinates. In modern terms one 
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would recognize the connection of the expression to a 
determinant calculation of a 3-by-3 matrix.

Integration formulas such as Green’s theorem and 
the divergence theorem, which are studied in a multi-
variable calculus course, connect volume to other cal-
culations. Mathematician and physicist George Green 
worked on vector calculus integral theorems, and 
Green’s theorem is named after him. Green’s theorem 
relates surface and volume integrals. Mathematician 
Carl Friedrich Gauss contributed to the geometry of 
surfaces as well as the divergence theorem. The diver-
gence theory relates the volume integral of the diver-
gence inside a surface to the flux of a vector field on 
the closed surface. A well-studied question related to 
volume measurements dates back to ancient Greece. 
Archimedes and Zenodorus examined the sphere as 
the surface that would enclose a given volume with the 
least amount of surface area. Mathematician Hermann 
Schwarz proved that the sphere maximized volume 
with minimal surface area in 1884. In the twentieth 
century, mathematicians solved the Double Bubble 
Problem, showing that a standard configuration is the 
most efficient way to enclose two regions.
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Measures	of	Center
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Probability; Geometry.

Summary: Mode, median, and various averages 
(including the arithmetic mean and weighted average) 
are all examples of deriving a central value.

Mathematician and anthropometry pioneer Adolphe 
Quetelet is sometimes called the “father of the average 
man.” His nineteenth-century work A Treatise on Man 
and the Development of His Faculties outlined theories 
regarding distributions of human traits. Whereas oth-
ers before him had applied the normal distribution to 
describe measurement errors, Quetelet asserted that 
human traits, both physical and intellectual, were nor-
mally distributed around some central value. In his 
later work, the “average man” was sometimes presented 
as an ideal human, a concept that mathematicians, such 
as Antoine Cournot, disputed. Nonetheless, notions of 
a central value representing a typical case within a set 
of observations became very influential in research and 
statistical data analysis. There are many ways to think 
about center or typical values. 

One of the most common measures is the arith-
metic mean, often simply known as “average,” which 
some trace back to Pythagorean writings on properties 
of music. Other types of averages include harmonic, 
geometric, trimmed, weighted, and moving or rolling 
means. Measures of center besides the mean include 
median and mode. Statistician Frank Zizek stated in his 
1913 book Statistical Averages: 

An average may be computed for its own sake, 
merely to obtain a comprehensive characteristic 
expression for a series of divergent values, but it is 
often found as a means to another end, mainly for 
purposes of comparison. . . .
 
Students in twenty-first-century classrooms may 

use measures of center in the primary grades, focusing 
on mode and median, while mean is introduced in the 
middle grades. Expected value, which is the long-term 
average for a random variable or process, is a probabil-
ity concept most commonly addressed in high school 
or college.

Mode
In the nineteenth century, psychologist and physicist 
Gustav Fechner studied the nonlinear relationships 
between subjective psychological sensations and the 
actual physical intensity of different stimuli, a field 

	 Measures	of	Center	 653



now known as “psychophysics.” Use of the mode as 
a measure of center occurs in Fechner’s work, which 
appears to be the first mention in print. He defined it 
as the value “around which the items . . . collect most 
densely, so that equal intervals contain more items the 
nearer the intervals lie to this value.” Later in the same 
century, Karl Pearson would use a probabilistic and 
graphical approach to the definition, stating that the 
mode was the “abscissa corresponding to the ordinate 
of maximum frequency.” Consistent with the probabi-
listic approaches used by both Fechner and Pearson, 
mode has come to be defined as the most frequently 
occurring value in a probability distribution or set of 
data. It is the only measure of center that is appropriate 
for both categorical and numerical variables because it 
does not require the data to be ordered in any way.

Median
Fechner’s work also contained reference to medians, 
which he called the “middlemost ordinate” or “cen-
tralwerth” of an ordered series of values or data points. 
Some credit Carl Friedrich Gauss for “inventing” the 
median earlier as part of his work on the normal dis-
tribution. The name “median” is attributed to Francis 
Galton in the late nineteenth century. Inspired by Que-
telet, Galton researched ways to measure and express 
center and variation in data, both numerically and 
graphically. He devised the “ogive graph,” named after 
a curve common in architecture and ballistics, which 
graphed data versus ranks. His method of “statistics 
by intercomparison” used quantiles and percentiles, 
including the median, to consider deviations. Galton’s 
median represented a typical value, which he termed 
“mediocrity,” often assigning it a standardized value 
of zero as a point of reference for comparisons. Sub-
sequently, many nonparametric (also called “distribu-
tion-free”) statistical methods based on medians were 
developed by mathematicians and statisticians. Some 
of these procedures are named for them, including 
Henry Mann, William Kruskal, W. Allen Wallis, Don-
ald Whitney, and Frank Wilcoxon.

Mean
Though the exact age of either mode or median is 
unknown, available evidence suggests that the mean 
may be older. In the Pythagorean treatise, On Music, 
from the school named for Pythagoras of Samos, there 
is some discussion of finding the middle value of two 

data points, such that the value exceeds the lower value 
by the same amount that the upper value exceeds the 
middle. While this basic description could be either the 
mean or the median for the case of two points, some 
historians consider this to be evidence of Pythago-
rean use of the mean. Statistician and historian Robin 
Plackett examined evidence from Babylonia, Egypt, 
and Greece and concluded that, while the mean may 
have been used in selected cases, it did not appear to be 
standard practice among astronomers and others who 
were typically collecting data. He credits sixteenth-
century astronomer Tycho Brahe with introducing the 
mean into scientific methods of the times. 

Mathematician Thomas Simpson showed in the 
eighteenth century that an average was a better mea-
sure than a single observation in a very limited set 
of cases and astronomers often used probability and 
means to quantify errors of deviations in observations. 
Other mathematicians, such as Joseph Lagrange, Abra-
ham de Moivre, Pierre-Simon Laplace, and Carl Fried-
rich Gauss, contributed to mathematical developments 
that addressed the mean of a probability distribution 
or data set in the eighteenth and nineteenth centu-
ries, while Quetelet, Galton, and others sought novel 
applications of measures of center. Statisticians in the 
twentieth century continued work on means, includ-
ing George Box and Gwilym Jenkins, whose research 
about moving averages is the basis for many time-
series forecasting models, and new research is ongo-
ing into the twenty-first century. The mean has many 
mathematical properties that make it more desirable 
for widespread use than the median, such as connec-
tions to the least squares criterion and the method of 
moments. Many statistical techniques are concerned 
with estimating and comparing means.

Rules and generalizations have been devised and 
taught over the years regarding which measure of cen-
ter is best to use for any given set of data, particularly 
with regard to choosing between the mean and median. 
Mathematically, the arithmetic mean minimizes the 
sum of squared distances of all points from the cen-
ter, while the median minimizes the sum of absolute 
distances. For data with perfect symmetry, these are 
equivalent. Data with skew or outliers may yield very 
different outcomes. Mode is also less clear as a mea-
sure of center if there are no repeated values or if there 
are two or more values that occur most frequently. In 
the twenty-first century, educators like sociologist and 
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statistician Paul von Hippel continue to investigate 
methods to teach concepts and relationships between 
mean, median, mode, and skew.
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Measuring	Time
Category: Space, Time, and Distance.
Fields of Study: Measurement; Number and 
Operations; Representations.
Summary: A variety of mathematical calculations  
are used to define, measure, and apply measurements 
of time.

Time measurement (chronometry) serves two tasks: 
(1) indication of temporal instants, which are events 
occurring in time and (2) determination of temporal 
extensions (durations), which are amounts of time 
between events. Both types of tasks are essential for 
practical purposes, such as organization of life in civi-
lized societies or intersubjective synchronization of 
various activities, as well as for the scientific study of 
nature and society. Time measurement relies upon the 
arithmetic model of time: events are mapped onto a 
numerical continuum so that if event A precedes event 
B, the relation t

A
 < t

B
 holds between their time indi-

ces; such a mapping is called a “timescale.” Given a 
timescale t, durations can be calculated as differences 
between time indices; and conversely, time indices can 
be defined by durations elapsed from a certain refer-
ence event (epoch).

Clocks and Timescales
Theoretical chronometry studies mathematical prop-
erties of timescales, while practical chronometry 
(called “horology”) is concerned with devices realizing 
timescales, such as clocks. Any physical system, natural 
or artificial, producing a series of distinct and observ-
able—thus countabl—events can serve as a clock. 
Periodic processes in our lifeworlds, such as the day/
night cycle, the lunar cycle, or seasonal changes, pro-
vide natural bases for timekeeping and measurement. 
Counting recurrent observable events yields a measure 
of durations longer than the clock’s basic period; mea-
surement of shorter times than the clock’s base period 
enforces a subdivision of the period into equal sub-
units—a refinement of the timescale. Therefore, time 
measurement spanning several orders of magnitude 
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requires alignment of timescales defined by different 
physical processes, periods of which are in constant 
arithmetic relations and thus define together a com-
mon timescale. For this purpose, timescales generated 
by artificial clocks are used.

Predecessors of clocks were devices used to indicate 
one standard time period, for example, outflow water 
clocks (clepsydrae) or sand glasses or burning candles. 
A clock in the proper sense of the word generates series 
of events at equal periods between them. In history, dif-
ferent physical principles have been used to ascertain 
isoperiodic clock action, including mechanical oscilla-
tions of a pendulum or a balance wheel, vibrations of 
quartz crystals or molecules in electromagnetic fields, 
and electromagnetic radiation emitted/absorbed by 
atoms, providing high-precision frequency standards. 
Base periods of clocks vary from a few seconds to frac-
tions of a second in mechanical clocks, down to an 
accuracy 10−10 seconds per day for atomic clocks, as 
established by national standards agencies.

The Second
The second (s) is the fundamental unit of temporal 
duration. Originally, the second was defined as a con-
stant fraction (1/86,400) of the solar day. Hence its 
name: 1 day is 24 hours, 1 hour is 60 minutes (pars 
minuta prima, which means “first minor part”), 1 min-
ute is 60 seconds (pars minuta secunda, which means 
“secondary minor part”). With increasing precision of 
time measurement, fluctuations of the Earth’s rotation 
period had become evident: thus the second was rede-
fined in the 1950s as a constant fraction (1/31,556,926) 
of the period of the Earth’s orbital motion around the 
sun (ephemeris time). In 1967, a new definition of the 
second was adopted; one second is defined as a constant 
multiple (9,192,631,770) of the period of electromag-
netic radiation emitted by cesium atoms in transition 
between two defined energetic states under precisely 
specified conditions. Thereby astronomic definitions 
were abandoned in favor of standards derived from the 
inner structure of matter, which is considered constant 
throughout the Universe.

Time Measurement Technologies
Advanced time measurement and synchronization 
technologies allow people to define a unique time-
scale to be used all over the world. Historically, the 
first universal timescale was Greenwich Mean Time 

(GMT), based on telescopic observations at the Royal 
Observatory in Greenwich, England, which was later 
replaced by the international Universal Time (UT). At 
present, the most precise basis for timekeeping is Inter-
national Atomic Time (TAI), based on a worldwide 
network of atomic clocks. Coordinated Universal Time 
(UTC) is the basis for international timekeeping. UTC 
differs from TAI by an integer number of seconds to 
approximate UT. Irregularities in Earth’s rotation are 
compensated by adding or subtracting a leap second 
to/from the UT-TAI offset, if necessary; the corrections 
take place on June 30 or December 31. In this way, uni-
formity of UTC with respect to the atomic time unit 
definition is maintained, and continuity with the astro-
nomical timescale is preserved.

Time Calculations
Irreversible natural processes, laws of which are well 
known, can be used to calculate time extensions, partic-
ularly those escaping direct observation and measure-
ment. Of special importance are estimations of geo-
logical or archaeological age based on radioactive decay 
of certain elements or particular isotopes of otherwise 
stable elements. Estimates of time extensions in astro-
physics are, to a large extent, theory based (for example, 
dependent on stars’ evolution models). This depen-
dency applies a fortiori to time magnitudes discussed 
in cosmology. Any time measurement implies observa-
tional (or at least conceptual) separation between the 
measured process and the reference process, defining 
the timescale. If the universe as a whole is considered, 
such separation is no more possible, so that the notion 
of the universal “cosmic” time meets logical difficulties.

Finally, there is no direct evidence that timescales 
defined by different classes of physical processes (iner-
tial motions, light radiation, or radioactive decay) are 
really equivalent: the “unity of time” in physics is a 
convenient hypothesis, not an empirically secured fact. 
Since precise time measurements are available only for 
a short historical period—negligibly short relative to 
cosmological orders of magnitude—the alignment of 
radiation-based and motion-based timescales is merely 
temporally “local.” Some cosmologists suggested that 
different classes of physical phenomena may define dif-
ferent timescales between which a nonlinear relation 
may hold. Consequently, two or more different time 
measures might be needed for adequate description of 
cosmic processes on a large scale.
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Measuring	Tools
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Measurement.
Summary: Mathematicians have developed a 
number of tools to make accurate measurements.

Body parts, including the thumb, hand, and foot, have 
long been used to measure distance. Some of the old-
est known mathematical measuring tools were notched 
bones, such as the Lochango and Ishango bones, which 
may have been designed for use in counting or mul-
tiplication. However, many concepts and objects in 
astronomy, navigation, surveying, optics, medicine, 
and other fields cannot be directly or accurately mea-
sured with body parts or tools like marked bones. Indi-
rect measurements require advances in engineering 
and instrumentation, sometimes using sophisticated 
mathematical transformations. 

Scientists, mathematicians, and inventors have cre-
ated many ingenious tools to accurately quantify con-
cepts such as distance, area, temperature, mass, and 
time. Measuring devices are used to collect data, create 

mathematical models, verify mathematical relation-
ships, and make predictions. They also have wide-
spread applications in everyday life, including house-
hold thermometers, rulers, and watches. Teachers bring 
measuring devices into the classroom in order to help 
their students learn mathematics. Some, such as rulers 
and compasses, form the basis for an object of math-
ematical study. Others, such as yardsticks, are used 
to discover or verify relationships. In the twenty-first 
century, measuring devices continue to be refined and 
improved for greater precision and accuracy, as well as 
to develop theories and to solve new problems.

Direct Comparison Tools
In many cases, it is possible to physically measure an 
object or event directly by making comparisons. For 
example, rulers and tape measures directly compare 
lengths of objects to standard units of length. Protrac-
tors directly measure angles, balance scales are used for 
weights, and measuring cups and graduated cylinders 
and pipettes are used for volumes. Hourglasses and 
water clocks compare known units of time, measured 
out by the device, to the time people try to measure. 
Many such measuring tools that use direct compari-
sons of units were developed relatively early in the his-
tory of humanity, with different versions built by many 
different cultures.

Indirect Measurement
Other measurements are indirect. While people can 
directly experience temperature and pressure and are 
sensitive to relatively small variations in them, the 
physical properties and the measurements of tem-
perature and pressure are less directly observable and 
comparable than length or weight. Because of this fact, 
units of temperature and pressure, as well as tools for 
measuring them, were developed several thousand 
years later than units of length and weight.

Planimeters are tools for measuring area and provide 
an interesting example of relatively sophisticated use 
of mathematics in measurement. They use a mechani-
cal arm that traces the perimeter of an object, while its 
other end moves along a straight axis. The principle 
of the device, designed through calculus, is that the 
distance the end of the arm traces on the axis is pro-
portional to the area of the object. Units of area were 
used in ancient times, but area was always separated 
into rectangles or right triangles for direct comparison 
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with units. Planimeters do not depend on such direct 
comparison.

Calculating Measures
While there are tools for direct comparison of lengths 
of certain magnitudes, it is impossible to use these tools 
for very large lengths, such as the distance to the moon, 
or very small lengths, such as wavelengths of different 
colors. For these cases, various computational tools are 
more appropriate. For example, large distances can be 
measured by sending radio, light, or other wave pulses 
to distant objects and measuring the return time. The 
distance is equal to the product of velocity and time. An 
interferometer is a tool for observing changes in wave 
frequencies when there is wave interference. Known fre-
quencies can be used to compute wavelength, inversely 
proportional to them.

Antiquated Measuring Tools
Some measuring inventions are no longer in use 
because of advances in mathematics and technology 
that also leads to changes in educational emphases. For 
instance, the astrolabe is an ancient measuring device 
that was once very popular. In the tenth century, Abd al-
Rahmân al-Sufî detailed the flexibility of the astrolabe 
with reportedly 1000 applications. In the twenty-first 
century, it has mostly been relegated to collections and 
astronomy history and education. The sextant, which 
replaced the astrolabe for navigation in the eighteenth 
century, has mostly been replaced by global position-
ing system (GPS) devices. 

Measuring in the Classroom
In the twenty-first century, students in mathematics 
classrooms use a variety of tools and systems of mea-
surements. Ruler and compass constructions were a 
focus of ancient investigations and students in math-
ematics classroom continue to explore them using 
physical instruments and dynamic software programs. 
In the late eighteenth century, Dr. Buxton obtained a 
patent for printed graph paper. In the early nineteenth 
century, mathematicians such as E. H. Moore advo-
cated that graph paper be used to help students in 
algebra and it took on an increasingly important role 
in schools. Cartographers were using protractors to 
measure angles in the late sixteenth century. Mathema-
tician Alexis Clairaut described protractors in his 1741 
book Elements de géometrie, and protractors appeared 

in some geometry and trigonometry textbooks in the 
nineteenth century. However, they were not common 
in mathematics classrooms in the United States until 
the early twentieth century. Representations and mea-
surements of geometric solids have been the focus in 
mathematics since antiquity. Teachers and mathemat-
ics departments in the nineteenth and twentieth cen-
tury showcased models made of a variety of different 
materials, including wood and string. These physical 
models became rarer because of the software that can 
perform measurement calculations and present inter-
active three-dimensional models. However, young chil-
dren continue to fill plastic geometry shapes with water 
or sand to measure volume. 

Measurement systems are also explored in math-
ematics classrooms. Those that have high-enough 
accuracy and precision for the given purpose are 
called “valid.” Precision and accuracy are established 
using statistical calculations such as mean and stan-
dard deviation and statistical laws such as the central 
limit theorem. Accuracy and precision are expressed 
using significant figures of numbers, with the error 
margin being half of the last significant place value. 
For example, the weight of 3 0 104. × g means the last 
significant place value is thousands and the error  
margin is 1000 g ÷ 2= 500 g. On the other hand, 
3 00 104. × g means the last significant place value is 
hundreds and the error margin is 100 g ÷ 2 = 50 g, 
which is more precise.

Further Reading
Kidwell, Peggy, Amy Ackerberg-Hastings, and David 

Roberts. Tools of American Mathematics Teaching, 
1800–2000. Baltimore, MD: Johns Hopkins University 
Press, 2008.

Stephenson, Bruce, Marvin Bolt, and Anna Friedman. 
The Universe Unveiled: Instruments and Images 
Through History. Cambridge, England: Cambridge 
University Press, 2000.

Turner, Gerard. Scientific Instruments, 1500–1900: An 
Introduction. London: Philip Wilson Publishers, 1998.
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Medical	Imaging
Category: Medicine and Health.
Fields of Study: Algebra; Geometry; 
Representations.
Summary: Mathematical models interpret 
measurements, and algorithms construct images used 
in the health industry.

Until the late nineteenth century, the structures of the 
human body were represented only by illustrations 
found in medical books. However, in 1885, Wilhelm 
Conrad Röntgen introduced the humanity into a new 
path in the world of images: the access to visual infor-
mation from inside the human body. He used X-rays, 
which pass through objects with different densities 
producing images on photographic plates. Since the 
insertion of radiographic diagnosis, new technolo-
gies have brought great progress for medical diagnosis, 

such as ultrasound, computed tomography, and mag-
netic resonance imaging (MRI). Furthermore, medical 
images are currently used for navigation systems that 
guide surgeons during surgical interventions or aid in 
surgical planning, for example, in minimally invasive 
operations. Mathematical models interpret measure-
ments and algorithms reconstruct images. Signal pro-
cessing and noise analyses, as well as geometric, statis-
tical, and algebraic techniques, are fundamental in this 
area. Mathematicians have also been the subjects of 
medical imaging studies. For example, one study found 
that mathematicians had an increased gray matter den-
sity in the cortical regions.

X-Rays
When a physician performs a radiograph on an arm, 
the image is obtained in different shades of gray, aiding 
the identification of different anatomical structures. 
This identification is possible only because the arm is a 
structure formed by tissues of different densities, such 
as muscles, bones, and cartilage. The possibility of dif-
ferentiation of these tissues occurs because of attenua-
tions caused by a partial or total absorption of the rays 
before the formation of the image. Since X-rays are a 
type of ionizing radiation, they can cause damage to 
the human body, such as cancer, if used in excess. Mod-
ern equipment has been developed to minimize this 
risk. On the other hand, it is necessary to manipulate 
parameters that affect image quality and at the same 
time to control the amount and the dose distribution 
of this material on the patient.

Other Medical Imaging Devices
While X-rays detail the morphology of bone structures, 
bone densitometry provides the mineral content of the 
bone. This technique is used to control and to prevent 
osteoporotic fractures. With the advent of computer-
ized tomography and magnetic resonance imaging, 
the human body is being studied in a segmented way. 
These advanced imaging techniques are especially use-
ful in the study of central nervous system disturbances. 
Ultrasound is a diagnostic tool that, like magnetic 
resonance, does not use ionizing radiation. It is used 
to investigate soft tissues and is based on reflection of 
high-frequency sound waves to form two- and three-
dimensional images, for example, in monitoring fetal 
development. Some diagnostic imaging techniques 
require the use of tracer substances. Scintigraphy, for 
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instance, is a technique used for the evaluation of the 
cardiovascular system. This procedure uses the injec-
tion of radioactive substances to provide a two-dimen-
sional image through the use of radioisotopes. 

Resolution and Software
The spatial resolution of a digital image refers to the 
amount of points per unit of measure that allows the 
perception of details of a structure. Each point or con-
stituent element of the array image is called a “pixel” 
(an abbreviation of “picture element”). The pixel is the 
smallest unit that can conduct operations. Colored or 
gray levels inform the size and location of the structure 
analyzed. Image processing is used to reduce interfer-
ence and to increase the contrast to aid the analysis of 
the structures. It is possible to use mathematical tech-
niques to manipulate the pattern of gray pixels. The 
interaction with neighboring pixels highlights struc-
tures of interest.

The mathematical definition of the images provides 
important clinical information, such as the size of 
lesions or fetal structure length, as well as morphology 
of structures, gland volume, blood supply area, and 
the monitoring of prostheses. Without these appro-
priate tools to analyze medical data, the images could 
be devoid of concrete meaning and require the use of 
complex computing resources to process the data. To 
achieve a medical image in real time, complex math-
ematical algorithms are needed. Diverse software has 
been appearing to meet the growing demands in the 
medical field, as well as needs concerning the storage 
and handling of patient data. Innovations continue to 
meet the growing challenges in this dynamic field.

Further Reading
Epstein, Charles. Introduction to the Mathematics of 

Medical Imaging. 2nd ed. Philadelphia: Society for 
Industrial Mathematics (SIAM), 2007.

Gonzalez, R. C., and R. E. Woods. Digital Image 
Processing. 3rd ed. Upper Saddle River, NJ: Pearson 
Education, 2008.

Natterer, Frank. The Mathematics of Computerized 
Tomography. Philadelphia: SIAM, 2001.
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Medical	Simulations
Category: Medicine and Health.
Fields of Study: Algebra; Geometry; Representations.
Summary: Virtual simulations of medical procedures 
are used in medical training and are possible because 
of advanced numerical simulation techniques and 
software.

Initially, virtual simulations were used only by the avia-
tion and military industries. In the first decade of the 
twenty-first century, they have become important tools 
for teaching and research in almost all fields of medi-
cine. It is now possible to model a physical system and 
to express it in the language of mathematics, enabling 
realistic simulations of several clinical and surgical 
procedures as well as the testing of medical implants. 
Thanks to the advances of computer science, many 
simulations once deemed impossible have become rou-
tine. This progress is because of the continued advance 
of numerical simulation techniques and software pack-
ages that allow the creation of numerical models with 
sufficient detail and complexity. During the twenty-
first century, the use of computerized simulators is 
expected to develop considerably and to spread quickly 
into the very important domain of medical schools 
throughout the world. A computer simulation is noth-
ing more than a computer program that runs a math-
ematical model of a physical situation. To do this, first 
a geometrical model is created and then a mathematic 
algorithm describes the behavior of the model under 
influences of external agents. A simulation is effective 
only if the physical situation is accurately modeled, 
providing a convincing user experience. 

Benefits
Virtual medical simulation is an important tool for 
medical training in cases of high-risk, unusual, or dif-
ficult surgical procedures and for predicting the inter-
action of medical devices (such as implants or pros-
theses) with biological tissues. The main advantage 
to using these simulations is to provide a safe envi-
ronment for both patients and students during train-
ing in risky procedures, as well as the opportunity to 
repeat several medical performances with lower costs. 
Furthermore, the number of animals used in medical 
experimentation can be reduced through the use of 
virtual simulations.
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Applications
Medical simulators based on the finite element method 
are used in almost all fields of medicine. The creation 
of an accurate mathematical model of a given anatom-
ical structure includes a three-dimensional reconstruc-
tion from medical images, a description of the mate-
rial properties of the biological tissues that form this 
structure, and a description of the limits and interfaces 
between the adjacent structures, besides the external 
loading that actuates in the physical system. 

The finite element method is a numerical procedure 
that reduces an anatomical structure, such as a kidney, 
to a mesh of nodes. During a simulation, a set of dis-
cretized partial differential equations defines the move-
ments of the nodal points as a result of external force, 
for example, because of the contact of a medical instru-
ment. Therefore, the deformation of this structure is a 
function of the acting forces applied at discrete points 
of the mesh as well as the elastic properties and geom-
etry of the structure. Many arithmetic operations that 
require fast computer processing are necessary to find 
the solution for the system of equations to provide the 
detailed behavior of structures under particular condi-
tions. Furthermore, the modeling process requires an 
interdisciplinary team of people from a wide range of 
disciplines, including computer science, electronics, 
mechanical engineering, clinical specialties, medical 
training, mathematics, and physics. 

For example, there is a standard surgical procedure 
for the treatment of chronic sinusitis, an inflammation 
of the airspaces within facial bones. A robotic arm can be 
used to hold and to guide the endoscope. This method 
can help the surgeon in the procedure and decrease the 
time to perform the surgery. A proper mathematical 
modeling of the inner nose structures followed by a 
realistic simulation of this surgical procedure can pre-
dict the risk of using the robotic arm in this surgery. 
It can be used to define the range of movement and 
forces used by the robotic arm close to the vital struc-
tures, such as the optic nerve, the carotid arteries, and 
the brain. Moreover, it can be a virtual environment 
for surgical training ensuring a safe robotic endoscopic 
guidance for the patient. 

Accuracy and Validation
Without an accurate model, it is not possible to obtain 
an accurate simulation. Therefore, a very important 
aspect of a medical simulation is validation to be sure 

that the model is correct and that the simulation cor-
responds to the reality. To validate a medical model 
and the respective simulation, some experiments are 
performed and the results of these experiments are 
compared with the results of the simulations. A differ-
ence in this comparison can indicate that the numeri-
cal code is not accurate enough or that the theoretical 
predictions do not agree with the experiments, which 
means that the mathematical model is not satisfactory. 

Significant research has been conducted to model 
the deformation behavior of biological tissues. Accu-
rate simulation, in the sense that one can confidently 
control the numerical error compared to real subjects, 
is very difficult to obtain because of the difficulties in 
building mathematical models of real biological tis-
sues. The development of appropriate mathematical 
models is dependent on the knowledge of the tissues’ 
elastic properties. In some cases, because of the limita-
tions of measurement technology, some models have 
not been rigorously validated.

Further Reading
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See Also: Medical Imaging; Surgery; Transplantation.

Microwave	Ovens
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: An accidental discovery led to the use of 
microwave ovens for cooking, a process that continues 
to be studied.
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In 1873, James Clerk Maxwell, using only mathemati-
cal considerations, formulated the electromagnetic 
theory. Maxwell’s equations are fundamental to physics 
and engineering and describe light as a form of electric 
and magnetic energy. Fifteen years later, experiments 
carried out by Heinrich Hertz validated Maxwell’s 
theory of electromagnetic waves. This development is 
a good example of mathematics as a creative medium 
for the development of science and technology. One of 
the technological products of Maxwell’s theory can be 
found in most homes in developed countries. Domes-
tic microwave ovens have become increasingly popular 
since the 1960s, as the device offers a quick method for 
heating food compared to conventional heating meth-
ods. The discovery of electromagnetic waves by Max-
well shows how pure abstract mathematics can gen-
erate new technologies. Applied mathematicians also 
learn new mathematics from problems motivated by 
this type of application.

Electromagnetic Waves
Electromagnetic waves are a form of radiation repre-
sented by their frequency and wavelength. Frequency is 
the number of cycles that occur in a second and is mea-
sured in Hertz (Hz). Wavelength is the measure of the 
distance over which the wave’s shape repeats (λ). The 
electromagnetic spectrum consists of all possible fre-
quencies and wavelengths of electromagnetic radiation, 
for example, radio waves, microwaves, infrared, visible, 
ultraviolet, X-rays, and gamma rays. Microwaves are 
electromagnetic waves with high frequencies (between 
300 MHz and 300 GHz and short wavelengths (from as 
long as one meter to as short as one millimeter). Besides 
microwave ovens, practical applications of microwave 
technology can be found in cellular telephones, radar, 
satellites, and medical systems.

Discovery
The discovery that microwaves could be used for heating 
food is one of the accidental cases in the history of sci-
ence. It occurred in 1945 when Percy Spencer, an Amer-
ican self-taught engineer, was working with microwaves 
in a radar system and a peanut chocolate bar that was in 
his pocket started to melt. In the same year, after some 
experiments with popcorn and eggs, Spencer created 
the microwave oven. It consisted of a metal box with a 
high-density electromagnetic field to heat food quickly 
and efficiently. Twenty years later, microwave ovens 

were adapted for domestic use as the typical consumer 
microwave ovens that are known today.

How it Works
The physical and operating principles of microwave 
ovens are quite simple. Most foods are composed of 
polarized molecules that are bound together in dif-
ferent ways. When microwave radiation is exposed to 
food, the molecules within the food are forced to align 
themselves with a rapidly changing alternating electri-
cal field. Charged molecules oscillate and gain thermal 
energy via friction. Therefore, microwave radiation can 
heat food when the radiation is absorbed. This process 
is dependent on the time of radiation exposition, type 
of food, and the way the radiation is distributed (scat-
tered, reflected, or transmitted). 

In the early twenty-first century, mathematicians 
are working in universities and industries where 
interesting problems can be solved using a mathemat-
ical approach. Industrial mathematicians at the Uni-
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versity of Bath have been working on the microwave 
cooking process. 

A problem with this process is that it can result in 
localized points inside a food where the radiant elec-
tromagnetic field is relatively weak—the temperature in 
this point may be lower—and the food will be poorly 
cooked. Theoretically, it is possible using a combination 
of both analytical and numerical calculation to create a 
three-dimensional field simulation of this process. 

Through a mathematical simulation, an averaged 
electromagnetic field can be calculated, and it will be 
possible to determine how it penetrated a moist food-
stuff. This example from applied mathematics shows 
us how mathematics can be used to help us create and 
enjoy the benefits of technology.

Further Reading 
Budd, Chris. “Confessions of an Industrial 

Mathematician.” http://www.math.leidenuniv 
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Middle	Ages
Category: Government, Politics, and History.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Medieval mathematics developments 
included Scholasticism and the emergence of secular 
universities.

The European Middle Ages, or the “medieval period,” 
lasted from the fall of Rome to the Renaissance and 
was identified by Renaissance thinkers as separating 
their own period from that of classical civilization. 

The Middle Ages were construed as a time of back-
wardness, but in fact progressed in spite of economic, 
medical, and political difficulties. Mathematicians 
made original contributions to such areas as algebra 
and astronomy and commentaries on historic texts 
preserved Greek works. Mathematics historians have 
studied Arabic, Persian, Turkish, Indian, Islamic, and 
European contributions during the Middle Ages. For 
example, Adolf Yushkevich wrote a seminal work on 
the history of mathematics in the Middle Ages. He 
highlighted similar features of medieval mathematics 
based on the cultures in Europe and Asia and, along 
with Boris Rozenfeld, studied Arabic contributions.

Early Middle Ages
The transfer of western Europe from the Roman 
Empire to the Goths occurred gradually through the 
fourth and fifth centuries, partly by conquest and partly 
by migration and assimilation. The old travel and trade 
network decayed and scholarship retreated mostly into 
monasteries. The philosopher Boethius straddled the 
Roman and Goth eras. He valued mathematics highly, 
endeavoring to translate several important math-
ematical works from Greek to Latin and dividing the 
seven liberal arts into two tiers: a lower tier, the triv-
ium—containing logic, grammar and rhetoric—and 
an upper tier, the quadrivium—containing the four 
mathematical arts of arithmetic, geometry, astronomy, 
and music theory. Boethius is remembered primarily 
for his work Consolation of Philosophy, written while he 
was imprisoned before execution. Christianity became 
a primary supporter of higher learning, music, and art 
in Europe, and also a strong participant in government 
owing to the high levels of literacy among Church offi-
cials. Monasticism also gained momentum during the 
early middle ages, inspired by the isolated communities 
in Syria and Egypt. Owing to the importance of study 
in religious life, many monasteries functioned also as 
schools and libraries.

Carolingian Renascence
Around the ninth century, Charlemagne and his suc-
cessor, Louis the Pious, enacted various reforms to 
effect uniform standards in a renascence of the Roman 
Empire. Charlemagne had schools created to restore 
education across Europe, reunifying the dialectized 
Latin and creating a script for it, the Carolingian minus-
cule. The standard curriculum saw Boethius’s trivium 
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and quadrivium become the foundations for the bach-
elor and master of arts degrees. A standard currency 
facilitated reformation of the economy and long-dis-
tance trade and taxation. The Roman influence is evi-
dent in monumental architecture, which incorporates 
elements from classical styles in clear, relatively simple 
arrangements. Circles, squares, cubes, and cones feature 
prominently, as does symmetry. Carolingian architec-
ture and painting became the basis for the more ornate 
Romanesque style and, ultimately, the Gothic.

Byzantium and the East
The Greek-speaking part of the Roman Empire, also 
called Byzantium, survived the Latin half ’s decline. In 
the sixth century, Byzantium extended around the east-
ern Mediterranean from Egypt to Greece, expanded 
across all of north Africa, and even took Carthage and 
Italy from the Goths. Then, severely weakened by epi-
demics thought to be the Black Death, the Byzantine 
Empire shrank to what is now Turkey and Greece, 
plus Carthage and some parts of Italy. Even after this 
decline, Byzantine culture stood as the standard for 
both western Europe and the Near East. Owing to 
increasing influence from Christianity, art and monu-
mental architecture tended to manifest in churches 
(such as Hagia Sophia), and philosophy intertwined 
with Christianity on many topics, including ethics, 
existence, governance, and death.

Hellenistic knowledge percolated gradually eastward 
from Byzantium, first in translation into Syriac and 
then into Arabic, which fueled a philosophical com-
munity in Damascus. By the seventh century, Neopla-
tonism, which had been Christianized in late antiquity, 
had been accommodated into the Islamic framework. 
This set the backdrop against which Aristotelianism, 
and all of its disagreements with Platonism, had to be 
accommodated next.

In the eighth century, Baghdad became the cul-
tural focus of the East. The scholarly community there 
attracted scholars of diverse races and religions. The 
Islamic Golden Age continued into the eleventh cen-
tury, with many advances of significance to western 
Europe, including those by al-Khwarizmi in algebra, 
by Ibn al-Haytham (Alhazen) in optics and scientific 
method, by al-Battani (Albategnius) in astronomy, by 
Jabir ibn Hayyan (Geber) in alchemy, and by Ibn Sina 
(Avicenna) in medicine. A rich tradition of poetry and 
calligraphy also emerged.  

Al-Andalus
In the eighth century, the Moors of north Africa took 
most of the Iberian Peninsula that ultimately became 
the Umayyad caliphate based at Córdoba after the 
Abbasids came to power in Baghdad. While the Abba-
sid caliphate suffered from political fragmentation, the 
Umayyad territories in the Iberian Peninsula thrived. 

Astronomy and botany were especially active in al-
Andalus, both for intellectual interest and for applica-
tions in timekeeping, astrology, and medicine. While 
the societal framework was predominantly Islamic, 
numerous Jews and Christians participated in high 
culture during extended periods of cosmopolitan-
ism. Al Zarqali (Arzarchel) discovered the ellipticity of 
planetary orbits in the eleventh century, and ibn Baija 
(Avempace) deduced that the Milky Way was not a 
continuous cloud but numerous stars. Studies of Aris-
totle by ibn Rushd (Averroës) shaped philosophy and 
religion for centuries later.

High Middle Ages
From the eleventh to the thirteenth centuries, western 
Europe was peaceful enough to entertain a high degree 
of cultural development. Windmill- and waterwheel-
powered industries developed, economies flourished, 
and urban populations grew quickly, spreading into 
formerly Moorish Iberia, into southern Italy, and even 
into the Baltic and the Near East. The Arabic heritage 
was absorbed and then reacted against in a philosophi-
cal movement called “Scholasticism.”

Scholasticism emerged from the works of Aristo-
tle. They were translated from Arabic into Latin and 
provided a basis for a worldview based on empiri-
cism and logic. Although the philosophy was secular, 
it was pursued largely for its power to support Chris-
tian doctrine. The Arabic writers had already weighed 
Platonist versus Aristotelian views and largely harmo-
nized the philosophy with religious givens. Much of 
the result was hence incompatible with new move-
ments in Christianity, and the Scholastics sought to 
rebuild it by returning to the original sources. The 
scientific content was developed notably by Robert 
Grosseteste and Roger Bacon in England and Albertus 
Magnus, Thomas Aquinas, and Duns Scotus in France. 
These five also ranked highly in the Church, illustrat-
ing the continuing need that religion had for higher 
education and the support for intellectuals that the 
Church provided.
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Early in the Middle Ages, higher learning had been 
concentrated in monasteries and Church schools. With 
the new secular engagement, universities appeared, 
beginning with Bologna in 1088, then Paris in 1150, 
then Oxford in 1167, then others. Learning emerged 
from the monasteries into urban surroundings and 
engaged more with secular needs, such as commerce 
and industry. Gothic architecture replaced the hefty, 
solid Romanesque, with height and lightness built from 
thin stone ribs reaching up and out to become the ribs 
of vaulted ceilings. Acute arches and vaults replaced 
the Romanesque semicircle, and walls gave way to 
large glass windows. Gothic designs manifest Euclid-
ean geometry problems, including constructing regu-
lar polygons, dividing arbitrary angles into equal parts, 
dividing lines into equal parts, fitting circles through 
points, tangent to lines or tangent to other circles.

In the fourteenth century, frequent plagues and 
crop failures decimated the population, undermining 
social structure, industry, and economies. From the 
turmoil sprang new outlooks on all fronts. Among the 
more famous literary achievements, Dante wrote his 
Commedia and other tracts (including some scientific 
ones), Chaucer wrote his Canterbury Tales, Bocaccio 
wrote the Decameron. Such fresh thoughts ultimately 
gave rise to the Renaissance in fifteenth-century Italy.

A number of European mathematicians were impor-
tant in helping to introduce eastern mathematics into 
Europe. Many Greek works were unknown in Europe 
and were found only in Arabic. Adelard de Bada trans-
lated the Arabic texts of Arabic and Greek mathemati-
cians into Latin. Leonardo Pisano Fibonacci was edu-
cated in north Africa and traveled extensively. In Pisa he 
introduced the Hindu–Arabic place-valued decimal sys-
tem and the use of Arabic numerals into Europe, while 
also making fundamental contributions of his own.
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Military	Draft
Category: Government, Politics, and History.
Fields of Study: Data Analysis and Probability; 
Number and Operations; Problem Solving.
Summary: Military drafts must make use of 
probabilities to ensure the draft is equitable.

The U.S. military is made up of volunteers. However, 
if more people are needed than the number of people 
who volunteer, there needs to be a method for procur-
ing enlistment. The method used is called a “military 
draft.” It is the law that all male citizens ages 18–25 are 
to register with the Selective Service. If a need arises, 
the U.S. Congress would have to pass legislation insti-
tuting a draft. The U.S. president would have to sign 
the bill into law. 

When a draft occurs, there is a lottery of the regis-
tered men that is intended to be fair. Each registered 
man of the same age should be as likely as every other 
registered man to be selected. Once selections are 
made, some men are excused if they are not fit to serve. 
A military draft has not been used since 1973. 

The Current Lottery
The current lottery method that would be employed if 
there were to be a draft is to place a capsule with dates 
for every possible day of the year (month and day) into 
a barrel. For example, December 1, January 27, and 
March 13 would be three such capsules. A second barrel 
will contain the numbers 1 through 365. These barrels 
are well mixed. In fact, one way to mix the barrels is to 
not place the capsules into the barrels in order. Rather, 
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the capsules are placed into the barrels in a random 
manner. One capsule is drawn from each barrel, one 
at a time, and paired. For example, if November 4 is 
drawn from one barrel and 78 is drawn from the other 
barrel, then November 4 and 78 are paired. This con-
tinues until all 365 days have a number. The number 
becomes the day’s rank. This process forms 365 ranked 
groups. Each group consists of those registered men 
whose birthday is the corresponding date pulled from 
the barrel and who will turn 20 in the current year. 

For example, assume that each date is paired with 
the following number:

November 4 paired with 78,
December 28 paired with 1, and
January 12 paired with 25.

Then all men who turn 20 in the current year of 
the draft and have a birthday on November 4 will be 
the 78th group to be called to serve. Before they are 

drafted, groups 1–77 would be exhausted of possibili-
ties (that is, all fit to serve in the previous 77 groups 
would be called to serve first). All registered men who 
turn 20 in the current year and have a birthday on 
December 28 are in the first group. All men who turn 
20 in the current year and have a birthday on January 
12 are in the 25th group. Again, these groups are made 
up of men who will turn 20 in the year of the draft. 
Once all 365 groups are used, then the rankings are 
followed again, calling all men turning 21, then 22, 23, 
24, 25, 18, and 19. 

What it Means to be Random
A selection process of this nature is random only if any 
person is as likely as any other person to be selected 
to serve. Thus, each of the 365 birthdays must be as 
likely as each other birthday to be ranked first. Each of 
the remaining birthdays must be as likely as any to be 
ranked second. A man’s birthday should not allow one 
to predict the likelihood of his being drafted.
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Vietnam Draft
The 1969 lottery drawing for the Vietnam War was 
demonstrated not to be random. A barrel with 366 
plastic capsules was used, where each capsule had a 
birth date on it (month and day); one capsule was for 
those who were born on leap day. One at a time, the 
capsules were drawn by hand. The first to be drawn was 
ranked first. The second to be drawn ranked second. 
Thus, if September 21 was drawn first, then all men 
aged 18–26 with a birthday on September 21 would be 
the first group called to service.

The procedure that was followed to order the men 
with the shared birthday depended on each man’s ini-
tials. A separate lottery was held in which the 26 letters 
of the alphabet were ranked. This followed the same 
process as the birthdays, in that 26 letters were placed 
in a barrel and one by one were drawn. Using the result-
ing ranking, each man within a shared birthday was 
ranked according to the permutation of the first let-
ter of his last name, the first letter of his middle name, 
and the first letter of his first name. Overall, this should 
have been a fair method for selection, as it was based 
on randomized birthdays and letter permutations.

Why It Was Not Random
The above-mentioned method would be random if 
implemented properly. However, it turned out that 
men with birthdays later in the year (for example, 
December birthdays) were much more likely to be 
drafted than those with birthdays in the beginning of 
the year. What happened is quite simple. The capsules 
were placed in the barrel month-by-month beginning 
with January, and the barrel was not well mixed. The 
December capsules were on top and they had a higher 
probability of being pulled out first, resulting in lower 
draft numbers for those men.

Further Reading 
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Minorities
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections.
Summary:  Minorities are historically 
underrepresented in American mathematics and 
efforts have been made to rectify this.

Mathematics is a vital tool in modern life and mas-
tery of mathematical subjects is a requirement to enter 
many professions, including medicine, engineering, 
and the sciences. For this reason, observed trends in 
mathematical achievement in school and representa-
tion in mathematics-oriented professions, both domi-
nated by whites and Asians with other minorities lag-
ging behind, give cause for concern. At the end of the 
twentieth century and into the twenty-first century, the 
media publicized information about the performance 
and underrepresentation of minorities in mathemat-
ics, many authors published works about minority 
individuals in mathematics, and mathematicians and 
mathematics educators designed and implemented 
successful educational initiatives and programs. 

The United States is a racially and ethnically diverse 
country with a history of reporting extensive statistics 
about school and professional accomplishment by race 
and ethnicity. Few in the twenty-first century would 
argue that observed differences are because of inher-
ited differences in ability; instead, several other expla-
nations have been offered. 

One is that minority students have fewer opportuni-
ties to master mathematics because they may be more 
likely to attend low-achieving schools, which may have 
more inexperienced and uncertified teachers and fewer 
teachers with graduate degrees. A second explanation 
is the lack of role models, since many mathematics fac-
ulty and prize winners are white or Asian, so students 
of color (or their teachers) may incorrectly believe that 
mathematics ability is somehow linked to race or eth-
nicity. In addition, students may not feel comfortable 
taking advanced mathematics classes in which they are 
the only person of color. A third factor is that some 
minority students report being actively discouraged 
from pursuing careers in mathematics and science. 
Racial and ethnic categories used for collecting data 
are not consistent across all organizations and some 
have changed over time, somewhat complicating com-
parisons. The terms “minority” and “person of color” 
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are themselves controversial; for instance in the United 
States, persons of Asian descent would qualify on both 
scores and yet are not usually classified as such. A bet-
ter formulation in this case might be “members of eth-
nic groups with traditionally lower representation in 
mathematics,” but the terms “minority” and “person 
of color” will be retained, since those terms are com-
monly used and understood. 

Minority Mathematicians in History
In part because of research that suggested the impor-
tance of role models, the known benefits of humanizing 
mathematics, and a desire to provide counterexamples 
to noted racist comments, historians and mathemati-
cians have detailed the lives and work of many out-
standing mathematically talented minority individuals. 

Minority mathematicians in the nineteenth and 
twentieth centuries faced many barriers, including 

restricted educational, employment, and publishing 
opportunities; derogatory comments and intimida-
tion; and Jim Crow treatment that barred minorities 
from attending conferences. Despite these conditions, 
many minority mathematicians succeeded in making 
great contributions to the mathematics community. 
Elbert Cox was the first minority American to obtain 
a Ph.D. in mathematics. He attended a segregated pri-
mary school with what has been noted as inadequate 
educational resources. In high school he became a 
talented violinist, and he also enjoyed and excelled in 
mathematics and physics. He graduated from Indiana 
University with a degree in mathematics and his tran-
script listed “COLORED” across it. His 1925 Cornell 
University Ph.D. thesis was “Polynomial Solutions of 
Difference Equations.” He was recognized as an out-
standing teacher and effective master’s thesis adviser 
during his career at Howard University, a historically 
black institution.  

Other early minority Ph.D.s in mathematics include 
dozens of mathematicians whose contributions to 
mathematics and mathematics education have been 
broad and varied. One name that often appears on 
lists of prominent minority mathematicians is that of 
David Blackwell, a noted statistician and game theo-
rist who earned his Ph.D. in 1941. He stated, “[Racial 
discrimination] never bothered me. I’ll put it that way. 
It surely shaped my expectations from the very begin-
ning. It never occurred to me to think about teach-
ing in a major university since it wasn’t in my horizon 
at all.” Joaquin Diaz is noted as the first Hispanic to 
obtain his Ph.D. in mathematics from an American 
institution. His 1945 thesis at Brown University was 
titled “On a Class of Partial Differential Equations of 
Even Order.” He worked at a number of different insti-
tutions, including as a research associate at the Insti-
tute for Fluid Dynamics and Applied Mathematics at 
the University of Maryland and as a professor at Rens-
selaer Polytechnic Institute. 

Until the twenty-first century, it was thought that 
Evelyn Boyd Granville, who received her Ph.D. in 
1949 from Yale University in functional analysis, and 
Marjorie Lee Browne, who received her Ph.D. in 1950 
from the University of Michigan in topological and 
matrix groups, were the first minority women Ph.D.s 
in mathematics. They both remained active in the 
mathematical community. Earlier in the 1940s Mar-
tha Euphemia Lofton Haynes obtained her Ph.D. from 
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Eighteenth-Century  
Minority Mathematicians

I n the eighteenth century, Benjamin Ban-
neker created astronomical almanacs, 

solved mathematical puzzles, and wrote to 
Thomas Jefferson to plead against slavery. 
Other eighteenth-century individuals include 
ex-slave Thomas Fuller, who was known for 
his calculating abilities, and Muhammad ibn 
Muhammad al-Fullani al-Kishnawi, a mathema-
tician, astronomer, 
astrologer, and mys-
tic who constructed 
magic squares. 

Mathematicians 
and historians have 
also written ethno-
mathematics works 
on African mathemat-
ics, Native American 
mathematics, and 
Incan and Mayan 
mathematics.



Catholic University of America by writing a thesis on 
the “Determination of Sets of Independent Conditions 
Characterizing Certain Special Cases of Symmetric 
Correspondences.” While she had a very distinguished 
teaching career in the Washington, D.C. public school 
system, her divergence from the research community 
may explain why mathematicians were not aware that 
she was the first woman minority Ph.D. in mathemat-
ics. In addition, histories and statistics on minority 
mathematicians were not common until later in the 
twentieth century, so it is difficult to identify some of 
the early mathematicians. 

In 1964, when Thomas Storer graduated from the 
University of Southern California with a thesis on “A 
Family of Generalized Difference Sets,” he may have 
been the first Native American to obtain a Ph.D. in 
mathematics, although some historians refer to the 
possibility of an earlier Ph.D. in mathematics educa-
tion. Storer’s research was primarily in combinatorics, 
although he was also known for his teaching, advis-
ing of honors students, and as a leading authority on 
string tricks and figures. Another notable minority 
mathematician who obtained his Ph.D. before 1970 is 
Hispanic mathematician Richard Tapia, who gradu-
ated from the University of California, Los Angeles, in 
1967. He has received many honors and awards and 
his research in computational mathematics and edu-
cational outreach programs are known nationwide. 
He explained: 

Some of my job duties include teaching mathemat-
ics and science to college students, writing books, 
doing research, and working with the community. 
When I made my career choice, I knew I wanted to 
reach out to underrepresented groups, especially 
Hispanics. I wanted to show minority students 
that if they really want to do something, they can. 
I believe I can improve minorities’ participation in 
science and mathematics. However, in order to do 
this, I have to serve as a role model by first being an 
excellent scientist.

Recent Developments
Despite the climbing cumulative numbers of minority 
mathematicians and improving conditions and oppor-
tunities for minority students, during the latter part of 
the twentieth century authors noted that the traditional 
stereotypes of mathematicians conflicted with the cul-

tural identities of minority groups. In 1997, math-
ematician Scott Williams created the Mathematicians 
of the African Diaspora Web site, “to suggest modern 
mathematicians and scientists as images of success to 
present to the African American community.” The site 
grew to thousands of Web pages filled with history, 
statistics, articles, and reference lists. The Society for 
Advancement of Chicanos and Native Americans in 
Science and the Mathematical Association of America 
program on Strengthening Underrepresented Minor-
ity Mathematics Achievement also host biography Web 
pages. In addition, there are a number of published 
articles and books on minorities in mathematics.

Many researchers have conducted studies explor-
ing factors relating to the continued underrepresenta-
tion of minorities in mathematics. For example, some 
researchers noted that differences in mathematics 
achievement may begin at the elementary school level. 
The Early Childhood Longitudinal Survey (ECLS), 
which followed a cohort of children from kindergar-
ten in fall 1998 to grade 5 in spring 2004, found that 
in kindergarten there were already noticeable gaps in 
achievement by race and ethnicity. At the high school 
level, the National Assessment of Educational Prog-
ress reported that 12th graders in all racial and ethnic 
groups showed similar improvement in mathematics 
achievement scores from 1990 to 2000, but that minor-
ity groups still had lower achievement. Scores on the 
Scholastic Aptitude Test (SAT), a nationally adminis-
tered exam often taken by college-bound students, over 
the period 1990–2008 show a similar pattern with most 
racial and ethnic groups showing improvement but 
Asian and white students consistently having the high-
est scores. Recently the numbers of African-American 
and Hispanic students taking Advanced Placement 
(AP) exams, specialized subject exams offered in some 
high schools and which may gain students college 
credit, has increased. 

According to the National Center for Education 
Statistics, mathematics teaching staff tended to be 
primarily white in U.S. public schools. Data from the 
National Center for Education Statistics also gives 
credence to the argument that some of the achieve-
ment gap may be because of minority students being 
more likely to have been taught by teachers with infe-
rior qualifications. In 2007–2008, 12% of high school 
mathematics teachers had neither a college major nor 
standard certification in mathematics, but in schools 
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with at least 50% African-American enrollment this 
was true of 25% of people teaching mathematics. 
Schools with a majority of African-American students 
were also likely to have less experienced teachers.

The millennial mathematics major consists of 
diverse students pursuing diverse careers and yet 
there are concerns about the percentages of minori-
ties, including Asians/Pacific Islanders, African 
Americans, Hispanics, and American Indians/Alas-
kan Natives. For instance, in the late twentieth cen-
tury and early twenty-first century, the percentage of 
undergraduate degrees in mathematics and statistics 
awarded to such minorities was approximately 20%, 
which was below the percentages of the resident col-
lege population. Historically, in the United States, 
Asian and white students have comprised the bulk of 
enrollment in graduate programs in mathematics and 
have received a disproportionate share of advanced 
mathematics degrees. 

Minorities are also underrepresented among scien-
tists and engineers in the United States. For instance 
African Americans, Hispanics, and American Indians 
as a group constituted about 24% of the U.S. popula-
tion in 1999 but only 7% of the science and engineer-
ing workforce, while Asians constituted about 4% of 
the population but 11% of the science and engineer-
ing workforce. Some evidence suggested that choice 
of career fields also differed by race. Salaries in science 
and engineering fields also differed by race.

Researchers continue to study factors related to 
the underrepresentation of minorities in mathemat-
ics. There have been many successful programs that 
increased the participation of minorities in math-
ematics, including the Meyerhoff Scholars Program, 
the Tensor-SUMMA Grants, and the Enhancing 
Diversity in Graduate Education Program. Organiza-
tions, and conferences, such as the National Associa-
tion of Mathematicians, the Society for the Advance-
ment of Chicanos and Native Americans in Science, 
the Conference for African American Researchers in 
the Mathematical Sciences, and the Mathematical 
Association of America through its Strengthening 
Underrepresented Minority Mathematics Achieve-
ment (SUMMA) program, have been dedicated to 
supporting and promoting minorities in the math-
ematical sciences. 

The International Study Group on Ethnomath-
ematics has focused on the cultural diversity in math-

ematics and its applications to mathematics educa-
tion. The Benjamin Banneker Association has been 
dedicated to the mathematics education of minority 
children. These professional associations have spon-
sored mathematics talks, sessions, and awards, pub-
lished newsletters, and provided opportunities for 
social interaction and support. 
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Missiles
Category: Government, Politics, and History.
Fields of Study: Algebra; Calculus.
Summary: Mathematicians have long worked on 
improving missile accuracy and performance.

Stone or arrow missiles have been used for thousands 
of years. Missiles with explosives can be traced back to 
China following the Song dynasty. Mathematical and 
technological advances have led to countless improve-
ments in missile design, trajectory, range, and accuracy 
and have continually revolutionized warfare. Aristo-
tle theorized on laws governing projectile motion, as 
did mathematicians like Leonhard Euler and Daniel 
Bernoulli, who derived or refined mathematical prin-
ciples of projectile motion using geometry, calculus, 
and differential equations. In the nineteenth century, 
mathematicians Alfred Freenhill and Percy MacMa-
hon worked on a missile trajectory model that related 
resistance to the cube of the velocity, suggested from 
experimental data. During World War I, mathematics 
took on an increasingly important role. John Little-
wood created techniques to reduce the work required 
for accurate missile trajectory calculations, and Gil-
bert Bliss used the calculus of variations to account 

for variables like wind and the rotation of the Earth. 
During the 1950s, mathematician John von Neumann 
headed the committee that led to the development 
of U.S. intercontinental ballistic missiles. During the 
space age, mathematicians made a breadth of con-
tributions, like Evelyn Boyd Granville, who worked 
on the development of missile fuses at the National 
Bureau of Standards.

Mathematician Peter Swerling, known for his the-
ory of radar, also researched optimal estimation of sat-
ellite and missile orbits and trajectories. Missiles of the 
twenty-first century can be defined as weapons that 
follow a trajectory for the purpose of delivering explo-
sive warheads to targets by means of lift and rocket 
propulsion. They may be launched from ground, 
submarines, and airplanes to nearly any target on the 
face of the Earth. Mathematicians working in govern-
ment, industry, and academia continue to contribute 
to the development of all types of missiles and missile 
defense systems.

Trajectory and Guidance
The basic flight path of a missile is a parabolic arc. 
Sixteenth-century mathematician Niccolo Tarta-
glia described cannonball flight paths. Seventeenth- 
century mathematician Evangelista Torricelli pub-

lished a geometric method for 
computing projectile range. Ben-
jamin Robins, an eighteenth- 
century mathematician, invented 
the ballistic pendulum. His exper-
iments, later expanded by Euler, 
demonstrated that air resistance 
could not be ignored in calculat-
ing trajectories. Scientist Heinrich 
Magnus showed that other forces 
could affect spinning spheres and 
cylinders; this effect is now known 
as the Magnus Effect. The impor-
tance of higher mathematics, like 
calculus, in computing trajecto-
ries contributed to the inclusion 
of these topics in many military 
school curricula in the nineteenth 
century. 

In the early twenty-first cen-
tury, mathematics continues to 
play a key role in missile accuracy. 
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Most modern guidance systems use mathematical 
methods to determine the trajectory needed, such as 
angular coordinates between the missile and the tar-
get or the distance between the target and the missile. 
Sometimes computations are done ahead of time and 
the missile follows a predetermined path. Other times, 
the missile can make adjustments to the flight path in 
order to correct the trajectory as needed and may fol-
low a path that is very different from the basic parab-
ola. Some systems utilize astronomy—the accuracy of 
a missile is determined by examining the relationship 
of the missile to a fixed start position. Others employ 
altitude maps and compute the missile’s distance from 
the ground to determine the path of the missile. These 
systems, however, are subject to error. Navigation sys-
tems that utilize a path calculated prior to launch may 
be influenced by instrument errors, while systems that 
utilize flight path data are more accurate but are sub-
ject to the effects of countermeasures such as radar 
decoys or infrared flares.

Advanced missiles are propelled by an internal 
combustion mechanism and guided by radiation, 
lasers, radio waves, or computers. Guidance often 
involves the use of mathematical techniques, like Kal-
man filtering, named after Rudolf Kalman, which 
allows a missile’s course to be manipulated. Many of 
these latest-generation weapons come complete with 
cameras that record visual and spatial location infor-
mation to aid human operators in their direction. 
Other missiles are guided by locations systems, such 
as INS, TERCOM, or GPS, which are programmed 
to recognize the weapon’s global positioning at its 
origin and use it to calculate the distance, trajectory, 
and course to the target. These modern flight systems 
use positioning, targeting, and guidance data, along 
with thrust and aerodynamics, to maneuver missiles 
while they are in flight, even allowing them to seek 
and destroy moving targets. 

Defensive Systems
With the development of more advanced missiles has 
come the need for more advanced defense systems. For 
example, satellites could measure the missile’s trajec-
tory and speed to determine a probable impact point 
and relay this information to an interceptor vehicle. 
The interceptor might initially utilize celestial guid-
ance to track the incoming missile, and then use preset 
guidance to collide with the incoming missile. The U.S. 

Missile Defense Agency employs many engineers, sci-
entists, and mathematicians to work collaboratively on 
defense solutions.

Further Reading
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Molecular	Structure
Category: Medicine and Health.
Fields of Study: Algebra; Geometry; Representations.
Summary: The geometry of molecules can be an 
important property, as in the shape of a protein 
molecule or the double-helix of DNA.

The physical structure of molecules is important in 
chemistry, biology, physics, and engineering. The pre-
cise structure can influence the chemical reactivity of a 
molecule as well as its response to other physical inter-
actions, such as how it can absorb energy in the form 
of photons (light particles or X-ray particles). These 
interactions can have important implications in biol-
ogy, medicine, health, and engineering. For instance, 
how proteins fold determines their function, and the 
shapes of certain protein molecules influence the exis-
tence of diseases. For example, shape is important in 
the normal function of the hemoglobin molecule, the 
molecule crucial for absorbing oxygen in red blood 
cells so that they can transport it throughout the body. 

Hemoglobin consists of four protein subunits, 
associated with four heme subunits (ring-like struc-
tures containing an iron atom). As one oxygen mol-
ecule (O

2
) binds to one of the heme units, the mol-
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ecule distorts so as to allow another oxygen molecule 
to more readily bind in a cooperative way to another 
heme unit. This in turn distorts the molecule so that 
another O

2
 finds it even more readily. Altogether, four 

O
2
 molecules can ordinarily bind to one hemoglobin 

molecule. In sickle-cell anemia, two mutations in two 
of the four protein units distort the hemoglobin mol-
ecule so that the misshapen units form long chains. 
These in turn cause the red blood cell to become mis-
shapen and lose its elasticity so that it can no longer 
readily move through small capillaries. Besides being 
painful, the misshapen red blood cells are destroyed by 
the spleen, resulting in anemia. 

Another example of how the shape of a protein can 
cause disease is that of prions, which are misshapen 
proteins that enter (or “infect”) cells and cause the 
cells’ proteins to become misshapen. Prions are prob-
ably best known as the cause of bovine spongiform 
encephalopathy (commonly called “mad cow disease”) 
in cattle. Finally, protein folding is also implicated in 
Alzheimer’s disease. Thus, there is natural interest in 
understanding how these molecules fold. Knowing 
precisely how any particular protein folds in a particu-
lar chemical environment generally requires intensive 
mathematical computations that implement various 
equations from the area of physics known as “quantum 
mechanics.” It is interesting that while supercomputers 
are usually used for this work, dozens of scientific arti-
cles have been written that instead relied on compu-
tations performed by harnessing millions of ordinary 
PCs, volunteered by millions of individuals—over 5 
million CPUs as of September 2010. 

DNA
Besides proteins, another important molecule studied 
extensively for its structure is DNA. While the double 
helix structure has been known for over 50 years, pre-
cisely how DNA is used in the cells of the body is still a 
source of research in the twenty-first century. In order to 
fit inside a cell nucleus, DNA must be very tightly coiled. 
How the appropriate sequence of DNA that a cell might 
need at a particular time can be rapidly located and then 
rapidly transcribed into messenger RNA for making a 
particular enzyme of interest is a complex process. Sim-
ply understanding how unknotting the knotted DNA 
takes place within the nucleus is nontrivial, and the 
mathematical discipline known as “topology” (and its 
subdiscipline, knot theory) has helped to elucidate how 

the cell handles the knotted DNA. One key equation 
to help understand the process of DNA supercoiling is 
Lk = Tw + Wr, where Lk is the linking number, Tw is the 
twist, and Wr is the writhe. This equation, attributed to 
G. Calugareanu, J. H. White, and F. B. Fuller, relates the 
linking number of the DNA (which essentially describes 
how the two backbones of the double-stranded DNA 
are linked) to the twist (the twisting of either backbone 
relative to the central axis of the DNA) and the writhe 
(which relates how the central axis of the DNA is ori-
ented in three-dimensional space).  

Other Structures
Besides proteins and DNA, molecular modeling is 
important in other areas. In the past, a scientist look-
ing for a chemical that would have a certain effect in 
a certain situation, given a compound that reacts in a 
slightly different way in a slightly different situation, 
would likely have changed one part of the molecule and 
tested the new product; changed another feature and 
tested that product; and so on. Combinatorial chemis-
try is devoted to trying to automate the synthesis—and 
efficacy studies—of a huge number of different per-
mutations of some basic chemical structure, somewhat 
in parallel. Interest in combinatorial chemistry is wide-
spread among pharmaceutical companies.

Determining the molecular structure of molecules 
often relies on the general area of spectroscopy, which 
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involves examining the spectrum that results when vis-
ible, ultraviolet, or infrared light or X-ray radiation, is 
applied to molecules. Mathematics that can categorize 
the different types of symmetry that molecules can 
assume can be used to help spectroscopy determine what 
shape the molecule must have. As one example, analysis 
of DNA in crystalline form by X-ray crystallography led 
to James D. Watson and Francis Crick’s determination of 
the double-helix structure of DNA in 1953. 

More recently, a form of pure carbon was found to 
be created from an electric arc between graphite elec-
trodes (or from high-temperature burning of gaseous 
hydrocarbons). The carbon compounds created are 
known as “fullerenes,” which are cage-like in appear-
ance. The first fullerene to be discovered and have the 
results scientifically published is now known as Buck-
ministerfullerene or C60. Discovered in 1985 by Rich-
ard Buckminster “Bucky” Fuller, it was determined 
to essentially look like a soccer ball in appearance (a 
truncated icosahedron). How the precise polyhedral 
cagelike structure was determined from spectroscopy 
relied heavily on mathematics, specifically the area of 
abstract algebra known as “group theory,” applied to 
quantum mechanics. Whereas fullerenes like C60 and 
C70 are cage-like, other pure forms of carbon obtained 
from graphite that do not fully close up include nano-
tubes. While fullerenes and nanotubes may have health 
applications, they are also of interest purely as nano-
technological objects. Indeed, some nanotubes are 
extremely strong and one day may make superstrong 
fibers; some, when other atoms such as potassium are 
added, are superconductors. For instance, the orien-
tation of carbon atoms in nanotubes affects electrical 
conductivity (whether the molecules are conducting 
or semiconducting).  

Another approach to determining molecular struc-
ture, particularly to surfaces, is to use instrumentation 
such as the scanning tunneling microscope. This tool 
relies heavily on physics (quantum mechanical tunnel-
ing) principles.  
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Money
Category: Business, Economics, and Marketing.
Fields of Study: Measurement; Number and 
Operations; Representations.
Summary: Money has always been one of the 
subjects of applied mathematics, from interest to 
currency exchange.

When the earliest people wanted to acquire goods 
they could not make, grow, or hunt themselves, they 
exchanged other goods for them. Later, civilizations 
began to use smaller and more portable objects to rep-
resent value: shells, beads, pieces of leather, or shapes 
made from metal such as iron, among other things. 
Precious metals and printed paper currency supplanted 
most of these forms of money, and in the twenty-first 
century, intangible “digital cash” is exchanged electron-
ically for goods and services.

Money is also a representation of wealth or value 
and is a basis for measuring economic and financial 
activity. Whether it is balancing a checkbook, analyzing 
a complex financial derivative, or anything in between, 
the mathematics of money is an indispensable tool for 
understanding and evaluating economic or financial 
transactions. Money is also multidimensional: value or 
wealth must be specified not only with respect to its 
amount, but also according to its time frame and to its 
country or currency framework. Translation of money 
and monetary transactions across these dimensions 
involves mathematical processes and an understanding 
of financial context, and mathematicians are actively 
involved in virtually all aspects of its production, man-
agement, and study. The first director of the U.S. Mint 
was David Rittenhouse, a well-known mathematician, 
inventor, astronomer, and surveyor. Mathematician 
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Marc Fusaro is a research assistant in the Research 
and Statistics division of the Federal Reserve System. 
Regarding his career, he has said: 

The mathematics in economics, where it is not 
explicit, is implicit. It underlies the economics 
everywhere. I can not always identify when I am 
doing mathematics. However, the thought pro-
cesses learned in doing mathematics are crucial to 
economics and help at every step.

Time Value of Money
Money may differ or change in value across one or 
more dimensions, including, in particular, time. A dol-
lar today is generally not worth the same as a dollar 
one year from now. The familiar effect of inflation over 
time is to decrease the value of a unit of money—a 
dollar bill will typically buy less one year from now 
than it will buy today. Also, a dollar today can often be 
invested so that it grows to a greater value a year from 
now. Another way of looking at this is to ask the ques-
tion, “How much needs to be invested now, so that an 
investment account will be worth one dollar one year 
from now?” If the investment environment involves, 
as it generally does, positive interest rates or rates of 
return, the answer would be that an amount less than 
one dollar would need to be invested now in order to 
grow to a full dollar one year from now.

The Babylonians appear to have used interest on 
loans to model time doubling. Clay tablets dating back 
to about 2000 b.c.e. contain the following example: 
“given an interest rate of 1/60 per month (no com-
pounding), compute the doubling time.” This situation 
corresponds to annual interest rate of 12/60 = 20%. 
The money would double in five years, which is 100% 
(growth) divided by 20% (growth per year). Some also 
cite the Babylonians as the first civilization to use for-
mal banking.

Interest and Interest Rates:  
The Cost of Money
One of the key issues associated with money is interest, 
which can be viewed as the cost associated with using 
money. Interest can be looked at from either side of a 
financial transaction. An individual earns interest on a 
savings or money market account or by lending money 
to someone else; these are examples of asset positions. 
On the other hand, when someone takes out a loan or 

otherwise borrows money, that person pays interest to 
the lender; this is an example of a liability or debt posi-
tion. So, regardless of the side of the financial transac-
tion, the interest involved in the transaction is the cost, 
or reward, associated with the use or employment of 
money.

Interest is the dollar amount of the cost or reward 
associated with a monetary position. However, it is 
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Definition and Function 
of Money

B y definition, money is something that is 
acceptable in trade and transactions. 

More specifically, money is typically identified 
as having three functions:

• It is a “unit of account.” Money is a 
mathematical representation of value 
and provides a measure of value or 
wealth.

• It is a “medium of exchange.” Money 
facilitates efficient trades and 
transactions between parties.

• It is a “store of value.” Money is an 
easily transportable and liquid entity 
that maintains its usefulness for 
exchange over time.

Historically, a variety of forms of money 
have been adopted in different eras, including 
barter, commodity money, and representative 
money. The United States and many other coun-
tries formerly operated on the gold standard 
(a type of representative money), where cur-
rency value is tied to a fixed weight of 
gold. The modern economy uses 
fiat money, which means that 
the value of a piece of money 
as a medium of exchange 
is based on governmental 
decree and is not related 
to its inherent value as a 
material object.



not really the dollar amount but rather the amount of 
interest as a proportion of the base or principal money 
amount that more clearly indicates the cost or reward 
associated with the transaction. This proportion is 
expressed as an “interest rate,” and can be represented, 
for example, by i.  

The value of money can change over time. However, 
time is just one of the dimensions over which the value 
and cost of money can change. For example, consider 
the following questions regarding interest rates:

• A lender is considering loaning money to 
someone for one year. What interest rate 
might the lender charge for loaning $1? For 
loaning $100? For loaning $100,000?

• A lender is considering loaning $10,000 to 
someone. What interest rate might the lender 
charge for a loan of term one month? For a 
term of one year? For a term of five years?

• A lender is considering loaning $10,000 for 
one year to one of three different people. 
What interest rate might the lender charge 
to the person who is perceived as the least 
risky (the one most likely to pay back the 
loan completely and in a timely fashion)? 
To the person of middle risk? To the person 
perceived as most risky?

Precise answers to these questions are not neces-
sary to imagine that, within each set of questions, the 
answers may potentially be very different. For exam-
ple, one may require a higher interest when lending a 
greater quantity of money; one may charge a higher 
interest rate when lending over a longer term; and one 
may insist on a higher interest rate when the borrower 
represents a greater risk. Thus, there are numerous 
dimensions and contexts in which the cost of money 
and its use can differ.

Money and Investments
Examining further the phenomenon of the time value 
of money, it is worth exploring more deeply how and 
why money can have a different value at one time 
compared with another. Consider a typical investment 
situation, which can be characterized as having four 
parameters: (1) the amount of money initially invested; 
(2) the interest rate, or the rate of return, which will be 
earned on the money invested; (3) the period of time 

over which the money will be invested; and (4) the 
future, or accumulated, value of the money at the end 
of the investment period.

As an example, suppose one invests $100 for one year 
at an effective annual interest rate of 10%. The future 
value (one year after the initial investment) is then cal-
culated as $100 + ($100 × 0.10) = $100 × 0.10 = $110.

This example could also be done in reverse. One 
could ask what amount, invested now, would yield 
$110 one year from now, if money can be invested at an 
effective annual interest rate of 10%. A minor algebraic 
adjustment to the prior solution yields the answer:

$

.
$

110

1 10
100= .

The result of $100 can be referred to as the “pres-
ent value” (PV) of $110 one year from now—it is the 
amount obtained when the future value is “discounted 
back” one year.

The concept of “present value” is one of the most 
important in all of finance and economics. The pres-
ent-day equivalent of any set of future cash flows can 
be determined by “discounting back” each individual 
future cash flow and summing all of the discounted 
cash flows together. This discounted sum is the present 
value of the future cash flows, and—assuming that the 
interest rate used for discounting is correct—it is essen-
tially the amount of money that, invested now, would 
replicate those future cash flows. In that sense, a per-
son could be described as being “indifferent” between 
receiving the future cash flows or receiving an amount 
now that is equal to the sum of the present values of 
those future cash flows.

Mathematically, present value can be determined as

PV
CF

i

t

t
t

t

=
+

∑
( )1

where CFt is the cash flow that will occur t periods from 
now, and it is the annual effective interest rate appro-
priate for an investment of t periods.

The above reference to it (an interest rate appro-
priate for an investment of t periods) suggests that 
cash flows over different time periods, or with differ-
ent characteristics, might be associated with different 
levels of interest rates. Indeed, this is true, and in fact 
the cost of using money can be different in accordance 
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with the period of time over which an investment is 
made. Typically, annual interest rates associated with 
relatively longer term investments are relatively larger 
than those associated with shorter term investments. 
This relationship is described formally by the yield 
curve, or the term structure of interest rates.

Similarly, one of the most critical factors in deter-
mining an appropriate interest rate is the level of riski-
ness inherent in the investment process (or uncertainty 
in the amount and timing of the future cash flows, if 
discounting is being performed for present value pur-
poses). In general, riskier cash flows or investment 
opportunities are associated with higher interest rates. 
This association is a manifestation of the risk-return 
relationship, which suggests that taking on greater risk 
should be compensated by a relatively greater reward.

Further Reading
Biehler, Timothy. The Mathematics of Money: Math for 

Business and Personal Finance Decisions. New York: 
McGraw-Hill, 2007.

Broverman, Samuel A. Mathematics of Investment and 
Credit. Winsted, CT: ACTEX Publications, 2008.

Marquez, Elizabeth, and Paul Westbrook. Teaching 
Money Applications to Make Mathematics Meaningful. 
Thousand Oaks, CA: Corwin Press, 2007.

Rick Gorvett

See Also: Accounting; Loans; Pensions, IRAs, and 
Social Security; Stock Market Indices.

Moon
Category: Space, Time, and Distance.
Fields of Study: Data Analysis and Probability; 
Geometry.
Summary: Though mankind has always looked up at 
the moon and even visited, most of the body of lunar 
knowledge is actually contributed by mathematics, 
which continues to attempt to model its motion.

The moon is the sole natural satellite of the Earth. Spe-
cific astronomical searches have established positively 
that the Earth has no other satellites larger than a few 

meters. The lunar body is nearly a sphere with a mean 
radius of 1738 kilometers (km) or 1000 miles—only 
3.7 times less than the Earth. The mean distance of the 
moon from the Earth is 384,400 km (238,855 miles). The 
moon is the fifth largest satellite in the solar system and 
the largest one relative to the size of its planet. The moon 
is so near and so large in comparison with its “host” that 
the entire system is often dubbed the “double planet.” 

Viewed from above the North Pole of the Earth, the 
moon travels around it counterclockwise in a slightly 
elliptical path. The sideric month (one orbit around 
the Earth with respect to the stars) is 27.3217 days. The 
synodic month (the cycle of phases visible from the 
Earth; for example, the time interval between two suc-
cessive “new moon phases”) is 29.5306 days.

The period of one spin of the moon around its axis 
(a “lunar day”) is exactly equal to the sideric month 
because of tidal breaking. This phenomenon is also 
known as “synchronous rotation,” or tidal coupling.” 
As a result, from the Earth, people can observe only 
half of the lunar surface (called the “near,” or “visible,” 
“side”). The “far” (called “invisible”) hemisphere was 
photographed for the first time in 1959 by the Soviet 
robotic spacecraft Luna-3, an episode of the space race 
between the United States and the Soviet Union. On 
the moon, the disk of the Earth does not rise and set. It 
is observable only from the near side in an almost per-
manent point of the lunar sky (fluctuating a little from 
a small phenomenon called “libration”).

The face of the moon was influenced by both inter-
nal and external factors. On the surface, observers dis-
tinguish so-called darker “maria” (flat “seas” without 
water) and brighter highlands. All of them are covered 
with numerous craters, the highlands more so than the 
seas. The far side of the moon has practically no seas. 
Because of constant bombardment by various small 
interplanetary particles, the entire surface is enveloped 
with thin fractured material called “regolith.” There is 
no atmosphere on the moon. As a result, the differ-
ence in temperatures between a lunar day and a lunar 
night is very high: between –170 degrees Celsius and 
+130 degrees Celsius (–274 degrees Fahrenheit to +266 
degrees Fahrenheit). Water in the form of subsurface 
ice exists in polar regions. There are no traces of mod-
ern tectonics on the surface.

From the Earth, the visible angular diameter of 
the moon is 0.5 degrees and fairly close to the angu-
lar diameter of the sun. This property is essential 
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because sometimes the three bodies, the sun, the Earth 
and the moon, align along a straight line. In this case, 
humans observe either a total lunar (if the moon is far-
ther from the sun than the Earth) or a total solar (if 
the moon is between the sun and the Earth) eclipse. 
The latter is visible only within narrow strips on the 
Earth. Such observations are important for solar phys-
ics. To see these phenomena, astronomers regularly 
organize special expeditions. Eclipses often held great 
religious significance. Scholar Anaxagoras of Clazom-
enae explained the phenomenon using mathematics. 
He was imprisoned for asserting that the sun was not a 
god and that the moon reflected the sun’s light. 

The age of the moon is about 4.5 billion years, 
which is close to the age of the sun and the entire solar 
system. Of the various concepts of the moon’s origin, 
the prevailing hypothesis is that the Earth-moon sys-
tem was formed by a giant impact: a planet-sized body 
hit the nearly formed proto-Earth, ejecting material 
into orbit around the proto-Earth, which accreted to 
form the moon.

The mean density of the moon is just 3.34 grams 
per centimeter3 and, as a result, the mass of the moon is 
81 times less than that of the Earth. The interior of the 
moon is geochemically differentiated: it has a distinct 

crust, mantle and core. Surface gravity on the 
moon is six times less than on the Earth. The 
general magnetic field of the moon is practi-
cally absent.

The moon has always played a significant 
role in religion, science, art, and culture. Since 
the Paleolithic, the lunar orb in the sky has 
been utilized for calendar purposes. That is 
why the similarity of the terms “moon” and 
“month” is not coincidental. For the philoso-
pher Aristotle, the moon marked a great bor-
der between a mortal and corruptible sublu-
nar (terrestrial) world and an immortal world 
of ideal heavenly bodies. It became a signifi-
cant symbol for Islam. For Isaac Newton, the 
moon was the prime test body to demonstrate 
mathematically that the fall of an apple and 
the orbiting of a celestial body are ruled by a 
single natural law of universal gravity.

Mathematical Modeling 
Many mathematicians have developed theo-
retical models for the motion of the moon. The 

exact path of the moon around the Earth is affected by 
many perturbations and is extremely complicated. That 
is why, after Newton, research of lunar motion (lunar 
theory) became the central problem of celestial mechan-
ics. Consequently, it appeared among the most critical 
and difficult tasks for applied mathematics. The moon’s 
gravitational influence on the Earth produces the ocean 
tides and the tiny lengthening of the calendar year. Most 
of what we know about the moon’s size, shape, and other 
properties has been derived largely through mathemati-
cal computations, using mathematical theory and data 
from Earth-based observations, satellite imagery, and 
direct measurements made by astronauts. 

Human Exploration
Starting at least from Roman times, science fiction 
authors were the forerunners for delivering terrestrials 
to the moon. In reality, the first space robots to the moon 
were launched by the Soviets in 1959. But they failed in 
the space race with the United States to realize manned 
expeditions. The first terrestrials to visit the moon were 
the American astronauts of the Apollo program. After 
preliminary robotic programs (Ranger, Lunar Orbiter, 
and Surveyor) and Apollo flybys, American manned 
landings on the moon occurred in 1969–1972. Among 
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seven planned landings (from Apollo-11 up to Apollo-
17), six missions were tremendously successful. Twelve 
crewmembers stepped down on the near side of the 
moon, and six more orbited it. Astronauts performed a 
number of experiments and returned to the labs about 
382 kg of lunar matter. Since 2004, Japan, China, India, 
the United States, and the European Space Agency have 
each sent successful automatic lunar orbiters.

Among the many thousands of contributors to lunar 
programs, mathematicians often played outstanding 
roles. One significant individual was mathematician 
Richard Arenstorf, who solved a special case of the three-
body problem with figure-eight trajectories now called 
“Arenstorf periodic orbits.” In 1966, he was awarded a 
NASA medal for exceptional scientific achievement for 
this work. Another was Evelyn Boyd Granville, who 
used numerical analysis to aid in the design of missile 
fuses. She later worked on trajectory and orbit analyses 
for several space missions, including Apollo. She said, 
“I can say without a doubt that this was the most inter-
esting job of my lifetime—to be a member of a group 
responsible for writing computer programs to track the 
paths of vehicles in space.” In fact, mathematicians occu-
pied many seats in the first row of the Mission Control 
center. Their work was critical for calculating trajecto-
ries and for maneuvers that involved the meeting of two 
objects in space, including landing on the moon. They 
also played a significant role in determining a rapid and 
feasible solution that would safely return the damaged 
Apollo 13 manned spacecraft to Earth. 

Among mathematicians in Russia, the most noticeable 
contribution to flights to the moon was made by Efraim 
L. Akim of the Keldysh Institute for Applied Mathemat-
ics at the Russian Academy of Sciences in Moscow. He 
was the principal investigator for special lunar orbiters 
to create a mathematical model of the lunar gravitational 
field and the leader of a team to calculate trajectories of 
the Russian lunar robotic spacecraft.

Several international treaties regulate mutual rela-
tions of various states with respect to modern space 
explorations of the moon. The most important among 
them are the Outer Space Treaty (1967) and the Agree-
ment Governing the Activities of States on the Moon 
and Other Celestial Bodies (1979). 
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and Co., 2009.
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Human Pioneers and Robotic Surveyors. Chichester, 
England: Praxis Publishing, 2004.

Alexander A. Gurshtein

See Also: Interplanetary Travel; Measuring Time; 
Planetary Orbits; Ride, Sally; Spaceships; Weightless 
Flight. 

Movies,	Making	of
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Geometry; 
Representations.
Summary: A variety of mathematics, including 
signal processing, geometry, and lighting, are required 
for making movies.

It takes many people with many different talents 
to make a movie. Some of these required talents are 
very technical, so these filmmakers must have a work-
ing knowledge of various mathematical principles to 
employ the tools of their trade. A sampling of these 
areas includes camerawork, sound recording, and spe-
cial effects. Signal processing, a branch of applied math-
ematics, is necessary both during the production of a 
film (for selection of filters and set dressings of accept-
able visual frequency) and in postproduction, where 
dialogue must be made understandable in the sound 
track. In addition, often the shooting of a scene itself, 
with its restrictions on space and desired camera angles 
as well as satisfying lighting needs, becomes a problem 
in geometry. Physical phenomena and their interac-
tions can increasingly be modeled using mathematics. 
Mathematicians such as Tony DeRose, who won a 2006 
scientific and technical Academy Award for his work 
on surface representations, play an increasingly impor-
tant role in producing modern special effects.
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Camera Work
In the shooting of a scene, the number of variables is 
considerable, and those directing the operation of a 
camera have many decisions to make. Considerations 
include viewing angles, shutter speeds, lens selection, 
current lighting, and the format of the film. These con-
siderations become considerably more complicated 
when working with miniatures in which an attempt is 
made to fool the eye of the viewer into believing the 
miniature is a real, full-sized object. The choice of the 
camera itself, which has many parameters, has a signifi-
cant effect on the look of the film.

The operation of the camera depends a great deal 
on the lighting of the set. An f-stop, which has been 
used for many years on cameras, is the ratio of the 
focal length of the lens to the diameter of the entrance 
pupil. This unit was used to control the quantity of 
light reaching the film. However, because of the fact 
that much of the light reaching the film plane is lost 
to diffraction, reflection, and refraction, more modern 
cameras use the T-stop calibration, which is a measure 
of the actual amount of light reaching the film plane. 
If no light were lost to optical factors, these two values 
would be identical. Both of these measures are used 
extensively: the f-stop for depth of field calculations 
and the T-stop for light transmission.  

The gaffer (crew boss responsible for planning the 
lighting) uses a variety of tools to light a scene so that 
the film can be recorded with the desired viewing 
window, shutter speed, and camera angles, as well as 
various aesthetic considerations. One such tool is the 
inverse square law. This law states that the intensity of 
a single source of light decreases in proportion to the 
square of its distance from the subject. Using this law, a 
small light puts less light on the background, if desired, 
or a larger light farther away creates a larger area with a 
similar light level. The light used will also affect the T-
stop to be used on the camera, so the light placements 
must be planned carefully and light output levels must 
be known exactly.  

One calculation the camera operator must con-
stantly make is to determine the depth of field. A lens 
can focus on only one distance at a time. Therefore, 
technically, both the foreground and the background of 
a scene are never in focus simultaneously; in fact, only 
one point on an actor is in focus at any one time. How-
ever, objects close to this distance will not appear blurry 
to the human eye, which does not perceive imperfec-

tion within a certain distance of the point of focus. The 
distance interval in which all objects are acceptably 
focused is called the “depth of field.” To determine the 
depth of field, one must first determine the hyperfocal 
distance, the smallest distance such that all objects from 
half this distance through infinity are in acceptable 
focus. This distance can be approximated algebraically, 
with a parameter known as the “circle of confusion” 
determining what is considered to be acceptable focus 
dependent on the focal length and f-stop setting of the 
lens. Finally, the near and far limits of the depth of field 
can be determined with the equations

1 1 1

D S Hn

= +  and 1 1 1

D S Hf

= −

where Dn  and Df 
 are the near and far limits of the depth 

of field, S is the distance from the camera to the sub-
ject, and H is the hyperfocal distance. These formulas are 
simplified versions of the normal depth of field equa-
tions, which have an interesting geometric derivation.

Audio and Visual Signal Processing
The production sound mixer is in charge of recording 
the sound and dialogue for a film. Typically, crewmem-
bers are hired to operate microphones, often using long 
poles with a microphone on the end. These microphones 
are used to record various sounds on the set, with wire-
less microphones attached to the actors to record dia-
logue. Sound effects are recorded separately, as is the 
score. During post-production, unwanted noise must 
be filtered out of the recordings, the dialogue must be 
made understandable, and the effects, score, and dia-
logue must be mixed together meaningfully.

To remove background noise, the audio signal 
(composed of sound waves) is decomposed using a 
Fourier transform, so that the model of the audio 
signal is divided into simpler, trigonometric compo-
nents. These components are then analyzed, isolating 
frequencies corresponding to unwanted artifacts in the 
recording, such as the sound of the wind on the micro-
phone. Background noise is removed by removing the 
Fourier components of amplitude below a certain level. 
Finally, by reversing the transform, a more filmworthy 
audio signal is obtained.  

Processing must also be done to the visual signal. 
Video cameras record at a “frame rate,” the frequency 
with which the camera produces images. These images 
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are recorded as discrete signals, which are then recon-
structed on film. If objects of a high visual frequency 
are used in a scene, a loud tie for example, then the 
image on film will experience aliasing, causing visual 
distortion or artifacts. To avoid this, the set designer 
or costumer needs to avoid objects above a certain 
visual frequency. This frequency, called the “Nyquist 
frequency,” is half the frame rate. If images of high-
visual-frequency objects are desired, then an antialias-
ing filter must be used, such as a lowpass filter, which 
will pass the low-frequency objects but reduce the 
amplitude of the high-frequency objects. Filmmakers 
have many filters that can be used to capture a wide 
variety of objects in a scene, depending on the mix of 
visual frequencies present.

Further Reading
Burum, Stephen, ed. American Cinematographer Manual. 

Hollywood, CA: ASC Press, 2007.
Haunsperger, Deanna, and Steve Kennedy. “Math Makes 

the Movies.” Math Horizons 9 (November 2001).
McAdams, A., S. Osher, and J. Teran. “Crashing Waves, 

Awesome Explosions, Turbulent Smoke, and Beyond: 
Applied Mathematics and Scientific Computing in 
the Visual Effects Industry.” Notices of the American 
Mathematical Society 57, no. 5 (2010).

William Griffiths

See Also: Animation and CGI; Optical Illusions; 
Televisions.

Movies,	Mathematics	in
Category: Arts, Music, and Entertainment.
Fields of Study: Communications; Connections.
Summary: Mathematics and mathematicians often 
appear in movies, helping to shape the public’s image 
of mathematics

Mathematics has been showcased in a number of 
movies. Often, the lives of mathematicians, both real 
and fictional, have been dramatized for use in film. 
Mathematics in movies can reveal, reflect, and shape 
how society views mathematics. Images of nerds and 

geniuses are very common in movies, and the math-
ematical powers of geniuses are sometimes equated 
with mental illness. There are also examples in which 
talented women deny their mathematical ability. Some 
of the films that focus heavily on the lives of math-
ematicians include A Beautiful Mind (2001), Good 
Will Hunting (1997), Pi (1998), Proof (2005), I.Q. 
(1994), Infinity (1996), and Agora (2009). Other mov-
ies, such as 21 (2008), Contact (1997), Cube (1997), 
Jurassic Park (1993), Fermat’s Room (2007), and Mean 
Girls (2004), use mathematics as the basis of key plot 
points. Some films, such as Stand and Deliver (1988), 
dramatize the teaching of mathematics. There are also 
numerous documentaries, including N is a Number: 
A Portrait of Paul Erdös (1993) and Julia Robinson and 
Hilbert’s Tenth Problem (2008). Such films are often 
the public’s only connection to mathematics. As such, 
it important to point out how accurately these films 
communicate these ideas.

Mathematics and Character Development
A Beautiful Mind is a 2001 film directed by Ron How-
ard based on the life of Nobel Prize–winner John Nash. 
The film chronicles the life of Nash (Russell Crowe) 
beginning with his graduate studies at Princeton. 
While there, Nash discovers the principle of govern-
ing dynamics, a central principle in game theory and 
modern economics. The film simplifies the principle 
by showing an attractive blonde woman and her four 
friends entering a bar. If Nash’s friends all flirt with the 
blonde, they impede each other. Further, her friends 
will also spurn the would-be suitors, as they do not 
want to be the second choice. Hence, the best strategy 
for Nash’s friends is to avoid the blonde and instead 
approach her friends. The film later shows Nash’s 
romance with Alicia Larde (Jennifer Connelly) and 
his problems because of schizophrenia. The film omits 
many details of Nash’s life, including both his previ-
ous marriage and his divorce from and later remarriage 
to Alicia. Nonetheless, the film received four Academy 
Awards, including Best Picture and Best Director.

Good Will Hunting is a 1997 film directed by Gus 
Van Sant starring Matt Damon and Robin Williams. 
In this film, Will Hunting (Damon) is a janitor work-
ing at MIT. One night, he solves a difficult mathematics 
problem left on a chalkboard in the hall. When none 
of the students admit to solving the problem, Professor 
Lambeau (Stellan Skarsgard) places a second problem 
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on the chalkboard, which Will promptly solves. Unfor-
tunately, Will is plagued by antisocial behavior, causing 
him to be arrested after a fight in a bar. Lambeau has 
Will released into his custody provided that Will works 
with him on mathematics and Will sees a therapist 
(Williams). While the film does present what appear to 
be well-posed problems in graph theory and combina-
torics, it is unlikely the solution to such difficult prob-
lems could be placed on a single chalkboard in a short 
amount of time. The film won two Academy Awards.

The 1998 film Pi was directed by Darren Aronofsky. 
In Pi, Max Cohen (Sean Gullette) is a number theo-
rist who believes in three basic principles: mathemat-
ics is the language of the universe; the universe can be 
understood through numbers; and if one graphs these 
numbers correctly, patterns will emerge. In particu-
lar, he studies the stock market looking for patterns. 
If one were able to find patterns in the stock market, 
one could accurately predict the future. After a conver-
sation with Lenny Meyer (Ben Shenkman) a Hasidic 
Jew, Cohen begins to do research on the numbers in 
the Torah. Meyer tells Cohen that the Torah is com-
posed entirely of numbers, and there are relationships 
between the numbers. Thus, Cohen searches for a 
pattern in the Torah in the hope of revealing the true 
name of God. There has been mathematical research 
on finding patterns to the stock market. However, the 
level presented in this film is impractical. For instance, 
there are literally thousands of variables involved in the 
stock market. A slight change in any of these variables 
can lead to a large change in the market. 

The 2005 movie Proof was directed by John Mad-
den, based on the play by David Auburn. In Proof, 
Gweneth Paltrow plays Catherine, a woman who has 
been looking after her father (Anthony Hopkins). Her 
father was a brilliant mathematician who later became 
incapacitated because of mental illness. During this 
time, he wrote numerous notebooks full of his delu-
sional ramblings. After his death, his former student 
Hal (Jake Gyllenhaal) finds one of these notebooks 
containing what appears to be an important result. 
While Catherine claims the result is hers, some ques-
tion both her authorship and her sanity. Catherine’s 
father seems based in part on real life mathematician 
Kurt Gödel. Like her father, Gödel was an important 
mathematician who descended into insanity, writing 
endlessly. Like most research professions, it is impor-
tant to establish priority. However, the film does not 

accurately depict suitable ways to establish priority, 
such as presenting at research conferences or publish-
ing a preliminary technical report.

Romance and Mathematicians
Two films, I.Q. (1994) and Infinity (1996), focus more 
on the romantic sides of mathematicians lives. In I.Q., 
Albert Einstein (Walter Matthau) and his friends help 
local mechanic Ed Walters (Tim Robbins) to romance 
Einstein’s niece, Catherine Boyd (Meg Ryan), a doctoral 
candidate in mathematics. In order to accomplish this, 
Einstein makes it appear that Ed is a genius in physics. 
In typical romantic comedy fashion, Catherine falls for 
Ed, only to discover the deception. The film takes many 
liberties in portraying the personalities of Einstein and 
his friends. Further, the film does not discuss the sci-
ence of Einstein or his colleagues.

Science and Mathematics Themes
Infinity is a 1996 film based on the books Surely You’re 
Joking, Mr. Feynman, and What Do You Care What Other 
People Think by Richard Feynman. Feynman (Matthew 
Broderick) was a Nobel Prize-winning physicist who 
worked at Los Alamos and later investigated the Chal-
lenger shuttle disaster. Like I.Q., the film does nothing 
to discuss Feynman’s scientific discoveries. Instead, 
the film focuses on the romance of Feynman and his 
first wife Arline (Patricia Arquette). In one of the film’s 
more memorable scenes, Feynman impresses Arline 
with his ability to do mental computations faster than 
a shop owner with an abacus. Such anecdotes form the 
cornerstones of Feynman’s biographies, however, they 
are largely omitted in the film.

Agora is a 2009 Spanish drama that presents a semi-
fictionalized account of the life of Hypatia of Alexan-
dria. This film has elicited a variety of reactions among 
members of the mathematics community, including 
concerns about its focus on certain aspects of her per-
sonality and private life as well as her mathematical 
investigations and achievements.

The 2008 film 21 is based on the book Bringing Down 
the House by Ben Mezrich. In this film, Ben Campbell (Jim 
Sturgess) and the mathematics club (Kate Bosworth, et 
al.) are coached by Professor Micky Rosa (Kevin Spacey) 
to count cards in blackjack. Using simple counting tech-
niques and signals, they act as a team to bring in the big 
player when the deck begins to favor the player. By doing 
so, they are able to bring in much greater returns than an 
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individual counting cards on their own. Unfortunately, 
their success is hampered by a security chief (Lawrence 
Fishburne) who begins to realize their system.

Jurassic Park is a 1993 movie directed by Steven 
Spielberg starring Sam Neill, Laura Dern, Jeff Gold-
blum, and Richard Attenborough. Jurassic Park was 
constructed by John Hammond (Attenborough) to 
feature genetically recreated dinosaurs. To gain sup-
port for the park, he recruits paleontologists (Neill and 
Dern) as well as mathematician Ian Malcolm (Gold-
blum). Malcolm specializes in chaos theory, preferring 
to be called a “chaotician.” Chaos theory deals with 
unpredictability in a complex system. The film accu-
rately illustrates this phenomenon with an experiment 
involving placing drops of water on the back of a still 
hand. Despite the best attempts to achieve predictable 
results by placing the drops of water at the same place, 
subtle differences on the hand will cause the drops 
to roll off in different places. Malcolm argues that, 
despite the best intentions of the engineers and geneti-
cists, Hammond and his associates do not have con-
trol of Jurassic Park. For instance, they do not predict 
the actions of a saboteur or that the dinosaurs would 
begin to breed. These oversights lead to the failure of 
the park. Jeff Goldblum returns as Ian Malcolm in the 
1997 sequel The Lost World: Jurassic Park. 

Prime Numbers
The search for extraterrestrial intelligence is the basis of 
the 1997 film Contact, based on the book by Carl Sagan. 
In this film, Dr. Eleanor Arroway (Jodie Foster) discov-
ers a signal that appears to be from the star Vega using 
the telescope array in New Mexico. The signal consists 
of a long string of prime numbers. Prime numbers are 
positive numbers divisible only by themselves and the 
number 1. Moreover, the prime numbers are not asso-
ciated with any random natural phenomenon. Hence, 
the broadcast of the primes from an extraterrestrial 
source suggests the work of an alien intelligence. As 
various layers of the message are decoded, her team 
discovers the plans for a machine that will hopefully 
transport one individual to meet these aliens. The film 
won the Hugo Award for Best Dramatic Presentation.

The 1997 psychological thriller Cube also uses prime 
numbers as a key plot point. In Cube, a group of five 
individuals (Nicole de Boer, David Hewlett, et al.) find 
themselves in a cube-shaped room. The room they are 
in is surrounded on all six sides by other cube-shaped 

rooms. They quickly discover that many of the rooms 
contain deadly traps. One of the group is a mathema-
tician and realizes that if the rooms are labeled with 
prime numbers, then the room is trapped. They also 
discover that the numbers give the position of the room 
within the larger cube structure. Finding an autistic 
savant in the maze allows them to factor the numbers 
more quickly and thus navigate the cube structure.

The 2007 Spanish film Fermat’s Room uses a famous 
conjecture about prime numbers as a catalyst. The 
Goldbach Conjecture states that every even number 
greater than two can be expressed as the sum of two 
primes. Despite being conjectured in 1742, this prob-
lem has remained unsolved as of 2010. A young math-
ematician known only as “Galois” claims that he has a 
proof of the Goldbach Conjecture to impress a young 
woman called Olivia. They are soon invited to dinner by 
the enigmatic Fermat along with a middle-aged math-
ematician, Pascal, and an older mathematician, Hilbert. 
Coincidently, Hilbert has been working on Goldbach 
for 30 years. When their host, Fermat, leaves, they soon 
find themselves locked in the room. They are presented 
with riddles one after another. If they are unable to solve 
the riddles within their time limit, the walls of the room 
close in until they solve the riddle. While the names of 
the characters are based on famous mathematicians 
and the Goldbach Conjecture is presented accurately, 
the riddles in the film are quite elementary. 

Social Life and Mathematics
In the 2004 movie Mean Girls, the main character, high 
school student Cady Heron, struggles to balance her 
mathematical talent with social pressures and attempts 
to be popular. She pretends to struggle at mathematics 
in her calculus class in order to impress a boy she likes.

Finally, the 1988 movie Stand and Deliver illustrates 
the difficulty of teaching mathematics in an inner-city 
school. Jaime Escalante (Edward James Olmos) teaches 
basic arithmetic in a Los Angeles high school. He senses 
that his students are capable of more, and using props, 
humor, and examples from their lives, he motivates 
them to learn calculus. At the end of their senior year, 
his students all pass the AP calculus exam. 

Some producers hire mathematical consultants 
to ensure the accuracy of the content. It is likely that 
mathematics and mathematicians, both real and fic-
tional, will continue to remain sources of dramatic 
material in feature films. Mathematicians also analyze 
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these representations in the classroom and in publica-
tions, such as the media column in the Association for 
Women in Mathematics Newsletter. 

Further Reading
Farley, Jonathan. “Moment of Proof.” Notices of the 

American Mathematical Society 53, no. 3 (2006).
Greenwald, Sarah J., and Jill E. Thomley. “Mathematically 
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Polster, B., and M. Ross. “Mathematics Goes to the Movies.” 
http://www.qedcat.com/moviemath/index.html.

Reinhold, Arnold. “Math in the Movies.” Math Horizons 
4 (April 1997).
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Theory; Mathematical Friendships and Romances; 
Mathematical Puzzles; Number Theory; Numbers and 
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MP3	Players
Category: Communication and Computers.
Fields of Study: Algebra; Communication; Data 
Analysis and Probability; Number and Operations.
Summary: Mathematics and mathematical data 
compression algorithms make MP3 players possible.

MP3 players have revolutionized the way people listen 
to music. MPEG Audio Layer III (MP3) is an audio 
compression standard that reduces music files with 
little perceptible loss of quality. It is one of the Motion 
Pictures Expert Group standards for lossy compres-
sion. The inventors of MP3, according to the United 
States MP3 patent, are engineers Bernhard Grill, Karl-
Heinz Brandenburg, and Bernd Kurten; computer 
scientist Thomas Sporer; and mathematician Ernst 
Eberlein. The development was mathematically and 
technically challenging according to Brandenburg, 
who is sometimes called a specialist in mathematics 
and electronics. He stated, “in 1991, the project almost 
died. During modification tests, the encoding simply 

did not want to work properly. Two days before sub-
mission of the first version . . . we found the compiler 
error.” Scientists at Fraunhofer-Gesellshaft developed 
an MP3 player in the early 1990s. 

In 1997, engineer Tomislav Uzelac invented the 
AMP MP3 Playback Engine, which is regarded as the 
first successful MP3 player. Computer science student 
Justin Frankel, who also helped develop the peer-to-
peer Gnutella network, and fellow student Dmitry 
Boldyrev created the free MP3 player Winamp in 
1998. Inventor Briton Kramer contributed to the first 
mass-produced player MPMan. The ability to share 
files over the Internet, legally and illegally, for free 
or for purchase, was a significant factor in the rapid 
spread of the MP3 format. By the twenty-first century, 
iPods became one of the most popular MP3 players, 
in part because of the availability of music and video 
via the iTunes store. The ability to hold thousands of 
songs, videos, and other types of files is one of the 
benefits of MP3 players, all of which would not be 
possible without mathematics and mathematical data 
compression algorithms.

Compression and Encoding
Data compression is either “lossy” or “lossless,” refer-
ring to whether any data is discarded in the process 
of creating a smaller file. Huffman coding, developed 
by mathematician David Huffman, is used for MP3 
compression. It employs a mathematical idea called a 
“frequency-sorted binary tree” to look for recurring 
strings of binary information in the digital file. These 
strings are replaced by shorter binary codes. The most 
frequently occurring strings are assigned the shortest 
replacement codes, optimizing compression. In lossless 
compression, all original information is preserved in 
some way. In lossy compression, some information is 
discarded to decrease file size. MP3 compression relies, 
in part, on perceptual coding. 

In a human ear, certain waveforms are indistinguish-
able. Psychoacoustic models prioritize data according 
to the ear’s ability to distinguish the sounds the data 
produce. Mathematical models of auditory process-
ing yield encoding information and algorithms, such 
as frequency threshold curves, masking functions, and 
critical bandwidths. Signal processing typically relies on 
Fourier transforms, named for mathematician Joseph 
Fourier, to enable coding and decoding. Ultimately, an 
MP3 music file consists of a series of short, dependent 
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frames, like a filmstrip. Each frame has a header with 
information about the data in the frame. Inside the 
frame is audio information in frequencies and ampli-
tudes. Sometimes, at the beginning or end, there is an 
ID3 data block, which stores the artist name, track title, 
album name, recording year, or other information. 

Sound
Optimization of audio playback depends not just on 
the human ear but on the equipment used. Speakers 
are common on computers, while most MP3 play-
ers use some form of over-ear headphones or earbuds 
that fit into the ear canal. Empirical studies suggest that 
noise from internal earbuds may be damaging to hear-
ing because the decibel level experienced by listeners is 
higher on average than with external earphones, and 
long-life batteries players allow people to listen longer. 
Some researchers have reported average listening levels 
of about 110–120 decibels, equivalent to a rock concert. 
Based on findings of such studies, many audiologists 
recommend using noise-canceling headphones rather 
than turning up the volume. Engineer Lawrence Fogel 
first explored noise-canceling headphones for aviation 
in the 1950s. Noise cancellation uses the mathemati-
cal properties of waves to create a signal with the same 
amplitude but with an inverted phase to unwanted noise, 
creating a combined wave inaudible to the human ear.

Shuffle
One other interesting mathematical problem related 
to MP3 players is the shuffle function. Various math-

ematical algorithms are used to permute the play order 
of songs in an MP3 player’s library. In the early twenty-
first century, the iPod’s default shuffle system reorders 
songs much like someone shuffling a deck of cards, giv-
ing each song an equal chance to end up in any posi-
tion in the shuffle and resulting in no repeats. How-
ever, many factors can affect perceived randomness 
and equal likelihood of orderings. For example, users 
can request higher chances of play for songs with high 
user ratings. Songs can also be marked “Skip When 
Shuffling” so that they are completely excluded. Most 
people frequently reshuffle, generating new random 
orderings before completing the library, and so some 
tracks appear to repeat or group in nonrandom ways.

Further Reading
Kallen, Stuart. iPods and MP3 Players. Florence, KY: Gale 

Cengage, 2010.
Salomon, David. A Guide to Data Compression Methods. 

New York: Springer, 2002.

Bill Kte’pi

See Also: Cocktail Party Problem; File Downloading 
and Sharing; Randomness.

Multiplication		
and	Division
Category: History and Development of Curricular 
Concepts. 
Fields of Study: Algebra; Communication; 
Connections; Number and Operations.
Summary: Scholars throughout history have 
developed a variety of algorithms to compute 
multiplication and division.

Multiplication and division of numbers are useful for 
scaling a quantity, which is fundamental in any quan-
titative society. For example, to determine the correct 
cost for purchasing more than one unit of some item, 
the buyer should multiply the number of units by the 
unit price. One of the most common exposures peo-
ple have to the concept of multiplication is the idea of 
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repeated addition, which is frequently taught in ele-
mentary school. Some mathematicians object to this 
analogy, since it fails in specific instances, such as the 
case of fractions. Multiplication in this context can be 
thought of as a scaling process. Multiplication of math-
ematical objects is an operation that combines those 
objects in some representative manner. For example, 
matrix multiplication is the composition of the corre-
sponding linear transformations. 

Some theorize that the first evidence of multiplica-
tion is the Ishango Bone, a tool from Upper Paleolithic 
era, which may demonstrate multiplication by two. The 
ancient Chinese as early as the Warring States period 
(475–221 b.c.e.) developed a system of multiplication 
using a place-value system and counting boards for 
calculations. Multiplication using a place-value sys-
tem of Hindu–Arabic numerals dates back to Indian 
mathematician and astronomer Brahmagupta in the 
seventh century. 

Division is an operation that is generally the inverse 
of multiplication. For whole numbers, division can 
be thought of as finding the number of identically 
sized groups into which a number of individuals can 
be divided or partitioned. The remaining individuals, 
after all identically sized groups have been removed, are 
called the “remainder.” People in ancient Egypt com-
monly divided food and other supplies and formalized 
the notion of division. Concepts of division and mul-
tiplication are generalized and studied in the fields of 
number theory, algebra, and numerical analysis.

History of Multiplication Algorithms
One of the earliest methods for multiplying whole 
numbers is called the “Russian Peasant algorithm,” but 
a similar procedure was described thousands of years 
earlier in ancient Egyptian papyri and is based on dou-
bling the multiplicand. Assume that an Egyptian scribe 
wanted to compute the product of 13 and 23. The scribe 
would compute the products 1 × 23 = 23, 2 × 23 = 46, 
4 × 23 = 92, and 8 × 23 = 184. By doubling each previ-
ous result, the scribe would, realizing the sum of the 
multipliers 1, 4, and 8 equals the multiplier 13, find the 
sum 23 + 92 + 184 = 299, the required product. Thus, 
multiplication is reduced to being able to both double 
a number and add.

Another method used to multiply numbers is called 
“gelosia” or “lattice multiplication,” which is still taught 
in some elementary schools. This method probably 

originated in India before the twelfth century and 
eventually became the inspiration for Napier’s bones, 
an instrument created by John Napier, which was used 
to accomplish multiplication after its invention in the 
early 1600s. To multiply, for example, 23 × 48, one 
draws a 2-by-2 lattice of squares where each square is 
bisected by a diagonal from upper right to lower left. 
The rows are labeled, top to bottom, 4 and 8, while the 
columns are labeled, left to right, 2 and 3. The product 
of each of the single digits is written in the correspond-
ing square as shown below. Once numbers in the lattice 
have been written, the final product, 1104, is formed by 
adding along the diagonals from upper right to lower 
left, being careful to remember to carry.

Another method still taught in the early twenty-first 
century has been called “cross-multiplication.” It was 
described by Leonardo Fibonacci in the twelfth cen-
tury but was certainly known earlier in India and the 
Middle East. To multiply 23 × 48, one starts from the 
right and multiplies 3 × 8 to get 24. The 4 is written 
down and the 2 is remembered. Then the cross mul-
tiplication is performed, 2 × 8 + 3 × 4 to get 28, which 
is added to the remembered 2, obtaining 30. The 0 is 
written down and the 3 is remembered. Finally 2 × 4 is 
computed obtaining 8, which is added to the remem-
bered 3, resulting in 11, which is written down. The 
final result is thus 1104. This method can be gener-
alized and, by keeping various “remembered” digits 
using finger numbers, it is possible to multiply many 
two-digit numbers without writing down any inter-
mediate results.

Probably the most popular method for multiplying 
that is taught in the early twenty-first century computes 
the products of multiplicand with each of the digits of 
the multiplier,  working from right to left. Each of these 
successive products is shifted one more digit to the left. 
These partial products are then summed to obtain the 
final result as the following example shows:
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This and similar methods were implemented on 
various counting boards, the abacus, and dust boards.

Division Algorithms
An ancient method for finding the quotient of two 
large whole numbers that is most appropriate for 
either the dust board or the Chinese counting board 
was adapted to pen and paper and became the “scratch 
method” that was used in Europe up into the nine-
teenth century. Two methods of computing long divi-
sion using pencil and paper eventually replaced the 
scratch method. 

One method is popular in Italy, England, and the 
United States and will be referred to as the “Italian 
method.” The other is popular in Spain, France, Latin 
America, Austria, and Germany. This second approach 
will be referred to as the “Spanish method.” Both meth-
ods date from at least the dawn of the sixteenth cen-
tury. Both methods are shown by demonstrating how 
to find 2456/57, which is 43 with a remainder of 5.

 Italian Method   Spanish Method

In the Italian method, the dividend is written under 
a horizontal line above which the quotient will be writ-
ten as it is found. The divisor is written to the left of 
the dividend with a vertical line drawn between them. 
It is determined that 57 will go into 245 at least (but 
no more than) 4 times, and 4—the first digit of the 
quotient—is written above the 5 of the dividend. The 
product 4 × 57 = 248 is computed and written below 
the 245. Subtraction is performed, obtaining 17 and 
the 6 from the dividend is brought down to the right 
of the 17. Then, it is determined that 57 will go into 
176 at least (but no more than) 3 times. The product 

3 × 57 = 171 is computed and subtracted from 176 to 
get the remainder of 5.

The Spanish method is cosmetically different and is 
characterized by many fewer digits being written down 
because the multiples 4 × 57 = 248 and 3 × 57 = 171 
are never explicitly computed. To start, the dividend 
is written down followed by a long vertical line and 
the divisor. A horizontal line is then drawn under the 
dividend and divisor. The quotient will be developed to 
the right of the vertical line below the horizontal line 
one digit at a time. First, it is determined that the first 
digit of the quotient is 4. Then 4 × 7 = 28 is computed, 
which must be subtracted from 5. This operation can-
not be done, and so a little 3 is written between the 4 
and the 5 of the dividend. Now 28 can be subtracted 
from 35 obtaining 7, which is written under the 5 of 
the dividend. The 4 × 5 is found and added to the lit-
tle 3 obtaining 23. This number is subtracted from 24 
obtaining 1, which is written below the 4 of the divi-
dend. To complete this phase, the 6 from the dividend 
is brought down so that the problem is now to divide 
176 by 57. It is determined that 57 will go into 176 at 
least (but no more than) 3 times, and so 3 is written 
down as the next digit of the quotient. Computing 
3 × 7 = 21, try to subtract 21 from 6, which cannot be 
done, and so a small 2 is written between the 7 and 6. 
Now, subtract 21 from 26, obtaining 5, which is written 
below the 6. Now, 3 × 5 is computed and added to the 
little 2, obtaining 17, which when subtracted from 17 is 
0. As such, nothing needs to be written to the left of the 
5. By the time a student is out of elementary school, it 
is expected that the annotations like the little 2 and 3 
will no longer need to be written. 

Checking Results
Because the algorithms for computing products and 
quotients of whole numbers are complex, meth-
ods to check the results have existed since antiquity. 
Since division and multiplication can be viewed as 
the inverse operations of each other, a division can 
be checked by multiplying the quotient by the divi-
sor and adding the remainder. If the result is the divi-
dend, then the division has been performed correctly. 
Another approach to checking the result of an arith-
metic operation is to perform the operation using 
modular arithmetic, typically with respect to 7, 9, or 
11. A number a modulo b is defined to be the remain-
der of a ÷ b. Thus, 267 modulo 9 is 6. There are easy 
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tricks for computing numbers modulo 7, 9, and 11. 
For example, the method of “casting out 9s” can be 
used to compute 267 modulo 9 by simply summing 
the digits and subtracting 9 whenever the sum is over 
9. For example, 2 + 6 + 7 = 15 −9 = 6. In order to check 
the correctness of the multiplication 23 × 48 = 1104, 
check to see if [(23 modulo 9) × (48 modulo 9)]  
modulo 9 = 1104 modulo 9.

In this case, 5 × 3 = 15 and 15 modulo 9 is 6, which 
is equal 1104 modulo 9. One can conclude that the 
product, 1104, is probably correct. Although it is pos-
sible that such a check will confirm an incorrectly per-
formed multiplication, this is unlikely.

Multiplication by Addition
Because multiplication and division are time consum-
ing and tedious to perform compared to addition and 
subtraction, there has been much work to simplify 
the finding of products and quotients. Simplification 
results from using logarithms, invented in the seven-
teeth century, since

log log logA B A B×( ) = ( ) + ( ) .

Thus, it is easy to find the product of two numbers 
using a table of logarithms by looking up the logarithm 
of both the multiplier and the multiplicand in the table, 
adding these two logarithms and then using the table 
to find the number that has that sum as its logarithm.

It is also possible to convert multiplication to addi-
tion (and halving) using a table of cosines along with 
the trigonometric identity 

cos cos
cos cos

A B
A B A B( ) ( ) =

+( ) + −( )
2

.

This method was used by some astronomers before 
the invention of logarithms.

Rapid Multiplication and Division
Throughout history, people have developed the ability 
to multiply large digits in their head. Thomas Fuller, 
a slave, was one such person. For example, he calcu-
lated the number of seconds a man who is 70 years, 17 
days, and 12 hours old has lived. He correctly answered 
2,210,500,800 in only a minute and a half, and histori-
ans hypothesize that the algorithms he used were prob-
ably based on traditional African counting systems. In 

the twenty-first century, mathematician and magician 
Art Benjamin has turned his rapid mental calculations 
into educational entertainment.

Multiplication of whole numbers that can be repre-
sented as single binary words in a computer can typi-
cally be done with a single hardware instruction that 
combines addition and shifting to find the product. 
To multiply numbers with thousands of digits, other 
methods are possible that make use of fast methods for 
computing Fourier transforms, named for Joseph Fou-
rier. The Schönhage–Strassen algorithm, developed 
by Arnold Schönhage and Volker Strassen, and the 
Fürer algorithm, developed by Martin Fürer, are two 
such methods. These complicated algorithms, how-
ever, have limited practicality when implemented on a 
conventional computer. Mathematicians in the field of 
numerical analysis consider issues of speed and error 
in computer algorithms. 

Early computers multiplied or divided using repeated 
addition, subtraction, and shifting algorithms. Depend-
ing on the computing system, the amount of time 
required for multiplication or division on a computer is 
approximately the same. However, factoring a number 
into its unknown divisors is significantly harder. The 
RSA (which stands for the people who first described 
the system: R. Rivest, A. Shamir, and L. Adleman) cryp-
tosystem takes advantage of this characteristic.

Generalizing Multiplication and Division
Multiplication and division can be used for computa-
tional purposes and to help understand other math-
ematical principles. The product of two rational num-
bers a/b and c/d is defined to be the rational number 

ac

bd

whereas the quotient, a/b ÷ c/d is defined be the prod-
uct of a/b and d/c. The reciprocal of a rational number, 
a/b, is the number b/a, since the product of a/b and 
a/b is 1. The product of two irrational numbers, which 
cannot be represented as a fraction of whole numbers, 
is approximated by taking the product of their approx-
imating rational numbers. The product of irrational 
measurements can be found exactly with geometry 
using similar triangles.

Multiplication can be generalized to other math-
ematical objects, such as complex numbers and matri-
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ces. One of these objects, typically called the “identity” 
and denoted by “1,” has the property such that if a is 
any object, then the product of 1 and a is a. The recip-
rocal of an object a, if it exists, is denoted by a−1 and is 
defined to the object so that the product, a × a−1 is 1. 
When the reciprocal of an object b exists, then the quo-
tient of objects a and b is defined to be a × b−1. 
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See Also: Addition and Subtraction; Magic; 
Mathematicians, Amateur; Number and Operations; 
Number and Operations in Society.

Music,	Geometry	of
See Geometry of Music

Music,	Popular
See Popular Music

Musical	Theater
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Geometry; 
Number and Operations; Representations.

Summary: Mathematical concepts and 
mathematicians have become interesting subjects of 
musical theater.

After the popular and critical success of Tom Stop-
pard’s Arcadia, first performed in London in 1993, 
playwrights began making regular use of mathematics 
as source material for new scripts. This interdisciplin-
ary collaboration, however, has largely been confined to 
stage plays and in the early twenty-first century has not 
found its way into musical theater—with one glaring 
and quite remarkable exception. In 2000, the husband-
and-wife team of Joanne Sydney Lessner and Joshua 
Rosenblum created Fermat’s Last Tango, a comic musi-
cal inspired by Princeton mathematician Andrew Wiles 
and his successful proof of Fermat’s Last Theorem.

Fermat’s Last Tango
Fermat’s Last Theorem (FLT) is arguably the most 
famous mathematical problem in history. When Pierre 
de Fermat left his tantalizing note in the margin of his 
copy of Diophantus’ Arithmetica in 1637, the result was 
a challenge that resisted the efforts of mathematicians 
for the next 350 years. By the twentieth century, FLT had 
acquired such a daunting reputation that when Prince-
ton mathematician Andrew Wiles decided to take it on 
around 1986, he did not tell anyone what he was doing 
until seven years later, when he emerged from the office 
in his attic with what he thought was a proper proof 
of the Taniyama–Shimura conjecture. A proof of Tani-
yama–Shimura was known to imply FLT, and the unas-
suming Wiles was propelled to unprecedented stardom 
far beyond the mathematical community.

This event is the jumping-off point for Fermat’s Last 
Tango. Because of the fictional liberties they take with 
the story, Lessner and Rosenblum have changed the 
name of their protagonist from Andrew Wiles to Dan-
iel Keane, and the first major piece of revisionism we 
experience is when Keane is visited by a devilish and 
vindictive Fermat and whisked off to “the Aftermath” 
to fraternize with Pythagorus of Samos, Euclid of Alex-
andria, Isaac Newton, and Carl Friedrich Gauss. The 
fantasy is enjoyable, but what is really striking is how 
few liberties are taken with the mathematics. That the 
authors have done their homework is clear early on 
when Fermat rhymes “Shimura–Taniyama” with “alge-
braic melodrama.” In the Aftermath, Fermat reveals that 
Keane has made some incorrect assumptions about the 
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Galois representations he used in his argument—which 
is indeed a mistake Wiles had made—and Keane retreats 
to his attic to try to repair the “big fat hole” in his proof.

Wiles, like Keane, was deeply uncomfortable trying 
to fill the gap in his proof under the glare of public 
scrutiny. The writers also keep the touching anecdote 
that Wiles promised his wife a corrected proof by her 
birthday, although it is unlikely that the real Ms. Wiles 
tried to lure her husband away from his research by 
crooning “Check out my modular form.” Taken in 
the lighthearted spirit in which it was intended, Fer-
mat’s Last Tango is roundly successful entertainment. 
Beyond this achievement, it also comes as close as any 
other piece of science theater to effectively staging the 
“moment of discovery,” creating a genuinely breathless 
moment when a defeated Keane finally realizes how to 
repair the hole in his proof using the Iwasawa theory 
approach he had abandoned several years earlier.

For those who do not have an opportunity to view a 
live production, a performance of Fermat’s Last Tango 
was recorded and is available through the Clay Math-
ematics Institute. Others have staged Fermat’s Last 
Tango specifically as a teaching experience. A 2007 
article in PRIMUS, a publication dedicated to teach-
ing undergraduate mathematics, describes a fully stu-
dent-mounted production, along with suggestions 
for related educational activities. The play is cited as a 
good introduction to not only mathematics products 
but also the personalities of people and the processes 
involved in mathematics research.

The Natural Sciences
There does not seem to be any other piece of widely 
disseminated musical theater devoted to a mathemati-
cal topic, though certainly there are mentions of math-
ematics in various popular scores. For instance, in 
Pirates of Penzance, first performed in 1879, W. S. Gil-
bert and Arthur Sullivan include the following stanza in 
the famously tongue-twisting Major-General’s song:

I’m very well acquainted, too, with matters 
mathematical

I understand equations, both the simple and 
quadratical

About binomial theorem I’m teeming with a lot o’ 
news

With many cheerful facts about the square of the 
hypotenuse

Broadening the net to include the mathematical 
sciences brings into play the work of American com-
poser Philip Glass. In 1976, Glass scored and wrote 
Einstein on the Beach, which was viewed as ground-
breaking in several ways—one being that it was nearly 
five hours long with no intermission. The implication 
here was that audience members were expected to 
come and go as they so desired. In a similar vein, it 
was not plot driven but did contain many references 
to Einstein, including a musical event meant to sug-
gest a nuclear explosion.  

In 2001, Glass wrote the music for the opera Galileo 
Galilei, which tells the life story of Galileo in reverse. 
The opera opens with Galileo blind and on his death-
bed, follows him back through his trial and astronomi-
cal discoveries, and ends with Galileo as a child attend-
ing an opera written by his father. Glass returned to the 
natural sciences a third time in 2010 when he wrote 
the music for Kepler, an opera that features Johannes 
Kepler as the only named character, although there are 
six other soloists and a chorus.  

Glass did study mathematics early in his educa-
tion before devoting himself wholly to music, and he 
readily admits to seeing mathematics and music as 
being linked—not just technically but artistically. “The 
beauty of mathematics is something that mathemati-
cians talk about all the time,” Glass said in a Novem-
ber 2009 feature for the Wall Street Journal. “And the 
elegance of a mathematical theorem is almost as good 
as its proof. Not only is it true, but it’s elegant. So you 
get into almost aesthetic questions.”

Kepler and Galileo are also the featured characters in 
a 2001 musical called Star Messengers, written by Paul 
Zimet with music composed by Ellen Maddow. A much 
more widely toured musical production was Dr. Atomic, 
written by John Adams with libretto by Peter Sellars. 
This opera tells the story of the Manhattan Project 
largely through the eyes of physicist J. Robert Oppen-
heimer, in part by borrowing text from government 
documents and interviews with scientists who worked 
on the bomb. First produced in San Francisco in 2005, 
Dr. Atomic has since been performed at multiple loca-
tions in Europe and the United States, including a live 
broadcast from the Metropolitan Opera in 2008.

Further Reading
Chin, Cynthia E. “Mathematical Heroes—No Longer 

Unsung.” PRIMUS 17, no. 1 (2007).
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Mutual	Funds
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement; Number and Operations.
Summary: Many mathematicians attempt to 
develop mathematical models that forecast the future 
direction of the stock market and thus to produce 
better investment results for mutual funds.

Mutual funds are a type of investment in which large 
numbers of people pool their money and a fund man-
ager invests these funds in one or more types of secu-
rity. Investors own shares in the fund, and the value of 
those shares is determined by the total value of all the 
securities owned by the fund. Mutual funds are a pop-
ular investment vehicle because they allow people to 
achieve a varied investment portfolio with a relatively 
small investment, thus limiting their risk in compari-
son to buying individual stocks, bonds, or other assets. 

Many types of mutual funds are available, depend-
ing on the desires of the investor. For instance, are they 
more interested in a riskier fund that may produce a 
higher yield for their investment, or a safer fund that 
is more likely to preserve the value of their capi-
tal? Some mutual funds specialize in a single type of 
investment—for instance, international stocks, health 
sector stocks, U.S. government bonds, or real estate—
while others invest in a variety of securities in order 
to achieve a desired balance between yield and risk. 
Although mutual funds are often perceived as a safe 
investment, they are not guaranteed by the Federal 
Deposit Insurance Corporation (FDIC) as are bank 
deposits, and it is possible to lose money by investing 
in mutual funds. Economists, statisticians, actuaries, 
and others frequently try to predict the stock mar-
ket using time series analyses and other mathemati-

cal methods. Prediction has historically proven to be 
quite challenging because of the complexities of time 
series data and the different socioeconomic variables 
and human psychological factors that appear to influ-
ence the stock market.

History and Growth
Although the first mutual funds were offered in the 
United States in the 1920s, the modern mutual fund 
industry dates from 1940 when the Investment Com-
pany Act established a body of rules regarding finan-
cial investments. In 1949, less than $2 billion were 
invested in mutual funds, but they became a more 
popular investment vehicle in the 1960s. By 1973, $47 
billion was invested in mutual funds. By 1987, this 
amount had grown to $4 trillion, and by 2000, to $6 
trillion, representing the investments of over 83 mil-
lion investors. One factor in the growth of individual 
investments in mutual funds is the shift in the United 
States from guaranteed pension plans to retirement 
savings plans like the 401(k) in which an individual 
worker is responsible for choosing how to invest his or 
her retirement funds. 

In 2008, there were over 8000 mutual funds in the 
United States versus about 3000 stocks listed on the 
NASDAQ stock exchange and a similar number on 
the New York Stock Exchange. It may at first be coun-
ter intuitive that there should be more funds than 
stocks, but this fact is not surprising if one considers 
any mutual fund as a composite made up of individ-
ual stocks or a subset of the total number of stocks 
(although, of course, a mutual fund may also include 
bonds and other components). Any set of n elements 
has 2n possible subsets, so a set of 10 elements has 1024 
subsets and a set of 25 elements has over 33 million. 

Risk Minimization
One appeal of mutual funds is that they allow people to 
reduce their risk through diversification. Modern port-
folio theory attempts to select assets to minimize risk, 
maximize return, or some combination of those two 
(in general, higher risk is associated with higher return, 
although this does not hold absolutely). The basic con-
cept behind the theory is that stocks or other assets, 
such as bonds, in the fund are evaluated in the context 
of other assets, and the goal is to maximize return or 
minimize risk for the total collection of assets, called 
a “portfolio.” American economist Harry Markowitz 
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developed portfolio theory beginning in the 1950s, and 
in 1990, was awarded the Nobel Prize in Economics for 
this achievement. 

Management
Because the performance of a mutual fund is often 
related to that of the economy as a whole, the perfor-
mance of specific mutual funds as well as mutual funds 
as a class is often evaluated against the performance 
of indices such as the Dow Jones Industrial Average (a 
scaled average of the stocks of 30 large, publicly owned 
companies) or the S&P 500 (a weighted index of 500 
large-cap common stocks). There are always pitfalls 
in making these types of comparisons; for instance, 
the return of mutual funds as a whole appears larger 
than it really is because funds that do poorly often go 
out of existence and are thus dropped from the aver-
age (survivorship bias). Interestingly, over time most 
individual funds produce somewhat worse results than 
a large index, such as the S&P 500, suggesting that the 
talent of individual managers (who choose when to buy 
and sell the stocks or other investments that comprise 
a mutual fund) are less efficient than the stock mar-
ket as a whole. For this reason there are mutual funds 
today that are not “actively managed” in the sense that 
an individual manager makes buying and selling deci-
sions. Instead, such funds simply own the stocks that 
comprise some index, such as the S&P 500, with buy-
ing and selling decisions motivated by changes in the 
makeup of the index (for instance, because of mergers 
or to new stocks joining or leaving the index). 

This method is not a criticism of mutual funds per 
se but simply an argument for the efficiency of the 
market. Studies of the stock picks of professional ana-
lysts also tend to perform only marginally better than 

those selected randomly—most famously by throwing 
darts at a dartboard. Despite this well-known result, 
many individuals and investment firms have devel-
oped complex mathematical models that attempt to 
forecast the future direction of the stock market and 
thus produce better investment results. In addition, 
people have tried to predict the movement of the 
stock market with other types of data; for instance, 
in 2010, two graduate students found that the emo-
tional content of tweets (messages sent on Twitter, a 
social networking Web site that can receive and send 
text messages from mobile devices, such as mobile 
phones) from the general public could be used to pre-
dict movement of the Dow Jones Industrial Average 
several days in advance. 
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Nanotechnology
Category: Architecture and Engineering.
Fields of Study: Geometry; Measurement; Number 
and Operations.
Summary: Nanoscience relies on mathematical 
modeling to predict the behavior of substances at the 
nanoscale.

Nanotechnology is a relatively new field of scientific 
study, the conceptual origins of which are typically 
credited to a presentation by physicist Richard Feyn-
man in the late 1950s. A nanometer is one-billionth 
of a meter, and nanoscience focuses on matter with 
dimensions between 1 and 100 nanometers. For com-
parison, an ordinary sheet of paper is about 100,000 
nanometers thick, a human hair is between 60 and 
120 nanometers thick, and the diameter of one atom 
of gold is about 1/3 of a nanometer. Thus, nanotech-
nology is concerned with studying materials at a very 
small scale, ranging from roughly larger than a single 
atom at the lower end to objects that can be seen with a 
high-quality optical microscope at the upper end. 

Physicists, mathematicians, and other nanotechnol-
ogists are often particularly interested in how the physi-
cal, chemical, and biological properties of materials 
may differ at this scale as opposed to properties of the 
same materials in bulk or at the scale of single atoms or 

molecules. Feynman discussed the notion that human 
beings would someday be able to create increasingly 
smaller and smaller machines, in part through directed, 
precision arrangement of atoms and molecules. He also 
introduced the idea that change in scale would affect 
the mathematical and physical properties of technology 
and processes. For example, relatively large-scale forces 
like gravity would begin to diminish in importance as 
machines grew smaller, while molecular-level van der 
Waals attractive forces, named for chemist Johannes 
van der Waals, and other properties would take on more 
important roles. However, he did not call his own ideas 
“nanotechnology.” Instead, the first use of the term as 
it is typically meant in the early twenty-first century is 
credited to engineer K. Eric Drexler in the 1980s. He 
also helped spread nanotechnology and molecular 
manufacturing ideas to a broader audience. There are 
types of technology that are already being created at 
nanoscales. Some visions about the future of molecu-
lar manufacturing are much like the replicator device in 
the science fiction franchise Star Trek: human-scale or 
even larger objects, even complex devices like comput-
ers, quickly assembled atom by atom.

Any word with the prefix “nano” means at a nano-
meter scale (for example, the word “nanofilter” would 
refer to a filter at the nanometer scale), but there are 
also some basic classifications that are in common use. 
Nanomaterials are furthered classified as nanoparticles 

N



(if all three dimensions are nanosized), nanotubes 
(which have a nanosized diameter but greater length), 
and nanofilms or nanosheets (the thickness is nano-
sized, but the width and height may be much greater). 
Nanostructured materials have an internal structure 
that is nanosized, but the pieces of material may be 
much larger.

Principles
Nanotechnology draws on many scientific fields, 
including chemistry, physics, and biology, as well as 
engineering and materials science, and one common 
thread among them all is mathematics. Interestingly, 
the extreme difference in size between usual applica-
tions and applications at the nanoscale means that 
some of the most fundamental laws describing natu-
ral processes do not apply. For instance Ohm’s law 
describes the flow of electrical current as

I
V

R
=

where I is the current in amps, V is the potential dif-
ference in volts, and R is the resistance of a conductor 
in ohms. This law is based on the free flow of electrons 
and hence does not describe the movement of elec-
trons through nanowires, which may be so narrow as 
to allow only one electron to pass through at a time. 
To take another example, at the nanoscale, 
heat flow is no longer governed by standard 
continuity boundary conditions and differ-
ent assumptions that allow for discontinui-
ties must be used instead. Identifying and 
quantifying how such fundamental laws 
and expectations change at the nanoscale is 
one important field of study within nano-
technology. 

Construction of systems at the nanoscale 
allows researchers great control over the 
form of the nanoparticles developed as well 
as the ways they form three-dimensional 
wholes. One line of research involves devis-
ing structures that require the minimum 
number of molecules for a given construct, 
while another involves developing self-
assembling structures, such as cubes and 
buckyballs. Nanotechnology also adds new 
complications to issues of dimensionality. 

From elementary geometry, humans are accustomed to 
thinking in terms of one dimension (a line), two dimen-
sions (a plane), and three dimensions (a cube, or any 
object in space). However, at the nanoscale the picture 
is not so clear. For instance, quantum dots or “artificial 
atoms” that contain only one or a few electrons with dis-
crete energy states are zero-dimensional solids, which 
can function in quantum computers as a binary switch. 
Fractals, which are described by noninteger dimension-
ality (for example, a two-and-a-half-dimensional object) 
are also used to model nanoscale systems.

Applications
Medicine is one of the most promising fields for 
nanotechnology because many internal processes of 
the human body take place at nanoscale dimensions. 
Drug delivery is one promising field: nanoparticles 
can be used to deliver drugs directly to particular cells, 
for instance, for chemotherapy that targets cancerous 
cells but not healthy cells and thus reduces tissue dam-
age. Nanotechnology has also developed ways to use 
nanoshells to concentrate heat from infrared light to 
destroy cancer cells with minimal damage to adjacent 
healthy cells. Nanotechnology promises to allow some 
drugs now delivered by injection to be taken orally, 
encapsulated in a nanoparticle, which would help it 
pass into the bloodstream from the stomach. Nanofi-
bers have been used to repair damaged joints by stimu-
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only 169 atoms were built at Rice University in 2006.
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National	Debt
Category: Government, Politics, and History.
Fields of Study: Data Analysis and Probability; 
Measurement; Number and Operations.
Summary: The accumulation of federal government 
budget deficits over time is the national debt, which is 
best considered relative to GDP or other factors.

Mathematician Richard Feynman once said, “There are 
1011 stars in the galaxy. That used to be a huge number. 
But it’s only a hundred billion. It’s less than the national 
deficit! We used to call them astronomical numbers. 
Now we should call them economical numbers.” In 
modern society, entities from individuals through gov-
ernments need money to function. Most government 
funds are generated by taxing individuals, businesses, 
goods, and services. 

At the same time, governments must spend money 
for various purposes. If a government has more income 
than expenditures in a given fiscal period, usually one 
year, the excess of income over expenditures is called a 
“surplus”; if a government has more expenditures than 
income, the excess of expenditures over income is called 
a “deficit.” The sum of all of these single-year surpluses 
and deficits over the entire history of the federal gov-
ernment is called the “national debt.” Mathematics has 
long been used to quantify expenditures, deficits, and 
debts. Taxation and deficiency problems were men-
tioned in the Chinese mathematical text The Jiuzhang 
suanshu (Nine Chapters on the Mathematical Art), and 
Indian mathematician Brahmagupta referred to debts to 
mean what are now called “negative numbers.” William  

lating the body’s production of cartilage; nanoparticles 
have been used to increase the speed of blood clotting 
to prevent blood loss in trauma patients; and nanocrys-
talline silver is already being used as an antimicrobial 
agent for wound treatment. Nanocrystal technology 
is being developed to improve medical imaging, and 
in the future it may be possible to develop cell repair 
nanorobots, which could be programmed to repair dis-
eased or damaged cells in a person’s body. 

Nanotechnology has many applications in the fields 
of energy production and pollution control. Nanotech-
nology has made it possible to create more efficient 
solar cells at a lower cost (making the technology more 
likely to be adopted) and provided new forms that 
make solar technology more convenient. For instance, 
solar cells created by embedding nanoparticles in plas-
tic film can be incorporated into mobile phones and 
portable computers. Batteries created using nanotech-
nology can be made lighter and more powerful and 
can also be charged more quickly than conventional 
batteries, increasing the efficiency of hybrid automo-
biles. Nanofilters are increasingly being applied in food 
production, water filtration, and air pollution control, 
and nanoparticles are also used in some applications to 
absorb contaminants. 

In manufacturing and construction, nanotechnol-
ogy has led to the development of new materials that 
are lighter, stronger, and possess more desirable prop-
erties than their conventional analogues. For instance, 
nanomolecular structures are already being used to 
make concrete and asphalt more resistant to water, and 
nanomaterials added to light-emitting diode (LED) 
lighting makes them more resemble standard lighting, 
allowing the incorporation of more efficient LED lights 
in home and industrial use while retaining the look of 
traditional lighting. Nanocoatings are commercially 
available that resist corrosion, offer insulation and UV 
protection, and can remove pollutants from a build-
ing’s atmosphere.

Further Reading
Foster, Lynn E. Nanotechnology: Science, Innovation  

and Opportunity. Upper Saddle River, NJ: Prentice 
Hall, 2006.

Garcia-Martinez, Javier, ed. Nanotechnology for the Energy 
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Playfair created some of the earliest graphical represen-
tations of social and economic data around the time of 
the American Revolution, such as trade balances between 
England and other countries and the English national 
debt. By the twentieth century, mathematical mea-
surement, estimation, and modeling were increasingly 
used. Standard economic measures like gross domestic 
product (GDP) were common, and there were theories 
and research on principles like return on capital, inter-
est rates, and exchange rates, many of which cannot be 
known with certainty. Stochastic modeling, random 
walks, particle theory, and Brownian motion, named for 
botanist Robert Brown, have been used extensively in 
the mathematical modeling of financial processes. After 
events like the Wall Street crash of 1929, there was also 
interest in forecasting models that could warn of debt 
crises. Mathematicians continue to research and create 
models to address both historic and new financial con-
cerns, and many people have created representations 
such as the national debt clock and deficit calculators 
to extrapolate trends. Others argue against too much 
aggregation or extrapolation in mathematical models, 
citing inherent data collection errors in large-scale indi-
ces, like the consumer price index and gross national 
product, as well as subjectivity in individual perception 
and often-complex interactions between variables such 
as debt, deficit, production of good and services, and 
allocation of consumer resources. 

Inflation
National debt differs uniquely from individual debt in 
the fact that governments usually have the power to print 
more money to pay debts. However, doing so often leads 
to undesirable economic consequences. More money in 
circulation can lead to increased demand for goods and 
services, which in turn may lead to inflation. Mathema-
ticians and economists study inflation trends and cycles, 
as well as the reciprocal impacts of inflation on factors 
such as labor costs. While most economies function 
reasonably well with some level of inflation, too high a 
level of inflation leads to a host of problems, including 
hoarding of goods, increases in interest rates for credit 
and loans, and trade deficits with other countries. For 
this reason, most governments borrow rather than 
print the money to finance debt. In the United States, 
borrowing is accomplished primarily by selling govern-
ment bonds. The purchaser, who may be an individual 
or another country, pays for a bond at the time of sale, 

and in return is promised a future amount of money, 
sometimes with interest payments made before the end 
of the bond period. The United States pays interest on 
its national debt bonds, which can be significant. For 
example, in 2009, interest on the national debt was $260 
billion, approximately 8.5% of that year’s federal budget 
and the fourth-largest single expense.

Intentional Debt
Having a large national debt poses many risks to an econ-
omy. A large national debt can help contribute to infla-
tion and can lead to tax increases. Economists have also 
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Federal Reserve System

T he Federal Reserve System (sometimes 
called the “Fed”) is the national bank of 

the United States and is independent of other 
United States institutions, including the Treasury 
Department. While it is not directly related to 
administering the deficit or to making decisions 
on government spending, it helps to manage the 
money supply in the United States by facilitat-
ing the lending of money between banks and by 
lending money to banks directly, which in part 
determines the interest rates that banks charge 
for borrowing money. These interest rates in turn 
influence the rates on the Treasury bonds that 
finance deficits. Many mathematicians and actu-
aries work for the Federal Reserve. For example, 
mathematician and Federal Reserve board mem-
ber (as of 2010) Gary Anderson and economist 
George Moore developed the Anderson–Moore 
algorithm for solving linear saddle point models, 
which are used in economic modeling.



determined that GDP tends to grow more in an econ-
omy with a moderate level of national debt than in one 
with a high level of debt. Many variables affect spend-
ing, deficit, and debt. For example, governments often 
run deficits during economic recessions or depressions, 
spending money to attempt to stimulate the economy, 
partly under the notion that future gains will compen-
sate and yield a positive long-term average or expected 
value. In 1900, the national debt in the United States was 
$2.6 billion and experienced overall nonlinear growth 
approaching the twenty-first century. Mathematical 
analyses have shown that debt increased sharply during 
World War I, while in the 1920s national debt decreased 
due to surpluses. It increased sharply again during the 
1930s because of the Great Depression. Another increase 
occurred with spending for World War II. By 1950, the 
U.S. national debt had grown to $256.8 billion. After 
several relatively small increases, the national debt grew 
quickly beginning in the mid-1970s. Using exponen-
tial regression, mathematicians and economists have 
estimated that the national debt was doubling approxi-
mately every six years during this latter period up to 
nearly the end of the twentieth century. Projective mod-
els extrapolate such trends to estimate debt, often based 
on other estimated values, like the future population.

Debt Compared to GDP
In the same way that individuals can afford to spend 
more money when they receive a raise in salary, it can 
be misleading to look at the dollar amount of the fed-
eral debt without considering the overall size of the 
economy and the time value of money. For this reason, 
economists often evaluate the economic health of gov-
ernments by considering national debt as a percent-
age of the country’s GDP. In the United States in 1940, 
the national debt was 52.4% of the GDP. This num-
ber increased during World War II to 121.7% in 1946, 
meaning that national debt was actually larger than the 
GDP, but fell below 100% again in subsequent years. 
Mathematicians and economists have created models 
to forecast this index, with some predicting that fac-
tors like the housing and financial crises will cause the 
United States to once again pass the 100% threshold in 
the twenty-first century.
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Paulos, John. A Mathematician Reads the Newspaper. 

New York: Anchor Books, 1996.

Stein, Jerome. Stochastic Optimal Control, International 
Finance, and Debt Crises. Oxford, England: Oxford 
University Press, 2006.

U.S. Office of Management and Budget. “Historical 
Tables: Budget of the U.S. Government.” http://www 
.federalbudget.com/HistoricalTables.pdf.
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See Also: Forecasting; Gross Domestic Product 
(GDP); Pensions, IRAs, and Social Security; Sales Taxes 
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Native	American		
Mathematics
Category: Government, Politics, and History.
Fields of Study: Connections; Geometry; 
Measurement; Number and Operations; 
Representations.
Summary: Native Americans developed numbering 
systems and had a clear sense of dimension, geometry, 
and probability.

The term “Native American mathematics” is deceptive 
because there is no single culture for all Native Ameri-
cans. Rather, each of more than 400 Native American 
tribes has its own distinct culture, with each mathemat-
ical element being specific to that culture. Nonetheless, 
in an examination of mathematical aspects, it is pos-
sible to discuss some commonalities across the many 
tribes, producing evidence of multiple number systems, 
arithmetic operations, geometry, and probability.

Number Systems
Native American numbering systems often used a sim-
ple grouping system that corresponded to different parts 
of the human body. For example, the idea of “tens” is 
contained in the numbering system of the San Gabriel 
Indians in California, where “all my-hand finished” 
represented the number 10, “all my-hand finished and 
one my-foot” represented the number 15, and “another 
finished my-foot the side” represented the number 20. 
It is inferred that they used single fingers on each hand 
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to represent any number less than 10. Often, a Native 
American tribe would have names for large numbers, 
but had little use for such in their daily lives. For exam-
ple, Michael Closs, a cultural historian, describes a Cop-
per Eskimo elder while relating a story about two men 
who, trying to settle an argument, begins to count the 
hairs on a wolf and a caribou. The story ends with the 
count unfinished, as both men die of starvation. And, 
the story concludes with the phrase: “That is what hap-
pens when one starts to do useless and idle things that 
can never lead to anything.” 

Though using groupings of 5 and 10 as the structure 
for their number systems, the idea of a number base 
is not always evident. Also, some evidence exists for 
the use of 2, 4, and 20 as the structuring element. For 
example, the Yukis tribe in northern California used a 
combination of the quaternary (base four) and octal 
(base eight) systems. In turn, their counting mecha-
nism depended on referring to the four spaces between 
the fingers on both hands, not the fingers themselves. 

In a study of North American Native Americans, 
researchers documented the use of 307 different num-
ber systems; 33% were base 10, 33% were base 5, 23% 
were base 2, 10% were base 20, and the remaining 1% 
were base 3.

In any discussion of Native American mathematics, 
it is necessary to include the Aztecs, Incas, and Mayans. 
For example, the Aztecs’ number system was based on 
the number 20, with the numbers 400 and 8000 given 
special significance. In contrast, the Incas used a slight 
variation of the base 10 system, and even had specific 
words for the numbers 1–10, 100, 1000, and 1,000,000. 
Finally, the Mayans, the most mathematically sophis-
ticated of the three, had a vigesimal system using the 
number 20 as its base. The Mayan system also included 
special notations for multiples of numbers and used a 
special symbol glyph to represent zero.

Arithmetic 
The idea or use of arithmetic operations was not some-
thing needed by early Native Americans, who depended 
on a hunting-gathering culture. Historians suggest that 
any signs of significant arithmetic are due to a tribe’s 
interactions and trade with the early fur traders or buf-
falo hunters. For example, the language of the Navajo 
does not include words for “multiply” or “divide,” yet 
that should not imply their inability to perform either 
process computationally or using real items.

Evidence of addition is found in words used to denote 
different numbers, using a process of addition by juxta-
position. For example, Alaskan Natives living near the 
Yukon River essentially used the words “five one” and 
“five four” to denote the numbers 6 and 9, respectively. 
In direct contrast, the Miluk Coos, an Oregon tribe, 
used subtraction by juxtaposition, where “four ten” and 
“one ten” denoted the numbers 6 and 9, respectively. 
Some historians claim that 40% of the Native American 
tribes used some version of this subtraction process, 
especially for numbers close to multiples of 10.

Evidence of multiplication is found among Pawnee 
tribes, in a very creative fashion. Their term “50 per-
sons” represented the number 1000, based on their use 
of the word “man” for the number 20, knowing that 
“man” had 10 fingers and 10 toes. Thus, “50 persons” 
was equivalent to 50 sets of 20 fingers and toes, or a 
total of 1000. 

Measurements
The measurements invoked by Native Americans were 
context-sensitive and personal in nature. No standard 
units were established and used widely either within a 
tribe or across tribes. In most instances, the measure-
ments used were specific to the context and informal. 
The Ojibwa tribe is a good example. For short lengths, 
their units were finger widths, hand spans, forearm 
lengths, and arm spans, while their longer lengths 
might reflect a changing position of the sun or even 
mention the unit “number of sleeps” involved in tra-
versing a long distance. 

Geometry 
Native American geometry is evident in the color-
ful decoration and intricate patterns found on knife 
cases, moccasins, blankets, pouches, baskets, and pot-
tery. At first, many of these patterns were created using 
porcupine quills but eventually the shift was made to 
using glass beads. 

When creating a pattern, the different Native 
American tribes differed in their use of geometrical 
structures. In some instances, a tribe’s members cre-
ated irregular floral patterns, while other tribes used a 
geometry based only on straight lines, allowing them 
to create blocks, crosses, and triangles. The types of tri-
angles ranged from isosceles to equilateral to right, with 
common traits being tall isosceles triangles or pairs of 
reflecting congruent triangles. Occasionally, circles and 
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spirals appear as part 
of a design.

Many studies have 
focused on Native 
Americans’ use of sym-
metry in strip patterns 
using beads. Of the 
seven possible sym-
metry groups, the 
most popular pattern 
is labeled “pmm2” in 
standard transformational schemes, which means that 
the pattern has horizontal, vertical, and rotational sym-
metry. Figure 1 shows this pattern.

Also, in the process, the creator of the visual pat-
tern possibly used counting or even some computing 
skills (for example, skip counting by threes to form a 
border). It is possible that creators of some of the pat-
terns included elements of measurement (perimeter 
or area), number theory (multiples and divisors), and 
fractions (common, decimal, and ratios). 

Tiling patterns are evident in the creation of blan-
kets, going beyond strip patterns. An example is the 
section from a Navajo blanket in Figure 2.

Some historians claim tiling elements are also found 
in some of the Native American petroglyphs carved on 
the surfaces of caves, cliffs, and large stones.

Finally, Native Americans had a clear sense of dimen-
sion, using objects to represent the three possibilities. A 
stick represented dimension one, an animal skin rep-
resented dimension two, and an apple or walnut rep-
resented dimension three. However, in their paintings 
on flat surfaces, the idea of dimensional perspective is 
not utilized.

Probability
Elements of probability are found in some of the chil-
dren’s games played by various Native American tribes. 
For example, consider the Apaches’ “Throw Sticks” 
game involving two or more people. In one version, 
three sticks are decorated with colorful designs on one 
side only, called the “face.” The sticks are held in one 
hand and then dropped on the ground. The scoring 
is as follows: 10 points for three faces up, 5 points for 
two faces up, 2 points for 1 face up, and 1 point for 
no faces up. The score is kept by moving small sticks 
or “horses” around a circle of 30 stones. Play contin-
ues until someone travels the full circle. Elements of 
probability, such as likelihood, events, and dice-like 
actions, are all evident in this game.

Native Americans also played dice games, using dice 
made from bone, peach stones, deer horn, beaver teeth, 
or walnut shells. As most of these dice were two-sided, 
one side was colored to distinguish the two sides. When 
sets of dice were thrown, the scoring was based on the 
number of a given side appearing. Because the “dice” 
were crudely made, the chances of each side appearing 
are not equal. This observation actually validates the 
claim that Native Americans had a good sense of prob-
ability, because the higher score values were assigned to 
the least probable events. 

Further Reading
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Closs, Michael. A Survey of Mathematics Development  

in the New World. Ottawa, Canada: University of 
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Figure 2. Navajo blanket.



Nervous	System
Category: Medicine and Health.
Fields of Study: Algebra; Number and Operations.
Summary: Mathematicians use a variety of 
mathematical modeling techniques to map and 
analyze nervous systems.

Human beings and many animals have two systems that 
are responsible for regulating and coordinating the activ-
ities of the body: the nervous system and the endocrine 
system. The first provides extremely fast responses, like 
reacting to touching a hot stove. The second responds 
more slowly and continuously, such as regulating blood 
sugar after a meal. Both systems work by detecting inter-
nal and external variations, such as shapes, odors, or 
temperature, to maintain the balance of body functions. 
Neuroscience, which is the study of the nervous system 
(including the brain) and its functions, is an interdis-
ciplinary field that draws concepts and methods from 
many fields such as mathematics, psychology, biology, 
physics, and medicine. The Hodgkin–Huxley equa-
tions, named for Alan Hodgkin and Andrew Huxley, 
are fundamental to the development of mathematical 
models and simulations that have long been the basis of 
many experiments to study the nervous system. Many 
neuroscience researchers and teachers use the open 
source NEURON computer simulation system, which 
incorporates systems of equations and computational 
algorithms to mathematically model and display the 
behavior of individual neurons or networks of neurons 
in a dynamic way that is often difficult or impossible to 
achieve in traditional laboratory experiments.

Nervous System Processes
Everyday situations can highlight the complex action 
of the nervous system. For example, in a soccer match, 
players anticipate the opportunity to act. At the exact 
moment the ball is thrown in a player’s direction, thou-
sands of nerve connections start to become active. In 
milliseconds, the player begins to use sensory memo-
ries and visual information to immediately decide the 
best course of action, such as to kick the ball to another 
player or directly to the goal. The central nervous sys-
tem consists of the brain and spinal cord. The brain is 
the control central of the nervous system. The spinal 
cord conducts electrical signals between the brain and 
various nerves throughout the body, and controls some 

reflex functions. Neurons are cells that propagate the 
electrical impulses in the nervous system, and glial cells 
help maintain parts of the nervous system. For exam-
ple, they produce myelin, which coats many neurons 
like insulation in electrical wiring. The neurons have 
important properties, such as excitability and conduc-
tivity, and act similarly to an electric current transmit-
ted along a wire. This phenomenon occurs because of 
permeation of ions, such as sodium and potassium, 
through the neural membrane, which generate an elec-
trical signal that propagates between neurons via its 
branched structure, consisting of thousands of small 
extensions.

Early Research
Nerve impulse propagation and the nervous system pro-
cesses have been researched for many years using theo-
ries and techniques from genetics, molecular biology, 
physiology, psychology, and mathematics, among others. 
In the 1950s, physiologists and biophysicists Alan Hodg-
kin and Andrew Huxley experimented on the nervous 
systems of squids, specifically on a structure known as 
the “giant axon.” An axon transmits electrical impulses 
in the nervous system, and a squid’s giant axon can be 
up to 1 millimeter in diameter, much larger than most 
axons and visible to the naked eye. These experiments 
led to the development of the Hodgkin–Huxley equa-
tions, which are nonlinear ordinary differential equa-
tions that describe or approximate the electrical char-
acteristics of neurons and other electrically excitable 
cells, such as those in the heart. They involve concepts 
like gates (channels that allow the ions to flow), volt-
age thresholds, and conductances, which act together 
to determine if and when a neuron “fires” an electri-
cal burst. They are very similar to electric circuit theory, 
and some models of nervous systems look very much 
like electrical circuit diagrams.

Other Mathematical Connections
Hodgkin and Huxley won a Nobel Prize for their 
experimental and mathematical work, which has since 
led to other mathematical explorations of the nervous 
system. The nervous system in mammals is a very 
complex dynamic system, with many interconnected 
components. Periodic rhythms are found in some 
types of movement-related behaviors that are gov-
erned by the nervous system, like walking and breath-
ing. They are also related to sensation and cognition. 
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Studies of all these various substructures involve not 
only understanding how each structure behaves on its 
own but also how they interconnect and communi-
cate with one another. Because of the vast degree of 
intercorrelation among various nervous system struc-
tures, from individual neurons to larger structures like 
the brain and spinal cord, one challenge facing math-
ematical modelers is creating systems of equations 
that optimize the ability of the equations to realisti-
cally represent neuronal systems and their behaviors 
while making them tractable for computation and 
interpretation. One of the interesting mathematical 
phenomena that researchers study is called “gamma 
and beta rhythms.” These brain waves have been con-
nected to so-called “higher” mental activity, like per-
ception and consciousness, as well as to synchronous 
activity that may help link various sensory inputs into 
a single mental construction of an object. However, 
many questions remain. Techniques such as graphs, 
circuits, networks, clustering, geometry, and simula-
tion all play a role in investigation of nervous system 
properties and functions.

One additional important advance in neuroscience 
is the neurochip. It can be used to help link biological 
neurons and semiconductor materials, which may one 
day help to create prosthetics that integrate fully into 
the body’s own neural system. They may also facilitate 
treatments for neurological diseases like Alzheimer’s 
and Parkinson’s.

Further Reading
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Neural	Networks
Category: Communication and Computers.
Fields of Study: Data Analysis and Probability; 
Number and Operations; Representations.
Summary: Artificial neural networks use 
sophisticated mathematical algorithms and 
computational functions to simulate biological  
neural networks.

The term “neural networks” is generally applied to the 
systems of biological or artificial neurons. More often it 
is used in application to artificial neural networks that 
are designed to reproduce some human brain func-
tions, such as information processing, memory, and 
pattern recognition. However, this term is also used for 
biological neural networks, for which the term “neural 
system” is more common. The beginning of modern 
neural network research is credited to neuroscientist 
Warren McCulloch and mathematician Walter Pitts 
in 1943. McCulloch had spent decades pondering the 
logic of the nervous system (for example, what allows 
people to think or feel) before beginning his collabora-
tion with Pitts. He specifically credited Pitts’s knowl-
edge of modular arithmetic for the success of their joint 
work, which produced the McCulloch–Pitts Theory of 
Formal Neural Networks. Their research suggests that 
any computable function can be completely realized 
by a McCulloch–Pitts artificial neural network, though 
some such networks would be impractically large.

Artificial Neural Networks
Artificial neural networks are mathematical tools or 
physical devices that function similarly to biological 
neural systems. They consist of building blocks, called 
“artificial neurons,” which resemble the structure of real 
neurons. Each biological neuron includes three major 
parts: dendrites, soma, and axon (see Figure 1A). Corre-
spondingly, each artificial neuron also consists of three 
major parts: inputs (or “dendrites”), transformation 
function (“soma”), and output (“axon”) (see Figure 
1B). The terminology that is generally used for biologi-
cal neurons is also often applied to artificial neurons. 

Modern neural networks use data analysis and non-
linear statistical methods to model complex relation-
ships between inputs and outputs or to find patterns. 
Bayesian methods of inference, named for Thomas 
Bayes, are increasingly employed. Graph theory and 
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geometry are also very useful for mapping neural net-
works, assessing their capabilities, and studying pattern 
classification. Artificial neural networks are applied to 
a variety of problems in science, industry, and finance 
in which people must draw conclusions and make 
decisions from noisy and incomplete data. They can 
perform pattern recognition and pattern classification, 
time series analysis and prediction, function approxi-
mation, and signal processing. Several types of artifi-
cial neural networks were developed for the specific 
problems for which they can find the best solution. The 
most famous of them are single- and multi-layer per-
ceptrons; Hopfield neural networks, named for John 
Hopfield; self-organizing Kohonen maps, named for 
Tuevo Kohonen; and Boltzmann machines, named for 
the Ludwig Boltzmann distribution. Regardless of the 
type of neural network or the problem it is designed 
to solve, the output is some mathematical function of 
the inputs, often involving probability distributions. 
As examples, consider functions 
of the three types of the artifi-
cial neural networks represented 
in Figure 2. 

The first, single-layer per-
ceptron consists of one layer 
of artificial neurons and was 
designed for pattern recognition 
and classification problems (see 
Figure 2A). The input pattern of 
signals s

i
 is fed to each neuron 

in the perceptron with differ-

ent weights, wij. Then the signals are added 
in each jth neuron to form a weighted sum 
Σiwij si, which is processed by a transforma-
tion (nonlinear) function, resulting in a pat-
tern of the output signals oj. Thus, the pattern 
of output signals oj is determined by the set 
of weights wij, and this set of weights forms 
a memory in the neural network. To obtain 
desired response pattern dj to a given input 
pattern si, the perceptron is required to be 
“trained.” Training (or learning) procedure 
consists of the method that adjusts neural 
network weights wij that form desired output 
pattern dj. 

Because of limited capability of single-
layer perceptrons (for example, they cannot 
reproduce “exclusive OR” logical operations), 

the multilayer perceptrons (see Figure 2B) became very 
popular for different problems in pattern recognition 
and classification. Inclusion of one or more “hidden” 
layers into the neural networks increased their learning 
capability and performance. Multilayer perceptrons 
are learned by so-called backpropagation algorithm 
that changes weights wij in all layers to ensure desired 
output in the last layer. 

Both single-layer and multilayer perceptrons belong 
to a class of feedforward neural networks, as connec-
tions between the neurons do not form closed loops 
(see Figures 2A and 2B), and information transfers only 
in one direction, from the input to the output. A Hop-
field neural network is a representative of another class, 
recurrent artificial neural networks, with bi-directional 
flow of information (see Figure 2C). Each neuron in 
this network is connected to the others with symmetric 
bidirectional connections, and its output is calculated 
in a way similar to that for perceptrons. A Hopfield neu-
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ral network runs by cycles. During one cycle, the output 
of each neuron is calculated using external inputs and 
neural outputs from the previous cycle. These neuro-
nal outputs become their inputs, with corresponding 
weights and transformation function, during the next 
cycle. Neural outputs are recalculated for each cycle 
until the system reaches a steady state. This steady state 
pattern of neural outputs represents a stored pattern 
in the Hopfield neural network. Information in Hop-
field neural networks, as in perceptrons, is stored in the 
weights, wij. 
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Rumelhart, David E., James L. McClelland, and the PDP 
Research Group. Parallel Distributed Processing. Vol. 1. 
Foundations. Cambridge, MA: MIT Press, 1986.

Vladimir E. Bondarenko

See Also: Nervous System; Parallel Processing; Robots.

Newman,	Ryan
Category: Games, Sport, and Recreation.
Fields of Study: Connections.
Summary: Ryan Newman is a NASCAR race car 
driver who credits his success, in part, to his  
engineering background.

Ryan Joseph Newman, National Association of Stock 
Car Auto Racing (NASCAR) great and structural engi-
neer, was born on December 8, 1977, in South Bend, 
Indiana. He attended Purdue University and in 2001 
earned a bachelor’s degree in vehicle structure engi-
neering, which has since benefitted him throughout his 

illustrious auto racing career and pursuit of a NASCAR 
Sprint Cup Championship. 

Early Career
In 1993, at the age of only 16, Newman made his 
auto-racing debut in the United Midget Auto Racing 
Association (UMARA) and the All-American Midget 
Series (AAMS). Success came quickly to young New-
man as he won not only Rookie of the Year honors 
but the AAMS Championship. During these early 
years, Newman amassed over 100 wins in these and 
other divisions. His rapid rise and prolific success 
behind the wheel earned him a step up to the nation-
ally acclaimed United States Auto Club (USAC) Series 
in 1995, where he competed in racing competition at 
various levels. Again, he was recognized with Rookie 
of the Year honors. In 1999, he became the first driver 
in USAC history to win races in a midget, sprint car, 
and Silver Crown car. He also won the Silver Bullet 
Series Championship that year.

Engineering Skills
It was also during this time that Newman was study-
ing vehicle structure engineering at Purdue University 
in West Lafayette, Indiana, and in 2001 he earned his 
bachelor’s of science degree in this field. His engineer-
ing skills have been useful in fuel management, under-
standing the geometry and physics of each race track, 
the design of race cars, and more generally in time 
management and problem solving. He stated, “I’ve 
always said that an engineer, every time he gets one 
answer, he gets two additional questions, which is eas-
ily ‘How’ and ‘Why.’ I think that for me, it has made my 
career more successful being an engineer.” 

This training proved valuable in Newman’s chosen 
profession, and as he continued to win on the track, peo-
ple took notice. One observer, in particular, was racing 
legend Roger Penske, who asked Newman to drive his 
cars in NASCAR’s ARCA Series and Busch Series. New-
man experienced immediate success, winning three of 
his first five races, and in a matter of weeks it became 
clear he was well on his way to NASCAR’s premier divi-
sion: the Sprint Cup Series. He made his Sprint Cup 
Series debut at Phoenix International Raceway in 2000. 
By 2002, Newman had won six pole positions and 
his first race in the Sprint Cup Series, also at Phoenix 
International Raceway, and was well on his way to yet 
another Rookie of the Year Award. It was during this 
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time, in part because of his rapid rise through the NAS-
CAR ranks and race-qualifying prowess, that he earned 
the nickname “Rocket Man.”

Sprint Cup Series Success
Newman has been among the most popular and con-
sistent competitors in NASCAR’s Sprint Cup Series 
each season since 2002, winning 14 races as of 2010, 
the most notable being his 2008 Daytona 500 victory. 
In 2009, he joined Stewart-Haas Racing, driving the 
No. 39 U.S. Army Chevrolet. Since making the move 
to Stewart-Haas, Newman has won two pole positions 
as of 2010 and has finished a race in the top 10 no less 
than 15 times. His success has kept him in the hunt 
for the series championship. In his nearly 300 starts in 
the Sprint Cup Series, Newman has qualified for the 
pole position 46 times, earning at least one pole posi-
tion each year since 2001. At this pace, he is well on his 
way to breaking into NASCAR’s top 10 pole position 
winners of all time, placing him among many of auto 
racing’s elite and Hall of Fame drivers.

Newman has brought a new perspective to NAS-
CAR racing, showing fans that scientific knowledge 
can play a major role in success on the track. Newman 

is often asked about engineering in interviews, and in 
this context, he regularly critiques and analyzes the 
pros and cons of changes in racing. Some of his com-
ments have been controversial, such as those related to 
the original moon landing. Newman’s crew chief, Matt 
Borland, also possesses an engineering degree, and 
mathematical conversations are commonplace with 
the crew. As Newman told Sports Illustrated, “It’s cre-
ated a common language for me and the crew because 
there’s at least three other guys on our travel team that 
are engineers alongside of the engineers that we have 
in a group back in the shop. So we have that common 
language.” Newman’s success opened NASCAR to 
engineering specialists, which has brought significant 
changes to the world of NASCAR. In 2005, Newman 
and wife Krissie founded the Ryan Newman Founda-
tion, where its mission, in part, is to provide college 
scholarship funding to students interested in auto rac-
ing careers.

Further Reading
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Nielsen	Ratings
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Data Analysis 
and Probability; Measurement.
Summary: Television viewing data are estimated 
using metrics collection and statistical modeling.

The Nielsen Ratings are a measure of how many peo-
ple are watching certain television programs. When 
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Arthur Nielsen began measuring television viewing in 
1950, there were three networks and about 9% of U.S. 
households had a television. In the twenty-first cen-
tury, homes often have multiple televisions receiving 
scores of channels. Even when the number of television 
sets was small, it was not possible to gather complete 
viewing data for every single person who owns a tele-
vision. Instead, Nielsen Media Research uses statistical 
sampling methods to take a representative subset of 
viewers and then extrapolates from the sample’s view-
ing activities to the whole population of viewers. The 
statistical methods Nielsen uses to collect its data have 
been refined several times in response to changes in 
viewer behavior. People who develop and analyze rat-
ings typically have expertise in analytics, metrics, and 
statistical modeling. 

Advanced statistical methodologies, like data mining 
and software such as Mathematica, are used to extract 
patterns from Nielsen data that help explain which 
segments of the population view particular shows. 
Networks make decisions about whether to cancel or 
renew programs based on Nielsen ratings. Companies 
also use Nielsen audience estimates to allocate tens of 
billions of television advertising dollars each year.

Statistical Sampling and Data Collection
No one knows exactly how many households have tele-
visions, but 2010 estimates suggest that the average U.S. 
household has just fewer than three televisions. Using 
statistical sampling, Nielsen can obtain representative 
data using small a proportion of households: approx-
imately 9000 in its national sample, another 1000 in 
its Hispanic sample, and various smaller amounts in 
selected local markets. For the national television sam-
ple and major local markets, “people meters” record 
what television shows household members watch 
using an electronic set meter, along with a remote 
control that distinguishes each individual member 
of the household. Set meters are also used to collect 
data in mid-sized local markets, but with paper diaries 
for individual demographics. Meters transmit data to 
Nielsen every night, where it is checked mathematically 
for transmission or recording errors before analysis. In 
the smallest markets, viewers record programs in paper 
diaries and mail them to Nielsen. Historically, Nielsen 
tracked only television programs that were viewed live 
at the time they aired. However, people are increasingly 
using digital video recorders (DVRs), streaming video, 

and other delayed viewing technologies, which biases 
live ratings and affects both programming and adver-
tising decisions. Nielsen began adding DVR house-
holds to its sample in 2006 and now regularly reports 
same-day and seven-day DVR playback ratings as well 
as its traditional live viewer ratings. People’s failure to 
return paper diaries is also a growing source of bias, 
and research methodologists are working on revising 
this method to make completing the diaries easier to 
encourage greater response.

Television Metrics
Nielsen’s primary metrics for television viewing are 
rating, share, and projected audience. A program’s 
rating is a percentage that represents the number of 
households that watched the program out of the total 
number of households that could have watched the 
program. In this case, the denominator of the fraction 
is fixed according to the Nielsen sample size. The 1983 
finale of the television show M*A*S*H holds the record 
for highest Nielsen rating, 60.2, which means slightly 
more than 60% of possible sample households tuned 
in to watch. At the time there were about 83 million 
television households, so one sample rating point rep-
resented 1% or 830,000 households in the population. 
However, it would be very unusual for every household 
to be watching television at the same time. 

Share adjusts for this fact by computing the percent-
age of households that watched a specific program out 
of the number of households that were actually watch-
ing television during that time. This is a more com-
plicated calculation, since the number of televisions 
being used at any given moment changes constantly. 
Shares are often used to measure how competitive a 
program is in its particular time slot. The M*A*S*H 
finale had a 77 share, which means 77% of households 
watching television at all were tuned to that program. 
Ratings and shares are also computed for several age, 
race, and other subgroups, as these are very important 
to advertisers. Since data are recorded at the household 
level—and many people may watch the same program 
in one house, or outside the home in places like sports 
bars or dorms—the number of individual viewers in 
a subgroup or population can only be estimated from 
the demographic data recorded by people meters and 
diaries. In 2007, Nielsen also began to measure college 
students’ viewing habits by treating them as if they 
were watching an additional television set at home. 
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Projected audience is the estimated number of peo-
ple reached in the overall population, which is calcu-
lated using statistical modeling. The M*A*S*H finale 
had a projected audience of 106 million viewers. The 
number of television households grows every year, as 
does the number of channel choices, so it can be dif-
ficult to compare ratings from across years, especially 
over large stretches of time. For example, although 
Super Bowl XLIV surpassed the M*A*S*H finale in 
terms of estimated viewers (106.5 million), it had a 
lower rating (46.4). Another reason that the numbers 
may be difficult to compare is that Nielsen produces 
rapid overnight ratings for many media outlets and 
these values are later adjusted. Further, only selected 
numbers are made public, such as the daily or weekly 
top 20 shows, which vary from week to week. Com-
prehensive data is generally available only to Nielsen’s 
clients, and networks may advertise only the statistics 
that are most favorable.
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Normal	Distribution
Category: History and Development of Curricular 
Concepts.
Fields of Study: Calculus; Communication;  
Connections; Data Analysis and Probability.
Summary: Better known to laymen as the bell curve, 
there are many applications for normal distribution.

The normal distribution is one of the most useful and 
important probability distributions, with a wide range 
of theoretical and real-world applications. Many people 
know the normal distribution primarily by its colloquial 
name, the “bell curve,” which comes from its characteris-
tic shape: a symmetric curve with a pronounced peak in 
the middle and diminishing tails. Mathematically, nor-
mal distributions are a family of continuous probability 
distributions. The normal function has no closed-form 
integral, but areas under the curve, which correspond 
to probabilities, can be accurately approximated with 
methods like numerical integration. All normal prob-
ability distributions display the same symmetric bell 
shape, but can have any real-valued mean (µ) and posi-
tive real-valued standard deviation (σ). The standard 
normal distribution is a special case with a mean of zero 
and standard deviation of one. All normal distributions 
can be transformed or standardized to the standard nor-
mal, which is theoretically important and extensively 
tabulated. Computers and calculators also allow direct 
calculation of normal probabilities. Students often use 
both technology and tables when they study the normal 
distribution in high school and beyond. 

Many naturally occurring phenomena are normally 
or approximately normally distributed, like the heights 
of adult human beings. In other cases, such as intelli-
gence tests, the measurements are purposely structured 
or scaled according to this distribution. Several other 
probability distributions converge to the normal dis-
tribution or are well approximated by it. The central 
limit theorem, based on normal approximations, is the 
foundation for a wide range of commonly used statis-
tical procedures, particularly for estimation and infer-
ence. Another common name for the normal distribu-
tion is the “Gaussian distribution,” after Carl Friedrich 
Gauss, whose work significantly advanced many statis-
tical theories and concepts. Occasionally it is referred 
to as the “Laplace distribution,” after Pierre-Simon 
Laplace. The variety of names for the normal distribu-
tion likely reflects the debate on the origins of the term 
“normal distribution” and the breadth of people who 
influenced its development.

History
The first appearance of the term “normal distribu-
tion” in a published document is often credited to a 
seminal paper from Karl Pearson in 1895. However, 
there are some who say the first use corresponds to 
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Charles Peirce in 1783, to Francis Galton in 1889, or 
to Henri Poincaré in 1893. Statistician and historian 
Stephen Stigler believes that it might have been used 
much earlier, and there is certainly evidence to sup-
port that assertion. 

Abraham DeMoivre is credited with the first math-
ematical derivation of the normal distribution in 
his 1733 work Approximatio ad summam termino-
rum binomii (a+b)n in seriem expansi. Using sums of 
Bernoulli´s binomial random variables, he approxi-
mated a continuous distribution to the discrete 
binomial using integral calculus, which resulted in a 
bell-shaped continuous distribution. Continuing this 
idea, Pierre-Simon Laplace presented the central limit 
theorem in 1778, which is also sometimes called the 
“DeMoivre–Laplace theorem.” In fact, the name “cen-
tral limit theorem” is credited to George Pólya’s 1920 
work on the normal distribution. Since the central 
limit theorum is the limit of a summation of binary 
variables, it is applicable to both discrete and continu-
ous random variables. It has many real world applica-

tions along with its theoretical importance, and it is 
fundamental to statistical inference. 

Robert Adrain, an American, and Carl Friedrich 
Gauss, a German, worked simultaneously on similar 
notions at the start of the nineteenth century without 
being aware of each other’s work. In 1808, Adrain pre-
sented arguments regarding the validity of the normal 
distribution for describing distributions of measure-
ment errors, inspired by a real-world problem in sur-
veying. He used this initial work to further develop and 
prove Adrien-Marie Legendre’s method of least squares. 
Gauss published his Theory of Celestial Movement in 
1809. This work included several critical contributions 
to mathematics and statistics, including the maximum 
likelihood parameter estimation, the method of least 
squares, and the normal distribution. This is perhaps 
part of the reason that Gauss tends to be given credit 
over Adrain for their similar contributions regarding 
the normal distribution.

In 1829, Adolphe Quetelet brought the concept of the 
normal distribution of error terms into the analysis of 
social data. He wanted to discover the underlying laws 
of society in the same way other researchers were explor-
ing scientific and mathematical laws. Quetelet invented 
the term “social physics” and empirically developed 
the first notions of the measure now called “body mass 
index.” He analyzed several data sets of human biologi-
cal and social data, such as the heights and weights of 
conscripted soldiers, and by inductively using the cen-
tral limit theorem, he concluded that the normal error 
distribution described these measures quite well. Galton 
also contributed to the application and development 
of the normal distribution in the biological and social 
sciences. He produced the first known index of correla-
tion as well as regression analysis, and he proved that 
a normal mixture of normal distributions is itself nor-
mal. His colleagues Walter Weldon and Karl Pearson also 
contributed to normal theory and applications, and the 
three of them cofounded the journal Biometrika. The 
field of biometrics is generally traced back to Weldon’s 
seminal papers. Pearson used the method of moments 
to estimate mixtures of normal distributions and further 
developed correlation and regression methods based on 
the normal distribution. However, part of his motiva-
tion for developing methods like chi-square analyses 
was apparently to try to decrease the growing reliance 
on the normal distribution as a foundation of statistical 
theory and analytic methods.
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Galileo and Bernoulli

The early origins of the normal distribution 
can be traced in part to Galileo Galilei and 

his work in astronomy. In 1610, Galileo noticed 
that the measurement errors in astronomical 
tables were distributed symmetrically (in an 
unbiased fashion) around the correct value. 

A century later, Jacob Bernoulli made two 
critical advances toward the development and 
characterization of the normal distribution. The 
first was the “law of large numbers” (named as 
such by Simeon Poisson in 1835). The second 
was the development of the binomial distribu-
tion. The law of large numbers predicts the con-
vergence of sample means to the true popula-
tion mean as sample size approaches infinity. 
The binomial distribution models probability 
in situations in which there are sequences of 
independent random events with two equally 
likely outcomes for each event, such as flip-
ping a coin.



Pearson’s efforts to diminish the role of the nor-
mal distribution in statistics failed. Many other math-
ematicians and statisticians, including Pearson’s son 
Egon, continued to develop theory and applications 
in a variety of areas. For example, William Gossett and 
Ronald Fisher derived and refined the closely related 
Student’s t distribution in the early twentieth century. 
The distribution is not called Gosset’s t because he 
worked for Guinness Brewery and he could not pub-
lish his work in his own name because of proprietary 
issues, so he adopted the pseudonym “Student.” Start-
ing in the 1930s, Samuel Wilks explored many aspects 
of normal distributions. These included deriving 
sampling distributions for parameter estimates in 
bivariate normal distributions as well as for covari-
ances in multivariate normal distributions, which 
led to important advances in multivariate statistical 
methods. The American Statistical Association’s Wilks 
Award is one of the most prestigious in the field of 
statistics. Miroslaw Romanowski published a general-
ized theory of modified normal distributions in 1968 
that help characterize errors that do not seem to be 
well-described by the normal distribution. Another 
such generalization is the skew normal. Other related 
distributions include the “lognormal distribution” 
or “Galton distribution,” which describes a variable 
whose log is normally distributed, and the “folded 
normal,” which is based on taking the absolute value 
of a normal distribution. 

Recent Developments
The term “bell curve” became even more widely 
known in 1994 when psychologist Richard Herrnstein 
and political scientist Charles Murray wrote The Bell 
Curve, which took its name from the distribution of 
IQ scores and included a picture of the normal distri-
bution on its front cover. Herrnstein and Murray cor-
related intelligence scores with social outcomes and 
asserted that social stratification based on intelligence 
was on the rise. The book remains highly controver-
sial for the authors’ inclusion of discussions regarding 
supposed relationships between race and intelligence 
and has spurred many debates on both social and sta-
tistical matters.

Further Reading
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North	America
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Mathematics has a long history in North 
America, including a twentieth and twenty-first- 
century focus on improving mathematics education.

North America, as defined by the United Nations, 
includes the United States, Canada, the Danish auton-
omous country of Greenland, the British overseas ter-
ritory of Bermuda, and the French overseas territory 
of Saint Pierre and Miquelon. The United States and 
Canada have been especially active in the field of math-
ematics. By the mid-twentieth century, people from 
around the world were increasingly coming to North 
America to study and to work in mathematical disci-
plines. At the beginning of the twenty-first century, 
mathematicians and mathematics educators continue 
to explore ways to improve and advance research and 
teaching. Research and other work done by mathemat-
ics organizations in Canada and the United States show 
that mathematics education is a concern in North 
America, in part because of international comparisons 
of student performance. These efforts are also driven in 
part by the increasingly technical demands of society 
and the resulting economic and social needs. 

Brief Early History
Mathematics played a role in the societies of the earliest 
native peoples as well as those of settlers from around 
the world. The prehistoric serpent burial mounds in 
what is now the state of Ohio have mathematical ele-
ments and interpretations. 

In the seventeenth century, the first North American 
colleges began to teach a variety of subjects, including 
mathematics. North American mathematicians made 
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advances in mathematical theory and contributed to a 
wide range of inventions. 

Canada
One way to explore mathematical efforts and priorities 
in the twenty-first century is to examine the activities of 
professional associations like the Canadian Mathemati-
cal Society (CMS). The purpose of the CMS is to pro-
mote and advance the discovery, learning, and applica-
tion of mathematics in Canada. According to the CMS 
Web site, the CMS is currently seeking to “more aggres-
sively reach out to and form new partnerships with the 
users of mathematics in business, governments, and 
universities, educators in the school and college systems 
as well as other mathematical associations; and in doing 
so, share experiences, work on collaborative projects 
and generally enhance the perception and strengthen 
the profile of mathematics in Canada.” 

The mathematical skills of Canadian students have 
been a primary concern for Canadian educators and 
business owners alike. The CMS is particularly inter-
ested in reaching out to students who are interested in 
mathematics and in working with the educational sys-
tem to improve mathematics education. To that end, 
the CMS sponsors a variety of educational activities, 
including national and regional mathematics camps, 
the Sun Life Financial Canadian Open Mathematics 
Challenge, and the Canadian Mathematical Olympiad. 
Additionally, the CMS publishes a journal dedicated 
to unique and challenging mathematics problems that 
can be used in secondary and collegiate mathematics 
classes. The CMS also provides funding for a Pub-
lic Lecture Series with the goal of promoting public 
awareness of mathematics. The CMS strongly pro-
motes collaboration between mathematics education 
and business in an effort to align the education of stu-
dents with the needs of the business community, and it 
has developed workshops and publications to broaden 
participation in mathematics, 

United States
World wars, especially World War II, had a notable 
influence on the evolution of twenty-first-century 
mathematics, especially in the United States. Many 
European mathematicians fled their native countries 
because of violence or oppression and settled in the 
United States. Military and industrial needs spurred a 
great deal of mathematics research and applications, 

which further escalated during the Cold War, spurred 
by advances like the Soviet Union’s Sputnik satellite. 
The growth of universities in the wake of this boom, 
along with the relative isolation of the Soviet Union, 
were contributing factors to the rising numbers of stu-
dents from other countries studying mathematics in 
the United States. By the beginning of the twenty-first 
century, the influx of foreign nationals into the United 
States educational system and workforce had slowed, 
in part because of change in political policies, includ-
ing caps on visas; the rising prominence of universities 
in many other parts of the world; and the efforts of 
many nations to stem the “brain drain” or emigration 
of educated individuals. 

Within the United States, many mathematical orga-
nizations have had a strong impact on the field of 
mathematics, including the Mathematical Association 
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of America (MAA) and the American Mathematical 
Society (AMS). Many of the concerns in the United 
States are similar to those in Canada. There has also 
been a great deal of concern and discussion regarding 
the perception that only some students are capable of 
succeeding at mathematics. Some assert that the No 
Child Left Behind Act of 2001 was designed to chal-
lenge this perception by ensuring that all students 
could demonstrate grade-level mathematics profi-
ciency. However, this measure was negatively received 
by many, in part because increased demands on teach-
ers and schools were not always fully funded and cri-
teria used to measure success and improvement were 
not universally agreed upon as appropriate. A primary 
focus is on improving the mathematics achievement of 
public school students in an effort to ensure that more 
students are “college-ready.” 

In an effort to address this need, the National Council 
of Teachers of Mathematics (NCTM) released a series 
of publications that focus on the idea that mathemat-
ics education at every grade level needs to center on 
in-depth development of a few key mathematical con-
cepts. The MAA and AMS both have made resources 
available to teachers to aid in this endeavor. Like Can-
ada, the United States also works to recruit a wider 
demographic of students into mathematical fields.
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Number	and		
Operations
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Number and Operations.
Summary: Numerous civilizations throughout 
history developed unique number systems and 
number operation methods, some principles of which 
survive into the twenty-first century.

The properties of numbers and operations are among 
the first concepts that most people learn about math-
ematics and they were also among the earliest type 
of mathematical knowledge developed historically. 
Number and operations are pervasive in school cur-
ricula. There are many types of numbers (for example, 
integers, irrational numbers, and imaginary num-
bers), each with their own properties. Learning how 
to work with different types of numbers is basic to the 
work of learning mathematics. The term “operations” 
refers to the practice of applying some rule on a set of 
numbers; the four basic operations are addition, sub-
traction, multiplication, and division. However, there 
are a wide variety of other mathematical operations 
or operation-like procedures on many types of math-
ematical objects, such as modular arithmetic, that may 
be explored at many levels.

In the twenty-first century, students in the earliest 
grades start to investigate whole numbers and com-
mon fractions along with addition and subtraction. 
In the later primary grades, they may study base-10 
decimals, a broader range of fractions, negative num-
bers, and equivalent forms for fractions, decimals, and 
percentages. Operations extend to include addition 
and subtraction of common fractions or decimals; 
multiplication and division of whole numbers; and 
relationships between operations. Concepts like ratios 
and proportions, integers, factorization, prime num-
bers, and some alternative methods of notation for 
very large numbers begin to be introduced in middle 
school. Students learn more arithmetic procedures 
with fractions, decimals, or integers, as well as to sim-
plify computations using addition and multiplication 
properties. They also investigate squares and square 
roots. In high school, students may study very large 
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and small numbers; properties of numbers and vari-
ous number systems; vectors and matrices with real 
number properties; and number theory. Operations 
begin to include addition and multiplication of vec-
tors and matrices, as well as permutations and combi-
nations. These concepts continue to be extended into 
college with new systems of numbers and operations 
or operation-like procedures.

Early Number Systems
The first type of numbers people generally learn 
about are called the “natural” or “counting numbers”: 
1, 2, 3, 4, 5, 6 . . . The historical record shows that the 
use of counting numbers is an ancient practice. As 
with measurement, body parts may have been used, 
and archaeologists have found other evidence, such 
as notched bones, that support the idea of tallying 
or counting. The Egyptians used a base-10 system, 
written either with hieroglyphs or hieratic (cursive) 
script, and using special symbols for powers of 10 (10, 
100, 1000, and so on). The ancient Egyptians were 
also aware of fractions, which were primarily written 
as unit fractions of the form 1/n, such as 1/2 or 1/4, 
although some Egyptian texts contain fractions of the 
form 2/n or 3/n, and other quantities were expressed 
as combinations of unit fractions. 

The Babylonians used a numerical system with a 
base of 60, a practice that survives into the twenty-first 
century in the convention of dividing a circle into 360 
degrees and in units of time, such as 60 seconds in a 
minute and 60 minutes in an hour. They used only two 
symbols, one signifying 1 and the other 10, to write 
all the values 1–60, and used the place system so that 
the meaning of a symbol depended on its place within 
a number—a major advance that was crucial to the 
development of modern mathematics. In a decimal or 
base-10 system,

111 1 10 1 10 1 102 1 0= ×( ) + ×( ) + ×( ).

The same digits in the base-60 system would mean

111 1 60 1 60 1 602 1 0= ×( ) + ×( ) + ×( )
or the same quantity as 3661 in a base-10 system.

The ancient Mayan developed a number system 
with a base of 20 and a place system, using dots (with 
a value of 1) and bars (with a value of 5) to write the 

numbers 1–19, with powers of 20 indicated vertically. 
The Mayans also understood the concept of zero as a 
placeholder and had a special symbol for it, which they 
used in their calendar system. 

An acrophonic number system was used in Greece 
by the first millennium b.c.e. Acrophonic means that 
numbers are signified by the first letter of the word 
used for that number, with symbols for 1, 5, 10, 100, 
and so on. As with the more familiar Roman numer-
als, this system was an additive system (rather than 
place), so the value of a number was found by add-
ing up the value of all the symbols that comprised 
it. A competing system also used in Greece was one 
in which each letter of the alphabet was assigned a 
numeric value reflecting its order in the alphabet. In 
this system, the first 10 letters (alpha through iota) 
correspond to the numbers 1–10, then the next letter 
(kappa) stands for 20, the next (lambda) for 30, until 
rho, which signifies 100.The next letter (sigma) signi-
fies 200, and so on. This system was also an additive 
system, so that 12 was written as iota beta or 10 + 2 
and 211 as epsilon iota alpha. Numbers 1000–9000 
were written by adding a superscript or subscription 
to the letters alpha through theta, while larger num-
bers were written with the symbol M (meaning “myr-
iad”) for 10,000, with multiples indicated by writing 
other numbers above the M.

Roman Numerals
The familiar system of Roman numerals was devel-
oped from about the third century b.c.e. It was used 
throughout the Roman Empire and in Europe into the 
Middle Ages and was eventually replaced by the more 
efficient Hindu–Arabic number system. The Roman 
number system has the benefit of using only a few sym-
bols, but does not include the concepts of zero or of 
place, so the value of a number is calculated by adding 
together all the values of its elements. The symbols used 
include M for 1000, D for 500, C for 100, L for 50, X for 
10, V for 5, and I for 1, with the later refinement that a 
smaller number could be placed next to a larger num-
ber to indicate subtraction. Roman numerals translate 
to Hindu–Arabic numerals as the following:

LXXIII = 73
CDXXXII = 432

MCMLXXXV = 1985
MMX = 2010
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Roman numerals are still in use in the twenty-first 
century to indicate succession (for example, King 
Richard III of England) and sometimes in film release 
dates. The inefficiency of the Roman system compared 
to the modern system of Hindu–Arabic numerals can 
be illustrated by trying to quickly determine which of 
the following three dates is most recent: MCMXCIX, 
MCMLXXXVII, and MMVII. Now try again with the 
same values in Hindu-Arabic numerals: 1999, 1987, 
and 2007. 

Indian or Hindu Numerals
Indian or Hindu numerals and the concept of zero 
(written as a dot or small circle and referred to by 
the Sanskrit term sunya, which means “empty”) also 
appear to date to the third century b.c.e. Historians 
have cited Brahmi numerals, which share a name with 
a family of alphabets or scripts; which evolved into 
Gupta numerals, named for the fourth to sixth century 
c.e. Gupta dynasty; and then Nagari or Devanagari 
numerals, also named for alphabet systems, begin-
ning in about the ninth century; and finally symbols 
that looked very much like the familiar numerals 0–9 
somewhere around the fourteenth century. There are 
many origin theories for Hindu numerals, which fall 
into two general classes: they came from an alphabet 
(as did the Greek system) or they came from some 
other earlier number system (as did Roman numerals). 
Hindu number systems were predominantly base 10, 
and documents suggest that Indians were using a place 
value system by the sixth century c.e. Mathematician 
Pierre-Simon Laplace said, “The ingenious method 
of expressing every possible number using a set of ten 
symbols (each symbol having a place value and an 
absolute value) emerged in India . . . Its simplicity lies 
in the way it facilitated calculation and placed arithme-
tic foremost amongst useful inventions.”

Hindu systems of numerals appear to have made 
their way into Arabic and Islamic cultures in the latter 
half of the first millennium c.e. These Hindu numer-
als, along with a base-60 system using Arabic letters 
to represent numbers (common among astronomers) 
and a “finger arithmetic” system (widely used in busi-
ness), coexisted for some time in the Arabic world. In 
the ninth century, mathematician Abu Ja’far Muham-
mad ibn Musa Al-Khwarizmi wrote On the Calculation 
with Hindu Numerals. His contemporary Abu Yusuf 
Ya’qub ibn Ishaq al-Kindi also wrote On the Use of 

the Indian Numerals (c. 830 c.e.). Several Arabic and 
Islamic scholars studied Hindu numerals in the tenth 
century. Abu Ali al-Husain ibn Abdallah ibn Sina (also 
known as Avicenna) was purportedly taught by Egyp-
tians, and Abu’l Hasan Ahmad ibn Ibrahim Al-Uqlidisi 
is credited with helping to modify Hindu numerals to 
replace the traditional “finger arithmetic.” Mathemati-
cian Abu Arrayhan Muhammad ibn Ahmad al-Biruni 
visited India in the eleventh century c.e., though even 
before his first travels he had examined Arabic transla-
tions of Indian mathematics texts.

Hindu–Arabic Number System
The Hindu–Arabic number system was adopted in 
Europe a few centuries later, replacing Roman numer-
als, as Europeans became familiar with Arabic manu-
scripts. The first known example of Hindu numerals 
in a European document are in the tenth-century 
Codex Vigilanus, but the beginnings of widespread 
use appear to date closer to the fifteenth century. The 
symbols used in this system are similar to those used 
in Europe in the twenty-first-century (0–9), while a 
different set of symbols is used with the same number 
system in the Middle East and in parts of India (thus 
many Arabic speakers do not use what in the United 
States are commonly called “Arabic numerals”). The 
Moroccan mathematician Abu Bakr Al-Hassar is cred-
ited with developing the modern method of notating 
fractions (two numbers separated by a horizontal bar) 
in the twelfth century. Liber Abaci, written by Italian 
mathematician Leonardo Fibonacci in the early thir-
teenth century, was also influential in spreading the 
use of Hindu–Arabic numerals (and the place system) 
throughout Europe.

Any number may be used as a base when numbers 
are written using the place system. For instance, the 
binary (base 2) and hexadecimal (base 16) systems are 
used in work with computers. In the binary system, 
there are two digits (0 and 1), and each successive place 
is a greater power of 2. In the hexadecimal system, there 
are 16 digits (letters are used to express the extra digits 
required, so A = 10, B = 11, C = 12, D = 13, E = 14, and 
F = 15). If necessary to avoid confusion, the base of 
the number system may be included as a subscript; for 
example, 1710 would be 17 in the base-10 system. 

Modular arithmetic was developed by German 
mathematician Leonhard Euler in the eighteenth cen-
tury and was advanced by others, including German 
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astronomer and mathematician Carl Friedrich Gauss, 
whose 1801 Disquisitiones Arithmeticae established 
many of the rules of number theory. Modular arith-
metic is sometimes called “clock arithmetic” because 
the concept is similar to that of a 12-hour clock. If it is 
currently 9 o’clock, 6 hours later it will be 3 o’clock, not 
15 o’clock, because the clock starts over with 0 as soon 
as it reaches 12. 

Aids to Computation
Systems to aid computation are almost as old as number 
systems themselves. For instance, Egyptian scribes used 
tables to help them perform arithmetic with fractions, 
and the abacus or counting frame was used in several 
ancient cultures, including those of Mesopotamia, 
Egypt, Persia, and Rome. However, the abacus is most 
strongly identified today with Asia, in particular China, 
where it was used at least as early as the second century 
b.c.e. A Chinese abacus consists of a number of rods 
divided by a beam into two regions or decks: the upper 
deck of each rod has two beads, and the lower deck has 
five. Mathematical operations are carried out by sliding 
the beads toward or away from the deck, and expert 
abacus operators can rapidly solve problems involving 
not only the four basic functions (addition, subtrac-
tion, multiplication, and division) but also square and 
cube roots. The simplicity and efficiency of the abacus 
encouraged its spread to other Asian countries, includ-
ing India, Japan, and Korea. Use of the modern Japa-
nese abacus, which uses one bead in the upper deck 
and four in the lower, is still taught in primary schools 
in Japan today as it is believed to aid students in form-
ing a mental representation of numbers. 

Arabic mathematicians developed a system of lattice 
multiplication, which involves using a lattice or grid of 
boxes divided into diagonal halves. To perform lattice 
multiplication, the two numbers to be multiplied are 
written across the top and the side of the grid, the digits 
are multiplied separately and then added along the diag-
onals to produce the result. This system was introduced 
to Europe by Fibonacci in 1202. It was improved by Scot-
tish mathematician John Napier in the early seventeenth 
century through a type of abacus referred to as “Napier’s 
bones,” which consists of a tray and a set of 10 rods, one 
for each digit 0–9. Each rod is divided into nine squares, 
with each but the top divided by a diagonal line. Each 
square contains the product of its own digit multiplied 
by each other digit; for instance, the rod for 5 contains 

the values 5, 1/0, 1/5, 2/0, and so on (the / indicating 
the diagonal of the square). Napier’s bones are used to 
multiply, divide, and extract square roots. For example, 
to multiply, the rods for one number are placed in the 
tray, and the values from the rows comprising the digits 
of the second number are read off, adding together the 
pairs of values on the diagonals.

Logarithms are another important aid to calcula-
tion. A logarithm is an exponent such that when the 
base of a number system is raised to that power, the 
result will be the number. For instance in base 10, the 
logarithm of 100 is 2 because 102 = 100. In the system 
of natural logs, the base is e (sometimes called “Euler’s 
number” after the Swiss eighteenth-century math-
ematician Leonhard Euler), the irrational constant 
2.718281. . . . The natural log of 100 is 4.6051 because 
e4 6051 100. ≈ . 

One common use of logarithms before the advent 
of electronic calculators and computers was to simplify 
multiplication, division, and the calculation of pow-
ers and roots. As such, logarithms played an important 
role in the development of astronomy and other math-
ematically based sciences. 

Napier is usually credited as the inventor of the loga-
rithm due to his 1614 publication Mirifici Logarithmo-
rum Canonis Descriptio, which included tables of natu-
ral logarithms and explanations of their use. Important 
tables of base 10 logarithms were published in 1617 
and 1624 by English mathematician Henry Briggs.

Multiplication using logarithms rests on the follow-
ing rule. For any base b 

c d b b bc d× = +( )log log
.

For instance, if the base is 10, c is 108, and d is 379:

108 379 10 10 40 932
2 033424 2 578639 4 612063× ≈ ≈ ≈+( ). . .

,

because 108 10
2 033424≈ .

 and 379 10
2 578639≈ .

.

Conducting multiplication in this way requires only 
looking up the two logarithms in the table, adding them, 
and looking up the antilogarithm (the base 10 raised to 
a power) in another table, which for large numbers is 
much quicker than doing the multiplication by hand. 
The slide rule, also developed in the seventeenth cen-
tury, made the process even quicker and remained in 
common use well into the twentieth century.
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Number	and		
Operations	in	Society
Category: School and Society.
Fields of Study: Connections; Number and  
Operations.
Summary: Number, arithmetic, and estimation are 
parts of daily life.

In early human societies, wealth was often measured in 
terms of physical possessions. Commerce depended on 
finding an “even” or fair exchange of goods. Counting 
and arithmetic were fundamental skills for enumerat-
ing goods and engaging in trade. Later agrarian soci-
eties also needed these skills to plan for activities like 
planting crops and storing or dispersing the harvest in 
an equitable way. When humans began to travel farther 
from home, they needed to be able to measure and cal-
culate distances and directions. 

The introduction of money and more advanced 
tools and technology did not change the need to 
count and calculate; in most cases, they merely altered 
what was counted and the way in which the count-

ing and arithmetic were done. In modern society, 
numbers and their basic operations are pervasive. 
Numeracy (or quantitative literacy) is a primary con-
cern of government and educators in the twenty-first 
century. The increasingly quantitative nature of soci-
ety requires some level of basic proficiency in all its 
citizens, not merely from mathematicians, engineers, 
scientists, and others in traditionally quantitative 
professions. In modern society, studies have shown 
that lack of basic number and operations skills can be 
associated with negative outcomes, such as financial 
mismanagement, consumer debt, poor risk assess-
ment, and limited job prospects. Some individuals 
who experience difficulty with arithmetic operations 
have a condition called “dyscalculia,” which may be 
caused by neurological lesions.

Early Number History
Rows of tally marks have been found in many archaeo-
logical sites, indicating that people not only counted, 
but also recorded their counts. However, it is difficult 
to quickly know a total merely by looking at a long row 
of tally marks. Recognizing a quantity without count-
ing one by one is called “subitizing.” Psychologists note 
that humans usually can subitize accurately only up 
to quantities of about 5, 6, or 7 without making some 
combinations, so a line of 23 tally marks would allow 
only a guess of its number. Because of this limitation of 
subitizing ability, ancient humans arranged the marks 
into groups—usually equal groups—and counted the 
groups to find the total (many people also commonly 
do this in the twenty-first century by drawing every 
fifth tally mark over the first 4 to make groups of 5 for 
easier counting). 

This system appears to exist in many parts of the 
world and led to both the idea of place value and the 
operation of multiplication. The counting system of 
nearly every language uses terms of grouping; many, 
including English, group by 10s and then 10s of 10s 
(100s) and continue with higher powers of 10. Prob-
ably the group size of 10 was chosen for physiological 
reasons—humans have 10 fingers—since other choices, 
such as dozens, might have made for more convenience 
(especially for fractions) and mathematical efficiency. 
Some languages do use other bases, including 4, 5, and 
12, and the English words “dozen” and “score” indicate 
an earlier use of groupings of 12s and 20s in old English. 
Similarly, multiplication in objective terms amounts to 
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finding a total by counting groups of equal quantities 
(even when used for area or combination calculations). 
Learning the “times tables” is simply learning how those 
groupings come together and grow into such totals. 

The groupings were originally oral linguistic terms, 
but the idea also translated into written numerals—the 
ancient Egyptian, Babylonian, Mayan, and Chinese 
symbols (and others) were fitted into various types of 
place-value frameworks, some more structured than 
others. It is thought that the current widespread system 
of written numerals, the Hindu–Arabic system, origi-
nally grew out of earlier place-value grouping systems. 
It developed in India, early in the common era, where 
repeated marks were replaced by a single cipher (for 
example, “7” instead of “///////”), allowing more effi-
cient writing and calculation. The Islamic mathemati-
cians added more convenient algorithms—smoother 
techniques for doing arithmetic calculations and han-
dling rational numbers.

Operations
Although people in all parts of the world needed to do 
arithmetic and developed their own methods, the stan-
dard algorithms most widely used in the twenty-first 
century developed from the Islamic algorithms (the 
word “algorithm” even comes from the name of Al-
Khowarizmi, a mathematician who worked in Baghdad 
around the year 800). These algorithms were modified 
and refined over the centuries as the techniques were 
carried into Europe. Usually the adding and multiply-
ing methods were straightforward, mostly collecting 
and regrouping symbols, but subtracting and dividing 
were more complicated and led to a greater variety of 
algorithms—especially different ways and sequences to 
regroup numbers, both in conceptual terms and in the 
written expositions. An important difference involved 
either starting with the units and moving to the higher 
groupings, often called a “right-to-left method,” or the 
reverse of working first with the larger groups and then 
taking care of the smaller unit details. 

The standard symbols of the numerals stabilized in 
medieval Europe (c.  sixteenth century), as did most of the 
algorithmic methods. Along with this standardization 
came the symbols for the operations (+, −, ×, ÷, and =) 
 and later other notations such as exponents for pow-
ers, the square root symbol, various kinds of brackets 
for groupings, and symbols for fractions and decimals. 
These symbols are not completely standardized; for 

example, Americans use a dot (.) between the whole 
number and a decimal fraction, while many Europe-
ans use a comma (,). Also, there are some remaining 
discrepancies in the terminology of large numbers, as 
Americans say a thousand millions is a “billion,” but 
British usage is that a “billion” is a million millions. 

Types of Numbers
Languages usually differentiate number usage accord-
ing to the purpose of the number. If the number is an 
adjective that tells the numbers of members in a set or 
collection, is it called a “cardinal number.” Thus, “three 
houses” describes the quantity of houses being dis-
cussed. In higher mathematics, especially in number 
theory, the quantity of the members of a set is called 
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the set’s “cardinality,” which, significantly, can be infi-
nite or even different infinities. In many languages, 
especially in eastern Asia, an extra word is inserted after 
the number to describe the category of the item being 
counted. For example, a certain word for the category 
of flat items might be used to describe quantities of 
paper, boards, or leaves, but a different category word 
would be used for quantities of round objects.

Another everyday use of numbers is to describe the 
place of something in a sequence. If there is a line of 
houses along a street, the third house may be noted—
counting from the beginning of the line to position 
number 3. Since the houses are considered in order, 
this is called the “ordinal number”: first, second, third, 
fourth, and so on, with most of the higher values using 
a “-th” at the end of the number word.

A third kind of number is as a name, so it can be 
called a “nominal number.” These are used when count-
ing in general or referring to the number itself, as in, “I 
am writing a five.” In English, this is usually the same 
word as the cardinal form, though in other languages, 
this is not always the case. Also, the nominal form is 
often used in nonmathematical language, where a num-
ber term is used to name a person or something else. 
Examples include numbers of Social Security accounts, 
house street addresses, bank accounts, telephones, 
routes of highways, buses, or planes, and car license 
plates. Sometimes they are arranged in a numerical 
order for convenience, but usually do not represent true 
ordinal usage. These are only a convenience (for exam-
ple, they work well in computers) and usually have no 
mathematical meaning—one would not think of add-
ing two phone numbers! Distinctions of cardinal, ordi-
nal, and nominal usage are (1) taking three buses with 
the necessary changes from one to another (cardinal), 
(2) waiting as two buses pass and then taking the next 
one—the third bus (ordinal), and (3) looking for a sign 
on an approaching bus that says it is bus #3 (nominal) 
and then getting aboard. Often, when people complain 
of modern society reducing everyone to a number, they 
are in fact referring to the nominal usage. Since nominal 
numbers are so pervasive, it is important for children to 
learn the distinctions, so they will understand that these 
nominal usages are not mathematical. 

Economics and Demographics
Beyond the nominal names, actual quantities are used 
in nearly all aspects of society. At the heart of economic 

activity is the need to quantify money and compare 
this quantity with measurements of value, which may 
also be quantified. Accountants and bankers may not 
be mathematicians, but they constantly use numbers 
and carry out operations that may be based on sim-
ple arithmetic but used in very complex applications. 
These users may range from high-level financial man-
agers to retailers to children selling lemonade. Some 
have suggested that, especially in the modern world, 
economic uses of numbers may be the biggest appli-
cation of mathematics in society. Another important 
subject of counting is people—for records of popula-
tion, attendance at schools and events, families, public 
health, television viewing, and many others. 

Measurement
When numbers are applied to comparisons, measure-
ment is happening. Measurements of length, weight, 
volume, and many of the technical quantities—such as 
electrical conductivity, strength of magnetism, blood 
pressure, engine power, and acoustic properties—are 
used by scientists, engineers, architects, medical work-
ers, mechanics, and even artists and musicians to deal 
with properties essential to their work. Numbers are 
not needed for sophisticated technicalities but may 
may help with shopping for shoes, getting a first 
down in football, and giving directions to the library. 
Operations include totaling a shopping bill, convert-
ing currency, checking the movement of a comet, and 
building an oil rig. Few people may calculate comet 
orbits, but nearly everyone needs to check their shop-
ping and bank account calculations. Over time, many 
systems of units of measurement developed, showing 
the importance of this use of numbers. Many mea-
surements, especially linear measures, were compar-
isons with human body parts, such as the length of 
a handspan, the distance from the elbow to the fin-
gertips (called a “cubit”), or the distance of a walking 
pace. It became clear that standardized measurements 
were needed for fair comparisons, especially in trade, 
so governments as early as the ancient Egyptians and 
Romans developed standardized systems. Many tradi-
tional measures were converted to standard systems, 
but often the units did not fit well into an organized 
system. In the late 1700s in France, the metric system 
was devised to serve as a well-organized standard sys-
tem for world use. In the two centuries since then, that 
goal has almost been achieved.
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Statistics
The tools of statistics are used to analyze and report 
results of counting and measuring. Tables arrange data 
in columns and rows for easier comparisons as well as 
summations, averaging, and other calculations. In the 
twenty-first century, computerized spreadsheets have 
given new power to the calculation and manipulation 
of data in tabular form. Graphical displays make the 
information visible for quicker comprehension. Bar 
graphs and histograms sort data into comparative cat-
egories, while line graphs are especially useful to show 
changes over time. Circle graphs show comparative 
portions of a total. Newer displays include bar-and-
whisker charts, which show the distribution of a collec-
tion of data, and stem-and-leaf charts, which are used 
to assemble data for bar charts. Statistics educators 
often warn that the ease of display of statistical graphs 
can also be misused to offer misleading implications, 
so a familiarity with statistics is considered important 
in evaluating displays in advertising and reports.  

Arithmetic is considered part of the basic foun-
dation of the school curriculum because the need 
to deal with numbers and arithmetic is central to so 
many aspects of daily life and is the starting point 

of all higher mathematics and applications of math-
ematics in science, engineering, and technology. Usu-
ally instruction in counting begins even before formal 
schooling, the basic arithmetic operations are taught 
in the early grades, and work with fractions, percent-
ages, and ratios in the upper grades of elementary 
school. Even in areas where few children may have 
the opportunity to attend higher levels of school, it is 
considered essential that they learn this foundational 
material—in school or perhaps on the job—because 
of the central role of number and operations in so 
much of life activity.

Mental Arithmetic
Mental arithmetic is the operational counterpart to 
estimation, in which calculations are done without 
writing or using other calculation tools. A variety of 
techniques for mental arithmetic have been devel-
oped. Sometimes, it simply means using rounded off 
estimates to make the calculation easier. In addition 
and subtraction, the technique might mean ignoring 
the ones column or even more. Also, using factors can 
often simplify multiplication and division. Sometimes 
there are special “tricks” to using specific numbers in 
calculations, such as adjusting numbers to fit together 
to make 10s, adding a reciprocal to carry out subtrac-
tion, or applying algebraic techniques to simplify the 
numerical work.

Calculation Tools
Even though mental arithmetic is fast and convenient, 
many mathematical calculations are too complex for 
such methods. Very early in history, people realized 
that they needed various tools to assist their compu-
tational work. It might even be argued that the process 
of writing numerals and using written algorithms is 
the most fundamental tool—though perhaps counting 
on one’s fingers is an even earlier tool. More than 2000 
years ago, tools were developed to handle basic arith-
metic. Romans made shallow grooves in the ground to 
represent the place-value positions and moved stones 
within the grooves to represent the value of each posi-
tion. Adding and removing stones from the grooves 
carried out addition and subtraction operations, often 
requiring regrouping or exchanging 10 of a smaller 
position for 1 of the next larger position in order to 
have enough stones for the results or to reduce an over-
loaded position. The abacus uses the same principles of 
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Estimation

O ften, the use of numbers implies that 
precision and accuracy are required—par-

ticularly true in scientific and technical applica-
tions. However, for many applications of daily 
life, and even some economic and technical 
uses, the specific exact quantity may not be 
necessary. The time (and expense) it takes to 
find the exact quantity may not be justified, and 
such quantification may not even be possible. 
For example, populations of countries are often 
quoted down to the exact number of individu-
als, but in reality, people are born and are dying 
every day, causing the number to vary con-
stantly. Similarly, if one inquires about the dis-
tance between two cities, one does not need 
the answer to the nearest meter—even an 
error of a few kilometers would be tolerated.



mechanizing arithmetic, but does it with beads strung 
onto wires in a frame instead of with stones in grooves. 
Since the beads cannot be physically added or removed 
from the wires, various new techniques were developed 
to handle the regrouping, often involving reciprocal 
adding or mental regrouping.

As early as the 1600s, more sophisticated mechanical 
devices were being developed to make arithmetic even 
more automated. Two famous mathematicians, Blaise 
Pascal (1623–1662) and Gottfried Leibniz (1646–1716), 
both made mechanical devices with gear wheels and a 
ratchet mechanism to handle regrouping. John Napier 
(1550–1617) invented two very different tools, one for 
ordinary people and one for scientists. For ordinary 
people, Napier took the idea of lattice multiplication, 
which had come from Islamic mathematicians, and 
used small four-sided rods of multiplication tables to 
arrange like lattices to ease the multiplication of mul-
tidigit numbers. They were called “Napier’s Rods” or 
“Napier’s bones,” since he sometimes made the rods 
from bones. More significantly, he (and others) intro-
duced the concept of logarithms, which are actually 
representations of powers of a common base (usually 
10 or e). Since multiplication of two numbers written 
as exponents of the same base can be done by addition 
(and handling powers can be done with multiplica-
tion), logarithms simplified multiplication to addition 
and exponentiation to multiplication and thus allowed 
scientists to deal with much more complicated powers 
and roots than other techniques allowed, greatly speed-
ing their calculations.

Charles Babbage (1791–1871) is sometimes called 
the “father of computers,” but also he was a very frus-
trated man, since he was trying to invent devices one 
century too early—in the first half of the nineteenth 
century. Noting that calculations by hand often had 
errors (even errors in transcription), he wanted to 
avoid errors by substituting the handwork with com-
plicated machinery. His inventions—the “difference 
engine,” followed by plans (which he could never com-
pletely carry out) for the “analytical engine”—had the 
same basic parts as modern computers: input/output, 
a storage memory, and a central processor. He used a 
system of programming to input data and to instruct 
the machine on what to do and then had the results 
printed out—all aiming to keep the work away from 
human error. Unfortunately, his plans were beyond the 
technical capability of his day. His support from the 

British government was used up as he struggled unsuc-
cessfully to overcome technical problems. 

Later in the nineteenth century, Herman Hollerith 
(1860–1929) also worked to mechanize data handling. 
He noticed the “programming” of Jacquard textile 
weaving looms was implemented by wooden plates 
with holes arranged in particular patterns to control 
the movement and alignment of the threads. He real-
ized that paper cards similarly punched with holes 
could be used to direct the movement and combina-
tion of data. He convinced the U.S. Census Bureau to 
use the idea in tabulating its data, and later he joined 
Thomas Watson in starting the company that became 
IBM. His punchcards were a staple of data processing 
and, later, computing for many decades.

Computers
Computers finally came on the scene from consider-
able theoretical work in the 1930s, the pressures of 
war needs in the 1940s, and the growth of technology 
in general in the 1950s and 1960s. Technical develop-
ments, such as transistors, integrated circuits, and 
interactive interfaces, moved the development toward 
enabling the common person to compute. Interactivity 
opened the door for word processing and publishing, 
e-mail and other communications, and, eventually, the 
Internet. Meanwhile, fitting greater power into smaller 
and smaller devices allowed cell phones, thin television 
sets, laptops, and the explosion of handheld devices 
with thousands of applications.

Computers have become such a central part of mod-
ern life that some concern has been raised about their 
role and their power. Even as computers may seem 
cold and inhuman, programming and merging of data 
files allow many more individualized responses than 
humans would be able to handle efficiently. Mathema-
ticians and mathematics teachers sometimes debate the 
use of calculators and computers in both school math-
ematics and mathematical research. In both cases, the 
main argument is the efficiency and accuracy of using 
electronic tools against the sense that doing mathemat-
ics should be a human, mental activity.

In a broader sense, this same question comes to the 
role of numbers and operations in society: quantitative 
versus qualitative. Certainly, numbers and operations 
are essential to science, business, and in fact all of mod-
ern life (and were quite essential even in ancient times). 
Some would argue, however, that the essence of human-
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ity is found in the arts, philosophy, and religion.  The 
division of the two worlds has long been debated. How-
ever, a convergence may have been found as quantitative 
measures are increasingly applied to the humanities and 
the sciences have researched the mysteries of the brain 
and cognition, quantum mechanics and cosmology, and 
multiple dimensions and infinities.
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Number	Theory
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Number and Operations.
Summary: Number theory has captured the 
imagination through numerous famous problems, 
many still unsolved.

The legendary mathematician Carl Friedrich Gauss 
(1777–1855) famously described number theory as 
“the queen of mathematics.” The core of number 
theory is the study of the integers, but number theory 
includes a much wider class of concepts and problems 
that arise in the study of the integers. Number theory 
is extremely popular as recreational mathematics and 
is explored in twenty-first-century high school class-
rooms. Early mathematicians in Greece, India, and 
the Islamic world investigated and developed number 
theory, making enormous and widely varied contribu-
tions. The field has continued to blossom through the 

twenty-first century. Some mathematicians view num-
ber theory as a branch of pure mathematics, but oth-
ers view it as applied mathematics because of its utility 
to so many fields, such as physics, chemistry, biology, 
computing, engineering, coding, cryptography, ran-
dom number generation, acoustics, communications, 
graphic design, music, and business.

Prime Numbers
A large portion of number theory is related directly or 
indirectly to the study of prime numbers and divisibility. 
An integer a is divisible by integer b if there is an integer 
c such that a = bc. A prime number is an integer p > 1 
that is divisible only by itself and 1, and a composite 
number is a positive integer with more than two factors. 
It is technically most convenient to consider 1 to be nei-
ther prime nor composite. The so-called Fundamental 
Theorem of Arithmetic, investigated by Carl Friedrich 
Gauss in the nineteenth century, states that every posi-
tive integer n > 1 can be written as a product of prime 
numbers, and furthermore, that this prime factorization 
is unique (except for the order in which the factors are 
written). The theorem was partially proved by Euclid of 
Alexandria in ancient Greece. The recognition that the 
theorem does not hold in more general number systems 
by mathematicians such as Ernst Kummer led to the 
development of the field of algebraic number theory.

It is well known that there are infinitely many prime 
numbers, so it would not be possible to obtain a com-
plete list of all prime numbers. The search for ever-
larger prime numbers is ongoing, and testing numbers 
for primality is sometimes used as a test of the compu-
tational power of supercomputers.

Modular Arithmetic and Cryptography
An important component of elementary number 
theory is modular arithmetic. In modular arithmetic, 
two numbers are treated to be the same if they have 
the same remainder when divided by some given num-
ber, the “modulus.” One writes a ≡ b (mod m) if m 
divides the difference a − b. One reason why this con-
cept is so useful is that it is compatible with the opera-
tions of addition, subtraction, and multiplication. If 
a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d 
(mod m), a − c ≡ b − d (mod m), and ac ≡ bd (mod 
m). The situation is complicated for division, unless 
m is a prime. Modular arithmetic is sometimes called 
“clock arithmetic” because of the similarity between  
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arithmetic mod 12 and the system for counting hours. 
One related theorem that is frequently studied in class-
rooms in the Chinese remainder theorem, named so 
because the theorem originates in Chinese texts by Sun 
Tzu and Qin Jiushao.

If there was ever a time when number theory was 
studied only for its elegance and beauty and not for 
any application, that time is past now. Modern cryp-
tography, essential for the security of the Internet, is 
based heavily on number theory. The widely used RSA 
(Rivest, Shamir, and Adleman) encryption methods are 
based on modular arithmetic and rely for their security 
on number theorists’ understanding of how difficult it 
is to find large prime factors of a large number. Other 
encryption systems based on more exotic number the-
oretic objects, such as elliptic curves, are under active 
development by cryptographers and number theorists.

Algebraic and Analytic Number Theory
Number theorists study in a diverse range of fields 
related to number theory, including probabilistic num-
ber theory, diophantine approximations, the geometry 
of numbers, and combinatorial number theory. Num-
ber theorists do not exclusively study the integers, nor 
are the integers the only system that admits something 
like prime numbers. Number theorists also extensively 
study other systems of algebraic numbers. An algebraic 
number is a number that is the root of a polynomial 
with integer coefficients; the role of “integer” is played 
by numbers that are roots of polynomials with integer 
coefficients and leading coefficient 1. For example, the 
square root of 10 is an integer in this extended sense. 
Much of algebraic number theory concerns how the 
concepts of prime number and divisibility as applied 
to other number fields compare and contrast with the 
familiar situation for the standard integers.

For example, the Gaussian integers are those com-
plex numbers a bi+  with a and b both integers. The 
Gaussian integers form a number system in which the 
concepts of prime number and divisibility above apply 
almost exactly as described above. However, the set of 
prime numbers here is very different. The number 7, 
for example, is still prime in the Gaussian integers, but 
13, which is prime in the integers, factors here as the 
product of the two primes, 3 2+ i  and 3 2− i .

Though the arithmetic integer is apparently part of 
discrete mathematics, there is a large branch of number 
theory, called “analytic number theory,” which applies 

extremely sophisticated techniques from calculus and 
complex analysis to the problems of number theory.

A basic fact of analytic number theory is that the 
sum of the reciprocals of all primes,

1
p∑ , is infinite. 

Note that it can be recovered from this that the set of 
prime numbers must itself be infinite. With care, one 
can estimate the sum of the reciprocals of all primes 
up to some number x, which turns out to grow at the 
same rate as log x( ) . With more refinement along these 
lines, one obtains the celebrated Prime Number Theo-
rem, which says that the number of prime numbers less 
than some large integer x is well-approximated by 

x

xlog( )
.

Famous Problems in Number Theory
One feature of number theory is a large number of 
intriguing problems that are very simply stated but 
require unexpectedly advanced and specialized tech-
niques to solve; many remain unsolved in the early 
twenty-first century. Indeed, many or most of the 
major problems in mathematics that are known to the 
general public have origins in number theory.

One major recent mathematical breakthrough, 
which received mainstream media coverage, was the 
proof of Fermat’s Last Theorem. Pierre de Fermat (c. 
1601–1665) wrote a note in the margin of a book he 
was reading to the effect that there are no integral solu-
tions to the equation xn + yn = zn with n > 2. There are 
infinitely many solutions with n = 2, and these have 
been well studied; by the Pythagorean Theorem they 
correspond to right triangles with integer-length sides. 
Fermat never wrote down a proof, writing instead that 
the margin of his book was too small to contain it. In 
the intervening centuries, mathematicians tried to sup-
ply the missing proof. Much of algebraic and analytic 
number theory was developed as part of the effort to 
prove this theorem. The problem was finally solved in 
1995 by Sir Andrew Wiles (1953–), using extremely 
sophisticated number-theoretic objects involving ellip-
tic curves and modular form. It is not now generally 
believed that Fermat ever possessed a valid proof.

Because all primes other than 2 are odd, the small-
est possible difference between consecutive primes 
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(other than 2 and 3) is 2. Prime numbers that differ by 
2 (those that are as close as possible) are called “twin 
primes.” The Twin Prime Conjecture asserts that there 
should be an infinite number of twin primes, but 
mathematicians are very far away from being able to 
prove this. In a triumph of analytic number theory, 
Viggo Brun (1885–1978) showed that the sum of the 
reciprocals of all twin primes is finite, though math-
ematicians still do not know whether there are finitely 
or infinitely many of them!

Another famous problem about the additive distri-
bution of the set of prime numbers is Goldbach’s Con-
jecture, named for Prussian mathematician Christian 
Goldbach (1690–1764). The conjecture asserts that 
every even number larger than 2 can be written as the 
sum of two (not necessarily different) prime numbers. 
Computer searches have verified that there are no coun-
terexamples smaller than one quintillion. This problem 
has occupied the attention of many recreational math-
ematicians and has been featured in several novels and 
television shows. Again, mathematicians are very far 
from proving such a theorem.

The Riemann Hypothesis is the most important 
open problem in number theory, and arguably in all 
of mathematics. Named for Bernhard Riemann (1826–
1866), this conjecture concerns a particular function of 
the complex numbers called the zeta function. Let ζ s( ) 
be the value of the infinite sum

1
1

2

1

3

1

4

1

5
s

s s s s
+ + + + + �. . . .

This is apparently defined only for real numbers 
s > 1, but it turns out that there is a uniquely meaning-
ful way to extend this to allow any complex number as 
input. It is relatively easy to show that

ζ ζ ζ−( ) = −( ) = −( ) = =2 4 6 0�  

and there are infinitely many other “nontrivial zeroes” s 
such that ζ s( ) = 0. The standing conjecture is that all the 
nontrivial zeroes of ζ  lie on a particular line in the com-
plex plane. Though a tremendous amount of effort has 
gone into trying to prove this and though mathemati-
cians have much corroborating evidence, it is still open. 
The statement might seem esoteric and arcane; surpris-
ing as it may seem, this statement, if true, would have 
profound implications about the distribution of prime 
numbers, which would have ramifications throughout 

all mathematics. Mathematicians have found dozens 
of very different-looking statements that are known to 
be equivalent to the Riemann hypothesis, and there are 
hundreds of statements that have been proven contin-
gent on a future proof of the Riemann hypothesis.

Further Reading
Derbyshire, John. Prime Obsession: Bernhard Riemann 

and the Greatest Unsolved Problem in Mathematics. 
Washington, DC: Joseph Henry Press, 2003.

Matthews, Keith. “Number Theory Web: Biographies  
of Past Number Theorists and Various Items of 
Historical Interest.” http://www.numbertheory.org/
ntw/N14.html.

Oystein, Ore. Number Theory and Its History. New York: 
Dover, 1988.

Pommersheim, James, Tim Marks, and Erica Flapan. 
Number Theory: A Lively Introduction with Proofs, 
Applications, and Stories. Hoboken, NJ: Wiley, 2010.

Yan, Song. Number Theory for Computing. Berlin: 
Springer, 2002.

Michael “Cap” Khoury

See Also: Coding and Encryption; Mathematics, 
Theoretical; Proof.

Numbers,	Complex
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication;  
Connections; Number and Operations.
Summary: Complex numbers inevitably arise in 
many situations, but may be difficult to accept.

Complex numbers are ubiquitous in modern science, 
yet it took mathematicians a long time to accept their 
existence. They are numbers of the form z a bi= +  
where a and b are real numbers, and i is a symbol called 
the “imaginary unit,” which satisfies the seemingly 
impossible equation i2 1= − . The numbers a and b are 
called the “real” and “imaginary parts” of z, respectively. 
The imaginary unit can be thought of as the square root 
of −1 and is also written i = −1 . In fact, any negative 
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number has a complex square root; for example, the 
square root of −15 is the complex number

− = ⋅15 15 i .

In the twenty-first century, science students routinely 
encounter complex numbers, for instance, as solutions 
to quadratic equations.

In mathematics, complex numbers form an inde-
pendent area of research and are also used to prove 
theorems in other areas of mathematics; examples are 
Machin’s formula and the Prime Number theorem. In 
the natural sciences, complex numbers often simplify 
calculations, for example, in the theory of relativity 
where the distance between points in space-time can 
be computed using imaginary time coordinates. The 
complex exponential function is used in electrical engi-
neering as a convenient way of simultaneously describ-
ing the amplitude and phase of an alternating current, 
and in chaos theory, the complex plane is the scene of 
computer-generated fractals, such as the “Mandelbrot 
set,” named after Benoît Mandelbrot.

Unlike natural numbers, which are used for count-
ing, and real numbers, which are used for measuring 
distances, complex numbers have no obvious real-life 
interpretation. For this reason, the questions of what 
complex numbers really are remained a controver-
sial topic for three centuries after their discovery in 
the sixteenth century. The term “imaginary numbers” 
for nonreal complex numbers was coined by René 
Descartes in 1637 to indicate that they do not really 
exist, a view later shared by Isaac Newton. About 1765, 
Leonhard Euler characterized square roots of negative 
numbers as impossible quantities, and as late as 1831, 
Augustus De Morgan objected to the absurd nature of 
complex as well as negative numbers. Only in 1837 did 
William Rowan Hamilton give a proper construction 
of the complex numbers, thereby indisputably prov-
ing their inner consistency. Nevertheless, it was their 
usefulness, the beauty of their simplicity, and the abil-
ity to visualize them rather than Hamilton’s proof that 
eventually outweighed the objections against complex 
numbers and led to their universal acceptance by the 
end of the nineteenth century.

Algebra and Geometry of Complex Numbers
Complex numbers appeared for the first time in 
Gerolamo Cardano’s Ars Magna from 1545. In this 

famous book containing the formulas for solving cubic 
and quartic equations, Cardano also showed that the 
equations x y+ = 10  and x y⋅ = 40  have the common 
solution 

x = + −5 15  and y = − −5 15.

Cardano, however, dismissed these complex num-
bers as useless and did not pursue the matter further. 
Rafael Bombelli undertook a more systematic investi-
gation in L’Algebra from 1572, where he demonstrated 
how complex numbers can be added, subtracted, mul-
tiplied, and divided using the usual rules of algebra and 
the equation i2 1= − . For example,

( ) ( )1 3 2 3 4+ + + = +i i i

( ) ( )1 3 2 1 2+ − + = − +i i i  

and ( ) ( ) .1 3 2 2 6 3 1 72+ ⋅ + = + + + = − +i i i i i i

Division is slightly more complicated; it is most 
easily performed by multiplying both numerator and 
denominator by the conjugate of the denominator:

1 3

2

1 3 2

2 2

5 5

5
1

+
+

=
+ ⋅ −
+ ⋅ −

= + = +i

i

i i

i i

i
i

( ) ( )

( ) ( )
.

Using these operations, Bombelli showed how real 
solutions to cubic equations can be found even when 
square roots of negative numbers appear in Cardano’s 
formula for cubic equations. Bombelli’s brilliant use 
of complex numbers for solving polynomial equations 
eventually led to the Fundamental Theorem of Algebra, 
according to which every polynomial equation of posi-
tive degree has a complex solution. The first essentially 
correct proof of this result, which had been anticipated 
already in the seventeenth century, was given by Carl 
Friedrich Gauss in 1799 in his doctoral dissertation.

Complex numbers can be represented geometrically 
as points in the complex plane, invented in 1797 by Cas-
par Wessel. Shortly afterward, it was independently con-
ceived and popularized by Gauss, who used it implicitly 
in his proof of the Fundamental Theorem of Algebra. 
This concrete geometric interpretation of complex 
numbers was instrumental in the struggle to come to 
terms with their nature. In the complex plane, points on 
the x-axis correspond to real numbers, points on the y-
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axis to so-called purely imaginary numbers, and in gen-
eral, the point with coordinates (a, b) corresponds to 
the complex number a bi+ . Viewing complex numbers 
as points in the complex plane gives a new geometric 
understanding of Bombelli’s rules of addition and mul-
tiplication. Also, the “numerical value” z of a complex 
number z a bi= +  is defined geometrically as the dis-
tance between the points (0, 0) and (a, b), or

z a b= +2 2 .

Machin’s Formula and the Computation of π
John Machin, in 1706, discovered the formula

π
4

4
1

5

1

239
= ⋅ 





− 





arctan arctan

and used it together with the Taylor series

arctan( )x x
x x x x= − + − + −

3 5 7 9

3 5 7 9
�

to compute π to 100 decimal places, a world record at 
the time. Although Machin’s formula involves only real 
numbers, it has a surprisingly simple and elegant proof 
using the following identity of complex numbers, thus 
illustrating their utility in other areas of mathematics:

( )
( )

5

239
2 1

4+
+

= ⋅ +
i

i
i .

Exponential and Trigonometric Functions
The exponential function ex and the trigonometric 
functions cos(x) and sin(x) are well-known functions 
of a real variable x. They can be expressed as Taylor 
series as follows:

e x
x x xx = + + + + +1
2 3 4

2 3 4

! ! !
�

cos( )
! ! ! !

x
x x x x= − + − + −1
2 4 6 8

2 4 6 8

�  and

sin( )
! ! ! !

x x
x x x x= − + − + −

3 5 7 9

3 5 7 9
�. . . .

Using these expressions, the complex functions ez, 
cos(z), and sin(z) are defined for a complex variable z. 
With these definitions and the fundamental equation 

i2 1= − , Euler, in 1748, proved a formula that reveals a 
surprising kinship between these seemingly unrelated 
functions:

e x i xix = + ⋅cos( ) sin( ) .

This result, known as “Euler’s formula,” generalizes 
a formula found by Abraham de Moivre in 1730:

(cos( ) sin( )) cos( ) sin( )x i x nx i nxn+ ⋅ = + ⋅ .

Inserting x = π into Euler’s formula gives Euler’s 
identity: eiπ = −1.

This identity combines the three most important 
mathematical constants—π, e, and i—into one single 
expression of striking simplicity and beauty. A 1988 
poll of readers of Mathematical Intelligencer voted Eul-
er’s identity “the most beautiful theorem in mathemat-
ics,” ahead of the infinitude of primes, the transcen-
dence of π, and the Four-Color Theorem.

Complex Analysis
Complex analysis is the study of complex functions—
functions f(z) defined on some subset U of the set of 
complex numbers and with complex values. After initial 
contributions by Euler and Gauss, complex analysis was 
systematically investigated by Augustin-Louis Cauchy 
in the 1820s. Later in the nineteenth century, the theory 
was further developed by Bernhard Riemann and Karl 
Weierstrass. The set of definition U is called a “domain” 
if it is open and connected, and f(z) is called “holomor-
phic” if it satisfies the condition of complex differen-
tiability. Contrary to what the name suggests, complex 
analysis is in many ways simpler than real analysis, since 
complex differentiability is a much-stricter property 
than real differentiability. For example, every holomor-
phic function satisfies the so-called Cauchy-Riemann 
equations, which have no analogue in the realm of real 
functions. Also, the “Identity theorem” states that two 
holomorphic functions f(z) and g(z) defined on the 
same domain U are identical only if they agree on a line 
segment, a result very far from being true in real analy-
sis. Other theorems and conjectures in complex analysis 
are concerned with other types of complex functions, 
such as entire and meromorphic functions. 

An “entire” function is a holomorphic function 
defined on the entire complex plane. The complex 
exponential function ez and the complex trigonometric 
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functions cos(z) and sin(z) are examples of entire func-
tions. Liouville’s theorem, named after Joseph Liou-
ville, states that every nonconstant entire function is 
unbounded. This theorem is considerably strengthened 
by Picard’s little theorem, named after Charles Picard, 
which states that every nonconstant entire function 
takes every complex value with at most one exception. 
For example, cos(z) and sin(z) both take every complex 
value, whereas ez takes every complex value except 0. 

A meromorphic function is a quotient of two holo-
morphic functions defined on a domain U where the 
denominator is not identically zero. The zeros of the 
denominator are called “singularities”; they can be 
either “removable singularities” or “poles.” The com-
plex tangent function 

tan
sin

cos
z

z

z
( ) =

( )
( )

is an example of a meromorphic function; it has zeros 
at 0, ±π, ±2π, and so on, and poles at ±π/2, ±3π/2, 
±5π/2, and so on. The mysterious Riemann zeta func-
tion ζ(z) is another example; it has a single pole at 
z = 1. The Riemann conjecture, arguably the most 
important unsolved problem in all of mathematics, 
states that all nonreal zeros of ζ(z) have real part equal 
to one-half. The Riemann conjecture is one of the 
seven Millennium Prize Problems for whose solution 
the Clay Mathematics Institute has offered a prize of 
$1 million.

Hamilton’s Quaternions as  
Extensions of Complex Numbers
The complex numbers form an extension of the real 
numbers, just as the real numbers form an exten-
sion of the rational, integral, and natural numbers. It 
is therefore natural to ask if there are further num-
bers extending the complex numbers. This question 
was answered in the affirmative by Hamilton in 1843 
when he discovered the quaternions. A quaternion is 
a number of the form q = a + bi + cj + dk where a, b, 
c, and d are real numbers, and i, j, and k are symbols 
satisfying

i j k i j k2 2 2 1= = = ⋅ ⋅ = − .

Quaternions, however, do not satisfy the commu-
tative law of multiplication. For example, the prod-

uct of i and j depends on the order of the factors: 
i j j i× ≠ × . The numerical value of a quaternion q 
is defined as

q a b c d= + + +2 2 2 2 .

A quaternion with numerical value q = 1 is called 
a “unit quaternion.” Each unit quaternion corresponds 
in a certain way to a rotation of three-dimensional 
space. For this reason, quaternions have important 
applications in computer graphics. 

It happens that each unit quaternion q corresponds 
to the same rotation as its negative, –q. This math-
ematical subtlety explains one of the most surprising 
phenomena in quantum mechanics, namely, that the 
state of an electron is changed if the electron is rotated 
360 degrees; only a rotation of 720 degrees leaves the 
electron unchanged.
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Numbers,	Rational		
and	Irrational
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Number and Operations; Representations.
Summary: While the concept of rational numbers is 
easily understood, mathematicians has struggled with 
the concept of irrational numbers since antiquity.
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Early philosophers and mathematicians explored 
whether real-life lengths were made up of whole num-
bers. The discovery of irrational numbers caused great 
concern and led to the development of number theory 
and real analysis. A rational number is a real number that 
can be written as a ratio of two integers. Real numbers 
that cannot be so written are called “irrational num-
bers.” So, for example, 17/47 is a rational number, while 
π or 2  are irrational numbers. Rational and irrational 
numbers can also be represented using the decimal nota-
tion. The rational numbers are precisely those numbers 
whose decimal representation either terminates after 
a finite number of digits or is repeating. The decimal 
representation of irrational numbers does not have a 
repeating pattern. So, for example, 1/8 corresponds to 
0.125 (a terminating decimal), while  1/7 corresponds to 
the repeating decimal 0.142857142857. . . . On the other 
hand, the irrational number π has a decimal expansion 
that begins with 3.14159265358979323846 . . . and con-
tinues indefinitely without any patterns. 

Students in twenty-first-century classrooms explore 
rational numbers in middle school and irrational 
numbers in high school, and these numbers appear in 
nature and in daily calculations. For example, e, which 
is also irrational, is needed to calculate the interest 
compounded continually on a loan, and π appears in 
circular or spherical objects. In fact, as a consequence 
of Georg Cantor’s work, given any real number, there 
is a higher probability of it being irrational. There are 
still open problems to explore, such as whether π + e 
is irrational.

Definition
Irrational numbers are numbers that are not rational; 
in other words, any number that is not the ratio of two 
integers is an irrational number. This definition by 
itself, however, is circular. To be able to use it, one first 
has to know what a number is.

What is a number? This question is harder to 
answer than one might expect at first, and, in fact, 
has been contentious for most of the history of math-
ematics. The positive integers (or the counting num-
bers) 1, 2, 3,  . . . directly arise from the daily experience 
of humans, and it is impossible to trace how long ago 
humans went from the concrete ideas of three cows, 
three stones, and three trees and abstracted out the 
number 3 as a stand-alone concept. The advantage of 
this abstraction is that people could study operations 

on numbers and apply them to a large number of set-
tings. If one knows that 3 + 5 = 8, this indicates simul-
taneously that 3 cows together with 5 cows are 8 cows, 
and that 3 trees and 5 trees are 8 trees. If one knows 
that 3 × 5 = 15, then, while 3 trees and 5 trees cannot 
be multiplied, this can be used to model many situa-
tions. Three boys each having five apples have a total 
of 15 apples, and a 3-by-5 piece of land has an area 
of 15. Mathematicians can now concentrate on find-
ing better algorithms and methods for doing number 
operations. The concept of number was first enlarged 
to also encompass rational numbers—the ratios of 
positive integers. 

Some 3500 years ago, Egyptians used unit fractions 
(reciprocals of positive integers) and 2/3 to pose and 
solve problems. For example, the third problem in 
the Rhind Mathematical Papyrus is about dividing 6 
loaves among 10 men, and the answer given is 

1

2

1

10
+ .

Around the same time, Babylonian scribes in Meso-
potamia used a base-60 place value system for fractions, 
but confined themselves to those rational numbers that 
have a finite sexagesimal representation. In any case, 
for a very long time, the term “number” meant positive 
integers and ratios of positive integers—what are now 
called the “positive rational numbers.”

If the only numbers are rational numbers, then by 
definition there are no irrational numbers. To enlarge 
the definition of “number” beyond rational numbers, 
one has to somehow construct these other numbers, 
which can be done by proposing that the length of any 
line segment is a number.

It is believed that in early mathematics it was 
assumed that given any two line segments, it is pos-
sible to find a third line segment—maybe a very small 
one—that measures both lines a whole number of 
times. In other words, the length of each of the origi-
nal line segments is an integer multiple of the third 
smaller line segment. The third line segment is called 
a “common unit of measure,” and the original two line 
segments are called “commensurable.” On the face of 
it, this assumption may seem reasonable, but, if true, 
it would mean that the length of any line segment is a 
rational number. Given an arbitrary line segment of 
length a, find a common unit of measure for it and 
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a line segment of unit length. If the common unit of 
measure has length b, then a mb=  and 1 = nb  for 
some integers m and n. But this means that 

a

m
b

n
= = 1

from which it can be determined that 

a
m

n
=

is a rational number.
The Pythagorean Theorem, which was known at least 

1000 years before Pythagoras, states that given a right 
triangle whose sides are of unit length, then the length 
of its hypotenuse will be such that yields 2 if multi-
plied by itself. Since it has been decided that all lengths 
are numbers, the length of this hypotenuse must be a 
number called the “square root of 2” and denoted by 

2 . One can prove that 2  is not a rational number, 
thereby proving that not all pairs of line segments are 
commensurable and that irrational numbers exist. 

There are many proofs of the irrationality of 2 , 
but the most common one is as follows: Assume by way 
of contradiction that 2  is rational and equal to n/m, 
where n and m are integers. One has many choices for 
n and m; for example, one could multiply both by 47 
and get a new pair of integers with the same ratio—
and values of n and m are chosen such that they do not 
have any common factors. This is, of course, possible. 
From 2 = n mn/m, one obtains 2

2 2
m n= , which means 

that n2 and therefore n is an even number. If n k= 2 , 
then 2 4

2 2
m k=  and so m k

2 2
2= , which means that m 

is also an even number. But it had been assumed that 
n and m have no common factors. A contradiction was 
reached but, since the logic along the way was impec-
cable, it must have been that the original assumption 
that 2  is rational must have been wrong.

Implications
The discovery of irrational numbers led to a crisis 
in geometry and a need to revisit all the results that 
depended on the commensurability assumption. Fol-
lowing Eudoxus, Euclid in his very influential book 
Elements makes a distinction between a number and 
a magnitude. Roughly, one can think of numbers as 
the rational numbers and magnitudes as the lengths of 
line segments—Euclid had an elaborate classification 
of magnitudes. In an attempt to be rigorous, Euclid 

treats number and magnitude differently, and hence 
he does not regard irrational numbers as numbers. For 
example, he develops the theory of proportions once 
for magnitudes and once for numbers. 

It took the effort of many mathematicians in the 
middle ages—and most notably mathematicians liv-
ing in Islamic lands and writing in Arabic—to expand 
the notion of number to include Euclid’s magnitudes 
and to have a single treatment of all numbers, ratio-
nal and irrational. During this period, the decimal 
number system—first developed in India and cru-
cial in understanding irrational numbers—became 
widespread. Ninth-century Persian mathematician 
Al-Mahani gave a definition of irrational numbers (as 
opposed to Euclidean magnitudes), and ninth-cen-
tury Egyptian mathematician Abu Kamil used irra-
tional numbers as coefficients in algebraic equations. 
By the fifteenth century, Persian mathematician Jam-
shid Kashani (also referred to as al-Kashi) was able to 
comfortably work with real numbers and their deci-
mal expansions. He treated both rational and irratio-
nal numbers as numbers. 

In the West, sixteenth-century Flemish mathemati-
cian Simon Stevin played an important role in advo-
cating the use of decimal fractions, in eliminating the 
Euclidean distinction between numbers and magni-
tudes, and in the understanding of real numbers as 
numbers. Finally, a modern rigorous construction 
and definition of real numbers (rational and irratio-
nal) was given by nineteenth-century German math-
ematician Richard Dedekind. He started with rational 
numbers and defined irrational numbers using the 
rational numbers.
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Numbers,	Real
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Number and Operations.
Summary: The real number system is commonplace, 
but required centuries before it came to be 
understood in its modern form.

The real number system is often thought of as a num-
ber line, with each point on the line corresponding to a 
number. The set of real numbers includes all the integers 
and fractions (rational numbers); algebraic irrational 
numbers, such as the square root of 3 and the cube root 
of 19; and transcendental numbers such as π, log 2( ) , 
and e, which do not satisfy any polynomial equation. 

In the twenty-first century, students begin to explore 
whole numbers beginning in the earliest grades, as 
well as common fractions like 1/2 and 1/4. In the later 
primary grades they develop knowledge of base-10 
decimal places, fractions as portions or divisions of 
a whole, negative numbers, and equivalent forms for 
fractions, decimals, and percentages. These notions 
are further expanded and applied in middle school, 
including concepts like ratios and proportions, inte-
gers, factorization, prime numbers, and exponential 
and scientific notation for very large numbers. Very 
large and small numbers, properties of numbers and 
various number systems, vectors and matrices with 
real number properties, and number theory may be 
studied in high school. 

The real number system is the principal number 
system used in calculus, geometry, and measurement. 
In particular, when one uses coordinate (Cartesian) 
geometry to describe the plane or space, one labels 
points by pairs or triples of “real” numbers. In math-
ematics and the sciences, the word “number” without 
qualification is generally used to mean “real number.”

Development of the Real Numbers
The ancient theory of length and measurement was 
very different from current understanding. The 
ancient Greeks (the civilization about which exists 
the most complete mathematical history) believed 
that any set of lengths were commensurable; in mod-
ern language, they believed that the ratio of any two 
lengths (or areas, or volumes) was a rational number. 

This was not a totally unreasonable belief, since indeed 
all lengths can be approximated very well by commen-
surable ones. It is not correct, though; for example, the 
ratio of the diagonal of a square to its side is the square 
root of 2. 

Greek mathematician and numerologist Pythago-
ras knew this (it is a simple consequence of what is 
now called the “Pythagorean Theorem”) and was fur-
ther able to prove, contrary to the notion of commen-
surability, that no rational number, when squared, 
could equal 2. According to some stories, probably 
apocryphal, this discovery was so contrary to the 
belief system of Pythagoras and his followers that a 
discoverer was murdered or committed suicide. Ulti-
mately, geometers were forced to accept the existence 
of irrational numbers. 

The Greek mathematician and astronomer Eudoxus 
(c. 400–350 b.c.e.) wrote about the theory of propor-
tions in a way that did not assume all lengths were 
commensurable and is generally credited with laying 
the groundwork for irrational numbers as legitimate 
mathematical objects.

Even after mathematicians realized that irrational 
numbers were required for practical purposes, the 
understanding of the real number line was somewhat 
vague and confused. Real numbers were understood, 
if at all, as things that could be approximated well 
by rational numbers or by decimal approximations. 
The major modern contribution to the understand-
ing of real numbers was made by Richard Dedekind 
(1831–1916), who described the real numbers in terms 
of so-called “Dedekind cuts.” In addition to its sig-
nificance for abstract mathematics, Dedekind’s insight 
also helped to explain some important phenomena in 
geometry (for example, why a line with points inside 
and outside a circle must intersect the circle).

This resistance to advancements in the understand-
ing of number, this tendency for even very intelligent 
people to oppose enlarging the number system, even 
when doing so enables scientific and technological 
progress, is not unique to the ancient Greeks. A similar 
story unfolded much more recently with the develop-
ment of the complex number system.

Decimal Representations
Every real number has a base-10, or decimal, repre-
sentation. This consists of three components: a dot 
(called a “decimal point” in this context), a finite 
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sequence of digits to the left of the decimal point (the 
integer part), and an infinite sequence of digits to the 
right (the fractional part). A digit can be 0, 1, 2, 3, 4, 
5, 6, 7, 8, or 9. Working from the decimal point left, 
the digits occupy the ones place, the tens place, the 
hundreds place, the thousands place, and so on; from 
the decimal point right, the digits occupy the tenths 
place, the hundredths place, the thousandths place, 
and so on. In symbols, if the a

k
 are digits, then the 

decimal expansion

a a a a a a a ak k k− − − −1 2 1 0 1 2
. . . . . . . . ..

represents the real number

a a a a a. . . . . .
k

k
k

k10 10 10 101 0 1
1+ + + + + + +−

−
−

− . . . .

If from some point rightward, all the digits in the 
decimal representation of a number are zero, that 
expression is said to terminate, and the trailing zeroes 
are typically not written; for example, “7.24” instead of 
“7.24000. . . .” Integers have only zeroes to the right of 
the decimal point, and in such cases even the decimal 
point is often omitted.

Relying exclusively on decimal expansions as a 
way to understand real numbers can be problematic. 
Specifying a real number in this way requires an infi-
nite sequence of digits. Unless there is a pattern, this 
requires specifying an infinite amount of information. 
For example, there is no known digit-by-digit descrip-
tion for important numbers like π and e. Dealing with 
infinite expressions is confusing for many people. For 
example, some people find it difficult to accept that 
0.33333 . . . = 1/3, and even more people find it uncom-
fortable that 0.99999 . . . = 1. 

Almost all real numbers have a unique decimal 
expansion, but some have two. As 0.99999 . . . = 1 illus-
trates, every number that can be written so that it ends 
in an infinite string of 0s also has an expansion that 
ends in an infinite string of 9s.

Structural Properties of the Real  
Number System
The real numbers form a field, which means that real 
numbers can be added, subtracted, multiplied, and 
divided (except by 0), and that the operations satisfy 
certain properties (for example, commutative, associa-
tive, and distributive laws). The real numbers are actu-

ally an ordered field, which means that there is a notion 
of what it means for one number to be less or greater 
than another that is compatible with the operations.

There is a natural way to measure distance between 
two numbers: the distance between numbers a and b is 
a b− , where ⋅  is the absolute value function. Loosely 
speaking, this means that one can talk about “closeness” 
of real numbers to each other; in technical language, the 
number line has a metric and a topology.

Unlike the set of integers (which is discrete), the 
real number line is continuous. The discrete/contin-
uous distinction in mathematics is analogous to the 
digital/analog distinction in science and technology. A 
digital thermometer has discrete output, moving from 
24 degrees to 25. An analog thermometer, on the other 
hand, can register 24 degrees or 24.65474 degrees or 
any other number. Unlike both the integers and the 
rational number system, the real number line is what 
called “topologically complete.” Because of the order-
ing on the reals, this can be summarized as: “Any set 
of real numbers which has an upper bound has a least 
upper bound.” 

In mathematics history, adopting a continuous 
number system made it possible to develop “limits,” the 
focal concept of calculus. The development of calculus, 
in turn, made possible numerous advances in sciences, 
especially physics and engineering.
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Numbers	and	God
Category: Friendship, Romance, and Religion.
Fields of Study: Number and Operations;  
Representations.
Summary: Many numbers and mathematical ratios 
are associated with religion and the notion of deity.

Numbers and religion have been linked since at least 
the beginning of recorded history. Many societies 
throughout the world have associated numbers with 
their spiritual beliefs. Some of these numbers still play 
a role in the fabric of society’s belief systems, religious 
rituals, artistic renderings, and symbolisms. They con-
tinue to be explored, evaluated, and recognized in 
the religious teachings and traditions of many of the 
world’s religions. As early as 1150 b.c.e., Indian mathe-
matician Bhaskaracharya attributed the creation of the 
base-10 numeration system and zero to the Hindu god 
Brahma. Many ancient cultures and societies believed 
that certain numbers had spiritual significance. Histo-
rians, mathematicians, religious scholars, and others 
interested in such connections have found evidence of 
such beliefs in civilizations and religions like ancient 
Babylonia, the Society of Pythagoreans, Greece, Hel-
lenistic Alexandria, Judaism, Christianity, and Islam. 
Many of these same beliefs continue into the twenty-
first century.

Numbers of Pythagoras
Pythagoras of Samos (570–495 b.c.e.), who is often 
called the first pure mathematician, and his follow-
ers, the Pythagoreans, are well-known for their math-
ematical, philosophical, and religious beliefs. In antiq-
uity, philosophy was believed by many to encompass 
the very essence of mathematics and religion. The 
perceived link between mathematics and the spiritual 
or divine world is succinctly stated by the Pythagoras 
maxim “All is Number.” Among the legacies associated 
with Pythagoras are the theorem that bears his name; 
the creation and study of musical harmonies, which 
may have originated in Babylon; and concepts of sacred 
geometry, such as the divine proportion. 

The “Divine Proportion” (or “Golden Ratio”) is 
often seen by mathematicians and other scholars in 
nature’s designs and natural phenomena. The Greeks 
widely used the principle in sculptures and architec-
ture. Phidias (490–432 b.c.e.), who is counted among 

the best Greek sculptors, used the Divine Proportion 
in designing the Parthenon, a temple to the goddess 
Athena. In honor of Phidias, the Divine Proportion is 
usually symbolized by the Greek letter ϕ representing 
the first letter of his name. To understand the Divine 
Proportion, consider a rectangle. The rectangle is said 
to be in Divine Proportion if the ratio of its length to 
its width has the following value

ϕ = + ≈1 5

2
1 618. .

Rectangles with these proportions are called “Golden 
Rectangles.” This proportion (about 8/5) continues to 
be used by artists and architects in designing structures 
for aesthetic appeal.  

The Number “12” 
The Greeks considered the number “12” to be signifi-
cant since it represented the number of gods on Mt. 
Olympus: Zeus, Hera, Athena, Poseidon, Apollo, Arte-
mis, Demeter, Hermes, Aphrodite, Ares, Hephaestus, 
and Hestia. The significance of “12” probably origi-
nated with the Sumerians in Mesopotamia. Later, the 
Babylonians used the number “12” in developing their 
calendars and their clocks. They developed the zodiac 
by dividing the heavens into 12 equal sections named 
for constellations, one for each calendar month. These 
sections continue to be the 12 signs of the zodiac, an 
idea that was passed down from society to society 
throughout the ages. The Babylonian zodiac impacted 
many societies in the Western world. In Christianity, 
the 12 disciples of Jesus are usually considered to be 
symbolic of the 12 tribes of Israel, which may have 
been influenced by the 12 signs of the zodiac. The 
number “12” also has significance in Buddhism. For 
example, the Buddhist Wheel of Life, which depicts 
the world and the human condition, has 12 stages. In 
this tradition, life is composed of 12 stages, which keep 
the wheel of life turning. 

The Number “7” 
The number “7” is a significant number in Judeo-
Christian and Islamic religious traditions. The creation 
story in the book of Genesis states that God made the 
heavens and the Earth in six days and rested on the 
seventh day. The number “7” is associated with divine 
completion and perfection. There are also references 
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to 7 spirits, 7 churches, 7 stars, 7 seals, 7 trumpets, 7 
vials, 7 thunders, 7 plagues, 7 mountains, and 7 kings, 
and many more references. The number “7” occurs fre-
quently in Muslim architecture, art, and literature. The 
Qur’an often couples the number “7” with references 
to Allah as the all-powerful creator as well as with con-
cepts like the 7 heavens, the 7 Sleepers of Ephesus, and 
the 7 periods of creation. 

The Number “19” 
In 1974, Rashad Khalifa used a computer to explore the 
structure of the Qur’an. He discovered that the num-
ber 19 occurred with unusual frequency. This occur-
rence was unexpected since 19 had never before been 
recognized as a significant number in the Islamic reli-
gion. Khalifa published his discovery in his 1981 work, 
The Computer Speaks: God’s Message to the World. 
These findings were called the “Qur’an Code.” The 
first verse of the Qur’an states: “In the name of Allah, 
the compassionate, the merciful.” In Arabic, the letters 
that make up this verse total 19. Khalifa discovered 
that every word in this verse is mentioned a number 

of times throughout the Qu’ran, and these numbers 
are all multiples of 19. Consequently, Khalifa’s conclu-
sion was that the number “19” was divinely selected as 
a number of significance in the Islamic religion. 

Bible Codes
What are often now known as “bible codes” were pop-
ularized in the twentieth century, but numerical sym-
bolism dates back to much earlier times. The Jewish 
book Sefer Yetzira (Book of Creation) contained sacred 
numbers. As writer and scientist Clifford Pickover has 
explained: “Kabala is based on a complicated number 
mysticism whereby the primordial One divides itself 
into 10 sephiroth [numbers] which are mysteriously 
connected with each other and work together. 22 letters 
of the Hebrew alphabet are bridges between them.” In 
gematria methods of analysis, each letter was assigned a 
number. The values of a word or phrase were added and 
the then values were analyzed for spiritual implications. 
For example, the word for “life” in Hebrew is chai, which 
is made up of two letters, a chet (8) and a yud (10). When 
added together, they sum to 18. The number 18 then took 
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on symbolic meaning, which also translated to daily life. 
It was considered good form to give monetary gifts in 
18 and its multiples. The number 18 has been also con-
sidered prosperous in certain parts of China, and it also 
took on spiritual importance in India, such as in the 18 
chapters of the sacred Hindu text Bhagavad Gita. 

Researchers have mathematically examined the 
Bible using methods such as two-dimensional arrays, 
which have been tested for what are known as “equi-
distant letter sequences.” Some found what seem to 
be words meaningfully related to adjacent portions of 
the text, and they claimed that their results were sta-
tistically unlikely to be due to chance alone. Author 
Michael Drosnin reported on some mathematical and 
computer analyses, referring to them as the “Bible 
code,” in order to highlight apparent predictions and 
to compare to twentieth-century knowledge. Some of 
the advocates of Bible code analyses point to appar-
ent prediction of the dates of major world events as 
proof of the existence of such codes. Computations 
on the age of the universe are also sometimes cited 
as evidence, such as when first century rabbi Nechu-
nya ben Hakanah used the Bible to compute the age 
as 15.3 billion years, which is relatively close to some 
twenty-first-century estimates. Critics, however, have 
countered these assertions by citing flaws in the sta-
tistical methodology and noting that any sufficiently 
long text may produce seemingly nonrandom pat-
terns or clusters.

Numerical Defense of the Resurrection 
During the twenty-first century, associations of num-
bers with religion continue to evolve. In 2002, Richard 
Swinburne, philosophy professor at Oxford Univer-
sity, applied Bayesian statistical methods, named for 
mathematician Thomas Bayes, in his defense of the 
Christian tenet of Jesus’s resurrection from the dead. 
He noted that it was extremely improbable, based on 
the laws of nature, for someone who had been dead 
for 36 hours to come back to life. Swinburne asserted 
that if there is a God, only God would be able to defy 
the laws of nature and make the dead come alive. In 
proving his point, Swinburne assigned probability 
values to the existence of God and some of the events 
described in the New Testament, such as the credibil-
ity of witness testimony. After mathematical analysis, 
Swinburne concluded that Jesus’s resurrection was 
extremely probable, namely, 97 percent. Swinburne’s 

use of mathematical logic and statistical methods to 
answer questions of faith is another step in a long tra-
dition of connections between numbers and religion.
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Nutrition
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Mathematicians and nutrition scientists 
model and analyze numerous aspects of nutrition  
and diet.

Nutrition is the system of providing food to an organ-
ism as well as the science of food and eating. Nutri-
tion science is an interdisciplinary field that involves 
a wide variety of disciplines, including mathematics, 
statistics, culinary science, physiology, genetics, bio-
chemistry, psychology, medical sciences, sociology, 
anthropology, and ethnography. Mathematical and 
statistical methods are widely used to describe and 
analyze different nutrients in food, determine their 
impact on nutrition and health, develop eating plans, 
assess public opinion, and inform public policy. 
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Meal-planning and nutritional labels are often used 
in classroom mathematical problems.

Taxonomies of Human Nutrients
The understanding of what balanced nutrition means is 
a difficult and controversial subject, with many schools 
of scientific thought, cultural traditions, and govern-
ing bodies proposing different ways of eating. Many 
people may be familiar with the U.S. Department of 
Agriculture’s food pyramid, which was introduced in 
the 1990s to replace the older four food groups model. 
There are similar guidelines produced in many coun-
tries, using a mix of scientific research and expert opin-
ion. One measurement scale for a nutrient is the time 
it takes for its lack to manifest itself in health problems. 
Lack of energy-providing nutrients, such as fats, pro-
teins, and carbohydrates, is felt within hours as hun-
ger and causes symptoms within days. A disbalance of 
macrominerals, such as potassium and calcium, as well 
as some vitamins has been shown to lead to specific 
diseases and is felt within weeks to months.

 For example, physician James Lind published an 
influential treatise on scurvy in 1753, based in part on 
his controlled experiments with British sailors. Lack 
of some other vitamins and minerals can take years 
to manifest. Flavonoids are found in plants, changing 
coloration, smell, and taste. Researchers hypothesize 
that flavonoids regulate organism responses, such as 
inflammations and allergies, as well as reactions to 
carcinogens, bacteria, and viruses. Most studies of fla-
vonoids in human nutrition are only decades old. Pro-
biotics are live microorganisms most frequently eaten 
with fermented food. They may affect the immune 
system, blood pressure, inflammation, and cancer. Pre-
biotics are food items, such as inulin in chicory roots, 
that promote the growth of microorganisms in the 
digestive tract. Water participates in most systems and 
processes in the body, playing roles such as a solvent for 
other substances and entering chemical reactions.

Researching and Modeling Nutrition 
Data collection and quantitative analysis are used for a 
variety of purposes in nutrition science. For example, 
they are used to investigate the effects of nutritional 
deficiencies, optimize diets for long-term health and 
longevity, study the effectiveness of weight-loss plans, 
and establish causal links between political policy 
changes and nutrition and health effects. Qualitative 

methods like case studies and ethnographic studies are 
insufficient to establish cause, though they may high-
light key variables. One critical principle of scientific 
studies that seek to make causal connections is isolating 
a small number of variables to systematically manipu-
late, while controlling the rest. Because nutrients inter-
act with all systems in the body—with other organisms 
living in the body, with each other, and with behav-
iors other than eating—the complexity of the resulting 
system can make this approach difficult. Further, the 
effects of some types of nutrients take years or even 
decades to uncover, or they may occur in only a small 
number of people. Studying these would require exten-
sive longitudinal studies or very large sample sizes to be 
statistically valid, which may have significant practical 
and ethical barriers. Finally, individual differences in 
reactions to nutrition changes may be large and non-
random, depending on genetics, culture, and daily 
habits, which means that averaging the effects of nutri-
tional interventions may overlook important effects on 
small minorities, such as allergic reactions.

Mathematicians and nutrition scientists use math-
ematical modeling and simulation to investigate the 
functions of systems and to experiment with the con-
ditional responses of multiple variables. Increases in 
computing power have made complex modeling a fea-
sible alternative to traditional scientific experimenta-
tion. Problems are drawn from areas of concern, such 
as obesity, diabetes, cancer, and toxicology. Many mod-
els rely on collection of kinetic body data to develop 
accurate models of physiological processes, such as 
bioperiodicity and membrane transport, which is also 
possible because of advances in medical imaging and 
other technology. Computational approaches are used 
to estimate distributions of parameters, evaluate lin-
ear integrators and other functions, manipulate mul-
tiple variables in stochastic models, and create visual-
izations. Mathematical or statistical approaches, such 
as neural networks, graph theory, and cluster analysis, 
have also been used to model data or systems and to 
make connections. 

Genetically modified foods are a controversial sub-
ject in nutrition. Typical reasons for altering food are 
for resistance to pests or disease or for nutritional ben-
efits. The Swiss-developed “golden rice” has higher 
levels of vitamin A than standard rice strains, which 
would theoretically benefit third world countries 
where rice is a staple food and vitamin A deficiencies 
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are common. Some support the use of such foods to 
combat hunger in areas of the world with chronic 
shortages and endemic malnutrition. Others cite the 
unknown long-term effects, such as spontaneous 
cross-pollination with unmodified organisms, as well 
as the ethical implications. Mathematicians and scien-
tists have helped to create genetically modified foods 
and have investigated many questions related to them. 
For example, informaticists have used combinatorial 
reduction rules to create a model to detect unknown, 
genetically modified organisms. Others research and 
model aspects such as the likelihoods of positive and 
negative ecological outcomes, pathogenicity, public 
acceptance, and impacts on international trade using 
probabilistic and statistical methods, simulation, dif-
ferential equations, and a wide variety of computerized 
modeling techniques.

Diets and Meal Planning
A diet is the description of types and quantities of 
nutrients consumed. Because organisms vary in ways 
other than food intake, dietary variables are typically 
studied in their relationships with other variables—
either direct proportionality or more complex func-
tions. Different cultures have varied proportions of 
nutrients in their diets, as well as certain prohibitions. 

For example, Aleuts tradi-
tionally eat a large amount 
of meat, consuming about 
eight times more protein than 
South American agricultural 
tribes. Japanese and Mediter-
ranean diets are often cited 
for emphasis on certain fats, 
fruits, vegetables, and car-
bohydrates. Both Jewish and 
Muslim traditions forbid cer-
tain types of foods. People 
may also choose diets for spe-
cific goals, such as weight loss 
or control of medical condi-
tions like diabetes or high 
blood pressure, often with lit-
tle scientific evidence of effec-
tiveness—though scientists 
are seeking ways to validate or 
refute such claims. Globaliza-
tion has made different types 

of diets and foods increasingly known and accessible 
to people everywhere. 

Software for planning least-cost nutritional meals 
was developed for mainframe computers in the early 
1960s and evolved during the 1970s to include food 
preferences options. Later research in the 1980s and 
the evolution of personal computing led to new soft-
ware that used mathematical programming to opti-
mize and maximize menu planning for different vari-
ables, including nutrition, allergies, and preferences. 
Internet-based software and algorithms, such as that 
used by the weight-loss company Weight Watchers 
with their Weight Watchers Online program, now 
allows people to track and plan menus based on a vari-
ety of criteria, often dynamically linked to databases 
with recipes, past behavior, and weight or measure-
ment tracking. Large institutions, such as schools and 
hospitals, may use software that includes inventory 
and other supply variables. 

Nutrition and Mathematical Problem Solving
There are studies directly linking nutrition and suc-
cess in mathematics. One group of researchers found 
that providing a balanced breakfast before the morn-
ing mathematics class raised test scores more than 
any other variable they analyzed, such as changes in 

The Japanese traditionally eat more fish, vegetables, grains, and fruit and 
consume smaller portions than most Western diets.
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teaching methods. Different cultures have different 
beliefs of what constitutes “brain food.” Certain types 
of fat, vitamins B and C, and monosaccharides have 
been shown to increase memory and speed of compu-
tation within time periods from minutes to days from 
increased consumption. More complex cognitive effects 
of food, such as connections between gluten or lactose 
sensitivity and attention, are being investigated. 

Further Reading
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Ocean Tides  
and Waves
See Tides and Waves

Oceania, Australia  
and New Zealand
Category: Mathematics Around the World.
Fields of Study: All.
Summary: The indigenous cultures of Oceania are 
mathematically interesting.

The United Nations classification for Oceania includes 
Australia and New Zealand as well as the hundreds 
of Pacific Islands groups under the headings Melane-
sia, Micronesia, and Polynesia. The Australian Math-
ematical Society was founded in 1956 and promotes 
mathematics and its applications. The New Zealand 
Mathematical Society was found in 1974 and promotes 
research and the dissemination of mathematics. Math-
ematicians born in Australia and New Zealand include 
Field’s Medal winners Terence Tao (2006) from Austra-

lia and Vaughan Jones (1990) from New Zealand. High 
school students participate in the International Math-
ematical Olympiad. Australia began its participation in 
1981 and hosted the contest in 1988, while New Zea-
land first participated in 1988. Mathematics historians 
and ethnomathematicians have researched the math-
ematics of the indigenous inhabitants of Australia and 
New Zealand. For example, the structures of Austra-
lian Aboriginal kinship systems can be modeled by the 
algebraic theory of groups, while the wood carving and 
tattooing done by the Maori of New Zealand embody 
geometrical principles of symmetry. These cultural 
achievements interest mathematicians and teachers of 
mathematics and also have influenced the humanities, 
the social sciences, and popular culture.

Australia
Studying Aboriginal kinship systems has greatly influ-
enced anthropology and can be mathematically mod-
eled. To give just one important example, Claude 
Lévi-Strauss, in support of his ideas on structural 
anthropology, cited what he called “the Australian 
facts” to help argue that a system of exchange (as illus-
trated by marriage partners reciprocally chosen from 
paired sections) underlies the origin of marriage rules.

Many Aboriginal societies are divided into two 
halves, with four sections in each half, for the purpose 
of determining kinship. The example best known to 
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mathematicians, because of the classic work of Marcia 
Ascher, is that of the Warlpiri of Australia’s Northern 
Territory. A schematic diagram is shown below.

The equal sign designates allowed marriages. That 
is, for members of a section in either half, there is one 
section in the other half from which marriage partners 
come. For instance, women in section A marry men 
from section W, and men from section A marry women 
from section W. Children’s sections are determined 
by their mother’s; the directed arrows show how. For 
instance, if a mother is in section A, her children are in 
section C; mothers in C have children in B; mothers in 
B have children in D; and mothers in D have children 
in A—completing a cycle. Similarly, mothers in W have 
children in Z, and so on. Thus, the matrilineal cycle has 
a length of 4. For fathers, if a man is in A, for instance, 
following the arrow backward shows that his mother is 
in D, so his father is in Z. Then his father’s mother is 
in W, so his father’s father is in A again. Thus the com-
plete patrilineal cycle has a length of 2.  

If one writes I for one’s own section, m for one’s 
mother’s section, m2  for one’s mother’s mother’s sec-
tion, f for one’s father’s section, and so on, the cyclic rela-
tionships can be expressed by m I4 =  and f I2 = . Other 
algebraic relationships, like mf mf I( )( ) = , can be veri-
fied from the diagram. The resulting algebraic structure 
is that of the dihedral group of order 8. The Warlpiri, 
of course, do not have the concept of group, but those 
learning the system are asked to solve word problems 
like, “If someone’s mother is in a particular section, then 
in what section is such-and-such a relative?” The Warl-
piri abstract from the personal relationships to concep-
tualize the system itself. General terms of address reflect 
the individual’s place in the structure. Kin relationships 
determine a person’s behavior, obligations, place to live, 
and relationships to plants, animals, and landscape; they 
also link past, present, and future generations.  

The Aboriginal view of the origin of their kinship 
system in the journeys of their ancestors during the 
ancestral past (known as the “dreamtime”) is reflected 

in Aboriginal paintings. Such paintings are noted for 
their symmetry, and particular geometric elements 
indicate individual places, ancestral beings, or clans. 
The current interest in Aboriginal art has brought these 
geometric forms to a worldwide audience.

New Zealand
Geometric art pervades Maori culture in dance, song, 
music, weaving, painting, latticework, carving, and tat-
tooing. Wood carving is the most prominent, though 
facial and body tattoos also continue to be symbols of 
Maori identity. Traditional Maori carving uses a small 
number of design forms and motifs, combined accord-
ing to well-established rules. Rafters and ridgepoles of 
the Maori meetinghouse are decorated with carvings 
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See Also: Asia, Eastern; Europe, Northern; Oceania, 
Pacific Islands; Tao, Terence. 

Oceania,  
Pacific Islands
Category: Mathematics Around the World.
Fields of Study: All.
Summary: The people of the Pacific Islands 
historically used sophisticated mathematics, including 
a unique method of navigation.

The Pacific Ocean covers more than one-fifth of the 
Earth’s surface and includes hundreds of islands. In the 
nineteenth century, few visitors to the Pacific Islands 
were able to match the skill of Pacific Islanders in solv-
ing arithmetic and algebra problems. The people of 
the Marshall Islands, scattered over dozens of atolls 
across the central Pacific, were master navigators who 
tracked their way over huge expanses of ocean without 
mechanical aids. The compass, sextant, and chronom-
eter, which their European contemporaries were reliant 
upon for safe and successful voyaging, were completely 
unknown to them. What they possessed instead were 
a set of aids that relied upon an extremely complex 
type of knowledge related to what they could observe 
and even feel about the ocean around them. These aids 
were called Mattangs, Meddos, and Rebbelibs by their 
users and are known today as “stick charts.” 

Some other instances of mathematics in Pacific 
Island culture and in the Pacific Islands region include 
the often-complex geometric patterns found in basket 
weaving, such as the design named “stars,” which has 
a tessellation pattern that is mathematically sophisti-
cated and is reminiscent of Dutch graphic artist M.C. 
Escher’s drawings. These patterns can also be found 
in traditional tattoos, where the type of pattern had 
great cultural significance and represented the rank 
and bravery of the tattooed person. Scientists have also 
modeled the number of species on islands as a mathe-
matical power function that depends on land area, and 
they continue to study island populations of birds and 
other species in this context. Researchers have explored 
barriers to success in mathematics in the Pacific Islands 

that embody tribal history. These carvings employ all 
seven of the symmetry groups that characterize strip 
patterns. They are often colored in ways that comple-
ment, rather than echo, the symmetries. Maori art also 
uses bilateral symmetry, but the symmetry is often bro-
ken by the nonsymmetrical use of colors or by the addi-
tion of small figures that vary. Maori tattoos use many 
of the same themes and motifs as does carving. Also, 
individuals’ tattoos serve to identify family, tribe, com-
munity, birthplace, and inherited or achieved authority.

Maori symmetric forms are united by their near 
identity while differing in their asymmetries. This aspect 
reflects the way the Maori characterize reality by pairs of 
things existing in a tension between union and separa-
tion. Understanding the formal geometric patterns thus 
gives insight into Maori culture. Maori geometric art 
has become part of global culture. For example, Maori 
carved wooden bowls appear in Paul Gaugin’s paintings. 
In Herman Melville’s Moby Dick, the tattooed harpooner 
Queequeg possesses—and sells—Maori tattooed ances-
tral heads. Enlightenment philosopher Immanuel Kant 
felt that he had to discuss Maori tattoos in examining 
the nature of beauty, though he concluded that Maori 
tattoo designs could be beautiful only if they were not 
on a human face. Additionally, Maori tattooing plays a 
key role in the acclaimed 1994 film Once Were Warriors.

Further Reading
Blakers, A. L. “The Australian Mathematical Society: 

Foundation and Early Years. I: Events Leading 
Up to the Foundation of the Society.” Australian 
Mathematical Society Gazette 3, no. 2 (1976).

Greer, Brian, et al. Culturally Responsive Mathematics 
Education. New York: Routledge, 2009. 

Kaeppler, Adrienne Lois. The Pacific Arts of Polynesia and 
Micronesia. New York: Oxford University Press, 2008.

Munn, Nancy D. Walbiri Iconography. Ithaca, NY: Cornell 
University Press, 1973.

Starzecka, D. C., ed. Maori Art and Culture. London: 
British Museum, 1996.

Tee, G. J. “The First 25 Years of the New Zealand 
Mathematical Society.” New Zealand Mathematical 
Society Newsletter 76 (1999).

Washburn, Dorothy, and Donald Crowe. Symmetries of 
Culture: Theory and Practice of Plane Pattern Analysis. 
Seattle: University of Washington Press, 1998.
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and recommended that teachers include culturally rel-
evant content in their classrooms. Professional devel-
opment programs and consortiums offer training 
for teachers and explore mathematics education for 
Pacific-region children.

Stick Charts
Stick charts were made from strips of the midrib of a 
coconut frond or pandanus root bound together with 
coconut sennit in geometric patterns meant to rep-
resent currents flowing around their low-lying atolls. 
Small shells or coral pebbles were attached to indicate 
the location of islands, and curved sticks were used to 
represent wave patterns.

The first of these charts, the Mattang, was a small 
square chart used to teach how waves reflect and refract, 
or bend, around a single island or atoll (see Figures 1 
and 2). By detecting a change in the direction of the 
prevailing swell, a navigator could discern the presence 
of an island or atoll over the horizon. The Meddo was 
an actual chart covering a small set of atolls and used 
for voyages to nearby atolls. Meddo charts also showed 
the direction of the main ocean swell and how it curves 
around specific islands and the distance from a canoe 
at which an island could be detected. The Rebbelib was 
a more complex version of the Meddo and was used to 
represent an entire chain of islands or even the whole 
of the Marshall Islands. It showed the complex relation-
ship between the islands and the major ocean swell.

Stick charts were not made and used by all Mar-
shall Islanders. Only a select few knew the method 

for making and reading the 
charts, and the knowledge 
passed only from father to 
son. However, so that oth-
ers could utilize the exper-
tise of the navigator, 15 or 
more canoes sailed together 
in a squadron, accompanied 
by a lead navigator skilled in 
use of the charts. Because the 
knowledge contained in each 
chart was a closely guarded 
secret, they were not nor-
mally carried on a voyage. 
Instead, the navigator memo-
rized the chart and gauged 
the wave patterns entirely by 

his sense of touch. Crouching in the bow of his canoe, 
he would literally feel the motion of his vessel.

It was not until 1862 that this unique navigational 
system was revealed in a public notice prepared by 
a resident missionary. It was an additional 30 years 
before it was comprehensively described by Captain 
Johann Winkler of the German Navy. He became so 
intrigued by the stick charts that he made a major 
effort to determine the navigational principles behind 
them and convinced the navigators to share how the 
stick charts were used. He recognized that the stick 
charts represented a significant contribution to the 
history of both navigation and cartography because 
they symbolized something that had never before 
been accomplished—a system of mapping and navi-
gating by ocean swells. They are an indication that 
ancient maps may have looked far different, encod-
ing different aspects from the natural world, than the 
maps commonly used today. The use of stick charts 
and navigation by swells apparently came to an end 
shortly after World War II. The venerable stick chart 
and ocean-going canoe were no match for large 
motorized vessels with modern navigational devices. 
They do, however, continue to be made in the Mar-
shall Islands, though very few people are able to use 
them as navigation aids. They are primarily made and 
sold instead as tourist souvenirs.

Further Reading
Clark, Megan. “Cultural Cross-Purposes and Expectation 

as Barriers to Success in Mathematics.” Proceedings of 
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the Ninth International Congress on Mathematical  
Education 3 (2004).

Tee, Garry. “Mathematics in the Pacific Basin.” British 
Journal for the History of Science 21 (1988).

Thomas W. Hair

See Also: Escher, M.C.; Mapping Coastlines; Marine 
Navigation; Oceania, Australia and New Zealand.

Operations
See Number and Operations; Number and Operations 
in Society

Optical Illusions
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Measurement; Problem 
Solving.
Summary: Optical illusions are predictable illusory 
phenomena that are not yet fully understood.

Optics, generally, is the science of the visible. Physi-
cal optics is the study of the nature and propagation 
of light. Physiological optics is the study of neuro-
physiological processes of light reception and image 
forming as conditions of vision and merges with psy-
chology and cognitive science into a unitary “vision 
science.” Optical illusions likely have been observed 
as long as mankind has existed. Some optical illusions 
arise from people’s ability to see in three dimensions, 
even though retinal images are flat representations on 
a curved surface. Extracting three-dimensional infor-
mation from ambiguous two-dimensional images 
requires interpretive rules in the brain. Many optical 
illusions have mathematical connections, especially 
in the perception of geometry within the illusion. 
They are popular as entertainment, and mathematics 
teachers sometimes use optical illusions in the class-
room in order to engage students and to develop visu-
alization skills.

Examples
Physical phenomena leading to seeing unreal things, or 
to seeing real things in a distorted way (for example, 
phenomena due to special atmospheric conditions: 
halos, coronas, and sightings of distant objects caused 
by reflections between air layers of different density) 
are now well understood, and not usually named “illu-
sions.” The apparent flattening of the sun disc at the 
sunset is in accord with the laws of light propagation 
(differential refraction), but it is not an illusion. Illu-
sions of perception are situations “when perception 
goes wrong” and where a central (neurophysiological 
or psychological) cause must be supposed—something 
is perceived as something else (error of identification) 
or is perceived differently than it is (error of quality 
or quantity). For example, the moon at the horizon is 
often reported to appear larger than if seen high in the 
sky, although the angular size of the moon disc is in 
both instances the same (approximately 30 arc min-
utes)—this is the famous “moon illusion.”

Illusory phenomena have been observed since 
ancient times, for example, the “moon illusion” was 
known to Ptolemy, and an illusory “motion after-
effect” caused by watching a waterfall was mentioned 
by Aristotle. However, the proper scientific study of 
visual illusions began in the middle of the nineteenth 
century with the discovery of geometric-optical illu-
sions, (distortions of perceived lengths, sizes, and 
shapes observed in simple drawings or in real-world 
situations). For example, a path in the visual field sub-
divided into a series of segments usually appears lon-
ger than the same path that is empty (see the Oppel–
Kundt illusion, Figure 1). Lengths of linear segments 
may be overestimated or underestimated, depend-
ing on added elements (for example, the popular  
Müller–Lyer illusion). Geometric figures drawn over 
linear or curvilinear rasters often appear deformed 
(see the Hering, Zöllner, or Ehrenstein–Orbison illu-
sion Figure 2). Other instances of optical illusions 
involve judgments of brightness (see Figure 3), and 
particularly illusory “contrast phenomena,” such as 
well-known Mach bands, or the Hermann grid (see 
Figure 4). More recently, dynamic phenomena, such as 
illusory motion seen in static pictures, or the famous 
“scintillating grid,” have been described.

Generally, all these phenomena demonstrate the 
universal principle of context-dependence in visual 
(and any) perception: a stimulus, S, is perceived  
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differently if presented together with a context stimu-
lus S′ than if presented alone. In other words, a purely 
attentional separation of S from S′ is impossible in 
spite of the observer’s effort. 

What differentiates all these phenomena from inci-
dental errors of perception is that they occur regularly 
and predictably in most or all observers. After more 
than 150 years since their discovery, there is still no sat-
isfactory theory of these phenomena, although a great 
variety of explanations have been proposed.

Explanations
The two main directions of explanatory approaches 
have traditionally been the empiricist and the nativist 
theories. The empiricist theories, going back to Herman 
Helmholtz’s theory of unconscious inferences, empha-
sized the role of the subject’s past experience and of 
cognitive factors forming the perception. By contrast, 
the nativist theories searched for explanations in the 
structure and the functional principles of the sensory 
organ itself. 

740 Optical Illusions

Figures 1 and 2

P Q R

Figure 1. Oppel-Kundt illusion: the length of the 
PQ segment appears greater than the segment QR, 
although PQ = QR.

Figure 2. Ehrenstein-Orbison illusion: sides of the 
square drawn in an array of concentric circles appear 
inward-bent, although they are really segments of 
straight lines.

Figures 3 and 4

Figure 3. Context effects on perceived brightness: the inner square of the left-hand-side figure appears darker 
than the inner square of the right-hand-side figure, although they are printed with exactly the same gray-shade 
level. Figure 4. Hermann grid: illusory grayish shadows are seen at the crossings of white stripes, although 
objectively the background is uniformly white. (Fixate on the figure center marked by the circle.)



Empiricist theories, in spite of their speculative char-
acter, have been revitalized by cognitive psychologists 
and are still influential; for example, a popular theory 
sought to explain a group of optical illusions as results of 
inappropriate constancy scaling due to erroneous per-
spectival interpretation of the illusion-inducing figure. 
However, these theories ignore much of empirical coun-
ter evidence, such as tactile analogies of certain optical 
illusions, or geometrico-optical distortions observed in 
contexts not suggesting any perspectival interpretation. 
Neonativist theories integrating approaches of Gestalt 
psychology and neurophysiology and searching for 
interactions within higher levels of the visual system 
are arguably more promising, although they are usually 
limited to circumscribed groups of illusory phenomena. 
The general opinion in the early twenty-first century 
is that the broad variety of optical illusions cannot be 
explained by a single cause; therefore, a unitary theory 
of optical illusions is rather unlikely.

Optical illusions are neither deceptions of the eye 
nor errors of the cognitive processing of sensory data. 
They are facts of vision, presumably manifestations 
of the functional principles of the visual system in its 
entirety. The same functional principles, or the “laws 
of seeing,” are at work in visual arts, or in visualization 
technologies such as virtual reality. The study of opti-
cal illusions in laboratory as well as in natural environ-
ments importantly contributes to the understanding of 
the process of vision and of the nature of the visual life 
world.

Further Reading
Boring, E. G. Sensation and Perception in the History of 

the Experimental Psychology. New York: Appleton-
Century-Croft, 1942.

Coren, S., and J. S. Girgus. Seeing Is Deceiving. The 
Psychology of Visual Illusions. Hillsdale, NJ: Lawrence 
Erlbaum, 1978.

Gombrich, E. H. Art and Illusion. Oxford, England: 
Phaidon Press, 1977.

Metzger, W. The Laws of Seeing. Cambridge, MA: MIT 
Press, 2006.

Robinson, J. O. The Psychology of Visual Illusion. 2nd ed. 
New York: Dover, 1998.

Ross, H. E., and C. Plug. The Mystery of the Moon 
Illusion. New York: Oxford University Press, 2002.

Seckel, Al. Masters of Deception: Escher, Dali & the Artists 
of Optical Illusion. New York: Sterling, 2007.

———. Optical Illusions: The Science of Visual Perception. 
Buffalo, NY: Firefly Books, 2009.

Jiri Wackermann

See Also: Magic; Mathematical Puzzles; Puzzles; 
Vision Correction.

Orbits, Planetary
See Planetary Orbits

Origami
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Representations.
Summary: People explore many interesting 
mathematical questions using the art and principles 
of paper folding.

Origami is the famous Japanese art of paper folding. 
Historically, it has been used for a variety of purposes, 
including document certification and as a way to repre-
sent religious symbols. In traditional origami, a single 
piece of paper is folded to construct one of a variety 
of objects. The art has grown to include compound 
forms that involve connecting several individual ori-
gami pieces together, with modular origami specifying 
geometrically equal pieces. 

Origami art, mathematics, and science have many 
explicit interconnections, and in the 1990s and 2000s 
there have been several conferences specifically devoted 
to these links. In the twenty-first century, computa-
tional origami is an emerging discipline that applies 
mathematical theory and computational algorithms to 
formulate and solve complex folding problems, many 
of which have applications in engineering, industrial 
design, and a variety of sciences. Such solutions are often 
called “origami technology.” For example, engineers and 
mathematicians explored origami lenses for use in space 
telescopes, and precision folding technology is already 
being used to optimize manufacturing processes.
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Origami forms are inherently mathematical. Their 
geometry can be identified as reflections with respect to 
the folding line. The possible operations for points and 
lines in origami, using a single fold, are described by 
seven axioms generally known as the “Huzita–Hatori 
axioms,” named for mathematicians Humiaki Huzita 
and Koshiro Hatori. However, mathematician Jacques 
Justin may have been the first to enumerate these seven 
axioms. The axioms allow mathematicians to answer 
interesting questions, such as the classic problems of 
trisecting an angle and doubling the cube, which are 
impossible using only ruler and compass constructions. 
More generally, it is possible to solve any equation up to 
degree three with origami geometry. Further, although 
origami forms are usually produced using finite sheets 
of paper, origami folding can theoretically be extended 
to the infinite plane.

Use of Origami in Modern Mathematics
In the late twentieth century, mathematicians got 
interested in the foundations of this art. For this com-
munity of scientists, the creation of models in origami 
is not a matter of inspiration; it is spurred by the search 
for understanding of the concepts and limitations of 
Euclidean geometry, properties of geometric figures, 
symmetry, angles, lines, and mathematical communi-
cation, among others.

There are several major topics in 
the practice and study of origami, 
including the following:

• Its geometry and relationship 
between this and other 
geometries, in particular, 
Euclidean geometry

• The straightening of the bend—
whether a model can be unfolded 
(which has been studied by 
Marshall Bern and Barry Hayes)

• Rigid origami—the possibility 
of constructing models if 
the paper were replaced by 
metal (which has already 
been used for solar panels 
of satellites in space)

Mathematics teaching techniques increasingly use 
origami. Moreover, paper folding is used to develop 

manual dexterity, as well as to teach aesthetics appre-
ciation and topics such as proportions, foundations of 
geometry, and measurements. Origami is also a handy 
resource for other areas, like mathematical commu-
nication, problem solving, and investigation of three-
dimensional objects and spatial relationships.

Huzita–Hatori Axioms

1. Given two points P
1
 and P

2
, we can fold a line 

connecting them.
2. Given two points P

1
 and P

2
, we can fold P

1
 

onto P
2
.

3. Given two lines l
1
 and l

2
, we can fold line l

1
 

onto l
2
.

4. Given a point P and a line l, we can make a 
fold perpendicular to l passing through the 
point P.

5. Given two points P
1
 and P

2
 and a line l, if 

the distance between P
1
 and P

2
 is equal to 

or larger than the distance between P
2
 and l, 

we can make a fold that places P
1
 onto l and 

passes through the point P
2
.

6. Given two points P
1
 and P

2
 and two lines l

1
 

and l
2
, if the lines aren’t parallel and if the 

distance between the lines isn’t larger than 
the distance between the points, we can make 
a fold that places P

1
 onto line l

1
 and places P

2
 

onto line l
2
.

7. Given a point P
 
and two lines l

1
 and l

2
, if  

the lines aren’t parallel, we can make 
a fold perpendicular to l

2
 that 

places P onto line l
1
.
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An origami  
crane folded  

from one  
uncut square  

of paper. 



Robert Lang proved that this list of axioms covers 
all possible cases for a single folding. If one of them is 
removed from the list, it is no longer complete. 

Further Reading
Demaine, Erik, and Joseph O’Rourke. Geometric Folding 

Algorithms: Linkages, Origami, Polyhedra. Cambridge, 
England: Cambridge University Press, 2007.

Hull, Thomas C. Project Origami: Activities for Exploring 
Mathematics. Wellesly, MA: A K Peters, 2006.

Lang, Robert J. “Origami and Geometric Constructions.” 
http://www.langorigami.com.

———. Origami Design Secrets: Mathematical Methods 
for an Ancient Art. Natick, MA: A K  
Peters, 2003.

Liliana Monteiro

See Also: Axiomatic Systems; Geometry and 
Geometry Education; Greek Mathematics; Symmetry.
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Pacemakers
Category: Medicine and Health.
Fields of Study: Algebra; Geometry.
Summary: Artificial pacemakers send a signal to the 
heart to keep it pumping and mathematicians develop 
models to determine when and how often to do so.

While a pacemaker is often thought of as a regula-
tor for the heart, a variety of natural pacemakers are 
responsible for regulating numerous bodily functions 
including circadian rhythms and menstruation. The 
actions of natural pacemakers can be modeled as cou-
pled oscillators, where, for example, the behavior of the 
natural pacemaker influences the function of the heart 
and vice versa. Square waves or sine waves are often 
useful in understanding the theory of coupled oscilla-
tors, which dates back to 1665 when Christiaan Huy-
gens noticed synchronization in pendulum clocks. 

Scientists and mathematicians have shown that cha-
otic oscillation or amplitude death can also occur in 
coupled scenarios. A change in the rhythm or in the 
way they are coupled can result in a change in function, 
such as in irregular menstrual periods or menopause. 
Dynamical systems model the interactions between 
coupled oscillators and allow for theoretical predic-
tions. Using these models, mathematicians, biolo-
gists, and medical professionals have made significant 

advances in understanding natural pacemakers and in 
designing effective artificial pacemakers. Some of the 
related mathematical theory is taught to undergradu-
ate mathematics students.

Heart Rhythms and Pacemakers
The sinoatrial node (SA node) is thought to act as the 
heart’s natural pacemaker via electrical impulses. The 
typical rate for a resting heart is 60 to 70 beats per min-
ute. The pacemaker cells keep the heart pumping at a 
steady rate, but medical problems can lead to chaotic 
behavior and cardiac arrest. 

Defibrillation may reset the rhythm in some cases 
but an artificial cardiac pacemaker may be required 
if the rhythm remains chaotic. Wavelet transforms 
have been used to effectively model cardiac signals but 
implementation is difficult because of high power con-
sumption. Australian anesthesiologist Mark Lidwell 
and physicist Edgar Booth are believed to have designed 
the first artificial pacemaker in 1928. 

American physiologist Albert Hyman also devel-
oped an early pacemaker. Many designers of artificial 
pacemakers have assumed that regular impulses from 
a pacemaker should be used to stabilize the heartbeat. 
However, a periodic signal may lead to chaos in some 
mathematical models, so scientists are developing 
pacemakers that send impulses based on chaos con-
trol theory.

P



Body Clock and Jet Lag
Jet lag is thought to to result from a desynchronization 
of the suprachiasmatic nucleus (SCN) pacemaker cells 
in the hypothalamus of mammals. Experimental stud-
ies suggest that the SCN may synchronize within one 
week. Scientists and mathematicians have mathemati-
cally modeled the system as a network with connec-
tions between the cells, which are called nodes in the 
language of graph theory. 

For example, mathematicians Channa Navaratna 
and Menaka Navaratna have adapted a model of neu-
roscientist Peter Achermann and bioinformaticist 
Hanspeter Kunz. The hypothalamus is thought to have 
16,000 pacemaker cells, so they analyzed computer 
data from a model with this many pacemaker cells and 
found that the number of long-distance connections in 
the network determined the synchronicity time. They 
examined the types of network connections that are 
needed between the nodes in order to make the model 
synchronize in a week, and they designed a model that 
consistently synchronized in close to seven days.

Scientists and mathematicians have also studied many 
other issues related to pacemakers, such as interference 
and power issues. There is controversy and conflicting 
evidence on whether devices such as cell phones or iPods 
affect pacemakers. Many medical professionals presume 
an association until clearer evidence to the contrary is 
found and recommend keeping the devices at least a few 
inches away from a pacemaker to err on the side of cau-
tion. Scientists have developed what some call “origami 
batteries” made of carbon nanotubes and cellulose that 
may power the next generation of pacemakers. The bat-
teries can be cut into many shapes.

Further Reading
Barold, S. Serge, et al. Cardiac Pacemakers Step by Step: 

An Illustrated Guide. Hoboken, NJ: Wiley, 2003.
Glantz, Stanton. Mathematics for Biomedical Applications. 

Berkeley: University of California Press, 1979.
Strogatz, Steven. Nonlinear Dynamics and Chaos: With 

Applications to Physics, Biology, Chemistry, and 
Engineering. Boulder, CO: Westview Press, 2001.

Sarah J. Greenwald
Jill E. Thomley

See Also: Clocks; EEG/EKG; Function Rate of 
Change; Medical Simulations; Origami. 

Packing Problems
Category: Architecture and Engineering.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry.
Summary: Packing problems challenge the solver to 
optimally fill a given space or determine how many 
objects of some type may fit in a space. 

The name “packing problems” has been given to a variety 
of mathematical problems in both “serious” and “recre-
ational” mathematics. Packing problems are mainly geo-
metric but the term is sometimes also applied to certain 
numerical problems important to computer science. 
The distinguishing feature of a geometric packing prob-
lem is the objective to position a family of shapes with 
no overlap and a minimal amount of leftover space.

If a baker has rolled out a certain sheet of dough and 
has a certain size and shape of cookie cutter, how should 
the shapes be cut to leave as little wasted dough as pos-
sible? How many tennis balls will fit in a very large box? 
These are packing problems of the most fundamental 
type. The most thoroughly studied case is that of pack-
ing identical spheres (circles in the two-dimensional case 
or hyperspheres in the four-dimensional—or more—
space) in Euclidean space. The most efficient way to pack 
circles in the plane is to surround each circle with six 
others in a honeycomb formation, filling about 90.7% 
of the plane. It was conjectured by Johannes Kepler 
that a similarly symmetric arrangement of spheres (fill-
ing about 74% of space) is optimal in three-dimen-
sions. This conjecture was generally considered to have 
been proved by Thomas Hales in 1998. Hales’s proof of 
Kepler’s conjecture relies on large-scale computer calcu-
lation and represents an important example of a well-
studied mathematical problem that is “solved,” but for 
which no hand-checked proof is known.  

There is much potential for generalization. There 
is already much unknown for hyperspheres in four 
dimensions; other important variations include con-
sidering spheres of varying sizes, considering non-
Euclidean geometry, and using different shapes instead 
of spheres. There is significant, active research along all 
of these lines.

Packing Puzzles
The above type of problem has been studied both by 
professional mathematicians and recreational math-
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Packing Problems in Computer Science
Another class of packing problem, the so-called knap-
sack problems, is numerical (rather than geometric) 
in nature. A typical example is sometimes called the 
“Aladdin’s saddlebag problem.” 

Aladdin is in a cave full of a variety of treasures: 
gold, silver, rubies, diamonds, rare books, and other 
valuable objects. Each type of object takes up a certain 
amount of space in Aladdin’s saddlebags, weighs a cer-
tain amount, and has a certain value. The problem is 
to decide how to get the most valuable hoard possible, 
if there is a limited amount of space and if Aladdin’s 
mule can carry only a limited amount of weight. If 
the solver thinks of the quantities as continuous (if it 
makes sense in context to take exactly as much gold 
as is wanted), then this is a classical instance of linear 
programming, a powerful and efficient technique in 
applied mathematics. 

On the other hand, if the quantities are discrete 
(for example, if the gold is in large bars, and Aladdin 
cannot take more than two bars but less than three), 
then the problem is in general very difficult. Indeed, 
the simplest version of the discrete knapsack problem 
is already believed to be computationally quite hard. 
In this problem, a list of integers is given as well as a 
large target integer. The goal is to achieve the target as 
a sum of integer multiples of the given numbers. Any 
progress toward finding more efficient solving meth-
ods or toward showing that the current methods are 
optimal would be extremely significant in the field of 
computer science. 

Further Reading
Friedman, Erich. “Erich’s Packing Center.” http://www2 

.stetson.edu/~efriedma/packing.html.
Golomb, Solomon. Polyominoes: Puzzles, Patterns, 

Problems, and Packings. Princeton, NJ: Princeton 
University Press, 1994.

Kellerer, Hans, Ulrich Pferschy, and David Pisinger. 
Knapsack Problems. Berlin: Springer, 2004.

Szpiro, George. Kepler’s Conjecture: How Some of the 
Greatest Minds in History Helped Solve One of the 
Oldest Math Problems in the World.  Hoboken, NJ: 
Wiley, 2003. 

Michael “Cap” Khoury

See Also: Polygons; Polyhedra; Puzzles; Shipping.

ematicians, but there is another category of packing 
problem particular to the recreational mathematician 
(and to the puzzle enthusiast). In these packing puzzles, 
the solver tries to fit a collection of shapes into a larger 
shape; typically the pieces are of a sort that fits together 
exactly (for example, packing rectangles into a rectangle 
rather than packing circles into a square). An old puzzle 
is to determine, for each n, how large a square is needed 
to accommodate a 1×1 square, a 2 ×2 square, a 3×3 
square, . . . , and an n×n square. The oldest known prob-
lem of this type is the Tangram puzzle that originated 
in ancient China, a set of seven simple shapes that can 
be rearranged to perfectly fill a square (and many other 
shapes). In the twentieth century, a wide range of pack-
ing puzzles involving polyominos (shapes made by glu-
ing together unit squares along their edges) have enjoyed 
considerable popularity. Packing puzzles can also be 
posed in three dimensions. Three particularly popular 
and interesting examples involving blocks illustrate the 
concept well. The Slothouber–Graatsma puzzle, named 
after architects Jan Slothouber and William Graatsma, is 
to pack a 3×3×3 cube with six 1×2×2 blocks (leaving 
three 1×1×1 holes). The Conway puzzle, named after 
mathematician John Conway, is to fill a 5×5×5 cube 
with 13 1×2×4 blocks, one 2×2×2 block, one 1×2×2  
block, and three 1×1×3 blocks. A harder puzzle is to 
pack 41 1×2×4 blocks into a 7× 7× 7 cube (leaving 15 
1×1×1 holes).

Covering Problems
A class of problems closely related to the first type of 
packing problem discussed are so-called covering prob-
lems. Covering problems are “dual” to packing prob-
lems; instead of positioning non-overlapping copies of 
a shape in a region with minimal leftover space (as in 
a packing problem), the solver positions overlapping 
copies of a shape so that they completely cover a region 
with a minimal overlap. For example, how many circles 
of radius 1 does the solver need to completely cover a 
circle of radius 10? Covering problems have historically 
received less attention than packing problems, perhaps 
because packing problems correspond more obviously 
to physical situations. Nonetheless, covering problems 
have applications: for example, to designing satellite or 
cellular networks. Covering a large region as efficiently 
as possible with circles corresponds to placing security 
guards in a large area as efficiently as possible so that each 
point is within a fixed distance of at least one guard.

	 Packing Problems 747



Painting
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Representations.
Summary: Painting incorporates many mathematical 
concepts, and mathematics is also used to analyze 
paintings.

Human beings strive to comprehend their reality in 
a number of ways, including artistic expression and 
mathematics. Examples can be found in many cultures, 
such as the long history of interesting mathematical pat-
terns in Islamic art and in the cave paintings of Paleo-
lithic people. Many artists throughout history also have 
been mathematicians, such as fifteenth-century painter 
Piero della Francesca. Modern painter Michael Schul-
theis also worked as a software engineer. He and Mary 
Lesser, a painter and printmaker, both explicitly include 
mathematical elements like numbers, equations, and 
geometric objects in their work. Mathematical con-
cepts, especially geometry, are embedded throughout 
the art of painting. Some that are most commonly 
used for analyzing paintings involve symmetry, per-
spective, golden ratios and rectangles, and fractals, as 
well as fundamental geometric forms, shapes, fractals, 
and abstraction. Mathematicians and scientists also use 
mathematical methods to determine whether or not 
unidentified paintings belong to a particular artist.

Symmetry
M.C. Escher, a graphic artist, used transformational 
geometry to create a variety of works that explored sym-
metry. His classic work Day and Night, a 1938 woodcut, 
transforms rectangular fields into flying geese and uses 
a black and white color scheme to emphasize the tran-
sition of a setting from day to night. While many art-
ists explore symmetry and transformational geometry, 
Escher took it further by exploring and emphasizing 
mathematical concepts including Convex and Con-
cave, a 1955 lithograph, Two Intersecting Planes, a 1952 
woodcut, and Moebius Strip II, a 1963 woodcut. The 
use of symmetry as the catalyst for transforming the 
plane is one of the more pleasing aspects of his work. 
Navajo sand painting also offers many good examples 
of various types of symmetry. Four-fold symmetry is 
widely found in Native-American painting and other 
art forms, and it plays a role in some spiritual and heal-
ing ceremonies.

Perspective
Early paintings did not use perspective to show a 
three-dimensional world on a two-dimensional can-
vas. Giotto di Bondone, a thirteenth-century painter 
began to develop depth of field in some of his work; 
but the first artist credited with a correct represen-
tation of linear perspective is Filippo Brunelleschi 
(1377–1446), who was able to devise a method using 
a single vanishing point. An architect and sculptor, he 
shared his method with fellow artist Battista Alberti, 
who wrote about the mechanics of mathematical per-
spective in painting. Leonardo da Vinci used perspec-
tive in his paintings and explored artificial, natural, and 
compound perspective in his work. He examined how 
the viewer’s observation point changed the perspec-
tive, and how the perspective could be perceived by 
changing where the viewer was observing the painting. 
Notably, while perspective and the illusion of depth 
were widely used in Western painting from the 1300s 
onward, it was not universal. Painters from India rarely 
used this technique; rather, they tended to focus more 
on patterns and geometric relationships.

Golden Ratio and Golden Rectangles
Consider a rectangle with short side a and a long side 
that is a +b. A golden rectangle would be where the 
ratio a /b is equal to 

a +ba b

a

+ .

In other words, the large rectangle is proportional to 
the smaller rectangle formed by side b and side a—this is 
the golden ratio. Some claim that this proportion influ-
enced many artists and early Greek architecture, while 
others note the variability of picking points in a painting 
to have golden rectangles superimposed. It is, however, a 
way of considering the proportionality of a work.

Fundamental Geometric Forms or Shapes
Geometric forms and shapes are the basis for drawing 
and painting. For example, Piet Mondrian (1872–1944) 
explored cubism in his work from black and white lines 
and blocks of primary colors that divided the plane. 
Other cubists, such as Pablo Picasso, broke with the 
Renaissance use of perspective to provide an alternative 
conception of form. Cubists made it possible for the 
viewer to see multiple points of view simultaneously. 
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Paul Cézanne ignored perspective in some of his work 
to construct color on the two-dimensional surface. 
Pointillism was used by Georges Seurat (1859–1891) to 
create Sunday Afternoon on the Island of La Grande Jatte. 
In pointillism, a series of small, distinct points of color 
are used to create a painting that relies on the viewer’s 
eye to blend them into a cohesive form. The brain uses 
the dots to create a solid space. The primary colors are 
used to create secondary colors for shading and create 
the impression of a rich palate of secondary colors.  

Art deco is characterized by the use of strong geo-
metric forms that are symmetrical. This style of paint-
ing was popular in the 1920s and 1930s.  

Abstraction and Fractals
Abstraction is an important tenet of mathematics. In 
mathematical abstraction, the underlying essence of a 
mathematical concept is removed from dependence on 
any specific, real-world object and generalized so that 
it has wider applications. In abstract expressionism, 
the artist is expressing purely through color and form, 
with no explicit representation intended. However, that 
does not mean that abstract art is entirely unstructured. 
Fractals are one tool used to quantitatively analyze and 
explain what makes some paintings more pleasing than 
others. The argument is that, even in an apparently 
random abstract work, there is an underlying logic or 
structure that the human brain 
recognizes as fractal patterns 
and that it inherently prefers 
over other works that do not 
have these patterns. This pref-
erence is perhaps because such 
works are more reflective of the 
geometry of naturally occurring 
spaces. For example, physicists 
Richard Taylor, Adam Mico-
lich, and David Jonas analyzed 
Jackson Pollock’s paintings 
and found two different fractal 
dimensions in his work that are 
mathematically and structurally 
similar to naturally occurring 
phenomena, like snow-covered 
vegetation and forest canopies. 
In addition to the application of 
fractals, mathematical concepts 
like open and closed sets have 

been used to compare and contrast the work of abstract 
expressionist artists like Pollock and Wassily Kandin-
sky to artists like Joseph Turner and Vincent van Gogh, 
whose works are among those credited with inspiring 
the expressionist movement.

Mathematical Analysis to  
Determine Authenticity
Sometimes, the painter of a particular artwork is 
unknown or disputed, which affects the study of art 
and the monetary valuation of paintings. Hany Farid 
and his team created a computer program that uses 
wavelets to analyze digital images of paintings and map 
the stroke patterns—some too small to be seen with the 
naked eye—that characterize an artist’s unique style. In 
one case, known drawings by Pieter Bruegel the Elder 
were compared to five drawings originally attributed 
to him. The analysis determined that the five drawings 
were different from the original eight and also from 
each other, suggesting multiple creators. Chinese ink 
paintings are an example in which brush strokes are 
critical to identification, since they do not have colors 
or tones to distinguish style. One successful method, 
tested on the work of some of China’s most renowned 
artists, used a mixture of stochastic models. In another 
case, fractal geometry was used to question the authen-
ticity of some newly discovered Pollock works, based 
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French painter Georges Seurat used the painting technique of pointillism to 
create Sunday Afternoon on the Island of La Grande Jatte. 



on his earlier patterns. Radioactive scans and X-ray 
analysis help to authenticate works by well-known and 
highly valued masters, such as Johannes Vermeer.

Additional Parallels in Painting  
and Mathematics
There are many natural parallels in the work of paint-
ers and mathematicians. In the same way that painters 
of different traditions and schools may represent the 
same scene in drastically different ways, mathemati-
cians may approach the same problem from a variety 
of disciplines or perspectives. There are also varying 
degrees of connection to reality in both mathemat-
ics and painting. Applied mathematicians and realist 
painters may be primarily concerned with detailed and 
faithful representations of the real world in their work, 
while abstract painters and theoretical mathemati-
cians often work in ways that are logically coherent 
and consistent, but that do not immediately or obvi-
ously connect to the real world. As with art, there is also 
subjective appreciation of the beauty of mathematics 
and arguments over what is or is not mathematically 
valid. Artist Michael Schultheis reported that he was 
often inspired by mathematical and scientific writing 
on whiteboards from his days as an engineer, and said, 
“I constantly revise equations with the Japanese callig-
raphy brush, rubbing out an area and thus creating a 
window into the equations. I draw and re-draw new 
ideas. All of these ideas are analytical. But they also live 
in the realm of beauty.”
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Parallel Postulate
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry.
Summary: The parallel postulate led to thousands of 
years of investigation and debate.

One of humanity’s greatest intellectual achievements 
occurred in approximately 300 b.c.e. when the axiom-
atic method was born. The classic text Elements, writ-
ten by the great Greek geometer Euclid of Alexandria, 
is a work that shaped the nature of mathematics and 
stands to this day as an example of the beauty and ele-
gance of reasoning and proof.

Euclid was among the first people to understand 
that abstract mathematics is based on reasoning, from 
assumptions to general conclusions. From a very mod-
est set of assumptions—his five postulates (called “axi-
oms”)—Euclid set out to argue the truth of a large num-
ber of propositions (called “theorems”) in geometry.  

The first four of Euclid’s postulates appear reasonable 
enough: (1) any two points determine a unique line; (2) 
any line segment can be extended to an infinite line; (3) 
given any center and radius, a circle can be constructed; 
and (4) all right angles are congruent. But the fifth pos-
tulate stands out for its comparative complexity:

If a straight line falling on two straight lines makes 
the interior angles on the same side less than two right 
angles, the two straight lines, if produced indefinitely, 
meet on that side on which are the angles less than the 
two right angles.

This fifth postulate has come to be known as the 
“parallel postulate,” in part for its very content, but also 
for the key role it plays in proving certain propositions 
about parallel lines.

From an historical perspective, Euclid himself 
seemed a bit uncomfortable with his fifth postulate. 
This discomfort is evidenced by the order of his work 
in Book I of Elements, where, on his way to eventually 

750 Parallel Postulate



proving 48 propositions, he waited until proposition 
29 to use the parallel postulate. The first 28 results rely 
only on the first four postulates and theorems that can 
be proven using those assumptions.

Attempts to Prove the Parallel  
Postulate as a Theorem
As subsequent mathematicians studied the Elements, 
most were troubled in some way by the parallel pos-
tulate. Because of its complexity, as well as its “if-then” 
format, it struck most mathematicians that Euclid’s 
fifth postulate really ought to be a theorem. In other 
words, the parallel postulate ought to be a consequence 
of the first four postulates, and this fact ought to be 
provable, using only those four postulates and any the-
orems that could be derived from them.

Thus, many mathematicians set out to prove the par-
allel postulate as a theorem. It is one of the great tales 
of the history of mathematics that every single mathe-
matician who attempted to prove the parallel postulate 
failed. Early on, many of these esteemed intellects made 
a common error that the rules of logic forbid—they 
assumed precisely what they were attempting to prove. 
Clearly, if the goal is to prove a statement S, one should 
never be allowed to simply assume that S is true. While 
certainly no mathematician was so dull as to say, “To 
prove the parallel postulate, I will assume the parallel 
postulate,” many people did make the mistake of mak-
ing the assumption that certain “obvious” statements 
were true. For example, they may have assumed state-
ments such as the following:

• Parallel lines are everywhere equidistant.
• The sum of the measures of the interior 

angles of a triangle is 180 degrees.
• If a line intersects one of two parallel lines, 

then it must also intersect the other.
• There exists a rectangle (a quadrilateral 

having four right angles).

Remarkably, each of the above statements (along with 
many others) is equivalent to the parallel postulate. Said 
differently, if one of the above statements is called P and 
the statement of the parallel postulate is called S, then it 
turns out that P is true if and only if S is true—the truth 
of one implies the truth of the other, and vice versa.  

Hence, when a mathematician said, “Using the fact 
that any triangle’s angle sum is 180 degrees,” and then 

went on to “prove” the parallel postulate, this argument 
was like saying “the parallel postulate is true because 
the parallel postulate is true.” These errors came to 
be well understood by the end of the eighteenth cen-
tury, perhaps most prominently in G. S. Klugel’s 1763 
doctoral dissertation in which he debunked 43 flawed 
“proofs” of the parallel postulate.

Girolamo Saccheri’s Developments
Of course, even though nobody had found a valid proof 
of the parallel postulate did not mean that one could 
not be found, and many continued the search. Around 
the turn of the eighteenth century, a Jesuit priest named 
Girolamo Saccheri (1677–1733) made a lasting contri-
bution to the study of the parallel postulate in particular, 
and to the history of mathematics in general. Saccheri 
considered the unthinkable, as part of his effort to prove 
the parallel postulate through a contradiction argument: 
what if the parallel postulate is false?

It was well understood by Saccheri’s time that an 
equivalent statement of the parallel postulate was Play-
fair’s Postulate, which states that

For any line l and any point P not on l, there exists a 
unique line through P parallel to l.

A contradiction argument works by assuming that 
the statement one wants to prove true is actually false 
and showing that some contradiction follows. Thus, it 
is natural to consider Playfair’s Postulate and suppose 
that there is not be a unique line through P parallel to 
l. That is, one would assume that either there is not any 
line through P parallel to l, or there is more than one 
line through P parallel to l. Saccheri considered a simi-
lar scenario where he had transformed the problem 
about parallels to an equivalent one about quadrilater-
als (now called “Saccheri quadrilaterals”) in which the 
quadrilateral has two congruent sides perpendicular to 
the base. Fundamentally, Saccheri was trying to prove 
that a rectangle existed by showing that the summit 
angles of his quadrilateral were also right angles. After 
proving that the summit angles were congruent, he 
realized that there were three possibilities: the summit 
angles were each right angles, each was less than a right 
angle, or each was more than a right angle.

While Saccheri was able to rule out the possibility 
that the summit angles were obtuse by assuming that 
they were obtuse and finding a contradiction, when he 
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assumed that the summit angles were acute, he could 
not find a contradiction. From this assumption, he 
went on to prove many strange and unusual theorems. 
Unknowingly, Saccheri had discovered a whole new 
geometry, one that another mathematician named 
Janos Bolyai would call “a strange, new universe” in 
his own investigations. What both of these mathema-
ticians, along with others such as Carl Gauss, started 
to realize is that there actually exists a geometry in 
which there is more than one line through a point P 
not on line l such that each is parallel to l. This realiza-
tion stands as one of the greatest accidental discover-

ies in the history of the human intellect: Saccheri did 
not find what he set out to prove, but instead devel-
oped a collection of ideas that would radically change 
mathematics.

Further Reading
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Greenberg M. Euclidean and Non-Euclidean Geometries: 

Development and History. New York: W. H. Freeman 
and Co., 2007.

Socrates Bardi, Jason. The Fifth Postulate: How 
Unraveling A Two Thousand Year Old Mystery 
Unraveled the Universe. Hoboken, NJ: Wiley, 2008.

Matt Boelkins

See Also: Axiomatic Systems; Geometry of the  
Universe; Proof.

Parallel Processing
Category: Communication and Computers.
Fields of Study: Algebra; Number and Operations.
Summary: Parallel processing speeds up the run-
time of computing through the use of mathematical 
algorithms.

In computing, parallel processing is the action of per-
forming multiple operations or tasks simultaneously 
by two or more processing cores. Ideally, this arrange-
ment reduces the overall run-time of a computer pro-
gram because the workload is shared among a number 
of engines—central processing units (CPUs) or cores. 
In practice, it is often difficult to distribute the instruc-
tions of a program in such a way that each CPU core 
operates continuously and efficiently, and without 
interfering with other cores. It should be noted that 
parallel processing differs from multitasking, in which 
a single CPU core provides the effect of simultaneously 
executing instructions from several different programs 
by rapidly switching between them, or interleaving 
their instructions. Modern computers typically include 
multi-core processor chips with two or four cores. The 
most advanced supercomputers in the early twenty-first 
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Modern Conceptions

T oday, mathematicians understand a great 
deal about the role of Euclid’s parallel pos-

tulate. Euclid’s parallel postulate really is an 
axiom, and not a theorem. The parallel postu-
late is independent of the first four postulates. 
One can assume that the parallel postulate is 
true, or one can assume that the parallel pos-
tulate is false. Either leads to a perfectly valid 
geometry, with the truth of the parallel postu-
late leading to Euclidean geometry. Considering 
Playfair’s postulate, named for John Playfair, if 
one assumes there are no parallel lines through 
a point P not on a line l, then this leads to so-
called elliptic geometry, which is like the geom-
etry of the sphere. If instead one assumes that 
there is more than one parallel line through a 
point P not on l, then this leads to “hyperbolic 
geometry,” a geometry that some believe may 
help describe the shape of the universe.

It took approximately 2000 years for human-
kind to fully appreciate the work of Euclid and 
to reconcile the fact that Euclid was right—his 
fifth postulate really is an axiom, and not a 
theorem that can be derived. More than this, 
the parallel postulate is like a door that opens 
the world to one geometry—Euclidean—while 
there are other similar postulates that open 
doors to different universes, those of elliptic 
and hyperbolic geometries.



century may have thousands of multi-core CPU nodes 
organized as a cluster of single processor computers and 
connected using a special-purpose, high-speed, fiber 
communication network. Although it is also possible 
to perform parallel processing by connecting comput-
ers together using a local area network, or even across 
the Internet, this type of parallel processing requires the 
individual processing elements to work predominantly 
in isolation because of the comparatively slow com-
munication between nodes. Parallel processing requires 
data to be shared among processors and thus leads to the 
concept of “shared memory” where multiple processing 
cores work with the same physical memory. In large 
computer clusters, the memory is usually distributed 
across the nodes, with each node storing its own part 
of the full problem. Data are exchanged between nodes 
using message-passing software, such as Message Pass-
ing Interface (MPI).

Amdahl’s Law and Gustafson’s Law
The speed-up gained through parallelization of a pro-
gram would ideally be linear; for example, doubling the 
number of processing elements should halve the run-
time. However, very few parallel algorithms achieve 
this target. The majority of parallel programs attain a 
near-linear speed-up for small numbers of processing 
elements but for large numbers of processors the addi-
tion of further cores provides negligible benefits.

The potential speed-up of an algorithm on a par-
allel computing platform is given by Amdahl’s law, 
originally formulated by Gene Amdahl in the 1960s. A 
large mathematical or engineering problem will typi-
cally consist of several parallelizable parts and several 
non-parallelizable parts. The overall speed-up attain-
able through parallelization is proportional to the size 
of the non-parallelizable portion of the program and is 
given by the equation

S
P

=
−
1

1

where S is the speed-up of the program (as a factor of 
its original sequential runtime), and P is the fraction 
that is parallelizable. Amdahl’s law assumes the size of 
the problem is fixed and that the relative proportion 
of the sequential section is independent of the number 
of processors. For example, if the sequential portion of 
a program is 10% of the run-time (P = 0.9), no more 

than a 10-times speed-up could be obtained, regardless 
of how many processors are added. This characteristic 
puts an upper limit on the usefulness of adding more 
parallel execution units.

Gustafson’s law is closely related to Amdahl’s law, 
but is not so restrictive on the assumptions made about 
the problem. It can be formulated algebraically as

S P P a P( ) = − −( )1

where P is the number of processors, S is the speed-
up, and a is the non-parallelizable proportion of the 
process.

Applications
Parallel computing is used in a broad range of fields, 
including mathematics, engineering, meteorology, 
bioinformatics, economics, and finance. However, all 
of these applications usually involve performing one 
or more of a small set of highly parallelizable opera-
tions, such as sparse or dense linear algebra, spectral 
methods, n-body problems, or Monte Carlo simula-
tions. Frequently, the first step to exploiting the power 
of parallel processing is to express a problem in terms 
of these basic parallelizable building blocks.

Parallel processing plays a large part in many aspects 
of everyday life, such as weather prediction, stock mar-
ket prediction, and the design of cars and aircraft. As 
parallel computers become larger and faster, it becomes 
feasible to solve larger problems that previously took 
too long to run on a single computer.

Further Reading
Barney, Blaise. “Introduction to Parallel Computing.” 

Lawrence Livermore National Laboratory, 2007. 
https://computing.llnl.gov/tutorials/parallel_comp/.

Gupta, A., A. Grama, G. Karypis, and V. Kumar. An 
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Parallel Processing. Upper Saddle River, NJ: Prentice 
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Payroll
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Number and Operations. 
Summary: Various payroll systems employ different 
mathematical calculations.

A variety of pay practices date back to ancient times, 
including compensation for services in the form of 
food, commodities, land, or livestock. Payroll systems 
are connected with the history of bookkeeping, which 
can be traced back to 4000 b.c.e. Paymasters were 
responsible for paying workers. Governments kept 
financial records called “pipe rolls” at least as early as the 
eleventh century. In 1494, Franciscan friar and math-
ematician Luca Pacioli published the book Summa de 
Arithmetica, Geometria, Proportioni et Proportionalita, 
which contained double-entry bookkeeping. The term 
payroll dates back to the seventeenth century, and com-
pensation gradually changed from goods to money. In 
the mid-twentieth century, mathematician Grace Mur-
ray Hopper developed a compiler, later known as the 
FLOW-MATIC, which could be used for payroll calcu-
lations. When the U.S. Navy could not develop a work-
ing payroll plan, they called Hopper back to active duty. 
In the early twenty-first century, a payroll specialist is 
listed by some schools as a career option for mathemat-
ics majors. Accountants and actuaries calculate quan-
titative measures and predictions based on historic 
payroll information and salary increases. For example, 
the pensionable payroll is calculated as an integral that 
takes salary increases into account. In payroll analysis, 
the impact of changing salary expenses is compared to 
other factors, such as sales or profit.

Frequency
Some employees are paid each day they work; how-
ever, in many cases, an employer will withhold daily 
earnings and pay the cumulative amount earned at a 
later time as a lump sum. Common payroll frequencies 
include weekly, bi-weekly (every other week), semi-
monthly (twice a month), and monthly. Each of these 
frequencies would correspond to receiving 52, 26, 24, 
and 12 paychecks each year, respectively, assuming a 
full year of work. Some seasonal jobs pay only for part 
of the year, but still use the standard payroll frequen-
cies. For example, teachers often receive pay for only 
nine months. Some schools offer for that pay to be 

spread over a full year to guarantee consistent income 
during the summer months when teachers are not 
actually working.

On payday, the employee will receive earned wages 
for the previous pay period. Rather than receiving cash, 
sometimes an employee will receive a check that can 
be exchanged for an equivalent amount of cash. Other 
times, an employee will receive income as a “direct 
deposit” where the income is automatically deposited 
into the employee’s checking or savings account.

Earning Money
Some employees work for an hourly wage—for every 
hour of work they perform, they get paid a specified 
amount of money. Suppose that a worker had an hourly 
wage of $10 and worked for 20 hours. To find the total 
amount of the paycheck, the worker would multiply 
the hourly wage by the number of hours worked. For 
example, $10 × 20 = $200.

Sometimes, contracts or laws dictate the number 
of hours a person can work per week and—should 
they work more than that amount—his or her income 
increases. For example, in the United States, 40 hours 
is a common workweek. A person working over 40 
hours often gets paid “time and a half” or “wage 
and a half” for the number of hours over 40 that he 
or she works (called “overtime”). Again, assuming 
an hourly wage of $10, an employee who worked 48 
hours in one week would earn $10 × 40 = $400 for 
the first 40 hours they worked. The eight hours he or 
she worked beyond 40 hours would earn him or her 
extra money. If the employee earns “time and a half,” 
the time would be multiplied by 1.5 before being mul-
tiplied by his or her hourly wage. If he or she earns 
“wage and a half,” the wage would be multiplied by 
1.5 before being multiplied by the number of hours 
worked beyond 40. In reality, the method of calculat-
ing overtime earnings is irrelevant since multiplication 
is associative. Time and a half would be calculated as 
$ . $ $10 1 5 8 10 12 120× ×( ) = × = , and wage and a half 
would be calculated as $ . $ $10 1 5 8 15 8 120×( )× = × = . 
The total earnings for that week would be found by 
taking the sum of these wages: $400 + $120 = $520.

Another method for earning money is a salary. 
Unlike the hourly wage, a salary is a predetermined 
amount of money that the worker earns regardless of 
how long (or how short) it takes the worker to accom-
plish those tasks. Often, salary is determined based on 
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how much a person will make over a year’s time. How-
ever, rarely does a person only receive one paycheck a 
year. The amount of money earned on each paycheck 
is calculated by taking the salary and dividing it by the 
number of pay periods in a year. That number will vary 
depending on how often a person gets paid. Suppose 
an employee agreed to work for a salary of $31,200 
each year. Looking at the common pay periods, weekly, 
bi-weekly, semi-monthly, and monthly, this employee 
would earn $600, $1,200, $1,300, or $2,600, respec-
tively, for each paycheck during the year.

A worker earning commission does not actually 
get paid based on how long it takes to do the job, but 
by how productive the worker is (oftentimes based 
on the amount of items the worker sells). Sometimes, 
commission is a flat fee per item sold, other times, it 
is a percentage of sales. For example, if an employee 
earned 7% commission on sales and sold $1,250 
worth of merchandise on a given day, then pay would 
be calculated $1,250 × 7% = $1,250 × 0.07 = $87.50.  
Some jobs combine an hourly rate and commis-
sion—the employee earns a certain amount of money 
for every hour they are at the job, but then also earns 
commission on top of that wage to determine the 
total money earned.

Payroll Withholdings
Upon receipt of a paycheck or notice of direct deposit, 
usually the amount paid to the employee (the net 
pay) is less than what is calculated as his or her earn-
ings for the pay period (the gross pay). Before being 
issued money, an employee may have his or her income 
reduced by certain amounts—some voluntary, others 
involuntary. In order to pay for various levels of gov-
ernment (and the benefits they offer), income and 
payroll taxes are frequently withheld from earnings. 
Some employees pay premiums for different insur-
ances (such as medical, life, or disability) from their 
pay. Sometimes, money is withheld as a long-term 
savings for eventual retirement of the employee. Job-
related expenses can also be withheld, such as for dues 
or charges for employee uniforms.

Further Reading
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Pearl Harbor,  
Attack on
Category: Government, Politics, and History.
Fields of Study: Geometry; Measurement; Number 
and Operations; Problem Solving.
Summary: Mathematicians were involved in both the 
planning of and the response to Pearl Harbor.

The attack on Pearl Harbor, a major engagement of 
World War II and the impetus for the United States’ 
entry into the war, took place early Sunday morning, 
December 7, 1941, on the island of Oahu, Hawaii. The 
Japanese Navy, commanded by Admiral Isoroku Yama-
moto, planned and executed the surprise attack against 
the U.S. naval base and nearby army air fields. As a 
result, the United States declared war on Japan. In his 
address to Congress, President Franklin D. Roosevelt 
famously proclaimed December 7 “a date which will 
live in infamy.” 

Both leading up to and as a result of the attack on 
Pearl Harbor, mathematicians in Japan and the United 
States mobilized for the war. For instance, after Pearl 
Harbor, the American Mathematical Society and the 
Mathematical Association of America converted their 
War Preparedness Committee to a War Policy Com-
mittee to increase research on “mathematical prob-
lems for military or naval science, or rearmament” 
and to strengthen mathematics education in order to 
prepare undergraduate students for military service. 
The attack has also been surrounded by speculation 
as to how the United States could have been caught off 
guard so easily. The naval base had been designed as 
nearly impenetrable to surprise attack because of the 
geography and geometry of the island. However, new 
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technologies made the attack possible: the aircraft car-
rier could bring low-flying aircraft within attack range, 
and the Japanese development of shallow-running 
torpedoes could skim the surface of the harbor’s rela-
tively shallow water. One of the largest controversies 
involves U.S. efforts to decode Japanese communica-
tions that may have given forewarning of the attack. 

Japanese Mathematicians
Leading up to Pearl Harbor, the number of Japanese 
graduate students increased and several studied in Ger-
many. Mathematicians applied lattice theory and logic 
to the design of circuits. In the 1930s, both the United 
States and Japan successfully built a cyclotron, an early 
particle accelerator. Mathematics was also important in 
electrical engineering and airplane design. With a focus 
on aerodynamics and science and technology policy, 
the Japanese Technology Board was founded in 1941. 
A statistical institute contributed to war production. 
Japanese cryptologists also created many variations of 
military codes that were in use prior to Pearl Harbor, 
such as Kaigun Ango—Sho D, later referred to as “JN-
25B” by cryptanalysts in the United States. Before com-
mitting to the attack on Pearl Harbor, the Japanese Navy 
conducted feasibility studies that included calculations 
and considerations of their current military resources; 
the need for a longer, circuitous route outside the cus-
tomary naval traffic lanes to avoid detection by both 

military and civilian ships,; the probability 
of encountering severe winter storms and 
critical data obtained from spies in Hawaii, 
such as the patterns of military activity 
at Pearl Harbor. They concluded that the 
attack was possible, if dangerous, and they 
originally intended to specifically target 
U.S. aircraft carriers to optimize the long-
term effects of the attack. Experimentation 
and simulated training attacks yielded a 
satisfactory plan only a few weeks before 
the event.

U.S. Mathematicians
In the United States, mathematicians 
conducted ballistics research at Aber-
deen Proving Ground. Max Munk used 
the calculus of variations in airfoil design 
at the National Advisory Committee for 
Aeronautics, a precursor to the National 

Aeronautics and Space Administration (NASA). Tech-
nology such as radar, developed by scientists and 
mathematicians including Christian Doppler and Luis 
Alvarez, served military uses, though it was still in its 
infancy at the time of Pearl Harbor. Responsibility for 
compiling codes for military use and using cryptology 
to decipher codes shifted from Military Intelligence 
to the Army Signal Corps in 1929. William Friedman 
was the chief civilian cryptologist at the Signal Intel-
ligence Service. The U.S. Army at that time realized 
the importance of mathematics in deciphering, and 
the first three civilian cryptanalysts hired by the U.S. 
Army were mathematics teachers.

Forewarning
Many wonder how the United States could not have 
known of the impending Japanese attack, which had 
been planned and practiced months in advance. The 
new radar installation on Opana Point did, in fact, 
detect the incoming Japanese attack planes, but they 
were ultimately mistaken for a group of U.S. planes 
that were due to arrive from the mainland that morn-
ing. A U.S. destroyer also spotted a Japanese submarine 
attempting to enter the harbor, which it reported, but 
the information was not acted upon immediately. Both 
would have given at least short-term warnings to the 
ships and personnel. However, much of the account-
ability is assigned to the U.S. and Japanese intelligence 
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and counter-intelligence efforts. Correspondence 
declassified many years after the war suggests that the 
United States could at least partially understand the 
codes needed to monitor Japanese naval movements 
on the eve of Pearl Harbor. While U.S. and British 
cryptanalysts had successfully broken some Japanese 
codes, such as the MAGIC code, the United States was 
not able to determine from those messages that the 
attack was about to happen. The broken codes were the 
ones used primarily for diplomatic messages sent by 
the Japanese Foreign Office and military strategy was 
rarely shared with the Japanese Foreign Office. The U.S. 
Navy had three cryptanalysis centers devoted to break-
ing Japanese naval codes. Prior to the attack, American 
cryptanalysts had been using traffic analysis to follow 
Japanese naval movements. Traffic analysis is the pro-
cess of looking for patterns in communications to infer 
if an attack is about to occur. According to the National 
Security Agency, the Japanese, aware that their commu-
nications were being monitored, issued “dummy traffic 
to mislead the eavesdroppers into thinking that some 
of the ships sailing through the North Pacific were 
still in home waters.” Additionally, as Japanese forces 
were preparing for the attack, radio traffic was limited, 
greatly reducing the ability of American intelligence to 
determine a pattern. These efforts to stymie cryptolo-
gists were effective in keeping the impending attack a 
secret from the United States. Mathematicians and his-
torians continue to analyze whether signal intelligence 
techniques could have revealed Japan’s intentions.
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Pensions, IRAs, and 
Social Security
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Data Analysis and  
Probability; Measurement; Number and Operations.
Summary: The development and allocation of  
retirement income can involve significant 
mathematical analysis.

Planning for retirement is one of the most important 
financial responsibilities a person faces. Ideally, after 
working for several decades, a person will be in a finan-
cial position to sustain a desired lifestyle during retire-
ment. In the United States, the source of retirement 
income can be from a combination of one or more of 
the following: Social Security; an employer-sponsored 
pension plan; individual savings, including individual 
retirement accounts (IRAs); or other mechanisms. 
The U.S. government has provided military pensions 
to disabled veterans and widows since the Revolution-
ary War. This benefit expanded after the U.S. Civil War 
to include nearly any veteran who had served honor-
ably for some minimum time. Southern states also 
paid Confederate veterans. 

By the early twentieth century, state, municipal, 
and city governments were paying pensions to their 
employees, especially firemen and policemen. Teachers 
were the next large group to receive benefits. Private 
pensions started in the late nineteenth century with 
the American Express Company and several railroads. 
When the 1926 Revenue Act exempted pension trust 
income from taxes, companies had a new incentive 
to provide employee pensions, which became com-
monplace by the 1930s. Social Security was designed 
in 1935 to extend pension benefits to those not cov-
ered by a private pension plan. In the early twenty-first 
century, Social Security benefits are the main source of 
retirement income for most retirees, though this var-
ies greatly depending on income from earnings, assets, 
and private pensions. 

Each of these potential sources of retirement income 
can involve significant mathematical and financial 
analysis to estimate an individual’s retirement needs, 
determine necessary pre-retirement financial plan-
ning, and evaluate the potential uncertainty associ-
ated with personal and economic factors. Specialized 
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mathematicians known as “actuaries” work for gov-
ernments and industries to design financially sound 
insurance and pension programs that help meet peo-
ple’s retirement needs. 

At the same time, as the professionals at the Ameri-
can Pension Corporation (a major pension adminis-
trator) assert, good actuaries “are more than just math-
ematicians—[they] take great pride in [their] ability 
to dissect and communicate the intricacies of pension 
administration in layman’s language.”

Pensions
A pension provides a stream of income during retire-
ment. It is typically sponsored by a person’s employer—
either a corporation or governmental entity. The 
amount and timing of the retirement income stream 
provided by a pension are a function of several fac-
tors, such as the worker’s salary, the proportion of that 
salary invested into the pension plan, any matching 
funds or contributions to the pension fund provided 
by the employer, the length of the worker’s tenure with 
the employer, and the investment performance of the 
pension fund. There are two types of pension plans: 
defined-benefit (DB), and defined-contribution (DC). 
DB plans, which have to some extent been phased out 
in the private sector but are still common in the public 
sector, define the benefits that will be paid to the worker 
during retirement. Assuming the solvency of the pen-
sion plan—a significant issue in itself—a worker cov-
ered under a DB plan is guaranteed to receive the ben-
efits defined by the plan.

Because of potential difficulties in adequately 
funding DB plans, many (particularly private sector) 
employers converted to DC plans during the last sev-
eral decades of the twentieth century. With DC plans, 
the retirement benefits are not specified; rather, the 
plan defines the periodic contributions to be invested 
during the worker’s life, and then the retiree receives 
an income stream based on the actual accumulated 
amount of the investment fund. Relative to DB plans, 
this means that the employer’s risk of inadequate 
retirement benefit funding is reduced, and that some 
risk has been transferred to the employee, who faces an 
uncertain pension income stream.

Mathematics of Pensions
The mathematics associated with pensions involves 
both “future (or accumulated) value” and “present 

value” concepts. The general idea is that a worker (or the 
sponsoring employer) accumulates a retirement fund by 
setting aside and investing periodic amounts during the 
working years. Then, upon retirement, this accumulated 
amount ideally represents sufficient funds with which to 
provide the retiree an adequate stream of income until 
death. This retirement income stream may be obtained 
by leaving the funds invested and withdrawing a certain 
amount per year, or through the purchase of an annuity, 
which provides the payment stream. In most cases, these 
two approaches are mathematically equivalent.

While somewhat straightforward conceptually, 
achieving an adequately funded and effective retirement 
plan (especially DB plans, which generally involve more 
sophisticated and extensive mathematical and financial 
considerations than DC plans) is a challenging mathe-
matical and actuarial problem. Some of the parameters 
involved in a pension analysis, and for which assump-
tions must be made, include the following:

1. Periodic contributions to the pension 
investment fund—usually expressed as 
a percentage of worker salary during 
employment.

2. Size of the retirement income stream 
needed or desired—generally estimated as a 
percentage of projected salary immediately 
prior to retirement.

3. Rate of return on the invested retirement 
funds, both before and after retirement.

4. Changes in worker salary throughout 
employment.

5. Impact of inflation on the worker’s buying 
power.

6. Taxation rules and regulations, both during 
employment and in retirement.

7. Longevity and mortality.

Along with these assumptions, actuaries use math-
ematics and computer modeling to determine poten-
tial answers to questions such as how much must a 
worker (or employer) invest every month (or year) 
into a retirement plan in order to successfully achieve 
that worker’s financial goals in retirement?

IRAs and Social Security
In addition to having an employer-sponsored pension 
plan, a worker can supplement retiree income with 
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personal savings. One such mechanism is one or more 
types of IRA. While the rules surrounding IRAs are 
extensive, they can have potential advantages for some 
people, including certain tax-advantaged properties.

Social Security is a particularly contentious issue in 
the twenty-first century. Some have compared Social 
Security to a type of scam called a “Ponzi scheme” 
in which a growing pool of new investors’ money is 
used to pay the promised returns to previous inves-
tors. Despite superficial resemblances (for example, 
current taxpayer money is used to pay variable ben-
efits to others), Social Security is not a savings plan 
or investment account, but rather a tax, which nul-
lifies the comparison. However, there have been pro-
posals to replace Social Security with an investment 
program, using a variety of calculations and probabi-
listic mathematical models to try to demonstrate its 
cost-effectiveness and the likelihood of the system’s 
impending failure.

Another major financial issue related to social secu-
rity is the potential misuse of Social Security numbers. 
Initially issued to track workers for taxation and ben-
efits, these nine-digit numbers are now assigned rou-
tinely at birth and have grown over time into the role 
of a unique identifier for creditors, schools, employers, 
and others who want to assign codes to individuals. 
Modern identity theft, which usually involves a person 
using a fake or stolen social security number to obtain 
credit or other benefits, has been on the rise as a result 
of Internet growth and the widespread collection of 
personal data. Mathematicians have calculated that 
a person making up a false social security number in 
2010 has about a 50% chance of matching a real num-
ber. Faking multiple numbers results in an almost-
guaranteed match very quickly. 

These calculations have been used to counter 
thieves’ assertions that they did not know numbers 
they were using were real. Social Security numbers 
themselves are not random (for example, the first 
three digits are a numerical code for geographic loca-
tion), and mathematical and computer methods have 
used publicly available data, like date and place of 
birth, to successfully predict most or all of a person’s 
social security number. There are also concerns that 
the government will run out of Social Security num-
bers, which are not reused after a person dies. Some 
calculations suggest that the supply will be exhausted 
early in first half of the twenty-second century. Alter-

native proposals include using alphanumeric or hexa-
decimal strings, which offer more permutations for 
a series of nine “digits.” Others suggest including a 
security checksum in the number to decrease fraudu-
lent use.
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Stochastic Variables

W hat makes such a quantitative analysis 
particularly challenging is that many of 

these parameters are stochastic rather than 
deterministic—their future values are uncer-
tain, and they can (and do) change value over 
time. Data analysis and probability concepts 
are used to account for this uncertainty. For 
example, inflation and investment rate of return 
are both stochastic variables, with consider-
able uncertainty regarding their values in both 
the short- and long-term. 

Estimates of possible future values and the 
relative probabilities or likelihoods of those val-
ues can be made by analyzing historical data. 
These estimates can then be used to project 
future scenarios and quantify the potential 
impact of possible future values on the retire-
ment funding process.

Another critical stochastic variable in retire-
ment planning is the age at death of the retiree. 
The number of years that a retiree lives beyond 
the date of retirement is an essential factor in 
determining the total amount of income needed 
during the retirement years. Actuaries research 
and analyze historical mortality data for people 
with various identifiable attributes. From these 
analyses, a probability distribution of possible 
ages at death, with their relative likelihoods, 
can be developed.
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Percussion Instruments
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Number and  
Operations; Representations.
Summary: The vibrations that emanate from 
percussion instruments vary mathematically based on 
the type of instrument.

Percussion instruments are characterized by vibra-
tions initiated by striking a tube, rod, membrane, bell, 
or similar object. Percussion instruments are almost 
certainly the oldest form of musical instrument in 
human history. The archeological record of percus-
sion instruments, in particular the 
bianzhong bells of ancient China, 
give clues to the history of music 
theory. From a mathematical point 
of view, percussion instruments are 
of special interest because—unlike 
other types of instruments, such as 
string and wind instruments—the 
resonant overtones typically do not 
follow the harmonic series. In the 
last half of the twentieth century, a 
question of great interest in applied 
mathematics has been the famous 
inverse problem: can one hear the 
shape of a drum?  

Rods and Bars
Some percussion instruments pro-
duce a distinct pitch by the vibration 
of a rod or bar. Examples included 
the tuning fork (a U-shaped metal 
rod suspended at its center), a 

music box (a metal bar suspended at one end), and the 
melodic percussion instruments such as the xylophone 
and marimba (suspended at two non-vibrating points 
or “nodes” along the length of metal or wooden bars). 
Like vibrating strings, the frequency of the bar’s vibra-
tion and the pitch of the musical sound it produces are 
determined by its physical dimensions. In contrast to 
the string in which the frequency varies inversely with 
the length, the vibrating bar has a frequency that var-
ies with the square of the length. The resonant over-
tone frequencies f

n
 of the vibrating bar are related to 

the fundamental frequency f
1
 by the formula

f n fn = +





α 1

2

2

1

where the constant α is determined by the shape and 
material of the bar.

 
 In contrast with the harmonic over-

tone series of vibrating strings, f n fn = ( )1 , these inhar-
monic overtones give percussion instruments their 
distinct metallic timbre. The overtones of vibrating 
bars decay at different rates, with rapid dissipation of 
the higher overtones responsible for the sharp, metal-
lic attack, while the lower overtones persist longer. The 
bars of the marimba are often thinned at the center, 
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The ancient bianzhong bell set on display at the Hubei Provincial 
Museum. Each bell can produce two pitches when struck.



effectively lowering the pitch of the certain overtones, 
in accord with the harmonic series.

Bells
Like the vibrating bar instruments, the classic church 
bell possesses highly non-harmonic overtones. These 
are typically tuned by thinning the walls of the bell 
along the circumference at certain heights. A distinc-
tive feature in the sound comes from the fact that apart 
from the fundamental pitch, the predominant overtone 
of the church bell sounds as the minor third above the 
prevailing tone. This feature accounts for the somber 
nature of the sound.

The bianzhong bells of ancient China were con-
structed in a manner that produced two pitches for 
each bell, depending on the location at which it was 
struck. In the 1970s, a set of 65 such bells were discov-
ered during the excavation of the tomb of Marquis Yi 
in the Hubei Provence. The inscriptions on the bells 
make it clear that octave equivalence and scale theory 
were known in China as early as 460 b.c.e.

Membranes
Drums are perhaps the most common percussion 
instrument. Consisting of vibrating membranes 
(called the “drum heads”) stretched over one or both 
ends of a circular cylinder, drums exhibit a unique 
mode of vibration, which accounts for their char-
acteristic sound. Mathematical models of vibrating 
drumheads provide a fascinating application of par-
tial differential equations. The inharmonic overtone 
frequencies are distributed more densely than for 
vibrating strings or rods. Further, each overtone is 
associated with a particular vibration pattern of the 
drum head. These regions can be characterized by the 
non-vibrating curves (called “nodes”) that arrange 
themselves in concentric circles and diameters of the 
drum head.  

An important question in the study of spectral 
geometry asks: “Can one hear the shape of a drum?” 
In other words, can mathematical techniques be used 
to work backwards from the overtone frequencies to 
determine the shape of the drumhead that caused the 
vibration? The answer, as it turns out, is “not always.” 
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Perimeter and  
Circumference
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry; Measurement.
Summary: Measuring perimeter and circumference 
is a geometric task with a long history of methods.

Measurements of length and distance abound in daily 
life, from the height of a child to the distance from 
home to the store. Perimeter and circumference are 
types of length measurements. The perimeter of a 
geometric entity is the path that surrounds its area. 
The word derives from its Greek roots peri (meaning 
“around”) and from meter (meaning “measure”). In 
stricter mathematical sense, perimeter is defined as the 
length of the curve constituting the boundary of a two-
dimensional, planar closed surface. 

For example, the perimeter of a square whose side 
measures length a is 4a. Perimeter is important for 
applications such as landscaping projects, construc-
tion, and building fences. Circumference is defined as 
the perimeter of a circle. The circumference of a circle 
of radius (r) is 2πr. The circumference of a circle has 
played a very important role throughout history in the 
approximation of the mathematical constant π, which 
was defined as the ratio of the circumference (C) of the 
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circle to its diameter (d). Perhaps the most common 
reference to circumference that most people encounter 
regularly is the circumference of one’s waist—the size 
of their waist. 

The waist circumference is used as a measurement 
for some clothing and is also associated with type II 
diabetes, dyslipidemia, hypertension, and other cardio-
vascular diseases. Students investigate perimeter begin-
ning in primary school, and middle grade students 
explore circumference. Students formulate the length 
of general curves, referred to as the “arc length” or “rec-
tification,” as integrals in calculus courses.

History
There is a long history of computations involving the 
perimeter or circumference of figures. One way was 
to measure length was with ropes. For instance, state-
ments about rope measurements and the Pythago-
rean theorem can be found in Katyayana’s Sulbasutra. 
Another way was to compare the length of two fig-
ures. A Babylonian clay tablet was discovered in 1936 
and was noted as relating the hexagon perimeter to 
0;57,36 (in base 60), or 24/25 times the circumference 
of a circumscribed circle. Mathematicians like Archi-
medes of Syracuse estimated the circumference or a 
value for π by using the perimeters of inscribed and 
circumscribed polygons with many sides. For exam-
ple, Archimedes was known to have used 96-sided 
polygons. Mahavira estimated the circumference of 
an ellipse. In ancient times, the semiperimeter, or half 

the perimeter, was useful in computing many geo-
metrical properties of polygons such as altitude, exra-
dius, and inradius of a triangle. The semiperimeter 
also appears in Heron of Alexandria’s formula for the 
area of a triangle. The semiperimeter of a rectangle is 
the sum of the length plus the height and is noted as 
appearing on Babylonian clay tablets. Brahmagupta 
used the semiperimeter of a quadrilaterial in the 
computation of its area.

The circle is a special geometric figure, for it is the 
curve, given a fixed perimeter, which encompasses the 
maximum surface area. This is known as the isoperi-
metric problem. Proclus commented that, “a miscon-
ception is held by geographers who infer the size of a 
city from the length of its walls.” The Babylonians may 
have worked on related problems in their investiga-
tions of solutions to quadratic equations generated by 
the setting of the semiperimeter and area to constants. 
The isoperimetric problem was partially solved by the 
Greek mathematician Zenodorus. 

Pappus of Alexandria compared the areas of fig-
ures with a fixed perimeter. In the tenth century, Abu 
Jafar al-Khazin proved that an equilateral triangle has 
greater area than isosceles or scalene triangles of the 
same fixed perimeter. Many mathematicians worked 
on the isoperimetric problem using a variety of tech-
niques including methods from geometry, analysis, 
vectors, and calculus. In 1842, a German mathemati-
cian named Jakob Steiner used geometric arguments 
to present five proofs of the theorem. However, Steiner 
had assumed that a solution was possible, which was a 
subtle flaw to otherwise creative arguments. Karl Wei-
erstrass proved the existence of such solutions in 1879. 
Other mathematicians proved the results in a variety 
of other ways.

Historical Applications and Computations
One application of circumference of a circle is the 
computation of the Earth’s circumference. Eratos-
thenes of Cyrene, in 240 b.c.e., computed the Earth’s 
circumference using trigonometry and the angle of 
elevation of the sun at noon in Alexandria and Syene. 
He made an assumption that the Earth and the sun 
were perfect spheres and that the sun was so far away 
that its rays hitting the Earth could be considered par-
allel. By measuring the shadows thrown by sticks on 
the summer solstice, Eratosthenes derived a formula 
to measure the circumference of the Earth and deter-
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mined it to be 252,000 stadia. Teachers in mathematics 
classrooms share Eratosthenes’s calculation in order 
to highlight his ingenuity and showcase the power of 
setting up proportions and applying the congruence 
of alternate interior angles of parallel lines. There is 
debate about the value of a stadia, but historians esti-
mate that Eratosthenes was correct within a 2% to 
15% margin of error. The Indian mathematician Ary-
abhata made revolutionary contributions toward the 
understanding of astronomy at the turn of the fifth 
century. His calculations on π, the circumference of 
Earth, and the length of the solar day were remarkably 
close approximations.

The middle of the seventeenth century marked a 
fruitful time in the history of calculating the length 
of general curves. For instance, the curve that forms 
the shape of a nautilus shell is called the “logarithmic 
spiral” or “equiangular spiral.” Evangelista Torricelli 
described its length using geometric methods. Chris-
topher Wren published the rectification of the cycloid 
curve. Hendrik van Heuraet and Pierre de Fermat inde-
pendently explored ideas that would eventually lead to 
the integral formula of arc length.

In the twentieth century, methods from fractals, 
popularized by Benoit Mandelbrot, have proven useful 
in modeling objects like a coastline. One example that 
is regularly examined in mathematics classrooms is the 
Koch snowflake, named for Helge von Koch, an exam-
ple of a curve that bounds a region with finite area yet 
has infinite perimeter.
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Permutations and 
Combinations
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Probability; Number and 
Operations.
Summary: For centuries, mathematicians have 
posed and studied problems that involve various 
arrangements or groupings of sets of objects, which 
are known as permutations and combinations. 

In a very broad sense, combinatorics is about counting. 
The mathematical discipline of combinatorics addresses 
the enumeration, permutation, and combination of 
sets of objects, as well as their relations and properties. 
Combinatorial problems can be found in many areas 
of pure and applied mathematics, including algebra, 
topology, geometry, probability, graph theory, optimi-
zation, computer science, and statistical physics. One 
of the earliest problems in combinatorics is found in 
the work of Greek biographer Plutarch, who described 
mathematician Xenocrates of Chalcedon’s work on 
calculating how many syllables could be produced by 
taking combinations of the letters of the alphabet. This 
occurred between 400 and 300 b.c.e. Millennia later, 
mathematician William Gowers won the 1998 Fields 
Medal, widely regarded as the most prestigious prize in 
mathematics, for his “contributions to functional anal-
ysis, making extensive use of methods from combina-
tion theory.” In twenty-first-century school curricula, 
primary school children study number combinations 
to facilitate learning basic operations like addition, 
subtraction, multiplication, and division. High school 
students often study permutations and combinations 
as counting techniques. Permutations and combina-
tions were fundamental for cracking the World War II 
Enigma code and continue to remain vital in cryptog-
raphy, among other fields.

Definitions
In mathematical fields like algebraic group theory, 
combinatorics, or probability, the term “permutation” 
has several meanings that are all essentially related 
to the idea of rearranging, ordering, or permuting 
some kind of mathematical object. When paired with 
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combinations, particularly in primary and secondary 
curricula, a permutation is usually thought of as an 
ordered arrangement of some set or subset of objects. 
For example, for the set of objects A, B, and C, there 
are six permutations of the set: {A, B, C}, {A, C, B},  
{B, A, C}, {B, C, A}, {C, A, B}, and {C, B, A}. A combina-
tion is then a subset of objects selected from a larger 
set, where order does not matter. For example, for 
the set A, B, and C, one combination of two objects is  
{A, B}. In some applications, the objects in a combina-
tion are thought of as being chosen sequentially. How-
ever, since order does not matter, the selection {B, A} 
would represent the same combination as {A, B}. All 
possible two-object combinations are {A, B}, {B, C},  
{A, C}. Mathematicians Blaise Pascal and Gottfried 
Leibniz used the specific term “combinations” begin-
ning in the seventeenth century, while Jacob Bernoulli 
is often credited with introducing the term “permuta-
tions” a short while later. Some alternatively trace it to 
Thomas Strode in the seventeenth century.

History and Early Applications
The real-world motivation for many early problems 
involving what are now called “combinations” and “per-
mutations” was religion. For example, Jaina, Christian, 
and Jewish scholars were interested in letter permuta-
tions, which some believed had spiritual power. In the 
ninth century, the Jaina mathematician Mahavira dis-
cussed rules for using permutations and combinations. 
In the tenth century, Rabbi Abraham ben Meir ibn Ezra 
used combinations to study the conjunction of planets. 
Another motivator was games of chance, which also 
drove probability theory. Archaeological evidence sug-
gests that gambling has been around since the dawn of 
humankind, and many games rely on players achieving 
special combinations of symbols or objects like knuck-
lebones, sticks, or polyhedral dice. Surviving writings 
show that Egyptian, Greek, Hindu, Islamic, and per-
haps Chinese scholars and mathematicians studied 
permutations and combinations. 

The Egyptian game “Hounds and Jackals” used a set 
of “throw” sticks that resulted in combinations of out-
comes that determined how far a player might move. 
In the sixth century b.c.e., Hindus discussed combina-
tions of six tastes: sweet, acid, saline, pungent, bitter, 
and astringent. Some consider the Chinese divination 
text I-Ching to be part of the literature on combina-
tions and permutations since it discussed arrangements 

sets of trigram and hexagram symbols. Versions date 
to at least 400–300 b.c.e. In the sixth century, Roman 
philosopher Anicius Manlius Severinus Boëthius pre-
sented a rule for finding the possible combinations of 
objects taken two at a time from some set. 

In the tenth and eleventh centuries, mathematicians 
like Acharya Hemachandra explored the how many 
combinations of short and long syllables were possi-
ble in a line of text with a fixed length, and Bhaskara’s 
treatise Bhaskaracharyai contained an entire chapter 
devoted to combinations, among other chapters on 
topics like arithmetic, geometry, and progressions. 
Both al-Marrakushi ibn Al-Banna and Kamal al-Din 
Abu’l Hasan Muhammad Al-Farisi explored the rela-
tionship between polygonal numbers, the binomial 
theorem, and combinations. Al-Farisi used what histo-
rians consider a form of induction to show the relation-
ship between triangular numbers (numbers that can be 
represented by an equilateral triangular grid of points 
such as, 1, 3, 6, 10), and the combinations of subsets 
of objects drawn from a larger set. Mi’yar al-’aqul ibn 
Sina (Avicenna) developed a system of combinations 
of “simple” machines to classify complex mechanisms. 

The original concept of simple machines is attrib-
uted to mathematician Archimedes of Syracuse. A 
group might be machines containing rollers and levers, 
chosen from a larger set of possibilities that included 
windlasses, pulleys, rollers, levers, and other compo-
nents. Starting in the Renaissance, the most commonly 
recognized set of six simple machines was the lever, 
inclined plane, wheel and axle, screw, wedge, and pulley. 
Students continue to discuss more complex machines 
as combinations of simple machines.

In Europe, beginning around the twelfth century 
and up through the nineteenth century, many math-
ematicians such as Levi ben Gerson, Bernoulli, Leib-
niz, Pascal, Pierre Fermat, Abraham de Moivre, George 
Boole, and John Venn worked on the development of 
combinations and permutations, frequently in the con-
text of probability theory. For example, Johann Buteo 
(or Jean Borell) discussed the possible throws of four 
dice as well as locks with movable combination cylin-
ders in his sixteenth-century work Logistica. 

Bernoulli’s Ars Conjectandi collected knowledge of 
permutations and combinations through the seven-
teenth century and was a popular combinatorics book 
in the eighteenth century. However, standard notation 
for permutations and combinations was still emerging.
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Factorials
A mathematical function called a factorial is used to 
compute the number of possible permutations and 
combinations. Let n! equal

n n n n× −( ) × −( ) × −( ) × × × ×1 2 3 3 2 1 . . . .

For example, 5! = 5 × 4 × 3 × 2 × 1 = 120. Further, 0! is 
defined to be 1. Bernoulli had proved many factorial 
results, like the fact that n! gives the number of permu-
tations of n objects. The use of the exclamation point 
to indicate a factorial, which was more convenient for 
printers of the day than some older notations, has been 
attributed to mathematician Christian Kramp. He 
worked in the late eighteenth and early nineteenth cen-
turies. The general rule for finding permutations and 
combinations is sometimes attributed to Bernoulli and 
sometimes to sixteenth and seventeenth century math-
ematician Pierre Hérigone, who is also famed for intro-
ducing a variety of mathematical and logical notations. 
However, mathematicians used their own methods for 
indicating permutations and combinations well into 
the nineteenth century. For example, Thomas Harriot’s 
seventeenth-century work Ars Analyticae Praxis con-
tained unique symbolism for displaying the combina-
torial process of finding binomial products.

In the notation common in the twentieth and twenty-
first centuries, the number of permutations is stated as 
nPr where n is the total number of objects in a set and r 
is the number of objects selected from n and permuted,

n r
n

n r
P =

−( )
!

!
.

The number of combinations is nCr, which is read 
as “n choose r,”

n r
n
r

n

r n r
C = 



 =

−( )
!

! !
.

The partial origins of this approach may perhaps be 
traced to nineteenth-century amateur mathematician 
Jean Argand, who used (m, n) to represent combina-
tions of n objects chosen from a set of m objects.

Modern Developments
In the early twentieth century, mathematicians and 
others continued to develop theories and applications 

of combinatorial concepts. For example, statistician 
Ronald Fisher applied combinations to the design of 
factorial experiments, while artist Maurits Cornelius 
(M.C.) Escher developed his own system for catego-
rizing combinations of shape, color, and symmetrical 
properties, which can be found in his 1941 notebook 
later referred to as a paper, Regular Division of the 
Plane with Asymmetric Congruent Polygons. Histo-
rians discuss that the sketchbooks of a typical artist 
contain preliminary versions of final works. Escher’s 
book, on the other hand, appeared to form a theo-
retical mathematical basis for his tiling work. These 
combinatorial categories also influenced the field of 
crystallography.

Circular permutations are also common. One could 
think of lining up six people in a straight line to take 
their picture versus seating them at a round table. There 
are n! permutations of the people lined up. However, 
once all six people are seated, even if they were all asked 
to move over one seat, they would all still be seated 
in the same overall order. There are therefore n −( )1 ! 
ways of putting objects in a circle. Another possibil-
ity is that all items in the set are not unique, like the 
letters in “Mississippi,” which reduces the number of 
unique permutations and combinations versus a set of 
the same length with unique components.  

Permutation Groups
In a field like modern algebra, permutations can be 
viewed as maps that relate a set to itself. The set of per-
mutations is then collected into an algebraic structure 
called a “group.” One example is the various possible 
transformations of a Rubik’s Cube puzzle, named for 
Erno Rubik. There are 43,252,003,274,489,856,000 per-
mutations in the group for a 3-by-3-by-3 Rubik’s Cube. 
Mathematicians often use software like the Groups, 
Algorithms, Programming (GAP) system to model and 
understand the transformations. Theories about per-
mutation groups have been traced by historians to at 
least as far back as Joseph Lagrange’s 1770 work Réflex-
ions sur la résolution algébrique des équations, in which 
he discussed the permutations of the roots of equa-
tions and considered those roots as abstract structures. 
Paolo Ruffini used what would now be called group 
theory in his work, including permutation groups, and 
proved many fundamental theorems. In the nineteenth 
century, Augustin-Louis Cauchy generalized some of 
Ruffini’s results. He studied permutation groups and 
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proved what is now known as Cauchy’s theorem. High 
school mathematics teacher Peter Sylow wrote his book 
Théorèmes sur les groupes de substitutions in the latter 
half of the nineteenth century, and it contained what 
are now known as the three Sylow theorems, which he 
proved for permutation groups. Arthur Cayley wrote 
about the connections between his work on permuta-
tions and Cauchy’s, extended the notion of permuta-
tion groups into the broader idea of algebraic groups, 
and ultimately proposed that matrices and quaternions 
were types of groups. Some of his work served as one 
foundation for physicist Werner Heisenberg’s develop-
ment of quantum mechanics. 

In the early twentieth century, George Pólya used 
permutation groups and other methods to enumer-
ate isomers (compounds that have the same molecular 
components but different structural arrangements, or 
permutations) in organic chemistry. He also influenced 
Escher’s studies of combinations. The George Pólya 
Prize is given every two years by the Society for Indus-
trial and Applied Mathematics. One criterion for win-
ning is “a notable application of combinatorial theory.” 
Mathematicians continue to explore permutations and 
combination concepts in algebra and many other areas 
of mathematics.
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Perry, William J.
Category: Government, Politics, and History.
Fields of Study: Connections.

Summary: Influential secretary of defense William J. 
Perry earned a Ph.D. in mathematics.

William J. Perry (1927–) is an American business-
man, mathematician, engineer, and former secretary 
of defense under President Bill Clinton. William Perry 
received many honors and recognition for his work. In 
1997, he was awarded the Presidential Medal of Free-
dom, and he has been decorated twice each with the 
Department of Defense Service Medal and the Defense 
Intelligence Agency’s Outstanding Civilian Service 
Medal. He has also received many awards from for-
eign governments. William J. Perry’s academic degrees, 
all of which are in pure mathematics, may seem an 
unlikely preparation for a successful businessman and 
secretary of defense. The logical mindset and the steps 
of analytic problem solving he learned as a student of 
mathematics helped Perry make rational and objective 
decisions about complicated situations for which only 
partial information was available. This connection 
is not an unusual; people who have been trained in 
mathematical reasoning before going on to careers in 
nonmathematical fields often cite the utility of math-
ematical thinking as a way to approach difficult and 
complex problems. 

Early Life and Education
Perry was born in Vandergrift, Pennsylvania. After 
graduating from high school in 1945, Perry enlisted 
in the U.S. Army and served in Japan before attend-
ing Stanford University. Perry was always interested in 
both mathematics and English, but he finally settled on 
mathematics as a major because, “I simply had more 
flexibility by going into mathematics.” He attributed 
his interest in advanced mathematics to George Polya, 
his advisor at Stanford, saying: “He just pushed me 
and gave me interesting problems to work on. And he 
exposed me to parts of mathematics that I had never 
seen before. And he was just a warm human being.” 
He later earned a Ph.D. in mathematics from Pennsyl-
vania State University, where his research was in the 
field of partial differential equations. While working 
on his doctorate, Perry loved teaching mathematics, 
and he imagined that he might become a mathemat-
ics professor. He took a part-time job as an applied 
mathematician at an electronics company in order to 
support his family and decided to concentrate on the 
applied side of mathematics.  
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Career
Perry enjoyed a successful career as an engineer and 
businessman. He spent 10 years as director of the Elec-
tronic Defense Laboratories of Sylvania/GTE, followed 
by 13 years as founding president of ESL Inc. In 1977, 
he became President Jimmy Carter’s undersecretary of 
defense for research and engineering. In this position, 
he played an important role in developing stealth air-
craft technology. In 1981, he returned to industry as the 
managing director of an investment bank that focused 
on high-technology companies. In 1993, William Perry 
was appointed as deputy secretary of defense under 
then-secretary of defense Les Aspin. The following year, 
he was promoted to secretary of defense, a position he 
would hold until 1997. He stated: “Quite clearly, know-
ing how to solve a differential equation is not a useful 
tool for me. I’ve never been asked to solve one since 
becoming the Secretary of Defense. But, the discipline 
of thinking, systematically approaching problems, 
of rigorous thinking is a useful—I would say even an 
indispensable tool—for a job of this sort.”

“Preventive defense” was the watchword of Per-
ry’s strategy as secretary of defense: prevent threats 
before they happen, deter threats that are realized, and 
respond with decisive military force to threats that 
cannot be deterred. He noted that: “Analytical think-
ing is a good framework, a good foundation for which 
to approach problems.” This strategy manifested itself 
as threat reduction programs, including the START 
II treaty (for which Perry advocated strongly), active 
opposition to nuclear proliferation, and expansion of 
the North Atlantic Treaty Organization. He worked 
hard to maintain an effective and modern military in 
spite of defense budget shortfalls. One of his priori-
ties was to establish relationships with members of the 
military at all levels. Unlike many other secretaries of 
defense, William Perry was an active participant in for-
eign policy, traveling often to foreign countries as part 
of his response to the many global challenges during 
his tenure as secretary of defense, which included the 
Bosnian War, conflict in Somalia, the aftermath of the 
first Gulf War, North Korean nuclear aspirations, and 
the crisis in Haiti.
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Personal Computers
Category: Communication and Computers.
Field of Study: Algebra; Communication; Data 
Analysis and Probability; Number and Operations; 
Representations.
Summary: Advances in computing have made 
mathematical processing power so inexpensive that 
it has become more practical to do many tasks on the 
computer.

A computer is a device that manipulates raw data into 
potentially useful information. Computers may be ana-
log or electronic. Analog computers use mechanical ele-
ments to perform functions. For example, Stonehenge in 
England is believed by some to be an analog computer. 
It allegedly uses the stones along with the positions of 
the sun and moon to predict celestial events like the sol-
stices and eclipses. Electronic computers use electrical 
components like transistors for computations. 

Many consider the first personal computer to be 
Sphere 1, created by Michael Wise in the mid-1970s. 
The Apple II was introduced in 1977, and Apple Inc. 
offered the Macintosh, which had the first mass-mar-
keted graphical user interface, by 1984. IBM debuted 
its personal computer in 1981. “Macs” and PCs quickly 
became common in businesses and schools for a vari-
ety of purposes. Processing speed, size, memory capac-
ity, and other functional components have become 
faster, smaller, lighter, and cheaper over time, and 
personal computers have evolved into a multitude of 
forms designed to be customizable to each user’s needs. 

	 Personal Computers 767



At the beginning of the twenty-first century, desktops, 
laptops, netbooks, tablet PCs, palm-sized smartphones, 
handheld programmable calculators, digital book read-
ers, and devices like Apple’s iPad offer access to com-
puting, the Internet, and other functions. 

Mathematical History of Computers
Modern computing can be traced to nineteenth century 
mathematician Charles Babbage’s analytical engine. 
Boolean algebra, devised by mathematician George 
Boole later in the same century, provided a logical basis 
for digital electronics. Lambda calculus, developed by 
mathematician Alonso Church in the early twentieth 
century, also laid the foundations for computer science, 
while the Turing machine, a theoretical representation 
of computing developed by mathematician Alan Tur-
ing, essentially modeled computers before they could 
be built. In the 1940s, mathematicians 
Norbert Wiener and Claude Shannon 
researched information control theory, 
further advancing the design of digital cir-
cuits. The Electrical Numerical Integrator 
and Calculator (ENIAC) was the first gen-
eral purpose electronic computer. It was 
created shortly after World War II by phys-
icist-engineer John Mauchly and engineer 
J. Presper Eckert. They also developed the 
Binary Automatic Computer (BINAC), 
the first dual-processor computer, which 
stored information on magnetic tape rather 
than punch cards, and the first commercial 
computer, Universal Automatic Computer 
(UNIVAC). Mathematician John Von 
Neumann made important modifications 
to ENIAC, including serial operations to 
facilitate mathematical calculations. Sci-
entists William Bradford Shockley, John 
Bardeen, and Walter Brattain won the 1956 
Nobel Prize in Physics for transistor and 
semiconductor research, which influenced 
the development of most subsequent elec-
tronic devices, including personal com-
puters. During the latter half of the twen-
tieth century, countless mathematicians, 
computer scientists, engineers, and others 
advanced the science and technology of 
personal computers, and research has con-
tinued into the twenty-first century. For 

example, Microsoft co-founder Bill Gates published a 
paper on sorting pancakes, which has extensions in the 
area of computer algorithms. Personal computers have 
facilitated mathematics teaching and research in many 
areas such as simulation, visualization, and random 
number generation, though the use of calculators and 
software like Maple for teaching mathematics gener-
ated controversy.

Devices, Memory, and Processor Speeds
The typical personal computer has devices for the input 
and output of information and a means of retaining 
programs and data in memory. It also has the means of 
interacting with programs, data, memory, and devices 
attached to the computer’s central processing unit 
(CPU). Input devices have historically included a key-
board and a mouse, while newer systems frequently use 
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touch technology, either in the form of a special pad or 
directly on the screen. Other devices include scanners, 
digital cameras, and digital recorders. Memory storage 
devices are classified as “primary memory” or “sec-
ondary” devices. The primary memory is comprised 
of the chips on the board inside the case of the com-
puter. Primary memory comes in two types: read only 
memory (ROM) and random access memory (RAM). 
ROM contains the rudimentary part of the operating 
system, which controls the interaction of the computer 
components. RAM holds the programs and data while 
the computer is in use. The most popular types of sec-
ondary memory used for desktop computers include 
magnetic disk drives, optical CD and DVD drives, and 
USB flash memory.

The speed of the computer operation is an important 
factor. Computers use a set clock cycle to send the volt-
age pulses throughout the computer from one compo-
nent to another. Faster processing enables computers 
to run larger, more complex programs. The disadvan-
tage is that heat builds up around the processor, caused 
by electrical resistance. ENIAC was 1000 times faster 
than the electromechanical computers that preceded it 
because it relied on vacuum tubes rather than physical 
switches. Turing made predictions regarding computer 
speeds in the 1950s, while Moore’s law, named for Intel 
co-founder Gordon Moore, quantified the doubling 
rate for transistors per square inch on integrated cir-
cuits. The number doubled every year from 1958 into 
the 1960s, according to Moore’s data. The rate slowed 
through the end of the twentieth century to roughly 
a doubling every 18 months. Some scientists predict 
more slowdowns because of the heat problem. Others, 
like mathematician Vernor Vinge, have asserted that 
exponential technology growth will produce a singu-
larity, or essentially instantaneous progress. Processing 
speed, memory capacity, pixels in digital images, and 
other computer capabilities have been limited by this 
effect. There has also been a disparity in the growth 
rates of processor speed and memory capacity, known 
as memory latency, which has been addressed in part by 
mathematical programming techniques, like caching 
and dynamic optimization. 

Carbon nanotubes and magnetic tunnels might 
be used to produce memory chips that retain data 
even when a computer is powered down. At the start 
of the twenty-first century, this approach was being 
developed with extensive mathematical modeling and 

physical testing. Other proposed solutions involved 
biological, optical, or quantum technology. Much 
of the physics needed for quantum computers exists 
only in theory, but mathematicians like Peter Shor 
are already working on the mathematics of quan-
tum programming, which involves ideas like Fou-
rier transforms, periodic sequences, prime numbers, 
and factorization. Fourier transforms are named for 
mathematician Jean Fourier. 

The Digital Divide 
The digital divide is the technology gap between 
groups that have differential access to personal com-
puters and related technology. The gap is measured 
both in social metrics, such as soft skills required to 
participate in online communities, and infrastructure 
metrics, such as ownership of digital devices. Math-
ematical methods are used to quantify the digital 
divide. Comparisons may be made using probability 
distributions and Lorenz curves, developed by econo-
mist Max Lorenz, and measures of dispersion such as 
the Gini coefficient, developed by statistician Corrado 
Gini. Researchers have found digital divides among 
different countries, and within countries, among 
people of different ages, between genders, and among 
socioeconomic strata. 

The global digital divide quantifies the digital 
divides among countries and is typically given as the 
differences among the average numbers of computers 
per 100 citizens. In the early twenty-first century, this 
metric varied widely. Several concerted private and 
government efforts, such as One Laptop Per Child, were 
directed at reducing the global digital divide by provid-
ing computers to poor countries. The breakthroughs 
connected to these efforts, such as mesh Internet access 
architecture, benefited all users. The Digital Opportu-
nity Index (DOI) is computed by the United Nations 
based on 11 metrics of information and communica-
tion technologies, such as proportion of households 
with access to the Internet. It has been found to be pos-
itively associated with a country’s wealth.

Further Reading
Lauckner, Kurt, and Zenia Bahorski. The Computer 

Continuum. 5th ed. Boston: Pearson, 2009.
Lemke, Donald, and Tod Smith. Steve Jobs, Steve 

Wozniak, and the Personal Computer. Mankato, MN: 
Capstone Press, 2010.

	 Personal Computers 769



Wozniak, Steve, and Gina Smith. iWoz: Computer Geek  
to Cult Icon: How I Invented the Personal Computer, 
Co-Founded Apple, and Had Fun Doing It. New York: 
W. W. Norton, 2007.

Zenia C. Bahorski
Maria Droujkova

See Also: Cerf, Vinton; Internet; Lovelace, Ada; 
Servers; Software, Mathematics.

Pi
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Measurement; Geometry.
Summary: The ratio of a circle’s circumference to it’s 
diameter, π, is one of the most important constants 
and the first irrational number encountered by most 
students.

By definition, pi (π) is the ratio of a circle’s circum-
ference to the diameter. This definition holds for any 
circle, with the value of π being the constant value 
3.14159265358979. . . . This decimal neither terminates 
nor repeats, making π irrational. Mathematicians and 
non-mathematicians alike are intrigued by the many 
appearances of π in diverse situations. Capturing this 
apparent mysticism in the 1800s, the mathematician 
Augustus de Morgan wrote, “This mysterious 3.14159. . . 
which comes in at every door and window, and down 
every chimney.” 

Values Used for Pi
Since the beginning of written mathematics, people 
have tried to calculate π’s value. Around 2000 b.c.e., 
the Babylonians and Egyptians assigned values equal 
to 3 1/8 (3.125) and 4 8 9

2( )  (3.1605). In 1100 b.c.e., 
the Chinese used π = 3, a value which also appears 
in the Bible (I Kings 5:23). In 300 b.c.e., Archime-
des of Syracuse produced the first “accurate” value, 
using inscribed and circumscribed 96-sided polygons 
to produce the approximation 3 10/71 < π < 3 1/7 
(or 3.140845. . . < π < 3.142857. . .). Since that time, 

multiple methods and formulas have been created to 
determine more exact values of π. Today, powerful 
computers use similar formulas to calculate values of 
π to extreme precision, with the current value exceed-
ing 2.7 trillion digits (the record as of January 2010). 
Two examples of these formulas involving infinite 
series are

π
2

2 2 4 4 6 6 8

1 3 3 5 5 7 7
=

× × × × × × �
× × × × × × �
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9
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Students in the twenty-first century learn about 
π in elementary school, and exposure to π continues 
in later courses in mathematics and physics. Since 
spherical coordinates are used in many applications, 
π is found in physical formulas such as Einstein’s field 
equations, the Heisenberg uncertainty principle, and 
Coulomb’s law for electric force, which are named 
after Albert Einstein, Werner Heisenberg, and Charles-
Augustin de Coulomb, respectively. Mathematicians 
and computer scientists describe π as a great stress 
test for computers because of the seemingly random 
aspects of its digits. 

Algorithms to compute the digits of π are regarded 
as more important than the digits themselves. Mathe-
maticians continue to investigate other unsolved prob-
lems related to π, including attempts to determine how 
random the digits are.

Applications
The number π has played important roles in multiple 
situations. In 1767, Johann Lambert proved that π was 
irrational (it could not be written as the ratio of two 
integers). Then, in 1882, Ferdinand von Lindemann 
proved that π was transcendental (it could not be 
constructed using geometric tools and was not a root 
of a non-constant polynomial equation with ratio-
nal coefficients). These two discoveries provided the 
key to proving the impossibilities of the Greeks’ three 
problems of antiquity—squaring a circle, trisecting an 
angle, and duplicating a square.

Considered by many to be a ubiquitous number, π 
shows up in odd situations. First, in 1777, the naturalist 
Georges Buffon approximated the value of π experi-
mentally by tossing a needle (length L) on a ruled sur-
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face (parallel lines spaced at distance D). If the tossed 
needle touches a line S times on N tosses, then

π ≈ 2SL

DN
.

Second, the probability that two random integers 
are relatively prime (they have no common divisor) is

6
2π

.

Anyone can try these experiments, either by drop-
ping needles or taking ratios of random integers; many 
are surprised that both produce good approximations 
for π. However, complex mathematics is needed to 
explain “why.”

In 1743, Swiss mathematician Leonhard Euler pub-
lished the formula eix = +cos(x) i sin(x), linking expo-
nentials, trigonometric functions, and complex num-
bers. Substituting x = π, the result becomes the most 
beautiful formula in mathematics: eiπ+ =1 0 .

Popular Culture
The fascination with decimal expressions of π has led 
to competitive memorization contests. The Guinness 
World Records officially recognized Lu Chao as the 
most recent record holder in the early twenty-first 
century, but others have claimed more digits. Some 
people use piems (mnemonic poems); for example, 
“How I need a drink, alcoholic of course, after the 
heavy lectures involving quantum mechanics.” In this 
piem, replace each word with its number of letters, 
producing π ≈ 3 14159265358979. . Hideaki Tomoyori, 
who held the world record of 40,000 digits memorized 
from 1987–1995, used a pictorial mnemonic system 
and explained, “I want to go on with the challenge of 
memorizing π, for just the same reason that people 
climb high mountains. I think it’s a wonderful thing to 
challenge the limits of what we can do. . . . the more one 
memorizes of it, the closer one comes to the real value 
of the circle—closer to perfection.” Researchers com-
pared his cognitive abilities with a control group and 
concluded that he was not superior; they attributed his 
achievement to extensive practice.

The number π also is connected to some odd events. 
In 1897, the Indiana State Legislature almost passed a 
mathematically incorrect bill relating to π and squar-

ing the circle. By its definition, the value of π changes if 
the circle shifts out of the Euclidean world. That is, in 
taxicab geometry, or metric geometry on a rectangular 
lattice structure, the value of π is 4.

The number π is an amazing number, both in its 
interesting properties and the obsessive attention given 
it by both mathematicians and non-mathematicians. 
How else could one explain why on March 14 at 1:59, 
many people shout, “Happy Pi Day!”
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Planetary Orbits
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry.
Summary: It took mathematicians thousands of 
years to accurately describe planetary motion.

For millennia, the shape of the paths in which the plan-
ets orbited was dominated by metaphysical concerns 
and assumed, almost without question, to be circular.  It 
was not until the seventeenth century that science dis-
covered the actual shape of planetary orbits, the ellipse.

Early Conceptions
In ancient Greek astronomy, it was assumed that the 
Earth was the center of the universe, and all of the 
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known planets (including the sun and the moon) as 
well as the stars revolved around it. Furthermore, at 
least from the time of Pythagoras (c. 569–475 b.c.e.), 
these orbits were assumed to be circular. This assump-
tion was a metaphysical one. 

The Pythagoreans believed in the perfection of 
mathematics and held the view that the circle was per-
fect because of its symmetry and continuity. Therefore, 
the universe must surely be constructed to reflect this 
perfection by requiring the planets to revolve around 
the Earth in perfect circular motion. That influential 
philosophers such as Plato and Aristotle accepted the 
perfection of circular motion contributed to the fact 
that the idea went almost unchallenged for nearly 
2000 years.

With the increasing ability to make accurate obser-
vations of the movements of the heavens and math-
ematical calculations to predict those movements, the 
simple assumption of perfect circular motion became 
more problematic. The predictions of the planetary 
positions did not match the actual observed locations. 
Eudoxus (408–355 b.c.e.) addressed this discrepancy 
by devising a complicated system of nested spheres in 
which each planet moved, maintaining circular motion 
of each sphere while more accurately predicting the 
location of the planets.  

For many centuries, one man’s work dominated 
European thinking on planetary motions. The Greek 
mathematician and astronomer Ptolemy (85–165 
c.e.) compiled all that was known about the move-
ments of heavenly bodies into one work that came to 
be known as The Almagest. This book employed an 
array of very complex geometric and trigonometric 
theories to describe the movement of the planets, with 
the Earth remaining at the center. In order for the 
observations to be as close as possible to the calcula-
tions, Ptolemy used epicycles (small circles revolving 
upon bigger circles as they revolve around the Earth) 
and moved the Earth away from the center of revolu-
tion of the planets. 

The new center of revolution was an imaginary 
point some distance away from the Earth. Ptolemy’s 
influence on Western astronomy was partially because 
of its general agreement with Christian doctrine. As 
the center of God’s creation, the Earth must rest at 
the center of the cosmos. Furthermore, a perfect Cre-
ator would use the perfect circle to put His creation 
in motion.  

Challenges
The most serious challenge to Ptolemaic cosmology 
came from the Polish church official, Nicolaus Coper-
nicus (1473–1543), whose revolutionary work De Revo-
lutionibus placed the sun, not the Earth, at the center of 
the universe, relegating the Earth to mere planethood. 
Copernicus, however, remained adamant in his belief 
that the planets orbited the sun in a composite of per-
fect circular motions. The doctrine of perfect circular 
motion in the heavens was finally challenged by the Ger-
man astronomer Johannes Kepler (1571–1630). Kepler, 
after many years of tedious and painstaking calculations 
involving the orbit of Mars, finally determined that Mars 
actually orbited the sun in an elliptical orbit, not a cir-
cular one. This revolutionary idea was based in part on 
another discovery by Kepler that the speed of the plan-
ets varied as they orbited the sun. Later, the great British 
mathematician and scientist, Isaac Newton (1643–1727), 
used his universal law of gravitation and laws of motion 
to provide a mathematical explanation for Kepler’s claim 
of elliptical orbits, finally putting an end to the ancient 
doctrine of circular motion in the heavens.

Mathematics continues to play an important role 
in modeling planetary orbits. For example, Mercury’s 
orbit is more accurately represented with hyperbolic 
geometry than with Euclidian geometry. Further, the 
orbit of Mercury allows researchers to see the impact of 
the sun’s gravitational field on the curvature of space.
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See Also: Astronomy; Conic Sections; Geometry of 
the Universe; Greek Mathematics.

Plate Tectonics
Category: Weather, Nature, and Environment.
Fields of Study: Data Analysis and Probability.
Summary: Tectonic plate movement is measured and 
analyzed using mathematics.

The ideas of plate tectonics and continental drift have 
been theorized by many scientists over the years. For 
example, in the early twentieth century, Alfred Wegener 
publicly presented theories regarding the existence of a 
supercontinent called “Pangea” that eventually formed 
all the known continents. He supported centrifugal force 
as an explanation for drift. A few years later, Arthur Hol-
mes supported thermal convection as an explanation. At 
the time, there was insufficient mathematical and sci-
entific evidence to support these theories and they were 
largely dismissed, in part because seeing into the depths 
of the oceans and into the Earth itself is often a more dif-
ficult venture than seeing galaxies at the far reaches of the 
universe. By the latter half of the 
twentieth century, discoveries 
such as mid-Atlantic underwa-
ter volcanic chains and the map-
ping and mathematical analysis 
of seismic activity suggested the 
existence of large, mobile plates 
in the Earth’s crust. 

In the twenty-first century, 
scientists and mathematicians 
are still developing new and 
innovative ways to collect data, 
model, visualize, and simulate 
the Earth’s inner structure. For 
example, geophysicist Robert 
van der Hilst and mathema-
tician Maarten Van de Hoop 
have used a mathematical tech-
nique known as “micro-local 
analysis,” as well as statistical 
methods, such as confidence 
intervals, to explore the geom-

etry of the layers near the boundary of the Earth’s core 
and mantle. This technique extends existing methods 
for analyzing noisy seismic data. It produces not only 
an image, but also an estimate of the probability that a 
true layer has been discovered. Ongoing collaboration 
between mathematicians and geophysical scientists is 
crucial to address the massively scaled problems that 
arise in geoscience, such as continental drift. This is 
true not only for data collection in the field, but also 
for computer simulation, which is increasingly an ave-
nue of exploration and cross-validation for theories 
and data. These simulations often require combining 
many scales of data, both macro and micro, as well as 
observations collected over different periods of time. 
Further, much of the data is noisy, incomplete, or dif-
ficult to directly measure. Mathematics is also involved 
in the increasingly sophisticated tools that allow scien-
tists to visit the depths of the oceans and begin to look 
at some previously impenetrable layers of the Earth.

The Spreading Sea Floor
As an officer in the U.S. Navy, Harry Hess’s curiosity 
led him to measure the ocean floor using sounding gear 
and magnetometers during World War II. Once the war 
ended, Hess developed the theory of sea floor spreading 
to explain his data. He proposed that magma oozed up 
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A U.S. Geological Survey illustration of Earth’s rigid slabs (called tectonic 
plates) that are moving relative to one another. 



between the plates along the ridges in the ocean floor, 
pushing them apart and causing the plates to move. 

Strips of rock parallel to the ridges provide evi-
dence for sea floor spreading. Strips closest to the ridge 
have the same polarity as the Earth (magnetic north 
pointing to the north pole); however, the strips mov-
ing out away from the ridge on opposite sides mirror 
each other and alternate between current polarity and 
reversed polarity as the Earth’s magnetic field reversed 
over time. These alternating strips suggest that new 
rock is created along the ridges over geologic time.

Continents Adrift
Until 1912, scientists assumed that the continents were 
fixed in place. In that year, Alfred Wenger suggested that 
the continents were adrift, originally part of one large 
landmass. Wegner cited evidence such as matching 
geological formations and fossils from South America 
and Africa. It was not until the late 1960s that discover-
ies were made and measuring techniques improved to 
the extent that the theory of plate tectonics emerged 
and became widely accepted. Scientists now recognize 
that the continents are attached to plates and move 
with them rather than moving independently. Scien-
tists also now know that the plates that make up Earth’s 
crust and the continents attached to them are moving 
several centimeters per year on average as they collide, 
move apart, and brush up against each other. 

Plate Movement
Muawia Barazangi and James Dorman (1969) charted 
the locations of all earthquakes occurring from 1961 
to 1967 and found that most occurred in a narrow 
band of seismic activity. This band of high earthquake 
and volcanic activity, commonly called the “Pacific 
Ring of Fire,” defines many plate boundaries around 
the Pacific Ocean.

Most plate movement occurs along the edges of the 
plates. Scientists can measure the velocity (speed and 
direction) of plate movement and determine how that 
relates to earthquake and volcanic activity. For histori-
cal information, scientists turn to ocean floor magnetic 
striping data and geological dating of rock formations.

Measurement techniques have improved greatly since 
Hess’s measurements. The most common technique for 
measuring plate movement in the early twenty-first 
century is the Global Positioning System (GPS). As sat-
ellites continuously transmit radio signals to Earth, each 

GPS ground site simultaneously receives signals from 
at least four satellites. By recording the exact time and 
location of each satellite when its signal was received, it 
is possible to determine the precise position of the GPS 
ground site on Earth (longitude, latitude, and eleva-
tion). Regularly measuring distances between specific 
points allows scientists to determine if there has been 
active movement between plates on a scale of millime-
ters. Using time-series graphs and plotting vectors, it is 
possible to learn how the plates move. 

While scientists know that most earthquakes and 
volcanoes occur along plate boundaries, they still can-
not predict exactly when and where they will occur. By 
monitoring plate movement, scientists hope to learn 
more about the events building up to earthquakes and 
volcanic eruptions.

Further Reading
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Plays
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Geometry; 
Representations.
Summary: Numerous plays explore mathematical 
concepts and mathematicians.

The genre of “mathematical theater” is a relatively 
recent phenomenon. A smattering of earlier examples 
of mathematics appeared on stage, but the turning 
point was Tom Stoppard’s 1993 play Arcadia, which 
opened the door to an entirely new realm of collabora-
tive possibilities between theater and the mathemati-
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cal sciences. Following on the heels of Arcadia was the 
award-winning Copenhagen (1998), a play by Michael 
Frayn about the fraught relationship between physi-
cists Neils Bohr and Werner Heisenberg. If there were 
any lingering doubts as to whether mathematics was a 
relatable theme for theater audiences, David Auburn’s 
Pulitzer Prize–winning play Proof (2000) laid them 
firmly to rest. The ensuing years have produced suc-
cessful dramas, comedies, and biographical scripts that 
are marked not just by the inclusion of mathematical 
references, but also by the wholesale incorporation 
of mathematics into the content and structure of the 
play. Some even turn a critical lens back on traditional 
mathematics education and related gender issues.

Stoppard and Science
Bertold Brecht’s The Life of Galileo (1939) gives a cur-
sory acknowledgment of the protagonist’s training as 
a mathematician. The Physicists (1962), by Friedrich 
Durenmatt, features Isaac Newton as a character—or 
rather, it features a spy who is posing as a patient in a 
mental institution, pretending to believe he is Newton. 
Terry Johnson’s play Insignificance (1982) contains a 
scene where Marilyn Monroe explains special relativity 
to Albert Einstein.  

But the best place to look for a forerunner for the 
substantial and explicit role of mathematics in Arca-
dia is in Tom Stoppard’s earlier writing. His first 
major success was Rosencrantz and Guildenstern are 
Dead (1966), a dark comedy, which opens with a 
scene of the two Shakespearean characters trying to 
rectify the laws of probability with the fact that they 
have just witnessed nearly 100 occurrences of heads 
in as many flips of a coin. Zeno’s paradoxes appear 
in Jumpers (1972), and there is a cameo appearance 
of Leonhard Euler’s famous Bridges of Königsburg 
problem in Hapgood (1988), a play that also contains 
significant discussions of quantum mechanics. Hap-
good comes closest to Arcadia in its attempt to fully 
integrate mathematics and science into the mechanics 
of the play, but this was confusing for some audiences 
and the reviews for Hapgood tended to be rather harsh. 
Arcadia, in contrast, was greeted as something of a 
marvel and an instant classic when the play opened in 
London in 1993.

The opening scene of Arcadia is set in 1809, where 
13-year-old Thomasina Coverly is growing frustrated 
with her tutor, who has asked her to find a proof for 

Fermat’s Last Theorem. Thomasina has more roman-
tic issues on her mind (“Septimus, what is carnal 
embrace?” is the first line of the play), and her restless-
ness—and her genius—eventually lead her to discover 
the core principals of fractal geometry and chaos the-
ory 150 years before their time. Arcadia also contains 
a second set of characters living in the present day in 
the same house, and among them is a mathematician 
whose expertise in dynamical systems allows him to 
decipher Thomansina’s notebooks for the other char-
acters—and the audience. In a clever homage to Fer-
mat, Thomasina writes in one of her notebooks that 
“I, Thomasina Coverly, have found a truly wonderful 
method whereby all the forms of nature must give up 
their numerical secrets and draw themselves through 
number alone. This margin being too mean for my 
purpose, the reader must look elsewhere for the New 
Geometry of Irregular forms discovered by Thoma-
sina Coverly.” 

A recurring theme in Arcadia is the juxtaposition of 
reasoned, classical thinking with untamed, romantic 
expression. With respect to the mathematics in the play, 
the Euclidean geometry of circles and spheres is con-
trasted with the fractal geometry of leaves and clouds. 
In a related way, the determinism inherent in Newton’s 
Laws of Motion is challenged by the unpredictability of 
chaotic systems and ultimately by the Second Law of 
Thermodynamics. These scientific ideas provide a com-
pelling metaphorical backdrop for the interpersonal 
tensions that drive the emotional arc of the script. The 
result is a play where the science and the storytelling 
work in a mutually enriching collaboration.

Copenhagen 
Whereas Arcadia is a hybrid of mathematics and sci-
ence, Frayn’s Copenhagen is very much a “physics 
play,” but its influence is too significant to ignore. 
The play is inspired by a real historical event. Wer-
ner Heisenberg had been put in charge of the Nazi 
nuclear program, and in 1941, he paid a visit to his 
mentor Neils Bohr, whose hometown of Copenha-
gen was under German occupation. The visit ended 
abruptly, and the deep friendship between these two 
pioneers of atomic physics ended with no clear reso-
lution ever agreed upon as to what exactly was dis-
cussed. Frayn’s play explores this question by recre-
ating the experiment of Heisenberg’s visit multiple 
times and, in the spirit of quantum mechanics, each 
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run of the experiment results in a different outcome. 
Along the way, the fundamental ideas behind Bohr’s 
Theory of Complementarity and Heisenberg’s Uncer-
tainty Principle are given enough explication for the 
audience to apply these ideas to the process of human 
introspection as well as to the play itself. 

Hardy, Ramanujan, Turing, and Beyond
The most high-profile play about mathematics since 
Proof is A Disappearing Number, created and produced 
by a London-based company called Complicite under 
the leadership of Simon McBurney. A Disappearing 
Number won the 2007 Olivier Award for Best New Play, 
among many others, and eventually it toured interna-
tionally. The starting point for A Disappearing Number 
is G. H. Hardy’s famous essay, A Mathematician’s Apol-
ogy. Hardy appears as a character as does the Indian 
genius Srinivasa Ramanujan. The celebrated collabora-
tion between Hardy and Ramanujan is also the sub-
ject matter for a less well-known play called Partition 
(2003), written by Ira Hauptman, and in a less direct 

way it served as inspiration for The Five Hysterical Girls 
Theorem (2000) written by Rinne Groff. Whereas Parti-
tion is a fanciful account of a real historical friendship, 
The Five Hysterical Girls Theorem is a purely fictitious 
comedy about an international mathematics confer-
ence that features a protagonist loosely based on Hun-
garian mathematician Paul Erdös.

Biography and historical fiction are the dominant 
forms for most new mathematical theater. Isaac New-
ton is the central subject of Leap (2004), by Lauren 
Gunderson as well as Calculus (2003) by Carl Djerassi. 
Seventeenth Night (2004), by Doxiadis Apostolos, tells 
the story of the final days of logician Kurt Gödel’s life 
in a way that is meant to illustrate the actual content 
of Gödel’s revolutionary Incompleteness Theorems. 
Georg Cantor’s bouts with mental illness are the sub-
ject of Count (2009), by John Martin and Timothy 
Craig, and Cantor also appears alongside his philo-
sophical nemesis Leopold Kronecker in a scene in the 
experimental play Infinities (2002), written by John 
Barrow. Infinities actually consists of five scenes or sce-
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E ven if it had not been turned into a popular 
film, Proof would still likely be the most well-

known mathematics play and most frequently per-
formed. It should be pointed out, however, that 
unlike Arcadia and Copenhagen, there is virtu-
ally no technical material written into the script. 
The central relationship in the play is between a 
father and daughter. The father is a brilliant math-
ematician who, the audience learns, has become 
debilitated by serious mental illness. His daughter 
Katherine has given up on her own education to 
care for her father, and upon his death, Katherine 
is plagued by the question of whether this was 
the right decision, as well as whether she has 
inherited her father’s mental instability. A major 
plot twist comes when Katherine discloses the 
existence of a mathematical proof hidden in her 
father’s desk, and a central issue is to determine 
its rightful author. The audience is never told what 
the theorem actually is, but is made to understand 

that it is a monumental result on the order of the 
Riemann Hypothesis.

A debate among theater critics is whether the 
mathematics in Proof is crucial to the workings 
of the play, or whether it is intellectual window 
dressing that could be replaced by some other 
creative art form; for example, the father might 
be a composer and put a symphony score in the 
desk drawer. Although the discussions of explicit 
mathematics in Proof are confined to a few imagi-
nary number jokes and some witty banter about 
primes, there are several compelling conversa-
tions about the aesthetic beauty of mathematics 
and the discipline is sympathetically portrayed. 
Because the main questions in the play deal 
with degrees of certainty, there is an argument 
that the rigorous standard for what constitutes 
a mathematical proof provides a valuable point 
of contrast for the various investigations by the 
characters in the play.

The Most Well-Known Mathematics Play: Proof 



narios—one features the Hilbert Hotel introduced by 
mathematician David Hilbert—each of which explores 
some paradoxical aspect of infinity.

The drama, and ultimate tragedy, of Alan Turing’s 
life is the subject of at least four plays. The most well-
known of these is Breaking the Code (1986) by Hugh 
Whitmore, which is available as an episode of Master-
piece Theater. The most ambitious play about Turing 
in terms of engaging the essence of his mathematical 
work is probably Lovesong of the Electric Bear (2003) 
by British playwright Snoo Wilson, which received a 
string of productions in the United States.

Plays By and About Women
Lauren Gunderson, who has been writing plays since 
she was 16 years old and is known for her interpre-
tations of feminism, science, and history, has spoken 
widely on the rich intersection of science and theater. 
She cites Arcadia as a good example of the idea that 
“Science, like any theoretical idea, should lead to a 
deeper kind of play—a more layered, woven play where 
the science permeates the form of the play as well as the 
content.” She also encourages playwrights to explore 
these themes, noting that the fundamental questions 
of mathematics and science do not exist in some inac-
cessible other world, but rather are deep and univer-
sal. One of her most well-known plays is Emilie: Le 
Marquise Du Chatelet Defends Her Life Tonight, which 
is about eighteenth-century woman mathematician 
Gabrielle Émilie Le Tonnelier de Breteuil, Marquise du 
Châtelet, whose many achievements include a transla-
tion and commentary on Isaac Newton’s Principia. In 
2010, Gunderson was the first Playwright in Residence 
at The Kavli Institute for Theoretical Physics.

Emilie du Chatelet was known for passionately pur-
suing mathematics in a time when many women were 
barely literate. Kathryn Wallet’s Victoria Martin: Math 
Team Queen examines the modern-day tug of war 
between popularity and mathematics talent that girls 
often face as they move into middle school and high 
school. This theme is also critically explored in Gioia 
De Cari’s autobiographical play Truth Values: One Girl’s 
Romp Through M.I.T.’s Male Math Maze. The author 
uses her personal experiences, such as being asked to 
serve cookies at a seminar, for comic effect. However, 
the play is a serious exploration of traditional math-
ematics in higher education and the role of women in 
science and mathematics.
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Poetry
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Measurement;  
Representations.
Summary: Rhyme schemes and meter in poetry can 
be mathematically analyzed and some new forms of 
poetry are based on mathematical priniciples.

A popular sentiment is that mathematics and poetry 
lie on opposite ends of some spectrum. However, both 
are the works of pure intellect and they share many 
similarities. Whether considering rhyme, rhythm, or 
visual layout, effective poetry is rich with patterns that 
may be analyzed with a mathematical eye. At the same 
time, succinct mathematics has often been compared 
to poetry. In the modern era, the connections have 
become explicit, as mathematics has been co-opted by 
poets to create new poems, while poetry has been ana-
lyzed (and occasionally written) by mathematicians.

Meter and Rhyme
Poetic meter is a formalized version of rhythm. When 
considering rhythm in spoken language, one can focus 
on syllable stresses, pitch, tone, or morae. Mora (plural 
morae) is a term used by linguists to denote an indi-
vidual unit of sound; a long syllable (such as “math”) 
consists of two morae, while a short syllable consists 
of a single mora. A poetic cadence of length n is a pat-
tern of long and short syllables whose total number of 
morae is n. Cadences play an especially important role 
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in Indian and Japanese poetry, as well as in modern 
free verse.

Traditional English meter, however, is usually based 
on stressed syllables (denoted −) versus unstressed syl-
lables (denoted ̆ ). The most well-known English meters 
are iambic pentameter and dactylic hexameter, used 
extensively by William Shakespeare and Henry Wad-
sworth Longfellow, respectively. In each of these meters, 
the first word denotes the metrical foot, and the second 
word denotes the number of feet per line. A metrical 
foot is a particular pattern of stressed and unstressed syl-
lables. It usually consists of two, three, or four syllables. 
For example, an iamb consists of an unstressed syllable 
followed by a stressed syllable. So a line of iambic pen-
tameter is 2 × 5 = 10 syllables in length, and the pattern 
is ˘−˘−˘−˘−˘−. A dactyl consists of stressed syllable 
followed by two unstressed syllables. A line of dactylic 
hexameter is 3 × 6 = 18 syllables, and the pattern is 
−˘˘−˘˘−˘˘−˘˘−˘˘−˘˘. Simple counting shows that 
there are four possible disyllabic feet (pyrrhus is ̆ ˘, iamb 
is ˘−, trochee is −˘, and spondee is −−), eight possible 
trisyllabic feet, and 16 possible tetrasyllabic feet.

There are further formal devices used by poets, 
often with the aim of producing euphony, which is 
beautiful sound combinations: assonance (the same 
sound repeating within a line), alliteration (multiple 
words beginning with the same consonant), or spe-
cific rhyme schemes. Two examples of rhyme schemes 
are ababcdcdefefgg for a Shakespearean sonnet and 
abbaabbacdecde for an Italian sonnet. The initial lines 
of Shakespeare’s “Sonnet 30”: 

When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear time’s waste:

illustrate alliteration and an “abab” rhyme in iambic 
pentameter—though “past/waste” is only a near rhyme. 

Classical Poetic Traditions and Forms
History is rich with individuals such as Omar Khayyám, 
who excelled in poetry and mathematics separately 
without drawing a strong connection between the 
two. However, in at least one culture, the two disci-
plines were intimately interwoven. In the Indian Vedic 
civilization, poetic chants and hymns were utilized to 
pass down a vast body of knowledge. A portion of this 

knowledge was mathematical, including theorems in 
arithmetic and geometry. The method of transmission 
was mathematical: a single text would be recited in up 
to 11 different ways. Each way emphasized a different 
poetic approach, such as applying devices of euphony, 
pausing every other word, or repeating groups of 
words forward, backward, and in even more compli-
cated permutations. This method is reminiscent of 
the error-correcting codes employed in twenty-first 
century CD audio discs. Just as a scratched CD will 
often still play seamlessly, the redundancy of the Vedic 
poetic chants allowed for an uncorrupted oral trans-
mission year after year.

A poetic form offers the writer a set of constraints to 
which the work has to conform. There are many such 
prescribed forms, some very strict, and others quite 
open. Perhaps the best-known forms are the sonnet, 
ode, and haiku. The traditional Japanese haiku, for 
instance, comprises three lines of 5, 7, and 5 morae, 
respectively. In English, the syllable is used as counter 
instead of the mora.

A sestina is a 39-line poem consisting of six 6-line 
stanzas followed by a 3-line envoy. The six words end-
ing the lines in the first stanza must end the lines in each 
of the subsequent stanzas, but in a fixed new order. The 
permutation of the words may be denoted 

σ= 1 2 3 4 5 6
2 4 6 5 3 1







.

This notation indicates that the word ending the 
first line must end the second line of the next stanza, 
the word ending the second line must next end the 
fourth line, and so forth. This permutation is then 
repeated from one stanza to the next. Mathematicians 
Anton Geraschenko and Richard Dore have investi-
gated a generalized notion of a sestina to an (n-line-
per-stanza) n-tina where n can be any whole number. 
They prove that if the n-tina is to be interesting—in the 
sense that the pattern does not repeat before the poem 
ends—then 2n + 1 must be a prime number.

Modern Directions
In the modern era, poetry is more often read on a page 
than spoken aloud, and the two-dimensional geom-
etry of the text is visible. For example, a poem in tradi-
tional meter naturally takes on a ragged-on-the-right 
rectangular shape. The diamond shape of a diamante 
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poem, introduced in 1969 by Iris Tiedt, naturally 
results from the prescribed construction of its seven 
lines: one noun, two adjectives, three gerunds, four 
nouns, three gerunds, two adjectives, and one noun. 
When poetry purposefully forms a recognizable shape 
it is called “shape poetry,” “griphi,” “carmen figura-
tum,” or “concrete poetry.” The idea of a shape poem 
is nothing new: around 300 b.c.e. the Greek poet 
Simias of Rhodes wrote Pteryges, Oon, and Pelekys 
(Wings, Egg, and Hatchet, respectively) poems whose 
shape mirrored their subject. Recently, shape poetry 
has flourished: Lewis Carroll gave a mouse’s tail; Guil-
laume Apollinaire, the Eiffel Tower; e e cummings, a 
snowflake; John Hollander, a swan with reflection; and 
Mary Ellen Solt, a forsythia bush. In the 1990s, Edu-
ardo Kac moved poetry into the third dimension with 
his holopoetry: poetry that floats above a surface as a 
hologram and takes different meanings when viewed 
from different angles.

The group Ouvroir de Littérature Potentielle (Work-
shop of Potential Literature), or Oulipo for short, orig-
inated in 1960 with 10 writers, mathematicians, and 
philosophers. The group has the twin goals of eluci-
dating old and creating new rigid forms for potential 
literature. A prototypical example of their oeuvre may 
be seen in Raymond Queneau’s Cent Mille Milliards 
de poèmes (One Hundred Thousand Billion Poems). 
This work appears at first glance to consist of 10 son-
nets. However, it also includes the instruction that the 
reader should consider all poems that may be formed 
by choosing a first line from among the 10 given, then 
a second line, and so forth. At each stage, the reader has 
10 lines from which to choose, and there are 14 lines, 
so this work encompasses 1014 = 100,000,000,000,000 
complete sonnets.

Many forms of poetry have emerged that are very 
consciously mathematical. The “pioem” is a poem 
whose words are of length determined by the digits of 
π in order: 3, 1, 4, 1, 5, 9, . . . . The number of words 
in a pioem is not predetermined; it may be as long or 
short as the author desires. The “Fib” is a poetry form 
that, like the haiku, prescribes the number of syllables 
to appear in each line. This prescription is based upon 
the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . in which 
each number is the sum of the previous two numbers. 
Interestingly, the Fibonacci sequence not only gives a 
form for poetry, but also arises in the mathematical 
study of poetic cadence. If Cn denotes the number of 

poetic cadences of length n, Indian polymath Acarya 
Hemacandra showed

 
C C Cn n n= +− −1 2

.

This equation, known as a recurrence relation, gen-
erates the Fibonacci sequence. Hemacandra’s obser-
vance was about 50 years prior to Leonardo of Pisa’s 
1202 treatise Liber Abaci, from which the Fibonacci 
sequence derives its name.
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Polygons
Category: History and Development of  
Curricular Concepts.
Fields of Study: Communication; Connections; 
Geometry.
Summary: Polygons have properties making them 
important in engineering, architecture, and elsewhere. 

Shapes and figures define how people view the world. 
Polygons are special figures whose properties and rela-
tionships are prevalent in nature and are used exten-
sively by architects, engineers, scientists, landscapers, 
and artists. Specifically, polygons are traditionally 
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planar (two-dimensional) figures that are closed and 
comprised of line segments that do not cross. These 
line segments are called “edges” or “sides,” and the 
points where the edges meet are called “vertices.” Pla-
nar polygons are very important in engineering, com-
puter graphics, and analysis because they are rigid, they 
work well with functions, and they are easy to trans-
form. Other types of polygons are also useful, such as 
spherical, hyperbolic, complex, or near polygons.

Properties of Polygons
Polygons are named by the number of their sides. 
Typically, polygons with more than 10 sides are called 
n-gons. 

Calculating angle sums, areas, and perimeters of 
polygons is important in architecture, landscaping, and 
interior design. Understanding properties of triangles 
and parallelograms facilitates these kinds of calcula-
tions. For instance, the sum of the measures of the inte-
rior angles of a polygon can be determined by realizing 
that a polygon with n sides can be divided into n − 2 
triangles, and that the sum of the measures of the inte-
rior angles of any triangle is 180 degrees. Using these 
ideas, a carpenter could easily determine the angles at 
which, for example, the sides of a hexagonal window 
frame should meet. Furthermore, the ability to create 
polygons from triangles and the ability to rearrange or 

duplicate some polygons to form parallelograms allow 
the derivation of area formulas. Michael Serra describes 
in his 2008 book, Discovering Geometry: An Investiga-
tive Approach, how the area of a parallelogram can be 
derived from a rectangle, and the area of a triangle can 
be derived from a parallelogram.

Real World Examples
Polygons are prevalent in the world. Even traffic signs 
come in the shapes of triangles, rectangles, squares, 
kites, and octagons. The properties of polygons make 
them useful in many areas including architecture, 
structural engineering, nature, and art. 

Polygons are sometimes used in architecture for 
their structural benefits. Trusses formed from triangles 
provide support for bridges and roofs because, unlike 
other polygons, triangles do not tend to deform when 
force is exerted on a vertex. Fences are often formed 
into polygons because they can be built by linking 
together straight segments of material that are of equal 
size and shape. The buildings that comprise the Pen-
tagon building in Washington, D.C., are arranged in a 
pentagonal shape because, according to Stephen Vogel, 
walking distances between buildings are less than in 
a rectangle, straight sides are easier to build, and the 
symmetrical shape is appealing. In the 1850s, Orsen 
Fowler popularized octagonal-shaped houses because 
octagons have larger areas than rectangles with the 
same perimeter. Thus, octagonal houses provided 
maximal living space while keeping heating, cooling, 
and building costs similar to that of the smaller rectan-
gular house with the same outer wall space.

Properties of quadrilaterals and triangles facilitate 
the creation of squares and right angles. For example, 
using the properties of a square’s diagonals, an approxi-
mate baseball diamond could be constructed by cutting 

diagonals of equal length from string or rope. 
To form the square, the diagonals would 
be positioned to bisect (halve) each 
other at right angles. The ends of each 
string would then mark the square’s 
four corners. The same format could be 
used to create a rectangular play area, 
except the diagonals would not be per-
pendicular. According to Sidney Kol-
pas, although unaware of the Pythago-
rean theorem, ancient Egyptians used 
right triangles to reconstruct property 
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boundaries after the annual flooding of the Nile River. 
To create a 90 degree angle, Egyptians would create a 
3-4-5 right triangle by tying 13 equally spaced knots in 
a rope, placing stakes at knots 4 and 8, then drawing the 
ends of the rope at knots 1 and 13 to meet. 

Polygons are prevalent in nature. Mineral crystals 
often have faces that are triangular, square, or hexag-
onal. The cross section of the Starfruit is shaped like 
a pentagonal star. Katrena Wells describes practical 
applications of hexagons, such as the often hexagonal 
shape of snowflakes and the hexagonal markings on 
many turtles’ backs. 

Tessellations of polygons are arrangements of poly-
gons on a plane with no gaps or overlaps. These are also 
seen frequently in nature. Marvin Harrell and Linda Fos-
naugh discuss many examples, including the facts that 
bees use a hexagonal tessellation for their honeycomb, 
some plant cell structures form hexagonal tessellations, 
and cooling lava may have formed the tessellating hex-
agonal columns of basalt rock at the Giant’s Causeway 
in Ireland. Interestingly, a giraffe’s skin is covered with a 
tessellation of various approximate polygons.

When creating sketches of objects or animals, art-
ists often use polygons as the basis of their work by 
breaking the figure down into polygons and circles, 
then smoothing and filling in the details of the draw-
ing after the rough polygonal sketch is created. Michael 
Serra explains how artist M.C. Escher used tessellations 
of triangles, squares, and hexagons as a framework, 
then rotated or translated various drawings along the 
sides of each polygon in the tessellation to create mar-
velous patterns of reptiles, birds, and fish. Islamic art-
ists covered their buildings with ornate tessellations of 
polygons. A prime example is the Alhambra Palace in 
Grenada, Spain.

Investigating polygons as they exist in the world is 
one method of introducing geometry and instilling 
a value of geometry to people of all ages. Examining 
polygons with hands-on learning activities and real-
world examples provides students with opportunities 
to investigate the characteristics and properties among 
polynomial shapes and helps them grasp an under-
standing of geometry at a higher level.

Development of Polygons
Planar polygons have been important since ancient 
times. Up until the seventeenth century, polygons 
that inscribed and circumscribed a circle were used 

by Archimedes and many others to estimate values 
of π. In 1796, at the age of 19, Carl Friedrich Gauss 
constructed a 17-sided polygon using a compass and 
straight edge. A year earlier, he had described the area 
of a polygon, which is often referred to as the “Sur-
veyor’s formula,” although this concept also is attrib-
uted to A. L. F. Meister in 1769. The concept of a tiling 
or tessellation also requires polygons, and these have 
a long history of represention in art, weaving, archi-
tecture, and mathematics. Johannes Kepler studied 
the coverings of a plane with regular polygons, and in 
1891, crystallographer E. S. “Yevgraf” Fedorov proved 
that there are 17 different types of symmetries that can 
be used to tile the plane. Planar polygons also star as 
main characters in Edwin Abbott’s 1884 novel Flat-
land and the subsequent twenty-first-century movies. 
In the early twenty-first century, young children inves-
tigate the mathematical properties of planar polygons 
in primary school.

Other types of polygons are also interesting and 
useful. Non-convex polygons like a star polygon, where 
line segments connecting pairs of points no longer 
have to remain inside the polygon, were studied sys-
tematically by Thomas Bredwardine in the fourteenth 
century. Generalized polygons in the twentieth cen-
tury include complex polygons investigated by Geof-
frey Shephard and H. S. M “Donald” Coxeter; Mou-
fang polygons, named after Ruth Moufang; and near 
polygons. In 1797, Norwegian surveyor Caspar Wessel 
explored planar and spherical polygons in his theoreti-
cal investigation of geodesy. M. C. Escher represented 
hyperbolic polygons in his tessellated artwork. Some 
twenty-first-century college geometry texts contain 
spherical and hyperbolic polygons. 
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Compass Constructions. 

Polyhedra
Category: History and Development of Curricular 
Concepts.
Field of Study: Communication; Connections;  
Geometry.
Summary: Regular solid shapes play important roles 
in nature and geometry.

People frequently encounter objects in polyhedral 
shapes, such as buildings that have cubic or prismatic 
shapes and geodesic domes or dice that are shaped like 
polyhedra. This prevalence is partly because of their 
aesthetic appeal and partly because of their practical 
properties. Polyhedra also appear in nature; many crys-
tals have the shapes of regular solids, particularly of tet-
rahedron, cube, and octahedron, and virus capsids can 
be icosahedral. Furthermore, carbon atoms can form a 

type of molecule known as “fullerenes,” which are in the 
form of a triangulated truncated icosahedron. A poly-
hedron is a solid in space with polygonal faces that are 
joined along their edges. If the faces consist of regular 
polygons, then it is called a “regular polyhedron.” A 
polyhedron is convex if the line segment joining any 
two points lies on or inside it. Regular convex polyhedra 
are particularly important for their aesthetic value, sym-
metry, and simplicity. There are only five of them: the 
tetrahedron, cube or hexahedron, octahedron, dodeca-
hedron, and icosahedron. Beginning in primary school, 
students investigate and classify geometric shapes, 
including polyhedra. In middle school and high school, 
students explore area and volume measurements as well 
as transformations and cross-sections.

History
Some of the earliest known polyhedra are the Egyptian 
pyramids. The five regular solids appear as decorations 
on Scottish Neolithic carved stone balls, which date to 
2000 b.c.e. There are also examples of cuboctahedra 
worn by east-African women around the ankle and a 
variety of polyhedral earrings in medieval Europe. The 
Greeks are thought to have first studied the mathemat-
ical properties of regular solids, particularly the Pla-
tonic solids, named for Plato. The last book of Euclid 
of Alexandria’s Elements is devoted to the study of the 
properties of these solids, including detailed descrip-
tions of their construction. The book is based on the 
work of Theaetetus of Athens. There is some evidence 
that Hippasus of Metapontum may have been the first 
to describe the dodecahedron. Hypsicles of Alexandria 
inscribed regular polyhedra in a sphere in his treatise. 
The Platonic solids also represented physical aspects: 
Earth was associated with the cube, air with the octa-
hedron, water with the icosahedron, fire with the tet-
rahedron, and the dodecahedron with the universe. 
Plato noted: “So their combinations with themselves 
and with each other give rise to endless complexities, 
which anyone who is to give a likely account of reality 
must survey.”

The Kepler–Poinsot polyhedra are named for the 
1619 work of Johannes Kepler and the 1809 work of 
Louis Poinsot. They constructed four regular “stel-
lated” polyhedra. These new solids were obtained by 
extending the faces. In the twentieth century, Donald 
Coxeter classified and studied the stellation process 
and described many stellated polyhedra.

782 Polyhedra



Properties
One common classroom investigation that relates 
to polyhedra is the Euler characteristic χ, named for 
Leonhard Euler. It is an equation that combines the 
number of vertices (V), edges (E), and faces (F) of a 
polyhedron as γ = − +V E F . All convex polyhedra 
have the same Euler characteristic: 2. René Descartes 
discovered the polyhedral formula in 1635, and Euler 
discovered it in 1752. In the nineteenth century, Lud-
wig Schläfli generalized the formula to polytopes and 
Henri Poincaré proved the result. 

The shape of a polyhedron lends itself to a very con-
venient symbolic or combinatorial description, called 
the “Schläfli symbol” of the polyhedron. Let {n, p} rep-
resent a regular polygon with n-gon faces, p of them 
meeting at each vertex. For example {4, 3} would rep-
resent a cube because three squares meet at each ver-
tex This symbolic representation is particularly useful 
if one would like to express various quantities like the 
dihedral angle, angular deficiency, radii of inscribed 
and circumscribed spheres, and surface area. For 
instance, the surface area of a Platonic solid {n, p} can 
be expressed by 

S nF
a

n
=

2

2

cot
π











where F is the number of faces and a is the side length.
Mathematically, polyhedra are very appealing for 

their fine properties such as duality, symmetry, and 
versatile constructability. The dual of a polyhedron 
is constructed by taking the vertices of the dual to be 
the centers of the faces of the original figure by inter-
changing faces and vertices. For instance, the dodeca-
hedron and the icosahedron are duals. Many polyhedra 
are highly symmetrical, and in the nineteenth century, 
Felix Klein investigated them. The groups of symme-
tries are algebraic structures consisting of reflections 

and rotations. One can 
also generate new polyhe-
dra from old by truncating 
the vertices of polyhedra, a 
process known and studied 
since antiquity. Some of the 
truncated polyhedra are 
also known as the “Archi-
medean solids,” named for 
Archimedes of Alexandria, 

whose faces consist of two or more types of regular 
polygons. 

There are 13 Archimedean solids, and there are 
53 other semiregular, non-convex polyhedra, which 
are non-Archimedean. The collection of all Platonic, 
Kepler–Poinsot, Archimedean, and semiregular, non-
convex polyhedra together with prisms form the family 
of polyhedra called “uniform polyhedra.”

Non-Euclidean polyhedra took on a prominent role 
in some theories of a spherical dodecahedral universe 
at the beginning of the twenty-first century. There are 
also non-Euclidean polyhedra with no flat equivalents. 
For instance, a spherical hosohedron with Schläfli sym-
bol {2, n} is shaped like a segmented orange or beach 
ball with lune faces. The name “hosohedron” is attrib-
uted to Coxeter. 

There have been many artistic and physical mod-
els of polyhedra in mathematics classrooms. With the 
advent of perspective, polyhedra were easier to draw 
and mathematicians and artists designed and col-
lected polyhedral models. Albrecht Dürer introduced 
polyhedral nets in his 1525 book. Students continue 
to use nets to build models. In 1966, Magnus Wen-
ninger published a work on polyhedral models for the 
classroom through the National Council of Teachers of 
Mathematics. Wenninger noted that the popularity of 
the book reflected the continued interest in polyhedra. 
In the twenty-first century, origami polyhedra have 
also become important in mathematics and computer  
science classrooms and research. 
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Cromwell, Peter. Polyhedra. New York: Cambridge  
University Press, 1997. 
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Polynomials
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication;  
Connections.
Summary: Polynomial functions have long been 
studied by mathematicians and have interesting and 
important applications.

Polynomials have a broad array of theoretical and 
real-world applications and are widely used by math-
ematicians, scientists, and engineers to mathemati-
cally model data and explore many mathematical and 
scientific concepts. Technologies that transmit elec-
tronic signals, ranging from deep space probes com-
municating with Earth, to home DVD players, com-
monly use polynomial error-correcting codes, like 
the Reed–Solomon codes, named for mathematicians 
Irving Reed and Gustave Solomon. Cryptographic 
algorithms that help ensure secure data transmission 
also rely on polynomials to represent and manipu-
late data. Calculators may use approximations called 
“Taylor polynomials,” named for mathematician 
Brook Taylor, for functions like square roots. Civil 
engineers model and estimate properties, such as 
volume for lakes and other irregular natural features, 
with polynomials. Orthogonal polynomials provide 
the foundation for many multivariate statistical pro-
cedures. In twenty-first-century classrooms, polyno-
mials are typically part of advanced middle school or 

high school curriculums, though linear functions and 
comparisons of linearity versus nonlinearity are com-
mon in middle school, and some of the basic concepts 
of functions are introduced in the elementary grades.

Early in their mathematical studies, students learn 
that the graph of the squaring function is a parabola, 
and that the plot of y p x x= ( ) = 2

 is shown in Figure 1, 
which is the first natural function to consider beyond 
ones that generate straight lines.

There is an entire family of functions like the squar-
ing function, the cubing function, the fourth power 
function, and more. If indexed, one could call

the squaring function p x x2

2( ) = ,

the cubing function p x x3

3( ) = ,

the fourth power function p x x4

4( ) = ,

and, in general, the nth power function p x xn

n( ) = .

The family of power functions also includes the 
zero power function p x0 1( ) =  and the first p x x1

1( ) = . 
These power functions are the building blocks of “poly-
nomial functions,” functions that are made from tak-
ing sums and constant multiples of power functions. 
As such, these functions are especially simple because 
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their formulas only involve addition and multiplica-
tion. The first understanding of these power functions 
is generally credited to Abu Bekr ibn Muhammad ibn 
al-Husayn Al-Karaji, who lived c. 1000 c.e. in what is 
now Iraq. In particular, he made advances in the use of 
variables and humankind’s ability to think of arithme-
tic operations on “placeholders,” instead of simply on 
individual numbers. 

Finding the Zeros
Consider this example, p x x x x( ) = − − +3 2

2 4 8: this 
function is obtained by taking the cubing function, 
subtracting twice the squaring function, subtracting 
4 times the first power function, and finally adding 8. 
Regardless of the power functions chosen and the con-
stants multiply by, a polynomial is built. That is, poly-
nomials are functions that have the form

p x a x a x a x an

n
( ) = + + + +� 2

2

1 0

where a
0
, a

1
, . . . , a

n
 are real numbers. Provided that a

n
 is 

not zero, it is stated that p is a degree n polynomial; the 
degree represents the highest power of x that is present. 
Much of the modern notational perspective on these 
functions is due to the work of René Descartes, who 
in the early 1600s did important work that popular-

ized not only the notation above using subscripts and 
superscripts but also offered a visual perspective on 
polynomial functions through their graphs.

Going back to the first polynomial example, 
p x x x x( ) = − − +3 2

2 4 8, one can rewrite this sum of 
multiples of power functions in the formula as a prod-
uct of even simpler functions. Specifically, it is possible 
to show that

p x x x x x x x( ) = − − + = +( ) −( ) −( )3 2
2 4 8 2 2 2 .

One can easily observe that p −( ) =2 0 and p 2 0( )= . 
Mathematicians call −2 and 2 the zeros or roots of  
p x( ) ; since the x −( )2  factor, which leads to the zero 2, 
appears twice, mathematicians say that “2 is a double 
root” or “2 is a zero of multiplicity two.” The graph 
of the polynomial in Figure 2 is also enlightening as 
it shows that the zeros of the function lie where the 
function crosses or touches the horizontal axis:

If one shifts the graph of the degree 3 polynomial 
p x( ) (in black) slightly up, the new graph (top line 
in light gray) will have just one real zero, while if one 
shifts the graph slightly down, the new function (bot-
tom line in medium gray) will have three distinct real 
zeros. This illustration demonstrates an important fact 
about degree 3 polynomials: every degree 3 polynomial 
has 1, 2, or 3 distinct real zeros. Indeed, the Fundamen-
tal Theorem of Algebra, which was proved in its earliest 
form in 1799 by the great mathematician Carl Fried-
rich Gauss, states that every polynomial of degree n has 
at most n distinct real zeros. 

If one is willing to permit zeros to be complex 
numbers and count zeros by their multiplicity, a much 
stronger version of the Fundamental Theorem of Alge-
bra (which was also known to Gauss) can be proved: 
every polynomial of degree n has exactly n zeros, pro-
vided one counts them according to their multiplic-
ity and allows zeros to be complex. The Fundamental 
Theorem of Algebra asserts only that n roots of a poly-
nomial function of degree n exist; it does not tell what 
those roots are.

Quadratic, Cubic, and Quartic Formulas
The search for the zeros of polynomial functions 
attracted many great minds. The quadratic formula, 
which calculates the zeros of any degree 2 polyno-
mial, was understood in certain forms by Babylonian 
mathematicians as early as 2000 b.c.e. The quadratic 
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formula asserts that in order for ax bx c2 0+ + = , it 
must be the case that

x
b b ac

a
=

− ± −2
4

2
.

For cubic equations and their roots—finding where 
a polynomial of degree 3 is zero—it took another 3500 
years for mathematicians to fully understand the situ-
ation. Following contributions from ancient Greeks, 
Indians, and Babylonians, as well as Persians in the 
eleventh and twelfth centuries, a group of Italian math-
ematicians in the 1500s (Scipione del Ferro, Niccolo 
Tartaglia, and Gerolamo Cardano) proved that there is 
a cubic formula. In other words, based on the coeffi-
cients of a degree 3 polynomial, there is a very compli-
cated formula involving cube roots that calculates the 
locations of the polynomial’s zeros.  

Mathematicians were able to take these discover-
ies a step further. Near the mid-1500s, Ludovico Fer-
rari found a way to solve quartic equations. This quar-
tic formula is incredibly complicated and represents a 
major feat in the understanding of polynomial func-
tions. Interestingly, these general formulas cease to exist 
beyond polynomials of degree 4. In 1824, Neils Abel and 
Paolo Ruffini published a theorem, based on the work of 
Evariste Galois, proving that there was no general for-
mula for the roots of a degree 5 polynomial or higher. 
This latter work on polynomials ended up founding an 
entire new branch of mathematics called modern alge-
bra. Sometimes in mathematics, the quest to solve one 
problem leads to a whole host of other interesting prob-
lems or even a new collection of coherent ideas. 

Applications
Polynomial functions demonstrate all sorts of interest-
ing patterns and properties and have long been stud-
ied because they are interesting in their own right. But 
even more than this, polynomials play important roles 
in other areas of mathematics and in applications. For 
example, polynomial functions spawned the subject of 
modern algebra, and key ideas in modern algebra are 
used in the field of public key cryptography—the sci-
ence of keeping important information private in such 
essential settings as Internet commerce.

A more direct application of polynomial functions 
comes in the design of fonts that appear on computer 
screens. So-called Bezier curves, named for mathema-

tician Pierre Bezier, are degree 3 
polynomial functions that can be 
easily spliced together to form ele-
gant shapes. For instance, at right 
is the letter S in the Palatino font.

Each piece of the S—the por-
tion of the curve between con-
secutive squares that represent 
points on the curve—consists of a degree 3 paramet-
ric polynomial. There is deep and elegant mathematics 
behind why Bezier curves work so well and why they 
are particularly suited to computer graphics. This is just 
one example of how substantial ideas and applications 
in mathematics often emerge from simple beginnings.

Polynomial functions are the simplest of all func-
tions, can be used to approximate more complicated 
functions that are not polynomials, and often emerge 
in important applications. They are indeed some of the 
key building blocks of mathematics.
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Popular Music
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Measurement; Number 
and Operations; Representations.
Summary: Popular music can be analyzed and 
enhanced by mathematical techniques and to some 
degree the popularity of music can be predicted 
mathematically.
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The interaction between mathematics and popular 
music goes far beyond the popularity of numbers in 
song titles, like Tennessee Ernie Ford’s “16 Tons” or 
2gether’s “U + Me = Us (Calculus).” Mathematics is 
fundamental to musical theory and composition. The 
twentieth-century subgenres math rock and mathcore 
are perhaps the most explicitly mathematical compo-
sitions, but there are also songs about mathematics 
concepts. These are usually intended to be humorous 
or educational, such as “That’s Mathematics” by mathe-
matician and musician Thomas Lehrer. Mathematics is 
also increasingly important to recording and analyzing 
popular music, including its potential effects on learn-
ing. Experimental electronic artist Jamal Moss, founder 
of record label Mathematics, notes: “Mathematics is the 
body of sound knowledge centered on such concepts as 
quantity, music, structure, space, and change—and also 
the academic discipline that studies them.”

Popular Artists 
Mathematics in popular music reflects society’s often 
polarized opinions on mathematics. For example, 
Jimmy Buffet’s song “Math Suks” expressed the 
singer’s feelings about the difficulty of mathematical 
concepts like fractions, algebra, and geometry. Other 
singers and groups embrace mathematics, like the 
Texas indie rock band named “I Love Math.” Math-
ematics is often found in album cover art. British 
band Coldplay’s 2005 X & Y album featured a cover 
with colored blocks that spell out “X and Y” in the 
binary code developed in 1870 by Emile Baudot for 
use with telegraph systems. Coldplay’s lead guitarist 
Jonny Buckland studied astronomy and mathemat-
ics at University College London. Some artists have 
been criticized for incorrectly using mathematics. 
Pink Floyd’s very popular 1973 album Dark Side of the 
Moon features cover art showing a prism and spec-
trum. It is correct in depicting some facts, like violet 
light refracting the most and red the least, but some 
other aspects are not accurate, such as the relative dis-
persion of the different colors. Mariah Carey’s 2009 
album E=MC 2, borrowed from Albert Einstein’s well-
known theory of relativity.

Mathematical Subgenres of Popular Music
Avant-garde composer Iannis Xenakis and post-rock 
subgenres math rock and mathcore are prominent exam-
ples of popular music that relies heavily on mathemat-

ics. Xenakis was one of the most significant avant-garde 
composers of the twentieth century and a grandfather 
of modern electronic music. His work incorporated 
mathematical models, such as probability theory, sto-
chastic processes, group theory, set theory, game theory, 
and Markov chains. He developed algorithms to pro-
duce computer-generated music using probability the-
ory and stochastic functions in the 1960s. In his 1966 
cello solo “Nomos Alpha,” he divided the 24 sections 
of the piece into two layers. The first layer, consisting 
of every section not divisible by four, is determined by 
the 24 orientation-preserving elements of the octahe-
dral group, while the second layer is a more traditional 
structure. The work has been compared to a musical 
kaleidoscope, and its structure likened to a fractal. 

In the 1990s, post-rock like Slint’s Spiderland became 
a dominant genre in experimental rock. Critic Simon 
Reynolds coined the term “math rock” to describe 
music that “uses rock instrumentation for non-rock 
purposes, using guitars as facilitators of timbre and 
textures rather than riffs and power chords.” Math rock 
bands began to explore the use of dramatically alter-
nating dynamic shifts and unusual time signatures and 
dissonance, and songs tend to avoid the verse-cho-
rus-verse structure of pop songs. Mathcore developed 
largely independently of math rock, growing out of 
hardcore punk and extreme metal, with a huge debt to 
hardcore pioneers Black Flag. 

Mathematics Songs
As of 2010, the Web site M A S S I V E: Math And Sci-
ence Song Information, Viewable Everywhere is part of 
the National Science Digital Library and contains over 
2,800 mathematical and scientific songs. Popular You-
Tube songs include mathematical raps and parodies, 
like “I Will Derive.” Hard ‘n Phirm’s song “Π” rose in 
popularity because of the 2005 music video by award 
winning director Keith Schofield. Some songs help stu-
dents learn mathematics concepts, like multiplication. 
Other songs showcase the mathematicians who love to 
sing. The Klein Four Group is a Northwestern Univer-
sity a cappella group who sing about undergraduate 
and graduate level mathematics. They are most known 
for their song “Finite Simple Group (of Order Two).”  

Self-proclaimed “mathemusician” Lawrence Lesser 
writes educational songs in order to increase mathe-
matics awareness. Educators often incorporate math-
ematics songs into their classrooms to enhance student 
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learning of specific concepts and many students use 
music of various kinds to help them focus while they 
study mathematical concepts, but these effects are not 
yet definitively supported or refuted. One study that 
investigated using jingles to teach statistics concepts 
found that students who sung several jingles versus 
reading aloud definitions for the same concepts per-
formed better as a group on a follow-up test. On the 
other hand, a study that compared classical, popular, 
and no music to enhance learning found that the stu-
dents in the three groups performed no differently on 
a mathematics placement test. This matched findings 
regarding the effect of music on other academic areas.

Audio Processing
While music production techniques have always 
allowed a certain amount of alteration and error cor-
rection by adjusting the relative levels and balance of 
the recorded elements, twenty-first century software 
capabilities have progressed to the point where lower-
quality vocals can be processed to professional-sound-
ing quality. 

The software package most associated with this is 
Auto-Tune, released in 1997, and developed by Exxon 
engineer Harold “Dr. Andy” Hildebrand, who applied 
seismic data interpretation methods to the analysis 
and modification of musical pitch. Auto-Tune is an 
enhancement of existing phase vocoder technology, 
which uses short-time Fourier transforms, named after 
mathematician Jean Fourier, to convert time domain 
representations of sound into time-frequency repre-
sentations that can be modified before being converted 
back. Extreme changes can leave tell-tale artifacts in 
recordings, in the form of a warble like a degenerat-
ing audiocassette tape. Audio processing has become 
standard in many pop albums and on television shows, 
such as Glee. Some well-established singers regularly 
use Auto-Tune for both albums and in live perfor-
mances. Other musicians have refused to do so out of 
fear that it will change the sound enough to make them 
unrecognizable. 

Predicting Popular Song Success 
In 2010, Platinum Blue and Music Intelligence Solu-
tions specialize in mathematically predicting hit songs, 
while services like iTunes and Music IP create suggested 
playlists or make recommendations. Platinum Blue 
CEO Mike McCready explained that he and others dis-

covered mathematical patterns in hit songs while try-
ing to build an automated recommendation platform. 
The algorithm his company uses is based on roughly 
30 song traits that are quantified mathematically, such 
as melody, harmony, beat, tempo, and rhythm. These 
traits are analyzed for patterns, resulting in groups of 
songs that are ranked according to probability of suc-
cess. Hit songs tend to have identifiable similarities, 
but falling into a particular category is not a guaran-
tee of success. For example, lyrics are an influential 
song component that are not reliably quantifiable, and 
aggressive marketing can have an effect not captured by 
the algorithm. McCready noted: “We figured out that 
having these optimal mathematical patterns seemed to 
be a necessary, but not sufficient, condition for having 
a hit song.”
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Predator–Prey Models
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and  
Probability; Number and Operations.
Summary: The interaction between the population 
sizes of a predator species and a prey species can be 
modeled using systems of equations.
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Predator–prey models are systems of mathematical 
equations that are used to predict the populations of 
interacting species, one of which—the prey—is the 
primary food source for the other—the predator. One 
famous example that has been extensively studied is 
the relationship between the wolves and moose on Isle 
Royale in Lake Superior.  

The Isle Royale populations are well suited for mod-
eling the predator–prey relationship because there is 
little food for the wolves other than the moose and 
there are no other predators for the moose. In addition, 
the geographic isolation limits other factors that would 
complicate the mathematics in the equations, such as 
hunting or migration. This predator–prey interaction 
has been carefully studied since the 1950s and contin-
ues to be investigated into the twenty-first century.

Modeling Predator–Prey Populations
Most predator–prey models are composed of two 
equations, the first representing the change in the prey 
population, and the second the change in the preda-
tor population. Each equation has the following form: 
birth function minus death function.

If X t( ) represents the quantity of prey at time t, and 
Y t( ) represents the quantity of predators at time t, then 
the instantaneous rate of change in prey is

dX

dt
f f= −1 2

and the instantaneous rate of change in predators is

dY

dt
f f= −3 4

where f1
 is the mathematical term that describes the 

births in the prey population, f2
 describes the deaths 

in the prey population, f3
 describes the births in the 

predator population, and f4
 describes the deaths in the 

predator population.
There have been many predator–prey models pro-

posed since the beginning of the twentieth century. The 
most famous and the earliest known is the Lotka–Volt-
erra system, named for the two scientists who devel-
oped the same mathematical model independently, 
American Alfred Lotka (1880–1949) publishing the 
equations in 1925 and Italian Vito Volterra (1860–1940) 
publishing them in 1926. Lotka had degrees in physics 

and chemistry, and he believed that one could apply 
physical principles to biological systems. His work on 
predator–prey interactions is just part of extensive 
work he published in 1925 in the text titled Elements of 
Physical Biology. Lotka used a chemical reaction anal-
ogy to justify the terms in the model.

In the absence of predators, the prey should increase 
at a rate proportional to the current quantity of prey, 
X. In other words, more moose around to mate with-
out being hunted means more calves would be born. 
Likewise, in the absence of prey, the predators should 
die off at a rate proportional to the current predator 
population, Y. In other words, with many wolves and 
no moose for food, more wolves would starve.

Lotka used a chemical reaction analogy to explain 
prey deaths and predator births: when a reaction occurs 
by mixing chemicals, the rate of the reaction is propor-
tional to the product of the quantities of the reactants. 
Lotka argued that prey should decrease and predators 
should increase at rates proportional to the product of 
the quantity of prey and predators, XY. In other words, 
the moose deaths should be closely related to the rate 
of interaction of wolves and moose, and the wolf births 
should be as well because wolves need the moose for 
food to be healthy and have pups. The equations can 
be written as

dX

dt
aX bXY= −  and 

dY

dt
cXY dY= −

for non-negative proportionality constants a, b, c,  
and d.

Volterra arrived at the same model using different 
reasoning. Volterra was a physicist whose daughter and 
son-in-law were biologists. While looking for a math-
ematical explanation for a problem his son-in-law was 
working on, Volterra became very interested in interac-
tions of species and spent the rest of his professional 
life looking for a mathematical theory of evolution.  

The Lotka–Volterra predator–prey model can be 
solved without a computer and yields a graph that 
makes sense. The population of the predator oscil-
lates as does that of the prey, with the predator popu-
lation trailing slightly behind. Too many prey results 
in more predators, who swamp the prey causing a 
decrease in prey. As the prey become scarce, the pred-
ators also start to die out, and the cycle begins again 
(see Figure 1).

	 Predator–Prey Models 789



While this result has reasonable qualitative behav-
ior, many scientists have objected to the equations in 
this form. Some of the concerns about the model have 
included the following:

 
• If there are no predators, the prey population 

would grow arbitrarily large
• A reduction in the number of prey should 

cause more predator deaths rather than fewer 
predator births 

• For a fixed number of predators, the number 
of prey eaten is proportional to the number 
of prey present, implying that predators are 
always hungry and eat the same proportion 
of the prey no matter how large the number 
of prey gets

• The food for the prey plays a role in the 
births and deaths of the prey, and should be 
included in the model 

• No spatial considerations are incorporated 
in the model, so factors such as migration or 
seeking safety in herds are ignored

• These equations do not take into account 
gestation periods and seasonal changes in 
birth rates

• The constants a, b, c, and d are difficult to 
estimate for a given situation without a 
large amount of data collected from field 
observations

Much work has been done since the 1930s to modify 
the equations to address these concerns and to apply 

the equations to data from specific situations, such as 
the moose and wolves of Isle Royale. In the twenty-first 
century, scientists use sophisticated computer models 
to model predator–prey interactions using increas-
ingly intricate equations to incorporate more realistic 
assumptions in the mathematics.
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See Also: Animals; Fertility; Social Networks.

Predicting Attacks
Category: Government, Politics, and History.
Fields of Study: Algebra; Data Analysis and  
Probability.
Summary: Predictive mathematical models can be 
used to attempt to foresee and counter various types 
of attacks.

An increasing area of interest in mathematics is the 
use of algorithms and computer models to predict 
attacks—military attacks, terrorist attacks, and even 
attacks on Web servers. As with meteorology, a model 
is a probabilistic statement; the future cannot be pre-
dicted with absolute certainty but probable causes, 
patterns, and outcomes can be quantified and math-
ematically modeled to extrapolate the likelihood of 
new events. Humankind has been trying to predict 
attacks ever since one group first fought another using 
some combination of observation and subjective judg-
ment. However, formal prediction of attacks using 
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mathematical methods appears to have originated only 
within the last two centuries and has escalated with 
advances in technology and data gathering. 

Mathematician Lewis Richardson made contribu-
tions to many areas within and outside mathematics, 
such as numerical weather prediction, in the first half 
of the twentieth century. The Richardson iteration is 
one method for solving systems of linear equations, 
while the Richardson effect refers to the apparently 
infinite limit of coastline lengths as the unit of mea-
sure decreases, a precursor to the modern study of 
fractals. Richardson spent many years analyzing data 
on wars from the early nineteenth century onward, 
using mathematical methods such as probability 
theory and differential equations, often quantifying 
psychological variables, such as mood. He identified 
several patterns in war and identified some variables 
likely to prevent conflict. He is often credited with 
first introducing the notion of power laws to relate 
conflict size, frequency, and death toll. At the start of 
the twenty-first century, models had grown in com-
plexity. In 2009, a University of Maryland team devel-
oped a model that uses 150 variables and data accu-
mulated from the activity of 100 insurgent groups in 
the Middle East in order to model their reactions to 
Israeli activities. Other models have been developed 
to attempt to predict violence and attacks in Iraq and 
continue to be refined. Statistical methods like data 
mining and power law functions are prevalent in 
modern predictive modeling. 

Data Mining
Data mining is the process of extracting patterns from 
large to enormous bodies of data. Isaac Asimov’s Foun-
dation stories, the first of which was published in 1942, 
depicted a future where “psychohistory” was the study 
of the future using the body of history as data from 
which to extrapolate the future. Modern data min-
ing is quite similar to Asimov’s predictions and may 
be accomplished by many mathematical methods. For 
example, many use artificial neural networks, which 
are computational models that mimic neuron behav-
ior. Genetic algorithms, credited to scientist John Hol-
land, are search heuristics inspired by the processes of 
gene recombination and evolution. Decision trees may 
be used to determine conditional probabilities. In the 
1980s, support vector machines (SVMs) were developed 
to analyze data to find patterns for statistical classifica-

tion. All of these developments greatly advanced the 
state and potential of machine learning and facilitated 
rapid processing of increasingly larger and frequently 
interlinked databases from sources such as credit card 
companies, telecommunications businesses, and gov-
ernment intelligence agencies. Within the U.S. govern-
ment, the Department of Defense began using data 
mining in the late 1990s in its Able Danger program, 
which gathered counterterrorism data, including data 
about the Al Qaeda terrorist group. Some asserted that 
the program uncovered the names of four of the alleged 
September 11, 2001, hijackers a year before the attacks. 
In February 2002, the U.S. Office of Science and Tech-
nology Policy convened a panel of government and 
industry leaders to discuss data mining as a counterter-
rorism tool. While it is now widely used, some criticize 
it because the sparsity of some information and the 
relative infrequency of terrorist attacks make identify-
ing statistically significant patterns, which are critical 
to finding the anomalies that signal an attack, prone to 
unacceptable levels of error. 

Cyber Security
Mathematicians, computer scientists, and others are 
continually working on new methods to predict and 
counter attacks on Web servers, e-mail, and digital 
records of all kinds. The Internet is filled with mali-
cious activity, from phishing and identity theft to dis-
tributed denial of service attacks. Electronic attacks 
are facilitated by the same computer technology that is 
used to predict attacks. The traditional guard has been 
to block a source of malice after the attack, by e-mail 
as spam or blocking an IP address after harmful activ-
ity originates from it. These methods are commonly 
known as blacklists and are now widely compiled and 
shared. However, they are by definition reactive mea-
sures to attacks. Just as e-mail spam filters have become 
preemptive, marking mail as “spam” automatically 
based on a number of factors, IP-blocking can also be 
conducted preemptively. 

The method of predictive blacklisting uses shared 
attack logs as the basis for a predictive system, like the 
customer recommendation systems employed by Ama-
zon or Netflix. Computer scientists Fabio Soldo, Anh 
Le, and Athina Markopoulou developed what is known 
as an “implicit recommendation system”—implicit 
because ratings are inferred rather than given directly 
by the subjects of the model. Their multilevel prediction 
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model uses mathematical methods, such as time series 
analysis and neighborhood models, adjusted specifi-
cally for attack forecasting. Inputs to the model include 
factors such as attacker-victim history and interac-
tions between pairs or groups of attackers and victims. 
Similar models—using different types of data—can 
be built to predict terrorist attacks and the behavior 
of enemy forces, and such models are included in the 
standard order of battle intelligence reports used by 
the U.S. Army.

The data needed to predict attacks are not restricted 
to private databases. Information is widely available 
from the Internet or the scrolling news banners of 
24-hour news networks. Neil Johnson used a variety 
of sources to investigate insurgent wars, employing 
some of the same mathematical techniques as Rich-
ardson in his analyses and modeling. After gathering 
and analyzing data for almost 60,000 insurgent attacks 
occurring in multiple conflicts around the world, he 
and his collaborators discovered similarities between 
the frequency and intensity of attacks in all conflicts. 
Further, they found that the statistical distribution for 
insurgency attacks was significantly different from the 
distribution of attacks in traditional war. The model 
quantifies connection between insurgency, global ter-
rorism, and ecology, and counters the common the-
ory of rigid hierarchies and networks in insurgencies. 
Johnson notes: 

Despite the many different discussions of various 
wars, different historical features, tribes, geogra-
phy and cause, we find that the way humans fight 
modern (present and probably future) wars is the 
same, just like traffic patterns in Tokyo, London, 
and Miami are pretty much the same.

Further Reading
Jakobsson, Markus, and Zulfikar Ramzan. Crimeware: 
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Predicting Divorce
Category: Friendship, Romance, and Religion.
Fields of Study: Algebra; Communication: Data 
Analysis and Probability. 
Summary: Statistical data analysis and mathematical 
models can be used to predict the likelihood of 
divorce.

There is a common misconception that one out of 
every two marriages ends in divorce. The 50% number 
comes from dividing the number of divorces in a given 
year (about 1.3 million) by the number of marriages 
in that same year (about 2.6 million). The mistake 
is failing to realize that, in any given year, the people 
getting divorced are probably not the same as those 
getting married, because the average length of a mar-
riage before a divorce is about eight years (the over-
all length of marriage, on average, is about 24 years). 
Hence, those getting married in any given year have 
an eight-year lag in their projections for divorce. This 
lag means that the numerator and denominator of the 
above ratio are not comparable. Instead, experts sug-
gest that about two out of every five marriages end in 
divorce (or about 40%). 

Because of the propensity for some to remain mar-
ried, for some to divorce more than once, and for some 
to never marry, only about one out of every five people 
are predicted to experience a divorce in their lifetime. 
However, these figures mask the distribution of divorce 
rates by category—40% of all first marriages end in 
divorce, 60% of second marriages end in divorce, and 
73% of all third marriages end in divorce. There are 
also some differences by age group, with divorce rates 
highest for those in their early 20s and declines steadily 
in subsequent age groups.

There are two main ways to predict divorce: empir-
ical (or statistical) methods that take advantage of 
data gathered on married and divorced couples; and 
mathematical models that try to make a priori predic-
tions of future divorce using features of existing mar-
riages or theoretical assumptions based on extensive 
work in the area. 

Empirical Methodology
Empirical work suggests that indicators predict-
ing divorce can be separated into two groups: factors 
present before marriage and factors that occur within 
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the marriage. Some of the more common risk factors 
brought into a marriage include parental history of 
divorce (children of divorced parents are more likely 
to divorce), educational attainment (those with lower 
levels of education are more likely to divorce), and 
age (those who marry younger are more likely to get 
divorced). The risk factors that arise within the mar-
riage include communication styles (couples with poor 
or destructive communication have a greater chance of 
divorce), finances (couples with financial problems, 
including a large disparity in spending habits, dispos-
able income, and wealth goals, are at a greater risk for 
divorce), infidelity, commitment to the marriage (a 
lack of commitment or a dissimilarity in the amount 
of commitment often leads to divorce), and dramatic 
change in life events. 

Mathematical Models
Mathematical models seek to discover features of cur-
rent relationships that will put a couple at risk for 
future divorce. Professor John Gottman argues that the 
way couples communicate can often predict divorce.  
His research, which is based on analyzing hundreds of 
videotaped conversations between married couples, 
claims a 94% accuracy rate. The work also monitors 
pulse rates and other physiological data that, when 
combined with the observations, leads to what he calls 
the “bitterness rating.” The rating is based on six signs. 
The first sign posits that when a conversation starts 
with accusations, criticisms, or negativity, the discus-
sion is likely to end badly. However, he argues that the 
opposite is also true. The second sign encompasses 
four patterns of negative interaction that can be del-
eterious to a marriage: criticism, contempt, defensive-
ness, and stonewalling. The third sign is “flooding,” in 
which negativity of one partner overwhelms the posi-
tive feelings of the spouse until there is virtually noth-
ing left but discontent. The fourth sign recognizes that 
physiological changes, such as increases in adrenaline 
and blood pressure, often lead to feelings of entrap-
ment and serve to poison an otherwise benign con-
versation. The fifth sign identifies the fact that some 
marital discord is unchanged by the repeated attempt 
by one partner to repair the damage done to the rela-
tionship. Finally, the sixth sign involves one or both 
people rewriting the history of their relationship to 
be largely negative. Once people reach the sixth sign, 
Gottman argues, divorce is likely. 
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Predicting Preferences
Category: Business, Economics, and Marketing.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Psychology of choice and predictive 
models of preferences are exciting areas of mathematics 
blending social science, economics, and commerce.

Mathematically, preference is an ordering of alterna-
tive possibilities. It can refer to conscious choices based 
on ideas and beliefs, positive emotional responses or 
liking, or biologically mandated behaviors. Preferences 
are usually determined statistically: for individuals, 
based on multiple instances of decisions over time; and 
for groups, based on aggregated data of members. In 
2009, the Netlix Prize contest awarded a team called 
BellKor’s Pragmatic Chaos $1 million for their prefer-
ence-predicting algorithm.

Theoretical and Behavioral Economics
Among all sciences that deal with predicting prefer-
ences, such as social psychology and education theory, 
the most developed mathematical apparatus can be 
found in economics. As any branch of mathematics, 
theories of economic preferences start with axiomatic 



assumptions. These abstract axioms do not always apply 
to all real situations. Economic theories that take into 
account psychological factors, such as cognitive limita-
tions and emotions, are developed within an interdisci-
plinary area called “behavioral economics.”

Most abstract theories of preference prediction 
assume most parts of the so-called total order, which is 
a group of mathematical axioms and properties from 
set theory. Let A, B, and C be different choices. Total 
order assumes that either A ≤ B or B ≤ A. In real life, 
this assumption is a statistical statement at best: today 
a person can prefer apples, but might prefer bananas 
tomorrow. The property of transitivity says that if 
A ≤ B and B ≤ C, then A ≤ C. This property works in 
some situations; for example, if one prefers $20 over 
$10, and $100 over $20, it is likely the person will pre-
fer $100 over $10. However, in complex situations with 
multiple choices, such as elections, transitivity fails 
to describe real human behavior. Experiments show 
that, given a choice between one pair of candidates at 
a time, people may prefer Beth over Alice, Carol over 
Beth, and Alice over Carol. One axiom of total order, 
called “antisymmetry,” that almost never makes sense 
in preference theories is that if D ≤ E and E ≤ D, then  
E = D. For example, when group data shows that peo-
ple think diesels are worse or the same than electric 
cars, and electric cars are worse or the same as diesels, 
it does not mean that diesel cars and electric cars are 
the same entity. It means that people prefer them about 
the same. Economic theories call this situation “indif-
ference” and use a separate symbol for it: E ∼D. 

Another assumption frequently made in economic 
preference predictions comes from topology and is 
called “continuity.” It is the assumption that if A is pre-
ferred over B, then an option that is very similar (close) 
to A will also be preferred over at option that is very 
similar to B. Many complex phenomena, including 
preferences, are discontinuous. They exhibit various 
“tipping points,” near which minute differences cause 
radical changes in preferences. These non-continuous 
phenomena are studied using models from calculus or 
chaos theory, a branch of differential equations. One 
frequent example of noncontinuous preference is price 
near powers of 10: many people choose to buy an object 
that costs $999 over a similar object that costs $1,001 
even though the difference in prices is minuscule com-
pared to the total. Behavioral economics explains this 
by cognitive limitations: people see 1001 as thousands 

and 999 as hundreds, which is technically correct but 
makes less of a difference in this case than intuition 
leads one to believe.

Paradoxical Preferences
A paradox is a false or contradictory statement that 
logically follows from a set of true statements. Pref-
erence prediction leads to several types of paradoxes. 
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Psychology of Choices

S tatistical analysis of real situations, such 
as elections, as well as results of experi-

ments and questionnaires, allow scientists to 
aggregate increasingly sophisticated knowledge 
of human mechanisms of choice and prefer-
ence. For example, from the purely mathemati-
cal viewpoint, gaining an amount and avoiding 
loss of the same amount are equivalent. How-
ever, most people regret loss more strongly 
than they regret missed opportunity—a fact 
extensively used in advertisements of savings 
and discounts.

Preferences are very strongly influenced by 
power over the situation. Most people accept 
much higher risks for given gains if they enter 
the situation of their free will, compared to 
risks of mandated behaviors. This phenom-
enon comes up, for example, when mandatory 
immunizations are proposed—the fact that 
people would not have a choice makes very 
small risks unacceptable.



A very frequent type is the situation when an initial 
model describes the reality well, but its mathematical 
corollaries do not. Another type, a true logical para-
dox, occurs when mathematical corollaries contradict 
one another.

For example, the expected value is the sum of 
products of probabilities and payoffs. Suppose a fair 
coin is flipped in a hypothetical game and the player 
is paid $10 if the coin lands on heads and $20 if it 
lands on tails. The expected value of winning is $15 
because 0 5 10 0 5 20 15. .( ) + ( ) = . When the same game 
is played many times, it is rational to prefer options 
with higher expected values. Under this assump-
tion, it is better to play the game where the player is 
paid nothing for heads and $40 for tails than the first 
game, because the expected value of winning is higher: 
0 5 0 0 5 40 20. .( ) + ( ) = . However, in real life, risk aversion 
will make many people choose the first game.

To resolve this and other related paradoxes, many 
preference models account for risk aversion as a sepa-
rate variable. A utility function is the measure of rela-
tive satisfaction of a range of choices. An assumption 
that people will only want to maximize utility is not 
realistic, because it does not account for risk aversion. 
Because marginal choices usually come with higher 
risks, the utility function that accounts for risk aver-
sion will look like a hump, being concave. 

Bounded rationality principle is commonly used 
to explain paradoxical preferences by taking into 
account limited information, time, and cognitive 
abilities of people. Models based on bounded ratio-
nality include human limitations, such as computa-
tional capacity, and are based on computer science, 
statistics, and psychology.

Information Theory and  
Aesthetic Preferences
Information theory is a mathematical science that 
studies storing, compressing, and processing of data. In 
the 1990s, its branch called “algorithmic information 
theory,” which deals with the complexity of algorithms, 
was applied to explain some aspects of the human sense 
of beauty and of aesthetic preferences. According to this 
theory, objects that have shorter algorithmic descrip-
tions in terms of observer’s knowledge will seem more 
beautiful, compared to objects with longer algorithmic 
descriptions. For example, it is easier to remember an 
object with mirror symmetry because only half of the 

information is original—symmetry provides informa-
tion compressibility. Therefore, symmetric objects, as 
well as objects with patterns or fractal self-similarity, 
are seen as more beautiful.

Algorithmic information theory also models prefer-
ences by interest, which are separate from preferences 
based on beauty. Within these models, interest can be 
compared to the first derivative of beauty, showing the 
observer’s perception of change in understanding. Peo-
ple prefer an experience on the basis of interest when 
it involves better compressibility or predictability of 
information than before. For example, noticing a new 
pattern (and therefore better organizing an image) is 
preferred because it is interesting.

Preferences, Desires, and Motivation
Many preferences and choices are based on needs, 
wants, and desires, which are explained in theories 
of motivation. Researching motivation is challenging 
because of individual differences among people, as 
well as language ambiguity. There are disagreements 
among researchers even over relatively straightforward 
terminology, such as intrinsic and extrinsic motiva-
tion. Many motivation theories include taxonomies of 
needs and desires. For example, in Maslow’s hierarchy, 
named after Abraham Maslow, unsatisfied physiologi-
cal needs, such as hunger or thirst, have higher priority 
than unsatisfied self-esteem needs, such as recognition. 
Some theories identify long lists of motivators, such as 
curiosity, tranquility, order, and independence. Other 
theories only define a few broad classes of needs.

Each category of need can be considered a variable. 
Graphs of values of these variables versus levels of 
motivation often demonstrate the characteristic “mir-
rored C” shape called a “backward bending curve.” For 
example, as activities provide more order, they first 
become more motivating (and preferred), but beyond 
a certain point, more order becomes less motivating. 
This curve is famously described in the baseball man-
ager Lawrence “Yogi” Berra’s joke about a restaurant: 
“Nobody goes there anymore. It’s too crowded.” Peo-
ple usually prefer restaurants that are not too empty 
or too full.

Preferences and Demographics
A number of statistical studies find significant differ-
ences in preferences of different demographics within 
populations, such as males and females, socioeconomic 
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classes, ages, and political affiliations. Because statisti-
cal packages make many types of mathematical and 
statistical analyses of databases very easy, there are 
many results that demonstrate significant differences in 
preferences among different demographics. However, 
determining meanings of these differences is a signifi-
cantly more difficult research problem. Demographic 
differences in preferences can also vary from culture to 
culture. In some cultures, for example, more females 
than males prefer bright colors in clothes, and in other 
cultures, it is reversed.

Further Reading
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Pregnancy
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Various mathematical models help 
describe issues related to conception, diseases 
associated with pregnancy, and population dynamics.

Much of the conclusions drawn in medicine, in par-
ticular in obstetrics and gynecology, are often based 
on heuristics, limited observations, and sometimes 
even biased data. Mathematicians and statisticians 
have recently attempted to develop general theoreti-
cal models that can be adapted to specific situations in 
order to facilitate the understanding of various aspects 
of human pregnancy. Specifically, more recent studies 
have been conducted regarding conception time, dis-

ease prediction related to pregnancy, and the effect of 
pregnancy on population growth. 

Modeling the Most Efficient Time  
to Conceive
One of the most fundamental and important research 
topics in the study of human pregnancy is the so-called 
time-to-pregnancy (TTP). TTP can be defined scien-
tifically as the number of menstrual cycles it takes a 
couple engaging in regular sexual intercourse with no 
contraception usage to conceive a child. Fittingly, stat-
isticians attempt to generate as much data as possible 
from various couples regarding their personal TTP 
experiences. The data are collected in a way that is as 
unbiased as possible—it is intended to accurately rep-
resent couples in the general population attempting to 
conceive a child. From the data, both qualitative and 
quantitative statistical methods are implemented in 
order to ascertain the most efficient method to achieve 
conception. 

For example, some social trends increase the age at 
which a woman attempts to become pregnant. When 
this situation arises, women are often concerned about 
achieving conception before the onset of infertility, 
which proceeds menopause. In fact, couples that are 
unsuccessful in conceiving within one year are clini-
cally classified as infertile. When this condition occurs, 
medical doctors often recommend that the couple 
engage in assisted reproductive therapy (ART). How-
ever, ART can be very expensive and often increases the 
risk of adverse outcomes for the offspring, including 
various birth defects. Therefore, statistical models have 
been developed that pose an alternative to ART. These 
models are developed using Bayesian decision theory, 
named for Thomas Bayes, and search for optimal 
approaches for a couple to time intercourse in order to 
achieve conception naturally, without the potentially 
disadvantageous ART. These models quantitatively 
incorporate various biological aspects, including men-
strual cycles and basal body temperature, as well as the 
monitoring of electrolytes—among other phenom-
ena—in order to be as efficient as possible.

Predicting Diseases Associated With Pregnancy
Medical evidence supports the notion that women 
often repeat reproductive outcomes. In particular, 
women with a history of bearing children with adverse 
outcomes often have up to a two-fold increase in sub-
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sequent risk. Therefore, researchers in the mathemati-
cal and statistical sciences realized the necessity for 
statistical analyses that address this issue. In fact, statis-
tical research has been conducted in order to promote 
a consistent strategy that assesses the risks each woman 
may face in a subsequent pregnancy. The goal is for 
these types of models to become increasingly more 
accurate, as they incorporate statistical data regarding 
the recent reproductive history of the woman, among 
other biological factors, which were not fully taken into 
account in previous studies.

Mathematical epidemiology (the study of the inci-
dence, distribution, and control of diseases in a pop-
ulation) attempts to better comprehend, diagnose, 
and predict various diseases incorporated with preg-
nancy, and this field is ever-expanding. By designing 
and implementing various statistical approaches and 
mathematical models to better predict realistic out-
comes, mathematicians and statisticians have studied 
congenital defects and growth restrictions, as well as 
preterm delivery, pre-eclampsia, and eclampsia.

For example, pre-eclampsia is a pregnancy condi-
tion in which high blood pressure and high levels of 
protein in urine develop toward the end of the second 
trimester or in the third trimester of pregnancy. The 
symptoms of this condition may include excessive 
weight gain, swelling, headaches, and vision loss. In 
some cases this condition can be fatal to the expectant 
mother or the child. The exact causes of pre-eclampsia 
are unknown at the beginning of the twenty-first cen-

tury, and the only cure for the disease is the delivery 
of the child. Therefore, it is apparent that determining 
which women are prone to develop pre-eclampsia is an 
exceedingly important area of research.

Empirical evidence indicates that a woman’s heart 
rate is a deterministic factor in the prediction of pre-
eclampsia. In recent times, statisticians have there-
fore developed a novel and non-invasive approach 
to detect abnormalities in pre-eclamptic women that 
distinguishes from women with non-pre-eclamptic 
pregnancies. This approach is accomplished by com-
paring the dynamical complexity of the heart rates 
of women that are pre-eclamptic with those that are 
non-pre-eclamptic. The analysis revealed that the heart 
rate of pre-eclamptic women demonstrated a more 
regular dynamic behavior than those women that were 
not pre-eclamptic, which substantiates the empirical 
notion that diseased states may be associated with reg-
ular heart rate patterns.

Population Dynamics
Mathematicians have long developed models to ana-
lyze population dynamics. One contemporary model 
also incorporates how pregnant women directly influ-
ence such dynamics. This model consists of an equa-
tion that describes the evolution of the entire popu-
lation and an equation that analyzes the evolution of 
pregnant women. These equations are coupled—they 
are studied simultaneously. Moreover, this particular 
system of equations can be analyzed as a linear model 
(not sensitive to initial data), with or without diffusion 
(permitting members of the population to travel large 
distances), or as a nonlinear model (sensitive to initial 
data) without diffusion. The asymptotic behavior of 
the solutions to this system (the long-term behavior of 
the population) was also addressed.
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Prehistory
Category: Government, Politics and History.
Fields of Study: Measurement; Number and  
Operations.
Summary: Historians believe that even the earliest 
people used mathematics.

Many books on the history of mathematics begin with 
the ancient Egyptians and Babylonians, but those 
civilizations did not begin until about 5000 years ago. 
Although historians do not know many details, human 
life had been progressing for several millennia prior 
to that time. Even archeology offers little detail on 
the earliest mathematics, so most knowledge comes 
from speculation. However, from what is known about 
human beings in general, and especially about prehis-
toric life, even the earliest people must have known and 
used some mathematics.

The use of  “mathematics” probably even precedes 
the development of modern human beings. Studies of 
animal behavior have shown that animals, and espe-
cially birds, seem to possess limited number sense, rec-
ognizing the difference between groups of two and three 
and even larger sets. Bees can recognize and even com-
municate information about the location of orchards 
and fields for pollination, displaying a sense of space 

that could be called “geometry.” Even more spectacular 
are the long migratory trips of herd animals, flocks of 
birds, and groups of butterflies, often traveling thou-
sands of miles to return to the same fields every year. 
These examples certainly do not represent a sophisti-
cated concept of mathematics and are instinctual, but 
they show a mathematical organization in the brain.

Language, Counting, and Quantities
The earliest humans (wherever the line is drawn 
between pre-human and human) continued the math-
ematical thinking shown in animals. As their brains 
developed, their mathematics also grew stronger and 
more sophisticated. This progression continued as 
early grunts become proto-languages, for a key part of 
mathematics is not only having the concepts in one’s 
head, but also representing and communicating the 
concepts to others. Hence, language was a key ingredi-
ent in prehistoric mathematics (as it remains today).

A concept of counting must have come early, as peo-
ple began to distinguish quantity. Even if they did not 
have linguistic terms for numbers beyond three or four, 
they would at least be able to make rough comparisons 
of large quantities and much larger quantities—con-
sider that even modern humans often need notations, 
pictures, or concrete examples to handle specific large 
quantities, but certainly can tell the difference between 
a dozen and a hundred and a million. Many aspects 
of life require at least limited counting—to make sure 
all one’s goats (or children) are present, to share items 
fairly in a group or to calculate the size of a load to be 
carried, and many other applications.   

It is only a small jump of abstraction to begin to 
record quantities with tally marks. It is likely that peo-
ple first collected stones or other small objects to rep-
resent quantities and later began to “write” them as tal-
lies. Tally marks have been found in many parts of the 
world scratched on cave walls or carved onto wooden 
sticks and were also likely written in sand or clay, 
which shifted to destroy the writing. Probably the most 
famous prehistoric mathematical object is the Ishango 
bone, found in south-central Africa, and thought to be 
at least 15,000 years old. The bone has several sets of tal-
lies scratched onto it—some have pointed out that they 
are mostly prime numbers, but that is probably a coin-
cidence. Using tallies quickly leads to a problem: a long 
line of marks is hard to deal with, even if one had some 
limited counting words. Probably, many people around 
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the world recognized that some structure helped han-
dle large quantities of tally marks—especially collect-
ing them into groups of the same size. Not only does 
this make counting more efficient but it also leads to 
the concept of multiplication. In nearly all modern lan-
guages—most derived from ancient or even prehistoric 
languages—the higher counting words use a system of 
groups and groups of groups, now called “place-value,” 
but they reach back to the prehistoric convenience of 
putting tally marks together.

Measurement and Geometry
Closely tied to counting was the use of comparative rela-
tionships—especially large and small, tall (or long) and 
short, and even old and young. These may have come 
when exact counts were difficult, but the comparisons 
were obvious and usually visual. A tall stack of blocks 
would easily be seen to have more items than a short 
stack; a long line of tally marks (grouped or ungrouped) 
was a greater quantity than a short line. As actual count-
ing developed and numbers were applied to compari-
sons, the beginnings of measurement occurred—mea-
surement is really just comparisons of quantities where 
one side of the comparison is a defined unit. To make 
comparisons easier, certain items of specific size or 
quantity became units, and as people reached farther 
to wider audiences, units became at least roughly stan-
dardized. Often, body parts were used both for counting 
tabulations and as “standard” units. For example, the 
distance from the elbow to the fingertips was approxi-
mately the same for most adults, so in the Middle East, 
this length became the “cubit.” 

Geometry also has deep roots in the human story. 
Circles must have been recognized in the shape of the 
sun and full moon and the apparent edge of the hori-
zon. Efficiency caused people to arrange objects to fit 
together well in patterns—often circular but some-
times rectangular. The first tools used sharp angles, 
heavy weights, and tall, thin cylinders. The beginnings 
of farms led to more organized geometrical arrange-
ments in the shapes of fields and structures. Often, 
the “invention” of the wheel is considered one of the 
big milestones of the start of civilization, and this 
represents a practical understanding of the geometry 
of circles. As objects became more sophisticated—
woven mats, farming tools, larger structures, and even 
bridges—many more geometrical relationships and 
properties were discovered. These might be considered 

the beginnings of engineering—using mathematical 
properties in practical applications.

Pure Mathematics
Archeologists have also noted some prehistoric mathe-
matics that may have been closer to pure mathematics. 
Cave paintings, carved sculptures, and textile patterns 
show contemporary mathematical objects such as cir-
cles, triangles, parallel lines, quadrangles, symmetric 
patterns, and the crosshatch. However, no one has yet 
deciphered what the geometric signs meant to prehis-
toric peoples. Some symbols appeared repeatedly in 
various parts of the world. They may have served prac-
tical or religious values, but they also were art—per-
haps art for its own sake, for beauty. Certain numbers 
may have had mystical meanings that were seemingly 
less useful for day-to-day activity but important for 
esthetics and spirituality. 

The overlap between this pure mathematics and the 
practical needs of early farmers was the use of math-
ematics in astronomy and calendars. Could the gods 
show the times for planting and harvesting? Could 
humans discern the plans of these gods and use them in 
practice? Most of the spectacular prehistoric structures, 
from Stonehenge in England to the huge geometrical 
patterns of Nazca in Peru, have been linked to measures 
of the sun’s movement and the seasons. Mathematics 
led prehistoric peoples in solving their daily problems 
and to thinking of the universe and infinity. Mathemat-
ics still serves modern humans in the same ways.

Further Reading
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Probability
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Probability.
Summary: Humans have implicitly understood  
concepts of probability and randomness since 
antiquity, but these concepts have been more formally 
studied since the seventeenth century.

Throughout history, humans have used many meth-
ods to try to predict the future. Some believed that 
the future was already laid out for them by a divine 
power or fate, while others seem to have believed that 
the future was uncertain. There are still debates on the 
extent to which people were able to speculate on the 
future prior to the development of statistics in the sev-
enteenth and eighteenth centuries. Some assert that 
such speculations were impossible, yet other histori-
cal evidence suggests that at least some people must 
have been able to perceive the world in terms of risks 
or chances, even if it was not in quite the same way 
as later mathematicians and statisticians. The Greek 
philosopher Aristotle proposed that events could be 
divided into three groups: deterministic or certain 
events, chance or probable events, and unknowable 
events. The idea of “randomness” is often used to indi-
cate completely unknowable events that cannot be 
predicted. In mathematics, the long-term outcomes of 
random systems are, in fact, “knowable” or describable 
using various rules of probability. Probability distribu-
tions, expressed as tables, graphs, or functions, show 
the relationship between all possible outcomes of some 
experiment or process, like rolling a die, and the chance 
that those outcomes will happen. For example, lotter-
ies state the chances of winning various prizes, and 
people seeking medical treatment might be told the 
odds of success. Random processes and probability can 
run counter to human intuition and the way in which 
human brains perceive and organize information, 
which is perhaps another reason that quantifying ideas 
of probability is still an ongoing endeavor. Students are 
often introduced to probability concepts in the earliest 
elementary grades, such as basic binary classifications 
of outcomes as “likely” or “unlikely” and the notion of 
probabilities as experimental frequencies. More formal 
axioms of probability may be introduced in the mid-

dle grades. Probability theory and probability-based 
mathematical statistics are typically studied in college, 
though they may be included in advanced high school 
classes. Some elements of probability theory and appli-
cations are also taught in other academic disciplines, 
like business, genetics, and quantum mechanics.

Early History
Archaeological evidence, such as astragalus bones 
found at ancient sites, suggests that games of chance 
have been around for several millennia or longer. 
Egyptian tomb paintings show astragali being used 
for games like Hounds and Jackals, much like the way 
twenty-first-century game players use dice. The ideas 
of randomness that underlie probability were often 
closely tied to philosophy and religion. Many ancient 
cultures embraced the notion of a deterministic fate. 
The Greek pantheon was among those that included 
deities associated with determinism, literally known as 
the Fates. The popular goddess Fortuna in the Roman 
pantheon suggests a recognition of the role of chance 
in the world. Jainism is an Indian religion with ancient 
roots, whose organized form appears to have origi-
nated sometime between about the ninth and sixth 
centuries b.c.e. The Jainist logic system known as syad-
vada includes concepts related to probability; its san-
skrit root word syat translates variously as “may be” 
or “is possible.” Probability is also a component of the 
body of Talmudic scholarship; for example, the notion 
of casting lots, used in some temple functions. Baby-
lonians had a type of insurance to protect against the 
risk of loss for sea voyages, called “bottomry,” as did the 
Romans and Venetians. 

Origins of Study in the Seventeenth Century
Given the near omnipresence of probability in the 
ancient world, it seems reasonable to think that there 
were some efforts to estimate or calculate probabilities, 
at least on a case-specific basis; for example, those who 
issued maritime insurance would have assigned some 
type of monetary values for cost and payoff. There is 
relatively little evidence of broad mathematical research 
on probability before about the fifteenth century, though 
some analyses for specific cases survive. For example, a 
Latin poem by an unknown author called “De Ventula” 
describes all the ways that three dice can fall. Mathema-
tician and friar Luca Paccioli wrote Summa de arith-
metica, geometria, proportioni e proportionalita in 1494, 
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which contains some discussion of probability. A few 
other works address dice rolls and related ideas. His-
torians tend to agree that the systematic mathematical 
study of probability as it is now known originated in 
the seventeenth century. At the time, considerable ten-
sions still existed between the philosophies of religion, 
science, determinism, and randomness. Determinists 
asserted that the universe was the perfect work of a 
divine creator, ruled by mathematical functions waiting 
to be discovered, and that any apparent randomness was 
because of faults in human perception. Many emerg-
ing scientific theories, like the heliocentric model of the 
universe advocated by mathematician and astronomer 
Nicolaus Copernicus, challenged this view by explic-
itly exploring and quantifying variation and deviations 
in observations. Astronomy and other sciences, along 
with the rise of combinatorial algebra and calculus, 

would ultimately prove to be very influential in the 
development of probability theory. Changes in busi-
ness practices also challenged notions of risk, requiring 
new methods by which likelihood and payoffs could be 
determined. Harkening back to ancient human activi-
ties, however, the most popular story for the origin of 
probability theory concerns gambling questions posed 
to mathematician Blaise Pascal by Antoine Gombaud, 
Chevalier de Méré. 

In 1654, the Chevalier de Méré presented two prob-
lems. One concerned a game where a pair of six-sided 
dice was thrown 24 times, betting that at least one pair 
of sixes would occur. Méré’s attempts at calculation 
contradicted the conventional wisdom of the time and 
purportedly led him to lose as great deal of money. The 
second problem, now called the Problem of Points or 
Problem of Stakes, concerned fair division for a pot of 
money for a prematurely terminated game between 
equally skilled players where the winner of a completed 
game would normally take the whole pot. Spurred by 
de Méré’s queries, Pascal and Pierre Fermat exchanged 
a series of letters in which they formulated the funda-
mental principles of general probability theory. 

At the time of its development, Pascal and Fermat’s 
burgeoning theory was commonly referred to as “the 
doctrine of chances.” Inspired by their work, mathema-
tician and astronomer Christian Huygens published 
De Ratiociniis in Ludo Aleae in 1657, which discussed 
probability issues for gambling problems. Jakob (also 
known as James) Bernoulli explored probability theory 
beyond gambling into areas like demography, insur-
ance, and meteorology and he composed an exten-
sive commentary on Huygen’s book. One of his most 
significant contributions was the Law of Large Num-
bers for the binomial distribution, which stated that 
observed relative frequencies of events become more 
stable, approaching the true value, as the number of 
observations increases. Prior definitions based on gam-
bling games tended to assume that all outcomes were 
equally likely, which was generally true for games with 
inherent symmetry like throwing dice. This extension 
allowed for empirical inference of unequal chances for 
many real-world applications. Bernoulli also wrote 
Ars Conjectandi. Influenced by this work, mathemati-
cian Abraham de Moivre derived approximations to 
the binomial probability distribution, including what 
many consider to be the first occurrence of the nor-
mal probability distribution, and his The Doctrine of 
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Chances was the primary probability textbook for 
many years. 

Objective and Subjective Approaches
Historically and philosophically, many people have 
asserted that to be objective, science must be based on 
empirical observations rather than subjective opinion. 
Estimating probabilities through direct observations is 
usually called the “frequentist approach.” The method 
of inverse or inductive probability, which allows for 
subjective input into the estimation of probabilities, 
is traced back to the posthumously published work 
of eighteenth-century minister and mathematician 
Thomas Bayes. Conditional probabilities had already 
been explored by de Moivre, providing the basis for 
what is known as “Bayes theorem” (or “Bayes rule”). In 
Bayes’s inductive framework, there is some probability 
that a binary event occurs. A frequentist would make 
no assumptions about the probability and carry out 
experiments to attempt to determine the true prob-
ability value. Using Bayes’s approach, some probability 
value can be arbitrarily chosen, and then experiments 
conducted to ascertain the likelihood that the value 
is in fact the correct one. In later interpretations and 
applications of the method, the initial value might be 
chosen according to experience or subjective criteria. 
His work also produced the Beta probability distribu-
tion. Bayes’s writings contained no data or examples, 
though they were extended upon and presented by 
minister Richard Price. At the time, they were relatively 
less influential than frequentist works, though Bayes-
ian methods have generated much discussion and saw 
a great resurgence in the latter twentieth century.

Applications
Like Bernoulli, Pierre de Laplace extended probabil-
ity to many scientific and practical problems, and his 
probability work led to research in other mathemati-
cal areas such as difference equations, generating func-
tions, characteristic functions, asymptotic expansions 
of integrals, and what are called “Laplace transforms.” 
Some call his 1812 book, Théorie Analytique des Proba-
bilités, the single most influential work in the history 
of probability. The Central Limit Theorem, named for 
George Pólya’s 1920 work and sometimes called the 
DeMoivre–Laplace theorem, was critical to the devel-
opment of statistical methods and partly validated the 
common practice at the time (still used in the twenty-

first century) of calculating averages or arithmetic 
means of observations to estimate location parameters. 
Error estimates were usually assumed to follow some 
symmetric probability distribution, such as rectangular, 
quadratic, or double exponential. While they had many 
useful properties, they were mathematically problem-
atic when it came to deriving the sampling distributions 
of means for parameter estimation. Laplace’s work, 
which he proved for both direct and inverse paradigms, 
rectified the problem for large-sample cases and formed 
the foundation for large sample theory. 

Normal Distribution
The normal distribution is among the most central 
concepts in probability theory and statistics. Many 
other probability distributions may be approximated 
by the normal because they converge to the normal as 
the number of trials or sample sizes approach infinity. 
Some of these include the binomial and Poisson distri-
butions, the latter named for mathematician Simeon 
Poisson. The Central Limit Theorem depends on this 
principle. Mathematician Karl Friedrich Gauss is often 
credited with “inventing” the normal (or Gaussian) dis-
tribution, though others had researched it and Gauss’s 
own notes refer to “the elegant theorem first discovered 
by Laplace.” He can fairly be credited with the deriva-
tion of the parameterization of the distribution, which 
relied in part on inverse probability. Mathematician 
Robert Adrain, who was apparently unaware of Gauss’s 
work, discussed the validity of the normal distribu-
tion for describing measurement errors in 1808. His 
work was inspired by a real-world surveying problem. 
However, Gauss tends to be credited over Adrain, per-
haps because of his many publications and the overall 
breadth of his mathematical contributions. 

The fact that Laplace and Gauss worked on both 
direct and inverse probability was unusual from some 
perspectives, given the philosophical divide between 
frequentist and Bayesian practitioners even at the start 
of the twenty-first century. Later, both would gravitate 
toward frequentist approaches for minimum vari-
ance estimation, which is seen by some as a criticism 
of inverse probability. Other mathematicians, such as 
Poisson and Antoine Cournot, criticized inverse meth-
ods, while Robert Ellis and John Venn proposed defin-
ing probability as the limit of the relative frequency 
in an indefinite series of independent trials—essen-
tially, the frequentist approach. The maximum likeli-

802 Probability



hood estimation method proposed by Ronald Fisher 
in the early twentieth century was interpreted by some 
as melding aspects of frequentist and inverse meth-
ods, though he adamantly denied the notion, saying, 
“The theory of inverse probability is founded upon an 
error, and must be wholly rejected.” This may explain 
the essential absence of inverse or Bayesian probabil-
ity concepts in the body of early statistical inferential 
methods, which were heavily influenced by Fisher.

Mathematician and anthropometry pioneer Adol-
phe Quetelet brought the concept of the normal distri-
bution of error terms into the analysis of social data in 
the early nineteenth century, while others like Francis 
Galton advanced the development of the normal dis-
tribution in biological and social science applications 
in the latter half of the same century. Many mathemati-
cians, statisticians, scientists, and others have contrib-
uted to the development of probability theories, far too 
many to exhaustively list, though recognized probabil-
ity distributions are named for many of them, such as 
Augustin Cauchy, Ludwig von Mises, Waloddi Weibul, 
and John Wishart. Pafnuty Chebyshev, considered by 
many to be a founder of Russian mathematics, proved 
the important principle of convergence in probability, 
also called the Weak Law of Large Numbers. Andrei 
Markov’s work on stochastic processes and Markov 
chains would lead to a broad range of probabilistic 
modeling techniques and assist with the resurgence of 
Bayesian methods in the twentieth century. 

Some historians have suggested that one difficulty 
in developing a comprehensive mathematical theory of 
probability, despite such a long history and so many 
broad contributions, was difficulty agreeing upon one 
definition of probability. For example, noted economist 
John Keynes asserted that probabilities were a subjec-
tive value or “degree of rational belief” between com-
plete truth and falsity. In the first half of the twentieth 
century, mathematician Andrey Kolmogorov outlined 
the axiomatic approach that formed the basis for much 
of subsequent mathematical theory and development. 
Later, Cox’s theorem, named for physicist Richard Cox, 
would assert that any measure of belief is isomorphic 
to a probability measure under certain assumptions. 
It is used as a justification for subjectivist interpreta-
tions of probability theory, such as Bayesian methods. 
There are variations or extensions on probability with 
many applications. Shannon entropy, named for math-
ematician and information theorist Claude Shannon 

and drawn in part from thermodynamics, is used in 
the lossless compression of data. Martingale stochas-
tic (random) processes, introduced by mathematicians 
such as Paul Lévy, recall the kinds of betting problems 
that challenged de Méré and inspired the development 
of probability theory. Chaos theories, investigated by 
mathematicians including Kolmogorov and Henri 
Poincaré, sometimes offer alternative explanations 
for seemingly probabilistic phenomena. Fuzzy logic, 
derived from mathematician and computer scientist 
Lotfali Zadeh’s fuzzy sets, has been referred to as “prob-
ability in disguise” by Zadeh himself. He has proposed 
that theories of probability in the age of computers 
should move away from the binary logic of “true” and 
“false” toward more flexible, perceptual degrees of cer-
tainty that more closely match human thinking. 
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Problem Solving  
in Society
Category: School and Society.
Fields of Study: Connections; Problem Solving.
Summary: Mathematics is used to find and 
solve problems, often spurring new mathematical 
investigations.

Problem solving is fundamental not only to the learn-
ing and application of mathematics as a student, but 
to all walks of life. Many people consider mathematics 
and problem solving synonymous. However, there are 
many mathematicians who do not solve problems or 
who do more than solve problems. Some work to build 
new theories or advance the language of mathematics. 
Others unify or explain previous results, sometimes 
from many fields of mathematics. Yet others consider 
the very nature and philosophy of mathematics as a 
discipline. In twenty-first-century society, mathemat-
ics teaching at all levels seeks to develop students’ abili-
ties to effectively address a wide variety of mathematics 
problems, including proving theorems; reducing new 
problems to previously solved problems; formulating 
and solving both real-life and abstract word problems; 
finding and creating patterns; interpreting figures, 
graphs, and data; developing geometric constructions; 
and doing appropriate computations or simulations, 
often with computers or calculators. 

Problem solving is also an instructional approach 
in which students actively learn fundamental concepts 
through their contextualization within problems rather 
than from a passive lecture. What fundamentally connects 
these activities, beyond the mathematics techniques and 
skills necessary to solve them, is the framework of “how 
to think.” Students must have the necessary tools and 
techniques at their disposal through a solid education in 
the fundamentals. They must also be able to either ana-
lyze the characteristics and requirements of a problem in 
order to decide which tools to apply, or know that they do 
not have the appropriate tool at their disposal. Further, 
students must practice with these mathematical tools 
in order to become skilled and flexible problem solv-
ers, in the same way that athletes or craftsmen practice 
their trades. As Hungarian mathematician George Pólya 
expressed, “If you wish to become a problem solver, you 
have to solve problems.” This idea extends to the notion 

that problem solving is by its nature cyclic and dynamic. 
In many cases, the solution to a problem results in one 
or more new problems or opens the path to solving 
an older problem for which a solution has previously 
proven elusive. Sometimes, mathematics problems have 
real and immediate applications, and many new math-
ematical disciplines, like operations research or statisti-
cal quality control, have developed from these sorts of 
problems. In contrast, there are many issues in theoreti-
cal mathematics that do not appear to have any immedi-
ate benefit to society. In some cases, people question the 
need to explore such abstract problems when there are 
more immediate needs. Often, these abstract problems 
turn out to have very concrete applications decades or 
even centuries after their initial introduction. Even if 
that is not the case, theoretical problem solving adds to 
the growing body of mathematics knowledge and, just 
as importantly, shows people yet another way to think 
about the world. 

History
The mathematics body of knowledge is not static; it 
has been evolving with humans. As soon as humans 
organized themselves into communities attached to the 
land, benefits rapidly emerged. Certainly, an advantage 
was an increase in agricultural and livestock productiv-
ity. As a result, part of the harvest and the cattle was 
accumulated for worse times. Accumulation demanded 
certain mechanisms to identify the ownership and use 
of the land (the process of land surveying) and to record 
who contributed to what was collected (the system of 
counting). The success of such social structure allowed 
skilled individuals to take advantage of their abilities to 
exchange the resultant products for food surplus (the 
beginnings of commerce). The development of com-
merce demanded a new tool to register the commercial 
operations in order to recognize who was implicated 
and the amount involved. This tool was based in a new 
kind of language (mathematics) able to do operations 
such as additions, subtractions, iterative sums, and 
partitions that natural languages were unable to sup-
port. As with any language, it consisted of two elements: 
notation to represent ideas (numbers) and syntax to 
manipulate these ideas (calculation). 

After the accumulation of goods came the capa-
bility to organize collective efforts. It was possible to 
build massive public works. Warehouses, markets, for-
tresses, temples, aqueducts, and even pyramids were 
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constructed in urban centers and their surroundings. 
Construction presented a new problem related to the 
manipulation and combination of forms. Early exer-
cises were based on rules used for land surveying; for 
instance, to calculate areas and volumes. Additional 
difficulties arose when public works increased their 
complexity; hence, the application of forms and their 
interactions to develop better habitats gave rise to the 
development of architecture as an independent disci-
pline. The Greeks separated land surveying from the 
study of spatial relations and forms; as a result, geome-
try was born. This discipline was used to solve abstract 
mathematical problems. For instance, Pythagoras rec-
ognized the relation between the sides of a right tri-
angle as a2 + b2 = c2 (the Pythagorean Theorem), and 
Archimedes studied the relation between the circle’s 
circumference and its diameter. The latter is known 
as pi (π), an irrational number with the value of  
3.141592653589793238462643383279502 . . . .

The Problem of Representation and the  
Dynamics of Change
With the accelerated increase of richness and variety in 
social interactions, intractable problems of represen-
tation appeared. Operations were required to record 
social experiences from an ever growing dynamism. 
This endeavor made limitations in the notation systems 
available at that moment evident. Hindis and, after-
wards, Arabs and Muslims developed the positional dec-
imal system still in use in the twenty-first century. The 
decimal system allows the representation of arithmetic 
operations without the need to use an abacus. Changes 
in quantities demanded introducing a general notation 
for variable and constant amounts, which were linked by 
operators to form different sentences, called “equations.” 
The study of these relations is known as “algebra.”

The capability to represent abstract ideas and their 
relations allowed mathematicians at the beginning of 
the sixteenth century to discuss problems related to the 
dynamics of change. In fact, the field of astronomy pro-
posed new challenges to mathematics. Between 1507 
and 1532, Copernicus presented a series of works where 
he substituted the traditional viewpoint, which located 
the Earth at the center of the universe (the geocentric 
view), with another where the sun was at the focus (the 
heliocentric view). This view helped to explain incon-
sistencies in the stellar movement, such as the retro-
grade displacement of planets. Around 1605, Johannes 

Kepler empirically discovered the elliptic orbit of plan-
ets around the sun. He also noticed that the line that 
joins each planet with the sun (called the “radius vec-
tor”) sweeps the same area in the same period of time. 
Galileo focused his telescope to Jupiter, and, in 1610, he 
posited that the lights surrounding that planet were, in 
fact, satellites. To demonstrate all of this in mathemati-
cal terms demanded the study of change in relation to 
time, something impossible to solve at that moment. 
Isaac Newton and Gottfried Leibnitz simultaneously 
developed a useful procedure known as “calculus.” When 
it is used to represent the change of a certain quantity in 
relation to another in terms of infinitesimal moments, 
it is called “differential calculus.” Interestingly enough, 
this procedure can be reversed to reckon space sections 
bounded by different functions. The general procedure 
consists on dividing them into additive infinitesimal 
blocks—a process named “integral calculus.” Both pro-
cedures operate in an inverse manner through the fun-
damental theorem of calculus.

The Problem of Estimation
In the seventeenth century, additional problems 
appeared when the practical world confronted an 
impossible question. How can one characterize some-
thing that is not stable enough to be counted? For 
instance, in order to establish public policies, politicians 
need to know what resources are at their disposal—the 
demographic and economic capabilities, which can 
be determined in a census. The main problem with 
exhaustive counting of populations is that they change. 
There are births and deaths. In order to solve this issue, 
one method is to select a fraction (called a “sample”) of 
the object of study (called the “population”), to iden-
tify the sample characteristics and to generalize them 
to the population. Advantages for this sampling pro-
cedure are lower costs and faster data collection than 
following a comprehensive census. But there is an 
important difficulty: how to guarantee that the char-
acteristics of the sample are the same as those of the 
entire population. One needs to estimate the sampling 
error because of selecting a sample that does not repre-
sent the population and to define a confidence interval 
by identifying the reliability of the estimate. The part 
of mathematics interested in this kind of problems is 
known as “statistics.” 

Statistics helps to solve many technical problems. 
Statisticians may need to (1) estimate the size of a  
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population, as Laplace did in 1786 for France, by using 
a sample; (2) describe a population in terms of different 
numerical relations, such as its expected value (called 
“average”), its most frequent value (called “mode”), 
the limits of the data series (called “range”), the value 
that separates the higher half of the data series from 
the lower half (called “median”), and the data disper-
sion (called “standard deviation”); (3) test a hypothesis 
as J. H. Jagger did in 1873 at the Beaux-Arts Casino at 
Monte Carlo, when he collected results from a roulette 
wheel to prove that it was fraudulent; (4) estimate if a 
process needs products of a certain quality or it requires 
to be fixed, as in statistical quality control; (5) identify if 
changes in a process result in a positive outcome (called 
“correlation”), such as the Hawthorne study done in a 
working line to correlate the increase in illumination 
with workers’ productivity; (5) predict and forecast 
future outcomes by means of recognizing patterns of 
behavior, what is known as “regression”; (6) extrapo-
late future data through the analysis of previous results; 
(7) reconstruct incomplete series data by means of that 
which is known and available, through interpolation; or 
(8) model the behavior of an entity in order to transform 
data into valuable information (called “data mining”).

The Problem of Decision Making
The Industrial Revolution introduced a massive change 
in the social order. Early stages of the period witnessed 
the substitution of agricultural workers with machines 
by the thousands. It represented an increase in the 
productivity for many industries and services, mainly 
textiles and transportation, to levels never before seen. 
It surpassed the previous cumulative capacity of man-
kind. It also implied a surplus of energy with the use of 
internal combustion engines and electrical power gen-
eration. However, finding the equilibrium in this new 
social order was not an easy endeavor. Two world wars 
witnessed this planetary enterprise, and the postwar 
era during two different visions of the best way to orga-
nize the global society developed into a mortal conflict: 
capitalism versus communism. 

At the beginning, the Industrial Revolution prom-
ised benefits with no end, although it made the medi-
eval work system based on guilds inoperative. Groups 
of artisans loyal to a closed system of hierarchical pro-
gression were substituted by interchangeable clusters 
of men and machines located at industrial centers with 
short-term economic success as its main performance 
criterion. These were operationalized in terms of effec-
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A lthough knowing certain characteristics from 
the population allows one to make more 

informed decisions, it does not solve particular 
cases. For instance, if 80% of people in a com-
munity prefer vanilla flavor rather than chocolate 
ice cream, will Ms. X like it? If the identification 
of general preferences does not ensure that indi-
vidual expectations will be fulfilled, how can one 
propose the best offer to an individual in particu-
lar? How can one quantify the chance of an event 
happening? The study of the individual behavior 
from a collective characterization is known as 
probability. It is important to note that probability 
has to do with descriptions from populations and 
not from individuals. 

Probability studies began with Blaise Pas-
cal and Pierre de Fermat (1654), when the for-
mer was approached by a gamester, the Cheva-

lier de Méré, to solve a game problem—how to 
divide the stakes between two players who want 
to leave the table before finishing their game. It 
was not until the nineteenth century, again in the 
field of astronomy, that the potential use of prob-
ability was recognized. In 1801, Giuseppe Piazzi 
discovered the first asteroid, Ceres, but he had 
so few observations that he was unable to deter-
mine its orbit. A mathematician, Carl Friederich 
Gauss, analyzed the data available and, in order 
to correct the observational errors, he supposed 
that they would follow a normal distribution. This 
distribution is one of the most well-known among 
probability users. Probability has been used for 
hypothesis testing according to different probabil-
ity distributions, statistical mechanics, probabilis-
tic processes, the random movement of particles 
suspended in a fluid, and options’ valuation.

The Problem of Distributions



tiveness and efficiency, and optimization was the prime 
improving activity. Methods based on empiricism and 
not on tradition acquired a new value. For instance, in 
1840, Charles Babbage realized a study about mail clas-
sification and transportation; the result was the institu-
tion of the Uniform Penny Post; a taxation procedure 
by which a letter not exceeding half an ounce in weight 
could be sent from any part of the United Kingdom to 
any other part for one penny. In 1911, Taylor proposed 
a series of managerial principles that were the foun-
dations of what is currently known as “management 
science” or “operational research.” This Science of the 
Better consists in the application of advanced analyti-
cal methods to help make better decisions. 

Operational Research took shape just prior to World 
War II. At the beginning, exercises were focused on 
solving problems of fighter direction and control in the 
British air defense system. The new radar system acted 
as an early warning system that was able to identify Ger-
man aircraft before they would bomb air bases, ports, 
industrial areas, and cities. Success demanded, later 
during the war, to extend these exercises to the Atlan-
tic Ocean. Massive ship losses because of the attacks of 
U-boats (German submarines) put Allied supplies to 
Europe and North Africa at risk. Accordingly, different 
analyses were conducted to increase the U-boat sinking 
rate. Different criteria were mathematically explored 
and solutions were implemented, including (1) identi-
fying which kind of aircraft was the best suited to chase 
German submarines; (2) reckoning the time at which 
depth charges should explode, and (3) defining the size 
of merchant fleets that minimizes Allied losses when 
crossing the Atlantic.

From the success of analyzing the performance 
of military operations, this field of mathematics was 
extended to other industrial and social activities. Many 
different problems have been studied and alleviated by 
this approach, including (1) community development, 
in order to organize collectives, support strategies that 
deal with social dissatisfactions, help groups in rural 
communities and developing countries, and create the 
social conditions for effective public policies; (2) crim-
inal justice, to maintain a safe society by optimizing 
the use of resources allocation that enforce the law and 
reduce spaces for organized crime and to assess policy 
impact; (3) education, to evaluate teaching quality, stu-
dents learning experiences, and assessment procedures; 
(4) efficiency and productivity analysis; (5) healthcare 

services; (6) logistics and supply chains; (7) qual-
ity control; (8) security and defense; (9) scheduling;  
(10) strategic management; and (11) transport.

The Problem of Prediction  
in a Complex World
The acquisition, distribution, and use of knowledge are 
key factors for the development of individuals and soci-
ety, an idea that has shifted social structures to more 
complex levels of organization. The introduction of 
concepts such as “entrepreneurship” (a wild spirit who 
causes creative destruction by innovation and disrup-
tion) or “leadership” (a process of social influence and 
emotional contagion) are the result of recognizing that 
people’s actions affect many others in non-evident 
ways. Economy, ecology, management, and politics 
require new approaches as these phenomena develop 
with intensities never before expected. The limitation 
of resources demands humans to use them responsibly 
and to make decisions for a better future. The main dif-
ficulty consists of predicting the future from the pres-
ent. How can a person predict future concequences of 
actions to recognize good actions from bad ones? 

Advising people on how to act is an age-old busi-
ness. For a long time, the unique sources at disposal 
were divinely inspired or supported by powerful col-
lectives. However, since the 1800s, the emphasis shifted 
toward scientific study of the environment regarding 
which actions take place. Prediction was focused on 
learning from the past and expecting the future to 
behave similarly, what is known as “time-series pro-
cedures.” These can be useful where individual deci-
sions have little impact on the overall behavior; for 
example, the results of the lottery or the weather con-
ditions for the next few days. 

Accordingly, different patterns can be found in the 
data (such as horizontal, seasonal, cyclic, or trend), but 
no explanations for the phenomenon under study have 
been developed. Explanatory models require assum-
ing a relationship between what one wants to forecast 
(called the “dependent variable”) and something one 
knows or controls (called the “independent variable”). 
Through a regression analysis one may minimize dif-
ferences between observations and the points from an 
expected trend, linear or not, which can be adjusted 
to indicate certain seasonality. For more complex 
phenomena, one may introduce additional indepen-
dent variables in order to conduct multiple regression 
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analysis. In certain conditions, this approach enhances 
information for a better decision-making process but 
assumes the non-evolutionary viewpoint that the best 
model for the future is the one which better fits his-
torical data. This approach also reduces the size of 
phenomena under scrutiny because modeling a real 
complex phenomenon such as the world’s climate 
goes easily beyond twenty-first-century computers’ 
capabilities and human understanding.

Complexity is related to many things such as size, 
difficulty, variety, order, or disorder. However, it has 
nothing to do with complication. Anything complicated 
can be solved, usually by introducing more resources 
to crack current problems. Conversely, complexity is 
associated with the impossibility of guaranteeing future 
behaviors based on current ones. The mathematical 
treatment of complexity introduced a discipline known 
as “chaos theory.” It is a collection of mathematical, 
numerical, and geometrical techniques that allow math-
ematicians to deal with non-linear problems that do 
not have explicit general solutions. It is based in the use 
of differential equations to analyze dynamic behaviors 
extremely sensitive to initial conditions. In this context, 
predicting the future has to do with recognizing stable 
equilibrium points (called “fixed point attractors”), 
those that appear when dynamic systems stop. An 
attractor indicates the natural tendency of a system to 
behave in a certain way in the long-term future, if noth-
ing else disturbs it. Common physical examples of this 
kind of behavior are pendulums and springs. Attractors 
are used for decision making in different fields, such 
as finance, where investors try to identify stock market 
tendencies. Some major applications related to its ori-
gins are weather prediction, solar weather prediction 
models, and predicting fisheries dynamics.

The increase of computing power allows math-
ematicians to run mathematical models based in little 
pieces of code that represent specific behaviors (called 
“intelligent agents”). Agent-based models can be used 
to study complex behaviors to simulate individual 
behaviors, such as people’s movements inside stadiums 
or automobiles avoiding traffic jams. Other studies 
related to self-organized and self-organizing behav-
iors can also be conducted as they can represent phe-
nomena from economy and financial markets; opinion 
dynamics; emergency of social rules and institutions; 
creation or disappearance of companies; and technol-
ogy innovation, adoption, and diffusion. 

To recognize stability areas and patterns in com-
plex behaviors resulting from a multiplicity of agents 
interacting is then at the basis of the next social chal-
lenge, and procedures to deal with this are at the edge 
of twenty-first-century capabilities. The study of ele-
ments and their interactions have developed new view-
points to observe reality. To visualize problems as a 
myriad of elements richly interconnected with unseen 
behaviors and consequences has introduced notions 
such as “systems” and “networks” in discourse. In 
1950, Ludwig von Bertalanffy, a biologist, recognized 
similar fundamental conceptions in different disci-
plines of science, irrespective of the object of study. 
He tried to represent those rules through a language 
to describe such entities, which he named the “General 
System Theory.” 

A year before, Werner introduced the notion of 
communicative control in machines and living beings 
by looking at the effects of feedback on future behav-
iors. He named it “cybernetics.” Based on this, in 1956, 
Ashby provided a single vocabulary and a single set 
of concepts suitable for representing the most diverse 
types of systems. Since then, different researchers have 
developed alternative methodologies to describe phe-
nomena not in terms of problems and solutions, but 
in terms of satisfaction and alleviation. This has been 
used to deal with non-technical problems—those 
considered impossible to solve only through analyti-
cal tools, as they include humans’ interactions. In this 
context, relations between individuals are diagramed 
and studied in terms of bunches of nodes intercon-
nected by links. From this viewpoint the image of a 
“network” emerges. This notion has been developed, 
for instance to measure the “distance” between two 
persons from different places and contexts and reck-
oned that the average number of intermediate people 
between them is 5.5, hence the phrase “six degrees of 
separation.” Network analysis is important as it can 
be used to model and study phenomena such as the 
Internet and its vulnerability to hackers, viruses and 
their uncontrollable expansion, or technology inno-
vation and its diffusion. Future developments on this 
area are expected.
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Producers
See Writers, Producers, and Actors

Professional  
Associations
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections.
Summary: Professional mathematical associations 
help mathematicians advocate, share ideas, and  
organize.

Organizations are a fundamental component of society, 
in part because of the human need to connect around 
similar interests. Professional associations form in 

response to individual and societal needs and concerns, 
and in turn impact society. Mathematics students, 
teachers, and researchers may join professional math-
ematics organizations to feel like a part of the larger 
mathematics community and make a difference beyond 
their school or university. There are international asso-
ciations with worldwide memberships, like the Inter-
national Mathematical Union, as well as associations 
that are organized by geographical region. National and 
regional associations in countries around the world 
address many of the same issues as mathematics asso-
ciations in the United States. These issues include teach-
ing, research, service, and the mathematics profession. 

Mathematical associations may advocate for the 
mathematical sciences, engage in public policy discus-
sions, and promote collaboration among specialized 
subgroups. They may provide professional development 
to mathematicians and engage in public mathematics 
outreach. Professional associations organize regional, 
national, or international conferences; fund professional 
development and outreach; publish a diverse array of 
books and journals on mathematical topics; and facili-
tate peer review and curricular changes. Philosophers 
and mathematicians like Paul Ernest and Reuben Hersh 
have written about the social and ethical responsibil-
ity of mathematicians, and mathematicians may work 
toward the greater good within the structure of profes-
sional organizations. As officers and committee mem-
bers, mathematicians also run these associations.

Mathematical Organizations
The American Statistical Association (ASA) was formed 
in Boston, in 1839, by members with diverse interests. 
ASA’s Web site states the following:

Present at the organizing meeting were William 
Cogswell, teacher, fund-raiser for the ministry, and 
genealogist; Richard Fletcher, lawyer and U.S. Con-
gressman; John Dix Fisher, physician and pioneer in 
medical reform; Oliver Peabody, lawyer, clergyman, 
poet, and editor; and Lemuel Shattuck, statistician, 
genealogist, publisher, and author of perhaps the 
most significant single document in the history of 
public health to that date. 

From the beginning, the ASA had close ties with the 
government on statistical issues like those surround-
ing the census. ASA is international and comprised 
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of professionals from industry, government, and aca-
demia in fields ranging from pharmaceuticals, health 
policy, agriculture, business, education, to technology. 
It promotes statistical knowledge through meetings, 
publications, membership services, education, accredi-
tation, and advocacy. 

In the United States, two well-known mathematics 
organizations are the American Mathematical Society 
(AMS) and the Mathematical Association of America 
(MAA). Both publish research journals, host profes-
sional conferences, and engage in student, community, 
and public policy outreach, although they have dif-
ferent focuses. The AMS originated as the New York 
Mathematical Society in 1888, and, in 1894, it became 
a national organization that concentrated on research. 
Teacher Benjamin Finkel created the American Math-
ematical Monthly in 1894, stating the following: 

Most of our existing journals deal almost exclu-
sively with subjects beyond the reach of the average 
student or teacher of mathematics or at least with 
subjects with which they are familiar, and little, if 
any, space, is devoted to the solution of problems. 

In 1915, when managing editor H. E. Slaught 
unsuccessfully tried to bring the Monthly to the AMS, 
the society instead recommended that there should be 
a different organization devoted to the journal. The 
AMS continues to focus primarily on mathematics 
research and scholarship, while the MAA promotes 
communication, teaching, learning, and research in 
mathematics and its applications, especially at the col-
legiate level. The mission of the MAA incorporates 
five core interests of education, research, professional 
development, public policy, and public appreciation. 
The MAA sponsors the highly regarded William Low-
ell Putnam Competition for undergraduate students 
and the American Math Olympiad mathematics com-
petitions. The AMS and MAA join at the Joint Math-
ematics Meetings each January. 

The National Council of Teachers of Mathemat-
ics (NCTM) was created in 1920, in part, to counter 
the efforts of social efficiency experts who believed 
that school curricula should emphasize fostering job-
related skills and knowledge. Its membership includes 
mathematics teachers, mathematics teacher educators, 
and mathematics education researchers. It is perhaps 
most well-known for publishing one of the earliest sets 

of K–12 mathematics standards. NCTM’s stated objec-
tives are to develop effective curriculum and instruc-
tion, ensure equity in mathematics education, shape 
public policy, produce high quality mathematics edu-
cation research, and provide professional development 
opportunities for mathematics educators. NCTM 
publishes works like the Principles and Standards for 
School Mathematics and Curriculum Focal Points, in 
addition to journals such as the Mathematics Teacher, 
Teaching Children Mathematics, Mathematics Teaching 
in the Middle School, and the Journal for Research in 
Mathematics Education. State, regional, and local affili-
ates also work to carry out NCTM’s mission through 
annual conferences and other professional develop-
ment opportunities. Similarly, trainers of mathematics 
teachers assemble in the Association of Mathematics 
Teacher Educators, and supervisors assemble in the 
National Council of Supervisors of Mathematics.

The Society for Industrial and Applied Mathemat-
ics (SIAM) originated in the early 1950s to represent 
mathematicians working in industry. Their numbers 
had grown as a result of the importance of mathe-
matics in military research during World War II and 
the evolution of computers. SIAM seeks to advance 
applied mathematics, promote practical research, and 
encourage the exchange of applied mathematical ideas. 
Annual meetings, subject-specific workshops and con-
ferences, and discipline-specific activity groups allow 
members to develop new applied mathematical ideas 
and techniques.

Organizations designed to promote minorities in 
mathematics include what is now known as the National 
Association of Mathematicians (NAM), which started as 
an informal group at the Annual Meeting of the Ameri-
can Mathematical Society in 1969. Lee Lorch recalled: 

In 1960, when A. Shabazz and S.C. Saxena, both 
on the faculty of Atlanta University (now Clark-
Atlanta), and their graduate student W.E. Brodie 
were subjected yet again to Jim Crow treatment at 
the spring meeting of the Southeastern Section of 
MAA. . . . This, it should be noted, was several years 
after AMS and MAA commitments to the contrary. 
They had not been warned in advance that such dis-
courtesy would be in store. The three left in protest. 
And so in 1969 the National Association of Math-
ematicians (NAM) came into being to address the 
needs of the Black mathematical community. This 
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was a turbulent period. A group of more or less left-
oriented mathematicians established the Mathema-
ticians Action Group (MAG) that same year. We 
were motivated largely by concern over the Vietnam 
war, the militarization of mathematics, the lack of 
democracy in the AMS, the existence of racism and 
sexism, and related social issues as they impinged 
on mathematicians and vice versa. 

NAM focuses on education, career development, 
research, student development, and databases. NAM 
also publishes a newsletter and organizes a lecture series. 
The Benjamin Banneker Association was founded in 
1986 to concentrate on the mathematics education of 
African Americans. There are also many associations 
that focus on science, like the Society for the Advance-
ment of Chicanos and Native Americans in Science.

Organizations like Association for Women in 
Mathematics, European Women in Mathematics, and 
Korean Women in the Mathematical Sciences were cre-
ated to support and promote female students, teachers, 
and researchers via social events, sponsored talks or 
conferences, workshops, and contests. Many attribute 
the beginning of the Association for Women in Mathe-
matics to events in Boston and Atlantic City. In the late 
1960s, Alice Shafer and Linda Rothschild organized a 
mathematics women’s group in the Boston area. At a 
1971 conference in Atlantic City, Joanne Darken sug-
gested that women already at the Mathematics Action 
Group remain to form a caucus. As noted by president 
Lenore Blum: 

What I remember hearing about Mary Gray and the 
Atlantic City Meetings, indeed what perked my curi-
osity, was an entirely different event, one that was 
also to alter dramatically the character of the math-
ematics community. In those years the AMS was 
governed by what could only be called an ‘old boys 
network,’ closed to all but those in the inner circle. 
Mary challenged that by sitting in on the Council 
meeting in Atlantic City. When she was told she had 
to leave . . . she responded she could find no rules in 
the by-laws restricting attendance at Council meet-
ings. She was then told it was by ‘gentlemen’s agree-
ment.’ Naturally Mary replied ‘Well, obviously I’m 
no gentleman.’ After that time, Council meetings 
were open to observers and the process of democra-
tization of the Society had begun.  

Mary Gray placed an official announcement about 
the organization in the Notices of the American 
Mathematical Association and created its first news-
letter in 1971.

Other notable mathematical organizations include 
the American Mathematical Association of Two Year 
Colleges (AMATYC), which was founded in 1974. 
AMATYC organizes conferences and workshops and 
publishes books and proceedings related to mathemat-
ics education in the first two years of college.

Mathematicians create other professional organiza-
tions under the umbrella of a wide variety of interests 
and themes. They assemble in national and interna-
tional subject-specific societies that focus on areas such 
as linear algebra, mathematical physics, or mathemat-
ics and art, including the International Linear Algebra 
Society and the Association for Symbolic Logic, or 
through special interest groups at the Mathematical 
Association of America. Mathematical organizations 
that are related to religion or sexual orientation include 
the Association of Christians in the Mathematical Sci-
ences and the Association of Lesbian, Gay, Bisexual and 
Transgendered Mathematicians. National and inter-
national mathematics honor societies include Kappa 
Mu Epsilon and Pi Mu Epsilon. Mathematicians inter-
ested in the advancement of science policy participate 
in advocacy groups such as the Triangle Coalition for 
Science and Technology Education and the American 
Association for the Advancement of Science.  
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Proof
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Problem Solving; Reasoning and Proof.
Summary: The product of deductive reasoning, the 
nature of proof has long been fundamental. 

Deductive proofs have been an essential part of math-
ematics for over 2000 years, and some equate proof 
ability with competence in mathematics. Mathemati-
cian David Henderson defines an effective proof as a 
convincing communication that answers “why.” Thus, a 
proof may connect ideas within a mathematical system 
or illuminate both the “how” and the “why” underlying 
the conjecture. Since a proof depends on the accepted 
standards of the audience or society through some 
type of peer review, there is also a long history of con-

cerns about the nature of proof. For example, Galileo 
Galilei and Christoph Clavius debated the legitimacy 
of pictures, and Leopold Kronecker criticized the use 
of nonconstructivist methods. In the twentieth and 
twenty-first centuries, philosophical concerns about 
proofs continued as mathematicians considered the 
role of computers or empirical aspects and the impli-
cations of Kurt Gödel’s groundbreaking work on con-
sistency. While reasoning and proof have long been a 
part of mathematics curricula, the concepts took on an 
increased importance in the United States during the 
era of Sputnik and the space race, when many different 
types of proofs were emphasized. In the early twenty-
first century, proofs remain fundamental in education, 
beginning in primary school. In pure mathematics, 
new research depends on proofs. The notion of proof 
has been clarified by mathematicians in the field of 
logic, who explore the foundations of proof.

Brief History
Early civilizations developed sophisticated notions of 
mathematical argumentation, as documented by evi-
dence such as cuneiform tablets, papyri, and math-
ematical texts from ancient Babylon, China, and Egypt. 
The idea of a formal deductive proof arose as a distinct 
part of ancient Greek mathematics. Greek mathemati-
cians studied and generalized mathematical ideas, using 
proofs to justify their claims. Mathematics historians 
theorize that the prevalence of debate in Greek society 
provided a conducive environment for the develop-
ment of axiomatic argumentation. Euclid’s Elements 
became “the” model for using a small set of axioms to 
deduce a large system of theorems and knowledge, now 
known as “Euclidean geometry.”

Logic
Logical systems become the foundational structures 
necessary to create a proof. First, mathematicians 
use logic tools to argue that one mathematical state-
ment follows as a logical consequence from other 
mathematical statements, and then they use logic 
tools to establish a formal proof by building a chain 
of consequent statements from initial assumptions. 
These logic tools include connectives (negation, con-
junction, disjunction, conditional implications, and 
equivalence), quantifiers, truth statements, tautolo-
gies, and inferential structures (such as modus ponens 
and reductio ad absurdum).
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Direct Proofs
Mathematical proofs can be done in diverse ways, 
all reflecting different inferential structures. Starting 
with an initial conjecture (such as H→C) involving a 
hypothesis H and a conclusion C, Direct Proofs build 
logical chains of compound statements, using condi-
tional implications as the links. They are usually writ-
ten in the traditional two-column format using high 
school geometry. The following illustrates the use of a 
Direct Proof, though it is not entirely rigorous.

Conjecture: If a and b are prime numbers greater 
than 2, then their sum a + b is composite.

Proof:  

Statement Justification

1. a and b are prime  
numbers > 2

1. Given

2. a and b are odd  
numbers

2. The only even 
prime is 2

3. Let a = 2m + 1 and 
b = 2n + 1 for m,n >1

3. Definition of an 
odd number

4. Sum 
a b m n+ = +( ) + +( )2 1 2 1

4. Substitution

5. Sum a b m n+ = + +( )2 1 5. Properties of 
arithmetic opera-
tions

6. Sum a + b is even 6. Definition of an 
even number

7. Sum a + b >2 7. m + n + 1 >1

8. Sum a + b is composite 8. The only even 
prime is 2

A Proof by Contrapositive is very similar to a Direct 
Proof, with the difference being the format of the con-
jecture itself. While a Direct Proof proves the conjecture 
H→ C, a Proof by Contrapositive uses a Direct Proof 
to prove the contrapositive, ~C→ ~H. In the previous 
example, a Proof by Contrapositive would prove the 
statement “If the sum a + b is prime, then a and b are 
not both prime numbers greater than 2.”

Indirect Proofs
In contrast to Direct Proofs, an Indirect Proof assumes 
the negation of the conclusion ~C to be true and then 
uses a Direct Proof to prove the truth of the negation 

~S for some true statement S. By the Law of Logic 
Contradiction (S and ~S cannot both be true), which 
implies that the original conclusion C must be true. 
The following illustrates the use of an Indirect Proof.

Conjecture: The 2  is an irrational number.
Proof: 

Statement Justification

1. 
  
 Assume 2  is a  

  
 rational number

1.   
 
Negation of  

  
 
conclusion

2. 
  
 2 = a b  where  

  
 gcd a b,( )=1 and a,b  

  
 positive integers

2. 
  
 Definition of the  

  
 rationals and  

  
 greatest common 

  
 divisor

3. 
  
 2 2 2= a b 3.   

 Squaring both sides

4. 
  
 2b2 = a2 4. 

  
 Multiplying both  

  
 sides by b2

5. 
  
 a2 is even 5. 

  
 Definition of an  

  
 even number

6. 
  
 a is even 6.

  
 Squares of odd  

  
 integers are odd

7. 
  
 a = 2m for m > 1 7. 

  
 Definition of an  

  
 even number

8. 
  
 2 2 42 2 2b m m= ( ) = 8.   Substitution

9. 
  
 b2 = 2m2 9.   Multiplying both 

  sides by 1/2

10.  b2 is even 10.  Definition of an  
  even number

11.  b is even 11. Squares of odd  
  integers are odd

12.  gcd a b,( ) ≥ 2 12.  Definition of gcd

13.  Original assumption 
  is false

13.  Contradicting 
  assumption  
 gcd a b,( )=1

Using the idea of infinite descent, this Indirect Proof 
is considered to be one of the most “beautiful” proofs 
by the mathematical community. Though not as ele-
gant, it would be possible to prove this same conjecture 
using a Direct Proof. Also, it is important to note that 
this Indirect Proof uses some outside knowledge from 
number theory (such as, squares of odd integers are 
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odd), which would have to be proved prior to its use as 
justification within the Indirect Proof.

Deduction and induction constantly play important 
roles in the proof process. For example, in the previ-
ous Direct Proof, a considerable number of examples 
could be systematically examined: 3 + 5 = 8, 3 + 7 = 10, 
5 + 11 = 16, 23 + 47 = 70, and so on. These examples 
provide inductive evidence that the conjecture is true, 
nothing more. That is, the cumulative contribution 
of the examples is only increased confidence that the 
conjecture is true and that a formal deductive proof is 
needed. And, a Proof by Exhaustion of All Cases is not 
possible because the number of pairs of primes to con-
sider is infinite. Nonetheless, a Proof by Induction is 
often possible in situations involving an infinite num-
ber of examples, as illustrated by the following proof. 

Conjecture: 1 2 3 4
1

2
+ + + + + =

+( )
� n

n n
.

Proof:
Case n = 1: Substituting, 1

1 1 1

2
1=

+( )
= .

Assume case for k is true, need to show case for 
k +( )1  is true: Given the assumption

1 2 3
1

2
+ + + + =

+( )
� k

k k
. Then, 

1 2 3 1
1

2
1+ + + + + +( ) =

+( )
+ +( )� k k

k k
k

= +( ) +





k
k

1
2

1

= +( ) +





k
k

1
2

2

2

=
+( ) +( )k k1 2

2

=
+( ) +( ) + k k1 1 1

2
.

For some conjectures, a visual “Behold!” Proof is pos-
sible. A common example is this proof of the Pythago-
rean Theorem.

Conjecture: In any right triangle, the square of the 
hypotenuse c (side opposite the right angle) equals 

the sum of the squares of the other two sides a and b: 
c2 = a2 + b2.

Proof: Behold! 

a

c

c

c

c

b b

ab ab

b

a

b

b

a

b

a

a

As in most proofs, effort is needed to understand a 
“Behold!” Proof. In this example, focus on the common 
areas and rearrangement of the four triangles. The first 
large square involves two smaller squares (areas a2 and 
b2) and four triangles, while the second large square 
involves one small square (area c2) and the same four 
triangles. Noting that this proof has been traced back 
to early Chinese mathematics, it is important to add 
that more than 360 different proofs of the Pythagorean 
Theorem are known.

Despite their connection to truth, proofs can cre-
ate mathematical fallacies. Examples include the use 
of Mathematical Induction to prove that, “All horses 
are of the same color,” the misleading dependence on a 
geometrical diagram to prove that all triangles are isos-
celes or even proofs that disguise computational errors, 
such as the following:

Conjecture: 1= 2
Proof:  

Statement Justification

1. Let n = m > 0 1. Assumption

2. n2= mn 2. Multiplying both  
sides by n

3. n2−m2= mn − m2 3. Subtracting m2 
from both sides

4. n m n m m n m+( ) −( ) = −( ) 4. Factoring both 
sides

5. n m m+( ) = 5. Dividing both 
sides by n m−( )  

6. m m m+( ) = 6. Substitution as 
n = m

814 Proof



7. 2m = m 7. Simplification

8. 2 = 1 8. Dividing both 
sides by m

In supporting this obviously wrong conclusion, this 
proof relies on the reader’s literal acceptance of each 
statement and its justification. That is, the proof seems 
“true” unless the reader notices that statement five 
involves division by zero, which is not possible. 

When constructing proofs of mathematical conjec-
tures within a system, mathematicians are concerned 
with many issues related to the logical structure. Is the 
system “consistent,” in that no proven theorem contra-
dicts another? Is the system “valid,” in that no math-
ematical fallacies or false inferences will be created? 
Is the system based on underlying axioms or initial 
assumptions that are reasonable? And, is the system 
“complete,” in that every conjecture can be proven 
either true or false? In the 1930s, logician Kurt Gödel 
shocked the mathematical world when he proved that 
a “powerful” mathematical system cannot be both 
complete and consistent at the same time. For some 
mathematicians, Gödel’s theorems weakened the 
foundational structure of mathematics, while others 
felt that it strengthened it. Mathematicians also debate 
about the role of computers in proofs. In the seven-
teenth century, Gottfried Leibniz predicted an auto-
matic counting machine that would vastly improve 
reasoning. In the twentieth century, Herbert Gelernter 
wrote a program to prove theorems from Euclid’s Ele-
ments, but critics noted the dependence on program-
mer-supplied rules. Some mathematicians do not 
accept proofs such as the first proof of the Four-Color 
Theorem in 1977, which depended on an analysis of 
many cases by a computer.

Formal proof is a special technique within the realm 
of mathematics, which is why the public views math-
ematics as the prime model for establishing truth via 
argumentation. The idea of proof is invoked in other 
fields, but with a more limited meaning. For example, 
in courtrooms, the element of truth is replaced with the 
phrase “beyond reasonable doubt” given the available 
evidence. In the sciences, proof is desired but cannot 
be established by experimental data; at best, the data 
can support the creation of hypotheses and theories, 
which will be either further verified or discounted by 
new experiments and new data. 
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See Also: Mathematics, Elegant; Reasoning and Proof 
in Society.

Proof in Society
See Reasoning and Proof in Society

Psychological Testing
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and  
Probability; Representations.
Summary: Though they often require a subjective 
element, psychological tests make every effort to 
generate useful quantitative data.

Testing is used for many different purposes within 
psychology—among them to evaluate intelligence, 
diagnose psychiatric illness, and identify aptitudes and 
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interests. Although the results of testing 
are rarely used as the sole criterion to 
make a diagnosis or other decision about 
an individual, they are often used in con-
junction with information gained from 
other sources, such as interviews and 
observations of behavior. There are many 
types of psychological tests, but most 
share the goal of expressing an essentially 
unobservable quality such as intelligence 
or anxiety in terms of numbers. The 
numbers themselves are not meant to be 
taken literally—no one seriously believes 
that a person’s intelligence is equivalent 
to their IQ score, for instance. Instead the 
numbers are useful tools that help evalu-
ate a person’s situation; for instance, how 
does the intellectual development of one 
particular child relate to that of other 
children of his age? Of course, the results 
of psychological testing should be evalu-
ated with the social context of the indi-
vidual in mind and with full respect for 
human diversity. 

Psychometrics
Psychometrics is a field of study that applies mathe-
matical and statistical principles to devise new psycho-
logical tests and evaluate the properties of current tests. 
Psychologist Anne Anastasi was often known as the 
“test guru” for her pioneering work in psychometrics. 
In her 1954 book Psychological Testing, she discussed 
the ways in which trait development is influenced by 
education and heredity as well as how differences in 
training, culture, and language affect measurement. 
The two most common approaches to psychometrics 
in the twenty-first century are classical test theory and 
item response theory (IRT).

Classical test theory is the older approach and the 
calculations required can be performed with a pencil 
and paper, although twenty-first-century computer 
software is often used. Classical test theory assumes 
that all measurements are imperfect and thus contain 
error: the goal is to evaluate the amount of error in a 
measurement and develop ways to minimize it. Any 
observed measurement (for instance, a child’s score 
on an intelligence test) is made up of two components: 
true score and error. This may be written as an equa-

tion: X = T + E, where X is the observed score, T is 
the true score (the score representing the child’s true 
intelligence), and E is the error component (resulting 
from imperfect testing). Classical test theory assumes 
that that error is random and thus will sometimes be 
positive (resulting in a higher observed score than true 
score) and sometimes negative (resulting in a lower 
observed score than true score) so that over an infinite 
number of testing occasions, the mean of the observed 
scores will equal the true score. Although normally a 
test is administered only once to a given individual, this 
is a useful model that facilitates evaluation of the reli-
ability and validity of different tests.

Item response theory (IRT) is a different approach 
to psychological testing and assumes that observed 
performance on any given test item can be explained 
by a latent (unobservable) trait or ability so that indi-
viduals may be evaluated in terms of the amount of 
that trait they contain, and items may be evaluated in 
terms of the amount of the trait required to answer 
them positively. For an item on an intelligence test 
(intelligence being the latent trait), persons with 
higher intelligence should be more likely to answer 

816 Psychological Testing

Most psychological tests try to translate unobservable qualities 
such as intelligence or anxiety in terms of numbers.



the question correctly. The same principle applies to 
IRT-based tests evaluating other psychological char-
acteristics; for instance, if an item in a psychological 
screening test is meant to diagnose depression, a per-
son with more depressive symptoms should be more 
likely to answer it positively. IRT is a mathematically 
complex method of analysis that depends on the use 
of specialized computer software and has become 
a popular means to evaluate psychological tests as 
computers have become more affordable. Although 
the mathematical models of IRT differ from that of 
classical test theory, the goals are the same: to devise 
tests that measure characteristics of individuals with 
a minimum of error. 

Reliability and Validity
The term “reliability” refers to the consistency of a test 
score: if a test is reliable it will yield consistent results 
over time and without regard to the irrelevant condi-
tions such as the person administering the test. Inter-
nal consistency is considered an aspect of reliability: 
it means that all the items in a test measure the same 
thing. Temporal reliability is also called “test-retest 
reliability” because it is typically evaluated by having 
groups of individuals take the same test on several 
occasions and seeing how their scores compare Some 
differences are expected because of the random nature 
of the error component, but there should be a strong 
relationship between the observed scores of individu-
als on multiple occasions.  

The term “inter-rater reliability” refers to the con-
sistency of a test or scale regardless of who adminis-
ters it. For instance, psychiatric conditions are often 
evaluated by having an observer rate an individual’s 
behavior using a scale, and the results for different 
observers evaluating the same individual at the same 
time should be similar. For instance, three psycholo-
gists using a scale to evaluate the same child for hyper-
activity should reach similar conclusions. Both types 
of reliability are typically evaluated by correlating test 
results on different occasions (temporal) or the scores 
returned by different raters (inter-rater). 

Internal consistency can be measured in several 
ways. The split-half method involves having a group 
of individuals take a test, then splitting the items into 
two groups (for instance, odd numbered items in one 
group and even in the other) and calculating the cor-
relation between the total scores of the two groups. 

Cronbach’s alpha (or coefficient alpha) is a refinement 
of the split-half method: it is the mean of all possible 
split-half coefficients. The measure was developed and 
named “alpha” by Lee Chronbach, an educational psy-
chologist and measure theorist who began his career as 
a high school mathematics and chemistry teacher.

The term “validity” refers to whether a test mea-
sures what it claims to be measuring. Three types of 
validity are typically discussed: content, predictive, and 
construct. Content validity refers to whether the test 
includes a reasonable sample of the subject or quality 
it is intended to measure (for instance, mathematical 
aptitude or quality of life) and is usually established by 
having a panel of experts evaluate the test in relation to 
its purpose. Predictive validity means that test scores 
correlate highly with measures of similar outcomes in 
the future; for instance, a test of mechanical aptitude 
should correlate with a new hire’s success working as 
an auto repairman. Construct validity refers to a pat-
tern of correlations predicted by the theory behind the 
quantity being measured: the scores on a test should 
correlate highly with scores on other tests that measure 
similar qualities and less highly with those that mea-
sure different qualities. 

Further Reading
Embretson, Susan E., and Steven P. Reise. Item Response 

Theory for Psychologists. Mahwah, NJ: Erlbaum, 2000.
Furr, R. Michael, and Verne R. Bacharach. Psychometrics: 

An Introduction. Thousand Oaks, CA: Sage, 2007.
Gopaul McNicol, Sharon-Ann, and Eleanor Armour-

Thomas. Assessment and Culture: Psychological Tests 
with Minority Populations. Burlington, MA:  
Elsevier, 2001.

Kline, Paul. The Handbook of Psychological Testing.  
2nd ed. New York: Routledge, 2000.

Wood, James M., Howard N. Garb, and M. Teresa  
Neszworski. “Psychometrics: Better Measurement 
Makes Better Clinicians.” In The Great Ideas of  
Clinical Science: 17 Principles That Every Mental 
Health Professional Should Understand. Edited by  
Scott O. Lilienfeld and William T. O’Donohue.  
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Pulleys
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry.
Summary: Pulleys provide mechanical advantage 
and help people do work.

A pulley is a simple machine consisting of a cylinder, 
called a “drum,” “wheel,” or “sheave,” rotating on an 
axle, and a rope, chain, or belt running over the cylin-
der without sliding. Pulley drums often have grooves 
and ribs that prevent their ropes from sliding over 
the edge. People use pulleys in three ways: to change 
directions of forces, to change magnitude of forces, 
and to transmit power. Pulleys are used in building 
and construction, ship rigging, and within belt-driven 
mechanisms. 

Mathematicians have investigated many aspects of 
pulleys. There is evidence that Archimedes of Syracuse 
used a compound pulley to move a ship and studied 
the related theories. He famously expressed: “Give me 
a place to stand and I will move the Earth.” While his 
mechanical inventions brought him recognition among 
his contemporaries, he seems to have preferred pure 
mathematics. Guidobaldo del Monte reduced systems 
of pulleys to levers. Guillaume de l’Hôpital investigated 
the equilibrium of a pulley system, and mathematicians 
continue to explore his pulley problem using algebra, 
geometry, trigonometry, and calculus. A mechanical 
tide-predicting machine, which incorporated pulleys, 
is attributed to William Thomson, who later became 
Lord Kelvin.

Changing Directions of Forces
In an example of this use of pulleys, construction work-
ers often attach pulleys to roofs of buildings. A builder 
standing on the ground can pull down on one end of 
the pulley’s rope and a weight on the other end will 
move up as the drum rotates. 

The vectors of input and output forces always go 
along the two ends of the pulley’s rope. This means that 
a pulley can change the direction of a force within the 
plane that is perpendicular to the pulley’s axle but not 
sideways from that plane. The builder can also stand 
inside the building, pulling the rope through a window, 
or on the roof pulling horizontally, as long as the trian-
gle formed by the worker, the weight, and the pulley’s 
drum is perpendicular to the pulley’s axle.

Changing Magnitudes of Forces
When a pulley is used to change the magnitude of a force, 
its axle is attached to the weight, and the pulley moves 
up together with the weight. For example, a sailor can 
attach one end of a line to a yardarm, string it around 
a pulley’s drum attached to a weight, and pull the other 
end up, standing on the yardarm. The sailor will only 
have to apply the force equal to one-half of the weight.

Does the other half of the force disappear, breaking 
the conservation of energy law and the work-energy 
theorem? No, it is distributed to the other, attached 
end of the rope. Moreover, the sailor will use half the 
force, but pull enough line to cover twice the distance 
the weight is lifted. The total work, which is equal to 
the product of the force and the distance, will be the 
same as in the fixed pulley case:

W F d F d= × = ×1

2
2 .

Changing Directions and Magnitudes of 
Forces: Blocks and Tackles
Because it is much easier to work for longer than to 
increase one’s force, movable pulleys are widely used. 
A block and tackle is a pulley system where the rope 
zigzags through movable and fixed pulleys. Depending 
on the way the tackle is rigged, it can provide a force 
advantage with the factor of two, as in the example 
above, or 3, 4, 5 and so on. At first sight, it would seem 
that a block and tackle can reduce the force required to 
lift weights by any factor. However, friction interferes 
increasingly with more pulleys used.

Marine cadets memorize rigging of common block 
and tackle systems, and the names of tackles corre-
sponding to force advantage factors: factor 2: “gun”; 
factor 3: “luff”; factor 4: “double”; factor 5: “gyn.”

Drums for tackles may have multiple grooves to 
reduce rope friction. When tackles are combined, for 
example, a double tackle upon a luff tackle, their force 
advantage factors multiply, in this case, creating the 
force advantage of 3 × 4 =12.

Transmitting Power
A belt or a chain going in a loop over two or more pul-
ley drums makes all of them rotate when one is rotated. 
For example, a bicyclist rotates the special pulley drum, 
called a “crank,” to which pedals are attached. The rota-
tion of this crank is transmitted to the rotation of the 
rear wheel’s crank, which makes the bicycle move. Using 
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drums of different diameters, such as cranks on a sports 
bicycle drivetrain, can produce a force advantage.

Until the mid-twentieth century, factories typically 
used belts distributing power to individual machines 
from one central rotating drum, connected to a large 
steam, turbine, or animal-powered capstan engine. This 
power transmission system is called “line shaft.” Because 
most industries have switched to compact electric 
motors, one is currently more likely to meet this type 
of a pulley in a museum or a history book. A human-
powered capstan is also a popular science or histori-
cal fiction trope, used to demonstrate oppression, for 
example, in Conan the Barbarian and Captain Blood.

Further Reading
Boute, Raymond. “Simple Geometric Solutions to De 

l’Hospital’s Pulley Problem.” College Mathematics 
Journal 30, no. 4 (1999).

Hahn, Alexander. Basic Calculus: From Archimedes to 
Newton to its Role in Science. Emeryville, CA: Key  
College Publishing, 1998.

Rau, Dana. Levers and Pulleys: Super Cool Science 
Experiments. Ann Arbor, MI: Cherry Lake  
Publishing, 2009.

Maria Droujkova

See Also: Archimedes; Bicycles; Elevators.

Puzzles
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Geometry; Number  
and Operations.
Summary: Because problem solving is a core activity 
of mathematics, it lends itself well to puzzles.

A puzzle is a question, problem, or contrivance 
designed to challenge and expand the mind and per-
haps test ingenuity. Puzzles have been found in virtu-
ally all cultures and all historic periods, even in mythol-
ogy. According to legend, the Sphinx prevented anyone 
from entering Thebes who failed to find the correct 
answer to the question: What is it that has four feet in 
the morning, two at noon, and three at twilight? 

Mathematicians have long created puzzles and 
explored their solutions for research and applications. 
They have also created puzzles for purely recreational 
purposes. Teachers in many subjects within and out-
side mathematics use puzzles in the classroom.

There are a number of ways in which words and 
arrangements of letters or objects are used to create 
puzzles. Some problems in the Rhind Mathematical 
Papyrus (1650 b.c.e.) are seen as puzzles. One example 
is a rhyme that also appears in Leonardo Pisano Fibo-
nacci’s 1202 work Liber Abaci and is still popular today. 
Here is a modern version:

As I was going to St. Ives,
I met a man with seven wives.
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits.
Kits, cats, sacks, wives,
How many were going to St. Ives?

One may only assume that the narrator was going to 
St. Ives, not necessarily the other travellers. Mathemati-
cally, logic, branching diagrams, multiplication, and 
addition can be used to determine the final solution. 

Traditional in several cultures, namely in Africa, is 
the Crossing Problem. The following is a version from 
Alcuin of York (735–804): 

A man wishes to ferry a wolf, a goat, and a cabbage 
across a river in a boat that can carry only the man 
and one of the others at a time. He cannot leave the 
goat alone with the wolf nor leave the goat alone 
with the cabbage on either bank. How will he safely 
manage to carry all of them across the river?

To solve this problem, one must recognize that the 
man may carry an item back and forth across the river 
as many times as needed and ultimately find appropriate 
combinations and sequencing. Dynamic versions of this 
game appear online, adding visual and tactile compo-
nents to the solving process. Extensions of this problem 
include adding more items to the list, increasing the size 
of the boat to carry more items, and adding an island 
in the middle of the river where objects may be placed. 
Mathematicians such as Luca Pacioli, Niccolo Tartaglia, 
Claude-Gaspar Bachet, and Edouard Lucas investigated 
this problem. A well-known medieval task consisted of 
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arranging men in a circle so that when every k-th man is 
removed, the remainder shall be a certain specified man. 
Several authors commented on this, from Girolano Car-
dano in the sixteenth century to Donald Coxeter in the 
twentieth century. 

Word Puzzles
Anagrams have a long and mysterious history, being 
seen as source of ludic pleasure but are also believed 
by some to possess mystic powers. Inside a word or 
phrase, another one is hiding that one can get by per-
muting the letters in a different order. For instance, the 
letters in the word “schoolmaster” may be rearranged 
to form the related phrase “the classroom.”

Lewis Carroll (1832–1898) invented a forerunner 
of the crossword: the “doublet.” There are two words 
presented to the solver, who is required to change one 
word to the other by replacing only one letter at a time, 
forming a legitimate word with each transformation. 
One of his examples is to change “HEAD” into “TAIL,” 
which can be done via the following sequence: “HEAL,” 
“TEAL,” “TELL,” “TALL,” and “TAIL.”

Visual Puzzles
Visual puzzles are also popular, such as optical illu-
sions, which have long been investigated by mathema-
ticians. Some of these address mathematical questions 
in disciplines like geometry and visualization, includ-
ing figures that appear to be impossible.

Figure 1. Are the two dark lines parallel?

Figure 2. An illustration of an “impossible” object.

Samuel Loyd (1841–1911) is referred to by some 
as “America’s greatest puzzlist.” He reputedly created 
thousands of puzzles. Some of his inventions were very 
original, like the Get Off the Earth puzzle. There are 
13 men in the figure on the left. Rotating the puzzle, as 
shown in the figure on the right, produces a drawing 
that has 12 men. What happened to the 13th man?

Figure 3. The Get Off The Earth puzzle.

Arithmetic Puzzles
Numerical relations and arithmetical principles are 
often found in puzzles. “Magic squares,” which are 
square arrays of consecutive numbers with constant 
sum in columns, rows, and diagonals, illustrate this 
clearly. One of the oldest, the Chinese lo-shu, dates 
back thousands of years. Leonhard Euler’s (1707–
1783) work on Latin Squares, which are arrays of sym-
bols with no repetitions in rows or columns, is one of 
the foundations of Sudoku puzzles, which appeared in 
a U.S. magazine in the 1970s but became famous first 
in Japan and then in the world. Tartaglia (1500–1557) 
presented the following numerical problem: A dying 
man leaves 17 horses to be divided among his three 
sons in the proportion 1/2 : 1/3 : 1/9. Can the brothers 
carry out their father’s will? Since 17 is not a multiple 
of 2, 3, or 9, there is no solution that would give all of 
the sons a whole number of horses. 

Some authors shared problems, even if they lived in 
different centuries. Fibonacci (1170–1250), Tartaglia, 
and Bachet (1581–1638) all investigated the question: 

If you have a balance, what is the least number of 
weights necessary to weigh any integer number of 
pounds from 1 to 40? (Assume you can put weights 
in either side of the balance.) 

“Cryptarithms,” created for training the calculating 
mind in 1913, were very popular in the twentieth cen-
tury. In a cryptarithm, one is asked to find the digits 

820 Puzzles



erased from a valid calculation. Later, prolific English 
puzzle inventor, Henry Dudeney (1857–1930), substi-
tuted letters for the unknown numbers to create another 
layer of meaning. In his first example of an “alphametic” 
is the equation: SEND + MORE = MONEY, where 
each letter represents a different digit, and the addition  
is correct.

Rearrangement Puzzles
Some dissection and rearrangement puzzles are based 
on mathematical principles. Archimedes of Syracuse 
(287–212 b.c.e.) may have created a 14-piece puzzle, 
the “Stomachion,” as part of his research. It resembles a 
version of a “Tangram,” a Chinese puzzle that became 
very popular in the nineteenth century in the West and 
is often used in mathematics classrooms in the twenty-
first century to investigate dissections and concepts like 
the Pythagorean Theorem, named for Pythagoras of 
Samos. The Fibonacci sequence relation 

F F Fn n n

n( ) = + −( )− +

−2

1 1

1
1  

with n = 6 can be used to create a dissection puzzle. 
Larger values of n generate similar, more impressive 
puzzles, where the difference of area between a large 
square and a large rectangle is always included. Some 
dissection puzzles may lead to optical illusions when the 
pieces do not fit exactly together, leading to two figures 
composed of the same pieces that have different areas.

Figure 4. An 8-by-8 square and 5-by-13 rectangle 
made with the same pieces?

!

Topological Puzzles
Ring and string puzzles as well as knotted puzzles are 
examples of topological puzzles, where no discontinu-
ous deformations like cutting the string are allowed. In 
his De Viribus Quantitatis (c. 1500), cited as the oldest 
book in recreational mathematics, Luca Pacioli (1445–
1517) describes the Chinese Rings, a topological puzzle 
still popular in the twenty-first century.

Figure 5: A modern version of the Chinese Rings 
puzzle

Euler’s name is linked to several puzzles. He solved 
the Bridges of Konigsberg Problem, and this work of 
his is usually seen as the starting point of topology and 
graph theory. 

Figure 6: The Bridges of Konigsberg Problem: is it 
possible to cross all the bridges only once?

The concept of the Eulerian graph is rooted in Eul-
er’s resolution of the Bridges of Koenigsberg problem. 

Movement Puzzles
Numerous puzzles involve patterned movement 
within some type of framework, and solutions some-
times involve mathematical techniques like number-
ing, recursion, group theory, and determinants. Peg 
Solitaire traces its origins from seventeenth-century 
France. It is a game where a board has all its holes occu-
pied with pegs except for the central one. The objective 
is, making valid moves (small jump capture), to empty 
the entire board but for a solitary peg in the central 
hole (see Figure 7).

The Towers of Hanoi is a puzzle invented in 1883 by 
N. Claus, a pseudonym of the mathematician Edouard 
Lucas (1842–1891). A pile of discs of decreasing radius 
lays on one of three poles. Moving one disc at a time, 
without letting a bigger disc rest on a smaller one, the 
solver is asked to change the pile from one pole to 
another (see Figure 8).
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Figure 7. Peg Solitaire: starting and target position.

Figure 8. Towers of Hanoi: starting and target positions.

The recursive character of the solution to this puzzle 
makes it somewhat similar to the Chinese Rings. 

Other Puzzles
The chessboard is a rich source of puzzles that attracted 
many mathematicians. In the Knight Tour problem, a 
knight must visit all the squares of the board just once. 
Euler is one mathematician who published a solution. 
Mathematician Johann Carl Friedrich Gauss (1777–
1855) was attracted by the 8-Queen Problem, in which 
eight queens must be placed on a chessboard so they 
cannot capture any other queen. Some mathematicians 
have used determinants to solve this problem.

Figure 9. The 8-Queen Problem: one solution.

The nineteenth century produced a popular puzzle 
named “15.” It consists of a sliding device, a 4-by-4 
array with the numbers one through 15 and an empty 
cell. The puzzle was scrambled and the solver was 
required to transform the scrambled order back to the 
natural order with the empty cell in the last position. 
Sam Loyd offered $1,000 to whoever could reorder a 
scrambled 14 and 15 in an otherwise solved puzzle. 
The prize was never claimed. The impossibility of this 
challenge can be understood when phrased in the lan-
guage of group theory.

Figure 10: The “impossible” task.

Another very mathematical puzzle that captivated 
the world was Rubik’s Cube, created by Hungarian 
architect Erno Rubik in the 1970s that became the 
best selling puzzle in history. A 3-by-3-by-3 cube, 
with differently colored faces, moves by slices, getting 
scrambled with just a few moves. To find the way back 
to the starting position is an incredible challenge. This 
toy puzzle is used to illustrate many group theory con-
cepts. On the other hand, knowledge of group theory 
facilitates the understanding of the puzzle itself.

Since ancient times, descriptions of “mazes” that 
must be traversed in a particular pattern of moves have 
abounded in legend and literature. The Minotaur–
Theseus tale is one such example. Stone and hedge 
labyrinths may still be found in places like Europe 
and many puzzle books contain paper mazes. Some 
mazes can be understood using what is known as “level 
sequences.”

The “jigsaw puzzle” was invented in England in 
the mid-1870s as a pedagogical device. Children were 
asked to rebuild maps. In the twentieth and twenty-
first centuries, jigsaw puzzles expanded to include 
three-dimensional jigsaw puzzles, including spheri-
cal three-dimensional puzzles, and two-dimensional 
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jigsaw puzzles that are all one color that have all the 
pieces cut to the same shape. This last style of puzzle is 
related to tiling. Another mathematical question is how 
to optimally and efficiently design and cut out puzzle 
pieces according to certain specifications. 

Puzzle designer Scott Kim is considered by some to 
be a master of symmetry. He has diverse interests in 
many fields, including mathematics, computer science, 
puzzles, and education. When discussing these inter-
ests, he emphasizes the ties between them rather than 
their differences. One of his creations is an ambigram 
to honor of the great Martin Gardner (1914–2010), 
who invented many puzzles and is known for his rec-
reational mathematics works. An ambigram is a figure 
that appears the same when rotated 180 degrees or 
viewed upsidedown.

Further Reading
Danesi, Marcel. The Puzzle Instinct: The Meaning 

of Puzzles in Human Life. Bloomington: Indiana 
University Press, 2002.

Dedopulos, Tim. The Greatest Puzzles Ever Solved. 
London: Carlton Books, 2009.

Olivastro, Dominic. Ancient Puzzles: Classic Brainteasers 
and Other Timeless Mathematical Games of the Last 10 
Centuries. New York: Bantam Books, 1993.

Petkovic, Miodrag. Famous Puzzles of Great 
Mathematicians. Providence, RI: American 
Mathematical Society, 2009.

Sam Loyd’s Puzzles. http://www.samuelloyd.com/ 
gallery.html.

Scott Kim Puzzlemaster. “Inversions Gallery.” http://
www.scottkim.com/inversions/gallery/gardner.html.

Slocum, Jerry, and Jack Botermans. New Book of Puzzles: 
101 Classic and Modern Puzzles to Make and Solve. 
New York: W.H. Freeman, 1992.

———. The Tangram Book: The Story of the Chinese 
Puzzle With Over 2,000 Puzzles to Solve. New York: 
Sterling Pub. 2003.

Slocum, Jerry, and Dic Sonneveld. The 15 Puzzle: How 
It Drove the World Crazy; The Puzzle That Started the 
Craze of 1880; How America’s Greatest Puzzle Designer, 
Sam Loyd, Fooled Everyone for 115 Years. Beverly Hills, 
CA: Slocum Puzzle Foundation, 2006.
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Horizons 12 (November 2004).

Jorge Nuno Silva

See Also: Acrostics, Word Squares, and Crosswords; 
Board Games; Coding and Encryption; Dice Games; 
Mathematical Puzzles; Optical Illusions; Sudoku.

Puzzles, Mathematical
See Mathematical Puzzles

Pythagorean and  
Fibonacci Tuning
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Measurement; 
Representations.
Summary: The relationship between mathematics 
and music led to several tuning systems.

A musical scale is a sequence of ordered notes used to 
construct music compositions. Scales can be classified 
according to their starting point, the intervals between 
their notes, or the number of notes they contain. 
Instruments may be tuned according to many possible 
systems. There are close mathematical connections 
between musical scales, tuning systems, and number 
theory, as well as dynamical systems. Mathematics also 
plays a critical role in designing playable and efficient 
keyboards for instruments that will be tuned to some-
thing other than the standard eight-note Western scale.

Most Western music uses an eight-note “octave” 
scale (do, re, mi, fa, sol, la, ti, do), where the two “do” 
notes have the same tone but different pitches. The 
piano keyboard is set up in the C major key, where 
the white keys starting with C correspond to the eight 
notes in the octave. 

C

C♯ D♯ F♯ G♯ A♯

D E F G A B C
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There are also tones between some of the notes on 
the scale, represented on the piano by the black keys. 
Counting from C to B, there are 12 equal semitones in 
the chromatic scale of Western music. 

To tune an instrument with strings, the lengths of the 
strings are adjusted to produce the correct pitch. Pythag-
oras of Samos (570–495 b.c.e.) is credited with realiz-
ing two things that allowed him to calculate the string 
lengths for the 12 semitones of the chromatic scale:

1. A string that is half as long produces the tone 
that is one octave higher. A string that is twice as 
long produces a tone that is one octave lower.

2. A string that is two-thirds as long produces a 
tone that is up five notes (called a fifth, or  
do-sol interval), seven semitones higher in the 
12-tone chromatic scale.

Pythagoras saw that seven and 12 share no common 
factors and that he could use this fact to generate the 
lengths of all 12 strings in the chromatic scale. 

1. Start with a string that sounds like a C note.
2. Cut a string that is two-thirds of the C string 

to give G.
3. Cut a string that is twice as long as G, yielding 

the same tone down an octave.
4. Cut a string two-thirds of this new lower G to 

give D.
5. Cut a string two-thirds as long as D to give A.
6. Cut a string twice as long as A, yielding A 

down an octave.

7. Cut a string two-thirds of the lower A to give 
E.

8. Cut a string two-thirds of E to give B.
9. Cut a string twice as long as B, yielding B 

down an octave.

Continue in this pattern, shortening a string to 
two-thirds to produce new higher notes and doubling 
the string when needed to avoid going past the top of 
the octave. After 19 steps, all of the strings of the C to 
C octave are determined, as well as a few extra notes 
below C (see Figure 1).

Called the “circle of fifths,” this method of tuning by 
shortening the string to move up seven semitones (and 
back 12 when needed) would not work if the two num-
bers involved shared a common factor, such as four and 
12. Not all of the semitones would be “hit” in that case.

Equal Tuning
Pythagoras was a little off when he assumed that a 
string two-thirds as long would produce the sev-
enth semitone. In actuality, using irrational numbers 
(something Pythagoras did not believe in), the lengths 
of string needed to produce all of the semitones can be 
found more precisely. Starting with a string of length 
two, one can factor two into 12 equal parts or “twelfth 
roots.” This method of tuning, used in the twenty-first 
century for most music, is called “equal tuning” (see 
Figure 2). The values of these irrational numbers to 
three decimal places show that the fifth note (or sev-
enth semitone) string, G, is actually slightly more than 
two-thirds of the C string: two-thirds of a string of 
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Figure 1.

C C♯ D D♯ E F F♯ G G♯ A A♯ B C
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2 1.888 1.782 1.682 1.587 1.498 1.414 1.335 1.260 1.189 1.122 1.059 1

Figure 2.



length 2 would yield a G string of length 1.333 rather 
than the equal tuning length of approximately 1.335. 
This little bit of difference is magnified when the circle 
of fifths technique is used to tune the strings, yielding 
notes that sound flat.

Other Tuning Systems
Between Pythagoras’s time and the twenty-first century, 
a number of other tuning strategies were developed 
as music and mathematics knowledge grew. Popular 
in the medieval age, for example, was “just” tuning, 
which differs from both Pythagorean and equal tun-
ing. To use equal tuning in the twenty-first century, one 
does not have to physically measure strings precisely; 
equipment can be used to measure the fundamental 
frequency (related to the pitch) of the sound wave gen-
erated by the string in order to tighten the string to the 
correct length.

There is also a method of tuning based on the Fibo-
nacci series of Leonardo Pisano Fibonacci, which has 
been analyzed by English mathematician Sir James 
Jeans. The numbers in the musical Fibonacci series (2, 
5, 7, 12, 19, . . .) can be generated by increasingly long 
series of musical fourths and fifths from the octave scale. 
An interval of two tones that are a fifth apart, such as F 
and C, have a frequency ratio of three-halves. The next 
fifth is a G, which is musically very close to the original 
F, but an octave higher, so the two-tone scale is left as F 
and C. Extending the fifths to a five-tone scale gives F, 
C, G, D, and A. This would be followed by E, which is 
again almost the initial F. A slight modification made by 
slightly raising all the tones (after the initial F) would 
create a five-note equal tuning scale. Increasingly larger 
scales can be made by continuing this pattern.

Further Reading
Ashton, Anthony. Harmonograph: A Visual Guide to the 

Mathematics of Music. New York: Walker & Co., 2003. 
Hall, Rachel W., and Kresimir Josic. “The Mathematics 

of Musical Instruments.” American Mathematical 
Monthly 108, no. 4 (2001).

Jeans, James. Science and Music. New York: Dover 
Publications, 1968.

Holly Hirst

See Also: Geometry of Music; Harmonics; Popular 
Music; Scales.

Pythagorean School
Category: Friendship, Romance, and Religion.
Fields of Study: Algebra; Communication; 
Geometry; Number and Operations.
Summary: Religious devotees of mathematics, the 
Pythagoreans could not accept irrational numbers but 
made lasting contributions.

The Pythagorean School is the name given to a num-
ber of mathematicians and followers of Pythagoras. 
Pythagoras founded the school in the sixth century 
b.c.e. in what is now southern Italy. It appears to have 
been a religious sect built around the proposition that 
reality was revealed through numbers. It was one of 
the earliest philosophical schools, and at the time there 
were no rigid boundaries between philosophy, religion, 
and politics. 

The school had aspects of all three and was a major 
political force in some Greek cities. To some extent, it 
was thought of as a secret society. Initiates are said to 
have taken a vow of silence. This fact and many others 
about the school are difficult to verify because of a lack 
of sources from this time. Most of what is known about 
the Pythagoreans comes in fragments from later philos-
ophers like Plato or Aristotle. Much of the detail about 
Pythagoras’s life is revealed from even later sources, in 
the works of Diogenes Laertius, Iamblichus, and Por-
phyry, who wrote many centuries after his death. As a 
result, much information about the school is ancient 
hearsay that embellishes what was already a peculiar 
belief system. The Pythagorean habit of attributing dis-
coveries to Pythagoras, as well as the silence, also makes 
it hard to distinguish the discoveries of the man from 
his school. Nevertheless, the influence of his school and 
mathematical philosophy can still be felt in the twenty-
first century concept of “the liberal arts.”

Pythagoras and the  
Foundation of the School
Pythagoras lived from around 580 to 500 b.c.e., but 
the exact dates are uncertain. He was the son of a lead-
ing citizen of Samos (an island in the Aegean), and it is 
possible that his political significance led Pythagoras to 
leave the city during the rule of Polykrates the Tyrant. 
He does not seem to have become prominent until 
around 530 b.c.e. in the city of Croton, on the southern 
shore of Italy. The ancient authors account for his life 
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before then by a journey gathering the wisdom of other 
cultures, such as the Egyptians and Babylonians.

The wisdom he gained is said to have given him many 
powers. For example, he claimed to recall his previous 
incarnations, such as his life as the Trojan hero Euphor-
bus. He is also said to have appeared talking to friends 
at Metapontium in southern Italy and Tauromenium, 
on Sicily, on the same day, despite this being impos-
sible with the transport of the day. The same chapter 
of Porphyry’s Life of Pythagoras also recounts that a 
river spoke very clearly to say “Hail Pythagoras!” as he 
crossed it. Some ancient authors, such as the philoso-
pher Heraclitus, were unconvinced. These and similar 
tales show not only that he was seen as a divine figure in 
the ancient world but also that the ancient sources are 
not wholly reliable. Some modern historians go so far 
as to discount any mathematical achievements being 
the work of the actual Pythagoras. Instead, they argue 
that the achievements of Pythagoreans were attributed 
to Pythagoras to add luster to his memory.

The school was extraordinarily egalitarian for its 
era. It admitted both men and women at a time when 
women were not considered citizens and were usually 
treated in the same manner as children. The school 
spread as a society throughout southern Italy and seems 
to have become a potent political force. Eventually, the 
power of the school was challenged by the non-Pythag-
oreans, and violence ensued. Polybius, writing in the 
second century b.c.e., described the chaos as being a 
maelstrom of murder, sedition, and “every kind of dis-
turbance.” There are several conflicting stories of the 
death of Pythagoras, but the oddest is that it occurred 
because he refused to cross a field of beans when an 
angry mob was chasing him. This behavior was eccen-
tric even by the standards of ancient Greece and only 
makes sense in light of the Pythagorean beliefs taught 
at the school.

Pythagorean Beliefs
Pythagoreans believed that numbers were a fundamen-
tal property of the universe and that the cosmos oper-
ated in harmonies that could be represented as ratios 
of whole numbers. The purpose of life was to achieve 
harmony with the universe through a process of purifi-
cation to counter the corrupting influence of the body. 
One of the features of this purification was that Pythag-
oreans were vegetarian—a strong political statement. At 
this time, one of the duties of a citizen was to participate 

in civic religious events. Avoiding such events or refus-
ing to perform them properly could draw the ire of the 
gods. Almost all festivals required the sacrifice of an 
animal, usually an ox or a goat. The fat and bones would 
be offered to the gods on the altar and meat would be 
part of a communal meal. A vegetarian was therefore 
separating himself from the community.

As for the material that made the cosmos, Pythagoras 
thought it was governed by numbers. He is said to have 
come to this conclusion after discovering that musi-
cal harmonies can be represented as ratios of whole 
numbers. The connection between two such different 
practices such as music and mathematics led Pythago-
ras to believe that there must be something cosmically 
significant about numbers. These ratios are embedded 
in the tetractys symbol—a triangle of 10 dots in four 
rows, one dot at the top, then two dots, then three, and 
finally four. The ratios of the motions of the planets 
were also assumed to be harmonious, and it is said that 
Pythagoras claimed to be able to hear “the music of the 
spheres,” the harmonies generated by these motions. 
Numbers that could not be represented by ratios of 
whole numbers were therefore a serious problem in 
Pythagorean cosmology.

The Pythagorean Legacy
It is hard to be sure that the theorem that bears his 
name was actually a Pythagorean concept. While 3-4-5 
triangles were used before Pythagoras’s time, he may 
have been the first to prove the Pythagorean theorem, 
or this might be a later proof attributed to the inspira-
tion of the school. However, there is reason to consider 
the interest in irrational numbers to be a Pythagorean 
innovation. Quite how this was discovered is uncertain. 
The Pythagorean theorem can be used to prove that 

2  is irrational, but irrationality can also be found in 
the “pentalpha,” a five-pointed star more commonly 
known as “pentagram,” adopted as a symbol by the 
Pythagoreans. The discovery of irrational numbers is 
sometimes credited to Hippasus of Metapontum. Usu-
ally in these tales, Hippasus meets a grisly end at the 
hands of Pythagoras who resents the existence of irra-
tional numbers. While this might be a fantastical tale, it 
is believed that the Pythagoreans were sworn to secrecy 
concerning the existence of irrational numbers because 
it was a significant threat to their belief system.

A celebrated legacy of the Pythagorean school is 
that its approach to applying mathematics to the natu-
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ral world led to the establishment of the quadrivium: 
arithmetic, astronomy, geometry, and music that, 
with grammar, logic, and rhetoric, formed the “liberal 
arts” that were the foundation of medieval univer-
sity courses. While the philosophy of liberal arts has 
changed in modern times, mathematics remains an 
important feature, as it can be found in many areas in 
higher education.

Further Reading
Burkert, W. Lore and Science in Ancient Pythagoreanism. 

Translated by Hans Carl Verlag. Cambridge, MA: 
Harvard University Press, 1972.

Kahn, Charles H. Pythagoras and the Pythagoreans. 
Indianapolis, IN: Hackett Publishing, 2001.

Riedweg, Christoph. Pythagoras: His Life, Teaching and 
Influence. Translated by Steven Rendall. Ithaca, NY: 
Cornell University Press, 2005.
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Pythagorean Theorem
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry.
Summary: The Pythagorean theorem is a 
fundamental theorem of mathematics and has 
numerous applications in number theory and 
geometry. 

The Pythagorean theorem stands as one of the great the-
orems of mathematics. Ancient peoples appear to have 
used the Pythagorean theorem to calculate the duration 
of lunar eclipses or to create right angles in their pyra-
mids or buildings. Archeological evidence suggests that 
the truth of the result was known in Babylon more than 
1000 years before Pythagoras, approximately 1900–1600 
b.c.e. Mathematicians and historians continue to debate 
the early history of the theorem and whether it was dis-

covered independently in such places as Mesopotamia, 
India, China, and Greece. For instance, some theorize 
that Pythagoras may have learned the theorem dur-
ing a visit to India, which in turn may have been influ-
enced by Mesopotamia. The theorem is the culminating 
proposition of the first book of Euclid’s Elements. While 
Euclid (c. 350 b.c.e.) did not mention Pythagoras, later 
writers such as Cicero and Plutarch referred to it as his 
discovery. As phrased in the twenty-first century, the 
theorem states the following:

In any right triangle, the square of the hypotenuse 
c is equal to the sum of the squares of the legs a and b.  
That is, a2 + b2 = c2.

The theorem has inspired countless generations, 
and it is useful in a wide variety of contexts and appli-
cations, such as in chemistry cell-packing and music.

In Pythagoras’s day, humankind had not yet invented 
algebra. As such, this theorem was not viewed with 
algebraic perspective but rather in a distinctly geomet-
ric way. Visually, as shown in Figure 1, on the right tri-
angle with legs a and b and hypotenuse c, the sum of 
the areas of the darker gray squares is equal to the area 
of the lightest gray square. 

Proofs
Among the many remarkable features of the Pythago-
rean theorem, one of the most prominent is that the 
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result admits so many different proofs, including one 
by former U.S. President James Garfield in 1876. Some 
of the shortest representations of the Pythagorean 
theorem are geometric figures called “dissections.” For 
example, Indian mathematician Bhaskara’s dissection 
figure was accompanied by the word “Behold.” The 
Chinese also presented dissection figures that are now 
called “Pythagorean,” and some theorize that these may 
have led to the development of tangram puzzles. Com-
plete Pythagorean proofs based on dissection figures 
often combine algebra and geometry.

Given a right triangle with legs of length a and b, 
construct a square of side length a + b. Then, along 
each side, mark a point that lies a units along the side. 
If consecutive pairs of these points are connected with 
line segments, four identical (congruent) copies of the 
original triangle have been constructed inside the large 
square (see Figure 2).

In addition, these four line segments have generated 
a quadrilateral (a four-sided polygon) in the interior 
of the large square. This quadrilateral’s sides each have 
length c, which is the hypotenuse of the given right tri-
angle. Further, a straightforward argument involving 
angle measurements in the triangles shows that each 
of the four angles in the interior quadrilateral mea-
sures 90 degrees. Hence, the inside quadrilateral is in 
fact a square.

Consider the area of Figure 2 in two different ways. 
First, the area A of the entire outside square, which has 
sides of length a + b, must therefore be A a b= +( )2

. 

At the same time, one can view the area of the outside 
square as having been subdivided into five parts. Four 
of those pieces are congruent right triangles whose area 
is each ab/2. The fifth part is the interior square, whose 
area is c 2. Thus, the area A of the outer square also satis-
fies the relationship that 

A
ab

c= +
4

2
2.

Equating the two different expressions for A, one 
finds 

( )a b
ab

c+ = +2 24

2
.

Expanding the left side and simplifying the right, it 
follows that a2 + 2ab + b2 = 2ab  + c2.

Finally, subtracting 2ab from both sides, the conclu-
sion of the Pythagorean Theorem follows: a2 + b2 = c2.

Applications
Furthermore, the Pythagorean theorem is rightly 
viewed as one of the most central results in Euclidean 
geometry. Its statement is equivalent to Euclid’s paral-
lel postulate, and therefore is directly tied to the truth 
of a large number of other key results.

In addition to the geometric ideas the Pythagorean 
theorem evokes, it generates key new ideas and ques-
tions about numbers. For instance, if one takes the legs 
of a right triangle to each have length 1, then it fol-
lows that the hypotenuse c is a number such that c2 = 2. 
There is no rational number (that is, no ratio of whole 
numbers) whose square is 2. This situation forced 
Greek mathematicians to reconsider their original con-
viction that all numbers were “commensurable”: that 
any possible number must be able to be expressed as 
the ratio of whole numbers. Remarkably, it took math-
ematicians another 2000 years to put the so-called 
real numbers, the set of numbers on which calculus is 
based, on solid footing.

Another Pythagorean idea that has generated a 
remarkable amount of mathematics is the notion of 
a “Pythagorean Triple,” which is an ordered triple of 
whole numbers like (3, 4, 5) that represents a solution 
to the Pythagorean theorem, since 32 + 42 = 52. A Baby-
lonian clay tablet, named the “Plimpton 322 Tablet,” 
contains many Pythagorean triples. Some suggest that 
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these were a set of teaching exercises, though histori-
ans and mathematicians continue to debate their role. 
Euclid is credited with the development of a formula 
that will generate a Pythagorean triple, given any two 
natural numbers. Indeed, there are even infinitely 
many “primitive” Pythagorean triples, triples in which 
a, b, and c share no common divisor. Algebraic exten-
sions include investigating solutions to Pythagorean-
like equations with other powers, such as a3+ b3= c3. 
Remarkably, no three positive numbers satisfy such 
equations; Pierre de Fermat, a French lawyer in the sev-
enteenth century, wrote this note (as translated by his-
torians) in the margins of Diophantus of Alexandria’s 
Arithmetica:

I have discovered a truly marvelous proof that it is 
impossible to separate a cube into two cubes, or a 
fourth power into two fourth powers, or in gen-
eral, any power higher than the second into two like 
powers. This margin is too narrow to contain it.

No one ever discovered Fermat’s proof, yet Fermat’s 
Last Theorem stimulated the development of algebraic 
number theory in the nineteenth century, and many 
results in mathematics were shown to be true if Fermat’s 
Last Theorem was true. Andrew Wiles finally proved it 
to be true near the end of the twentieth century. 

There are many other extensions of the Pythagorean 
theorem. Pappus of Alexandria generalized the theo-
rem to parallelograms. In the 1939 film The Wizard of 
Oz, the Scarecrow recites a version using square roots 
instead of squares. The Scarecrow’s theorem is false in 
planar geometry, but it can hold in spherical geom-
etry. However, the Pythagorean theorem does not hold 
on a perfectly round planet. In this case, a2 + b2 > c2. 
Writers for the animated television show Futurama 
named this the Greenwaldian theorem, after mathe-

matician Sarah Greenwald. In the twenty-first century, 
physicists and mathematicians investigate whether the 
Pythagorean theorem holds in our universe. 

The Pythagorean theorem is also a fundamental 
idea in several other areas of mathematics and appli-
cations. Essentially all of plane trigonometry rests on 
the Pythagorean Theorem as its starting point, and the 
modern notion of “orthogonality” in linear algebra is 
an extension and generalization of the work of Pythag-
oras. Both trigonometry and orthogonality lead to a 
wide range of interesting and important applications, 
including the theory of wavelets and Fourier analysis, 
mathematics that enables prominent image compres-
sion algorithms to help the Internet function.

Its own inherent beauty, the multitude of possible 
proofs, the rich mathematical ideas it spawns, and the 
applications that follow all contribute to making the 
Pythagorean theorem one of the genuine masterpieces 
in all of mathematics.

Further Reading
MacTutor History of Mathematics Archive. “Pythagoras’s 

Theorem in Babylonian Mathematics.” http:// 
www-history.mcs.st-andrews.ac.uk/HistTopics/ 
Babylonian_Pythagoras.html.

Maor, Eli. The Pythagorean Theorem: A 4000-Year History. 
Princeton, NJ: Princeton University Press, 2007.

Posamentie, Alfred. The Pythagorean Theorem: The Story 
of Its Power and Beauty. Amherst, NY: Prometheus 
Books, 2010.
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Quality Control
Category: Business, Economics, and Marketing.
Fields of Study: Data Analysis and Probability; 
Measurement.
Summary: Industrial productions and processes can 
be mathematically studied to help ensure quality.

Statistical quality control, or more broadly, quality 
assurance, seeks to improve and stabilize the produc-
tion and delivery of goods and services. A central con-
cern of quality control is the testing and reporting of 
measurements of quality—typically as part of a moni-
toring process—to ensure that the quality of the item 
being studied meets certain standards. 

Quality standards are determined by those who 
produce the goods or services. Some standards are 
specification limits imposed by engineering or design 
concerns that define conformance to a standard. For 
example, in making airplane engines, a certain part 
may need to have a diameter between 12 and 14 mil-
limeters or it will not fit into a housing. However, for 
many processes, there are no specification limits and 
quality standards may be defined internally from data 
on past behavior of a process that is judged to be “in 
control” or “stable.” For example, in examining the 
safety of a large production line, it may be that in each 
week of the last five years, the average number of per-

son hours lost to accidents has been 1.3. There is no 
specification limit for this quantity, but control limits 
can be based on this historical average.

In order to analyze a process for statistical quality 
control effectively, a process must first be declared to be 
“in control.” To be in statistical control, the vast major-
ity of the products or services must be of sufficient 
quality for the producers to be satisfied. Moreover, 
the process must be stable (the mean and variance of 
the quality measurements must be roughly constant). 
If a process is in control, then statistical analysis can 
provide meaningful control limits to the process for 
monitoring. Graphical methods play a significant role 
in statistical quality control.

History
Some measure of quality control was in evidence dur-
ing the building of the Great Pyramids of Egypt. Arche-
ologists have long been impressed not only with the 
complexity of the construction process, but also by its 
precision. In the Middle Ages, medieval guilds were 
formed, in part, to ensure some level of quality of goods 
and services. The use of statistical methods in qual-
ity control—also called “statistical process control” 
or (SPC)—is more recent, with most of the develop-
ment in the twentieth century. Graphical methods for 
quality control were introduced in a series of memos 
and papers in the 1920s by Walter E. Shewhart of Bell  
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Telephone Laboratories. The charts he developed and 
promoted are known today as “Shewhart control charts.” 
H. F. Dodge and H. G. Romig, also of Bell Laboratories, 
applied statistical theory to sampling inspection, defin-
ing rules for the acceptance of many products. Joseph 
M. Juran, whose focus was more on quality manage-
ment, rather than SPC, was another early quality pio-
neer at Bell Laboratories and later Western Electric. 

W. Edwards Deming applied SPC to manufacturing 
during World War II and was instrumental in intro-
ducing these methods to Japanese industry after the 
war ended. He and Juran are generally credited with 
helping Japanese manufacturing shed the negative 
image that “made in Japan” had in the 1950s and trans-
forming the country into a source of high quality goods 
consumed all over the world. In the early twenty-first 
century, quality control issues continue to appear in 
the media as concerns proliferate over the quality of 
goods produced in China. 

Common-Cause and Special-Cause Variation
Shewhart and Deming defined two types of variation 
that occur in all manufacturing and service processes 
in their 1939 book Statistical Methods from the View-
point of Quality Control. A certain amount of variation 
is a part of all processes and can be tolerated even when 
the goal is to produce goods and services of high qual-
ity. This variation is called “common-cause variation,” 
and it comprises all the natural variation in the process. 
The second variation, called “special-cause variation,” 
is unusual and is not part of the natural variation. Spe-
cial-cause variation needs to be detected as soon as 
possible. Quality control charts are designed to detect 
special-cause variation and distinguish it from com-
mon-cause variation.

Quality Control Charts
A quality control chart plots a summary of the qual-
ity measurements from each item (or a sample) in 
sequence against the sample number (or time). A cen-
ter line is drawn at the mean, or at the desired center of 
this statistic. Upper and lower control limits are drawn 
indicating thresholds above or below which will signal 
an “out of control” measurement. Sometimes, various 
warning lines are drawn as well, and a variety of rules 
for deciding if the measurement is really out of control 
are available. The simplest chart, called an “individual” 
(or “runs”) “chart,” plots a single measurement for each 

item. The control limits are based on the Normal prob-
ability model, which implies that for a process in con-
trol, only 0.27% of the observations will lie more than 
three standard deviations (σ) from the center. Therefore, 
if the process stays in control, a false alarm will occur 
only once in about 1/0.0027 or once every 370.4 obser-
vations. The central idea of a control chart is that a spe-
cial cause will cause the mean to shift (or the standard 
deviation to increase), and so the measurement will fall 
outside the 3σ limits with higher probability. If the shift 
is great enough, the time to detection will be very short. 
However, if the special cause results in a subtle shift, 
it may take many observations before such a signal is 
detected. Various other types of charts are available that 
have generally better performance in terms of both false 
alarm rates and failure to detect shifts.

Total Quality Management and Philosophy
The ideas of Deming, Juran, Shewhart, and others have 
inspired numerous other people and quality move-
ments. One such movement is total quality manage-
ment (TQM) also known as “total quality” and “contin-
uous quality improvement.” As the name implies, this 
approach to quality involves more than the monitoring 
of manufacturing or service processes. It includes all 
parts of the organization and, specifically, the role of 
management to help ensure that in providing goods or 
services, that “all things are done right the first time.” 
Implementing these ideas throughout a large organiza-
tion gave rise to an abundance of books, experts, and 
quality “gurus” in the latter part of the twentieth cen-
tury. One approach to total quality focuses on reducing 
variation (decreasing σ). If the common-cause varia-
tion can be reduced enough, while the process is in con-
trol, essentially no measurements will fall outside the  
3σ limits. This notion is the essential idea behind the 
6σ approach, first popularized by the Motorola com-
pany and later the General Electric Company in the 
1980s. By the late 1990s, a majority of the Fortune 500 
companies were using some form of the 6σ approach.

Further Reading
Deming, W. Edwards. “Walter A. Shewhart, 1891–1967.” 

American Statistician, 21 (1967).
———. Out of the Crisis. Cambridge, MA: MIT Press, 

2000.
Juran, Joseph M. Quality Control Handbook. New York: 

McGraw-Hill, 1999.
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“blocks,” each of which may be pieced together. Often, 
quilt patterns involve careful measurement (using com-
mon fractions) in the cutting and sewing of the pieces. 

Quilt designs are often symmetrical—the entire 
design can be folded in half along a line such that one 
half falls directly onto the other half. Each half is a reflec-
tion of the other along that line, which is called a “line 
of symmetry.” These lines may be vertical, horizontal, 
or diagonal. Some quilt blocks, such as the traditional 
Amish Star, are symmetric along many lines. Quilts and 
quilt blocks may also have rotational symmetry—the 
design can be rotated around a point through less than 
a full rotation in a way that leaves the overall design 
unchanged. Quilts in the Hawaiian Islands are known 
for their distinctive radial symmetry.

Mathematics generalizes this everyday concept of 
symmetry. A mathematical object (not necessarily a geo-
metric shape) is symmetric with respect to a particular 
mathematical operation if the operation, applied to the 
object, preserves some property of the object. A math-
ematical group consists of a set of operations that pre-
serve a given property of a given object. Group theory is 
central to abstract algebra and has many applications. 

Fabric quilts, construction paper versions, or com-
puterized models of quilt designs have been used to 
introduce students as early as elementary school to 
geometric concepts, such as symmetry and transforma-
tions. They help children develop, at a basic level, fun-
damental algebraic properties, such as inverse, identity, 
and equivalence. Students also make quilts to explore 
many other concepts, such as the Pythagorean theo-
rem, polar coordinates, group theory, the Fibonacci 
sequence, and Pascal’s triangle, named after mathema-
tician Blaise Pascal.

Tessellations
A tessellation (or tiling) is an infinitely repeating pat-
tern composed of polygons covering a plane with-
out any openings or overlaps. Many quilt designs are 
formed from tessellations. A regular tessellation uses 
one polygon with equal sides and equal angles, such as 
equilateral triangles, squares, or regular hexagons. For 
example, the traditional Grandmother’s Flower Gar-
den and Honeycomb quilt designs use tessellations of 
regular hexagons. Many modern watercolor quilts use 
tessellations of one-inch squares.  

A semi-regular tessellation uses a combination of 
squares, triangles, and hexagons that are arranged 

———. Management of Quality Control. New York: 
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Quilting
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Measurement;  
Representations.
Summary: Quilting can incorporate and help  
teach mathematical concepts, such as symmetry and 
tessellations.

Quilting is a needlework technique in which two layers 
of fabric are sewn together, usually with an inner layer 
of padding (called “batting”) between them. Often, one 
or both outer layers are formed by sewing together (or  
“piecing”) smaller pieces of fabric. Sometimes, designs 
are appliquéd (sewn onto a larger piece of fabric) or 
embroidered on the quilt. The quilting itself (the stitches 
holding the layers together) is often also decorative. Many 
traditional quilt designs display mathematical concepts, 
such as symmetry and tessellations, that generalize into 
the abstract mathematics of group theory and tiling the-
ory. In diverse parts of the world, people create quilts not 
only to warm the body at night, but also to use as cloth-
ing, furnishings, or to share family or cultural history. A 
carving of an ancient Egyptian Pharaoh figure contain-
ing what may be a quilt and a quilted carpet found in the 
mountains of Mongolia dates to approximately the first 
century. Directions can be found to quilt coded designs 
that may have been used on the Underground Railroad.

Quilt Designs
Some traditional quilts are “crazy quilts” in which 
scraps of fabric are sewn together in no particular pat-
tern. Others are formed of similar or identical square 
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identically around each vertex. Demi-regular tessella-
tions, with two vertices in each repetition, form more 
complicated quilt patterns. Many quilt blocks, such 
as Log Cabin variations, consist of non-regular tes-
sellations.

Mathematicians have generalized tiling theory to 
higher dimensional Euclidean spaces and to non-
Euclidean geometries. These generalizations reveal 
links to group theory and to classical problems in num-
ber theory. Much of the art of M.C. Escher is based on 
non-Euclidean tessellations.

Other Designs
Contemporary quilters like mathematician Irena 
Swanson have also incorporated other mathematical 
concepts in their designs, such as infinite geometric 
series and fractals, as well as portraits of mathemati-
cians. Mathematician Gwen Fischer created quaterni-
onic quilts to visually showcase the algebraic structure 
of the group. For example, the lack of reflection sym-
metry across the main diagonal highlights the lack of 
commutativity of the group elements.

Further Reading
Fisher, Gwen. “Quaternions Quilt.” FOCUS 25,  

no. 1 (2005).
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Venters, Diana, and Elain Ellison. Mathematical  
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Key Curriculum Press, 1999.
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Racquet Games
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry.
Summary: The equipment, game play, and scoring 
of racquet sports can be analyzed using mathematical 
concepts, such as vector operations and probability.

Racquet games include sports such as tennis, badmin-
ton, squash, and table tennis, as well as other less pop-
ular games like real tennis, racquets, and racquetball. 
Mathematics has many roles to play in these games—
from equipment testing and court marking to training 
and analysis of play. 

For example, the scoring system in tennis is not a 
simple counting or linear progression. Mathematicians 
model a ball’s spin in multiple axes, along with trajec-
tories and deflections, as functions of other variables. 
Markov chains and vector operations can be used to 
analyze the progression of games and both probabil-
ity and statistical methods are used to describe perfor-
mance, seed players for competition, and predict out-
comes of matches.

Racquets
Racquet weight distribution, shape, and string mate-
rial are important factors in the resultant power, accu-

racy, and comfort of a racquet. Increasing power, for 
example, can lead to a decrease in accuracy and it is 
important to balance these properties. Computer-aided 
design is the natural choice for this process because of 
its fast and powerful recalculation abilities.

Projectiles
Racquet sport projectiles such as balls and shuttle-
cocks are subject to strict regulations and must adhere 
to these for as long as possible at the highest levels of 
play. For example, the World Squash Federation allows 
balls that are 40 millimeters in diameter and each must 
be tested at 23 degrees Celsius (73 degrees Fahrenheit) 
and 45 degrees Celsius (113 degrees  Fahrenheit), room 
temperature and play temperature, respectively. There 
are several dot grades according to level of rebound 
but an average squash ball rebounds at around 30% 
(dropped from a height of 3.2 feet, it should reach 
12 inches on the bounce). A tennis ball rebounds at 
around 50%, although changes in ambient air pressure 
(because of altitude) can affect this figure. Table tennis 
balls rebound at 85%.

A popular way to gauge the overall performance of 
these projectiles is to measure their maximum speed. 
Tennis balls seem to hold the record for the being the 
fastest, and indeed Andy Roddick can propel a tennis 
ball very fast (152 miles per hour). However, the fast-
est badminton stroke left the racquet at over 186 miles 
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per hour. This figure seems counterintuitive because 
a shuttlecock slows down much more quickly than a 
tennis ball.

Training
One of the most important roles for mathematics in 
racquet sports is in training. Sports science researchers 
study muscle and joint strain and develop nutritional 
guidelines that allow the player to remain comfortable 
and energetic during play. Of the racquet sports, squash 
is regarded as the most intense—players burn roughly 
50 percent more calories per hour than badminton or 
tennis. However, tennis games can run several hours, 
whereas badminton and squash games are typically 
decided in under an hour. The total number of calories 
burned is the product of the calories per hour and the 
number of hours.

Scoring
In all of the major racquet sports (and many others), a 
feature of the scoring system may mean that the player 
who wins more individual points or rallies can still lose 
the match. Consider the scores of the 1972 British Open 
final decided by the best of five games, each played to 
nine points: 0–9, 9–7, 10–8, 6–9, and 9–7. The loser 
(Geoff Hunt) scored 40 points and won two games; the 
winner (Jonah Barrington) scored 34 points, won three 
games and the title.

The same quirk appears in any scoring system 
where victory is decided by the most wins over a spe-
cific number of games. In tennis, this feature exists 
on two levels. It is possible to win more points and 
more games but still lose the match. For example, if a 
match ends 6–4, 0–6, 6–4, 0–6, 6–4, the winner wins 18 
games, the loser wins 24 games. The maximum differ-
ence in points or rallies in this case is 60 (72–132) in 
favor of the loser.

Further Reading
Gallian, Joseph. Mathematics and Sports. Washington, 

DC: Mathematical Association of America, 2010.
Havil, Julian. Nonplussed! Mathematical Proof of 

Implausible Ideas. Princeton, NJ: Princeton University  
Press, 2007.

Lees, A., D. Cabello, and G. Torres, eds. Science and 
Racket Sports IV. New York: Routledge, 2009.

Lees, A., J. F. Kahn, and I. W. Maynard, eds. Science and 
Racket Sports III. New York: Routledge, 2004.

Sadovskii, L. E., and A. L. Sadovskii. Mathematics and 
Sports. Providence, RI: American Mathematical  
Society, 2003.

Eoin O’Connell

See Also: Hitting a Home Run; Hockey; Probability; 
Rankings; Tournaments.

Radar
See Doppler Radar

Radiation
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and  
Probability; Measurement; Number and Operations.
Summary: Radiation research has a heavy 
mathematical component, especially in modeling 
distribution of or shielding from radiation.

Radiation is the transmission of energy via waves or par-
ticles, such as energetic electrons, photons, or nuclear 
particles. These waves or particles, called “quanta,” 
travel radially in all directions from the source, leading 
to the name “radiation.” Radiation exists everywhere, 
from both natural sources, like the sun, and many man-
made sources, like radio stations and particle accelera-
tors. The various types of radiation that exist may be 
harmful or beneficial to people, depending on source 
and application. Ionizing radiation contains enough 
energy per quantum to detach electrons from atoms, 
like X-rays or the radiation emitted by particle accelera-
tors. High energy particles are created constantly by all 
luminous objects in the universe. Most of these particles 
never reach the surface of Earth. They may be deflected 
by magnetic fields or interact with atmospheric parti-
cles. Common types of nonionizing radiation include 
visible light, radio waves, and microwaves. 

Many mathematicians have contributed to radia-
tion research, like Wilhelm Wien, who derived a dis-
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shielding satellites from the harmful effects of cosmic 
radiation, as well as creating mathematical methods 
for formulating and investigating radiation problems, 
such as Monte Carlo simulations.

Properties
Properties of radiation waves can be used to determine 
their potential effects on people and objects or their 
usefulness for applications. Wavelength is the length of 
one cycle of the wave, or the distance from one peak 
to the next. Frequency is the number of cycles of the 
wave that travel past a fixed point along its path per 
unit time. All electromagnetic waves travel in a vacuum 
at a speed of about 3×108 meters per second. A fun-
damental relationship between wavelength and fre-
quency is that wave speed is the product of wavelength 
and frequency, which means that greater wavelengths 
correspond to lower frequencies. The energy of elec-
tromagnetic photons is the product of wave frequency 
and Planck’s constant, so higher frequencies produce 
greater photon energies. Among the common types 
of EMR radiation, radio waves have the longest wave-
lengths, resulting in low frequencies and low energies. 
Higher frequency ultraviolet radiation has the most 
energy and is the most harmful component of the cos-
mic radiation that penetrates Earth’s atmosphere. X-
rays, discovered by physicist Wilhelm Röntgen, occur 
naturally when solar wind is trapped by Earth’s mag-
netic field in the Van Allen belts, named for physicist 
James Van Allen. 

Black holes are also sources of X-rays in the uni-
verse. While photons have no mass, some forms of 
radiation are particles with positive mass produced in 
the atomic decay of radioactive materials. For example, 
beta radiation is composed of high-energy electrons, 
which are dangerous because they can penetrate skin 
to the layer where new cells are produced. Mathemati-
cian Jesse Wilkins’s work on mathematical models to 
compute the penetration and absorption of electro-
magnetic gamma rays has been used in the design of 
nuclear radiation shields.

Further Reading
Dupree, Stephen, and Stanley Fraley. A Monte Carlo 

Primer: A Practical Approach to Radiation Transport. 
New York: Springer, 2001.

Knoll, Glenn. Radiation Detection and Measurement. 
Hoboken, NJ: Wiley, 2010.

tribution law of radiation and won a Nobel Prize for 
his work on heat radiation. Physicist Max Planck used 
some of Wein’s mathematics as the basis for quantum 
theory. Paul Ehrenfest contributed to quantum sta-
tistics, in part by applying Plank’s quantum theory to 
rotating bodies. Subrahmanyan Chandrasekhar won 
the Royal Society Copley Medal for his work in math-
ematical astronomy, including the theory of radia-
tion. Victor Twersky was widely regarded as an expert 
on radiation scattering. His work has been used 
in diverse applications, such as studying the effect 
of atmospheric dust on light propagation. Math-
ematicians continue to work on radiation problems, 
including applications such as detecting radiation or 
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Electromagnetic Radiation

E lectromagnetic radiation (EMR) includes 
both ionizing and nonionizing forms of 

radiation. EMR waves result from the coupling 
of an electric field and a magnetic field. The 
fields are perpendicular to one other and to 
the direction of energy propagation. Electro-
magnetic radiation behaves like both a wave—
with properties including reflection, refraction, 
diffraction, and interference—and a particle, 
because its energy occurs in discrete pack-
ets or quanta. Maxwell’s equations, named for 
physicist and mathematician James Maxwell, 
are cited as the most elegant way to express 
the fundamentals of electromagnetism. The 
set of four equations, which have integral and 
differential forms include: Gauss’s laws for 
electricity and magnetism, named for math-
ematician Carl Freidrich Gauss; Faraday’s law 
of induction, named for physicist and chemist 
Michael Faraday; and Ampere’s law with Max-
well correction, named for physicist and math-
ematician Andre-Marie Ampere. Many have 
derived theories and applications from these 
building blocks, such as mathematician Josef 
Stefan, who showed that total radiation from a 
blackbody is proportional to the fourth power 
of its absolute temperature.



U.S. Environmental Protection Agency. “Radiation  
Protection.” http://www.epa.gov/radiation/ 
programs.html.

Sarah J. Greenwald
Jill E. Thomley

See Also: EEG/EKG; Elementary Particles; Energy; 
Light; Medical Imaging; Microwave Ovens.

Radio
Category: Communication and Computers.
Fields of Study: Algebra; Measurement; 
Representations.
Summary: Radio waves have numerous applications 
and are described, analyzed, encoded, and “jammed” 
using mathematics.

Radio is a means of sending information by transmit-
ting signals using radio waves, which are a type of elec-
tromagnetic radiation with frequencies in the spectrum 
of approximately 3 kilohertz (kHz) or 1000 cycles per 
second, to 300 gigahertz (GHz), or 1 billion cycles per 
second. These units are named for German experimen-
tal physicist Heinrich Hertz. Radio waves are used not 
only to carry radio and television signals but are also 
used in many other common technologies including 
wireless computer networks, wildlife tracking systems, 
cordless and cellular phones, baby monitors, and garage 
door openers. One interesting way that mathemat-
ics connects to radio is through mathematically based 
radio shows, like Math Medley, which was hosted by 
Patricia Kenschaft. Mathematicians have also spoken on 
programs like National Public Radio’s Science Friday.

Radio waves are sinusoidal, meaning that they are 
characterized by a smooth, repetitive oscillation whose 
function at time t can be described algebraically as

y t A t( ) = ( ) +( )sin ω φ

where A is the wave’s amplitude (peak deviation), ω 
is the wave’s angular frequency (described in radians 
per second), and φ is the wave’s phase (where the wave 
cycle is at time t = 0).

Brief History and Unique Properties
In 1864, the British physicist James Clerk Maxwell pre-
dicted the existence of radio waves as part of his theory 
of electromagnetism. Hertz confirmed Maxwell’s the-
ory between 1886 and 1888 and is generally credited 
with being the first person to send and receive radio 
waves. Several individuals played an important role in 
developing a practical system of radio transmission 
including the Serbian-American engineer Nikola Tesla, 
who demonstrated wireless radio communication in 
1893; the British physicist Oliver Lodge, who demon-
strated the transmission of Morse Code using radio 
waves in 1894; and the Italian physicist Guglielmo 
Marconi, who in 1896 was granted the first patent for 
a radio. Radio communications between ships and 
coastal stations were in use by 1897, and the first radio 
time signal (used to synchronize clocks) was transmit-
ted from a U.S. Naval Observatory clock in 1904.

Radio waves may be broadcast over long dis-
tances because of the Heaviside Layer (also called the  
“Kennelly–Heaviside layer”), a conducting layer in the 
ionosophere predicted independently in 1902 by the 
British mathematician and physicist Oliver Heaviside 
and the British physicist Arthur Edwin Kennelly. The 
existence of the Heaviside Layer was established in 
1924 by the British physicist Edward Appleton, who 
also determined that the height of this reflective layer 
was about 100 kilometers (62 miles) above the Earth’s 
surface. The Heaviside Layer allows radio signals to 
follow the curvature of the Earth (rather than disap-
pearing into space) because they are reflected by the 
Heaviside layer and thus “bounce back” to Earth. 

Applications
Radio astronomy, which led to the discovery of 
objects such as pulsars and quasars, dates from the 
1931 discovery by American physicist Karl Guthe 
Jansky of radio waves emitted from the Milky Way 
galaxy. American astronomer Grote Reber created 
the first radio frequency sky map in 1941, and in 
the 1950s, the British astronomers Martin Ryle and 
Antony Hewish produced two notable catalogues of 
celestial radio sources. 

Historically, most radio broadcasts used one of two 
techniques for sending their signals: amplitude modu-
lation (AM) or frequency modulation (FM). AM is the 
older technology (the first AM broadcast took place in 
1906) and it was the dominant radio technology for 
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most of the twentieth century. AM encodes informa-
tion by modifying the amplitude of the transmitted 
signal. The technology for FM broadcasting, which 
encodes information by varying the frequency of the 
transmitted signal, was developed in the 1930s and 
became common by the late 1970s. The information 
in these analog signals is inherently part of the signal 
itself—the information influences the wave’s shape, and 
thus information loss can occur with any disruption of 
the signal. One example is the audible static that occurs 
when a radio receiver begins to travel beyond the range 
of a radio transmitter. In the twenty-first century, digi-
tal modulation has been increasingly used to minimize 
this problem. Digital modulation transfers digitized 
information using a broad spectrum of radio frequen-
cies—far more than the AM or FM systems. Further, 
each signal is sent many times, reducing the chance of 
interference and signal loss because separate bits from 
many streams may be pieced together. Further, since 
the radio waveforms are not altered by the informa-
tion, multiple signals may be carried at the same time 
in the form of one composite signal that is decoded by 
the receiver, a technique called “multiplexing.” Satellite 
radio systems take advantage of multiplexing and the 
wider angle of coverage to offer many hundreds of spe-
cialized channels across broad geographic areas. Televi-
sion is also transitioning from analog to digital signals.

Radio transmissions are used for communication 
during wartime, but because a radio signal may be 
picked up by anyone with a receiver, various coding 
methods have been developed. One famous example 
is the code talkers used by the American Army during 
World War I and World War II. This program capital-
ized on the fact that Native-American languages such 
as Navajo and Choctaw were almost unknown out-
side those tribes and also developed a simple code for 
terms like “tank” and “submarine,” which allowed them 
to code and encode messages rapidly and with little 
risk of comprehension by the enemy. Also in World 
War II, the German Army used mechanical circuits to 
encrypt information. Although supposedly unbreak-
able because of the large number of combinations pos-
sible, the British mathematician William Tutte was able 
to deduce the pattern of the encoding machines after 
British intelligence intercepted two long coded mes-
sages, each of which was transmitted twice (the second 
time with corrected punctuation). 

Interference
Radio waves can be blocked by weather formations, 
geographic features, and many other natural phenom-
ena. Further, if several stations are broadcasting on a 
similar frequency, they may interfere with each other. 
Use of an antenna tuned to a particular frequency (so it 

will pick up the signal at the frequency 
more strongly than signals at other fre-
quencies) and aimed at the source of 
the signal can improve reception. Radio 
signals can be deliberately jammed by 
broadcasting noise on the same fre-
quency as the signal. For example, the 
Soviet Union regularly jammed broad-
casts by Radio Free Europe and Voice 
of America. 

To minimize unintentional interfer-
ence, different parts of the radio spec-
trum are reserved for different uses and 
broadcast stations are assigned specific 
frequencies for their use. In the United 
States, AM radio uses frequencies from 
535 to 1700 kHz, and FM radio uses 
frequencies between 88 megahertz 
(mHz) and 108 mHz. A radio station 
that identifies itself as “90.7 FM” is 
broadcasting at the frequency of 90.7 
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mHz, or 90,700,000 cycles per second (technically, 90.7 
mHz is the station’s mean frequency). Other parts of 
the spectrum are reserved for other uses. For instance, 
30–30.56 mHz is allocated for military air-to-ground 
and air-to-air communications systems for tactical and 
training operations and for land mobile radio commu-
nication in support of wildlife telemetry and natural 
resource management. 

Further Reading
Regal, Brian. Radio: The Life Story of a Technology. 

Westport, CT: Greenwood Press, 2005.
Richards, John. Radio Wave Propagation: An Introduction 

for the Non-Specialist. New York: Springer, 2008.
Weightman, Gavin. Signor Marconi’s Magic Box: The 

Most Remarkable Invention of the 19th Century and the 
Amateur Inventor Whose Genius Sparked a Revolution. 
Cambridge, MA: Da Capo Press, 2003.

Sarah Boslaugh

See Also: Satellites; Television, Mathematics in; 
Televisions; Tides and Waves; Wireless Communication.

Raghavan, Prabhakar
Category: Friendship, Romance, and Religion.
Fields of Study: Communications; Connections.
Summary: Prabhakar Raghavan has made important 
contributions to Internet and Web analysis, as well as 
online social networking, through his work at Yahoo! 
Research Labs.

Prabhakar Raghavan is the head of Yahoo! Research 
Labs, where he pursues research in text and Web min-
ing and algorithm design, in addition to overseeing the 
lab’s work. He has received honors like being elected 
as a member of the National Academy of Engineering 
and as a fellow of both the Association for Comput-
ing Machinery and the Institute of Electrical and Elec-
tronic Engineers. He is listed as a Consulting Profes-
sor of Computer Science at Stanford University and a 
member of the editorial board of Internet Mathematics, 
a journal on the mathematics of managing huge data-
bases like the Internet. Beginning in 2007, Raghavan 

served as a member of the board of trustees for the 
Mathematical Sciences Research Institute. Raghavan 
attended the Indian Institute of Technology in Madras, 
where he earned his Bachelor’s of Technology in Elec-
trical Engineering in 1981, before coming to the United 
States to complete his education with a Master’s of Sci-
ence in Electrical and Computer Engineering from the 
University of California at Santa Barbara and a Ph.D. 
in Computer Science from University of California at 
Berkeley. While at Berkeley, Raghavan won the 1986 
Machtey Award, given by the annual IEEE Symposium 
on Foundations of Computer Science, for his paper 
“Probabilistic Construction of Deterministic Algo-
rithms: Approximating Packing Integer Programs.” 

Career
After graduate school, he worked for IBM’s T. J. Watson 
Research Center and Almaden Research Center before 
becoming vice president and chief technology officer 
at Verity, Inc., an intellectual capital management soft-
ware developer. Verity had first made its name with a 
text retrieval system called Topic that allowed users to 
search for the information they were looking for based 
on conceptual keywords, rather than being limited to 
searching for words actually in the text—much like 
Yahoo!’s later hierarchical organization of Web sites by 
topic. In 2005, Raghavan was hired to head the newly 
established Yahoo! Research Labs, the same year that 
Verity was bought out by rival Autonomy Corporation. 

As head of Yahoo!’s labs, Raghavan has spoken of 
the need to determine the science and mathematics 
underlying online communities and social networks, 
saying: “Is it better to pay a celebrity $10,000 to tweet 
about your product, or find 10,000 non-celebrities to 
tout you? The nascent research suggests your money is 
better spent on the crowd—but the key is finding the 
people who are slightly more influential than most.” 
Mathematicians, computer scientists, and social scien-
tists work to understand the motivations and responses 
of online users. “We have this huge mountain of data, 
and it raises fascinating questions about how we can use 
that to better the experience for our users,” says Ragha-
van, who refers to researchers in this area as “Internet 
social scientists,” who combine mathematical analysis 
of large databases and algorithmic understanding with 
techniques from the social sciences and economics, 
including sociology and psychology. He notes that while 
his computer science education was heavily grounded 
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in mathematics and engineering, he also believes that 
these other disciplines should become a fundamental 
component of a computer science education. The sci-
ence of optimizing monetization of Internet services is 
better understood; although still in development, it is 
a significant interest of Raghavan’s as he seeks to mon-
etize social networks. An eclectic group of computer 
scientists and social scientists came together and fig-
ured out how to take computing from a “glass house” 
to where a billion people could use it. In the twenty-
first century, the ways people interact with computers 
are becoming mundane. How people will interact with 
each other to create rich social experiences is the crux 
of this new and ever-expanding science.

Further Reading
Raghavan, Prabhakar. “IBM Research: How Social  

Collaboration Makes Chatter Lucrative.” http://
domino.research.ibm.com/comm/research.nsf/pages/
d.compsci.prabhakar.raghavan.html.

Raghavan, Prabhakar, C. D. Manning, and H. Schutze. 
Introduction to Information Retrieval. New York:  
Cambridge University Press, 2008.

Singel, Ryan. “Yahoo Wants to Blind the Competition 
With Science/Wired.com.” http://www.wired.com/
epicenter/2010/08/yahoo-science/#ixzz13xIcLWU2.

Bill Kte’pi

See Also: Internet; Predicting Preferences; Search 
Engines; Social Networks.

Randomness
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Communication.
Summary: While a seemingly simple idea, the 
concept of randomness has been studied by 
mathematicians for thousands of years and has many 
modern applications.

The philosophical concept of determinism supposes 
that all events that occur in the world can be traced back 

to a specific precipitating cause and denies the possibil-
ity that chance may influence predestined causal paths. 
Mathematical determinism similarly states that, given 
initial conditions and a mathematical function or sys-
tem, there is only one possible outcome no matter how 
many times the calculation is performed. 

Historical Studies of Randomness  
and Certainty
Many ancient cultures embraced the idea of fate. For 
example, the Greek pantheon included goddesses 
known as Fates. At the same time, the existence of 
ancient gambling games and deities like the Roman 
goddess Fortuna suggest that these people under-
stood the notion of randomness or chance on some 
level. Around 300 b.c.e., Aristotle proposed dividing 
events into three different categories: certain events, 
which were deterministic; probable events, which were 
because of chance; and unknowable events. 

In the 1600s, the work of mathematicians such as 
Blaise Pascal and Pierre de Fermat laid some founda-
tions for modern probability theory, which quantifies 
chance. Abraham de Moivre published The Doctrine of 
Chances in 1718. Around the same time, Daniel Ber-
noulli investigated randomness in his Exposition of a 
New Theory on the Measurement of Risk. Nonetheless, 
determinism continued to maintain a prominent place 
in mathematics and science. Researchers often assumed 
that seemingly observed randomness in their data 
was because of measuring error or a lack of complete 
understanding of the phenomena being observed. 

The emergence of fields like statistics and quan-
tum mechanics in the nineteenth century helped drive 
new work on randomness. Mathematician Émile Borel 
wrote more than 50 papers on the calculus of probabil-
ity between 1905 and 1950, emphasizing the diverse 
ways in which randomness could be applied in the 
natural and social sciences as well as in mathematics. 
Applied probabilistic modeling grew very quickly after 
World War II. 

Randomness in Society
In twenty-first-century colloquial speech, the word 
“random” is often used to mean events that cannot 
be predicted, similar to Aristotle’s unknowable clas-
sification. However, probability theory can model the 
long-term behavior of random or stochastic systems 
using probability distribution functions, which are 
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essentially sets of possible outcomes having math-
ematically definable probabilities of occurring. They 
describe the overall relative frequencies of events or 
ranges of events, though the specific sequence of indi-
vidual events cannot be completely determined. Sto-
chastic behavior is observed in many natural systems, 
such as atmospheric radiation, consumer behavior, the 
variation of characteristics in biological systems, and 
the stock market. It is also connected to mathemati-
cal concepts like logarithms and the digits of π. Ele-
mentary school children discuss some of the basics of 
randomness when studying data collection methods, 
like surveys and experiments. Formal mathematical 
explorations typically begin in high school and con-
tinue through college.

Society depends on the use of randomness or the 
assumption that randomness is involved in a given 

process. Examples include operating gambling games 
and lotteries; encrypting coded satellite transmissions; 
securing credit card data for e-transactions; allocating 
drugs in experimental trials; sampling people in sur-
veys; establishing insurance rates; creating key patterns 
for locks; and modeling complex natural phenomena 
such as weather and the motion of subatomic particles. 

Generating Randomness
Generating random numbers, however, is very differ-
ent from observing random behavior. For example, in 
1995, graduate students Ian Goldberg with David Wag-
ner discovered a serious flaw in the system used to gen-
erate temporary random security keys in the Netscape 
Navigator Web browser. Almost every civilization in 
recorded history has used mechanical systems, such as 
dice, for generating random numbers and randomness 
has close ties with gaming and game theory. Physical 
methods are not generally practical for quickly gener-
ating the large sequences of random numbers needed 
for Monte Carlo simulation and other computational 
techniques. Flaws in shuffling and physical character-
istics, like a worn-down corner on a die, or deliberate 
human intervention, can also introduce bias. In fact, 
some people have proven their ability to flip a coin in a 
predetermined pattern. Motivated by the mathematical 
unreliability of these physical systems, mathematicians 
and scientists sought other reliable sources of random-
ness. Leonard Tippet used census data, believed to be 
random, to create a table of 40,000 random digits in 
1927. Ronald Fisher used the digits of logarithms to 
generate additional random tables in 1938. In 1955, 
RAND Corporation published A Million Random 
Digits with 100,000 Normal Deviates, which were gen-
erated by an electronic roulette wheel. Random digit 
tables are still routinely used by researchers who need 
to perform limited tasks like randomizing subjects to 
treatment groups in experimental designs as well as in 
many statistics classes.

The development of computers in the middle of 
the twentieth century allowed mathematicians, such as 
John von Neumann, and computer scientists to gener-
ate “pseudorandom” numbers. The name comes from 
the fact that the digits are produced by some type of 
deterministic mathematical algorithm that will even-
tually repeat in a cycle, though relatively shorter runs 
will display characteristics similar to truly random 
numbers. Using very large numbers, or trigonometric 
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or logarithmic functions, tends to create longer non-
repeating sequences. Linear feedback shift registers are 
frequently used for applications such as signal broad-
cast and stream cyphers. Linear congruential genera-
tors produce numbers that are more likely to be seri-
ally correlated, but they are useful in applications like 
video games, where true randomness is not as critical 
and many random streams are needed at the same 
time. Hardware random number generators, built as 
an alternative to algorithm-driven software generators, 
are based on input from naturally occurring phenom-
ena like radioactive decay or atmospheric white noise 
and produce what their creators believe to be truly ran-
dom numbers.

Randomness Tests
Mathematicians and computer scientists are perpetu-
ally working on methods to improve pseudorandom 
number algorithms and to determine whether observed 
data are truly random. Randomness can be counterin-
tuitive. For example, the sequences 6, 6, 6, 6, 6, 6 and  
2, 6, 1, 5, 5, 4 produced by fair rolls of a six-sided die are 
equally likely to occur, but most people would say that 
the first sequence does not “look” random. Irregularity 
and the absence of obvious patterns are useful ideas, but 
they are difficult to measure. Distinctions between local 
and global regularity must also be made, which include 
the ideas of finite sets and infinite sets. Irenée-Jules 
Bienaymé proposed a simple test for randomness of 
observations on a continuously varying quantity in the 
nineteenth century. Florence Nightingale David pub-
lished a power function for randomness tests shortly 
after World War II. Another technique from informa-
tion theory measures randomness for a given sequence 
by calculating the shortest Turing machine program 
that could produce the sequence. The National Institute 
of Standards and Technology recommends many such 
tests, including binary matrix rank, discrete Fourier 
transform, linear complexity, and cumulative or over-
lapping sums. As of 2010, the digits of π had passed all 
commonly used randomness tests.

Classical probability theory is not the only way to 
think about randomness. Claude Shannon’s develop-
ment of information theory in the 1940s resulted in 
the entropy view of randomness, which is now widely 
used in many scientific fields. By the latter half of the 
twentieth century, fuzzy logic and chaos theory also 
emerged. Fuzzy logic was initially derived from Lot-

fali Zadeh’s work on fuzzy sets and non-binary truth 
values, while chaos theory dates back to Henri Poin-
caré’s explorations of the three body problem. Bayes-
ian statistics, based on the eighteenth-century work of 
Thomas Bayes, challenges the frequentist approach by 
allowing randomness to be conceptualized and quanti-
fied as a partial belief, which shares characteristics with 
fuzzy logic. Spam filtering is one application that relies 
on Bayesian notions of randomness.

Further Reading
Bennett, Deborah. Randomness. Cambridge, MA:  

Harvard University Press, 1998.
Mlodinow, Leonard. The Drunkard’s Walk: How  

Randomness Rules Our Lives. New York: Pantheon 
Books, 2008.

RANDOM.ORG. http://www.random.org.
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See Also: Coding and Encryption; Probability;  
Sample Surveys.

Rankings
Category: Games, Sport, and Recreation.
Fields of Study: Number and Operations; 
Measurement.
Summary: Ranking is a widely used to create 
ordered lists of people or objects, and there are many 
ways to assign and analyze ranks.

Throughout human history, people have been order-
ing objects into hierarchies based on criteria such as 
measurements or qualitative properties. In the twenty-
first century, people rank many objects, such as quar-
terbacks, political candidates, and restaurants. Every 
spring, high school seniors eagerly wait to see who will 
be the valedictorian, or top-ranked student, of their 
high school class. However, there is not usually a single 
unique ranking for a set of objects, since ranks depend 
on the criteria selected and the specific method in which 
they are combined. US News and World Report aggre-
gates multiple quantitative and qualitative indicators 
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in its annual ranking of colleges. Mathematicians use 
a variety of techniques to study ranking, such as alge-
bra, geometry, graph theory, game theory, operations 
research, and numerical methods. An entire subset of 
statistical techniques based on ranks, called nonpara-
metric or distribution-free tests, are used to transform 
and analyze data that do not conform to the assump-
tions or parametric tests. 

These techniques are often used in the social sci-
ences. There are also debates about whether ranks 
are true numbers, given that the spacing between 
ranks need not be equal in the manner of most com-
mon measurement scales. For example, the differ-
ence between one inch and two inches is the same as 
between two inches and three inches. The difference 
between first and second place, however, is not nec-
essarily quantitatively or qualitatively the same as the 
difference between second and third place.

Sports
Athletic competitions are one very visible use of rank-
ings. During the ancient Olympic Games, athletes 
would compete in events, such as running, boxing, and 
the pentathlon, to determine which athletes were better 
than others. Ultimately, they would be ranked by their 
performance in these events. Even during the modern 
Olympics, though the events are more numerous and 
athletes generally compete in only a few events, the 
result is a ranking of the best athletes, with prizes being 
awarded to the top three finishers. There are rankings 
for other sports as well. For example, the Associated 
Press ranks the top 25 NCAA football teams by poll-
ing sportswriters across the nation. Each writer creates 
a personal, subjective list of the top 25 teams from all 
eligible teams (more than 25). The individual rankings 
are then combined to produce the national ranking by 
giving a team 25 points for a first place vote, 24 points 
for a second place vote, and so on down to one point 
for a 25th place vote. Teams are also regularly ranked 
by their number of wins or other game-related metrics, 
as are individual players.  

Tests
Rankings also occur on standardized tests. Rather 
than give each individual a unique rank, tests such as 
the SAT separate the scores into percentages and then 
rank test takers according to the percentage they fall 
into. Percentile ranks can also be seen in other places, 

such as height and weight charts for children. Whereas 
many rankings place an emphasis on small numbers 
(it is better to be ranked first or second than twenty-
fifth), percentiles are considered in the opposite man-
ner—a larger value percentile ranking is a better rank. 
Percentiles indicate what percentage of the test-taking 
group performed the same or worse than a test-taker 
in that percentile. For example, being in the 57th per-
centile would indicate that 57 percent of the test takers 
scored the same or worse. When considering rakings, it 
is important to determine how the ranking is arranged 
to properly interpret the data.

Other Mathematical Connections
The word “rank” carries many specific definitions in 
various fields of mathematics. For example, the rank 
of a matrix is the number of linearly independent rows 
or columns. In graph theory, the rank of a graph is the 
number of vertices minus the number of connected 
components. Other definitions of rank can be found in 
set theory and Lie algebra (named for mathematician 
Sophus Lie). In chess, a game studied by many math-
ematicians, a rank is a row on the chessboard.
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Tiebreakers

S ome ranking strategies result in ties 
between one or more individuals. Some-

times there is a tiebreaker, and other times 
there is not. The ranking of items occurring 
after the tie can vary depending on the type of 
ranking used. The most common is called stan-
dard competition ranking, where a gap is left 
in the numbering after the tie takes place cor-
responding to the number of elements in the 
tie. For example, if there were six items and 
a three-way tie for second occurred, the rank-
ing would be given as “1, 2, 2, 2, 5, 6” with 
third and fourth place omitted. Some methods, 
especially those used in statistical analysis, 
assign an average rank. In a three-way tie for 
second place out of six objects, the assigned 
rankings would be “1, 3, 3, 3, 5, 6,” since the 
average of 2, 3, and 4 is 3.
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Rational Numbers
See Numbers, Rational and Irrational

Reasoning and  
Proof in Society
Category: School and Society.
Fields of Study: Connections; Reasoning and Proof.
Summary: Many aspects of society have inherited 
from mathematics the desire for a method of proof 
that is demonstrable and irrefutable.

Reasoning and proof are fundamental components of 
human existence. Children begin applying reasoning 
as soon as they can make connections between actions 
and consequences. They then go on to explore more 
formal methods of reasoning and proof throughout 
their educational careers, not just in mathematics. 
Although people often associate mathematics solely 
with deductive proofs, many other types of reason-
ing are important to mathematics, including inductive 
logic, evidence-based reasoning, and computer-assisted 

arguments. Furthermore, the concept of truth being 
produced by reasoning and proof also pervades other 
fields, including philosophy, the natural and social sci-
ences, and political and legal discourse.  

Origins of Mathematical Proof 
What proves a statement? Generally, it is believed that 
statements are proved by deducing the statement as a 
logical consequence of something already believed to 
be true. One might think that proofs are necessary only 
when what is being proved is not apparent. The Greeks, 
however, did not limit proving to non-obvious state-
ments; they gave a logical structure to all of geometry, 
assuming as its basis the smallest possible number of 
“already believed” statements. They also employed 
a method called “proof by contradiction” in which a 
truth is not demonstrated directly, but rather by show-
ing that its opposite cannot be maintained.

Why did Greek culture give geometry this kind of 
logical structure, and why did the Greeks think that 
doing so was significant? The question is important 
because the causes that produced mathematical proof 
still exist in the twenty-first century, where they con-
tinue to operate and promote the use of proof.

First, proofs give a way to reconcile discordant opin-
ions. Greek mathematics was heir to two earlier tradi-
tions, Egyptian and Babylonian mathematics, whose 
results did not always agree. For instance, in studying 
circles, the Babylonians approximated π first as 3, and 
later as 3.125. Egyptian computations give a value for 
π of about 3.16. The Greeks wanted to know π’s true 
value. One way to avoid having multiple answers to the 
same question is to make no assumptions other than 
those with which nobody could disagree, like “all right 
angles are equal,” and then deduce other facts solely 
from those un-doubtable assumptions. What is amaz-
ing is how many results this approach produced.

Second, proofs are a natural outcome of the search 
for basic principles. The pioneering Greek philosophers 
of nature of the fifth and sixth centuries b.c.e. sought 
simple explanatory principles that could make sense 
out of the entire universe. Thales, for instance, said 
that “everything is water,” and Anaximenes claimed 
that “everything is air.” The Pythagoreans asserted that 
“all is number,” while Democritus said that “everything 
is made of atoms.” As in nature, so in mathematics, the 
Greeks wanted to develop explanations based on sim-
ple first principles, on the so-called elements.
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Third, the logic of proofs can arise from the process 
of discovery. One effective way to solve a problem is to 
reduce it to a simpler problem whose solution is already 
known. For instance, Hippocrates of Chios in the fifth 
century b.c.e. reduced finding the area of some lunes 
(areas bounded by two circular arcs) to finding the area 
of triangles. In reducing complicated problems to sim-
pler problems, and then reducing these to yet simpler 
problems, the Greek mathematicians were creating sets 
of logically linked ideas. If such a set of linked ideas is 
run in reverse order, a proof structure emerges—simple 
statements on which rest more complex statements on 
which rest yet more complex statements. The simplest 
statements at the beginning are called the “elements”; 
the intermediate ones are the fruitful results that are 
now called “lemmas”; and these in turn demonstrate 
the final and most important results. 

Fourth, logical reasoning played essential roles in 
classical Greek society. In the sixth and fifth centuries 
b.c.e., Greece was largely made up of small city-states 
run by their citizens. Discourse between disputing 
parties, from the law courts to the public assemblies, 
required and helped advance logical skills. A good 
way, then and now, to persuade people is to under-
stand their premises, and then construct one’s own 
argument by reasoning from their premises. A good 
way to disprove someone’s views is to find some logi-
cal consequence of those views that appears absurd. 
These techniques are beautifully illustrated in Greek 
legal proceedings and political discourse, as well as in 
the dialogues of Plato.  

Finally, Greek mathematics developed hand in hand 
with philosophy. Greek philosophers began by trying 
to logically refute their predecessors. Zeno, for instance, 
presented his paradoxical arguments not to prove that 
motion is impossible but to challenge others’ intuition 
and common-sense assumptions. That Plato wrote in 
dialogue form both illustrates and demonstrates that 
Greek philosophy was as much about the method of 
logical argument as it was about conclusions. Aristo-
tle wanted every science to start, like geometry, with 
explicitly stated elementary first principles, and then 
to logically deduce the key truths of the subject. Greek 
philosophy issued marching orders to mathematicians, 
and men like Euclid followed these orders.  

Philosophy returned the favor. Plato made math-
ematics the center of the education of the rulers of his 
ideal Republic and mathematics has remained at the 

heart of Western education. Plato championed mathe-
matics because it exemplified how, by reasoning alone, 
one could transcend individual experience. Such tran-
scendence is most striking in the case of proof by con-
tradiction. The argument form, “If you accept A, then 
you must also accept B, but B contradicts C,” was part 
and parcel of the educated Greek’s weapons of refuta-
tion. But proof by contradiction is not merely destruc-
tive, it also allows people to rigorously test conjectures 
that cannot be tested directly and, if they are true, to 
demonstrate them. 

For example, Euclid defined parallel lines as lines 
in the same plane that never meet. But it can never be 
shown directly that two lines can never meet. How-
ever, it can be assumed that the two lines do, in fact, 
meet and then prove that this assumption leads to a 
contradiction. This process made Euclid’s theory of 
parallels possible. 

As another example, consider the Greek proof that 
2  cannot be rational (it cannot be the ratio of two 

whole numbers). Because the Pythagorean theorem 
holds for isosceles right triangles, 2 must exist. 

But no picture of an isosceles right triangle can allow 
one to distinguish a side of rational length from one of 
irrational length. 

Nor can one hope to prove the irrationality of 2 
by squaring every single one of the infinitely many 
rational numbers to see if its square equals 2. However, 
if one assumes that there is a rational number whose 
square is two, logic then leads to a contradiction, so it is 
proved that 2  cannot be rational. 

By such means the Greeks proved not only that 2 
was irrational but also that a whole new set of math-
ematical objects existed: “irrational numbers.”

Proof in general, and proof by contradiction in par-
ticular, transformed the nature of mathematics. Logic 
lets people reason about concepts that are beyond 
experience and intuition—about ideas that cannot 
be observed. Mathematics had become the study of 
objects transcending material reality, objects visible 
only to the eye of the intellect. There could be truths 
about such objects and such truths could be proved. 
These developments had profound consequences far 
beyond mathematics.

Beyond Mathematics
The ideal of logical proof in mathematics took on a 
life of its own. Since mathematicians apparently had 
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achieved truth by means of proof, practitioners of 
other areas of Western thought wanted to do the same. 
So in theology, politics, philosophy, and science people 
tried to imitate the mathematicians’ method. 

In 1637, Rene Descartes wrote in his Discourse on 
Method, “Those long chains of reasoning . . . which 
enabled geometers to reach the most difficult demon-
strations, made me wonder whether all things knowable 
to men might not fall into a similar logical sequence.” If 
so, he continued, there cannot be any propositions that 
cannot be eventually discovered and proven. 

Building on Descartes’s ideas, Baruch Spinoza in 
1675 wrote a book called Ethics Demonstrated in Geo-
metrical Order. Like Euclid, Spinoza first explicitly 
defined his terms, including “God” and “eternity.” He 
then stated axioms about existence and causality. On 
the basis of his list of definitions and axioms, Spinoza 
logically demonstrated his philosophical conclusions, 
including the existence of God.

Isaac Newton wrote his great Principia in 1687. This 
work includes Newton’s laws of motion and theory of 
gravity. He did not structure the Principia like a mod-
ern physics book; he gave it the same definition-axiom-
theorem structure that Euclid had given the Elements. 
Newton expressly called his famous three laws “Axi-
oms, or Laws of Motion.” From these axioms, Newton 
logically deduced the laws of the universe, including 
universal gravitation, just as Euclid had deduced his 
own theorems.

The American Declaration of Independence of 1776 
also pays homage to the ideal of Euclidean proof. The 
principal author, Thomas Jefferson, was well versed 
in the mathematics of his time. Jefferson began with 
axioms, saying, “We hold these truths to be self-evi-
dent,” including the axioms “that all men are created 
equal” and that, if a government does not preserve 
human rights, “it is the right of the people to alter or 
abolish it, and set up new government.” The declara-
tion then says that it will “prove” that King George III’s 
government had not protected human rights. Once 
Jefferson proved this, the Declaration of Independence 
concludes: “We therefore . . . publish and declare that 
these United Colonies are and of right ought to be free 
and independent states.” Indeed, Jefferson could have 
ended his argument, as had Spinoza and Newton, with 
the geometer’s “QED.” 

Jefferson’s argument exemplifies the characteristic 
program of Enlightenment philosophy—using reason 

to reach conclusions on which everyone will agree. 
This program is epitomized in the words of Voltaire in 
his Philosophical Dictionary: “There is but one moral-
ity, as there is but one geometry.”

Abstraction, Symbolism, and their Power
Logical proof in mathematics and the use of mathe-
matical models of reasoning in the larger intellectual 
world were not limited to geometry. In mathematics in 
the seventeenth and eighteenth centuries, proof meth-
ods moved beyond the geometric to include the alge-
braic. This shift began when François Viète, in 1591, 
first introduced general symbolic notation in algebra, 
an idea with incredible power.  

School children learn that for every pair of dis-
tinct numbers, not only does 9 + 7 = 16, so does 7 + 9. 
Viète’s general symbolic notation allows one to write 
down the infinite number of such facts all at once: 
B + C = C + B.

A century later, Isaac Newton summed up the power 
and generality of Viète’s idea by calling algebra “uni-
versal arithmetic.” Newton meant that one could prove 
algebraic truths from the universal validity of the sym-
bolic manipulations that obey the laws of ordinary 
arithmetic. For instance, consider the quadratic equa-
tion 2x2 − 11x + 15 = 0. Simply stating, “3 and 2 1/2  
are the solutions” gives no information about how 
those answers were obtained. But every quadratic 
equation has the general form of ax2 + bx + c = 0. Solv-
ing that general equation by the algebraic technique of 
completing the square gives the well-known quadratic 
formula for the general solution: 

x
b b ac

a
= − ± −2

4

2
.

This general solution contains the record of every 
operation performed in getting it. The original exam-
ple had a = 2, b = −11, c = 15. As such, it is known 
exactly how the answers, 3 and 2 1/2, are obtained 
from the coefficients in the equation. More important, 
this process proves that these and only these must be 
the answers.

In the seventeenth century, Gottfried Wilhelm Leib-
niz was so inspired by the power of algebraic notation 
to simultaneously make and prove mathematical dis-
coveries that he invented an analogous notation for his 
new differential calculus. Furthermore, he envisioned 
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an even more general symbolic language that would, 
once perfected, find the indisputable truth in all areas 
of human thought. Once such a language existed, Leib-
niz said, if two people were to disagree, one could say to 
the other, “let us calculate, sir!” and the disagreement 
would be resolved. This idea made Leibniz the prophet 
of modern symbolic logic.  

By the eighteenth century, many mathematicians 
thought discovery and proof should be based on 
abstract symbolic reasoning. Imitating mathematics, 
scientists introduced analogous notations in other 
fields. For instance, Antoine Lavoisier and Claude-
Louis Berthollet developed a new chemical notation 
that they called “chemical algebra,” which is used when 
balancing a chemical equation. 

These ideas, both within and beyond mathemat-
ics, led the Marquis de Condorcet to write in 1793 that 
algebra contains within it the principles of a universal 
instrument, applicable to all combinations of ideas. 
Such an instrument, he said, would eventually make 
the progress of every subject embraced by human intel-
ligence as sure as the progress of mathematics.  

In the nineteenth century, George Boole produced 
the first modern system of symbolic logic and used it to 
analyze a wide variety of complicated arguments. His 
system, developed further, underlies the logic used by 
digital computers in the twenty-first century, includ-
ing applications embodying Condorcet’s dream, from 
automated theorem-proving to translators, grammar 
checkers, and search engines.

Non-Euclidean Geometry:  
The Triumph of Euclidean Logic
Unthinkable as it may have been to Enlightenment 
philosophers like Voltaire, there are alternatives to 
Euclid’s geometry. But non-Euclidean geometry was 
not invented by imaginative artists or by critics of 
mathematics speculating about alternative realities. 
Like irrational numbers, non-Euclidean geometry was 
discovered by mathematicians. Its discovery provides 
another example of human reason and logic trump-
ing intuition and experience and it—like Euclid’s 
geometry—has had a profound effect on other areas 
of thought. 

Non-Euclidean geometry grew out of attempts to 
prove Euclid’s parallel postulate: 

If a straight line falling on two straight lines makes 
the interior angles on the same side less than two right 

angles, then the two straight lines, if produced indefi-
nitely, meet on that side where the angles are less than 
two right angles.

Such attempts were made because the postulate 
seemed considerably less self-evident than his other 
postulates. From antiquity onward, mathematicians 
felt that it ought to be a theorem rather than an 
assumption, and many eminent mathematicians tried 
to prove it from the other postulates. Some attempted 
to prove it indirectly; assuming it to be false, they 
deduced what appeared to be absurd consequences 
from that assumption. For instance, that parallel lines 
are not everywhere equidistant, and that there is more 
than one line parallel to a given line through a point 
in the same plane. These results contradict our deep 
intuitive sense of symmetry.  

But in the nineteenth century, three mathematicians 
independently realized that these conclusions were not 
absurd at all, but were perfectly valid theorems in an 
alternative geometry. Nicolai Ivanovich Lobachevsky, 
by analogy with imaginary numbers, called his new 
subject “imaginary geometry.” Janos Bolyai more theo-
logically called it “a new world created out of nothing.” 
But Carl Friedrich Gauss, acknowledging the logi-
cal move that made it possible, called the new subject 
“non-Euclidean geometry.” 

The historical commitment of mathematicians to 
the autonomy of logic and to logical proof enabled 
them to overcome their scientific, psychological, and 
philosophical commitments to Euclidean symmetry to 
create this new subject. Logical argument once again let 
mathematicians find and demonstrate the properties 
of something neither visual nor tangible—something 
counter-intuitive. Non-Euclidean geometry is the ulti-
mate triumph of the Euclidean method of proof. But 
there are wider implications.

From this discovery, nineteenth-century philoso-
phers concluded that the essence of mathematics (as 
opposed to the natural sciences) is its freedom to 
choose any consistent set of axioms that meets the 
mathematician’s sense of what is important, beautiful, 
and fruitful—just as long as the logic is right. There 
could even be real-world applications of systems that 
contradict all past mathematical orthodoxies. In phys-
ics, for instance, the type of non-Euclidean geometry 
studied by Bernhard Riemann in the 1850s turned 
out to be exactly what Albert Einstein needed for his 
general theory of relativity; the new mathematics can 
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explain gravitation, describe the curvature of space, 
and account for black holes.

Knowing that alternative systems of mathemati-
cal thought are logically possible has also had philo-
sophical and social implications. José Ortega y Gasset, 
for instance, contrasted the view of the old geometry 
(interpreted as saying that nations may perish but 
principles will be kept) to the new perspective, which 
he interpreted as saying that people must look for such 
principles as will preserve nations, because that is what 
principles are for. 

Proof and the Citizen
Citizens of democracies need to be able to evaluate 
arguments presented to them, whether by friends, 
adversaries, politicians, or advertisers. In the words 
of Jacques Barzun, “The ability to feel the force of an 
argument apart from the substance it deals with is the 
strongest possible weapon against prejudice.” 

Citizens also need to be free to work out the logi-
cal implications of the principles they treasure. In 
the words of Winston Smith, a character in George 
Orwell’s novel 1984, “Freedom is the freedom to say 
that two plus two make four. If that is granted, all 

else follows.” This kind of “proving” has driven the 
progress of the idea of universal human rights. For 
instance, building on the Declaration of Indepen-
dence, Elizabeth Cady Stanton, a pioneer in fighting 
for women’s rights in America, wrote in the Seneca 
Falls Declaration of 1848, “We hold these truths to 
be self-evident; that all men and women are created 
equal.” Similarly, Martin Luther King, Jr., in his “I 
Have a Dream” speech, spoke of  “the promise that all 
men, yes, black men as well as white men, would be 
guaranteed the unalienable rights of life, liberty, and 
the pursuit of happiness.” 

Now, just as in ancient Greece, the ability to rea-
son and prove and the liberty of expressing and acting 
upon the results of proofs are essential to a free and 
democratic society. The historical function of proof in 
mathematics has not been just to prove theorems but 
also to exemplify and teach logical argument in areas 
such as philosophy, law, politics, religion, and every 
area of modern life.
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T hough the goal of legal arguments is persua-
sion as well as proof, legal arguments require 

evidence, and thus require discerning what follows 
logically from such evidence. Some legal thinkers 
have carried this view quite far. 

For instance, Christopher Langdell, pioneer of 
the case method in legal education and Dean of 
Harvard Law School in the 1870s, saw law as a 
science. By analogy with geometry, law, accord-
ing to Langdell, is governed by a consistent set 
of general principles. The correct legal rules 
should be logically deduced from those general 
principles and then applied to logically produce 
the correct legal ruling in line with the facts of a 
particular case.  

Most Anglo-American legal theorists do not 
follow Langdell’s “classical orthodoxy,” agreeing 

instead with Oliver Wendell Holmes that the life 
of the law has not been logic but experience. Yet 
Holmes, too, employed logical argument within 
every case he discussed. For instance, he used 
a proof by contradiction to argue that freedom of 
speech is not absolute when he famously said 
that the most stringent protection of free speech 
would not protect a man in falsely shouting “fire!” 
in a theater and causing a panic.  

Finally, the adversary system of Anglo-Ameri-
can law not only allows but also requires, that in 
order for a case to prevail in court, the winning 
argument must not only support that case but 
also explicitly answer the arguments on the other 
side, with these counter-arguments presented as 
strongly as possible. Thus, logical proof pervades 
all legal argument. 

Proof and the Law 
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Recycling
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Efficient recycling requires the use of 
sophisticated mathematical models to maximize 
product use and reuse and minimize energy 
consumption.

Recycling is the extraction of usable materials out of 
used objects. Materials that are often recycled at the 
start of the twenty-first century include metal, paper, 
glass, and plastic. One important mathematical prob-
lem of recycling is the comparison of environmental 
and monetary costs of recycling and virgin production. 
Mathematicians are also involved in developing new 
methods for recycling and modeling both economic 
and environmental impacts. The notion of “algorithm 
recycling” applies to resources used in some math-
ematical investigations. For example, statistical boot-

strap recycling reuses samples to minimize demands on 
computational resources. Some mathematicians, scien-
tists, educators, and others use recycling for education, 
recreation, and art. Mario Marin has designed polyhe-
dral outdoor play spaces and kinetic sculptures from 
recycled and remaindered materials and has published 
many creative ways to recycle household objects, like 
plastic bottles, into interesting polyhedral structures. 
With regard to learning, some have even suggested a 
concept called “neuronal recycling,” which refers to 
adaption of neuronal circuits for new uses.

Proportion-Based Regulations and Labeling
To motivate recycling, companies and governments set 
rules that demand the recycling of a certain proportion 
of materials and the use of a certain proportion of recy-
cled material in production. Because recycling is the 
third desirable option in the waste management hierar-
chy, after reduction of waste and reusing of objects and 
materials, setting high recycling quotas is never a goal 
in its own right. However, recycling is often preferable 
to disposal. Governments sometimes directly mandate 
minimum recycled content in certain classes of manu-
factured goods. Labeling laws, which require compa-
nies to display the percent of recycled content in goods 
and packages, may also promote recycling if consumers 
support it, or hinder recycling if consumers do not find 
recycled goods in this particular industry appealing. 
Companies advertise their recycling efforts—typically 
by disclosing the percent of recycled material—to pres-
ent ecofriendly images to their customers. 

A common scheme to promote the recycling of 
packaging is to include a refundable fee in the price of 
the product. Once the customer returns the packaging 
to the store, the fee is refunded.

Measuring Efficiency
Because recycling is a complex process, there are eco-
logical and economical costs involved in it. For recy-
cling to make sense, the benefits have to outweigh 
the costs. Computing costs and benefits is a complex 
problem. Costs are incurred at all stages of recycling: 
collecting materials, sorting them, and re-making 
them. Benefits include the reduction of landfill costs, 
reduction of pollution, and revenues from the use of 
recycled materials. In the cases of nonrenewable natu-
ral resources, recycling is the only option to keep using 
these resources in the future.
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Metal Recycling
Because of the relative difficulty and high cost of min-
ing and smelting of metals, and the ease of collecting 
and recycling, metals are the most recycled materials 
in the world. For example, recycling aluminum takes 
only 5% of the energy that it would take to make it 
from the raw materials. About three-quarters of steel 
and a third of aluminum is recycled in the United 
States as of 2010. Some applications of science and 
mathematics metal recycling involves the separation 
of impurities, such as paint.

Paper Recycling
One category of paper recycling, post-consumer paper, 
is familiar to most people because paper is ubiquitous 

in modern society. “Mill broke” is scraps that pulp 
mills accumulate from making paper, which they can 
also recycle. Preconsumer paper is scraps collected and 
recycled in paper mills. Unlike metal recycling, where 
the cost-benefit ratio is low, paper recycling is more 
complicated and controversial. For example, burning 
paper for energy may be more environmentally sound 
than recycling it and harvesting and replanting forests 
may be cheaper than recycling. 

Estimates for energy saving are 40% to 65% for 
recycled paper, compared to creating new paper. How-
ever, pulp mills frequently produce energy by burning 
roots, bark, and other byproducts, whereas recycling 
plants have to be close enough to collection (usually 
urban) areas to minimize transport cost and frequently 
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Atlas Recycled by Tom Tsuchiya is a sculpture made of used atlases and maps that also serves as a recycling 
receptacle for bottles and cans—one of the works from the EcoSculpt 2010 exhibition in Cinncinnati, Ohio. 



depend on fossil fuels for energy. Thus, the environ-
mental costs of conserving the same amount of energy 
is different, as one process uses renewable resources 
and the other uses nonrenewable resources. Water and 
air pollution benefits of paper recycling are more pro-
nounced than energy benefits because of highly toxic 
bleaching used in making new paper.

Plastic Recycling
Recycling of plastics involves a scientific challenge not 
found in recycling of other materials. Because of the 
ways polymer chains are formed in plastics, different 
plastics do not blend well. Removing dyes, glue, paper 
stickers, and other impurities is also difficult. Plastics 
are coded with the Resin Identification Codes, num-
bers 1–7, inside the triangular recycle symbol. 

There are several processes for recycling plastic. 
The most straightforward is melting similar plastics 
together, with some steps to remove impurities. Heat 
compression mixes all types of plastics in high-heat, 
high-pressure drums. Thermal depolymerization is 
currently an experimental procedure that “reverses” the 
process of making plastic and turns it into a substance 
similar to crude oil. Another experimental procedure, 
called “monomer recycling,” reverses plastic-making 
halfway, turning polymers into the mix of monomer 
chemicals that formed them. 

The short-term cost-benefit analysis may not sup-
port plastic recycling because of the high energy and 
labor requirements of the known processes. However, 
crude oil (the raw material of plastic) is a nonrenew-
able resource, which makes plastic recycling attractive 
in the long term.

Glass Recycling
The main benefits of glass recycling are saving landfill 
space and saving energy on producing new glass. How-
ever, because glass is sturdy and easy to clean, glass con-
tainer reuse is vastly preferable to recycling. Through 
changing their infrastructures, along with using clear 
bottle standards and monetary incentives, some coun-
tries can reuse more than 95% of their glass bottles. 

Crushed glass can be added to concrete. This process 
can be considered reuse rather than recycling because 
the glass is serving a different purpose. Measure-
ments of glass-infused concrete include its insulation 
properties and strength properties, both of which are 
improved by the addition of glass. Also, concrete with 

glass is more aesthetically pleasing and can be used for 
countertops and other highly visible places.

Mathematical Modeling
Mathematical models are widely used in logistics—con-
trolling the efficient flow and storage of goods, services, 
and information from the point of origin to the point 
of consumption. Reverse logistics is the extension of 
this principle that addresses concepts such as returns, 
source reduction, recycling, and reuse. Mathemati-
cians have researched models for logistics that address 
these reversals of flows. For example, Italian research-
ers created a staged mathematical model of the options 
for recycling a broad range of appliances, electronic 
equipment, and other household items commonly 
thrown away. The model suggested that recycling can 
offer what is known as economies of scale to businesses, 
which are increasingly being held liable for end-of-life 
product disposal. 

Others have used techniques such as dynamic quan-
titative models to simulate recycling systems and flows 
to better understand the driving variables and relation-
ships among the activities and participants. These mod-
els can aid planners in making decisions about recycling 
policies and procedures. Nutrient recycling for trees, 
which has implications for issues such as global warm-
ing, has been modeled using linear and quadratic func-
tions, along with data-based numerical simulations. 
However, some scientists argue that mathematical mod-
els must be contextually evaluated and used with cau-
tion for decision making and legislation. Models based 
on limited data may generate what appear to be useful 
results, but extrapolation or subsequent modeling can 
create bias and propagation of errors.
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Relativity
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement; 
Representations.
Summary: Albert Einstein’s theory of relativity is one 
of the most well-known theories in physics and helps 
describe the nature of the universe.

Albert Einstein’s theory of relativity forms one of the 
two pillars of modern physics, the other being quan-
tum mechanics. It consists of two parts: the special 
theory of relativity from 1905, and the general theory 
of relativity from 1915, which both rely on significant 
mathematics.

The special theory of relativity describes how space 
and time are perceived by observers in different inertial 
systems. Einstein derived this theory from a single phys-
ical principle of relativity. It was discovered in 1632 by 
Galileo Galilei that the laws of mechanics are the same 
in all inertial systems—a discovery, known as “Galileo’s 
principle of relativity,” that constituted a radical break 
with the prevailing Aristotelian physics. Einstein’s prin-
ciple of relativity generalized this concept to all laws of 
nature, including Maxwell’s laws of electromagnetism, 
which govern the propagation of light. It thus follows 
from Einstein’s principle of relativity that the speed of 
light is the same in all inertial systems, a central result 
in the theory of relativity. Prior to Einstein, it was 
believed that light propagates through a luminiferous 
aether in the same way as sound propagated through 
air, but all attempts to measure the speed of the Earth 
relative to this aether, such as the Michelson–Morley 
experiment in 1887, failed. Special relativity explained 
the negative results of these experiments and made the 
aether hypothesis superfluous.

The general theory of relativity unifies special rela-
tivity with Isaac Newton’s law of universal gravity. Its 
basis is Einstein’s equivalence principle, according to 
which an accelerated system of reference (such as a 
so-called Einstein elevator) is indistinguishable from a 
system at rest in a gravitational field. Mathematically, 
Einstein’s field equations describe how the presence of 
mass, energy, and momentum gives rise to a curvature 
of space and time. Although this idea has little signifi-
cance in weak gravitational fields, such as that of the 
Earth, general relativity is essential in the study of the 
universe as a whole. For example, Karl Schwarzschild 
in 1915 found an exact solution to Einstein’s equations 
that explains the existence of black holes.

The many surprising consequences of the theory of 
relativity have been described in numerous popular-
izations, most notably by George Gamow. Einstein’s 
theory must not be confused with the various relativist 
positions in philosophy, such as aesthetic, moral, cul-
tural, or cognitive relativism.

Special Relativity
The Lorentz transformation forms the basis of the 
special theory of relativity. It is a set of equations 
describing how to translate suitably chosen coordi-
nates of space and time between two inertial systems 
(S) and (S′) moving with the speed (v) relative to one 
another:

′ = −x x vtγ ( )  and ′= −t t
vx

c
γ ( )2

where c denotes the speed of light of 299,792,458 
meters per second, and the dimensionless number

γ =
−

1

1
2

2
v
c

is the so-called Lorentz factor. In 1908, Hermann 
Minkowski gave a mathematical description of the 
Lorentz transformation as a rotation of the coordinate 
axes in four-dimensional space-time. 

When v is much smaller than c, the Lorentz factor 
is close to 1, and the Lorentz transformation reduces 
to the classical Galilean transformation. When v 
approaches c, however, the Lorentz transformation has 
a number of consequences that radically contradict 
classical physics as well as common sense. For example, 
clocks in motion are slowed down (called “relativistic 
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time dilation”), objects in motion are contracted in the 
direction of movement (called “relativistic length con-
traction”), and clocks in motion that are seen as syn-
chronized by an observer moving with the clocks are 
seen as nonsynchronized by an observer at rest (called 
“relativity of simultaneity”). 

It is another consequence of special relativity that 
no material objects—or signals of any kind—can travel 
faster than light. This “speed limit” exists because any-
thing traveling faster than light relative to one observer 
would appear to be traveling backwards in time relative 
to another observer, thus leading to paradoxes regard-
ing cause and effect. There is a quantum-mechanical 
phenomenon, the so-called Einstein–Podolsky–Rosen 
paradox, that seems to contradict this principle. Accord-
ing to quantum mechanics, the wave function of two 
entangled particles is affected by a measurement of the 
state of one of the particles, causing an instantaneous 
change to the state of the other, even if the two particles 
are located in different galaxies. But this phenomenon, 
which has since been verified experimentally, does not 
really contradict relativity since it cannot be used to 
transmit information from one galaxy to the other. 

Special relativity dictates that mass and energy are 
connected by the equation E = mc2, undoubtedly the 
most famous formula in all of physics. Any particle 
with mass m has a rest energy given by this equation. 
If the same particle is accelerated to the speed v, its 
energy is multiplied by the Lorentz factor γ, and its 
kinetic energy is found as the difference between total 
energy and rest energy, expressed algebraically as

E mc mc mvkin = − ≈γ 2 2 21

2
.

The approximation, valid for v much smaller than 
c, equals the expression for kinetic energy in classical 
mechanics. This formula shows that it would require 
an infinite amount of energy to accelerate a particle 
with positive mass to the speed of light.

General Relativity
Einstein noted that special relativity implies that space 
appears to be curved, or “non-Euclidean,” to observ-
ers in accelerated systems (for example, on a rotating 
disc) and inferred from the equivalence principle that 
the same must be true in gravitational fields. How-
ever, after realizing this fundamental principle in 
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1907, it took him eight years to find the field equa-
tions that describe the exact curvature of space-time. 
The idea that physical space might be curved was not 
new. Already in 1823, Carl Friedrich Gauss investi-
gated this question empirically by measuring the sum 
of angles of a triangle formed by three mountaintops 
but found no curvature. Bernhard Riemann further 
developed the mathematics of curved space in 1854 
and this work would become an essential part of Ein-
stein’s theory. 

General relativity predicts that a body falling freely 
in a gravitational field, such as the Earth in its orbit 
around the sun, follows a “geodesic” in curved space-
time. This geodesic is called the body’s “world-line.” 
In a curved space, geodesics are the least curved lines, 
in the same way as the equator is a least curved line 
on the surface of Earth. Although the predictions 
of general relativity are nearly the same as those of 
classical mechanics for bodies in weak gravitational 
fields, the interpretation of gravity is radically differ-
ent: whereas classical mechanics explains the elliptical 
orbit of the Earth as a consequence of a gravitational 
force emanating from the sun, general relativity pos-
tulates that the mass of the sun gives rise to a curva-
ture of space-time, and that the world-line of Earth is 
in fact a geodesic.  

It is a consequence of general relativity that clocks in 
gravitational fields are slowed down. This effect is called 
“gravitational time dilation.” For a clock at rest in the 
gravitational field of Earth, the dilation factor is

1
2

1
2 2

− ≈ −
GM

rc

GM

rc

where G is Newton’s gravitational constant, M is the 
mass of Earth, and r is the distance between the clock 
and the center of Earth.  

Proofs and Applications of Relativity
Einstein showed in 1915 that general relativity explains 
the perihelion precession of the planet Mercury. This 
phenomenon, which had mystified astronomers since its 
discovery in 1859, is that the elliptical orbit of Mercury 
rotates around the sun with 43 arc seconds per century.

Also in 1915, Einstein predicted that light emitted 
from distant stars is deflected when passing through 
the gravitational field of the sun. Although this effect 
had previously been derived from Newtonian grav-



ity alone, Einstein showed that the angle of deflection 
following from general relativity is twice the angle fol-
lowing from classical physics. Einstein’s prediction was 
confirmed dramatically by Arthur Eddington during 
the total solar eclipse of May 29, 1919. 

Contrary to quantum mechanics, the technological 
implementations of which are ubiquitous, relativity has 
few practical applications. One notable exception is the 
global positioning system (GPS). GPS satellites revolve 
around the Earth twice per sidereal day at a height of 
about 20,000 kilometers (12,400 miles) and with a speed 
of about 4 kilometers (2.5 miles) per second. Because of 
the speed and altitude, the atomic clocks aboard the sat-
ellites are subject both to relativistic time dilation and 
to a reduced gravitational time dilation. 

The first effect amounts to a loss of 7 microsec-
onds per day, the second to a gain of 45 microseconds 
per day. In total, therefore, the atomic satellite clocks 
gain 38 microseconds per day relative to clocks on the 
ground. Failure to take these relativistic effects into 
account would render GPS useless since the resulting 
positional error would accumulate to 11 kilometers 
(6.8 miles) per day. 
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Religious Symbolism
Category: Friendship, Romance, and Religion.
Fields of Study: Communication; Geometry; 
Number and Operations; Representations.
Summary: Many religious symbols are mathematical 
in nature.

Archaeological research suggests that religion pre-
dates people’s ability to read and write but that sym-
bols were often used to express religious ideas and to 
convey meaning. In this context, such symbols might 
be pictures, geometric objects, or numbers that hold a 
particular meaning within a given faith. Long after the 
introduction of the written word, symbols still hold a 
powerful place in most religions. There are many highly 
recognizable symbol forms that are used in various ways 
by different faiths around the world, though they often 
share similar underlying structures, themes, or mean-
ings. Symmetry is common in religious symbolism, as 
are certain numbers or concepts that some believe to 
have special significance beyond mathematical inter-
pretations. For example, some have proposed a stylized 
version of the empty set symbol to represent atheism.

Stars
Stars have been used for millennia in a variety of reli-
gions. The most common is a five-pointed star, also 
known as a “pentagram” (penta means “five”). At 
times, the five points have represented the five senses 
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(vision, hearing, touch, smell, and taste). Wiccans use 
the points to represent five elements (spirit, fire, air, 
water, and earth) as do Taoists (fire, earth, metal, water, 
and wood). Other times, it has represented the human 
body with the “points” of the body relating to the head, 
arms, and legs outstretched, as seen in the Baha’i Faith 
where the pentagram is its official symbol. Christians 
have used the pentagram to denote the wounds (five 
stigmata) received by Jesus Christ when he was cruci-
fied—hands, feet, and side. Judaism has used the pen-
tagram to represent the Pentateuch (Genesis, Exodus, 
Leviticus, Numbers, and Deuteronomy) and later, Sol-
omon’s Seal. Muslims use a crescent moon and a pen-
tagram to denote the religion of Islam.

Some religions have used a point-down pentagram 
as part of their symbolism. For example, Anton LaVey’s 
Satanists (who have nothing to do with Satan—they do 
not believe Satan exists) use the upside down penta-
gram for their symbol and often impose a goat’s head in 
the symbol with the upper points representing horns, 
the side points being the ears, and the lower point as 
the chin and beard area. Mormons (belonging to the 
Church of Jesus Christ of Latter-Day Saints) have used 

the inverted symbol in some temple architecture as rep-
resenting the “morning star” (Venus’ path in the sky).

Another star variation is the six-sided star, some-
times referred to as a “hexagram” (hexa means “six”) or 
the Star of David as a symbol of Judaism. Most often, 
this star is drawn as two equilateral triangles drawn 
on top of each other with one pointing up, the other 
down, and slightly offset. Hindus have a variation of 
the hexagram called the Shatkona, which show the tri-
angles weaved together denoting the interlocking of fire 
and water, or male and female. The hexagram is also a 
symbol for Rastafarians and is usually solid black. The 
Raelism Movement uses a different variation of the 
hexagram as their official symbol; it contains a right-
facing swastika embedded in the center of the star.

A seven-pointed star (called a “heptagram”) is 
sometimes used by Jews and Christians to denote a 
seven-day creation. Faery Wiccans and Blue Star Wic-
cans also use the seven-pointed star, but the Blue Star 
Wiccans refer to it as a “septagram” instead.

There are a few variations of eight-pointed stars. 
Islam has a star referred to as rub el hizb, which appears 
as two squares superimposed with one slightly offset 
the other. It is used to help facilitate the recitation of 
the Qur’an. The same shape (without the center circle) 
is referred to as the Star of Lakshmi by Hindus, where 
it represents the eight forms or kinds of wealth. This 
shape is referred to as an 8/2 “octagram” (oct means 
“eight”). The “8/2” indicates that there are eight sides 
on the star and every second point (or vertex) is con-
nected with a line. An 8/3 octagram would have every 
third vertex connected to each other. This symbol has 
been used by Christians to represent baptism and 
resurrection. Ancient Mesopotamia calls their eight-
pointed star the Seal of Shamash. The center was a cir-
cle representing the sun (Shamash) with eight points 
emanating from the center. Most likely, the vertical and 
horizontal points represent the four directions of the 
compass while the diagonal points represent the equi-
noxes and solstices.

Although the Baha’i uses a pentagram for their offi-
cial symbol, a nine-pointed star is more commonly 
associated with the religion. The star is often drawn 
similar to the hexagram, but with three equilateral tri-
angles slightly offset and a single point at the top of 
the star, but without the inner lines. The Baha’i Faith 
also uses another version of the nine-pointed star with 
symbols of the “nine world religions” at each point.
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Crosses
The cross is sometimes thought of as a universal sym-
bol for Christianity since, in the Christian faith, Jesus 
is believed to have been crucified on a Roman cross. 
However, there are many types of “Christian crosses” 
and many religious crosses that are not Christian at 
all. The original Christian cross probably resembled 
an “X” for the first Greek letter in the word “Christ.” It 
is not related to the crucifixion and came much later 
than Jesus’s death, as many early Christians opposed its 
use. When placed so that its arms pointed vertically and 
horizontally, the meaning was the four directions of the 
compass—where the gospel should be spread. Eventu-
ally, the Greek cross made way for the Latin cross, which 
resembles a lower case “t.” Orthodox Christians add a 
small horizontal line above the arms of the cross denot-
ing the sign hung by Pilate, and a small diagonal line 
below the arms of the cross denoting a footrest. Other 
denominations, like Methodists, show a flame behind 
the cross indicating the Holy Spirit. Sometimes, the 
cross is displayed upside down, known as a reversed 
cross or the cross of Saint Peter. Although the original 
meaning for this cross probably originated from Peter’s 
request to be crucified upside down (so was Christian 
in origin), many have associated it with the occult and 
Satanism. Because satanists inverted the Christian pen-
tagram, people believe they inverted the cross as well.

The ankh has a cross for a base, but an oval in 
place of the head of the cross. Sometimes, the ankh is 
referred to as an ansata, or handle, cross. This symbol 
was primarily used in Egypt as a symbol of life and fer-
tility. Since its context was often in regards to resur-
rection, this symbol was used by Gnostic sects of early 
Christians to symbolize the resurrection of Christ. The 
ankh was actually used by Christians before the Latin 
cross. Wiccans currently use this symbol today to mean 
immortality and completion.

Another misunderstood religious symbol is the 
swastika. The swastika is a cross with its arms bent at 
right angles, most commonly so that the top arm is bent 
to the right and each remaining arm is bent in a similar 
clockwise direction (from the center) to give the impres-
sion of movement. When the arms are bent in the other 
direction, it can be called a “swastika” or it is sometimes 
referred to as a “sauwastika.” The name is Sanskrit in 
origin and can be loosely translated as “good luck 
charm.” Historical records show that the swastika is an 
ancient symbol (older than the ankh). Hindus use both 

forms of the swastika; the right facing means the evo-
lution of the universe, whereas the left facing indicates 
the involution of the universe. Together, both versions 
are thought of as a balance of opposites. Buddhists pri-
marily used the right facing swastika, although recently 
they have changed to using the left facing version, as 
the right facing version has become known as an anti-
Semitic hate symbol since World War II. The swastika 
used by the Nazis was right facing but also rotated 45 
degrees and appears different from the religious sym-
bols. In Jainism, the swastika is the symbol for their sev-
enth saint (or Jina). Jainists draw swastikas using rice to 
begin and end ceremonies around altars and idols. The 
swastika has also been used by Native Americans to rep-
resent the sun, the four directions, and the four seasons. 
Raelians use the swastika in a hexagram to denote that 
time is infinite.
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Religious Writings
Category: Friendship, Romance, and Religion.
Fields of Study: Connections; Communication; 
Number and Operations; Representations.
Summary: Mathematics and religious thought have 
been driven by the same motive: the need to better 
understand the nature of life and the universe.

In addition to its computational and problem-solving 
power, mathematics has long been joined to religious 
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faith to form systems of mutual support. Evidence of 
the most productive relationships can be found in a 
variety of texts that call attention to mathematical con-
cepts and knowledge as part of a religious or theologi-
cal treatise. In other cases, the purported significance 
of mathematics to religion is a cause for antagonism 
and tension. Among the most persistent relationships 
evoked in writings that combine mathematics and reli-
gion is one that is understood to exist between their 
particular ways of knowing. Whether by way of anal-
ogy or more direct linkages, predominate characteris-
tics of mathematical knowledge—its clarity, certainty, 
and timelessness—have often been called upon to serve 
theological contemplation. 

Plato
Several Platonic dialogues feature extended discus-
sions of mathematical knowledge in relation to philo-
sophical and cosmological considerations, most nota-
bly the Meno, the Timaeus, and the Republic. Coaxing 
a geometric argument from an unsuspecting slave 
boy in the Meno serves as an epistemological lesson 
in humankind’s ability to access certain and timeless 
knowledge. In the Timaeus, the power of mathemat-
ics as a system that provides a way of comprehending 
the physical world legitimizes adopting a cosmological 
perspective organized around identifiable character-
istics, such as intelligence and goodness. The signifi-
cance of mathematics to training philosopher-rulers 
as presented in the Republic is predicated on their need 
to reason effectively about ideal forms such as morality 
and justice. Although it would be incorrect to refer to 
them as “religious” in a strict sense, these Platonic dia-
logues establish a crucial link between mathematical 
and metaphysical contemplation frequently reflected 
in later theological writing.

Gregory of Rimini
Gregory of Rimini (c. 1300–1342) followed an Aristo-
telian mode of thinking, according to which abstract 
mathematical concepts exist only in the mind of math-
ematicians. Unlike their characterization within the 
Platonic tradition, mathematical entities have no exis-
tence independent of the objects that possessed them 
in terms of size, quantity, or other qualitative features. 
Even so, Gregory of Rimini’s compiled Lectures under-
take discussions of the continuum that ultimately chal-
lenge Aristotle’s opinion on the impossibility of infinity 

as an actual or completed notion. This work intertwines 
discussions of divine omniscience, the temporal and 
spatial characteristics of angels, and the divisibility of 
the continuum, placing it squarely in a scholastic tra-
dition that incorporates mathematical considerations 
within commentaries that focus primarily on religious 
subject matter.

Nicholas Cusanus
Although the author of several texts dedicated to Clas-
sical problems, such as squaring the circle, the philoso-
pher and theologian Nicholas Cusanus (1401–1464) 
explicitly elaborated on the connection between math-
ematics and religion in Learned Ignorance (c. 1440). 
The significance of mathematical reason to theological 
contemplation discussed in this text is founded upon 
its ability to provide reliable and infallible knowledge 
about objects that transcend direct human experience. 
For Casanus, relations that exist between all things 
meant that one is able to develop an appreciation of 
unknowable objects based on other, better-understood 
objects. Polygonal approximations to a circle under-
score this relationship. At the same time, Cusanus was 
aware that obtaining knowledge in this way depended 
on using various symbols and symbolic relationships in 
consistent and correct ways. The study of mathematics 
employed immutable symbols that avoided interpre-
tive ambiguity and, thus, appealed to Cusanus as an 
appropriate framework for working with them.

Michael Stifel
In his 1532 Book of Arithmetic About the Antichrist, A 
Revelation in the Revelation, Michael Stifel (1468–1567) 
used computation skills and numerological inclina-
tions to predict the end of the world. By doing so, he 
contributed to the fervor of the Reformation by associ-
ating the pope with the antichrist of the Book of Rev-
elations. Indicative of his talents as a mathematician 
who pursued a lifelong fascination with numbers and 
their meaning, Stifel’s 1544 book, Arithmetica Integra 
is considered his major achievement. In it, he explores 
and extends Pythagorean number theory, the construc-
tion of magic squares, the theory of irrationals, and the 
algebra of quadratic equations.

Galileo Galilei
Galileo Galilei (1564–1642) articulated a connec-
tion between mathematics and the divine that many 
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found problematic. Like others before him, much of 
his writing asserted the superiority of mathematical 
reasoning, acknowledging it as the most certain way 
to both read and describe truths pertaining to the 
natural world. However, his praise of mathematics 
went considerably further in some texts, including the 
1632 book, Dialogues Concerning the Two Chief World 
Systems. Specifically, Galileo maintained that human 
knowledge was indistinguishable from divine knowl-
edge regarding those areas of mathematics to which it 
turned its attention. Consequently, mathematical rea-
soning provided unmitigated and unparalleled access 
to God’s designs. As a threat to longstanding theologi-
cal hierarchies, Galileo’s pronouncements on math-
ematics were part of the indictments brought against 
him by church inquisitors.

René Descartes
A mathematical approach to reasoning is evident in the 
prescriptions set down by René Descartes (1596–1650) 
in his book, Discourse on the Method. Compelled by 
both skepticism and consistent criteria, he promoted 
a reductive framework for investigating problems that 
requires breaking up the analysis into pieces. Examin-
ing and understanding the simplest of the pieces would 
then lead to a solution. The first principle of this ana-
lytic approach allows one to establish a simple truth 
by virtue of its evident nature. Using mathematics 
as an exemplar for all reasoning therefore demanded 
an assurance of certainty. Descartes addresses this 
requirement in his 1641 book, Mediations. In par-
ticular, this work contains proofs of the existence of a 
benevolent and non-deceiving God, by virtue of which 
humans are able to recognize eternal truths for them-
selves. Although not above philosophical criticism, 
Descartes’s work embraces mathematical and religious 
concerns of the time.

George Berkeley
George Berkeley (1685–1753) adopted a significantly 
antagonistic perspective on mathematics and theol-
ogy. Some of his early writing evidences his affin-
ity and appreciation for mathematics. However, later 
commentaries published while he served as the Bishop 
of Cloyne criticized mathematicians. Most notable 
among these are the 1732 book Alciphron, or the Min-
ute Philosopher and the 1734 book, The Analyst, or a 
Discourse Addressed to an Infidel Mathematician. Berke-

ley asserted that mathematicians made unjust claims 
to exactness. His belief that the persuasive power of 
its problematic reasoning undermined the precepts of 
revealed religion only exacerbated this concern. Asso-
ciating it with dogmatism and obscurantism, Berkeley 
was particularly hostile to the use of fluxions and infin-
itesimals, respectively, in the Newtonian and Leibniz-
ian developments of calculus. One of his overarching 
objections pertained to the unacceptable admission of 
infinity in mathematics. Consequently, he attempted 
to establish the rule for computing the derivative of xn  
in the Analyst by avoiding the use of either fluxions or 
infinitesimals.

Charles Babbage
Exemplary of natural theology in the nineteenth cen-
tury, the Bridgewater Treatises were intended to pro-
vide commentary on modern scientific discoveries in 
relation to the Creation. In all, eight manuscripts were 
commissioned that discussed topics such as chemis-
try, geology, meteorology, and physiology. Mathemat-
ics was not one of the subjects included in the origi-
nal commission, and Charles Babbage (1791–1871) 
took its omission as an opportunity to write his Ninth 
Bridgewater Treatise. Considered the father of modern 
mechanical computing, Babbage dedicated much of 
his life to designing the difference and analytic engines. 
His treatise highlights this work by arguing that events 
appearing miraculous can be accounted for as part of 
a grand design. As consummate a promoter as he was a 
mathematician, Babbage publicly illustrated this point 
several times with a model of the difference engine. 
These demonstrations involved programming the 
machine to break an identifiable recursive pattern at a 
moment that defied explanation by his audience.

Edwin Abbott
The enduringly popular 1884 book, Flatland: A 
Romance of Many Dimensions, introduced the con-
cept of higher dimensional space to a wide reader-
ship. As its author, Edwin Abbott (1838–1926), drew 
upon his strengths as an educator, an expositor, and a 
theologian to convey multiple messages that relate to 
the mathematical imagination. Among these, scholar-
ship has focused attention on progressive theological 
imperatives that he developed elsewhere and subtly 
incorporated into Flatland. Specifically, Abbott was 
keen to promote a form of theology that would be able 
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to respond positively to new scientific attitudes and 
investigations. Mathematical research provided an 
ideal vehicle for Abbott, as discussions of non-Euclid-
ean geometries suggested a loss of certainty within 
the discipline concomitant with a loss of religious 
certainty. Though perhaps the best known, Abbott 
joined and influenced other writers who used new 
developments in geometry as the impetus for renewed 
spiritual reflection that continued into the twentieth 
century, including Charles Hinton, Arthur Schofield, 
Peter Ouspensky, and Claude Bragdon.

Other Connections
There are other ways in which religion and mathemat-
ics are connected in writing. For example, mathemati-
cian Blaise Pascal produced many specifically religious 
writings, including Provincial Letters and the Pensées. 
Literary and religious scholars continue to study not 
only these works but also his mathematical and scien-
tific writings to gain greater insight into his religious 
beliefs. A systematic study of the contributions of 
people from other cultures and religions to mathemat-
ics, such as Muslims or Hindus, or the geometric dis-
cussions in rabbinical writings also interest historians 
and mathematicians. Finally, while there are countless 
historical examples of mathematicians whose religious 
beliefs and mathematical work are philosophically 
intertwined, philosopher and mathematician Bertrand 
Russell’s 1927 lecture, and later essay, Why I Am Not a 
Christian, has been called “devastating in its use of cold 
logic” in critiquing religious beliefs. A book containing 
this and related essays was included in the New York 
Public Library’s list of the most influential books of the 
twentieth century.

Further Reading
Koetsier, T., and L. Bergmans, ed. Mathematics and the 

Divine: A Historical Study. Oxford, England: Elsevier, 
2005.

Swade, Doron. “‘It Will Not Slice a Pineapple:’ Babbage, 
Miracles and Machines.” In Cultural Babbage: 
Technology, Time and Invention. Edited by Francis 
Spufford and Jenny Uglow. London: Faber, 1996.

Valente, K. G. “Transgression and Transcendence: 
Flatland as a Response to ‘A New Philosophy.’” 
Nineteenth-Century Contexts 26 (2004).

K. G. Valente

See Also: Greek Mathematics; Infinity; Mathematical 
Certainty; Mathematicians, Religious; Mathematics and 
Religion; Numbers and God; Proof.

Renaissance
Category: Government, Politics, and History.
Fields of Study: Geometry; Representations.
Summary: The Renaissance’s resurgence in humanism 
also benefited mathematics and engineering.

The Renaissance or Rinascimento (both words mean 
“rebirth”) was a flourishing of philosophy, art, archi-
tecture, science, and high culture more generally 
beginning in fourteenth-century Europe. Renaissance 
thinkers thought of themselves as restoring the civi-
lization of Greece and Rome after what they called 
“the Middle Ages.” The Renaissance saw the rise of 
humanism, hermeticism, Neoplatonism, and realist 
art involving optical perspective; the decline of feu-
dalism; increased circulation of ideas due to printing; 
the Protestant Reformation; a strong interest in clas-
sical literature and history; a strengthened interest in 
science and mathematics and their applications; and 
world exploration.

Early Renaissance (c. 1300–1450)
The Renaissance can be traced back to the thirteenth-
century writings of Dante Alighieri, Francesco Petrarca, 
and Brunetto Latini and the paintings of Giotto di 
Bodone. Such work was sponsored by bankers, mer-
chants, and industrialists who rose to great wealth and 
influence, displacing the Church and landed nobility as 
primary sponsors of high culture. 

Starting in the mid-fourteenth century, human-
ist scholars searched libraries to recover the lost texts 
of classical Rome. Many edited texts went to print, 
increasing their accessibility at (relatively) low cost. 
After approximately 50 years, attention turned to recov-
ering the Greek heritage, which—though mostly lost 
in the West—had continued on in Byzantium. Many 
Greek scholars migrated west at this time, bringing 
their expertise and manuscripts to Venice, in particu-
lar. The recovery and translation of Plato’s works, along 
with several tracts in neoplatonism and hermeticism, 

860 Renaissance



fueled an interest in applying simple numerical ratios 
and geometric regularity in fields as diverse as art and 
architecture, cosmology, alchemy, and musical tuning. 
The intentions included occult efforts to replicate cos-
mic structures, invoking astral influences at the human 
scale. More visceral results were achieved by compos-
ers, such as Josquin des Prez, who brought polyphonic 
techniques to Italy from the Low Countries, laying 
foundations for important Italian composers (such as 
Giovanni Pierluigi di Palestrina) toward the end of the 
sixteenth century.

Renaissance (c. 1450–1500)
The Renaissance spread north from Tuscany and 
across the Alps during the second half of the fifteenth 

century. Political philosophy, exemplified by Niccolò 
Machiavelli’s Prince and Discourses on Livy, attempted 
a rational analysis of political structures contextual-
ized by cultural difference and the practicalities of 
everyday life. Vernacular languages came to be used 
for scholarly writing, making texts more widely read-
able as did printing, which advanced rapidly with the 
establishment of fine publishing houses in the Veneto. 
Examples include the Aldine Press, where italic type-
faces were invented and Erhard Ratdolt’s press, which 
pioneered the printing of mathematical diagrams 
when producing the first edition of Euclid’s Elements 
in 1482.

The mid-Renaissance was centered on the Repub-
lic of Florence, largely sponsored by a powerful bank-
ing family, the Medici. The ideals of this period are 
expressed in Florentine architecture, such as Filippo 
Brunelleschi’s Church of San Lorenzo, which has a 
legible geometric regularity, bright and even light, 
openness, and a delicately balanced stillness. Ideals 
in painting included realism based on optical theory. 
Artists could occupy the leading edge of mathematical 
research; Piero della Francesca, for example, produced 
treatises on perspective theory in addition to painting 
with perspective techniques. Sculpture also developed 
a scholarly foundation through both historical study 
of the classical texts that had survived and hands-on 
dissection of fresh cadavers. 

High Renaissance (c. 1500)
The High Renaissance lasted only briefly before trans-
forming into Mannerism. It was focused on Rome, 
owing to the patronage of Pope Julius II. Art gained a 
level of dynamism best known through the works of 
Rafaello Sanzio (Raphael) and Michelangelo Buonar-
otti in Rome, and Tiziano Vecelli (Titian) and Giorgione 
in Venice. Leonardo da Vinci’s Last Supper, Raphael’s 
School of Athens, and Michelangelo’s ceiling in the Sis-
tine Chapel were painted during the High Renaissance.

Further north, the Renaissance adapted to local 
cultures and circumstances. In Germany, for example, 
goldsmiths crafted clocks, automata, and mathemati-
cal and astronomical instruments for their patrons. 
Reformation printers published a wide range of medi-
eval texts alongside Lutheran tracts, largely shedding 
the refined typography of Venice in favor of speed and 
quantity. Gothic elements remained strong in the art 
and architecture of England, the Netherlands, and 
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Scandinavia and Renaissance influences reached those 
countries only after they had become Mannerist. 
Because of Protestantism, secular authorities replaced 
the Catholic Church as the primary sponsor of cul-
tural works. 

Renaissance Science and Mathematics
Renaissance scholars initially reacted against Scholas-
tic natural philosophy by turning to Neoplatonism, 
taking an often mystical and magical approach to 
nature, often with practical goals. This shift can be 
seen in the intertwining of alchemy and astrology, 
for example, and in the wide range of applications 
described in Giambattista della Porta’s 1558 book 
Natural Magic. The title reflects a distinction drawn 
between natural magic, which invoked empirical 
knowledge of nature to achieve results; in contrast 
to spiritual magic, which regulated astral influence 
using amulets and talismans; and demonic magic, 
which invoked supernatural beings.

The Church’s need for calendrical reform led Nico-
laus Copernicus to develop heliocentric astronomy as 
an improvement upon the Hellenistic methods main-
tained and developed throughout the Middle Ages. 
Astronomy was favored also in Protestant territories 
owing to the educational reformer Philip Melanchthon 
arguing that it was an ideal way to learn about divine 
creation. 

Artillery motivated studies in ballistics, leading 
to stellated polygonal designs for fortresses, such as 
Naarden in the Netherlands and the Kronborg in Den-
mark. Aristotelianism, however, still provided qualita-
tive theory for ballistics and other practical endeavors, 
such as hydraulic engineering. 

The development of machines and engineering 
techniques inspired efforts to classify and theorize 
about them, as shown by the published “theaters of 
machines” by Jacques Besson and Agostino Ramelli. 

The influences of exploration can be dated at least 
as far back as 1488, when Bartholomeo Dias found a 
connection between the Atlantic and the Indian Ocean 
that led to trade routes established beginning in 1498 
with Vasco da Gama’s arrival in Calicut, six years after 
Christopher Columbus found the West Indies. Such 
journeys motivated developments in navigation and 
shipbuilding as well as an outward-looking attitude. 
Trade expanded, especially in Spain, Portugal, and—as 
the new knowledge spread north—the Netherlands. 

Descriptions and specimens brought back from for-
eign regions caused disputes and reforms in biological 
taxonomy that were eventually settled in the eighteenth 
century by Charles Linnaeus.

Progressive rational problem-solving, combined 
with the growth of theoretical method and a growing 
preference for naturalistic rather than occult explana-
tions, provided many elements needed for the eventual 
emergence of modern empirical science.

Mathematics was boosted early by the ascendance 
of merchants and bankers who needed computational 
methods to manage money and later to solve prob-
lems in navigation and cartography. Some advanced 
material was assimilated from Arabic sources, such 
as geometric methods and high-precision trigono-
metric tables. Solving polynomial equations became 
a display of virtuosity; the quadratic had been solved 
in antiquity, now Girolamo Cardano and other math-
ematicians developed solutions for cubics and higher 
order problems. As algebra developed, many algebraic 
symbols were invented and evolved into the forms 
used today. Hindu-Arabic numerals replaced Roman 
numerals but the calculation of the products, ratios, 
and square roots of large numbers in astronomy and 
navigation was still onerous and error-prone. These 
operations were facilitated by conversion into addi-
tion and subtraction problems using prosthaphae-
resis (based on trigonometric transforms), and later 
through the invention of logarithms. 
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Representations  
in Society
Category: School and Society.
Fields of Study: Connections; Representations.
Summary: Symbols, equations, and images are all 
used to teach mathematical concepts and to convey 
mathematical information in society.

Representations are at the forefront of the focus stan-
dards of the National Council of Teachers of Mathe-
matics to improve mathematics teaching and learning. 
Representations allow students to see and experience 
mathematics from different perspectives. The role of 
multiple representations in promoting students’ con-
ceptual understanding of mathematics has long been 
emphasized by researchers. Thus, representations are 
among the essential parts of mathematics lessons. 
Further, in the twenty-first century, even people who 
had very little exposure to mathematics in school will 
encounter various mathematical representations in 
their daily lives. Familiarity with mathematical rep-
resentations or representational literacy has become 
an essential skill. Many mathematical concepts are 
defined in terms of representations. A function may 
be represented by a Taylor series of infinite terms, 
which is named after Brook Taylor. There is also an 
entire branch of mathematics called “representation 
theory” that expresses algebraic structures using lin-
ear transformations.

Representations
Mathematics has its own native beauty and inspira-
tional aesthetic to represent the physical world and 
the world of intellect. One of the strengths of math-
ematics is its resources to seek for new solutions and 
explore frameworks to answer problems related to the 
real world. To achieve this goal, mathematical repre-
sentations in society should be explored and impor-
tant ideas of modern mathematics should be com-
municated properly. Representations in mathematics 
can be described as constructs that symbolize or cor-
respond to real-world mathematical entities, features, 
or connections. Gerald Goldin broadly defined repre-
sentations as any configuration of characters, images, 
or concrete objects that can symbolize or represent 
something else. Representations take various forms, 

such as informal representations used in preschool 
settings or more formal representations used in math-
ematics classrooms or by mathematicians. For exam-
ple, children represent groups of five with their hand 
or, even further, they develop proportional thinking 
as they relate five fingers to one hand and 10 fingers 
to two hands. More formally, mathematics students 
or mathematicians use mathematical equations, for 
example, to represent curves or relationships among 
financial variables. 

Internal and External Representations
Representations can be both internal and external in 
nature and can be created by forming individual rep-
resentations, such as letters, numbers, words, real-life 
objects, images, or mental configurations. Internal rep-
resentations are mental images or cognitive constructs 
of individuals that relate to external representations 
or to experiences in the external world. James Kaput 
referred to internal representations as mental struc-
tures and defined them as instruments that are used to 
organize and manage the flow of an individual’s expe-
rience. Internal representation systems exist within 
the mind of an individual and consist of constructs to 
assist in describing the processes of human learning 
and problem solving in mathematics. Internal repre-
sentations of mathematical concepts can take various 
forms, such as individual visualization of mathematics 
concepts, idiosyncratic notation systems, or attitudes 
toward mathematics.

External representations, on the other hand, include 
all external entities or symbols. External representa-
tions provide a medium to communicate mathemati-
cal ideas, concepts, or constructs. Richard Lesh defined 
external representations as the embodiment of internal 
systems of thought. Lesh also referred to external rep-
resentations as mathematical representations that are 
simplifications of external systems. Learners use exter-
nal representations, such as marks on paper, sounds, or 
graphics on a computer screen, to organize the creation 
and elaboration of their own mental structures. Unlike 
internal representation systems, external representation 
systems can be easily shared with and seen by others.

Multiple Representations  
in Mathematics Education
In mathematics education, there has been a shift 
from classic to nontraditional teaching and learning 
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practices with multiple representations, where educa-
tors use various representations to effectively present 
information. Multiple representations refer to dif-
ferent kinds of representations that present the same 
mathematical ideas from different perspectives or 
representations that present different aspects of the 
same mathematical concept. For example, teaching 
fractions concepts using multiple representations may 
involve presenting fractions in real-life contexts such 
as partitioning a pizza or a pie, allowing students to 
explore equivalent fractions using kinesthetic or vir-
tual manipulatives, or providing students with picto-
rial representations of fraction operations in addition 
to formal mathematical representations. Teaching and 
learning with various kinds of representations provide 
students with hands-on and minds-on experiences 
and support a better understanding of mathemati-
cal concepts. Also, using multiple representations in 
mathematics education can help to alter the focus 
from a computational or procedural understanding to 
a more comprehensive understanding of mathemat-
ics using logical reasoning, generalization, abstraction, 
and formal proof. A substantial amount of research 
has demonstrated the effectiveness of multiple repre-
sentations in enhancing students’ conceptual under-
standing of mathematical concepts. 

The notion of multiple representations in mathemat-
ics education commonly refers to external representa-
tions. However, one of the essential goals of mathematics 
education is to develop internal representation systems 
that interact well with external representation systems. 
James Kaput identified five interacting types of internal 
and external representations: (1) mental representa-
tions—internal representation—that learners construct 
by reflecting on their experiences; (2) computer repre-
sentations that model mental representations through 
computer programs, which allow for arrangement and 
manipulation of information; (3) explanatory repre-
sentations consisting of models or analogies that create 
the interaction between mental and computer represen-
tations; (4) mathematical representations, where one 
mathematical structure is represented by another math-
ematical structure; and (5) symbolic representations, 
such as formal mathematical notations.

To understand James Kaput’s taxonomy of inter-
nal and external representations, consider the differ-
ent types of representations related to the concept of 
“slope.” When learning about positive slopes, a student 
might internally imagine a hill, which constitutes an 
internal (or mental) representation. This mental repre-
sentation can be replicated on a computer screen. The 
student can create a unique model that incorporates the 

mental representation through 
a computer representation. 
If the model is viable, then it 
can be an explanatory repre-
sentation for the concept of 
“slope.” The student, then, can 
sketch a similar mathematical 
graph of the hill and can name 
the steepness of the hill with 
the mathematical notation, 
“slope.” This graphical repre-
sentation of slope can, then, 
provide support to represent 
the slope in a symbolic form 
as a rate of change (y = mx + b, 
where slope is represented 
with m and indicates the ratio 
of change on the y-axis to the 
change on the x-axis). As por-
trayed in this example, internal 
and external representations 
are not separate. Rather, they 
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are intrinsically connected, and they interact continu-
ously. Furthermore, a concept like slope is itself a type 
of alternative representation. In calculus, a curve is rep-
resented by the changing nature of its tangent vector, 
where the solution to the first derivative at a particular 
point is the slope of the tangent vector.

Translational Skills Among Different  
Modes of Representations
In addition to the importance of the effective interac-
tions between internal and external representations in 
the acquisition and use of mathematical knowledge, it 
is essential that students develop fluency among differ-
ent external representations. Richard Lesh enumerated 
multiple modes through which representations can be 
constructed: manipulatives, pictures, real-life context, 
verbal symbols, and written symbols. To demonstrate 
deep understanding of mathematics, students need to 
represent their mathematical ideas with different modes 
of representations and smoothly translate within and 
between those modes. For example, in algebra, stu-
dents should be able to make the connection between 
graphical and algebraic or symbolic representations of 
equations. Similarly, students need to link what they 
learn using concrete or virtual manipulatives to both 
pictorial representations and abstract symbols. For 
instance, students who initially learn fraction opera-
tions using concrete or virtual manipulatives should be 
able to relate this knowledge when they later on learn 
fraction operations using symbolic and more abstract 
mathematical representations. Connecting differ-
ent modes of representation simultaneously has been 
demonstrated to improve conceptual understanding as 
well as positive attitudes toward mathematics.

In mathematics education research, there is strong 
evidence that students can grasp the meaning of math-
ematical concepts by experiencing different math-
ematical representations and making connections and 
translations between these modes of representations. 
Using translational skills among different representa-
tional modes encourages students not to merely mem-
orize theorems and facts but also to think analytically 
to reproduce and use them in real life problems or even 
in pure mathematical problems. 

To deepen students’ understandings, teachers 
should provide students with multiple representa-
tions of a single mathematical concept and focus on 
students’ transition ability from one representation 

to another. Teachers need to be able to present one 
concept in multiple modes without relying on a single 
mode and provide students with appropriate transi-
tions among these representations. Teachers should 
provide also students with ample opportunities to 
represent mathematical concepts in multiple ways 
and to connect these representations, thereby devel-
oping representational fluency. For example, asking 
a student to restate a problem in unique words, to 
draw diagrams to illustrate the concept, or to act out 
the problem are some ways to provide students with 
opportunities to translate among representations. If 
teachers fail to implement the transitioning among 
different representations, students will be less likely to 
see how different representations are related and will 
be more likely to develop misconceptions.

Multiple modes of representation can be used by 
teachers and students to enhance understanding of 
mathematics. Most research has shown that provid-
ing students with accurate representations improves 
student learning. However, different representational 
modes might have different impacts on student under-
standing. One mode might be more relevant or effec-
tive than another for teaching a specific concept. Or, 
some representational modes can be more appropri-
ate at different developmental stages of the same con-
cept. For example, research on teaching and learning of 
fractions has shown that students should be given the 
opportunity to develop mental representations of frac-
tions using manipulatives before they are presented 
with symbolic representations. Thus, in addition to 
using multiple representations, choosing effective and 
appropriate presentations of information is crucial in 
teaching and learning. Representations that allow stu-
dents to actively interact with the subject matter are 
more effective in student learning than representations 
that do not support students’ active involvement. 

Despite the research support for development of 
higher order thinking skills afforded by different repre-
sentational forms, little is understood about how stu-
dents interact with multiple representations in various 
learning environments. Even though each representa-
tion provides similar information, the strain that each 
representation puts on students’ cognitive resources 
may differ. Not only do individual representations have 
different impacts on students’ conceptual understand-
ing but integrating multiple representations may also 
result in interaction effects among different modes 
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presented. Therefore, integration of multiple repre-
sentations becomes an important consideration in the 
design of instructions. Educators should employ cau-
tion as they integrate different modes into instruction, 
because delivering redundant information with differ-
ent modes might interfere with learning. 

Mathematical Thinking and Representations 
in the Twenty-First Century
An increasing number of daily activities in the twenty-
first century require familiarity with mathematical rep-
resentations and mathematical thinking. Mathematical 
thinking, which is a crucial tool for every member of 
society, includes skills such as pattern recognition, gen-
eralization, abstraction, problem solving, proof, and 
analytical thinking. Most companies prefer employ-
ees who are equipped with mathematical literacy or 
general mathematical skills. However, many students 
either do not necessarily understand these qualifica-
tions or do not value them enough. It is important to 
emphasize that all humans use mathematical thinking 
tools in their every day lives and workplaces, with or 
without noticing they are doing so.

It is not very hard to realize the extent to which 
mathematical representations are integrated into 
mundane objects and activities. Consider the number 
of newspaper columns that provide their readers with 
different kinds of mathematical representations to 
explain current issues. Topics in such columns include 
sports, economics, advertisements, and weather 
reports. For example, the growth of players, the statis-
tics and ranking of teams, and teams’ transfer budgets 
are represented in several representational modes, such 
as tabular data, textual information, visual representa-
tions, or graphical interpretation. Not only do sports 
fans need to understand the mathematical information 
provided readily to them but they also may need to use 
the mathematical information in problem solving situ-
ations, such as estimating the chances of their team’s 
victory. More surprisingly, when a rivalry game is pres-
ent, the provided data get even more complicated to 
analyze the chances of each team. 

Even though the use of mathematical representa-
tions and information in economic and weather col-
umns in various modes is apparent, the ones used 
within advertisements or political columns may be 
overlooked. Understanding the mathematical infor-
mation included in advertisements and deciding which 

product to buy requires effective use of mathematical 
thinking tools. In most advertisements, companies pres-
ent several payment options with different price ranges 
instead of giving just one price for a product. In par-
ticular, mortgage plans to buy houses and installment 
plans to buy cars require serious analyses of options 
to choose the best for a given budget. In political col-
umns, on the other hand, one would not be surprised 
to see percentages representing the proportion of the 
population that supports various political parties in a 
country or the votes of a poll. Such information is not 
only presented as tabular data, visual charts, or graphs, 
but also as textual information, which is another mode 
of mathematical representation. 

Representations in Problem Solving 
Problem solving is one of the essential tools for mathe-
matical thinking. A person equipped with problem solv-
ing skills does not necessarily need to have the knowl-
edge base for the solution to each problem encountered 
but needs to know how to approach problems, locate 
and access information from different resources, and 
process information to solve the problem. For example, 
when one faces a novel problem, an approach to solv-
ing that problem can be forming an analogy between 
the new problem and another, previously solved prob-
lem. In other words, known information from an ear-
lier problem can be mapped onto the novel problem. 
Brainstorming may be another valuable approach to 
gather different ideas on solution paths to unfamiliar 
problems. If a problem is too complex, problem solvers 
can try to break it down into more manageable parts 
(more solvable problems). One approach to problem 
solving is solving the problem step-by-step and taking 
an action at each step to get closer to the goal. Another 
solving approach can be conducting extensive research 
to analyze existing ideas and then adjusting possible 
solutions to the problem in hand. Finally, trial-and-
error may be an approach to find a solution to an exist-
ing problem. It is emphasized in problem solving that 
there are many solution paths to a problem and a will-
ingness to try multiple approaches is encouraged. Mul-
tiple approaches and strategies may be available and 
some of these approaches may be more efficient than 
the others. 

Problem solving in mathematics, and in other fields 
as well, requires both knowledge of different repre-
sentational systems and representational fluency that 
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enables flexible use of various representational systems. 
For example, when solving a mathematical problem 
that asks how many quarters there are in 2 1/2, various 
strategies that involve different representations exist to 
approach the problem. A student may choose to trans-
late this problem, which is represented in words, into 
a real-life context, such as how many quarter slices of 
pizza there are in 2 1/2 pizzas. Another student may 
opt to draw a picture that represents the given problem 
and solve the problem using the pictorial representa-
tion. Or, some students may represent the problem 
using symbolic representations and solve the problem 
accordingly. There may be other approaches where stu-
dents start with a real-life context and then translate it 
to a pictorial representation, or where students come 
up with various relevant representations and choose 
the most efficient one for them. In more complex prob-
lems, different parts of the problems may require differ-
ent representations. Thus, representational fluency is an 
essential part of problem solving.

Problem solving is such an important skill that is 
not only required to help students solve mathematical 
problems but also provides them with necessary tools to 
approach and solve problems in the real world. Because 
the real word does not have recipes to solve a problem, 
and problem solving requires structured, thoughtful, 
and careful analysis of problems (especially ill-defined 
problems) in various situations, people equipped with 
problem-solving skills are highly valued by employers. 

Mathematics as a Language
Mathematics is, to some extent, a language that is uni-
versal and can be understood in any part of the world 
without much difficulty. The mathematics language, 
which consists of both symbolic and verbal languages, 
has evolved as the most efficient medium to communi-
cate mathematical ideas and information. Mathematics 
language also includes graphical images to effectively 
communicate mathematical concepts and ideas. Thus, 
different representational modes are used in commu-
nicating mathematical ideas and concepts. For exam-
ple, when a mathematics teacher writes an equation 
and explains the equation in spoken language to a class, 
both verbal and written representational forms are in 
play. Communication in mathematics often involves 
a constant representational translation between sym-
bolic and verbal representations. Symbolic and verbal 
languages of mathematics help to express ideas in a 

meaningful and efficient way. The evolution of math-
ematics language has been in progress for thousands of 
years. The goal of this progress is to improve the effi-
ciency of communication, which is central to learning 
and using mathematics. 

Before the emergence of mathematical notations and 
symbols, mathematicians found it difficult to share their 
knowledge with the community, even with other math-
ematicians. Even if a mathematician were able to prove 
a theorem, for example, geometrically without using 
mathematical notations and symbols, the mathemati-
cian might not have easily written down the proof to 
share it with others. Difficulties in representing math-
ematical ideas (writing in a concise and meaningful way 
using various mathematical notations and symbols) 
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Representational Skills

T he National Council of Teachers of Math-
ematics presents representation as an 

important skill needed for students and teach-
ers in teaching and learning mathematics in 
Principles and Standards for School Mathemat-
ics. Students should lucidly and coherently be 
able to express mathematical ideas through 
various representational modes, especially in 
writing and speaking. Through representational 
skills, abstract concepts can be manipulated 
into concrete concepts. Developing appropri-
ate representation manipulation skills is nec-
essary to improve conceptual understanding. 
Further, using various modes of representa-
tions, such as graphics, tabular data, men-
tal images, physical objects, mathematical 
symbols and notations, drawings, and textual 
information, provides students with organiza-
tional skills to systematize their thinking and 
approach a concept from multiple views, lead-
ing to a more coherent understanding. With 
this ability, students can represent phenom-
ena in a way that is meaningful to them. More 
importantly, the capability of representing a 
concept in numerous modes eliminates pos-
sible communication problems. 



forced mathematicians to seek alternative (especially 
short and easy) forms to present their knowledge. The 
need for an effective and efficient mode of communica-
tion to convey mathematics ideas resulted in the devel-
opment of the symbolic mathematical language.

Although the symbolic mathematical language is 
universal, the verbal mathematical language differs 
across societies or cultures. For example, although 
the American and the Japanese use the same symbolic 
notations to convey mathematical ideas, the verbal 
language each of these nations uses to communicate 
about mathematics is different. Differences in verbal 
languages to communicate mathematics have impli-
cations for teaching and learning mathematics. Verbal 
languages that are clearer about mathematical terms or 
that relate better to mathematical entities or ideas can 
support mathematical understanding. For example, 
counting in the verbal Chinese language is based on 
the concept of base-10 system. In Chinese, the num-
ber 11 is not an arbitrary word in the verbal language. 
Rather, in Chinese, 11 is “ten-one,” 12 is “ten-two,” 21 
is “two-ten-one,” 22 is “two-ten-two,” and so on. In 
other words, the Chinese verbal language clearly con-
veys that there is one 10 and one 1 in 11 or there are 
two 10s and one 1 in 21. Such a clear relation between 
mathematical ideas and verbal language can be an 
important cognitive tool that supports mathematical 
understanding.
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Revolutionary War, U.S.
Category: Government, Politics, and History.
Fields of Study: All.
Summary: The American Revolutionary War  
saw advances in mathematics cryptography  
and education.

The American Revolutionary War was a political and 
armed conflict between Great Britain and the British 
colonies on the North American continent between 
1775 and 1783. Colonists who sought to end British 
rule and declare their political and economic inde-
pendence supported the establishment of 13 colonial 
governments, each of which in turn sent representa-
tives to Philadelphia to set up the Second Continental 
Congress. 

This congress debated the state of political and 
economic ties to Britain, plied for support from other 
European powers, and discussed the possibilities and 
potential of a collective effort to make the separation 
official. Shortly after its inception, the Second Con-
tinental Congress formed a Continental Army and 
issued the Declaration of Independence. These actions 
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announced the birth of a new nation: the United States 
of America. The “War of American Independence,” as 
the American Revolutionary War is also called, saw 
fierce fighting in a wide variety of locations through-
out the new nation and on the soil of virtually every 
new state. Some key battles were fought in Lexington, 
Concord, and Boston, Massachusetts; Saratoga and 
Ticonderoga, New York; Trenton, New Jersey; King’s 
Mountain and Cowpens, South Carolina; and York-
town, Virginia; among many other places. 

The war lasted almost a decade and ended with 
the Treaty of Paris, which was signed at the Palace of 
Versailles in 1783 and recognized the sovereignty of 
the United States of America. There are many statis-
tics available that relate to aspects of the war, includ-
ing casualties and cost. For instance, some report that 
the British spent about £80 million while incurring a 
national debt of 250 million pounds, while the United 
States spent approximately $135 million, of which $37 

million became the national debt. Mathematics was 
used in a wide variety ways, including in the design 
and implementation of artillery and in planning strat-
egy and tactics. Mathematicians fought in the war, con-
ducted surveys, and created and decoded ciphers. The 
mathematics educational system also changed signifi-
cantly as a result of the war.

Louis-Antoine de Bougainville
Many historians agree that the Americans would have 
been unable to win the war without the political and 
military support of France and other allies. Louis-
Antoine de Bougainville was a French mathematician 
who became the first Frenchman to sail around the 
world. In 1752, he wrote a calculus book, Traité du 
calcul–intégral, which brought him recognition within 
the mathematical community for his clear exposition 
and updates to differential and integral calculus. After 
a second edition and election to the Royal Society of 
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E arly U.S. military intelligence began during 
the Revolutionary War. Paul Revere, William 

Dawes, and others used light signals to warn of 
invading forces before the battles 
at Lexington and Concord, which 
are generally considered to be 
the first military engagements of 
the war. James Lovell, who has 
been called the “father of Ameri-
can cryptanalysis,” broke the 
British ciphers, which were rear-
rangements of letters. He used a 
method known as frequency anal-
ysis, which involves determining 
letters based on the frequency of 
symbols in the coded message.

Lovell discovered that the 
British often changed ciphers by 
shifting them instead of creating 
a new rearrangement and this 
made them easier to decode. 
Lovell also created his own cipher 
forms but these were deemed too 

confusing for those wanting to send and receive 
messages. 

This belief was even true for Benjamin 
Franklin, who was well versed in 
mathematics and enjoyed magic 
squares recreationally. Frank-
lin commented, “If you can find 
the key & decypher it, I shall be 
glad, having myself try’d in vain.” 
American diplomats began to rely 
increasingly on replacements 
of words and other techniques 
instead of alphabet substitutions, 
and spies for both sides conveyed 
information about supplies and 
troop movements using codes. 
For instance, U.S. spy Benedict 
Arnold used book ciphering, in 
which a word is represented by 
a number that corresponds to a 
location in a book, in his commu-
nication with British intelligence 
officer John Andre.  

Cryptography

Paul Revere’s ride used light 
signals to warn the public.



London in 1756, he turned to a career in which he 
participated in numerous wars, including the Revo-
lutionary War. 

His astronomical observations became important 
to later explorers. He stated, “geography is a science of 
facts: one cannot speculate from an armchair without 
the risk of making mistakes which are often corrected 
only at the expense of the sailors.” During the Revo-
lutionary War, he was a commodore who supported 
the U.S. side. 

Simeon DeWitt
U.S. Army geographer Simeon DeWitt subscribed to 
The Mathematical Correspondent, generally regarded 
as the first U.S. special-interest scientific publication. 
DeWitt was a student at Rutgers University when Brit-
ish troops burned the college buildings. He continued 
his study of mathematics and surveying on his own 
and was appointed the geographer of the army by 
General George Washington. After the war, he became 
surveyor-general of New York State.

Education
Mathematics education changed dramatically in the 
United States during and after the war. Before the 
war, students usually learned mathematics from Brit-
ish works, although Americans like Isaac Greenwood 
had written arithmetic texts. Advanced mathematics 
included algebra, geometry, trigonometry, calculus, 
and surveying techniques. Many colleges were shut 
down during the war because students and professors 
served as soldiers, and buildings were used for other 
purposes. However, some members of the army were 
trained in mathematics during the war. After the war, 
new primary schools and colleges were established. 
Between 1776 and 1815, numerous mathematics texts 
were published in the United States. Some of these 
were reprints of English works, and others were com-
pilations or new works by American writers. In 1788, 
American Nicholas Pike published his text, The New 
and Complete System of Arithmetick: Composed for the 
Use of the Citizens of the United States, which contained 
both arithmetic and geometry. It was popularized by 
patriotic recommendations. There was also a change 
in the education of women. Prior to the war, it was 
thought that mathematics beyond simple arithmetic 
was unnecessary for women. After the war, mathemat-
ics educational opportunities began slowly to increase, 

as women were educated in mathematics to help in 
family businesses. 

Further Reading
Weber, Ralph. “James Lovell and Secret Ciphers During 

the American Revolution.” Cryptologia 2, no. 1 (1978).
Tarwater, Dalton. The Bicentennial Tribute to American 

Mathematics. Washington, DC: The Mathematical 
Association of America, 1977.

Tolley, Kim. The Science Education of American Girls. 
New York: Routledge, 2003.

Zitarelli, David. “The Bicentennial of American 
Mathematics Journals.” The College Mathematics 
Journal 36, no. 1 (2005).

Calli A. Holaway
Michael G. Lovorn

See Also: Artillery; Coding and Encryption; Strategy 
and Tactics.

Ride, Sally
Category: Space, Time, and Distance.
Fields of Study: Communication; Connections.
Summary: The first American woman in space,  
Sally Ride was a Mission Specialist and has become a 
science and mathematics education advocate.

Sally Kristen Ride, the first American woman in space, 
was born May 26, 1951, in Los Angeles, California. 
She attended Stanford University, and in 1973, earned 
Bachelor’s degrees in physics and English. By 1978, 
Sally had earned Master’s and Doctorate degrees in 
physics. After answering a newspaper advertisement for 
space program applicants, she was selected to complete 
the National Aeronautics and Space Administration’s 
(NASA) rigorous astronaut training program. Upon 
completion, she served as capsule communicator on 
early space shuttle missions.

Time in Space
On June 18, 1983, Ride became the first American 
woman in space, serving as a mission specialist aboard 
the space shuttle Challenger for STS-7, commanded 
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by Captain Robert L. Crippen and piloted by Captain 
Frederick H. Hauck. Soon after this historic 146-hour 
mission, Ride was selected as a mission specialist for 
STS 41-G. On October 5, 1984, again aboard the space 
shuttle Challenger, she began a mission that logged an 
additional 197 hours in space. Ride was training for 
her third space flight when the space shuttle challenger 
accident occurred in January 1986. As a result, her mis-
sion was cancelled but she was appointed to the Presi-
dential Commission investigating the accident. After 
the investigation, Ride was assigned to NASA Head-
quarters in Washington, D.C., where she helped found 
NASA’s Office of Exploration. Later, she worked at the 
Stanford University Center for International Security 
and Arms Control. 

Post-Astronaut Career
In 1989, Dr. Ride accepted a faculty position at the Uni-
versity of California, San Diego, as a professor of physics, 
and she was appointed director of the California Space 
Institute. More than a decade later, she founded Sally 
Ride Science, an innovative science education company 
dedicated to supporting girls’ and boys’ interests in the 

sciences, mathematics, and technology. The company 
designs science education projects for elementary and 
middle school students. Ride has also authored sev-
eral science books for elementary and middle school 
students, including To Space and Back (1989), Voyager 
(2005), The Third Planet (2004), The Mystery of Mars 
(1999), and Exploring Our Solar System (2003). 

In 2003, Ride was assigned to the Space Shuttle 
Columbia Accident Investigation Board, and has since 
been named to several national committees, includ-
ing the President’s Committee of Advisors on Science 
and Technology, the National Research Council’s Space 
Studies Board, and the Review of United States Human 
Space Flight Plans Committee. She has also served on 
the boards of the Congressional Office of Technology 
Assessment, the Carnegie Institution of Washington, 
the NCAA Foundation, the Aerospace Corporation, 
and the California Institute of Technology.

The Sally Ride Science Academy, which was created 
in 2009, focuses on training teachers to increase their 
students’ interest in science and mathematics by chang-
ing the image of scientists. As Ride told USA Today, the 
perception that a scientist “is some geeky-looking guy 

who looks like Einstein, wears a lab coat 
and pocket protector . . . [is] not an image 
that an 11-year-old girl or a 10-year-old 
boy aspires to.” In particular, Ride asserts 
that girls have difficulty seeing themselves 
as scientists: “A girl doesn’t look at that 
stereotype and say, ‘That’s what I want to 
be when I grow up.’” The Academy trains 
teachers on how to utilize readings that 
show scientists and mathematicians in 
real-world roles, which helps students to 
visualize themselves as being able to take 
on those roles. Ride believes that society’s 
view that girls are not good at mathemat-
ics and science is persistent and needs to 
be rectified. In order for girls to become 
interested in mathematical and scientific 
careers, society needs to portray those 
careers as “normal” for girls to pursue. 
Ride views herself as a role model, partic-
ularly for girls, and describes herself as “a 
pretty normal 10-year-old girl who grew 
up to be an astronaut.”

In addition to having been inducted into 
the National Women’s Hall of Fame and 
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Astronaut Sally Ride monitors control panels from the pilot’s 
chair. Floating in front of her is a flight procedures notebook.



the Astronaut Hall of Fame, Ride has been the recipient 
of numerous honors and awards. She has received the 
NASA Space Flight Medal, the Jefferson Award for Pub-
lic Service, the von Braun Award, the Lindbergh Eagle, 
and the NCAA’s Theodore Roosevelt Award.
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Risk Management
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Problem Solving.
Summary: Effectively assessing and mitigating  
risk can involve sophisticated mathematical analysis 
and modeling.

A feeling of security is essential for the welfare of all 
people, ancient or modern. There are many threats in 
the twenty-first century that can reduce the feeling of 
security, including financial problems, diseases, and 
crime. Threats feature different causes, which may be 
grouped into two main categories: natural (random), 
and intentional (malicious). 

Natural causes are independent from human will 
(for example, natural disasters), while intentional 
causes relate to the action of some adversary (for 
example, a terrorist). Some origins of threats, such as 
illness or accidents, are not completely random; though 
an actual intentionality is missing, correlations can 
be found between human behavior and the unwilled 
events. It is clear that the intention of any intelligent 

being, humans in particular, is to maximize one’s own 
benefit throughout an entire lifetime on the base of 
trade-offs between expenses and medium or long term 
returns. This goal justifies, among other risk manage-
ment strategies, the common use of insurance policies 
and alarm systems. 

Risk Assessment
In order to predict human behavior with respect to 
issues of risk, as well as to support the choice of pro-
tection strategies of any nature, risk assessment is 
employed. In order to assess the risk, a mathemati-
cal model is required. The most common and simple 
mathematical model for risk assessment consists of the 
following formula: R = P ·V· D.

Risk (R) with respect to a specific threat (T) is a 
combination of three different factors:

• P, the expected probability of the occurrence 
of T (how probable is the threat?)

• V, the expected vulnerability with respect to 
T (how probable is it that T will cause the 
expected consequences?)

• D, the expected damage caused by T (if the 
consequences caused by the threat are endured, 
how damaging are the consequences?)

Note that the combination operator “·” is not neces-
sarily a multiplier. Depending on the criteria used for 
the analysis and on the type of scale (linear or logarith-
mic), it can play different roles (even as a sum). 

Risk can be evaluated both using qualitative and 
quantitative approaches. Qualitative indices use 
reduced scales of values of intuitive meaning; for 
instance: low, medium, and high. The advantage is 
that estimations can be more straightforward (though 
rougher) and computations can be easier. The disad-
vantage is that results are usually less rigorous, and 
the combination of qualitative indices is question-
able. Quantitative approaches, on the other hand, use 
and produce values of parameters using well-speci-
fied metrics. The disadvantage is the difficulty of get-
ting input data, which—being produced by expert 
judgments, statistical analyses, and stochastic mod-
eling—are always affected by more or less relevant 
uncertainty errors. The advantage is that quantitative 
approaches enable possible automatic optimizations 
using appropriate algorithms.
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In some approaches the P ·V  factor is compacted 
into a single factor, which will be defined as the fre-
quency (F) of “successful” threats, expressed algebra-
ically as F = P ·V.

An example of qualitative risk evaluation using 
associative matrices is reported in Table 1 using the 
estimated values of F and D to obtain R.

In quantitative approaches, risk is evaluated using 
a more formal approach, defining rigorous metrics for 
the three factors P, V, and D of the risk formula; for 
instance as follows:

• P is measured in number of threat events per 
year.

• V = P (T success | T happens), which is the 
conditional probability that a threat will suc-
ceed given that it happens.

• D is measured in monetary damages.

Therefore, in this case, the “·” operator is actually a 
multiplier, and the risk can be measured; for example, in 
dollars per year, which is a measurement of an expected 
periodic monetary loss. The input values of the risk for-
mula can be obtained in several ways, including statisti-
cal approaches and stochastic process modeling.

Risk Mitigation
In order to reduce the risk, several mechanisms can 
be adopted. The (possibly iterative) process of assess-
ment and mitigation is sometimes referred to as “risk 
management.” The objective of this process is to find 
an optimal trade-off between the expense in protection 
mechanisms and the expected risk reduction.

Countermeasures can be very different, depending 
on the type of risk being faced. They include organi-
zational modifications, periodic diagnostic checks, 
norms, insurance policies, patrols of agents and first 
responders, sensors and alarm systems, preventive 
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maintenance, early warning, mechanisms for delay-
ing the threat, emergency preparedness, and disaster 
management.

With reference to the risk formula, a countermea-
sure should be able to significantly reduce P, V, or D, 
or all of them at once. For example, in the case of a 
viral epidemic, a behavioral change (such as staying at 
home, using cars instead of public transportation, and 
frequently washing hands) can reduce P, a vaccine or a 
strengthening cure can reduce V, while warmth, rest, 
and medicines can reduce D.

Cost-Benefit Optimization
Countermeasures employed to reduce the risk feature 
their own cost. While the objective of organizations 
(such as companies, enterprises, or countries) is to max-
imize the so-called return on investment, the objective 
of human beings is to maximize their average welfare 
throughout their lives. Therefore, countermeasures are 
adopted whose cost and effectiveness is judged to be 
“adequate.” A more formal approach consists in analyti-
cally predicting the benefits resulting from the selected 
countermeasures, which needs appropriate mathemat-
ical models. In quantitative approaches, the periodic 
Expected Benefit (EB) is defined as EB = RR − CC, 
where RR is the expected risk reduction in a speci-
fied time slot, and CC is the countermeasures cost in a 
specified time slot.

The RR parameter is evaluated using standard risk 
assessment methodologies. Depending on the counter-
measures, the CC can depend on the length of the time 
slot. For instance, a vaccine can last a whole lifetime 
with no additional costs, while insurance has periodic 
costs; alarm systems have an initial expense for the 
buying and installation of devices and additional costs 
because of maintenance and power consumption. Fur-
thermore, a reliable payback analysis requires consider-
ing not only the initial investment but also the financial 

Low Medium High

Low Low Low Medium

Medium Low Medium High

High Medium High High

F                                    D

Table 1. Qualitative risk evaluation using associative matrices.



concepts of cash flow, opportunity cost, and final value 
of the capital invested.

Once a suitable mathematical model for computing 
the EB has been defined, it is possible to perform a set 
of analyses, including parameter sensitivity and auto-
matic optimizations.

The parametric sensitivity analysis aims to evaluate 
the impact of data uncertainty on the computed results. 
To be performed, it requires that input data are modi-
fied (increased or decreased by a certain percentage) 
and that corresponding results are evaluated. Depend-
ing on the results of the sensitivity analysis, models 
can be assessed as more or less robust to certain input 
parameters: the more the results are affected by varia-
tions in input parameters, the less the model is suitable 
to be evaluated using uncertain data.

Automatic optimizations can be performed using 
appropriate algorithms with the aim of maximizing 
the EB with possible external constraints, like a lim-
ited budget. For linear problems, operations research 
provides a set of algorithms, which can be suitable 
for multi-variable and multi-objective optimization 
of a specific function. For large non-linear problems, 
genetic algorithms, which mimic the evolution of live 
beings, can be adopted. Genetic algorithms, in particu-
lar, are based on the concepts of populations of solu-
tions, selection, crossover, and mutations. Genetic algo-
rithms have proven useful in solving a large number of 
optimization problems, including the ones regarding 
risk minimization, which are difficult or impossible to 
manage using traditional approaches.

In conclusion, when security relates to personal 
benefit maximization, mathematical techniques are 
involved, which can be very complex since they fall in 
the area of multi-objective optimization with exter-
nal constraints and contrasting requirements. Opera-
tions research has investigated similar problems, which 
have even attracted interest from the communities of 
researchers in statistics and probabilistic modeling. In 
particular, Bayesian networks are among the formal-
isms suitable for the stochastic cause–consequences 
modeling using a graph-based approach, which can 
also be extended with decision and cost nodes (in such 
a case, they are named “influence diagrams”). Bayes-
ian networks are direct acyclic graphs (DAGs) in which 
nodes represent random variables, and arcs represent 
stochastic dependencies quantified by conditional 
probability tables (CPTs). It can be formally demon-

strated that a well-formed Bayesian network represents 
the joint probability density function of the prob-
lem described by the network. Several user-friendly 
graphical tools are available for the solution of Bayes-
ian networks. However, solving algorithms belong to 
the NP-hard class, therefore, their efficiency tends to 
significantly worsen as the size and complexity of the 
network increases.
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Robots
Category: Architecture and Engineering.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry; Number and Operations.
Summary: Robots, their motion driven by 
mathematical algorithms and coordinate or polar 
geometries, have long been incorporated into society 
and popular culture.

Robots and robotic systems are increasingly common-
place in many areas of daily life, such as manufacturing, 
medicine, exploration, security, personal assistance, 
and entertainment. In general, a robot is a mechani-
cal device that can perform independent tasks guided 
by some sort of programming. Sometimes, robots are 
intended to replace humans in tedious or hazardous 
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tasks. In others tasks, such as some surgeries, robots 
may actually exceed human capabilities. For many, the 
word “robot” brings to mind both futuristic androids, 
which are robots that are designed to look human and 
cyborgs, which contain both mechanical and biological 
components. Robots used in many industrial applica-
tions, such as in medicine, bomb disposal, and repeti-
tive jobs, rarely resemble humans. However, several 
humanoid robots and robots that realistically mimic 
the look and behavior of animals have been produced. 
In 2008, a Japanese play was written and produced for 
both robots and human actors, and robot animals have 
sometimes been marketed as replacements for biologi-
cal pets. The word “robot” can also refer to software-like 
Web crawlers that run automated tasks over the Inter-
net to gather data, though “bot” is a more common 
name. The field of robotics generates many interesting 
problems in both theoretical and applied mathematics 
and benefits from the contributions of mathematicians. 
For some, the ultimate quest in the twenty-first century 
and beyond is to develop materials, technology, and 
algorithms to create robots that meet or perhaps exceed 
human levels of perception, behavior, and intelligence. 
Nano-robots, which are ultra-small robots about the 
size of a nanometer, might one day be developed for 
tasks like hunting and destroying cancer cells.

Brief History
Playwright Karel Capek is typically credited with 
introducing the word “robot” from the Czech word 
for “laborer,” in his 1920 play R.U.R. (Rossum’s Uni-
versal Robots). Another writer who popularized robots 
was Isaac Asimov, who introduced the term “robotics” 
in his 1941 short story Runaround. However, robotic 
devices can be found much farther back in history. 
One early robotic device was a water clock produced by 
the Babylonians, which used the mathematics of vol-
umes and rates of water flow to calculate time. Greek 
mathematician Hero of Alexandra described the use of 
weights and ropes to construct a mobile cart that could 
be programmed to move along a path. In the thir-
teenth century, Muslim mathematician and scientist 
Abu Al-’Iz Ibn Isma’il ibn Al-Razaz Al-Jazari created 
a set of programmable musicians. The drummer was 
operated by a rotating shaft that manipulated levers 
to produce rhythms. Around 1495, Italian painter and 
mathematician Leonardo da Vinci used his knowledge 
of the mathematics of anatomy and bodily movement 

to sketch designs for a warrior robot outfitted in medi-
eval armor. 

Interest in robotics accelerated in the nineteeth cen-
tury as early computer technology with punch cards 
began to be incorporated into systems such as that used 
for the Jacquard loom, named for Joseph Jacquard. 
Others, such as Pafnuty Chebyshev, studied the theoret-
ical mathematics of linkages, inventing the Chebyshev 
linkage that converts rotating motion to approximate 
straight-line motion. Charles Babbage’s mathematical 
engines were some of the first mechanical computers. 
These engines used finite differences to calculate the val-
ues of polynomials. Such inventions were forerunners 
of computer-controlled robot technology that quickly 
progressed in the mid-twentieth century to transistors 
and integrated circuits. Mathematician Norbert Weiner 
is often known as the “father of cybernetics,” which is 
the science of self-regulating feedback systems, for his 
work and 1948 book Cybernetics: Or Control and Com-
munication in the Animal and Machine. 

Cybernetics is not synonymous with artificial intel-
ligence or robotics, but this mathematical discipline is 
essential for environmentally responsive or adaptive 
robots. Some other areas of mathematics that have 
contributed to the development and implementation 
of robots included algebraic and differential geome-
try, which is used to help solve problems, such as ori-
entation and movement in three dimensions; partial 
differential equations, which are used to model many 
aspects of behavior; optimization algorithms to help 
sequence tasks; combinatorics, which is used to inves-
tigate modular components and systems; and Bayes-
ian statistical methods, named for Thomas Bayes, 
which can be employed in dynamic perception and 
machine learning.

Robotic Motion
In the twentieth and twenty-first centuries, many 
robots are complex, electromechanical devices that 
move and interact with physical objects, often replac-
ing or augmenting human actions by carrying out 
certain tasks. Some mobile robots use articulated legs 
or wheels. Somewhat more common are stationary 
robotic arms with joints that allow for motion similar 
to the way joints allow human limbs to move. Having 
more joints increases the possible angles for movement 
and degrees of freedom, and hence increases fluid 
motion and accuracy. Articulated robots, used widely 
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in various industries to perform tasks such as welding 
components or spray-painting parts, look much like 
human arms and have at least three joints. If the joints 
are slide-only, called “prismatic joints,” then the robot 
arm can reach any position in a rectangular workspace 
by means of translations. If one joint is hinged, which is 
called a “revolute joint,” then all points within a cylin-
drical workspace can be reached by a combination of 
rotation and translation. If two of the joints are hinged, 
a robot arm with a polar geometry is achieved. Inven-
tor George Devol and engineer Joseph Engelberger 
developed one of the first modern-day programmable 
robots, Unimate, which began operation in 1961 at a 
General Motors plant. In 1969, Stanford University 
student Victor Scheinman created the predecessor for 
all robotic arms, the Stanford arm. 

Mathematical programming and calibration for 
proper movement of robots depends on kinematics, 
which is the study of motion; 
and dynamics, which is the 
study of how force affects 
motion. With articulated or 
jointed robots, for example, 
the mathematics of kinemat-
ics is at the heart of position-
ing, collision avoidance, and 
redundancy. Direct kinematics 
makes use of given joint values 
to determine the end position 
that a robot arm may achieve. 
The mathematics of inverse 
kinematics is used to deter-
mine the required values for the 
joints when the end position 
of the robotic arm motion is 
known. Getting the robot arm 
to the right position is only half 
of the mathematical problem. 
The other half involves calcu-
lating forces using dynamics. 
For example, a robot designed 
to fight fires would need motors 
to move the robot and its arms. 
Calculations incorporated in 
determining which motors to 
use would involve dynamics. 
Inverse dynamics would help 
determine the required values 

of forces to generate the desired acceleration of the 
robot or its components. The movement involved in 
robotics most often occurs in three-dimensional space, 
so geometry plays a role in the positioning and move-
ment of robots. Matrices can be used to represent the 
points through which robots navigate. These algebraic 
representations are then reviewed and coordinated 
using sophisticated applications of basic calculus prin-
ciples, like differentiation, to ensure maximum effi-
ciency when designing and operating robots.

Movement and action in robots are driven by algo-
rithms. Some robots respond to direct human input 
from keyboard commands or from haptic devices that 
respond to tactile or body motion. Others autono-
mously perform programmed tasks. Some robots are 
“smart” or “intelligent,” meaning that they are able 
to sense and adapt to their surroundings while com-
pleting their tasks. Even then, these robots are able to 
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accomplish tasks only because they have been pro-
grammed to do so. For example, “smart” mobile robots 
make use of a variety of sensors with terrain-identi-
fication and obstacle-detection programs using input 
data and probabilistic models to guide trajectory and 
avoid collisions. Probabilistic robotics is increasingly 
of interest, with the goal of developing algorithms that 
facilitate accurate autonomous decision making in the 
face of real-work complexity and uncertainty, which 
would increase the reliability of automated behavior 
and more closely replicate the type of processing that 
occurs in the human brain. 

Robots: Fiction and Fact
Robots are widely used in entertainment, especially sci-
ence fiction. Mary Shelley’s 1818 novel Frankenstein is 
cited by some as showing that scientific creations able 
to perform human tasks long preceded television and 
movies. Some well-known examples include C-3PO 
from the Star Wars series and Wall·E from the 2008 
Pixar movie of the same name. Data, from the 1987–
1994 television series Star Trek: The Next Generation, 
is an example of a fictional android. The Borg species 
from the Star Trek series and the Terminator robot 
from The Terminator movie series are examples of 
cyborg characters, usually hybrid humans whose bio-
logical capabilities are sustained or enhanced through 
robotic elements—though the Terminator may be 
thought of by some as a robot enhanced by biology. 
Enhancing human capabilities through robotic ele-
ments, like pacemakers and prosthetic devices, is com-
mon in the twenty-first century. However, the medical 
applications of robotics have not focused on humans 
achieving superhuman powers (as is done in fiction) 
but rather on helping those with medical conditions 
and disabilities.

Robots in Education
Robots are often used in schools to motivate learning of 
mathematics concepts, such as two- and three-dimen-
sional coordinate geometry. The roBlocks construction 
system was developed by computational design scien-
tists Mark Gross and Eric Schweikardt. Users can build 
robots using modular sensor, logic, and actuator blocks 
to study concepts like kinematics, feedback, and con-
trol. They can also create their own control programs 
to further explore robot mathematics and dynamics. 
The Lego Group produces a robotic construction and 

programming system called Mindstorms NXT that has 
been marketed for both education and entertainment.
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Roller Coasters
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Calculus; Geometry;  
Measurement.
Summary: Roller coasters are mathematically  
designed to provide safe and thrilling rides.

Roller coasters are entertainment rides designed to put 
the rider through loops, turns, and falls, inducing sud-
den gravitational forces. The rapid ascents and descents 
coupled with sharp turns create momentary sensations 
of weightlessness. One known precursor of roller coast-
ers are seventeenth-century Russian ice slides, which 
sent riders down a tall, ice-covered incline of roughly 50 
degrees. Modern roller coasters can be traced to the late 
1800s. As of 2010, Ohio’s Cedar Point held the record for 
most roller coasters (17) in a single amusement park.

Conservation of Energy
The law of conservation of energy states that energy 
can neither be created nor destroyed, but can only 
be converted from one form to another. Roller coast-
ers exploit this law by converting the potential energy 
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gained by the car as it ascends to the top of a hill into 
kinetic energy as it descends and goes through the 
turns and loops. The potential energy of the car at the 
top of the loop is given by

E m g h= × ×

where E is the total potential energy (joules), m is the 
total mass of the car (kg), g is the acceleration due to 
gravity (9.8 m/s2), and h is the height (m).

For example, consider a roller coaster car weigh-
ing 2200 pounds perched at the top of Cedar 
Point’s Top Thrill Dragster, which is about 426 
feet high. The car, at this point, has accumulated 
1000 × 9.8 × 130 = 1,274,000 joules or 1.2 megajoules 
of energy—the same amount of energy released by the 
explosion of a quarter kilogram of TNT. This poten-
tial energy is converted into kinetic energy as the car 
hurtles down the loops. 

As the car expends potential energy, it is converted 
into kinetic energy, propelling it forward. In an ideal 
situation where there is no friction or air drag, the car 
would travel forever. However, because of friction and 
other resistive forces, the car decelerates and finally 
stops when it has expended all its potential energy.

Centripetal Force
Centripetal force is responsible for keeping the rider 
glued to the seat as the car executes turns and loops 
and even puts the rider upside down. Centripetal and 
centrifugal forces act on a body that is traveling on 
a curved path. Whereas centrifugal force is directed 
outwards, toward the center of curvature, centripetal 
force acts inward on the body. 

G-Force and Loop Design
G-forces are non-gravitational forces, and can be mea-
sured using an accelerometer. Humans have the ability 
to sustain a few g’s (a few times the force of gravity), but 
deleterious effects are a function of duration, amount,
and location of the g-force. Many roller coasters acceler-
ate briefly up to six g’s, depending on the shapes, angles, 
and inclines of loops, turns, and hills. Early roller coaster 
loops were circles. To overcome gravity, the cars entered 
the circle hard and fast, which pushed riders’ heads con-
tinually into their chests as the coaster changed direc-
tion. In the 1970s, coaster engineer Werner Stengel 
worked with National Aeronautics and Space Adminis-

tration (NASA) scientists to determine how much force 
riders could safely tolerate. As a result of this and other 
mathematical investigations, he began to use somewhat 
smoother clothoid loops, which are based on Euler 
spirals, named for Leonhard Euler. In 2010, using the 
same equations that describe how planets orbit the sun, 
mathematician Hanno Essén drew a new and unique 
series of potential rollercoaster loops. Riders would get 
the thrilling visual experience of a loop without any of 
the typical jolting and shaking, because the force that 
riders would feel pushing them into their seats would 
stay exactly the same all the way around the loop.
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Roman Mathematics
Category: Government, Politics, and History.
Fields of Study: Connections; Number and 
Operations; Representations.
Summary: The ancient Romans, who are often 
remembered for their applied mathematics, made 
important contributions to surveying, time-keeping, 
and astronomy.

The Roman period for mathematics could be said to 
have started when a Roman soldier was sent to seize 
Archimedes during the capture of Syracuse. Told by 
Archimedes to wait as he finished his diagrams, the sol-
dier lost patience with the old man and slew him. The 
popular stereotype of the Romans is that they did little 
to advance Greek discoveries in mathematics, instead 
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merely applying Greek methods to practical problems. 
This conception is not entirely fair. The Roman Empire 
was not one homogenous zone, but was rather a col-
lection of culturally diverse provinces. For this reason, 
many works produced during the time of Roman rule, 
like the books of Ptolemy, writing in Alexandria, Egypt, 
are written in ancient Greek rather than Latin. There-
fore, these books could be considered Greek, Roman, 
or Greco-Roman depending on the context. However, 
despite this diversity, the Roman period led to the 
dominance of some mathematical practices that still 
have an influence in the twenty-first century.

Roman Numerals
One of the most distinctive remnants of Roman math-
ematics is the use of Roman numerals, which  are let-
ters that stand for specific values and usually work as 
additive values. The numerals are

I = 1  V = 5   X = 10
L = 50  C = 100   D = 500 
M = 1000.

So: LXXVII = 50 2 10 5 2 1 77+ ( ) + + ( ) = .

The numerals are written with the largest values at 
the left, proceeding to the smaller values. They can also 
have subtractive constructions. I preceding subtracts 
one from a 10 to make nine. X before an L or C produces 
40 or 90, and C before D or M produces 400 or 900. So 

MCMXLVIII =

= + −( ) + −( ) + + ( ) =1000 1000 100 50 10 5 3 1 1948.

The origins of the system are unknown. It has been 
proposed that they were based on tally marks, with I 
being a notch, V being a double notch to mark five, 
and 10 as crossed-notches (though it could also be that 
X was formed from two V symbols). The number IV to 
represent 4 is a later addition based on medieval Latin 
and does not seem to have been used by the Romans, 
who instead used IIII.

This system is not very helpful for arithmetic, and 
so it is little surprise to find that the Romans devel-
oped the portable abacus to ease mathematical opera-
tions. This device was a tray with a number of columns 
etched into it that could hold pebbles. A pebble (in 

Latin, the word “calculus”) had a value depending on 
the column that held it. Moving a pebble a column to 
the left increased its value by a factor of 10. Such an 
abacus could be used by merchants in the city or by 
surveyors working for the military.

Survey
Roman surveyors employed geometry to divide the 
landscape and lay out cities with effects that can still be 
seen in the twenty-first century. The key to Roman sur-
vey was a tool called a groma, which was a tall staff with 
a beam, known as a rostro, at right-angles to the staff 
at the top. The rostro supported a wooden cross, and 
at each end of the cross-beams was hung a plumb line. 
Sighting across these lines allowed Roman surveyors to 
lay out grids of perpendicular lines in the landscape. 
Surveyors could then divide land for agricultural pur-
poses, and some field systems in Europe are based on 
these ancient surveys. The groma also left an impres-
sion on modern cities. The Romans frequently built 
new cities in conquered territories, for either native 
inhabitants or new settlements of veteran soldiers. At 
the heart of a Roman settlement lay the forum, the cen-
tral civic space, which usually lay at the intersection of 
the Cardo maximus (the main north-south street) and 
the Decumanus maximus (the main east-west street). 
This system created new cities with grid-plans in which 
the main intersection was laid out by a groma. These 
perpendicular grids were the origins of many Euro-
pean settlements and was adopted in the planning of 
many U.S. cities in the nineteenth century. 

The Roman Calendar
The Roman calendar instituted by Julius Caesar made a 
radical change to time-reckoning in Europe. Before this 
development, European calendars outside Rome were 
usually luni-solar calendars. As such, each month was 
related to the lunar cycle, which is not commensurate 
with the solar year, and so periodically whole months, 
known as “inter-calary months” would be inserted into 
the year to keep the months in step with the seasons. 
Insertions would usually have to be done every two or 
three years. Even ancient authors recognized that this 
system was inefficient, including Herodotus, who wrote 
in the late fifth century b.c.e. that the Egyptians had a 
much more accurate solar calendar. In 45 b.c.e., Julius 
Caesar adapted the Egyptian method of time-keeping 
for Roman use.

	 Roman Mathematics 879



Each month was counted as a period of days, usu-
ally 30 or 31 but with 28 or 29 in February. In addition, 
Julius Caesar laid down rules for when an inter-calary 
day would be added to February. The Egyptians cor-
rected the calendar by adding a day every fourth year. 
Unfortunately, the Romans counted inclusively, mean-
ing that the leap year was in the fourth year, rather than 
after the fourth year. For example, 2020 is a leap year. 
For the ancient Romans, the second year in the cycle 
is 2021 and the third is 2022. Therefore, 2023 is the 
fourth and the Romans of Julius Caesar’s time would 
have made this a leap year, rather than 2024. Augustus 
Caesar corrected this error in the early years of the first 
century c.e.

This method of keeping the years remained until the 
reforms of Pope Gregory XIII in 1582, though Britain 
and the American colonies did not implement the Gre-
gorian calendar until 1752. The difference between the 
two calendars is that years divisible by 100 are not leap 
years, unless the year is divisible by 400. Otherwise, 
years are marked by the same cycle of months as the 
ancient Romans did.

Mathematics and the Cosmos
Even though ancient mathematicians had a relatively 
small set of tools based in geometry and arithme-
tic, these could be used to create incredibly intricate 
models. Ptolemy proposed a model of the universe 
that contained circles rotating upon circles to repro-
duce the movement of the planets. The connections 
between mathematics and cosmology made math-
ematics attractive to philosophers of the Roman 
period. The assertion that mathematics could reveal 
truth became increasingly contentious in late antiq-
uity. Pagan philosophers came into conflict with a 
new religious sect, Christianity, which was increas-
ingly powerful. One notorious incident was the kill-
ing of Hypatia, a female mathematician philosopher, 
in the city of Alexandria by a Christian mob. For 
some ancient historians, her death marks the end of 
the period known as classical antiquity.
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Ross, Mary G.
Category: Mathematics Culture and Identity.
Fields of Study: Algebra; Communication; 
Connections; Data Analysis and Probability.
Summary: Mary Ross was a prominent Native-
American mathematician and engineer.

Mary G. Ross (1908–2008), a Native American of Cher-
okee heritage, had a distinguished career as a mathema-
tician, space scientist, and engineer. She was the first 
female engineer to work at the Lockheed corporation 
and also the first female Native-American engineer. 
Ross was born in the Oklahoma territory and as a child 
lived with her grandparents in the Cherokee Nation of 
Tahlequah in order to pursue her education. She often 
credited a strong family and tribal focus on equal educa-
tion for boys and girls as being crucial to her career. At age 
16, she enrolled in Northeastern State Teachers College 
(Oklahoma), receiving her bachelor’s degree in math-
ematics in 1928. Ross taught high school mathematics 
and science in Oklahoma for nine years before moving 
to Washington, D.C., to work as a statistical clerk in the 
U.S. Bureau of Indian Affairs. Her talent and education 
were quickly recognized and she was reassigned to work 
as an advisor (similar to a dean) for a coeducational 
Indian boarding school in Santa Fe, New Mexico (later 
to become the Institute of American Indian Art). At the 
same time, she pursued graduate studies in mathemat-
ics and astronomy, receiving her master’s degree from 
Colorado State Teachers College in 1942. Ross received 
numerous awards during her lifetime.

Aeronautical Engineering
In 1942, Ross began working as a mathematician at 
the Lockheed Aircraft Corporation. She was given the 
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opportunity to study aeronautical and mechanical 
engineering, taking evening classes at UCLA as well 
as an emergency war training course offered at Lock-
heed and, in 1949, received professional engineering 
classification as a mechanical engineer (there was no 
classification for aeronautical engineering at the time). 
As a research engineer at Lockheed, Ross worked on a 
number of projects related to transport and fighter air-
craft and, in 1953, was chosen to be one of 40 engineers 
who became the nucleus of Lockheed Missiles and 
Space Company, now known as Lockheed Martin. In 
this group, she worked on a number of missile systems, 
including the Polaris ballistic missile, which required 
her to work in the new field of hydrodynamics because 
the Polaris missile was designed to be launched under-
water from a submarine. 

Ross continued to advance at Lockheed, becoming a 
research specialist in 1958, an advanced systems engi-
neer in 1960, and a senior advanced systems engineer in 
1961. She worked on the Agena series of rockets and the 
Polaris reentry vehicle. She also helped develop criteria 
for missions to Mars and Venus, designing orbital space 
systems and interplanetary expeditionary systems and 
writing a volume of the NASA Planetary Flight Hand-
book. About her career, she said, “I have always con-
sidered my work a joint effort. I was fortunate to have 
worked on great ideas and with very intelligent people. I 
may have developed a few equations no one had thought 
of before but that was nothing unusual—everybody did 
that . . . it has been an adventure all the way.”

Other Accomplishments
Ross became an advocate of women’s and Native-
American education following her retirement from 
Lockheed in 1973. Her great-great-grandfather was 
principal chief of the Cherokee for 40 years, and she 
expressed the idea that, “there is a lot of ancient wis-
dom from Indian culture that would help solve the 
problems of today.” She co-founded the Los Angeles 
section of the Society of Women Engineers and also 
worked to expand educational opportunities within 
the American Indian Science and Engineering Society 
and the Council of Energy Resource Tribes. 
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Ruler and Compass 
Constructions
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry; Measurement.
Summary: Ruler and compass constructions 
form the basis of geometry and have challenged 
mathematicians for thousands of years.

Ruler and compass constructions have long been 
important in mathematics. In geometry, a ruler and 
compass construction refers to a geometric construc-
tion that uses only an unmarked ruler and a compass. 
The ancient construction problems of squaring the 
circle, duplicating the cube, and trisecting the angle 
were unsolved until they were proved impossible by 
algebraic techniques. Early tile makers and architects 
were also interested in these constructions. Aside from 
historical considerations, limiting constructions to 
these two tools is important because the restrictions 
generate a variety of rich problems. In the twenty-first 
century, dynamic geometry software programs allow 
students, teachers, and researchers to explore, save, and 
share constructions.

Euclid
The most significant early compendium of ruler and 
compass constructions is Euclid’s Elements written  
c. 300 b.c.e. In fact, Euclid’s book organizes everything 
around these constructions in an attempt to build as 
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much geometry as possible starting with the most basic 
tools. Drawing a line using a ruler and a circle using a 
compass are seen as elementary in Euclid’s tradition—
hence, the title Elements—and it is preferred to reduce 
as much of geometry as possible to these elementary 
tools. Elements begins with five common notions and 
five “self evident” postulates. The first three postulates 
specify the rules for geometric constructions:

• A straight line segment can be drawn joining 
any two points. 

• Any straight line segment can be extended 
indefinitely in a straight line. 

• Given any straight line segment, a circle can be 
drawn having the segment as radius and one 
endpoint as center.

The final two postulates of Euclid are 

• All right angles are congruent. 
• If two lines are drawn which intersect a third 

in such a way that the sum of the inner angles 
on one side is less than two right angles, then 
the two lines inevitably must intersect each 
other on that side if extended far enough.

The last one is the famous fifth postulate and is 
equivalent to the more common parallel postulate: 
from a given point not on a given line, one can draw 
exactly one line parallel to the given line. Euclid based 
the whole edifice of rigorous geometry on these axi-
oms, hence ruler and compass constructions are at the 
center of Euclidean geometry.

The Three Classical Problems
Three ancient construction problems captured the imag-
ination of mathematicians for many centuries: doubling 
a cube, trisecting an angle, and squaring a circle. 

• Doubling a cube: Given the side of a cube, can 
one construct, using an unmarked ruler and a 
compass, the side of another cube whose vol-
ume is twice the first one?

• Trisecting an angle: Given an arbitrary angle, 
can one draw a line, using an unmarked ruler 
and a compass, that trisects the angle?

• Squaring a circle: Given a line segment that 
is the radius of a circle, can one construct, 

using an unmarked ruler and a compass, the 
side of a square that has the same area as the 
original circle?

None of these constructions are possible, but sur-
prisingly, despite more than 2000 years of effort, a 
satisfactory answer to these three questions was given 
only in the nineteenth century.

Each of these classical problems has a long his-
tory. For example, the problem of doubling a cube 
was known to the Egyptians, Greeks, and Indians. In 
one version of the Greek legend, the citizens of Athens 
consulted the oracle of Apollo at Delos to put a stop 
to a plague in Athens. The oracle prescribed that the 
Athenians double the size of their altar. Efforts to find 
a way of doubling the volume of the cube failed, and 
it is claimed that Plato (427–347 b.c.e.) had remarked 
that the oracle really meant to “shame the Greeks for 
their neglect of mathematics and for their contempt 
of geometry.” The original legend did not specify the 
tools to be used, and, in fact, solutions using a number 
of tools were found. However, a construction using the 
elementary tools of an unmarked ruler and a compass 
remained elusive.

Tool Variations
Variations on the tools are possible. For example, if 
one were allowed to make two marks on the ruler, then 
with the use of this marked ruler and a compass, one 
can trisect an arbitrary angle. 

An interesting variation arose in the work of Abu’l 
Wafa Buzjani (940–997 c.e.). Abu’l Wafa in a work 
aimed at artisans (such as tile makers, designers of 
intricate patterns, and architects) limited the geomet-
ric tools to an unmarked ruler and a “rusty” compass. 
In other words, he wanted to only use a compass that 
had a fixed opening and could not be adjusted to draw 
different sized circles. He believed that working with 
such a fixed compass would be more accurate, less 
error-prone, and more useful for artisans. Abu’l Wafa 
constructs, among other polygons, regular pentagons, 
octagons, and decagons using a rusty compass. Since 
the opening of the compass used in Euclid’s Elements 
could vary, Abu’l Wafa could not rely on the construc-
tions in Elements. Hence, he constructed anew, using 
the rusty compass, all the needed basic results.

In Europe, the Danish mathematician Georg Mohr 
(1640–1697) showed, rather surprisingly, that all ruler 
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and compass constructions can be done with a compass 
alone. In such constructions, one cannot draw a line seg-
ment, and a line segment is considered constructed as 
long as its two endpoints are found. This result is now 
known as the Mohr–Mascheroni theorem. The Italian 
Lorenzo Mascheroni (1750–1800) had independently 
found the same result. Georg Mohr also proved that all 
ruler and compass constructions can be done with a ruler 
and a rusty compass. Finally, the German mathematician 
Jacob Steiner (1796–1863) and the French mathemati-
cian Jean-Victor Poncelet (1788–1867) proved that all 
constructions using a ruler and a compass can be made 
with a ruler and only one use of the compass.

Proofs
Going back to the classical problems, the first rigorous 
proof of the impossibility of doubling the cube and tri-
secting an arbitrary angle using a ruler and a compass 
was given by the French mathematician Pierre Laurent 
Wantzel (1814–1848). In 1882, the German mathemati-
cian Ferdinand Lindemann (1852–1939) proved that π 
is transcendental. From this, it followed that one cannot 
square a circle using a ruler and a compass. In general, 
using only these tools, it is possible to construct line 
segments of any rational length as well as line segments 
whose length is the square root of the length of any 
already constructed segment. However, one can prove 
that it is impossible to construct other lengths using 
the theory of fields that was developed with the help 
of Niels Henrik Abel and Évariste Galois on the solv-
ability of equations. The proof essentially boils down to 
the fact that, using a ruler and a compass, one can draw 
only straight lines and circles, and the only new points 
are the intersections of these lines and circles. Since lines 
have linear equations and circles have quadratic equa-
tions, finding the points of intersection of these shapes 
is the same as equating their equations and finding the 
solutions. These all can be achieved using the quadratic 
formula, which involves only square roots. 

Polygons
Constructing regular polygons with a straightedge and 
compass is also an interesting ruler and compass con-
struction problem. An n-gon is a regular polygon with 
n sides. Ancient Greeks could construct regular n-gons 
for n = 3, 4, 5, and 15 (triangles, squares, regular penta-
gons, and regular pentadecagons). They also knew that 
if one can construct a regular n-gon with a straightedge 
and compass, then one can also construct a regular 2n-
gon. Carl Friedrich Gauss (1777–1855) added to this 
knowledge, by constructing, when he was 19 years old, 
a regular heptadegon (a 17-gon). 

A Fermat prime is a prime number of the form 
22k

+ 1, where k is a non-negative integer. The only Fer-
mat primes known are 3, 5, 17, 257, and 65537. It is 
not known whether there are any other Fermat primes 
or not. In any case, Gauss stated, and Wantzel gave a 
proof, that a regular n-gon is constructible with ruler 
and compass if and only if n is an integer greater than 
two such that the greatest odd factor of n is either one 
or a product of distinct Fermat primes.

Further Reading
Hadlock, Charles Robert. “Field Theory and Its Classical 

Problems.” Carus Mathematical Monographs, 19 (1978).
Katz, Victor, ed. The Mathematics of Egypt, Mesopotamia, 

China, India, and Islam. A Sourcebook. Princeton, NJ: 
Princeton University Press, 2007.

Martin, George E. Geometric Constructions. New York: 
Springer-Verlag, 1998.

Sutton, Andrew. Ruler and Compass: Practical Geometric 
Constructions. New York: Walker & Co., 2009.

Shahriar Shahriari

See Also: Arabic/Islamic Mathematics; Greek 
Mathematics; Measurement, Systems of; Measurements, 
Area; Measurements, Length; Parallel Postulate; Pi; 
Squares and Square Roots.
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Sacred Geometry
Category: Friendship, Romance, and Religion.
Fields of Study: Connections; Geometry; Number 
and Operations; Representations.
Summary: Cultures have long imbued various 
spaces, shapes, forms, ratios, and geometric concepts 
with special significance and ritual power.

Humanity has long attributed sacred meaning to cer-
tain geometric forms and concepts. The term “sacred 
geometry” was popularized during the twentieth 
century to represent the religious, philosophical, and 
spiritual beliefs surrounding geometry. The core of its 
teachings may be found in very ancient cultures, with 
varying metaphysical systems and worldviews. Some 
attribute the modern renaissance of the movement to 
artist Jay Hambridge. The image of a nautilus shell with 
overlaid golden rectangles is common in the twenty-
first century, but when Hambridge investigated math-
ematical proportion and symmetry in Greek art and 
architectural design in the beginning of the twentieth 
century, his work on dynamic symmetry led to debate 
about definitions of dynamic versus static symmetry. 

The development of sacred geometry led to more 
debate as some asserted that it showed the continuity 
and universality of mathematical concepts or forms, 
such as the golden proportion, the logarithmic spiral, 

or the flower of life, across cultures, millennia, and 
the universe. In its most common conception, sacred 
geometry is then a metaphor for universal order—a 
metaphor found in the artistic expression of many cul-
tures, especially in religious architecture. In its most 
ambitious conception, it is itself a practice for enlight-
enment or self-development, similar to meditation, 
prayer, or artistic techniques. The knowledge and exer-
cise of geometrical skills can be taken to form a prac-
tice that awakens the practitioner to underlying order 
or truth. The movement has inspired its followers, who 
look for these forms in art, architecture, nature, and sci-
ence. People like Drunvalo Melchizedek, who originally 
planned to major in physics and minor in mathematics 
but graduated with a fine arts degree, have organized 
spiritual workshops related to sacred geometry. Some 
attribute sacred geometry to people’s needs to seek out 
connections. Astrophysicist Mario Livio found some 
of the analyses “rather contrived . . . with lines drawn 
conveniently at points that are not obvious terminals 
at all. Furthermore, some of the ratios obtained are too 
convoluted . . . to be credible.”

Sacred diagrams and figures are omnipresent 
across ages and cultures. For example, the square 
has religious significance in Hindu architecture and 
design. The diagram known as the circular “mandala,” 
for instance, symbolizes to some the cosmos through 
its symmetry and sectors, which represent elements, 

S



seasons, divinities, and 
various categories of reli-

gious and metaphysical 
interest. Practitioners 
believe that meditating 
on The Flower of Life 
icon, one example of a 

mandala, will reveal the 
mysteries of the universe. 

The Egyptians used regu-
lar geometric polygons 

and pyramids in important architectural structures 
and in representations of the gods. Geometric figures, 
such as the platonic solids, were assigned additional 
significance in ancient Greece. 

For instance, Earth was associated with the cube, 
air with the octahedron, water with the icosahedron, 
fire with the tetrahedron, and the dodecahedron was 
a model for the universe. In his work The Timeas, 
Plato noted: “So their combinations with themselves 
and with each other give rise to endless complexities, 
which anyone who is to give a likely account of reality 
must survey.” In the twentieth century, sacred geom-
etry has become the universal language of nature, 
mastering shapes and patterns equally found in stars, 
snowflakes, and DNA, which ultimately represent a 
sort of blueprint of creation.

Golden Ratio
A common element in sacred geometry is the golden 
ratio. Many of the sacred geometry principles of the 
human body are found and subsumed into the famous 
“Vitruvian Man” drawing by Leonardo Da Vinci. “Vit-
ruvian Man” was inspired by the work of Marcus Vitru-
vius Pollio, a first century Roman architect who wrote 
De architectura, or The Ten Books on Architecture. Vitru-
vius detailed systems of ratios he believed were found 
in the human body and that could be used to construct 
buildings, including temples, to achieve his three neces-
sary criteria for structural perfection: beauty, durabil-
ity, and utility. Da Vinci also lived and studied with the 
fifteenth-century mathematician Fra Luca Pacioli and 
drew the illustrations of the book De Divina Proportione 
(About Divine Proportion). In it, Pacioli explains and 
illustrates mathematical proportion in its direct rela-
tion of artistic patterns and forms and explores archi-
tecture and the vital proportion of the golden ratio, the 
ultimate divine proportion extensively.

Devotees of twentieth-century sacred geometry 
note the high occurrence of the golden ratio, such as 
its recursive occurrence in the Parthenon; the Notre 
Dame Cathedral; the great pyramid of Giza; the rela-
tions between platonic solids; the ratio of segments in a 
five-pointed star (called a pentagram); the ratio of adja-
cent terms of the famous Fibonacci Series, named after 
Leonardo Fibonacci; the symmetrical pattern of aperi-
odic tilings, thanks to which Roger Penrose discovered 
new aspects of quasicrystals; in movements of the stock 
market; and even in Erik Satie’s compositions.

Further Reading
Lawlor, Robert. Sacred Geometry: Philosophy & Practice. 

London: Thames & Hudson, 1982.
Livio, Mario. The Golden Ratio: The Story of PHI, 

the World’s Most Astonishing Number. New York: 
Broadway Books, 2003.

McWhinnie, H. J. “Influences of the Ideas of Jay 
Hambridge on Art and Design.” Journal of Computers 
& Mathematics with Applications 17, no. 4–6 (1989).

Skinner, Stephen. Sacred Geometry: Deciphering the Code. 
London: Gaia Books, 2006.

Marilena Di Bucchianico

See Also: Houses Of Worship; Numbers and God; 
Religious Symbolism; Symmetry.

Sales Tax and  
Shipping Fees
Category: Business, Economics, and Marketing.
Field of Study: Number and Operations; 
Measurement.
Summary: Different types of sales taxes and shipping 
fees affect the final price of a purchase.

Benjamin Franklin famously noted, “Our Constitution 
is in actual operation; everything appears to promise 
that it will last; but in this world nothing is certain but 
death and taxes.” When someone makes a purchase, 
often times there are extra charges added to the cus-
tomer’s bill. These costs may include a tax, shipping 
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local government charges a sales tax. The rate of the 
tax varies depending on the laws of the governmental 
unit. In other words, a purchaser will encounter differ-
ent sales tax rates throughout the United States. The 
charges in 2010 varied from 0% in states like Alaska 
or Delaware to a high of 8.25% in California. This 
means that a person in Alaska who pays $100 for an 
mp3 player would not be required to pay any tax on the 
sale. However, a person buying that same mp3 player in 
California would be required to pay this tax. In other 
words, that $100.00 purchase would have an 8.25% 
tax added to the cost, meaning the new purchase price 
would be the original cost ($100.00) plus the sales tax 
($8.25) for a total of $108.25. 

Many localities exempt certain classifications of 
goods from their sales tax. Some common exceptions 
include groceries and prescriptions. On the other hand, 
special items such as gasoline, cigarettes, and alcohol 
have a significantly higher sales tax, as they have the 
potential to add sizeable revenue to a state’s budget. A 
federal law called the Internet Tax Freedom Act (ITFA) 
specifically addresses sales over the Internet. The law 
provides that no governmental unit is allowed to add 
any special or additional tax on Internet purchases. 
This means that a sales tax may be charged on Internet 
purchases at the same rate as items purchased in per-
son or by phone but no extra tax charge can be added. 

Shipping and Handling Fees
Shipping and handling fees vary dramatically by seller 
as well as by the type of shipping the buyer requests. 
Common factors used to compute delivery costs include 
(1) how many items are being purchased, (2) how much 
the order weighs, and (3) how quickly the customer 
would like to receive their merchandise. However, com-
mon shipping types include free shipping, overnight 
delivery, two day or expedited delivery, and standard 
shipping, which may vary from three to seven days. In 
addition, the cost may change based on the number of 
items purchased or the weight of the merchandise. The 
following three examples illustrate different types of 
shipping options:

• Flat fee: The seller charges a flat shipping fee 
for all purchases regardless of price, weight, 
or number of items.

• Progressive: The seller charges a progressively 
larger shipping charge based on the cost of 

charges, or fees. These extra amounts, however, have 
a special purpose and they are each computed differ-
ently. For example, a sales tax is based on a percent-
age of the total amount of the sale and that percent is 
regulated by local and state governments. On the other 
hand, shipping is charged to cover the delivery of mer-
chandise from the retailer to the customer’s location. 
These fees are based on the policies of the company 
selling the goods as well as how quickly the customer 
would like their purchase delivered. Lastly, fees can be 
special charges; for example, insurance might be added 
to a purchase to cover the cost of the merchandise in 
the event it is lost or damaged during delivery. Albert 
Einstein commented that preparing a tax return “is too 
difficult for a mathematician. It takes a philosopher.” 
The calculations to determine sales tax and shipping 
fees utilize percentages, multiplication, and addition, 
but Einstein may have been referring to the ever-chang-
ing instructions. 

Both mathematicians and philosophers have long 
been involved in issues related to taxation. The Jiuzhang 
suanshu (Nine Chapters on the Mathematical Art) con-
tains related problems. In the tenth century, astrono-
mer and mathematician Abu’l-Wafa wrote a text on 
mathematics for scribes and businessmen, with part 
four of the book containing seven chapters devoted to 
various kinds of taxes and related calculations. In the 
seventeenth century, lawyer and amateur mathemati-
cian Étienne Pascal worked as a tax assessor and was 
appointed as the chief tax officer. In order to help his 
father in his tax work, mathematician and philosopher 
Blaise Pascal invented the Pascaline, which is reported 
to be the first digital calculator. In the twenty-first cen-
tury, financial planners, mathematicians, and actuaries 
create mathematical models and investigate a variety of 
mathematical concepts related to taxes and fees, includ-
ing the impact of flat rate, progressive, symmetric, or 
asymmetric taxation; and game theory applied to the 
interaction between taxpayers and tax collectors. They 
also investigate equilibrium states and how increasing 
or decreasing sales taxes or shipping and handling fees 
or using a nonlinear structure impacts consumer deci-
sions about purchases and business sales.  

Sales Tax
Many states, counties, and municipalities levy a sales 
tax as a way to increase revenues for their government 
or to balance their budget; however, not every state or 
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the purchase.  Shipping for a $50 purchase 
might cost $5, while shipping for a $100 
purchase might cost $10.

• Flat fee and item charge: The seller charges 
a flat shipping rate plus an item charge 
(shipping + charge × number of items). 
Assume that the base shipping is $3.99, and 
there is a charge of $.99 for each item. A 
one item purchase would have a charge of 
$3.99 + $0.99 = $4.98. However, suppose the 
purchaser buys three items. In that case, the 
charge would be $3.99 + 3($0.99) = $6.96.

Shipping and fees are often grouped together as one 
charge; however, some vendors are known to charge 
each of these as separate and distinct charges. Vendors 
often add an additional charge to deliver a purchase. 
One example would be a package that requires special 
handling based on size or weight, such as a piece of fur-
niture. Higher cost items such as jewelry might have an 
insurance charge added to the customer’s total.

Further Reading
Anderson, Patrick. Business Economics and Finance With 

MATLAB, GIS and Simulation Models. Boca Raton, 
FL: CRC Press, 2000.

Consortium for Mathematics and Its Applications. 
Mathematical Models with Applications. New York:  
W. H. Freeman & Company, 2002.

Marks, Gene. “Don’t Forget the Handling!” Accounting 
Today 23 (2009).

Scanlan, M. “Use Tax History and Its Implications for 
Electronic Commerce.” The Information Society 25 
(2009).

Konnie G. Kustron

See Also: Income Tax; Money; Shipping.

Sample Surveys
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Probability.

Summary: Mathematicians and statisticians help 
design sampling methods and techniques to better 
represent populations and account for biases and 
missing data.

A survey is a statistical process by which data are col-
lected from a representative sample of some popula-
tion of interest in order to determine the attitudes, 
opinions, or other facts about that population. A cen-
sus is the special case where everyone in the population 
is surveyed. 

For example, the Babylonians are known to have 
taken a population census around 3800 b.c.e. In one of 
the first modern surveys, the Harrisburg Pennsylvanian 
newspaper polled city residents about the 1824 presi-
dential election. Polling continued to be largely a local 
phenomenon until a 1916 national survey by Literary 
Digest magazine, which predicted the winners of several 
presidential elections despite using highly unscientific 
survey methods. Their famously incorrect assertion 
that Alf Landon would beat Franklin Roosevelt in the 
1936 election is cited as contributing to the magazine’s 
failure. Journalist and market researcher George Gal-
lup, who correctly predicted Roosevelt’s 1936 victory, 
was a pioneer in statistical sampling in the early twen-
tieth century, though at the time, many considered 
his ideas quite radical. A post–World War II boom in 
manufacturing led companies to survey consumers to 
tailor products to preferences and increase sales. In the 
twenty-first century, public opinion polls on all aspects 
of society are pervasive and surveys frequently shape 
society’s opinions and actions in addition to simply 
measuring them. 

Students begin learning how to collect survey data 
in the primary grades. Researchers in many disciplines 
also routinely rely on data gathered via surveys. Math-
ematicians and statisticians work on mathematically 
valid methods for selecting samples that are random 
and representative as well as methods to reduce bias 
in surveys, effectively analyze data, present results that 
adjust for random error, and account for the effects 
of missing data. Many of these individuals belong to 
the Survey Research Methods Section of the American 
Statistical Association. Leslie Kish, a recipient of the 
association’s prestigious Samuel S. Wilks Award, was 
especially cited for his worldwide influence on sample 
survey practice and for being “a humanitarian and true 
citizen of the world . . . [whose] concern for those liv-
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ing in less fortunate circumstances and his use of the 
statistical profession to help is an inspiration for all 
statisticians.” 

History of Surveys
In practice, surveys are collections of questions admin-
istered to individuals. Organizations like Gallup 
(founded as the American Institute of Public Opinion 
in 1935) specialize in conducting scientifically valid 
surveys. In the early part of the twentieth century, sur-
veys were mostly conducted door-to-door by trained 
surveyors, a procedure used by both Gallup and the 
U.S. Census. Frequently, surveyors used the mail, like in 
the case of Literary Digest. Telephone surveys increased 
notably in the 1960s, which was attributed in large part 
to the fact that the costs of in-person research were 
escalating and trends in non-response suggested that 
people were growing less willing to answer face-to-
face surveys, which diminished their prior advantage 
over phone surveys. Around 1970, statisticians Warren 
Mitofsky and Joseph Waksberg developed an efficient 
method of random digit dialing that revolutionized 
telephone survey research. However, some major orga-
nizations, like Gallup, continued door-to-door surveys 
into the mid-1980s, at which point they determined 
that a statistically sufficient proportion of U.S. homes 
had at least one telephone. 

In 2008, Gallup notably expanded its methodology 
to include cell phones, since an increasing proportion 
of people no longer use landlines. In the twenty-first 
century, surveys are increasingly conducted via the 
Internet, though the U.S. Census still uses a combina-
tion of mail and house-to-house surveys. Harris Inter-
active, which went public in 1999, is a company that 
specializes in interactive online polls like the Harris 
Interactive College Football Poll, which ranks the top 
25 Bowl Conference Series football teams each week.    

Bias
Each survey method has different implications for 
both response bias and nonresponse bias. It is unclear 
when mathematicians and pollsters first began to rec-
ognize the negative influences of these biases, though 
adjustments were made in the latter half of the twen-
tieth century. Systematic investigations can perhaps 
be traced to the mid-twentieth century, coincident 
with similar concerns in experimental design, like the 
placebo effect and psychologist Henry Landsberger’s 

naming of the Hawthorne effect. Overall, these biases 
are problematic because they are non-random and 
cannot be accounted for by most traditional statisti-
cal methods. As a result, they may produce misleading 
results. Methods to combat these biases are the subject 
of a great deal of ongoing research and are typically 
addressed via incentives and proactive planning rather 
than adjustments after the fact.

Sampling
Randomness is a critical component of survey meth-
odology. Statistical techniques commonly assume 
that the sample is a random subset of the popula-
tion. When this is true, the results are more likely to 
be representative and informative of the population. 
Though random sampling is the standard in modern 
scientific polling, early pollsters like Gallup tended to 
use convenience or quote sampling—taking a sample 
of whomever was accessible or convenient, sometimes 
grouped according to other influential variables like 
political party, gender, or neighborhood. In some cases, 
this was simply an issue of practicality in terms of time 
and financial resources. Mathematical statistician Jerzy 
Neyman is credited with presenting the first developed 
notion regarding making inferences from random 
samples drawn from finite populations, what is now 
called “probability sampling,” at a professional confer-
ence in 1934. He also contrasted probability sampling 
with non-random methods. The U.S. Department of 
Agriculture, in partnership with the statistical labora-
tory at Iowa State University, began researching prob-
ability sampling methods in the late 1930s, as did the 
U.S. Census Bureau. One of these influential survey 
researchers was William Cochran, who also helped 
build many academic statistics programs, including at 
Harvard. Through the 1940s and beyond, the formal 
methods of probability sampling and analysis sam-
pling were developed, implemented, and refined in a 
wide variety of situations.

In the late 1970s and beyond, some research-
ers’ attention turned to more advanced concepts like 
model-dependent sampling. In probability sampling, 
the characteristics of the population are wholly inferred 
from the sample. Model-dependent sampling, in con-
trast, assumes some probability model for the popula-
tion beforehand and designs both a sampling and an 
analysis plan around this model. This method allows 
the researchers conducting the survey to optimally 
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match the statistical properties of chosen estimators to 
the population. Statisticians Morris Hansen, William 
Madow, and Benjamin Tepping discussed many of the 
principal advantages and limitations of this method 
in a 1978 presentation and 1983 publication. Morris 
Hansen was an internationally known expert on survey 
research, an associate director for research and devel-
opment at the Census Bureau, and later chairman of 
the board for polling company Westat, Inc. He also 
served as president of the American Statistical Associa-
tion and Institute for Mathematical Statistics.

U.S. Census
Though the U.S. Constitution calls for a count of the 
population in the decennial census, the U.S. Census 
Bureau conducts other types of surveys and has been 
using sampling since 1937. In 1940, the bureau began 
asking a random sample of people counted in the 
decennial census extra questions to allow better char-
acterization of population demographics as well as to 
estimate coverage errors. The ongoing American Com-
munity Survey helps determine how billions of federal 
and state dollars are distributed each year. In the late 
twentieth century, in large part because of substantial 
difficulties during the 1990 census, many statisticians 
proposed completely substituting sampling methods 
for the decennial counting process or at least substan-
tially increasing the role of sampling. They felt that 
issues like undercoverage of certain subpopulations 
could be better addressed with increasingly sophis-
ticated statistical methods. Cost was also considered. 
They had the support of many cities, states, civil rights 
groups, and members of Congress. The proposal was 
opposed by many other politicians and segments of 
the general population for both political reasons and 
because of skepticism regarding the sampling process. 
It ultimately required a ruling by the U.S. Supreme 
Court, which allowed supplemental sampling for some 
purposes but required a count to determine congres-
sional apportionment.

Further Reading
Brick, J. Michael, and Clyde Tucker. “Mitofsky–

Waksberg: Learning From the Past.” Public Opinion 
Quarterly 71, no. 5 (2007). http://poq.oxfordjournals 
.org/content/71/5/703.full#ref-24.

Hansen, Morris. “Some History and Reminiscences on 
Survey Sampling.” Statistical Science 2, no. 2 (1987). 

http://projecteuclid.org/DPubS/Repository/1.0/ 
Disseminate?view=body&id=pdf_1&handle=euclid 
.ss/1177013352.
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See Also: Census; Data Mining; Elections; Internet; 
Measurement in Society.

Satellites
Category: Communication and Computers.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Mathematics is fundamental to the 
design, function, and launch of satellites.

Astronomy and mathematics have long developed 
together. Many early mathematicians studied the 
motion of celestial objects. The term “satellite” comes 
from the Latin satelles (meaning “companion”), which 
was used by mathematician and astronomer Johannes 
Kepler to describe the moons of Jupiter in the seven-
teenth century. Mathematician Giovanni Cassini cor-
rectly inferred that Saturn’s rings were composed of 
many small satellites in the seventeenth century. Math-
ematicians Jean Delambre and Cassini Jacques both 
published books of astronomical tables, including 
planetary satellites, in the eighteenth century. When 
artificial satellites were developed, the term “satellite” 
largely came to refer to those in common speech, while 
“moon” was applied to natural bodies orbiting planets. 
Mathematicians like Michael Lighthill and engineers 
like John Pierce helped develop satellites in the 1960s. 

By the first decade of the twenty-first century, there 
were several hundred operational satellites orbiting the 
Earth to facilitate communication, weather observa-
tion, research, and observation. The advantage of satel-
lites for communication are that signals are not blocked 
by land features in the same manner as a lower-altitude 
signal would be, making long-distance communica-
tion possible without multiple ground-based relays. 
Early communication satellites simply reflected signals 
back to Earth to broaden reception. Modern satellites 
use many different kinds of orbits to facilitate complex 
functioning, including low Earth orbit; medium Earth 
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orbit; geosynchronous orbit; highly elliptical orbit; 
and Lagrangian point orbit, named for mathemati-
cian Joseph Lagrange. Mathematics is involved in the 
creation and function of such satellites, as well as for 
solving problems related to launching satellites, guid-
ing movable satellites, powering satellite systems, and 
protecting satellites from radiation in the Van Allen 
belt, named for physicist James Van Allen. For example, 
graph theory is useful in comparing satellite commu-
nication networks. Techniques of origami map folding, 
researched by mathematicians like Koryo Miura, have 
been used in satellite design. Chaos theory has been 
used to design highly fuel-efficient orbits, derived in 
part from mathematician Henri Poincaré’s work in 
stable and unstable manifolds. Government agencies 
like the U.S. National Aeronautics and Space Admin-
istration (NASA) and private companies like GeoEye 
employ mathematicians for research and applications. 
The Union of Concerned Scientists (UCS) maintains a 
database of operational satellites.

Orbits
The orbit of a satellite about the Earth determines 
when it will pass over various points on the Earth’s 
surface and how high it is above the Earth. In general, 
orbits are characterized by altitude, inclination, eccen-
tricity, and synchronicity. As defined by NASA, low 
Earth orbits have altitudes of 
80–2000 kilometers. This orbit 
includes the majority of satel-
lites, the International Space 
Station, and the Hubble Space 
Telescope. Statistical estimates 
at the start of the twenty-first 
century suggest that the num-
ber of functional satellites and 
nonfunctional debris in low 
orbit ranges from a few thou-
sand (tracked by the U.S. Joint 
Space Operations Center) to 
millions (including very small 
objects). Objects in low orbit 
must travel at speeds of several 
thousand kilometers per hour, 
so even a small object can cause 
damage in a collision. Medium 
Earth orbit extends to about 
35,000 kilometers (21,000 

miles), the altitude determined by Kepler’s laws of 
planetary motion for geosynchronous orbits. Inclina-
tion is an angular measure with respect to the equator, 
while eccentricity refers to how elliptical an orbit is. 
Geosynchronous satellites rotate at the same rate as the 
Earth spins, so they appear stationary relative to Earth. 
They usually have inclination and eccentricity of zero; 
they circle the equator to balance gravitational forces. 
The Global Positioning System (GPS) is one example 
of satellites at this orbital level. Sun synchronous orbits 
are retrograde patterns that allow a satellite to pass over 
a section of the Earth at the same time every day. They 
have an inclination of 20–90 degrees and must shift 
by approximately one degree per day. These orbits are 
often used for satellites that require constant sunlight 
or darkness. The maximal inclination of 90 degrees 
denotes a polar orbit. A halo or Lagrangian orbit is 
a periodic, three-dimensional orbit near one of the 
Lagrange points in the three-body problem of orbital 
mechanics, which was used for the International Sun/
Earth Explorer 3 (ISEE-3) satellite.

Signals
Antennas and satellite dishes are used to receive satel-
lite signals on Earth. Most satellite dishes have a para-
bolic shape. A signal striking a planar surface reflects 
directly back to the source. If the surface is curved, 
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the reflection is in the plane tangent to the surface. 
A parabola is the locus of points equidistant from a 
fixed point and a plane, so a parabolic dish focuses all 
incoming signals to the same point at the same time, 
increasing the quality of the signal. Mathematics is used 
to compress, filter, interpret, and model vast amounts 
of data produced by satellites. Reed–Solomon codes, 
derived by mathematicians Irving Reed and Gustave 
Solomon, are widely used in digital storage and com-
munication for satellites. Much of the data from satel-
lites is images, which utilize mathematical algorithms 
for rendering and restoration. One notable case that 
necessitated mathematical correction is the Hubble 
Space Telescope. An incorrectly ground mirror was 
found to have a spherical aberration, which resulted 
in improperly focused images. Mathematical image 
analysis allowed scientists to deduce the degree of cor-
rection needed. Some of the mathematical concepts 
involved in these corrections include the Nyquist fre-
quency, which is a function of the sampling frequency 
of a discrete signal system named for physicist Harry 
Nyquist, and the Strehl ratio, named for mathemati-
cian Karl Strehl, which quantifies optical quality as a 
fraction of a system’s theoretical peak intensity.

Further Reading
Montenbruck, Oliver, and Gill Eberhard. Satellite Orbits: 

Models, Methods and Applications. Berlin: Springer, 
2000.

Whiting, Jim. John R. Pierce: Pioneer in Satellite 
Communication. Hockessin, DE: Mitchell Lane 
Publishers, 2003.
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See Also: Digital Storage; GPS; Interplanetary Travel; 
Planetary Orbits; Wireless Communication.

Scales
Category: Arts, Music, and Entertainment.
Fields of Study: Algebra; Measurement; Number 
and Operations; Representations.
Summary: Musical scales have distinct mathematical 
properties and patterns.

Western music is based on a system of 12 pitches within 
each octave. The interval between adjacent pitches in 
this 12-tone system is called a “half step” or “semitone.” 
Pitches separated by two successive semitones are said 
to be at the interval of a “whole step,” or a “tone.” Based 
on a variety of theoretical underpinnings, the con-
cept and sound of tones and semitones have evolved 
throughout the history of Western music. In modern 
music practice, a uniform division of the octave into 12 
equally spaced pitches, known as “equal temperament,” 
holds sway. Scales are arrangements of half and whole 
step intervals in the octave. Denoting a half step as h 
and a whole step as w, the familiar diatonic major scale 
is defined by the sequence wwhwwwh. The diatonic 
natural minor scale is whwwhww. Beginning these pat-
terns from each of the 12 pitches results in 24 distinct 
diatonic scales. This suggests a set-theoretic descrip-
tion by which each major scale can be represented as a 
transposition (in algebra this would be called a “trans-
lation”) of the set of pitches C, D, E, F, G, A, B, and C.  
In the twentieth century, such mathematical formal-
isms have led to the conceptualization of non-diatonic 
scales with special transposition properties.

Octave Equivalence
The concept of octave (the musical interval between 
notes with frequencies that differ by a factor of two) is 
fundamental to understanding musical scales. In West-
ern music notation, pitches separated by an octave are 
given the same note name. The piano keyboard pro-
vides a visual representation of this phenomenon. 
Counting up the white keys from middle C as “1,” 
the eighth key in the sequence is again called C. This 
eight-note distance explains the etymology of the word 
“octave.” The perception and conceptualization of such 
pairs of pitches as higher or lower versions of the same 
essential pitch is called “octave equivalence.” Octave 
equivalence is thought to be common to all system-
atic musical cultures. Evidence of octave equivalence 
is found in ancient Greek and Chinese music. Recent 
psycho-acoustic research suggests a neurological basis 
for octave equivalence in auditory perception.

The mathematical explanation of octave equiva-
lence comes from the fact that the sound of a musical 
pitch is a combination of periodic waveforms that can 
be modeled as sinusoidal functions of time. In the two 
periodic functions, f t t( ) = ( )sin  and g t t( ) = ( )sin 2 , 
with frequencies 2π and π, every peak of the lower 
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frequency function coincides with a peak of the high-
frequency function. In sonic terms, this is the highest 
degree of consonance possible for two pitches of differ-
ent frequencies.

History of Scales
As Western music developed from the Middle Ages 
through the twentieth century, the central construct 
was the diatonic scale. This arrangement spans an 
octave with seven distinct pitches arranged in a com-
bination of five whole steps and two half steps. Inter-
estingly, the pattern of intervals (and not the absolute 
pitch of the starting note) was the only distinguishing 
feature of scales until the rise of tonal harmony in the 
seventeenth century. Pitch-specific examples help illus-
trate the interval patterns.

The diatonic scale traces its origins to the ancient 
Greek genus of the same name, referring to a particular 
tuning of the four-stringed lyre (tetrachord) consisting 
of two whole steps and one half step in descending suc-
cession. An example of this tuning can be constructed 
with the pitches A, G, F, and E. Concatenization of two 
diatonic tetrachords [A-G-F-{E]-D-C-B} produces the 
pitches of the diatonic scale (the piano white keys). In 
medieval European musical practice, the distinct Church 
Modes (such as Lydian or Phrygian) developed from 
the diatonic scale by the assignment of a tonal anchor 
or final tone. For example, the Dorian mode is char-
acterized by the sequence of ascending half and whole 
steps in the diatonic scale whwwwhw; for example D-E-
F-G-A-B-C-D, while the Phrygian mode is hwwwhww: 
E-F-G-A-B-C-D-E. The diatonic major scale wwhw-
wwh  (C-D-E-F-G-A-B-C) came into widespread use 
in the seventeenth century. The diatonic natural minor 
scale is whwwhww (A-B-C-D-E-F-G-A).  

Intervals, Ratios, and Equal Temperament
The simplest musical interval is the octave. The fre-
quency ratio between pitches separated by an octave is 
2:1. The interval of a perfect fifth has frequency ratio 
3:2. Using these two ratios, pitches and correspond-
ing intervals for the diatonic scale can be assigned 
according to Pythagorean tuning. Simpler diatonic 
scales based on ratios of small integers are known as 
“just tunings.” Western music in the modern era uses 
a symmetric assignment of intervals known as “equal 
temperament.” In equal temperament, the 12 half steps 
that comprise the frequency doubling octave each have 
frequency ratio 2 1 05951 12 ≈ . . For these three tuning 
schemes, frequency ratios relative to the starting pitch 
and intervals between adjacent scale notes are illus-
trated and compared in Table 1. For each intonation, 
the first row gives the frequency ratio from the tonic C 
to the given note. The second row in each case gives the 
frequency ratio between adjacent diatonic pitches.

Modern Scales
In contrast to the idiosyncratic pattern of intervals that 
comprise the diatonic scales, the chromatic scale hhhh-
hhhhhhh is perfectly symmetric. In particular, the set of 
pitches that form the chromatic scale is unchanged by 
transposition—there is only one set of pitches with this 
intervallic pattern. This set of pitches is referred to as 
having order one. The elements of the pitch set forming 
a diatonic scale, which generates 12 diatonic scales by 
transposition, has order 12. This point of view suggests 
other scales of interest with respect to transposition. 
The set of six pitches in a whole-tone scale wwwwww  
(for example, C-D-E-F♯-G♯-A♯-C) are unchanged by 
transposition by an even number of half steps. A trans-
position by an odd number of half steps results in the 
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Table 1. The diatonic scale in three intonation schemes, Pythagorean, just, and equal temperament. 

C D E F G A B C
Pythagorean 1:1 9:8 81:64 4: 3 3:2 27:16 243:128 2:1

   interval               9:8                9:8              256:243           9:8                9:8                 9:8            256:243

Just 1:1 9:8 5:4 4:3 3:2 5:3 15:8 2:1

interval               9:8               10:9               16:15             9:8                9:8                 9:8              16:15

Equal 1:1 1.1225:1 1.2600:1 1.335:1 1.4983:1 1.6818:1 1.8878:1 2:1

interval               21/6                  21/6                   21/12                21/6                  21/6                   21/6                   21/6     



whole tone scale containing the remaining six pitches 
(for example, C♯-D♯-F-G-A-B-C♯). Thus, the set of 
pitches in the whole-tone scale has order two. Whole-
tone scales are a characteristic feature in much of the 
music of Claude Debussy. 

The twentieth-century composer and music theo-
rist Olivier Messiaen codified a number of eight-tone 
“scales of limited transposition.” Among these are the 
order three scales hwhwhwhw and whwhwhwh, which 
are called “octatonic scales” in the music of Stravinsky 
and sometimes referred to as “diminished scales” in 
jazz performance. It can be seen that transposition by 
one and two half steps produce new diminished scales, 
but transposition by three half steps leaves the original 
set of pitches unchanged.  

Further Reading
Grout, Donald Jay. A History of Western Music. New York: 

Norton, 1980.
Hanson, Howard. Harmonic Materials of Modern Music: 

Resources of the Tempered Scale. New York: Appleton-
Century-Crofts, 1960.

Johnson, Timothy. Foundations of Diatonic Theory: 
A Mathematically Based Approach to Music 
Fundamentals. Lanham, MD: Scarecrow Press, 2008.

Pope, Anthony. “Messiaen’s Musical Language: An 
Introduction.” In The Messiaen Companion. Edited by 
Peter Hill. Portland, ME: Amadeus Press, 1995.

Sundberg, Johan. The Science of Musical Sounds. San 
Diego, CA: Academic Press, 1991.

Eric Barth

See Also: Composing; Geometry of Music; 
Harmonics; Pythagorean and Fibonacci Tuning.

Scatterplots
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Probability.
Summary: Scatterplots are useful tools for 
mathematicians and statisticians to graph and  
present data.

Human beings are constantly exploring the world 
around them to discover relationships that can be used 
to explain past and current events or phenomena and 
perhaps to predict future occurrences. 

The colloquial expression “a picture is worth a 
thousand words” is traced back to many possible his-
torical sources, including French leader and noted 
student of mathematics Napoleon Bonaparte, who 
purportedly said, “A good sketch is better than a long 
speech.” In the twenty-first century, graphing is a 
fundamental first step in any exploratory data analy-
sis, and graphical representations are common in the 
media. Scatterplots, which most often represent val-
ues of paired variables in a Cartesian plane, help data 
investigators identify relationships, describe patterns 
and correlation, fit linear and nonlinear functions 
using techniques like regression analysis, and locate 
points known as “outliers” that deviate from the pre-
dominant pattern. In the primary grades, students 
often use line graphs, which some consider to be a spe-
cial case of scatterplots, while scatterplots for data may 
be explored beginning in the middle grades in both 
mathematics and science classes.

Early History
Mathematicians and others have long sought alterna-
tive methods of representation for researching, pre-
senting, and connecting the mathematical concepts 
they studied. The Cartesian plane, named for René 
Descartes, facilitated graphing of algebraic equations 
and data beginning in the seventeenth century. His-
torians have traced scatterplots to 1686, though the 
term “scatter diagram” is attributed to early twenti-
eth-century researchers such as statistician Karl Pear-
son, and “scatterplot” seems to have first appeared in 
a 1939 dictionary. 

Examples of early pioneers of data graphing include 
“political arithmetician” Augustus Crome, who studied 
the relationships between nations’ population sizes, 
land areas, and wealth; mathematician and sociolo-
gist Adolphe Quetelet, who conducted studies of body 
measurements that helped contribute to the measure 
now known as the Body Mass Index, which relates 
height and weight; and engineer and political scientist 
William Playfair, who called himself the “inventor of 
linear arithmetic,” a term he used for graphs. He said: 
“. . . it gives a simple, accurate, and permanent idea, 
by giving form and shape to a number of separate 

894 Scatterplots



ideas, which are otherwise abstract and unconnected.” 
Playfair’s eighteenth-century graphical summaries of 
British trade across various years are perhaps the earli-
est example of what would now be referred to as “time 
series plots” (or in some cases “line graphs”), which 
may be considered a special case of scatterplots. 

While Playfair plotted many economic variables as 
functions of time, the most extensive early use of scat-
terplots to relate two observed variables is probably the 
anthropometric and genetic research of Francis Gal-
ton, a cousin of scientist Charles Darwin. After study-
ing medicine and mathematics in college, he became 
interested in the investigation and characterization of 
variability and deviations in many natural phenomena. 
He established a laboratory for the measurement and 
study of human mental and physical traits, focusing 
on empirical and statistical studies of heredity in the 
latter half of the nineteenth century. Many of Galton’s 
scatterplots involved graphing parental characteristics 
on one axis, usually the X, and offspring characteris-
tics on the other. Like scientist Gregor Mendel, some 
of his initial genetic experiments were conducted on 
peas; later, he investigated measurements of people. 
Scatterplots of height appeared in his 1886 publication 
Regression Towards Mediocrity in Hereditary Stature, 
which is the origination of the name for the statisti-
cal technique of regression analysis. The word “medi-
ocrity” in this context was a reference to the mean or 
average height (not a qualitative judgment) and was 
used to describe a pattern observed in the data: very 
short parents tend to have taller children, and very tall 

parents tend to have shorter children, in both cases 
closer to the mean.

Recent Developments
Prior to the development of computers and data ana-
lytic software, data had to be graphed by hand. In the 
twenty-first century, computers facilitate many types 
of scatterplots. In addition to the standard plots of two 
variables in the Cartesian plane, there are three-dimen-
sional scatterplots that display point clouds to explore 
the ways in which three variables relate and interact. 
Symbols used to represent points on a two- or three-
dimensional scatterplot may also be coded using dif-
ferent colors or shapes to indicate additional variables 
and uncover patterns. Matrix plots are square grids of 
scatterplots for a set of variables that plot all possible 
pairwise sets, usually arranged such that all of the plots 
in the same row share the same Y variable and all plots 
in the same column share the same X variable. Math-
ematicians, statisticians, computer scientists, and other 
types of researchers have explored the theoretical and 
methodological links between scatterplots and map 
surfaces for use in applications such as data mining 
and spatial analysis of geospatial information system 
(GIS) data. 

While they are useful tools for exploration and rep-
resentation, scatterplots are often subject to misinter-
pretations. For example, sometimes relationships or 
correlations shown in scatterplots are mistakenly taken 
as evidence of cause and effect, which must be inferred 
from the way in which the data were collected rather 
than from the strength of the association.

Further Reading
Few, Stephen. Now You See It: Simple Visualization 

Techniques for Quantitative Analysis. Oakland, CA: 
Analytics Press, 2009.

Friendly, M., and D. Denis. “The Early Origins and 
Development of the Scatterplot.” Journal of the 
History of the Behavioral Sciences 41, no. 2 (2005).

Stigler, Stephen. The History of Statistics: The 
Measurement of Uncertainty Before 1900. Cambridge, 
MA: Belknap Press of Harvard University Press, 1990.

Gareth Hagger-Johnson

See Also: Coordinate Geometry; Forecasting; Graphs; 
Visualization.
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A scatterplot chart showing the relationship between 
gross domestic product growth and unemployment.



Scheduling
Category: Business, Economics, and Marketing.
Fields of Study: Data Analysis and Probability; 
Number and Operations.
Summary: Scheduling can be a complex 
mathematical exercise and is necessary to keep 
businesses and supply chains running efficiently.

Intense competitiveness forces companies to optimize 
performance in terms of cost, time, and resources. 
Scheduling is the process of developing and imple-
menting optimal operational plans. Formal concepts 
of scheduling date to the Industrial Revolution and 
innovations like Henry Ford’s assembly line, although 
the basic ideas probably existed from antiquity in any 
society where people manufactured goods. 

In manufacturing, multiple tasks are carried out in 
sequence to produce a final output from raw materi-
als. Further, steps in a manufacturing process may be 
performed on different machines that require vari-
able time to deliver outputs and it is possible that 
materials will be transported between facilities. A 
mathematically determined schedule that takes into 
account all relevant variables in the process serves to 
optimally allocate resources with respect to demand 
of the tasks, including shortening time intervals to 
reduce unproductive time and minimizing costs from 
wasted time and materials. Operations research is a 
field of applied mathematics and science that uses 
mathematical tools, such as simulation and model-
ing, linear programming, numerical analysis, graph 
theory, and statistical analysis, to arrive at optimal 
or near-optimal solutions to complex problems like 
scheduling. It may also tackle problems in which the 
resources are not materials but people. The schedul-
ing of airplane crews is a highly constrained and diffi-
cult problem because of legal limits on work and rest 
times as well as the need for crews to return to a home 
base. Allocation of police, fire, and ambulance services 
is also a widely used and very important application 
of scheduling theory.

Production Management
As a part of production management, scheduling 
interferes with many different aspects of business 
such as the supply chain, inventory maintenance, and 
accounting. For example, consider a paint company 

that makes provisions of sales for the next month by 
analyzing previous data. In light of these provisions, 
schedulers determine the expected arrival time and 
amount of different types of chemicals, which have 
different delivery times. 

The supply chain should be able to deliver the cor-
rect amounts of chemicals in time. In a similar way, 
accounting of the cost of supply and inventory should 
be accessible for the schedulers. Because of the num-
ber of operational parts of business that scheduling 
is related with, it is apparent that scheduling is a very 
complex process. It gets more complex with larger 
variation in types of products and larger numbers of 
machines varying in processing times. Thus, schedul-
ers demand thorough knowledge of factors such as the 
processing time of each machine, delivery time, the 
amount of resources to allocate among machines, and 
the size and flow of operations for each product.

Manufacturing
In many manufacturing processes, different machines 
might share the same input, or inputs of a machine 
might consist of outputs from multiple machines. 
Scheduling operations in these type of cases requires 
extensive mathematical modeling. Two basic types of 
modeling for production scheduling are distinguished 
by the presence of randomness within. Determinis-
tic models do not include the probability of faults in 
processes or critical changes in capacity or resource 
availability. They are based on previous averages of 
production figures and output rates, so they do not 
easily adapt to changes in demand or capacity con-
straints. In these cases, rescheduling is needed, which 
causes time and resource loss if repeated too many 
times. They are best suited to manufacturing pro-
ductions that involve less risk of defects. Stochastic 
models, on the other hand, involve the probability of 
unexpected malfunctions or critical changes by dis-
tributing probability analytically to individual steps 
of the schedule. Usually, they are appropriate for pro-
cesses consisting of many individual operations. For 
example, these models examine machine failure rates 
and aim to provide options for when a breakdown 
occurs. Also, these models maintain an inventory of 
materials, which may prove critical in maintaining 
production. Simulations of models provide sched-
ulers an environment to test possibilities that can 
obstruct the flow of production.
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Further Reading
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See Also: Data Mining; Mathematical Modeling; 
Parallel Processing.

Schools
Category: Architecture and Engineering.
Fields of Study: Data Analysis and Probability; 
Geometry; Number and Operations.
Summary: Principles of geometry affect school 
design and mathematical models of risk may help 
identify safety issues.

When people think of mathematics in schools, most 
probably envision the teaching and learning of math-
ematics that occurs inside classrooms. However, there 
are many aspects of twenty-first century schools that 
depend on mathematics. For example, the transition 
of school design from one-room schoolhouses that 
were common in the nineteenth century, through the 
often rectangular and symmetric classroom buildings 
of the latter nineteenth and early twentieth centuries, 
to the open-plan schools initiated in the 1950s, to 
twenty-first century schools that consider contem-
porary concerns about renewable energy, technology, 
and safety. Changes in teaching philosophies over 
time, such as loop education and emphasis on science, 
technology, engineering, and mathematics (STEM) 
education principles in the lower grades, led to some 
of these changes, as did studies on tragedies like the 
shootings at Columbine High School and Virginia 

Polytechnic Institute and State University, popularly 
known as Virginia Tech (VT). Mathematics principles 
can be used to map the flow of students to and from 
classes, optimize locker placement and access, build 
accommodations and accessibility for students with 
disabilities, and plan for athletic facilities and other 
non-classroom spaces. These applications are increas-
ingly important as schools seek to educate students to 
live and work within the rapidly changing economies, 
technologies, and environments of the twenty-first-
century global society. Other studies may determine 
whether to retrofit old buildings or construct new 
facilities using mathematical methods like cost-ben-
efit analysis. There are many organizations and publi-
cations devoted to discussing the mathematics, engi-
neering, and technical aspects of school design and 
construction.

Optimizing School Design
The notion of what constitutes “optimal school 
design” has markedly changed over time. There are 
some who consider the classic one-room schoolhouse 
to be the original open-plan design, since the teacher 
accommodated all students in all grades in a single 
space, dividing class time among the various grades. 
Famed Boston architect Gridley J. F. Bryant, who also 
studied engineering, is credited with revolutioniz-
ing the design of many public buildings. His Quincy 
School, which opened in 1847, was among the first 
multi-classroom schools. The school was three stories 
tall, with four identical and symmetrically arranged 
classrooms on each floor. This model was used for 
schools throughout the late nineteenth and early 
twentieth centuries and would be further evolved 
with movable desks and tables to allow for some flex-
ibility within the “box in a box” construction, as it 
was called by some. This design led to other consid-
erations such as optimal selection and placement of 
furniture such as desks, tables, chairs, and later com-
puters, as well as features such as lockers and storage 
spaces, all of which must be fit into a limited amount 
of space yet be accessible and functional for a vary-
ing student body. Proper placements rely on math-
ematical concepts such as volume and are related to 
mathematical packing problems. Detractors often lik-
ened Bryant’s school configuration to prisons, which 
he also designed. The evolution of open-plan schools 
of the latter twentieth century was motivated by cost 
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and changes in teaching philosophies, derived in part 
from research in mathematics education. There was 
and continues to be controversy regarding the efficacy 
and desirability of open plan schools. Mathemati-
cians, architects, facilities planners, and others con-
tinue to research effective strategies for design and 
construction. For example, architect Prakash Nair 
is internationally recognized as a leader in school 
design, and has been cited for using educational 
research as a basis for designs that optimize teaching 
and learning. He helped develop a “pattern language” 
that draws on geometric ideas and uses a modular 
set of design patterns, sub-patterns, and groupings 
to match school designs to goals and needs. It can be 
used to develop new schools and assess existing struc-
tures. Other education professionals like C. Kenneth 
Tanner, whose background includes work in design, 
mathematics, statistics, and operations research, have 
also used a combination of data-based research with 
mathematical techniques and tools to address a broad 
spectrum of school planning issues, such as technol-
ogy integration. Organizations like the School Design 
and Planning Laboratory at the University of Geor-
gia use data-driven methods and models for assessing 
school design and forecasting student populations 
and demographics, which may impact design, use, 
and sustainability. 

Safety
The safety of children in U.S. schools has become a 
growing concern for parents, teachers, and society 
in general. The 1999 shootings at Columbine High 
School focused national attention on issues of school 
security, safety, and patterns of police response to such 
incidents. Even more debate occurred after the 2007 
shootings at VT. The Secret Service, the Department 
of Education, and the Federal Bureau of Investigation 
(FBI) conducted broad studies into the causes and 
prevention of school violence. For example, the Secret 
Service and the Department of Education studied all 
37 shootings in U.S. schools between 1974 and 2000. 
Data analysis revealed no identifiable statistical pat-
terns; school shooters came from a variety of ethnic, 
economic, and social classes, and most had no history 
of violent behavior that would reliably predict later 
actions. Using statistical methods, profilers from the 
FBI also concluded that the “oddball” students that 
society commonly perceives to be potential trouble-

makers were not in fact more likely to commit violence, 
though such studies are limited by the relatively small 
number of incidents and data available for modeling. 
Probabilistic, predictive profiling is quite controversial, 
but many educators and others still advocate its use in 
risk assessment. 

Another mathematically based strategy schools may 
employ for risk assessment is actuarial methods. Actu-
arial models for school risk statistically combine empir-
ically chosen threat factors to produce probabilities for 
particular outcomes or behaviors, and sometimes they 
may be standardized for specific student populations. In 
some cases where there are sufficient data and the mod-
els can be validated, they have often performed better 
at identifying in-school threats than subjective human 
judgments. However, other model-based assessments of 
risk that are based on sparse data or with a short win-
dow for prediction have not been shown to be as reli-
able. Some researchers have tried to develop expert sys-
tems for school threat assessment and decision making, 
which are automated or semi-automated tools that use 
artificial intelligence and algorithms developed from 
data, achieving mixed success. Both actuarial models 
and expert systems for schools may be revised to incor-
porate new data as it is identified, making them flexible 
mathematical modeling tools.

Further Reading
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See Also: Engineering Design; Forecasting; Learning 
Models and Trajectories; Packing Problems; Risk 
Management.

Science Fiction
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Connections; 
Representations.
Summary: Mathematics plays many roles in science 
fiction, sometimes as content or characters, other 
times bringing elements to life on the screen.

Like mathematics, writing science fiction is a craft 
grounded in deduction and extrapolation. The writer 
begins with certain axioms: the world as we know it 
and the world as we believe it could be. He introduces 
certain new variables: a thinking robot, an alien inva-
sion, human clones. Explicitly or implicitly, the story 
explores the consequences, the corollaries of these new 
things according to the implications of those initial axi-
oms. Stories that do not do this are considered fantasy 
or sometimes science-fantasy or soft science fiction, if 
they otherwise contain the set-dressing of the science 
fiction genre. 

The setting is often the future, an alternative history, 
or some alternate reality, and may include use of time 
travel. Alien characters frequently interact with humans 
in science fiction. Many books, movies, comics, graphic 
novels, computer games, and Internet applications use 
science fiction themes, sometimes as a context in which 
to explore deeper philosophical questions. Mathemat-
ics and science play a variety of roles within the science 
fiction genre. Sometimes, mathematics and science are 
written into the story to give validity and believability to 
the futuristic setting or to the technology. Mathematics 
is also used to bring fantastic science fiction elements 
to life on screen, such as in the groundbreaking Star 
Wars franchise or the 2010 film Avatar. At other times, 
characters in science fiction works are mathematicians 
or scientists who act as the primary heroes or villains, 
or who explain scientific elements to the audience. The 
inclusion of mathematically talented characters in sci-
ence fiction is sometimes done to exploit commonly 
held stereotypes about mathematicians for narrative 

purposes, such as genius or aloofness. In other works, 
mathematics becomes the explicit subject of the story, 
and the mathematics of science fiction in both written 
and visual media has been explored in college courses 
and mathematics research. Mathematicians or individu-
als that have mathematical training often create science 
fiction, and science fiction may inform mathematical 
research. The widely noted “Big Three” authors of twen-
tieth-century science fiction—Arthur C. Clark, Robert 
A. Heinlein, and Isaac Asimov—all had mathematical 
training or mathematically based science backgrounds 
and made nonfiction contributions to areas such as sat-
ellites, rocketry, robotics, and ethics.

Early History of Science Fiction
Because of the varying definitions of science fiction, it 
is difficult to determine exactly what might be the first 
science fiction story. The Mesopotamian epic poem 
The Epic of Gilgamesh, which is among the oldest sur-
viving works of literature, is cited by some scholars as  
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Science fiction is often set in an alternate reality and 
may involve time travel or alien characters.



containing elements of science fiction. Some research-
ers note that the Bible, when examined as a work of 
literature, has stories that could be classified as science 
fiction, such as the ascension of the prophet Elijah to 
heaven in a fiery chariot. In the second century, the 
Greek satirist Lucien of Samosata wrote about inter-
planetary travel and alien life forms in his True His-
tories (or True Tales). English lawyer and philosopher 
Thomas More’s 1516 work Utopia described a perfect 
society, which became a common theme among later 
science-fiction writers. Some scholars argue that such 
early works cannot be claimed as the first science fic-
tion because neither the audience nor the authors 
likely knew enough about the underlying science. Cor-
respondingly, they might claim that the origin of sci-
ence fiction coincided with the post-medieval scientific 
revolution and discoveries in science and mathematics 
made by people such as Isaac Newton and Galileo Gal-
ilei. Mathematician and astronomer Johannes Kepler 
wrote a story in 1634 called Somnium, which imagined 
that a student of astronomer Tycho Brahe had been 
transported to the moon and described how Earth 
might look when viewed from that location. It con-
tained mathematical computations and is considered 
by some to be a scientific treatise, while others cite it 
as the first science fiction, including both Asimov and 
astronomer and author Carl Sagan. Author Brian Aldiss 
asserts that science fiction derives many of its structure 
and conventions from the Gothic horror genre, which 
suggests that Mary Shelley’s 1818 novel Frankenstein is 
“the first seminal work to which the label SF can be 
logically attached.” This labeling is perhaps because of 
its introduction of science fiction themes like a mad 
scientist, the potential misuse of technology, and the 
presence of an non-human being as a main character. 

The Foundations of Twentieth-Century  
Science Fiction
Jules Verne and Herbert George (H. G.) Wells are often 
jointly known as the “fathers of science fiction” for 
their creative influence on the development of twen-
tieth-century science fiction. Jules Verne consistently 
incorporated the newest technological discoveries and 
experiments of his lifetime into his work. Many of his 
most popular novels, like A Journey to the Center of 
the Earth (1864), From the Earth to the Moon (1865), 
Twenty Thousand Leagues Under the Sea (1869), and 
Around the World in Eighty Days (1873), have been 

widely translated into other languages and adapted 
into plays, movies, television shows, and cartoons. 
Some scholars have called Verne’s books visionary and 
even prophetic for describing mathematical and scien-
tific phenomena such as weightlessness and heavier-
than-air flight before they were well-known or under-
stood. His attention to realistic scientific principles and 
detailed descriptions of problems and solutions would 
later challenge many real-life mathematicians, scien-
tists, and engineers. Physicist and engineer Hermann 
Oberth and scientist Konstantin Tsiolkovsky, who are 
known as the “fathers of rocketry and astronautics” 
along with physicist Robert H. Goddard, reported 
being inspired by Verne’s books. 

Like Verne’s work, the novels of H. G. Wells have 
been widely adapted into various other media, and the 
1895 novel The Time Machine, in particular, is cited as 
inspiring many other works of fiction. The invention of 
the now commonly used term “time machine” is attrib-
uted to Wells, as is the notion of time being the fourth 
dimension. In the 1897 novel The Invisible Man, a scien-
tist named Griffin makes himself invisible by changing 
the refractive index of his body so that it neither absorbs 
or reflects light. Some of Wells’s books were considered 
to be exceptionally bold and compelling. His 1898 novel 
The War of the Worlds is well-grounded in mathematical 
and scientific theories from the time it was written, like 
mathematician Pierre-Simon Laplace’s formulation of 
the nebular hypothesis. It shared a vision of space travel 
common to late nineteenth-century novels, including 
Verne’s From the Earth to the Moon. Large cylinders were 
fired from cannons on the Mars surface to transport the 
aliens to Earth. Later mathematical models and calcula-
tions necessary to send people into Earth’s orbit and to 
the moon, as well as to guide probes to Mars and the 
far reaches of the solar system, demonstrated that the 
parabolic trajectories were often quite complex and that 
the forces required to propel a cylinder from Mars to the 
Earth would likely be lethal to passengers. Wells was also 
a science teacher and political activist who recognized 
and asserted the importance of quantitative knowledge, 
noting: “Statistical thinking will one day be as necessary 
for efficient citizenship as the ability to read and write.”

Mathematical Science Fiction
While mathematics is widely used to help build or 
validate the setting or technology of a science fiction 
story, such as in the works of Verne and Wells, in some 
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cases it is a central component of the plot. There are 
many mathematical science fiction novels that have 
been written about a variety of themes. The 1946 short 
story No-Sided Professor, written by mathematician 
and author Martin Gardner, disusses the Möbius strip, 
a one-sided figure named for mathematician August 
Möbius. It addresses the possibility of a zero-sided 
figure and other concepts in topology. Occam’s Razor, 
by author David Duncan in 1956, posits the notion of 
discontinuous time, which can be bridged by minimal 

surfaces in certain topologies. Asimov’s 1957 novel The 
Feeling of Power addresses scientific computing in a 
futuristic society in which people have lost the ability to 
perform basic arithmetic calculations. The rediscovery 
of hand-multiplication therefore becomes a new “secret 
weapon” for the society’s military. Author Stanislaw Lem 
discusses countably infinite sets in his 1968 novel The 
Extraordinary Hotel, while author and mathematician 
Greg Egan’s 1991 work The Infinite Assassin includes a 
discussion of the Cantor set, named for mathematician 
Georg Cantor, an important concept in topology and 
some other mathematical fields. Other mathematical 
science fiction urges appreciation of mathematics as if 
it is a form of poetry. Examples include author Kathryn 
Cramer’s 1987 work Forbidden Knowledge, author Nor-
mal Kagan’s 1964 work The Mathenauts, and multiple 
stories by author Eliot Fintushel. Mathematician and 
author Vernor Vinge often addressed the mathemati-
cal themes of superhuman artificial intelligence and 
a predicted technological singularity: a point in time 
where the exponential growth of technology results in 
essentially instantaneous change. These themes are also 
found Clark’s 2001: A Space Odyssey and its sequels. The 
term “technological singularity” is credited to math-
ematician Irving Good and is also linked to Moore’s 
law, named for Intel co-founder Gordon Moore, which 
mathematically models the trend in the evolution of 
computer processor speeds.

Several science fiction novels challenge the foun-
dations of mathematics itself or the commonly pro-
posed notion of mathematics as a universal language. 
Author Ted Chiang’s Division by Zero, a 1991 short 
story, discusses the discovery of a proof that mathema-
tics is inconsistent, which may be possible according 
to Gödel’s Incompleteness Theorems, named for 
mathematician Kurt Gödel. Chiang’s later 1998 work 
Story of Your Life involves humans trying to commu-
nicate with aliens whose mathematics is based on vari-
ational formulations rather than algebra. In the same 
year, mathematician and author David Reulle’s Con-
versations on Mathematics With a Visitor from Outer 
Space, which was published in a collection of nonfic-
tion mathematical essays, argued that mathematics on 
Earth is essentially human in nature, so humans should 
not expect aliens to share human’s unique mathemati-
cal language. Sagan’s 1985 novel Contact alternatively 
suggested that humans and aliens may communicate 
via mathematics, but rather than the typical mode of 
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Mathematical Characters 
and Stereotypes

S cience fiction authors often include math-
ematicians or mathematically talented 

individuals as characters in order to explain 
scientific elements to the audience or to exploit 
commonly held associations and stereotypes, 
which can be a shortcut for characteriza-
tion, including intelligence, logic, emotional 
coldness, eccentricity, arrogance, or general 
strangeness or differences between math-
ematicians and supposedly “normal” people. 
For example, in Michael Crichton’s 1990 novel 
Jurassic Park, mathematician and chaos theo-
rist Ian Malcolm, sometimes cited as having 
been modeled in part on Ian Stewart, expounds 
with some arrogance on the mathematics that 
shape the increasingly dangerous situations in 
which the characters find themselves. However, 
he otherwise defies many of the stereotypes 
associated with mathematicians, such as 
social ineptness. The notion of logic and math-
ematical reasoning as male modes of thinking 
and understanding, versus understanding via 
female emotion and intuition, is also pervasive 
in older science fiction. Some point to lessen-
ing trends in this theme in the latter twentieth 
century, and a few works like Chiang’s Division 
by Zero contain female characters who are 
coldly logical and distant rather than emotional. 
It is an issue of debate whether this should be 
seen as a positive or negative shift.



receiving radio waves containing messages from space, 
communications are instead embedded within the very 
framework of mathematics itself. 

Since Wells introduced the notion of the fourth 
dimension in The Time Machine, dimensionality in 
many forms has been a widely used theme in science 
fiction, including mathematical science fiction. In the 
1940 novel And He Built a Crooked House by Heinlein, 
a mathematical architect designs a house that is con-
structed as an “inverted double cross” representation of 
an unfolded tesseract net in three-dimensional space. 
Following an earthquake, the structure spontaneously 
shifts and folds itself into an actual tesseract, whose 
four-dimensional properties are explored and described 
by characters. The satirical Edwin Abbot novel Flatland: 
A Romance of Many Dimensions, which was written 
largely as a social commentary on Victorian norms and 
mores, may also be considered science fiction because it 
depicts an alternate two-dimensional world inhabited 
by polygonal creatures, which is visited by three-dimen-
sional creatures in a manner that resembles twentieth- 
and twenty-first-century depictions of human-alien 
interactions. More than a century after its initial pub-
lication, Flatland remains popular in the mathematical 
community because of its entertaining and enlightening 
discussions of what some people consider to be an abs-
tract mathematical concept, and it was once described 
by Asimov as, “The best introduction one can find into 
the manner of perceiving dimensions.” 

Other authors have used the novel as inspiration. 
Mathematician and author Ian Stewart’s 2001 work 
Flatterland: Like Flatland, Only More So, explores several 
mathematical topics such as Feynman diagrams, named 
for physicist Richard Feynman, superstring theory, 
quantum mechanics, fractal geometry, and the recur-
ring science fiction theme of time travel. He includes 
mathematical jokes and puns such as a one-sided cow 
named Moobius to make concepts relatable to a broader 
audience. Stewart also co-authored the semi-fictional 
Science of Discworld series, which compares mathemati-
cally and scientifically the natural laws of sperical planets 
or “roundworlds” like Earth to the created or imagined 
physical laws of the flat, disc-shaped setting of author 
Terry Pratchet’s Discworld novels. Some other works 
that are commonly cited as extensions of ideas found 
in Flatland include mathematician and author Dionys 
Burger’s 1953 novel Sphereland: A Fantasy About Cur-
ved Spaces and an Expanding Universe and two works by 

mathematician and author Rudy Rucker: the 1983 short 
story Message Found in a Copy of Flatland and the 2002 
novel Spaceland. 

Mathematics is a living discipline that is constantly 
evolving, and mathematical science fiction sometimes 
underscores this point. Gardner’s 1952 story The Island 
of Five Colors is the sequel to the No-Sided Professor. The 
characters in the story attempt to solve the Four Color 
theorem, which was unproven at the time. It illustrates 
the inherent time dependence of some elements of sci-
ence fiction, since imagined creations and the mathema-
tics on which they are based frequently become reality 
later. Gardner stated: “the true four-color theorem, 
unproved when I wrote my story, has since been establi-
shed by computer programs, though not very elegantly. 
As science fiction, the tale is now as dated as a story about 
Martians or about the twilight zone of Mercury.” At the 
same time, others argue that the themes of such novels 
are still useful and relevant when considering the nature 
of mathematics and that these stories do not automati-
cally lose value as entertainment or inspiration simply 
because the mathematical or scienctific frameworks 
become somewhat out of date. 

Mathematicians as Science Fiction Authors
Mathematicians and mathematically trained individu-
als such as Martin Gardner, Isaac Asimov, Greg Egan, 
Ian Stewart, and Vernor Vinge often contribute to both 
science fiction writing and mathematical or scientific 
research, and several mathematicians have won the 
Hugo Award, the premier prize in science fiction and 
fantasy literature. Perhaps one of the most well-known 
of these is Rudy Rucker, who is considered among the 
founding fathers of the science fiction subgenre of 
cyberpunk, a style that draws inspiration from Gothic 
horror like Frankenstein, film noir, punk, computer 
science, and cybernetics, a discipline whose twentieth-
century development is attributed to mathematician 
Norbert Weiner. Rucker credits his mathematical back-
ground for influencing not only the content of what 
he writes but also the way in which he writes: “I think 
of the writing process itself as a fractal. I have the big 
arc of the plot, the short-story-like chapters, the scenes 
within the chapter, the actions that make up the scenes, 
and nicely formed sentences to describe the actions, 
the carefully chosen words in the sentence. And hid-
den beneath each word is another fractal, the entire 
language with all my ramifying mental associations.” 
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He also notes that both mathematics and science fic-
tion writing can be thought of as ways of exploring the 
consequences of imposed constraints or assumptions, 
and that science fiction writing provides a structure for 
carrying out interesting “thought experiments” about 
concepts such as alternative mathematical structures to 
explain the nature of reality. 

Visual Media
Science fiction has long been translated to other forms 
of media, and mathematics plays a dual role as a sub-
ject and a technique for bringing both realistic and fan-
tastic images to life. Further, mathematicians are often 
involved as writers or consultants. Stanley Kubrick’s 
2001: A Space Odyssey is one of the most well-known 
science fiction films. Mathematician Irving Good 
consulted on the film, as did novelist Clark, and it is 
praised for its scientific realism and pioneering special 
effects. The Star Wars franchise, launched in 1977, now 
includes books, comics, movies, video games, and Web 
media. It was groundbreaking in its use of mathemati-
cally based special effects techniques, including exten-
sive stop motion animation and then later computer 
animation for backgrounds, props, costumes, and even 
entire characters. Effects that were once limited to big-
budget films have now made their way onto television. 
The Star Trek franchise is notable not just for its visual 
imagery but also for references to real-world mathe-
matical concepts including π and Fermat’s last theo-
rem, named for mathematician Pierre de Fermat. Other 
examples of shows that contain frequent real-world 
mathematical include SyFy’s Eureka and the animated 
series Futurama. Producer and writer Ken Keeler has 
a mathematics Ph.D. from Harvard. Along with other 
mathematically trained writers, he co-creates many of 
the mathematical references found on Futurama, and 
once notably constructed a new mathematical proof to 
validate an episode’s plot twist. 
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Sculpture
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Representations.
Summary: Mathematics may be necessary to 
assure the stability of a sculpture and sculptures can 
represent mathematical concepts in three dimensions.

The word “sculpture” comes from Latin sculpere, 
meaning “to carve.” Sculptures can be made from 
variety of materials, including wood, metal, glass, clay, 
textiles, or plastic that is carved, cast, welded, cut, or 
otherwise formed into shapes. Topiary and bonsai are 
living sculptures. Modern sculptors even experiment 
with light and sound. Additionally, sculptures may be 
free-standing objects or appear as reliefs on surfaces 
like walls. 

The Taj Mahal, one of the most recognizable struc-
tures on Earth, includes many geometric reliefs. Sculp-
tures can be static or kinetic, like Rube Goldberg con-
traptions, and projection sculptures change appearance 
when viewed from differenent sides. The outdoor Pen-
rose tribar sculpture in East Perth, Australia, appears 
to be the illusory figure developed by Roger Penrose 
when viewed from the correct angle. While mathe-
matical forms have long been used to create sculpture, 
mathematicians have come to embrace this incredibly 
flexible art form to investigate many mathematical 

	 Sculpture 903



concepts that might otherwise be difficult to visualize. 
Many mathematical sculptures are quite aesthetically 
pleasing in addition to being highly functional in clari-
fying and representing mathematical ideas. Displays 
of mathematical sculptures are now a regular part of 
many art exhibitions and mathematics conferences. 

Mathematical Sculptures
Researchers who explore higher degrees of dimension-
ality often find it challenging to represent these concepts 
to people whose everyday perception is three-dimen-
sional. Mathematician Adrian Ocneanu’s work includes 
modeling regular solids mathematically and physically. 
His “Octatube” sculpture, on display in Pennsylvania 
State University’s mathematics building, maps a four-
dimensional space into three dimensions using trian-
gular pieces bent into spherical shapes. “Octatube” is 
conformal; the angles between faces and the way the 
faces meet are uniform. It was sponsored by Jill Grashof 
Anderson, whose husband was killed on September 
11, 2001. Both graduated with mathematics degrees in 
1965. Mathematician Nigel Higson said, “For profes-
sionals the sculpture is very rich in meaning, but it also 
has an aesthetic appeal that anyone can appreciate. In 
addition, it helps to start conversations about abstract 

mathematical concepts—something that is generally 
hard to do with anyone other than another expert.”

Other concepts explored by mathematical sculptures 
include minimum variation surfaces, such as spheres, 
toruses, and cones, which humans tend to judge to be 
aesthetically pleasing because of their constant curva-
ture; zonohedra, a class of convex polyhedra with faces 
that are point-symmetrical polygons, such as parallelo-
grams; and Möbius loops, Klein bottles, and Boy’s sur-
faces, named for mathematicians August Möbius, Felix 
Klein, and Werner Boy. Sculptures on exhibit at the 
Fermi National Laboratory, like “Monkey-Saddle Hexa-
gon,” focus in part on saddle-shaped minimal surfaces. 

Mathematicians Who Sculpt
Art and mathematics have been intertwined for cen-
turies and many historical sculptors such as Leonardo 
DaVinci were also mathematicians. Cubist sculptors 
explored many new perspectives on dimension and 
geometry. Spouses Helaman and Claire Ferguson have 
created and written extensively about mathematical 
sculpture. Helaman developed the PLSQ algorithm for 
finding integer relationships, considered by many to be 
among the most important algorithms of the twentieth 
century. He creates his award-winning sculptures to rep-

resent mathematical discoveries, and the 
pair’s worldwide presentations have been 
praised for their accessibility and for initiat-
ing dialogue among multiple disciplines.

George Hart, another mathematician-
sculptor, has worked in fields like dimen-
sional analysis. He regularly hosts “sculp-
tural barn raisings,” where people are 
invited to help assemble large mathemati-
cal sculptures and discuss their properties. 
This includes a traveling sculpture for use 
at schools and conferences. Hart also uses 
rapid prototyping technology for mathe-
matics and sculpture work. In 2010, he left 
Stony Brook University to be chief of con-
tent at the interactive Museum of Math-
ematics, with an opening date of 2012. 

Computer-Generated Sculpture
Self-taught artist and mathematician 
Brent Collins and computer scientist Carlo 
Séquin created their Fermi mathemati-
cal sculpture exhibit as part of a prolific 
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ongoing collaboration. Séquin started researching geo-
metric modeling in the early 1980s and Collins cre-
ated saddle-form sculptures during the same period, 
though he only later learned their mathematical names. 
The Séquin-Collins Sculpture Generator combines 
the aesthetics of sculpture, mathematical theory, and 
computer visualization to allow sculptors to rapidly 
prototype and refine ideas electronically before begin-
ning to work in their chosen medium. A designer can 
move around and through the model as well as slice 
and transform it. Some consider the computer images 
themselves to be “virtual sculpture.” In contrast, some 
sculptors see computer modeling as too restrictive on 
the symbiotic processes of design and implementation. 
Some directions of mathematical sculpture include 
knots, three-dimensional tessellations, surfaces defined 
by parametric equations, fractal structures, and models 
of complex natural entities such as organic molecules.

Other Representations and Projects
The Hyperbolic Crochet Coral Reef project combined 
mathematics and marine biology to call attention to 
global warming and other environmental issues using 
three-dimensional crocheted sculptures of reef life-
forms. Artists create reef components using iterative 
patterns, which can be permuted to produce a broad 
variety of lifelike designs. The project is an extension of 
the hyperbolic crochet work pioneered by mathema-
tician Daina Taimina, who demonstrated that hyper-
bolic surfaces can be modeled physically. 

Some mathematically themed sculptures represent 
the connections between mathematics and other aspects 
of society rather than trying to model explicit mathe-
matical concepts. Oakland University’s Department of 
Mathematics and Statistics has a sculpted ceramic mural 
called Equation, which was created to explain the devel-
opment of mathematics and its relationship to the uni-
verse and humanity. Though not a mathematician, artist 
Richard Ulrish stated that he has fond memories of the 
mathematics courses he took at Oakland.
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Search Engines
Category: Communication and Computers.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Using complex and sometimes proprietary 
algorithms, search engines locate and rank requested 
information, usually on the Internet or in a database.

Search engines are used for finding information from 
digitally stored data. Based on a search criterion like 
a word or phrase, search engines find information 
from the Internet and personal computers and present 
search results appropriately. A search engine is a very 
efficient tool for effortless finding information from 
millions of  Web sites and their Webpages. For example, 
information on movies or weather forecast from the 
Internet can be easily found using search engines. To 
sort through vast amount of data, search engines use 
statistics, probability, mathematics, and data analysis.

Types of Search Engines
Different types of search engines are developed for 
different purposes. The simplest one is a desktop 
search engine, which is used for finding information 
stored within a computer. An enterprise search engine 
searches for digitally stored information within only 
one organization. A Web search engine looks for infor-
mation on the World Wide Web (WWW). Sometimes, 
federated search engines are used for searching online 
databases or related items. Though there are different 
types, the term “search engine” generally refers to Web 
search engines.   
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Search Mechanisms
Searching for a word or phrase in a document in a com-
puter is very simple and sophisticated search engines 
are not needed for this. A program simply reads the 
whole or selected part of the document, looks for where 
the intended word or phrase is located, and highlights 
the locations in the document.

Desktop search engines perform more complicated 
searches. These engines read all files and folders kept in 
the computer to collect information and index them. 
Indexing is a method of storing information about files 
and folders considering several factors like file names, 
contents, types, authors, and locations of files. It uses 
mathematical manipulations involving numbers, oper-
ations, and data mining. Once indexing is finished, the 
engine follows that index for searching. For example, if 
the word algebra is searched in a computer, the engine 
reads the index and tries to find out where the word 
algebra is located (if anywhere), and it shows the result-
ing files or folders.    

The most complicated and interesting search engines 
are Web search engines. The Web contains billions of 
Web pages, and each page contains information. These 
search engines search for information from almost all 
of them. These engines generally work in three major 
steps: (1) collecting information from the Web, (2) 
indexing, and (3) presenting search results. 

For reading Webpages and collecting information, 
almost all Web search engines have their own com-
puter program, often called a “crawler.” A Web search 
engine may have one or more crawlers. The informa-
tion collected by crawlers contains subject matters, 
hyperlinks, images, and other information. Next, the 
search engines index the collected data and store them 
for future retrieval. The index is like a giant catalogue 
and involves huge mathematical applications to pre-
pare. When a search criterion is given for searching, 
search engines follow this index; they find which Web-
pages contain the information and present results as 
lists of links to those pages.

A challenging task for Web search engines is to 
present the search results properly and quickly. While 
showing the results, it is expected that the more rel-
evant pages corresponding to the search criterion 
should appear earlier than less relevant pages. Different 
search engines have different algorithms for arranging 
pages based on relevance. For example, the Google 
search engine uses an algorithm called PageRank for 

this purpose. It uses probability, data analysis, matrix 
algebra, and related fields.

Examples of Search Engines
Web search engines began to be developed in the 
1990s and are constantly improving to handle the 
increasing size and content of the Web. Many of the 
individuals who develop and refine search engines 
have degrees in mathematics. Popular search engines 
like AltaVista (launched in 1995), Google (1998), 
Yahoo Search (2004), and Bing (2010) are only a few 
examples. Google Desktop, GNOME Storage, Win-
dows Search, and Easyfind are among the most popu-
lar desktop search engines, while OpenSearchServer 
and DataparkSearch are good examples of enterprise 
search engines. 
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Segway
Category: Travel and Transportation.
Fields of Study: Algebra; Calculus; Geometry; 
Measurement; Number and Operations. 
Summary: The Segway  is a personal transporter 
built on the principle of dynamic equilibrium.

The Segway is an electric, two-wheeled personal trans-
portation device that utilizes principles of balance and 
equilibrium both to create and control its motion. The 
Segway transporter was developed in part to combat 
the congestion and pollution caused by automobiles. 
In many cities, Segway tours are now alternatives to 
walking or bus tours. The Segway is often cited as an 
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application of a classical dynamical systems problem: 
the inverted pendulum problem. It can also be refer-
enced in illustrating the phenomenon of dynamic sta-
bility that also occurs in human walking.

Inverted Pendulum
In a traditional pendulum problem, the pendulum is 
composed of a mass attached to a string that is itself 
attached to a pivot point. In this case, the mass hangs 
below the pivot point. The position in which the mass 
hangs below the pivot point is stable—the pendulum 
eventually returns to that position even if pushed away 
from that position. In fact, it is relatively easy for the 
pendulum to rest in this equilibrium position. In an 
inverted pendulum problem, the situation in which the 
mass is above the pivot point is considered. Frequently, 
one can visualize this scenario as a “cart and pole.” 
With the cart at rest, if the pole is perfectly positioned, 

it will stand upright on top of the cart. However, this 
condition is unstable; if the pole is moved away from 
this resting position, it falls.

An interesting property about the inverted pendu-
lum (or cart-and-pole) problem is that as long as the 
base, or cart, is resting, the upright position is unstable. 
However, if the base or cart is in motion, oscillating at 
the right frequency, the upright position becomes stable. 
Imagine that the cart is moving forward and backward 
ever so slightly and very rapidly; in this case, the pole 
can remain upright. Now, the pole is in a dynamically 
stable position. This type of motion-induced stability 
is similar to what happens as humans walk. If an indi-
vidual leans forward with his or her feet firmly planted 
on the ground, the individual will fall. However, if the 
feet are allowed to move, the individual will not fall but 
instead will move forward (or backward, depending on 
the direction of the lean). Allowing the feet to move has 
made the leaning position dynamically stable. With the 
feet moving, it is much harder for the individual to fall.

Dynamic Equilibrium
The Segway transporter operates on this principle of 
dynamic equilibrium. Riders lean forward to cause the 
wheels to move forward and lean back to cause the Seg-
way to stop or reverse. The wheels and base are dynam-
ically moving to keep the rider in an upright position 
instead of falling to the ground. Balance sensors in the 
base of the Segway regulate and control the motion by 
incorporating the pitch angle (or tilt) of the rider, the 
change in pitch angle, the wheel speed, and the wheel 
position. Mathematicians, physicists, and engineers 
relate all these variables through differential equations 
describing motion; these equations have long been 
studied in each of these fields. The Segway transporter 
is one example of a project resulting from the interplay 
of all three fields. 

Further Reading
Kalmus, Henry P. “The Inverted Pendulum.” Journal of 

Physics 38, no. 7 (1970).
Kemper, Steve. Code Name Ginger: The Story Behind 

Segway and Dean Kamen’s Quest to Invent a New 
World. Cambridge, MA: Harvard Business School 
Publishing, 2003.

Tweney, Dylan. “Dec. 3, 2001: Segway Starts Rolling.” 
Wired (December 3, 2009). http://www.wired.com/
thisdayintech/2009/12/1203segway-unveiled.
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Riders lean forward to make the wheels move forward 
and lean back to stop the Segway. 



Vasilash, Gary S. “Learning From Segway: Innovation  
in Action.” Automotive Design & Production  
(January 2006).

Angela Gallegos

See Also: Mathematical Modeling; Mathematics, 
Applied; Trigonometry.

Sequences and Series
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication; 
Connections; Number and Operations.
Summary: Sequences and series are important 
mathematical representations with numerous, 
interesting applications.

A sequence is a list of objects, called “terms,” arranged in 
a fixed pattern such as 1, 3, 5, 7, 9, . . . or Monday, Tues-
day, Wednesday, Thursday, Friday, . . . . In a series, the 
terms of a sequence are typically added together. Series 
have a long history of being used to approximate func-
tions or represent geometric quantities. For example, 
in the seventeenth century, James Gregory showed how 
the areas of a circle and hyperbola could be obtained 
using series. In the early days of calculus, series rep-
resented geometric quantities and were manipulated 
using methods extended from finite procedures. Math-
ematicians like Niels Abel critiqued the rigor of series 
and expressed concerns with the foundations of calcu-
lus. The theory of series was later made rigorous within 
the field of analysis. Series are important to many areas 
in science and engineering. Sequences are explored in 
the primary and middle grades, while series are intro-
duced in high school.

Famous Sequences
One very famous sequence emerges when considering 
the reproductive habits of rabbits. Consider two rabbits 
that are too young to reproduce after their first month 
of life but can and do reproduce after their second 
month of life. That pair of rabbits produces another 
pair after its second month and for each month there-

after. If one assumes that none of the rabbits die and 
that each pair reproduces in the same manner as the 
first, the number of pairs of rabbits at the end of each 
month corresponds to the elements of the sequence  
1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . This sequence is known 
as the “Fibonacci sequence.” It is named after Leonardo 
de Pisa who was called Fibonnaci, a nickname mean-
ing “son (filius) of Bonaccio.” He wrote about it in his 
1202 book Liber Abaci. With the exception of the first 
two terms, each successive term is found by adding the 
two terms prior to it. This sequence appears in nature 
in other situations, including the arrangement of leaves 
on the stems of certain plants, the fruitlets of a pineap-
ple and the spirals of shells. Some mathematical histo-
rians suggest that a Fibonacci-like sequence of integers 
is also represented in stone balance weights excavated 
in the 1960s that originated in the eastern Mediterra-
nean during the Late Bronze Age.

Other specific types of sequences have been 
explored. In 1940, Pavel Aleksandrov introduced a 
concept called “exact sequences,” which found rel-
evance in a wide variety of mathematical fields. In 
1954, Jean-Pierre Serre was awarded a Fields Medal, 
the most prestigious award in mathematics, in part 
because of his work on spectral sequences.

Series
A series is often the sum of the terms of a sequence. 
Series originate as early as the Indian mathemati-
cian and astronomer Brahmagupta who gave rules 
for summing series in his 628 c.e. work Brah-
masphutasiddanta (The Opening of the Universe). 
The sum of the terms of an arithmetic sequence 
is called an arithmetic series. The arithmetic series 
1 + 2 + 3 + 4 + . . . + 97 + 98 + 99 + 100 is also a well 
known one, as it is related to mathematician Carl Fried-
rich Gauss (1777–1855). At a very young age (around 6 
years old), Gauss found the sum of the natural numbers 
(1, 2, 3, 4, …) from 1 to 100. That is, the sum given by 
the series 1 + 2 + 3 + 4 + . . . + 97 + 98 + 99 + 100. He 
was given this task by his teacher to keep him busy while 
the teacher worked with the other students in the class 
who were not as mathematically gifted as Gauss. After a 
relatively short time, Gauss returned to the teacher with 
the sum 5050. Gauss’s method was to pair up the terms 
of the series. Taking the sum of the first and last term  
(1 + 100) yields 101. This is the same as the sum of the 
second and second to last (2 + 99 =101), the third and 

908 Sequences and Series



third to last (3+ 98 + 101), and so forth. In all, there are 
50 such pairs, each of which sums to 101. Thus,

1 2 3 4 97 98 99 100

50 101 5050.

+ + + + + + + +
= =

. . .

( ) ( )

Many mathematicians advanced the theory of 
important series such as power series, trigonometric 
series, Fourier series, and time series. For example, 
Nicholas Mercator represented the function log 1 +( )x  
as a series in 1651. Taylor series, named after Brook 
Taylor, is a representation of a function as an infinite 
sum of terms calculated from the values of its deriva-
tives at a single point. From the early history of analy-
sis, these power series were important in the study of 
transcendental functions. Data given as a sequence of 
data points over time led Wilhelm Lexis to develop 
time series in 1879.

Applications of Series
Some other series arose in the context of questions 
related to physics and sparked controversy. The math-
ematics and physics of a vibrating string and solu-
tions of the wave equation led to trigonometric series. 
Daniell Bernoulli, Jean Le Rond d’Alembert, Leonhard 
Euler, and Joseph-Louis Lagrange debated the nature of 
trigonometric series in the eighteenth century. Joseph 
Fourier developed Fourier series for the heat equation 
in the nineteenth century, which was criticized at the 
time because it contradicted a theorem by Augustin-
Louis Cauchy but was explored more rigorously by 
Johann Dirichlet. An overshoot or ringing in Fourier 
series was first observed by H. Wilbraham and later 
explored by Josiah Gibbs. The Gibbs phenomenon 
has implications in signal processing. The three-body 
problem, which investigates the behavior and stability 
of three mutually attracting orbiting bodies in the solar 
system, was solved by Delaunay in 1860 via represent-
ing the longitude, latitude, and parallax of the moon as 
an infinite series. 

However, in 1892, Jules Henri Poincaré showed that 
these and similar solutions were not in general uni-
formly convergent, and this criticism created doubt 
about proofs of the stability of the solar system and 
eventually led to the formation of the field of deter-
ministic chaos. A prize was offered by King Oscar II 
of Sweden for a solution to the extension of the three-
body problems to n bodies. It has since been proven 

that no general solution is possible, but the n-body 
problem was also connected to series in Quidong 
Wang’s 1991 work.

Series were also important as mathematicians 
searched for efficient ways to represent π and find its 
digits. Keralese mathematician Madhava of Sangama-
gramam may have been the first when he used 21 terms 
of a series and stated π correctly to 11 places. In the 
1800s, William Shanks used a series to calculate digits 
of π in the morning and check them in the evening. He 
calculated 707 digits of π using this method. However, 
there was a suspicious lack of the number “7” in the last 
digits, and it was later found that only the first 527 dig-
its were correct. Johann Lambert used the same series 
to show in 1761 that π must be irrational—it cannot 
be expressed as a ratio of whole numbers and has an 
infinite, non-repeating decimal expansion. Srinivasa 
Ramanujan found series that converged more rapidly 
than others, and these efficient series were used as the 
foundations of computer algorithms.

Binary Series
A very famous series is the binary series that consists 
of powers of 2: 2 2 2 2 2 2 20 1 2 3 4 5+ + + + + +� 63 . . . . It is 
theorized that the King of Persia, finding himself very 
bored, asked that a game be invented for his amuse-
ment. The inventor of the game the king found most 
enjoyable would be given a reward. A servant of the 
king created the game of chess that was most pleas-
ing to the king. When asked what prize he would like, 
the servant replied that he wanted grains of rice. The 
chessboard consists of 64 small squares. As a reward 
the servant asked for 1 grain of rice for the first square, 
2 for the second square, 4 for the third square, 8 for the 
fourth square and so forth, until all 64 squares had been 
accounted for. The number of grains of rice requested 
is the sum 2 2 2 2 2 2 20 1 2 3 4 5+ + + + + +� 63 . . . 263, and 
it amounts to 274,877,906,944 tons of rice, which is  
more rice than has been cultivated on Earth since 
recorded time. The story goes that the king grew furi-
ous at the servant once he knew what was requested. 
The servant was taking the rice as he received it and 
distributing it among the poor. At some point, the king 
indicated that he did not have the rice to pay the ser-
vant. The servant indicated that he was content with 
the amount that he had already received and that it was 
the king who offered a reward not he who made the 
initial request. Both parties were pleased.

	 Sequences and Series 909



Applications in Economics
Series appear in many other contexts as well. For 
example, the future value of an ordinary annuity can 
be found using a series. An ordinary annuity is an 
account where an individual makes identical depos-
its on a regular schedule. The money in the account 
earns interest that is compounded with the same 
frequency as the deposits. Suppose an individual 
deposits $100 every year into an account that earns 
6% interest annually. Three years later, the first year’s 
deposit has earned interest over two years, the second 
account over one year, and the last deposit not at all. 
The money in the account after three years is given by: 
100 1 06 100 1 06 100 1 060 1 2( . ) ( . ) ( . )+ + . The general series 
can be expressed as a single number 

A P
i

i

n

=
+ −





( )1 1

where A is the future value of the annuity, P is the pay-
ment made at the end of each period, i is the interest 
rate per period, and n is the number of periods.

Limits
Though infinite sequences consist of infinitely many 
terms, it may be the case that the sum of the terms of 
such sequences converges on a given value. Such is the 
case of the geometric series .9 + .09 + .009 + .0009 + . . . . 
In this series, the first term is .9 and the common 
ratio is
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Applying the formula for the sum of the first n terms 
of the series yield 
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As the number of terms approaches infinity (as  
n → ∞∞), the fraction 
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becomes so small that one may consider it zero.  
Therefore, 
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as n grows infinitely large. Since 
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one arrives at the very famous result that S
n

= + + + + =. . . . .9 09 009 0009 9. . .

   

= 1.
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See Also: Archimedes; Functions; Limits and 
Continuity; Numbers, Complex.

Servers
Category: Communication and Computers.
Fields of Study: Algebra; Communication; Number 
and Operations.
Summary: Servers help users connect to networks, 
including the Internet.

ARPANET, the first network of time-sharing comput-
ers, was connected in 1969. In subsequent decades, 
technology developments and the increasing benefits 
of distributed, shared access spurred network growth, 
ultimately resulting in the Internet and World Wide 
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Web. Most local, national, and global networks rely 
on servers, which manage network resources for cli-
ent computers that are connected to it. A server may 
be a physical computer, a program, or a combination 
of hardware and software. In some cases, a system is a 
dedicated server. In other cases, software servers oper-
ate on multipurpose systems. A distributed server is a 
scalable grouping in which several computers act as one 
entity and share the work. In general, a network server 
manages overall network traffic, while specialty serv-
ers handle other tasks. CERN httpd (or W3C httpd), 
which debuted in 1990, is considered to be the first 
Web server. It was developed by scientists Tim Bern-
ers-Lee, Ari Luotonen, and Henrik Frystyk Nielsen 
at the European Organization for Nuclear Research 
(CERN). Servers and clients use communication pro-
tocols to exchange information to carry out tasks. 
There are server-to-server and client-server variations. 
Mathematicians, computer scientists, and others work 
to create technology and algorithms that make servers 
possible and increase their efficiency. They also study 
the properties of networks and servers, which facili-
tates advances in both mathematics and computers. 
For example, in a system with multiple parallel serv-
ers, jobs may be assigned to any server. Often, jobs are 
modeled with an exponentially distributed processing 
time or some other probabilistic distribution with some 
resource cost per unit of time. Mathematical methods 
may be used to find the optimal strategy for allocating 
jobs to servers to minimize costs.

Function
The term “server” does not describe a specific type of 
computer in the same sense that “desktop” or “Win-
dows machine” does. When used in reference to hard-
ware, a server is any computer running a server pro-
gram, which can—and in practice does—include all 
configurations and operating systems. Since the 1990s 
and the increased demand for Internet services, there 
have been more and more computers that have been 
designed specifically to be used as Internet servers. 
Because they need to run for long periods of time 
without interruption, they must be durable, reliable, 
and have uninterruptible power supplies. Typically, 
hardware redundancy is incorporated, so that if a hard 
drive fails, another one is automatically put on line—a 
feature rarely found in personal computers. There is 
also a great deal of server-specific hardware, such as 

water cooling systems, which help reduce heat, and 
Error-Correcting Code (ECC) memory, which cor-
rects memory errors as they happen, preventing data 
corruption. Many components are designed to be hot-
swappable, meaning that they can be replaced while 
the server runs—without needing to power it down. 
Furthermore, ordinary server operations including 
turning the power on or off can often be conducted 
remotely; for example, from a home computer. Some 
system operators maintain watch over multiple servers 
in multiple locations and physically visit the site only 
when necessary because of a crisis.

Communication
Sockets are the primary means by which network 
computers in a network communicate. They are the 
endpoints of the flow of interprocess communication 
(IPC) and provide application services. They are also 
the place where many security breaches take place. 
Mathematicians and computer scientists study the dif-
ferent socket types and their states to understand how 
they work and to improve function and security. Serv-
ers create sockets on start-up that are in listening state, 
waiting for contact to be made by client programs. For 
instance, a Web browser, like Firefox, is a client pro-
gram used to access content from Web servers. Most 
servers connected to the Internet use a protocol known 
as Transmission Control Protocol (TCP), developed 
by computer scientists Vinton Cerf and Robert Kahn 
for ARPANET. An Internet socket is referred to by its 
socket number, a unique integer that includes Inter-
net Protocol (IP) address and socket number. Listen-
ing sockets using TCP are usually assigned the remote 
address 0.0.0.0 and the remote port number 0. TCP 
servers can serve multiple concurrent clients by creat-
ing what is called a “child process” associated with each 
client and establishing TCP connections between child 
processes and clients. Each connection uses a unique 
dedicated socket. Two communicating sockets—the 
local socket created by the server and the remote socket 
of the client—are called a “socket pair,” and their activ-
ity is referred to as a “TCP session.” 

A common feature of Web servers is server-side 
scripting, which allows Web pages to be created in 
response to client activity. For instance, a search for a 
book on Amazon.com results in a unique search results 
page. Without this capacity, every possible search would 
need to be conducted in anticipation of client needs.
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Shipping
Category: Business, Economics, and Marketing.
Fields of Study: Geometry; Measurement; Number 
and Operations.
Summary: A variety of mathematical concepts, 
including packing, routing, and tracking, are 
necessary to make the process of shipping goods  
more efficient.

The shipping and delivery industry is a vast global 
business that is responsible for delivering packages, 
postal mail, and commercial cargo all over the world. 
In 2009 alone, express delivery companies made $130 
billion in revenue worldwide, the U.S. Postal Service 
delivered 177 billion pieces of mail, and ocean liners 
transported more than $4.6 trillion worth of goods 
between nations. With so many items being delivered 
to so many different places, there is a need for math-
ematics to help manage the complex delivery network 
and ensure that deliveries are made correctly, safely, 
cheaply, and quickly. Mathematics has had a significant 
impact in three key areas of the shipping industry: con-
tainer packing, vehicle routing, and package tracking.

Container Packing
To minimize transportation costs and maximize profit, 
a shipper would naturally prefer to pack cargo into as 
few shipping containers as possible. Determining the 
optimal way to arrange items in a container is a decep-

tively difficult problem. Given a set of differently sized 
objects, the Bin-Packing Problem is to find the order 
in which to place the objects so that they fill the mini-
mum number of bins. Testing every permutation of 
packing the objects would be too time-consuming, so 
an efficient and simple algorithm is required.

A common packing procedure is the First-fit algo-
rithm, where the objects are ordered from largest to 
smallest, and each object is placed in the first available 
bin that will hold it. It can be proven mathematically 
that this algorithm is not guaranteed to produce the 
optimal packing. In the worst case, the result can be 
far from optimal and require the use of more bins than 
a more sophisticated packing. The First-fit algorithm 
is an example of an approximation algorithm, which 
means it produces a good approximate answer but not 
necessarily the optimal arrangement of objects. Other 
more sophisticated bin-packing algorithms have been 
developed, but as of 2010, no efficient algorithm was 
known that always produced the optimal packing.

In practice, there are more considerations to pack-
ing shipping containers. Some packages will be irregu-
larly shaped and do not stack well. Some cargo is fragile 
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NP-Complete Problems

T he NP-complete set is a list of mathemati-
cal problems for which there is no known 

fast algorithm for solving the problem exactly. 
The Traveling Salesman Problem is an example 
of a NP-complete problem. While there are fast 
algorithms for finding a good answer, the only 
known algorithm for finding the single shortest 
route is extremely slow. However, just because 
there is no known fast algorithm for solving 
these problems, it does not mean that such 
an algorithm does not exist. In 2000, the Clay 
Mathematics Institute offered a $1 million prize 
to anyone who could devise an algorithm that 
would solve an NP-complete problem quickly 
or prove that no such algorithm exists. While 
not technically an NP-complete problem, the 
Bin-Packing Problem is in a related category of 
problems known as “NP-hard.”



and must be secured separately. Sometimes, a delivery 
vehicle will make several stops, so the packages that are 
delivered first should be packed into a container last to 
make them easily accessible.  

Through World War II, most cargo was shipped in 
wooden crates of various sizes. A big step forward came 
in 1956, when trucker Malcolm McLean patented the 
modern shipping container made of corrugated steel. 
This sturdy container was easier to move between 
truck, rail, and ocean liner. More importantly, having a 
standard-size container meant that packing procedures 
could be standardized. Prior to 1956, it was estimated 
that loose cargo cost $5.86 per ton to load. After the 
standardized container was introduced, it was esti-
mated the loading cost dropped to 16 cents per ton, a 
3600% improvement.

Vehicle Routing
Cargo travels by a variety of transportation modes, 
including truck, rail, air freight, and ocean liners. The 
goal of routing is to determine a vehicle for each piece 
of cargo to be delivered and then find the shortest 
delivery route for each of the vehicles. The Traveling 
Salesman Problem is a simple mathematical example 
of a routing problem. In practice, the value of a route 
is not determined by just the distance. The problem is 
complicated by considerations such as personnel, fuel 
costs, traffic, tolls, and tariffs.

Mathematical analysis of delivery routes can lead 
to huge improvements in shipping efficiency. As the 
first Postmaster General of the United States, Benja-
min Franklin ordered careful surveying of delivery 
routes, refined the post office accounting practices, and 
increased public access to mail. Under this new system, 
the U.S. Postal Service became profitable for the first 
time, and it is estimated that the mail delivery time 
between major cities was cut in half.

The routing problem is an example of a problem 
studied in operations research, the branch of math-
ematics that studies the cost-effectiveness of decisions 
made by corporate management such as scheduling 
and personnel assignments. The field of operations 
research has its origins in World War II, when the Allied 
Forces were interested in coordinating the manufactur-
ing and organization needed to mobilize the military. 
One of the early researchers in operations research was 
Tjalling Koopmans, who proposed a mathematical 
model for the routing problem for shippers.  

Package Tracking
It is important for a shipper to carefully track a package 
until it reaches its destination. A common system for 
identifying a package is the barcode. By encoding the 
destination as a sequence of black and white bars, the 
packages can be sorted quickly by automated sorting 
machines equipped with laser scanners. The U.S. Postal 
Service has developed a special barcode that encodes 
the address as a sequence of short and tall black bars. 
The mail is first read by an Optical Character Recogni-
tion (OCR) program, which translates the handwritten 
address into a barcode. The barcode is stamped onto 
the package and then automatically sorted to be sent to 
the next distribution center.

Radio-frequency identification (RFID) is a tracking 
technology that could potentially have a large impact 
on the shipping industry. A small electronic tag that 
emits a radio signal would be placed on each item to 
be shipped. Generally, this tag is a microchip just a 
few millimeters on a side. Potentially, this microchip 
would allow a shipper to determine the entire con-
tents of a shipping container without ever opening 
the container. However, the technology still needs to 
be refined to make RFID a cheaper alternative to the 
barcode. Furthermore, since an item could theoreti-
cally still be tracked after the delivery is made, RFID 
technology is somewhat controversial because of pri-
vacy concerns.
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Tjalling Koopmans 
(1910–1985)

T jalling Koopmans was a Dutch economist 
who helped develop the mathematical field 

of operations research. Working for the Brit-
ish Merchant Shipping Mission in the 1940s, 
Koopmans derived a mathematical model for 
finding the most cost-effective shipping routes. 
Later, he became a professor of economics at 
University of Chicago and then at Yale Univer-
sity. In 1975, Koopmans received the Nobel 
Prize for Economics for developing mathemati-
cal tools for the analysis of corporate manage-
ment and efficiency. 
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Similarity
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry; Measurement.
Summary: The concept of mathematical similarity 
has been studied since antiquity.

The concept of “similarity” is universal, playing a par-
ticularly large role in the field of geometry. In general, 
objects may be called “similar” if they share features 
that look alike, such as shape, color, or value. However, 
it is a much stronger statement to say that two objects 
are “mathematically similar.” Similarity can be a pow-
erful simplifying assumption in modeling situations. 
Scaling an object appears in many applications, such 
as in architecture. Scaling notions can also explain the 
speed of a hummingbird’s heartbeat as compared to a 
human heart, and why certain insects would collapse 
under their own weight if they were scaled to a large 
size. Julian Huxley asserted that the evolutionary strug-
gle to maintain similar surface-to-volume relationships 
is important in anatomy. Recognizing a similar object 
is also important. Logician and philosopher Willard 
Van Orman Quine felt that learning, knowledge, and 
thought all require similarity so that humans can order 
objects into categories with similar meaning. Similarity 
is often connected to triangles in mathematics, starting 

in grades three through five, but there are many other 
mathematical situations where it is also useful, such as 
in the definition of trigonometric functions, in axiom-
atic arguments, in matrices, in analysis of differential 
equations, and in fractals.

Early History
Distance calculations contributed to the development 
of similarity. Thales of Miletus is said to have measured 
the height of a pyramid using its shadow, but historians 
are unsure of the method that he used. A method that 
makes use of similar triangles is attributed to Thales by 
Plutarch of Chaeronea. In classrooms in the twentieth 
and twenty-first century, similar experiments are con-
ducted. By measuring the length of the shadow of a tall 
object, like a pyramid, tree, or building, at the same time 
as measuring the length of a shadow of a known meter or 
other stick, a proportion with similar right triangles can 
be formed. The method assumes that light rays are par-
allel. In ancient China, instruments such as the L-shaped 
set-square or gnomon also needed similar triangles. In 
chapter nine of the Nine Chapters on the Mathematical 
Art, problems were posed and solved using similarity 
concepts. One of the problems has been translated as

There is a square town of unknown dimensions. 
There is a gate in the middle of each side. Twenty 
paces outside the North Gate is a tree. If one leaves 
the town by the South Gate, walks 14 paces due 
South, then walks due West for 1775 paces, the tree 
will just come into view. What are the dimensions 
of the town?

Many other mathematicians have worked on a vari-
ety of similarity concepts and applications. In Euclid of 
Alexandria’s Elements, the various definitions of simi-
larity depend on the figure being examined. Apollonius 
of Perga explored the similarity of conic sections. Dur-
ing the seventeenth and eighteenth centuries in China, 
the proportionality of corresponding sides of similar 
triangles in the plane was quite useful in solving prob-
lems in spherical trigonometry. In some twenty-first-
century college classrooms, students explore the reason 
why spherical triangles with shortest distance paths 
and the same angles must be congruent—there is no 
concept of similarity on a sphere. Mathematics educa-
tors also study the conceptual difficulties in teaching 
and learning similarity.
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Other concepts of similarity arose from mechanics 
concerns. In his work on the equilibrium of the plane, 
Archimedes of Alexandria postulated that plane fig-
ures that are similar must have similarly placed cen-
ters of gravity. Galileo Galilei tried to generalize the 
notion of geometric similarity to mechanics. Isaac 
Newton, Hermann von Helmholtz, Joseph Fourier, 
James Froude, Osborne Reynolds, Lord Rayleigh (John 
Strutt), and others also worked on variations of simi-
larity in physical situations. Building on their work, 
and motivated by the lack of a theoretical foundation 
for flight research, Edgar Buckingham articulated a 
formal basis for mechanical similarity in 1914. Aside 
from physical applications, in computer graphics, 
transformations that preserve similarity can be used 
to scale mechanical and dynamical behavior in addi-
tion to static images. 

Further Reading
Fried, Michael. “Similarity and Equality in Greek 

Mathematics.” For the Learning of Mathematics 29,  
no. 1 (2009).

Lodder, Jerry. “Proportionality in Similar Triangles: A 
Cross-Cultural Comparison.” Convergence, 2008. 
http://mathdl.maa.org/mathDL/46/.

Sterrett, Susan. Wittgenstein Flies A Kite: A Story of 
Models of Wings and Models of the World. New York:  
Pi Press, 2005.
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See Also: Archimedes; Digital Images; Matrices; 
Transformations.

Six Degrees of  
Kevin Bacon
Category: Friendship, Romance, and Religion.
Fields of Study: Algebra; Geometry; Number  
and Operations.
Summary: Concepts from graph theory help explain 
the idea that people, including actor Kevin Bacon, are 
surprisingly closely connected with each other.

Six degrees of Kevin Bacon is an example of a network 
showing a high level of interconnection, known as the 
“small world” phenomenon. In the language of graph 
theory applied to films, nodes are film actors, and two 
nodes are connected by an edge if the corresponding 
actors have appeared together in a film. It is also a game 
that tests cinematic knowledge. The task is to find the 
shortest connection between a given actor and Kevin 
Bacon. For example, John Wayne is two connections 
from Kevin Bacon. They were never in a film together, 
so the distance is greater than one. John Wayne starred 
with Eli Wallach in How the West Was Won, and Eli Wal-
lach starred with Kevin Bacon in Mystic River, estab-
lishing a shortest distance of at most length two. 

The idea of quantifying distance by interpersonal 
connections dates at least to a 1929 short story called 
Chain-Links by the Hungarian writer Frigyes Karinthy, 
wherein the narrator determines a five-step connec-
tion between a riveter at the Ford Motor Company and 
himself. Almost 40 years later, the social psychologist 
Stanley Milgram, best known for his experiments on 
obedience to authority, devised an experiment to quan-
tify interpersonal connections empirically. Letters were 
given to some 300 participants, each charged with for-
warding the letter to an acquaintance who should move 
the letter toward the intended recipient. Writing in 1969 
with Jeffrey Travers, Milgram stated, “The mean num-
ber of intermediaries observed in this study was some-
what greater than five; additional research (by Korte 
and Milgram) indicates that this value is quite stable.” 
Rounding up, this value became the popular notion 
“six degrees of separation”—that any two people on the 
planet are connected by six links. It served as the title 
of John Guare’s 1990 play and 1993 movie about the 
confidence man David Hampton. In the play, a charac-
ter speaks to the audience, “Six degrees of separation. 
Between us and everybody else on this planet. The Pres-
ident of the United States. A gondolier in Venice. Fill in 
the names. I find that A) tremendously comforting that 
we’re so close and B) like Chinese water torture that 
we’re so close.” Exactly how close people are is some-
thing sociologists continue to debate, since the nodes 
and edges of this network are not precisely known.

Mathematics Networks
There are large networks where the nodes and connec-
tions are exactly known, allowing for precise analysis. 
In a collaboration network, nodes are researchers, and 
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two nodes are connected by an edge if the correspond-
ing researchers worked together on a published paper. 
As early as 1957, mathematicians determined their 
“Erdös numbers,” the collaboration distance from Paul 
Erdös, the most prolific mathematician of recent 
years, with some 1500 published research 
papers and more than 500 collaborators. 
For instance, the author never wrote a 
paper with Erdös, but Robin Wilson 
wrote a paper with Erdös in 1977, and 
the author wrote a paper with Robin Wil-
son in 2004, so the author’s Erdös num-
ber is two. The American Mathematical 
Society’s MathSciNet electronic publication 
computes the “collaboration distance” between 
any two authors in its database of some 500,000 
authors and 2.5 million publications.

Film Networks
Of more interest to the general public than mathema-
ticians and their papers, the Internet Movie Database 
(IMDb, found at imdb.com) includes over 1 million 
actors around the world and some 250,000 films from 
the 1890s to titles in production. The Web site Oracle 
OfBacon.org accesses the IMDb and determines the 
shortest link between any two actors. The network 
is very tightly connected; it is surprisingly difficult 
to name any pair of actors even four apart. Consider 
Kevin Bacon, who has been in over 60 films with over 
2200 total co-stars. That is a very small percentage of 
the total number of actors in the database, but there are 
over 225,000 actors who, like John Wayne, are co-stars 
of co-stars of Kevin Bacon. Actors within four links of 
Kevin Bacon comprise approximately 98% of the data-
base. About 99% of the actors in the IMDb all connect 
to one another. Finding actors within the last 1% who 
are five or more from Kevin Bacon is another enter-
taining part of the game. As of 2010, there are 17 actors 
with a distance of eight from Kevin Bacon, so that “six 
degrees” is a misnomer.

Another variant of the game is to determine the actor 
who is best connected on average. The average every 
actor’s Kevin Bacon number is 2.980. This number 
means, roughly, that a randomly chosen actor is within 
three links of Kevin Bacon. It is interesting to consider 
which sorts of actors have the lowest averages. John 
Wayne, with significantly more movies and co-stars 
than Kevin Bacon, has an average of 3.026 links to the 

rest of the connected actors. The best-connected actor, 
as of 2010, is Dennis Hopper, with an average distance 
of 2.772. The IMDb is regularly updated with new actors 
and films, and the connection data change accordingly.

Why is it six degrees of Kevin Bacon, and not some 
other actor? The game was created by students 

at Albright College in January 1994; they 
had watched Footloose earlier in the day, 
then saw a commercial for another Kevin 
Bacon film, The Air Up There, and a pop 
culture phenomenon was born. There are 
similar games based on other large data-

bases, such as baseball players connected 
by teams, and “six degrees of” remains a very 

common phrase in society. Kevin Bacon himself 
used the notion to build a Web-based charity 

fundraiser, SixDegrees.org. The notion of “small world” 
networks is being used by scientists in applications as 
diverse as neural networks of worms, the interconnec-
tion of power grids, analysis of the World Wide Web, 
and genealogical connections.

Further Reading
Grossman, Eric. “The Erdös Number Project.” Oakland 

University. http://www.oakland.edu/enp/.
Hopkins, Brian. “Kevin Bacon and Graph Theory.” 

PRIMUS 14, no. 1 (2004).
Watts, Duncan. Six Degrees: The Science of a Connected 

Age. New York: Norton, 2003.

Brian Hopkins

See Also: Mathematics Genealogy Project; Movies, 
Mathematics in; Social Networks.

Skating, Figure
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Geometry.
Summary: The elements, equipment, and scoring 
system of figure skating all involve a mathematical 
framework.

Figure skating is a winter Olympic competitive sport, 
which involves artistically gliding on ice using metal 
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blades. Ice skating rinks are generally shaped in the 
form of rectangles with rounded corners. The patterns 
skaters form on the ice can be explained in geometric 
terms. Physical principles are observed when watching 
figure skating. The scoring system used to judge figure 
skating involves algebraic computations. 

Patterns
The bottoms of ice skating blades are not flat, but 
rather slightly curved, like arcs taken from the edge of 
a circle about seven to nine feet in radius. This enables 
the skater to angle and tilt to form patterns on the ice. 
These patterns can be represented geometrically. For 
instance, the most famous geometric pattern on ice is 
a figure eight, which can be formed by two circles of 
equal size tangential to each other. A skater could start 
the first circle of the figure eight on the right forward 
outside edge and skate the second circle on the left for-
ward outside edge. The possible edge combinations 
include using the left or right foot, traveling forward or 
backwards, and using the inside or outside edges. 

Mathematical Principles of  
Spinning and Jumping 
In addition to basic compulsory figures, modern skat-
ing requires participants to execute increasingly diffi-
cult jumps and spins. In a jump, the skater’s center of 
gravity follows a parabolic arc with respect to the ice, 
and a jump is frequently measured in terms of its verti-
cal displacement (the height off the ice) as well as hori-
zontal displacement (the distance). Both are a function 
of many variables, such as the takeoff angle and veloc-
ity immediately prior to the jump.

Spinning, whether in the air as part of a jump or on 
the ice, is also a complex function of many variables. 
Factors include the skater’s body mass and speed when 
entering the spin, as well as the extension of the arms or 
legs from the body. For example, a spinning skater rotates 
more slowly with extended arms than when the arms are 
tucked in because as the radius between the body and 
the arms decreases, the angular velocity increases.

Judging 
Four disciplines of figure skating are competitive at 
the Olympic level: singles (ladies’ and mens’), pairs, 
and ice dance. In each of these disciplines, a choreo-
graphed program is skated to music in competition 
and is judged according to the International Skating 

Union’s International Judging System. The Interna-
tional Judging System awards points for technical dif-
ficulty and artistry.

There are many types of skating elements. Jumps 
vary from their takeoff edges as well as numbers of rota-
tions between one and four. Throw jumps are also per-
formed by the pair teams. A variety of spins are possible, 
but there are three basic spin positions: upright, camel, 
and sit. Some spins involve a change of foot, change of 
position, flying entrance, or difficult variation. Foot-
work is an element in every program and requires steps 
and turns that fully cover the ice surface in a circular, 
straight line, or serpentine pattern. For pairs and ice 
dance skaters, combination spins, lifts, and other ele-
ments requiring two skaters are also scored. 

Each of the skating elements performed in a pro-
gram is assigned a numerical base value, which varies 
according to difficulty. For example, in the 2010–2011 
skating season, the base value of a triple toe loop was 
4.1 points, and the base value of the single toe loop 
was 0.4 points, indicating that the triple toe loop was a 
much harder jump. Judges add to or subtract from the 
base value of each element depending upon its execu-
tion. For instance, a poorly performed toe loop would 
receive fewer than 0.4 points. The sum of the values 
given for each element is called the “technical score.”

In addition to a technical score for performance 
on the individual elements, overall scores for artistic 
aspects of the program, such as choreography, inter-
pretations, transitions, and skating skills, are awarded 
as the program components score, which is added to 
the technical score for a total overall score. The skaters 
with the highest scores earn the highest rankings.

Further Reading
Carroll, Maureen, Elyn Rykken, and Jody Sorensen. “The 

Canadians Should Have Won!?” Math Horizons 10 
(February 2003).

Kerrigan, Nancy, and Mary Spencer. Artistry on Ice: 
Figure Skating Skills and Style. Champaign, IL: Human 
Kinetics, 2002.

Schulman, Carole. The Complete Book of Figure Skating. 
Champaign, IL: Human Kinetics, 2002.

Diana Cheng

See Also: Arenas, Sports; Ballet; Connections in 
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Skydiving
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Calculus.
Summary: Principles of calculus can be used to 
model a sky dive and to calculate the effect of the 
parachute on velocity.

Skydiving is the act of leaping out of an airplane at a 
sufficient altitude and placing your life in the hands 
of a piece of cloth—although a fairly large piece of 
cloth. Leonardo da Vinci left drawings of parachutists 
in his Codex Atlanticus circa 1485. The modern para-
chute was invented by Louis-Sébastien Lenormand in 
France, making the first public jump in 1783. In 1797, 
André Garnerin was the first to use a silk parachute, 
earlier versions being made of linen. The first para-
chute jump from an airplane was in Venice Beach, 
California, in 1911. The parachute was held in the 
arms and thrown out as the jumper left the plane. The 
soft-pack parachute was developed in 1924. There are 
two types of parachutes used for skydiving: round, 
and ram-air (square). The U.S. Army uses the round 
35-foot diameter parachute to train its paratroopers 
because they are reliable and give the jumper a termi-
nal velocity of about 15 feet per second. Most skydiv-
ers in the United States started using a 28-foot round 
canopy. They produced a terminal velocity of about 
17–18 feet per second—a somewhat hard landing. The 
switch to ram-air types came in the 1970s; these give 
more comfortable landings and maneuverability. The 
rates of descent vary from canopy to canopy, but ter-
minal velocities usually run from eight feet per second 
(5.5 mph) to 14 feet per second (9.5 mph).

A canopy’s performance is determined by its wing-
load, which helps determine the terminal velocity and 
speed at landing. Most canopies are flown with a wing-
load between 0.8 and 2.8 pounds per square foot. To 
compute the right size of canopy, take the total weight 
(W) of the jumper and equipment divided by the 
assigned wing-load factor (WLF):

Area
W W

WLFcanopy

jumper equipment=
+

.

To model the parachute jump itself is much more 
complicated. It involves a first order differential equa-
tion to find the speed. The forces on a skydiver are the 

gravitational force, Fg, and the drag force, Fd , of air 
resistance and buoyancy. There are two factors to the 
drag: the time before and the time after the canopy 
deploys. If x is the distance above the Earth’s surface, 
then a = dv/dt is acceleration and v = dx/dt is velocity. 
For most jumps, the gravitational force stays essentially 
constant. 

In a first approximation to the problem, take the 
drag force to be proportional to the velocity. The coef-
ficient of drag has one value when the skydiver is fall-
ing and a second value when the parachute is fully 
deployed. During the fall, the velocity satisfies the ini-
tial value problem:

m
dv

dt
mg k v= − −

1

             
v 0 0( ) = .

This is a separable ordinary differential equation. 
Its solution can be found by most students in a calcu-
lus class. The jumper’s position then is found by inte-
grating the velocity with initial condition that at time 
t = 0 the jumper is at the jump altitude. After the chute 
deploys, the velocity and position can be found exactly 
as above, except that the drag coefficient and initial 
conditions change. 

A second approach is to assume that the drag force 
is proportional to the square of the speed. Then, a fall-
ing object reaches a terminal velocity: 

V
mg

ACT

d

=
2

ρ

where VT is the terminal velocity, m is the mass of the 
falling object, g is the acceleration due to gravity, Cd is 
the drag coefficient, ρ is the density of the fluid through 
which the object is falling, and A is the projected area 
of the object. 

Based on air resistance, the terminal velocity of a 
skydiver in a belly-to-Earth free-fall position is about 
122 miles per hour (179 feet per second). A jumper 
reaches 50% of terminal velocity after about three sec-
onds and reaches 99% in about 15 seconds. Skydiv-
ers reach higher speeds by pulling in limbs and fly-
ing head down, reaching speeds close to 200 miles per 
hour. The parachute reduces the terminal velocity to 
the five to 10 miles per hour range. This is achieved by 
increasing the cross-sectional area and the drag coef-
ficient, lowering the terminal speed.
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See Also: Airplanes/Flight; Calculus and Calculus 
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Skyscrapers
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Mathematicians and engineers work 
together to design and build skyscrapers.

A skyscraper is a building noteworthy for its great height. 
As the name suggests, the building appears to touch the 
sky. There is no agreed-upon minimum height that clas-
sifies a building as a “skyscraper”; the term is used for 
any building that commands attention because of its 
height. Many people are fascinated by building, visiting, 
and measuring skyscrapers. The Eiffel Tower, designed 
by engineer Gustave Eiffel, revolutionized civil engi-
neering and architectural design. In the design of a sky-
scraper, architects and engineers must consider load dis-
tribution and the impact of the wind and earthquakes. 
Scientists and mathematicians also investigate how to 
improve features such as seismic dampers. Many sky-
scrapers resemble rectangles or pyramids, but they may 
have other geometries, like the plan for the Helicoidal 
Skyscraper in New York or the sail-shaped skyscraper 
in Dubai—the Burj al-Arab Hotel. In Tokyo, St. Mary’s 
Cathedral incorporates eight hyperbolic parabolas, and 
the HSB Turning Torso in Sweden uses five-story cubes 
that twist as they rise, with the top cube 90 degrees 
from the bottom cube. Buckminster Fuller proposed a 

city consisting of huge floating spheres, which he called 
Cloud Nine. The Wing Tower in Scotland was designed 
to rotate at the base in order to respond to changes in the 
direction of the wind. Proposed dynamic skyscrapers 
allow each floor to rotate independently, creating chang-
ing shapes, and using turbines to harness the power of 
the wind. There are various ways of ranking skyscrapers 
by height, and these buildings have other characteristics 
that can be quantified as well. Mathematician Shizuo 
Kakutani invented a mathematical skyscraper in ergodic 
theory called a “Kakutani skyscraper,” so named because 
the mathematical process resembles the floors of a sky-
scraper. Students in some mathematics classrooms play 
a multiplication skyscraper game.

History
Throughout history, there have been buildings that 
were considered unusually tall, including pyramids, 
towers, and religious structures. The 10-story Home 
Insurance Building in Chicago, designed by William 
Le Baron Jenney and completed in 1885, is considered 
by many to be the world’s first skyscraper. A variety of 
technological developments made the first skyscrapers 
possible. These included the mass production of steel, 
the invention of the elevator, the ability to achieve water 
pressure at altitude, the fireproofing of flooring and 
walls, and the development of reinforced concrete. The 
792-foot Woolworth Building in New York City, com-
pleted in 1913, was typical of how skyscrapers would 
be constructed for the rest of the twentieth century. It 
had a steel skeleton and a foundation of concrete. Mod-
ern skyscrapers typically have a frame that supports the 
building’s weight, with walls suspended from the frame. 
This feature distinguishes them from smaller buildings 
in which the walls are usually weight-bearing.

The Empire State Building in New York City reigned 
for 41 years as the world’s tallest skyscraper and entered 
the public consciousness when the 1933 film King Kong 
depicted a giant ape that climbed the building. The 
movie had innovative special effects, including the use 
of scale modeling. In the twenty-first century, numer-
ous television and FM radio stations transmit their 
signals from atop the Empire State Building and from 
skyscrapers in other cities.

Measurement
There are many different ways to measure the height 
of a skyscraper. It can be measured by the number of 
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floors, highest occupied floor, spire height, or total 
height including such things as an antenna. Conse-
quently, different figures can be found for the height 
of a single skyscraper. When lists of the world’s tall-
est skyscrapers are published, a single skyscraper often 
ranks in different places on lists that use different 
rules of measurement. For example the Willis Tower 
in Chicago, formerly known as the Sears Tower, is the 
world’s second tallest building when ranked by num-
ber of floors or when antennae are included, but it 
places seventh worldwide when spires are counted, but 
antennae are not.

Since 1998, a number of skyscrapers in Asia have 
surpassed the tallest American buildings in height. The 
Burj Khalifa, which opened in 2010 in Dubai, United 
Arab Emirates, is the world’s tallest skyscraper as of 
2010, whether ranked by its 163 floors, its 2,093-foot 
highest floor, or its spire height of 2,717 feet. The pro-
gression of record skyscraper heights over time can be 
graphed and modeled by a regression equation.

Other Aspects
Skyscrapers are noteworthy for other quantities 
besides their heights. When known geometric solids 
are used to model a skyscraper’s shape, the building’s 
surface area can be estimated. Because of differences in 
elevation, a skyscraper often experiences measurably 
different weather conditions at its top and bottom. In 
addition to its noteworthy height measurements, the 
Burj Khalifa contains over 20 acres of glass, has over 
5 million square feet of floor space, and has elevators 
that travel over 26 miles per hour. Tall buildings are 
known to sway slightly in windy conditions. A rule of 
thumb for estimating a building’s sway is to divide its 
height by 500 to arrive at the amount of horizontal 
sway near the top of the building. In many skyscrap-
ers, steel tubes, or bundles of tubes, give the building 
strength against this swaying. The distance one can see 
from the top of a skyscraper can be computed. When 
the curvature of Earth is considered, the sight line is 
tangent to Earth’s surface. On a clear day it is possible 
to see over 100 miles from atop the world’s highest 
skyscrapers.

Further Reading
Koll, Hillary, Steve Mills, and William Baker. Using Math 

to Build a Skyscraper. Milwaukee, WI: Gareth Stevens 
Publishing, 2007.

Wells, Matthew. Skyscrapers: Structure and Design. New 
Haven, CT: Yale University Press, 2005.
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SMART Board
Category: Communication and Computers.
Fields of Study: Geometry; Representations.
Summary: Interactive whiteboards use a touch-
sensitive display to mimic the functionality of a 
whiteboard while enhancing the user’s options.

The SMART Board is a brand of interactive whiteboard. 
Unlike traditional whiteboards and chalkboards, the 
SMART board does not require markers, chalk, or eras-
ers. Instead, the SMART Board utilizes a projector and a 
touch sensitive display. The projector displays computer 
images onto the screen. The screen itself allows the user 
to interact directly with applications similar to a large 
touch screen. For instance, touching the screen is equiv-
alent to left-clicking with a mouse. Typically, SMART 
Boards come with four digital pens and a digital eraser. 
These digital devices allow the user to write on the screen 
using digital ink. SMART Board interfaces are available 
for Windows and for the Mac operating system. 

Development
David Martin and Nancy Knowlton, inventors of the 
SMART Board, initially devised the idea in 1986 and 
began promoting it in 1991. Knowlton previously 
taught accounting and computer science, while Mar-
tin has a bachelor’s degree in applied mathematics and 
began his career working on computer simulations. 
The SMART Board was the first interactive whiteboard 
that gave users touch control of computer applications. 
In 2003, their company developed and later patented 
Digital Vision Touch (DViT) technology, which relies 
on concepts of three-dimensional geometry, such as 
projection, reflections, and parallel lines to effectively 
display information and allow the user to interact with 
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the board. It uses digital cameras and sophisticated rec-
ognition algorithms to determine the position of the 
user’s fingertip and to make a distinction between sin-
gle clicking, double clicking, and drag and drop. These 
recognition algorithms differentiate it from other 
touch technologies, like tablet personal computers. As 
of 2010, SMART Board was the most popular interac-
tive whiteboard on the market in the United States.

Advantages
There are several advantages to SMART Board technol-
ogy in the mathematics classroom. First, lectures done 
using the SMART Board can be saved, which allows 
instructors to access information written minutes, 
weeks, or even years earlier. By exporting these files as 
a pdf or a similar universal format, the instructor can 
post classroom notes on their course Web page, allowing 
students to review notes from previous classes, either 
to prepare for a test or to catch up on material that was 
covered when they were absent. In addition, the digital 
images saved by the SMART Board can more easily be 
read and transcribed for students with disabilities. Fur-
ther, images on the SMART Board can be individually 
selected and copied to additional pages, which allows 
complex mathematical formulas and diagrams to be 
reproduced accurately and quickly. SMART board sys-
tems are typically connected to computers, meaning 
any application that is accessible on the computer is 

available on the SMART Board. Instructors may access 
spreadsheets, word processors, and the Internet. For 
these reasons, SMART Boards can greatly enhance the 
educational experience for both the instructor and 
the student. SMART Board–type lectures can also be 
accomplished using a tablet computer installed with 
the appropriate software and a projector system.  

Since its introduction in 1991, SMART Boards have 
been incorporated into classrooms of all levels from kin-
dergarten to college. In addition, many corporate board-
rooms feature SMART Boards allowing for interactive 
presentations. As of 2010, over 1 million SMART Board 
systems have been installed across the world. It is likely 
that SMART Boards and similar systems will continue to 
replace or supplement the more traditional whiteboards 
and chalkboards found in current classrooms.

Further Reading
Bitter, Gary G. Using Computer Technology in the 

Classroom. Boston: Allyn and Bacon, 1999.
Ellwood, Heather. “Practice Makes Perfect: Building 

Creative Thinking Skills in High School 
Mathematics.” EdCompass Newsletter (March 2009).
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Peters, Laurence. Global Learning: Using Technology  
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OR: International Society for Technology in 
Education, 2009.
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Smart Cars
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry; Measurement.
Summary: A smart car is able to respond to the 
conditions it detects, such as sounding an alarm if it 
detects that a driver is becoming drowsy.

A smart car is also sometimes referred to as a “biomet-
ric car.” The overall design and technology of such vehi-
cles should incorporate many functions: protection of 
the driver and passengers, reliable and easy navigation, 
and better mechanical and fuel efficiency. Mathemati-
cians, engineers, and many others are involved in the 
development of improved vehicle technology, includ-
ing aerodynamics and computerized systems that use 
mathematical techniques from geometry; mathemati-
cal and computer modeling; and statistical analyses 
of data regarding safety, ergonomics, and consumer 
preferences. Methods from artificial intelligence, such 
as cellular automata, are also very useful. According to 
mathematician John von Neumann, cellular autom-
ata can be thought of as “cells” or agents that behave 
according to relatively simple sets of mathematical 
rules or algorithms. These rules include responses to 
neighboring cells’ behaviors, making them useful in 
modeling many biological processes, like flocking birds 
or traffic. 

Ideal Functions
In many peoples’ minds, the primary purpose of 
a smart car should be to help a driver in ways that 
prevent accidents and encourage safe driving. For 
example, many car accidents occur because drivers 
do not realize that they are drowsy, so they conse-
quently fall asleep at the wheel. A biometric smart 
car could alert drivers to such conditions by mea-
suring eye movements relative to typical alert driver 
behavior to detect inattention and lack of scanning of 
the instruments and the road. Drivers that deviated 
too far from established safety norms would then be 
alerted. Other systems may involve a steering detector 
that responds to angular movements of the steering 
wheel that exceed a specified degree or a system that 
measures the angles of a driver’s head and sound an 
alert if the head nods too far forward. In 2010, a Japa-
nese company launched a system designed for com-
mercial truck drivers that analyzes a driver’s unique 

patterns and variability taking into account variables 
such as time. It then uses mathematical algorithms to 
proactively recommend rest breaks and measures to 
increase alertness and safety.

But What Actually Makes a Car Smart?
In addition to reactive systems like driver alertness 
warnings, some feel that a truly smart car should antic-
ipate conditions to be avoided. Speeding when road 
conditions are poor or attempting to pass another car 
in low visibility could be predicted and avoided. Smart 
car systems would not only anticipate but also correct 
any anomaly so that a driver has time to recover. Fur-
ther, they might suggest actions to a driver in advance 
of adverse conditions by monitoring the road and 
weather. Aspects of these features are present in many 
models of cars at the start of the twenty-first century 
facilitated by the introduction of real-time technology, 
such as interactive maps and global positioning systems 
(GPS), which depend on external communication with 
the environment to provide data beyond the drivers’ 
senses. For example, many agencies provide data on 
road grade and surface, work zones, hazards, or speed 
restrictions. A smart car also monitors its internal state, 
taking measures of aspects like tire pressure and fluid 
levels using electronic sensors—functions that used to 
have to be performed by hand.

Advanced instrumentation, once found mostly in 
luxury cars, is becoming commonplace in vehicles. 
These systems may include smart starting that relies 
on electronics embedded in the car’s keys; biometric 
features, like fingerprint scans; or keyless entry that 
may also require a computer chip, code, or fingerprint 
to activate. Many hybrid gas–electric vehicles balance 
energy usage to obtain maximum performance in mile-
age. Future smart cars may automatically sense vari-
ables like weight distribution and suggest load adjust-
ments for better balance and braking. There are even 
notions that future smart cars will be able to dynami-
cally reshape their surfaces for maximum aerodynamic 
efficiency. There is work being done on systems such 
as neural networks that may monitor and analyze all 
driver decisions in order to better provide feedback 
for safety and performance for particular geographic 
regions. Networks within smart cars may also interact 
with other cars and “smart roads,” which could use 
computer technologies and mathematical modeling or 
algorithms, coupled with control and communications 
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features, to improve issues like road safety and traffic 
capacity by directing traffic and helping drivers make 
better and safer decisions. 

Further Reading
Scientific American Frontiers. “Inventing the Future 

Teaching Guide: Smart Car.” http://www.pbs.org/ 
safarchive/4_class/45_pguides/pguide_701/4571 
_smartcar.html.

Volti, Rudi. Cars and Culture. Baltimore, MD: Johns 
Hopkins University Press, 2006.

Whelan, Richard. Smart Highways, Smart Cars. 
Norwood, MA: Artech House, 1995.

Julian Palmore

See Also: GPS; Highways; HOV Lane Management; 
Neural Networks; Street Maintenance; Traffic.

Soccer
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Mathematical modeling and statistical 
analysis can help inform individual techniques and 
team tactics in soccer.

Soccer is a sport that has been enjoyed worldwide for 
more than a century by both players and spectators. In 
the early part of the twentieth century, mathematician 
Harald Bohr, founder of the field of almost periodic 
functions and brother of famed physicist Niels Bohr, 
was a skilled player and a silver medalist on the 1908 
Danish Olympic soccer team. He was reported to be 
so popular that his doctoral dissertation defense was 
attended by more soccer fans than mathematicians. 
In general, the sport is often cited for its equal empha-
sis on individual skills and team tactics. As in other 
sports, statistics are frequently cited by sports com-
mentators. In addition, technically demanding indi-
vidual actions, as well as masterfully executed plays, 
can all be described and analyzed using statistics and 
mathematics, which is done worldwide by numerous 
sports scientists. One could even say that the players, 

perhaps unconsciously, use or display “mathematics 
in motion.”

Individual Technique
The effectiveness of any of the various moves a player 
uses (kicking, heading, or dribbling) depends on a 
combination of physical qualities and technical skills. 
This idea can be demonstrated using the instep kick as 
an example; the instep kick, with the aim to kick the 
ball as hard as possible, is by far the most studied soccer 
movement by sport scientists. In order to maximize the 
forward swinging speed of the shank, physical quali-
ties (such as strength and speed of contraction) of the 
knee extensor muscles and the hip flexor muscles are 
important. However, research has shown that technical 
skills are equally important. The specific technical skill 
required for optimal kicking is coordination—how the 
shank moves relative to the thigh. 

Coordination is one of the topics studied in the sci-
entific field of biomechanics, which relies heavily on 
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The skill required for optimal kicking is coordination—
how the shank moves in relation to the thigh. 



mathematics. Biomechanics researchers use high-speed 
cameras in their laboratories to record kicking perfor-
mance from top level players. From the video footage, 
the researchers can obtain the three-dimensional posi-
tion in space of selected points on the kicking leg. Using 
mathematical concepts from vector algebra and trigo-
nometry, joint and segment angles can subsequently 
be calculated. These data, in turn, allow calculations of 
a number of kinematic parameters of the foot, shank, 
and thigh, comprising linear velocity and acceleration 
and angular velocity and acceleration. 

In mathematics, the most common way to calcu-
late velocities and accelerations from position data is 
to use calculus. This method, however, requires the 
position data to be specified as a mathematical func-
tion. This is not the case with position data obtained 
from video footage, which are discrete in nature—they 
consist of thousands of numbers, specifying the three-
dimensional position of numerous points on each 
video frame. From the cameras’ frame rate, the elapsed 
time between frames can be calculated, which instead 
allows numerical differentiation of the position data 
using a computer. Finally, by combining the kinematic 
data with data for each segment’s mass and moment of 
inertia (a measure of a segment’s inertia when rotating) 
and using the principles from Newtonian mechanics, 
the researchers can calculate how the movement of the 
thigh affects the movement of the shank and vice versa. 
The forward swing of the thigh generates a force at the 
knee that causes the shank to swing faster forwards. 
The force is larger, the faster the thigh moves, while the 
effect of the shank is larger, the closer the knee angle 
is to 90 degrees. Top players instinctively coordinate 
thigh and shank movements in order to take maximum 
advantage of these intersegmental forces, although sci-
ence so far has failed to determine precisely what opti-
mal coordination is.

Team Tactics
When a midfielder executes a beautiful play that a 
forward picks up between defending opponents and 
scores, a lot of “hidden” mathematics is occurring. The 
midfielder’s team members and opponents are all mov-
ing simultaneously in different directions with different 
speeds, yet the midfielder still manages to precisely cal-
culate the required ball speed and direction to execute 
his play, so the ball and forward meet at the intended 
spot out of reach of defending opponents. Situations like 

this are analyzed by sport scientists and coaches using 
the methods of notational analysis. With video footage 
and specialized software, the various actions (sprinting, 
moving sideways, tackling, or heading) of each player 
from both teams can be registered. Statistical calcula-
tions can reveal which situations are most likely to lead 
to a certain outcome, such as scoring a goal, and which 
general tactics lead to most of these situations. Digital 
representations have also been used to assist with tactics 
and analysis. Researchers from the University of Shef-
field digitized a soccer ball (including even the stitching) 
and computed airflow around the ball. They found that 
the specific shape and surface of the ball, and its initial 
orientation, are significant in determining the ball’s tra-
jectory through the air. Measurements on actual balls 
in a wind tunnel at the University of Tsukuba verified 
these mathematical simulations.

Further Reading
Chartier, Tim. “Math Bends It Like Beckham.” Math 

Horizons 14 (February 2007).
Putnam, C. A. “Sequential Motions of Body Segments 

in Striking and Throwing Skills: Descriptions and 
Explanations.” Journal of Biomechanics 26 (1993).

Reilly, T., and M. Williams. Science and Soccer. New York: 
Routledge, 2003.

Henrik Sørensen

See Also: Arenas, Sports; Connections in Society; 
Hockey; Kicking a Field Goal.

Social Networks
Category: Friendship, Romance, and Religion.
Fields of Study: Geometry; Number and 
Operation; Representations.
Summary: Social networks can be described and 
analyzed using graph theory.

A social network is a set of actors and the relationships 
that connect them. The actors are usually people, but 
may be other individual or collective actors, such as 
organizations, gangs, clubs, municipalities, nations, 
or social animals. Social network analysis is a cross-
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disciplinary method for analyzing social networks 
that integrates techniques from science, social science, 
mathematics, computer science, communication, and 
business. In keeping with its diverse origins, various 
types of social relationships have been studied using 
social network analysis, such as friendship, sexual rela-
tionships, kinship and genealogy, competitions, col-
laboration, and disease spread.

Sociogram, Sociomatrix, Graph, and Network
Modern social network analysis can be traced to Aus-
tro-American psychiatrist Jacob Levy Moreno, though 
many of the methods he employed in his work had 
been used before in a more piecemeal fashion. For 
example, French probabilist Irénée-Jules Bienaymé 
modeled the disappearance of closed families (for 
example, aristocrats) and family names in the nine-
teenth century. In his 1934 book Who Shall Survive, 
Moreno used diagrams he called “sociograms” to ana-
lyze friendships among girls in a training school in 
New York State. The girls were represented by points, 
and pairs of girls who were friends were connected by 
a line. In sociograms of relationships such as liking, 
which are not necessarily reciprocated, an arrowhead 
indicates the direction. 

While very simple social networks can be analyzed 
by visual inspection, the power of social network anal-
ysis arises from the conceptualization of the sociogram 
as a mathematical graph, which can be analyzed using 
the concepts and methods of graph theory. Moreover, a 
graph can be represented by a square adjacency matrix 
in which each row and column represent a point, and 
the cell entries represent the presence or absence of lines 
between points. A graph can be generalized in several 
ways. Lines can have numerical values representing, for 
example, the strength, intensity, or frequency of a rela-
tionship. There can be multiple types of lines between 
pairs of actors, each representing one type of relation-
ship. Actors can have various attributes with numerical 
values or qualitative labels. In social network analysis, 
real-life social networks are modeled by mathemati-
cal networks, then the properties of the networks are 
analyzed mathematically in order to draw conclusions 
about the structure of the social relationships. 

Social Cohesion
Social cohesion is a fundamental issue in the social sci-
ences; it is the “glue” or bond that holds a social group 

together. According to social network analysis, it is the 
network of social ties among members of the group. 
Therefore, to measure the level of social cohesion in a 
social group or subgroup, one must measure the extent 
of ties among the members. The density of ties among 
members is the simplest measure of connectedness. It 
is defined as the ratio of the number of actual ties to 
the number of possible ties and ranges from 0 to 1. In a 
network with one symmetric (undirected) type of tie, 
and k members, the total possible number of ties is 

k k −( )1

2
.

A network in which every actor is connected is called a 
“complete” graph, or a “clique.” 

It is easy to imagine four people all being friends with 
one another but less realistic to postulate a clique with 
a large number of members. For example, in a clique 
with 30 members, each would have to maintain ties 
with the 29 other members—an onerous task. Limits 
on human beings’ time, energy, and memory constrain 
the number of people with whom they can maintain 
social ties. Therefore, social networks tend to become 
more sparse (the ties become less dense) as they become 
larger. Residents of a small village may know all the 
other residents, but this is impossible for city-dwellers. 
Thus, the village will tend to be more socially cohesive 
than the city. Density of ties has also been used to study 
social cohesion in such areas of social life as marriage, 
the family, small groups in laboratories, community 
elites, intercorporate relationships such as share own-
ership and interlocking directorates, scientific commu-
nities, and the spread of ideas and diseases.

The overall density of ties is a rather crude mea-
sure of connectivity and cohesion in a social network, 
because it is insensitive to local variations. Real-life 
social networks tend to contain islands of actors tied 
relatively densely to one another but disconnected or 
only loosely connected by sparse ties to other such 
islands. In the friendship network of a high school, 
there are likely to be a number of small cliques, per-
haps loosely connected into larger subgroups that 
are in turn perhaps totally disconnected from one 
another. Detection of relatively cohesive subgroups in 
a network and delineation of their articulation into 
larger, less cohesive groups are a major theme in social 
network analysis. 
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Centrality
The centrality of an actor in a network is an impor-
tant attribute, because centrality is associated with 
power, prestige, prominence, and popularity. In a 
network of ties representing flows or potential flows 
of valued social goods, such as information, a central 
actor is in a privileged position for both reception and 
transmission. The centrality of an actor may be intui-
tively evident from visual inspection of the drawing of a 
graph, especially if the graph is small or highly central-
ized. In larger graphs, a precise definition and formula 
are needed. The four main definitions of centrality are 
degree, closeness, betweenness, and power (or “eigen-
vector”) centrality. 

Degree centrality is the proportion of the other 
actors to which an actor is directly connected. The 
closeness centrality of an actor is based on how close 
the actor is to each of the other actors in the network 
and is the inverse of distance. The betweenness cen-
trality of an actor is the extent to which the actor is 
“between” other actors; in other words, how often 
the shortest paths between pairs of other actors pass 
through the actor. Power centrality is defined recur-
sively taking into account the power centrality of the 
actors to which an actor is adjacent. 

Applications of Social Networks
The popular party game Six Degrees of Kevin Bacon 
tries to connect any movie actor to actor Kevin Bacon 
via costars in movies using the shortest number of 
steps. That value is an actor’s Bacon Number. The Web 
site “The Oracle of Bacon,” originally implemented 
in 1996, can be used to find the shortest path for any 
actor that can be linked to Kevin Bacon. The average 
path length as of September, 2010, was about three. It 
also allows a user to find a measure of centrality for 
the Hollywood network based around any actor in the 
database in terms of the average path length.

On a more personal level, the social network Web 
site Facebook includes an application called Friend 
Wheel that lets users visualize the interconnections 
among their friends as nodes and ties. Further, it selec-
tively arranges the friends’ names around the circum-
ference of the wheel so that closely-knit groups or 
cliques are placed together and color-coded. Thomas 
Fletcher, a computer science and mathematics student 
at Bath University, developed the application and made 
it available in 2007.

Harkening back to Moreno’s study, in 1995 a team 
of sociologists was the first to map the romantic and 
sexual relationships of an entire high school. Unlike 
similar adult networks, which tend to have several 
highly interconnected cores with loose interconnec-
tions (like airline hubs), the students were connected 
via long chains, more like a rural phone network. 
One chain linked 288 of the 573 romantically active 
students, though there were also many unconnected 
dyads or triads. Researchers attributed this finding in 
part to the often-elaborate teenage social rules about 
who may date. The surprising finding had important 
implications for educational practices like sex educa-
tion programs.

Further Reading
Bearman, P. S., J. Moody, and K. Stovel. “Chains of 

Affection: The Structure of Adolescent Romantic and 
Sexual Networks.” American Journal of Sociology 110, 
no. 1 (2004).

Furht, Borko. Handbook of Social Network Technologies 
and Applications. New York: Springer, 2010.

Moreno, Jacob L. Who Shall Survive? Washington, DC: 
Nervous and Mental Disease Publishing, 1934. 

Wasserman, Stanley, and Katherine Faust. Social Network 
Analysis. New York: Cambridge University Press, 1994.
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See Also: Connections in Society; Graphs; Matrices; 
Six Degrees of Kevin Bacon; Visualization.

Social Security
See Pensions, IRAs, and Social Security

Software, Mathematics
Category: Communication and Computers.
Fields of Study: Algebra; Geometry.
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Summary: Mathematics software has long been used 
as a teaching aid and has become an important tool in 
applied mathematics.

Mathematics software refers to a wide variety of com-
puter programs designed to manipulate, graph, or cal-
culate numeric, symbolic, or geometrical data. Along 
with the development of computer technology and 
wider access to personal computers, these types of pro-
grams gained popularity at end of the twentieth century. 
Within the mathematics community, it has influenced 
instruction, applications, and research. Instruction 
has changed so that mathematics is more accessible to 
larger numbers of students; it is more engaging, more 
visual, and more focused on conceptual understanding 
rather than on computational facility. 

Mathematics software has changed research and 
the nature of mathematical proof so that computers 
are now tools for exploration, for applications, and 
for performing repetitive tasks. There are numerous 
journals devoted to the development, use, or imple-
mentation of software in research and teaching, such 
as the Transactions on Mathematical Software journal. 
Computer software has influenced what mathematics 
is being taught, how it is being taught, the nature of 
its applications, and the way mathematics is explored. 
Computer software provides society a different 
modality for learning, understanding and applying 
mathematics.

What is Computer Software?
“Computer software” is a general term reserved for a 
collection of computer programs that provide step-by-
step instructions for a computer to perform specific 
tasks. There are four major types of software:

• Operating systems: System software, often 
called the computer “platform” (for example, 
Microsoft Windows, Mac OS, and Linux);

• Computer languages: The code and syntax used 
for developing software (for example, Java, 
C/C++, Visual BASIC, Pascal, and Fortran)

• General applications software: Software 
designed for general purposes (for example, 
word processors, database systems, 
spreadsheets, and communications software)

• Specific applications software: Software 
designed for performing content-based 

tasks (for example, MATLAB, Mathematica, 
Geometer’s Sketchpad, SPSS, and MINITAB)

Software for the subject of mathematics falls in the cat-
egory of Specific Applications Software.  

Mathematics Software
The term “mathematics software” refers to computer 
programs designed to manipulate, graph, or calculate 
numeric, symbolic, or geometrical data. The journal 
Transactions on Mathematical Software (TOMS), pro-
duced by the Association of Computing Machinery 
(ACM), provides current information on available 
mathematics software. Through TOMS, the reader 
can gain access to large indexed mathematics software 
repositories. The majority of the software is written 
in Fortran or C++ for solving mathematics problems 
occurring in the sciences and engineering. Research 
scientists are invited to use these modules in develop-
ing their own software.

Software for Applied Mathematics
According to the National Research Council (NRC), 
computer software has had a major impact on applied 
mathematics and has illuminated new areas for math-
ematical research. The use of computer software in 
research in applied mathematics is prevalent, especially 
when repetitive computations are necessary. The most 
prominent computer software packages used in col-
lege-level instruction in the early twenty-first cen-
tury are MATLAB, Mathematica, and Maple. These 
are computer algebra systems (CAS) that perform both 
symbolic and numeric computations. Software is used 
for statistics applications by professionals in math-
ematics, sciences, education, and social sciences, 
such as SPSS, SAS, BMDP and SPlus. These allow 
users to easily explore and visualize data and automate 
the computational aspects of many commonly used 
statistical procedures, which can be significantly diffi-
cult for larger data sets. It also facilitates more complex 
modeling and computer-intensive methods like exact 
tests, resampling techniques like bootstrapping, and 
many types of Bayesian statistical procedures, which 
are named for mathematician Thomas Bayes.  

Software for Mathematics Research
Mathematics software is also gaining prominence in 
the fields of pure mathematics such as number theory, 
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abstract algebra, and topology. An outstanding exam-
ple of the impact of software on topological research 
occurred in 1976 when a computer program was used 
to check all of the possible cases in the Four-Color 
Map conjecture.

To understand the Four-Color Map conjecture, con-
sider a map of the United States. Suppose the task is to 
color the individual states so that no two contiguous 
states are the same color. How many different colors 
are necessary to complete the task? Such a question 
arose in 1852. The Four-Color Map conjecture states 
that, at most, four colors are needed to color the map. 
In 1976, Kenneth Appel and Wolfgang Haken finally 
proved this conjecture (thus establishing it as a theo-
rem) by using a computer program, representing the 
first time computer software was used in the proof of a 
mathematics theorem.

This computer-based proof led to considerable 
controversy within the mathematics community. The 
controversy centered on the nontraditional nature of 
the proof, which required a computer program for 
testing all of the possible cases, namely 1936 maps. 
Some mathematicians argued that this procedure did 
not constitute a formal mathematical proof, which is 
typically based on deductive logic and mathematical 
principles (such as definitions, axioms, and theorems). 
Instead, it was an exhaustive test of all possible cases, 
made possible by a computer program. Thus, nei-
ther deductive logic nor mathematical structure was 
required. Regardless of the controversies surrounding 
the proof of the Four-Color Map theorem, the result 
was to alter the attitudes of mathematicians toward 
the role of computer software in formal mathematical 
proof. Consequently, since the 1970s, computer soft-
ware has become a major research tool for both pure 
and applied mathematicians.

A further consequence of the use of computer soft-
ware in mathematical research is a trend for math-
ematicians to use open-source software, rather than 
proprietary software. Many commercial or propri-
etary software programs were originally developed and 
sometimes freely distributed as part of grant-funded 
projects or by individual mathematicians, computer 
scientists, and others to meet specific research or teach-
ing needs. Some of these programs were also developed 
in conjunction with educators and students. With 
proprietary software, the user is denied access to the 
algorithms used in solving problems and thus cannot 

have complete confidence in the fidelity of the mathe-
matical results obtained by the programs. On the other 
hand, open-source software provides the source code 
to its users so they can modify and apply it with con-
fidence to their research endeavors. Sage is an impor-
tant example of open-source software that contains 
one of the world’s largest collections of computational 
algorithms. For this reason, it is gaining in popularity 
among contemporary research mathematicians. 

Software for Mathematics Education
Since the 1980s, computer software has been utilized 
regularly in the research of both pure and applied 
mathematics and it has made its way into mathemat-
ics classrooms. However, the adoption of mathemat-
ics software in teaching has not been without contro-
versy. For instance, in 1993, students at the University 
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Algebra, Trigonometry, 
and Calculus Software

Mathematics instruction at all levels has 
changed considerably because of the 

profusion of graphing calculators in schools. 
These so-called calculators are actually hand-
held computers that have numerous built-in 
mathematical functions and programming 
capability. As a consequence, the mathematics 
curriculum is now more focused on conceptual 
development rather than building computational 
facility. Additionally, classroom computers and 
the use of interactive whiteboards (large inter-
active computer panels) have served to make 
mathematics instruction far more interactive 
and engaging for students. 

Popular commercial software packages for 
college instruction are MATLAB, Mathematica, 
and Maple. A powerful piece of free-ware for 
algebra instruction at the high school level is 
Winplot (for Windows platforms only), which is 
available in 14 languages. It is a virtual graph-
ing utility that can plot and animate functions, 
relations, and three-dimensional surfaces in a 
variety of formats. 



of Pennsylvania complained about frustrations with 
Maple in calculus classes, citing a lack of support 
and faculty expertise. Some students even wore shirts 
printed with vulgarities about Maple, which attracted 
national attention. The use and implementation of 
software in classes has continued to generate debate 
regarding the balance between students exploring con-
cepts and solving problems using traditional methods 
and computers. There are also questions regarding how 
much teaching time should be focused on instructing 
students in software use versus addressing concepts.

More recently, mathematics instruction in grades 
K–12 has benefited from computer software. This 
trend is due in part to the recommendations of major 
professional educational organizations and from fed-
eral programs and legislation. In 2000, the National 
Council of Teachers of Mathematics predicted that 
technology would enhance the learning of mathemat-
ics, support mathematics teaching, and influence the 
content that is taught. Educators have also praised 
the advantages of interactive software on student 
motivation and for providing a different modality for 
instruction—a modality that is visual, concrete, and 
interactive. Thus, anticipated impacts of computer 
technology on student achievement are encouraging. 
In 2002, the No Child Left Behind Act provided $15 
million for research on the effects of computer tech-
nology on K–12 instruction. 

Geometry Software
Computer software for teaching geometry is preva-
lent in American schools. The software of choice is 
dynamic software, which allows students to construct 
geometric shapes and actively explore their properties 
on the computer screen by (1) dragging vertices, (2) 
measuring component parts, (3) transforming them in 
the coordinate plan, (4) animating them, and (5) trac-
ing points, and so on. Examples of dynamic geometry 
software are Cabri II Plus, The Geometer’s Sketchpad 
(GSP), and GeoGebra.  

When using dynamic geometry software, high 
school students have been able to make new discover-
ies in Euclidean geometry. For example, in 1994, Ryan 
Morgan, a sophomore at Patapsco High School in Bal-
timore, used GSP to discover a generalization to Mar-
ion Walter’s theorem.

First, consider Marion Walter’s theorem: If the tri-
section points of the sides of any triangle are connected 

to the opposite vertices, the resulting hexagon has area 
one-tenth the area of the original triangle.

Based on the prior theorem, Morgan discovered the 
following: If the sides of the triangle are instead parti-
tioned into n equal segments (for n = an odd integer) 
and each division point is connected to the opposite ver-
tex, a central hexagon is still formed. 

Morgan’s theorem states that this hexagon has an 
area 

A
n n

=
+( ) −( )
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3 2 3 1
 

relative to the original triangle.
Discoveries by high school students, such as Mor-

gan’s theorem, lend credence to using dynamic software 
for geometry instruction in the nation’s high schools.
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Solar Panels
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: The angle of inclination of a solar panel 
array is key to its efficiency, among other factors.

Solar panels are interconnected assemblies of photo-
voltaic cells that collect solar energy as part of a solar 
power system, either on Earth or in space. Typically, 
several solar panels will be used together in a photovol-
taic array along with an inverter and batteries to store 
collected energy. Photovoltaic cells convert the energy 
of sunlight into electricity via the photovoltaic effect 
(the creation of electric current in a material when it 
is exposed to electromagnetic radiation), which was 
observed by French physicist Alexandre-Edmond 
Becquerel in 1839. Prior to that time, many scientists 
and mathematicians built and researched parabolic 
burning mirrors, which are another way to focus solar 
energy. Diocles of Carystus showed that a parabola will 
focus the rays of the sun most efficiently. Archimedes 
of Syracuse may have built burning mirrors that set 
ships on fire. George LeClerc, Comte de Buffon, appar-
ently tested the feasibility of such a mirror by using 168 
adjustable mirrors in order to vary the focal length to 
ignite objects that were 150 feet away. It was also inves-
tigated experimentally in the early twenty-first century 
on the television program Mythbusters. Mathematics 

teacher Augustin Mouchot investigated solar energy 
in the nineteenth century and designed a steam engine 
that ran on sun rays. Some consider this invention to 
be the start of solar energy history. The first working 
solar cells were built by the American inventor Charles 
Fritts, in 1883, using selenium with a very thin layer of 
gold. The energy loss of Fritts’s cells was enormous—
less than 1% of the energy was successfully converted 
to electricity—but they demonstrated the viability of 
light as an energy source. Engineer Russell Ohl’s semi-
conductor research led to a patent for what are con-
sidered the first modern solar cells, and Daryl Chapin, 
Calvin Fuller, and Gerald Pearson, working at Bell Labs 
in the 1950s, developed the silicon-based Bell solar bat-
tery. There were fewer than a single watt of solar cells 
worldwide capable of running electrical equipment at 
that time. Roughly 50 years later, solar panels gener-
ated a billion watts of electricity to power technology 
on Earth, satellites, and space probes headed to the far 
reaches of the galaxy. Scientists and mathematicians 
continue to collaborate to improve solar panel tech-
nology. One such focus is creating scalable systems that 
are increasingly efficient and economically competitive 
with various other energy technologies.

Physics and Mathematics of Solar Panels
In 1905, Albert Einstein published both a paper on 
the photoelectric effect and a paper on his theory of 
relativity. His mathematical description of photons (or 

“light quanta”) and the way in 
which they produce the photo-
electric effect earned him the 
Nobel Prize in Physics in 1921. 
In general, the photons or light 
particles in sunlight that are 
absorbed by semiconducting 
materials in the solar panel 
transfer energy to electrons—
though some is lost in other 
forms, such as heat. Added 
energy causes the electrons to 
break free of atoms and move 
through the semiconductor. 
Solar cells are constructed so 
that the electrons can move in 
only one direction, producing 
electrical flow. A solar panel or 
array of connected solar panels 
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produces direct current, like chemical batteries, which 
can be stored. An inverter can convert the direct cur-
rent to alternating current for household use. 

Mathematics is involved in many aspects of solar 
panel design, operation, and installation. For exam-
ple, the perimeter of an array of multiple solar panels 
may change with rearrangement of the panels, but the 
area stays the same. Since area is one critical variable 
for power collection, this suggests different optimal 
arrangements for surfaces where solar panels might 
be arranged, like walls and roofs. Satellites often use 
folding arrays of solar panels that deploy after launch, 
and folding portable solar panel arrays have been 
designed for applications like camping and remote or 
automated research and monitoring stations. Space 
scientist Koryo Miura developed the Muria–Ori map 
folding technique, which involves mathematical ideas 
of flexible polygonal structures and tessellations. It has 
been incorporated into satellite solar panels that can 
be unfolded into a rectangular shape by pulling on 
only one corner.

Arrays
A solar panel array may be fixed, adjustable, or tracking. 
Each method has trade-offs in installation cost versus 
efficiency and energy over the lifetime of the installa-
tion, which can be analyzed mathematically in order 
to optimize an individual setup. Fixed arrays are solar 
panels that stay in one position. Optimal positioning 
of such arrays usually involves facing the equator (true 
south, not magnetic south, when in the northern hemi-
sphere), with an angle of inclination roughly equal to 
their latitude. Using an angle of inclination slightly 
higher than the latitude has been shown in some studies 
to improve energy collection in the winter, which can 
help balance shorter days or increased heating energy 
needs. Setting the inclination slightly less than the lati-
tude optimizes collection for the summer. Adjustable 
panels can have their tilt manually adjusted through-
out the year. Tracking panels follow the path of the sun 
during the day, on either one or two axes: a single-axis 
tracker tracks the sun east to west only, while a double-
axis tracker also adjusts for the seasonal declination 
movement of the sun. Tracking panels may lead to a 
gain in power, but for some users, the cost trade-off 
might suggest adding additional fixed panels for some 
applications instead. Solar power companies and other 
entities provide maps showing the yearly average daily 

sunshine in kilowatt hours per square meter of solar 
panel. Combined with the expected energy consump-
tion of a building, this data helps determine how many 
solar panels and batteries will be needed for an instal-
lation. Science and mathematics teachers often have 
students build solar panels and collect data to facili-
tate mathematical understanding and critical thinking, 
as well as make mathematics, science, and technology 
connections.

Further Reading
Anderson, E. E. Fundamentals of Solar Energy Conversion. 

Reading, MA: Addison Wesley Longman, 1982.
Hull, Thomas. “In Search of a Practical Map Fold.” Math 

Horizons 9 (February 2002). 
Kryza, F. The Power of Light: The Epic Story of Man’s Quest 

to Harness the Sun. New York: McGraw-Hill, 2003.
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See Also: Electricity; Light; Origami; Satellites.

South America
Category: Mathematics Around the World.
Fields of Study: All.
Summary: Long before European settlement, 
mathematics flourished in South America.

South America includes Argentina, Bolivia, Brazil, 
Chile, Colombia, Ecuador, French Guiana, Guyana, 
Paraguay, Peru, Suriname, Uruguay, and Venezuela. 
The history of South American mathematics begins 
with pre-Columbian developments like the Nazca 
lines and quipus (“KEE-poos”) and continues through 
the astronomy boom of the colonial period to work by 
modern mathematicians and ethnomathematics stud-
ies in Brazil.

Quipus
The Incan empire, with its capital in Cuzco, Peru, 
dominated pre-Columbian South America. The Incan 
civilization emerged from the highlands in the early 
thirteenth century and extended over an area from 
what is now the northern border of Ecuador, Peru, 
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western and south central Bolivia, northwest Argen-
tina, northern and central Chile, and southern Colom-
bia. The Incas reached a high level of sophistication 
with remarkable systems of agriculture, textile design, 
pottery, and administration. Since the Incas had no 
written records, the quipu (or khipu) played a pivotal 
role in keeping numerical information about the pop-
ulation, lands, produce, animals, and weapons. 

Quipus were knotted tally cords that consisted of a 
main cord from which hung a variable number of pen-
dant cords containing clusters of knots. These knots 
and their clusters conveyed numerical information in 
base-10 representation. For example, if the number 
365 was to be recorded on the string, then five touch-
ing knots were placed near the free end of the string 
followed by a space, then six touching knots for the 10s, 
another space, and finally three touching knots for the 
100s. Specific information was conveyed via the num-
ber and type of knots, cluster spacing, color of cord, 
and pendant array. Inca administrators and accoun-
tants employed this complex system for numerical 
storage and communication. Quipus were mathemati-
cally efficient and portable. Unfortunately, the Span-
ish destroyed many quipus, potentially hiding clues to 
understanding Incan architectural processes, irriga-
tion, and road systems. 

Nazca Lines
The Nazca lines are a set of figures that appear engraved 
in the surface of the Nazca desert in southern Peru. The 
lines include hundreds of geometric shapes and render-
ings of animals and plants, including birds, a spider, a 
monkey, flowers, geometric figures, and lines—some of 
them miles long. The Nazca lines, best appreciated from 
an airplane, are one of the world’s enduring mysteries. It 
is hard to explain how the ancient people of Nazca (900 
b.c.e.–600 c.e.) achieved such geometrical precision in 
an area over 300 square miles. German-born mathema-
tician and archaeologist Maria Reiche spent five decades 
studying and preserving these lines. She, like many other 
scientists, believed that the Nazca lines represented an 
astronomical calendar and observatory, while other the-
ories suggest that they map areas of fertile land. 

Mathematics in the Colonial Era
The accidental arrival of navigator Christopher Colum-
bus in the Americas in 1492 marked the beginning of 
a 300-year period of Spanish and Portuguese colonial 

rule in South America that ended in the early nineteenth 
century. Under the Treaty of Tordesillas (1494), Portu-
gal claimed what is now Brazil, and Spanish claims were 
established throughout the rest of the continent with 
the exception of Guyana, Suriname, and French Gui-
ana. Roman Catholicism and an Iberian culture were 
imposed throughout the region, and mathematical sys-
tems and practices of ancient cultures were replaced by 
the Hindu-Arabic decimal system used by the Spanish.

Mathematical activity in Spain between the six-
teenth and nineteenth century decisively influenced 
mathematical thinking and practices in South America. 
In sixteenth-century Spain, two lines of mathematical 
thought existed: the arithmeticians (calculators, inter-
ested in the uses of mathematics) and the algebraists 
(abstract or pure mathematicians). Because the Euro-
pean countries used the colonies to enhance their trade 
and economic resources, the emphasis in South Amer-
ica was on applied mathematics.

Later, the Spanish and the Portuguese established 
schools—mostly run by Catholic religious orders—
which concentrated mathematics teaching on eco-
nomic applications related to trade. There was also an 
interest on mathematics related to astronomical obser-
vations. The first nonreligious book published in the 
Americas was an arithmetic book related to gold and 
silver mining printed in 1556.

Astronomy was a major area of interest in South 
America in the seventeenth century. In Brazil, research 
on comets was of major importance, as exemplified 
by the work of Valentin Stancel (1621–1705), a Jesuit 
mathematician from Prague who lived in Brazil from 
1663 until his death (his astronomical measurements 
are mentioned in Newton’s Principia). As in many cul-
tures, most astronomical interpretations attempted to 
explain divine messages to humankind. Other devel-
opments in Brazil included the first aircraft known to 
fly: the Passarola, invented by Bartolomeu de Gusmão, 
a Brazilian priest and scientist from Sao Paulo. De 
Gusmão, also known as the “Flying Priest,” studied 
mathematics and physics at the Universidade de Coim-
bra in Portugal. The Passarola was an aerostat heated 
with hot air and flew in Lisbon, Portugal, in 1709. 

Mathematics in the Era of Independence
In the first quarter of the nineteenth century, many 
successful revolutions resulted in the creation of inde-
pendent countries in South America. Mathematical 
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activity increased throughout Latin America in the 
twentieth century. For instance, Argentinian math-
ematician Alberto P. Calderon (1920–1998) developed 
new theories and techniques in classical and functional 
analysis. Professor Calderon worked at the University of 
Chicago for many years. He was awarded the National 
Medal of Science in the United States. 

Research by Professor Ubiritan D’Ambrosio and his 
students in the slums and indigenous communities in 
Brazil focused on ethnomathematics—a sub-field of 
mathematics history and mathematics education. The 
goal of ethnomathematics is to understand connections 
between culture and the development of mathematical 
processes and ideas. Other researchers have explored 
specific mathematical habits and methods in South 
American cultures. In the 1980s, Terezinha Nunes and 
her collaborators studied differences between street 
mathematics and school mathematics in Brazil by com-
paring how street vendors (including children) and 
farmers solve problems compared to those who encoun-
ter similar problems in formal school situations. 

For example, in their study of young street vendors 
in Recife, the interviewers acted as customers and asked 
questions that required the use of arithmetic skills 
(such as making change). The children did much bet-
ter in this “real” situation than on a formal test given a 
week later that used similar numbers and operations. 
One possible explanation is that the children were bet-
ter able to keep the meaning of the problem in mind 
in the “real” situation. Many others, such as Geoffrey 
Saxe, have found similar results. An implication of 
these studies is that the essence of school mathemat-
ics, which the Recife children were not as successful 
at, is highly symbolic and possibly devoid of meaning. 
These studies have been important in advancing the 
goal of mathematics education that students must ini-
tially construct appropriate meanings for the various 
concepts and methods they encounter.  

Further Reading
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Learning of Mathematics 5, no. 1 (1985).

Nunes, Terezinha, et al. Street Mathematics and School 
Mathematics. New York: Cambridge University  
Press, 1993.
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De La Cruz, eds. Changing the Faces of Mathematics: 
Perspectives on Latinos. Vol. 4. Reston, VA: National 
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See Also: Astronomy; Calendars; Incan and Mayan 
Mathematics; Knots.

Space Travel
See Interplanetary Travel

Spaceships
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry; Measurement.
Summary: Every task involving spaceships, from their 
design to their launch to effective collision avoidance 
and communication, is mathematically intensive.

Spaceships, also called “spacecraft,” are manned or 
automatic vehicles for flying beyond planet atmo-
spheres. Different types of spaceships serve different 
purposes, including scientific or applied observations 
and data collection, exploration of celestial bodies, 
communication, and recreation. 

According to the routes they take, spaceships can 
be classified as suborbital, orbital, interplanetary, 
and interstellar. According to the type of propulsion 
used, spacecraft engines can be designated as reaction 
engines, including rockets; electromagnetic, such as 
ion thrusters; and engines using fields, such as solar 
sails or gravitational slingshots. Mathematics is funda-
mental for spaceship design, operation, and evaluation. 
For example, mathematics is used to plan efficient tra-
jectories, avoid collisions, communicate with satellites, 
transmit data over vast interplanetary distances, and 
solve complex problems like those that occurred in the 
famous Apollo 13 mission.
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Mathematics in Spaceship Systems
Propulsion of a spaceship poses scientific and engi-
neering problems that involve balancing forces and 
computing sufficient fuel, energy, work, and fluid 
mechanics. For any type of engine, the impulse it gives 
to the craft has to be calculated and compared to the 
craft’s tasks such as leaving the gravity well of a planet 
or maintaining an orbit. For example, calculations for 
rocket engines involve variables including the chang-
ing mass of the craft as its fuel is spent, the efficiency 
of the engine, and the velocity of the rocket’s exhaust. 
Solar sail theories involve such variables as radiation 
pressure of the light, the area of the sail, and the weight 
of the craft.

Mechanics and material sciences problems involved 
in the structure of spacecraft include withstanding 
the forces, temperatures, and electromagnetic fields 
involved in moving through space. For example, mov-
ing through a planetary atmosphere at speeds neces-
sary to leave the planet’s gravity well involves high tem-
peratures from friction.

The guidance and navigation systems of a spaceship 
collect data and then compute position, speed, and the 
necessary velocity and acceleration to reach the desti-
nation. These systems also determine the relative posi-
tion of the spaceship to nearby celestial bodies, which 
influence the craft’s motion by their gravitational and 
electromagnetic fields. For example, mathematical 
description of a craft orbiting a planet includes the 
six Keplerian elements (for example, inclination and 
eccentricity) defining the shape, the size, and the ori-
entation of the orbit, named for Johannes Kepler.

Most twenty-first-century spacecraft do not carry 
living organisms, but when they do, life support sys-
tems are necessary. Life support systems protect peo-
ple, animals, or plants in the spaceship from harmful 
environments and provide air, water, and food. The 
design of life support systems involves biology, physi-
ology, medical sciences, plant sciences, ecology, and 
bioengineering. Mathematical models for life support 
typically include calculations of safety margins, such 
as maximum allowable radiation doses. All organisms 
need some inputs (such as food, water, or oxygen) 
and produce some outputs depending on a variety of 
variables, such as activity levels. Spaceship ecosystem 
designers strive to produce waste-free, closed systems 
where water is reclaimed and plants are used to purify 
the air. Because of the complexity of the closed eco-

system problem, most current flights employ simpler, 
machine-driven life support systems.

Atmospheric Flight
Flight within an atmosphere presents very different 
problems compared to flight in a vacuum. The problems 
solved by applied mathematicians who study atmo-
spheric flight include friction, turbulence, wing lift, aero-
dynamic shapes, and control of temperature. Spaceships 
launching or landing on planets have to be equipped for 
atmospheric flight. Because of differences in the vacuum 
and atmosphere flight requirements, many spaceships 
are designed to change their configuration when they 
cross atmospheric boundaries. For example, mathemat-
ical theories originally developed for origami are used to 
fold and unfold solar batteries, which can be used only 
in a vacuum because of their large area. 
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Escaping a Planet’s Gravity

T he problem of escaping the gravitational 
field of a large celestial body, such as 

Earth, is different from the problem of flight 
in space far from large bodies. For example, 
a certain velocity, called escape velocity, is 
required to leave any given planet. At the sea 
level of Earth, the escape velocity is about 11 
kilometers per second (km/s) or 7 miles per 
second (mi/s). However, spaceships usually fly 
slower at first. The escape velocity is inversely 
proportional to the square root of the distance 
from the planet’s center of gravity. Spaceships 
leaving the Earth reach these lower escape 
velocity levels at some distance from the sur-
face. For comparison, the escape velocity from 
the Sun is about 600 km/s (373 mi/s) and 
the speed record as of 2010 for a spacecraft 
leaving the Earth is about 16 km/s (10 mi/s). 
This means that flights near the Sun are not 
technologically possible in the early twenty-first 
century. The escape velocity of a black hole is 
greater than the speed of light (over 300,000 
km/s or 186,000 mi/s), which is the highest 
theoretical speed possible.



Science Fiction and Computer  
Game Mathematics
Space travel frequently appears in science fiction, where 
plots deal with various existing engineering or phys-
ics limitations. Hard science fiction is the more scien-
tifically oriented subgenre, and it frequently includes 
extensions, discussions, and speculations dealing with 
the current scientific research. This tradition of blend-
ing science and literature started in the late nineteenth 
century with the works of Jules Verne; many of his then-
fantastic devices and ideas (for example, televisions and 
submarines) were implemented relatively soon after.

As an example of experiments with scientific limits 
in literature, science-fiction spaceships may travel at 
superluminal (faster than light) speeds, often through 
non-physical spaces such as “hyperspace,” “subspace,” 
or “another dimension.” These are terms from exist-
ing mathematical theories, which hard science fiction 
sometimes discusses. 

Sci-fi spaceships may also be living organisms, com-
pletely or partially. This idea is a reflection of the cur-
rent interest in bioengineering and has connections 
with exciting research in ecology, genetics, cybernetics, 
and artificial intelligence, as well as social sciences such 
as philosophy and bioethics. 

Computer games and movies about space flight 
created a demand for applied mathematicians who 
can model fantastic situations with passable realism. 
The physics and mathematics of three-dimensional 
modeling is a fast-growing area, with new courses and 
programs opening in universities and an expanding 
job market. What started in the nineteenth century as 
an exotic occupation for very few writers has become a 
profession for many programmers and applied math-
ematicians.

Further Reading:
Battin, Richard. An Introduction to the Mathematics 

and Methods of Astrodynamics. New York: American 
Institute of Aeronautics and Astronautics, 1987.
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See Also: Airplanes/Flight; Elevation; Energy; Fuel 
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Spam Filters
Category: Communication and Computers.
Fields of Study: Number and Operations; Data 
Analysis and Probability; Problem Solving.
Summary: Spam filters use probability and Bayesian 
filtering to sort spam from legitimate e-mails.

Most people with an e-mail address receive unsolicited 
commercial e-mail, also known as spam, on a regular 
basis. Spam is an electronic version of junk mail, and  
has been around since the introduction of the Inter-
net. The senders of spam (called spammers) are usually 
attempting to sell products or services. Sometimes, their 
intent is more sinister—they may be trying to defraud 
their message recipients. Since the cost of sending spam 
is negligible to spammers, it has been bombarding e-
mail servers at a tremendous rate. Some estimate that as 
much as 40% to 50% of all e-mails are spam. The cost 
to the message recipients and businesses can be consid-
erable in terms of decreased productivity and unwel-
come exposure to inappropriate content and scams. As 
frustrating and potentially damaging as spam e-mail is, 
fortunately, much of it does not reach recipients thanks 
to spam filters. Spam filters are computer programs that 
screen e-mail messages as they are received. Any e-mail 
suspected to be spam will be redirected to a junk mail 
folder so that it does not clutter up a user’s inbox. How 
does the filter decide which messages are suspect? Spam 
filters are implementations of statistical models that 
predict the probability that a message is spam given its 
characteristics. The filter classifies messages with large 
predicted probabilities of being spam, as spam.

Filters
Primitive filters simply classified a message as spam if it 
contained a word or phrase that frequently appeared in 
spam messages. However, spammers only need to adjust 
their messages slightly to outsmart the filter, and all 
legitimate messages containing these words would auto-
matically be classified as spam. Modern spam filters are 
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designed using a branch of statistics known as “classifi-
cation.” Bayesian filtering is a particularly effective prob-
ability modeling approach in the war on spam. Bayesian 
methods are named for eighteenth-century mathemati-
cian and minister Thomas Bayes. He formulated Bayes’ 
theorem, which relates the conditional probability of two 
events, A and B, such that one can find both the prob-
ability of A given that one already knows B (for example, 
the probability that a specific word occurs in the text of 
an e-mail given that the e-mail is known to be spam); 
the reverse, the probability of B given that one knows 
A (for example, the probability that an e-mail is spam 
given that a specific word is known to appear in the text 
of the e-mail). 

The underlying logic for this type of filter is that if 
a combination of message features occur more or less 
often in spam than in legitimate messages, then it would 
be reasonable to suspect a message with these features 
as being or not being spam. An extensive collection of 
e-mail messages is used to build a prediction model via 
data analysis. The data consist of a comprehensive col-
lection of message characteristics, some of which may 
include the number of capital letters in the subject line, 
the number of special characters (for example, “$”, “*”, 
“!”) in the message, the number of occurrences of the 
word “free,” the length of the message, the presence of 
html in the body of the message, and the specific words 
in the subject line and body of the message. Each of 
these messages will also have the true spam classifi-
cation recorded. These e-mail messages are split into 
a large training set and a test set. The filter will first 
be developed using the training set, and then its per-
formance will be assessed using the test set. A list of 
characteristics is refined based on the messages in the 
training set so that each of the characteristics provides 
information about the chance the message is spam. 

However, no spam filter is perfect. Even the best fil-
ter will likely misclassify spam from time to time. False 
positives are legitimate e-mails that are mistakenly 
classified as spam, and false negatives are spam that 
appear to be legitimate e-mails so they slip through the 
filter unnoticed. An effective spam filter will correctly 
classify spam and legitimate e-mail messages most of 
the time. In other words, the misclassification rates will 
be small. The spam filter developer will set tolerance 
levels on these rates based on the relative seriousness 
of missing legitimate messages and allowing spam in 
user inboxes. 

Spam filters need to be customized for different orga-
nizations because some spam features may vary from 
organization to organization. For instance, the word 
“mortgage” in an e-mail subject line would be quite 
typical for e-mails circulating within a banking institu-
tion, but may be somewhat unusual for other businesses 
or personal e-mails. Filters should also be updated fre-
quently. Spammers are becoming more sophisticated 
and are figuring out creative ways to design messages 
that will filter though unnoticed. Spam filters must con-
stantly adapt to meet this challenge.

Further Reading
Madigan, D. “Statistics and the War on Spam.” In 

Statistics: A Guide to the Unknown. 4th ed. Belmont, 
CA: Thompson Higher Education, 2006.

Zdziarski, J. Ending Spam: Bayesian Content Filtering 
and the Art of Statistical Language Classification. San 
Francisco, CA: No Starch Press, 2005.
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Sports Arenas
See Arenas, Sports

Sport Handicapping
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations.
Summary: Various calculations are used to set fair, 
competitive handicaps in sports.

Sport handicapping is an important methodology that 
affects millions of people worldwide and potentially 
impacts billions of dollars worth of bets. In many sports, 
handicaps are calculated for individuals or teams and 
are used as a way of “equalizing” performance by giving 
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a scoring advantage or other in-game compensation to 
some players. This process allows lower skilled players 
to compete with higher skilled players while preserv-
ing perceived fairness. The term “handicap” refers to 
both the adjusted scores and the process of determin-
ing them, and may also be used for whole tournaments 
that rely extensively on the method. Handicap in this 
context derives from a seventeenth century lottery 
game called “hand-in-cap,” where players put their 
bets in a literal cap. A point spread, frequently used in 
sports betting, is a related idea for computing or esti-
mating relative advantage to equalize teams in compet-
itive sports. Examples of sports using handicapping at 
various levels include bowling, golf, horse racing, and 
track and field. 

Handicapping
In sport, a handicap is usually imposed to enable a more 
equal competition to take place. The handicap is calcu-
lated according to specific criteria set down for each of 
the sports that use the technique, meaning that some are 
much more complex than others. To understand why a 
handicap may be used, consider one of the most well-
known sports that employ a handicap system, golf.

If a recreational golf player were to compete against 
the best golfer in the world in a round of golf, then 
the outcome would almost certainly be a win for the 
better golfer. A win by a large margin would also have 
been very likely. If a handicap were applied that was 
based on each player’s average scores, then the outcome 
would be much less certain. There would have been a 
distinct possibility that, if the recreational player had 
played well, they would have had the opportunity to 
beat the better golfer—or at least not loose by many 
shots—after the handicap was applied. 

In most sports when professionals compete against 
each another, the events are usually free from handicap-
ping. A professional golf tournament will usually engage 
those who play with a scratch (or zero) handicap. 

One of the primary reasons for using a handicap is 
to make an event more competitive. In many respects, 
this makes the given sport more enjoyable and can help 
to make it more appealing and increase the number of 
those wishing to participate.  

Tenpin bowling is a sport that has more participants 
worldwide than most other sports. The overwhelming 
majority of players are recreational, although many 
take part in annual league competitions. Most leagues 

are not scratch based (on actual total pin fall) but are 
handicapped. In tenpin bowling handicap leagues, the 
scores that are used to determine who has won are a 
combination of the total pins actually knocked down 
and the handicap value. This method allows players 
(and teams) with lower averages to compete against 
players (and teams) that have much higher averages.

The handicap in Tenpin Bowling is usually of the 
form: Handicap value (per game) = 80% of the differ-
ence between the player’s average and 200 pins.

If a bowler averages 100 pins, then the bowler would, 
using the handicapping system, gain a handicap value 
of 80 pins: (200 − 100) × 0.80. The total pinfall for a 
game would be 80 plus whatever number of pins the 
bowler actually knocked down. 

This handicap system is versatile in that the two 
values used (the 80% and the 200 pins, in the exam-
ple above) can be manipulated to suit the particular 
league. For instance, if there are a number of players 
who average over 200, for example 210 or 220, then 
the handicap may be 80% of the difference between 
each bowler’s average and 220 pins. Alternatively, if 
the players are grouped quite closely together, then the 
handicap may be 66% of the difference between each 
bowler’s average and 200 pins.

Athletics
Athletics, or track and field, is another mass participa-
tion sport, but one in which, at the highest level, age 
is intrinsically linked to performance—few athletes 
compete internationally in their late 30s and beyond. 
There is still huge participation in the sport by people 
older than 30, and there are obvious health benefits to 
doing so.

There is a scoring system that takes age into account 
by comparing race time to that of the world record 
holder in each age group. It is often known as a World 
Association of Veteran Athletes (WAVA) Rating and is 
expressed as a percentage between zero and 100. If one 
gets a WAVA rating of 50%, it means that the competi-
tor is half the pace of the world record holder. WAVA 
rating is a useful way to make comparisons between 
runners of all ages and can form the basis of a handi-
cap league.

Horse Racing
A further important application of handicapping is 
that seen in horse racing, a sport on which billions of 
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dollars worth of bets are made each year. In a handi-
capped race, the horse must carry a certain additional 
weight, which when added to the weight of the jokey 
gives it an assigned impost (or total weight). These 
weights are held in saddle pads with pockets. 

The calculation for the weight a horse is required to 
carry is based on a number of factors. A great deal of 
work is done with past data to create and then ensure 
that the handicaps are as fair as possible. These handi-
caps allow for horses of differing abilities to race against 
each other over a given distance.

Further Reading
Mullen, Michelle. Bowling Fundamentals. Champaign, IL: 

Human Kinetics, 2003.
Tuttle, Joeseph J. The Ultimate Guide to Handicapping the 

Horses. Self published: Createspace, 2008. 
Wright, Nick. Lower Your Golf Handicap: Under 10 in 10 

Weeks. London: Hamlyn, 2006.

Stephen Lee

See Also: Algebra in Society; Betting and Fairness; 
Data Analysis and Probability in Society.

Squares and  
Square Roots
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication; 
Connections; Geometry.
Summary: Squares and square roots have long 
challenged mathematicians and have led to various 
expansions of the number system and developments 
in number theory.

The square of a number x, denoted x2 , is the number 
x x× . The inverse operation is called the square root: 
the number x is a square root of y if y x= 2 , the nota-
tion used being x y= . Historically, these operations 
have been a major source of new problems, ideas, 
and systems of numbers in the early and modern 
development of mathematics. Square roots have also 

appeared in many applications, such as computing 
the standard deviation of a data set, and have often 
presented a challenge to scientists and mathemati-
cians in the days before readily available calculating 
technology. Middle-grade students in the twenty-first 
century continue to use squares and square roots to 
simplify computations and solve problems, as do car-
penters and engineers.

Definition 
Geometrically, the “square” of a number x measures 
the area of a square whose side has length x. This idea 
explains the name and is likely the way that ancient 
civilizations were first confronted with the opera-
tion. The Pythagorean theorem is an equality between 
sums of areas of squares constructed on the sides of 
a right triangles, namely a2 + b2 = c2 if a and b are the 
two legs and c is the hypotenuse. Applied to the triangle 
obtained by halving a square of side length one along 
one of its diagonals, it shows that such a diagonal has 
length equal to 2 . 

A member of the Pythagorean School sometimes 
identified as Hippasus of Metapontum (c. fifth cen-
tury b.c.e.) discovered that this number cannot be 
expressed as the ratio of two integers—it is irrational. 
The discovery was a sensation amid the Pythagorean 
School where it was preached that all numbers were 
rational and called for an extension of the number 
system.

In the centuries that followed, extensions of the 
number system would include all numbers express-
ible with an infinite number of decimal digits, so that 
each positive number has a square root (for example, 

2 =1.4142136 . . .) and negative numbers, which 
can be multiplied according to the usual associative 
rules, and the following additional ones governing 
signs: −1 × x = −x; −( ) × −( ) =1 1 1, which implies that 
−( ) =1 1

2
 so that −1 should also be counted as a square 

root of 1. 
More generally, both extensions can be combined to 

yield the system of real numbers, which are the num-
bers with sign and infinite decimal expansions. In this 
system, each square of a number is a positive num-
ber (or zero), and each positive number has exactly 
two square roots, which differ by a sign. For exam-
ple, 2 has as square roots the numbers 1.4142136 . . . 
and −1.4142136. . . , a fact denoted by the expression 

2 = ±1.4142136 . . . . 
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Computation
Square roots can be computed by hand, by calculator, 
or by computer (up to the desired numerical approxi-
mation) by several methods, including those using 
sequences, exponentials, logarithms, or continued frac-
tions. Mathematicians in ancient Egypt and Babylonia 
are some of the first who are thought to have extracted 
square roots. Early Chinese, Indian, and Greek math-
ematicians also contributed to this area. According to 
some historians, the first method to be introduced in 
Europe was that of Aryabhata the Elder, a Hindu math-
ematician and astronomer. One of the oldest ones, still 
at the basis of many currently used algorithms, is the 
so called Babylonian method (which is also an instance 
of the modern Newton–Raphson method for solv-
ing general equations in one variable). Given a posi-
tive number S and choosing an initial “guess” x0, the 
method produces a sequence of numbers xn converging 
to the square root of S by the rule 

x x
S

xn n

n

+ = −








1

1

2
.

For example, the first approximations to 2   
starting from x0= 1  are x1= 15, x2= 1.416…, 
x3= 1.414215. . . , x4= 1.4142135623746. . . , the last one 
already having 11 correct decimal digits.

Solving the Quadratic Equation
Square roots are used to solve the general quadratic 
equation ax2+ bx+ c = 0, where a, b, and c are param-
eters, and a is not zero. The formula, at least partially 
known to the ancient Greek, Babylonian, Chinese, and 
Indian mathematicians, is 

x
b b ac

a
=

− ± −2 4

2

provided that the so-called discriminant of the equa-
tion, the number b2−4ac, is not negative. 

Imaginary Numbers
The Italian mathematician Rafael Bombelli, in his book 
L’Algebra written in 1569, proposed the introduction of 
a new number i, which should denote the square root 
of −1. Multiplying the number i by real numbers would 
yield square roots of negative real numbers. The new 
numbers so obtained are called “imaginary numbers,” 

a name introduced by René Descartes (who meant it to 
bear a derogatory connotation). A new number system is 
obtained with the numbers formed by adding a real and 
an imaginary number; such numbers are called “com-
plex numbers.” Complex numbers can be added, multi-
plied, and divided, and the preceding quadratic formula 
shows that any quadratic equation has two solutions 
that are complex numbers; this remains true even if the 
parameters a, b, c are allowed to be complex number 
themselves. Actually, a stronger result holds true: Carl 
Friedrich Gauss (1777–1855) discovered that any equa-
tion of the form a x a x a x ad d

d d0 1

1

1
+ + + +−

−
. . .  has  

d solutions in complex numbers, an important theorem 
known as the fundamental theorem of algebra. Partly 
thanks to this property, complex numbers are of fun-
damental importance in modern mathematics and in 
many fields of science and engineering, such as tele-
communications.

Implications in Number Theory
Questions regarding squares, square roots, and qua-
dratic forms have played a particularly important role 
in number theory, often giving rise to the simplest 
instances of rich theories. Numbers that are squares 
of integers are called “perfect squares,” the first exam-
ples being 1, 4, 9, 16, 25, . . . . Galileo Galilei examined 
perfect squares in the attempt to understand infin-
ity. Leonardo Fibonacci wrote a number theory book 
called Liber Qudratorum, the book of squares.

The problem of representing integers as sums of 
perfect squares has also received much attention. 
Pierre de Fermat (c. 1607–1665) proved that the odd 
prime numbers that are sums of two perfect squares 
are exactly those that have remainder 1 when divided 
by 4, an example being 13 = 22 + 32 (whereas, for exam-
ple, the prime number 7 has no such representation). 
Joseph Louis Lagrange (1736–1813) proved that every 
positive integer can be written as the sum of at most 
four perfect squares (for example, 15 = 9 + 4 + 1 + 1); 
three squares suffice only for those numbers which 
are not of the form 4 8 7k m +( ), as was later proved by 
Adrien-Marie Legendre.

In his 1801 masterpiece Disquisitiones Arithmeti-
cae, written at the age of 21, Gauss investigated two 
problems whose generalizations are still major top-
ics of current research. The first one is related to the 
question of representing integers as the sum of squares 
and asks for a classification of binary quadratic forms, 
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which are functions of two variables x and y of the 
shape f x y ax bxy cy,( ) = + +2 22 , where a, b, and c 
are integer parameters, in terms of the set of integers 
they represent—the set of possible values of f x y,( ) 
as x and  y range among the integers. The second prob-
lem considered by Gauss is the following: given two 
odd prime numbers p and q, is it possible to write p as 
the difference of a perfect square and a multiple of q 
(in symbols p n mq= −2 )? Conversely, is it possible to 
write q as the difference of a perfect square and a mul-
tiple of p? Gauss proved that if at least one of p, q leaves 
remainder 1 when divided by four, then the two ques-
tions have the same answer; and that if p and q both 
leave remainder 3 when divided by 4, then the answer 
to the second question is “no” whenever the answer to 
the first question is “yes” and vice versa. 

As a consequence of this result (known as the “qua-
dratic reciprocity law”) he was able to give an efficient 
method for answering the question. In fact, Gauss found 
not one but eight different proofs of this fact, which is 
so central in modern number theory that about 200 
more proofs were later found. 

Further Reading
Conway, John H., and Francis Y. C. Fung. The Sensual 

(Quadratic) Form. Washington, DC: Mathematical 
Association of America, 1991.

Mazur, Barry. Imagining Numbers: (Particularly the 
Square Root of Minus Fifteen). New York: Farrar, 
Straus and Giroux, 2003.

Nahin, Paul J. An Imaginary Tale: The Story of i. 
Princeton NJ: Princeton University Press, 2010.

Daniel Disegni

See Also: Babylonian Mathematics; Carpentry; 
Chinese Mathematics; Numbers, Complex; Numbers, 
Rational and Irrational; Pythagorean School.

Stalactites and  
Stalagmites
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Geometry.

Summary: The growth, age, and shape of stalactites 
and stalagmites can be mathematically calculated, 
depending on a variety of variables.

Stalactites and stalagmites are secondary minerals, also 
called “speleothems,” formed as calcium carbonate, cal-
cium oxide, and other minerals first dissolved in water 
and are then precipitated as water drips. Stalactites 
hang from cavern ceilings and concrete structures, and 
stalagmites rise from floors, sometimes meeting to cre-
ate columns. Mathematicians, statisticians, geologists, 
and other scientists involved in studying stalactites and 
stalagmites develop complex, interdisciplinary theories 
and models as well extensions and applications. This 
work draws from many areas of mathematics, chemis-
try, and physics, especially fluid dynamics.

Growth and Dating
Stalactites and stalagmites form from chemical reac-
tions involving ground water and minerals in the earth 
and the open areas of caves. The reactions typically 
consist of dissolving, precipitating, and—sometimes—
evaporation. Chemical reactions of minerals first dis-
solving in water and then precipitating out of water 
are directly opposite to one another. The mathematical 
analogy of this relationship is an inverse function, and 
in either case, these processes may be quantified mathe-
matically using standard chemical notation and formu-
las. Some stalactites and stalagmites are slow-forming, 
such as those made of calcium carbonate. Concrete or 
gypsum stalactites, which are made from more water-
soluble materials, form much faster. For example, cal-
cium hydroxide, which originates concrete stalactites, is 
about 100 times more soluble than calcium carbonate. 
Gypsum stalactites are formed by simple evaporation.

Dating of stalactites and stalagmites is complex 
because fluctuations in temperature or humidity can 
affect the pace of growth in such ways that length is 
not directly proportional to age. In some caves, because 
of minerals dissolving in water seasonally, stalactites 
and stalagmites may have annual bands, much as trees 
have rings, visible by the naked eye or under ultravio-
let light. Dating with such direct methods, when avail-
able, can then be used to mathematically estimate and 
reconstruct temperature and humidity variation pat-
terns in ancient times. However, the process is cur-
rently not reliable for anything less than very drastic 
climate changes.
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Another method of dating involves collecting data 
on stalactite and stalagmite growth over several years. 
Then, data are used to determine the relationship 
between the size and the age, with approximations such 
as the method of least squares.

Dating with radioactive isotopes measures the ratio 
between a radioactive element, usually uranium, and the 
product of its radioactive decay. Electron spin resonance 
(ESR) dating is based on measuring radiation damage 
on calcium that forms stalactites and stalagmites. 

These three methods of dating consistently produce 
average growth rates of about 0.1 millimeters (0.004 
inches) per year in lime cave stalactites, with several 
times slower rates for stalagmites. Gypsum and con-
crete stalactites, formed by different reactions, grow 
several hundred times faster. 

Unique, Optimal Shape
Plato supported the notion that there are true or ideal 
forms in nature, many of which may be expressed geo-
metrically. While stalactites vary widely in size, they all 
tend to have a distinct, uniform shape that varies only 
by scale or magnification. Physicist Raymond Goldstein, 
part of an interdisciplinary team that investigated the 
mathematics of stalactite shape, said, “Although any par-
ticular stalactite may have some bumps and ridges that 
deform it, one might say that within all stalactites is an 
idealized form trying to get out.” Using equations from 
fluid dynamics and other information about stalactite 
growth, the team developed a simulation and grew vir-
tual stalactites under a variety of conditions, which they 
compared to real stalactites. The broad range of initial 
conditions for the mathematical model as well as for sit-
uations in real caves produced the same shape, though 
in caves, shapes can be distorted by impurities or breaks. 
The findings relate to other natural growth situations, 
including thermal vents and mollusk shells. To mea-
sure stalactites’ shapes exactly without destroying them, 
the researchers use high-resolution digital cameras and 
scaled photography. This work also facilitates the math-
ematical study of stalactites’ rippled patterns.

Further Reading
Ford, Derek, and Paul Williams. Karst Hydrogeology and 

Geomorphology. Hoboken, NJ: Wiley, 2007.
Pickover, Clifford. The Math Book: From Pythagoras to 

the 57th Dimension: 250 Milestones in the History of 
Mathematics. New York: Sterling Publishing, 2009.

Short, Martin, et al. “Stalactite Growth as a Free-
Boundary Problem: A Geometric Law and Its Platonic 
Ideal.” Physical Review Letters 94 (2005).

Maria Droujkova

See Also: Carbon Dating; Caves and Caverns;  
Probability; Transformations.

State Legislation
See Government and State Legislation

Statistics Education
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Data Analysis and Probability.
Summary: Statistics education has grown and 
adapted since the nineteenth century.

At the start of the twentieth century, science fiction 
author H. G. Wells asserted, “Statistical thinking will 
one day be as necessary for efficient citizenship as 
the ability to read and write.” While use of statistical 
methods dates to earlier times, the first college statis-
tics departments were founded in the early twentieth 
century, and many textbooks were written on statisti-
cal subjects like the design of experiments. A century 
after Wells’s prediction, the notion of statistical think-
ing permeates all levels of education from kindergarten 
through college. In the early twenty-first century, there 
are increasing calls for statistical literacy in the United 
States and abroad in order to help people manage an 
increasingly complex and data-driven world. 

Etymology
The word “statistics” derives from the term “state arith-
metic,” which refers to the various counting and calcu-
lating operations necessary for governments to operate 
effectively. The ancient Babylonians, Egyptians, Greeks, 
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Romans, Chinese, and others appear to have used vari-
ous kinds of mathematics for activities like partition-
ing land and determining army sizes. The eleventh-
century Domesday Book, a survey of England ordered 
by William the Conquerer, is another example of such 
state arithmetic. Statistician Maurice Kendall cites the 
first possible occurrence of the term “statistics” in the 
sixteenth-century work of Italian historian Girolamo 
Ghilini, who wrote about “civile, politica, [and] statistica 
e militare scienza.” However, he also traces the concep-
tual beginnings of the field to the “political arithmetic” 
of the seventeenth century and the work of researchers 
like pioneer demographers John Graunt and William 
Petty, who examined population growth and commerce 
in London versus Rome and Paris; and mathematician 
Edmond Halley, who some consider to be the founder 
of actuarial science for his work on life expectancy tables 
and insurance calculations. German historian and econ-
omist Gottfried Achenwall is frequently credited with 
inventing the German form of the word “statistics” in 
the eighteenth century and the related term Staatswis-
senschaft for political science. Their shared root staats 
means “state.” Scottish politician John Sinclair appears 
to have been the first to use the term “statistics” in Eng-
lish in his Statistical Accounts of Scotland, a late eigh-
teenth-century work addressing people, geography, and 
economics. He said: “I thought a new word might attract 
more public attention, I resolved to use it.” 

Historical Applications
In the nineteenth century, the ideas of statistical count-
ing and calculating began to spread into a wider variety 
of political, social, scientific, and financial applications. 
For example, British physician William Farr received 
statistical training in France and applied statistics to 
medicine and models of epidemic diseases, calling his 
methods “hygiology” after the word “hygiene.” He is 
credited as the founder of the field of epidemiology. 
Another pioneering epidemiologist was physician John 
Snow, who famously used statistical methods to trace 
the source of an 1854 cholera outbreak in London. His 
conclusions were politically controversial. In approxi-
mately the same period in the United States, self-taught 
statistician Lemuel Shattuck was appointed to plan a 
census of Boston in 1845 and later helped plan national 
census activities. He ultimately helped implement many 
local and state public health measures. Governments, 
businesses, and academic institutions increasingly 

used data and statistical methods to inform decisions. 
During this period, countless mathematicians, statisti-
cians, economists, scientists, and others contributed to 
the development of statistical methods and the math-
ematical foundations of statistics, as well as the related 
field of probability. Many of them addressed both the 
theory and application of statistics.

Historical Education
Universities had existed in Europe since the Middle 
Ages. In other parts of the world, there were centers of 
learning at which scholars gathered to exchange ideas 
and teach. However, education in many academic sub-
jects was often accomplished through mentorships or 
private tutoring. For example, nineteenth-century stat-
istician and nurse Florence Nightingale was tutored in 
arithmetic, algebra, and geometry. She, in turn, tutored 
others before becoming involved in nursing. One of her 
tutors was the well-known mathematician of the period, 
James Sylvester. She was also influenced by the work of 
Farr and corresponded with mathematician Adolphe 
Quetelet, who was a pioneer in the use of statistics for 
anthropometry and criminology. She called him “the 
founder of the most important science in the world.” 

Other statisticians formed relationships with univer-
sities for research. For example, Karl Pearson, Francis 
Galton, and Walter Weldon worked at University Col-
lege London. Pearson gave statistics lectures starting in 
1894, and the trio founded the journal Biometrika in 
1901 “as a means not only of collecting or publishing 
under one title biological data of a kind not system-
atically collected or published elsewhere in any other 
periodical, but also of spreading a knowledge of such 
statistical theory as may be requisite for their scientific 
treatment.” Upon his death in 1911, Galton bequeathed 
the university a large endowment. Pearson became the 
first Galton Professor of Eugenics, sometimes called 
Galton Professor of Applied Statistics, perhaps because 
of the controversial nature of eugenics. That same year, 
Pearson was instrumental in creating the university’s 
Applied Statistics department, now the Department of 
Statistical Science, which was recognized as the world’s 
first college statistics department. It merged biomet-
rics and eugenics (genetics) laboratories that had been 
founded by Pearson and Galton—though the Galton 
Laboratory later moved to the Department of Biology. 
Some other statisticians who worked or studied at Uni-
versity College London in the early nineteenth century 
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include William “Student” Gossett, who is credited 
with the development of the Student’s t distribution; 
Karl Pearson’s son, Egon Pearson, who became the 
head of the Applied Statistics department when it split 
with the Department of Eugenics; Ronald Fisher, who 
was the first head of the Department of Eugenics and is 
referred to by some as the “father of modern statistics;” 
and Jerzy Neyman, who co-developed what is often 
called “Fisher–Neyman–Pearson inferential methods” 
or “classical” methods of statistical inference. These 
techniques typically use what is known as the “frequen-
tist approach” to statistical analysis, which is based on 
defining probabilities of events as the limits of their 
relative frequencies over a large number of trials or 
experiments. It is perceived by many as being wholly 
objective and therefore “scientific.” This approach is in 
contrast to Bayesian methods, named for mathemati-
cian Thomas Bayes. Bayesian statistical methods allow 
for subjective or belief-driven probabilities that may or 
may not be derived from observation or experimenta-
tion. The Applied Statistics department at University 
College London temporarily relocated during World 
War II; the war was to have a broad impact on math-
ematics and statistics in Europe and the United States.

Education in the United States
The Unites States was also developing its own col-
lege-level education programs at the beginning of the 
twentieth century. Similar to the department at Uni-
versity College London, many programs and other 
efforts started with individuals offering courses and 
partnerships between researchers and universities. One 
often-cited example is Iowa State University. George 
Snedecor, a professor in the Department of Math-
ematics, taught courses that included statistics con-
tent starting in 1914. He often focused on agriculture 
problems, a significant research area at the university. 
In 1924, he co-wrote a worldwide publication about 
computational statistical methods with Henry Wallace, 
who would later become Secretary of Agriculture and 
vice president of the United States. Iowa State created 
a statistical consulting and computing service in 1927, 
which was available to researchers in many disciplines. 
This service led to Iowa State’s creation of the first rec-
ognized statistical laboratory in the United States, in 
1933, and its Department of Statistics, in 1947. How-
ever, statistics degrees were offered before that time, 
beginning with Gertrude Cox’s master’s degree in 1931. 

Cox went on to help found the Department of Statis-
tics at North Carolina State University, one of the old-
est statistics departments in the United States. She was 
the first female full professor and first female depart-
ment head at the school and went on to start other col-
lege programs as well. An anecdote about her hiring at 
North Carolina State reports that, when Snedecor was 
asked to recommended five men for the job, he added 
to his letter: “. . . if you would consider a woman for this 
position I would recommend Gertrude Cox.”

European statisticians also proved influential on 
U.S. statistics education and, in some cases, on govern-
ment policy. Fisher visited Iowa State in the 1930s, and 
his agricultural work at the Rothamsted Experimen-
tal Station made a great impact on Snedecor. William 
Cochran, who was born in Scotland, also worked at the 
Rothamsted Experimental Station and taught at Iowa 
State. He went on to help create many statistics depart-
ments, including the one at Harvard, and he served on 
the committee that produced the 1960 Surgeon Gener-
al’s Report on Smoking and Health. Statistics prolifer-
ated, and similar efforts took place elsewhere, such as 
at the University of California, Berkeley. Neyman, who 
was born in Poland and also studied in England, France, 
and Russia, started working at Berkeley in 1938. Like 
many mathematicians and statisticians of the time, 
he was fleeing the growing Nazi influence in Europe. 
Prior to World War II, colleges sometimes offered a 
few undergraduate and graduate statistics courses but 
entire departments were still fairly rare. Thanks largely 
to Neyman’s efforts, Berkeley had a department by 1955. 
He would also contribute significantly to experimental 
design, including some methods used by the United 
States Food and Drug Administration to test new medi-
cines. Berkeley would become a center for mathemati-
cal statistics and was chaired for a time by statistician 
and mathematician David Blackwell, the first tenured 
African-American professor at Berkeley. 

Post–World War II Statistics Education
Statistics and statistics education exploded after World 
War II, influenced by developments that occurred dur-
ing the war and the subsequent Cold War. Statisticians 
had contributed significantly to the war effort in both 
the United States and Europe. For example, Hungar-
ian mathematician and statistician Abraham Wald, 
who had suffered persecution for being Jewish, helped 
solve the problem of where to armor British bombers 
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against antiaircraft fire. Others, like French-German 
Wolfgang Doeblin, would die as a result of the war. 
Later studies of Doeblin’s works showed that he was 
an early pioneer of Markov chains, named for Andrei 
Markov. John Tukey was one of the most influential 
statisticians working in the mid- and later twentieth 
century. According to statistician Frederick Mosteller, 
the first chair of Harvard’s statistics department and 
an influential force in statistics education: “He prob-
ably made more original contributions to statistics 
than anyone else since World War II.” Tukey worked 
at the government’s Fire Control Research Office dur-
ing World War II, among his many roles. At the same 
time, he was often praised for his teaching. Mathema-
tician Robert Gunning called him a “very lively pres-
ence on campus” and “a good and energetic teacher,” 
who also helped schedule class and exam times in his 
head. As a member of Princeton’s mathematics depart-
ment, Tukey helped found the school’s Department of 
Statistics in 1966, following earlier work by statistician 
Samuel Wilks, who had worked for the Office of Naval 
Research and profoundly influenced the application of 
statistics to military planning. The American Statistical 
Association’s Samuel S. Wilks Award was named in his 
honor. Later, the department became the Committee 
for Statistical Studies, which encourages cross-disci-
plinary study of statistics and coordinates courses in 
many departments and programs. 

The post-war extension of statistics into areas like 
clinical trials (pioneered by statistician Austin Bradford 
Hill), business, manufacturing (influenced by statisti-
cians like W. Edwards Deming), and financial econom-
ics (for which economists Harry Markowitz, Merton 
Miller, and William Sharpe won a Nobel Prize), as well 
as the revival of Bayesian methods, meant that statistics 
was reaching a broader audience. It also meant that, 
more often, statistics courses were taught outside tra-
ditional mathematics and statistics departments. The 
debate over who should teach statistics was not new. 
Given that the discipline had been developed within so 
many fields—agriculture, psychology, biology, sociol-
ogy, business, just to name a few—it was only natural 
that teaching would occur within these fields. Statisti-
cian John Wishart, who had worked with Pearson at 
University College London and with Fisher at Rotham-
sted, asserted that non-statisticians were not equipped 
to teach statistics or supervise statistical research. Fisher 
took a different approach, citing statistics’ basis in 

research and applications and arguing for focused sta-
tistics offerings in departments in which statistics were 
often used, like psychology and biology. Around 1940, 
Harold Hotelling, who taught at Stanford University, 
Columbia University, and the University of North Car-
olina Chapel Hill, presented the idea that being a strong 
mathematician is not sufficient for teaching statistics, 
so mathematicians and statisticians were not always 
superior instructors versus individuals in other disci-
plines. He asserted that a statistics teacher must meld 
quantitative skills with “a really intimate acquaintance 
with the problems of one or more empirical subjects in 
which statistical methods are taught.” Hotelling recog-
nized that in typical academic structures, there might 
be some reluctance among faculty to teach courses that 
lay outside their specialty areas and that keeping cur-
rent with statistics might be a daunting task for non-
specialists. These issues remain matters of debate at the 
start of the twenty-first century. A study published in 
2000, funded by the National Science Foundation, sug-
gested that students were more likely to receive statis-
tics education from instructors outside mathematics or 
statistics departments.

Employment
Through the 1970s, universities in the United States 
and elsewhere produced many statisticians or statisti-
cally trained practitioners in other disciplines, many 
of them to meet growing industry demands. However, 
employers were showing increasing concern that their 
new employees did not know how to practice statistics 
on the job, even if they had been instructed in current 
applied methods and practices in their academic pro-
grams. The American Statistical Association (ASA), 
which was founded in 1839, created a committee in 
the late 1940s to consider matters related to the train-
ing of statisticians. In 1980, the ASA Committee on the 
Training of Statisticians for Industry presented guide-
lines for programs that train industrial statisticians. 
One conclusion that spurred further debate stated:  
“. . . it is generally agreed that the MS degree is a mini-
mum requirement for the professional statistician . . . 
it is recommended that someone interested in statistics 
as a profession obtain solid foundations in science or 
engineering and mathematics.” Some discussion cen-
tered on balancing theory, applications, and employer-
desired skills such as communication and teamwork. 
In Great Britain, the 1986 report Supply of and Demand 
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for Statisticians cited both teaching factors and unre-
alistic expectations on the part of employers. Overall, 
in the 1980s, there were many general calls from stat-
isticians to increase both the number and quality of 
programs, with mixed success. In the 1990s, there were 
also calls to increase the quality of undergraduate edu-
cation and provide more interdisciplinary opportuni-
ties to graduate-level statisticians to “modernize” sta-
tistics for the twenty-first century. This call hearkened 
back to statistics’ inherently interdisciplinary roots in 
previous centuries.

New Emphasis
The hallmarks of statistics education in the latter twen-
tieth century and into the twenty-first century would 
be an increased focus on concepts over computation, 

statistical literacy, statistical thinking, use of real data, 
use of technology for both data analysis and concep-
tual understanding, and assessment to gauge student 
learning and understanding. Reports by several pro-
fessional mathematical and statistical organizations 
contributed to this shifting educational emphasis. For 
example, the 1991 Focus Group on Statistics Edu-
cation, part of the Curriculum Action Project of the 
Mathematical Association of America, produced Heed-
ing the Call for Change. Later, the ASA Undergraduate 
Statistics Education Initiative (1999) focused on many 
aspects of education. One concern they noted was that 
many students were having a negative first experience 
in introductory statistics. In 2005, the Guidelines for 
Assessment and Instruction in Statistics Education 
(GAISE) committee, sponsored by ASA, produced 
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T he advent of computers contributed to 
changes in statistical practice and new 

debates related to statistics teaching. Until 
then, many statistics courses had, of necessity, 
focused on teaching computational formulas, and 
statistical practice relied on techniques that were 
computationally tractable for researchers ana-
lyzing data by hand. Larger and larger data sets 
were becoming more common, requiring computer 
assistance for analyses. In the late 1960s, social 
scientist Norman Nie and computer scientists C. 
Hadlai Hull and Dale Bent developed the Statisti-
cal Package for the Social Sciences (SPSS) for 
mainframe computers. Academic use of the pro-
gram soared when McGraw-Hill published a user’s 
manual in 1970. By 1984, SPSS was the first sta-
tistical package offered for disk operating system 
(DOS) personal computers. Also in the 1970s, 
Numerical Algorithms Group (NAG) introduced its 
Algol 60 and Fortran algorithm libraries for main-
frame systems. 

The Statistical Analysis System (SAS) Institute 
emerged in 1976 from roughly a decade of work, 
starting with the University Statisticians Southern 
Experiment Stations, a consortium of universities 
funded by the U.S. Department of Agriculture and 

National Institutes of Health. SPSS, NAG, and SAS 
continue in the twenty-first century to offer a breadth 
of statistical software. Many other software pack-
ages and algorithms to graph and analyze data also 
emerged, some for general purposes and others 
for specific applications. One example is LISREL 
(an abbreviation of “linear structural relations”), 
which is used for structural equation modeling. It 
was developed by statisticians Karl Jöreskog and 
Dag Sörbom in the 1970s. Computers also revi-
talized interest in computationally intensive exact 
tests, iterative methods such as bootstrapping, and 
Bayesian analyses. Instructors debated the role of 
computers in the classroom. Many argued for sta-
tistical programming in languages such as Fortran 
or C, rather than point-and-click packaged routines, 
believing that statisticians should understand what 
the computer was doing. On the other hand, some 
classroom instructors advocated for the pedagogi-
cal utility of programs that computed statistics in a 
quick and easy manner, leaving the students free 
to focus on interpretation of results and “statistical 
thinking.” The debate is ongoing. In the twenty-first 
century, many statistical programs contain both 
programming and menu-driven options, such as  
S-PLUS and its freeware version R. 

Impact of Computers



K–12 and undergraduate reports focusing on instruc-
tional practice and assessment. There have also been 
recurring meetings, such as the International Confer-
ence on Teaching Statistics (ICOTS), which allow sta-
tistics instructors to address and debate issues, includ-
ing the place of “classical” statistical methods versus 
Bayesian or computationally intensive exact methods 
in introductory classrooms; how best to meet the needs 
of non-majors taking statistics courses in mathemat-
ics and statistics departments; the “best” structure for 
introductory statistics textbooks; or the role of online 
tools and distance education. 

The 2000 edition of the National Council of Teach-
ers of Mathematics Principles and Standards for School 
Mathematics outlined standards for mathematics edu-
cation that included statistics threaded from kinder-
garten through the last year of high school. Previously, 
statistics had been offered in various forms in high 
schools, though it presented some difficulty because 
many did not think it fit neatly into the traditional alge-
bra, geometry, trigonometry, calculus sequencing used 
by many schools. The Advanced Placement (AP) Sta-
tistics exam was first offered in 1997. More than 7000 
students took the exam, the most for a first offering of 
any AP exam as of 2010, and between 1996 and 2010 
the rate of enrollment increased more quickly than any 
other course offered by AP. 

Further Reading
Aliaga, Martha, Carolyn Cuff, Joan Garfield, Robin 

Lock, Jessica Utts, and Jeff Whitmer. “Guidelines for 
Assessment and Instruction in Statistics Education 
(GAISE) College Report.” Washington, DC: American 
Statistical Association, 2005. http://www.amstat.org/
education/gaise/.

Anderon, C. W., and R. M. Loynes. Teaching of Practical 
Statistics. Hoboken, NJ: Wiley, 1987.

Fienberg, Steinberg. “When did Bayesian Inference 
Become ‘Bayesian?’” Bayesian Analysis 1, no. 1 (2006).

Gargield, Joan, ed. Innovations in Teaching Statistics 
(MAA Notes #65). Washington, DC: The 
Mathematical Association of America, 2005.

Hulsizer, Michael, and Linda M. Woolf. A Guide to 
Teaching Statistics: Innovations and Best Practices. 
Hoboken, NJ: Wiley-Blackwell, 2009.

Salsburg, David. The Lady Tasting Tea: How Statistics 
Revolutionized Science in the Twentieth Century.  
New York: Holt Paperbacks, 2002.

Stigler, Stephen. “A Historical View of Statistical 
Concepts in Psychology and Educational Research.” 
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Sarah J. Greenwald
Jill E. Thomley

See Also: Blackwell, David; Data Analysis and 
Probability in Society; Expected Values; Measures 
of Center; Normal Distribution; Permutations and 
Combinations; Probability; Randomness; Scatterplots.

Step and Tap Dancing
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Geometry; 
Representations.
Summary: Step and tap dancing each involve 
rhythms and combinations that can be analyzed 
mathematically.

Step dance is the type of dance focusing on feet move-
ments. It de-emphasizes the other two spatial dance 
aspects—hand and body movement—and repositions 
dancers relative to the ground to form movement pat-
terns. There are forms of step dancing in several cul-
tural traditions, such as Malambo from Argentina, 
Irish stepdance, African-American stepping, and tra-
ditional Cherokee dancing. Related forms include clog 
and tap dancing. 

The movements of these styles of percussive dance 
may be performed by a single dancer or choreographed 
among several dancers. Tony Award–winning choreog-
rapher and dancer Danny Daniels noted that, while 
an individual dancer may improvise, groups must be 
coordinated. The rhythms and counts for the dances 
he designed or performed on Broadway could be orga-
nized and detailed using mathematically based musi-
cal notation. Dance theorist Rudolf Laban used ideas 
from various fields, including crystallography, when 
he modeled dance dynamics. Scientists and dancers 
continue to develop notation and models to express 
human movement in tap and other dances. Dance 
algorithms may help create natural robotic movement. 
Dancer Gregory Hines said: “My style is part choreog-
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raphy, part improvisation. That gives me a chance to 
show people the possibilities of tap dancing, which, at 
its heart, is mathematics with endless possibilities.”  

Ratio and Proportion
There are several ratios related to music and choreog-
raphy that determine movement in step dancing. Music 
time signature is written as a fraction with the denomi-
nator signifying the size of the notes used, and the 
numerator signifying the total length—in such notes—
of a bar, which is the unit of music. For example, tradi-
tional music for Irish slip-jig has 9/8 time signature in 
the note pattern: quarter, eighth, quarter, eighth, dotted 
quarter (three-eighth). The five notes in the time signa-
ture correspond to two-and-a-half dance steps per bar, 
with long graceful slides between the steps.

The formula for a dance includes the number of bars 
in each repeating cycle (sometimes performed symmet-
rically) first for one starting foot and then the other. For 
example, a song that has 40 bars may be choreographed 
to include five step cycles, each spanning eight bars. 
Another ratio important for step dancing is the tempo 
of music, measured in beats per minute (bpm). Danc-
ing competitions specify the tempo range for each type 
of dance. For example, single jig must be 112–120 beats 
per minute. Tap dancers of the past used their signature 
“time steps” (particular combinations of taps) to com-
municate the tempo to the accompanying band.

Patterns and Improvisation
In step dances, themes are expressed using sequences of 
the basic elements or steps. For example, common ele-
ments in tap dancing include shuffles, flaps, pullbacks, 
wings, and stomps. These sequences may be strictly 
choreographed from beginning to end, sometimes 
with repeating patterns or permutations of shorter ele-
ments, which can be repeated by any dancer who has 
learned the sequence. Improvisation allows the dancer 
to take basic elements and rearrange them in ways that 
may appear to be random to the casual observer.

Some step dance music has built-in departures from 
the standard bar structures. For example, Irish step-
dance “crooked tunes” may have seven-and-one-half 
bar parts in addition to eight bar parts. Step dance pat-
terns have multiple levels: steps within a bar, combi-
nations of steps spanning multiple bars, and patterns 
of these step combinations. Order and perceived ran-
domness can be manifested at all levels.

Dance-Dance Revolution
Dance-Dance Revolution (DDR) is a step dancing video 
game. The goal of the game is to match the pattern of 
steps on the screen and their rhythm on the special gam-
ing pad with four or eight foot positions. The combina-
tion of visual, audio, and kinesthetic representations of 
the same rhythm have kept versions of the game popu-
lar around the world since its release in 1998.

Later versions of DDR use a mathematical visualiza-
tion of multi-dimensional data, called radar diagrams, 
to rate the difficulty of individual dances. The variables 
describe different characteristics of the dance, such as 
steam (the density of steps) and chaos (the amount of 
steps that do not occur on beat).

Further Reading
Apostolos, M. K., M. Littman, S. Lane, D. Handelman, 

and J. Gelfand. “Robot Choreography: An Artistic-
Scientific Connection.” Computers & Mathematics 
with Applications 32, no. 1 (1996).

Maletic, Vera. Dance Dynamics: Effort and Phrasing. 
Columbus, OH: Grade A Notes, 2005.

Sethares, William. Rhythm and Transforms. New York: 
Springer, 2007.

Maria Droujkova

See Also: Ballroom Dancing; Contra and Square 
Dancing; Permutations and Combinations; Video Games.

Stethoscopes
Category: Medicine and Health.
Fields of Study: Algebra; Geometry.
Summary: Some modern stethoscope designs 
digitize sound waves, which can be modeled and 
analyzed.

The stethoscope is perhaps one of the most iconic 
pieces of medical equipment and is used by doctors 
in nearly every area of clinical practice around the 
world. From its beginnings as a simple tube to amplify 
sound, in the twenty-first century the stethoscope is 
evolving into a highly mathematical and computer-
ized tool. It can record, analyze, and display diagnostic  
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information using software and algorithms developed 
from clinical data using a variety of concepts and 
techniques from statistics, signal processing, spectral 
analysis, and related sciences. Further, mathematical 
models and simulations are increasingly used to sup-
port and validate clinical results. 

History and Development
French physician René Laennec is credited with the 
invention of the “stethoscope” in 1816. The name comes 
from the Greek words meaning “chest” and “to examine.” 
Knowing that solid bodies conduct and amplify sound, 
Laennec used tightly rolled and glued sheets of paper 
to hear patients’ heartbeats. Experimenting with cylin-
ders of various materials, he observed that an aperture 
maximized magnification of internal body sounds. His 
ultimate design was a straight, eight-inch wooden tube 
with a conical chest piece and a funnel-shaped stopper. 
Later physicians developed stethoscopes from materi-
als like rosewood, papier-mâché, and even glass. The 
binaural form was popularized in the United States in 
the early 1900s by William Osler. 

In the twenty-first century, the binaural acoustic 
stethoscope consists of a chest piece with a plastic disc 
(called a “diaphragm”) on one side and a hollow cup 
(called a “bell”) on the other. The bell transmits low fre-
quency sounds and the diaphragm transmits high fre-
quency sounds. A majority of clinicopathological cor-
relations and diagnostic techniques used today result 
from patient data acquired by physicians listening with 
stethoscopes or a bare ear. Refinements in design and the 
increasingly widespread use of stethoscopes—coupled 
with training—improved observations. With respect 
to the heart, these included better precision in timing 
cardiovascular sounds, focusing on segments of the car-
diac cycle in turn, and devising quantitative symbols to 
describe sounds. On the other hand, stethoscopes have 
also been investigated as a vector of disease transmis-
sion in busy clinical settings like emergency rooms.

Mathematical Modeling
Electronic systems of collecting and analyzing data have 
begun to supplement or even supplant the use of the 
stethoscope. Some predict that before 2020, manual 
stethoscopes will become obsolete. Electronic stetho-
scopes convert acoustic sound waves into electrical sig-
nals, which can be amplified and enhanced, producing 
both visual and audio output. Software can then repre-

sent cardiopulmonary sounds graphically and interpret 
them using mathematical algorithms. Signals may also 
be recorded or transmitted, facilitating remote diagnosis 
and teaching. Some research suggests that mathematical 
methods improve accuracy in diagnosing conditions, 
such as heart murmurs, but some methods have not yet 
shown clinical usefulness. Mathematicians and physi-
cians continue to investigate and model cardiac sounds 
from murmurs and prosthetic valves, as well as other 
types of hemodynamic data, using techniques from 
spectral waveform analysis and physics concepts like 
damped oscillations of viscoelastic systems. They have 
also sought to quantify pulmonary sounds, like wheez-
ing and crackles, and address signal processing issues, 
such as noise reduction, amplification, and filtration. 

Measuring Blood Pressure 
Blood pressure is the amount of pressure exerted by the 
blood upon the arterial walls. A clinician uses a device 
known as a “sphygmometer”—a device that pumps air 
into a cuff wrapped around a patient’s arm—and lis-
tens for pulse sounds with a stethoscope, observing the 
height in millimeters of a column of mercury supported 
by the blood pressure. The sounds are known as “Korot-
koff sounds,” named for Russian physician Nikolai 
Korotkoff. A contraction of the heart that causes a pulse 
beat that supports a column of mercury 120 millimeters 
high is called a “systolic reading of 120.” The reading in 
the period between contractions of the heart or pulses 
is called the “diastolic blood pressure.” If the diastolic 
reading is 80 millimeters, the blood pressure is recorded 
as 120/80 and is read as “120 over 80.” These numbers 
represent a ratio rather than a true fraction. The U.S. 
National Heart, Lung and Blood Institute defines nor-
mal blood pressure to be <120 for systolic and <80 for 
diastolic pressure and defines hypertension to be >140 
or >90 for systolic and diastolic, respectively. These val-
ues are derived in part from statistical studies of typical 
human variation in blood pressure and associations with 
medical conditions like stroke and heart disease. Early 
diagnosis and appropriate treatment of hypertension is 
recognized as one of the most significant advances of 
modern medicine in reducing morbidity and mortality.

Further Reading
Bishop, P. J. “Evolution of the Stethoscope.” Journal of the 

Royal Society of Medicine 73 (1980). http://www.ncbi 
.nlm.nih.gov/pmc/articles/PMC1437614.
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Pullan, Andrew, Leo Cheng, and Martin Buist. 
Mathematically Modeling the Electrical Activity of 
the Heart: From Cell to Body Surface and Back Again. 
Singapore: World Scientific Publishing, 2005.

Karen Doyle Walton

See Also: Diagnostic Testing; EEG/EKG; Mathematical 
Modeling.

Stock Market Indices
Category: Business, Economics, and Marketing.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement.
Summary: Stock market indices use sophisticated 
mathematical formulas to track the performance of 
the stock market and to help inform investors.

Mathematical stock market indices are used for a vari-
ety of purposes: as indicators of overall market health 
and activity, as measures of specific corporate profit-
ability and activity, as performance metrics against 
which institutional investors (such as mutual fund 
managers) are measured, and for individual portfolio 
optimization and risk assessment. Some mathemati-
cians and economists were developing price-based 
indices as early as the nineteenth century as well as 
analyzing pricing trends for explanation and predic-
tion of market behavior. The Dow Jones Industrial 
Average (DJIA), named for journalist Charles Dow and 
statistician Edward Jones, appeared in 1896. Initially, it 
was a simple sum or average of the stock prices from 
12 large companies. Since then, stock market indices 
have increased in their variety and mathematical com-
plexity. For example, technical analysts use Fibonacci 
retracement levels, named after mathematician Leon-
ardo Pisano Fibonacci, in order to model support and 
resistance levels in the currency market. Mathemati-
cians and statisticians are instrumental in producing 
these indices. They also conduct theoretical and applied 
studies of market performance using these indices as 
data. In 1999, French-American mathematician Ben-
oit Mandelbrot showed that market volatility can 
be modeled by fractal geometry, which contradicted 

some aspects of modern portfolio theory. Author and 
mathematician John Allen Paulos addressed many 
mathematical stock market issues in his popular book  
A Mathematician Plays the Stock Market.

Definition and Examples
When describing the performance of the stock market 
as a whole (or a segment of the market, such as selected 
large-company stocks, or all small-company stocks, or 
stocks of all companies belonging to a particular indus-
try), one is usually referring to a stock market index. 
Such an index is a representation of a hypothetical 
portfolio that contains a certain quantity of each of the 
stocks in the market (or market segment). The quantity 
of each stock in the fictitious portfolio depends upon 
the “weighting” technique employed.

Some of the more commonly encountered stock 
indexes include the following:

• S&P 500, comprised of 500 large-company 
U.S. stocks that cover about 75% of U.S. 
equities

• DJIA, comprised of 30 large-company  
U.S. stocks

• Wilshire 5000, comprised of the most 
common stocks in the United States (although 
not necessarily exactly 5000 of them)

• Nikkei 225, an index of Japanese equities
• FTSE, a collection of indices of British stocks

Building a Stock Market Index
The wide variety of stock market indices fall into sev-
eral weighting categories, each involving a different 
mathematical approach to combining stocks within 
a hypothetical portfolio. One can imagine a poten-
tially unlimited number of ways of creating a portfolio 
that includes numerous company stocks: for example, 
a portfolio comprised of one share of each stock, a 
portfolio comprised of the same dollar amount of 
each stock, and so on. The most common methods of 
weighting stocks within an index are price-weighting 
and market-value-weighting. (To simplify, stock per-
formance is treated as only a function of changes in 
the stock price over time—as capital gains and losses. 
In reality, dividends, stock splits, and a variety of other 
issues must be taken into account, which makes the 
specific mathematical applications more complex than 
represented in this entry.)
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Price-Weighted Indices
A price-weighted stock index represents a theoretical 
portfolio that includes one share of each stock com-
prising the index. The price or value of the index is 
then equal to the average of individual stock prices. 
Therefore, the relative impact of a given company stock 
on the index is a function of the company’s stock price 
per share: larger prices per share imply greater influ-
ence on the index.

Suppose that S ti ( ) represents the per-share price of 
stock i at time t, and let S tI ( ) be the value of the index 
at time t. Then, the price of a price-weighted index 
could be defined as simply the arithmetic average of 
the stock prices in the index:
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where n is the number of stocks comprising the index.
While the value of a price-weighted index is sim-

ple to calculate, typically the measure of most interest 
to an investor is not the actual price of the index, but 
rather the percentage change (the rate of return) in the 
index over a period of time. Let r t ti ( , )+ 1  be the rate 
of return on stock i during the period from time t to 
time t + 1, and let r t tI ( , )+ 1  be the return on the index 
between times t and t + 1 (assume an annual return 
period for purposes of this discussion, but returns can 
also be calculated daily, monthly, quarterly, or over any 
other period of time).  

Then, the return on a price-weighted index is
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Multiplying this value by 100 yields the return expressed 
as a percentage change. The DJIA and other Dow Jones 
averages are examples of price-weighted indices.

Market-Value-Weighted Indices
A market-value-weighted (also called “value-weighted”) 
stock index is one that weights the individual per-share 
stock prices according to the relative market values, or 
market capitalizations (called “market cap” for short), 

of the component stocks. A company’s market cap is 
simply the totally value of its outstanding equity and 
is calculated as the per share stock price multiplied by 
the number of stock shares outstanding. Thus, an indi-
vidual company’s influence on a value-weighted index 
is a function of the overall equity value, or size, of the 
company—larger companies have greater influence on 
the movement of the index.

Using the notation introduced above, and letting 
Ni represent the number of shares of stock i outstand-
ing, the rate of return on a value-weighted stock index 
would be
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The S&P 500 and other Standard & Poor’s indices 
are examples of market-value-weighted indices.

Other Types of Index Weightings
While price-weighted and value-weighted indices are 
common, there are other weighting techniques that 
can be used. For example, it is possible to create an 
index that gives equal weight to the return of each 
stock comprising the index. In such a case, the return 
on the index would be calculated as
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With such an index, the performance of each stock 
has the same impact on the overall index return as 
every other stock.

Another possibility in creating an index would be to 
use geometric, as opposed to arithmetic, averaging. A 
geometric average is calculated by multiplying n num-
bers together and taking the n-th root of the product 
(as opposed to summing the numbers and dividing by 
n, as with an arithmetic average).

The key in interpreting the various types of stock 
market indices is to know their underlying construction 
and to understand and interpret them appropriately. 
Price-weighting and equal-weighting, for example, can 
result in very different index performance indications 
than value-weighting, even relative to the same under-
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lying stock return data. The appropriate index to use in 
a given situation depends upon the specific purpose in 
mind. If one wants a measure of market performance 
that is more influenced by the price movements in 
the stocks of larger companies, for example, a value-
weighted index may be most appropriate. If the sizes 
of companies are not relevant for analytical purposes, 
or if the companies that comprise an index are very 
similar in size and other attributes, a price-weighted or 
value-weighted index may be appropriate.

Further Reading
Bodie, Zvi, Alex Kane, and Alan Marcus. Investments. 

New York: McGraw-Hill/Irwin, 2008.
Paulos, John Allen. A Mathematician Plays the Stock 

Market. New York: Basic Books, 2003.

Rick Gorvett

See Also: Money; Mutual Funds; Pensions, IRAs, and 
Social Security; Probability.

Strategy and Tactics
Category: Government, Politics, and History.
Fields of Study: Geometry; Measurement; Problem 
Solving; Representations.
Summary: Mathematical concepts and processes  
can be used to analyze optimal strategies in a variety 
of situations.

In a competitive situation, such as businesses selling 
similar products, armies engaged in battle, opponents 
playing games, oil companies deciding where to drill, 
and employees bargaining for better salaries, successful 
outcomes depend on choosing the best plan of action 
from among a set of strategies to achieve a specific 
outcome. In many cases, mathematics can be used to 
analyze the situation and help to choose the best strat-
egy. Mathematical techniques have been—and will 
continue to be—developed to address a wide range 
of problems in areas such as military logistics, intel-
ligence, and counterintelligence.

The first step in the process is to determine the 
objective. That goal may be to maximize profit, beat 

the opposing army, or win the game. Next, the possible 
strategies to choose from and the limitations or con-
straints that may affect the choice of strategy need to 
be identified. 

In competitive situations, the opponent’s choice 
of strategy must be taken into consideration as well. 
While there are many examples of systematically ana-
lyzing and selecting the “best” strategies throughout 
history, the twentieth century—especially the World 
War II era—saw the emergence of operations research 
as the discipline that explores and develops systematic 
techniques for making decisions that are the “best” 
in some sense, usually maximizing profits/benefits or 
minimizing costs/liabilities.

Decision making can be approached mathemati-
cally in a number of ways depending upon the situa-
tion involved and the information available.  

Linear Programming: Choosing the Best  
Option When Resources are Limited
Many decision problems arose out of troop supply 
needs during World War II. With a war on several fronts, 
deciding how to ship the limited troops and supplies to 
maximize their effectiveness was daunting. Many of the 
situations had the following characteristics:  

• There were resources needed in specific 
combinations by a number of end users, and 
the amount of each resource was limited. 

• The resources were used proportionally 
for each combination (in other words, to 
assemble whole units from raw materials, 
the number of raw materials needed was the 
same for each unit produced).

• The goal was to maximize the benefit or 
minimize the cost, and the cost or benefit 
was proportionally related to the number of 
units produced (in other words, the more 
produced, the higher the benefit or cost).

 These characteristics yield a mathematical structure 
that is linear. Each resource corresponds to an equation 
or inequality that is a linear combination of unknown 
quantities representing the units to be combined or 
produced The objective function is also a linear com-
bination of the number of units. See Example 1 for a 
very simple, classic example that involves deciding how 
to prepare a “balanced” meal.
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Example 1. A linear programming problem.

A dietician wishes to prepare a salad meal that 
has a minimum amount of calories but still sat-
isfies nutritional requirements. In particular, it 
must have at least 30 grams of protein and at most 
9 grams of fat. The foods available are an ounce 
of lettuce with 4 calories, no fat, and 1 gram of 
protein; and slices of roast beef with 90 calories, 
3 grams of fat, and 16 grams of protein. What 
amounts of lettuce and beef should the dietician 
serve with a diet salad dressing? Minimize calories 
= 4L + 90B, where 1L + 16B ≥ 30 and 3B ≤9.

These problems are easy to solve when they are 
small, like the problem in Example 1. The problems 
that arise in practice—such as those under consider-
ation during World War II—are usually much larger 
and can involve hundreds of unknowns. During World 
War II, British and U.S. mathematicians looked for an 
approach that could make use of computers, which 
were being developed at that time and offered the 
possibility of performing many simple calculations 
quickly. In 1947, too late for the war effort, U.S. math-
ematician George Danzig (1914–2005) developed the 
simplex algorithm for solving linear programming 
problems. The simplex algorithm is an efficient rec-
ipe for solving linear programming problems of any 
size and is very easy to program on a computer. In the 
decades since the development of the simplex algo-
rithm, many industries have used this procedure to 
solve problems in fields as diverse as banking, natural 
resources, manufacturing, and farming.

Linear programming problems are usually used to 
model static situations in that the final solution is essen-
tially the result of one decision made under a clear set of 
assumptions. Many decision problems are more com-
plicated, with a number of intermediate decisions to be 
made. These more dynamic problems often involve a 
probabilistic component as well, with uncertainty play-
ing a complicating role in each decision.

Game Theory
Often, people are faced with a decision in which the 
resulting payoff will depend on external forces that are 
hard to predict (like natural forces). One option may 
always be best, but it is more likely that the best choice 

will simply “depend” on other factors. For example, when 
deciding which crop to plant, a farmer can list seed costs 
and profits based upon yield, but the yield will depend 
on the weather. A table can be made for each crop choice 
based upon several different weather scenarios, with past 
experience used to assign a probability to each possible 
weather scenario. Example 2 provides a standard format, 
usually called the “payoff matrix.”

Example 2. A payoff matrix.

List the possible states of the 
external forces 

List the possible 
actions to choose 

from in making 
the decision

List the gain (profit, benefit, 
etc.) for each combination of 

actions and states.

Many decisions can be similarly structured, includ-
ing determining what stocks to buy, what products to 
market, and what wars to wage. Different people will 
make different decisions depending upon their com-
fort level with risk. 

Strategies for systematic decision making can be 
placed in four categories:

1. Optimist strategy: “MaxiMax” (Maximize the 
maximum gain). Find the best gain for each 
possible action and choose the largest of 
these maximums. Of course, that action may 
have the most risk associated with it, since the 
maximum gain may also coincide with the 
least likely state for the external force. In this 
case, the farmer may plant something that 
would have huge profits but only in the most 
unlikely weather conditions.

2. Pessimist strategy: “MaxiMin” (Maximize the 
minimum gain). Find the smallest gain for 
each action, and choose the largest of these 
minimums. This is a safe choice because 
it yields the minimum guaranteed gain 
regardless of external forces. In this case, the 
farmer may choose a “safe” crop to plant. If 
weather is really good, another crop would 
have been a better choice.

3. Balanced strategy: “MiniMax Regret.” 
Calculate the “regret” for each possible action 
by determining the cost of choosing that 
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action compared to benefits of the best state 
of the external forces. Find the worst (largest) 
regret for each action and pick the action 
with the smallest worst-case regret.  

4. Averaging strategy: “Expected Value.” Use the 
probabilities governing the external forces to 
determine the expected gain for each action 
and choose the highest one. Expected gain 
or payoff is calculated as a weighted average 
of the gain for each state of the external 
force where the weight for each state is the 
probability of that state occurring. This 
strategy can be thought of as determining the 
action that, when chosen repeatedly, provides 
the best average benefit over the long term. 
For the farmer, this may not seem reasonable, 
since the decision under consideration is 
what to plant in a single, given year.

When the external force is an opponent with 
choices to make rather than a natural phenomenon 
with a random component, these decision situations 
can be examined as mathematical games. Two-person 
games can be represented with a payoff matrix as in 
Figure 2. The “row” player lists strategies on the left 
and the “column” player lists strategies across the top. 
The entries of the matrix are pairs of numbers, the row 
player’s payoff, and the column player’s payoff, respec-
tively. In situations where the row player’s winnings 

are equal to the column player’s losses, and vice versa, 
the payoff matrix entries can be completely defined 
with one number, conventionally the row player’s pay-
off. These games are called “zero-sum games” because 
for a particular pair of strategies, the row player’s pay-
off and the column player’s payoff, being negatives of 
each other, sum to zero. 

Example 3. The prisoner’s dilemma.

Two suspects are arrested by the police. They are 
each offered the same deal: Confess and receive a 
reduced sentence. If one confesses and the other 
does not, the confesser goes free and the other gets 
a 10-year sentence. If both confess, each gets a five-
year sentence. If neither confesses, both get a one-
year sentence on reduced charges. Neither pris-
oner knows what the other will say. What should 
they do?

Confess Refuse 

Confess − −( )5 5, 0 10,−( )

Refuse −( )10 0, − −( )1 1,

While mathematicians have been studying deci-
sion making and games of strategy systematically for 

several centuries, game theory emerged 
as a recognized mathematical approach 
to analyzing these decision processes in 
the 1930s and 1940s through research 
published by John von Neumann (1903–
1957). The “prisoner’s dilemma” (Exam-
ple 3) was investigated in the 1950s and 
led to additional interest in the field.  

The prisoner’s dilemma captures 
many interesting features of competitive 
situations. Analysis shows that the intel-
ligent prisoner should always confess, 
since the “best” outcome will occur no 
matter what the other prisoner decides 
to do: −5 is better than −10 if the other 
prisoner confesses; 0 is better than −1 if 
the other prisoner refuses to talk. How-
ever, this individual “best choice” results 
in each prisoner confessing and getting 
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Figure 1. A “decision tree.”
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a five-year sentence, whereas if neither confesses, they 
only get one-year sentences. This feature of competi-
tive behavior and strategies can be thought of as the 
friction between basing strategic decisions on individ-
ual goals or on the common good.

With appropriate choices for the values in the table, 
these games could model a number of competitive 
situations, such as two companies trying to determine 
what price to set for competing products or two armies 
determining how to wage war.

Decision Trees
In situations where the ultimate decision depends on 
an intermediate choice, a decision tree can help to 
organize the information and facilitate a systematic 
analysis. A company may be ready to bring a product 
to market and needs to decide whether or not to invest 
funds up front in a test market exercise. The test market 
may bring in better information about how to market 
the product on a larger scale, thus increasing profit, 
but the cost of the test market exercise would also take 
away from the profit. An oil drilling company could 
choose to invest funding in test wells before determin-
ing the final drilling location. A university may be try-
ing to hire a senior administrator and could choose to 
invest funds in a head-hunter search firm. 

In all of these situations, the outcomes can be orga-
nized into a tree diagram like the one in Figure 1. Each 
“decision fork” is represented by a square, and each 
event fork—governed by external, possibly random 
forces—is represented by a circle. The branches leading 
from the event forks have probabilities assigned based 
upon the likelihood that an outcome will occur. Typi-
cally, acquiring additional information will result in an 
increased probability of success (or failure), and so the 
probabilities of success and failure will be different for 
different event forks. 

Each terminal branch represents a final outcome. 
If current assets, the cost of the information acquisi-
tion, and the gains or losses under success and failure 
are known, then each terminal branch can be labeled 
with the net gain (or loss) for that option. Once those 
values are determined, the tree can be “folded back” 
through calculating the expected outcomes from the 
probabilities to determine which decisions to make to 
maximize the gain.

The decision points and events may include more 
than two options or outcomes, and there may be more 

than two decisions to be made before the final outcome, 
so the tree may have more forks and branches than the 
one in Figure 1 but the analysis process is the same.

From these trees, the value of the additional infor-
mation acquired can be calculated. This calculation 
can assist companies in determining how much they 
should be willing to pay for that information. Also, the 
amount of risk a company is willing to assume can be 
incorporated into the process, allowing companies that 
are willing to shoulder a larger risk for the (slimmer) 
chance of a larger gain to include that information into 
the analysis.

Further Reading
Mesterton-Gibbons, M. An Introduction to Game-

Theoretic Modeling. Redwood City, CA: Addison-
Wesley, 1992.

Raifa, H. Decision Analysis: Introductory Lectures on 
Choices Under Uncertainty. Reading MA: Addison-
Wesley 1968.

Winston, W. L. Operations Research: Applications and 
Algorithms. 4th ed. Belmont, CA: Brooks Cole-
Thompson Learning, 2004.

Holly Hirst

See Also: Coding and Encryption; Intelligence 
and Counterintelligence; Predicting Attacks; Risk 
Management; Scheduling.

Street Maintenance
Category: Travel and Transportation.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Street maintenance requires planning, 
preparedness, and risk assessment, all of which  
involve mathematics.

Stone paved roads date back thousands of years and 
mathematicians and architects have long investigated 
ways to lay paving stones. Another connection between 
mathematics and streets dates to when Hermann 
Minkowski proposed numerous metric spaces, one of 
which is referred to in the twenty-first century as “taxi-
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cab geometry.” Some streets are laid out on a grid sys-
tem, leading to mathematical investigations in taxicab 
geometry. The surface curvature of roads is also math-
ematically interesting and important in drainage and 
safety issues. Street maintenance is a combination of 
services that includes resurfacing of streets and curbs, 
pothole patching, sweeping, snow removal, and main-
tenance of drains. Mathematical problems that arise 
within street maintenance have to do with engineer-
ing, applied physics and chemistry, logistics, budgets, 
and communication.

Types of Streets
Different types of roads call for different maintenance. 
Civil engineers can use tools such as falling weight 
deflectometers to measure properties of street cover-
ings—in this case, deformation under dropped weight. 
A heavily loaded truck can damage the street surface 
approximately 10,000 times more than a small passen-
ger car. This fact explains why streets with industrial 
traffic require more frequent maintenance, owners of 
trucks pay more taxes, and trucks are not allowed on 
most streets.

There are many materials used to cover streets, and 
the choice of material provides interesting mathemati-
cal optimization problems. For example, rubberized 
asphalt contains recycled tires, which is an environmen-
tal bonus and can reduce the noise of the road by about 
10 decibels, which is valuable for nearby homes. How-
ever, it can only be laid in certain temperatures. Con-
crete is more durable than asphalt but is more expensive 
and harder to repair. Brick and cobblestone coverings 
do not form potholes and can hold heavy loads. How-
ever, they are noisy, they require manual installation 
and maintenance, and they can damage cars.

Potholes and Fatigue
Most potholes happen because of what is known in the 
materials science as “fatigue” of the surface. Fatigue 
occurs when materials are subject to periodic forces, 
such as heavy cars passing through. Small cracks start 
to appear, which then aggregate into networks of 
cracks, which then give way to a pothole. Calculus, 
differential equations, and statistics models are used 
to test road surface materials for resistance to fatigue 
and to predict fatigue’s time through the statistically 
derived fatigue curves (S-N curves). Cycles of heating 
and cooling can quickly extend existing cracks and 
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make potholes larger as well as freezing water that has 
seeped into cracks. 

Cleaning
The mathematics of cleaning schedules involves bal-
ance among many random variables, such as traffic or 
seasonal leaves removal. In a typical city, urban streets 
with heavy pedestrian traffic are swept daily, and other 
streets are swept every week or two. Statistical data on 
street use determines where to place garbage cans and 
how often to empty them, when to send heavy sweep 
machines for cleaning, and how to avoid disrupting 
regular street use and events with cleaning activities.

Some street maintenance measures prevent street 
dirt. Highly visible trash cans can drastically reduce lit-
tering. In many communities, residents are invited to 
participate in street cleaning and maintenance to some 
degree, from sites where they can report potholes to 
street cleaning celebrations on holidays or weekends. 
Birds can be attracted to appropriate places, and dog 
owners are guided to special parks and runs. Math-
ematical models behind such measures come from 
studies of human and animal behavior.

Accidents and disasters—from dust storms to 
spilled poisons—may require special cleaning activi-
ties. Because such events are rare but require special 
knowledge and equipment, it usually makes sense to 
maintain tools and specialists for these special events 
only in large cities and to send teams to smaller places 
that need help.

Snow Maintenance
Streets under snow require special maintenance, 
including mechanical removal of the snow by snow-
plows, snow-blowers, or shovels; inert surface treat-
ment for traction with sand or sawdust; and chemical 
surface treatment. The mathematics of dealing with 
snow includes economical and environmental factors. 
When snow immobilizes traffic, productivity and sales 
are lost. However, snow-removal measures cost money 
and take time. In cities where it snows infrequently, it is 
usually cheaper to wait for the snow to melt rather than 
to maintain a fleet of removal machines. 

Most of the chemical treatment of snow is done 
with sodium chloride (table salt). Salt makes snow 
melt at about 10 degrees Fahrenheit less than usual 
(freezing-point depression). Switzerland uses more 
than a pound of salt a year for every square yard of 



its roads. Chemical treatments can damage plants 
and animals throughout the watershed. Safe amounts 
of chemicals can be determined based on ecological 
models. Chemicals also cause vehicle damage and 
faster road deterioration. These costs are part of the 
decision of which type of snow maintenance is more 
economically sound.

Further Reading 
Kelly, James, and William Park. The Roadbuilders. 

Reading, MA: Addison-Wesley, 1973.
Krause, Eugene. Taxicab Geometry: An Adventure in  

Non-Euclidean Geometry. New York: Dover 
Publications, 1987.

Perrier, Nathalie, Andrew Langevin, and James Campbell. 
“A Survey of Models and Algorithms for Winter Road 
Maintenance. Part IV: Vehicle Routing and Fleet 
Sizing for Plowing and Snow Disposal.” Computers & 
Operations Research 34, no. 1 (2007).

Maria Droujkova

See Also: Bicycles; Green Design; Traffic.

String Instruments
Category: Arts, Music, and Entertainment.
Field of Study: Geometry; Number and Operations; 
Representations.
Summary: The harmonics and timbre of wind 
instruments are described and computed using 
mathematics.

All stringed instruments exhibit a fundamental prop-
erty of physics in that when impacted, they vibrate 
at numerous frequencies. The vibration of the string 
displaces the air around it, which—when impacted on 
the human eardrums—creates the sensation of sound. 
Some of the common instruments in the string fam-
ily are violin, guitar, harp, mandolin, cello, and banjo. 
A modern violin has about 70 parts, and the overall 
design of such complex string instruments is inher-
ently mathematical. Features such as string tension, 
area, and shape of the top plate, and spacing of frets 
all have mathematical properties that influence sound. 

For any string, at a given tension, only one note will be 
produced. To generate multiple notes from the instru-
ment, many strings may be used to span the desired 
frequency spectrum (for example, harps) or the string 
may be forced to vibrate at different lengths, thereby 
changing the frequency (for example, guitars). On an 
equally tempered instrument like a guitar, the spacings 
of the frets, which help a player adjust string length, 
have to be scaled by the ratio 21/12. This problem is 
mathematically equivalent to duplicating a cube, which 
is one of the classic problems of antiquity. Mathemati-
cian Jim Woodhouse has studied violin acoustics using 
linear systems theory and mathematically modeled 
“virtual violins,” as well as related vibration problems 
like vehicle brake squeal.

Harmonic Series and Fundamental Frequency
When a string is plucked, struck, or bowed, it resonates 
at numerous frequencies simultaneously. The waves 
travel up and down the string. These waves reinforce 
and annul each other, which results in standing waves. 
The one-dimensional wave equation is used to model 
string instruments. A harmonic series is composed of 
frequencies that are an integer multiple of the lowest 
frequency. Fundamental frequency is the lowest fre-
quency in a harmonic series. The musical pitch of a 
note is usually perceived as the fundamental frequency. 
The fundamental frequency ( f ) of a string can be com-
puted as

f

T

L

m
L=

2

where T is the string tension in newtons, m is the string 
mass in kilograms, and L is the string length in meters. 
The fundamental frequency is also known as the “first 
harmonic.”

Timbre
Timbre is the quality of a musical note and is what 
defines the character of a musical instrument. When two 
different instruments play the same note, the note could 
have the same frequency. The human ear distinguishes 
the source of the note because of timbre. Hermann 
Helmholtz was the first to describe timbre as a property 
of sound. When an instrument plays a certain note, the 
outputted sound consists of the fundamental frequency 
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and its harmonics. These harmonics differ from instru-
ment to instrument—what is known as “timbre.”

Further Reading
Hall, Rachel W., and Kresimir Josic. “The Mathematics 

of Musical Instruments.” American Mathematical 
Monthly 108, no. 4 (2001).

Mottola, R. M. “Liutaio Mottola Lutherie Information 
Website: Technical Design Information.” http://
liutaiomottola.com/formulae.htm.

Rossing, Thomas. The Science of String Instruments.  
New York: Springer, 2010.

Ashwin Mudigonda

See Also: Harmonics; Percussion Instruments; 
Pythagorean and Fibonacci Tuning; Wind Instruments.

Stylometry
Category: Arts, Music, and Entertainment.
Fields of Study: Data Analysis and Probability; 
Measurement.
Summary: Stylometry is a descriptive science that 
uses statistical techniques to identify authorship of 
written materials.

Stylometry is a descriptive science that uses statistical 
techniques to identify authorship or written materials. 
In addition to comparing simple frequency patterns of 
words, stylometry focuses on the groupings of words and 
the position of these words in sentences. Using stylom-
etry, scholars have tried to determine if Homer wrote the 
last book of the Odyssey, if the Apostle Paul wrote the 
Letter to the Ephesians, and if Shakespeare wrote the first 
act of the play The Booke of Sir Thomas Moore. Because of 
the successful use of stylometry, its techniques have been 
expanded to help identify composers from their musical 
compositions and analyze artists from their paintings.

Beginnings of Stylometry
In 1851, August de Morgan, an English mathematician, 
initiated the field of stylometry when he suggested that 
authors could be identified by the average number of 
letters in their written words. Because de Morgan’s 

suggestion was simplistic and often misleading, sty-
lometry did not gain validity until 1944, when Udny 
Yule published his pioneering work that suggested 
that an author’s vocabulary usage did not depend on 
sample size. Analyzing Paul’s Epistles and the words of 
the physician Hippocrates in 1957, W. C. Wake was the 
first to produce an acceptable test of authorship using 
distributions, sampling methods, and periodic effects 
within distributions. In 1961, A. Q. Morton and others 
used computer technology to both extend and verify 
Wake’s approach.
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Uses of Stylometry

S tylometry has other constructive uses, 
such as the use of statistical techniques 

to examine concordances (13 million words) of 
the works of Saint Thomas Aquinas (illustrated 
above). As a result, scholars not only identi-
fied spurious additions introduced by editors of 
Aquinas’s works, but also successfully recon-
structed lost passages. Scholars used a simi-
lar approach to examine stylistics differences 
among the three Greek tragedians—Euripides, 
Aeschylus, and Sophocles—trying to also estab-
lish chronological progressions across a single 
author’s works in terms of vocabulary, themes, 
and use of iambic trimester. 



 A specific example of scholars’ use of stylometry 
involves The Booke of Sir Thomas Moore, a play about a 
martyred Englishman in 1535. Scholars first concluded 
that the play was a composite effort of five authors, 
with handwriting analyses accepted as proof that Wil-
liam Shakespeare was the sole author of two of the 
play’s sections. Then, computer analyst Thomas Mer-
riam created computer databases of the play in ques-
tion and three other Shakespearean plays—Julius Cae-
sar, Pericles, and Titus Andronicus. 

The concordances generated for all four plays 
revealed significant similar frequencies of “word hab-
its” or repeated combinations of words and phrases. 
Though Merriam concluded that Shakespeare was 
the sole author of The Booke of Sir Thomas Moore, his 
stylometric data did not convince all scholars. Skep-
tics such as these claim that Merriam’s techniques are 
at best informative, being suspect because the three 
comparison plays are not the best representatives of 
Shakespeare’s style.

Modern Applications
Stylometry has been used in court cases to identify 
“fraudulent” wills and “false” criminal confessions. In 
the late 1970s, defense attorneys for kidnap victim and 
accused bank robber Patty Hearst tried to introduce sty-
lometric evidence that “proved” the tape-recorded “com-
muniqués” read by Hearst were not her own words. 

Their evidence was based on concordances built 
from previous essays by Hearst, oral conversations, her 
confession, and materials produced by the Symbio-
nese Liberation Army. The attorneys carefully analyzed 
these concordances using statistical discrimination, 
cluster analysis, and t-test comparisons to examine fac-
tors such as average sentence lengths, parsing patterns 
involving conjunctions, and linguistic habits. Despite 
the defense’s protests, the trial judge and the appeals 
court both ruled that the stylometric evidence was not 
admissible and thus was never used.

Donald Foster, a Vasser College English Profes-
sor, used stylometry to identify with 99% confidence 
the “anonymous” author of the political text, Primary 
Colors. Though Newsweek columnist Joe Klein origi-
nally denied being the suspected author, he eventually 
admitted to the deed. Since that time, Foster has helped 
confirm Ted Kaczynski’s authorship of the Unabomb 
Manifesto and identify Eric Rudolph as a suspect in the 
1996 Atlanta Olympics bombing.

Further Reading
Juola, Patrick. “Authorship Attribution.” Foundations and 

Trends in Information Retrieval 1, no. 3 (2006). http://
www.mathcs.duq.edu/~juola/papers.d/fnt 
-aa.pdf (Accessed February 2011),

Michaelson, S., A. Q. Morton, and N. Hamilton-Smith. 
“Fingerprinting the Mind.” Endeavor 3, no. 4 (1979).

Morton, A. Q. Literary Detection: How to Prove 
Authorship and Fraud in Literature and Documents. 
New York: Charles Scribner’s Sons, 1979.

Roberts, David. “Don Foster Has a Way With Words.” 
Smithsonian (September 1, 2001).

Schwartz, Lillian. “The Art Historian’s Computer.”  
Scientific American (April 1995).

Yule, Udny. The Statistical Study of Literary Vocabulary. 
Cambridge, England: Cambridge University  
Press, 1944.

Jerry Johnson
Western Washington University

See Also: Diagnostic Testing; Literature; Probability.

Submarines
See Deep Submergence Vehicles

Succeeding in  
Mathematics
Category: School and Society.
Fields of Study: Communication; Connections; 
Problem Solving.
Summary: Poor mathematics performance can 
be attributed to a variety of factors and numerous 
organizations and strategies are believed to help 
students achieve mathematics success.

Many educational initiatives are designed to motivate 
U.S. students to excel in science and mathematics, 
with the goal of building the strong science, technol-
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ogy, engineering, and mathematics (STEM) workforce 
needed to meet twenty-first century challenges. Three 
overarching goals of the 2009 federal Educate to Inno-
vate program are increasing STEM literacy for every-
one; improving teaching so that American students 
meet or exceed those in other nations; and expanding 
STEM education and career opportunities for under-
represented groups. However, success in mathematics, 
or even literacy, can be difficult to define. Some see it 
as some minimum skill set, number of courses, or type 
of courses taken. Others conceptualize it by what sorts 
of problems students are able to solve or by their ability 
to manage real-world mathematical problems, such as 
budgets or loans. 

Measuring Success
There are many barriers to achieving success. Broad 
application of standardized testing in mathematics 
education sometimes reduces the measure of success 
to a single score or change in scores over time. Mod-
ern educational approaches and programs at all levels 
increasingly emphasize problem solving, which the 
National Council of Teachers of Mathematics asserts 
is not well measured by standardized tests, since prob-
lem solving reaches beyond simply remembering some 
encapsulated set of concepts, formulas, and skills to 
include broader applications, novel situations, and 
mathematical thinking and reasoning. There are calls 
for innovative assessment alongside changes in edu-
cational practice in order to attempt to capture what 
it means to know, do, and be successful in mathemat-
ics at home, school, and work. Among professional 
mathematicians, measures of success vary as well, with 
ongoing debate about various aspects of teaching and 
scholarship, including how and whether to assess mea-
sures like the number of publications, the number of 
citations to an author, the quality of a journal, or letters 
from peers, and the role of other measures like student 
evaluations. Educational researcher Christopher Jett, 
who examined mathematics success among African-
American men, uniquely defined mathematics success 
as, “being able to use mathematics as an analytical tool 
to educate, stimulate, and liberate the (my) people.”

Failure and Anxiety
Albert Einstein was once quoted as saying, “Do not 
worry about your difficulties in mathematics. I can 
assure you mine still are greater.” This assertion seems 

contrary to many people’s belief that success in math-
ematics is binary: people are successful or not, with no 
middle ground. Popular culture portrayals of math-
ematicians as geniuses often inadvertently support the 
mistaken belief that one must be gifted to succeed in 
mathematics. Further, while mathematicians are por-
trayed as wizards, mathematics itself is often shown as 
a sort of mysticism—a secret and arcane knowledge 
accessible only by a select few. In reality, mathemat-
ics encompasses a diversity of fields and professional 
mathematicians have varying sets of competencies, 
personalities, and working styles. Likewise, students at 
any level may have command of a wide variety of skills 
and concepts, and while those concepts are related and 
may build on one another, competence is not uniform. 
A student who struggles all through algebra may still 
be successful in geometry. A student who labors over 
constructing a proof may have a flair for data analysis 
and statistics.

Mathematics is inherently cumulative in nature. 
The feeling of failure at mathematics, especially given 
the common binary view, can seemingly be caused by 
a small problem that actually immediately impacts 
only one small area. This partial temporary failure can 
result in a long-lasting loss of confidence. Mathematics 
anxiety is an increasingly recognized phenomenon that 
interferes with students’ ability to learn mathematics 
and perform at the best of their abilities, regardless 
of their actual skill. Many people who are perfectly 
capable of learning and using mathematics feel anxiety 
about it and will avoid using mathematics whenever 
they have the option. Over time, this can lead to deg-
radation of their abilities as they fall out of practice, 
which cyclically reinforces the anxiety. In addition to 
avoidance, mathematics anxiety can sometimes nega-
tively affect working memory. As the anxiety grows, 
the student has more trouble keeping track of tasks, 
leading to poor performance and yet again reinforc-
ing the anxiety. Some believe that mathematics anxiety 
is caused in part by poor performance on mathemat-
ics achievement tests and in part by early difficulty in 
mathematical skill development. The anxiety remains 
even after actual performance has improved and may 
be related to a belief that the earlier difficulties reflect 
some inherent character trait rather than a situational 
difficulty. People who later in life describe themselves 
as “terrible” at mathematics but who display educa-
tion-appropriate competence in mathematics may not 
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remember the original event that inculcated in them 
this belief that they are poor performers. Beyond per-
formance, some cite teacher or classroom practices as 
contributing to mathematics anxiety. Like other math-
ematicians, mathematics teachers do not possess equal 
skills and levels of comfort in all areas of mathematics. 
This may be especially true of elementary school teach-
ers who must teach a wide array of subjects on a daily 
basis. Classroom practices such as emphasizing the 
“right” answer, which also frequently occurs on stan-
dardized tests, can increase anxiety because some stu-
dents attach great significance to being “wrong.” Other 
students may feel anxiety over being asked to “show 
their work,” because they are less confident in their 
mathematical thinking than in their ability to produce 
a correct answer. 

The Mathematics Anxiety Rating Scale (MARS) 
was developed by psychologists in the early 1970s and 
exists in several versions, including foreign language 
adaptations. Researchers using this scale and other 
measures have identified other situations more likely 
to trigger anxiety. For example, tests where problems 
become progressively more difficult appear to trigger 
mathematics anxiety more often than tests in which the 
distribution of problems by difficulty is more random, 
which is true even when all the problems on the test are 
well within the skill level of the test-taker. Timed tests 
and the possibility for public embarrassment, such as 
working at a board in the front of the class, are also fac-
tors that can induce anxiety. Many studies suggest an 
association between mathematical anxiety and gender; 
female students are more often anxious about mathe-
matics, perhaps because they have embraced the belief 
that women are not as good at mathematics as men 
and thus have difficulty building self-confidence in 
their abilities. These stereotype effects can also extend 
to other underrepresented groups. 

Stereotype Threat
One widely studied phenomenon regarding success on 
standardized tests is known as the “stereotype threat” 
in which the stereotyping of groups in society affects 
an individual. Researchers found that proficient white 
males performed more poorly on a difficult mathemat-
ics test when researchers induced the threat of superior 
performance by Asians as compared to a control group. 
The impact of stereotype threat for many groups of 
students has been researched under a wide variety of 

conditions. For instance, Asian women performed 
more poorly on mathematical tests in which they were 
cued as women, while they performed better when 
cued as Asians as compared to control groups. Some 
researchers theorize that students must contend with a 
subconscious whisper of inferiority when their abilities 
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Neuroscience

R esearch including verbal descriptions of 
problem solving, observation, and bio-

logical data from tools such as magnetic reso-
nance imaging has confirmed that spatial order-
ing, temporal-sequential ordering, higher order 
cognition, memory, language, and attention are 
among the functions of the mind that are at 
work when children think with numbers—a wide 
array of functions, not a single “mathematics 
center” of the brain. Sequential ordering may 
be used to solve multi-step problems. Spatial 
ordering lets a child recognize symbols and geo-
metric forms, among others. Higher order cogni-
tion lets a child “think about thinking,” consid-
ering different problem-solving strategies, being 
aware of what they are doing as they do it, and 
generalizing and applying old skills to new prob-
lems. Language skills affect a student’s ability 
to understand instructions given to them and 
articulate their thinking. They are also critical 
because of the discipline-specific vocabulary at 
work in mathematics. Some terms, like “expo-
nent” have no common, everyday usage. Other 
words like “times” and “multiply” are generally 
used interchangeably. Words like “normal” and 
“random” overlap with everyday non-mathemat-
ical vocabulary and may have broader colloquial 
meanings. Given the number of interacting 
components involved in the process of thinking 
about, working with, and learning mathematics, 
and the fact that a temporary “stall” in one area 
can seemingly magnify a negative, reflexive “I 
just don’t get it” feeling in students, the roots of 
mathematics success or failure can be difficult 
to identify and address. 



are most taxed.  Whether they consciously or uncon-
sciously accept the stereotype or not, they may still 
work harder in order to avoid confirming it, because 
failure has a more devastating meaning. The extra bur-
den may be enough to impact performance. The ste-
reotype cues may be subtle, like self-identification of 
gender, race, or culture before an exam. Researchers 
have also found that removing the cues can positively 
impact test performance. For example, in a 2009 meta-
analysis of 18,976 students from five countries who 
were matched by researchers using past performance, 
stereotyped students performed better under condi-
tions that reduced the threat.

Research and Strategies
In the 1970s, mathematics education researchers 
Elizabeth Fennema and Julia Sherman developed the 
Fennema–Sherman mathematics attitude scales to 
examine eight components considered critical for suc-
cess in mathematics: attitude toward success in math-
ematics, mathematics as a male versus female domain, 
parent support, teacher support, confidence in learn-
ing mathematics, mathematics anxiety, motivation 
for challenge in mathematics, and mathematics use-
fulness.  Their work has been cited among the most 
quoted social science and educational research studies 
of the latter twentieth century, and many versions of 
their scales exist. 

The cumulative body of research suggests several 
strategies that may help students succeed in mathemat-
ics, though one point of general agreement seems to be 
that the key to mathematics success is active participa-
tion, active study, and engaging the material. For exam-
ple, younger students can be encouraged to ask ques-
tions in and out of class and can be given mathematical 
exercises that are interactive rather than requiring them 
to only passively listen to explanations of the material. 
Hands-on activities with even simple objects like but-
tons, dried beans, or animal counters can help chil-
dren develop number, counting, and arithmetic skills. 
More sophisticated tools, like tangrams and algebra 
tiles, develop geometric concepts and thinking about 
functions. This method has come to include com-
puter-based virtual manipulatives. Asking questions 
and engaging in hands-on learning is also valuable in 
the later grades and college. With regard to attitudes, 
educators frequently encourage students to recognize 
that the act of learning and doing mathematics is likely 

to be different than other school subjects, particularly 
with regard to its cumulative nature and fact that work-
ing with a variety of mathematics problems is usually 
the only way to learn mathematics. Some instructors 
include explicit problem-solving and test-taking strat-
egies in their instruction in addition to concepts. Stu-
dents may also benefit from instruction in methods of 
note-taking, reviewing, and reading mathematics text-
books that encourage them to think reflectively about 
mathematics content rather than simply summarizing. 
At the same time, teachers may use a variety of presen-
tation and engagement methods, including using real-
world problems, considering different learning styles, 
being aware of anxiety and stereotypes that may affect 
students, and engaging parents in an ongoing dialogue 
about mathematics education to gain support and 
make them partners in their children’s success.

Organizations
Beyond the classroom, clubs, professional organiza-
tions, and scholarship programs have been shown to 
contribute to success and some are particularly tar-
geted toward groups that may be more at-risk, such as 
women and minorities. The Meyerhoff Scholars Pro-
gram is a notable example of such a program. It was 
initially created in 1988 to target African-American 
men, though admission is no longer restricted by gen-
der or ethnicity. A 2010 statistic noted that program 
participants were 5.3 times more likely to be attending 
or have graduated from a STEM Ph.D. or M.D./Ph.D. 
program than others who were invited to join but 
declined and attended another school. The program’s 
success is attributed in large part to its emphasis on 
mentorship, particularly since women and minori-
ties interested in mathematics may never have met a 
woman or a minority mathematician or have not been 
exposed to research and challenges to excel rather than 
to imply succeed. The Hypatia Scholarship program for 
women at the University of South Australia, founded in 
1997 and named for woman mathematician Hypatia of 
Alexandria, awards not only financial support but also 
provides women with shared office space and com-
puter resources in close proximity to faculty to encour-
age interaction and build confidence. It funds summer 
employment to encourage the participants to use their 
mathematical training in industry or academia. Feed-
back from students indicated that the women valued 
the social network more than the financial support, 
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saying it motivated them and helped reduce anxiety. 
Other organizations offer financial scholarships and 
some opportunities for networking, such as the Ameri-
can Statistical Association’s Gertrude Cox Scholarship. 
Mathematics clubs and honor societies, like Pi Mu 
Epsilon, provide social and academic opportunities for 
students with mathematics interests, and researchers 
have found some evidence that participation is asso-
ciated with increases in retention, positive attitudes 
about mathematics, and higher grade point averages. 

The successful Upward Bound program targets dis-
abled, low-income, homeless, and foster care youth, 
as well as those who would be first-generation college 
students to encourage comprehensive success in sec-
ondary and higher education. It provides instruction 
in mathematics, laboratory sciences, composition, lit-
erature, and foreign languages, along with support like 
counseling, academic tutoring, and assistance with col-
lege admission and financial aid.

Further Reading
Baumann, Caroline. Success in Mathematics Education. 

Hauppauge, NY: Nova Science Publishers, 2009.
Cooke, Heather. Success with Mathematics. New York: 

Routledge, 2002.
Leinwand, Steven. Accessible Mathematics: Ten 

Instructional Shifts That Raise Student Achievement. 
Portsmouth, NH: Heinemann, 2009.

Martin, Danny. Mathematics Success and Failure Among 
African-American Youth. Mahwah, NJ: Lawrence 
Erlbaum Associates, 2006.

Bill Kte’pi

See Also: Curriculum, K–12; Learning Models and 
Trajectories; Mathematicians, Amateur; Minorities; 
Women.

Sudoku
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Number and Operations.
Summary: The game of Sudoku is explained by and 
informs graph theory and randomness.

Sudoku is a number puzzle based upon the mathe-
matical concept of a “Latin square.” Latin squares are 
arrays of numbers in which each number is listed only 
once in any row or column. Leonhard Euler originated 
the term, calling them “Latin squares” because he used 
Latin letters rather than numbers in his investigations. 
Completed Sudoku grids are Latin squares that are 
further subdivided into subgrids in which the num-
bers also appear only once in the subgrid. The graphic 
below shows a completed 9-by-9 Sudoku puzzle.

7 3 1 4 9 5 8 6 2
9 8 4 6 2 1 3 5 7
5 2 6 3 7 8 9 4 1

4 1 9 5 3 2 7 8 6
8 7 5 1 6 9 4 2 3
3 6 2 7 8 4 1 9 5

1 9 8 2 5 7 6 3 4
6 5 7 8 4 3 2 1 9
2 4 3 9 1 6 5 7 8

Originally published in the 1970s in Europe and the 
United States, Sudoku surged to popularity in Japan in 
the late 1980s and reappeared in Europe and America 
in the mid-1990s, becoming popular among puzzlers. 
The popularity of the puzzle has continued to grow in 
the twenty-first century, leading the puzzle to become 
the subject of mathematical scrutiny.

Sudoku is usually based on a Latin square with nine 
rows and columns; puzzles of other sizes are possible 
such as 4-by-4, 16-by-16, and 25-by-25. Some of the 
numbers are filled in to start. The goal is to quickly 
and accurately complete the puzzle, with the digits 1–9 
placed once in each row, column, and subgrid. Below is 
an unsolved Sudoku puzzle:

1 3 5  9 2  
2 8
9 8 6 7 1

3 5 8
6 8 1 7

2 9 1

6 3 4 2 5
5 9

2 9 6 8 4  
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Graph Theory
There are a number of interesting mathematical ques-
tions associated with Sudoku puzzles, in particular 
the conditions under which they have one solution. 
In 2007, Agnes Herzberg and M. Ram Murty showed 
that Sudoku puzzles can be recast as graph coloring 
problems allowing the broad, well-developed theory of 
graphs to be applied to the solution question. In par-
ticular, they showed that a standard Sudoku puzzle can 
be thought of as a graph where each cell in the puzzle 
is represented by a vertex with 20 edges, each edge con-
necting the cell to another cell in the row, column, or 
sub-grid. Graphs for which all vertices have the same 
number of edges are called “regular,” so Sudoku graphs 
made in this way are “20 regular” graphs. 

Since each digit can appear only once in any row, 
column, or subgrid, putting the nine digits into the 
cells is equivalent to coloring the vertices of the graph 
with nine colors such that no vertices connected by an 
edge are the same color—or in graph theory terminol-
ogy, finding a “proper 9-coloring” of the graph. The 
number of ways to color a regular graph with n colors 
is a well-known formula that is a function of the num-
ber of colors and the number of vertices. Using this 
and other ideas about coloring graphs, Herzberg and 
Murty proved that 9–by-9 puzzles must have at least 
eight different digits shown in the starting configura-
tion to have a unique solution. 

There are still many unanswered questions about 
when Sudoku puzzles have one solution. Assuming 
that eight different digits are used in the starting con-
figuration, how many numbers total must be shown in 
the starting configuration to ensure a unique solution? 
The answer is not known; a small number of distinct 
puzzles with 17 entries in the starting configuration are 
known to have a unique solution. There are no known 
puzzles with 16 or fewer entries that have unique solu-
tions. Does one exist? Would the answer be different if 
all nine digits are used in the starting configuration? 
Mathematicians and puzzlers are investigating these 
and other interesting questions. 

For example, in 2010, mathematicians Paul Newton 
and Stephen DeSalvo demonstrated that the arrange-
ment of numbers in Sudoku puzzles is more random 
(by some definitions of randomness) than 9-by-9 
matrices produced by random generators, since Sudoku 
rules excludes some of the possible arrangements that 
have innate symmetry.

Further Reading
Chevron Corporation. “Sudoku Daily: History of 

Sudoku.” http://www.sudokudaily.net/history.php.
Herzberg, Agnes, and Ram M. Murty. “Sudoku Squares 

and Chromatic Polynomials.” Notices of the American 
Mathematical Society 54, no. 6 (2007).
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Sunspots
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability.
Summary: Sunspots have long been observed and 
mathematicians and scientists continue to try to 
understand them and their effects.

Sunspots are a not yet fully explained phenomenon tied 
to solar activity. The sun is Earth’s richest source of heat 
and light. Furious eruptions of energy take place on the 
surface of the sun. In the core, nuclear reactions occur 
because of the immense temperature and pressure. 
Through a process known as “convection,” millions of 
tons of hydrogen are converted into helium every sec-
ond and are then expelled at the surface of the sun as 
light and heat. Sunspots have a magnetic field strength 
that is thousands of times stronger than Earth’s mag-
netic field. These magnetic fields inhibit convection to 
create relatively cooler areas, which appear as dark spots 
on the surface of the sun. Scientists and mathemati-
cians have long attempted to understand their behavior 
and oscillations and have used mathematical tools like 
differential equations, hexagonal planforms, and time 
series analyses. They also count the number of sunspots 
and examine possible relationships between this num-
ber and factors on Earth, like radio disruptions, land 
temperature, and weather phenomena.

History
Direct observation of the sun is very dangerous, which 
historically made sunspots hard to study and quantify. 
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In ancient times, Chinese astronomers recorded solar 
activity. Mathematician and astronomer Thomas Har-
riot, noted for his work on algebra, is also credited as 
the discoverer of sunspots. Increased understanding of 
the nature of sunspots, including the observation that 
they often occurred in groups and that they moved 
relative to one another as the sun rotated, is tied to 
the development of the telescope in the seventeenth 
century. One of Galileo Galilei’s works on sunspots 
offered evidence for the heliocentric system of Nico-
laus Copernicus, and this led to debate about sunspots, 
as evidenced in astronomer, mathematician, and Jesuit 
Christoph Scheiner’s views and works. 

In the eighteenth century, Alexander Wilson used 
a geometric argument to show that sunspots were 
depressions. In the nineteenth century, pharmacist 
and amateur astronomer Heinrich Schwabe collected 
data on the periodicity of sunspots. Systematic obser-
vations, such as the approximately 11-year cycle, were 
made by Rudolph Wolf starting in 1848, who also 
measured the number of sunspots present on the sur-
face of the sun. Wolf was primarily an astronomer but 
he also taught mathematics and physics. His obser-
vations were disputed by other astronomers, but his 
methods, which were based on statistical analyses, 
were eventually accepted as correct. Wolf ’s formula 
continues to be used in the twenty-first century as 
one of the sunspot indices. The International Sunspot 
Number is compiled worldwide by the Solar Influ-
ences Data Analysis Center in Belgium and by the U.S. 
National Oceanic and Atmospheric Administration. 
In the twenty-first century, sunspots are observed 
with solar telescopes, which use various filters, and 
specialized tools such as spectroscopes and spectro-
helioscopes. Amateurs generally observe sunspots 
using projected images.

Waxing and Waning
Scientists know that the sun had a period of relative 
inactivity in the seventeenth century, which corre-
sponds to a climatic period called the “Little Ice Age.” 
Evidence suggests that similar periods existed in the 
distant past, which means there might be a connec-
tion between solar activity and terrestrial climate. The 
magnetic activity that accompanies the sunspots can 
change the ultraviolet and soft X-ray emission levels, 
affecting Earth’s upper atmosphere. Some research-
ers have proposed that sunspots and solar activity are 

the main cause of global warming rather than carbon 
dioxide greenhouse gas emissions.

Further Reading
Izenman, Alan. “J R Wolf and the Zurich Sunspot 

Relative Numbers.” The Mathematical Intelligencer 
7 (1985). http://astro.ocis.temple.edu/~alan/
WolfMathIntel.pdf.

National Aeronautics and Space Administration. “The 
Sunspot Cycle.” http://solarscience.msfc.nasa.gov/
SunspotCycle.shtml.

Spaceweather.com. “The Sunspot Number.” http:// 
spaceweather.com/glossary/sunspotnumber.html.
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See Also: Telescopes; Temperature; Weather 
Forecasting.

Subtraction
See Addition and Subtraction

Surfaces
Category: History and Development of Curricular 
Concepts.
Field of Study: Communication; Connections; 
Geometry.
Summary: Surfaces are two-dimensional manifolds, 
some of which have been studied for their special 
properties.

Living beings interact with much of the world through 
surfaces. Humans walk on surfaces and eat and sleep on 
them. Surfaces like the one-sided Klein bottle, named 
for Felix Klein, stretch the imagination and are the 
subject of mathematical investigations. They are often 
represented using physical models as well as computer 
models, including sculptures and computer anima-
tions. In twenty-first-century classrooms, students 
investigate a variety of surfaces and their properties, 
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including area and volume. The National Council of 
Teachers of Mathematics recommends an understand-
ing of the area and volume of rectangular solids for pri-
mary school students; of prisms, pyramids, and cylin-
ders for middle grades students; and of cones, spheres, 
and cylinders for high school students. The parametri-
zation and volume of surfaces is further explored in a 
multivariable calculus course.

History of Study
Mathematicians have long developed the theory of sur-
faces, and they continue to investigate their properties. 
In addition to the plane, polyhedra, such as the surface 
of a cube or an icosahedron, are among the first sur-
faces studied by the ancient Greeks in geometry. Their 
view of surfaces was entirely different from the func-
tional description used in investigations of surfaces in 
the twenty-first century. The Greeks also had a good 
knowledge of surfaces of revolution and pyramids. 
With the introduction of analytic geometry in the 
seventeenth century, the study of surfaces developed 
into one of the most studied branches of mathematics. 
Mathematicians like Carl Friedrich Gauss, Pierre Bon-
net, Barnhard Riemann, Gaspard Monge, and their fol-
lowers firmly established surfaces on a rigorous basis 
during the eighteenth and nineteenth centuries.

One of the greatest achievements of the theory of 
surfaces is the Gauss–Bonnet theorem. Versions of the 
theorem were explored by Gauss in the 1820s and Bon-
net and Jacques Binet in the 1840s. The form of the 
theorem that is standard in undergraduate differential 
geometry courses is attributed to Walther von Dyck in 
1888. Smooth surfaces are defined as those surfaces in 
which each point has a neighborhood diffeomorphic to 
some open set in the plane. This added structure allows 
the use of analytic tools. The parametric functions for a 
smooth surface define two quadratic differential forms: 
the first and second fundamental forms, which are local 
invariants defined as functions of the arc length. The 
Gaussian curvature of the surface is an isometric invari-
ant; hence, an intrinsic property of a surface, which is 
known as the Theorema Egregium of Gauss. The Gauss-
ian curvature measures the deviance of the surface from 
being flat at each point. The parametric equations of 
a surface determine all six coefficients of its first and 
second fundamental forms; conversely, the fundamen-
tal theorem of surfaces states that given six functions 
satisfying certain compatibility conditions, then there 

exists a unique surface (up to its location in space). A 
geodesic curve on a smooth surface is characterized as 
a locally minimizing path. In a sense, geodesics are the 
straight lines of surfaces, which are essential for defin-
ing the notions of distance, area, and angle on a surface. 
Bonnet investigated the geodesic curvature, which mea-
sures the deviance of a curve on the surface from being 
a geodesic. The Gauss–Bonnet theorem states that for 
an orientable compact surface, the total Gaussian cur-
vature is 2π times the Euler characteristic of the surface, 
named for Leonhard Euler. A consequence of this theo-
rem is that the sum of the interior angles of a geodesic 
triangle is greater than, less than, or equal to π, depend-
ing on if the Gaussian curvature of the surface is posi-
tive, like on a sphere; negative, like on a hyperboloid; or 
zero, like in the plane.

Types of Surfaces
The classification of surfaces is another topic that 
is explored in undergraduate geometry or topology 
classes. In 1890, Felix Klein asked what surfaces locally 
look like the plane. In Klein’s Erlangen Program, a space 
was understood by its transformations. Heinz Hopf 
published a rigorous solution in 1925 that arose from 
groups of isometries acting on the plane without fixed 
points. The surfaces are the plane; the cylinder; the infi-
nite Möbius band, named for August Möbius; the flat 
Clifford torus or donut, named for William Clifford; and 
the flat Klein bottle. Intuitively, surfaces seem to always 
have two sides; however, the Möbius band and the Klein 
bottle have only one side. Other surfaces like the projec-
tive plane resemble the sphere, and many-holed donuts 
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resemble hyberbolic space. The Euler characteristic is 
used to classify the topology of a surface.

Some important types of surfaces that are studied 
intensively in geometry and analysis are minimal sur-
faces with zero mean curvature, such as catenoids and 
helicoids; developable surfaces with zero Gaussian cur-
vature, like the plane, the cylinder, the cone, or a tan-
gent surface; and ruled surfaces that can be generated 
by the motion of a straight line, like the cylinder and the 
hyperboloid of one sheet. While some of these surfaces 
date to antiquity, others are more recent. In the eigh-
teenth century, Euler described the catenoid and Jean 
Meusnier the helicoid. Discoveries in 1835 by Heinrich 
Scherk and in 1864 by Alfred Enneper included minimal 
surfaces that are now named for each of them. In the 
1840s, Joseph Plateau’s experiments indicated that dip-
ping a wire ring into soapy water will create a minimal 
surface. Jesse Douglas won a Field’s Medal in 1936 for 
his solution to Plateau’s problem in minimal surfaces. A 
minimal surface that originated at the end of the twen-
tieth century is because of Celso Coasta in 1982.  

Representations and Investigations
Algebraic geometers investigate algebraic surfaces, such 
as cubic or quartic surfaces that can be represented by 
polynomials. These led to rich mathematical investiga-
tions in the nineteenth and twentieth centuries. For 
instance, in 1849, Arthur Cayley and George Salmon 
showed that there were 27 lines on a smooth cubic sur-
face. Quartic surfaces were of interest in optics, and 
mathematicians such as Ernst Kummer studied them.

While mathematicians had long built physical models 
of surfaces, which were typically housed in universities 
and museums, in the late twentieth and early twenty-
first centuries, computer-generated surfaces revolution-
ized the visualization and construction of surfaces and 
led to many interesting mathematical questions. For 
instance, numerous mathematicians and computer sci-
entists have explored the method of subdivision of sur-
faces, including Tony DeRose, and Jos Stam, who won 
a Technical Achievement Award in 2005 from the Acad-
emy of Motion Picture Arts and Sciences. This method 
often takes advantage of the similarity between the local 
structure of a surface and a small piece of a plane. For 
instance, surfaces may be represented using small flat 
triangle or quadrilateral mesh representations. These 
representations are easier to manipulate, but they can 
still appear smooth to the eye.
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Surgery
Category: Medicine and Health.
Fields of Study: Data Analysis and Probability; 
Number and Operations; Representations.
Summary: Mathematical models can be used for 
various aspects of surgical operations in order to 
predict effects and improve recovery.

Surgery is the branch of science that typically involves 
medical treatment through an operation. There are a 
variety of reasons for why a surgery is performed. Dis-
eases such as cancer and various forms of heart disease 
may be treated through surgical procedures. 

When cancer is found, surgery may be performed 
to remove a tumor in order to reduce the likelihood of 
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the cancer spreading or to alleviate pressure caused by 
a tumor pressing against another organ. Heart surger-
ies include a heart transplant, a coronary artery bypass, 
or a heart-valve repair or replacement. Injury is usually 
treated with surgery when the body is unable to repair 
itself. Torn ligaments or tendons can be surgically treated 
through reattachment or replacement. Burn victims can 
be treated with a skin graft as a permanent replacement 
for the damaged skin. Deformities can also be treated 
with surgery. Spinal fusion surgery can be used to treat 
spinal deformities like scoliosis. A cleft lip and palate is 
a fetal deformation that can be corrected with surgery 
soon after birth. The surgery usually involves an inci-
sion with medical instruments. Surgical incisions can 
vary in size from large incisions, such as in some open-
heart and brain surgeries, to tiny incisions, such as in 
the case of laparoscopic procedures. The advantage to 
smaller incisions is that the wound heals faster, leaves a 
smaller scar, and reduces the likelihood of infection.

Mathematically Modeling Surgery
Improving surgical techniques and devising new surgi-
cal procedures is an active area of research. Multidisci-
plinary approaches are required for developing success-
ful techniques and procedures. The National Institutes 
of Health (NIH) has stated that these approaches 
should include computational and mathematical sim-
ulations to facilitate this biomedical research. Simula-
tions can be accomplished, in part, through mathemat-
ical modeling.

Mathematical modeling is the process of using a 
mathematical language in order to describe, in this 
case, a biological phenomenon treated with a bio-
medical procedure. While any mathematical model is 
a simplification of reality, computational solutions of 
the mathematical model may provide useful insights 
for researchers and clinicians when the model has been 
formulated under biologically and physically sound 
principles with realistic treatment strategies.

In order to develop a mathematical model for surgi-
cal treatment, it is common to have a team of research-
ers work closely on a given problem because of the dif-
ferent areas of expertise needed to address what is likely 
a complex biomedical problem. The first step is for the 
researchers or clinicians to define, as clearly as possible, 
the problem or question that they want the modeler 
to analyze and identify the benefits of the modeling 
project. From there, they should work to determine the 

appropriate scales with which to study the problem. Is 
the most appropriate scale at the molecular, cellular, or 
tissue level or is it more of a systemic problem? Is the 
time scale (if there is assumed to be temporal varia-
tion) on the order of minutes, days, or years? Answers 
to these questions will help determine if the model is 
best described in terms of discrete units or continu-
ous variables, whether temporal or spatial variation 
should be included, and if a deterministic or statistical 
approach is more appropriate. This will also help deter-
mine what computational platform and method might 
best be used to analyze the question at hand. Devel-
oping a model diagram can help visualize the model 
formulation and process. From there, the research 
team needs to decide how best to access the quality of 
the model. From the model formulation, what are the 
assumptions and model limitations? Are the assump-
tions biologically reasonable? Are there data that can 
be used to quantify some of the model parameters? Are 
there data that can be used to quantitatively or qualita-
tively compare to the initial model simulations? If the 
research team is at the beginning stages of a new surgi-
cal treatment, can the model be developed to put forth 
hypotheses tested for animal experiments or clinical 
trials? The mathematical model works best as an itera-
tive process when the modeler and experimentalist 
or clinician exchange ideas. The first set of suggested 
guidelines for biomedical research teams with math-
ematical modelers was proposed for the mathematical 
modeling of acute illness.

Applications
In connection with surgical procedures, mathematical 
models can be used in a variety of ways. Mathematical 
models may be used to predict the likelihood of a sur-
gical procedure’s success. For example, in reconstruc-
tive microsurgery (where skin tissue is moved from 
one location to another), a mathematical model was 
developed to predict successful tissue transfer based 
on oxygen delivery, tissue volume, and blood-vessel 
diameter. Mathematical models can be used to explore 
ways of making existing surgical procedures more suc-
cessful. Stents are tubes inserted into a blood vessel (or 
another tubular body part) to keep open the vessel but 
are associated with a higher risk of a heart attack or 
a blood clot. A mathematical model was developed to 
analyze drug delivery to stent locations where two or 
more arteries meet. 
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Mathematical models can be developed to analyze 
controversial questions. For example, a model was 
developed to analyze whether a more liberal or constric-
tive allowance of fluid level allows for a more successful 
recovery from abdominal surgery. Mathematical mod-
els can be used to predict changes following surgery. A 
model was developed to predict changes in the knee 
joint following a wedge osteotomy, which is the removal 
of a wedge region of bone around the knee. The model 
was validated by predicting the results of 30 patients 
undergoing the surgical procedure, then the results were 
compared to actual measurements 14 months after sur-
gery. In spite of these efforts, mathematical modeling of 
surgical procedures (and questions related to the surgi-
cal procedures) is still a relatively new concept.

Ideally, mathematical models can be used on indi-
vidual patients to predict a likely and optimal outcome 
when considering surgical treatment. With advances 
and improvements in imaging techniques and com-
puter software, this may be possible for treatment of 
some diseases and injuries. For example, when dealing 
with more complex arterial geometries near stent loca-
tions, researchers may be able to predict appropriate 
drug treatment strategies. However, in the absence of 
patient-specific models, mathematical models may be 
used to help clinicians make decisions based on patient 
variability. Patient variability implies that although 
there are differences in individual patients, there 
may be common characteristics in subpopulations of 
patients with a similar disease or injury. These com-
mon characteristics might be measured in common 
biomarkers from urine or blood analysis or similarities 
in imaging analysis. Mathematical models can be used 
to investigate surgical treatment strategies for patients 
with similar characteristics.

Mathematical models can also help with the devel-
opment of new treatment surgical protocols or the 
analysis of existing treatment strategies. When explor-
ing these questions, it is common for researchers to 
conduct experimental trials on animal models. How-
ever, animal experiments can be time consuming and 
costly. Mathematical models used to analyze a given 
question can provide a significant cost savings. For 
example, computer simulations of the model can be 
used to initially screen different experimental trials in 
order to decide which ones are worth pursuing and 
which are not. Furthermore, successful experimen-
tal results on animals do not guarantee the same level 

of success in clinical trials on humans. Mathematical 
models can not only give an idea as to how experimen-
tal trials on animals translate into surgical treatment 
on humans but also provide necessary insights when 
animal experiments are not possible or clinical trials 
on humans are unethical.

To help address the many questions that arise from 
current surgical procedures and the development of 
new surgical methods, an interdisciplinary team of 
researchers is required to formulate and analyze the 
problem at hand. It has been suggested that the team 
include mathematical modelers. Mathematical model-
ing can potentially provide a way to investigate novel 
treatment strategies and predict possible problems that 
may arise for a given surgical procedure. Furthermore, 
there exists the possibility of significant cost savings, in 
part, by reducing the number of animal experiments 
or clinical trials performed. In these ways, the math-
ematics underlying the description of the biology can 
be beneficial to the surgeon or biomedical researcher.
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Swimming
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability; 
Measurement; Number and Operations.
Summary: Swimming performance can be modeled 
and improved mathematically.

Mathematical modeling and statistical analysis have 
been applied to swimming in a variety of ways. Mod-
eling the properties of fluids in motion is the subject 
of fluid dynamics, a sub-branch of mechanics. Placing 
objects in the fluid complicates the physics enormously. 
The interaction of the fluid and object at the point 
where the object meets the fluid (called the “bound-
ary”) is of particular interest. Problems studied in this 
way include why flags “flap” in a breeze and how fish 
swim. Statistical analysis has been applied to a number 
of questions about swimming performance, including 
the prediction of future world record times, the mod-
eling of deterioration in swimming performance as a 
function of age, and the evaluation of whether triath-
lons are fair to swimmers.

Improving Human Performance in Swimming
Modeling human swimming presents serious chal-
lenges for researchers. The use of arms and legs to pro-

pel the swimmer through the water adds complexity to 
the fluid dynamics models. Because the human swim-
mer is not completely immersed in the water but keeps 
part of the body above the surface, the interaction 
between the swimmer and the surface is particularly 
difficult to model. Researchers have applied smoothed 
particle hydrodynamics to the study of human swim-
ming performance which, unlike traditional fluid 
dynamics, treats fluid flow as the motion of individual 
particles. This method enables researchers to more 
accurately model and simulate the interactions of the 
swimmer at the surface. The goal of this research is to 
help individual swimmers improve their performance 
in competition.

Predicting World Record Swim Times
Statistical analysis of human swimming performance 
encompasses a number of different approaches and 
methods. An analysis of world records in swimming 
from 1960 to 2010 shows a nearly steady decrease 
in times, resulting in between 15% to slightly more 
than 25% improvement, depending on the event. The 
question remains how long times can continue to 
decrease, how much is because of increased partici-
pation in swimming (especially women’s swimming), 
and how much is because of advances in technique 
and conditioning. 

Predicting the Swimming  
Performance of Aging Swimmers 
On a different tack, Ray Fair modeled the performance 
of elite swimmers of different age groups and modeled 
the performance at various swimming distances by age. 
For example, he predicted that a 60-year-old will swim 
a time about 10% slower than the swimmer had done 
at age 35, while a 70-year-old will be 25% slower.  

Are Triathlons Fair to Swimmers?
Richard De Veaux and H. Wainer investigated the rela-
tive disadvantage of swimmers to runners and cyclists 
in a triathlon. Because the times taken for the three 
events are so different, they argued that the standard 
triathlon proportions (including the Iron Man and 
Olympic triathlons) are grossly unfair to swimmers. 
The best marathon runners in the world take about 
two hours, seven minutes to run the 26.2-mile mara-
thon (with variation due to course and weather). An 
elite cyclist can cover about 60 miles in the same time, 
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and an elite swimmer can travel 7.5 miles. Thus, to be 
fair in terms of average time taken, a triathlon based on 
a marathon should also contain a 60-mile bike leg and 
a 7.5 mile swim. In reality, the Iron Man is a 26.2-mile 
run, a 112-mile bike leg, and only a 2.4-mile swim, and 
thus disadvantages swimmers enormously.
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Symmetry
Category: Architecture and Engineering.
Fields of Study: Geometry; Measurement.
Summary: An ancient mathematical concept, there 
are various forms of symmetry.

“Symmetry,” which comes from the Greek word roots 
meaning “same” and “measure,” describes a picture, 
shape, or other object that looks the same when viewed 
from another perspective or that can be transformed 
in some way without changing its important proper-
ties. The word “symmetry” can refer to this property, 
to the transformation itself, or more holistically to an 
aesthetically pleasing sense of balance. Eighteenth-cen-
tury mathematician Adrien-Marie Legendre revolu-
tionized the concept of symmetry when he connected 

it to transformations. There are a wide variety of uses 
of the word “symmetry” in different domains, includ-
ing art, architecture, and science, and many of these 
have existed from antiquity. The concept of symmetry 
is inherent to modern science and architecture, and its 
evolution reflects in many ways the dynamic nature of 
these fields.

Visual Symmetry
In the context of geometric figures drawn in the plane, 
there are three fundamental types of symmetry:

1. A figure has “reflection” symmetry if it 
coincides with its own mirror image across 
some line. The capital letters M and W have a 
single reflection symmetry, while the letter H 
has two symmetries, horizontal and vertical.

2. A figure has “rotational symmetry” if it can 
be rotated around a fixed point, leaving the 
figure unchanged. For example, the capital 
letters N, Z, and S are unchanged when 
rotated 180 degrees. The pattern of black 
squares in traditional crossword puzzles also 
has this half-turn symmetry.

3. A figure has “translational symmetry” if it can 
be slid or moved without changing. A typical 
example is a repeating pattern on wallpaper.

Construed in the broadest terms, symmetry plays a 
role in almost all art and is related to balance and har-
mony. One of the many ways in which the narrower 
geometric notion of symmetry applies to art is tessella-
tions. A tessellation is a covering of the plane by copies 
of a limited set of tiles. Such figures are often highly 
symmetric. Tilings by squares, hexagons, and triangles 
are common enough, both in art and on kitchen floors, 
and more fanciful tessellations involving animal and 
plant shapes are also possible. Tessellations, dynamic 
symmetry, and mathematical sophistication are espe-
cially evident, for example, in the art of M.C. Escher 
(1898–1972).

Abstract Symmetries
Symmetry is not just a geometric concept. Any struc-
ture or object can have symmetry. Abstractly, a symme-
try is any transformation of an object resulting in an 
object that is “the same” in the sense of having all the 
same properties that are important in context. Often, 
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the object is a geometric figure, and the relevant prop-
erties are length, angle, and area, but it need not be so.

Consider the game rock-paper-scissors. Renam-
ing the scissors gesture to “paper,” renaming paper to 
“rock,” and renaming rock to “scissors” would leave the 
rules of the game unaltered. This is an abstract symme-
try of the game. Then, there are enough symmetries to 
identify any move with any other, so all three options 
are intrinsically “equally good.” In this example, there is 
symmetry but no geometry whatsoever.

Symmetry and Groups
In higher mathematics, notions of symmetry are 
expressed in the language of group theory. A “group” 
is a set (G) of objects that can be composed together 
(in other words, if x and y are elements in a group,  
x × y is also an object in the group), subject to three 
conditions: associativity, identity, and inverse criteria. 
The salient feature of this definition is that the set of all 
the symmetries of any object satisfies these conditions. 
The associativity property is automatic from function 
composition; but what about the other two? These are 
restatements of the convention that the transformation 
that does nothing is a symmetry and the idea that sym-
metries are “undo-able.” Symmetries leave an object 
“structurally the same as it was,” so there will always be 
another symmetry to undo any given symmetry.

The symmetries of any object that preserve any 
desired features form a group, called the “symmetry 
group” of the object. Often, one can understand a com-

plicated object much better by studying the size and 
structure of its symmetry group.

Klein and the Erlangen Program
Felix Klein (1849–1925) greatly strengthened the con-
nection between geometry and group theory. His 
insight was that, if one really wants to understand a 
geometric structure, then one should study the group 
of symmetries that preserve the structure. This philos-
ophy has proved very fruitful and is now known as the 
Erlangen program.

For example, in ordinary Euclidean plane geom-
etry, the focus is on lengths and angles. The group of 
symmetries that preserve lengths and angles consists 
of translations, rotations, reflections, and combina-
tions of these. Given any two points, each with an 
arrow pointing away from it in a given direction, one 
can always translate and rotate the plane so that the 
image of the first point lies on the second point, and 
the arrows are pointed in the same direction. This is 
the sophisticated way to understand the notion that 
every point and direction in the plane are functionally 
the same as every other point and direction.

The Erlangen program has played a fundamental 
role in the development of nineteenth- and twentieth-
century geometric thinking, clarifying the relationships 
and distinctions between geometry and topology; pro-
jective and affine geometry; and Euclidean, hyperbolic, 
and spherical geometry.

Symmetry and the Universe
Those who study the shape of space are greatly con-
cerned with symmetry. Consider the question of 
whether the universe is “homogeneous.” That is, do 
the laws of physics treat every place the same as every 
other place? Is every direction physically like every 
other direction? What answers to those questions are 
believed to be correct determines what shapes, struc-
tures, and geometries are viable candidates to model 
the universe.

Time symmetry is another issue of importance in 
physics research; one wants to know to what extent 
the physical laws of the universe treat the past and 
future symmetrically. On a small enough scale, par-
ticle interactions have time symmetry. If one watched 
a “movie” of particle interactions on a small enough 
time-scale, it would be impossible to tell whether the 
movie was playing forward or backward. On the other 
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hand, the large-scale events observed in everyday life 
do not possess such past-future symmetry; for exam-
ple, eggshells break but do not spontaneously assem-
ble, people age but do not become more youthful. 
This discrepancy between small-scale symmetry and 
large-scale asymmetry is rather mysterious, and one 
can hope that reconciling the two will lead to greater 
understanding of physics.

Symmetry and Architecture
Symmetry has long been connected with architecture. 
In Greek and Latin, symmetry was used to indicate a 
common measure or a notion of something well-pro-
portioned, rather than as a reflection. However, reflec-
tion symmetries can be found in many buildings from 
different cultures, where the left side is a mirror image 
of the right side. Architects have also used symmetry 
in external views, layout, stability, or building details, 
such as stairs or windows. Some authors claim that 
the first recorded instance of the use of symmetry as 
a mirror reflection was in 1665, when Gian Lorenzo 
Bernini was asked to design an altar for the church 
of Val-de-Grace, while others assert that it was first 
found in Claude Perrault’s 1673 treatise on columns. 
Perrault is best known as the architect of the east wing 
of the Louvre. 

Concepts such as the symmetry groups of the plane 
also originate in architecture. Beginning with mathe-
matician Edith Muller’s 1944 analysis, experts continue 
to debate how many of the 17 groups can be found in 
the mosaics of the Alhambra at Granada, a fourteenth-
century Moorish palace. Some assert that all 17 can be 
found there and in many other examples in Islamic art 
and architecture. A formal mathematical proof that 
there are no additional symmetry groups was proven 
independently by Evgraf Fedorov in 1891 and George 
Pólya in 1924. Partly because of a prohibition against 
using anthropomorphic forms, symmetry appears in 
many instances of Islamic-influenced architecture, 
such as the Taj Mahal.

The connections between symmetry and architec-
ture continue into the twenty-first century. In numer-
ous texts in the twentieth and twenty-first centuries, 
mathematicians such as Hermann Weyl illustrate con-
cepts using architectural references. Architects and 
engineers also frequently use symmetry, though archi-
tects working in the modernist aesthetic reject symme-
try in their designs.
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Synchrony and  
Spontaneous Order
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Connections; Data 
Analysis and Probability.
Summary: The world is filled with examples of 
spontaneously emerging order.

Humans are familiar with order: people order homes 
by placing belongings in one place; people also watch 
football games with players who follow orders given 
by a quarterback who directs the play. There are many 
examples of order in nature. Birds and fish order them-
selves by flying in flocks and swimming in schools. 
How is order created in a complex system with many 
parts? Experience indicates that order emerges from 
the actions or directions of a leader, just as the quar-
terback is the leader of a football team. It is possible, 
however, for a system to be ordered without the help 
of a single leader—an attribute that occurs in a sponta-
neously ordered system. Systems have a global (group) 
level and a local (individual) level. A school of fish is 
made up of thousands of individual fish, and a laser is a 
collection of particles of light (photons) that are emit-
ted from trillions of atoms. When a system is spontane-
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ously ordered, the order occurs because of local level 
interactions without global level direction. Imagine a 
spontaneously ordered football team. The quarterback 
on this team does not need to direct or call a play. This 
team is able to organize and execute plays simply by 
communicating with each other (individually) as each 
play unfolds. There will likely never be a team like this, 
but spontaneously ordered phenomena are all around 
if one knows where to look. 

When multiple events are ordered in time, the result 
is “synchrony.” Without synchrony, life would be very 
different. People would not enjoy watching a football 
game with unsynchronized players who run in different 
directions after—or before—the ball is snapped. Many 
of the technological devices that people use, including 
GPS, cell phones, and lasers, rely on synchrony to work 
properly. Scientists have even published evidence of 
synchrony in cloud patterns. When spontaneous order 
occurs, the result is often synchrony. Mathematicians 
and statisticians are involved in the collection of data 
that help define important variables related to syn-
chrony and fuel the development of theories and mod-
els, as well as the formulation of mathematical models 
to describe and explain synchrony. This work draws 
from many areas of mathematics, including logic, 
probability, decision theory, geometry, and statistics, as 
well as related scientific fields.

Examples of Synchrony  
and Spontaneous Order
In some regions of Southeast Asia, large numbers of 
male fireflies flash on and off at the same time, cre-
ating a spectacular array of synchronized lights. It is 
believed that the males are flashing in unison to attract 
females. Physiologically, these fireflies have an internal 
firing mechanism that can generate a rhythmic flash-
ing sequence. Experiments with individual fireflies 
demonstrate that the timing of their flashes can be 
altered to mimic that of an external stimulus, which is 
flashing rhythmically. This suggests that synchronized 
firefly flashing is the result of a spontaneously ordered 
process. To test this hypothesis, mathematicians 
Renato Mirollo and Steven Strogatz created a simple 
mathematical model by using an equation to describe 
an individual firefly as a biological oscillator (just as a 
plucked guitar string is a mechanical oscillator). They 
coupled multiple, identical oscillators together to form 
a system. Their mathematical model is a system of 

coupled differential equations. Mirollo and Strogatz 
analyzed the system and proved that in almost all cases, 
no matter how many oscillators there are or how the 
oscillations are started, synchrony is the result.

Fish often travel in schools. One advantage of this 
behavior is to allow fish to better avoid predators by 
performing highly synchronized, evasive maneuvers. 
Experimental data suggests that schooling fish have a 
preferred distance, elevation, and orientation relative 
to their nearest neighbor. Scientists Andreas Huth and 
Christian Wissel have modeled fish schooling as a spon-
taneously ordered system. They assume that schooling 
originates not because of a particular fish directing the 
group’s movements but because of simple behavioral 
rules for individual fish. Their assumptions include 
that each fish desires to be close (but not too close) 
to another fish, each fish moves according to its per-
ception of the position and orientation of neighboring 
fish, and individual fish movement is random. Huth 
and Wissel tested different movement rules for their 
model since there are no data that supports specific 
movement rules for schooling fish. They used the data 
generated from computer simulations of their model 
to determine the average direction of movement as a 
group and the average angular deviation by individual 
fish from the group’s direction, which is defined as 
the “polarization” of the school. The polarization is a 
way to quantify the synchrony of the school because 
the larger the polarization, the more disoriented the 
school is. Since polarization depends on the move-
ment rules, they used polarization to find movement 
rules for which their model best simulated synchro-
nized schooling.

A fluorescent light bulb consists of a long tube filled 
with an inert gas. The light that we observe originates 
from the atoms in the gas. Each atom has multiple 
electrons that exist at specific energy levels. Electricity 
forces electrons through the tube and these electrons 
collide with the atoms in the gas. The collision raises 
the energy level of the atom’s electrons, which then 
spontaneously revert back to a state of lower energy. 
This loss of energy causes a light particle (photon) to 
be emitted and the light that we see is from the emis-
sion of millions upon millions of photons. The light 
from a fluorescent light bulb consists of many different 
wavelengths and is scattered in many directions. Alter-
natively, the light from a laser, which stands for “light 
amplification by stimulated emission of radiation,” is 
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highly synchronized with a single frequency, direction, 
and phase. The first laser was constructed in 1960, but 
in 1917, Albert Einstein developed the quantum phys-
ics that predicted how a laser is able to synchronize the 
photons. When lasers were invented no one knew what 
to use them for. 

Today, laser light is used for everything from gro-
cery store checkout scanners to eye surgery. Just as 
with fluorescent light, raising and lowering the energy 
levels of individual electrons generates the light from 
a laser. An external energy source (such as electric-
ity) continually stimulates electrons and raises them 
from lower energy states to higher energy states. Ini-
tially, when the laser is turned on and some electrons 
spontaneously fall back to their lower energy states, 
the emitted photons move in random directions. But 
a laser has mirrors at both ends and the photons are 
trapped between the mirrors for a long period of time 
before they can escape. Furthermore, a laser is con-
structed so that the photons will perfectly synchronize 

and amplify a light wave with a specific frequency and 
direction while filtering out the other light waves. One 
of the mirrors allows some of the light to escape in the 
form of a laser beam, an example of synchrony that we 
encounter each day.
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Tao, Terence
Category: Mathematics Culture and Identity.
Fields of Study: Number and Operations;  
Representations.
Summary: One of the most accomplished 
contemporary mathematicians, Terence Tao is a 
groundbreaking number theorist as well as a  
popular blogger.

Terence Chi-Shen “Terry” Tao (1975–) is a South  
Australian–born mathematician. Some rank Tao 
among the greatest living mathematicians in the early 
part of the twenty-first century. A child prodigy, he 
was taking college-level mathematics classes as early 
as 9 years old and was awarded a Ph.D. from Princ-
eton University at the age of 20. He is, as of 2010, a 
professor at the University of California, Los Ange-
les. As a mathematician and writer, he is extremely 
productive and has contributed elegant solutions to 
difficult problems in diverse areas in mathematics. 
His primary research interests are analytic number 
theory, harmonic analysis, combinatorics, and partial 
differential equations.

Honors and Contributions
Dr. Tao’s contributions to mathematics, and his awards 
for them, are numerous. In 2006, Terence Tao was 

awarded the Fields Medal. The Fields Medal is some-
times called the “Nobel Prize of mathematics” and is 
generally regarded as the most prestigious award in 
mathematics. It is awarded once a year for superlative 
achievement by a mathematician up to the age of 40. 
At the age of 13, Tao won a gold medal at the Interna-
tional Mathematics Olympiad, an annual competition 
intended to challenge the world’s brightest students of 
high-school age; as of 2010 he remained the youngest 
person to ever win such a gold medal. His accolades 
also include the Salem Prize, the Clay Research Award, 
the SASTRA Ramanujan Award, the Australian Math-
ematical Society Medal, and the King Faisal Interna-
tional Prize. Tao has been pleased with his success, but 
he would like to continue focusing on mathematics 
research rather than reflect on his achievements.

One particularly significant contribution by Ter-
ence Tao to number theory came in 2004. In joint 
work with Ben Green, he proved a remarkable result 
about arithmetic progressions of prime numbers. An 
arithmetic progression is a sequence of numbers with 
a constant difference between them. For example,  
5, 11, 17, 23, 29 is an arithmetic progression with length 
5 and constant difference 6. The five numbers in the 
sequence are prime. Green and Tao proved that it is 
possible to find arithmetic progressions of five primes, 
or 50 primes, or 50,000 primes. Indeed, they showed 
that arithmetic progressions of primes exist that are as 
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long as desired. Understanding the distribution of the 
prime numbers is of paramount importance in num-
ber theory, and results of this type are often notori-
ously difficult to establish.

Communication and Strategy
In addition to all his papers and books, Terence Tao 
is a very well-respected and prolific blogger. On the 
“What’s New” blog, Terence Tao frequently posts 
remarks on his ongoing projects, links to and com-
mentary on current articles, and other mathemati-
cal topics. There are numerous active mathematical 
blogs at all levels of sophistication, but many consider 
“What’s New” to be the “grandfather” of mathemati-
cal blogging. “What’s New” is considered by many 
active mathematicians to be an important and influ-
ential source of information. As of 2010, the Ameri-
can Mathematics Society had published two books of 
excerpts from his blog.

While he has been described as the “Mozart of 
Math” because of his creativity and the mathematics 
that seems to flow out of him, Tao attributes his suc-
cess to strategies that enable him to break up difficult 
problems into easier ones. Often, he focuses on one 
question at a time and tries a variety of techniques. He 
stated: “When I was a kid, I had a romanticized notion 
of mathematics—that hard problems were solved in 
Eureka moments of inspiration. With me, it’s always, 
‘let’s try this that gets me part of the way. Or, that 
doesn’t work, so now let’s try this. Oh, there’s a little 
shortcut here.’” 
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Telephones
Category: Communication and Computers.
Fields of Study: Geometry; Measurement; Number 
and Operations; Representations.
Summary: Mathematicians have played key roles in 
efficiently managing telecommunication networks 
and developing newer and more powerful phones and 
wireless networks.

Inventors Elisha Gray and Alexander Graham Bell 
independently designed devices to electrically transmit 
speech in the 1870s; however, Bell patented his device 
first. The American Bell Telephone Company created 
the first telephone exchange in 1877. A subsidiary com-
pany, American Telephone and Telegraph (AT&T), was 
incorporated in 1885 to develop and implement long-
distance telephone service, and Bell Laboratories was 
founded in 1925 for research and development. Later, 
the labs would be managed by both AT&T and Lucent 
Technologies. The telecommunications industry has 
long relied on the contributions of mathematicians 
for its success and hundreds of companies continue 
to employ mathematicians to address the increasingly 
complex problems of twenty-first-century communica-
tion. They develop technology and algorithms for wired 
and wireless communication, which facilitate speed 
and efficiency for a variety of applications. They also 
research ways to increase security and prevent unau-
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cell phones. Some mathematical models have suggested 
that exponential growth would exhaust the supply. 
Similar concerns have been raised about social security 
numbers and Internet addresses, since the number of 
digit permutations for any given string length is finite.

Cell Phones and Smartphones
Mathematical methods were also important in the 
development of cell phones and smartphones. In 1947, 
Bell Labs engineer W. Rae Young suggested a hexago-
nal tower arrangement for cellular mobile telephone 
phone systems, which was expanded upon by engineer 
Douglas Ring—though the technology did not exist 
to implement the idea until the 1970s. The Motorola 
DynaTAC 8000x, released in 1983, was the first truly 
portable cell phone. Cellular technology proliferated 
rapidly, and society has widely embraced smartphone 
technology. Described as a new generation of tele-
phone, smart phones are, essentially, computers small 
enough to fit in a palm or pocket. The IBM Simon 
Personal Communicator, created by IBM and Bell-
South and sold beginning in 1994, is cited as the first 
smartphone, while at the start of the twenty-first cen-
tury, Apple’s iPhone and the Motorola Droid are very 
popular. The Android open-source operating system, 
which forms the basis for the Droid smartphones, was 
invented by computer scientist Andrew Rubin. It has 
been compared to Lego system building blocks because 
of the structure of its software solution stack, which 
many consider to be more compatible than the dis-
cretely packaged and isolated programs of some other 
operating systems. 

Mathematics has played an increasingly large role 
in cell phone and smartphone service. Smartphones 
not only serve as cell phones for verbal or textual com-
munication, they also play media, provide access to 
the Internet, serve as GPS and navigation devices, and 
run various other software. Electronic signals from 
smartphones carry digitized speech and data, requir-
ing mathematical algorithms to construct and com-
press information, as well as to correct errors. Math-
ematicians and information theorists, such as David 
Huffman and Jorma Rissanen, developed compression 
techniques using concepts from probability theory 
and entropy. Mathematical methods from signal pro-
cessing and graph theory prevent interference between 
multiple callers and help to establish networks that 
provide uninterrupted coverage. The International 

thorized listening or wiretaps. Some create business 
models or study issues such as customer satisfaction. 

Finite Phone Numbers in an  
Expanding Communication Network
One notable mathematical problem of the early twenty-
first century is assignment of phone numbers. In 2007, 
the Federal Communications Commission stated that 
582 million of 1.3 billion available phone numbers in 
the United States were already assigned, increasingly to 
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Contributions of  
Mathematicians

M any mathematicians have contributed to 
telephone systems. For example, George 

Boole, whose Boolean algebra was used in 
switching systems; Oliver Heaviside, who 
adapted complex numbers to study electrical 
circuits and worked on long-distance systems; 
and Agner Erlang, who modeled phone call 
waiting time using probability theory, in collabo-
ration with the Copenhagen Telephone Com-
pany. Mathematical modeling has been used to 
design and study telecommunications systems 
since the beginning of the twentieth century. 
Many mathematical and scientific advances, 
both theoretical and applied, were developed 
by the multidisciplinary working groups at Bell 
Labs, AT&T, and Lucent, which included nota-
ble mathematicians and at least one Nobel 
Prize winner. Examples of significant advances 
with applications both within and beyond tele-
phones include transistors, solar cells, lasers, 
satellites, the Unix operating system, the C pro-
gramming language, and digital signal process-
ing chips. Mathematician Claude Shannon is 
often referred to as the “father of information 
theory,” which he developed while at Bell Labs. 
William Massey created performance models 
for telecommunication systems using queuing, 
stochastic methods, and special functions, and 
he has cited Bell Labs as especially supportive 
to minority mathematicians and scientists. 



Mobile Telecommunications-2000 or 3G (third gen-
eration) is a global standard for mobile telecommuni-
cations introduced in 2000. It addresses critical issues 
such as data rates, bandwidth, frequencies, broadband 
compatibility, and issues of authentication, confidenti-
ality, and privacy. As of 2010, scientists and mathema-
ticians were developing further standards for mobile 
networks and devices, including a next generation 4G 
network. The Open Handset Alliance is a group of 
companies that develops and advocates for open stan-
dards for mobile devices.

Apps
As smartphone popularity booms, so do the tools 
developed for smartphones by computer scientists and 
others. Downloadable applications (commonly called 
“apps”) are readily accessible for free or for purchase. 

Many of them are aimed at education or academic 
subject areas, including mathematics. One set of apps 
offers the opportunity to practice with mathemat-
ics concepts and skills, like Math Flash Cards and 
Advanced Mental Math. Gamer-style apps like Math 
Ninja require players to answer challenge questions 
to advance. Other apps are electronic versions of 
mathematically based board games, like Mancala and 
Dominoes, while the popular game Tetris involves per-
forming geometric transformations quickly to stack 
variously shaped objects, which is related to classical 
packing problems.

Further Reading
Horak, Ray. Telecommunications and Data 

Communications Handbook. 2nd ed. Hoboken, NJ: 
Wiley-Interscience, 2008.

Mercer, David. The Telephone: The Life Story of a 
Technology. Westport, CT: Greenwood Press, 2006.

Thompson, Richard. Telephone Switching Systems.  
Norwood, MA: Artech House Publishers, 2000.

Whitfield, Diffie, and Susan Landau. Privacy on the  
Line: The Politics of Wiretapping and Encryption, 
Updated and Expanded Edition. Cambridge, MA:  
MIT Press, 2010.

Norma Boakes

See Also: Cell Phone Networks; Fax Machines; MP3 
Players; Software, Mathematics; Solar Panels; Wireless 
Communication.

Telescopes
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Number and 
Operations.
Summary: Image clarity in telescopes is achieved 
through extremely precise measurements and  
mathematics.

In 1608, the Dutch lensmaker Hans Lippershey applied 
for a patent on what was soon named a “telescope.” 
It is not clear if Lippershey was the true inventor; at 
least two other Dutch lensmakers also claimed credit. 
The news of this new invention quickly spread. In 
1609, Galileo Galilei in Italy started using telescopes 
to observe heavenly objects. Among other findings, he 
discovered the rotation of the sun, the phases of Venus, 
and the first four satellites of Jupiter. A mathematician 
as well as a physicist and astronomer, Galileo also used 
geometry to measure the heights of lunar mountains 
by determining how long they remained illuminated 
after the lunar sunset.

Other mathematicians and physicists helped 
develop the modern telescope. Isaac Newton deter-
mined that lenses acted like prisms in spreading out 
the spectrum of visible light (a phenomenon known as 
chromatic aberration). Newton and the mathematician 
James Gregory independently invented the reflecting 
telescope, which does not have this problem. Leonhard 
Euler made a mathematical analysis of chromatic aber-
ration, and in England so-called achromatic lenses (a 
combination of two lenses that together bring light of 
different colors to a focus) were invented in the early 
eighteenth century.

Optics
A telescope is an optical device for seeing objects that 
are either far away, or very dim, or both. Consider a 
typical magnifying glass, as shown in Figure 1, which is 
a piece of glass or other transparent substance shaped 
so that both sides are sections of spheres. Light rays 
from an object (such as a candle) come to a focus on 
Screen 1. In other words, light rays from any given 
point on the candle converge onto a single point of 
Screen 1, forming an image. Screen 2 is at the wrong 
distance, meaning the light rays do not converge prop-
erly on Screen 2. Screen 1 is said to be “in focus,” and 
Screen 2 is “out of focus.”
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The first lens the light goes through is the called 
the “objective lens.” The plane (Screen 1) where the 
image is in focus is called the “focal plane.” The “focal 
length” is the distance to the focal plane for a source 
at infinity (incoming parallel rays).

Magnification is measured in diameters. If the image 
is twice as tall and also twice as wide as the original, 
then there is a magnification of two diameters. Some 
optical devices, however, are measured in power, which 
is the square of the magnification in diameters; for 
example, a microscope advertised as “100 power” actu-
ally magnifies 10 diameters.

Figure 1a shows the same configuration as Figure 
1, but the focal length is twice as long. The image 
on the focal plane is thus twice as high and twice as 
wide—it is magnified twice as many diameters. Since 
the image is spread out over four times the area, it 

is only one-fourth as bright. Conversely, for a given 
focal length, doubling the size of the objective lens 
lets in four times as much light, hence the image is 
four times as bright.

In Figure 1, if one were to put a light-tight box 
around screen 1, set up a shutter to control when light 
enters the box, and replace screen 1 with photographic 
film, the result is a camera. Replace the photographic 
film with an electronic light-sensitive screen, and the 
result is a digital camera. If the camera is used to take 
pictures of far-away or dim objects, then it qualifies as 
a telescope.  

Astronomical Telescopes
Since astronomers are interested in dim celestial objects, 
a big objective is necessary for astronomical telescopes. 
Amateur astronomers frequently use a 6-inch (15-cm) 
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objective as a good compromise between light-gather-
ing power and cost. Professional astronomers rarely 
use objectives less than about half a meter (1.5 feet) in 
diameter. The largest objective lens in the world as of 
2010 is 40 inches (1.106 meters) at Yerkes Observatory 
in Wisconsin.

The eye has its own lens, and the telescope has 
two lenses (or sets of lenses): the objective and the 
eyepiece. Figure 3 shows how the two-lens telescope 
delivers a greatly magnified image to the eye. The 
magnification in diameters is equal to the focal length 
of the objective divided by the focal length of the eye-
piece. For example, the 40-inch telescope at Yerkes has 
a focal length of 744 inches. With a one-inch eyepiece, 
this telescope magnifies 744 diameters.

A microscope operates in the same way, except that 
the object being viewed, instead of distant and dim, is 
well lit and close to the objective lens.

Diffraction and Refraction
The useful magnification of a telescope is limited by 
diffraction. Light rays at the edge of the objective lens 
are diffracted—they are bent around the edge of the 
lens. These diffracted light rays cause a pattern of light 
and dark circles around bright images, which will blur 
adjacent images together. An empirical formula tradi-
tionally used to specify the limit of useful magnifica-
tion is the Dawes Limit (also called the Rayleigh Limit): 
the resolution in arc-seconds is 4.56/D, where D is the 
diameter of the objective in inches; or 11.6/D, where 

980 Telescopes

Mirror Blank
Grinding Tool

Figure 4. Grinding a mirror by hand (curvature greatly 
exaggerated).

Figure 5. Four designs of reflecting telescopes  
(Gray bar shows focal plane).

G ravitational fields bend light, as predicted by 
Albert Einstein’s general theory of relativity. 

Hence, large gravitational fields act as lenses. 
The first test of general relativity was during a 
solar eclipse in 1919, when the effect of the sun’s 
gravity was to make stars very near the sun’s 
edge appear to be at a small—but measurable—
angle further away from the sun than when they 
are viewed when the sun is not almost in front 
of them. In effect, the sun acted as a lens and 
magnified the image of the area around the sun. 
There are no lenses for radio waves, but radio 

telescopes that observe radio waves from astro-
nomical objects, such as quasars, do exist. Most 
radio telescopes use a metal parabolic mirror to 
reflect the astronomical radio waves to a receiver 
at the focus of the parabola.

There also exist what might be called sound 
telescopes. One variety, for picking up sounds from 
a distance, uses a parabolic dish to reflect sound 
waves to a microphone at the focus of the parab-
ola. Ultrasound machines, used for monitoring  
pregnant women, use the woman’s own bladder to 
focus the ultrasound waves onto the receiver.

Non-Optical Telescopes

Prime Focus Newtonian Cassegrain Coudé



D is in centimeters. For example, the diameter of the 
pupil of the human eye when dark-adapted is approxi-
mately 8 mm. By the Dawes Limit, the eye can resolve 
11.6/.8 (14.5 arc-seconds), or about 1/125 of the diam-
eter of the full moon. The Yerkes telescope can resolve 
about 0.1 arc-seconds. 

A telescope using a lens as its objective is called a 
refracting telescope, since light is “refracted” (bent) by 
the lens. As of 2010, the 40-inch Yerkes instrument is 
the largest refracting telescope. A lens that size has to 
be thick to stand up to gravity, and thick lenses absorb 
so much light that beyond the size of Yerkes, absorp-
tion begins to outweigh the increased light gathered by 
a wider lens. Hence all current telescopes with objec-
tives greater than 40 inches are “reflecting telescopes” 
in which the objective is a mirror rather than a lens.

Observer Placement
Unlike a lens, an objective mirror has a parabolic rather 
than a spherical surface. There is also the mechani-
cal problem of where to place the observer or cam-
era. There are several possibilities, some of which are 
shown in Figure 5. 

One method, called “prime focus,” places the photo-
graphic film (or other astronomical instrument) inside 
the path of the incoming light. A few very large reflect-
ing telescopes, such as the 200-inch Hale Telescope at 
Mount Palomar, actually allow for a human observer to 
ride in a cage at the prime focus.

A more common arrangement, invented by Isaac 
Newton and called the “Newtonian,” consists of a small 
flat mirror at an angle, which moves the focal plane to 
the side of the telescope. Two other common arrange-
ments have a convex mirror at the prime focus, reflect-
ing the light back down the length of the incoming light 
and also increasing the focal length. In the Cassegrain 
arrangement, a hole is cut in the middle of the mirror 
for the light to pass through. In the coudé arrangement, 
the light is reflected one more time into the mounting of 
the telescope, allowing the use of stationary instruments 
too heavy to be loaded onto the tube of the telescope.

Further Reading
Alloin, D. M., and Jean-Marie Mariotti. Diffraction-

Limited Imaging With Very Large Telescopes. Berlin: 
Springer, 1989.

Edgerton, Samuel. The Mirror, the Window, and the 
Telescope: How Renaissance Linear Perspective Changed 

Our Vision of the Universe. Ithaca, NY: Cornell  
University Press, 2009.

Gates, Evalyn. Einstein’s Telescope: The Hunt for Dark 
Matter and Dark Energy in the Universe. New York:  
W. W. Norton, 2009.

Maran, Stephen. Galileo’s New Universe: The Revolution 
in Our Understanding of the Cosmos. New York:  
BenBella Books, 2009.
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Television,  
Mathematics in
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Problem Solving.
Summary: Television shows routinely help shape the 
public’s view of mathematics and mathematicians.

Like many other academic disciplines, mathematics 
has found its way to the small screen in the form of 
children’s educational programming, various puzzle 
challenges on reality television and other game shows, 
and mathematically talented characters on a variety 
of scripted shows. These categories of programming 
and their attendant themes help shape and reflect the 
public’s image of mathematics and mathematicians at 
different times. It is important to note that television 
viewership is determined though the statistically based 
Nielsen ratings, which networks use to calculate adver-
tising revenue. As a result, the fate of a show is often 
tied to its Nielsen ratings. 

Some of these programs promote mathematics as 
an exciting learning area (often in children’s educa-
tional programming) or as a technical skill, which can 
give characters power and control. Problematic ste-
reotypes persist, especially the still-common portrayal 
of mathematicians predominantly as white men. The 
stereotype of the mathematically talented character 
as a “nerd” is also prevalent and suggests that popular 
television representations of mathematics reflect both 
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respect for the technical knowledge and fear about an 
expertise sometimes portrayed as mystifying or as the 
exclusive domain of obsessive “geeks.”

Children’s Educational Programming
The focus in children’s educational programming 
that addresses mathematics is often on encouraging 
children to be excited about the subject area, along 
with helping them master skills and gain understand-
ing. Most notably, the Children’s Television Work-
shop (CTW), founded in 1967, ultimately created or 
inspired much of children’s educational programming. 
Funded by federal and private sources, CTW designed 
Sesame Street to teach letter and number skills, as well 
as foundations of critical thinking, to preschoolers. The 
program revolutionized children’s programming when 
it premiered in 1969 and has been broadcast continu-
ally ever since. Its core focus is on educational content 
that is presented using attention-getting and retaining 
tactics, such as fast movement, humor, puppets, and 
animation. The Count, for example, is a flamboyant 
Dracula-like character who loves to count. A popu-
lar animated segment, “Pinball Countdown,” taught 
children to count using an elaborate pinball machine. 
Mathematics is also contextualized in segments involv-
ing real-life skills, like going to the grocery store.

Studies suggest that Sesame Street is viewed by 
almost half of all U.S. preschoolers on a weekly basis, 
and there are at least 10 foreign-language versions 
that have been broadcast in more than 40 countries. 
Not only is mathematics presented in the show, but it 
has also been used in shaping decisions about content 
and presentation. A multidisciplinary team, including 
Edward L. Palmer, who held a Ph.D. in educational 
measurement and research design, systematically 
studied early episodes of the show using data col-
lection and statistical methodology to address both 
appeal and content comprehension. Other researchers 
in the early 1970s, including the Educational Testing 
Services, found both gains in learning and improve-
ments in attitudes toward school in children who 
watched Sesame Street, but at the time it did not help 
close the gap between some groups of children as had 
been originally hoped. A longitudinal study found 
that exposure in the preschool years was significantly 
associated with better grades in English, mathematics, 
and science in secondary school, though one cannot 
infer direct causality from such a study.

In 1973, ABC premiered Schoolhouse Rock! as short, 
musical cartoons aired in between full-length shows on 
Saturday morning. The show was reportedly inspired by 
David McCall, the chairman of a public relations firm, 
whose son had difficulty with multiplication tables 
but could easily recall song lyrics. In the “Multiplica-
tion Rock” series, multiplication of numbers was set to 
music. Though there is no song about 10, “My Hero, 
Zero” discusses powers of 10 and the importance of 
zero. “Little Twelvetoes” examines the base-ten numeral 
system by imagining a world in which humankind is 
born with 12 fingers and toes instead of 10. The series 
“Money Rock” and “Computer Rock” also included 
applied mathematical concepts. Teachers often show 
“Multiplication Rock” in their classrooms, and the 
series is available as both audio and video recordings.

Other shows featured mathematical content as well. 
In the late 1980s, Children’s Television Workshop cre-
ated the mathematics show Square One, which fea-
tured guest stars and explored mathematical concepts 
through segments that parodied aspects in popular 
culture. In 2002, PBS premiered Cyberchase, in which 
three children and their bird use mathematics to pre-
vail against evil schemes to destroy Cyberspace. Other 
examples of mathematics in educational programming 
for various levels of students are The Metric Marvels, 
Math Can Take You Places, Bill Nye the Science Guy, 
and Blue’s Clues. One notable addition to the family of 
education mathematics programs in the twenty-first 
century is Nickelodeon’s Team Umizoomi. This series, 
which premiered in early 2010, mixes 2-D and 3-D 
animation with live action to create a virtual world in 
which a team of characters helps children solve prob-
lems. Like many modern television programs, Team 
Umizoomi has an accompanying Web site. According 
to Nickelodeon executive Brown Johnson, “Math sur-
rounds us everywhere we go, which is why we wanted 
to create a fun, adventure-filled, interactive series that 
engages preschoolers and encourages them to practice 
and refine their mathematical thinking skills.”

Reality Television and Game Shows
This spirit of mathematics as an adventurous chal-
lenge also appears in other programming, especially 
on reality television and game shows, which include it 
as a key test of skill. Often, players must solve a puzzle 
that falls under the umbrella of some classical problem 
from the fields of game theory or probability. Instances 
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of mathematics in Survivor, The Mole, and The Real 
World/Road Rules Challenge have been examined and 
catalogued. The Price is Right has been used to study 
probability in the classroom, and Friend or Foe has 
been used to analyze and study the Prisoner’s Dilemma 
in the classroom. 

Another way in which mathematics is applied to 
reality television is through its application of voting 
theory. Many reality shows use formulas to calculate 
voting results. The fall 2010 season of Dancing with 
the Stars was marked by a controversy in which con-
testant Bristol Palin, daughter of 2008 Republican 
vice presidential candidate and former Alaska gover-
nor Sarah Palin, consistently received low scores from 
the judges and yet escaped elimination week after 
week. The controversy prompted the ABC network 
to, for the first time, specify its voting scheme on the 
show and explain it on its Website. Under the system, 
the judges’ scores for each couple are recalculated as 
a percentage of the judges’ total scores for that night. 
Then, the votes each couple receives from home view-
ers are calculated as a percentage of the total number of 
votes received for that week. These two percentages are 
added together, and the couple with the lowest com-
bined total is eliminated. Palin’s high percentage of the 
popular vote meant that her combined share was rarely 
the lowest. While reality programs typically refuse to 

reveal the exact number of votes contestants receive, 
as in highly popular shows such as American Idol, in 
the case of Dancing with the Stars, viewer curiosity and 
voting controversy prompted an unusually detailed 
discussion of the mathematics involved. 

Nerd-Genius 
Moving beyond such simple tests of skill, scripted 
series sometimes treat mathematics on a deeper the-
matic level. One common theme is the “nerd-genius.” 
Since the late 1990s, mathematicians and scientists 
have more frequently been appearing as the unlikely 
heroes of shows ranging from police procedurals 
(NUMB3RS) to sitcoms (The Big Bang Theory), from 
animated shows (Futurama) to reality gamedocs 
(Beauty and the Geek). The increasingly positive por-
trayal of “nerd-genius” may reflect a greater acceptance 
of the Information Age and of technical expertise and 
knowledge as positive attributes.  

The popularity of The Big Bang Theory, which 
premiered in 2007 on CBS, speaks to this larger fas-
cination with the nerd-genius. The sitcom follows 
four young scientists, two of whom are physicists at 
the California Institute of Technology (one in experi-
mental physics, the other in theoretical physics), a 
third who is a Caltech astrophysicist, and the fourth, 
who is an aerospace engineer at a NASA field center. 

By the show’s third season, it was draw-
ing over 14 million viewers per week and 
ranked in the top 15 shows. In 2010, it 
won a People’s Choice Award for Favorite 
TV Comedy, and star Jim Parsons won an 
Emmy Award for Outstanding Lead Actor 
in a Comedy Series.

The characters are all teased for being 
socially awkward and obsessive about math-
ematics and science, as is typical for the 
stereotype. However, they are also lauded 
for their intellect and the program presents 
their thought processes as both humorous 
and fascinating. The program takes the sci-
entific content seriously, retaining a UCLA 
physics and astronomy professor, David 
Saltzberg, to review scripts for accuracy 
and provide mathematical equations and 
diagrams. The show has addressed such 
topics as string theory, loop quantum grav-
ity, and dark matter.
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Women and Minority Mathematicians
Whenever mathematicians are depicted on screen, 
some audience members may form (sometimes preju-
dicial) opinions about what mathematicians look like 
or how they act. Mathematicians are often presented as 
nerdy white men. There are possible downfalls of such 
limited portrayals. For example, Ron Eglash describes 
how the dearth of African-American geek characters in 
popular culture reflects and somewhat reinforces the 
stereotype that white male nerds are the gatekeepers 
to full participation in science and technology. But, to 
their credit, some television shows have made an effort 
to broaden the demographic range of their mathemati-
cal characters, including women and African Ameri-
cans among their number.

There have been a few female characters with math-
ematical ability on television. Early examples include 
three characters from the Star Trek: Voyager (1995–
2001) series:  captain Kathryn Janeway, chief engineer 
B’Elanna Torres, and Seven of Nine, who was rescued 
from the Borg (and thus joining the series) in season 
four. Often, these characters discuss intricacies of 
twenty-fourth-century physics, including warp speed 
travel and altering the time line. The show situates 
these three women (and the Vulcan Tuvok) as leaders 
among their shipmates in terms of knowledge of and 
ability in physics, engineering, and mathematics.  

Another woman character with mathematical talent 
is Winifred “Fred” Burkle on the show Angel (1999–
2004), created by Joss Whedon as a spinoff of his popu-
lar Buffy the Vampire Slayer series. Though a physicist 
by training, Fred displays her talents in mathematics, 
engineering, and invention on the show. Moreover, her 
character is supported by most of the other characters 
on the show—she is seen as a key player on the team. 
The Fred character has also been used as a case study 
of how Hollywood representations impact girls’ math-
ematical education. 

The show NUMB3RS (2005–2010) contains another 
mathematically talented female character: Amita 
Ramanujan, a Southern Californian of Indian origin. 
Throughout the series, Amita was a Ph.D. student, 
then colleague and fiancée, of mathematician Charlie 
Eppes. Charlie’s brother, Don, works for the FBI and 
uses Charlie’s mathematical skills to help solve crimes. 
Amita and physicist Larry Fleinhardt form Charlie’s 
problem-solving team and inner social circle. As with 
Fred from Angel, Amita is supported by the other 

series characters who value her mathematical talents. 
However, the role of Amita has also been controversial 
because of her romantic relationship with her thesis 
adviser, Charlie. 

Lisa Simpson, from the long-running animated 
show The Simpsons (1989–), also displays mathemati-
cal ability (among other nerdish qualities) at various 
times throughout the series. For instance, in the epi-
sode “Girls Just Want to Have Sums,” which originally 
aired April 30, 2006, on FOX, Principal Skinner makes 
disparaging remarks about girls’ mathematical abili-
ties. As a result, the school is split into two single-sex 
schools. Upset by the lack of rigor in her mathemat-
ics class, Lisa is forced to dress as a boy, Jake, in order 
to attend the boys’ mathematics class and learn “real” 
mathematics. When Jake wins an award for mathe-
matical achievement, Lisa reveals her true identity, to 
which her brother Bart claims that she did so well in 
mathematics only because she learned to think like a 
boy. In the 2010 episode “MoneyBart,” Lisa used the 
statistical methodology of Sabermetrics to manage 
Bart’s baseball team.

Though African-American characters possessing 
mathematical talent are admittedly not common, two 
notable exceptions aired on television shows in the late 
1980s. A Different World (1987–1993), a spinoff of the 
popular Cosby Show (1984–1992), featured Dwayne 
Wayne as a lead character. At different points through-
out the series, Dwayne was a mathematics major and a 
calculus teacher. Known for his flip-up glasses, Dwayne 
was involved in romantic relationships with several of 
the female characters on the show. By contrast, Steve 
Urkel, on Family Matters (1989–1997) was the ste-
reotypical geeky character, depicted in thick glasses, 
suspenders, and with a high-pitched voice. Whereas 
Dwayne was portrayed as popular with the opposite 
sex, Urkel was portrayed as an annoying neighbor of 
the Winslows who was grimly tolerated from week to 
week, though even he ultimately gained the audience’s 
sympathy and became engaged to the Winslows’s 
daughter Laura near the end of the show’s run.  

Other black characters with mathematical talent 
include Geordi LaForge of Star Trek: The Next Gen-
eration (1987–1994) and Turkov, of Star Trek: Voyager. 
Geordi eventually became the chief engineer on the 
Enterprise and a close friend of the android charac-
ter Data. Often the two of them would discuss various 
details of twenty-fourth-century physics. Tuvok, though 
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chief security officer of Voyager, also displayed a deep 
knowledge of science and mathematics. Both Geordi 
and Tuvok were valued members of their respective 
crews and were portrayed as scientific experts.

Such depictions of mathematicians and diversity 
offer great promise for the future, as television shows 
continue to reflect how society views mathematics and 
also impact those views themselves. In the twenty-first 
century, some have noted an increase in the portrayals 
of mathematics and mathematically talented individu-
als on television. Examples include mathematical dis-
cussions by the main characters on Bones (2005–); an 
intern on House (2004–) named Martha Masters has a 
Ph.D. in applied mathematics, who joined the cast in 
2010; and forensic pathologist Dr. Maura Isles on Riz-
zoli and Isles (2010–), who often discusses mathemati-
cal concepts.
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Devlin, Keith, and Gary Lorden. The Numbers behind 
NUMB3RS: Solving Crime with Mathematics. New 
York: Plume, 2007.

Eglash, R. “Race, Sex and Nerds: From Black Geeks 
to Asian-American Hipsters.” Social Text 20, no. 2 
(Summer 2002).  

Greenwald, Sarah, and Andrew Nestler. “Mathematics 
and Mathematicians on The Simpsons.” http:// 
SimpsonsMath.com.
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Televisions
Category: Architecture and Engineering.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement; Number and Operations.
Summary: Innovations in television technology rely 
upon a sophisticated use of mathematics, physics, and 
engineering.

Humans process reality by initially recording light 
and sound waves through the eyes and ears and then 
transmitting these data to the brain where they are 
transformed and synthesized into intelligible matter. 
In a similar manner, the engineering challenge of tele-
vision from its conception has been to record data, 
transmit them (via electricity), and then reconstitute 
them at a physical distance from its origin. Television 
is a relatively recent invention. The first appearance of 
the word (a combination of Greek and Latin words, 
meaning “far-seeing”) occurred in 1900 at the Inter-
national Electricity Congress at the Paris Exhibition. 
It was not one single person who invented television, 
but a number of scientists, engineers, and visionar-
ies working independently in different countries who 
devised the necessary technology and mathematics. 
Television has changed dramatically from its first 
appearance as an electromechanical system to elec-
tronic systems, including cathode ray tube (CRT), 
liquid crystal display (LCD), plasma, and three-
dimensional (3D) television.

Image Scanning and Aspect Ratio
Scanning the image required it to be disassembled into 
discrete pieces of picture that could then be transmitted 
separately and reassembled as a sequence of images on a 
screen, with each image recomposed from those smaller 
pieces of the picture. If the sequence of images could 
be displayed on the receiver’s end rapidly enough, they 
would appear to the human eye as a continuous whole 
of moving images. This approach makes use of the fact 
that the human eye can distinguish two parallel lines 
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only if they are about one-thirtieth of a degree apart 
and will blend 12 images per second into a moving 
whole. In the 1920s, the transmission of images went 
from an unacceptably choppy five per second to 12.5 
and more.

The earliest scanning mechanism is known as the 
“Nipkow disk,” named for the German physicist Paul 
Nipkow, and versions and refinements of this were 
used as late as the 1930s. It consisted of a disk with 
a spiral of small holes in it and a photosensitive cell 
made of selenium on the other side of the plate from 
the image. One revolution of the disk corresponded 
to one complete image, with the holes as they rotated 
capturing the image in a series of lines. The number 
of such lines depended on the number of holes, which 
thus determined the degree of resolution of the image. 
A second disk was then rotated at the receiving end, 
playing back the captured image. One drawback of the 
Nipkow disk was that the scanned lines were not linear, 
which changed the geometry.

Historians debate why Thomas Edison chose to 
represent the geometry of television using the rect-
angular 4:3 aspect ratio, which indicates the ratio of 
the width to the height of the image. Some hypoth-
esize that Edison chose this because the ratio approxi-
mates the golden mean while others assert that his 
motivation was to save money by cutting 70 mm film 
stock in half. The Society of Motion Picture Engi-
neers adopted this ratio in 1917 and it was standard 
for many years. The international standard for high-
definition television was devised mathematically in 
1980 by electrical engineer Kerns H. Powers. Powers 
analyzed the common aspect ratios in use at the time 
and normalized them to a constant area to fit them in 
a rectangle. When overlapped via their centers, they 
shared a common inner rectangle. He computed the 
geometric mean to obtain the 16:9 aspect ratio that 
continues to be the standard for televisions in the 
twenty-first century. 

A uniform aspect ratio for television created another 
problem of how to capture the ratio on 35 mm film. 
Mathematical principles were used to develop lenses 
that were “anamorphic,” which stemmed from the 
Greek words meaning “formed again.” Ultra Panavision 
used counter-rotated prisms, Technirama used curved 
mirrors and reflection principles, and CinemaScope 
used a cylindrical lens. However, the lenses created dis-
tortion problems as compared to spherical lenses. In 

the twenty-first century, mathematics continues to play 
a role in anamorphic widescreen processes.

CRT Television
While electromechanical televisions such as the Nip-
kow disk were being developed, an electronic alterna-
tive that used a CRT rather than mechanical parts was 
also being explored. Philo Farnsworth and Vladimir 
Zworykin, among others, worked independently on 
this technology in the United States in the late 1920s. 
The diameter of the round picture tube, which was also 
the diagonal of the rectangular cover, was the critical 
parameter. Televisions are still measured on the diago-
nal in the twenty-first century.

The innovation involved harnessing electrical prop-
erties of matter. At the receiving end is a CRT—a glass 
vacuum tube, which receives the incoming transmitted 
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3D Television

S tereoscopic effects produced by special 
televisions add a perceived depth of dimen-

sion to standard television that has previously 
been represented by only height and width, 
though this technology was still in its infancy 
at the start of the twenty-first century. Mathe-
matics plays an important role in the evolution 
of home 3D technology. For example, it is used 
in determining the proper viewing distance 
and angle, which depend on the geometry of 
the display and the location of the viewer in a 
(often) small space. However, there is a great 
deal of variability in the process. At the start 
of the twenty-first century, some people com-
plain of headaches caused by improper paral-
lax, interocular distance 
in the images or 
display, or 
difficulty in 
interpret-
ing the 
motion.



signal that represents the picture, known as the “video 
signal” (audio and visual components are transmitted 
separately). At one end of the CRT is a cathode, which 
is heated so that it will radiate electrons (negatively 
charged particles) that are then attracted along the 
circuit to the other end of the tube (called the “anode 
end”), which is at positive electric potential for this 
purpose. This beam of electrons is focused electrically 
by charged plates and can be delicately manipulated by 
interactions with a magnetic field produced by electric 
current passing through coils. 

At this end of the tube is a photosensitive phosphor-
coated screen, which has the property of responding to 
the beam of electrons by emitting light that is propor-
tional in intensity, point for point, to the beam that is 
moved across it. The video signal is synchronized with 
the electron beam so that the variations in the beam 
relay image information. The beam moves line-by-
line, lighting the phosphor that illuminates the screen 
on which the image is viewed. Color images necessitate 
a more complicated technology than black-and-white 
images: three signals, one for each of the primary col-
ors (red, green, and blue) and three electron beams are 
exploited to produce color images.

LCD and Plasma
CRT television was standard through the 1980s but the 
line-by-line sweeping of the electron beam across the 
screen takes time and faster technology is available on 
high-definition television (HDTV), which depends on 
either an LCD or a plasma screen. The image received 
via these newer technologies is still comprised of small 
units, called “pixels” (an abbreviation of “picture ele-
ments”), but these operate differently. In an LCD sys-
tem, each pixel is deployed by an electrically stimulated 
liquid crystal, which undergoes internal molecular 
rearrangement in such a way as to polarize (filter) 
light that is shone from the back. Intensity of light is 
adjusted by a blocking procedure similar to sunglasses. 
In a plasma screen, however, each pixel functions like a 
miniature fluorescent light, since it contains a mixture 
of gases and mercury that respond to electric charge 
by radiating energy that in turn causes phosphor on a 
screen to emit light.  

Further Reading
Abramson, Albert. The History of Television, 1880–1941. 

Jefferson, NC: McFarland & Company, 1987.

———. The History of Television, 1942–2000. Jefferson, 
NC: McFarland & Company, 2003.

Noll, A. Michael. Television Technology: Fundamentals 
and Future Prospects. Norwood, MA: Artech  
House, 1988.

Todorovic, Aleksandar Louis. Television Technology 
Demystified: A Non-Technical Guide. Philadelphia: 
Elsevier, 2006.
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Temperature
Category: Space, Time, and Distance.
Fields of Study: Algebra; Measurement.
Summary: Scientists and mathematicians have 
developed and investigated a variety of principles and 
scales associated with the measurement and definition 
of temperature.

Quantification of temperature is necessary for many 
reasons, including scientific experiments, weather pre-
diction, and many manufacturing processes. Tempera-
ture, by its formal definition, measures the movement 
of molecules in an object. Greater movement results in 
higher temperatures; conversely, less movement results 
in lower temperatures. The byproduct is heat, so tem-
perature is often thought to measure the heat of an 
object. Mathematicians, many of whom are also physi-
cists, have made significant contributions in quantify-
ing heat and developing the temperature scales widely 
used in the twenty-first century. 

History
Joseph Fourier began heat investigations in the early 
nineteenth century. His work On the Propagation of 
Heat in Solid Bodies was controversial at the time of its 
publication in 1807. Joseph Lagrange and Pierre-Simon 
Laplace argued against Fourier’s trigonometric series 
expansions; however, Fourier series are widely used in 
a variety of theories and applications in the twenty-
first century. Jean-Baptiste Biot, Simone Poisson, and 
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Laplace objected at various times to Fourier’s derivation 
of his heat transfer equations. In 1831, Franz Neumann 
formulated the notion that molecular heat is the sum of 
the atomic heats of the components. Studying mixtures 
of hot and cold water, which did not produce water that 
was the average of the two temperatures, he concluded 
that water’s specific gravity increases with temperature. 
This relationship was later shown by other researchers 
to be true only for a certain range of temperatures. In 
the late nineteenth century, James Maxwell and Lud-
wig Boltzmann independently developed what is now 
known as the “Maxwell–Boltzmann kinetic theory of 
gases,” showing that heat is a function of only molecu-
lar movement. Their equations have many applications, 
including estimating the heat of the sun. 

Around the same time, Josef Stefan proposed that the 
total energy emitted by a hot body was proportional to 
the fourth power of the temperature, based on empirical 
observations. In the twentieth and twenty-first centuries, 
scientists continued to study heat and have developed 
mathematical and statistical models to estimate heat. 
These models are used in areas like astronomy, weather 
prediction, and the global warming debate.

Measuring Tools and Temperature Scales
Heat can be difficult to quantify. Scientists and math-
ematicians developed many methods and instruments 
to measure and describe perceived temperature. Some 
of the earliest were called thermoscopes, often attributed 
to Galileo Galilei. In the early 1700s, Gabriel Fahrenheit 
created mercury thermometers and marked them with 
units that became known as “degrees Fahrenheit.” He 
empirically calibrated his thermometer using three val-
ues. Icy salt water was assigned temperature zero. Pure 
ice water was labeled 30. A healthy man would show 
a reading of 96 degrees Fahrenheit. Later, Fahrenheit 
would measure the temperature of pure boiling water 
as 212 degrees Fahrenheit, adjusting the freezing point 
of water to be 32 degrees Fahrenheit so there was 180 
degrees between the freezing and boiling point of water.

Anders Celsius created a different temperature scale 
in the mid-1700s. The Celsius temperature scale was 
numerically inverted with respect to Fahrenheit. He 
used 100 to indicate the freezing point of water and 
0 for the boiling point of water. Because there were 
100 steps in his temperature scale, he referred to it 
as a “centigrade” (centi means “a hundred” and grade 
means “step”). A few years later, Carolus Linnæus alleg-

edly reversed the scale to make zero the freezing point 
and 100 the boiling point.

About a century after Celsius created his scale, Wil-
liam Thomson, Lord Kelvin, is given credit for the idea 
of an absolute zero, a temperature so cold that molecules 
do not move. The Kelvin scale was precisely defined 
much later after scientists and mathematicians bet-
ter understood the concept of conservation of energy. 
Near-absolute zero conditions produce many interest-
ing problems in mathematics and science. For exam-
ple, clumping of atoms as they approach an unmoving 
state can be studied as a classic packing problem, which 
has extensions in areas like materials science and digi-
tal compression. The Kelvin temperature scale uses the 
same scale as centigrade, with absolute zero about 273 
degrees below the freezing point of pure water.  Con-
verting from degrees centigrade to Kelvin is as simple 
as shifting the scale by adding 273.

In the mid-twentieth century, the centigrade scale 
was replaced with the Celsius scale. The changes were 
relatively minor, so one estimates the freezing and 
boiling points of water to be 0 degrees Celsius and 100 
degrees Celsius. In actuality, 100 degrees Celsius (the 
boiling point of water) is now 99.975 degrees Celsius. 
Converting from degrees Celsius to degrees Fahrenheit, 
or degrees Fahrenheit to degrees Celsius, involves mul-
tiplicative rescaling, not just translation, since 1 degree 
Celsius is 1.8 times larger than 1 degree Fahrenheit.  

Further Reading
Callen, Herbert B. Thermodynamics and an Introduction 
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Chang, Hasok. Inventing Temperature: Measurement  
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Outline of Theory and Problems of Heat Transfer. New 
York: McGraw-Hill, 1998.

Quinn, T. J. Temperature. San Diego, CA: Academic  
Press, 1990.

Chad T. Lower

See Also: Climate Change; Clouds; Cooking; 
Geothermal Energy; Measuring Tools; Thermostat; 
Weather Forecasting.

988 Temperature



Textiles
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Representations.
Summary: Mathematics is integral to creating both 
traditional and modern weave patterns in textiles. 

Textiles are flexible sheets made out of fibers. Natural 
textiles are made from plants, animals, or minerals; 
artificial textiles use human-made fibers, like plastic 
or synthetic proteins. Woven textiles combine longer 
fiber threads either by hand or by using looms or knit-
ting machines. In nonwoven textiles, like felt, short or 
microscopic fibers are bonded by chemical or physical 
treatments. Nonwovens are often meant to be highly 
durable or disposable and have many applications 
in health, construction, and filtration technologies. 
Mathematical methods are used to design, produce, 
and analyze textiles. In 1804, Joseph Jacquard invented 
a weaving system using cards with patterns of holes 
to control loom threads. These cards were later modi-
fied by Charles Babbage into computer punch cards. 
Weaver and mathematics teacher Ada Dietz wrote 
Algebraic Expressions in Handwoven Textiles in 1949. 
She outlined a method for using expansions of multi-
variate polynomials to generate weaving patterns.

Weave Formulas
On a loom, “warp” threads are held parallel and “weft” 
threads are passed over and under them. A pattern 
formed in one pass of weft can be either repeated exactly, 
transposed, or otherwise changed in the next passes. Let 
A stand for warp threads on top and E stand for the 
weft thread on top. In plain fabric, a pattern AEAE . . . 
indicates that the weave is transposed by one thread in 
the next row. Basket weave uses AAEEAAEE . . . , so the 
pattern is repeated for two rows and then transposed 
by two (or some other whole number) for the next two 
rows. Satin is AAAAEAAAAE . . . , giving four repeats 
followed by one transposition. A satin weave results 
in the majority of the threads being parallel, so light is 
minimally scattered, producing the characteristic sheen. 
In contrast, twill has a distinct, textured diagonal pat-
tern formed by using an EEAEEA . . . weaving scheme. 
Patterns may be added to plain weaves by printing or 
dying the fabric. The U.S. group Complex Weavers pro-
vides a forum for sharing advanced weaving methods 
and patterns, such as manifold twill. 

Patterns and other factors like the thread intersec-
tions per area also dictate other properties. For exam-
ple, plain weave fabrics tear the easiest, because force 
is applied to the single thread immediately next to the 
tear. Crimp is how easily the fabric morphs under ten-
sion. Plain weaves generally morph the easiest. Wrinkle 
resistance is the opposite; the more freedom of move-
ment threads have, the easier it is for them to return to 
smoothness. Satin is an example of a wrinkle-resistant 
weave. On the other hand, satin silks shrink the most 
because their weave pattern is loose. Twill has a rela-
tively high resistance to tearing, which makes fabrics 
such as jean popular for working clothing. 

Cultural Textiles
Textiles are a significant cultural art form for many 
people in Africa. The three most well-known forms 
are kente, adire, and adinkra. Kente cloth is woven in 
long narrow strips, traditionally by Asante and Ewe 
men, and then sewn together into larger pieces of fab-
ric that may be used for clothing or household goods. 
The cloth was often a sign of wealth and kept for spe-
cial occasions. There are more than 300 known kente 
patterns, many of which represent people or historical 
events. Widely found adira cloth has patterns made by 
resistance dying. The cloth is tied, stitched, or stenciled, 
often with geometric patterns, to prevent the dye from 
adhering to some portions of the cloth. Adinkra cloth 
is printed, usually by drawing a square grid and stamp-
ing symbols into each square. This highly developed 
symbol language expresses concrete and abstract con-
cepts, such as transformation or unity. Like kente cloth, 
adinkra often tells stories or proverbs. Tessellations and 
other repeating patterns are also common. In Ghana, 
the cloth was originally worn for mourning and some 
is still reserved for that purpose.

In Scotland, tartans represent families, clans, or 
regions. A “sett” is a specific plaid pattern, specified by 
sequences and widths of colored stripes. The pattern is 
formed by interweaving bands of stripes at right angles. 
Most are symmetrical, which means the sett is reflected 
90 degrees around a pivot or center stripe. Asymmetri-
cal setts have no pivot point. Symmetry has implica-
tions in kilt making. A kilt “pleated to the sett” has pleats 
folded to visually reproduce the tartan pattern across 
the back of the kilt, often not possible with an asym-
metric pattern. Tartan patterns have been investigated 
with mathematical methods, such as group theory, and 
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they are used in classrooms as examples of symmetry. 
Artist Andrew Hennessey has proposed “stella tartan” 
in which tartan setts would be woven radially and over-
lap in irregular polygon patterns. 

High-Technology Textiles
The Industrial Revolution made rapid mass production 
of textiles feasible and the textile industry has since used 
many mathematical and computational techniques to 
continue its evolution. These techniques include dif-
ferential equations, numerical methods, image pro-
cessing, pattern recognition, and statistics. Computer-
aided design (CAD) and computer-aided looms (CAL) 
are widespread. Application areas include supply chain 
management, quality control, and product develop-
ment. The latter may involve structural modeling and 
simulation, as well as thermal or biomechanical bio-
engineering, particularly for specialty textiles. Some 
competitive swimwear has tiny triangular projections 
that mimick shark skin to reduce drag. An absorbent, 
nonwoven textile called air-laid paper is used in dia-
pers. Integrating tiny light-emitting diodes into fabric 
allows clothes to change color or display text or ani-
mation. Thermal self-regulation may be achieved with 
phase-changing microcapsules that become fluid for 
cooling or solid to release heat, as needed. Weak link 
theory and bundle theory, as well as research in twisted 
continuous filaments, helical modeling of yarns, two-
dimensional elasticity theory, aerodynamics, and many 
other investigations have also revolutionized the indi-
vidual threads that compose fabric, often changing its 
properties even when using traditional weaves.

Further Reading
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Thermostat
Category: Architecture and Engineering.
Fields of Study: Algebra; Measurement.
Summary: Thermostats are mathematically 
calibrated according to physical principles to regulate 
temperature in a variety of settings.

Thermostats and thermometers are related instru-
ments that perform different tasks. A thermometer 
measures (“meter”) heat (“thermo”) to determine 
and display a current temperature. On the other hand, 
a thermostat is designed to keep the heat (“thermo”) 
stationary (“stat”) to help maintain a desired tempera-
ture. Inventor and college professor Warren S. Johnson 
produced the first electronic room thermostats in 1883. 
He installed them in classrooms to keep students more 
comfortable in cold weather and to minimize outside 
interruptions. In the twenty-first century, thermostats 
are most commonly found inside vehicle engines and 
as a part of residential, commercial, or industrial heat-
ing systems—though they can also be found in appli-
ances, like gas stoves.

Automobiles
In an automobile engine, the thermostat helps regu-
late temperature so that the engine operates properly 
and efficiently. The thermostat acts as a control valve 
for the coolant fluid, which flows within an engine and 
to a separate radiator that helps to cool the hot cool-
ant. When an engine is first started, the thermostat is 
closed, and the coolant flowing within the engine cycles 
through only the engine until it warms up to an ideal 
temperature. The thermostat measures the tempera-
ture change using a special type of wax. Initially, the 
wax is solid but as the temperature of the surrounding 
coolant increases, the wax melts and expands to allow 
hot fluid to flow from the engine to the radiator and 
cooler fluid to flow from the radiator back in to the 
hot engine. If the engine gets too hot, the thermostat 
will open more to allow coolant from the radiator to 
permeate through the engine. On the other hand, if 
the engine begins to get too cold, the thermostat will 
begin to close, allowing less coolant into the radiator 
and more coolant to cycle through the engine to heat it 
back up. The thermostat is mathematically calibrated 
to the engine type and will automatically make the 
needed corrections as the vehicle is in use.  
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Buildings
A thermostat used to control temperature in a building 
similarly does not directly heat (or cool) the rooms. In 
this situation, it controls a heating (or cooling) unit, 
which is used to help regulate the temperature. In many 
systems, a bimetallic strip is used to measure the tem-
perature of a room. Metals expand and contract as they 
heat and cool. Bimetallic strips work because different 
metals expand and contract at different rates. A strip 
of steel and a strip of copper (or brass) will be placed 
together and the ends secured to each other. If the tem-
perature does not change, the strip remains flat. When 
the temperature changes, the different rate of expan-
sion or contraction will cause the flat strip to develop 
a curve toward the metal that has changed less. The 
amount of curvature can be matched mathematically 
to a specific degree or range of change in temperature, 
triggering the system to adjust accordingly.

To increase the sensitivity of the thermostat, most 
bimetallic strips are long and coiled inside the ther-
mostat. The coil loosens or winds more tightly with 
a change in room temperature. At a certain point, the 
bimetallic strip’s movements will trigger the heating unit 
to turn either on or off. Once turned on, the thermostat 
uses weights or magnets to keep the heating unit from 
turning off too quickly. Without these devices, the ther-
mostat would create short cycles (turning on and off 
quickly), which are generally inefficient and could cause 
a premature failure of the heating unit. Since the bime-
tallic strip’s movement depends directly on the tempera-
ture of the immediately surrounding air, the thermostat 
should not be placed in a location that would cause an 
inaccurate reading. One common mistake is placing the 
thermostat by a heat register, where hot air flowing out 
will trigger the thermostat to turn the heating unit off 
before the rest of the room has acclimated.

Electronic Variations
More advanced thermostats frequently use electronic 
rather than electromechanical sensors and may have 
more than a simple on-off setting. Setpoint staging 
uses one type of heating process, or stage, when the 
room temperature is within two degrees of the ther-
mostat setting and another when the difference is 
greater than two degrees from the thermostat setting. 
Time-based staging activates a secondary stage or unit 
after the first stage runs for a predetermined amount 
of time, indicating that the room is colder or hotter 

than some preset value. Multistage thermostats analyze 
variables such as the current room temperature, the 
desired temperature, and the amount of time it takes 
for a space to warm or cool one degree to determine 
mathematically when to use a second heating stage.

Further Reading
 Automatic and Programmable Thermostats. Merrifield, 
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Other Thermostat  
Applications

T he term “thermostat” is also used in sta-
tistical thermodynamics, which applies 

probability theory to systems made up of a 
large number of particles. This field of study 
helps relate the large-scale properties of mate-
rials observed by people in everyday life to 
the microscopic properties of the atoms and 
molecules from which they are made. Here, a 
thermostat mathematically maintains a con-
stant temperature in computer simulations of 
molecular dynamics by realistically exchanging 
the energy of endothermic and exothermic pro-
cesses that happen during the simulation. For 
example, the Gaussian thermostat, named for 
mathematician Carl Friedrich Gauss, maintains 
system temperature by rescaling the velocities 
of the simulated atoms at each individual step 
of the simulation.



Tic-Tac-Toe
Category: Games, Sport, and Recreation.
Fields of Study: Geometry; Number and 
Operations; Problem Solving.
Summary: Traditional Tic-Tac-Toe has a limited 
number of possible games, which can lead players 
to quickly discover an unbeatable strategy as long as 
they move first. 

Tic-tac-toe is a famous game often played by children. 
It requires a playing board of a 3-by-3 arrangement of 
square cells, usually quickly drawn by making two ver-
tical lines cross two horizontal lines and imagining an 
outer border. Two players alternate marking cells with 
either an X (usually the first player) or an O (the sec-
ond player). Each attempts to put three of their marks 
in a straight line, while trying to block the attempts of 
the other. The winner is the player who first makes the 
three-in-a-row line. Unfortunately for the challenge of 
the game, the first player can always win by putting an 
X in the center cell and playing carefully. Children often 
learn this strategy and the game can become mundane 
if this strategy is always employed.

Play Possibilities
However, tic-tac-toe is simple enough that it can serve 
as a fairly easy example of game analysis, where all pos-
sible positions and plays are determined. Most other 
games are so complex that such analyses are over-
whelmingly complex. 

Ignoring symmetric patterns, there are three pos-
sible first plays—a corner, a side, or the center. The 
second play patterns are based on these three open-
ings. Again, ignoring symmetries, the corner opening 
leads to five possible second moves, the side opening 
also allows five possible second moves, but following 
a center opening there are only two possible second 
plays. Hence, there are a total of 12 noncongruent, 
nonsymmetrical second plays. Similar exploration 
of the possibilities shows a total of 66 possible third 
moves, though 26 are duplications, so there are only 
40 noncongruent arrangements after the third play. 
Then, it becomes much more complicated because 
of overlaps of first- and third-move Xs and second- 
and fourth-move Os. This fact demonstrates that even 
in such a simple game as tic-tac-toe, the full analysis 
becomes quite complex.

Variations
The 3-by-3 magic square (with numbers 1–9 arranged 
in the cells so that each row, column, and diagonal sums 
to 15) looks like a tic-tac-toe board with numbers. A 
game can be played where players take turns choosing 
numbers 1–9 (without repeats), trying to reach a sum of 
15 with three numbers. Playing this game and placing 
the numbers onto the 3-by-3 magic square turns out to 
follow the same general games strategies as tic-tac-toe.  

Tic-tac-toe can become a much more interest-
ing—and challenging—game by expanding the board 
to three dimensions. If the game is played on a stack 
of three 3-by-3 boards (a cube of 27 cells), any row of 
three is a win. Some have suggested that a 4-by-4-by-4 
cube, with a line of four to win, is a smoother game. 
Winning lines can lie entirely on a horizontal level, 
drop vertically from top to bottom, slant along a verti-
cal plane, or go from one corner to the opposite cor-
ner along the body diagonal. New players often have 
difficulty even noticing winning lines! For even more 
complexity, the game can be played in four dimen-
sions, usually displayed as a two-dimensional array of 
two-dimensional boards, assuming the boards can be 
stacked in any of the horizontal, vertical, or diagonal 
ways, with winning lines in any of the stacks according 
to the three-dimensional patterns, a variation that can 
be either 3-by-3-by-3-by-3 or 4-by-4-by-4-by-4.

Alternatively, the traditional board can be imaged to 
extend infinitely, allowing more possibilities for win-
ning lines. One version keeps the traditional board but 
assumes the left column wraps to be next to the right 
column, so a line of three can be the upper center, the 
right center, and the left bottom corner. Similarly, the 
top and bottom rows can be considered as wrapping 
around to be next to each other.

Nine-Men’s Morris
Many games from around the world pick up on the 
ideas of tic-tac-toe, especially the goal of making three 
(or more) counters in a row. Probably the most famous 
is called Nine-Men’s Morris in English (also called 
“mill” or, in French, merelles or morelles); some sug-
gest early versions were even played in ancient Egypt. 
The board is three concentric squares connected in the 
middles of the sides, with each junction and corner 
marked with a dot. Two players each have nine coun-
ters, marked to distinguish those of each player. They 
take turns playing their counters onto the dots of the 
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board, trying to get three in a row, which is called a 
“mill.” After players use up the nine counters each, play 
continues by sliding already-played counters along the 
lines on the board. Anytime a row of three is made by 
one player, the player is allowed to remove one of the 
other player’s counters (but they cannot take a counter 
that is already in a mill). Eventually, one player either 
has no counters left or cannot move any remaining 
counters, and the other player wins.

Further Reading
Beck, Jozsef. “Combinatorial Games: Tic-Tac-Toe 

Theory.” In Mathematical Constants: Encyclopedia of 
Mathematics and its Applications. Edited by Steven R. 
Finch. New York: Cambridge University Press, 2008.

Malumphy, Chris. “3-D Tic-Tac-Toe.” http://home 
.earthlink.net/~cmalumphy/3d.html.

Masters, James. “Nine Mens Morris, Mill—Online 
Guide.” http://www.tradgames.org.uk/games/ 
Nine-Mens-Morris.htm.

Smit, William. “4-D Tic-Tac-Toe Game.” http://www 
.ugcs.caltech.edu/~willsmit/4d/index.html. 

Zaslavsky, Claudia. Tic Tac Toe: And Other Three-In-
A Row Games From Ancient Egypt to the Modern 
Computer. Toronto: Crowell, 1982.

Lawrence H. Shirley

See Also: Acrostics, Word Squares, and Anagrams; 
Board Games; Dice Games; Sudoku.

Tides and Waves
Category: Weather, Nature, and Environment.
Fields of Study: Geometry; Number and Operations.
Summary: Mathematicians study and model the 
forces that cause tides and waves.

Approximately 70% of the Earth’s surface is covered with 
water, most of which is in a constant state of motion. 
The causes of this motion include the gravitational pull 
of celestial bodies in space, like the sun and moon; the 
rotation and shape of the Earth; and the influence of 
natural phenomena, like wind and  earthquakes. Math-
ematicians have long studied tides and waves, following 

in the path of ancient scholars and others who sought 
to understand these phenomena for many spiritual and 
practical reasons, such as sailing. In the twenty-first 
century, people still travel both above and below the 
surface of the oceans for research, commerce, and plea-
sure, and there are many problems old and new to be 
explored. Some interesting mathematical investigations 
related to tides and waves at the start of the twenty-
first century include three-dimensional modeling of 
extreme waves (also called “rogue waves”), such as 
those observed during the 2004 Indian Ocean tsunami 
and the Hurricane Katrina storm surges in 2005. Math-
ematicians, scientists, and engineers have also explored 
methods and developed technology to harness tide and 
wave power as an alternative energy source, includ-
ing methods that actually create waves in addition to 
using naturally-occurring ones. Some colleges and uni-
versities teach courses on tides and waves that involve 
substantial mathematics. The theme of Mathematics 
Awareness Month in 2001 was “Mathematics and the 
Ocean,” underscoring the importance and relationship 
of ocean phenomena and mathematics, as well as the 
depth and breadth of the topics studied. 

Tides
Water in Earth’s oceans moves in a variety of ways, 
including many scales of currents, tides, and waves. 
Mathematicians and scholars from ancient times up 
through the Renaissance observed, identified, and 
quantified tidal patterns. The term “tides” generally 
refers to the overall cyclic rising and falling of ocean 
levels with respect to land—though tides have been 
observed in large lakes, the atmosphere, and Earth’s 
crust, resulting largely from the same forces that pro-
duce ocean tides. 

The daily tide cycles are caused by the moon’s grav-
ity, which makes the oceans bulge in the direction of 
the moon. A corresponding rise occurs on the opposite 
side of the Earth at the same time, because the moon is 
also pulling on the Earth itself. Most regions on Earth 
have two high tides and two low tides every day, known 
as “semidiurnal tides,” which result from the daily rota-
tion of the Earth relative to the moon. Since the angle 
of the moon’s orbital plane also affects gravitational 
pull on Earth’s curved surface, some regions have only 
one cycle of high and low, known as “diurnal tides.” 
The height of tides varies according to many variables, 
including coastline shape; water depth (“bathymetry”); 
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latitude; and the position of the sun, which also exerts 
gravitational force. “Spring” tides, not named for the 
season, are extremely high and low tides that occur 
during full and new moons when the sun and moon 
are in a straight line with the Earth, and their gravi-
tational effects are additive. A proxigean spring tide 
occurs roughly once every 1.5 years when the moon 
is at its proxigee (closest distance to Earth) and posi-
tioned between the sun and the Earth. Neap tides mini-
mize the difference between high and low tides. They 
occur during the moon’s quarter phases when the sun’s 
gravitational pull is acting at right angles to the moon’s 
pull with respect to the Earth. 

A few of the many contributors to the theory and 
mathematical description of tides include Galileo 
Galilei, René Descartes, Johannes Kepler, Daniel Ber-
noulli, Leonhard Euler, Pierre Laplace, George Darwin, 
and Horace Lamb. Some mathematicians, like Colin 
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Maclaurin and George Airy, won scientific prizes for 
their research. Work by mathematician William Thom-
son (Lord Kelvin) on harmonic analysis of tides led to 
the construction of tide-predicting machines.

Waves
There are many mathematical approaches to the study 
of waves in the twenty-first century, and some math-
ematicians center their research around this topic. In 
contrast to tides, a wave is a more localized disturbance 
of water in the form of a propagating ridge or swell 
that occurs on the surface of a body of water. Despite 
the fact that surface waves appear to be moving when 
observed, they do not move water particles horizon-
tally along the entire path of the wave. Rather, they 
combine limited longitudinal or horizontal motions 
with transverse or vertical motions. Water particles 
in a wave oscillate in localized, circular patterns as the 

Officers of the National Oceanic & Atmospheric Administration Corps photographed the devastation caused in 
New Orleans by the 2005 Hurricane Katrina’s storm surges.



energy propagates through the liquid, with a radius 
that decreases as the water depth or distance from the 
crest of the wave increases. Wind is a primary cause of 
surface waves, because of frictional drag between air 
and water particles. Larger waves, like tsunamis, result 
from underwater Earth movements, such as earth-
quakes and landslides. 

The Navier–Stokes equations, named for Claude-
Louis Navier and George Stokes, are partial differential 
equations that describe fluid motion and are widely 
used in the study of tides and waves. Solutions to these 
equations are often found and verified using numerical 
methods. The Coriolis–Stokes force, named for George 
Stokes and Gustave Coriolis, mathematically describes 
force in a rotating fluid, such as the small rotations 
in surface waves. A few examples of individuals with 
diverse approaches who have won prizes in this area 
include Joseph Keller, who has researched many forms 
and properties of waves, including geometrical diffrac-
tion and propagation; Michael Lighthill and Thomas 
Benjamin, who jointly posed the Benjamin–Lighthill 
conjecture regarding nonlinear steady water waves, 
which continues to spur research in both theoreti-
cal and applied mathematics; and Sijue Wu, who has 
researched the well-posedness of the fully two- and 
three-dimensional nonlinear wave problem in vari-
ous function spaces, using techniques like harmonic 
analysis. In other theoretical and applied areas, some 
techniques from dynamical systems theory, statistical 
analysis, and data assimilation, which combines data 
and partial differential equations, have been useful for 
formulating and solving wave problems. 

Further Reading
Cartwright, David. Tides: A Scientific History. Cambridge, 

England: Cambridge University Press, 2001.
Johnson, R. I. A Modern Introduction to the Mathematical 

Theory of Water Waves. Cambridge, England: 
Cambridge University Press, 1997.

Joint Policy Board for Mathematics. “Mathematics 
Awareness Month April 2001: Mathematics and the 
Ocean.” http://mathaware.org/mam/01.

Sarah J. Greenwald
Jill E. Thomley

See Also: Coral Reefs; Gravity; Mapping Coastlines; 
Marine Navigation; Moon; Radiation; Swimming.

Time, Measuring
See Measuring Time

Time Signatures
Category: Arts, Music, and Entertainment.
Fields of Study: Measurement; Number and  
Operations. 
Summary: Musical time signatures are 
mathematically defined and are cyclical in nature.

A time signature is a musical notation that defines the 
meter of a particular composition or a portion of a 
composition. It establishes a hierarchical, cyclic rela-
tionship among beats and among the subdivisions 
of those beats, which are inherently mathematical in 
nature. The history of time signatures is somewhat 
unclear. Some suggest that time signatures first made 
their appearance around 1000 c.e., though they may 
not have looked like the ones used in the twenty-first 
century. Others date the development of the fractional-
form time signature closer to the fifteenth century. 
Nearly all modern Western music uses time signatures 
or some type of grouped pulses. Along with tempo 
(rate of beats), musicians use time signatures to gain 
an understanding of the relation of the elements of a 
piece of music to one another in time, particularly with 
regard to a contextual temporal metric. 

A time signature normally consists of two integers,

n

b

written with one directly above the other. Although it is 
often notated in prose as a fraction (for example, n/b), 
it is not a fraction and does not contain a dividing bar 
or solidus. A time signature appears in the first mea-
sure of a composition (in the staff following the clef 
and key signature), where it defines the default meter 
for the composition as a whole or until any subsequent 
time signature occurs that establishes a new default. 

Meters and Beat
Time signatures may define various types of meters: 
simple, compound, complex, additive, or open. In 
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simple meters (those in which the beats have a binary 
division), the upper integer indicates the number of 
beats in any one measure. The lower integer is con-
ventionally expressed as a power of two, b = 2m, and 
specifies what rhythmic value receives the beat. For 
instance, the time signature

2

4  

indicates a simple meter in which every measure con-
tains two beats and the quarter-note value is the rela-
tive duration of each beat. In compound meters (where 
beats divide into triples), the upper integer n, which 
is larger than three and divisible by it, designates that 
each measure contains n/3 beats. The lower integer, 
b = 2m , indicates that the dotted 1/2m−1-th note receives 
the beat (the total relative duration of a 1/2m−1-th note 
and a 1/2m-th note). For example,

6

8

is the time signature for the compound meter in which 
each measure has two beats, and the dotted quarter-
note duration (a quarter-note value plus an eighth-
note value, or equivalently three eighth-notes) repre-
sents the beat.  

Meters: Complex and Open
Complex meters incorporate beats that normally 
divide into a mixture of twos and threes. For example, 
the time signature

5

8  

(each measure has the duration of five eighth-notes) 
might divide into two unequal beats: one with two sub-
divisions and one with three. The time signature for 
a complex meter might also be notated as an additive 
meter, wherein the upper value is actually an arithmetic 
expression that agrees with this pattern. For instance, 
the complex meter

5

8  

could be indicated by the time signature

2 3

8

+
8

An open meter is notated by the symbol 0 in place 
of a more traditional time signature. It indicates that 
the duration of each measure is defined merely by the 
rhythmic values or graphic spacing of the notes it con-
tains and does not incorporate a recurring or other-
wise specified pattern of beats.

Cyclic Groups
Because of its cyclic nature, meter suggests a modular 
temporal space, similar to clock time. Algebraically, 
one might use cyclic groups to model different types of 
meters. The time signature is useful in determining the 
order of such a cyclic group, n from above, and what 
relative duration represents a generating unit, b from 
above. Then, the first beat of a measure, beginning at 
time-point zero, would associate with the identity ele-
ment of the cyclic group, and so on through the nth 
beat of the measure. Any subsequent measures would 
represent additional cycles through these sequential 
group elements.

Interesting Time Signatures
Some time signatures are frequently used, like the lilting 
rhythm of the following:

the waltz 
3

4  or the quick Sousa march 
6

8 .  

A mathematician might argue that the number of 
time signatures is limited because the number of beats 
per measure quickly becomes divisible by a smaller 
number, making it a multiple of another time signa-
ture. However, in music theory, time signatures have a 
broader meaning in terms of tempo and musical phras-
ing, not just counts of beats. Interesting compositions 
have been constructed by considering the mathemati-
cal properties of time signatures. Robert Schneider of 
indie rock band The Apples in Stereo composed a score 
for a play written by mathematician Andrew Granville 
and his sister Jennifer Granville in which all the time 
signatures had only prime numbers of beats per mea-
sure. It also included Greek mathematics related to 
primes in musical form. An entire subgenre of music 
called math rock, which emerged in the 1980s, is typi-
fied by uncommon time signatures such as

13

8  or 

7

8 .
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These complex rhythms can also be found in some 
mainstream music, such as the song “Anthem” by Rush, 
which is partially written in

7

8  time.

Further Reading
Lewin, David. Generalized Musical Intervals and 

Transformations. New Haven, CT: Yale University 
Press, 1987.

Mazzola, Guerino. The Topos of Music: Geometric Logic of 
Concepts, Theory, and Performance. Basel, Switzerland: 
Birkhäuser, 2002.

Rastall, Richard. “Time Signatures.” Grove Music Online. 
Edited by L. Macy. http://www.grovemusic.com. 

Wright, David. Mathematics and Music. Vol. 28 of 
Mathematical World. Providence, RI: American 
Mathematical Society, 2009.

Robert W. Peck

See Also: Ballet; Ballroom Dancing; Composing; 
Popular Music; Step and Tap Dancing.

Toilets
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: The geometry of modern toilets has been 
analyzed by engineers using a variety of mathematical 
and statistical methods.

In all human societies, the disposal of bodily waste 
has been a primary health concern. It has been esti-
mated that the average human being produces one to 
two liters of urine and one-quarter to one-half kilo-
gram of feces each day. Fecal matter, in particular, can 
contribute to the spread of a wide range of diseases, as 
bacteria and other pathogens can enter food and water 
when waste is not treated properly. Such problems are 
especially prevalent in areas of high population den-
sity and limited water resources. Over time, a range of 
toilets and treatment systems have been developed to 
deal with sewage. Because of the lack of resources and 

infrastructure, many places in the world in the twenty-
first century still contend with waterborne diseases that 
originate in human waste.   

History
Given that many mammals, including most primates, 
choose to defecate in selected areas in their habitat, it 
is likely that humans have had specific defecation sites 
throughout history. Dry toilets, such as pit latrines and 
outhouses, are ways communities formalized the loca-
tions in which humans defecate and are still used in 
many parts of the world in the twenty-first century. In 
these systems, waste is concentrated in one place, ide-
ally where it will not infect drinking water. The earliest 
sitting toilets that used running water to carry waste 
away date to at least 2500 b.c.e. in the civilizations of 
the Indus Valley, in what is now India and Pakistan. In 
1596, Queen Elizabeth I’s godson, Sir John Harrington, 
invented the first indoor flushing toilet. In 1775, Alex-
ander Cummings, a Scottish watchmaker who studied 
mathematics, filed a patent for a flush toilet. However, 
it was not until the late 1700s in Europe and 1800s 
in America that further modifications and inventions 
ushered in an age of modern plumbing.  

Design and Operation
The geometry of modern toilets is essential to their effi-
ciency and is extensively analyzed by design engineers 
using a variety of mathematical and statistical methods. 
The modern home tank toilet consists of a storage tank, 
a bowl, and an s-shaped siphon. Water is stored in the 
tank. When the toilet is flushed, this water is released into 
the bowl through rim jets on the underside of the toilet’s 
rim and through a tube called the “siphon jet” that allows 
most of the water to flow directly into the bowl. The bowl 
is attached to an “s”-shaped tube, and the influx of water 
from the tank into the bowl pushes the waste and water 
over the lip of the “s” and down to an attached waste 
system. The bowl clears because of the siphon-action 
created. When the toilet finishes flushing, air enters the 
siphon tube and stops the siphon. Meanwhile, a flapper 
valve in the toilet tank closes the connection between the 
tank and the bowl and allows the tank to refill.  

New Developments
The flush toilet takes a large volume of water to oper-
ate. In an era of increasingly limited resources, there 
has been a movement to create low-flush and no-
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flush toilets. For example, toilets manufactured in the 
United States prior to 1994 used 13 liters of water per 
flush. The Energy Policy Act of 1992 required that toi-
lets use six liters or less per flush, and as of 2011, high-
efficiency toilets used 4.8 liters per flush. In Europe, 
dual flush toilets are common, providing the user 
with a choice of how much water to use depending 
on whether urine or feces is being flushed. Other tech-
nologies, including composting toilets that require no 
water and allow waste to biodegrade for use as fertil-
izer, have been developed for use by ecologically con-
scious consumers and people in areas of the world 
where water or sewage treatment facilities are limited. 
In addition, a number of toilets have been developed 
that include warmed seats, water and air jets for clean-
ing and drying the user, and built-in stool and urine 
analysis for health assessments.  

Modeling Toilet Use
Many modern homes now have multiple toilets and 
ensuring adequate toilet facilities in public places 
requires planning and calculation. Two statistical stud-
ies of public-restroom use in the late 1980s are still 
referenced into the twenty-first century. They focused 
on the amount of time men and women spent in the 
restroom and they provided some of the first quantita-

tive evidence that women take longer and thus require 
more toilets. This equity principle is known as “potty 
parity” and has been enacted into law in many places.

Further Reading
George, Rose. The Big Necessity: The Unmentionable 

Subject of Human Waste and Why It Matters. New 
York: Henry Holt and Co., 2008.

Raum, Elizabeth. The Story Behind Toilets. Chicago: 
Heinemann Library, 2009.

Jeff Goodman

See Also: Energy; Green Design; Water Quality.

Tools, Measuring
See Measuring Tools

Tornadoes
See Hurricanes and Tornadoes

Tournaments
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis 
and Probability; Number and Operations; 
Representations.
Summary: Mathematical methods can be used to 
seed the bracket for a tournament.

A tournament is any of a variety of competitions in 
which a relatively large number of players or teams 
compete at a sport, game, or other competitive activ-
ity. While formats differ widely, tournaments generally 
involve teams or individuals playing a large number of 
games in a relatively brief period of time. Typically, the 
ostensible purpose is to determine a single overall win-
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Coriolis Effect

T here is a frequently recurring question of 
whether the swirl of the water in toilets in 

the southern hemisphere is opposite that in 
the northern hemisphere. This notion has been 
perpetuated in many ways, including popular 
television shows and scientific programming 
or textbooks. It is true that large oceanic and 
atmospheric phenomena, such as hurricanes, 
will spin in opposite directions in the two hemi-
spheres because of the Coriolis effect. In a 
small-scale system like a toilet, the geometry 
of the apparatus, along with water turbulence 
or temperature, is a much more important fac-
tor—a fact that has been verified through sys-
tematic experimentation.



ner when the total number of players is (much) larger 
than the number of players who can participate in a 
single match. Tournaments of various kinds are held 
for most competitive activities.

Considerable mathematics goes into the design of 
tournaments and the choice of format for a particu-
lar tournament, often drawing from disciplines such 
as combinatorics and graph theory. Different choices 
about the rules of the tournament affect the appeal of 
the tournament for participants and spectators and, 
more importantly, can affect which players will be more 
likely to win. The situation is somewhat analogous to 
voting systems in which the outcome of a decision can 
change based on the form of ballot, even when the vot-
ers’ preferences are unchanged.

Common Types of Tournaments
In a single-elimination knockout tournament, the 
players compete in pairs. The loser of each game is 
eliminated from the tournament; the winners go on to 
the next round. This process continues until only one 
player is left, who is declared the winner. If the num-
ber of competitors is not a power of two, then some 
competitors sit out one or more initial rounds, auto-
matically advancing to the next round. Which players 
sit out can be determined randomly or based on some 
prior rankings. The schedule for which players meet in 
the first round, the winners of which of these games 
will meet in the second round, and so on, is called the 
bracket for the tournament. In situations where the 
competitors are ranked in advance (for example, seeds 
in a tennis tournament), care must be taken in design-
ing the bracket. It would be undesirable for a player 
to gain an advantage in a tournament by deliberately 
underperforming in order to obtain an artificially low 
prior ranking. The most commonly used brackets 
involve the highest ranked player meeting the lowest-
ranked player in the first round and are used because 
they are optimized to prevent such manipulation. 
Double-elimination and triple-elimination tourna-
ments (participants are not eliminated until suffering 
a second or third loss also exist, though the latter are 
rather rare. These formats are tolerant of one (or two) 
lost matches by the player or team that will go on to be 
champion but the problem of arranging the brackets 
and scheduling the matches can be more complicated.

In a round-robin tournament, each participant 
competes against every other participant. Typically, 

each pairing competes in a single match but variants 
exist in which more games are played. Such a format 
gives more information about the relative strength of 
the players at the expense of requiring more games. 
Another drawback is that it is generally difficult to 
identify a canonical choice for first-place champion 
after a round-robin tournament.

Of course, much more complicated systems exist. 
Consider, for example, the FIFA World Cup. In the 2010 
format, the 32 competing teams are first randomly 
divided into eight groups. The teams within each group 
all play against one another. Based on the results of 
these round-robin matches, a winner and a runner-up 
emerge from each group. These 16 teams then com-
pete in a single-elimination knockout; the first round 
of knockout matches involve the group winners each 
competing against the runner-up from another group.

Graph-Theoretic Tournaments
The term “tournament” is also used with a specialized 
meaning in the subject of graph theory. A tournament 
in this sense is a collection of any number of vertices 
and arrows, where each pair of vertices is connected by a 
single arrow. Such a picture can represent a round-robin 
tournament in which each participant competes against 
every other participant exactly once, and there are no 
ties. The vertices are the players, and the direction of the 
arrow indicates who won each game (the arrow points 
from the winner of the game to the loser). Such configu-
rations were originally studied by H. G. Landau to study 
the dominance relationships among populations of 
chickens. Tournaments have gone on to find important 
applications to social voting theory and public choice.

Further Reading 
Froncek, Dalibor. “Scheduling a Tournament.” In 

Mathematics and Sports. Edited by Joseph Gallian. 
Washington, DC: Mathematical Association of 
America, 2010. http://mathaware.org/mam/2010/
essays/FroncekTournament.pdf.

Schwenk, A. J. “What Is the Correct Way to Seed a 
Knockout Tournament?” Journal of American 
Mathmatical Monthly 107, no. 2 (2000).

Michael “Cap” Khoury

See Also: Competitions and Contests; Rankings; Sport 
Handicapping.
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Traffic
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry; Problem 
Solving.
Summary: Mathematical models and statistical 
analysis of traffic flow suggest solutions.

Traffic flow is studied using mathematical and statisti-
cal techniques and computer simulations in order to 
better understand the movement of vehicles on roads 
and highways. Americans drive their vehicles almost 3 
trillion miles per year on approximately 4 million miles 
of public roads. Mathematical models have shown that 
the behavior of even a single driver can have a broad 
impact on overall traffic flow in this dynamic sys-
tem. As every driver knows, traffic patterns can often 
be unpredictable and frustrating, leading to driver 
stress, accidents, pollution, wasted fuel, and wasted 
time. Mathematical analysis of traffic congestion can 
provide transportation engineers with insights lead-
ing to improvements in efficiency and safety in the 
transportation of goods and people. A mathematical 
understanding of traffic flow patterns can also provide 
guidance for the design of roadways and provide more 
accurate calculations of trip itineraries and real-time 
driving times. These can be disseminated to the public 
and used in intelligent transportation systems.

The use of mathematics to describe traffic flow pat-
terns slowly originated in the 1930s in order to study 
road capacity and also to begin to address traffic-related 
questions, such as how does traffic move through inter-
sections. The mathematical investigations of vehicular 
traffic increased rapidly in the 1950s, mainly because 
of the expansion of the highway system after World 
War II. In the twenty-first century, theoretical models 
of traffic are utilized by high-performance computers, 
which can simulate the motions of vehicles on virtual 
road networks of entire cities and regions.  

Traffic engineers distinguish between uninterrupted 
traffic flow situations (for example, traffic streams on 
highways and other limited-access roads) and inter-
rupted flow circumstances (for example, where two or 
more traffic streams meet at a road intersection). The 
methods suited to analyze a particular traffic scenario 
depend on whether the flow is interrupted or uninter-
rupted. When formulating a mathematical description 
or model of traffic, one must attempt to account for 

the interplay between the vehicles and the drivers, the 
layout of the road system, traffic lights, road signs, and 
other factors.  

Queuing theory, which is essentially the mathemati-
cal theory of waiting lines, is a probabilistic framework 
used for analyzing various traffic flow problems, such 
as optimizing vehicle passage through an intersection 
or traffic circle, calculating vehicle waiting times at 
tollbooths, and other similar waiting problems. On the 
other hand, car-following models and hydrodynamic 
modeling are deterministic approaches for analyzing 
traffic flow on long stretches of road.

Car-Following Traffic Models
Car-following models, also known as microscopic mod-
els, are considered from the point of view of tracking 
the movements of a line of n =1, . . . ,N individual cars 
driving in the same direction down a road in order 
to try to predict their exact positions x tn ( ), velocities  
v tn ( ), and accelerations a tn( ). The starting point for car-
following problems is to model how the driver of a car 
reacts when the vehicle directly in front of it changes 
speed (it is assumed for simplicity that there no pass-
ing is allowed). As a first crude estimation, one could 
assume a driver adjusts instantaneously according to 
the relative speed of the driver’s car and the vehicle in 
front:

a t C v t v tn n n( ) = ( ) − ( ) −1

where C is a constant of proportionality, called the sen-
sitivity parameter, which can be measured experimen-
tally. A more realistic assumption would be that a driver 
adjusts with a lag response time of about one or two 
seconds, to a maneuver by the vehicle in front of it:

a t C v t T v t Tn n n( ) = −( ) − −( ) −1

where T is the time lapse because of the driver’s delayed 
reaction. Equations with delays such as these are then 
solved to keep track of each vehicle as the traffic moves. 
Numerous additional assumptions and effects have 
been incorporated into more sophisticated theories of 
car-following, such as considering the impact of spac-
ing between cars, the effect of aggressive or cautious 
driving, and the effect of drivers looking ahead in the 
road and reacting to the motions of multiple vehicles 
in front of it.
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Hydrodynamic Traffic Models
Hydrodynamic modeling, also called “continuum 
modeling,” considers the flow of a traffic stream to 
be analogous to the flow of a compressible fluid in a 
pipe. Continuum traffic models do not keep track of 
the positions of individual vehicles, like car-following 
models, but track averaged, macroscopic quantities. 
For a long stretch of crowded road, such as an inter-
state highway, three important quantities of interest 
are flow rate (Q in vehicles per hour), vehicle speed (V 
in miles per hour), and vehicle density (ρ in number 
of vehicles per mile). These variables, of course, can 
vary along the stretch of road in both space and time, 
and their relationship is described algebraically as 
Q = ρV. Furthermore, based on observations of traffic 
patterns over the years, it has been posited that for a 
given stretch of road, there exists a direct relationship 
between the flow rate and density. What has essentially 
been observed is that, on a road having some maxi-
mum flow rate, there is a critical vehicle density below 
which speed is not severely impacted but above which 
speed reduces. As the density continues to increase, 
then eventually flow rate reduces, and traffic becomes 
completely congested. For a concrete example, Green-
shield’s model postulates a simple linear relation 
between vehicle speed and density,

V Vfree

jam

= −
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ρ
ρ

where the parameter Vfree  is the free flow speed of a 
vehicle that is unencumbered, and ρ jam is the density 
corresponding to bumper-to-bumper traffic. Then, the 
flow-density relation would be given by
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This parabolic function begins to capture some of 
the flow-density behavior that is observed on some real 
roads, although it is certainly an oversimplification. If 
the traffic density is zero (ρ = 0), then the flow rate 
must also be zero (Q = 0). Additionally, in bumper-to-
bumper traffic (ρ ρ= jam

), the flow rate is zero, or very 
nearly zero in reality.

In the Lighthill–Whitham–Richards (LWR) theory 
of traffic, a long stretch of road is considered that has no 
entries or exits. On such a stretch of road, the number 

of vehicles must be conserved, and this fact combined 
with a flow-density relation gives rise to an equation, 
called a “conservation law,” that predicts how vehicle 
density varies along the stretch of road. When a traf-
fic jam occurs, it manifests as a sudden disturbance, or 
shock-wave, in the vehicle density along the road. LWR 
theory and other much more sophisticated continuum 
models of traffic can predict conditions under which 
traffic jams will form, propagate, and dissipate. Com-
mon reasons for traffic jams are accidents, construc-
tion, lane merges, and other changes in road capacity. 
However (as all drivers have experienced) sometimes 
“phantom jams” occur on highways for no apparent 
reason. These phantom jams can also be explained by 
continuum traffic models.

Further Reading 
Daganzo, Carlos F. Fundamentals of Transportation  

and Traffic Operations. Oxford, England: Pergamon-
Elsevier, 1997.

Gazis, Denos C. Traffic Theory. Norwell, MA: Kluwer 
Academic Publishers, 2002.

May, Adolf D. Traffic Flow Fundamentals. Upper Saddle 
River, NJ: Prentice Hall, 1990.

Anthony Harkin

See Also: Auto Racing; Highways; Smart Cars; Travel 
Planning.

Trains
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations.
Summary: Trains and railways present interesting 
mathematical problems related to force and load, 
scheduling, and geometry.

Railroads influenced nearly every aspect of nineteenth 
and early twentieth century U.S. society. Companies 
building infrastructure for railroads (and railroads 
themselves) dominated the U.S. economy as more 
goods and people were transported via rail. Investors 
clamored to profit from the railway boom, inspiring 
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engineers and mathematicians to improve the technol-
ogy used in the railway system. As more people traveled 
by train, punctuality and reliability needed to improve. 
Time zones in the United States were established pri-
marily because competing rail companies used different 
standard times for their schedules. In addition, Chris-
tophorus Buys-Ballot and others conducted experi-
ments using trains to explore the Doppler effect, named 
for mathematician and physicist Christian Doppler. At 
the start of the twenty-first century, wooden and elec-
tric railway sets remain popular toys with children of all 
ages, while railroad enthusiasts design elaborate model 
train layouts in various scales reflecting the days when 
towns were centered around train stations. 

Locomotives
Locomotives are classified using the Whyte system, 
named for mechanical engineer Frederick Whyte, 
which utilizes numbers to describe the wheel arrange-
ment of the engine. For example, a 4-8-4 type locomo-
tive has four wheels in the front, 8 driving wheels in 
the middle, and 4 wheels in the rear. The capacity of 
a locomotive depends on the amount of friction the 
driving wheels have with the track and the weight of 
the engine over the driving wheels. These quantities 
are related by the equation F = MW, where F represents 
the maximum pulling force of the train, M represents 
the coefficient of friction between the wheels and the 
track, and W is the portion of the weight of the loco-
motive over the driving wheels. While this relationship 
indicates that heavier trains can pull larger loads, more 
power is needed to move the train, leading to higher 
fuel costs. Increasing the coefficient of friction gives 
the train better traction and thus more pulling force, 
so most locomotives have a sandbox on the front from 
which sand is sprayed onto the track when the rails 
are slippery. Though friction is needed to get the train 
started, reducing M increases efficiency once the train 
is in motion, lowering operating costs.  

Modern diesel-electric locomotives use high-tech 
designs to achieve more horsepower while reducing 
engine weight significantly. Equipped with a sophisti-
cated array of sensors, onboard computers, and con-
trol systems, twenty-first-century trains maintain their 
hauling capacity while reducing fuel consumption and 
emissions. The future may see more magnetic levitation 
(Maglev) trains, which use magnetic fields to suspend 
the train above the track. The first commercial Maglev 

train opened in 1984 in Birmingham, United Kingdom, 
but ceased operations in 1995 in part because of design 
problems. A Maglev train in Japan recorded a maximum 
speed of 581 kilometers per hour (361 miles per hour) 
in 2003, the highest ever speed for a Maglev transport.  

Passengers and Timetables
Commercial trains, whether passenger trains or freight 
trains, follow carefully written schedules. Composing 
these intricate timetables is a daunting task. Railways 
must ensure that trains do not collide on the tracks, and 
that goods and people are transported in a timely and 
efficient manner. In 2006, the Netherlands introduced 
a new railway timetable for all trains and mathemati-
cal modeling played a key role in developing the time-
table. To determine how a set of trains should be routed 
through a station, researchers listed all feasible routes 
through the station for every train. Each combination 
of a train and a feasible route is represented by a node 
on a graph. Nodes on this large graph are connected if 
they belong to the same train or if there is a routing con-
flict between the train/route combinations. Presenting 
the scheduling problem in graph form enables sophisti-
cated computer programs to generate a usable timetable. 
Additional modifications improve the efficiency of the 
timetable in the case of unexpected delays.

Railway passengers expect trains to be on time and 
to have sufficient space for a comfortable ride. Timeta-
bles can be fine-tuned to meet these customer demands 
using another type of mathematical modeling called 
“peak load management.” Consultants work with rail-
ways to determine when trains are the most crowded 
and when passenger demand is highest. Mathemati-
cians quantify the notion of “attractiveness,” a measure 
of how satisfied a rider on a given train will be as a 
function of the journey time on the train, the time the 
passenger would like the train to arrive at its destina-
tion, and the actual arrival time. Another constant is 
added to the equation to determine how much attrac-
tiveness is reduced for each minute the actual arrival 
time differs from the customer’s ideal arrival time. 
More terms can be added to measure the crowding on 
the train—overcrowding having a significant impact on 
attractiveness. Using this model, railways can develop 
timetables that increase the probability that a customer 
will ride on an “attractive” train. Further refinements 
to the model attempt to minimize the chance that a 
passenger will need to stand while riding.
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Track Geometry
Freight yards use combinations of switches, sidings, 
and turnaround loops to sort railway cars, assembling 
them into trains bound for various destinations. The 
fact that trains cannot pass each other on a single track 
leads to many challenges. The optimal arrangement 
of freight cars in the most efficient manner is another 
problem for mathematical modeling, but these fascinat-
ing switching systems have inspired mathematicians to 
investigate interesting questions involving train track 
layouts and railway switching puzzles.  

A switch (also known as a “turnout,” or “point”) is a 
Y-shaped structure used to split tracks into two lines or 
to combine two lines into one. The directional nature of 
a switch makes the dynamics interesting: trains entering 
at the “top” of the Y will always exit through the bottom 
branch, but trains entering through the bottom have 
the option of traveling on the left branch or the right 
branch. Switches are used to sort cars in freight yards, 
enable locomotives to move onto a siding to allow a 
train traveling the opposite direction on the track to 
pass, and make it possible via a turnaround loop for a 
train traveling one direction to reverse direction.

How can two trains traveling in opposite directions, 
say eastbound and westbound, pass one another? If there 
is a siding long enough to contain one of the trains, the 
problem is easy. But what if only one car can occupy 
the siding at a time? Variations on this train-passing 
puzzle have been around for over a century. The trains 

can still pass each other through clever use of the sid-
ing.  The eastbound train leaves its cars behind, moves 
onto the siding, and waits for the westbound train to 
pass through.  After the eastbound engine emerges 
from the siding, the westbound train backs through the 
siding, bringing along one of the eastbound train’s cars 
and leaving that car on the siding.  After the westbound 
train has pulled forward past the siding, the eastbound 
train can pick up its car, and the process repeats until 
the entire eastbound train is through.

Imagine a child playing with a toy railroad. Given a 
set of switches and plenty of track, how many different 
layouts can the child make? To determine whether two 
track layouts are different, the structure is transformed 
into a graph, with nodes representing lengths of track. 
Nodes are connected if there is a switch allowing a train 
to travel from one length of track to another. Layouts 
are said to be different if their graphs are the same. A 
child with two switches can make five distinct layouts. 
Using more switches and combinations of other types 
of switches, like the three-way pitchfork-shaped vari-
ety, even more layouts can be made and counted using 
mathematics.

Further Reading
England, Angela. “Train Math Lesson Plan.” http://www 

.suite101.com/content/train-math-lesson-plan-a45144.
Gent, Tim. “Model Trains.” http://plus.maths.org/ 

content/model-trains.
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Creative elementary school teachers have 
devised ways to use the appeal of toy trains 

to teach addition and subtraction. A colorful card-
board train is taped to a bulletin board and chil-
dren count the number of cars on the train. 
Train cars are easily removed or added and 
the students see addition and subtrac-
tion in action by counting the number 
of cars on the new train. Wooden rail-
way systems with magnetic couplings 
between cars also allow for easy join-
ing and separating, making these toys 
excellent mathematical manipulatives 

when working with small groups of children. Older 
students may encounter the Two Trains puzzle. 
Two trains are on the same track traveling toward 

one other at a constant speed. A fly 
starts on the front of one train and 
flies toward the other train at a 
constant speed, faster than either 
train. Once the fly reaches the other 

train, the fly immediately turns around 
and continues buzzing back toward the 
first train. How far does the fly travel 
before being smashed when the two 
trains collide?

Trains as Teaching Tools 



Hayes, Brian. “Trains of Thought.” American Scientist  
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See Also: Bus Scheduling; Graphs; Mathematical 
Modeling. 

Trajectories
See Learning Models and Trajectories

Transformations
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry.
Summary: Numerous mathematicians since 
antiquity have studied and worked on the concept of 
transformations.

In mathematics, transformations have a rich history 
that connects various disciplines, including geometry, 
algebra, linear algebra, and analysis with applications 
in statistics, physics, computer science, architecture, 
art, astronomy, and optics. In general, a transformation 
changes some aspect while at the same time preserv-
ing some type of structure. For example, a dilation of 
an object will shrink or enlarge it but will preserve the 
basic shape; while a reflection of the plane will produce 
a mirror image, which flips figures while preserving 
distances between points. Mathematicians and geom-
eters often transform an object, equation, or data to 
something that is easier to investigate, such as trans-

forming coordinates to simplify algebraic expressions. 
The theory of transformations has important implica-
tions as well. There are many types of transformations 
including geometric transformations, conformal trans-
formations, z-score transformations, linear transforma-
tions, and Möbius transformations, named for August 
Möbius. Geometric transformations have long been 
implicitly used in aesthetically pleasing design patterns 
in pottery, quilts, architecture, and art, such as tessella-
tions in the Moorish Alhambra Palace. Historians and 
anthropologists compare and contrast these patterns 
to track the spread of groups of people. Mathemati-
cal transformations can be represented in a variety of 
ways, such as matrix representations of linear transfor-
mations, which are useful in algorithms and computer 
graphics. In school, young children study geometric 
transformations and this study continues through high 
school, where students represent various geometric and 
algebraic transformations using coordinates, vectors, 
function notation, and matrices. Students also investi-
gate transformations using computers and calculators.

Early History
The early development of geometric transformations is 
tied to motions that were useful in modeling the Earth 
and the stars and in creating artistic works, architectural 
buildings, and geometric objects. The Pythagoreans 
thought that points traced lines and lines traced sur-
faces. Aristotle objected to the use of physical concepts 
like movement in these abstract mathematical objects. 
Euclid of Alexandria mostly avoided the concept of 
motion in his work. However, he used the notion of 
“superposition,” where one object is placed on top of 
another, in triangle congruence theorems, such as in his 
proof of side-angle-side congruence. In modern proofs, 
mathematicians would likely use transformations in 
order to place these triangles on top of each other. Euclid 
also defined a sphere as the rotation of a semicircle, and 
he defined a cylinder as the rotation of a rectangle. Archi-
medes of Syracuse investigated axial affinity motions in 
his work on ellipses, and Apollonius of Perga explored 
inversion. Marcus Vitruvius described the projections 
that were important in architecture, and he also inves-
tigated the concept of stereographic projection, which 
was useful in astronomy and map making.  

Mathematicians around the world generalized these 
motions and applied them to a variety of fields. Most 
mathematicians in later times relied on transforma-
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tions in geometry, although Omar Khayyám criticized 
Ibn al-Haytham’s extensive use of motion by question-
ing how a line could be defined by a moving point when 
“it precedes a point by its essence and by its existence.” 
Both Thabit ibn Qurra and his grandson Ibrahim 
ibn Sinan investigated “affine” transformations of the 
plane that preserved straight lines, like dilations. Alexis 
Clairaut and Leonhard Euler defined and explored 
general affine transformations. Sir Isaac Newton inves-
tigated various coordinate systems and the transfor-
mations between them, such as what are referred to as 
“rectangular and polar coordinates.” Girard Desargues 
systematically investigated projective transformations, 
although many earlier mathematicians had investigated 
perspective drawing and projection in mathematics, 
art, and optics. Edward Waring and Gaspard Monge 
also studied projective transformations. Mobius rep-
resented affine and projective transformations analyti-
cally in terms of homogeneous coordinates.

Carl Friedrich Gauss linked transformations with 
linear algebra when he represented linear transforma-
tions of quadratic forms as rectangular arrays of num-
bers. A linear transformation of the plane is a map 
that preserves addition and scalar multiplication of 
vectors. Linear transformations of the plane are com-
binations of rotations, reflections, dilations, shears, 
and projections, and they are important in modeling 
movement in computer graphics. In general, a linear 
transformation is a map between vector spaces that 
preserves addition and scalar multiplication. Linear 
transformations of coordinates were important in the 
development of analytic geometry and some multi-
variate statistical methods and linear transformations 
were also linked to projective geometry and Möbius 
transformations, which are also called “fractional lin-
ear transformations.” Henri Poincaré connected these 
transformations to hyperbolic geometry. Gotthold 
Eisenstein and Charles Hermite tried to extend Gauss’s 
work on forms and in this context they defined the 
addition and multiplication of linear transformations. 
Arthur Cayley defined a general notion of matrices 
and recognized that the composition of linear trans-
formations could be represented using them. James 
Sylvester explored properties of matrices that were 
preserved under transformations and defined the nul-
lity of a matrix. Matrices continued to be connected to 
linear transformations and the theory of linear trans-
formations extended to infinitely many dimensions.

Modern Developments
At the beginning of the twentieth century, Felix Klein 
revolutionized mathematics and physics with the idea 
of a transformation group. In his Erlanger Program, 
the properties of a space were now understood by the 
transformations that preserved them. Thus the clas-
sification, algebraic structure, and invariants of these 
transformations provided information about the cor-
responding geometries. His ideas unified Euclidean 
and non-Euclidean geometry and became the basis for 
geometry in the twentieth century. Klein’s collabora-
tion with Sophus Lie impacted the development of the 
Erlanger program. Lie also developed the notion of 
continuous transformation groups and associated these 
with a differential equation. Physicists and mathemati-
cians continue to study the local structure of a so-called 
Lie group by the infinitesimal transformations in the 
Lie algebra. Earlier mathematicians and physicists had 
already used invariants in a several ways. For instance, 
Cremona transformations are named for Luigi Cre-
mona, who studied birational transformations. These 
transformations were important in the study of alge-
braic functions and integrals. Max Noether investi-
gated the invariant properties of algebraic varieties 
using birational transformations. In physics, Hermann 
Minkowski explored Maxwell’s equations for electro-
magnetism, named after James Maxwell. These equa-
tions were invariant under Lorentz transformations, 
named for Hendrik Lorentz, and led to a geometry of 
space-time and the beginning of relativity theory.  

Further Reading
Kastrup, H. A. “On the Advancements of Conformal 

Transformations and Their Associated Symmetries 
in Geometry and Theoretical Physics.” Annalen der 
Physik 17, no. 9–10 (2008).

Kleiner, Israel. A History of Abstract Algebra. Boston: 
Birkhauser, 2007.

Rosenfeld, B. A. A History of Non-Euclidean Geometry: 
Evolution of the Concept of a Geometric Space. New 
York: Springer, 1988.

Sarah J. Greenwald
Jill E. Thomley

See Also: Animation and CGI; Composing; 
Coordinate Geometry; Equations, Polar; Quilting; 
Symmetry.
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Transplantation
Category: Medicine and Health.
Fields of Study: Algebra; Data Analysis and 
Probability; Number and Operations. 
Summary: Locating and allocating available 
compatible organs is an important task of surgery, as 
is determining the likelihood of success and survival.

Organ transplantation involves replacing a damaged 
organ or body part with an organ taken from another 
body, a location on the patient’s own body, or sometimes 
another source. Relatively common organ transplants 
include hearts, lungs, livers, corneas, bone marrow, and 
skin. In the twenty-first century, there are increasing 
instances of transplantations involving parts that have 
proven more difficult in the past, including a human 
face in 2010. Transplantation is one of few medical 
fields where practice is driven by statistical analysis of 
large-scale national datasets. Collecting comprehensive 
data about transplantation in the United States is man-
datory, and researchers use statistics to inform clinical 
practice and national policy. Still, there are too few liv-
ing and deceased organ donors to meet the need. Opti-
mization tools make the best use of scarce resources, 
like donated organs. With kidney 
paired donation, optimization can 
even increase the supply of avail-
able organs. An artificial pancreas 
employing control theory was under 
development in 2010.

Statistics
Statistical analyses inform transplant 
policy and individual decisions. 
The transplant community seeks 
equity in allocating organs, so the 
allocation system is frequently ana-
lyzed for gender and racial dispari-
ties. Understanding outcomes with 
and without transplantation helps 
patients decide if they will benefit 
from a particular transplant.

Survival analysis is the branch 
of statistics concerned with the dis-
tribution of time to an event. Sur-
vival analysis is commonly used in 
medicine to study time-to-death 

but can also be used to study time to any event, such as 
time from joining a transplant waitlist until receiving a 
transplant. The survival function S t T t( ) = >( )Pr  indi-
cates the probability that the random time of an event 
T is later than a given time t.

Complications
Survival analysis is complicated by censoring; not all 
patients in a study have reached the event of interest. 
In a time-to-death analysis, some patients are likely still 
alive. The first technique for estimating a survival func-
tion with censoring was the product-limit estimator of 
statisticians Edward Kaplan and Paul Meier. 

Confounding is another challenge. One could per-
form a survival analysis of the association between 
gender and time-to-transplantation to see whether 
men and women receive transplants at the same rate. 
However, not all patients are expected to wait the 
same amount of time. Other factors (such as age and 
blood type) confound studies of the effect of the fac-
tor of interest (gender) on time-to-transplantation. 
Cox proportional hazards analysis methods, named for 
statistician David Cox, can account for confounding, 
using a regression model based on the hazard function 
λ t dt t T t dt T t( ) = ≤ < + ≥( )Pr | , which indicates the 
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instantaneous probability of an event at some time (t) 
conditional on having survived to at least that time.

Optimization
Donated organs are scarce and each organ must be 
allocated to one of many potential recipients. Optimi-
zation techniques allocate scarce resources by maxi-
mizing an objective function. A person’s Lung Alloca-
tion Score is largest when the transplant has the largest 
lifespan benefit, and available lungs are offered to the 
nearby person with the largest score.  

Kidney paired donation in which two living donors 
who are incompatible with their intended recipients 
exchange kidneys for compatible transplants requires 
more complex optimization techniques. More people 
can obtain better transplants when the paired donations 
are arranged using either a maximum weight matching 
in a graph or a maximum weight cycle decomposition 
(if more than two donors and recipients are involved in 
each exchange). By optimizing an individual’s outcome 
rather than the overall good, a Markov decision process 
model, named for mathematician Andrei Markov, can 
determine whether it is better for a patient to accept 
a certain organ offered or wait until a possibly better 
organ is offered later. Another Markov decision pro-
cess model can establish the best time for a patient to 
receive a liver transplant from a living donor.

Control
Control theory studies systems where adjustments over 
time maintain some desired set point, like a thermostat 
heating or cooling a room to maintain a comfortable 
temperature. In transplantation, control theory is used 
in an experimental artificial pancreas. A healthy per-
son’s pancreas maintains blood glucose levels over time 
by regulating insulin in response to eating a meal or 
exercising. An artificial pancreas uses a blood glucose 
monitor and a mathematical control system to drive 
an insulin pump. The control algorithms are tested on 
mathematical models of blood glucose levels before 
being tested in human subjects.

Further Reading
Cox, David R. “Regression Models and Life Tables.”  

Journal of the Royal Statistical Society 34, no. 2 (1972).
Harvey, R. A., et al. “Quest for the Artificial Pancreas.” 

IEEE Engineering in Medicine and Biology Magazine 
(March/April 2010).

Kaplan, Edward L., and Paul Meier. “Nonparametric 
Estimation From Incomplete Observations.” Journal 
of the American Statistical Association 53 (1958).

Segev, D. L., S. E. Gentry, D. Warren, B. Reeb, and R. A. 
Montgomery. “Kidney Paired Donation: Optimizing 
the Use of Live Donor Organs.” Journal of the 
American Medical Association 293 (2005).

Sommer Gentry  
Dorry Segev

See Also: Cochlear Implants; Disease Survival Rates; 
Life Expectancy; Surgery.

Travel Planning
Category: Travel and Transportation.
Fields of Study: Geometry; Measurement; Problem 
Solving; Representations.
Summary: Mathematical models are used to plan 
and evaluate short- and long-term transportation 
infrastructure decisions.

Travel planning is a broad field that covers everything 
from individual journey planning (for example, decid-
ing which form of transportation to use when com-
muting) to regional transportation planning (for 
example, deciding on the layout for a new train line 
or arterial road). Professional transportation planners 
use equations and computer programs to directly com-
pare different transportation modes and routes. These 
equations can be very simple with just a handful of 
terms, or incredibly complex models with hundreds of 
interacting variables. Regardless of the complexity of 
the analysis, the ultimate goal is to satisfy the objectives 
of the planning project and often the most important 
objective is to minimize journey costs.

Governments aim to maintain effective road net-
works and public transportation systems. Within 
certain cities, however, there can be a distinct bias 
toward either private or public transportation. This 
bias reflects the fact that governments prioritize cer-
tain planning decisions over others. These decisions 
fall into two broad categories: long-term and short-
term planning.
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Long-Term Planning
Long-term planning includes decisions such as the use 
of land and placement of new freeways or bypasses. 
The objectives for these projects are often manifold: 
reduce costs, reduce pollution, reduce noise, maintain 
traffic flow, and maintain priority for public transport 
and carpool vehicles. It is the challenge of the transport 
planner to balance these objectives and ensure that the 
final decision satisfies these criteria.

Long-term planning also incorporates projections 
of future effects. For example, a wider freeway leads to 
better accessibility in certain urban areas, which even-
tually leads to more construction in those areas. Con-
struction, in turn, leads to more traffic on the freeway 
and a renewed need to widen the road, thus creating a 
cycle. Long-term projects typically take several years to 
implement and even longer to monitor their impact.

Short-Term Planning
Short-term planning includes the introduction of bus 
priority lanes, changing the timing of traffic light sig-
nals, using trains with a greater numbers of cars during 
peak travel times, changing the price of parking in a 
particular area, changing taxi regulations, introducing 
new public transport fare systems, and so on. These are 
changes that can be implemented and evaluated within 
weeks as opposed to years.

Comparing Alternatives
To make any long-term or short-term planning deci-
sions, it is necessary to compare a range of alternatives, 

side by side, using as few indices as possible. As a simple 
example, a set of four time and money measurements 
can be reduced to a single measurement of cost (C) 
using the equation

C a P b t c t d tT W J= ( ) + ( ) + ( ) + ( )
where P is the fare price, tT is the transit time, tW

 is the 
wait time, tJ

 is the journey time, and the coefficients a, 
b, c, and d are used to weight the components relative to 
one another (for example, for a given individual, wait 
time may be perceived to be twice as costly as journey 
time). This equation is particularly useful for compar-
ing different forms of public transport. The single cost 
values will paint a very clear picture of which mode 
and route has the optimum mix of short times and low 
costs. Cost is often expressed in minutes, as opposed 
to dollars, as this measure will remain stable even as 
prices increase.

Some other measures used by transport planners 
include traffic density (number of vehicles on a given 
stretch of road), traffic flow (number of vehicles pass-
ing through a given stretch of road every minute), and 
performance index (an aggregate measure of the delays 
experienced in a given transport network). Each of 
these measures must be interpreted in context because 
acceptable ranges for the values will vary depending on 
road type, city size, and network connectivity.

Another common method used to estimate the 
amount of traffic passing between two zones (for exam-
ple, a neighborhood and a commercial center) is called 
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the “gravity model.” It was given this name because the 
form of the equation is similar to Isaac Newton’s equa-
tion of gravity. The traffic passing between two zones, 
A and B, is proportional to the product of the traffic 
originating in zone A and the traffic arriving in zone B 
but inversely proportional to a function of the distance 
between the two zones.

Governmental transport planners use these mea-
sures to test for weaknesses in the transport network—
places where demand exceeds supply—and to gauge 
the effects of previous planning decisions. The act of 
planning is therefore firmly rooted in the interpreta-
tion of numerical output from mathematical analyses.

Further Reading
Banister, David, ed. Transport Planning. 2nd ed. New 

York: Taylor & Francis, 2002.
Black, John. Urban Transport Planning. London: Croom 

Helm, 1981.
Button, Kenneth. Transport Economics. Cheltenham, 

England: Edward Elgar Publishing, 2010.
O’Flaherty, Coleman. Transport Planning and Traffic 

Engineering. Oxford, England: Elsevier, 1997.
Wells, Gordon Ronald. Comprehensive Transport 

Planning. London: Griffin, 1975.

Eoin O’Connell

See Also: Bus Scheduling; City Planning; Traffic; 
Traveling Salesman Problem.

Traveling Salesman 
Problem
Category: Travel and Transportation.
Fields of Study: Geometry; Problem Solving.
Summary: The traveling salesman problem is a 
notable applied mathematics problem that is simply 
constructed and may be unsolvable.

Imagine a salesperson that needs to travel to 30 cities. 
The salesperson wants to begin in his or her home-
town, visit every city exactly once, and return to the 
hometown. In what sequence should the salesperson 

visit the cities in order to minimize the total amount 
of traveling time on the road between cities? The sig-
nificance of the traveling salesman problem (TSP) lies 
in the fact that many other problems can be translated 
into a traveling salesman formulation and that a brute 
force check-all-the-possibilities approach will take 
prohibitively long—even for moderately sized prob-
lems (like the example) and with the use of fast com-
puters.

Many problems can be translated to the TSP. The 
travel time between cities can be replaced by distance, 
cost, or other measures. Hence, in essence, this prob-
lem captures many sequencing problems where a 
number of tasks have to be sequenced and the costs 
can be modeled appropriately. Problems as diverse as 
optimizing the routes of garbage trucks, planning the 
sequence of motions performed by a robot, and order-
ing genetic markers on a chromosome have been mod-
eled by the TSP.

Solving the TSP
Why is solving the TSP hard? If one decides to solve 
the problem by checking all the possibilities and then 
choosing the best one, then the sheer number of possi-
bilities will make the problem impossible to solve. For 
example, with 30 cities and starting at a hometown, 
initially there are 29 cities to choose as a first destina-
tion. Regardless of the first choice, there are 28 cities 
to choose from next and so on. The total number of 
possible ways to start from a hometown, traverse each 
of the 30 cities exactly once and return to the home-
town is 

29 29 28 3 2 1! = × × × × ×
=

. . .

8,841,761,993,739,701,954,543,616,000,000

8.8 1030≈ ×
 

possibilities.
Even if a computer checked a million possibilities 

per second, checking all the possibilities would take 
more than 200,000,000,000,000,000 years—much lon-
ger than the age of the universe. Making the computer 
twice or 10 times faster still will not be enough to make 
the problem worth attempting.

Solution Through Algorithms
Could there be clever algorithms that solve the TSP 
faster? The TSP is among the problems that computer 
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scientists call NP-hard. Given any algorithm for solving 
the TSP, certainly the number of steps needed by the 
algorithm grows as the size of the problem—namely 
the number of the cities—grows. If the number of 
steps in an algorithm as a function of the size of the 
problem is a polynomial, then it is generally believed 
that the problem is tractable. In other words, if there 
is one such polynomial time algorithm, then one can 
hope to find other more efficient ones and be able to 
solve even large-sized problems efficiently. At the start 
of the twenty-first century, it is not known whether the 
TSP has such a polynomial time algorithm. But it is 
known that if there is such an algorithm, then there 
is also efficient algorithms for a host of other prob-
lems of interest to computer scientists. For many years, 
researchers have looked for such algorithms and have 
not been able to find one, and the strong prevailing 
opinion is that no such algorithm exists (this is the 
famous P NP≠  problem).

Even though the TSP is a difficult problem to solve 
in general, progress has been made in developing 
algorithms that do much better than the brute force 
method. In fact, very large instances—for example, 
one with 85,900 cities—of the TSP have been solved 
exactly. On another front, many approximation algo-
rithms have been devised. These algorithms do not 
aim to find the absolute best solution but rather find a 
solution that is close to the best one. A simple approxi-
mation algorithm using minimum spanning trees, for 
example, can find a solution that is guaranteed to be no 
worse than twice the optimal solution. More sophisti-
cated algorithms can find a solution within a few per-
centages of the optimal solution for a problem with the 
number of cities in the millions.

Further Reading
Applegate, David L., Robert E. Bixby, Vašek Chvátal, and 

William J. Cook. The Traveling Salesman Problem: 
A Computational Study. Princeton, NJ: Princeton 
University Press, 2006.

Gutin, Gregory, and Abraham P. Punnen. The Traveling 
Salesman Problem and its Variations. Dordrecht, The 
Netherlands: Kluwer Academic Publishers, 2002.
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See Also: Birthday Problem; Bus Scheduling; Cocktail 
Party Problem; Scheduling; Tournaments.

Trigonometry
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Geometry; Measurement.
Summary: Trigonometry is one of the most essential 
branches of mathematics in engineering and science.

The principal value of trigonometry rests in its 
numerous and practical applications throughout the 
world. It has always been viewed as one of the most 
applied areas of mathematics. When combined with 
the latest technologies, trigonometry impacts society 
in immeasurable ways. It  is essential in engineering 
and in all of the sciences. Some of the applications 
of trigonometry include astronomy, aviation, archi-
tecture, engineering, geography, physics, seismology, 
surveying, oceanography, cartography (mapmaking), 
navigational systems, space sciences, medical imaging, 
music, and video games. Clearly, the applications and 
influences of trigonometry are fully embedded within 
contemporary society. To appreciate modern applica-
tions of trigonometry and the contributions of societ-
ies throughout the world, it is important to consider 
its historical evolution. 

Origins of Trigonometry
The beginnings of trigonometry date back to pre-
historic cultures and mirror the evolution of civili-
zation itself. The word “trigonometry” comes from 
the Greek word trigonon (meaning “triangle”) and 
metron (meaning “measurement”). However, trigo-
nometry did not originate as the study of triangles. It 
was initially viewed as a combination of geometry and 
astronomy used in studying the movements and loca-
tions of celestial bodies in the sky and in time keep-
ing. The foundations of trigonometry originated in 
prehistoric cultures with their vigilant observations of 
the night sky. Some of their discoveries are inherent in 
the designs of Stonehenge and ancient Egyptian mon-
uments. The early civilizations of Egypt, Babylonia, 
and India (c. 2000 b.c.e.) contributed significantly to 
the origins of trigonometry. The Egyptians applied the 
properties of geometry and astronomy in construct-
ing the pyramids, and the Babylonians (c. 1900 b.c.e.) 
used angles and ratios to keep track of the motions of 
celestial bodies in the sky. They followed the paths of 
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planets, the lunar and solar eclipses, and gave coor-
dinates to the stars, all of which required familiar-
ity with angular distances measured on the “celestial 
sphere.” While these early civilizations used trigono-
metric principles for astronomical measurements, in 
designing monuments, and in time keeping, they did 
not fully develop the mathematical system that is now 
known as “trigonometry.”

The invention of trigonometry emerged as a defined 
body of knowledge from work conducted by Greek 
astronomers around 350 b.c.e. in the city of Alexan-
dria, Egypt, the intellectual center of the ancient world. 
The Greek astronomer, Hipparchus (190–120 b.c.e.), 
is frequently called “the Father of Trigonometry. ” He 
used ratios to determine the distances of the Earth from 
the sun and the moon and was responsible for tabulat-
ing the measures of arcs and their corresponding chord 
lengths for angles within a circle. The trigonometry of 
ancient Alexandria would now be called “spherical trig-
onometry” since it was confined primarily to the study 
of the properties of great circles on spherical bodies.

The earliest recorded work on spherical trigonom-
etry appears in the book, Sphaerica, written by Mene-
laus, a Greek mathematician working in Alexandria  
(70–140 c.e.).  It describes Menelaus’ theorem, which 
associates the ratios of the lengths of intersecting arcs 
of great circles on a sphere.

Development of Trigonometric Functions
A fundamental difference between ancient Alexandrian 
trigonometry and modern trigonometry is that the 
former used arcs and chords in its trigonometric tables 
instead of the trigonometric functions that are used in 
the twenty-first century: sine, cosine, and tangent. The 
oldest surviving table of arcs and chords was created by 
Ptolemy of Alexandria (90–168 c.e.). However, when 
the chords of the circle are rotated to a vertical position 
and radii are inserted to connect the endpoints and 
midpoint of the chord to a common center, it is pos-
sible to translate half-chord lengths to a sine function. 
Thus, Ptolemy’s famous table of arcs and chords was 
equivalent to a modern table of sines. His most famous 
mathematical work was the Almagest. It included a table 
of chords for angles for one-half degree to 180 degrees, 
in increments of half degrees. His chords were accurate 
in length to five significant digits. In addition, Ptol-
emy proved (using chords) the formulas for the sum 
and difference of two angles that are equivalent to the 

current sine functions of two combined angles. These 
discoveries were applied to astronomy, time keeping, 
and in locating the direction of Mecca for the daily five 
prayers required by followers of Islam.  

In the first century b.c.e., trigonometric principles 
were used primarily in navigation and map-making. 
Fortunately, Ptolemy recorded all of the geographical 
knowledge collected by the ancient world in his eight 
volumes, titled Geographia. It included the latitudes 
and longitudes of 8000 places on Earth and was the 
world’s first atlas, similar to those used in the twenty-
first century. It took astronomers nearly 400 years to 
shift from using tables of angles and chords to a reli-
ance on tables of sines. Indian astronomers of the fifth 
century gave trigonometry its current interpretation 
of the sine function, which quickly spread to Arab and 
Islamic astronomers.

It is important to recognize that the six trigonometric 
functions that are used in the twenty-first century were 
developed at the end of the tenth century by Arab and 
Islamic astronomers. The West learned about Arab and 
Islamic trigonometry at the beginning of the twelfth 
century through translations of Arabic and Islamic 
astronomy handbooks. Indeed, the maps created by the 
Alexandrian Greeks and the trigonometric functions 
developed by the Arab and Islamic astronomers were 
employed during the world explorations of the fifteenth 
and sixteenth centuries. Christopher Columbus (1451–
1506) utilized these materials to guide him to discover 
the “new world” in 1492. There is no denying the meri-
torious impacts of trigonometry on exploration and 
navigation during the fifteenth and sixteenth centuries.

Trigonometry of the Renaissance
Calculations using trigonometric functions to deter-
mine the sides of right triangles did not become preva-
lent until the sixteenth century. German mathemati-
cian Bartholomew Pitiscus (1561–1613) is recognized 
for creating the word “trigonometry,” meaning triangle 
measurement. He chose Trigometria for the title of his 
book, which described the applications of trigonom-
etry in surveying.

During the seventeenth century, numerical calcu-
lations in trigonometry were simplified by the inven-
tion of logarithms by the Scottish mathematician John 
Napier (1550–1617). Fifty years following Napier’s 
invention of logarithms, English mathematician Isaac 
Newton (1642–1727) invented the calculus in which he 
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represented trigonometric functions as infinite series 
in powers of x. Specifically, Newton discovered that

sin x x x x x x( ) = − + − + −1

6

1

120

1

5040

1

362880
3 5 7 9 �  

and

cos x x x x x( ) = − + − + −1
1

2

1

24

1

720

1

40320
2 4 6 8 �.

These representations of the sine and cosine func-
tions continue to play important roles in applied and 
pure mathematics in the twenty-first century.

For most of the history of trigonometry, angles 
were measured in degrees, which were defined as frac-
tions of the circumference of a circle. This practice 
was not efficient nor consistent because the radius of 
the circle was not fixed. The creators of tables of sines 
often chose a radius convenient for their calculations. 
Ptolemy used a radius of 60 since his fractions were 
expressed in 60ths. The Austrian mathematician Georg 
Rheticus (1514–1574) used a radius of 1015, which per-
mitted him to tabulate the six trigonometric functions 
with 15-digit accuracy without the use of decimals or 
fraction manipulation.

Further innovations and interpretations in trigo-
nometry were developed in the eighteenth century by 
the Swiss mathematician Leonhard Euler (1707–1783). 
He explained that computations of trigonometric 
functions would be more efficient if the line lengths 
were measured in the same unit. Consequently, he 
chose “1” to be the radius of a circle centered at the 
origin. Thus, the circle’s circumference would be 2π; 
the arc for 45 degrees would be π/4; the arc for 30 
degrees would be π/6; and so on. This system led to 
the later development of radian measures for angles 
and arc lengths.

More significantly, Euler discovered that trigono-
metric functions could be defined in terms of complex 
numbers (the union of real and imaginary numbers). 
Specifically, Euler’s famous equation states that for any 
real number x, 

e x i xix = ( ) + ( )cos sin .

The relevance of this equation was that trigonom-
etry could then be viewed as only one of the numerous 
applications of complex numbers. This formula served 

as a unifying concept for the study of mathematics as 
a whole.  

Contemporary Applications of Trigonometry
Although trigonometry originated in ancient civiliza-
tions from studying the movements of astronomical 
bodies and triangle relationships, its current applica-
tions encompass far more. Trigonometry now spans 
the diverse fields of architecture, engineering, science, 
music, navigation, medicine, digital imaging, and 
games of entertainment.

Trigonometry is a perfect partner for architecture 
and engineering. Contemporary buildings with curved 
surfaces in glass and steel would be impossible with-
out trigonometry. Although the surfaces are perceived 
as curved, they are frequently composed of numerous 
triangles. Furthermore, since the triangle is an ideal 
shape for evenly distributing the weight of a structure, 
an understanding of relationships among the parts of 
triangles is essential in the design and construction of 
buildings, bridges, and monuments. Specifically, if an 
engineer knows the lengths of the beams that will be 
attached to a structure, the angles at which they must 
be attached can be calculated using trigonometry. 
Additionally, in the architectural design of an amphi-
theatre, the engineer’s task is to design the structure 
so that all sounds from the stage are funneled into the 
audience’s ears. Engineers and architects use trigonom-
etry to identify the perfect shape to balance this sound 
as it reflects off the walls and ceilings.

Since trigonometry facilitates the understanding 
of space, it has numerous applications in the physical 
sciences. In optics and statics, trigonometric functions 
are vital in understanding the behavior of light and 
sound. It is particularly useful for modeling the peri-
odic processes found in music because of the cyclical 
and periodic nature of trigonometric functions (sine, 
cosine, and tangent). Harmonics are determined by 
the form of their sine waves with respect to their peri-
ods and frequencies. The period of a sine wave is the 
length of the interval of repetition of the sine wave.  
The frequency of a sine wave is the number of cycles a 
sine wave goes through in a standard distance or time 
interval. In music, the frequency is often expressed in 
units of hertz, (Hz), where 1Hz means one period per 
second. For example, the pitch of every note in music 
is determined by the length of its sine wave (period) 
and by its frequency. Musical notes with wide sine 
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waves are lower in pitch because they have fewer cycles 
per second, while notes that have narrow sine waves 
are higher in pitch and have more cycles per second. 

Trigonometry plays a vital role in modern technolo-
gies through the process of triangulation. It is used by 
global positioning systems (GPS), in computer graph-
ics, and in gaming. Specifically, computer generation of 
complex images is made possible by coloring numerous, 
microscopic squares (called “pixels”) that define the pre-
cise location and points on the image. The technique of 
triangulation is used to make the image highly detailed 
and clearly focused. In GPS, triangulation is used for 
object location. Similar imaging technologies have also 
revolutionized the medical fields through the develop-
ment of Computed Axial Tomography (CAT) scans, 
ultrasounds, and magnetic resonance imaging (MRI). 

Trigonometry Instruction
It has been shown that trigonometry emerged approxi-
mately 4000 years ago through careful observations 
of the movements of celestial objects in the sky. These 
observations gave rise to the study of the celestial sphere 
and relationships among arcs, chord lengths, and central 
angles of great circles. In the twenty-first century, this 
form of trigonometry is called “spherical trigonometry.” 
It was not until the end of the tenth century that Arab 
and Islamic astronomers defined the six trigonometric 
ratios. It took another 500 years before right triangle trig-
onometry became prominent in surveying, navigation, 
and architecture throughout the Western world. There-
fore, it is interesting that this evolutionary sequence of 
the development of trigonometry is not reflected in the 
order in which it is typically introduced to students.

The current order of instruction is to first intro-
duce the six trigonometric functions as ratios between 
the sides of right triangles. These concepts are then 
applied in finding the missing parts of right triangles. 
Finally, the unit circle and the periodic nature of trigo-
nometric functions are introduced. This instructional 
order is often supported by the fact that right triangle 
trigonometry is a natural extension of the study of the 
Pythagorean theorem and ratios between parts of tri-
angles, both of which are covered in the middle grades. 
Furthermore, trigonometric ratios are not as difficult 
to comprehend as periodic functions. 

Some educators may argue that instruction should 
follow the evolutionary sequence of a topic. In sup-
port of that argument, students of today’s technologi-

cal world (with microwaves, wifi’s, electrocardiograms, 
and electronic music) gain early familiarity with the 
periodicity of the sine and cosine functions. They are 
also more likely to model scientific and social phenom-
ena with trigonometric functions than to apply right 
triangle trigonometry in finding the missing parts of 
triangles. Thus, for research purposes in identifying 
“best practices” for instruction, some educators have 
considered assessing the effects of teaching trigonom-
etry in the same order that it historically evolved. 

In conclusion, trigonometry is more valuable to soci-
ety today than ever before in recorded history. The foun-
dations of trigonometry emerged about 4000 years ago 
in the Egyptian and Babylonian civilizations. It devel-
oped into a well-defined mathematical discipline in the 
city of Alexandria, Egypt, circa 350 b.c.e. In the centu-
ries that followed, trigonometry continued to evolve 
through the contributions and insights of diverse cul-
tures and societies throughout the world. Trigonometry, 
with its advanced measurement facilities and associated 
technologies, remains one of the most applicable and 
practical fields of mathematics, vital to the advancement 
of the sciences, engineering, and technologies.
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Tunnels
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations.
Summary: Tunnels have long presented interesting 
mathematical and engineering problems.

A tunnel is a connecting passageway through materials 
like rock, earth, or water. Tunnel engineers must take 
into consideration issues like seepage and weight. Sci-
entists and mathematicians create mathematical mod-
els of tunnels to investigate aspects like aquifers and 
safety issues. Analytic and closed form solutions are 
useful in engineering. Mathematical fields like graph 
theory, differential equations, geometry, probability, 
and trigonometry are important for modeling and 
measuring tunnels.

Mathematically Challenging Tunnels
Five centuries after it was completed, Hero of Alexan-
dria gave a theoretical explanation that may explain 
how the Tunnel of Samos was constructed. Mathemati-
cal physicist Renfrey Potts had an undergraduate degree 
in mathematics. He worked as a consultant for General 
Motors and created car-following models. This work 
led to experiments on a testing track with just two cars 
that successfully predicted the optimum speeds for 
congested traffic in the Holland Tunnel in New York, 
named for engineer Clifford Holland. The Channel 
Tunnel between England and France represented a sig-
nificant engineering and mathematical challenge. At 
the time of its building and into the twenty-first cen-
tury, it had the longest undersea length of any tunnel 
in the world. It presented significant challenges includ-
ing problems related to the topology and geology of 
the rock through which it was bored; significant water 
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pressure; ventilation; communication; and the fact that 
construction was started at the same time from both 
ends, requiring exceptional precision to meet in the 
middle. This tunnel serves as a model for other under-
water tunnel projects and many teachers use it to pres-
ent mathematics concepts. Scientists and mathemati-
cians also experiment with digital and physical wind 
tunnels as well as quantum tunnels. 

Ancient Tunneling
The problem of delivering fresh water to large popu-
lations has been an ongoing human endeavor since 
ancient times. In the sixth century b.c.e., a one-kilome-
ter tunnel was dug through a large hill of solid limestone 
to bring water from the mountains to the main city on 
the island of Samos. The Eupalinian aqueduct on Samos 
was designed by the ancient Greek engineer Eupalinos 
of Megara. The tunnelers worked from both ends and 
met in the middle, with an error less than 0.06% of the 
height. To achieve this remarkable result, Hero of Alex-
andria theorized that the tunnelers used a method based 
on similar triangles in order to determine the correct 
direction for tunneling. Mathematicians and scientists 
continue to debate the pros and cons of various theories 
of how this engineering marvel was constructed.

Modeling Tunnels
Tunnels can be modeled using coordinate geometry 
and equations. For example, knowing the height and 
width of a parabolic tunnel, one can determine the 
tunnel’s height at different distances from the base cen-
ter. To solve this problem, one needs to find the equa-
tion for the parabola choosing convenient x-y axes. 

Frictionless Tunnels
The possibility of mathematical modeling allows for 
innovative and challenging ideas. What if a frictionless 
tunnel would be bored through Earth’s center? Paul 
Cooper, a mathematician fond of Jules Verne’s books, 

tried to answer this question in an issue of the Ameri-
can Journal of Physics. He set up and solved by com-
puter a set of differential equations for tunnels that 
would provide minimum gravity-powered travel time 
between any two cities on Earth. 

According to Cooper’s differential equations, by 
freefalling in airless, frictionless, straight-line tunnels, 
passenger vehicles powered only by the pull of gravity 
could theoretically travel between any two points on 
the Earth’s surface in a total time of only 42.2 minutes. 
Accelerated by the force of gravity on the first half of the 
trip, the vehicle would gain just enough kinetic energy 
to coast up to the other side of the Earth. However, 
significant obstacles make such a project impossible 
in the twenty-first century. Subterranean temperatures 
reach extremes, even for relatively shallow tunnels of 
only a few miles deep, requiring huge cooling systems 
for vehicles. Also, it is almost certainly impossible to 
create a completely frictionless path without a rail or 
track of some type, leaving the vehicle with insufficient 
kinetic energy to complete its trip without a source of 
additional power. Consequently, such a tunnel is still 
science fiction more than science.

Further Reading
Apostle, Tom. “The Tunnel of Samos.” Engineering and 

Science 1 (2004).
Cooper, P. W. “Through the Earth in Forty Minutes.” 

American Journal of Physics 34, no. 1 (1966).
Lunardi, Pietro. Design and Construction of Tunnels: 

Analysis of Controlled Deformations in Rock and Soils. 
New York: Springer, 2008.

Oxlade, Chris. Tunnels. Portsmouth, NH:  Heinemann-
Raintree, 2005.

Florence Mihaela Singer 

See Also: Caves and Caverns; Coordinate Geometry; 
Energy; Traffic; Wind and Wind Power.  

	 Tunnels 1015





1017

Ultrasound
Category: Medicine and Health.
Fields of Study: Algebra; Geometry; 
Representations.
Summary: Ultrasound uses mathematical principles 
to create images of the human body.

Although ultrasound cannot be heard by humans, it has 
been produced and used for a vast number of applica-
tions in many different fields. In industry, ultrasound has 
been used as a technique to assess the structural integrity 
of materials. The interaction between ultrasound and 
live systems has been studied since the 1920s. During 
the 1960s, it was used in medicine, initially as a thera-
peutic option and then later as a diagnostic resource. In 
the twenty-first century, ultrasound is a major medi-
cal imaging technology widely used in clinical facili-
ties around the world because it causes no harm to the 
human body and results can be achieved in real time, 
besides the fact it is considerably cheap and easy to use. 
The available technologies using ultrasound are in con-
stant development. Every new application depends on 
the advance of computer sciences that work with many 
concepts of physics and the solution of mathematical 
problems in this field seems inexhaustible.

Sound is a form of energy consisting of the vibration 
of molecules of an environment that can be air, water, 

solid, or biological tissues (such as bones and muscles). 
This kind of energy propagates across the medium in 
the form of waves. Sound is a mechanical wave whose 
fundamental characteristics are amplitude, which is the 
distance between the highest and lowest point of the 
wave and frequency, which is the number of cycles that 
occur in a second, measured in hertz (Hz). Humans are 
able to detect sounds with a frequency of 20–20,000 
Hz–the normal limits of the human hearing. The term 
“infrasound” refers to sound waves that have a fre-
quency lower as 20 Hz, and sounds with a frequency 
higher than 20,000 Hz are called “ultrasound.” Unlike 
humans, some animals, such as bats, dolphins, whales, 
dogs, cats, and mice can hear ultrasound. 

Imaging the Human Body
While traversing a material, the properties of ultra-
sound change in intensity and speed of propagation, 
which means that ultrasound waves travel at differ-
ent speeds depending on the material. Consider two 
samples of human bone, one from a 30-year-old per-
son and the other from an 80-year-old person. If ultra-
sound waves cross these two bony samples, the speed at 
which the sound propagates in the bones can be repre-
sented algebraically by the following equation:

v E= ρ

U



where ν is the speed of ultrasound in the bone sample, 
E is the modulus of elasticity of the bone sample, and ρ 
is the density of the bone sample. 

The speed of sound (ν) can be calculated by measur-
ing the time required for the wave to propagate through 
the bone and then dividing by the width of the bone. 
Knowing the density of the bones (ρ), this equation 
could be used to determine the values of the modu-
lus of elasticity (E) that indicates the elastic properties 
of the bone. In a 30-year-old person, the speed of the 
sound through the bone is approximately 4000 m/s. 
In an 80-year-old person, this rate drops to 3800 m/s. 
This fact means that the higher the speed of the sound 
through the bone, the better is the quality of bone. A 
low speed could reveal a bony fragility and a fracture 
probability. This principle is used in ultrasonometry, a 
technique used to estimate the bony fracture or osteo-
porosis risk in patients. Ultrasound medical imaging is 
one of the most powerful diagnostic tools in modern 
medicine. Along with other imaging methods, it is based 
on advanced mathematical techniques and numerical 
algorithms that are necessary to analyze the data and 
produce readable pictures or three-dimensional images 
of inner body structures without surgery or use of radi-
ation. It has been widely used to identify the sex or to 
detect malformations in fetuses during gestation. 

Further Reading
Ammari, Habib. An Introduction to Mathematics of 

Emerging Biomedical Imaging. Berlin: Springer, 2009. 
Gibbs, Vivien, et al. Ultrasound: Physics and Technology. 

Philadelphia: Churchill Livingstone, 2009.

Maria Elizete Kunkel

See Also: Diagnostic Testing; Digital Images; 
Harmonics; Medical Imaging.

Unemployment,  
Estimating
Category: Government, Politics, and History.
Fields of study: Algebra; Data Analysis and 
Probability.

Summary: Unemployment rates are calculated using 
intricate statistical models and sampling methods.

An unemployed person is generally defined as an indi-
vidual who is available for work but who currently does 
not have a job. Overall unemployment is typically quan-
tified using the unemployment rate, which represents 
the number unemployed people as a percent of the labor 
force. The Bureau of Labor Statistics is an independent 
statistical agency of the U.S. federal government pri-
marily responsible for measuring labor market activity. 
Many mathematicians and statisticians are involved in 
data collection, modeling, and estimation of employ-
ment activity, including the highest levels of direction 
and management. For example, Janet Norwood was the 
first woman commissioner of the U.S. Bureau of Labor 
Statistics and frequently spoke to the Joint Economic 
Committee and other congressional Committees. She 
was also president of the American Statistical Associa-
tion and chair of the Advisory Council on Unemploy-
ment Compensation. Regarding her work, she noted, 
“These data figure very prominently in most of the 
political debates, so it is extremely important that they 
be accurate and of high quality, and that they be released 
in a manner that is totally objective.” 

Economist John Maynard Keynes’s revolutionary 
work, The General Theory of Employment, Interest and 
Money, was published in 1935–1936. The Industrial 
Revolution and shift away from an agrarian economy 
had significantly changed the way in which researchers 
in many fields looked at economic measures, includ-
ing employment, and the Great Depression brought 
even greater attention and emphasis to these concepts. 
Because of labor-market volatility in the late 1920s, the 
1930 U.S. census attempted the first comprehensive 
federal measure of unemployment, but data from the 
decennial census were not timely enough to be useful 
in assessing the effectiveness of Depression legislation 
to aid unemployed workers. Statisticians used newly 
emerging polling methods to develop better mea-
sures and mathematical models. Better methods also 
changed, at times, the definition of unemployment. 
Overall, it is commonly accepted that unemployment 
induces negative effects on the financial and economic 
status of societies and individuals with respect to many 
variables. As workers become unemployed, the goods 
and services that they could have produced are lost 
along with the purchasing power of these workers, 
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selected from the lists of addresses obtained from the 
last decennial census of the population. Housing units 
from blocks with similar demographic composition 
and geographic proximity are grouped together in the 
list. The final sample is usually described as a two-stage 
sample but occasionally, a third stage of sampling is 
necessary when actual SSU size is extremely large. In 
this situation, a third stage, called “field subsampling,” 
is needed in order to keep the surveyor’s workload man-
ageable. This involves selecting a systematic subsample 
of the SSU to reduce the number of sample housing 
units to a more convenient number. Once a survey is 
designed and the sample is drawn, field representatives 
and computer-assisted telephone interviewers contact 
and interview a responsible person living in each of the 
sample units selected to complete the interview.

Seasonal Adjustment of Unemployment Data
The collected data by the CPS are subjected to a series 
of transformations and adjustments before the ana-
lytical tools are applied to fit adequate models to the 
unemployment rate and explain its behavior in terms 
of relevant factors. Because some types of employment 
are seasonal or cyclical over time, such as December 
holiday retail sales or fall farm harvesting, adjustments 
must often be made to account for such cycles. In fact, 
throughout a one-year period, the level of unemploy-
ment experiences continuous variations because of 
such seasonal events as changes in weather, major holi-
days, agricultural harvesting, and school openings and 
closings. Since seasonal events follow an almost regu-
lar periodic pattern each year, their influence on the 
overall pattern can be easily estimated and eliminated. 
There are two popular methods for removing seasonal-
ity. The first estimates the seasonal component using a 
regression model with time series errors. The explana-
tory variables in the regression equation are 12-period 
harmonic terms. Once the regression coefficients are 
estimated, the fitted values are evaluated for each month 
subtracted from the corresponding actual values lead-
ing to seasonally adjusted series. The second method 
consists of simply taking seasonal differences of the 
unemployment series. The removal of the anticipated 
seasonal component makes it easier for data analysts to 
observe fundamental variations in the unemployment 
level, such as trends, gains, nonseasonal intrinsic cycles, 
and effects of external events, especially those related to 
economic factors. 

thus leading to the unemployment of more workers. 
In addition, a large unemployment rate can induce sig-
nificant social changes and has been the foundation of 
civil unrest and revolutions. Mathematicians and stat-
isticians continue to create explanatory and forecasting 
models that are used to guide policies and decisions 
intended to stabilize economies and aid unemployed 
workers at local, state, and national levels. These mod-
els draw from mathematical ideas and techniques in 
a wide range of areas, including time series analyses, 
equilibrium modeling, structural component model-
ing, neural networks, and simulation. 

Sample Design and Collection  
of Unemployment Data 
In most countries, the task of collecting and analyz-
ing unemployment-related information is assigned to 
certain governmental agencies. In the United States, 
the Current Population Survey (CPS), conducted by 
the Census Bureau for the Bureau of Labor Statistics 
since the mid-twentieth century, provides most of the 
necessary data. Counting every unemployed person 
each month is impractical in terms of both cost and 
time, so the Census Bureau conducts a monthly sur-
vey of the population using a sample of households 
that is designed to represent the civilian population of 
the United States. At the start of the twenty-first cen-
tury, the (CPS) surveyed about 50,000 households per 
month. The selection is generally a multistage stratified 
sample selected from many different sample areas. The 
sample provides estimates for the nation and serves as 
part of model-based estimates for individual states and 
other geographic areas. 

In the first stage of sampling, the United States is 
divided into primary sampling units (PSUs) that usu-
ally consist of a metropolitan area, a large county, or a 
group of smaller counties. PSUs are then grouped into 
strata based on some factor that divides the popula-
tion into mutually exclusive homogeneous groups. The 
homogeneity of the stratum ensures that the within-
strata variability is very small compared to the variabil-
ity between strata. One PSU is then randomly selected 
from each stratum with a probability of selection pro-
portional to the PSU’s population size. The second stage 
of sampling consists of randomly selecting small groups 
of housing units from the sample PSUs. Elements from 
this sample of housing units are called “secondary 
sampling units” (SSUs). These households are usually 
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Rate Estimation and Prediction
Since the unemployment survey is conducted in the 
same manner on a monthly basis, the type of data 
collected is called “time series data.” Dependence or 
autocorrelation among the observations in such data 
is common, which means that most classical mean-
variance types of statistical models are not applicable 
for estimation and prediction with most unemploy-
ment data. Mathematical and statistical models that 
take into account the particularity of time-dependent 
data are called “time series models.” Among the most 
popular and useful are autoregressive integrated mov-
ing average (ARIMA) models and their seasonal exten-
sion (SARIMA). Such models can be used to describe 
the relationship between a current unemployment rate 
and past ones using differencing operations and lin-
ear equations. As a consequence, the model can also 
be used to predict future realizations of the unem-
ployment rate. The ARIMA models are very flexible in 
the sense that they allow for the inclusion of external 
factors, which can help explain the movement of the 
unemployment rate and lead to estimators and predic-
tors with smaller variability errors.

Further Reading
Downey, Kirstin. The Woman Behind the New Deal.  

New York: Anchor Books, 2010.
Flenberg, Stephen. “A Conversation With Janet L. 

Norwood.” Statistical Science 9, no. 4 (1994).
Pissarides, Christopher. Equilibrium Unemployment 

Theory. Cambridge, MA: The MIT Press, 2000.
Zbikowski, Andrew, et al. The Current Population 

Survey: Design and Methodology. Technical Paper 40. 
Washington, DC: Government Printing Office, 2006.

Mohamed Amezziane

See Also: Census; Forecasting; Gross Domestic 
Product (GDP).

Units of Area
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations; Representations.

Summary: Numerous units of area have been used 
throughout history for measuring land. 

Specific measurements of land area date back to ancient 
times to define land ownership (for the purposes of 
taxation, among other reasons). Some of these mea-
surements are still used in the twenty-first century. 

Ancient Units of Measurement
In Mesopotamia, land area was divided into a bur (an 
estate), which covered about 64,800 square meters. The 
bur, in turn, was divided into iku (fields), each of which 
covered about 3600 square meters. Further measure-
ments and sub-divisions are recorded on surviving 
land documents. The Egyptians also had their own sys-
tem based on the kha-ta (100,000 square cubits), which 
in turn was divided into 10 setat, which consisted of 10 
kha (1000 square cubits, or 275.65 square meters).

The Romans had a very specific system of measur-
ing land with the basic measure being an actus quadra-
tus (acre), which covered about 1260 square meters. 
Smaller measurements were described as being a pes 
quadratus (square foot) or scripulum (or square perch). 
These measurements were based on the pes (foot) being 
the basic unit of measurement throughout the Roman 
Empire, a length that was fixed throughout the Empire.

By contrast, the Greeks used a different system of 
land measurement by which land was divided into a 
“plethron”—a variable area of land that consisted of 
the amount of land a yoke of oxen were able to plough 
in a single day. As a result, the exact measurment varied 
from some parts of Greece to other parts (and indeed 
for different parts of a city), although it was thought 
to approximate to about four English acres. In rocky 
and hilly areas, the land area was larger than in other 
parts of the city state. This method of measuring land 
area—based on what could be done with it—is quite 
different to the Roman system and largely emerged 
from a method of equitable taxation by which those 
with poorer land could be taxed fairly alongside those 
with more fertile land.

This Greek concept of land measurement was later 
followed by the Anglo-Saxons in England with their use 
of the “hide” as a measure of land. This measurement 
was used in the Domesday Book in 1086 and contin-
ued until the end of the twelfth century. Traditionally, 
it was thought that a hide consisted of the land needed 
to support 10 families, because it is used instead of the 
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term terra x familiarum (land of 10 families) in the 
Anglo-Saxon version of Bede’s ecclesiastical history. In 
Scotland during the same period, the term “groatland” 
was used to describe the land that could be rented for 
a particular coin—in this case, a groat. It would repre-
sent a larger area for poorer agricultural land than for 
richer land.

Medieval Era
By medieval times, in Europe and especially England, 
the terms of measuring land were standardized, and 
these tended to follow the Roman measurements of a 
“perch,” a “rood,” and an “acre.” In spite of these mea-
sures (although the “hide” was being phased out), there 
were other measures including the “carucate,” which 
covered the land that an eight-ox team could plough 
in a year (approximately 120 acres); a “virgate,” which 
covered land that could be ploughed by two oxen in a 
year (about 30 acres); and a “bovate,” which covered 
the land that could be ploughed by a single ox in a year. 
There was also an area known as a “knight’s fee,” which 
was the land expected to be able to produce a single 
armed soldier in times of war. Although early in medi-
eval England, an acre was supposed to be the land that 
could be ploughed in single day, by late medieval times, 
it had been formalized as 4840 square yards.

Other Systems of Measuring Area
Elsewhere in the world, many other places had their 
own system of measuring area. The Chinese had a 
system based on the li (7.9 square yards), the fen (10 
li), the mu (10 fen), the shi (10 mu), and the qing (10 
shi). The Japanese also had a system of measurement 
by tsubo, which covered the land that was the same 
size as two tatami mats (about 3.306 square meters). 
In Korea, there is a similar measure called the pyeong, 
which covers 3.3058 square meters. These measures are 
generally used to measure the size of rooms and build-
ings rather than large areas of land. The tsubo and the 
pyeong are both still used in the twenty-first century to 
help describe the size of houses or apartments for sale, 
in the same way as the term “square” is used by Austra-
lian estate agents (approximating to 100 square feet, or 
9.29 square meters).

Metric System
The metric system was devised during the 1790s fol-
lowing the French Revolution in an attempt to stan-

dardize measurements and it was adopted by the 
French after Napoleon Bonaparte came to power in 
1799. It focuses on the meter as the main measurement 
of length, and the square meter as the measurement of 
area. This is used throughout most of the world in the 
twenty-first century.
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Anderton, Pamela. Changing to the Metric System. 
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See Also: Measurements, Area; Roman Mathematics; 
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Units of Length
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations; Representations.
Summary: Numerous units of length exist and are 
used according to the distance measured.

Measuring length or distance has been necessary as far 
back as the oldest hunter-gatherer peoples in order to 
perform necessary tasks, such as traveling and finding 
or hunting food. Many of the first units of length were 
derived from bodily measurements. Modern units of 
length can broadly be divided into two categories: the 
U.S. customary system and the international system. 
The U.S. customary system is more commonly known 
as the “American system.” The International system is 
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more commonly known as the “metric system.” The 
basic unit of length in the American system is the foot, 
while the basic unit of length in the metric system is 
the meter. The American system is used more often 
in the United States, while the metric system is more 
common in other parts of the world. Scientific journals 
almost always report measurements in metric units. 
The exact values of length measurements depend on 
the units chosen but certain constants (like π) that are 
fundamental to related measurements (like circumfer-
ence) are unitless.

American System
The American system of lengths is similar to the British 
imperial system from which the American system takes 
its historical roots. The basic unit of measurement is the 
foot (ft), which originally was set to be the length of 
an adult man’s foot. Each foot is approximately 0.3048 
meters. Smaller distances in the American system are 
typically measured in inches (in) or less commonly in 
mils. There are 12 inches in a foot and 1000 mils in an 
inch. Rather than mils, it is much more common to use 
fractions of an inch to obtain additional accuracy in the 
American system. Longer distances in the American 
system are usually measured in yards (yd) or miles (mi). 
There are three feet in a yard and 1760 yards in a mile 
(5280 feet in a mile).

Metric System
The meter was originally established in France as one 
ten-millionth of the distance from the Earth’s equator 
to the North Pole along the meridian passing through 
Paris. However, in 1983 it was defined as 1/299,792,458 
of the distance traveled by light in a second in a vac-
uum. Smaller units of length in the metric system are 
often measured in centimeters (cm), millimeters (mm), 
micrometers (µm, also known as the micron), and nano-
meters (nm). There are 100 centimeters in a meter and 
1000 millimeters in a meter. Similarly, there are 1 mil-
lion micrometers in a meter and 1 billion nanometers 
in a meter. Longer distances are usually measured in 
kilometers (km). There are 1000 meters in a kilometer, 
which are sometimes referred to as “klicks” in the mili-
tary. The fermi and the angstrom are also units of length 
in the metric system, though they are not officially part 
of the international system. There are 1015 fermis in a 
meter and 10 trillion angstroms in a meter. Because of 
their small length, the fermi and the angstrom are best 

suited for very small distances. Less common units of 
length in the metric system include the decimeter (one-
tenth of a meter), picometer (10−12 meters), decameter 
(10 meters), megameter (1 million meters), gigameter 
(1 billion meters), and petameter (1015 meters). 

Atomic and Astronomic Measurements
Atomic measurements are also given in terms of either 
Planck length or the Bohr radius. The Planck length is 
defined in terms of Planck’s constant, the gravitational 
constant, and the speed of light in a vacuum. The result 
is that the Planck length is based entirely on universal 
constants rather than human constructs, such as the sec-
ond. A Planck length is approximately 1.61625 × 10−35 

meters. The Bohr radius is defined as the expected 
distance between the nucleus of a hydrogen atom and 
its electron in the Bohr model of the atom. The Bohr 
radius is approximately 5.29177 × 10−11 meters.

Astronomical distances are typically given in terms of 
light-years, astronomical units, or parsecs. The light-year 
is defined as the distance light travels in a vacuum in a 
Julian year (365.25 days). The light year is approximately 
9,460,730,472,581 kilometers or 5,878,630,000,000 
miles. Distances such as the light-second, the light-min-
ute, and the light-month are defined analogously to the 
light-year. The astronomical unit is defined as the average 
distance between the Earth and the sun, approximately 
149,597,871 kilometers or 92,955,807 miles. The parsec 
is defined in terms of the astronomical unit and an angle 
with measure one arc second. The imaginary right tri-
angle that defines the parsec has one angle with measure 
one arc second. The opposite side of the triangle from 
this angle has length equal to one astronomical unit. 
The length of the adjacent side to this angle is defined 
as a parsec and can be derived using basic trigonometry. 
There are approximately 3.26 light-years in a parsec.

Other Measurements
There are a number of units of length that are based on 
the American system and still in use in certain profes-
sions in the twenty-first century. A furlong is often used 
in horse racing and is defined as one-eighth of a mile 
(220 yds). The hand is a unit of length used to describe 
the height of a horse and is equivalent to four inches. 
Rods (5.5 yds) and chains (66 ft) are often used in sur-
veying. A fathom is often used to measure the depth of 
water and is equal to six feet. A nautical mile is approxi-
mately equal to one minute of latitude. Thus, there are 
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1872 meters (approximately 6076 feet) in a nautical mile. 
Fathoms and nautical miles are often used by mariners.

There are also a number of archaic units of length 
that may be familiar to the reader, most significantly 
the cubit (1.5 ft) and the league. The dimensions of 
Noah’s Ark as well as other Biblical artifacts are given 
in cubits. The league has several different values, how-
ever the most common is the distance that a person 
can walk in an hour (approximately three miles). The 
league was featured in the title of Jules Verne’s Twenty 
Thousand Leagues Under the Sea. 

Further Reading
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Units of Mass
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations; Representations.
Summary: A variety of measurement systems have 
been used throughout history to measure weight  
and mass.

Throughout history, there have been many ways of mea-
suring mass. Until modern times, these methods were 
those used to measure what was known as “weight.” A 
number of ways of assessing weight existed in prehis-
toric times. The Sumerians used a system similar to that 
later used throughout the ancient Middle East, with 180 
grains making a shekel (or gin), and 60 of these forming 

a pound (or ma-na), and 600 of these making a load (or 
gun). A wall painting from ancient Egypt, dating from 
1285 b.c.e., shows the god Anubis weighing the heart of 
Hunefer using scales, indicating that the Egyptians had 
a system of using weights and measures. There were, 
however, slight differences between the Middle King-
dom and the New Kingdom in Egypt.

Greeks and Romans
The Greeks, with the extensive use of coinage, used a 
scale that was based on the barley corn but it was actu-
ally more fixed on the weight of individual coins. The 
Romans adapted the Greek system for their own use, 
with the basic measure of an uncia (or ounce). Twelve 
of these made up one as, with different names were 
given to parts of an as: quadrans were a quarter of an as 
and semis were half an as.

Middle Ages
During the Middle Ages in Europe, there were a number 
of measures that were used for a variety of purposes. For 
apothecaries, jewelers, and the making of coins, there 
were “grains,” “scruples,” and “drams.” Two systems 
were heavily used in Western Europe. The Troy weights, 
named after the French city of Troyes, were based on the 
troy ounce (the name “ounce” coming from the Roman 
“uncia”). By contrast in England, until 1526, there was 
the Tower ounce, which was slightly lighter than its 
continental measure (18.75 dwt/pennyweight, rather 
than the Troy ounce which was 20 dwt). For both mea-
sures, 12 ounces made up a pound. In England, eight 
pounds equaled a “butcher’s stone,” and 12 pounds a 
“mercantile stone.” The larger measurements were in 
tons, which consisted of 2240 pounds—now known as 
a “long ton.” The United States later adopted a measure 
in which 2000 pounds equals a “short ton.”

Throughout Europe, there were regional varieties 
and customary names. Scotland was divided between 
using the “Troy” measures, and the “Tron” measures, 
the latter being used in Edinburgh—the system was 
standardized in 1661. The Portuguese used a sys-
tem maintained at a national level and was based on 
the onca (ounce), with 16 of these making an arratel 
(pound), 128 arrateis making a quintal, and 1728 mak-
ing a tonelada. These Portuguese measures, also used in 
Brazil, were abandoned when both countries adopted 
the metric system: Portugal and its colonies (or over-
seas provinces) in 1852, and Brazil 10 years later. The 
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Russians also had their own system, which had emerged 
from that used by the Mongols—although Peter the 
Great (r. 1682–1725) overhauled the system and used 
one based on the English system.

Asia
Elsewhere in the world, there were many other sys-
tems of measuring mass. The Chinese used a system 
with 1000 cash making a tael, and ten taels equaling a 
catty, and 100 of those making up a picul. The Japanese 
system relied on the momme (about 3.75 g), with 100 
of these forming a hyakume, 160 of them making one 
kin, and 1000 of them equaling one kan. The momme is 
still used as a measure of mass in the pearling industry, 
which is still dominated by Japan.
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See Also: Roman Mathematics; Units of Area; Units of 
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Units of Volume
Category: Space, Time, and Distance.
Fields of Study: Algebra; Geometry; Measurement; 
Number and Operations; Representations.
Summary: A variety of units are used to measure 
volume throughout the world.

Measuring of volume intrigued many scientists in the 
ancient world. For the most part, crops, stones, and 
other items were measured by weight rather than vol-
ume because of the relative ease of doing so—especially 
given the irregular shapes of many items. For solid items 
with irregular shapes, it seemed far too complicated 
to work out their volume, even if this could be done 
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Standardization

A n attempt to standardize the measure-
ment of mass started in France, which, on 

December 10, 1799, passed a new law estab-
lishing a kilogram that consisted of 18,827.15 
grains, although the kilogram had already beem 
used for the previous four years. It was defined 
as being a 1 cubic decimeter of distilled water 
at 4 degrees centigrade, its maximum density. 
This standardization led to the metric system, 
and in turn it led to the introduction of what 
became known as the International System of 
Units (SI units).

The SI units define mass in kilograms as 
the base unit. It is almost exactly the same 
as one liter of water, although the exact mea-
sure is the same as a piece of platinum-iridium 
alloy, which is called the International Prototype 
Kilogram and is stored in a vault in France. An 
anomaly meant that it was the only base unit 
with an SI prefix “kilo-” (meaning thousand). 
There are a number of multiples and submul-
tiples, but only some are commonly used. 
A one-thousandth part of a gram is called a 
“milligram,” a millionth part called a “micro-
gram,” and 10−9 g called a “nanogram.” Going 
the other way, although there are terms such 
as a “zettagram” (1021 g) and a “yottagram” 
(1024 g), these are rarely used. One curiosity is 
that instead of using the term “megagram,” for 
1000 kg, the term “tonne” is used; its spell-
ing denoting its difference from the pre-deci-
mal “ton.” It has been relatively easy to convert 
from the old “imperial” system of pounds to 
the metric SI system, with one kilogram essen-
tially being 2.2 pounds. Most of the world uses 
kilograms in the twenty-first century, the United 
States being a prominent exception.



with any degree of accuracy. This notion changed dra-
matically with the ideas that have been attributed to the 
famous Greek mathematician and inventor Archimedes 
of Syracuse (c. 287–212 b.c.e.). The tale of Archimedes 
is that he was given the task of determining the purity 
of the gold used to create the crown of King Hiero II—
the king was worried that silver or base metals might 
have been used in its manufacture and were cleverly 
disguised. Pondering the problem while getting into a 
bathtub, Archimedes, according to the story, noticed 
that the water rose and the amount it rose was equal to 
the size of the parts of his body that were submerged. 
This led Archimedes to deduce that water could be used 
to measure the volume of a particular item, such as the 
king’s crown. It could then be weighed against a block 
of pure gold of the same volume. It is said that when he 
realized that this could be done, Archimedes shouted 
“Eureka!” (“I have found it!”) and ran through the 
streets to tell everybody of his discovery, forgetting that 
he had not put his clothes on.

Whether or not the story of Archimedes is actually 
true—and some historians doubt its veracity, although 
Galileo stated that he believed that it might well be 
true—the story does illustrate the use of fluid displace-
ment, which can be used to easily measure the volume 
of irregularly shaped objects. This method does not 
seem to have been known before the Greeks. Certainly, 
the ancient Egyptians had major problems working 
out volume and there are complicated equations and 
formulae on the Rhind Mathematical Papyrus, which 
dates to about 1700 b.c.e., illustrating that the Egyp-
tians were already grappling with the subject.

The Romans had two systems for recording the mea-
surement of volume. The first and most often used was 
for liquid measures and was based on a sextarius (from 
sester), which is roughly 0.54 liters. Six sesters made up 
one congius; four of these made up one urn; and two 
urns make one amphora. For dry measures, although a 
sester was still used and was of equivalent size, eight ses-
ters equaled a gallon; two gallons made up one modius 
(also called “peck”); and three of these one quadrantal 
(also called “bushel”). 

English
In use from the Middle Ages, the English ended up with 
an extremely complicated system of measuring volume, 
which was formalized as Imperial Measurements. The 
smallest measure was a “mouthful,” with two of those 

making a “pony,” two ponies making a “jack,” two jacks 
making one “gill,” two gills making one “cup,” and two 
of those making a “pint.” The system continued with 
two pints making a “quart” (from “quarter gallon”), 
with two quarts equaling one “pottle,” and two pottles 
making a “gallon.” The next levels of measurements 
were “pecks,” “kennings,” “bushels,” “strikes,” “coombs,” 
“hogsheads,” and “butts” (also called “pipes”). A slightly 
different scale was used to measure wine and beer. Even 
when British adopted the metric system in 1965, some 
of the old terminology (and measures) were still used, 
especially pints (for milk) and gallons (for gasoline). A 
bushel is also the standard measurement for wheat and 
some other items in agriculture.

Metric System
Although the English had numerous terms, medieval 
and early modern France had a vast range of measures 
of volume, which varied from one part of France to 
another, most arising for customary reasons. After the 
French Revolution, the new government sought to 
standardize all systems of measurement, including vol-
ume. This process saw the introduction, under Napo-
leon Bonaparte, of metrication, and in turn it led to the 
International System of Units (SI units). 

The original metric system had liters (or litres) as 
the measure of volume, and from 1901 until 1964, it 
was defined as being the volume of one kilogram of 
pure water heated to 4 degrees Centigrade and mea-
sured under a pressure of 760 millimeters of mercury. 
When it came to devising the SI units, the liter was 
dropped as a measure, and the official measurement 
was in cubic meters. The difference is not significant in 
all but scientific terms, although liters continued to be 
used by many people throughout the world. 

Gas Volume
While it was possible to measure the volumes of liquids 
easily (and also of solid objects by measuring the dis-
placement of a water of a similar quantity), the mea-
suring of the volume of gas has long posed a problem. 
The problem was solved by the British civil engineer 
Samuel Clegg (1781–1861), who had worked on natu-
ral gas flues and was able to design a dry meter and then 
a water meter, which were able to measure the amount 
of gas used by consumers. This invertion helped the gas 
industry in Britain—and later in other countries—mea-
sure gas and thereby charge customers based on usage. 
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Further Reading
Falkus, M. E. “The British Gas Industry Before 1850.” 

The Economic History Review New Series 20, no. 3 
(December 1967).

Hirshfeld, Alan. Eureka Man: The Life and Legacy of 
Archimedes. New York: Walker, 2009.
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Ann Arbor: University of Michigan Press, 2008.
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See Also: Archimedes; Cubes and Cube Roots; 
Measurements, Volume; Roman Mathematics; Units of 
Length; Units of Mass.

Universal Constants
Category: Space, Time, and Distance.
Fields of Study: Number and Operations; 
Measurement.
Summary: Universal constants help describe the 
universe and are believed to be fixed for all times and 
places in the universe.

A universal constant is a physical quantity whose value 
remains fixed throughout the universe for all time. How-
ever, most constants are known only approximately; 
humans started measuring them relatively recently 
and it is an assumption that they are—and have always 
been—fixed. There may be other assumptions that sci-
entists and mathematicians have implicitly made that 
turn out to be false and undermine the universality of 
these constants. For example, the ratio of the circum-
ference of a circle to its diameter in Euclidean space 
is π, but with Albert Einstein’s conceptualization that 
the universe could have non-Euclidean geometry, this 
circumference-to-diameter ratio in the real world may 
be some value not equal π. 

The international Committee on Data for Science 
and Technology defines and modifies physical constants 
and quantifies their levels of certainty. Three constants in 
particular are fundamental to the current understanding 

of the physical world. Together, they underlie the math-
ematics of gravity, relativity, and quantum physics. They 
are G (the gravitational constant), c

0
 (the velocity of 

electromagnetic radiation in a vacuum (in other words, 
the speed of light), and h (Planck’s constant).

Universal Constant: “G”
G first appeared in Isaac Newton’s famous equation 
F Gm m r= 1 2

2, which quantifies the force (F) of gravi-
tation between two masses (m

1
 and m

2
), where r is the 

distance between their centers of mass. G is approxi-
mately 6.67 × 10−11m3kg-1s-2 (meters-cubed per kilo-
gram per second-squared), which is a very small num-
ber. Gravity is thus a very weak force. Although every 
mass is attracted to every other mass, the effects of 
gravity are obvious only when the masses involved are 
very large (such as with planets).

Using another of Newton’s equations, F = ma, it fol-
lows that the acceleration due to gravity on Earth is 
the same for all masses. This acceleration is known as  
g and its value is around 9.81 ms-2 at sea level. This 
value varies with distance from the Earth’s center of 
mass (r in the equation above), so acceleration due 
to gravity decreases to around 9.78 ms-2 at the top of 
Mount Everest. Knowing g to be about 9.81 ms-2 and 
the radius of the Earth to be roughly 6,378,000 meters, 
one can use G to show that the mass of the Earth is 
about 5.98 × 1024 kg. One can also estimate the mass of 
the Sun and other celestial bodies, such is the applica-
bility of G.

Universal Constant: “c0”
The velocity of light in a vacuum, c0, is probably the 
most widely known universal constant. Since the 
length of a meter is defined by it, c0 is fixed at exactly 
299,792,458 ms-1. The constancy (or invariance) of c0 
is a principle that was made famous by Albert Ein-
stein in his theory of special relativity. Einstein’s prin-
ciple states that no matter how fast you or the light 
source are travelling, you will always measure c0 to be 
299,792,458 ms-1. This principle is counterintuitive, 
but both the constancy of c0 and related predictions of 
relativity theory have been verified empirically. From 
relativity theory, it is known that as velocity increases, 
measurements of time and space change because 
duration and displacement are relative—they depend 
on how fast one is moving. The amounts by which 
they change are determined by c0.
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What is actually traveling at c0 in electromagnetic 
radiation are massless particles called “photons.” 

As carriers of the electromagnetic force, all light, 
electricity, and magnetism are the result of photon 
motion. The relationship between the photon ener-
gies and the frequency of their electromagnetic radi-
ation is the basis of quantum physics and the third 
constant, h.

Universal Constant: “h”
Named after Max Planck, h has an approximate value 
of 6.63 × 10−34 kgm2s-1. The units of h can be under-
stood as joule-seconds, also known as “action.” This 
unit is distinct from power, which is joules per second; 
for example, 10 joules expended every second for 10 
seconds is 100 joule-seconds. 

The first appearance of h was in the Planck’s rela-
tion E = hv. Planck discovered that photons only had 
certain discrete energy values, the E = hv equation 
relates the energy (E) of the photon to the frequency 
(v) of its electromagnetic radiation. The fact that h 
exists implies that energy comes in discrete lumps, 
not in a continuous stream. The unit of h appears in 
a number of important and fundamental relations, 
such as Werner Heisenberg’s uncertainty principle and 
Niels Bohr’s model of the atom.

Further Reading
Carnap, Rudolf. An Introduction to the Philosophy of 

Physics. New York: Dover Publications, 1995. 
Feynman, Richard. Six Easy Pieces: Essentials of Physics 

Explained by Its Most Brilliant Teacher. Jackson, TN: 
Perseus Books, 1995.

———. The Character of Physical Law. Cambridge, MA: 
MIT Press, 2001.

Finch, Steven. Mathematical Constants. Cambridge, 
England: Cambridge University Press, 2003.

Fritzsch Harald. The Fundamental Constants: A 
Mystery of Physics. Translated by Gregory Stodolsky. 
Singapore: World Scientific Publishing, 2009.

Magueijo, Joao. Faster Than the Speed of Light: The  
Story of a Scientific Speculation. Jackson, TN: Perseus 
Books, 2002.

Eoin O’Connell

See Also: Einstein, Albert; Elementary Particles; 
Gravity; Pi; Relativity.

Universal Language
Category: Space, Time, and Distance.
Fields of Study: Communication; Connections 
Representations.
Summary: Mathematics has been proposed as a 
universal language; attempts have been made at a 
mathematics notation that would be recognizable on 
any planet.

From the beginnings of humanity, people needed to 
establish connections. Along with speaking, counting 
developed from the early stages of human evolution. 
Numbers and counting were necessary in the first civi-
lizations to describe ownership, for trade, or for cal-
culating taxes. Shapes and measures were needed to 
make furniture, buildings, and ritual places, as well 
as in landscaping, time-keeping, sky-charts, and cal-
endars. Mathematics is present everywhere in the real 
world: in science, art, entertainment, business, and 
leisure. People use mathematics to describe the uni-
verse, and mathematics is commonly referred to as 
the “language of science or the universe.” Albert Ein-
stein questioned: 

At this point an enigma presents itself, which in 
all ages has agitated inquiring minds. How can it 
be that mathematics, being after all a product of 
human thought which is independent of experi-
ence, is so admirably appropriate to the objects of 
reality? Is human reason, then, without experience, 
merely by taking thought, able to fathom the prop-
erties of real things? 

Some take this idea a step further and view mathe-
matics as a universal or interstellar language or explore 
the creation of a universal language.

Debate
Those who consider that mathematics is a universal 
language reason that because mathematics arises natu-
rally and humans possess the ability to be literate in 
the shared language of mathematics then it must be 
universal. Others criticize this viewpoint and note that 
learning mathematics is challenging for many people. 
Some scientists and mathematicians point to the fact 
that despite differences between cultures and natural 
languages, the discoveries in mathematics are the same 
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all over the world because mathematics is so well-
suited to describe reality. Discoveries that were simul-
taneous, like the formulations of calculus by physicist 
Sir Isaac Newton and mathematician and philosopher 
Gottfried Leibniz, appear to give even more credence 
to this viewpoint. However, Newton and Leibniz were 
able to share ideas and build upon the contributions 
of the same earlier mathematicians and they developed 
different mathematical approaches and terminology. 
In some examples of simultaneous discoveries, like for 
mathematicians in the Soviet Union and the United 
States, the researchers were quite separated. Other phi-
losophers and mathematicians assert that humanity 
invents mathematics and distorts reality in accepting 
its postulates. 

Physicist Werner Heisenberg’s uncertainty principles 
seem to give rise to questions about whether anyone 
can objectively measure or quantify reality. Attempts 
to model the universe on a quantum and grand scale 
have led to both calls for and rejection of a theory of 
everything. 

Creating a Universal Language
Scientists, mathematicians, philosophers, and linguists 
have long contemplated a language that is universal. 
Linguists explore languages for commonalities, and 
Search for Extraterrestrial Intelligence (SETI) research-
ers analyze signals for mathematical patterns. Some 
visual or graphical representations are also viewed as 
universal. In De Arte Combinatoria, Leibniz imagined 

. . . a general method in which all truths of the rea-
son would be reduced to a kind of calculation. At the 
same time this would be a sort of universal language 
or script . . . for the symbols and even the words in it 
would direct the reason . . . It would be very difficult 
to form or invent this language or characteristic, but 
very easy to understand it without any dictionaries.

Leibniz cited earlier attempts at universal languages, 
such as correspondances that converted words into 

numbers by physician Johann Becher or scholar Atha-
nasius Kircher. George Dalgarno had invented a system 
for translating numbers into words. In 1678, Leibniz 
also developed this type of system: 81,374 would be 
written and pronounced as mubodilefa. For Leibniz, 
the digits 0–9 became the first nine consonants of the 
alphabet and powers of 10 were represented using vow-
els. Leibniz also planned to explore the logical founda-
tions of geometry via a universal language but he did 
not continue this work. 

Philosopher Sundar Sarukkai noted that: “The 
search for ‘universal’ language or ‘pure’ language is 
part of human history in all civilizations. In part, this 
reflects an enormous distrust of ambiguity in mean-
ing.” However, he also asserts that, “it is semantic ambi-
guity that allows individuals and societies to develop 
and flourish.”

Further Reading
Ballesteros, Fernando. E.T. Talk: How Will We 

Communicate With Intelligent Life on Other Worlds? 
New York: Springer, 2010.

Jeru. “Does a Mathematical/Scientific World-View  
Lead to a Clearer or More Distorted View of  
Reality?” Humanistic Mathematics Network Journal 26 
(June 2002).

Rutherford, Donald. “The Logic of Leibniz by Louis 
Couturat, Chapter 3 Translation.” http:// 
philosophyfaculty.ucsd.edu/faculty/rutherford/ 
Leibniz/ch3.htm.
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See Also: Calculus and Calculus Education; 
Mathematics: Discovery or Invention; Mathematics, 
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Vectors
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Measurement; Number and Operations.
Summary: Vectors express magnitude and  
direction, and have applications in physics and  
many other areas.

There are some quantities, like time and work, that have 
only a magnitude (also called “scalars”). If one says the 
time is 6 a.m., it is adequate. When discussing velocity 
or force, however, then magnitude is not enough. If a 
particle has a velocity of five meters per second, this 
is not sufficient information because the direction of 
movement is unknown. Quantities that require both 
a magnitude and a sense of direction for their com-
plete specifying are called “vectors.” Pilots use vectors 
to compensate for wind to navigate airplanes, sport 
analysts use vectors to model dynamics, and physicists 
use vectors to model the world. 

History and Development of Vectors
The term “vector” originates from vectus, a Latin word 
meaning “to carry.” However, astronomy and physi-
cal applications motivated the concept of a vector as a 
magnitude and direction. Aristotle recognized force as 

a vector. Some historians question whether the parallel 
law for the vector addition of forces was also known to 
Aristotle, although they agree that Galileo Galilei stated 
it explicitly and it appears in the 1687 work Principia 
Mathematica by Isaac Newton. Aside from the physical 
applications, vectors were useful in planar and spheri-
cal trigonometry and geometry. Vector properties and 
sums continue to be taught in high schools in the 
twenty-first century.

The rigorous development of vectors into the field 
of vector calculus in the nineteenth century resulted 
in a debate over methods and approaches. The algebra 
of vectors was created by Hermann Grassmann and 
William Hamilton. Grassmann expanded the concept 
of a vector to an arbitrary number of dimensions in 
his book The Calculus of Extension, while Hamilton 
applied vector methods to problems in mechanics and 
geometry using the concept of a “quaternion.” Hamil-
ton spent the rest of his life advocating for quaternions. 
James Maxwell published his Treatise on Electricity and 
Magnetism in which he emphasized the importance 
of quaternions as mathematical methods of thinking, 
while at the same time critiquing them and discourag-
ing scientists from using them. Extending Grassman’s 
ideas, Josiah Gibbs laid the foundations of vector analy-
sis and created a system that was more easily applied to 
physics than Hamilton’s quaternions. Oliver Heaviside 
independently created a vector analysis and advocated 

V



for vector methods and vector calculus. Mathematicians 
such as Peter Tait, who preferred quaternions, rejected 
the methods of Gibbs and Heaviside. However, their 
methods were eventually accepted and they are taught 
as part of the field of linear algebra. The quaternionic 
method of Hamilton remains extremely useful in the 
twenty-first century. Vector calculus is fundamental in 
understanding fluid dynamics, solid mechanics, elec-
tromagnetism, and in many other applications.

During the nineteenth century, mathematicians and 
physicists also developed the three fundamental theo-
rems of vector calculus, often referred to in the twenty-
first century as the “divergence theorem,” “Green’s 
theorem,” and “Stokes’ theorem.” Mathematicians with 
diverse motivations all contributed to the develop-
ment of the divergence theorem. Michael Ostrograd-
sky studied the theory of heat, Simeon Poisson studied 
elastic bodies, Frederic Sarrus studied floating bodies, 
George Green studied electricity and magnetism, and 
Carl Friedrich Gauss studied magnetic attraction. The 
theorem is sometimes referred to as “Gauss’s theo-
rem.” George Green, Augustin Cauchy, and Bernhard 
Riemann all contributed to Green’s theorem, and 
Peter Tait and James Maxwell created vector versions 
of Stokes theorem, which was originally explored by 
George Stokes, Lord Kelvin, and Hermann Hankel. 
Undergraduate college students often explore these 
theorems in a multivariable calculus class.

The concept of a space consisting of a collection of 
vectors, called a “vector space,” became important in 
the twentieth century. The notion was axiomatized ear-
lier by Jean-Gaston Darboux and defined by Giuseppe 
Peano, but their work was not appreciated at the time. 
However, the concept was rediscovered and became 
important in functional analysis because of the work by 
Stefan Banach, Hans Hahn, and Norbert Wiener, as well 
as in ring theory because of the work of Emmy Noether. 
Vector spaces and their algebraic properties are regu-
larly taught as a part of undergraduate linear algebra.

Mathematics
A vector is defined as a quantity with magnitude and 
direction. It is represented as a directed line segment 
with the length proportional to the magnitude and the 
direction being that of the vector. If represented as an 
array, it is often represented as a row or column matrix. 
Vectors are usually represented as boldface capital let-
ters, like A or with an arrow overhead: A.

The Triangle Law states 
that while adding, “if two 
vectors can be represented 
as the two sides of a trian-
gle taken in order then the 
resultant is represented as 
the closing side of the tri-
angle taken in the opposite 
order” (see Figure 1). 

Any vector can be split 
up into components, mean-
ing to divide it into parts 
having directions along 
the coordinate axes. When 
added, these components 
return the original vector. 
This process is called “reso-
lution into components” 
(see Figure 2). Clearly, 
this resolution cannot be 
unique as it depends on 
the choice of coordinate 
axes. However, for a given 
vector and specified coordinate axes, the resolution is 
unique. When two vectors are added or subtracted, 
these components along a specific axis simply “add  
up” (like 2 + 2 = 4 or 7 − 2 = 5) but the original vectors 
do not, which follow the rule of vector addition that 
can be obtained by the Parallelogram Law of Vector 
Addition. Vector addition is commutative and associa-
tive in nature.

Multiplication for vectors can be of a few types:

1. For scalar multiplication (multiplication 
by a quantity that is not a vector), each 
component is multiplied by that scalar. Vector 
multiplication by a scalar is commutative, 
associative, and distributive in nature.

2. For the multiplication of two vectors, one 
can obtain both a scalar (dot product) or a 
vector (cross product). For a cross product 
the resultant lies in a plane perpendicular 
to the plane containing the two original 
vectors. Dot product is both commutative 
and distributive. But cross product is neither 
commutative nor associative in nature 
because the result is a vector and depends  
on the direction.

1030	 Vectors

Figure 2. OP can be 
split into mutually 
perpendicular 
components OM, 
ON, and OQ.

A

CB

Figure 1. B and C 
add up to A.

Z

Q

P

N
YO

M

X



Stroud, K. A. , and Dexter Booth. Vector Analysis. New 
York: Industrial Press, 2005.

Abhijit Sen
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Vedic	Mathematics
Category: Government, Politics, and History.
Fields of Study: Number and Operations; Problem 
Solving.
Summary: Vedic mathematics involves challenging 
mental calculations and was transmitted orally.

Vedic mathematics is a system of mathematics associ-
ated with India’s Upper Indus Valley prior to 1000 b.c.e. 
Originally transmitted orally, the Vedic mathematics 
known in the twenty-first century was abstracted from 
ancient Sanskrit texts, known as “Vedas.” Sri Bharati 
Krsna Tirthaji rediscovered the Vedas in the early 1900s, 
but his scholarly results were not published until 1965.  

The Vedas covered all areas of knowledge, with the 
mathematics created to support this knowledge. Since 
recording mechanisms were not available, Vedic math-
ematics involves creative mental calculations, often 
at very challenging levels. Through Arab and Islamic 
writers in the 770s c.e., some Vedic mathematics was 
transmitted and became part of European mathemat-
ics, including elements such as the Arabic numerals, the 
multiplication sign, and a symbol for zero. However, the 
mental aspects of Vedic mathematics were not known 
until 1965, and these “secrets” have provided scholars, 
mathematicians, and students interesting explorations 
into multiple areas, including basic arithmetic com-
putations, factoring, exponents, algebra in the form of 
linear through cubic equations, elementary number 
theory, analytic geometry involving the conic sections, 
the Pythagorean theorem, and differential calculus.    

The Sutras
Sixteen formulas (or Sutras, which means “thread”) 
form the foundation of Vedic mathematics, along with 
fourteen “sub-Sutra” corollaries. Expressed as word 

Applications
Theoretical sciences have a wide spread of applications 
of vectors in nearly all fields: 

• Obtaining components: Occasionally, one 
needs a part (or component) of a vector for a 
given purpose. For example, suppose a rower 
intends to cross over to a point on the other 
side of a river that has a great current. The 
rower would be interested to know if any 
part of that current could help in any way 
to move in the desired direction. To find the 
component of the current’s vector along any 
specified direction, take the dot product of 
that vector with a unit vector (vector of unit 
magnitude) along the specified direction. 
This method is of particular importance 
in studying of particle dynamics and force 
equilibria.  

• Evaluating volume, surface, and line integrals: 
In many problems of physics, it is often 
necessary to shift from either closed surface 
integral (over a closed surface that surrounds 
a volume) to volume integral (over the 
whole enclosed volume), or from closed line 
integral (over a loop)  to surface integrals 
(over a surface). To accomplish these shifts, it 
is often very useful to apply two fundamental 
theorems of vector calculus, namely Gauss’s 
divergence theorem and Stokes’s theorem, 
respectively.  

• Particle mechanics: In the study of particle 
mechanics, vectors are used extensively. 
Velocity, acceleration, force, momentum, 
and torque all being vectors, a proper study 
of mechanics invariably involves extensive 
applications of vectors. 

• Vector fields: A field is a region over which 
the effect or influence of a force or system  
is felt. In physics, it is very common to study 
electric and magnetic fields, which apply 
vectors and vectorial techniques in their 
description. 

Further Reading
Katz, Victor. “The History of Stokes’ Theorem.” 

Mathematics Magazine 52, no. 3 (1979).
Matthews, Paul. Vector Calculus. Berlin: Springer, 1998.
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phrases, each formula acts as a “thread” woven through-
out the Vedic mathematics system, assuming the role of 
a unifying element. 

For example, Sutra #2 states: “All from 9 and the 
Last from 10.” Sutra #3 states: “Vertically and Cross-
wise.” The combined importance of both Sutras is best 
explained within the context of mental multiplication, 
such as finding the “sum” 88 × 98. Both numbers are 
close to the “base” 100, involving “deficiencies of 12 
and 2,” respectively. The desired product is obtained 
using these deficiencies (Sutra #2), then represented 
either mentally or symbolically (by Sutra #3):

88  --  12
98  --  2
86/24

In these operations, the deficiencies 12 and 2 are 
placed to the right of the original numbers, 88 and 98. 
The 86 is found by subtracting a deficiency from the 
other number in the product (98 − 12 = 86 = 88 − 2), 
while the 24 is the product of the deficiencies. Finally, 
the desired result is found: 88 × 98 = 8624, as the 
86 actually represented 8600. Though this process 
involves a sense of magic, it is much easier than the 
modern computational algorithm commonly used in 
the twenty-first century. 

It is not only important to investigate why this 
Sutra-based technique works, but also determine pos-
sible constraints or exceptions. For example, applying 
the Sutra to the product 25 × 57, the process becomes:

25  --  75
57  --  43
−18/3225

Because the desired product can be obtained via 
−1800 + 3225 = 1425, the power and the limitations 
of the Sutra become more evident, especially the 
emphasis on the numbers 9 and 10. The technique is 
not useful in this example because the large internal 
products and need for a negative quantity become 
obtrusive. However, the method does work, and it 
can be proven true algebraically. Suppose the desired 
product is a × b, where a and b are whole numbers less 
than 100. Using the respective deficiencies (100 − a and 
100 − b), the Sutra’s process leads to the algebraic iden-
tity ab b a a b= − −( )[ ] + −( ) −( )100 100 100 100 . Thus, 

the numbers a and b could be any numerical val-
ues—positive, negative, fractions, irrational, or even 
complex numbers.

Finding Decimals
As another example, Sutra #1 states: “By One More than 
the One Before.” This Sutra is used in the construction 
of the number system, as each whole number is one 
greater than its predecessor (akin to the Peano postu-
lates formulated in the nineteenth century). However, 
the Sutra’s power is its application in other situations 
as well. Suppose the problem was to find the repeat-
ing decimal equivalent to the “vulgar” fraction 1/19, 
usually obtained by laboriously dividing 19 into 1. The 
Sutra suggests a focus on “one more than the number 
before” the 9, or the number 2, which is one more than 
the 1 which appears before the 9. The 2 (called Ekad-
hika for “one more”) becomes the new divisor in lieu 
of the troublesome 19. The “strange” decimal resulting 
from this division of 2 into 1 is

0.105126311151718914713168421 . . . . 

To explain this strange expression, start with a 0 and 
a decimal point. Then, 1 divided by 2 is 0 remainder 
1, represented by placing a 0 in the decimal expres-
sion, preceded by a subscripted 1 as the remainder. 
The process is repeated, where 10 (or the visual of the 
subscripted 1 and adjacent 0) is divided by 2, result-
ing in 5 with remainder 0. Thus, the 5 in the decimal 
expression now is not preceded by a subscripted num-
ber. Next, 5 divided by 2 results in 2 remainder 1, which 
are represented as before with the remainder becoming 
the preceding subscript. And, in subsequent divisions, 
12 divided by 2 is 6 remainder 0, 6 divided by 2 is 3 
remainder 0, 3 divided by 2 is 1 remainder 1, and so 
on. Finally, to get the final value of the decimal expres-
sion for 1/19, the subscripted values are removed:  
1/19 = 0.052631578947368421, as they are needed only 
as “mental” reminders of the division process by 2. 
The mathematical explanation underlying this process 
is quite complex, but can be found in Chapter 26 of 
Tirthaji’s Vedic Mathematics.

These two examples illustrate the enjoyment of 
investigating Vedic mathematics. On one level, the 16 
Sutra and their corollaries provide efficient mental 
algorithms that become very powerful and efficient in 
special instances. On a second level, the careful exami-
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nation of the Sutra and its application provides a rich 
opportunity to understand the role of generalization 
and algebraic identities.

Further Reading
Bathia, Dhaval. Vedic Mathematics Made Easy. Mumbai, 

India: Jaico Publishing, 2006.
Howse, Joseph. Maths or Magic? Simple Vedic Arithmetic 

Methods. London: Watkins Publishing, 1976.
Tirthaji, B. K. Vedic Mathematics. Delhi: Motilal 

Banarsidass, 1965.
Williams, Kenneth, and Mark Gaskell. The Cosmic 

Calculator: A Vedic Mathematics Course for Schools. 
(Books 1, 2, and 3). Delhi: Motilal Banarsidass, 2002.

Jerry Johnson

See Also: Arabic/Islamic Mathematics; Asia, Southern; 
Multiplication and Division.

Vending	Machines
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry.
Summary: Ubiquitous vending machines use algebra 
and Boolean logic to function.

Vending machines are finite state machines, also known 
as “automata,” that transition between states based on 
customer input data, such as product selection. Vend-
ing machine designers use mathematical models and 
Boolean algebra to determine the states the machine 
should transition into based on input data variables, 
with the outcome often expressed as a table. The con-
trol unit reads the data as either “true,” meaning the 
machine recognizes the input language, or “false,” 
meaning that it does not.

The first documented vending machine, invented 
by the Egyptian mathematician Hero of Alexandria, 
appeared c. 215 b.c.e. By the twentieth century, vend-
ing had developed into a billion dollar industry, and 
vending machines dispensed a variety of products. 
Older vending machines relied on the mechanical 
activity of knobs or levers activated by the customer 
to dispense the desired product. Vending machine 
operators utilize mathematics to determine poten-
tial and actual expenses and profits, as well as to pro-
cess sales and stock data. For example, net income 
can be determined through the simple formula:  
Net Income = Income − Expenses.

Modern vending machines, however, utilize basic 
computing system processors to analyze customer 
input data, such as a letter and number, that corre-
sponds to the desired product, which is then electroni-
cally dispensed. Modern advances in vending machine 
technology include card validators for debit and credit 
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cards; voice activation; electronc message displays for 
insufficient funds, lack of change, or sold out products; 
and remote wireless diagnostics and data collecting to 
alert venders of the need for restocking or repair.    

Vending machine control units are part of a class of 
abstract machines known as “finite state machines” or 
“automata”; in particular, they are deterministic or dis-
crete finite state automata (DFA). Finite state machines 
are always in a position known as a “state,” transition-
ing between these states based on input data. Designers 
use mathematical models in the design of finite state 
machines, such as vending machines. The machines are 
designed to recognize a regular language, converting 
computation into language recognition. Each state is 
labeled either “true” (accept the data) or “false” (reject 
the data) based on whether the machine recognizes the 
language of the input data. 

Vending machine design utilizes Boolean logic or 
algebra, or algebra based on two logical values, in this 
case the values of “true” and “false.” The general Bool-
ean function is expressed through the formula

y x= ( )∑ , . . .

where (x, . . .) is equal to a set of Boolean variables with 
the values “true” or “false.” Diagrams of the various 
states of the vending machine and the possible tran-
sitions between them can be converted into Boolean 
operations. 

The control unit reads each string of input data, gen-
erally input from the vending machine customer, such 
as the diameter, thickness, or number of ridges of coins 
followed by product selection codes. Transition func-
tions tell the machine which state it should enter based 
on input data. Transition functions are often repre-
sented in tabular form. The control unit changes its state 
with each data string entered until the final input, after 
which it outputs either “true” or “false” based on its final 
state. Vending machines also use the algebraic relation-
ship between range and domain, where the range is the 
machine’s output and domain is the customer’s input. 
For example, a customer must input an equal or greater 
amount of money than the cost of the desired product.

Further Reading
Hopcroft, John E., and Jeffrey D. Ullman. Introduction 

to Automata Theory, Languages, and Computation. 
Reading, MA: Addison-Wesley, 1979.

Salomaa, Arto. Computation and Automata. New York: 
Cambridge University Press, 1985.

Salyers, Christopher D. Vending Machines: Coined 
Consumerism. Brooklyn, NY: Mark Batty Publisher, 
2010.

Segrave, Kerry. Vending Machines: An American Social 
History. Jefferson, NC: McFarland & Company, 2002.

Marcella Bush Trevino

See Also: Algebra in Society; Closed-Box Collecting; 
Functions.

Video	Games
Category: Games, Sport, and Recreation.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry.
Summary: Video games use the mathematical 
concepts of algorithms, matrices, and random 
numbers as part of their programming.

Video games are pervasive in modern society, from 
computers to television-based systems to applications 
that can be downloaded easily onto cell phones. There 
is an ongoing debate over what should be called the first 
video game. The narrower definition is a game gener-
ated by a computer and displayed on a video device. 
Others consider it to be any electronically based game 
displayed with video output. The most likely candidate 
is a 1940s invention by physicists Thomas Goldsmith 
and Estle Ray Mann. Their “Cathode-Ray Tube Amuse-
ment Device” was inspired by World War II radar dis-
plays and allowed the player to shoot virtual missiles at 
targets. Though patented, at the time it was too costly to 
produce commercially and only a few prototypes were 
ever made. Much of the mathematics used to design 
and operate computers also applies to video games 
and the various fields and professions are closely con-
nected. Video game design programs offered by many 
colleges emphasize physics and mathematics education 
along with computer programming, as these skills are 
necessary to represent the real world in increasingly 
realistic ways. The new generation of body-sensing 
game controllers uses optics to detect a player’s motion 
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in three axes and translate it to corresponding move-
ments within the game environment. While most 
people think of video games as entertainment, they 
are increasingly being incorporated into the classroom 
and other learning applications. In 2009, U.S. President 
Barack Obama initiated a campaign called Educate to 
Innovate, which seeks to use interactive games, among 
its other strategies, to improve the mathematical and 
scientific abilities of American students.

Simple Modeling Using Polygons
Any video game that has graphics needs to have a way of 
drawing a picture on the screen. A very basic program 
can take a turtle (or curser) on a screen and move it for-
ward and rotate its direction clockwise. Many geometri-
cal shapes are easy to draw using a turtle. For example, 
to tell the turtle to draw a rectangle, a simple program 
might tell the turtle to move 100 steps (which could 
be measured by pixels on the screen), turn 90 degrees, 
move 50 steps, turn 90 degrees, move 100 steps, turn 
90 degrees, and move 50 steps. At this point, a 100 × 50 
rectangle has been drawn, and the turtle is perpendicu-
lar to the position where it started.

A circle (or any object with a curve) would be much 
more difficult to draw using these commands because 
of the thickness of a pixel and the fact that the turtle 
cannot move half degrees. A user could try to tell the 
turtle to move one step then turn one degree. After 
repeating those commands 360 times, the turtle will be 
back where it began, and will have drawn a circle that 
is slightly less than 115 steps across. Technically, it did 
not draw a circle, but rather a polygon with 360 sides. 
A slight modification may be to tell the turtle to move 
two steps then turn one degree. After 360 repetitions, 
the turtle will appear where it started and the shape 
appears to be a circle that is twice as wide as the first 
shape drawn, about 229 steps wide.

There is a big gap between 115 steps and 229 steps 
wide. If a programmer needs a circle between those 
dimensions (or beyond those dimensions), the pro-
grammer can use mathematics to adjust the step length 
to get a circle of the desired size. The length across a 
circle is called the “diameter” and the distance around 
a circle is called the “circumference.” The relationship 
between these two measurements is C = πd, where C is 
the circumference, and d is the diameter.

Since the turtle will be tracing the outside of the 
circle, it will travel the length of the circumference. The 

turtle will also be making 360 turns during its travel. 
Since each step should be the same length, one can find 
the length of each step by taking the circumference and 
dividing by 360. Since π is approximately 3.14, one can 
estimate the length of the step by multiplying 3.14 and 
the desired diameter and then dividing by 360.

Depending on the video game being created, a pro-
grammer will probably desire to draw more than circles 
and polygons. Using the above steps for a circle but only 
repeating the steps 180 times will yield a half circle, 
which could approximate the shape of a setting sun, the 
top of a silo, or the ice cream in a cone. More complex 
shapes, like drawing a long-haired cat, could be made 
by the turtle but the programmer now has a time con-
cern. The programmer creating the directions to draw 
the cat and the fur on the cat would require a long time 
to type in the programming for the cat—and even more 
if the cat is supposed to move—since the repeat step 
would be used sparingly, if at all. On the users end, a 
large program with a lot of steps would take a long time 
to draw, depending on the speed of the computer or 
gaming system on which it is to be played.

Although video games are displayed on a two-
dimensional screen, programmers now commonly cre-
ate elements of the game in three dimensions. To mimic 
the body of an object, programmers create the outer 
shell of the object using a mesh of triangles or quadri-
laterals. Depending on the detail desired, more meshes 
could be created. Once the object is created, it needs 
to be displayed on the screen. This process involves 
using a “point-of-view camera,” which will change how 
the object is drawn based on where the camera is and 
how far away it is from the object. The triangle mesh 
of the object is adjusted accordingly. For example, as 
the object approaches the camera (gets closer to the 
screen), the triangles will elongate and become larger. 
A programmer that wants the object to get closer to the 
camera and rotate will use vectors and matrices (lin-
ear algebra) to adjust the size and the dimensions of 
each triangle in the meshes. Once the computer does 
the mathematical calculations to modify the triangle 
mesh, the point-of-view camera creates a two-dimen-
sional image of the three-dimensional mesh in the ori-
entation it has been set to. This two-dimensional image 
then gets projected to the viewing screen.

Interesting geometry is also found in the movement 
of objects through the game. In some cases, like the 
games Portal and the older PacMan, players can exit 
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the playing field on one side of the screen and return 
from another side or in a different orientation. This 
property involves concepts like a torus and higher-
dimensional analogs.

Color
When programming colors (assuming the screen is 
not monochrome), a programmer needs to remember 
that the primary colors for light are different than the 
primary colors for pigment. When drawing on paper, 
the three colors magenta (red), cyan (blue), and yellow 
can be combined in such a way as to create almost any 
other color. For example, many color printers only use 
three colors to print. Since most screens work based on 
a projection of light (whether a computer monitor or 
a television screen), the primary colors of light must 
be used. For light, the colors red, blue, and green are 
the primary colors; with these colors, any other color 
can be created. All three together make white, and no 
light at all makes black.

When coding colors, each of the three primary light 
colors is given an intensity value 0 – 255. This value is 
then converted to a two-digit hexadecimal number, 
where 00 is the decimal number zero and FF is the 
hexadecimal number 255. The hexadecimal number 
12 would be an intensity level of 18. The hexadecimal 
number A0 would be an intensity level of 160. The pro-
grammer then takes these three intensity numbers and 

combines them to make a six-digit 
color number by placing the intensi-
ties in order for red, then green, and 
finally blue. For example, pure red 
would be FF0000 (intensity 255 for 
red and intensities 0 for both green 
and blue). Similarly, 00FF00 would be 
pure yellow and 0000FF would be pure 
blue. The color white would be repre-
sented FFFFFF (a combination of all 
three colors), whereas black would be 
000000 (no light whatsoever).

Random Number Algorithm
Many video games that have been 
created offer a storyline or, at least, a 
progression to get from one stage or 
level to the next. Moving to the next 
level often requires a certain level of 
skill or collecting certain objects. On 

the other hand, there are video games that are cre-
ated, like video poker or Tetris, where skill alone is not 
enough to do well. There is a certain random element 
that will determine the outcome. However, computers 
are not capable of creating random numbers. Instead, 
the video game console is pre-programmed with a list 
of pseudo random numbers. For example, every TI-
84 calculator that has its memory reset will create the 
number 0.94359740249213 as its first “random” num-
ber. Obviously, if everyone obtains the same result, it 
cannot be random.

Using the TI example, every random number it 
produces will be a decimal between zero and one. If 
the game requires a number higher than one, the pro-
grammer merely multiplies the random number times 
the highest number they desire. For example, in Tet-
ris, there are seven tetrominoes that could be selected 
for the next drop. A programmer may want a random 
number generated to determine the shape of the next 
piece. As a result, the programmer would create a ran-
dom number, and then multiply it by seven to get a 
number between zero and seven; however, this number 
is still a decimal. The computer programmer can then 
tell the console to truncate the number, which would 
ignore everything beyond the decimal point giving an 
integer between zero and six. A final (optional) step 
would be to add one to this truncated integer resulting 
in a number between one and seven. Each block would 
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get assigned a number, and the pseudo-random num-
ber that resulted would select the next block.

Further Reading
Dunn, Fletcher, and Ian Parberry. 3D Math Primer 

for Graphics and Game Development. Plano, TX: 
Worldware, 2002.

Egan, Jill. How Video Game Designers Use Math. New 
York: Chelsea Clubhouse, 2010.

Flynt, John P., and Boris Meltreager. Beginning Math 
Concepts for Game Developers. Boston: Thomas 
Course Technology, 2007.
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See Also: Animation and CGI; Polygons.

Vietnam	War
Category: Government, Politics, and History.
Fields of Study: All.
Summary: Because of the importance of 
cryptography in World War II and the emergence of 
game theory in the 1950s, mathematics was heavily 
involved in the Vietnam War.

The Vietnam War, a conflict transpiring in Vietnam, 
Cambodia, and Laos from 1955 to 1975, involved the 
Communist forces of North Vietnam, the Viet Cong, 
the Khmer Rouge, the Pathet Lao, the People’s Republic 
of China, the Soviet Union, and North Korea, against 
the anti-Communist forces of South Vietnam, the 
United States, South Korea, Australia, the Philippines, 
New Zealand, Thailand, the Khmer Republic, Laos, and 
the Republic of China. Most American involvement 
was concentrated from 1963 to 1973, with the last U.S. 
troops leaving with the fall of Saigon in 1975. It eventu-
ally resulted in a Communist victory, with U.S. forces 
and their allies withdrawing, Communist parties tak-
ing control of Laos and Cambodia, and South Vietnam 
unified with the North under Communist rule.  

Mathematicians and the War
Mathematicians fell on both sides of the disagree-
ment regarding the Vietnam War. Some served in the 

war effort, such as William Corson, an economist with 
an undergraduate degree in mathematics who later 
wrote the book The Betrayal. Grace Murray Hopper 
returned to active duty in 1967 because of an increased 
demand for naval computer systems. Others engaged 
in war-related research. Warren Henry helped develop 
the hovercraft for nighttime fighting during the 1960s 
while working at Lockheed Space and Missile Com-
pany and this was used in the war. 

In 1966 and 1970, mathematicians at the Interna-
tional Congress of Mathematicians appealed to their 
colleagues to avoid war-related work. Mathematicians 
around the world organized or participated in pro-
tests, including Alexander Grothendieck in France and 
Steven Smale in the United States. Mathematicians in 
Japan at the University of Kyushu in South Japan orga-
nized “demonstrations of the 10” against the war on 
the 10th, 20th, and 30th of the month. Funding origi-
nally designated for teacher development during the 
New Math movement was instead directed to the war. 
Some have asserted that this diversion of funds was one 
of the main reasons that the educational movement 
failed. Mathematics played a role in the war in a num-
ber of ways, including war strategy, precision weapons, 
airplane computers, cryptography, and a statistically 
flawed 1969 draft drawing. Statisticians and others 
have used statistical techniques to study the long-term 
effects of Agent Orange on soldiers. Decision theory 
has been used to model the war. Systems analysis and 
game theory may have contributed to U.S. involve-
ment and defeat, such as in the decisions of Secretary 
of Defense Robert McNamara. 

Game Theory
One of the key political leaders of the American forces 
during the Vietnam War was Robert McNamara, a 
student of game theory, who served as the secretary 
of defense from 1961 to 1968—the period corre-
sponding with the nation’s first serious engagement 
with the war and its major expansions and escala-
tions. McNamara was also responsible for the policy 
of Mutually Assured Destruction (MAD), a nuclear 
policy grounded in game theory. It said that the best 
deterrent to full-scale use of nuclear weapons was for 
opposing sides to each possess sufficient firepower 
to completely destroy the other so that neither side 
dares attack, knowing it cannot survive the counter-
attack. A chilling take on foreign policy, history may 
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be on McNamara’s side with the Cold War. The esca-
lating war in Vietnam is another story. From a game 
theory perspective, those escalations make perfect 
sense. Consider that fact that North Vietnam had the 
options to escalate or to negotiate a peace. The United 
States also had those options as well as the option to 
pull out. The only way for the United States to gain 
a military advantage—and potential victory—was to 
escalate, with the worst possible outcome of such esca-
lation being a stalemate. Despite increased desertion 
and plummeting morale, as well as growing anti-war 
sentiment at home, McNamara continued to escalate 
the engagement because it was the most promising 
option he was trained to see. 

This was later used as an example of “escalation 
of commitment,” a phenomenon identified in Barry 
Straw’s 1976 paper “Knee Deep in the Big Muddy: A 
Study of Escalating Commitment to a Chosen Course of 
Action,” wherein cumulative prior investment becomes 
the motive to continue to escalate one’s investment 
even when rational thought says it is the wrong choice. 
That initial error of judgment becomes the motive to 
continue, to stay committed to the course of action, in 
order to justify it. The more one continues, the greater 
error one must admit to if one disengages, which is why 
psychologists sometimes refer to this phenomenon as 
the “commitment bias,” a natural tendency to want to 
believe that one has been making the right choices and 
to ignore evidence to the contrary.

Further Reading
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Starr, Norton. “Nonrandom Risk: The 1970 Draft 
Lottery.” Journal of Statistics Education 5, no. 2 (1997).
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Viruses
Category: Medicine and Health.
Fields of Study: Algebra; Geometry.
Summary: The spread of viruses in a population—
and the internal structure of viruses themselves—can 
be analyzed mathematically to help epidemiologists 
study viral infections.

A virus is a parasite. It cannot reproduce on its own. 
Instead, it must invade a cell of another organism and 
use the host cell’s machinery to make copies of itself. 
The newly replicated viruses then leave the host cell 
and infect other cells. In the process, the virus often 
damages the host. For example, different viruses cause 
measles, polio, and influenza in people; hoof-and-
mouth disease in cattle; and leaf curl in many vegeta-
bles. Mathematics provides a language to describe viral 
structures. Furthermore, mathematical models of the 
spread of a virus in a population are powerful tools in 
public health policy.

Capsid Geometry
A virus consists of genetic material (either DNA or 
RNA) surrounded by a protein coat called a “capsid.” 
Viruses have much less genetic material and are much 
smaller than single-celled organisms like bacteria. With 
limited genetic material, a virus can encode only a few 
proteins of its own, and so must use them efficiently. 
Often, the entire capsid is assembled from many copies 
of a single protein, which means the capsid should be 
highly symmetric.

One of the first virus structures to be determined 
was that of the Tobacco Mosaic Virus (TMV). Cop-
ies of the TMV capsid protein are arranged in a helix 
around the viral RNA. Many other viruses have helical 
capsids as well. In contrast, poliovirus, the Hepatitis B 
virus, tomato bushy stunt virus, and other viruses have 
icosahedral capsids. Figure 1 shows a computer-gener-
ated image of the poliovirus capsid with protein sub-
units colored to highlight the icosahedral symmetry. 
Other, more complicated capsid shapes are possible.

While the capsids do not have flat triangular faces, 
they have axes of five-fold rotational symmetry, like 
those through the vertices of the icosahedron; axes 
of three-fold rotational symmetry, like those through 
the centers of the triangular faces of the icosahedron; 
and axes of two-fold rotational symmetry, like those 
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through the centers of the edges of the 
icosahedron. 

Modeling the Spread of Viruses
Models of virus transmission in a 
population help researchers under-
stand which interventions might slow 
the spread of a virus. The SIR model, 
first proposed by W. O. Kermack and 
A. G. McKendrick in 1927, is one of 
the simplest and is suitable for viruses 
such as measles and influenza. Each per-
son in a population is in one of three categories:  
(1) susceptible to the virus, (2) infected and infectious, 
or (3) recovered and immune.

Let S, I, and R be the proportion of the population 
that is susceptible, infected, and recovered, respectively. 
The SIR model is given by the following system of dif-
ferential equations:

dS

dt
SI= − β , 

dI

dt
SI I= −β γ , and 

dR

dt
I= γ

where the constant β depends on the probability that 
an infected person transmits the virus to a susceptible 
person, and the constant γ depends on how long it takes 
an infected person to recover. This model does not lead 
to simple expressions for S, I, and R as functions of time 
but it can be explored computationally. One simple way 
to do so is to treat time discretely and approximate 

dS

dt

by S St t+ −( )1
, where St is the value of S at time step t. 

This method yields the difference equations

S S S It t t t+ = −1 β

I I S I It t t t t+ = + −1 β γ  

and R R It t t+ = +1 γ .

The basic SIR model can be modified to fit other 
scenarios. For example, immunity might wear off 
over time, or some part of the population might be 
at higher risk of infection, or a vaccination campaign 
might begin.

The SIR model assumes that all 
possible contacts between infected 
people and susceptible people are 
equally likely (hence the factor of SI in 
dS/dt). Modifying the model to reflect 
the social structure of the population 
allows researchers to ask crucial ques-
tions. If the supply of influenza vac-
cine is limited, is it more effective to 

vaccinate school children, who spread 
the disease, or the elderly, who may suf-

fer more complications from infection? 
Will closing airports slow an epidemic enough 

to justify the costs to travelers? In such situations, 
mathematical models allow public health officials to 
test the effects of different interventions before choos-
ing a course of action.

Further Reading
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Structural Virology.” Nucleic Acids Research 37 (2009).
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Vision	Correction
Category: Medicine and Health.
Fields of Study: Geometry; Measurement; Problem 
Solving; Representations.
Summary: Modern optometry depends on precise 
measurements to construct corrective lenses.

Human vision is subject to a variety of ailments and dis-
orders. Some are congenital; others are age-related. Faulty 
vision results in blurriness, coupled with headaches and 
ocular tiredness. However, for many years, humans have 
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been perfecting the art of using external implements to 
aid vision. Technologies exist in the twenty-first cen-
tury that can restore perfect vision to people suffering 
from common vision-related problems, such as myopia 
or astigmatism. The methods used to diagnose vision 
issues and to construct corrective lenses rely on precise 
mathematical measurements and understanding of the 
geometric principles behind light refraction. Vision may 
also be modeled in various ways, including using a con-
cept called “orthonormal polynomials,” such as the Fou-
rier series and optic wavefronts. This has many applica-
tions, including laser vision correction. In stereoscopic 
vision, two-dimensional projections of the world onto 
the retina of each eye are combined and compared to 
form a three-dimensional image. It was once thought of 
as virtually impossible to cure stereoblindness, but in the 
early twenty-first century, vision therapists use a vari-
ety of techniques to help patients perceive stereoscopic 
depth in three spatial dimensions. 

Lens Power
The optical power of a lens, also known as “dioptic 
power,” “refractive power,” or “focusing power,” is a 
measure of the curvature of the lens and the degree to 
which a lens converges or diverges light. It is equal to 
the reciprocal of the focal length of the lens in meters. 
Its unit is “diopter.” Prescriptions for eyeglasses specify 
the optical power of the lenses. The human eye has a 
refractive power of 60 diopters. Stacking lenses helps to 
combine their optical power.

Eyeglasses and Bifocals
A simple pair of eyeglasses contains nothing more than 
two pieces of glass shaped in such a way that they act 
like a pair of lenses. Lenses exploit the physical prop-
erty of light called “refraction.” Refraction occurs when 
light travels between mediums of different densities, 
such as air and glass. The change in the medium causes 
light to bend in a certain calculable way. This property 
of lenses is suitable to refocus the image back onto the 
retina in people suffering from long-sightedness and 
short-sightedness.

The focal length of a lens in air can be calculated 
using the lensmaker’s equation, given by
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where f is the focal length of the lens, n is the refrac-
tive index of the material, R1 is the radius of curvature 
of the lens surface closest to the light source, R2

 is the 
radius of curvature of the lens surface farthest from the 
light source, and d is the thickness of the lens.

To address people suffering from vision problems 
such as myopia, hyperopia, and astigmatism, bifocal 
lenses were invented. These lenses have a section of 
magnification at the lower portion of the frames to 
allow the wearer to read small print. Benjamin Frank-
lin is generally associated with the invention of the first 
pair of bifocals. 

Contact Lenses
Contact lenses are corrective or cosmetic lenses placed 
on the cornea of the eye. Their performance is simi-
lar to that of eyeglasses but they can be shaped some-
what differently. Spherical lenses are the typical shape 
of contact lenses on both the inside and the outside 
surfaces, whereas toric contact lenses, often used for 
people with astigmatism, are created with curvatures at 
different angles and cannot move on the eye. Contact 
lenses are extremely lightweight and are virtually invis-
ible when compared to eyeglasses. However, they are 
also not held in place by a rigid framework like glasses. 
Mathematical models are useful for understanding the 
various movements of lenses within the eye, especially 
hard contact lenses.

In the twenty-first century, technology has advanced 
to a level where it is possible to imprint electronics 
onto the contact lenses themselves, resulting in the 
ability to project a virtual display onto the eye directly. 
While this technology by itself does not directly correct 
any vision problems, it could be used to assist people 
in their everyday activities, such as locating objects, or 
reading street signs by magnifying letters. 

LASIK
Laser-assisted in situ keratomileusis (LASIK) is becom-
ing an increasingly popular alternative to contact lenses 
and eyeglasses. LASIK is a type of refractive surgery 
performed using a laser. A “laser” (Light Amplifica-
tion by Stimulated Emission of Radiation) is a highly 
concentrated beam of light capable of focusing high 
energy in a small area.

The technology was invented by a Colombia-based 
Spanish ophthalmologist Jose Barraquer. His technique 
involved cutting thin flaps in the cornea and altering 
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its shape. After the laser was invented, Dr. Bhaumik, in 
1973, announced the breakthrough in using lasers to 
treat vision problems.

LASIK involves creating a flap of corneal tissue, 
remodeling the cornea underneath the flap with the 
help of a laser, and then repositioning the flap. Math-
ematical computations are used to determine the 
depth of the cuts used in the surgery, and these are 
often a function of the average cornea thickness of 550 
micrometers. One alternative is to leave some fixed tis-
sue depth.

Further Reading
Barry, Susan. Fixing My Gaze: A Scientist’s Journey  

Into Seeing in Three Dimensions. New York: Basic 
Books, 2009.

Dai, Guang-ming. “Wavefront Optics for Vision 
Correction.” SPIE Press Monograph PM 179 (2008).

Hecht, Eugene. Optics. 4th ed. Addison Wesley, 2002.

Ashwin Mudigonda

See Also: Light; Surgery.

Visualization
Category: History and Development of Curricular 
Concepts.
Fields of Study: Algebra; Communication; 
Connections; Data Analysis and Probability; 
Geometry; Representations.
Summary: Visualization is a useful practice when 
doing or learning mathematics and computers can 
help create visualizations of difficult concepts.

The ability to form a mental image is a fundamental pro-
cess and has been incorporated in many theories about 
knowledge acquisition. The advent of the printing press 
and perspective drawings allowed for an unprecedented 
sharing of realistic pictures, graphs, and inventions, and 
this led in part to the Industrial Revolution. 

The development of coordinate geometry gave rise 
to graphical representations of data and algebraic con-
cepts. With the popularity of computers and computer 
graphics, mathematicians, artists, and programmers 
have created visualizations of mathematical objects 
and huge amounts of data. Mathematicians also found 
new ways to visualize and share abstract ideas such as 
the fourth dimension. Dynamic image manipulation 
features, such as rotation or zooming, further increased 
the accessibility of visualized objects by facilitating 
new perspectives and comprehension of hard-to-see 
surfaces. Mathematical visuals have been fundamental 
in both research and entertainment contexts like for 
computer-generated imagery (CGI) used in modeling, 
computational geometry, or movies. Various types of 
visualization, including spatial visualization and visu-
als of data and graphs, are important components of 
all levels of mathematics and statistics classrooms in 
the twenty-first century. Visualization is an interdisci-
plinary topic and researchers from a diverse range of 
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fields contribute, including mathematicians, computer 
scientists, psychologists, engineers, and neuroscien-
tists. Educators and researchers create visualizations, 
study visualization ability, and design new ways to help 
students visualize.

Early History
Visualization has been as important in mathematics and 
statistics research as in education and mathematicians 
in many fields throughout history created visual rep-
resentations. Representations of maps are as ancient as 
the earliest societies from which there exists evidence of 
stone tablets and animal skins. Another important his-
torical research area related to visualization and math-
ematics was the field of optics. For example, ancient 
people created lenses. Euclid of Alexandria investigated 
geometry and perspective in his book on optics. Many 
mathematicians and scientists worked to understand 
vision, including mathematician Abu Ali al-Hasan ibn 
al-Haytham, who wrote a seven volume work on optics 
and visual perception, which is noted by some as the first 
work to correctly demonstrate understanding that light 
is reflected from an object to the eye. Self-taught math-
ematician and scientist Tobias Mayer was one of many 
to formulate a theory for color perception and he also 
modeled the limits of vision, noting, “there is a certain 
visual angle below which an object presented to the eye 
appears either not distinct enough or not even distinct 
at all, but only confused and as though it had vanished 
from sight. . . . We shall call this angle the limit of vision, 
and we shall investigate its angle by experiment.”

In the seventeenth century, René Descartes made 
significant progress in coordinate geometry. The Carte-
sian plane that is named for him allowed for new repre-
sentations of data and algebraic equations. Mathemati-
cians, statisticians, social scientists, and others began to 
investigate ways to visually present graphs and data to 
facilitate analysis, interpretation, and understanding. 
Social issues motivated many researchers in the nine-
teenth century. For example, William Playfair created 
color-coded graphical representations of the English 
national debt and the trade balances between England 
and other countries. Adolphe Quetelet graphed the 
distributions of anthropometric data to show both the 
center and variability, leading in part to the measure 
now known as Body Mass Index. Florence Nightingale 
developed the polar area chart as part of her campaign 
for improved sanitation in medical facilities. John Snow 

used graphical mapping techniques to trace the source 
of a London cholera outbreak. Graphs of mortality sta-
tistics and many other naturally occurring phenomena 
also proliferated. Philosopher and logician John Venn 
developed Venn diagrams in 1881, which are also used 
in many mathematics classrooms.

Recent Developments
The rise of computers in the twentieth century led 
to mind-bending visualizations and new fields of 
research in mathematics as well as beautiful artistic 
forms. Mathematician Benoit Mandelbrot popular-
ized the field of fractals. The computer visualization of 
some objects helped clarify their mathematical prop-
erties. One example is Enneper’s surface, which had 
been introduced by Alfred Enneper in the nineteenth 
century. In the mid-twentieth century, Steven Smale 
proved that it was possible to turn a sphere inside out 
in three dimensions without creating any creases. This 
idea stretched the imagination and mathematicians 
tried to visualize it. For instance, mathematicians at 
the Geometry Center for the Computation and Visu-
alization of Geometric Structures produced a video 
called Outside In, which visualized William Thurston’s 
sphere eversion method. Geometer Thomas Banchoff 
pioneered visualizations of four-dimensional objects. 
Mathematicians in the twenty-first century attempted 
to visually model the Internet using hyperbolic geom-
etry in order to reduce the load on routers. Researchers 
from interdisciplinary fields have participated in con-
ferences on topics like visualization algorithms or data 
visualization. Mathematicians have designed visualiza-
tion software and techniques for many areas in math-
ematics, including linear algebra, group theory, and 
complex analysis. Some of these visualizations are used 
in classrooms, while others are the focus of research 
investigations or artistic exhibitions.

Visualization Ability
The connections between visualization ability and 
mathematical success also have a long and varied his-
tory. In the nineteenth century, scientist and mathema-
tician Sir Francis Galton conducted studies to examine 
the relationship between visual imagery and abstract 
thought. Some have noted that nineteenth-century 
mathematician Henri Poincaré had poor eyesight as a 
student and scored a zero on an entrance exam for the 
École Polytechnique; however, he had a great memory 
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because he was able to mentally translate concepts he 
heard aurally into visual representations of the same 
concepts. Poincaré later wrote about the ability to form 
retina images and what he referred to as “pure visual 
space.” The Poincaré disc model of hyperbolic geom-
etry is named for him, and twenty-first-century stu-
dents explore this in interactive computer models that 
are designed to help visualize and explore mathematical 
topics, including the variation in the sum of the angles 
for differently sized triangles. 

Other visual challenges, like “stereoblindness” and 
“subitizing” difficulties, have also been tied to mathe-
matics. Stereoblindness, the inability to properly com-
bine images in the mind to see in three dimensions, 
was once thought of as impossible to cure. Subitizing 
is the ability to rapidly perceive and differentiate the 
number of distinct items in a small group of objects, 
like dots on a cube. Some researchers in the first part 
of the twentieth century investigated the importance of 
subitizing to the understanding of numbers, counting, 
and abstract thinking and educational psychologists 
in the second half of the twentieth century continued 
this work and developed a variety of theories. While 
the specific mechanisms are still the topic of debate, 
in the twenty-first century, vision and subitizing thera-
pies have been successfully implemented in the optom-
etry profession and are thought to help mathematics 
students. Some proponents of left-brain versus right-
brain dominance theories assert that visualization is 
focused in the right brain, while other mathematical 
skills, like logic and analysis, are focused in the left 
side of the brain. Psychobiologist Roger Sperry was 
awarded the Nobel Prize in 1981 in part for his split-
brain experiments. However, medical imaging scans 
of people performing mathematical tasks has shown 
regions from both sides of the brain highlighted and 
researchers continue to investigate this issue.

Gender
In the latter half of the twentieth century, researchers 
investigated gender differences in spatial visualiza-
tion ability. In 1978, geneticists Steven Vandenburg 
and Allan Kuse developed a mental rotation test that 
has been used in part to quantify spatial visualization 
ability. In 1980, Camilla Benbow and Julian Stanley, 
referred to as psychologists and educators, asserted 
that gender differences in mathematics might result 
from “greater male ability in spatial tasks.” Their state-

ments were widely publicized in the media. Later 
researchers found that visual training by video games 
or certain changes in testing conditions, like remov-
ing  “I don’t know” as an answer or eliminating time 
constraints, could reduce these observed gender differ-
ences. Research on stereotype vulnerability, where the 
effort to counter societal perceptions about a whisper 
of inferiority can negatively impact performance, has 
further complicated visualization research efforts.

Education
Various educational learning models and theories 
stress the importance of visualization. In Piaget’s the-
ory, named for epistemologist Jean Piaget, spatial skills 
develop at various age levels or stages and according 
to experience. For instance, he proposed that young 
children could understand two-dimensional space, 
while the mental manipulation of three-dimensional 
objects in space comes later on. Mathematician Wal-
ter Whiteley has proposed research questions related to 
visualization and suggested a variety of ways in which 
teachers might intentionally train students to “see like 
a mathematician.” He noted: 

Curriculum suggests that 2-D is easier than  
3-D, although it is cognitively less natural for many 
modes of reasoning, and 3-D skills are the needed 
goal for later work. The domination of analytic over 
synthetic reasoning encourages the pattern that 2-D 
is the starting point, and the disconnection between 
early childhood reasoning, and latter problem solv-
ing both of which engage 3-D reasoning. 

The van Hiele model of geometric thought, developed 
by educators Dina van Hiele-Geldof and Pierre van 
Hiele, listed visualization as its first level. Additional 
learning models presented by mathematicians and 
educators have also stressed the importance of inter-
weaving visualization training with other skills.

Further Reading
Barry, Susan. Fixing My Gaze: A Scientist’s Journey  

Into Seeing in Three Dimensions. New York: Basic 
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Clements, Douglas. “Subitizing: What Is It? Why Teach 
It?” Teaching Children Mathematics 5, no. 7 (1999).

Friendly, Michael. “Milestones in the History of 
Data Visualization: A Case Study in Statistical 
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See Also: Animation and CGI; Coordinate Geometry; 
Graphs; Maps; Optical Illusions; Painting; Sculpture; 
Telescopes.

Volcanoes
Category: Weather, Nature, and Environment.
Fields of Study: Data Analysis and Probability; 
Geometry.
Summary: Mathematical models and data analysis 
can help geologists better understand the activity of 
volcanoes and the fluid dynamics of their eruptions.

Volcanoes are openings of channels connecting the 
molten interior of a planet with its surface. Active vol-
canoes emit magma, ash, and gasses, and inactive vol-
canoes are reminders of past eruptions, consisting of 
solidified lava and ash. The science of studying volca-
noes is known as “volcanology.” Many scientists and 
philosophers throughout history, including mathema-
ticians Johannes Kepler and René Descartes, theorized 
about their nature and formation. Mathematics contin-
ues to play a role in modern volcanology through both 
the coursework and degrees that are required and in the 
mathematical research prevalent in the exploration of 
various volcanic phenomena. Computer-based numer-
ical simulations and digital imagery, often from satellite 
observation, combined with mathematical and statisti-
cal methods, such as neural networks and data mining, 
are increasingly used to model, describe, and visualize 
the complex mathematical representations of volca-
nic processes. Predicting eruptions is also a challenge, 
which is necessary not only for safety and response at 
the time of the eruption but also for larger issues such 
as global climate change. Benjamin Santer of Lawrence 
Livermore National Laboratory, who specializes in 
mathematical and statistical analyses of climate data, 
has used volcanoes as one variable in explaining climate 
change. Scientists at the Yellowstone Volcano Observa-
tory also collect data to monitor and mathematically 
study the enormous Yellowstone caldera, sometimes 
known as the Yellowstone supervolcano.

Measuring Volcanoes
The most destructive volcanic effect comes from pyro-
clastic flow, which is a mixture of solid to semi-solid 
fragments of rock, ash, and hot gases that flows down 
the sides of the volcano. It is a type of gravity current, 
similar to an avalanche, that can be modeled with 
theories and equations from fluid dynamics. A useful 
metric for comparing eruptions is the volume of vol-
canic ejecta. For example, the 1980 eruption of Mount 
St. Helens produced about 1.3 cubic kilometers of ash, 
but the ancient eruption of the Toba volcano on Suma-
tra around 75,000 years ago produced more than two 
thousand times more ash. It is possible to measure the 
fragmentation of the airborne volcanic matter, called 
“tephra,” even for ancient eruptions. Fragmentation 
is associated with the strength of the volcanic explo-
sion. The dispersion of tephra over an area has been 
found to be related to the height of the eruption col-
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umn. Finding and analyzing dispersion allows estima-
tion of heights for ancient eruptions and an additional 
way to measure heights for modern eruptions. Volca-
nologists have created the Volcanic Explosivity Index 
(VEI), which takes into account the volume of ash and 
the height and duration of the eruption. There are nine 
types of volcanoes according to VEI, scaled 0–8. For 
example, the low-strength, low-height Type 0 is called 
“Hawaiian,” and the high-strength, low-fragmentation 
Type 6 through Type 8 are called “Plinian eruptions,” 
named for Roman historian Pliny the Younger, who 
described in detail the first century eruption of Mount 
Vesuvius that destroyed Pompeii. Plinian eruptions can 
have global environmental effects. Similar to the Rich-
ter scale, VEI is logarithmic: each level type is about 10 
times greater in magnitude than the previous level.

Geometry of Volcanoes
Shapes of volcanoes depend on their explositivy, vis-
cosity of magma, the composition of the surrounding 
crust, and other geological factors. The familiar, iconic 
cone shape such as Mount Fuji defines a “stratovol-
cano,” so named because of its many layers (or “strata”) 
of ash and hardened lava. Eruptions of these volcanoes 
have high explosivity and low-viscosity lava, making 
lava and tephra deposit near the opening in layers of 
diminishing thickness, thus forming the cone.

In contrast, broad, very fluid lava fields produce 
shield volcanoes that resemble a rather flat warrior 
shield. Lava domes, as the name suggests, are pro-
portionally higher than shield volcanoes and more 
rounded than cone volcanoes, resembling semispheres. 
Lava domes are formed by high viscosity lava com-
bined with low explosivity, where lava either accumu-
lates under the crust and pushes it up, or flows over the 
crust and solidifies in the dome shape. 

Eruption Forecast
Because volcanic eruptions depend on many variables, 
eruption forecasting relates to such areas of science and 
mathematics as chaos theory and systems science. Over-
all, prediction means collecting multi-variate data in 
volcano observatories and matching variable patterns to 
those that occurred before eruptions of similar types of 
volcanoes in the past. For example, the pattern of earth-
quakes becoming stronger and shallower with time, 
called “earthquake swarm,” can be used to forecast the 
eruption time. Mathematical models of volcanoes are 

based on equations from thermodynamics, fluid dynam-
ics, and solid mechanics. The systems science principles 
of prediction describe qualitative trends in variables. For 
example, the principle of coinciding change says that 
unrelated, co-evolving trends in several parameters are 
more significant than changes in any one parameter.

Further Reading
Marti, Joan, and Gerald Ernst. Volcanoes and the 

Environment. Cambridge, England: Cambridge 
University Press, 2005.

Zeilinga de Boer, Jelle, and Donalt Sanders. Volcanoes  
in Human History. Princeton, NJ: Princeton 
University Press, 2002.

Maria Droujkova

See Also: Earthquakes; Geothermal Energy; 
Measurement, Systems of; Measuring Tools; Plate 
Tectonics; Prehistory; Probability.
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Volleyball
Category: Games, Sport, and Recreation.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Mathematics is fundamental to player 
motion, strategy, and scoring in volleyball.

Volleyball, which began in the late nineteenth century 
as a non-contact recreational sport, quickly developed 
into a globally popular competitive sport. Two teams, 
typically with two to six players, face one another on 
opposite sides of a rectangular court divided by a net. 
Beach volleyball is played on sand courts rather than 
a hard surface. Game strategy uses mathematical con-
cepts such as angles, rotation, and parabolic motion 
in an effort to impart optimal trajectories, speeds, and 
spins on the ball to prevent the other team from suc-
cessfully returning it. The receiving team must under-
stand three-dimensional motion and vectors in order to 
intercept the ball and change its direction, often using 
a sequence of hits coordinated among several players. 
The strategies of beach volleyballers often differ from 
those of hard court volleyballers because of differences 
in the ability to jump or dive for an incoming ball. 
Mathematics is also used to analyze and model body 
kinetics, such as the motions of a player’s shoulders and 
arms while serving. Statistics are used to analyze and 
describe both team and individual proficiencies and 
success. These include measures like number of attacks, 
kills, and assists; hitting percentages; and kill average 
and efficiency as a function of total attempts.

General Game Play and Scoring
Volleyball teams work together to hit the ball over the net 
in such a way as to prevent the other team from return-
ing it. A match consists of three or five games. The third 
game of a three-game match or the fifth game of a five-
game match is the deciding game. A single sequence of 
back and forth hitting is known as a “rally,” which begins 
with one side serving the ball and ends when one team 
or the other fails to legally return it. Each side gets three 
attempts and the same player may not touch the ball 
twice in a row. At the end of the rally, the winning side 
may earn a point, the right to serve the ball, or both. 

There are two different scoring systems used in vol-
leyball. In side-out scoring, only the serving team may 
earn a point. In rally scoring, either side earns a point. 

Winners always get the serve. Deciding games are played 
to 15 points; nondeciding games are played to 25. How-
ever, the winning team must be ahead by at least two 
points or play continues. Sometimes, a scoring cap is 
used, which nullifies this requirement. Statistical analy-
ses show that rally point scoring makes matches shorter 
and match lengths more predictable versus side-out 
scoring. However, there appears to be no significant 
effect on scoring margins between teams; on average, 
after an even number of serve changes, points awarded 
to non-serving teams balance. In addition to statistics, 
Markov chains are useful for analyzing volleyball games 
in terms of the proportion of points won and the prob-
abilities of winning a point, game, and match.

Player Roles and Strategy
Hard court teams typically consist of six players with 
specialized roles, with the left, center, and right for-
wards in a row along the frontcourt and the left, center, 
and right backs in a row along the backcourt. However, 
players usually rotate through positions during play, 
requiring analysis of permutations and the timing of 
substitutions. Beach volleyball teams typically consist 
of two players each, generally front and back. Players 
seek to control the ball through the angle, force, and 
timing with which the ball is struck and by choosing 
whether or not to impart spin on the ball. The vol-
leyball typically travels along a parabolic path, modi-
fied by its spin and additionally influenced by player 
efforts and external factors, such as air resistance. The 
basic skills used in volleyball include the serve, pass, set, 
spike, block, and dig. A variety of serves can be used as 
the server hits the ball into the opponent’s court. Dif-
ferent types of serves affect the ball’s direction, speed, 
and acceleration with the goal of increasing the diffi-
culty of handling the ball for the opposing team. Serves 
that have flatter parabolic paths tend to preserve more 
of the initial force and velocity and are usually more 
difficult to return.

The opposing team’s first reception of the ball is 
known as the “pass,” the second contact is known as 
the “set,” and the third contact is known as the “attack” 
(also called “spike”), though a team may not opt to 
use all three contacts in every play. A block is a team’s 
attempt to prevent the opposite team from spiking the 
ball into their court, and a dig is an attempt to prevent 
a ball from hitting the court. Shots include the hard 
angle, deep angle, seam shot, line shot, angled line shot, 
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swiping shot, high and hard, and the save. Achieving 
different shots relies on affecting the ball’s speed, spin, 
and angle of trajectory through shoulder and hip posi-
tions, aiming at gaps between opposing players, and the 
amount of force applied. Spin tends to make the ball 
more difficult to return successfully, since the appro-
priate counterforce to control the ball and change its 
directional vector is more difficult to determine and 
apply quickly.

Further Reading
Calhoun, William, G. R. Dargahi-Noubary, and Yixun 

Shi. “Volleyball Scoring Systems.” Mathematics and 
Computer Education (Winter 2002).

Kiernan, Denise. Sports Math. New York: Scholastic 
Professional, 1999.

USA Volleyball. Volleyball Systems and Strategies. 
Champaign, IL: Human Kinetics, 2009.
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See Also: Curves; Kicking a Field Goal; Mathematical 
Modeling.

Voting
See Elections

Voting	Methods
Category: Government, Politics, and History.
Fields of Study: Algebra; Number and Operations; 
Problem Solving.
Summary: Social choice theory concerns itself with 
the mechanics of group decisions such as elections 
and the impact methodology can have.

Voting theory (also known as “social choice theory”) 
is concerned with how group decisions are made when 
there are a number of alternatives from which to choose 
(for example, finding the winner of an election). When 
there are only two options, voting is straightforward—

the winning alternative (also called the “social choice”) 
should be the one that receives the most votes. How-
ever, when the choice is among three or more alter-
natives, determining the social choice is significantly 
more complex. There are many reasonable methods for 
selecting a winner and the methods can produce dif-
ferent winners even when given the same sets of votes. 
All voting methods have inherent flaws and, regardless 
of the method used, strange and paradoxical situations 
can occur. For example, in the 2000 U.S. presidential 
election, George W. Bush and Al Gore were major party 
candidates, while Ralph Nader, representing the Green 
Party, had much less support. Although Bush won the 
election, exit polls at the time indicate that had Nader 
not been on the ballot in some states, Gore almost 
surely would have won the election. In other words, in 
the U.S. electoral system, the presence (or lack thereof) 
of an “also-ran” candidate can have a profound out-
come on the winner. This disturbing property is one of 
many that interests mathematicians, economists, and 
political scientists who study voting theory.

Preference Ballots
Preference ballots, where voters rank the alternatives 
in order of preference, are among the most useful 
ways of gathering information from voters. A voting 
method aggregates these preferences in some way and 
determines a social choice (or choices, in the case of 
ties). In this way, a voting method can be thought of 
as a function whose typical input is a set of individual 
ballots and whose output is the winning alternative, 
or—in the case of a social welfare function—a ranking 
of the alternatives, perhaps with ties. Many such func-
tions are possible:  

• Plurality method: A procedure that returns as 
the social choice the alternative that is the top 
preference on the most ballots (the candidate 
with the most first place votes).  

• Weighted voting method: Also called the 
“positional method,” this process assigns 
points to an alternative based on its position 
on a ballot, with higher placings on a ballot 
earning more points. The winning alternative 
is the one having the most points.  

• Borda count: A special positional method 
whereupon a voter’s lowest-ranked alternative 
earns zero points, the voter’s second lowest-
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ranked alternative earns one point, and so 
on, with the voter’s top choice earning n −1 
points, assuming n candidates.  

• Hare system: Also called “instant runoff 
voting” or “plurality with elimination,” 
this method arrives at the social choice 
by successively eliminating less desirable 
outcomes. In this procedure, ballot-counting 
proceeds in rounds, with the candidate 
having the fewest first-place votes eliminated 
at the end of each round. A ballot on which 
an eliminated candidate was the top choice 
has its vote transferred to the highest ranking 
remaining candidate on the ballot. The 
process of elimination continues until one 
candidate has more than half the first place 
votes (a “majority”), in which case that 
candidate is declared the winner.  

• Dictatorship: In a dictatorship, one voter is 
specially designated so that the social choice 
is always the alternative that this voter has at 
the top of his or her ballot.

For example, suppose that there are 100 voters in an 
election, and three candidates (A, B, and C). Suppose 
that the voters express their votes as shown in the fol-
lowing table:

Number of Voters 40 35 25

1st Choice A B C

2nd Choice C C B

3rd Choice B A A

Note that 40 of the voters prefer A as their top 
choice, 35 prefer B as their top choice, and 25 prefer 
C as their top choice. If this election were decided 
using the plurality method, then candidate A would 
win with 40 first place votes (with B and C earning 35 
and 25 first place votes, respectively). Using the Borda 
count, A would tally 40 2 80× =  points, B would earn 

35 2 25 95×( )+ =  points, and C would win with 
25 2 75 125×( )+ =  points. Using the Hare system, 

candidate C would be eliminated in Round 1, and C’s 
votes would transfer to candidate B, because B is sec-
ond on all 25 ballots. In Round 2, B has 60 first place 
votes to A’s 40, so B is the winner.

This example demonstrates that different meth-
ods can yield different results. As Donald Saari writes, 
“Rather than reflecting the voters’ preferences, the out-
come may more accurately reflect which election pro-
cedure was used.”

It should be noted that there are other methods of 
voting that do not require preference ballots. In a sys-
tem called “approval voting,” a voter may vote for as 
many candidates as desired. The winner is the candidate 
receiving the most votes. No distinction is made among 
the candidates of which the voter “approves,” and the 
voter can vote for any combination of the candidates.

Fairness
By aggregating voters’ preferences and producing a 
social choice, an election method should reflect, in 
some way, the will of the people. Given the vast library 
of possible election methods, it is natural to ask whether 
there is a method that captures this will in an ideal way. 
Social choice experts have developed different ways of 
assessing the quality of voting methods, and the notion 
of “fairness” has emerged as a prime consideration. 
When there are two alternatives, it can be expected that 
any reasonable voting method will be anonymous (all 
voters are treated equally), neutral (the two candidates 
are treated equally), and monotonic (if a voter changes 
his vote from candidate A to candidate B, then that 
should not hurt candidate B). Mathematician Kenneth 
May proved in 1952 that if the number of voters is odd 
and ties are not allowed, then only one voting method 
is anonymous, neutral, and monotonic: “majority rule,” 
the procedure where the candidate with more than half 
the first place votes is declared the winner.

When there are three or more alternatives, there are 
many desirable properties for voting methods. The fol-
lowing list of criteria is far from exhaustive: 

Majority criterion: This method requires that when 
some alternative is the first choice on more than half 
the ballots, that alternative should be the social choice. 
The plurality method satisfies this criterion, for if a 
candidate has a majority, no other candidate can have 
as many first place votes. On the other hand, the Borda 
count violates the majority criterion, for there are 
elections where a candidate can have a majority but 
still lose.  

Condorcet winner criterion: This is a slightly weaker 
condition: if an alternative is preferred head-to-head 
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over every other alternative in a one-on-one matchup 
that ignores the other alternatives, then that candidate 
should win the election. The example above shows that 
the plurality method violates this criterion. While can-
didate C is preferred over A on 60 of the ballots, and 
C is preferred over B on 65 of the ballots, C loses the 
plurality election to A. The Hare system and the Borda 
count fail the Condorcet winner criterion as well.

Pareto condition: This method asserts that for every 
pair x and y of candidates, if all voters prefer x to y, 
then y should not be a social choice. This is a relatively 
weak criterion, and all of the methods described above 
satisfy it.  

Monotonicity criterion: According to this method, if x 
is a social choice and someone changes a ballot in such 
a way that x is moved up one spot (in other words, x 
exchanged with the alternative immediately above x on 
the ballot), then x should still be a social choice. In other 
words, making a change to a ballot that is favorable only 
to a winning candidate should not hurt the candidate. 
The plurality method and the positional voting methods 
satisfy monotonicity, but the Hare system does not.

Independence of Irrelevant Alternatives: Also called 
“binary independence,” this method states that if x is 
a social choice while y is not, and if a voter changes a 
ballot in a way that does not change the relative posi-
tions of x and y on the ballot, then y should still not be 
a social choice. In other words, changing the positions 
of other “irrelevant” candidates on a ballot should not 
affect the relative position of x over y or y over x in the 
outcome. This is precisely the difficulty that occurred 
in the 2000 U.S. presidential election, where Nader’s 
presence in the election affected the relative rankings 
of Bush and Gore. 

Although each of these criteria is, in turn, a reason-
able expectation of a voting method, Kenneth Arrow, 
in 1952, proved the mutual exclusivity of them. In his 
“impossibility theorem,” Arrow showed that if there are 
at least three alternatives and a finite number of voters, 
then the only social welfare function that satisfies both 
the Pareto condition and “independence of irrelevant 
alternatives” is a dictatorship. This profound result, 
which earned Arrow the Nobel Prize in Economics 
in 1972, argues against the possibility of a theoreti-
cally perfect democracy. Nevertheless, Arrow himself 
encourages continuing to search for voting methods 
that work well most of the time. He writes:

My theorem is not a completely destructive or 
negative feature any more than the second law of 
thermodynamics means that people don’t work on 
improving the efficiency of engines. We’re told that 
you’ll never get 100% efficient engines . . . It doesn’t 
mean you wouldn’t like to go from 40% to 50%.

Sincere and Strategic Voting
Strategic voting is the practice of voting against one’s 
true preferences in order to achieve a better outcome 
in an election. This contrasts with sincere voting, where 
one votes according to one’s true preferences. Strategic 
voting most often occurs in situations where a voter’s 
preferred candidate has little chance of winning, or 
where the voter’s top candidate is most threatened by 
his second or third candidate. While strategic voting 
can affect the outcome of an election, its effects can be 
disastrous. Election results should reflect the aggregate 
will of the people, and if voters do not express their indi-
vidual preferences truthfully, then the voting method 
has little hope of determining the socially desired out-
come. Therefore, voting methods that tend to encour-
age strategic voting are unattractive. It should be noted 
that for strategic voting to be at all effective, there must 
be at least three candidates in the election, and the vot-
ers need a thorough understanding of both the voting 
method being used and the preferences of other voters.

For example, in the 2000 election, exit polls in Flor-
ida indicated that Nader voters widely supported Gore 
as their second choice, far beyond both the margin of 
error of the polls and Bush’s margin of victory. Had 
these voters instead voted strategically for Gore, Gore 
would likely have carried Florida and its 25 electoral 
votes, thereby winning the presidency. The U.S. elec-
toral college notwithstanding, this shows how power-
fully the plurality method encourages strategic voting. 
Had the 2000 election been decided by the Borda count, 
one could imagine that a conservative voter might have 
Bush as the top choice, Gore as the second choice, and 
Nader last, but might insincerely rank the candidates in 
the sequence Bush, Nader, Gore in an attempt to maxi-
mize the point differential between Bush and Gore.

Some voting methods prove resistant to strategic 
voting. One of the major advantages of the Hare sys-
tem is that it tends to encourage sincere voting. In the 
2000 election, for example, a Nader supporter would 
have less reason to vote strategically for Gore if it is 
known that the vote will transfer to Gore should Nader 
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be eliminated. Nevertheless, there are situations where 
even with the Hare system, strategic voting can prove 
beneficial to a voter.  

In the 1970s, Allan Gibbard and Mark Satterthwaite 
proved that no voting method is completely immune 
to strategic voting. Any non-dictatorial system that uses 
preference ballots and allows at least the possibility of 
any candidate winning will necessarily lead to situa-
tions, however hypothetical, where strategic voting can 
be beneficial. This proof serves as a result analogous to 
Arrow’s, but in the realm of strategic voting. As with 
Arrow’s result in fairness, it is important to note that the 
degree to which a voting method encourages sincerity 
still serves as an important criterion for selection.

Further Reading
Brams, Steven. Mathematics and Democracy: Designing 

Better Voting and Fair-Division Procedures. Princeton, 
NJ: Princeton University Press, 2007.

Saari, Donald. Basic Geometry of Voting. New York: 
Springer, 2003.

Taylor, Alan, and Allison Pacelli. Mathematics and 
Politics: Strategy, Voting, Power and Proof. New York: 
Springer, 2008.

Stephen Szydlik

See Also: Elections; Government and State 
Legislation; Rankings.
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Water Distribution
Category: Architecture and Engineering.
Fields of Study: Algebra; Data Analysis and 
Probability; Geometry; Measurement; Number and 
Operations; Problem Solving.
Summary: Mathematicians have long studied issues 
related to optimizing water distribution.

Water distribution has two separate but interrelated 
meanings: the natural physical distribution of water in 
the world and the way in which people choose to distrib-
ute available water. In some regions, accessing and dis-
tributing fresh water for human needs, like drinking and 
irrigation, can be a significant challenge. Roughly 70% 
of the Earth’s surface is covered with water but most is 
saline (salty). Much of Earth’s fresh water is in glaciers or 
underground. Some is polluted from human activities. 
In the early twenty-first century, approximately 20% of 
Earth’s population lived in areas with insufficient fresh 
water because of climate or geography. About the same 
number lived in areas in which water existed but where 
technological or economic barriers limited effective dis-
tribution. Many systems have been devised throughout 
history and in different societies to access and distribute 
water. It is so valuable a resource that armed conflicts 
been fought over water. Mathematicians, scientists, and 
others who work on water distribution problems use 

mathematical techniques to design, build, optimize, and 
monitor water distribution and associated wastewater 
systems. For example, graph theory is used to model 
water distribution networks. Graph edges may represent 
pipes and nodes represent intersections, junctions, and 
access points. Statistical and topological methods can be 
used to compare networks in terms of capacity and reli-
ability against failure.

Irrigation
Irrigation is an ancient practice that allows food to be 
grown where it might otherwise not thrive. Evidence 
shows that it was used as early as the sixth millen-
nium b.c.e. in Mesopotamia, Egypt, and Persia, and 
the fifth millennium b.c.e. in South America. In the 
early twenty-first century, agriculture is still globally 
the greatest consumer of fresh water, though it varies 
widely by location. For example, the United Kingdom’s 
abundant rainfall means that it requires almost no 
irrigation. Mexico and India, on the other hand, use it 
extensively. The green revolution of the twentieth cen-
tury, which greatly increased the agricultural yield of 
many developing countries, relied in part on irrigation. 
One criticism was that the increased food production 
in these areas resulted in accelerated population growth 
that placed further burdens on scarce water resources. 
This criticism is supported by some statistics and 
mathematical models, which show that the demand for 
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water grew at rates that exceeded population increases, 
raising per-capita water requirements. 

Mathematicians and others who study ancient 
systems of irrigation in order to better understand 
them (and perhaps improve modern methods) have 
noted that some societies appear to have created and 
implemented complex and efficient water distribution 
methods without using mathematical methods for 
planning. Others have sought to build mathematical 
models of irrigation systems. The paddy field system 
used for growing rice generally requires the creation of 
intricate structures of terraces, canals, and reservoirs in 
order to ensure that all fields receive adequate water. 
It is believed to have been used as early as 4000–3500 
b.c.e. in China and Korea. Researchers who have inves-
tigated mathematical models to describe a paddy field 
system have noted that it may not be possible to create 
a reliable model by including only variables based on 
physical measures such as amount of water available 
and rate of evaporation. A variable describing an ethic 
of cooperation among owners of the various fields, a 
factor that is difficult to quantify, was also required to 
ensure that water would be used fairly. For example, 
if owners on the upstream end of a water source took 
more than their fair shares, the owners farther down-
stream would not receive sufficient water for their crop, 
regardless of the values of some other variables.

Industry
Industry is the second largest category of global water 
use. Most industrial processes need water in some way, 
though some are more readily visible, such as hydro-
power generation of electricity and water extraction of 
minerals in mining. At the start of the twenty-first cen-
tury, per capita water use is typically higher in indus-
trialized nations than in developing countries, though 
this gap is closing. Some economists use the term 
“virtual water” to refer to the water that is used in the 
entire chain of manufacturing a product or growing an 
agriculture commodity. Similar to a carbon footprint, 
which is often used to quantify the quantity of green-
house gasses emitted by a process, a water footprint 
represents the total amount of water used to create a 
good or service. Calculating water footprints provides 
an additional metric for assessing and comparing the 
environmental impact of competing products and ser-
vices. For example, in 2010, the Water Footprint Net-
work estimated that production of 1 kilogram of beef 

required about 16,000 liters of water, while one kilo-
gram of rice required 3000 liters of water, and one liter 
of milk required 1000 liters of water. 

Sanitation
The creation of sanitary systems of water supply and 
wastewater disposal or treatment is a major factor in 
the general improvement of public health from about 
the mid-nineteenth century onwards. Large cities, such 
as London, New York, and Boston, were among the first 
to establish municipal water supply systems. They were 
motivated in part by data collected by statisticians and 
others such as physician John Snow, who demonstrated 
via statistical methods that an 1854 cholera outbreak in 
London could be traced to the local water pump. 

Mathematical methods may be used to model differ-
ent aspects of supply systems. The fluid pressure neces-
sary for water to flow through a system is affected by 
variables like gravity. Water stored in a rooftop tank will 
deliver water at a higher pressure to lower floors ver-
sus higher ones. Mathematical calculations show that a 
vertical foot of water exerts a pressure of 0.433 pounds 
per square inch (psi) at its bottom surface. The flow of 
water through the system is a function of the cross-sec-
tional area of the pipe: Q = A × V, where Q is the flow of 
water through the system, A is the cross-sectional area 
of the pipe, and V is the velocity of the water.  

Municipal water systems tend to be quite complex, 
involving massive networks of storage tanks, pipes, 
pumps, and valves. Mathematical models are used to 
describe and manage these systems. Navier–Stokes 
equations, named for mathematicians Claude-Louis 
Navier and George Gabriel Stokes, are partial differ-
ential equations that describe fluid flow and velocity, 
while the Reynolds number, named for mathematician 
Osborne Reynolds, quantifies “laminar” (smooth) and 
turbulent fluid flow through a pipe. Contamination 
is an ever-present risk because of the natural physical 
deterioration of system components over time (such as 
corroded pipes) as well as the possibility of accidental 
or deliberate introduction of contaminants. Research-
ers are developing systems that can sense when a con-
taminant has been introduced into the water distribu-
tion system, allowing for rapid identification of the 
time and location of its introduction. For example, 
experiments done by the U.S. Environmental Protec-
tion Agency showed statistically that chlorine and 
total organic carbon, which are routinely monitored 
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set by government agencies, though the regulation of 
bottled water differs from piped and well water. Even 
in nations with extensive closed water distribution sys-
tems and sewage treatment, contamination occurs in a 
number of ways, including agricultural runoff, dump-
ing of manufacturing byproducts into streams and riv-
ers, and degradation of systems that may contain out-
dated materials such as lead. One of the Millennium 
Development Goals adopted by the United Nations 
and other international organizations is to cut in half 
the proportion of people that do not have reliable 
access to safe drinking water by 2015. Mathematicians 
and mathematical methods contribute significantly to 
the discovery, testing, and delivery of potable water.

How Safe is Your Drinking Water?
The Environmental Protection Agency (EPA) sets the 
standards for drinking water in the United States. For 
each potentially harmful substance, the EPA identifies 
the maximum contaminant level (MCL) allowed and the 
maximum contaminant level goal (MCLG). The MCLG 
is the level below which there is zero expected risk to 
human health. While it would be best to have levels of a 
substance like arsenic at or below the MCLG, the EPA sets 
MLC requirements at concentrations that can be higher. 
U.S. citizens who receive water from a community water 
system should receive a Water Quality Report each year. 

in municipal water systems, were sensitive and reliable 
predictors of contamination.

Further Reading
Cohen, Y. Koby. Problems in Water Distribution:  

Solved, Explained, and Applied. Boca Raton, FL:  
CRC Press, 2002. 

Gates, James. Applied Math for Water Distribution, 
Treatment, and Wastewater Operators. Dubuque, IA: 
Kendall Hunt Publishing, 2010.

Sarah Boslaugh

See Also: Canals; Carbon Footprint; Farming; Floods; 
Tides and Waves; Water Quality.

Water Quality
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Data Analysis and 
Probability; Measurement.
Summary: Water quality standards and data are 
mathematically modeled and analyzed to help keep 
drinking water safe.

Water is fundamental for human life. Approximately 
70% of the Earth’s surface is covered by water but 
only a very small fraction is consumable fresh water, 
and much of that has chemical or biological contami-
nants. Drinking water comes from a variety of sources. 
Underground water, such as aquifers or springs, may 
be tapped by wells; surface water, such as rivers and 
streams, are diverted for use; precipitation may be col-
lected or allowed to flow into other sources; and plants 
may be processed for moisture. Desalinization (the 
process of removing salt from water) makes seawater 
drinkable. Waterborne diseases in open water sources 
like rivers are endemic to many parts of the develop-
ing world. Natural disasters may spread contamination 
via flooding. Some global warming researchers predict 
that increased rainfall, flooding, and warmer weather 
will result in more waterborne disease worldwide. In 
developed countries, water is commonly piped to end 
users and may be recycled via sewage treatment. The 
standards for potable water in many countries are 

	 Water Quality 1053

Providing access to safe drinking water around the 
world is one of the goals of the United Nations.



Those curious about water quality at work may request 
a copy from the building owner. Each report includes 
the source of the water (such as a river or lake); a list 
of all detected regulated contaminants and their levels; 
potential health effects of contaminants detected that 
violate the standards; information for people with weak-
ened immune systems; and contact information for the 
company or agency that supplies the water. The report 
will alert the public to violations of the EPA safe drink-
ing water standards and, equally important, will list 
information about potentially harmful substances that 
are below the legal limit. For example, a report may list 
arsenic, describe that it is measured in parts per billion 
(ppb), give the highest level measured, and list the range 
measured in the water. The report will also provide the 
MCLG (0.0 ppb for Arsenic) and the MCL (10.0 ppb). If 
the report states that the water ranges from 0.5 to 2 ppb 
for arsenic, water consumers will know that it is safe to 
drink according to EPA standards. However, upon com-
paring the MCL and MCLG, consumers may consider 
drinking water from other sources or request additional 
information from the water company since 0.5 ppb is 
higher than the 0.0 ppb MCLG.

Mathematical Analysis and Modeling
The management of water resources is increasingly reli-
ant on mathematical modeling and analysis. For exam-
ple, the dynamics and kinetics of surface water, along 
with distributions and dispersal over time of contami-
nants, have been extensively modeled and simulated. 
Reactive transport (RT) models use coupled equations 
to examine particle transportation through porous 
surfaces, which are widely used to model infiltration 
of contaminants into ground water. They may utilize 
mathematical and statistical concepts such as stochas-
tic differential equations, which can be traced in part to 
physicist Paul Langevin’s work on the mathematical the-
ories of dynamic molecular systems. Animal behavioral 
responses to variables like water quality have been suc-
cessfully modeled using the Eulerian–Lagrangian–Agent 
Method (ELAM). The Eulerian framework, named for 
mathematician Leonhard Euler, mathematically models 
environment factors affecting the animal agents, while 
the Lagrangian framework, named for mathematician 
Joseph Lagrange, governs the perception and movement 
of individual agents. 

Near-continuous water quality monitoring provides 
a wealth of data and facilitates time series analyses and 

other statistical models of water quality as functions 
of variables like land use and precipitation patterns, as 
well as other measurable human behaviors and natural 
occurrences. Model calibration, verification, and sen-
sitivity analysis often require comparing mathemati-
cal equations and simulation results with observed 
data. Mathematicians, engineers, and scientists have 
improved systems for remote water quality monitor-
ing and assessment using data, mathematical methods, 
and theories from many sciences. Some applications 
include remote automated stations with the abil-
ity to wirelessly network and transmit data, artificial 
intelligence algorithms that can adaptively sample in 
response to problems or concerns, and satellite or air-
craft observation and analysis of large areas. 

These analyses also influence public policy and leg-
islation, such as the U.S. Safe Drinking Water Act and 
the Clean Water Act. Scientists in many fields continue 
to seek methods to provide easily accessible clean water 
for everyone.

Further Reading
Chapra, Steven. Surface Water-Quality Modeling. Long 

Grove, IL: Waveland Press, 2008
U.S. Environmental Protection Agency (EPA). Drinking 

Water and Health: What You Need to Know! 
Washington, DC: EPA, 1999. http://www.epa.gov/
safewater/dwh/dw-health.pdf.

Christine Klein

See Also: Farming; Floods; Water Distribution.

Waves
See Tides and Waves

Weather Forecasting
Category: Weather, Nature, and Environment.
Fields of Study: Connections; Data Analysis and 
Probability; Problem Solving; Representations.
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Summary: Accurate weather forecasting requires the 
use of advanced mathematical models and powerful 
supercomputers to handle the vast number of 
calculations.

Weather prediction, or forecasting, is the application 
of science and technology to predict the future state of 
the atmosphere at a given location using available past 
and present data from the surrounding area. The word 
“weather” describes the state of the atmosphere at a 
particular time, or short time period, while the word 
“climate” is an average of these conditions over long 
time periods—often months or years. The weather 
is typically described in terms of temperature, wind 
speed, wind direction, air pressure, density, and atmo-
spheric composition (for example, water vapor, liquid 
water, or carbon dioxide content). The intensity of solar 
and terrestrially emitted radiations is also a fundamen-
tal determining factor. A forecast typically includes the 
prediction of these meteorological variables and helps 
people make more informed daily decisions that may 
be affected by the weather. Moreover, it helps predict 
dangerous weather phenomena, such as hurricanes, 
which might endanger human life.

History
People have tried to forecast the weather for thousands 
of years and throughout history, farmers, hunters, war-
riors, shepherds, and sailors understood the impor-
tance of accurate weather predictions for planning 
daily activities. Ancient civilizations appealed to the 
gods of the sky: the Egyptians looked to Ra, the sun 
god; the Greeks sought out Zeus; and in the ancient 
Nordic culture, Thor was believed to govern the air 
with its thunder, lightning, wind, rain, and fair weather. 
The Aztecs used human sacrifice to satisfy the rain god, 
Tlaloc, while Native American and Australian aborigi-
nes performed rain dances. 

The Babylonians were predicting the weather from 
cloud patterns as well as astrology by 650 b.c.e., but 
the earliest scientific approach to weather prediction 
occurred circa 340 b.c.e. when Aristotle described his 
theories about the earth sciences and weather patterns 
in Meteorologica. The ancient Greeks invented the term 
“meteorology,” which derives from the Greek word 
meteoron which refers to any phenomenon in the sky. 
The Greek philosopher Theophrastus, one of Aristot-
le’s successors, compiled the ultimate weather text The 

Book of Signs, which contained a collection of weather 
lore and forecast signs and served as the definitive 
weather book for over 2000 years.

Weather forecasting advanced little from these 
ancient times to the Renaissance. Beginning in the fif-
teenth century, Leonardo da Vinci designed an instru-
ment for measuring humidity, Galileo Galilei invented 
the thermometer, and his student Evangelista Torricelli 
came up with the barometer. With these tools, people 
could objectively monitor the atmosphere. In 1687, Sir 
Isaac Newton published the physics and mathematics 
that govern the motion of all bodies and can be used 
to accurately describe the atmosphere. To this day, his 
principles are the foundation for modern mathemati-
cal analysis and computer prediction of weather.

However, scientifically accurate weather forecast-
ing was not feasible until the early twentieth century, 
when meteorologists were able to collect and organize 
data about current weather conditions from observa-
tion stations in a timely fashion. Vilhelm and Jacob 
Bjerknes developed a weather station network in 
the 1920s that allowed for the collection of regional 
weather data. The data collected by the network could 
be transmitted nearly instantaneously by use of the 
telegraph, invented in the 1830s by Samuel F. B. Morse. 
This system allowed knowledge of the weather condi-
tions upwind to be incorporated into downwind fore-
casts, improving their quality.

Great progress was made in the science of meteo-
rology during the twentieth century. The possibility of 
numerical weather prediction was proposed by Lewis 
Fry Richardson in 1922, although computers did not 
yet exist. It was consequently impossible to perform 
the vast number of calculations required to produce a 
forecast before the predicted events actually occurred. 
Practical use of numerical weather prediction began in 
1955, spurred by the development of programmable 
electronic computers.

Numerical Weather Prediction
Numerical weather prediction is the science of fore-
casting weather using computer simulations built 
from mathematical models. In this process, the atmo-
sphere is divided into a three-dimensional lattice of 
grid points, and at each point the various atmospheric 
variables of interest are represented. These values are 
initialized with a state determined through analysis of 
past and present conditions. This state is then evolved 
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forward into the future by solving, at each grid point, 
the classical laws of (fluid) mechanics and thermody-
namics, which are known to accurately approximate 
the behavior of the atmosphere. The output from the 
model provides the basis of the weather forecast.

The equations that govern how the state of a fluid 
changes with time contain many variables and require 
a great deal of computer processing resources to solve. 
Weather prediction centers have access to supercom-
puters containing thousands of processors on which to 
run a forecasting model. The required calculations are 
shared among the processors and computed simulta-
neously to produce a complete forecast in a fraction of 
the time possible with a single computer. This system 
is essential to ensure that an accurate prediction can be 
made within a useful time frame.

Good weather forecasts depend upon an accurate 
knowledge of the current state of the weather system, 
also called the “starting point” or “initial condition.” 
The initial conditions are determined from global 
measurements of the state of the atmosphere. Surface 
weather observations of atmospheric pressure, temper-
ature, wind speed, wind direction, humidity, and pre-
cipitation are made near the Earth’s surface by trained 
observers, automatic weather stations, or buoys. The 
initial state has a degree of uncertainty since there are 
an insufficient number of measurements to initialize 
all meteorological variables at every grid point. Fur-
thermore, the locations of the measurements do not 
usually coincide with the numerical grid points and 
there is also a degree of error in the actual measure-

ment. The problem of determining the initial condi-
tions for a forecast model is very important, highly 
complex, and has become a science in itself (known as 
“data assimilation”).

The atmosphere is an incredibly complex dynami-
cal system and the approximation of its behavior is only 
compounded by the inability to measure its state at each 
and every grid point in the model. The limit on useful 
weather forecasts using present technology is typically 
one week. The forecast errors are initially localized, lead-
ing to incorrect predictions in small regions, but are gen-
erally accurate enough to be useful in most of the fore-
cast area. The longer the simulation is run, the more the 
measurement and model approximation errors begin 
to dominate the calculation. However, steady improve-
ments in computer power and prediction models in 
the twenty-first century have led to a three-day forecast 
being as accurate as a two-day forecast from the 1990s. 
Weather forecasting centers are constantly review-
ing the accuracy of their forecasts and set themselves 
annual targets for accuracy improvements.

The raw output from the simulation is often modi-
fied before being presented as a forecast. Modifications 
include either the use of statistical techniques to remove 
known biases in the model or adjustments to take into 
account consensus among other numerical weather 
predictions. Accurate forecasts of precipitation for a 
specific location are particularly challenging because of 
the chance that the rainfall may fall in a slightly different 
place (such as several kilometers away) or at a slightly 
different time than the model forecasts, even if the 
overall quantity of precipitation is correct. Therefore, 
daily forecasts give fairly precise temperatures but put 
probabilistic values on quantities such as rain, based on 
knowledge of the uncertainty factors in the forecast.

Probability of Precipitation
A Probability of Precipitation (PoP) is a formal measure 
of the likelihood of precipitation that is often published 
from weather forecasting models, although its definition 
varies. In U.S. weather forecasting, PoP is the probabil-
ity that greater than 1/100th of an inch of precipitation 
will fall in a single spot, averaged over the forecast area. 
For instance, if there is a 100% probability of rain cov-
ering one side of a city and a 0% probability of rain on 
the other side of the city, the PoP would be 50%. A 50% 
chance of a rainstorm covering the entire city would also 
lead to a PoP of 50%. The mathematical definition of 
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PoP is defined as PoP = C × A × 100, where C is the con-
fidence that precipitation will occur somewhere in the 
forecast area, and A is the percent of the area that will 
receive measurable precipitation, if it occurs at all.

For example, a forecaster may be 40% confident 
that precipitation will occur and that, should rain hap-
pen to occur, it will happen over 80% of the area. This 
results in a PoP of 32%: 0.4 × 0.8 × 100 = 32%.

The Future
Over the years, the quality of the models and methods 
for integrating atmospheric observations has improved 
continuously, resulting in major forecasting improve-
ments. The power of supercomputers has increased dra-
matically, allowing for the use of much more detailed 
numerical grids and fewer approximations in the opera-
tional atmospheric models. Small-scale physical pro-
cesses (such as clouds, precipitation, turbulent transfers 
of heat, moisture, momentum, and radiation) have been 
more accurately represented within the model. Finally, 
the use of increasingly accurate methods of data assimi-
lation and the integration of satellite and aircraft obser-
vations has resulted in improved initial conditions for 
the models, which ultimately lead to a better forecast.

Further Reading 
Kalnay, Eugenia. Atmospheric Modeling, Data 

Assimilation and Predictability. Cambridge, England: 
Cambridge University Press, 2003.

Pasini, Antonello. From Observations to Simulations: 
A Conceptual Introduction to Weather and Climate 
Modeling. Singapore: World Scientific Publishing, 
2005.

Silvia Liverani

See Also: Climate Change; Data Analysis and 
Probability in Society; Forecasting; Parallel Processing; 
Statistics Education; Temperature; Weather Scales.

Weather Scales
Category: Weather, Nature, and Environment.
Fields of Study: Algebra; Connections; 
Measurement.

Summary: Weather scales and tools are used to help 
measure and classify atmospheric conditions.

Weather affects virtually every aspect of human life, 
including afternoon showers that might inconvenience 
commuters; tremendously destructive episodes, like 
hurricanes; and long-term occurrences, like drought, 
which impact agriculture and increase the likelihood 
of other events like wildfires. Meteorology is an inter-
disciplinary science that focuses on weather and short-
term forecasts, typically up to a few weeks. Climatology 
is a science that looks at long-term average weather. In 
fact, many define the word “climate” in terms of the 
average of weather over time, both locally and globally. 
Mathematics plays a critical role in weather science, 
enabling people to quantify, compare, model, and pre-
dict weather. Valid and reliable comparisons are facili-
tated by the development of scales and standard sys-
tems of quantification, along with mathematical and 
statistical models that use those measures. 

It is thought that some ancient peoples had meth-
ods for predicting the weather, though historical evi-
dence is mixed. In the early twentieth century, math-
ematician Vilhelm Bjerknes and colleagues examined 
several measurable variables of weather and derived 
equations to connect them to one another. Mathemati-
cian Lewis Richardson, who contributed significantly 
to mathematical weather prediction and pioneered the 
use of finite differences in the field, reformulated the 
Bjerknes equations. However, they remained impracti-
cal for rapid forecasting until the introduction of com-
puters. Another product of his work, the Richardson 
number, is a function of density and velocity gradi-
ents that helps predict fluid turbulence in weather and 
other applications. Mathematicians continue to con-
tribute and modern forecasting involves a wide variety 
of mathematical techniques and models, drawing in 
depth from such areas as chaos theory, data assimila-
tion, statistical analyses, scale cascades of error (related 
to the so-called butterfly effect), numerical analysis, 
vectors, fluid dynamics, and entropy. Climatologists, 
scientists, and mathematicians also research related 
phenomena like geomagnetic and solar storms. 

Temperature, Pressure, and Humidity
One of the most pervasive and intuitively obvious 
variables used to characterize the weather is air tem-
perature—along with air pressure and humidity in 
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most modern reports and forecasts. Strictly speaking, 
air temperature is a measure of the average kinetic 
energy of the air molecules, measured by a variety of 
types of thermometers. The most common scales used 
to quantify temperature are the Celsius (or centigrade) 
scale used throughout most of the world and the Fahr-
enheit scale used primarily in the United States. Atmo-
spheric pressure is measured by a barometer, whose 
invention is attributed to various sources including 
Galileo Galilei and mathematicians Gasparo Berti and 
Evangelista Torricelli. 

There are many common units for pressure, includ-
ing inches of mercury, pounds per square inch, pascals, 
named for mathematician Blaise Pacsal, and atmo-
spheres. One atmosphere is defined as the mean atmo-
spheric pressure at mean sea level, originally measured 
with respect to the latitude of Paris, France. Millibars are 
often used in weather reports and forecasts. A hygrome-
ter measures the amount of water vapor in the air. How 
much water vapor the air can hold is a function of tem-
perature and relative humidity expresses the quantity 
of water vapor as a unitless fraction or percentage of 
the possible amount of water for a given temperature. 

Humidity can be used in probability models to predict 
precipitation, dew, and fog. Further, high humidity 
changes the subjective feeling of the air temperature for 
people because high humidity reduces the evaporation 
of sweat. This effect is quantified as a heat index, with 
assumptions about many variables such as wind speed, 
body mass, clothing, physical activity, and exposure to 
sunlight. A similar concept is wind chill, which relates 
the subjective perception of cold. Scientist Robert 
Steadman has researched and mathematically modeled 
both of these effects and they have become a common 
part of weather forecasts.

Wind
Another weather variable is wind speed. In 1805, Sir 
Francis Beaufort, an Irish hydrographer, developed 
what is now called the Beaufort scale to describe and 
categorize the strength of the wind. The scale has 13 
points ranging from zero (calm air) to 12 (hurricane-
force winds). On the scale, the Beaufort number two is 
identified as a “light breeze,” with wind speed 6–11 kilo-
meters per hour (km/hr) producing wind that is felt on 
the face, leaves that rustle, movement of a wind vane, 
and on the water, small, short wavelets that do not break. 
Further along the scale is Beaufort number five, a “fresh 
breeze,” with wind speeds between 29 and 38 km/hr. At 
this point, small, leafy trees will sway, moderate waves 
become longer, and there are many whitecaps and some 
spray. Wind speeds between 62 and 74 km/hr are classi-
fied as a “gale,” Beaufort number eight. Twigs and small 
branches break off trees. At sea, there are moderately 
high waves of greater length. Beaufort number 10 is used 
when wind speeds are between 89 and 102 km/hr and 
are “storm-force” winds. Trees are broken and uprooted 
and structural damage occurs. At sea, there are very high 
waves with overhanging crests and visibility is reduced.  
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Scale Number 
Wind Speed  

(km/hr)

Storm Surge 

(meters)

Central Pressure 

(millibars)
Damage

1 121–154 1–2 ≥ 980 Minimal
2 155–178 2–3 965–979 Moderate
3 179–210 3–4 945–964 Extensive
4 211–250 4–6 920–944 Extreme
5 >250 >6 <920 Catastrophic

Table 2. Saffir-Simpson scale of hurricane strength.

Table 1: Fujita scale of tornado strength.

Scale
Wind Speed 

(km/hr)
Damage

F-0 65–118 Light
F-1 119–181 Moderate
F-2 182–253 Considerable
F-3 254–332 Severe
F-4 333–419 Devastating
F-5 420–513 Incredible



The terms and descriptions make it clear that as 
wind speed rises so does its destructive power. In fact, 
the force exerted by wind increases as the square of the 
velocity such that a doubling of the wind’s velocity leads 
to a quadrupling of the force: F ~ V 2. Some of the most 
powerful winds experienced on Earth are found in hur-
ricanes and tornadoes. Their destructive power can be 
astounding and has been the subject of much study and 
research. The Fujita scale, presented in Table 1, is used to 
categorize tornado strength in terms of rotational wind 
speed (given in km/hr) and damage inflicted by the 
wind.  While tornadoes are generally associated with 
severe thunderstorms and are seldom more than 1.5 
km in diameter, hurricanes can involve whole systems 
of thunderstorms and may be several hundred kilome-
ters in diameter. The Saffir–Simpson scale, used to cat-
egorize hurricanes, is presented in Table 2.  

Further Reading
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Lynch, Peter. The Emergence of Numerical Weather 

Prediction: Richardson’s Dream. Cambridge, England: 
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Moran, Joseph P., and Lewis W. Morgan. Meteorology: 
The Atmosphere and the Science of Weather. Edina, 
MN: Burgess Publishing, 1986.
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See Also: Clouds; Doppler Radar; Hurricanes and 
Tornados; Temperature; Weather Forecasting.

Weightless Flight
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry.
Summary: The forces to experience the sensation 
of weightlessness, or zero-G, can be calculated and 
achieved in a variety ways.

Gravity is the mutual attraction of two masses. Impor-
tant aspects of the mathematics and the theory of 

gravity were described centuries ago by Galileo Galilei 
and Isaac Newton. Albert Einstein’s work was critical 
to the modern understanding of gravity and weight-
lessness. Mass is the measure of the amount of matter 
in an object. For living beings, weight can be thought 
of as the subjective experience of muscles resisting the 
pull of the much larger Earth on their smaller masses. 
On the Earth’s surface, gravitational acceleration is 
about 9.8 meters per second (one gravity or g). Other 
planets have different gravity. For example, an Earth 
person would feel about 2.5 times heavier on Jupiter. 
Infants learn to accommodate gravity’s pull when per-
forming the activities of daily life until the force feels 
natural and largely unnoticed. However, sometimes 
people experience other forces acting on their bod-
ies that counter the pull of gravity and change their 
perceptions of weight. For example, the quick start or 
stop of an elevator can make a person feel heavier or 
lighter. Roller coasters purposely induce similar effects 
for amusement. Parabolic drops, turns, and loops exert 
temporary linear or angular forces on a moving body, 
some of which act along a different directional vector 
than gravity and combine mathematically to alter the 
body’s perception of weight. Mathematicians, scien-
tists, and engineers precisely calculate the net effect 
of gravity and other forces on objects for a wide range 
of applications, such as banked curves on racetracks 
and highways, the movement of subatomic particles, 
launching spacecraft to the moon, and of course, ever 
more thrilling amusement park rides.

Zero-G
The planet’s mass exerts a strong gravitational pull 
even on objects in space. This force is what keeps sat-
ellites in position. However, many people have seen 
video images of astronauts who are floating around as 
if they are weightless. This effect is known as zero-G 
or, more accurately, “microgravity” (about 1 × 10−6 g). 
Like roller coasters, this effect results from a combina-
tion of forces acting on the body. At any given instant 
in time, the astronauts are accelerating freely toward 
the Earth inside an object that is accelerating freely at 
the same rate. They can be visualized in that instant 
as falling on a straight line drawn from the spaceship 
to the Earth, perpendicular to a tangent line drawn at 
the ship’s current position in its curved orbit. However, 
the ship’s directional vector is constantly changing 
because of its curved orbit, so it perpetually “falls” in a 
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new direction—around the Earth, instead of toward it. 
The spacecraft’s precisely calculated inertial trajectory 
effectively counters the astronauts’ constant “falling.” 
As a result, the astronauts do not move with respect to 
their immediate surroundings, so they look and feel as 
if they are floating weightlessly. A spacecraft lands by 
altering its curved orbit so that the gravity is no longer 
sufficiently opposed.

Free-fall or zero-G can be achieved in several ways 
without leaving Earth’s atmosphere. NASA’s Neutral 
Buoyancy Simulator uses the world’s largest indoor 
pool, containing over six million gallons of water, to 
simulate weightlessness without flying or falling, while 
their Zero Gravity Research Facility can achieve just 
over five seconds of free fall in a 467-foot long steel vac-
uum chamber, which is used to test microgravity effects 
on phenomena such as combustion and fluid phys-
ics. As part of a series of experiments in the 1960s, Air 
Force Captain Joseph Kittinger parachuted from a gon-
dola at an altitude of almost 103,000 feet. He achieved 
a speed of over 600 miles per hour on his descent but 
he reported having no real subjective sensation of the 
incredible speeds. Standard aircraft can be used to cre-
ate brief periods of weightlessness, about 30 seconds, by 
flying in a parabolic pattern or “Kepler curve,” named 
for Johannes Kepler. NASA uses this method to train 

astronauts, and the weightless effects seen in the 1995 
movie Apollo 13 were produced using parabolic flight. 
Several commercial companies also offer the experience 
to the general public. A privately funded experimental 
“spaceplane” called SpaceShipOne achieved suborbital 
flight in 2004. A revised commercial version called VSS 
Enterprise flew for the first time in 2010 and is tak-
ing reservations for future commercial flights that will 
launch passengers into suborbital space.

Further Reading
Clement, Giles, and Angeli Bukley. Artificial Gravity.  

New York: Springer, 2007.
Erickson, Lance. Space Flight: History, Technology,  

and Operations. Lanham, MA: Government  
Institutes, 2010.
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See Also: Airplanes/Flight; Gravity; Interplanetary 
Travel; Planetary Orbits; Ride, Sally; Spaceships.

Wheel
Category: Travel and Transportation.
Fields of Study: Algebra; Geometry.
Summary: Wheels help humans perform work and 
travel by providing a mechanical advantage.

Circles are present in many places in nature and math-
ematicians studied them long before the common use 
of the wheel. A wheel is traditionally a cylinder rotating 
around an axle. Together, a wheel and an axle form a 
simple machine that can change direction and magni-
tude of forces. Wheels are widely used in transporta-
tion as gears, as handles and knobs, and for converting 
the energy of water, animals, or people into work. The 
notion of curvature is of interest to many mathema-
ticians, scientists, engineers, and others. In geometry, 
wheels are often modeled as circles or as concentric 
circles. In addition to standard circles or cylinders, 
mathematicians have explored the properties of wheels 
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of other shapes along with varying surfaces. Aristotle’s 
Wheel paradox, named for Aristotle of Stagira, is an 
interesting mathematical problem involving the paths 
traced by a wheel made of two concentric circles. It 
seems to imply that the circumferences of different 
sized circles are equal. This is one of many mathemati-
cal questions that arise from rotating concentric circles 
or exploring the curves generated by wheels.

History and Mechanical Advantage
Wheeled vehicles were invented about 6500 years ago, 
but they were not used widely until the rise of large, 
organized, road-building societies. This discrepancy 
between the discovery and its wide adoption, because of 
the lack of infrastructure, is frequent in science. Using 
wheels as levers to change the magnitude of force for 
applications like grinding grain was more widespread 
in many societies. The force advantage that a wheel pro-
vides is equal to the radius of the wheel divided by the 
radius of the axle. For example, a ship’s capstan with 
the radius of eight feet and the axle radius of one foot 
multiplies the force of sailors using it by eight. This 
relationship is the reason that water wheels on small, 
weak streams that do not provide much force have to be 
larger than on fast-moving streams—a weak stream will 
not provide enough force to turn a small wheel. Rotat-
ing handles or knobs, grinders, drills, and old-fashioned 
water wells all use the wheel’s mechanical advantage.

Geometry and Physics of Rolling:  
Work Smart, Not Hard
Rolling vehicles on wheels save work compared to 
dragging the same weight along the ground. Friction 
between the ground and a dragged object occurs along 
the length of the path. The work needed to overcome 
this friction is proportional to the friction coefficient, 
which depends on the surfaces of the object and the 
path. On smooth surfaces, such as ice, the friction coef-
ficient is lower than on rough surfaces, such as rock. 
Work is also proportional to the weight of the object 
and the length of the path. When an object is rolled, 
its weight presses the axles to the wheels. Instead of the 
object-road friction, the force to overcome is now the 
axle-wheel friction, which is also proportional to the 
weight. When a wheel turns around, the vehicle trav-
els the distance equal to the wheel’s circumference. 
If the radius of the axle is one-tenth of the radius of 
the wheel, then the distance the axle slides within the 

wheel is one-tenth of the distance the vehicle travels 
and the required work is divided by 10. It is relatively 
easy to reduce axle-wheel friction many times by using 
smooth surfaces, oil, and ball bearings. Vehicles for 
heavier loads usually have more wheels to distribute 
the force of the load.

Reinventing the Wheel
Since wheels are essential to most human endeavors, 
there are many wheel-related sayings. “Reinventing the 
wheel” means “needlessly duplicating a well-known 
method.” Ironically, wheels themselves are being con-
stantly reinvented. For example, roller bearings first 
appeared in Leonardo da Vinci’s drawings in the six-
teenth century but were patented and used widely only 
in the nineteenth century. Magnetic bearings reduce 
axle-wheel friction to essentially zero and, therefore, 
promise huge increases in machine efficiency; their 
development started in 1980s. In the 1990s, mathemat-
ics and science museums began to feature bikes with 
square wheels that move smoothly over special surfaces 
consisting of “catenaries,” which are hyperbolic shapes 
resembling hanging lengths of chains.

Further Reading
Farris, Frank. “Wheels on Wheels on Wheels—Surprising 

Symmetry.” Mathematics Magazine 69, no. 3 (1996).
Goodstein, Madeline P. Wheels! Science Projects With 

Bicycles, Skateboards, and Skates. Berkeley Heights, NJ: 
Enslow Publishers, 2009.  
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See Also: Bicycles; Curves; Pi; Street Maintenance; 
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Wiles, Andrew
Category: Mathematics Culture and Identity.
Fields of Study: Algebra; Connections; Geometry.
Summary: Over 350 years after its conjecture in a 
marginal comment, Fermat’s Last Theorem was finally 
proven by British mathematician Andrew Wiles.
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Andrew Wiles is most well-known for solving Fer-
mat’s Last Theorem, and he has received many awards, 
including the prestigious MacArthur Fellowship. For 
seven years, Wiles worked in unprecedented secrecy, 
struggling to solve Fermat’s Last Theorem, a problem 
that had perplexed and motivated mathematicians for 
three centuries. Wiles’s solution of Fermat’s Last Theo-
rem brought him both fame and personal satisfac-
tion. He said of his accomplishment, “I had this very 
rare privilege of being able to pursue in my adult life 
what had been my childhood dream.” This work also 
brought him pain when a subtle but fundamental error 
was discovered in his proof. Wiles eventually fixed the 
mistake, solidifying his magnificent achievement and 
permanent place in history.

Fermat’s Last Theorem
Fermat’s Last Theorem states that the equation 
xn + yn = zn has no positive whole number solutions for 
n > 2. In other words, while the Pythagorean Theorem 
x2 + y2 = z2 has whole number solutions (such as x = 3, 
y = 4, and z = 5), similar equations with larger expo-
nents, like x3+ y3= z3 and x4+ y4= z4, have no positive 
whole number solutions. French mathematician Pierre 
Fermat (1601–1665) wrote in the margin of a book 
that he had discovered a remarkable proof for this the-
orem, but that the margin was too small to contain it. 
For the next three centuries, the best mathematicians 
in the world sought a solution to this problem, and 
these attempts inspired many new mathematical ideas 
and theories.

Wiles’s Proof
As a 10-year-old, Andrew Wiles already loved solving 
mathematical problems. He read about the history of 
Fermat’s Last Theorem in a library book about math-
ematics. Despite its long history, this problem was sim-
ple enough for him to understand, and it fascinated and 
motivated him. As his mathematical knowledge became 
more advanced, he realized that there were no new tech-
niques available to solve Fermat’s Last Theorem. When 
Fermat’s Last Theorem became linked to modern math-
ematical methods in algebraic geometry, he resumed his 
work. The quest to find a proof of Fermat’s Last Theorem 
finally came to an end when Wiles announced his results 
in 1993. Wiles had worked in isolation on the problem 
for many years while on the faculty at Princeton Uni-
versity, and his announcement came as a surprise to the 

mathematics community. Wiles’s work combined two 
fields of mathematics, elliptical functions and modular 
forms, to solve the elusive problem.

Wiles directly proved what is known as the  
Taniyama–Shimura Conjecture. Goro Shimura and 
Yutaka Taniyama were two Japanese mathematicians 
who, in the 1950s, conjectured that there was a rela-
tionship between elliptical equations and modular 
forms. Later, thanks to the earlier work of mathemati-
cians Gerhard Frey, Ken Ribet, and Barry Mazur, it was 
shown that if the Taniyama–Shimura Conjecture were 
true, then so was Fermat’s Last Theorem. His results 
were presented in a dramatic series of lectures at a 
conference in Cambridge, England. 

However, not long after Wiles announced his dis-
covery, an error was found in one section of the long 
and difficult proof. With the help of one of his former 
students, Richard Taylor, Wiles was able to make the 
necessary changes. However, these corrections took 
over a year to complete, illustrating the complexity of 
the proof that Wiles had constructed.

Methods
Many people may wonder how Andrew Wiles was 
able to solve a problem that had eluded so many oth-
ers skilled mathematicians. Wiles himself has said that 
he does not always know exactly where his new tech-
niques come from, but he defines a good mathematical 
problem by the mathematics it generates, not by the 
problem itself. He never uses a computer in his work, 
preferring to doodle, scribble, or find patterns via cal-
culations. As do most scholars, he also reads previous 
research for methods that he can adapt to his work. 
When he gets stuck working on a problem, he report-
edly tries to change it into a new version that he can 
solve or steps away from it entirely to relax and allow 
his subconscious to work. He has described his per-
sonal process by the following analogy:

Perhaps I could best describe my experience of 
doing mathematics in terms of entering a dark 
mansion. One goes into the first room, and it’s dark, 
completely dark. One stumbles around bumping 
into the furniture, and gradually, you learn where 
each piece of furniture is, and finally, after six 
months or so, you find the light switch. You turn 
it on, and suddenly, it’s all illuminated. You can see 
exactly where you were. Then you move into the 
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next room and spend another six months in the 
dark. So each of these breakthroughs, while some-
times they’re momentary, sometimes over a period 
of a day or two, they are the culmination of—and 
couldn’t exist without—the many months of stum-
bling around in the dark that proceed them.
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See Also: Cubes and Cube Roots; Mathematics, 
Theoretical; Proof; Pythagorean Theorem.

Wind and Wind Power
Category: Weather, Nature, and Environment.
Fields of Study: Data Analysis and Probability; 
Geometry; Measurement.
Summary: Wind and wind power have been 
mathematically studied for centuries as an energy 
source and promise to be increasingly important 
energy sources.

Wind is omnipresent. There are few parts of the world 
that are not affected by the wind, from the pleasant 
breezes off a lake to the terrifying destruction of hur-
ricanes and tornados. Historically, wind was one of 
the most important sources of energy; it drove sail-
ing ships and was key to driving some pre-industrial 
revolution machines, such as windmills. Being able to 
master the wind was a key component in the fate of 
empires. For example, in 1588, it is said that the Span-
ish Armada of Catholic King Philip II was defeated by a 

“strong Protestant wind” that forced his fleet off course 
and prevented a vulnerable England under the reign 
of Queen Elizabeth I from being invaded. In the wake 
of the steam engine, developed by James Watt in the 
1760s, and the emergence of coal-powered machines 
during the Industrial Revolution, the age of wind and 
sail began to decline for much of the industrialized 
world. Many cite this shift to fossil fuel sources as a 
cause of the rise in carbon dioxide, other greenhouse 
gasses (GHGs), and the global warming phenomenon, 
and there is a movement toward returning to wind as 
one source of clean energy. 

Mathematicians and scientists have long been 
involved in the study of wind and wind energy. Posido-
nius of Rhodes (c. 135–51 b.c.e.) theorized about 
clouds, mist, wind, and rain. Francis Beaufort (1774–
1857) developed a mathematical scale to describe wind 
speed. Twenty-first-century engineer Michael Klemen 
has explored mathematical issues of wind data acquisi-
tion as a function of time and estimated wind resource 
availability for power generation. Mathematicians con-
tinue to contribute to these fields and to the explora-
tion of related phenomena like solar winds, which are 
believed to have first been observed by astronomer 
John Herschel during his observations of Halley’s 
comet in 1835.

History
Seventeenth-century mathematician Evangelista Tor-
ricelli was reputed to be skilled in making instruments 
and he is often credited with inventing the barom-
eter. He also conducted research about weather and 
is believed to have given the first correct explanation 
of wind when he said, “winds are produced by differ-
ences of air temperature, and hence density, between 
two regions of the earth.” In the seventeenth and 
eighteenth centuries, mathematician Philippe de La 
Hire studied instruments to measure climate, includ-
ing temperature, pressure, and wind speed. He went 
on to collect data using these instruments at the Paris 
Observatory. In the nineteenth century, William Ferrel 
proposed a model for wind circulation, which was the 
first recorded theory to explain the westerly winds in 
the middle latitudes of both the northern and south-
ern hemispheres. Ferrel cells are phenomena where air 
flows eastward and towards the pole near the Earth’s 
surface, but westward and toward the equator at higher 
altitudes. The Beaufort wind scale was also named in 
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the nineteenth century after Francis Beaufort, a Brit-
ish Rear Admiral who reportedly extended the work 
of many individuals in trying to standardize wind 
measurement and description. The invention of the 
cup anemometer by astronomer and physicist John 
Robinson in the middle of the same century aided in 
measuring winds and reputedly helped popularize the 
measure. The Beaufort wind scale was later revised by 
meteorologist George Simpson in the early twentieth 
century. Mathematician Lewis Richardson is widely 
considered a pioneer of mathematical weather predic-
tion. He applied the method of finite differences and 
other mathematical methods in his Weather Prediction 
by Numerical Process in 1922. Wind is often mathe-
matically modeled as a fluid, and some of Richardson’s 
work was an extension of studies regarding water flow 
in peat. The Richardson number is a function involving 

gradients of temperature and wind velocity. Edward 
Milne, his contemporary, studied wind and sound, 
helping to refine huge binaural listening trumpets used 
to detected aircraft at night during World War I. In 
the twenty-first century, mathematicians often model 
various aspects of wind and wind power, including 
the wind movement through plant canopies using first 
and second order closure techniques; the probability of 
bird collisions with wind turbine rotors using statisti-
cal methods and calculus; descriptions and predictions 
of surface wind in mountainous terrain using statisti-
cal methods, geometry, vectors, and other mathemati-
cal functions; and the wind flow or turbulence over 
many types of surfaces, including turbine blades, ocean 
waves, automobiles, and structures. 

U.S. Wind Research and Applications
The first wind system to generate electricity in the United 
States was built by Charles Brush in the late nineteenth 
century. However, there was relatively little development 
in that area until the energy crises of the 1970s, which 
motivated people to seek alternative sources of electric-
ity, such as wind. The 1990s and the 2000s saw techno-
logical advances, decreasing turbine costs, and the emer-
gence of popular and political support for wind energy. 
At the start of the twenty-first century, the U.S. govern-
ment aimed to have 20% of all electricity generated by 
wind by 2030. Moreover, statistical studies and other data 
suggest that wind should be able to compete on a cost-
effective basis with traditional fossil fuel sources. Some 
reports even estimate that wind will account for 26% of 
the increase in renewable energy production by 2035, 
though this extrapolation may not be reliable. Wind 
has shown a number of advantages compared to other 
forms of electricity production: it does not emit green-
house gasses while in operation, it is freely available, it 
is not subject to energy security concerns, there are no 
waste products, and the maintenance costs are relatively 
low compared to traditional or nuclear generating facili-
ties. For energy sources such as wind and nuclear, the 
emissions occur during the construction phase and tend 
to be associated with the amount of concrete and steel 
used in the facilities. Wind energy also faces technologi-
cal problems with intermittency, as electricity can only 
be produced while the wind is blowing and this problem 
had been studied by mathematicians. 

For example, the Weibull correlation model, based 
on the Weibull distribution named for mathemati-
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Wind Tunnels

W ind tunnels allow scientists and mathe-
maticians to create wind under controlled 

conditions to test theories and applications. 
Mathematicians Benjamin Robins and George 
Cayley constructed simple spinning devices to 
model drag and other aerodynamic forces in 
the nineteenth century but the flow is difficult to 
control under such conditions. Engineer Francis 
Wenham is credited with the invention of the 
first enclosed wind tunnel, in 1871, with col-
league John Browning. Wind tunnels were used 
by Orville and Wilbur Wright in developing their 
airplane prototypes as well as by German scien-
tists at the famous World War II Peenemünde 
research facility. With advances in computer 
technology, the properties of wind are often 
modeled using computational fluid dynamics 
rather than physical data collection in wind tun-
nels, or the two methods are used to compare 
and cross-validate results. The foundations of 
these methods are the Navier–Stokes equa-
tions, which are systems of nonlinear partial 
differential equations developed by mathemati-
cians Claude-Louis Navier and George Stokes.



cian (Ernst) Waloddi Weibull, estimates energy out-
puts with reduced uncertainty versus previous models, 
which is potentially useful for preventative operation 
and maintenance strategies. The National Renewable 
Energy Laboratory offers both wind data sets and has 
developed many mathematical models to explore wind 
energy grids, economic impact of wind energy, and 
even a model called Village Power Optimization Model 
for Renewables (ViPOR), which is a computational 
tool that facilitates the design of a village electrification 
system using the lowest cost combination of central-
ized and isolated power generation. Beyond land-based 
power generation, scientists and engineers like Maxi-
millian Platzer and Nesrin Sarigul-Klijn are exploring 
the potential benefits of a return to wind energy as a 
supplement for large, ocean-going ships.

Further Reading
Huler, Scott. Defining the Wind: The Beaufort Scale and 

How a Nineteenth-Century Admiral Turned Science 
Into Poetry. New York: Three Rivers Press, 2004.

Shepherd, William, and Li Zhang. Electricity Generation 
Using Wind Power. Singapore: World Scientific 
Publishing Company, 2010.

Walker, Gabrielle. An Ocean of Air: Why the Wind Blows 
and Other Mysteries of the Atmosphere. London: 
Bloomsbury, 2007.

Jason L. Churchill

See Also: Hurricanes and Tornadoes; Tides and 
Waves; Weather Forecasting; Weather Scales.

Wind Instruments
Category: Arts, Music, and Entertainment.
Fields of Study: Geometry; Number and 
Operations; Representations.
Summary: The frequency and pitch of wind 
instruments are determined by their shape, length, 
and other factors.

Wind instruments convert the energy of moving air 
into sound energy—vibrations that are perceptible 
to the human ear. Under this definition, wind instru-

ments include the human voice; pipe organs; wood-
wind instruments, such as the clarinet, oboe, and flute; 
and brass instruments, like 
the trumpet. The nature 
of this vibration and 
the associated resonator 
tube are responsible for 
the unique timbre of each 
type of wind instrument.

Sources of Vibrations
In the human voice, the flow of air from the lungs causes 
the vocal cords (also called “vocal folds”) in the larynx to 
open and close in rapid vibration. This periodic stopping 
of the air stream creates oscillatory pulses of air pressure, 
or sound. The frequency of this vibration and the pitch 
of the resulting sound are determined by the length and 
tension of the cords. A singer or speaker controls these 
factors using the musculature of the larynx.

The rapid open-close vibration of the vocal cords is 
present in many wind instruments. In brass instruments, 
such as the trumpet, trombone, French horn, and tuba, 
the lips of the musician form a small aperture that opens 
and closes in response to air pressure. Brass instruments 
are sometimes called “lip-reed” instruments. In single-
reed instruments, like the clarinet and saxophone, a thin 
cane reed vibrates in oscillatory contact with a specially 
shaped structure (the mouthpiece) to bring about the 
open-close effect. The oboe and bassoon utilize two cane 
reeds held closely together with a small space between 
them that opens and closes in response to flowing air, 
controlled by the muscles of the lips.

A third important mechanism for converting the 
energy of moving air into vibration is utilized in the 
flute and the so-called flue pipes of the pipe organ. In 
these instruments, vibration occurs when flowing air 
passes over an object with a distinct edge that splits the 
airstream. The resulting turbulence gives rise to oscil-
latory vibration. With the modern flute, the flutist’s lip 
muscles actively control the interaction between the 
airstream and the edge. With the recorder and other 
whistle-type instruments, as well as flue pipes of the 
organ, the interaction is controlled by the mechanical 
design of the instrument alone.

Tube Resonators and Overtones
With the exception of the human voice, all wind instru-
ments are constructed with a tube resonator enclosing 
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a column of air that functions in much the same way as 
the vibrating string. Oscillations in air pressure inside 
the tube reflect from the ends, resulting in significant 
feedback with the primary vibrating medium. The rela-
tionship between the vibration frequency and length 
of a string fixed at both ends is explained by the con-
cept of “harmonics.” In idealized settings, changing the 
string length by small integer factors (for example, 1/2, 
1/3, or 1/4) results in frequency changes that are rec-
ognizable as musical intervals (for example, an octave, 
an octave plus a fifth, or two octaves). The resonating 
air column in wind instruments behaves similarly to a 
vibrating string.

An important performance practice on most wind 
instruments is overblowing. Not to be confused with 
simply playing overly loudly, the term “overblowing” 
refers to the fact that changes in the airflow can cause 
the resonating air column to vibrate at an overtone 
above its fundamental frequency. Overblowing allows 
performers on modern instruments to achieve a large 
range of pitches (often two octaves or more) from a rela-
tively compact resonating tube. Instruments with cylin-
drical tubes open at both ends, such as in some flutes, 
overblow at the octave, as do conical instruments that 
are closed at one end, such as the oboe and saxophone. 
On the other hand, cylindrical tubes closed at one end, 
such as the clarinet, overblow at the twelfth—an octave 
plus a fifth. The relative weakness of the overtone at the 
octave and other even-numbered overtones account for 
the particular timbre of the clarinet.

Altering the Tube Length in Performance
Just as the length of a vibrating string determines the 
frequency or pitch of the vibration, the length of the 
resonating air column accounts for the pitch of notes 
played by a wind instrument. In reed instruments, 
the resonating tube is perforated along its length with 
holes. By systematically covering some of the holes but 
not others, the musician effectively changes the length 
of the resonating column. This change, in turn, causes 
the vibrating reed assembly to assume the frequency of 
the air column. Most brass instruments have secondary 
lengths of tubing that are brought into play by mechani-
cal valves by which the performer alters the length and 
the fundamental frequency of the vibrating air column. 
The exception to this is the slide trombone, which fea-
tures a concentric tube arrangement by which the outer 
tube can move to lengthen the air column resonator.

Further Reading
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Miller, Dayton Clarence. The Science of Musical Sounds. 
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See Also: Geometry of Music; Harmonics; Percussion 
Instruments; Pythagorean and Fibonacci Tuning; Scales; 
String Instruments.

Windmills
Category: Architecture and Engineering.
Fields of Study: Algebra; Geometry; Measurement.
Summary: The amount of power that a windmill can 
harness can be determined mathematically according 
to its size and design.

For centuries, windmills have captured peoples’ imagi-
nations through their form, function, and romantic 
appeal. Immortalized by Miguel de Cervantes in his 
book Don Quixote, windmills have transformed over 
the years from broad, short structures with an even 
number of sails to tall, sleek, three-sailed structures 
equipped with turbines for capturing energy from the 
wind. Windmills utilize natural power sources to per-
form a variety of functions, including energy produc-
tion and food processing. Wind-driven prayer wheels 
have been used since the fourth century in Tibet and 
China. Historians believe that people in ancient Per-
sia built the first practical windmills for both grind-
ing grain and pumping water. From there, they spread 
through the Middle East and parts of Asia, as well as 
to India. They can be documented in Europe by the 
twelfth century. Wind turbines developed primarily in 
the twentieth century. Mathematics has been impor-
tant for both the design of windmills and in calculat-
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ing and modeling their output. Interestingly, English 
mathematician and physicist George Green was also 
a miller, and he is believed to have done much of his 
mathematics work in his windmill.

Designs
Windmills have had a wide variety of designs and 
appearances. Some of the earliest windmills rotated 
along a vertical axis, with the main rotor placed vertically 
in relation to the ground and giving a look similar to a 
helicopter. Some modern wind turbines have retained 
this engineering design in areas where wind direction is 
variable. This design is advantageous because vertical-
axis windmills have an axis of rotation perpendicular to 
the ground, so the sails react similarly to all wind direc-
tions. On the other hand, horizontal-axis windmills 
have an axis of rotation that is parallel to the ground, 
resembling the more common image of a windmill such 
as that found in Don Quixote. The structure of horizon-
tal-axis windmills gives the advantage of allowing their 
potential work to be maximized with respect to a specific 
wind direction. It is important to place a horizontal-axis 
windmill in line with the prevailing wind.

Windmills have traditionally been designed sym-
metrically, including an even number of sails. Histori-
cally, workers would place food and other substances in 
special locations inside the windmill to be ground by 
stones or other clashing materials. The grinding mate-
rials were sometimes connected to a system of gears 
and pulleys to increase the power beyond the mere 
rotation of the sails. Most modern wind turbines con-
tinue to have a sleek, symmetric design but have three 
sails. The insides of these turbines are devoted mostly 
to the attainment of electric power.

Number of Blades
The number of blades on a windmill is in direct cor-
relation to the power generated, although the coeffi-
cient is quite small. The amount of power generated 
increases nearly linearly with each additional blade but 
the increase in power beyond just two or three blades is 
quite small for modern wind turbines. Physicists have 
determined that the power generated by a wind tur-
bine is proportional to the cube of the wind speed and 
can be found algebraically by

P EA dv= 1

2
3

where E is the power efficiency of the rotor, A is the 
swept area, d is air density, and v is wind speed. The 
swept area relates to the circle created by a rotation of 
a sail, calculated by

A l= 1

2
2π

where l is the length of the sail. The theoretical maxi-
mum of E, known as the “Betz limit,” is 0.59. The Betz 
limit is named for Albert Betz, a German physicist who 
was also interested in wind power. However, this the-
oretical value is reduced significantly when common 
physical constraints, including friction and drag on the 
rotors, are considered. One can calculate the maximum 
power produced by a windmill algebraically as

P A dvmax = 8

27

1

2
3 .

It is difficult to put tight parameters on the variables 
that determine the amount of power produced by a 
wind turbine. However, a good estimate of the produc-
tion of power for a 10-foot diameter sail in 12 miles 
per hour average winds is 2300 kilowatts of power. In 
a wind farm, several turbines are interconnected by a 
power collection system and communications network 
to pool their output and connect to a power grid. Prob-
abilistic mathematical models are used to estimate and 
describe the output of networks of wind turbines.

Further Reading
Betz, A. Introduction to the Theory of Flow Machines. 

Translated by D. G. Randall. Oxford, England: 
Pergamon Press, 1966.

Brooks, L. Windmills. New York: Metro Books, 1989.
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Energy for Home, Farm, and Business. New York: 
Chelsea Green Publishing, 2004.

Gorban, A. N., A. M. Gorlov, and V. M. Silantyev. “Limits 
of the Turbine Efficiency for Free Fluid Flow.” Journal 
of Energy Resources Technology, 123, no. 4 (2001).

David Slavit
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See Also: Carbon Footprint; Electricity; Energy; Wind 
and Wind Power.
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Wireless  
Communication
Wireless communication has become ubiquitous in the 
twenty-first century. Consider all of the aspects of one’s 
life that are impacted by wireless communications, 
including text messaging and voice calls over a cellular 
network, and e-mail and Web surfing over a wireless 
Internet connection. Wireless communication consists 
of encoding information onto radio waves and pass-
ing them through the atmosphere—not unlike how an 
amplitude modulation (AM) or frequency modulation 
(FM) radio signal is sent and received. Wireless com-
munication would not be possible without mathemat-
ics, and mathematicians contribute in many ways to 
creating, sustaining, and studying wireless processes 
and technologies.  

Information theory plays a central role in wireless 
communications; its origins are attributed to math-
ematician Claude Shannon in the mid-twentieth cen-
tury. Sergio Verdu, who is cited as a world-renown 
researcher in wireless communications noted, “Claude 
Shannon was the archetypical seamless combination 
of mathematician and engineer. . . . Shannon’s theory 
has been instrumental in anything that has to do with 
modems, wireless communications, multi-antenna 
and so on.”

Many other theoretical and applied mathemati-
cal methods have also been fundamental in wireless 
communication. For example, methods like stochastic 
calculus, stochastic modeling, control theory, graph 
theory, game theory, signal processing, wavelets, sim-
ulation and optimization, and multivariate statistical 
analysis have been used to develop communication 
networks, quantify or predict performance characteris-
tics like network traffic, and to create protocols for sig-
nal transmission, encryption, and compression. Some 
mathematical models have been used by developers to 
quantify and compare wired versus wireless communi-
cation systems.

Mathematicians and engineers working in wireless 
communications must consider the properties of the 
waves and how the information is encoded. Informa-
tion, whether an e-mail, telephone, video, or other data, 
is encoded onto the sinusoidal waveform by combining 
changes in frequency, amplitude, and phase. This encod-
ing is accomplished by modifying various properties of 

a periodic sinusoidal function—the carrier wave—to 
embed information or message wave on the carrier. Fig-
ure 1 shows a simple example for the case of AM. The 
height or amplitude of the carrier wave is modified to 
represent or information or modulating wave.

Researchers also consider the variety of factors that 
can affect the strength and quality of the signal. A 
communications engineer or technician is most often 
concerned with behaviors that will affect the propaga-
tion of the radio wave through the air. These include 
absorption, attenuation, diffraction, free space path 
loss, gain, reflection, refraction, and scattering. A 
combination of these factors will impact the signal 
quality and determine the likelihood of a successful 
transmission.

One common number associated with a wireless 
signal is the frequency.  Frequency is a measure of how 
many cycles occur for a given time period. A signal 
cycle occurs every time a waveform repeats. Frequency 
is measured in cycles per second, which are also called 
“hertz” (Hz) after German physicist Heinrich Hertz. 
A waveform that repeats once every second has a fre-
quency of 1 hertz. Waves used in communications are 
at much higher frequencies, so some prefixes must be 
used to measure radio frequencies.  The wireless net-
works used for laptops and smartphones at the begin-
ning of the twenty-first century often operate at the 2.4 
GHz and 5 GHz frequencies of the spectrum. AM and 
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FM radio are in the kHz or MHz frequencies, while 
satellites operate at very high frequencies—often in 
the hundreds of GHz.

Michael Qaissaunee

See Also: Cell Phone Networks; Satellites; Telephones.
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Women
Category: Mathematics Culture and Identity.
Fields of Study: Communication; Connections.
Summary: Historically, women have been 
underrepresented in mathematics careers and 
professions.

Questions are raised periodically about women’s par-
ticipation or lack thereof in mathematics. This issue 
has been investigated from the perspectives of various 
disciplines, among them, history, psychology, neuro-
science, economics, and statistics. Each of these per-
spectives has strengths and weaknesses and sheds light 
on different aspects of the issue. 

Differences of era, place, and culture can affect find-
ings; thus, results for one population do not always 
extend to others and findings from one decade may not 
hold for the next. In all cases, various forms of bias may 
affect the selection and interpretation of the informa-

tion presented—on the part of newspapers, journals, 
researchers, and writers, as well as their audiences. 

Pre-College and College Participation
Historical research has documented how the propor-
tions of women in mathematics and other fields have 
waxed and waned with changes in societal norms, insti-
tutional policies, and mathematical practices. 

In the antebellum, nineteenth-century United States, 
schooling was not compulsory, and most adolescents 
did not attend school. Mathematics, other than arith-
metic, was not a college prerequisite and the adolescent 
girls enrolled in school did often not study the Greek 
and Latin required of college-bound boys. By the 1890s, 
about 7% of 14–17-year-olds attended high school. 
Girls outnumbered boys in mathematics courses at 
public high schools, sometimes outperforming them.

The proportion of adolescents attending high school 
increased rapidly. By 1940, almost three-quarters of 
14–17-year-olds attended high school. However, many 
high schools de-emphasized or eliminated mathemat-
ics requirements and smaller proportions of students 
enrolled in advanced courses. The percentages of girls 
in these courses declined to parity in the early 1900s 
and decreased further until the 1950s. By the 1970s, 
their proportions had increased and 2005 statistics 
showed them at or above parity.

In every epoch on record, girls have predominated 
in high school, but before 1900 and between 1930 
and 1980, women were a minority of undergraduates. 
Women’s share of mathematics and statistics baccalau-
reates was similar to their share of all baccalaureates 
in 1950 but later lagged, remaining at 40% to 50%, 
although their overall share has since risen. 

Recent Research on College  
and Pre-College Populations
Cognitive factors such as spatial abilities have been ana-
lyzed independently and with respect to mathematical 
performance. A 1985 meta-analysis by Marcia Linn and 
Anne Petersen grouped spatial abilities into three catego-
ries: spatial perception, spatial visualization, and mental 
rotation. They found little evidence of gender differences 
for the first two categories but found large gender differ-
ences on mental rotation tasks for which scores depend 
on speed and accuracy. Subsequent research reports that 
these differences have diminished and training stud-
ies conducted by Nora Newcombe, Sheryl Sorby, and  
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others show this ability can be improved. Mental rota-
tion appears more important for careers such as engi-
neering and fashion design than mathematics. 

Another line of research has focused on mathemati-
cal aptitude, often as measured by the mathematics 
section of the Scholastic Aptitude Test (SAT or SAT-
M). One finding, frequently cited as evidence for innate 
gender differences in mathematical aptitude, concerns 
the SAT-M scores from “talent searches” among middle 
school student volunteers. Between 1980 and 1982, the 
ratio of boys to girls scoring 700 or above was 13:1. 
Later, larger samples have yielded different, smaller 
ratios; a 2005 ratio is 2.8:1. 

Although the first finding received extensive media 
coverage and is widely cited, the drop has received little 
publicity and few citations. Underlying causes may 
be related to those of the file-drawer effect—the ten-
dency for findings that fail to reject a null hypothesis to 
remain unpublished. 

Use of the SAT-M as a measure of mathematical 
aptitude or ability has been criticized on the grounds 
of construct validity and predictive validity. Studies of 
the latter find that the SAT-M underpredicts women’s 
undergraduate mathematics course grades and overall 
grade point averages relative to those of men. 

Possible reasons for gender gaps in SAT-M scores 
include differences in strategies (documented by Ann 
Gallagher and her collaborators) and the phenom-
enon of stereotype threat identified by Claude Steele 
and Joshua Aronson. An individual may be vulner-
able to stereotype threat in a particular context if the 
individual is a member of a group that is stereotyped 
as performing poorly in such contexts. For example, 
reminding a woman of such stereotypes can hamper 
her mathematical performance, particularly when she 
cares about doing well in mathematics. 

Using imaging techniques, researchers have found 
gender differences in brain areas used for processing 
when subjects were asked to calculate or solve math-
ematics problems. These have been popularly inter-
preted as “hard-wired” gender differences. However, 
the subjects of these studies are adults. Thus, these 
differences may result from differences in experience. 
Moreover, the studies are small in scale, and their find-
ings are not always consistent. 

International assessments for primary and secondary 
education are administered by the Trends in Mathemat-
ics and Science Survey and the Programme for Interna-

tional Student Assessment. Scores on these assessments, 
representing 493,495 students, were analyzed in 2010 by 
Nicole Else-Quest and her colleagues. They concluded 
that, on average, males and females differ little in math-
ematical achievement, despite more positive attitudes 
toward mathematics among males and substantial vari-
ability across nations. The most powerful predictors of 
cross-national variability in gender gaps were gender 
equity in school enrollment, women’s share of research 
jobs, and women’s parliamentary representation.

Graduate and Faculty Participation
Since the nineteenth century, a standard credential for 
professors at four-year academic institutions has been 
a Doctor of Philosophy degree (Ph.D.). In the United 
States, a Ph.D. is a terminal degree—the highest degree 
given in scientific fields. Thus, for modern times, Ph.D. 
attainment is a frequently used measure of women’s 
participation in mathematics. 

The first American woman to be awarded a Ph.D. in 
mathematics was Winifred Edgerton Merrill, in 1886. 
(A decade earlier, Christine Ladd-Franklin had com-
pleted a dissertation in mathematics at Johns Hop-
kins University. However, her Ph.D. was not awarded 
until 1926.) Before 1890, most Ph.D. programs in the 
United States did not allow women to enroll, mak-
ing them less likely to frequent many mathematics 
departments. Other obstacles were quotas and pro-
fessors who refused to have women as Ph.D. stu-
dents. Reflecting societal norms, qualified women 
were sometimes not considered for academic posi-
tions, paid less, promoted more slowly or not at all, or 
expected to quit their positions if they married. Uni-
versity anti-nepotism rules were often used to exclude 
wives from paid employment at a spouse’s institu-
tion (except during extreme circumstances, such as 

World War II). Such policies 
were likely to have affected 
women in mathematics 
more than women in many 
other disciplines. Then, as 
now, husbands and partners 
of female mathematicians 
and scientists tended to also 
be mathematicians and sci-
entists. Unlike experimental 
scientists, female mathema-
ticians had few opportuni-
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ties for professional employment outside academia or 
as laboratory researchers within academia. 

Despite these factors, the numbers and percentages 
of women earning Ph.D.s in mathematics increased 
until the 1940s. Between 1950 and 1970, women’s 
numbers stalled while the numbers of men earning 
Ph.D.s in mathematics and science increased. Part of 
this increase was because of the influx of World War II 
veterans whose college and graduate tuition was sup-
ported by the Servicemen’s Readjustment Act of 1944, 
known as the GI Bill. The lack of any corresponding 
increase in women’s numbers may have been because 
of neglect of the female veterans who were nominally 
beneficiaries of the GI Bill together with changes in 
social norms and science policy. Consistent with these 
factors, women who were called to teach at colleges 
and universities during the war were displaced by men 
returning from war projects. 

Changes in science policy and views of science may 
have had an especially damping effect on women’s par-
ticipation in mathematics, intensifying what was often 
seen as a dichotomy between teaching (associated with 
women) and research (associated with men). Marga-
ret Murray writes that the “myth of the mathemati-
cal life course” became the prevailing model of how 
a mathematical career should unfold—a trajectory 
more compatible with societal expectations of men 
than women. In this view, mathematical talent emerges 
in childhood—creative achievements begin early and 
are quickly recognized. The mathematician focuses on 
research, ignoring distraction or shielded by a spouse 
or relative. Accomplishments continue, without inter-
ruption, until the mathematician’s early 40s. 

Faculty Participation After 1970
With the women’s movement of the 1970s, percent-
ages of women in mathematics and other fields 
increased. In 1971, the American Association of 
University Professors and the Association of Ameri-
can Colleges issued official policy statements urging 
that anti-nepotism rules be rescinded. However, the 
absence of anti-nepotism policies does not always 
solve a “two-body problem”—finding appropriate 
professional employment in the same geographical 
area for two Ph.D.s. 

Another important event was the passing of the 
Educational Amendments Act of 1972. Its Title IX pro-
hibits discrimination against women at educational 

institutions that receive federal funding and mandates 
periodic reviews of these grantees by federal agencies.

Elimination of anti-nepotism policies and prohibi-
tion of sex discrimination were major changes. How-
ever, for two decades, proportions of women had been 
very small in many mathematics departments and else-
where in academia. Changes in institutional policies 
and federal regulations were no guarantee of change in 
individual expectations and departmental policies. 

Individual expectations may be affected by evalua-
tion bias. One example is a study conducted by Linda 
Fidell in 1970. Sets of 10 fictitious “résumés” of psychol-
ogists were sent to psychology department heads with 
the request to indicate the appropriate professorial rank 
at which each person described should be hired. Six of 
the résumés carried a male’s name and the others female 
names. These were rotated so that the same résumé 
would sometimes carry a female name and sometimes 
a male name. The department heads assigned differ-
ent ranks to identical qualifications, depending on the 
names they carried. Those with female names received 
lower ranks than those with male names. Later research 
suggests that this phenomenon is more complex than 
originally hypothesized because ratings are affected by 
social context. An explanatory mechanism identified 
by Virginia Valian is the notion of “gender schemas”—
implicit hypotheses, usually unarticulated, that affect 
expectations and evaluations of women and men. 

Although the percentage of women earning Ph.D.s 
in mathematics has continued to increase by at least 5% 
every decade since the 1970s, the presence or absence 
of departmental policies, such as family leave, may 
weigh more heavily on women. Moreover, sociologi-
cal research suggests that women in science have fewer 
professional interactions within their departments 
or workplaces and are thus less likely to be aware of 
expectations conveyed informally. For example, a study 
of science departments found that departments with 
written guidelines for graduate students about courses 
of study, exams, and other expectations tended to have 
a larger percentage of women who earned Ph.D.s.

A variety of empirical findings suggest that, since 
the 1970s, the cumulative effects of individual actions, 
departmental practices, and institutional policies have 
changed to filter out fewer women. One factor may 
have been individual and class-action lawsuits brought 
on the grounds of Title IX violation. In contrast, a 2004 
Government Accountability Office study found that 
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federal agencies that fund scientific and mathematical 
research had not conducted the compliance reviews of 
their grantees mandated by Title IX. 

In 2006, a National Academies report recommended 
that Title IX and other federal antidiscrimination laws 
be enforced and that federal agencies work with sci-
entific societies to host mandatory workshops on gen-
der bias. In 2007, the Gender Bias Elimination Act was 
introduced in Congress, which would have authorized 
such workshops and directed funding agencies to bet-
ter enforce federal antidiscrimination laws. This bill 
did not pass, and similar bills were introduced in 2008 
and 2009. 

Recent Survey Findings
Every five years, the Conference Board of the Math-
ematical Sciences surveys a representative sample of 
two- and four-year academic institutions. The 2005 
survey found that women were 50% of the full-time 
permanent mathematics faculty at two-year colleges 
(up from 34% in 1990 and 40% in 1995). At four-year 
institutions, the percentages of women in tenure-track 
(entry-level) and tenured (permanent) positions also 
increased, with the exception of tenure-track positions 
at B.A.-granting institutions (see Table 1).

Table 1. Percentages of Women on Mathematics 
Faculties of Four-Year Institutions

1995 2000 2005

Tenured women (% of tenured faculty)

Ph.D.-granting departments
317  

(7%)
346  

(7%)
427  

(9%)

M.A.-granting departments
501 

(15%)
608 

(19%)
532 

(21%)

B.A.-granting departments
994 

(20%)
972 

(20%)
1373 

(24%)

Tenure-track women (% of tenure-track faculty)

Ph.D.-granting departments
158 

(20%)
177 

(22%)
220 

(24%)

M.A.-granting departments
235 

(29%)
276 

(32%)
337 

(33%)

B.A.-granting departments
748 

(43%)
517 

(32%)
693 

(28%)

Source: Conference Board of the Mathematical 
Sciences 2000 and 2005 Surveys.

The Survey of Doctorate Recipients has collected 
longitudinal data about 40,000 science and engineer-
ing Ph.D. recipients who earned their degrees from 
institutions within the United States. Recent analysis of 
data from this survey and the National Survey of Post-
secondary Faculty—together with results from surveys 
of research-intensive departments and faculty mem-
bers conducted in 2005—found few gender differences 
on key measures such as grant funding and salary for 
faculty members. In mathematics, women published 
fewer articles than men, and the proportions of women 
applying for jobs were slightly smaller than the pro-
portion earning Ph.D.s. Overall, for the six scientific 
fields surveyed, the likelihood that a position would 
have female applicants was affected by institutional 
characteristics, the presence of family-friendly policies, 
the proportions of women on search committees, and 
the gender of the search committee chair. On average, 
men and women in research-intensive departments 
reported similar allocations of time on research and 
teaching but differences in professional interactions. 
Women were more likely to have mentors; men were 
more likely to engage with their colleagues on a wide 
range of topics from research to salary. Women were 
less satisfied with their jobs, and indirect evidence sug-
gests that women were more likely than men to leave 
before tenure consideration.

Organizations
Organizations such as the Association for Women in 
Mathematics (AWM), European Women in Mathemat-
ics, and Korean Women in the Mathematical Sciences 
are dedicated to supporting and promoting women 
and girls in the mathematical sciences. Student organi-
zations at colleges and universities include AWM chap-
ters and Noetherian Ring groups, the latter named for 
mathematician Emmy Noether, who is well-known for 
her pioneering work in abstract algebra.

These and other organizations document women’s 
participation in mathematics. Biographies of past and 
present women in mathematics are available online at 
the MacTutor History of Mathematics Archive, Biog-
raphies of Women Mathematicians at Agnes Scott 
College, and Mathematicians of the African Diaspora. 
The biographies of 228 women who earned Ph.D.s in 
mathematics at U.S. institutions before 1940 are main-
tained at the Web site for the book Pioneering Women 
in American Mathematics.
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World War I
Category: Government, Politics, and History.
Fields of Study: All.
Summary: World War I saw an increased emphasis 
on applied mathematics but ultimately disrupted 
mathematics research.

Although mathematicians were not as heavily involved 
with the conduct of World War I as they would be with 
World War II, the four years of conflict impacted the field 
of mathematics in two main ways: they severed interna-
tional ties among researchers, thus slowing collabora-
tive research efforts; and the war provided the circum-
stances for applied mathematics to develop more fully 
through military research. Many mathematicians con-
tributed their knowledge and abilities to the war effort. 

At the same time, others published papers unrelated to 
the military, worked to encourage reconciliation among 
mathematicians of warring nations, or strove to end the 
war outright. World War I, which was fought from 1914 
to 1918, was precipitated by the assassination of Arch-
duke Franz Ferdinand of Austria. After the initial decla-
ration of war on Serbia by Austria, countries with vari-
ous political alliances joined the fighting, with the result 
that more than 30 countries on five continents were ulti-
mately named as combatants. The massive scope of this 
first truly global war led U.S. President Woodrow Wilson 
to refer to it as the “war to end all wars.” 

Mathematics Applied to Military Research
Some mathematicians turned their attention to more 
practical and applied uses of the field. World War I saw 
extensive use of both trench warfare, which the United 
States had already experienced somewhat during the 
U.S. Civil War; and potent chemical weapons, like 
mustard gas. In the United States and in Europe, math-
ematicians researched ballistics and aeronautics as the 
warring countries sought advantages in firepower on 
land and began to realize the potential of air power. 
Mathematician John Littlewood performed research 
on ballistics and improved tables for the British Royal 
Garrison Artillery. In the United States, important fig-
ures such as Gilbert Bliss, Oswald Veblen, Norbert Wie-
ner, and Forest Ray Moulton worked at the U.S. Army’s 
Aberdeen Proving Ground, Maryland, in ordnance and 
improvement in ballistics calculations. The American 
Mathematical Society published, in 1919, a list of over 
175 mathematicians working in some capacity to sup-
port the war effort. The National Advisory Committee 
on Aeronautics also began construction of the Langley 
Laboratory in 1917, although research did not fully get 
underway until a few years later.  

Similarly, Europeans conducted research with the 
aim of improving military operations. The British 
mathematician Frederick William Lanchester devised 
a formula to calculate the likely outcome of a battle 
between opponents of different strengths. He also 
published a series of articles on the military potential 
of aeronautics, which in 1916 were collected into a 
book. At Göttingen, Germany, Felix Klein and others 
instituted the Aerodynamic Proving Ground in 1917. 
In Italy, Mauro Picone investigated new methods for 
calculating ballistics tables, and Vito Volterra proposed 
using helium in airships.
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As was the case in many wars dating back into antiq-
uity, codes and cyphers played an important role. For 
example, “trench codes” consisting of three number or 
letter groups were used for rapid communications of 
tactical situations but they were fairly easily cracked 
and were quickly supplanted by more complex struc-
tures. The Germans widely employed the ADFGVX 
cypher, so named because only those six letters were 
used in coded messages. They had been chosen to 
minimize operator error because when those letters 
are sent by Morse code, they sound very different from 
one other. The code was a fractionating transposition 
cipher using a modified Polybius square, named for 
second-century b.c.e. historian Polybius of Megalopo-
lis, with a single columnar transposition. 

The cypher keys were typically changed every few 
days and the code was broken in only a few isolated 
cases during the war. A general solution was found in 
the 1930s by William Friedman, who is often referred 
to as the “father of modern U.S. cryptography.” The 
Germans also used some double transposition cyphers, 

which applied the same transposition key horizontally 
and vertically to the same matrix. In addition, they 
proved to be skillful in deciphering the codes of oth-
ers, and the U.S. Army began to experiment with using 
Native American languages as military code. Several 
Choctaw soldiers served in the U.S. Army in Europe 
during World War I and are credited with helping to 
win some major battles.

The goal of war-related mathematicians was to 
improve the efficiency of military action. In the United 
States, this goal also applied to the home front. Allyn A. 
Young, the president of the American Statistical Asso-
ciation, proposed in a December 1917 address that a 
central statistical office or commission be established 
to aid the coordination of various boards and agencies 
then gathering statistics related to the war.

A greater division between mathematics research 
and teaching concerns also occurred around the time 
of World War I, as evidenced by the founding and 
branching off of the Mathematician Association of 
America in 1915 and the National Council of Teach-
ers of Mathematics in 1920 from the more research-
focused American Mathematical Society.

Non-Military Research During the War Years
Although much mathematical work from 1914 to 1918 
related to improving military capability, there were 
many other notable advances that did not have imme-
diate effects on war power. For instance, Albert Einstein 
published his general theory of relativity in 1915. David 
Hilbert also published field equations about that time. 
While a prisoner of war in Russia, the Polish mathe-
matician Waclaw Sierpinski published a paper on his 
fractal triangle. Together with Godfrey Harold Hardy, 
after arriving at Cambridge University on Hardy’s invi-
tation, Srinivasa Iyengar Ramanujan published a series 
of papers on number theory during the war.

Efforts for Peace and Reconciliation
At the same time, some mathematicians focused not 
on improving the conduct of war or other research, but 
instead on ending the conflict and reconciling with their 
colleagues in the peace that would follow. Perhaps the 
most famous case is that of the British mathematician 
Bertrand Russell, who soon after the turn of the century 
had identified a paradox that challenged assumptions of 
set theory and in the years immediately before the war 
had co-authored Principia Mathematica with Alfred 

1074 World War I

Suspension of  
International Cooperation

T he war ended or made much more difficult 
the international relations among math-

ematicians that had developed in previous 
decades. National organizations of mathemati-
cians publicly condemned their colleagues in 
enemy countries. International meetings were 
abandoned. Even after the war, an international 
congress did not fully accept German members 
again until 1928. A mathematician of one nation 
working in or visiting a hostile country might run 
the risk of being stranded, or worse, face arrest 
and imprisonment. As a whole, there were few 
mathematicians who made efforts during the 
war to maintain relations with their counter-
parts and such efforts were sometimes limited 
to individual statements of protest against a 
severing of ties among nations. The division of 
researchers slowed the development of some 
fields, like topology and set theory.



North Whitehead. Repulsed by the battlefield slaughters 
and the general support of his countrymen for the war, 
Russell became an increasingly active pacifist, eventu-
ally taking part in public demonstrations and spending 
six months in prison for his antiwar writings.

Less dramatically, but still forcefully, the Ger-
man David Hilbert made a point of recognizing the 
accomplishment of colleagues in enemy countries. The 
Dutch geometer Luitzen Egbertus Jan “L. E. J.” Brouwer 
worked after the war to bring German mathematicians 
back into recognition. Gosta Mittag-Leffler, a Swedish 
mathematician, deliberately published English, French, 
and German papers in his journal Acta Mathematica. 
After the war, he and Godfrey Harold Hardy worked to 
encourage reconciliation with German researchers. 

Approaching the cause of peace from another angle, 
the Quaker mathematician Lewis Fry Richardson, who 
had served in an ambulance unit in France during the 
war, worked to understand the causes of wars so as 
to better prevent them. A limited printing of his first 
paper on the subject, “The Mathematical Psychology of 
War,” appeared in 1919. In later decades, as World War 
II loomed, Richardson would return to the subject.

Conclusion
The death of possible future contributors to the field 
of mathematics during World War I as a whole was, 
of course, an incalculable loss. By disrupting the con-
tinuity of research and discovery, the war also delayed 
advances in areas of mathematics such as topology 
and set theory. At the same time, however, the possi-
ble applied uses of mathematics began to receive more 
attention and appreciation. In addition, national gov-
ernments became more aware of the military value of 
mathematicians—a value that they would exploit much 
more thoroughly and effectively in World War II.
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World War II
Category: Government, Politics, and History.
Fields of Study: All.
Summary: World War II saw significant 
mathematical advances in cryptography, operations 
research, and navigation.

World War II was fought between two major alliances 
of countries, the “Axis” and the “Allies.” The beginning 
might be traced to pacts signed in 1936 and 1937 by 
the three primary Axis powers: Germany, which came 
to control much of the European continent; Italy, 
which influenced the Mediterranean; and Japan, which 
governed much of East Asia and the Pacific. The ulti-
mately victorious Allies coalition, led by Great Britain, 
the United States, and the Soviet Union, gained the 
surrender of Italy in 1943 and Germany and Japan 
in 1945. Well over 50 countries participated in the 
war, and there were millions of military and civilian 
deaths, some of the most controversial being those that 
resulted from the United States’ use of the atomic bomb 
in Japan. Mathematics played a critical role in many 
aspects of the war effort, notably in coding and encryp-
tion, which achieved levels unseen in previous wars 
and led to additional developments in the subsequent  
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cold war era, such as mathematician Claude Shannon’s 
ideas on information theory. New areas of applied 
mathematics, such as operations research, also emerged 
from technologies and problems created during or 
inspired by the war. Many mathematicians served in 
the military or worked for military agencies, such as 
the U.S. Aberdeen Proving Grounds. An Applied Math-
ematics Panel was formed in 1942 to solve war-related 
mathematical problems. Mathematicians were involved 
in the Manhattan Project to develop the atomic bomb, 
a matter that is widely discussed even in the twenty-
first century with regard to the ethics of mathematics 
research and social obligations of mathematicians as 
citizens of the world. The immediate prewar era and 
wartime would also result in a flood of mathemati-
cians and scientists emigrating to the United States and 
many other Allied countries, fleeing religious or politi-
cal persecution, particularly in Nazi-controlled Europe. 
It also likely accelerated the growth of participation of 
women in mathematical and scientific careers. These 
individuals would shape both research and teaching 
for decades to come.

Codes and Cyphers
Through World War I, most encrypted messages either 
used a paper-and-pencil cipher or a “book code” in 
which the enciphered version of each word was looked 
up in a codebook. Between the world wars, two new 
types of cryptography emerged: superencypherment 
and rotor machines.

With superencypherment, the text to be enciphered 
was converted into a string of digits. Then, a string of 
random digits (known as “additives”) was added with 
non-carrying addition. If the additives were never used 
again, the result was the “one-time pad” cipher. How-
ever, if the string of additives digits is reused, it is possi-
ble for code-breakers to break the cipher. In the 1930s, 
American cryptographer William Friedman developed 
the “kappa test,” a statistical test to determine when a 
superencypherment string was being reused. 

The Japanese Navy used a codebook to convert plain 
text into numeric code groups, which were then super-
encyphered using a book of 50,000 random digits. 
During wartime, the number of encrypted messages 
sent was such that any string of these digits was reused, 
and the U.S. Navy was able to break the Japanese code.

The main technique was to search for so-called 
double hits. Suppose two encrypted messages read:

… 77899 45616 27249 31464 68461 …
… 77899 81957 27249 81279 59138 …

The double hit is underlined. It could be because 
of chance but the cryptographer assumes that it is 
because of the same code words being enciphered by 
the same stretch of additive. With enough double hits, 
the cryptographer can recover portions of the additive 
and start decoding the underlying code words, as well 
as locating the so-called indicator (numbers hidden in 
the message to tell the recipient where in the book of 
additives the sender started). It took months of traffic 
for enough double hits to appear to break the Japanese 
naval code, which was changed several times a year. 
The kappa test could also be used to locate re-used 
stretches of additive. In 1943, in a project later code-
named VENONA, the U.S. Army spotted seven double 
hits in 10,000 Soviet diplomatic messages. The Soviets, 
who used the unbreakable one-time pad system, had 
blundered by re-issuing some 30,000 pages of random 
additive, and VENONA succeeded in breaking some 
2900 Soviet messages.

The Germans and Italians used the “Engima” cipher 
machine, which consisted of three rotors plus a stecker-
board (a plugboard), which added a monalphabetic sub-
stitution to the polyalphabetic generated by the rotors. 
A rotor was a disc with 26 electrical contacts (for the 
Roman alphabet) on each side. Wiring inside the rotor 
connected the contacts. Such a rotor creates a monal-
phabetic cipher—each letter would always be replaced 
with the same letter. If the rotor is allowed to rotate one 
contract between letters, it generates a polyalphabetic 
cipher with a period of 26. If two rotors are connected 
together, so that the second one advances one space 
after the first one completes a rotation (in the same way 
as the rotating numbers in a mechanical car odometer), 
then the two rotors generate a polyalphabetic cipher 
with a period of 26 × 26 (sometimes 26 × 25, depend-
ing on how the two rotors were geared together). Three 
rotors generate a period of 26 × 26 × 26, and so on. The 
operator had up to eight rotors available, giving up to

 
8
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336

!

!
=

possibilities for the rotors. For each day, there was a 
prearranged rotor selection and steckerboard setup 
and the operator would choose at random an initial 
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rotation for each of the three rotors of the day. An 
“indicator” giving this random initial position had to 
be inserted into the message.

In the 1930s, three mathematicians, Marian Rejewski, 
Zerzy Rozycki, and Henyrk Zygalski of the Polish Biuro 
Szyfrow (Cypher Bureau) had figured out the wiring of 
the rotors in the Enigma, had worked out techniques for 
deciphering this indicator; which had been enciphered 
using the same Enigma, and had invented a machine 
called a “bomby,” which automated much of the work.  
With these tools and techniques, they were able to read 
German Enigma messages until the Germans introduced 
changes in 1938 that defeated the Polish techniques.

The Poles then turned over their work to the Brit-
ish and French. The British took over an estate north 
of London called Bletchley Park and brought in math-
ematicians to work on the Enigma and other ciphers. 
The first four mathematicians were Alan Turing (whose 
Turing Machine, of 1936 formed the theoretical basis of 
later computers), Gordon Welchman, John Jeffreys, and 
Peter Twinn. Bletchley Park’s main method for breaking 
Enigma was to find a crib (a word or words that were 
highly likely to be in a particular place in the message). 
Despite the features of Enigma that were supposed to 
hide any evidence of the plain text, there were certain 
relationships among the letters of the cyphertext that 
had to occur when the crib was enciphered. A machine 
called a “Bombe” then ran through all 263 positions 
of the three rotors, finding the very few that would 
produce these relationships. Multiple runs would be 
required for different choices of rotors but Bletch-
ley also developed a statistical technique that—with 
luck—would eliminate numerous rotor choices.

Searching for a code that would be difficult to break 
using mathematically based cryptography methods, the 
U.S. government recruited native Navajo speakers. The 
Navajo language is very complex with unique phonet-
ics, grammar, and syntax and no written or symbolic 
alphabet, making it nearly impossible for someone 
without substantial exposure to understand (no Axis 
linguists had such exposure) and providing no written 
cypher that could be analyzed. Several hundred Navajo 
code talkers served with the U.S. Marines, most in the 
Pacific theater.

Computers
While general-purpose electronic computers did not 
exist until after World War II, work during the war helped 

lead to their development. By 1940, analog computers 
of considerable sophistication existed. However, there 
were only a handful of digital computers, all of them 
electromechanical and not differing much in concept 
from Babbage’s analytical machine of the nineteenth 
century. At that time, the only design for an electronic 
computer was from John V. Atanasoff of Iowa State 
College (now Iowa State University), who with Clifford 
Berry designed the Atanasoff–Berry Computer (ABC). 
It was not a general-purpose computer, limited to the 
solution of sets of linear equations.

In Germany, Konrad Zuse began working on com-
puters in 1936. In 1941, he constructed the electrome-
chanical Z3, which was the first general-purpose pro-
grammable computer. It was used for calculations for 
aircraft design and was destroyed by Allied bombing 
in 1943. After the war, Zuse built computers commer-
cially and also developed the first programming lan-
guage, Plankalkül.

In 1941, the Germans invented a new type of cypher 
for high-level communications. Instead of replacing 
or scrambling letters, a machine was developed that 
worked on the bits of the five-bit teletype (Baudot–
Murray) code. In principle, this process was a superen-
cypherment in which the bits of the teletype code were 
superenciphered by a string of binary additives. The 
additives were not random but were produced by a set 
of 10 wheels that rotated with different periods.

To solve this cipher, Bletchley Park constructed an 
electronic device called the “Colossus.” Ten were built, 
each having from 1500 to 2500 vacuum tubes apiece. 
It was not a general-purpose computer since it could 
solve only one particular problem but the experi-
ence with electronic circuits and the knowledge that a 
device with thousands of vacuum tubes would work 
inspired, after the war, three successful British efforts 
(Turing’s ACE, Cambridge University’s EDSAC, and 
Manchester University’s Mark I) to build general-pur-
pose electronic computers. This kept the United King-
dom competitive in computer design with the United 
States through the beginning of the 1960s.

The Ordnance Department of the U.S. Army had 
the task of computing large numbers of range tables 
for artillery. Its Ballistic Research Laboratory, in coop-
eration with the Moore School of Engineering at the 
University of Pennsylvania, had the foresight—and 
ambition—to contract for an electronic computer, 
to be known as Electrical Numerical Integrator and 
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Computer (ENIAC). The principal designers of the 
ENIAC were John Mauchly and John Presper Eckert 
(later developers of the UNIVAC line of computers), 
although many of the ideas of the design came from 
Atanasoff ’s ABC. The ENIAC did not become opera-
tional until 1945. One of its first uses was in designing 
the hydrogen bomb.

By 1944, the shortcomings of this pioneering design 
had been realized. It could not handle the workload 
required for numerical solution of partial differential 
equations and plans were started for a more advanced 
computer to be known as EDVAC. In 1945, John von 
Neumann combined his own ideas, those of Alan Tur-
ing, and those of the ENIAC developers into the paper, 
“First Draft of a Report on the EDVAC,” which laid out 
the principles of the modern computer. This paper led 
to the “Von Neumann machine” model, still used in the 
twenty-first century, although most of the ideas came 
from Turing.

Operations Research
In June 1941, Coastal Command (that portion of the 
Royal Air Force that operated over the seas from land 
bases) brought in physicist Patrick M. S. Blackett as an 
advisor. Blackett decided that instead of designing new 
weapons, his duty was to analyze how Coastal Com-
mand performed its operations and see what he could 
recommend to improve them. Hence, his work became 
known to the British as “operational research” (also 
called “operations research”).

Blackett and his colleagues investigated 
a wide variety of submarine and anti-sub-
marine operations. In one such project, 
the group figured out that a submarine 
attacked by an aircraft would not have time 
to dive very deep (indeed, it might still be 
on the surface), and that a setting of 25 feet 
for the depth charges the aircraft dropped 
had the best chance of lethality to the sub-
marine. Another project was to figure out 
the optimum size of a convoy. It turned out 
that the larger the convoy was, the better. 
A convoy, even a large one, had almost the 
same chance of avoiding being seen by a 
submarine as a single ship did. What mat-
tered was not the area of sea the convoy 
covered but its perimeter, where the escorts 
were stationed. The perimeter increased 
much slower than did the number of ships, 

so if both the number of ships and the number of 
escorts were doubled, each escort had a smaller length 
of the perimeter to cover, which gave it a better chance 
to catch enemy submarines trying to penetrate its por-
tion of the perimeter.

The success of Blackett’s original group led to opera-
tional research’s extension to many other parts of the 
British forces. In April 1942, the U.S. Navy founded its 
own Anti-Submarine Warfare Operations Research 
Group, originally for antisubmarine warfare and later for 
work throughout the Navy. As Admiral King reported: 

The knowledge . . . made it possible to work 
out improvements in tactics which sometimes 
increased the effectiveness of weapons by factor 
or three or five, to detect changes in the enemy’s 
tactics in time to counter them before they became 
dangerous, and to calculate force requirements for 
future operations.

Navigation
World War II presented navigation problems not seen in 
prewar flying, such as how to find a target at night from 
the air. In the Battle of Britain, the Germans first used 
the “Knickebein” system for target location at night. 
Knickebein and it successor “X-gerät” used narrow radio 
beams that crossed over the target. Later, the Germans 
introduced “Y-gerät,” which used a single ground sta-
tion, with the aircraft transmitting a return signal from 
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which the distance from the aircraft to the transmitter 
could be determined by the ground station.

The Allies also developed targeting systems. One 
was the British “OBOE” in which two stations broad-
cast signals to which the aircraft responded, allowing 
each station to determine the distance to the aircraft. 
The aircraft flew a fixed distance in a circular arc from 
the first station until it was at a specified distance from 
the second station. The intersection of these two arcs 
was the target location. This Y-gerät/OBOE technique, 
except with the aircraft transmitting and the ground 
station responding, is still used in the twenty-first cen-
tury in the Distance Measuring Equipment (DME) sys-
tem widely used by both military and civilian aircraft 
for navigating over land.

The British also developed the “GEE” system, which 
used a different mathematical technique. There was no 
transmitter on the aircraft. Instead, there was a “pri-
mary” or “master” transmitter and at least two “sec-
ondary” or “slave” transmitters on the ground. The 
primary would broadcast a signal, and each secondary 
would broadcast its own signal as soon as it received 
the signal from the primary. Any given difference 
between the arrival times of the signal from a primary 
and secondary defined one branch of a hyperbola 
(since a hyperbola is the locus of all points the differ-
ence of whose distance from two foci is constant and 
whether the primary or secondary signal arrived first 
tells which branch of the hyperbola). The second pri-
mary-secondary pair defined one branch of a second 
hyperbola, and these two branches intersect in exactly 
two points. Either dead reckoning or a third pair could 
then be used to determine which of these two intersec-
tion points was the aircraft’s position.

GEE was soon developed into the Long Range Navi-
gation (LORAN) system, which is still used worldwide 
for navigation at sea within approximately 1000 kilo-
meters of the LORAN stations. Beyond that distance, 
the ionospheric bounce of the signals interferes with 
the ground wave.

The Mathematics Community in World War II
Mathematicians participated in both military service 
and multiple civilian roles during World War II. Some 
enlisted voluntarily or were drafted, such as Herman 
Goldstine, who worked as the army liaison to the ENIAC 
project. Many stayed in their academic positions, con-
tinuing to prepare students and working on war-related 

training programs in mathematics. Others left their col-
leges and universities to work for government programs 
related to the war effort, including the growing area of 
operations research, such as G. Baley Price, who worked 
on applications like bomber accuracy and Philip Morse, 
who is sometimes referred to as the “father of U.S. oper-
ations research” and is credited with organizing the U.S. 
Anti-Submarine Warfare Operations Research Group. 
Companies like the Radio Corporation of America 
(RCA), Westinghouse Electric Corporation, Bell Labo-
ratories, Bell Aircraft Corporation, Grumman Aircraft 
Engineering Corporation, and Lockheed Corporation 
recruited mathematicians to help fulfill war contracts. 
The government also widely recruited nonmilitary 
mathematicians for groups like the Office of Scientific 
Research and Development, which had branches con-
ducting medical research, fuse research, and a multi-
application area looking at problems like submarine 
warfare, radar, and rocketry. This body came to include 
the Applied Mathematics Panel in 1942. 

Mathematician and scientist Warren Weaver, a pio-
neer in the field of machine translation, headed the 
panel. Some of the problems investigated included gas 
dynamics and compressible fluids, underwater bal-
listics and explosions, shock waves in air and water, 
mechanics and damage in air-to-air combat and anti-
aircraft fire, ballistics and firing tables, torpedo spread 
angles, land mine clearance techniques, and statistical 
methods. In this time period, women also experienced 
increasing opportunities to pursue and contribute to a 
diverse range of careers, including science and math-
ematics. Hunter College professor Mina Rees took a 
leave of absence during World War II to contribute to 
the war effort, working with the Applied Mathemat-
ics Panel. Following the war, she became head of the 
mathematics branch of the Office of Naval Research. 
The American Mathematical Society said

. . . the whole postwar development of mathemati-
cal research in the United States owes an immeasur-
able debt to the pioneer work of the Office of Naval 
Research and to the alert, vigorous and farsighted 
policy conducted by Miss Rees.
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Wright, Frank Lloyd
Category: Architecture and Engineering
Fields of Study: Geometry; Measurement; 
Representations.
Summary: Frank Lloyd Wright is one of the world’s 
most renowned architects and he revolutionized 
architecture and design.

Considered one of the greatest American architects 
of all time, Frank Lloyd Wright was also an interior 
designer, writer, and educator. Born in Richland Cen-
ter, Wisconsin, in 1867, he died in Taliesin West, Ari-
zona, in 1959. His mother, who had always expected 
her son to become an architect, gave him a set of Froe-
bel gifts after visiting the 1876 Centennial Exhibition 
in Philadelphia. Developed by Friedrich Fröbel in the 
1830s, the kindergarten maplewood building blocks 
allow children to learn the elements of geometric form, 
mathematics, and creative design while playing. In his 
autobiography, Wright attests to their influence on his 
professional career. 

Career
After taking engineering courses at the University of 
Wisconsin, he started working as a draftsman for archi-
tect J. Lyman Sielbee and, later, for Louis Sullivan, one 
of the most prominent members of the Chicago School 
who coined the famous modernist slogan “form ever 
follows function.” In 1893, Wright established his own 
practice and in the early 1900s he initiated the series of 
the Prairie Houses. Rejecting the traditional vocabulary 
and ornaments of classical architectural styles, he revo-
lutionized the U.S. home by focusing on geometry and 
the design of volumetric spaces, allowing a free spatial 
flow between the main living areas. The Robie House, 
with its low horizontal lines, nearly flat roof, overhang-
ing eaves, central hearth, clerestory windows with deli-
cate geometrical patterns, and open interior spaces is 

one Wright’s finest examples of Prairie architecture. 
Convinced of the critical role played 
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Taliesin West was Frank Lloyd Wright’s winter home and school in Scottsdale, Arizona. It currently houses the 
Frank Lloyd Wright School of Architecture, the Frank Lloyd Wright Foundation, and hosts tours year-round.



by architecture in promoting democracy, Wright used 
similar design principles to develop affordable homes he 
called “Usonian” during the Great Depression. Simulta-
neously, he proposed the utopian planning concept of 
Broadacre City, a low-density, automobile-based, sur-
burban community where each U.S. household would 
live in a Usonian house on one acre of land.

Fascinated by the integration of the natural world, 
Wright argued that “form and function are one” and 
he promoted organic architecture as the modern ideal. 
He strived to reinterpret the patterns and principles of 
nature into an architectural language respecting the 
properties of building materials and the harmonious 
relationship between the form and function of the struc-
ture. Organic architecture is the outcome of an inclusive 
design process that aims at integrating the various spaces 
into a coherent aesthetic and functional whole. Wright 
believed that a building is a unified organism that has 
an intrinsic relationship not only with people but also 
with both its site and its time. With such concerns in 
mind, he designed architectural projects down to their 
smallest external and internal details including custom-
made furniture, stained glass, rugs, light fixtures, and 
other decorative elements. Fallingwater, the Kaufman 
house outside Pittsburgh, Pennsylvania, cantilevered 
over a waterfall, and Taliesin West, which was built with 
the sand, gravel, and native boulders from the magnifi-
cent Arizona desert and mountain setting, exemplify 
Wright’s theories of organic architecture. Another struc-
ture reflecting Wright’s increased sensitivity to building 
materials and methods was the 14-story tall Johnson 
Wax headquarters, whose dendriform columns echoed 
inside the edifice and clerestories transformed the mod-
ern office building into a cathedral of the future. 

Later Life
Until the end of his life, Wright increased his range 
of geometrical and structural themes and after World 
War II his nonresidential projects gained more signifi-
cance. To the rectangular forms characteristic of the 
earlier decades, he added more complex geometries 
of the plan based on 30 degree and 60 degree angles, 
polygons, circles, hemicycles, and spirals that he devel-
oped in three dimensions. The Guggenheim Museum, 
Wright’s last major work, is also one of the twentieth 
century’s most important architectural landmarks. Its 
continuous upward spatial helix with sloping walls 
capped by a glass dome dramatically contrasts with the 

urban grid of the city of New York and offers a unique 
spatial experience to the visitor. 

Wright left a rich legacy of truly American modern 
architectural projects unifying art and geometry and 
an architectural tradition of respect for the natural 
environment.
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Writers, Producers, 
and Actors
Category: Arts, Music, and Entertainment.
Fields of Study: Communication; Connections.
Summary: Some actors, screenwriters, and producers 
are also mathematicians or consult with them.

Mathematical scenes can be found in many scripted 
and unscripted productions. Some of these refer-
ences are created by mathematically educated people, 
including writers, producers, or mathematical con-
sultants. Mathematical references can shape society’s 
views of mathematics and some writers or producers 
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have noted that they have this goal in mind during the 
creation process. Other times, mathematics and math-
ematicians serve purely as entertainment value and so 
stereotypes, such as the nerd or mad scientist, prolifer-
ate. Actors and actresses may also have mathematical 
training and some use their popularity to encourage 
students to succeed in mathematics. Mathematicians 
and educators showcase these people and their math-
ematical references or accomplishments in order to 
interest and motivate students and to highlight the 
importance, beauty, and usefulness of mathematics, as 
well as the diverse career options that are available to 
mathematically talented individuals. Mathematicians 
also work with writers, producers, and actors in order 
to increase the realism of the representations.

Similarities Between Production  
and Mathematics
Numerous writers and producers have likened their 
work to mathematical processes. As theatrical producer 
Oscar Hammerstein described:

A producer is a rare, paradoxical genius: hard-
headed, soft-hearted, cautious, reckless, a hopeful 
innocent in fair weather, a stern pilot in stormy 
weather, a mathematician who prefers to ignore the 
laws of mathematics and trust intuition, an idealist, 
a realist, a practical dreamer, a sophisticated gam-
bler, a stage-struck child. That’s a producer.

A producer oversees the script, the hiring process, 
the budget, editing, music, and advertising. Ronald 
Bean is a hip-hop producer who uses the name Allah 
Mathematics. Jeff Westbrook has a bachelor’s degree in 
physics and the history of science from Harvard Uni-
versity and a Ph.D. in computer science from Princeton 
University. He was an associate professor at Yale Uni-
versity and also worked at AT&T Labs before becom-
ing a television writer and producer for the shows 
Futurama and The Simpsons. He noted the similarity 
between working with a team of people on computer 
science and mathematics problems and writing: 

Solving story problems is very similar in some 
ways. Given a problem, how can you fit all the 
pieces together to make it work? There are a lot 
of analytical parts to writing and analytical ability 
is as useful in that as in any field. That’s the plus 

about mathematics. Nothing trains you better and 
gives you more analytical skills than mathematics. 
That skill is useful in the craziest places you might 
imagine: writing a TV show, writing a cartoon, and 
lawyering perhaps.

Actress Danica McKellar
Actress Danica McKellar is well-known for her role on 
the television show The Wonder Years (1988–1993) and 
her other acting projects since then. She obtained her 
bachelor’s degree in mathematics from the University 
of California, Los Angeles, in 1998. She continues to 
be interested in mathematics and mathematics educa-
tion, saying: 

I’d like to show girls that math is accessible and rel-
evant, and even a little glamorous! Math is a fabu-
lous mind strengthener—it’s like going to the gym, 
for your brain. . . . I want them to feel empowered; 
if they can do math, they can do anything! Math 
is the only place where truth and beauty mean the 
same thing.

With that goal in mind, she has written three math-
ematical books as of 2010: Math Doesn’t Suck: How to 
Survive Middle School Math Without Losing Your Mind 
or Breaking a Nail, Hot X: Algebra Exposed, and Kiss My 
Math: Showing Pre-Algebra Who’s Boss. Her books have 
achieved a wide readership and appeared on best-seller 
lists like the New York Times’ children’s books category.

Other Mathematician Writers,  
Producers, and Actors
In addition to Danica McKellar and Jeff Westbrook, 
there have been numerous other mathematically trained 
writers, producers, and actors. Stewart Burns obtained a 
master’s degree in mathematics and has worked for The 
Simpsons. Shane Carruth was an engineer with a degree 
in mathematics who wrote, produced, directed, and 
acted in the movie Primer, which won numerous awards 
including an Alfred P. Sloan Prize, which is awarded for 
science, technology, or mathematical content. David 
X. Cohen received a bachelor’s degree in physics and a 
master’s degree in theoretical computer science, and he 
published an article on pancake sorting before working 
for The Simpsons and co-developing Futurama.

Gioia De Cari is an actress and playwright who has 
a master’s degree in mathematics. She wrote and per-
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formed the autobiographical play Truth Values: One 
Girl’s Romp Through M.I.T.’S Male Math Maze. Jane 
Espenson double-majored in computer science and lin-
guistics as an undergraduate student and was a graduate 
student at Berkeley in linguistics. She has worked as a 
writer and producer for shows such as Buffy the Vampire 
Slayer, Battlestar Galactica, and Caprica. Al Jean earned 
an undergraduate degree in mathematics and he has 
been the head writer for The Simpsons. Mike Judge was 
a graduate student in mathematics before developing 
shows such as Beavis and Butt-Head and King of the Hill. 
He has also performed as a voice actor in King of the Hill 
and as an actor in the Spy Kids movie franchise. Ken Kee-
ler has a Ph.D. in applied mathematics. He worked for 
Bell Labs and published an article with Jeff Westbook. He 
wrote for David Letterman, The Simpsons, and Futurama. 
Writer Guillermo Martínez has a Ph.D. in mathematics 
and was in a postdoctoral position at Oxford University. 
His novel The Oxford Murders was a 2008 movie. There 
has also been a grant program designed to train math-
ematicians and scientists to become screenwriters. Rob-
ert J. Barker of the U.S. Air Force, who is noted as having 
approved the grant, justified the program by explaining 
that: “a crisis is looming, unless careers in science and 
engineering suddenly become hugely popular.”

Goals and Impact
Some writers, producers, and directors state as their 
motivation the desire to positively impact people’s 
responses to mathematics. Many people learn about 
mathematicians and scientists from representations in 
popular culture, and the importance of role models has 
been well-documented. Flatland the Movie film pro-
ducer Seth Caplan noted, “Our goal is to create a movie 
that not only entertains, but also inspires. Flatland will 
help create the next generation of innovative mathema-
ticians and scientists by demonstrating the wonders hid-
den throughout our universe.” Nick Falacci and Cheryl 
Heuton, writers, producers, and creators of NUMB3RS 
explained: “Our goal first and foremost is to intrigue and 
tantalize the non-math people out there in TV land. We 
want people who have never given mathematics a second 
thought to stop and consider the role that math plays 
in society and day-to-day life.” David X. Cohen hoped 
that those that appreciated the mathematical references 
would become die-hard fans of Futurama. He also has 
expressed concern that some of the popular culture por-
trayals of genius mathematicians with floating numbers 

that make it look like a magic power could discour-
age children who need to see that it takes hard work to 
become good at mathematics. Research has shown that 
stereotypical representations of mathematicians can 
discourage students from pursuing more mathematics. 
Cohen also apologized for inaccurate references: 

One thing I worry about is that when we purposely 
present inaccurate science in Futurama in the name 
of entertainment, that viewers may hold it against 
us. We do have genuine respect for science, and we’re 
trying, when we can, to raise the level of discussion 
of science on television. If we fail sometimes, I hope 
people still appreciate the frequent attempts to bring 
real science into the show. I apologize in advance for 
any failures in the future, because I’m sure there will 
be many more, hopefully entertaining, failures.

Consultants
Writers or producers sometimes elicit help from math-
ematical consultants on mathematical references in 
a script or a blackboard scene. Some consultants are 
credited as such or acknowledged in interviews or 
DVD commentaries, while others remain anonymous. 
Some consultants provide feedback for just one line or 
scene while others work with a producer or writer for 
years. Producers, directors, and writers have used con-
sultants in a wide variety of movies, plays, and televi-
sion shows with mathematical content, including the 
following examples:

Antonia’s Line. In the 1985 movie, the main charac-
ter’s granddaughter was a mathematics professor who 
lectured about mathematics and homology theory. Wim 
Pudshoorn was listed as a mathematical consultant.

Arcadia. Teenage mathematics genius Thomasina 
Coverly worked on Fermat’s Last Theorem, named for 
Pierre de Fermat, Fourier’s heat equation, named for 
Joseph Fourier, and chaos theory in this 1993 play by 
Tom Stoppard. Mathematician Manil Suri was listed as 
the production mathematics consultant.

A Beautiful Mind. The 2001 movie explored the 
life and work of Nobel-Prize–winning mathematician 
John Nash. Mathematician Dave Bayer was a consul-
tant and his hand appeared in the movie for written 
blackboard scenes.

Big Bang Theory. The television series debuted in 
2007. Young physicists and engineers often discuss their 
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work as well as mathematics. Physicist David Saltzberg 
has been acknowledged as a consultant.

Bones. The television series first aired in 2005 and 
the forensic team sometimes engages in mathematical 
discussions. In addition, the main character was listed 
as belonging to both a chemistry club and mathematics 
club in high school. Donna Cline has been acknowl-
edged as a forensic consultant.

Caprica. The television series debuted in 2009 as a 
spinoff of Battlestar Galactica. Among other references 
on both shows, Dr. Philomon obtained a bachelor’s 
in applied mathematics in addition to other degrees. 
Physicist Kevin Grazier was a consultant on the origi-
nal show, and engineer Malcom MacIver has been a 
consultant on the spinoff.

Cube. The 1997 movie explored the escape attempts 
by those trapped in interconnected cubes, and some of 
the plot twists in the movie were also mathematical. 
Mathematician David Pravica consulted.

Contact. In this 1997 movie based on the novel by 
Carl Sagan, the main character explained how prime 
numbers could be used to communicate with aliens. 
Mathematician Linda Wald and physicist Tom Kuiper 
were consultants.

Donald in Mathmagic Land. In the 1959 short film, 
Donald Duck entered a mathematical world filled 
with references to numbers, geometric objects, and 
the connections between mathematics and music, 
architecture, and nature. Physicist Heinz Haber  
was the chief scientific consultant to Walt Disney  
productions.

Eureka. The television series began airing in 2006 
and focused on scientists in a town where almost 
everyone worked at a research facility. There have been 
numerous mathematical references, including men-
tion of a Nobel Prize by scientist and mathematician 
Nathan Stark, and work by his mathematical savant 
stepson. Physicist Kevin Grazier consulted.

Futurama. This animated science fiction televi-
sion series aired 1999–2003 and was brought back to 
life beginning in 2007. There have been hundreds of 
references to science and mathematics, written mostly 
by the scientific writing staff. Astrophysicist David 
Schiminovich and mathematician Sarah Greenwald 
consulted on some scenes.

Flatland the Movie. This 2007 movie was based on 
the well-known work on dimensions by Edwin Abbott. 
Mathematicians Tom Banchoff, Jonathan Farley, and 

Sarah Greenwald and mathematics educators L. Charles 
Biehl and Jon Benson consulted.

Fringe. The television series first aired in 2008. The 
team sometimes discusses mathematics such as in the 
episode titled “The Equation.” Neuroscientist Ricardo 
Gil da Costa has consulted.

Good Will Hunting. The main character in this 1997 
movie was gifted in mathematics and worked as a jani-
tor at MIT. Physicist Patrick O’Donnell and mathema-
tician Daniel Kleitman were consultants.

Hard Problems: The Road to the World’s Toughest 
Math Competition is a 2008 documentary about the 
2006 United States International Mathematical Olym-
piad Team. The idea for the video was credited to 
mathematician Joseph Gallian, who also served as an 
executive producer.

House. Although the television show debuted in 
2004, intern Martha Masters, who also had a Ph.D. in 
applied mathematics, joined the medical team in 2010. 
Internist Harley Liker has been a consultant.

It’s My Turn. In the 1980 romantic comedy, the main 
character was a mathematician and she proved what is 
known as the “snake lemma” in the movie. Mathemati-
cian Benedict Gross was a consultant.

Madame Curie. Physicist Rudolph Langer consulted  
in this 1943 movie about physicist Marie Curie. 

Medium. This television series aired from 2005 
to 2011. The husband of the main character was an 
applied mathematician. Mathematician Jonathan Far-
ley consulted.

The Mirror has Two Faces. One of the main char-
acters in the 1996 movie is a mathematics professor. 
Mathematician Henry Pinkham was a consultant.

N is a Number: A Portrait of Paul Erdos. This 1993 
documentary listed Donald J. Albers, Gerald L. Alex-
anderson, Ronald Graham, Reuben Hersh, Charles L. 
Silver, and Joel Spence as mathematics consultants.

NUMB3RS. This television show aired from 2005 to 
2010. Charlie Eppes was a mathematics professor who 
consulted for the FBI. Each episode featured math-
ematics as a significant part of the plotline. The math-
ematics helped with the crime solving. The producers 
used many mathematical consultants but the most 
well-publicized were mathematician Gary Lorden and 
a team from Wolfram Research: Michael Trott, Eric 
Weisstein, Ed Pegg, Jr, and Amy Young.

The Price Is Right. The television game show aired 
from 1956 to 1965 and again starting in 1972. Some of 
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the games involved mathematics and mathematicians 
Bill Butterworth and Paul Coe consulted.

Proof. The 2005 movie was based on David Auburn’s 
Pulitzer Prize winning play. The lead character and her 
father were both talented mathematicians who also 
wrestled with the notion of mental illness. Mathemati-
cian Timothy Gowers was a consultant.

The Simpsons. This long-running animated televi-
sion series debuted in 1989. The show’s many math-
ematically talented writers and producers created most 
of the mathematical references, which have often con-
nected to astrophysics, number theory, geometry, innu-
meracy, or women in mathematics. Physicist David 
Schiminovich consulted on some blackboard scenes.

Square One. The mathematics educational television 
series aired from 1987 to 1994 and featured popular 
culture parodies. Edward T. Esty was a mathematical 
consultant.

Sneakers. In this 1992 movie, a mathematician lec-
tures on cryptography. Computer scientist Leonard 
Adleman consulted.

Team Umizoomi. In this mathematics educational 
television program, which premiered in 2010, Chris-
tine Ricci is listed as an educational consultant.

Watchmen. In this 2009 movie, Dr. Manhattan dis-
cusses mathematics. Physicist James Kakalios consulted 
and is also noted for his Science of Watchman video, 
which also contains mathematical elements.

Some consultants have remarked that the producers 
and writers were very responsive to their efforts to make 
the mathematics more realistic. Others have commented 
that advice was ignored at times in order to focus on 
entertainment value. Mathematicians and scientists are 
also members of a Hollywood Math and Science Film 
Consulting firm and a program run by the National 
Academy of Sciences called the Science and Entertain-
ment Exchange, which matches scientists with entertain-
ment professionals. In addition to consulting, mathema-
ticians Thomas Banchoff, Sarah Greenwald, and Gary 
Lorden appeared on mathematical featurettes on movie 
and television DVDs. In 2003, Scott Frank estimated 
that approximately 20% of the highest money-making 
films had scientific or technical consultants.

Connections to Education
Producers of NUMB3RS and Fringe worked with math-
ematicians and educators to create worksheet programs 

based on references in the show. The CBS Network, 
Texas Instruments, and the National Council of Teach-
ers of Mathematics co-sponsored an educational Web 
site for NUMB3RS. Worksheet authors received a sum-
mary of all or part of an episode and designed lesson 
plans to complement them. Some critiqued the blurred 
line between entertainment and curricula and ques-
tioned the appropriateness of violent representations 
for middle-grade students or the relationship between 
the character of Amita and her thesis advisor Charlie. 
The Fox network partnered with the Science Olympiad 
organization to create a Science of Fringe Web site of 
lesson plans.

Actor Portrayals
Actors that portray mathematically talented individu-
als are sometimes asked about their portrayals in inter-
views and they have expressed a wide variety of view-
points regarding mathematics. Flatland: The Movie 
actress Kirsten Bell, who played Hex, noted: “I really 
enjoyed math when I was growing up. . . . When you 
actually figure out the solution to a problem it’s very 
rewarding.” Martin Sheen acted as Arthur Square in the 
same movie and stated: “Nothing can happen without 
math. You can’t do anything. You can’t build anything. 
You can’t go anywhere without math.” NUMB3RS actor 
David Krumholtz, who played the main mathematician 
Charlie noted: “What’s great is that because math is such 
a universal language, really, our fans come in all shapes 
and sizes, all ages and genders and races and back-
grounds and cultures. . . . I’ve been more than thrilled 
to meet a lot of younger people, even as young as 6 years 
old, who tell me they’re inspired by the math and they 
just think it’s a really cool concept.” Judd Hirsch, who 
played his father, stated: “I don’t think anybody has to 
understand all the mathematics in this in order to be 
interested in it.” Navi Rawat, who played a graduate stu-
dent of Charlie and his eventual wife noted, “Having 
the chance to help to educate people about the impor-
tance of math through the character of Amita makes 
my job even more rewarding.” Lindsay Lohan, who por-
trayed a mathematically talented high school student in 
Mean Girls stated, “I’m not bad at math. It just wasn’t 
my favorite subject. I just did it just to do it.”

Professional Organizations
The professional mathematical community has inter-
acted with writers, producers, actors, and mathematical 
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consultants in a number of ways. They have invited them 
to speak at conferences or showcase their mathematical 
work. For example, there have been sessions on math-
ematics and Hollywood, on using mathematical refer-
ences in the classroom, and some mathematical films 
like Flatland: The Movie and Hard Problems: The Road 
to the World’s Toughest Math Competition have held pre-
miers for the mathematical community at conferences. 
Mathematicians have also written reviews, columns, 
articles, and books about the references.
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Zero
Category: History and Development of Curricular 
Concepts.
Fields of Study: Communication; Connections; 
Number and Operations.
Summary: The concept of zero took time to be 
accepted and was explicitly rejected when first 
introduced to Greek and Roman culture.

Numbers initially served to count property, such as 
livestock. The numbers needed to count 1, 2, 3, 4, . . . 
became known as “counting” or “natural” numbers. 
The number zero is not found among these because one 
cannot count zero objects. Early civilizations existing 
over millennia used numbers only to count and so had 
no need for zero. The word “zero” has various linguistic 
origins: the French zéro and Venetian zero, which likely 
evolved from the Italian zefiro. This word came in turn 
from Arabic sifr, meaning “zero or nothing,” derived 
from word safira, meaning “it was empty.”

Early Development
The ancient Babylonians first introduced zero. With 
a base-60 system and initially two symbols (a wedge 
to represent “1” and a double wedge to represent 10), 
the Babylonians left empty spaces between groups of 
symbols. The fact that the spaces were not standard-

ized in length made it difficult at times to distinguish 
between numbers because place value could not always 
be determined. To remedy this situation, the Babylo-
nians developed zero but the zero was not a number in 
and of itself. It was rather a placeholder used to denote 
place values that had been skipped. 

Independently and across the ocean, the Mayans de-
veloped a base-20 number system that included zero. 
Here, zero was used as a number to mean the absence of 
something. Zero also appeared in the Mayans’ calendar. 
There was a year zero, and each month had a day zero in 
it as well. Because of the vast distance between the Ma-
yans and the old world, Mayans’ use and understanding 
of zero did not spread to these other areas.

Rejection by the Greeks and Romans
Despite the Babylonians use of zero, the Greeks and 
Romans initially rejected its use. Zero was considered 
dangerous spiritually as it represented the opposite 
of god and unity. It was associated with the void and 
chaos. Mathematically, zero presented many dilemmas. 
While any of the natural numbers (1, 2, 3, 4,  . . .) when 
added to itself yields a larger number, zero added to it-
self does not. This characteristic violated Archimedes’s 
principal that repeatedly adding a number to itself 
tends to a sum that is infinitely large. Additionally, a 
natural number plus any other natural number yields 
a sum larger than the initial natural number but again 
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zero added to a natural number does not yield a num-
ber larger than the original natural number. Finally, 
multiplication of any number by zero yields zero and 
division by zero was outside the acceptable norms for 
these civilizations. The Greeks, known for geometry, 
often associated geometric figures to the natural num-
bers but zero could be associated with no figure. They 
preferred to reject zero as a number altogether.

Zero in India
Indian mathematicians in the fifth century c.e. took 
ideas from the Babylonians, including the concept of 
zero. They treated zero as a number that was found 
in the number line between −1 and 1. They also in-
troduced negative numbers and, in 700, Brahmagupta 
introduced the idea that 1/0 = ∞. Thus, infinity and 
unity depend upon the void and chaos. This idea was 
troubling to many civilizations, and the Hindu-Ara-
bic numerals commonly used through the twenty-
first century were not fully accepted until Leonardo 
de Pisa (also known as Fibonacci) introduced them to 
the Western world in his 1202 work Liber Abaci. One 
of the earliest recorded references to the mathemati-
cal impossibility of assigning a value to 1/0 occurred 
in George Berkeley’s 1734 work The Analyst, which 
criticizes the foundations of calculus.

Calendars
Zero also caused confusion with the calendar system. 
Dionysius’ calendar, created in 525 c.e., introduced the 
notation of BC and AD. However, it did not include a 
year zero. Thus, 1 BC is followed by 1 AD. This omis-
sion of zero causes confusion into the twenty-first 
century. Consider a person born in 1 AD. This person 
would have to go through 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 
to have lived 10 years, and a new decade would begin 
at the end of this first decade (10 years).  That is, it 
would begin in 11. Thus, the next decade would begin 
in 21. The first century would end in 100, and the new 
one would begin in 101. Thus, the twenty-first century 
technically began in 2001, not in 2000 when most ev-
eryone celebrated it. This confusion rears its head at 
the start of every decade and century all a result of the 
omission of a year zero.

Division by Zero 
One way in which mathematicians interpret division 
by zero is to reframe division in terms of other arith-

metic operations. Using standard rules for arithmetic, 
division by zero is undefined, since division is defined 
to be the inverse operation of multiplication. While di-
vision by zero cannot reasonably be resolved with real 
numbers and integers, it can be defined using other al-
gebraic structures or analytical extensions.

Zero in the Physical Sciences
Zero is an important value for many physical quan-
tities or measurements. In some cases, zero means 
“nothing” or an absence of the characteristic, such as 
in most units of length and mass. However, in some 
cases, zero represents an arbitrarily chosen starting 
point for counting or measuring, such as in the Fahr-
enheit and Celsius temperature scales (though on the 
Kelvin scale, zero is the coldest possible temperature 
that matter can reach).

Other more advanced examples can be found in 
chemistry and physics. Zero-point energy is the low-
est possible energy that a quantum mechanical physi-
cal system may possess. This energy level is called the 
“ground state” of the system and is important for in-
vestigating concepts such as entropy and perfect crystal 
lattices. Professor Andreas von Antropoff introduced 
the term “neutronium” for theoretical matter made 
solely of neutrons. As early as 1926, he redefined the 
periodic table with the atomic number zero, rather 
than the standard hydrogen (Atomic Number 1) in the 
initial position. More recent investigations suggest that 
the hypothesized element tetraneutron, a stable cluster 
of four neutrons with no protons or electrons, could 
have this atomic number zero.

Zero and Computers
In 1997, the naval vessel USS Yorktown’s propulsion 
system was brought to a dead stop by a computer 
network failure resulting from an attempt to divide 
by zero. Mathematical operations like these are prob-
lematic for computers, leading to various methods 
to avoid errors. The floating-point standard used in 
most modern computer processors has two distinct 
zeroes: a +1 (positive zero) and a −0 (negative zero). 
They are considered equal in numerical comparisons 
but some mathematical operations will have different 
results depending on which zero is used. For example, 
1/−0 yields negative infinity, while 1/+1 gives positive 
infinity, though a “divide by zero” warning is usually 
issued in either case. Integer division by zero is usually 

1088	 Zero



Kaplan, Robert. The Nothing That Is: A Natural History  
of Zero. Oxford, England: Oxford University Press, 
2000.

Seife, Charles. Zero: The Biography of a Dangerous Idea. 
New York: Penguin Books, 2000.

Lidia Gonzalez

See Also: Babylonian Mathematics; Infinity; Number 
and Operations; Number Theory.

handled differently from floating point, as there is no 
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Chronology
of Mathematics

30,000 b.c.e.: System of tallying by groups; an impres-
sive example is a notched wolf shinbone of uncertain 
date found in Czechoslovakia in 1937. In addition to 
bone, stones and wood marked with notches have been 
used for tallying. There is archaeological evidence of 
counting as early as 50,000 b.c.e. and of primitive geo-
metric art as early as 25,000 b.c.e.

17,500 b.c.e.: The notched Ishango bone, dating from 
this period, was found at Ishango along the shore of 
Lake Edward, one of the headwater sources of the Nile 
River.

2200 b.c.e.: Mythical date of the Chinese lo-shu magic 
square, a square array of numbers in which any row, 
column, or main diagonal have the same sum.

1850 b.c.e.: Moscow (or Golenischev) papyrus, an 
Egyptian mathematical text containing 25 numerical 
problems, dates from this period.

1750 b.c.e. (± 150 years): Plimpton 322, a Babylonian 
clay tablet containing Pythagorean triples (actually the 
smallest and largest of the three numbers of each tri-
ple) and a column of squares of ratios of the numbers 
not appearing in the table over the largest number of 
the triple (leg over hypotenuse), is from this period.

1650 b.c.e.: The Rhind papyrus, an Egyptian mathe-
matical text containing 85 numerical problems copied 
by the scribe Ahmes from an earlier work, dates from 
this period.

1600 b.c.e.: Approximate date of the “oracle bones,” 
which is the source of our knowledge of early Chinese 
number systems.

600 b.c.e.: The Greek mathematician Thales of Miletus 
is traditionally credited with the beginnings of demon-
strative geometry.

540 b.c.e.: Pythagoras of Samos (b. ca. 572 b.c.e.) and 
the Pythagorean school did considerable work in arith-
metic (i.e., number theory) and geometry. Among the 
accomplishments of the Pythagoreans were several 
discoveries related to the properties of numbers, work 
on the Pythagorean theorem, discovery that irrational 
numbers exist, solution of algebraic equations geomet-
rically, and work with some of the regular solids.

450 b.c.e.: Zeno’s paradoxes of motion is attributed to 
this date.

440 b.c.e.: Hippocrates of Chios made progress in the 
duplication of the cube problem. 
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440 b.c.e.: Anaxagoras of Clazomenae (ca. 500–ca. 488 
b.c.e.) was the first Greek known to be connected with 
the quadrature of the circle problem. 

430 b.c.e.: Antiphon the Sophist made early important 
contributions to the problem of squaring the circle 
with a method that contained the germ of the Greek 
method of exhaustion.

425 b.c.e.: Hippias of Elis (b. ca. 460 b.c.e.) invented 
a curve (the quadratrix) that solves the trisection and 
quadrature problems. 

425 b.c.e.: Theodorus of Cyrene (b. ca. 470 b.c.e.) 
showed the irrationality of several numbers after  

2  was shown to be irrational. 

410 b.c.e.: Democritus of Abdera’s work was a forerun-
ner of Bonaventura Cavalieri’s method of indivisibles.

400 b.c.e.: Archytas of Tarentum (428–347 b.c.e.) gave 
a higher geometry solution to the duplication of the 
cube problem and applied mathematics to mechanics.

380 b.c.e.: Plato (429–347 b.c.e.) founded Plato’s 
Academy around 385 b.c.e that drew scholars from 
all over the Greek world. Advances toward solving the 
problems of duplicating the cube and squaring the cir-
cle and toward dealing with incommensurability and 
its impact on the theory of proportion were achieved 
partly because of Plato’s Academy. Much of the impor-
tant mathematical work of the fourth century b.c.e. 
was done by friends or pupils of Plato. Plato studied 
philosophy under Socrates and mathematics under 
Theodorus of Cyrene. 

375 b.c.e.: Theaetetus of Athens (ca. 415–ca. 369 b.c.e.) 
contributed to the study of incommensurables and the 
regular solids. Some of his work later became a part of 
Euclid of Alexandria’s Elements. 

370 b.c.e.: Eudoxus of Cnidus (408–ca. 355 b.c.e.) 
contributed to incommensurables, duplication of the 
cube, the method of exhaustion, and the theory of pro-
portion.

350 b.c.e.: Menaechmus did early work on conics. His 
brother, Dinostratus, also worked in geometry.

340 b.c.e.: Aristotle (384–322 b.c.e.) did important work 
in systematizing deductive logic. He was the author of 
Metaphysics. Aristotle studied at Plato’s Academy.

335 b.c.e.: Eudemus of Rhodes wrote a history of early 
Greek mathematics that is lost but was referenced by 
later writers; the Eudemian Summary of Proclus is a 
brief outline of Greek geometry from the earliest times 
to Euclid.

320 b.c.e.: Aristaeus the Elder did early work on conics 
and regular solids.

306 b.c.e.: Ptolemy I Soter (d. 283 b.c.e.) of Egypt and 
his successor Ptolemy II Philadelphus founded the 
museum and library at Alexandria. 

300 b.c.e.: Euclid wrote a number of mathematical 
works with the most important mathematical text of 
Greek times, and probably of all times, being his Ele-
ments. The Elements is comprised of 13 books devoted 
to geometry, number theory, and elementary (geomet-
ric) algebra. 

280 b.c.e.: Aristarchus of Samos (ca. 310–230 b.c.e) 
applied mathematics to astronomy. He put forward the 
heliocentric hypothesis of the solar system.

240 b.c.e.: Nicomedes invented a higher plane curve 
that will solve the trisection problem. 

230 b.c.e.: Eratosthenes of Cyrune served as chief 
librarian at the University of Alexandria. His most sci-
entific work was a measurement of the earth. He devel-
oped a device known as the sieve for finding all prime 
numbers less than a given number.

225 b.c.e.: Apollonius of Perga (ca. 262–ca. 190 b.c.e.) 
is most famous for his Conic Sections, an extraordinary 
work that thoroughly examines these curves. 

225 b.c.e.: Archimedes of Syracuse (287–212 b.c.e.) is 
recognized as the greatest mathematician of the ancient 
world. He worked in numerous areas including mea-
surement of the circle and the sphere, computation of 
π, area of a parabolic segment, the spiral of Archime-
des, infinite series, method of equilibrium, mechanics, 
and hydrostatics. 



140 b.c.e.: Hipparchus of Rhodes (ca. 180–ca. 125 
b.c.e.) was an eminent astronomer who played an 
important part in the development of trigonometry.

75 c.e.: Heron of Alexandria developed a formula for 
finding the area of a triangle in terms of the sides, now 
known as Heron’s formula. His many works include 
a detailed work on indirect measurement, a book on 
mechanics, a handbook of practical mensuration, 
extraction of roots, and formulas for calculating the 
volumes of many solids.

100: Nicomachus of Gerasa’s Introduction to Arithme-
tic, one of his two works to survive, is devoted to the 
classification of integers and their relations.

100: Menelaus of Alexandria’s Sphaerica sheds consid-
erable light on the development of Greek trigonom-
etry.

100: Nine Chapters on the Mathematical Art, the most 
important of the ancient Chinese mathematical texts, 
was compiled during the Han period of 206 b.c.e.–221 
c.e. Our knowledge of very early Chinese mathemat-
ics is limited and uncertain. Legend holds that the 
emperor Qin Shi Huangdi in 213 b.c.e. ordered the 
burning of all books to suppress dissent, but there is 
some reason to doubt that this was carried out. Very 
little work of a primary nature is known to us from the 
early Chinese civilizations. 

150: Claudius Ptolemy (ca. 85–ca. 165) is especially 
known for his work in trigonometry and astronomy. 
His definitive Greek work on astronomy is the Syn-
taxis mathematica, better known by its later title the 
Almagest. In the Almagest, he gives the value of π as 
377/120, or 3.1417. 

250: Diophantus of Alexandria played a major role in 
the development of algebra and exerted influence on 
later European number theorists.

300: Pappus of Alexandria wrote commentaries on 
Greek mathematics and did original work in math-
ematics. Probably his greatest work is Mathematical 
Collection, a combined commentary and guidebook of 
the existing geometrical works of his time, with propo-
sitions, improvements, extensions, and comments. 

390: The Greek commentator Theon of Alexandria 
edited Euclid’s Elements, the revision that is the basis 
for modern editions of the work. After Pappus, Greek 
mathematics ceased to be creative, and its memory was 
perpetuated by writers and commentators with Theon 
being one of the earliest. 

410: Hypatia of Alexandria (d. 415), Theon’s daughter, 
is the first woman mentioned in the history of math-
ematics. She wrote commentaries on Diophantus’ 
Arithmetica and Apollonius’s Conic Sections. 

460: Proclus Diadochus (410–485) wrote one of our 
principal sources of information on the early history of 
elementary geometry, Commentary on Euclid, Book I. 
Proclus had access to historical works now lost to pres-
ent-day mathematicians.

476: Aryabhata the Elder (b. 476) is the earliest iden-
tifiable Indian mathematician. His main work con-
centrated mainly on astronomy but also contained a  
wide range of mathematical topics, including, for  
example, the methods of calculating square and cube 
roots and what amounts to a special case of the qua-
dratic formula. 

480: The mathematician and astronomer Tsu Ch’ung 
Chih found π to be between 3.1415926 and 3.1415927 
and gave the rational approximation 355/113, which is 
correct to six decimal places.

500: Metrodorus assembled one of the best sources of 
ancient Greek algebra problems in a collection known 
as the “Greek Anthology.”

505: Varahamihira made contributions to Indian trigo-
nometry and astronomy.

510: The writings of Anicius Manlius Severinus 
Boethius (ca. 475–524) on geometry and arithmetic 
became standard texts in the monastic schools.

530: Simplicius wrote commentaries on Aristotle, the 
first book of Euclid’s Elements, accounts of Antiphon’s 
attempt to square the circle, of the lunes of Hippocrates, 
and of a system of concentric spheres invented by 
Eudoxus to explain the apparent motions of the mem-
bers of the solar system.
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560: Eutocius of Ascalon wrote commentaries on 
Archimedes’s On the Sphere and Cylinder, Measurement 
of a Circle, On Plane Equilibriums, and On Apollonius’ 
Conic Sections. 

Seventh century: The Bakhshali manuscript, a math-
ematical manuscript discovered in 1881 in northwest-
ern India, has numbers written using the place value 
system and with a dot to represent zero. The date of the 
manuscript is uncertain, but the best evidence available 
is that the manuscript dates from the seventh century.

625: A work by Wang Xiaotong contained cubic equa-
tions without a method of solution given except for a 
reference to solve according to the rule of cube root 
extractions. 

628: Brahmagupta developed theorems dealing with 
cyclic quadrilaterals, gave us the well-known dissection 
proof of the Pythagorean theorem as well as at least 
one other proof, and did some early work in algebra.

775: Many Indian works had been brought to the Ara-
bian world and they were translated into Arabic, from 
which they were translated into Latin and other lan-
guages.

820: The earliest extant Arabic algebra text was written 
by Muhammad ibn Musa al Khwarizmi (ca. 780–850). 
Al Khwarizmi’s algebra was ultimately even more influ-
ential than his important arithmetical work. The title 
of al Khwarizmi’s algebra work has the word al-jabr in 
it; the word algebra is a corrupted form of al-jabr. The 
earliest extant Arabic geometry is a separate section of 
al Khwarizmi’s algebra text. The work on geometry was 
not influenced by theoretical Greek mathematics; the 
geometry work has no axioms or proofs. 

850: Mahavira worked in arithmetic and algebra, 
including giving an explicit algorithm for calculating 
the number of combinations. Several problems from 
Mahavira are similar to “word” problems in elemen-
tary algebra today.

870: Thabit ibn Qurra (836–901) translated some 
Greek works, including the first really satisfactory Ara-
bic translation of the Elements and especially impor-
tant versions of some of Apollonius’s Conics. He also 

wrote on astronomy, the conics, elementary algebra, 
magic squares, and amicable numbers.

900: Egyptian mathematician Abu Kamil ibn Aslam (ca. 
850–930) wrote an algebra text and wrote a commen-
tary on al-Khwarizmi’s algebra that was later drawn 
upon by Leonardo Fibonacci.

920: Abu Abdallah Mohammad ibn Jabir Al-Battani 
(ca. 855–929) was an astronomer who also contributed 
to trigonometry.

980: Abu al-Wafa’ (940–998) is known for his trans-
lation of Diophantus, his introduction of the tangent 
function into trigonometry, his computation of a table 
of sines and tangents for 15' intervals, and geometric 
constructions with compasses of fixed opening.

1000: Gerbert d’Aurillac (945–1003), who became 
Pope Sylvester II in 999, started a revival of inter-
est in mathematics toward the end of Europe’s Dark 
Ages of about 476–1000. Gerbert’s work has the first 
appearance in the Christian West of the Hindu-Arabic 
numerals, although the absence of the zero and the lack 
of suitable algorithms for calculating showed that he 
did not understand the full significance of the Hindu-
Arabic system. Gerbert wrote on astrology, arithmetic, 
and geometry.

1000: Abu Bakr al-Karaji (d. 1019) was one of the Ara-
bian mathematicians who was instrumental in show-
ing that the techniques of arithmetic could be fruitfully 
applied in algebra and, reciprocally, that ideas origi-
nally developed in algebra could be important in deal-
ing with numbers. Little is known of his life other than 
that he worked in Baghdad around the year 1000.

Twelfth Century: Many of the major works of Greek 
mathematics and a few Islamic works were translated 
from the Arabic into Latin. Some of the translators 
and a sampling of their translations were Adelard of 
Bath (fl. 1116–1142; first translation from the Arabic 
of Euclid’s Elements), Plato of Tivoli (fl. 1134–1145; 
Archimedes’s Measurement of a Circle and Theodosius’ 
Spherica), John of Seville and Domingo Gundisalvo 
(fl. 1135–1153; a work that was an elaboration of al-
Khwarizmi’s Arithmetic), Robert of Chester (fl. 1141–
1150; al-Khwarizmi’s Algebra), Gerard of Cremona (fl. 
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1150–1185; Euclid’s Elements, Archimedes’ Measure-
ment of a Circle, Ptolemy’s Almagest, and al-Khwariz-
mi’s Algebra). 

1100: Omar Khayyam (1050–1123), who is best known 
in the West for his collection of poems known as the 
“Rubaiyat,” is noted in mathematics for systematically 
classifying and solving cubic equations. He also headed 
a group that worked to reform the calendar. 

1115: An important edition of Nine Chapters of the 
Mathematical Art was printed.

1130: Jabir ibn Aflah did early Islamic work on spheri-
cal trigonometry.

1150: Bhaskara II (1114–ca. 1185; called Bhaskara II to 
distinguish him from an earlier prominent mathema-
tician of the same name) is most noted for his Lilavati 
and Vijaganita, which deal with arithmetic and algebra, 
respectively. Much of our knowledge of Indian arith-
metic stems from the Lilavati. Among other things in 
algebra, Bhaskara dealt with indeterminate equations 
and affirmed the existence and validity of negative as 
well as positive roots. He gave several approximations 
for π. The proof of the Pythagorean theorem known 
as Bhaskara’s dissection proof actually appeared much 
earlier in China. 

1202: Leonardo of Pisa, also known as Fibonacci (ca. 
1170–1240), wrote several works dealing with arith-
metic, algebra, geometry, and statistics. He was one of 
the earliest European writers on algebra. A trivial prob-
lem (the rabbit problem) in his most famous work, the 
Liber Abaci, gives rise to the sequence 1, 1, 2, 3, 5, 8, 
13, 21, 34, 55, 89, 144, 233, 377 . . . that Leonardo lists 
in the margin and notes can be continued indefinitely; 
this sequence, calculated recursively, is known today 
as a Fibonacci sequence. The Liber Abaci is devoted to 
arithmetic and elementary algebra and did much to 
aid the introduction of Hindu-Arabic numerals into 
Europe. The book contains problems in such practical 
topics as calculation of profits, currency conversions, 
and measurement, supplemented by the now standard 
topics of current algebra texts such as mixture prob-
lems, motion problems, container problems, the Chi-
nese remainder problem, and problems solvable by 
quadratic equations. 

1225: Jordanus de Nemore wrote on arithmetic, geom-
etry, astronomy, mechanics, and algebra and was one 
of the first mathematicians to make some advances 
over the work of Leonardo.
 
1250: Nasîr ed-din wrote the first work on plane and 
spherical trigonometry considered independently of 
astronomy. 

1250: Ch’in Chu-shao (ca. 1202–1261) published his 
Mathematical Treatise in Nine Sections in 1247. Nine 
Sections is the oldest extant Chinese mathematical text 
to contain a round symbol for zero and is the first in 
which numerical equations of degree higher than three 
occur. Ch’in began the custom of printing negative 
numbers in black type and positive ones in red. 

1250: Li Ye (1192–1279) made an original contribution 
to Chinese mathematical notation by indicating nega-
tive quantities by drawing a diagonal stroke through 
the last digit of the number in question, an improve-
ment over the earlier use of red and black colors, which 
became the accepted notation in printed works. 

1260: Johannes Campanus (d. 1296) made a Latin 
translation of the Elements from the Arabic that 
became the basis for the first printed edition of the 
Elements in 1482.

1260: Yang Hui gave the earliest extant presentation of 
Pascal’s arithmetic triangle and worked with decimal 
fractions by essentially our present methods.

1303: Chu Shih-chieh (fl. 1280–1303) wrote works that 
gave the most accomplished presentation of Chinese 
arithmetic-algebraic methods that has come down to 
us and employed familiar matrix methods of today. 
Chu speaks of what is now known as Pascal’s arithme-
tic triangle as being ancient in his time, so the binomial 
theorem would appear to have been known in China 
for a long time. 

1325: Thomas Bradwardine (1290–1349) wrote four 
mathematical tracts on arithmetic and geometry and 
developed some of the properties of star polygons. 

1360: Probably the greatest mathematician of the four-
teenth century was Nicole Oresme (ca. 1323–1382), 
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who was associated with the University of Paris. He 
wrote five mathematical works and translated some of 
Aristotle. In one of his tracts, he has the first use of 
fractional exponents (not in modern notation) and in 
another tract he locates points by coordinates. 

1435: Persian astronomer Ulugh Beg (1393–1449) cal-
culated sine and tangent tables for every minute of arc 
correct to eight or more decimal places.

1450: Nicholas Cusa (1401–1465) was a minor German 
mathematician who is known primarily for his work 
on calendar reform and his attempts to square the cir-
cle and trisect the general angle.

1460: Georg von Peurbach (1423–1461) wrote an 
arithmetic and some works on astronomy, and com-
piled a table of sines. His main work was in Vienna and 
he made the university there the mathematical center 
of his generation. 

1470: Johann Müller (1436–1476) is more generally 
known from the Latinized form of his birthplace of 
Königsberg as Regiomontanus. He wrote De triangulis 
omnimodis, which was the first European exposition of 
plane and spherical trigonometry considered indepen-
dently of astronomy. 

1478: First printed arithmetic, in Treviso, Italy.

1482: First printed edition of Euclid’s Elements.

1484: Nicolas Chuquet (d. 1487) wrote an arithmetic 
known as Triparty en la science des nombres in 1484, 
a work on arithmetic and algebra in three parts. The 
Triparty was the first detailed algebra in fifteenth-cen-
tury France. Chuquet recognized positive and nega-
tive integral exponents and syncopated some of his 
algebra.

1489: Johann Widman (ca. 1462–1498) wrote an 
influential German arithmetic that was published in 
1489. Here appears for the first time our present + and 
– signs but not as symbols of operation; they were used 
to indicate excess and deficiency. 

1491: Italian Filippo Calandri wrote one of the less 
important arithmetics, but it does contain the first 

printed example of today’s modern process of long 
division. 

1494: Italian Luca Pacioli (1445–1509) compiled from 
many sources the most comprehensive mathematics 
text of the time. His Suma de arithmetica, geometrica, 
proportioni et proportionalita contained little that was 
original, but its comprehensiveness and the fact that 
it was the first such work to be printed made it quite 
influential. The 600-page book contained practical 
arithmetic, algebra, and geometry. The Suma also con-
tained the first published treatment of double entry 
bookkeeping. 
 
1510: The German artist-mathematician Albrecht 
Dürer (1471–1528) wrote the earliest geometric text 
in German, published in 1525. Dürer felt that German 
artists needed to know elementary geometrical ideas 
before they could approach perspective in drawing. 

1515: Scipione del Ferro (1465–1526), a professor 
of mathematics at the University of Bologna, solved 
algebraically the equation x3 + mx = n. Antonio Maria 
Fiore (ca. 1506) was del Ferro’s pupil who famously 
challenged Tartaglia to a contest of solving cubic equa-
tions. 

1518: Adam Riese (ca. 1489–1559) wrote an especially 
influential German commercial arithmetic, published 
in 1522. The phrase nach Adam Riese (according to 
Adam Riese) is used even today in Germany. 

1525: Christoff Rudolff (ca. 1500–ca. 1545) wrote his 
Die Coss, the first comprehensive German algebra, in 
the early 1520s. 
 
1530: Nicolaus Copernicus (1473–1543) of Poland was 
a prominent astronomer who stimulated mathematics; 
his work necessitated the improvement of trigonom-
etry, and Copernicus himself contributed an arithme-
tic treatise on the subject. Copernicus’s theory of the 
universe in De revolutionibus was completed by about 
1530 but was not published until 1543. 

1544: Michael Stifel (1487–1567) is perhaps the greatest 
German algebraist of the 16th century. His best-known 
mathematical work is Arithmetica integra, published in 
1544. The book was divided into three parts devoted to 
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rational numbers, irrational numbers, and algebra. He 
foreshadowed the invention of logarithms by pointing 
out the advantages of associating an arithmetic pro-
gression with a geometric one. He gives the binomial 
coefficients up to the seventeenth order. Like most of 
his contemporaries, Stifel did not accept negative roots 
of an equation. The signs +, −, and + −, , and  are used, and 
often the unknown is represented by a letter. 

1545: Cubic and quartic equations were solved by Ital-
ian mathematicians in the 16th century. Ludovico Fer-
rari (1522–1565) solved quartic equations by reducing 
the complete quartic to a form that could be reduced 
to a cubic that could then be solved by methods already 
known. Nicolo Fontana of Brescia (ca. 1499–1557), 
commonly known as Tartaglia (the stammerer) because 
of a childhood injury that affected his speech, discovered 
an algebraic solution to x3 + px2 = n and also found an 
algebraic solution for cubics lacking a quadratic term. 
Girolamo Cardano, a brilliant but unprincipled math-
ematician, published his Ars Magna, a great Latin trea-
tise on algebra, and in it appeared Tartaglia’s solution of 
the cubic, despite an apparent promise of secrecy when 
Cardano wheedled the key to the cubic from Tartaglia. 

1550: The Teutonic mathematical astronomer George 
Joachim Rheticus (1514–1574) was the first to define 
the trigonometric functions as ratios of the sides of a 
right triangle. He also formed tables of trigonometric 
functions.

1550: Johannes Scheubel (1494–1570) was one of the 
German authors to use Pascal’s triangle to find roots.

1550: Italian geometer Federigo Commandino (1509–
1575) prepared Latin translations of almost all of the 
known works of many Greek mathematicians.

1556: The first work on mathematics was printed in the 
New World.

1557: Robert Recorde (ca. 1510-1558) was the most 
influential English textbook writer of the 16th century. 
His first book was on arithmetic and he also wrote on 
astronomy, geometry, and algebra. 

1570: The first complete English translation of Euclid’s 
Elements was by Henry Billingsley (d. 1606), with a 

remarkable preface by English scientist and mystic 
John Dee (1527–1608) that gave detailed descriptions 
of some 30 different fields that need mathematics and 
the relationships among them. 

1572: Italian mathematician Rafael Bombelli (ca. 
1526–1572) wrote an algebra text that began with 
elementary material and gradually worked up to the 
solving of cubic and quartic equations. In his Algebra, 
Bombelli introduced a different kind of cube root that 
comes in cubic equations of the form x3 + mx = nwhen 
n m2 3

2 2( ) + ( )  is negative. Bombelli was the first math-
ematician to accept the existence of imaginary num-
bers and presented laws of multiplication for these new 
numbers. 

1575: William Holzmann (1532–1576), also known 
as Xylander, translated Diophantus’s Arithmetica into 
Latin and translated major portions of Elements into 
German. 

1580: French mathematician François Viète (1540–
1603) wrote a number of works on trigonometry, alge-
bra, and geometry. In his trigonometry book, he devel-
oped systematic methods for solving plane and spherical 
triangles with the aid of all six trigonometric functions. 
Viète’s most famous work is his In artem analyticam that 
did much to aid the development of symbolic algebra. 
In another work, he gave a systematic process for suc-
cessively approximating to a root of an equation, and 
in general contributed to the theory of equations. Viète 
showed that the trisection and duplication problems 
both depend upon the solution of cubic equations. 

1583: Christopher Clavius (1537–1612) was a German 
scholar who added little of his own to mathematics, 
but wrote highly esteemed textbooks on arithmetic and 
algebra. He also wrote on trigonometry and astronomy 
and played an important part in the Gregorian reform 
of the calendar.

1590: Italian mathematician Pietro Antonio Cataldi 
(1548–1626) wrote a number of mathematical works 
and is credited with taking the first steps in the theory 
of continued fractions. 

1590: Simon Stevin (1548–1620) is best known in math-
ematics for his contribution to the theory of decimal 
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fractions. He was born in Belgium, but spent much of 
his adult life in Holland.

1595: German clergyman Bartholomaus Pitiscus 
(1561–1613) invented the term “trigonometry” in his 
treatise on the subject. 

1600: Thomas Harriot (1560–1621) is usually consid-
ered the founder of the English school of algebraists. 
His great work in the field, Artis analyticae praxis, deals 
largely with the theory of equations.

1600: Swiss instrument maker Jobst Bürgi (1552–1632) 
conceived and constructed a table of logarithms inde-
pendently of Napier, but published after Napier.

1600: Italian astronomer Galileo Galilei (1564–1643) 
contributed notably to mathematics. Among other 
contributions, Galileo founded the mechanics of freely 
falling bodies and laid the foundation of mechanics in 
general, realized the parabolic nature of the path of a 
projectile in a vacuum and speculated on laws involv-
ing momentum, invented the first modern-type micro-
scope, and made several excellent telescopes (the tele-
scope was invented about 1608 in Holland). 
 
1610: Johann Kepler (1571–1630) discovered the laws 
of planetary motion, used a crude form of integral cal-
culus to find volumes, and made contributions to the 
subject of polyhedral and other areas of mathematics.

1612: The Frenchman Bachet de Méziriac (1581–1638) 
translated Diophantus’s Arithmetica into Latin; many 
of Pierre de Fermat’s contributions to number theory 
occur in the margins of his copy of Bachet’s work. 

1614: Logarithms were invented by Scottish mathema-
tician John Napier (1550–1617). Other contributions 
by Napier were the “rule of circular parts,” a mnemonic 
for reproducing the formulas used in solving right 
spherical triangles; “Napier’s anologies,” useful in solv-
ing oblique spherical triangles; and “Napier’s rods” or 
“bones,” used for mechanically multiplying, dividing, 
and taking square roots of numbers. 

1619: Savilian professorships in geometry and astron-
omy were established at Oxford University by math-
ematician Henry Savile.

1624: Englishman Henry Briggs (1561–1631) con-
structed a large table of logarithms with base 10, pub-
lished in his Arithmetica Logarithmica, after he and 
Napier had agreed that logarithms would be more 
useful with a base of 10. Briggs was the first person to 
hold the Savilian Chair in astronomy at Oxford Uni-
versity.

1630: French number theorist Marin Mersenne (1588–
1648) is especially known in mathematics for what are 
now called Mersenne primes, or prime numbers of the 
form 2p − 1, which he discussed in his Cogitata physico-
mathematica of 1644.

1630: William Oughtred (1574–1660) was one of the 
most influential of the seventeenth-century English 
writers on mathematics. His Clavis mathematicae on 
arithmetic and algebra helped spread mathematical 
knowledge in England. Oughtred placed emphasis on 
mathematical symbols, but only a few of them are still 
in use. He and another Englishman, Richard Delamain 
(ca. 1630), independently created a physical version of 
a logarithm table in the form of a circular (later recti-
linear) slide rule. 

1630: Albert Girard (1595–1632), who spent much of 
his life in Holland, gave the first explicit statement of 
the fundamental theorem of algebra. 

1635: Frenchman Pierre de Fermat (1601–1665) made 
important contributions to analytic geometry and 
probability, but of his varied contributions to math-
ematics, the most outstanding is the founding of the 
modern theory of numbers. 

1635: Italian Bonaventura Cavalieri (1598–1647) devel-
oped a complete theory of indivisibles, an important 
pre-calculus development.

1637: Frenchman René Descartes (1596–1650) shares 
with Fermat early work on analytic geometry that was 
important in the beginnings of the subject. The work 
of the two was different in that, to oversimplify a bit, 
Descartes, in his La géométrie, began with a locus 
and then found its equation whereas Fermat did the 
reverse. Also in La géométrie, Descartes stated without 
proof the result known today as Descartes’s rule of 
signs, a rule for determining limits to the number of 

1098	 Chronology of Mathematics



positive and the number of negative roots possessed 
by a polynomial. 

1640: Frenchman Gérard Desargues (1591–ca.1662) 
did original work on conic sections that was impor-
tant in the early development of synthetic projective 
geometry. 

1640: Italian Evnagelista Torricelli (1608–1647) is 
best known for his work in physics and is probably 
most famous for his discovery of the principle of the 
barometer in 1643. In mathematics, he did some work 
with pre-calculus indivisibles and showed that an infi-
nite area, when revolved about an axis in its plane, 
can sometimes yield a finite volume for the solid of 
revolution; he used a method similar to the cylindri-
cal shell method of calculus but expressed in terms of 
indivisibles. 

1640: Frenchman Gilles Persone de Roberval (1602–
1675) and Torricelli were both accomplished geom-
eters and physicists. Roberval did work in mathematics 
similar to Torricelli’s with questions of priority difficult 
to settle. Roberval successfully employed the method 
of indivisibles to find a number of areas, volumes, and 
centroids. 

1650: Frenchman Blaise Pascal (1623–1662) had signif-
icant accomplishments in his short life, among them 
the invention of a calculating machine and the inves-
tigation of the action of fluids under the pressure of 
air. Pascal’s triangle appeared in his Traité du triangle 
arithmétique, but he was not the first to exhibit the 
arithmetic triangle as Chinese writers had anticipated 
such a triangle several centuries earlier; the work also 
is famous for its explicit statement of the principle of 
mathematical induction. The problem of the points, 
stated by Pacioli in his Suma of 1494 and considered by 
several mathematicians, was important in the origin of 
probability theory; there was a remarkable correspon-
dence between Pascal and Fermat that largely laid the 
foundation of this theory. 

1650: John Wallis (1616–1703) was appointed Sav-
ilian professor of geometry at Oxford in 1649, and 
occupied this position for 54 years. While at Oxford, 
Wallis wrote his mathematical works including tracts 
on algebra, conic sections, mechanics, and of special 

interest his Arithmetica infinitorum that systematized 
and extended the methods of Descartes and Cavalieri. 
The Arithmetica infinitorum was important for its early 
calculus work, especially integration; Isaac Newton 
read Wallis’s work and expanded upon what Wallis had 
done. Wallis was the first to fully explain the signifi-
cance of zero, negative, and fractional exponents and 
he introduced the symbol ∞ for infinity.

1650: Dutchman Frans van Schooten the Younger 
(1615–1660) edited Descartes and Viète.

1650: Belgian mathematician Grégoire de St. Vincent 
(1584–1667) applied pre-calculus methods to various 
quadrature problems. 

1650: Nicolaus Mercator (1620–1687) lived most of his 
life in England. He edited Euclid’s Elements and wrote 
on trigonometry, astronomy, the computation of loga-
rithms, and cosmography. 

1650: Englishman John Pell (1611–1685) extended 
the factor tables of J. H. Rahn (1622–1676), which 
had numbers up to 24,000, to 100,000. Pell is incor-
rectly credited with the Pell equation, actually due to 
his countryman Lord William Brouncker (1620–1684), 
the first president of the Royal Society of London.

1650: Belgian René François Walter de Sluze (1622–
1685) wrote numerous tracts on mathematics in which 
he discussed spirals, points of inflection, and the find-
ing of geometric means.

1650: Italian mathematician Vincenzo Viviani (1622–
1703) had a number of geometric accomplishments, 
but is especially noteworthy for setting forth a chal-
lenge problem that led to the beginnings of the sub-
ject of double integrals in Leibniz’s solution to the 
problem. 

1662: The Royal Society was founded in London, fol-
lowed by the French Academy in Paris in 1666. These 
were centers where scholarly papers could be presented 
and discussed.

1663: Lucasian professorship in mathematics was 
established at Cambridge University, named for donor 
Henry Lucas.
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1670: Englishman Isaac Barrow (1630–1677) gave a 
near approach to the modern process of differentia-
tion in his Lectiones opticae et geometricae. Barrow was 
probably the first to realize in full generality the fun-
damental theorem of calculus, that differentiation and 
integration are inverse operations, which he stated and 
proved in his Lectiones. Barrow was the first occupier 
of the Lucasian chair at Cambridge, a position he held 
from 1664 to 1669.

1670: Scottish mathematician James Gregory (1638–
1675) was one of the first to distinguish between con-
vergent and divergent series. He expanded functions 
into series and a series for arctan(x) that played a part 
in calculations of π that is know by his name. Gregory 
is also known for his work in astronomy and optics.

1670: Dutchman Christiaan Huygens (1629–1695) 
wrote the first formal treatise on probability in 1657, 
basing his work on the Pascal-Fermat correspondence. 
He introduced the concept that is now called math-
ematical expectation. 

1670: Sir Christopher Wren (1632–1723) was a famous 
architect who might have been remembered as a math-
ematician had it not been for the Great Fire of London 
in 1666. Wren was Savilian professor of astronomy at 
Oxford and taught geometry there from 1661 to 1673. 

1672: Danish mathematician Georg Mohr (1640–1697) 
showed that all the constructions of Euclid’s Elements 
can be done with a straightedge and a compass of fixed 
opening.

1680: Englishman Isaac Newton (1642–1727) made 
numerous contributions to mathematics and physics 
and is especially noted in mathematics for inventing 
the calculus.

1680: Dutchman Johann Hudde (1633–1704) gave a 
rule for finding multiple roots of an equation.

1682: German mathematician Gottfried Wilhelm Leib-
niz (1646–1716) made numerous contributions to 
mathematics and shares with Newton credit for the 
invention of the calculus; the two men worked inde-
pendently of each other. Leibniz’s notation was supe-
rior to Newton’s and is still in use today.

1690: French nobleman the Marquis de l’Hospital 
(1661–1704) wrote the first calculus textbook, based 
on the lectures of his teacher, Johann Bernoulli. The 
so-called l’Hospital’s rule appears in the text.

1690: Edmund Halley (1656-1742), successor of Wallis 
as Savilian professor of geometry, made major origi-
nal contributions in astronomy. In mathematics, he 
restored the lost Book VIII of Apollonius’s Conic Sec-
tions by inference, edited various works of the ancient 
Greeks with translations of some of them from the 
Arabic, and compiled a set of mortality tables of the 
kind now basic in life insurance.

1690: Swiss mathematicians and brothers Jakob (Jacques, 
or James) Bernoulli (1654–1705) and Johann (John, or 
Jean) Bernoulli (1667–1748) were among the first in 
Europe to understand the new techniques of Leibniz 
and to apply them to solve new problems. They made 
numerous contributions to mathematics and are part 
of the famous Bernoulli family of mathematicians.

1691: Frenchman Michel Rolle (1652–1719) is known 
for the theorem in beginning calculus that bears his 
name.

1700: Antoine Parent (1666–1716) first systematically 
developed solid analytic geometry in a paper presented 
to the French Academy. 

1706: Englishman William Jones (1675–1749) first 
used the symbol π for the ratio of the circumference 
to the diameter.

1715: Englishman Brook Taylor (1685–1731) and 
Scotsman Colin Maclaurin (1698–1746) made impor-
tant contributions to mathematics. They are best 
known for Taylor’s well-known expansion theorem  
f (a + h)= f (a)+ hf '(a)+ h2f ''(a)/2! + . . . with Maclau-
rin’s later expansion being the special case with a = 0. 

1720: Frenchman Abraham De Moivre (1667–1754) 
is especially known for his work Annuities upon Lives, 
which played an important role in actuarial mathemat-
ics; his Doctrine of Chances, which contained much new 
material in probability; and his Miscellanea analytica, 
which contributed to recurrent series, probability, and 
analytic trigonometry.
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1731: Frenchman Alexis Claude Clairaut (1713–1765) 
did important work on differential equations. He made 
a systematic attempt to calculate volumes of certain 
regions as well as the areas of their bounding surfaces. 
His definitive work was his Théorie de la figure de la 
Terre, published in 1743. 

1733: Italian Girolamo Saccheri (1667–1733) wrote 
Euclid Freed of Every Flaw in which he purported to 
prove the parallel postulate (Euclid’s fifth postulate) by 
the method of reductio ad absurdum. 

1734: Irish philosopher Bishop George Berkeley (1685–
1753) made one of the ablest criticisms of the faulty 
foundation of early calculus in his tract The Analyst.

1740: Gabrielle Émilie Le Tonnelier de Breteuil, Mar-
quisse du Châtelet (1706–1749) translated Newton’s 
Principia into French.

1748: Maria Gaetana Agnesi (1718–1799) contrib-
uted to mathematics education by writing a two-vol-
ume work, Instituzioni Analitiche, in her native Italian 
instead of the customary Latin. The first volume deals 
with arithmetic, algebra, trigonometry, analytic geom-
etry, and mainly calculus. The second volume deals 
with infinite series and differential equations. Included 
in her work was a cubic curve, y x a a2 2 2+( ) =  that had 
been studied by others and is now known, due to a mis-
translation, as the “witch of Agnesi.” 

1750: Swiss mathematician Leonhard Euler (1707–
1783) was the most prolific writer ever in mathemat-
ics with contributions too numerous to mention in 
detail here. He made original contributions to almost 
every branch of elementary and advanced mathemat-
ics. Just in elementary mathematics, he convention-
alized much of our notation, gave us the formula 
e x i xix = ( ) + ( )cos sin , contributed the method for 
solving quartic equations that is known as Euler’s 
method, and made significant contributions in ele-
mentary number theory. 

1770: Johann Heinrich Lambert (1728–1777) was 
born in Alsace and moved to Switzerland in 1748. 
Lambert attempted to improve upon Saccheri’s work 
on the parallel postulate in his Die Theorie der Par-
allellinien, a work that places him among the fore-

runners of non-Euclidean geometry. Like Saccheri, 
Lambert used an indirect approach but considered a 
quadrilateral with three right angles and made three 
hypotheses as to the nature of the fourth angle (right, 
acute, or obtuse) whereas Saccheri had considered a 
quadrilateral ABCE in which angles A and B are right 
angles with sides AD and BC equal; the hypotheses 
concerning the other two angles are then the same, as 
were Lambert’s for the one angle. Among Lambert’s 
other accomplishments were his rigorous proof that 
π is irrational and his systematic development of the 
theory of hyperbolic functions. 

1777: Georges Louis Leclerc, Comte de Buffon (1707–
1788) devised his needle problem by which π may be 
approximated by probability methods. 

1788: Italian-born Joseph Louis Lagrange (1736–1813) 
spent his later years in France. His most important 
work was Mécanique analytique, in which Lagrange 
extended the mechanics of Newton, the Bernoullis, 
and Euler and emphasized the fact that problems in 
mechanics can generally be solved by reducing them 
to the theory of ordinary and partial differential 
equations. 

1794: French mathematician Gaspard Monge (1746–
1818) created descriptive geometry and is considered 
the father of differential geometry. His work entitled 
Application de l’analyse à la géométrie was one of the 
most important of the early treatments of the differen-
tial geometry of surfaces. 

1794: The French Journal de l’École Polytechnique was 
launched. The journal is perhaps the oldest of the cur-
rent journals devoted chiefly or entirely to advanced 
mathematics. The nineteenth century saw the rise of a 
number of mathematical societies and journals devoted 
to current mathematical research. 

1797: Italian Lorenzo Mascheroni (1750–1800) dis-
covered that all Euclidean constructions, insofar as the 
given and required elements are points, can be made 
with compasses alone. 

1797: Norwegian surveyor Caspar Wessel (1745–1818) 
presented for the first time the association of the com-
plex numbers with the real points of a plane. 
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1799: France adopted the metric system of weights and 
measures.

1800: German mathematician Carl Friedrich Gauss 
(1777–1855) gave the first wholly satisfactory proof of 
the fundamental theorem of algebra. His Disquisitio-
nes arithmeticae was a work of fundamental impor-
tance in the modern theory of numbers. Gauss made 
the first systematic investigation of the convergence of 
a series. Gauss was the first to suspect that the paral-
lel postulate is independent of the other axioms and 
worked with the Playfair form of the parallel postulate 
by considering the three possibilities: through a given 
point can be drawn more than one, or just one, or no 
line parallel to a given line; he shares with Bolyai and 
Lobachevsky the honor of discovering the geometry 
that results from having no line parallel to a given line. 
These are but a few of the ground-breaking results 
because of Gauss.

1803: French geometer Lazare Nicolas Marguerite Car-
not (1753–1823) first systematically employed sensed 
magnitudes in synthetic geometry.

1805: Frenchman Pierre-Simon Laplace (1749–1827) 
did his most outstanding work in the fields of celes-
tial mechanics, probability, differential equations, 
and geodesy. Adrien-Marie Legendre (1752–1833) is 
known in elementary mathematics for his Élements 
de géométrie, which attempted to improve peda-
gogically on Euclid’s Elements by rearranging and 
simplifying many of the propositions. Both Laplace 
and Legendre contributed significantly to advanced 
mathematics. 

1806: Swiss bookkeeper Jean-Robert Argand (1768–
1822) published a geometric interpretation of the 
complex numbers that was similar to the one that had 
been put forth earlier by Caspar Wessel. The delay in 
general recognition of Wessel’s accomplishment is 
why the complex number plane came to be called the 
Argand plane.

1816: Frenchwoman Sophie Germain (1776–1831) was 
awarded a prize by the French Academy for a paper 
on the mathematics of elasticity. She later proved 
that for each odd prime p < 100, the Fermat equation 
xp + yp = z p has no solution in integers not divisible by 

p. She introduced into differential geometry the idea 
of the mean curvature of a surface at a point of the 
surface in 1831.

1819: Englishman William George Horner (1786–
1837) is known for the numerical method of solving 
algebraic equations that goes by his name, although a 
similar method had been used by the Chinese much 
earlier. 

1822: French mathematician Jean Baptiste Joseph 
Fourier (1768–1830) is known for his mathematical 
theory of heat and especially for Fourier series. Fou-
rier believed that any function can be resolved into a 
sum of sine and cosine functions. While it is not true 
that any function can be represented by trigonomet-
ric series, the class of functions so representable is 
very broad and Fourier series are useful in the study of 
many functions. 

1824: Scotsman Thomas Carlyle (1795–1881) made an 
especially important English translation of Legendre’s 
Géométrie. 

1826: The principle of duality, important in the devel-
opment of projective geometry, was enunciated by 
French mathematician Jean-Victor Poncelet. 

1826: The theory of elliptic functions was indepen-
dently and simultaneously established by German 
mathematician Carl Gustav Jacobi (1804–1851) and 
Norwegian mathematician Niels Henrik Abel (1802–
1829). In abstract algebra, commutative groups are 
now called Abelian groups. Both Jacobi and Abel made 
many other contributions to mathematics.

1827: French mathematician Augustin-Louis Cauchy 
(1789–1857) strengthened the rigorization of analy-
sis that got underway with the work of Lagrange and 
Gauss. Cauchy’s numerous contributions include 
researches in convergence and divergence of infinite 
series, real and complex function theory, differential 
equations, determinants, and probability. In a paper of 
1846, Cauchy introduced the concept of a line integral 
in n-dimensional space (with the incidental notion of 
a space higher than three included) and of a theorem 
today generally known as Green’s theorem (George 
Green, 1793–1841).
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1829: Russian mathematician Nicolai Ivanovitch 
Lobachevsky (1793–1856) published findings on non-
Euclidean geometry similar to those of Gauss pub-
lished later and Hungarian Janos Bolyai (1802–1860) 
published in 1832. Lobachevsky’s publication was first, 
but all three of these mathematicians share credit for 
the creation of the geometry that comes from accept-
ing the hypothesis of the acute angle, now known as 
Lobachevskian or hyperbolic geometry. 

1830: French mathematician Siméon-Denis Poisson 
(1781–1840) had numerous mathematical publica-
tions. He applied probabilities to social areas where 
significant statistical information was available to 
him. 

1830: George Peacock (1791–1858) worked on reform-
ing mathematical study in England. In his Treatise on 
Algebra, he attempted to give algebra a logical treat-
ment comparable to that of Euclid’s Elements.

1830: English mathematician Charles Babbage (1792–
1871) was one of the early mathematicians to work on 
machines to automatically do a series of arithmetic 
operations. 

1831: German Julius Plücker (1801–1868) developed a 
coordinate system for the projective plane to deal with 
points at infinity with his introduction of homoge-
neous coordinates. 

1831: Scotswoman Mary Fairfax Somerville (1780–
1872) wrote a popular exposition of Laplace’s Traité de 
mécanique céleste.

1832: Frenchman Évariste Galois (1811–1832) essen-
tially created the study of groups that was carried out 
by his successors. In 1830, he was the first to use the 
term “group” in its technical sense. He also made con-
tributions to theory of equations. Galois died in a duel 
at age 21.

1834: Swiss geometer Jacob Steiner (1796–1863) made 
numerous original contributions to higher synthetic 
geometry.

1837: Trisection of an angle and duplication of a cube 
were proved impossible.

1841: Archiv der Mathematik und Physik was founded 
and Nouvelles annales de mathématiques was founded a 
year later, the earliest permanent periodicals devoted to 
teachers’ interests rather than mathematical research.

1843:  Czechoslovakian Bernhard Bolzano (1781–1848) 
produced a function continuous in an interval that has 
no derivative at any point of the interval, although Karl 
T. W. Weierstrass (1815–1897) was credited with the first 
example of this kind. Both men were proponents for 
rigorization in analysis. Weierstrass is known for being 
an outstanding teacher of advanced mathematics. 

1843: Irish mathematician William Rowan Hamilton 
(1788–1856) invented an algebra in which the com-
mutative law of multiplication does not hold, his qua-
ternions.

1844: German Herman Günther Grassman (1809–
1877) was the first mathematician to present a detailed 
theory of spaces of dimension greater than three. 

1847: German geometer Karl Georg Christian von 
Staudt (1798–1867) freed projective geometry of any 
metrical basis in his Geometrie der Lage. 

1847: English mathematician George Boole (1815–
1864) published a pamphlet entitled The Mathemati-
cal Analysis of Logic in which he maintained that the 
essential character of mathematics lies in its form 
rather than in its content; mathematics is not merely 
the science of measurement and number, but is any 
study consisting of symbols along with precise rules of 
operation upon those symbols, the rules being subject 
only to the requirement of inner consistency. 

1849: German mathematician Peter Gustav Lejeune 
Dirichlet (1805–1859) analyzed the convergence of 
Fourier series, which led him to generalize the func-
tion concept. He also facilitated the comprehension of 
some of Gauss’s more abstruse methods and contrib-
uted notably to number theory. 

1850: Frenchman Amédée Mannheim (1831–1906) 
standardized the modern slide rule.

1852: French mathematician Michel Chasles (1793–
1880) contributed notably to synthetic geometry.
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1854: German mathematician Georg Friedrich Ber-
nhard Riemann (1826–1866) contributed notably 
to analysis and non-Euclidean geometry. Riemann 
showed that a consistent geometry can be developed 
from the hypothesis of the obtuse angle; this geometry 
is known as Riemannian or elliptic geometry today.

1854: English mathematician George Boole expanded 
and clarified an earlier pamphlet of 1847 into a book 
entitled Investigation of the Laws of Thought, in which 
he established both formal logic and a new algebra, the 
algebra of sets known today as Boolean algebra. 

1857: English mathematician Arthur Cayley (1821–
1895) devised a noncommutative algebra, the algebra 
of matrices, which is not commutative under multi-
plication.

1865: The London Mathematical Society was founded 
and published the Proceedings of the London Math-
ematical Society. It was the earliest of a number of 
large mathematical societies that were formed in the 
second half of the nineteenth century that had regular 
official periodicals. These became important because 
they provided forums in which mathematicians could 
congregate, publish, and set policies.
 
1872: German mathematician Felix Klein (1849–1925) 
set forth a definition of “a geometry” that served to 
codify essentially all the existing geometries of the time 
and pointed the way to promising geometrical research. 
The program is known as the Erlanger Programm. 

1872: German mathematician Richard Dedekind 
(1813–1916) published his idea of “Dedekind cuts” 
as a way of providing an arithmetic definition of the 
real numbers (he had come up with the idea in 1858). 
Dedekind, along with Georg Cantor, showed how to 
construct the real numbers from the rational numbers, 
and Dedekind completed the process of arithmetiz-
ing analysis by characterizing the natural numbers, 
and hence rational numbers, in terms of sets in a work 
published in 1888. Dedekind gave a useful definition of 
an infinite set as one that is equivalent to some proper 
subset of itself. 

1873: French mathematician Charles Hermite (1822–
1901) proved that e is transcendental. 

1874: The Birth of Set Theory. German mathematician 
Georg Cantor (1845–1918) published a paper in Crelle’s 
Journal in which he showed, among other things, that 
the set of algebraic numbers can be placed in one-to-
one correspondence with the natural numbers (count-
able in later terminology) but that the set of real num-
bers is not countable. This established for the first time 
the fact that there are different orders of infinity. Cantor 
proceeded during the latter quarter of the 19th century 
to develop naïve (non-axiomatic) set theory. 

1877: In 1850, English mathematician James Joseph 
Sylvester (1814–1897) coined the term “matrix” in the 
sense that it is used today. Sylvester made important 
contributions to modern algebra. He came to America 
in 1877 to chair the mathematics department at the 
newly opened Johns Hopkins University in Baltimore 
and helped develop a tradition of graduate education 
in mathematics in the United States. 

1878: Sylvester founded the American Journal of Math-
ematics. It is the oldest mathematics journal in the 
western hemisphere that has been in continuous pub-
lication.

1881: Josiah Willard Gibbs (1839–1903) in America 
and Oliver Heaviside (1850–1925) in England indepen-
dently realized that the full algebra of quaternions was 
not necessary for discussing physical concepts. Gibbs 
published his version of vector analysis in 1881 and 
1883 and Heaviside published his methods in papers 
on electricity in 1882 and 1883. 

1882: German mathematician Ferdinand Lindemann 
(1852–1939) proved that π is transcendental. From 
this fact, the impossibility of squaring the circle with 
Euclidean tools easily follows. 

1888: The American Mathematical Society (AMS) was 
founded (under the name of the New York Mathemati-
cal Society) and the Bulletin of the American Math-
ematical Society was begun. In 1900, the society added 
its Transactions and in 1950 its Proceedings.

1888: Russian mathematician Sonja Kovalevsky (1850–
1891) was awarded the prestigious Prix Bordin for her 
memoir On the Problem of the Rotation of a Solid Body 
about a Fixed Point.
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1889: Italian mathematician Giuseppe Peano 1858–
1932 attempted to deduce the truths of mathemat-
ics from pure logic in a small tract that contains his 
famous postulates for the natural numbers. 

1892: Jahresbericht, the professional journal of 
Deutsche Mathematiker-Vereinigung (organized in 
1890), was founded. The Jahresbericht contained a 
number of extensive reports on modern developments 
in different fields of mathematics; these reports may 
be regarded as forerunners of the later large encyclo-
pedias of mathematics. 

1895: French mathematician Jules Henri Poincaré 
(1854–1912) contributed to virtually every area of 
mathematics. His “Analysis situs” (1895) is the first sig-
nificant paper devoted wholly to topology. 

1896: The French and Belgian mathematicians J. 
Hadamard (1865–1963) and C. J. de la Vallée Poussin 
(1866–1962) independently proved the prime num-
ber theorem: Let An denote the number of primes less 
than n. Then A n nn ln( )( )  approaches 1 as n becomes 
larger and larger. 

1899: German mathematician David Hilbert (1862–
1943) made highly important contributions in many 
areas of mathematics. In his Grundlagen der Geometrie 
(1899), Hilbert sharpened the mathematical method 
from the material axiomatics of Euclid to the formal 
axiomatics of today. Hilbert founded the formalist 
school of mathematics. 

1904: Henri Lebesgue (1875–1941) generalized the 
Hiene–Borel theorem to arbitrary infinite collections. 

1906: English mathematicians Grace Chisholm Young 
(1868–1944) and her husband William Henry Young 
wrote the first comprehensive textbook on set theory 
and its applications to function theory, The Theory of 
Sets of Points. In 1895, Grace Chisholm became the first 
woman to receive a German doctorate through the reg-
ular examination process (women were not admitted 
to graduate schools in England at that time). 

1906: French mathematician Maurice Fréchet (1878–
1973) inaugurated the study of abstract spaces with his 
introduction of the concept of a metric space.

1908: Dutch mathematician L. E. J. Brouwer (1881–
1966) originated the intuitionist school about this 
time, although some of the intuitionist ideas had 
been enunciated earlier. The intuitionist thesis is that 
mathematics is to be built solely by finite constructive 
methods on the intuitively given sequence of natural 
numbers. 

1910: English mathematicians Bertrand Russell (1872–
1970) and Alfred North Whitehead (1861–1947) wrote 
Principia Mathematica. The basic idea of the Principia 
is the identification of much of mathematics with logic 
by the deduction of the natural number system, and 
hence of the great bulk of existing mathematics, from a 
set of premises or postulates for logic itself. 

1915: The Mathematical Association of America 
(MAA) was founded. Although the AMS and MAA are 
both concerned with university mathematics, the AMS 
leans more toward research and the MAA more toward 
teaching. The two organizations together sponsor the 
Joint Mathematics Meetings every January. 

1916: Albert Einstein (1879–1955) introduced his gen-
eral theory of relativity. 

1917: British number theorist G. H. Hardy (1877–
1947) and Indian mathematician Srinivasa Ramanu-
jan (1887–1920) reached penetrating results in num-
ber theory. Ramanujan had an uncanny ability to see 
quickly and deeply into intricate number relations. 
Hardy’s efforts brought Rananujan to England to study 
at Cambridge University, and a remarkable mathemat-
ical association resulted between the two of them. 

1920: The International Mathematical Union was 
founded, which was to become a prominent society in 
the twentieth century and beyond.

1922: German mathematician Amalie Emmy Noether 
(1882–1935) became extraordinary professor at Göt-
tingen and kept the position until 1933 when she left 
Germany to accept a professorship at Bryn Mawr Col-
lege in Pennsylvania and to become a member of the 
Institute for Advanced Study at Princeton. Her studies 
on abstract rings and ideal theory have been important 
in the development of modern algebra. Her father, Max 
Noether (1844–1921), was also an algebraist.
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1923: Polish mathematician (1892–1945) Stefan Ban-
ach introduced the notion of what is now called a 
Banach space, a vector space possessing a norm under 
which all Cauchy sequences converge. 

1931: Austrian logician Kurt Gödel (1906–1978) 
showed that it is impossible for a sufficiently rich 
formalized deductive system to prove consistency 
of the system by methods belonging to the system 
(Incompleteness theorem). Later, about 1940, Gödel 
showed that the continuum hypothesis (that the car-
dinal number of the reals is the next cardinal number 
after the cardinal number of the natural numbers) is 
consistent with a famous postulate set of set theory 
(Zermelo–Fraenkel), provided these postulates them-
selves are consistent, and conjectured that the denial 
of the continuum hypothesis is also consistent with 
the postulates of set theory. 

1934: Bourbaki’s works started. Nicolas Bourbaki is the 
collective pseudonym employed by a group of French 
mathematicians who met in a Paris café to discuss 
writing a new calculus textbook for French university 
students. From that beginning, the project grew into 
the more ambitious undertaking of developing with 
rigor the essentials of modern French mathematics. 
The membership has varied over the years. Members 
must leave the group at age 50. 

1940s: IBM’s automatic sequence controlled calculator 
(ASCC) was debuted in 1944, and may be cited as the 
beginning of the computer age. The electronic numeri-
cal integrator and computer (ENIAC), which debuted 
in 1945, was the first general purpose, completely elec-
trical computer. It used vacuum tubes rather than elec-
tromechanical switches. Many mathematicians played 
a role in computer development, and computers would 
come to play an important role in many areas of math-
ematics research and education.

1940: Mathematical Reviews, containing abstracts and 
reviews of the current mathematical literature in the 
world, was organized by mathematical groups both 
in the United States and abroad to help researchers 
keep abreast of mathematical work in their fields. The 
increase of mathematical specialization in the twen-
tieth century led to the formation of many journals 
focused on specific subfields of mathematics. 

1957: The Soviet Union launched the first satellite, 
Sputnik, into space. The shock in the United States of 
the unexpected venture into space caused Congress to 
establish the National Aeronautics and Space Adminis-
tration (NASA) in 1958, which led to men on the moon 
and huge breakthroughs in computers. There was a 
renewed emphasis on mathematics and science educa-
tion with many government-sponsored programs to 
support graduate work in these fields. 

1960s: The era of so-called new math that empha-
sized understanding over rote memorization was 
ushered in at the urging of the National Council of 
Teachers of Mathematics and other groups concerned 
with teaching mathematics. The impact was perhaps 
larger at the elementary school level than at the high 
school level. In high school, there was consideration 
of what to do after the traditional two years of alge-
bra and year of geometry. For many years, the courses 
above these three years of high-school mathematics 
were a semester each of solid geometry and trigo-
nometry. Experimental courses such as functions and 
matrices were added as the final year of high school. 
Many of the reforms fell out of favor after a decade 
or so with criticism of such things as the emphasis 
on vocabulary in elementary school mathematics and 
lack of emphasis on memorizing addition and multi-
plication tables. Taking algebra I before high school 
became common resulting in more courses needed 
at the upper levels of high school. Today, advanced 
placement calculus is common at the senior year; the 
study of calculus for decades before had been strictly 
a college-level course. 

1963: Paul J. Cohen (1934–2007) followed up on a 
conjecture of Gödel some 25 years earlier that a denial 
of the continuum hypothesis in Zermelo–Fraenkel set 
theory would not lead to contradictions in the theory. 
Cohen was able to show that both the continuum 
hypothesis and the axiom of choice (given a collec-
tion of mutually disjoint, nonempty sets, there exists 
a set which has as its elements exactly one element 
from each set in the given collection of sets) are inde-
pendent of Zermelo–Fraenkel set theory (named for 
mathematicians Ernst Zermelo and Abraham Fraen-
kel) without the axiom of choice; this makes the sit-
uation analogous to that of the parallel postulate in 
Euclidean geometry. 
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1969: The National Association of Mathematicians 
(NAM) was founded to address the needs of the minor-
ity mathematical community.

1971: The first pocket calculator was offered for sale 
in the consumer market. Pocket calculators quickly 
became cheaper and more sophisticated. Hungar-
ian mathematician John von Neumann (1903–1957) 
was the person most responsible for initiating the 
first fully electronic calculator and for the concept 
of a stored program digital computer. Von Neumann 
migrated to America in 1930 and became a perma-
nent member of the Institute for Advanced Study at 
Princeton in 1933. Computers were initially designed 
to solve military problems, but are now pervasive in 
the form of personal computers for use in education 
and business. 

1971: The Association for Women in Mathematics was 
founded. 

1976: The four-color theorem, first conjectured in 
1852, was established by Kenneth Appel (b. 1932) and 
Wolfgang Haken (b. 1928) of the University of Illinois. 
The four-color theorem of topology states that any 
map on a plane or sphere needs at most four colors 
to color it so that no two countries sharing a common 
boundary will have the same color. The Appel–Haken 
solution of the four-color problem depended on intri-

cate computer-based analysis and raised philosophical 
questions of just what should be allowed to constitute 
a proof of a proposition in mathematics. 

1985: Supercomputers came into general use.

1994: Princeton mathematician Andrew Wiles (b. 
1953) completed the proof of Fermat’s Last Theorem 
after correcting a flaw in his 1993 work that had taken 
seven years to complete. Fermat’s Last Theorem states 
that there do not exist positive integers x, y, z, n such 
that xn + yn = zn when n > 2.

2002: Russian mathematician Grigori Perelman (b. 
1966) posted a proof of the long-standing Poincaré 
conjecture in three installments on the Internet. The 
Poincaré conjecture states essentially that any closed 
three-dimensional manifold in which every closed 
curve can be shrunk to a point is homeomorhic to the 
three-dimensional sphere. In 2006, the International 
Mathematical Union awarded Perelman its prestigious 
Fields Medal. Perelman declined to accept the medal, 
which also included a million-dollar prize, saying that 
“everyone understood that if the proof is correct then 
no other recognition is needed.” Subsequently, Perel-
man decided to drop out of mathematics entirely. 

Phillip Johnson
Appalachian State University
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Glossary

absolute value
For a real number x, the absolute value of x, written x , 
is the “unsigned” version of the number. If x is non-
negative, then x = x ; if x is negative, then x = x− . For 
a complex number x = a + bi , the definition is slightly 
more complicated:

x = a + b
22 .

In both cases, x  represents the magnitude of x, and 
x y−  represents the distance between x and y.

acute angle
A nonzero angle that is smaller than a right angle. 
The measure of an acute angle is between 0 and 90 
degrees.

algebra
A branch of mathematics dealing with the formal 
properties and behavior of symbolic operations, rela-
tions, and structures. Mathematicians use the word 
“algebra” much, much more broadly than it is used in 
everyday usage; nonmathematicians often use the term 
specifically for what is taught in the secondary school 
curriculum under the heading “algebra,” which is only 
the most elementary part of algebra.

algebraic number
A complex number is called algebraic if it is the root of 
some polynomial with integer coefficients. For exam-
ple, all rational numbers are algebraic, as are 19, i, 

5 2 5
3

+ , 

and all five roots of x5 − x + 1 = 0. Though any number 
that can be expressed in terms of arithmetic operations 
and roots must be algebraic, not all algebraic numbers 
can be written in this way (in particular the roots of the 
given polynomial cannot be so written).

analysis
Elements of analysis are part of the curriculum under 
the name “calculus.” The most elementary part of analy-
sis is part of the curriculum under the name “calculus.”

antiderivative
If f (x) is the derivative of a function  F(x), then we say 
that F(x) is an antiderivative (integral) of f (x).  

Arabic numerals
The familiar base-ten number system, with digits 0, 1, 
2, 3, 4, 5, 6, 7, 8, 9 and a positional place value system 
based on powers of 10.



arithmetic mean
The arithmetic mean of a set of numbers a1, a2, . . . , an 
is

a + a + + a

n
n1 2

. . .
.

The arithmetic mean is often called the “average” or 
just the “mean.”

arithmetic progression
A sequence (finite or infinite) such that the difference 
of any two consecutive terms is the same; equivalently, 
a sequence in which each term (except the first and 
last) is the arithmetic mean of the terms immediately 
preceding and following.

associativity
A binary operation is said to be associative, or (less 
frequently) to associate, if the (chronological) order 
in which it is evaluated does not affect the answer. In 
symbols, ~ is associative if x y z = x y z∼( ) ∼ ∼ ∼( ) for 
all x, y, z for which the operation is defined.

base b
See number bases.

bijection
A function is a bijection (also called a “one-to-one cor-
respondence”) if it is both injective and surjective.

binary (notation system)
Base two. (See number bases.)

binomial coefficient
The binomial coefficient

n

r






(often read “n choose r”), defined for integers n ≥ r ≥ 0 
by the formula

 
n

r n r

!

! !−( ) ; 

this binomial coefficient counts the number of combi-
nations of r elements from a set of size n. 

Binomial Theorem
A theorem of basic algebra which connects the bino-
mial coefficients to the numbers appearing in the 
expansion of a binomial raised to a power (indeed this 
is the reason they are called binomial “coefficients”). 
The precise statement is 

x+y =
n

k
x y

n

k=

n
k n k( ) 



∑ −

0

.

calculus
A branch of mathematics that focuses on (1) evaluating 
the rate at which a function changes and (2) evaluating 
the rate at which a function accumulates. If we plot a  
single-valued function y = f (x), these correspond to (1) 
the slope of f (x) and (2) the area under the curve f (x).  

Cartesian product
If A and B are any sets whatsoever, then the Cartesian 
product A × B is the set of all ordered pairs (a, b) with  
a in A and b in B. 

circle
In a plane, the set of all points at a fixed distance (the 
“radius”) from a given point (the “center”).

claim
See proposition.

closed form
An expression or formula is in closed form if it is writ-
ten explicitly in a way that could be directly evaluated.  
Recursions, summation (or product) notations, and 
ellipses to indicate omitted terms cannot be part of 
closed-form expressions.

codomain
The set where a function’s values (“outputs”) live. Spec-
ifying the codomain is part of defining a function. 

combination
One of the fundamental enumeration problems. The 
combinations of r objects from a set of n objects are 
the “unordered” sets of r distinct objects from the set. 
There are

n

r n r

!

!−( )  

combinations of r objects from a set of size n. 
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commutativity
A binary operation is said to be commutative, or to com-
mute, if the left-to-right order of its arguments does 
not matter. That is, ~ is commutative if x y = y x∼ ∼  for 
all x, y for which the operation makes sense. In the con-
text of group theory, a commutative group operation is 
usually called “abelian.”

complex conjugate
The (complex) conjugate of a complex number 
z = x + i y  is z = x iy− ; that is, complex conjuga-
tion changes the sign of the imaginary part. Com-
plex conjugation preserves the structure of the com-
plex number system; in particular x + y = x + y  and 
xy = x y( )( ).

complex numbers
The set of all numbers of the form a + ib, where a and 
b are real numbers and i is the imaginary unit, the 
square root of −1 (a is sometimes called the real part, 
and b the imaginary part). Complex numbers can be 
added, subtracted, multiplied, and divided (except 
by zero). Geometrically, the set of complex numbers 
can be visualized as a plane. The complex plane is 
the complex analogue of the number line. The set of 
complex numbers is traditionally denoted by a black-
board-bold 

 

£.

composite
A positive integer n is composite if it can be written 
as a product n = ab, where a and b are positive inte-
gers greater than 1. (For positive integers greater than 
1, “composite” means “not prime.”)

congruent
In geometry, one object is congruent to another 
object of the same type if they are “the same size 
and shape.” For line segments, this means they have 
the same length; for angles, this means they have the 
same angle measure. For triangles (and other figures, 
though the term is used most frequently to refer to tri-
angles), congruence means that corresponding sides 
have the same length and corresponding angles have 
the same measure. 

In modular arithmetic, the term “congruent” is 
often used as the analogue of “equal.” For example 2 
and 16 are congruent modulo 7. Equations in modular 
arithmetic are thus often called congruences.

conic section
Any geometric figure that can be realized as the inter-
section of a full (double) cone with a plane. Such 
a figure can be defined by an equation of the form 
ax2+ bxy + cy2 + dx + ey + f = 0. Setting aside degener-
ate cases, the conic sections have three types: “ellipses,” 
“hyperbolas,” and “parabolas.”

conjecture
An assertion that is believed to be true (at least by some 
people) but that has not yet been rigorously demon-
strated. The term “conjecture” is not generally applied 
to any wild guess; a conjecture is typically justified (but 
not proven) by a heuristic argument or experimental 
evidence.

continuous function
Intuitively, a function is continuous if whenever x is 
“near” y, then f (x) is “near” f (y). How exactly this is 
formalized depends on context, especially the domain 
and codomain of the function. For real-valued func-
tions of a single real variable, it is often said that a func-
tion is continuous if its graph could be drawn “with-
out picking up your pencil” (which may be a helpful 
heuristic, but is not, strictly, true). The formal defini-
tion in that case is that a function is continuous at x0 if, 
for all ε > 0, there exists a δ > 0 such that, x x < ä− 0  
implies f x f x <( ) − ( )0 ε . Continuity is conceptually 
very close to limits. Continuity is a central notion to 
analysis and to topology.

contrapositive
If a statement takes the form “If P, then Q,” then the 
contrapositive is the statement “If not Q, then not P.” 
For example, the contrapositive of “If I have meditated, 
then I am relaxed” is “If I am not relaxed, then I have 
not meditated.” A statement and its contrapositive are 
either both true or both false. It is often more straight-
forward to prove the contrapositive form of a theorem 
than to prove the theorem directly.

coordinate geometry
A technique for studying Euclidean geometry by iden-
tifying points in the plane with ordered pairs of real 
numbers (or points in space with ordered triples, and 
generally points in n-dimensional space with ordered 
n-tuples) based on their position relative to a fam-
ily of axes (sing. axis). This allows us to understand 
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geometric objects in terms of numbers and equations, 
using algebra and arithmetic knowledge to solve geo-
metric problems.

corollary
A proposition that is an easy consequence of a previous 
theorem.

countable (set)
A set is countable if it is finite or if it is “the smallest sort 
of infinite,” if its elements can be listed a0

, a1
, a2

, . . . . 
There are countably many integers, countably many 
rational numbers, and countably many polynomials 
with integer coefficients. However, the set of real num-
bers is uncountable.

decimal (notation system)
The familiar notation for writing real numbers, base 
ten. (See number bases.)

definite integral
The definite integral

f x dx
a

b

∫ ( )

represents the “accumulation” of the function f (x) 
over the interval a ≤ x ≤ b. Geometrically, this is the 
signed area between the graph of the function and 
the x-axis. (“Signed” indicates that area above the x-
axis is weighted positively, and area below is weighted 
negatively.) 
 
degrees
One of the two most commonly used units of angle 
measure, denoted by the symbol º. There are 360 
degrees in one full circle, and 90 degrees in a right 
angle. The primary advantage of this unit (and the his-
torical reason for its use) is that 360 has many factors, 
so that many important angles are a whole number of 
degrees.

derivative
See differentiation.

differential equations
Equations or systems of equations relating one or more 
functions to their derivatives. A wide array of special-

ized techniques have been developed to solve such 
equations exactly or to approximate solutions. Such 
equations have myriad uses in mathematics (pure and 
applied) and in science and engineering.

differentiation
The process of finding the “derivative” of a function, 
which is intuitively the “rate of change” of the value of 
a function with respect to the input.

discrete mathematics
A very wide branch of mathematics dealing with finite 
or countable objects and structures. This includes 
counting (enumeration) problems, partitions, graph 
theory, matroids, designs, and Ramsey theory.

domain
The set of valid arguments (“inputs”) to a function. 
Specifying the domain is part of defining a function.

e (exponential or Euler’s constant)
Arguably the most “natural” base for exponential and 
logarithmic functions. The constant e can be defined by

e = +
!

+
!

+
!

+1
1

1

1

2

1

3
. . .
 

. . .

or by the formula

lim
n

n

+ n→∞




1

1
 

(or numerous other formulae). It has the approximate 
value 2.71828. . . . See also exponential function and 
logarithm.

ellipse
The set of points at a fixed sum of distances from two 
given points. That is, if A and B are two points (called 
the foci – sing. focus) and r is any positive constant 
greater than the distance AB, then the set of all points P 
such that AP + BP = r is an ellipse. After suitably rotat-
ing and translating the coordinate axes, any ellipse can 
be described by an equation of the form

x

a
+

y

b
=

2

2

2

2
1. 

enumeration
Counting and/or listing the objects or structures of a 
particular kind of type. Questions of the shapes “How 
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many X have the properties Y?” or “What are all the 
X that have the properties Y?” lead to enumeration 
problems.

exponential function
For any positive base b, there is a base-b exponential 
function, traditionally written f (x) = bx.

factorial
If n is a nonnegative integer, then n! (read “n fac-
torial”) is defined by 0! = 1, 1! = 1, and generally 
n! = n n1 2 3 1× × × × −( ) ×� . Factorials show up 
frequently throughout mathematics, especially in com-
binatorics or in answers to problems where combina-
torics is “in the background.” Using more advanced 
methods, it is possible to define x! for some values of x 
that are not nonnegative integers. This generalization 
is called the “gamma function.”

Fields Medal
Officially called the “International Medal for Out-
standing Discoveries in Mathematics,” the Fields 
Medal is widely considered the mathematician’s ana-
logue of the Nobel Prize. The prize is awarded by the 
International Mathematical Union once every four 
years to two, three, or four mathematicians no older 
than 40 years old.

finite (set)
A set is finite if its elements can be put in one-to-one 
correspondence with the elements of a set {1, 2, 3, . . . , n} 
for some n.

function
Formally, a function f has three parts: a domain set D, 
a codomain set C, and a rule which corresponds each 
domain element to a unique codomain element. More 
formally, there is a subset Sf 

of the product D × C, such 
that each element of D is the first member of exactly one 
of the ordered pairs in the subset. If (x, y)  is the unique 
element of Sf beginning with x, we say that f (x) = y. 
Informally, the domain is the set of inputs, and the 
codomain is the set of potential outputs. Functions are 
most often specified by an algebraic expression such as

f x = x + x( ) 3 2

but this is not necessary.

Fundamental Theorem of Algebra
Every polynomial

p x = a x + a x + + a x + an

n

n 1

n

1 0( ) −
−1  . . .  

with coefficients in the complex numbers has at least 
one root in the complex numbers. Furthermore, if 
roots are counted with multiplicity, an nth-degree 
polynomial will always have exactly n roots.

Fundamental Theorem of Arithmetic
Every integer greater than 1 can be written as a prod-
uct of primes; furthermore, the prime factorization is 
unique except for the order in which the factors are 
written.

Fundamental Theorem of Calculus
Any of several important theorems of elementary anal-
ysis relating differentiation and integration as (in some 
suitable sense) inverse processes. The most commonly 
given are the following two:

 If a function F is an antiderivative of a  
function f on an interval a,b[ ], then 
 
 
 

f x dx = F b F a
a

b

∫ ( ) ( ) − ( )
  

 
(We can easily compute definite integrals 
given an antiderivative.

 If f is a continuous function on some 
interval containing a, then the function 
 
F x = f t dt

a

x

( ) ( )∫   
 
is an antiderivative of f. (Definite integrals can 
be used to define antiderivatives.)

gamma function (Ã s( ))
A generalized version of the factorial function which 
makes sense for non-integral arguments, and even 
nonreal arguments. The gamma function is defined 
(for complex numbers with positive real part) by

 

Ã s = t e dt
s t( ) −

∞
−∫ 1

0
 

and satisfies Ã s = s !( ) −( )1  and the factorial-like 
identity Ã s s Ã s+( ) = ( )1 . (It is possible to extend this 

1.

2.
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definition through complex analysis techniques to all 
complex numbers except nonpositive integers.)

geometric mean
The geometric mean of a set of numbers a1, a2, . . . an is

a a a .n
n1 2

. . .

This is the geometric mean of 2 and 8 is 4.

geometric progression
A sequence (finite or infinite) such that the ratio of 
any two consecutive terms is the same; equivalently, a 
sequence in which each term (except the first and last) 
is the geometric mean of the terms immediately pre-
ceding and following.

geometry
A branch of mathematics dealing with shapes, sizes, 
lengths, angles, areas, volumes, and so on. Because 
many contemporary mathematics curricula stress 
proofs and axiomatic reasoning for the first (and often 
last) time in secondary-school geometry class, geom-
etry and axiomatic reasoning are sometimes conflated 
in the mind of the general public.

golden ratio
The number ϕ = +1 5

2
1.6180339887≈ , or roughly 8/5. 

The golden ratio can be defined as the unique positive 
solution to the equation

1
1

ϕ
−= ϕ . 

This number appears throughout mathematics, nature, 
music, and art. The golden ratio also has the interesting 
continued fraction representation

= +
+

+
+

+

1
1

1
1

1
1

1
1

1
1

�

ϕ

golden rectangle
A rectangle for which the ratio of its side lengths 
is equal to the golden ratio. Such a rectangle has the 
notable property that it can be dissected into a square 

and a smaller rectangle which is similar to the origi-
nal. Golden rectangles have been considered the most 
aesthetically pleasing rectangles, and they play a role in 
classical art and architecture.

gradians
A somewhat obscure unit of angle measure, still occa-
sionally seen in certain texts and certain calculators. 
There are 400 gradians in a full circle.

harmonic mean
The harmonic mean of a set of positive numbers 
a a ,an1 2, , . . .  is

n

a + a + + an

1 1 1

1 2

. . .
.

harmonic progression
A sequence (finite or infinite) in which each term 
(except the first and last) is the harmonic mean of the 
terms immediately preceding and following. Equiva-
lently, a sequence whose reciprocals form an arithmetic 
progression.

harmonic series
The series

1
1

1

2

1

3

1

4

1

51 n
= + + + + +

n=

∞

∑ �. . . .

This series famously diverges to infinity, that is, has no 
finite value. Its partial sums

1
1

2

1

3

1

4

1

5

1
+ + + + + +

N
. . .  

are sometimes called the “harmonic numbers” and are 
well-approximated by logN.

hexadecimal (notation system)
Base sixteen (the digits used are traditionally 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9, A, B, C, D, E, F). (See number bases.)

homomorphism
A function from one mathematical structure to another 
mathematical structure that respects all the operations 
and properties of that type of structure. For example, a 
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homomorphism of rings (structures in which addition 
and multiplication make sense) must preserve addi-
tion and multiplication. For example, the function that 
maps each polynomial to its constant term is a ring 
homomorphism from the set of polynomials to the set 
of real numbers.

hyperbola
The set of points at a fixed difference of distances from 
two given points.  That is, if A and B are two points 
(called the foci – sing. focus) and r is any positive con-
stant, then the set of all points P such that AP BP = r−  
is a hyperbola. After suitably rotating and translating 
the coordinate axes, any hyperbola can be described by 
an equation of the form

 
x

a

y

b
=

2

2

2

2
1− .

iff
A commonly used mathematician’s abbreviation for “if 
and only if,” used to indicate that two statements logi-
cally imply one another.

image
The set of all values realized by a function. In symbols, 
if f :D →C is a function with domain D and codomain 
C, then the image of f is y C x D s.t. f x = y∈ ∃ ∈ ( ){ }:  
(“∃ ” stands for “there exists”).

imaginary number
This term is used inconsistently. Some use it to refer to 
any complex number that is not real, others only for a 
pure imaginary number of the form bi, where b is real.

imaginary unit
The symbol i, whose defining property is that i =

2
1− .

indefinite integral
The indefinite integral f x dx∫ ( )  is the family of all 
antiderivatives of f (x)  (usually written in the form 
F (x) +C, where F is a particular antiderivative and C is 
a general constant).

induction
A proof technique used to prove that a statement or 
property holds in an infinite number of cases (e.g., to 
prove that 1 2 3 1 2+ + + + = +( ). . . n n n  for all posi-

tive integers n). First, one checks the simplest cases indi-
vidually (the “base case(s)”); then, one proves that, if the 
claim holds in the first n cases, it will also hold in the 
n + 1( )-st case. In this way, it is possible to prove an infi-

nite collection of statements with a finite proof. (Note 
that this is not the same as “inductive reasoning.”)

infinite set
A set is infinite if its elements cannot be put in one-
to-one correspondence with the elements of the set  
{1, 2, 3, . . . n} for any n. Equivalently, a set is infinite if 
its elements can be put in one-to-one correspondence 
with a proper subset of itself.

injective
A function f : D→C is injective (also called “one-to-
one”) if distinct inputs give distinct outputs. In symbols, 
f (x) = f (y) implies x = y, that is, passes the horizontal 
line test—a test used to determine if a function is one-
to-one. If no horizontal line intersects a function’s graph 
more than once, the function is said to be “one-to-one.”

integer
The set of integers includes the counting numbers 1, 2, 
3, 4, 5, 6, . . . and their negatives, as well as 0. The set of 
integers is traditionally denoted by a blackboard-bold 

 

¢  (from the German word Zahl, meaning “number”). 

integral
See integration for the broad concept. See definite inte-
gral and indefinite integral for particular uses common 
in classroom usage. (An adjective form of “integer.”)

integration
Intuitively, the operation of “adding up” or “accumu-
lating” the values of a function over part or all of its 
domain. More concretely but still informally, the inte-
gral of a real-valued single-valued function is the area 
under its graph. There are numerous types of integra-
tion, at varying degrees of complexity and technicality. 
The simplest is the Riemann integral, which is part of 
the standard calculus curriculum. The most commonly 
used in professional mathematics is arguably the Leb-
esgue integral.

irrational number
A number (usually the term is only used for real num-
bers) is called irrational if it is not rational, that is, if 
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it cannot be expressed as the ratio p/q of two integers. 
The decimal expansion of an irrational number nei-
ther terminates nor repeats.

isomorphism
A homomorphism that is also a bijection. Two objects 
related by an isomorphism are called “isomorphic.” 
Isomorphic objects are in a deep sense “the same.” This 
notion is fundamental to modern mathematics.

lemma
A proposition which is proven primarily so that it can 
be used in the proof of another proposition, which is 
presumably considered more important.

limit
Intuitively, if whenever x is “near” a, then f (x)  is 
“near” L, we say lim f (x) = L. How exactly this is for-
malized depends on context; there are even versions 
of the definition that allow variables to approach 
infinity or allow for infinite limit values. For real-val-
ued functions of a single real variable, the formal defi-
nition is that lim f (x) = L if, for all ε > 0, there exists 
a δ > 0 such that, 0 < x a < ä−  implies f x L <( ) − ε . 
Derivatives and integrals are both defined in terms of 
limits. The limit is the foundational concept on which 
calculus and analysis are built.

linear algebra
In its more narrow meaning, linear algebra is the study 
of systems of linear equations, matrices, vectors, and 
their operations. More broadly and abstractly, linear 
algebra is the study of linear operators, functions which 
respect addition and multiplication by scalars.

logarithm
The inverse operation to exponentiation. For any 
positive base b ≠ 1, we can define a continuous func-
tion logb x  for all x > 0 with the following formal 
properties:

log log log

log 1 0 log 1

log log

b b b

b b

b

n

xy = x + y

= b =

x = n

( )

( ) bb x

We have logb x = k  if and only if b = x
k . If the base 

is not specified, then the base e is implied in standard 

mathematical usage; among nonmathematicians and 
in most secondary school textbooks, the default base is 
the less natural 10. 

logic
The formal study of valid reasoning and inference. 
Logic is both a branch of mathematics (particularly 
symbolic logic) and part of its architecture.

matrix
A rectangular array of numbers or mathematical sym-
bols. Two matrices of the same shape can be added 
or subtracted. In order to multiply two matrices, the 
number of columns of the first must match the num-
ber of rows of the second. The algebraic properties of 
these operations are a bit different from operations on 
numbers; for example, matrix multiplication is not 
commutative, and it is possible to multiply two non-
zero matrices together and get zero. There are many 
applications of matrices and matrix algebra.

modular arithmetic
The arithmetic of congruences in number theory. 
When working modulo n, one considers two integers 
to be congruent if their difference is a multiple of n 
(equivalently, if they give the same remainder when 
divided by n). Working modulo 2 is just keeping track 
of whether numbers are even or odd (even + odd = 
odd, odd + odd = even, etc.). Working modulo 12 is 
so-called “clock arithmetic.”

multinomial coefficient
The multinomial coefficient

n

n n ,nk1 2, , …






defined for nonnegative integers

n = n + n + n + + nk1 2 3
 . . .  by the formula

n

n n n nk

!

! ! ! !1 2 3
. . . .

This multinomial coefficient counts the number of 
ways to divide n objects into k piles so that the first 
pile contains n1 objects, the second contains n2, and 
so on.
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Multinomial Theorem
A theorem of basic algebra which connects the mul-
tinomial coefficients to the numbers appearing in the 
expansion of a sum raised to a power (indeed this is the 
reason they are called multinomial “coefficients”). The 
precise statement is

 

x + x + + x =

n

n n ,nn n , n
n + n

k

n

k
k

1 2

1 2
2

1

0

( )




≥ , ,, ,1

22

1
1

2
2

+ + n = n

x x x

k

n n

k

nk. . .
. . .

. . .

. . .
. . .

∑

natural number
A natural number is a “counting number”: 1, 2, 3, 4,  
5, . . . . Some sources include 0 as a natural number, 
while others do not. The set of natural numbers is tra-
ditionally denoted by a blackboard-bold 

 

•.

number bases
For any integer b > 1, we can define a system for writing 
down real numbers using the digits 0,1, 2, 1. . . , b −( ). 
A string of digits a a a a .a ak 2 1 0 1 2− −

.  .  . . . . represents the 
number

a b + a b + + a b + a b + a

+ a b + a b +

k

k

k

k

−
−

−
−

−
−

1

1

2

2

1 0

1

1

2

2

. . .

. . .

For example, if b = 7, then 123.4 (base 7) represents the 
number

49 2 7 3
4

7
66

4

7
+ + + =×  

(written in familiar base 10). This is called base b nota-
tion, and several of the more commonly-used bases 
have other names, such as “binary” for base 2.

number line
A commonly used device for visualizing the real num-
ber system in which every real number is represented 
by a point. Typically the number line is drawn so that 
the numbers increase toward the right.

number theory
A branch of mathematics concerned with the prop-
erties of number systems, especially integers. This 

includes modular arithmetic, prime numbers, Dio-
phantine equations (an indeterminate polynomial 
equation that allows the variables to be integers only), 
and modular forms. 

The concepts of “integer,” “prime,” and so on, can be 
generalized to much wider contexts than just the “ordi-
nary” integers.

obtuse angle
An angle that is larger than a right angle but less than 
half a circle. The measure of an obtuse angle is between 
90 and 180 degrees.

octal (notation system)
Base eight. (See number bases.)

one-to-one
See injective.

one-to-one correspondence
See bijection.

onto
See surjective.

open problem
An unsolved problem, an opportunity for mathemati-
cal research. A mathematical question is said to be 
“open” if it has not been answered in the existing math-
ematical literature. (compare conjecture)

opposite
The opposite of a number x is −x. Also called “additive 
inverse.”

ordered pair
A pair of numbers or other mathematical objects, 
denoted (a, b), where the “order matters,” so that 
(a, b) and (b, a) are different as ordered pairs (unless  
a=b).

ordered triple
A list of three numbers or other mathematical objects, 
denoted (a, b,c), where the “order matters,” so that

(a, b,c), (a, c,b), (b,a,c), (b,c, a), (c,a,b), (c,b,a)
 

are different as ordered triples (if a, b,c are distinct).
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parabola
The set of points that are at the same distance from 
a fixed point (the “focus”) and a fixed line (the 
“directrix”). The graph of any quadratic function 
f x = ax + bx + c( ) 2  with a nonzero is a parabola, and 
every parabola can be described in this way after suit-
ably rotating the coordinate axes.

parity
Whether a number is even or odd. (Considering num-
bers based only on parity is just another name for 
working modulo 2.)

perfect number
A positive integer is said to be perfect if it is equal to the 
sum of all its proper divisors. For example, 6 is perfect 
because 6 = 1 + 2 + 3. The next smallest perfect num-
ber is 28 = 1 + 2 + 4 + 7+ 14. It is not known whether 
there are infinitely many perfect numbers, nor whether 
there exists even one odd perfect number.

permutation (enumeration)
One of the fundamental enumeration problems. The 
permutations of r objects from a set of n objects are 
the “ordered” r-tuples of distinct objects from the set. 
There are

n!
n r !−( )  

permutations of r objects from a set of size n. 

permutation (function)
A bijection from a set to itself. Intuitively, a permu-
tation is a rearrangement of a set of objects. There 
are n! permutations of a set of n elements, includ-
ing the trivial permutation, which leaves the order 
unchanged.

phi (ϕ). See golden ratio.

pi (π)
A constant defined as the ratio of the circumference of 
any circle to its diameter, or the number of radians in half 
a circle. The approximate value of π is 3.1415926536. The 
constant π is ubiquitous in mathematics and physics.

polygon
Traditionally a plane figure bounded by a closed path 
made up of a sequence of line segments. These line 

segments are called the “sides” of the polygon, and 
the places where one edge ends and the next starts are 
called “vertices” (sing. “vertex”). A polygon with three 
sides is usually called a “triangle.” A four-sided poly-
gon is a “quadrilateral,” a five-sided polygon is a “pen-
tagon,” and so on. More generally an n-sided polygon 
is called an “n-gon.” Depending on context, we may 
want to think of the boundary itself as the polygon, or 
we might prefer to consider the boundary and its inte-
rior together as the polygon.

polyhedron
The three-dimensional analogue of a polygon. The 
boundary of a polyhedron consists of a collection of 
polygons in space (“face”) with common sides (“edges” 
of the polyhedron) and “vertices.” The faces form a 
closed figure in space.

polynomial
A polynomial in variables x1, x2, . . . xn is any expression 
that can be constructed from the variables and from 
constants by addition and multiplication. The expres-
sions 2xy + z3 and x2+ y2+ z2−1 are polynomials in  
x, y, z, 

but x + y +
z
1

 and x yz  are not. 

polytope
The analogue of polygons and polyhedra in dimen-
sions greater than three.

prime factorization
An expression of a positive integer as a product of 
primes (possibly raised to powers). For example, 
42 2 3 7= × ×  and 525 3 5 7

2= × × .

prime (number)
A positive integer is prime if it has exactly two factors, 
itself and 1. The first few primes are 2, 3, 5, 7, 11, 13, 
17, . . . . (In particular, note that the number 1 is not 
considered prime.)

probability
A numerical measure taking values between 0 and 1 
quantifying the likelihood of an event to occur (or 
beliefs about that likelihood). Also, the general theory 
for understanding and working with such measures of 
likelihood and expectation.
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proof
Any rigorous demonstration of the validity of a prop-
osition. Proofs may be written in formal or informal 
language and may consist of any proportion of words 
and symbols.

proof by contradiction
A proof technique in which one assumes that the 
intended conclusion of the theorem is false, and derives 
from this supposition and from the other hypotheses 
of the theorem and known facts some statement which 
contradicts something already known. This shows that 
one of our assumptions must have been wrong, and 
the only questionable one was the assumption that our 
theorem was false. This in turn shows that the conclu-
sion of the theorem does in fact hold.

proposition
A proposition is a declarative statement. Depending on 
the importance of a statement and/or its role in a larger 
argument, a proposition may be called a “lemma,” a 
“corollary,” a “claim” or a “theorem,” depending on its 
perceived importance.

Q.E.D.
Abbreviation for quod erat demonstrandum (Latin for 
“which was to be demonstrated”), classically used by 
mathematicians to indicate the conclusion of a proof, 
signifying that the claims may have now been fully jus-
tified. While Q.E.D. itself is less commonly used than it 
once was, it is still standard practice to include an “end-
of-proof symbol” of some kind. The most commonly 
used end-of-proof symbol today is probably , called 
the “Halmos tombstone” and named for mathemati-
cian Paul R. Halmos (1916–2006).

quadratic formula
The equation

x =
b ± b ac− −2

4

2a , 

which expresses the solutions of the polynomial equa-
tion ax + bx + c =

2
0 in terms of its coefficients. Analo-

gous formulas exist for cubic equations

ax + bx + cx + d =
3 2

0

and quartic equations ax4 + bx3 + cx2 + dx + e = 0, but 
they are less well-known because they are much more 

complicated. Notably, it is known that no such formu-
las exist for polynomials of degree five or larger.

radians
One of the two most commonly-used units for angle 
measure. Among mathematicians, radians are the 
standard unit of angle measure, and radian measure is 
considered implied unless some other unit is indicated. 
There are 2π radians in a circle. If a circle is drawn with 
center at the vertex of an angle, then the radian measure 
of the angle is the ratio of the length of the arc inside 
the angle to the radius of the circle. The trigonometric 
functions have the simplest properties (particularly in 
the context of calculus) if radians are used.

range
The set of values that a function y = f (x)  may take cor-
responding to the values of the input over the specified 
domain of x. Also called “codomain.”

rational function
A rational function in variables x x , xn1 2, , . . .  is any 
expression that can be constructed from the variables 
and from constants by addition, multiplication, and 
division. A rational function can always be written as a 
ratio of two polynomials.

rational number
The set of rational numbers (from the word “ratio”) 
consists of those numbers which can be expressed 
as a fraction m/n, where m and n are integers with n 
nonzero. The set of rational numbers is traditionally 
denoted by a blackboard-bold 

 

§ (for “quotient”). 

real number
This is what is typically meant when one says “number” 
without further explanation, including all the integers, 
all the rational numbers, and many more numbers 
“between” the rational numbers. A real number can 
always be described by a (generally infinite) decimal 
expansion. Real numbers exclude imaginary numbers, 
complex numbers, and the square root of minus one. 
The set of real numbers is traditionally denoted by a 
blackboard-bold 

 

°.

reciprocal
The reciprocal of a nonzero number x is 1/x. Also called 
“multiplicative inverse.”

	 Glossary	 1123



recursion
A formula or equation relating each term of a sequence 
or object from a family to the previous terms or objects. 
This (usually together with one or more initial values) 
implicitly determines all the terms or objects, but it 
may be difficult or impossible to get a closed-form 
description of all the terms.

reductio ad absurdum
Latin for “reduction to absurdity.” See proof by con-
tradiction.

relation
Formally, a relation R on sets X1

, X2
, . . . Xn is a subset 

of the product X1 × X2 ×  . . . × Xn. If (x1, x2
, . . . xn

) 
belongs to the subset we say that R (x1, x2

, . . . xn
) is true 

or the relation holds. If not, the statement is false. Most 
often, n = 2 and we write the relation symbol between 
the arguments, as in “x1 < x2.” Examples include “is less 
than,” “is a factor of,” and “does not equal.” Examples 
with n = 1 include things like “is prime” or “is positive.” 
Intuitively, a relation is a property that a combination 
of objects may or may not possess. (One can alternately 
think of a relation as a special kind of function whose 
output is “true” or “false.”)

relatively prime
A set of integers is relatively prime if there is no num-
ber larger than 1 that is a common factor of all of them. 
For example 18 and 25 are relatively prime. So are 6, 10, 
and 15. A set of integers is “pairwise” relatively prime 
if every pair of number in the set is relatively prime. So 
6, 10 and 15 are not pairwise relatively prime, but 69, 
11, and 35 are.

right angle
An angle that is congruent to its own supplement; that 
is, a quarter of a full circle. The measure of a right angle 
is 90 degrees.

root
The nth roots of a number a, sometimes written 

a
n

, 
are the numbers x such that xn= a. Also, a root of a 
polynomial

a x + a x + + a x + an

n

n

n

−
−

1

1

1 0
. . .  

is a solution of the equation

a x + a x + + a x + a =n

n

n

n

−
−

1

1

1 0 0. . . , 

that is, a zero of the function

f x = a x + a x + + a x + an

n

n

n( ) −
−

1

1

1 0
. . . .

scalar
A numerical quantity (as opposed to a vector or func-
tion) that may take one of several forms; for example, a 
real or complex number.

sequence
A finite or infinite list of terms (which can be numbers 
or any other type of object). A sequence can be given 
by listing its terms explicitly separated by commas or by 
giving a closed-form or recursive formula for the terms.

series
A sum of a finite or infinite (but more frequently the 
latter) list of terms (usually numbers or mathematical 
expressions). The terms of a series can be listed as the 
terms of a sequence can, but separated by plus signs, 
not commas. In the case of an infinite series, this goes 
beyond the ordinary concept of addition, and requires 
the notion of limit to make sense.

set theory
A branch of mathematics studying sets, which can be 
thought of as collections of objects. It also includes a 
vocabulary for making precise certain ideas about infi-
nite sets and their relative sizes. Set theory sits close 
to the core of mathematical theory, and much of the 
architecture of mathematics is traditionally built on the 
foundations of set theory; set theory is also an object of 
study for its own sake.

surjective
A function f : D→C is surjective (also called “onto”) if 
the image is the whole codomain. That is, for all y an 
element of C there exists some x an element of D such 
that f (x)= y.

symmetry
A symmetry of an object is a transformation or change 
of perspective after which the object is “the same as 
it was before.” A figure has reflective symmetry if it 
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looks the same when reflected across a certain line; the 
human face has at least approximate reflective sym-
metry. A figure has rotational symmetry if it looks the 
same when rotated around a certain point by a certain 
angle (traditional crossword puzzle grids have rota-
tional symmetry). Symmetry is by no means a purely 
geometric concept; a unifying concept of much of 
modern mathematics is the problem of identifying and 
describing symmetries of all types.

tau (τ)
A circle constant defined as the ratio of the circum-
ference of any circle to its radius, or the number of 
radians in a full circle. The approximate value of tau 
is 6.2831853072. While π is in much more common 
usage (for chiefly historical reasons), some consider τ 
to be the more mathematically significant constant.

theorem
A theorem is a mathematical statement that can be 
demonstrated to be true provided that the set of axioms 
and other theorems from which this theorem is derived 
is true. It is usually a general component of some larger 
theory. Its significance is often a subjective decision.

theory
A collection of related definitions and theorems on a 
particular topic, such as “number theory,” “knot the-
ory,” or “graph theory”; an area of study or research in 
mathematics. Note that “theory” as used in mathemat-
ics means something like “formal study” and it defi-
nitely does not have the unproven, conjectural conno-
tation present in scientific and everyday usage.

topology
A branch of pure mathematics dealing with those prop-
erties which are preserved by continuous deformations 
(stretching, twisting, enlarging, shrinking, and so on). 

transcendental number
A complex number is called transcendental if it is not 
algebraic, that is, if it is not the root of any polynomial 
with integer coefficients. Famously transcendental 
numbers include π and e.

trichotomy
The principle that, if x, y are real numbers, then of the 
statements x < y, x >y, and x = y, “exactly” one is true.  

Some other sets and order relations have trichotomy 
properties as well.

tuple
General term for “ordered pair,” “ordered triple,” 
“ordered quadruple,” and “ordered n-tuple” for any 
larger n. The adjective “ordered” is usually regarded as 
implied from context and omitted.

variable
A symbol, often x (though just about any symbol can 
be used), which is meant to represent some unspecified 
object of a certain type (e.g., a real number). Sometimes 
a variable stands for a specific (unknown) number, as in 
“If 2x + 3 = 7, then what is x ?,” while in other contexts 
variables are used formally without a particular value. 
A variable is to be contrasted with a “constant,” which 
does not change within a given problem.

vector
Often defined as a quantity with a magnitude and a 
direction. Geometrically, a vector can be thought of as 
an arrow with a defined head and tail. More generally, 
the name “vector” is sometimes applied to any element 
of any vector space; the term is most commonly used 
for n-tuples of real numbers.

whole number
Some people use “whole number” as a synonym for 
“integer,” others use it as a synonym for “positive inte-
ger,” and still others as a synonym for “nonnegative 
integer.”

zero (number)
A number that serves as the additive identity, charac-
terized by the property that x + 0= x  for all x. Many 
mathematical structures have additive identities (zero 
matrices, zero functions, and so on), and the term zero 
(and even the symbol 0) are often used for these. In 
contexts where multiplication makes sense, zero is also 
characterized by the property that 0 × a = x  for all a.

zero (of a function)
The zeroes of a function f (x)  are the domain values x0 

such that f (x0)= 0.

Michael “Cap” Khoury
University of Michigan, Ann Arbor
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Enron Corporation, 509
entanglement, 548
enterprise value (EV), 93
Epic of Gigamesh, The (Mesopotamian epic poem),  

899–900
epidemiology, 479, 513, 942

See also diseases, tracking infectious
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epistemology, 540
Epitome of Copernican Astronomy, The (Kepler), 365
equal tuning, 824–825
equations, polar, 353–354
equiangular spiral, 762, 763
Equilibrium of Planes (Archimedes), 544
equilibrium theory, 519
Eratosthenes of Cyrene, 18, 77–78, 460–461, 762–763, 1092
Erdös, Paul, 361, 518, 589, 596
Erdös number, 589, 916

See also Six Degrees of Kevin Bacon
Erdös–Rényi graphs, 453, 518
e-readers. See digital book readers
ergodic theory, 490

See also chaos theories
Erie Canal, 156
Eritrea, 16
Erlang, Agner, 977
Erlangen Program, 438, 965, 971, 1104
Error-Correcting Code (ECC) memory, 911
Escher, M.C., 354–356

as amateur mathematician, 599
mandalas and, 515
Metamorphosis III, 355–356
Regular Division of the Plane with Asymmetric Congruent 

Polygons, 355, 765
symmetry and, 748, 970
tessellations and, 781

Eskin, Alex, 110
Essai Philosophique sur les Probabilities (Laplace), 368
ethics, 356–358
ethnomathematics, 22, 458, 485, 515, 670, 933
Euclid Freed of Every Flaw (Saccheri), 1101
Euclid of Alexandria

Abraham Lincoln and, 193
Arabic/Islamic mathematics and, 53–54
axiomatic geometry and, 424–425
binomial theorem and, 111
Euclidean philosophers and, 357, 427
golden ratio and, 446
as library leader, 459
musical pitches and, 433
optics and, 1042
pinhold camera and, 305
postulates of, 426, 750–751, 752
ruler/compass construction and, 881–882
superposition and, 1004
theoretical mathematics and, 615
Theory of Intervals, 433
See also Elements (Euclid); Euclidean geometry; Greek 

mathematics; non-Euclidean geometry

Euclidean geometry, 84–85, 424–425, 427, 428–429
See also Elements (Euclid); Euclid of Alexandria

Eudemian Summary (Proclus), 1092
Eudemus of Rhodes, 1092
Eudoxus of Cnidus, 146, 652, 727, 772, 1092, 1093
Eukaryota domain, 43, 44
Euler, Leonhard

algebra and, 35, 38
contributions of, 1101
exponential functions and, 1012
functions and, 144, 146, 366, 370
geodesics and, 281
Introductio in analysin infinitorium, 410
Pi and, 771
polyhedra and, 783
projectile trajectories and, 64
Seven Bridges of Königsburg and, 129, 130, 366,  

454–455, 755, 821
at St. Petersburg Academy, 359
transformations and, 1005

Euler characteristic, 965, 966
Eulerian Graphs, 14
Eulerian–Lagrangian-Agent Method (ELAM), 1054
Euler–Lotka equations, 385
Euler’s method, 1101
Eupalinian aqueduct, 1014, 1015
Eupalinos of Megara, 1015
“Eureka” (Archimedes), 60, 460, 652, 1025
Europe, eastern, 358–361
Europe, northern, 361–363
Europe, southern, 363–365
Europe, western, 365–367
European Economic Community (EEC), 337–338
European Organization for Nuclear Research (CERN),  

911
European Women in Mathematics, 811, 1072
Eutocius of Ascalon, 1094
event horizons, 115, 116
Expected Benefit (EB), 873–874
expected values, 368–369
expenditure method (GDP), 467
Exploring Our Solar System (Ride), 871
Exploring Small Groups (ESG), 273
exponentials and logarithms, 370–372, 1011
Exposition du Systeme du Monde (Laplace), 115
extinction, 372–373
Extracts (Stobaeus), 619
Extraordinary Hotel, The (Lem), 901
extreme sports, 374–375, 375
eyeglasses, 1040
Eytzinger, Michael, 418
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F 
fabrics. See textiles
face recognition, 165
Facebook, 926
factorials, 765
Fahrenheit, Gabriel, 988
Fahrenheit temperature scale, 988, 1058
Fair Credit Reporting Act (FCRA), 387
Fair Isaac Corporation (FICO). See FICO score
fair market value (FMV), 93
Faltings, Gerd, 367
family trees. See genealogy
Fan Chung. See Graham, Fan Chung
Fannie Mae, 254
Fanning, Shawn, 388
Fantasy Football Index (magazine and Web site), 378
fantasy sports leagues, 377–379
Faraday, Michael, 837
Faraday’s law of induction, 837
al-Farisi, 764
Farmer, John,, 418
farming, 23, 286, 379–382, 380
Farr, William, 288, 313, 942
Farrell, Edward, 167
fashion design, 431–432
Fast Fourier Transforms. See Fourier Transforms
fatigue, 955
fax machines, 382–384, 383
Fechner, Gustav, 447, 653–654
Federal Aid Highway Acts, 476
Federal Bureau of Investigation (FBI). See U.S. Federal 

Bureau of Investigation (FBI)
Federal Communications Commission, 175
Federal Deposit Insurance Corporation (FDIC), 691
Federal Reserve System, 675
federal tax tables, 497–498
Fedorov, E. S. “Yevgraf”, 781
Feingold, Graham, 206
feng shui, 534
Fennema, Elizabeth, 961
Fennema–Sherman mathematics attitudes scale, 961
Ferguson, Claire, 904
Ferguson, Helaman, 904
Fermat, Pierre de

algebra and, 34–35
analytic geometry and, 1098
Arcadia (Stoppard), 1083
Blaise Pascal and, 105–106, 1099
conic sections and, 237
coordinate geometry and, 248
dice games and, 302

Fermat’s Enigma (Singh), 560
Fermat’s Last Tango and, 689–690
integral formula of arc length, 763
Marin Mersenne and, 588
probability and, 105–106, 112–113, 366, 806, 841
squares/square roots and, 883, 939
See also Wiles, Andrew

Fermat primes, 883, 939
Fermat’s Enigma (Singh), 560
Fermat’s Last Tango (Lessner & Rosenblaum), 689–690
Fermat’s Last Theorem, 34, 112–113, 282, 362, 366, 720, 829, 

1107
See also Wiles, Andrew

Fermat’s Room (movie), 683
Fermi, Enrico, 79
Ferrari, Lodovico, 261, 786
Ferrel, William, 1063
fertility, 384–386
Feynman, Richard, 79, 228, 349, 548

Surely You’re Joking, Mr. Feynman, 682
What Do You Care What Other People Think, 682

Fibonacci, Leonardo, 18, 54, 412, 886, 1088, 1094
Liber Abaci, 412, 819, 939, 1088, 1095

Fibonacci sequence, 62, 364, 412, 886, 908
Fibonacci tuning. See Pythagorean and Fibonacci tuning
FICO score, 254, 288, 386–387, 482–483
FidoNet, 517
Fields Medal, 69, 363, 367
Fignon, Laurent, 109
file downloading and sharing, 387–388
Final Problem, The (Doyle), 558
fingerprints, 388–390
“Finite Simple Group (of Order Two)” (Klein Four Group), 

787
finite state machines, 1034
Finkel, Benjamin, 810
Finley, John, 490
Fiore, Antonio Maria, 1096
Fiqh al-Hisab (Ibn Mun’im), 55
firearms, 390–392
fireflies, 973
fireworks, 392–394, 393
First, Outside, Inside, Last (FOIL), 41
First Circle, The (Solzhenitsyn), 558
FIRST Robotics, 133
First-fit algorithm, 912
first-generation (1G) cell technology, 175
Fischer, Carl, 139, 141
Fischer, Gwen, 834
fish schooling, 973
Fisher, Ronald, 379, 803, 842, 943, 944
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Fisher–Neyman–Pearson inferential methods, 943
fishing. See data mining
fishing (aquatic), 394–395
Fiss, Andrew, 193
Fitzgerald, George, 547
Five Hysterical Girls theorem, 776
fixed rated mortgages, 483
Fizeau, Hippolyte, 316
flash memory, 309–310
Flatland (Abbott), 440, 557, 557, 781, 859, 902
Flatland the Movie (movie), 440, 781, 1083, 1084, 1085, 1086
Flatterland (Stewart), 902
flavonoids, 732
Fleischmann, Martin, 350
Fletcher, Thomas, 926
flight, animals, 44, 46–47, 47
Flintusehel, Eliot, 901
floods, 395–398
FLOW-MATIC, 754
Flynn, Morris, 488
Focus in High School Mathematics (NCTM), 278
folded normal, 708
FONE F3, 303
Fons, W. R., 402
Fontana, Niccolò. See Tartaglia, Niccolò
Food and Drug Administration (FDA), 319
food webs, 47–48
football, 398–400, 529–531
Forbidden Knowledge (Cramer), 901
Ford Motor Co., 10, 523
forecasting, 400–402
foreign exchange (FX) market, 263–264
forensic ballistics. See ballistics studies
forest fires , 402–404
formal concept analysis (FCA), 509
Foster, Donald, 958
Foundation (Asimov), 791
Four-Color theorem, 587, 611, 814, 1107
four-dimensional geometry, 548
Fourier, Jean Baptiste Joseph

contributions of, 1102
heat conduction and, 410, 987–988, 1083
Napoléon Bonaparte and, 501
On the Propagation of Heat in Solid Bodies, 987
squares/square roots and, 939

Fourier analysis. See Fourier transforms
Fourier series, 410, 1040
Fourier transforms, 165, 209–210, 211, 360, 547, 684, 769
Fourier’s heat equation, 410, 987–988, 1083
fourth-generation (4G) cell technology, 176
Foxtrot (Amend), 219

fractals
in African societies, 13–14
in animal kingdom, 49
coastlines and, 570–571
coral reefs and, 251
in education, 426
houses of worship and, 486
lightning patterns and, 551–552
in village design, 515, 534
visualization and, 1042
See also patterns

fractional exponents, 1096
fractional linear transformations, 1005
fractions, continued, 1097
Fraenkel, Abraham, 587, 1106
Framingham Heart Study, 123
Francesca, Piero della, 248
Frank Lloyd Wright School of Architecture, 1080
Frankenstein (Shelley), 877, 900
Franklin, Benjamin, 274, 869, 886, 913
fraud detection

accounting and, 4–5
in communication technologies, 224
credit card, 253, 254
data mining and, 292
neural networks and, 125
probability theory and, 5
Social Security and, 759
taxes, 498

Fraunhofer, Joseph von, 79
Frayn, Michael, 775

Copenhagen, 775–776
Fréchet, Maurice, 651, 1105
Freddie Mac, 254
Freeman, Greydon, 517
Frege, Gottlob, 219
Frémont, John Charles, 344
French Academy, 1099
Frenet, Jean Frédéric, 249, 281
Frenet–Serret Formulas, 249, 281
frequency modulation (FM), 838–839, 1068–1069
frequentist approach, 802
Fresnel, Augustin-Jean, 547
Frézier, Amédée-François, 393
Friedman, William, 756, 1074
Frisch, Karl von, 105
Fritts, Charles, 930
Fröbel, Friedrich, 324
Fröbel Gifts, 324
“From Fish to Infinity” (Strogatz), 610
Frost, Wade Hampton, 314
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Fuchs, Ira, 517
fuel consumption, 404–405
Fujita, Tetsuya Theodore, 492
Fujita–Pearson scale, 492
Fujiwara, Masahiko

An Introduction to the World’s Most Elegant Mathematics, 
612

Fulke, William, 122
Fuller, Buckminster “Bucky”, 62, 674
Fuller, Thomas, 599, 668
fullerenes, 674, 782
function rate of change, 405–408
functional MRI (fMRI), 126, 127

See also magnetic resonance imaging (MRI); medical 
imaging

functions, 408–410
functions, recursive, 410–412
Fundamental theorem of Algebra, 722, 785
Fundamental theorem of Calculus, 149
Fürer algorithm, 688
Fusaro, Marc, 675
fusion, 349–350
Futurama (television show), 829, 903, 1082, 1083, 1084
Future Shock (Toffler), 402
futures market, 510
fuzzy logic/sets, 290, 803, 843
FX market, 263–264
fx-7000G, 141–142

G 
 Gabriel’s Horn, 505
“Gadget” (nuclear test bomb), 80
Gaing Kek Ieu “Comrade Deuch”, 71
Gale, David, 122, 582
Galerkin, Boris, 283
Galileo (Galileo Galilei)

animal/machine connections and, 45
contributions of, 1098
Dialogues Concerning the Two Chief World Systems, 

858–859
infinite sets and, 505
influence of, 64, 364
invention of thermometer, 1055
normal distribution and, 707
pendulum clocks and, 202, 202–203
principle of relativity and, 853
proofs and, 812
religious writings, 858–859
square/square roots and, 939
Star Messengers (Zimet and Maddow), 690
telescopes and, 978

theory of gravity and, 64, 364
Two New Sciences, 545

Galileo Galilei (Glass), 690
Galileo’s principle of relativity, 853
Gallup, George, 888
Gallup Polls, 889
Galois, Évariste, 34, 362, 366, 786, 883, 1103

algebra and, 32
Galois Theory, 34
Galton, Francis, 389, 803, 895, 942, 1042

Regression Towards Mediocrity in Hereditary Stature, 895
Galton distribution, 708
Gama, Vasco da, 862
gambling. See betting and fairness; dice games
Game of Logic, The (Carroll), 122
Game of Pistols, 415
game shows, 982–983
game theory, 216, 413–415

in baseball, 99, 378
in basketball, 101
Cold War and, 214, 1037–1038
David Blackwell and, 119
in football, 399
strategy and tactics in, 952–954
topology and, 119
See also board games

games. See board games; video games
games, board. See board games
Gamow, George, 853
Gardner, Howard, 543
Gardner, Martin, 569, 595, 823, 901

The Island of Five Colors, 902
Mathematics, Magic and Mystery, 569

Garfield, James, 828
Garfield, Richard, 415–417
Garibaldi, Skip, 200
gas volume, 1025–1026
Gates, Bill, 768
Gatun Locks, 156
Gauguin, Paul, 737
Gauss, Carl F.

abstract groups and, 35
arithmetic sequence and, 908–909
axiomatic systems and, 85
complex numbers and, 722
contributions of, 239, 249, 366, 574
curved space and, 854
Disquisitiones Arithmeticae, 712, 939–940, 1102
error modeling and, 369
hyperbolic geometry and, 1103
laws for electricity and magnetism, 837
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linear equation simplification and, 634–635
linear transformations and, 1005
non-Euclidean geometry and, 848
normal distribution and, 802
parallel processing and, 752
polygons and, 781
ruler/compass construction and, 883
Theory of Celestial Movement, 707
theory of curves and, 281
thermostats and, 991

Gauss, Karl Friedrich, 220
Gauss–Bonnet theorem, 965
Gaussian curvature, 965, 965
Gaussian distribution, 366, 706, 802

See also normal distribution
Gaussian elimination, 634–635
Gaussian thermostat, 991
Gauss–Jordan elimination, 634–635
Gauss’s divergence theorem, 1030
Gauss’s laws for electricity and magnetism, 837
Gavin, M. Katherine, 539–540
Gawrych, Billy, 374
gay-related immune deficiency (GRID), 478–479
GDP. See gross domestic product (GDP)
Geary, David, 537
Geber (Jabir ibn Aflah), 664, 1095
GEE system, 1079
Gelfand, Israel Moiseevich, 360
Gelfand representation, 360
gelosia, 686
Gemini program, 522
Gender Bias Elimination Act, 1072
gender schemas, 1071
Genealogical Data Communication (GEDCOM), 418
genealogical numbering systems (GNS), 418
Genealogical Society of Utah, 418
genealogy, 417–419, 454
General Conference on Weights and Measures, 640
General Electric Company (GE), 288, 832
General Motors Company (GM), 10
General Theory of Employment, Interest and Money, The 

(Keynes), 1018
genetic algorithms, 791
genetic engineering, 422
genetic variability, 421
genetically modified foods, 733
genetics, 419–422
Geneva score, 52
Geni (Web site), 419
genotype, 420–421
GeoEye, 891

GeoGebra, 929
Geographia (Ptolemy), 1011
geographic information systems (GIS), 430, 570
Geometer’s Sketchpad (GSP), 427, 929
Geometria indivisilibus continuorum (Cavalieri), 353
geometric art, 736–737

See also patterns
geometric magis, 568
geometry and geometry education, 422–427

Arabic/Islamic, 54
Babylonian, 88–89
of castle defense, 171–172
computational, 429
dance as, 90, 92
differential, 429
discrete, 429
early history of, 422–425, 798–799
hyperbolic, 1103
plane and spherical, 54
prehistorical, 798–799
recent developments in, 426–427
sacred, 885–886
software, 929
synthetic projective, 1099
theoretical mathematics and, 613–614, 615–617, 619
See also coordinate geometry; Elements (Euclid); 

Euclidean geometry; non-Euclidean geometry
Geometry Center for the Computation and Visualization of 

Geometric Structures, 426, 1042
Geometry Forum, 220, 426
Geometry from Africa (Gerdes), 14
geometry in society, 427–433, 431

design/manufacturing and, 430, 431
early history of, 428–429
fashion design and, 431–432
graphics/visualization and, 430
information systems and, 430–431
occupational connections and, 431–433
types of, 429–430

Geometry of Love, The (Cheever), 558
geometry of music, 433–436
geometry of the universe, 436–441

dimensionality and, 440
Euclidean geometry, 436–437
global geometry and, 439–440
triangles and, 437–438

Georgian National Mathematical Committee, 76
geosynchronous satellites, 891
geothermal electricity, 442–443
geothermal energy, 441–443
geothermal heating, 442
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Gerard of Cremona, 1094
Geraschenko, Anton, 778
Gerbert d’Aurillac (Pope Sylvester II), 1094
Gerdes, Paulus

Geometry from Africa, 14
Gerhard of Cremona

algebra and, 33
Germain, Sophie, 1102
German ciphers, 212
Gerry, Elbridge, 443
gerrymandering, 443–445
Gershgorin, Semyon Aranovich, 635
Gessen, Masha

Perfect Rigor, 559
Gestalt psychology, 741
Get Off the Earth puzzle, 820
Gfarm Grid File System, 290, 388
g-forces, 878
Giant’s Causeway (Ireland), 781
Gibbard, Allan, 1050
Gibbs, Josiah Willard, 909, 1029–1030, 1104
giftedness, 538, 539–540
Gilbert, W. S.

Pirates of Penzance, 690
Gill, John, 201
Gilliver’s Travels (Swift), 559
Gini, Corrado, 769
Giotto di Bodone, 748, 860
Girard, Albert, 1098
Girls’ Guide to Fantasy Football (Web site), 378–379
Glass, Philip

Einstein on the Beach, 690
Galileo Galilei, 690

Glauert, Hermann, 31
Gleason Grading system, 52
global geometry, 439–440
global positioning systems (GPS). See GPS
global warming. See climate change
globalization, 733
gnomonics, 202, 534
Gnutella, 388
God. See mathematics and religion; numbers and God
Gödel, Kurt

contributions of, 1106
Incompleteness theorem, 85, 360, 366, 625, 776, 814, 901
Seventeenth Night (Apostolos), 776
ZF set theory and, 587, 1106

Gold Bug, The (Poe), 558
Goldbach, Christian, 359, 721
Goldbach’s Conjecture, 683, 721
Goldberg, Ian, 842

Goldberg Extension, 114
See also birthday problem

Golden Ratio, 445–448, 729, 730, 748, 886, 986
Golden Rectangles, 729, 748
golden spirals, 446, 448
Goldin, Gerald, 863
Goldman, David, 128
Goldman equation, 128
Goldsmith, Thomas, 1034
Goldstein, Raymond, 941
Goldstine, Herman, 1079
Goldwasser, Eric, 320
Goldwasser, Romi, 320
Golenischev papyrus. See Moscow papyrus
“Gompertzian growth” model, 184
Good Will Hunting (movie), 163, 681–682
Google, 12, 180, 518–519
Gore, Al, 1047, 1049–1050
Gorgas, Josiah, 193
Gossett, William (pseud. Student), 708, 943
Gottman, John, 793
Gougu theorem, 185, 423
“Governable Parachute” (Cayley), 29
government and state legislation, 448–450
Gowers, Timothy, 363
Gowers, William, 763
GPS, 450–453

satellites, 774, 855, 891
smart cars and, 922–923
trilateration and, 451, 451–452, 1012–1013

Graham, Fan Chung, 453–454
Graham, Ronald, 453, 589
Grand Design, The (Hawking), 625
Granger, Clive, 466
Grant, Ulysses S., 193
Granville, Evelyn Boyd, 668, 671, 679
graph paper, 249, 455, 658
graph theory, 454, 455, 519, 534, 701–702, 963
graphical user interfaces (GUIs), 291
graphing calculators, 138, 141–142, 273, 427, 456
graphs, 454–456, 465, 509, 696, 963, 1042
On graphs not containing independent circuits (Lovász),  

361
graph-theoretic tournaments, 999
Grassmann, Hermann

The Calculus of Extension, 1029
Grassmann, Hermann Günther, 34, 249, 1103
Graunt, John, 546
gravitational time dilation, 854
gravity, 456–458, 1026, 1059
Gray, Elisha, 976
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Gray, Mary, 811
Great Fire of London, 1100
Greater Cleveland Mathematics Program, 275
Greek Anthology (Metrodorus), 1093
Greek gods and godesses, 729
Greek mathematics, 458–461

applied mathematics and, 603–604
Archimedes and, 364
astronomy and, 77–78, 460–461
decline of, 424–425
deductive logic and, 459–460
early mathematicians, 458–461
Golden Ratio and, 446
measurement and, 446, 646, 653
written history of, 1092
See also Elements (Euclid); Euclid of Alexandria

Green, Ben, 975–976
Green, George, 155, 653, 1030, 1067, 1102
Green, Judy

Pioneering Women in American Mathematics, 1072
Green Card Lottery program, 563
green design, 461–463
green mathematics, 463–466
Green Monster (Fenway Park), 62
greenhouse gases (GHGs), 442–443, 1063
Green’s theorem, 653, 1030, 1102
Greenwald, Sarah, 829
Greenwaldian theorem, 829
Greenwich Time, 577
Gregorian calendar, 495–496
Gregory, James, 111, 112, 354, 1100
Gregory of Rimini

Lectures, 858
Gregory XIII (pope), 154
Gribeauval, Jean-Baptiste Vaquette de, 287
Grienberger, Christopher, 354
Grill, Bernhard, 684
Groff, Rinne, 776
groma, 879
Gromov, Mikhail, 367
Gross, Mark, 877
gross domestic product (GDP), 466–468, 696, 697
Grosseteste, Robert, 664
Grossman, Alex, 293
Grossman, Sharon, 420
Grothendieck, Alexander, 1037
ground resonance effect, 475
group theory, 35, 362, 674, 971
Groups, Algorithms, Programming (GAP), 765
Grover, Lov, 548
growth charts, 468–469

Grundlagen der Geometrie (The Foundation of Geometry) 
(Hilbert), 85, 1105

Gudermann, Christof, 249
Guggenheim Museum, 1081
Gunderson, Lauren

Emilie, 777
Leap, 776

Gundisalvo, Domingo, 1094
guns. See firearms
Gunter, Edmund, 371
Guo Shoujing (Kuo Shou-ching), 156, 186
Gupta numerals, 712
Guthrie, Francis, 19
gymnastics, 469–470

H 
hacking, computer, 192, 224
Hadamard, J., 1105

The Psychology of Invention in the Mathematical Field, 560
Hadamard, Jacques, 560
Hagia Sophia dome, 315, 315
hagwons (academies), 69
Hahn, Hans, 1030
Haken, Wolfgang, 1107
Hales, Thomas, 104–105, 746
Halley, Edmund, 288, 344, 546, 1100

See also data analysis and probability in society
Halley’s Comet, 288–289, 1063
Halma, 120
Halmos, Paul Richard, 361
Hamilton, Alexander, 232
Hamilton, William Rowan, 34, 122, 249, 362, 722,  

1029–1030, 1103
Hamiltonean Graph, 122
Hamilton’s Method, 232, 233, 234
Hamilton-type circuits, 11
Hammerstein, Oscar, 1082
Han dynasty, 185, 423
handicapping. See sport handicapping
Hankel, Hermann, 1030
Hankins, Thomas, 455
Hansen, Morris, 890
Hanson, Howard, 231
hard disk drivers (HDDs), 309
Hard Problems (movie), 1086
Hard Times (Dickens), 560
Hardy, Godfrey (G. H.)

contributions of, 73, 1074, 1075, 1105
A Disappearing Number (Complicite Co.), 776
A Mathematician’s Apology, 559, 597, 608, 776
Srinivasa Ramanujan and, 73, 599
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Hare system, 1048
Harmonices Mundi (Kepler), 365
harmonics, 211, 434–435, 471–473, 475, 1066
Harnack, Carl Gustav Axel, 146
Harrell, Marvin, 781
Harrington, John, 997
Harriot, Thomas, 964

Artis analyticae praxis, 765, 1098
Harris Interactive, 889
Harrison, John, 203
Hart, George, 904
Hatori, Koshiro, 742
Hauck, Frederick H., 871
Hauptman, Ira

Partition, 776
Haussmann, Baron, 189
Hawk, Tony, 374
Hawking, Stephen, 115, 116, 117, 362, 473–474, 474, 625

Black Holes and Baby Universes and Other Essays, 474
A Brief History of Time, 473, 474
The Universe in a Nutshell, 474

Hawking radiation, 116, 117
Hawthorne effect, 889
Haynes, Martha Euphemia, 668
Headley, Velmer, 167
heap (Egyptian mathematics), 332
hearing. See cochlear implants
Hearst, Patty, 958
heat conduction problem, 410, 987–988
Heath, Thomas, 60
Heaviside, Oliver, 838, 977, 1029–1030, 1104
Heaviside Layer, 838
Heeding the Call for Change (MAA), 944–945
Heegner, Kurt, 599
Hein, Piet, 122
Heinlein, Robert A., 899, 902
Heisenberg, Werner, 766, 770, 775–776, 1027
Heisenberg uncertainty principle, 770, 1027
helicopters, 475
heliocentric hypothesis, 1092
Helmholtz, Herman, 740
Hemachandra, Acharya, 764
hemoglobin, 672–673
Henlein, Peter, 202
Hennessey, Andrew, 990
Henry, Leighton, 167
Henry, Warren, 1037
Henry I, King, 639
Heraclides, 6
Hérigone, Pierre, 765
Hermann grid, 739

Hermite, Charles, 1104
Heron of Alexandria (Hero), 762, 1014, 1015, 1093

Metrica, 646
Heron’s formula, 1093
Herrnstein, Richard

The Bell Curve, 708
Herschel, John, 305, 1063
Hertz (Hz), 1017, 1068–1069
Hertz, Heinrich, 341, 1068
Herzberg, Agnes, 963
Hess, Harry, 773–774
Hewlett, Bill, 140
Hewlett-Packard (HP), 140, 141, 142, 165
Hex, 120, 122
Hexagrams, 185
HEXI, 211
Hickman, C. N., 56
Hideaki Tomoyori, 771
hieroglyphics, 493
Hieron II, King, 57–58, 60
high occupancy toll (HOT) lanes, 489
high occupancy vehicle (HOV) lanes. See HOV lane 

management
higher math. See number theory
highly optimized tolerance (HOT), 551
highways, 476–477, 488–489, 1000–1001
Higson, Nigel, 904
Hilbert, David

axiomatic systems and, 587
contributions of, 366, 504, 1074–1075
Grundlagen der Geometrie (The Foundation of Geometry), 

85, 1105
Hilbert spaces, 361, 366, 504
Hildebrand, Harold “Dr. Andy”, 788
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for infectious diseases, 313, 314, 1038–1039
of kinship systems, 735
linear programming models, 218, 555, 592, 951–952
Mathematical Contest in Modeling (MCM), 228–229
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functional MRI (fMRI); imaging technologies; 
magnetic resonance imaging (MRI)
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Möbius band, 965, 965
Mobius transformations, 1005
Moby Dick (Melville), 737
mode, 653–654, 655
modeling. See mathematical modeling
modes, musical, 893
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Nine Chapters on the Mathematical Art (Chinese text), 155, 

185–187, 261, 634, 652, 887, 914, 1093, 1095
Nine Men Morris, 120, 992–993
1984 (Orwell), 849
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non-Euclidean polyhedra, 783
nonparametric tests, 844
Nook, 303, 304
normal distribution, 220, 706–708, 802–803

See also Gaussian distribution
norm-referenced tests (NRTs), 326–327
Norse Greenland society, 198
North America, 708–710
North Atlantic Treaty Organization (NATO), 215, 767
Norton, Larry, 183
Norton–Simon hypothesis, 184
Nouvelles annales de mathématiques (journal), 1103
Nova Stereometria Doliorum Vinarorum (Kepler), 652
NP-Complete problems, 912
NP-hard, 1010
nuclear bombs. See atomic bomb (Manhattan Project)
nuclear fission, 80
NUMB3RS (television show), 163, 984, 1083, 1084, 1085
number and operations, 710–714

computational aids, 713
early number systems, 711
Hindu-Arabic numerals, 712–713
Indian or Hindu numerals, 712
Roman numerals, 8, 418, 711–712, 862, 879

number and operations in society, 714–719
calculation tools, 717–718
computers and, 718–719
economics/demographics and, 716
estimation, 717
measurement, 716
mental arithmetic, 717
operations, 715
tally marks, 714–715
types of numbers, 715–716

“number blindness” (dyscalculia), 128
number colors, black and red, 1095
number theory, 614, 617, 719–721, 975
numbers, complex, 721–724
numbers, rational and irrational, 724–726
numbers, real, 727–728
numbers and God, 729–731

“7,” 729–730
“12,” 729
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“19,” 730
bible codes, 730–731
Golden Ratio, 729
infinity and, 460–461
Pythagoras maxim, 729
resurrection of Jesus, 731

numerical weather prediction, 1055–1056
Nunes, Pedro, 576
Nunes, Terezinha, 226
“Nuremberg eggs”, 202
nutrition, 240–241, 731–734
nutrition labeling, 240–241

O
Obama, Barack, 133, 228, 289, 526, 1035
ocean tides and waves. See tides and waves
Oceania, Australia, and New Zealand, 735–737
Oceania, Pacific Islands, 737–739, 774
Ockeghem, Johannes, 230
Ocneanu, Adrian, 904
O’Connor, John, 221
“Octatube” (Ocneanu), 904
October Revolution (Russia), 154
Official Guide to Japan (Japanese Railway Ministry), 582
Ogawa, Yoko

An Introduction to the World’s Most Elegant Mathematics, 
612

ogive graph, 654
Ohl, Russell, 930
Ohm, Georg, 341
Ohm’s Law, 341
Okrent, Daniel, 378
Oliver, Dean, 99
Olson, Steve, 419
Olympic Games, 91, 374
Omicescu, Octav, 361
“On Computable Numbers” (Kleinrock), 517
“On Operations on Abstract Sets and their Application to 

Integral Equations” (Banach), 361
Once Were Warriors (movie), 737
One Laptop Per Child, 769
Opana Point, 756
Open Handset Alliance, 978
operations. See number and operations; number and 

operations in society
operations research (OR), 165, 218, 481, 606, 807, 1078, 

1079
Operator Algebras, 548
Oppenheim, Slexander, 71
Oppenheimer, J. Robert, 79, 80, 116
Optical Character Recognition (OCR), 913

optical illusions, 739–741
optical scanners, 96
optics, 978–979, 1040, 1100

See also visualization
Opus Geometricum (Saint-Vincent), 354
oracle bones, 1091
orbifolds, 435
orbits, planetary. See planetary orbits
Oresme, Nicole, 409, 1095–1096
organ transplants, 1006, 1006–1007
origami, 741–743, 742
origami technology, 741
“Origin of Polar Coordinates” (Coolidge), 353
Orthello, 120
orthonormal polynomials, 1040
Orwell, George

1984 , 849
Oscar II of Sweden, King, 909
Osei-Bryson, Kweku-Muata Agyei, 167
Oughtred, William, 371

Clavis mathematicae, 1098
Ouranomachia, 122
Ouspensky, Peter

Tertium Organum, 627
Out of the Crisis (Deming), 299
Outer Space Treaty, 679
Outside In (video), 1042
Ouvroir de Littérature Potentielle (Workshop of Potential 

Literature), 779
overblowing, 1066
overtone series, 472–473

P 
pacemakers, 745–746

body clocks/jet lag and, 746
heart rhythms and, 745

Pacific Islands. See Oceania, Pacific Islands
Pacific Ring of Fire, 774
Pacioli, Luca

algebra and, 32, 33
De Divina Proportione (About Divine Proportion), 886
De Viribus Quantitatis, 821
Summa de arithmetica, Geometria, Proportioni et 

Proportionalita, 2, 289, 754, 800–801, 1096, 1099
Packe, Christopher, 344
Packer, Claude, 167
packing problems, 746–747
Page, Lawrence, 518–519
PageRank (Google), 518–519, 610
painting, 736, 748–750, 861
Paisano, Edna Lee, 178
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palimpsest, 58
Palin, Bristol, 983
Panama Canal, 156, 156
Pangea, 773
Panini, 72–73
paper folding. See origami
Pappus of Alexandria, 762, 829

Synagoge (The Collection), 425, 1093
parabolic flight, 1060, 1060
parabolic segments, area of, 1092
paradoxes, 505
paradoxical preferences, 794–795
parallax measurements, 78–79
parallel climbers puzzle, 201
parallel postulate, 586–587, 750–752, 1101
parallel processing, 752–753
Parallelogram Law of Vector Addition, 1030
parametric sensitivity analysis, 874
Parent, Antoine, 1100
Pareto condition, 1049
Park, Bletchley, 1077
Parlett, David, 120
Parthenon, 280, 729–730, 730
Parthenopaeus (Dionysius), 6
particle physics. See elementary particles
“Particle Zoo, The”, 342
Partition (Hauptman), 776
party problems, 113–115, 210–211
Pascal, Blaise

barometric pressure/elevation and, 344–345
binomial theorem and, 111, 112
combinations and, 764
contributions of, 1100
dice games and, 302
invention of Pascaline, 887
Marin Mersenne and, 588
Pensées, 860
Pierre de Fermat and, 105–106, 1099
probability theory and, 366
Provincial Letters, 860
religion and, 601
Traité du Triangle Arithmétique, 112, 1099

Pascal, Étienne, 887
Pascal’s Pyramid, 112
Pascal’s Simplex, 112
Pascal’s Triangle, 111, 112, 1095
Passarola, 932
patterns

caves and caverns, 173–174
decorative, 13–15, 698–699, 736, 736–737
drawing, 623–624

figure skating, 917
geometric, 16, 21–22, 102, 1091
recognition of, 702
step and tap dancing, 947
See also fractals; tessellations; tilings

Pauling, Linus, 334
Paulos, John Allen

A Mathematician Plays the Stock Market, 400, 949
payroll, 754–755
PCs. See personal computers
Peacock, George, 1103

Treatise on Algebra, 1103
Peano, Giuseppe, 281, 1030, 1105
Pearl Harbor, attack on, 755–757
Pearson, Egon, 943
Pearson, Karl, 369, 654, 706–707, 894, 942
Peart, Paul, 167
Peaucellier, Charles-Nicolas, 500
Peaucellier cell, 545
Peirce, Charles, 552
Pell, John, 1099
Pell equation, 1099
Penrose, Lionel, 336, 355
Penrose, Roger, 115, 116, 355, 886
Penrose tilings, 515, 903
Penrose–Banzhaf Power Index, 336
Pensées (Pascal), 860
pensions, IRAs, and Social Security, 757–760
Penske, Roger, 703
pentagrams, 886
Pentominoies, 120
perceptrons, 701–702
percussion instruments, 760–761
Perelman, Grigori “Grisha”, 360, 559, 1107
Perelman, Yakov Isidorovich, 360
Perfect Rigor (Gessen), 559
perimeter and circumference, 761–763
permutations and combinations, 113, 763–766
Perry, William J., 766–767
“person of color.” See minorities
personal computers, 767–770

See also computers
Persons, Jan, 17
Péter, Rózsa, 360, 411
Peter the Great, 359
Petersen, Anne, 1069
Peterson, Ivars, 221
Peterson, Julius, 455
Peterson, W. Wesley, 310
Petrarca, Francesco, 860
Petteia, 120
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Peurbach, Georg von, 1096
Ph.D. programs, 1070–1071, 1072
Philadelphia Storage Battery Company (Philco), 96
philosophers

dining philosophers problem, 211
Euclidean, 357
mathematical reasoning and, 847
on nature/meaning of mathematics, 608–609
Neoplatonists, 862
René Descartes, 365–366
Rithmomachia (Philosopher’s Game), 121–122
See also Aristotle; Plato of Tivoli; Socrates

Philosopher’s Game (Rithmomachia), 121–122
Philosophiae Naturalis Principia Mathematica (Newton), 

362, 602
Philosophical Dictionary (Voltaire), 847
Philosophy of Composition (Poe), 560
Phoenix Mathematics Inc., 509
photovoltaic cells, 930
phugoids, 30
Physicists, The (Durenmatt), 775
Pi, 55, 59, 450, 723, 770–771, 1092, 1093, 1095, 1100

See also circles; Measurement of a Circle (Archimede)
Pi (movie), 682
Pi Mu Epsilon, 208
Piaget, Jean, 540–541, 1043
Piaget’s theory, 540–541, 1043
Picard, Charles, 724
Picard’s little theorem, 724
Picasso, Pablo, 748
Piccard, Auguste, 295
Piccard, Jacques, 295
Pickett, George E., 193
Pickover, Clifford, 512, 730
Picone, Mauro, 1073
pie chart, 456
Pie Day, 450
Pierce, Benjamin, 35
Pierce, John, 890
Pierce, R. C., Jr., 371
Piero della Francesca, 861
Pike, Nicholas, 870

The New and Complete System of Arithmetick, 870
Pincherle, Salvatore, 364
pioems, 779
Pioneering Women in American Mathematics (Green and 

LaDuke), 1072
Pirates of Penzance (Gilbert & Sullivan), 690
Pithoprakta (Xenakis), 231
Pitiscus, Bartholomaus, 1011, 1098

Trigometria, 1011

Pixar Animation Studios, 50, 51
pixels, 660, 1013
Place of Mathematics in Modern Education, The (NCTM), 40
placeholders, 785
place-value structures, 154, 686, 712, 785
plain-text, 212–214
Planck, Max, 548, 837, 1027
Planck length, 1022
On Plane Equilibriums (Archimede), 1094
Planetary Flight Handbook (NASA), 881
planetary orbits, 771–773, 890, 891

See also Kepler’s Laws
planimeters, 657–658
Plankallül, 1077
planning departments. See city planning
plasma televisions, 987
plate tectonics, 773–774
Plateau, Joseph, 966
Platinum Blue, 788
Plato of Tivoli

Academy of, 424, 619, 1092
Aristotle and, 357
Meno, 858
oracle of Apollo at Delos and, 882
religious writings, 858, 886
The Republic, 173, 356–357, 858
The Timaeus, 858, 886

Platonic solids, 782
Platonists, 621
Plato’s Academy, 424, 619, 1092
Platzer, Maximillian, 1065
Playfair, William, 288, 696, 894–895

The Commercial and Political Atlas, 456
Playfair Square, 212
Playfair’s Postulate, 751
plays, 774–777
Plimpton 322 Tablet, 828–829, 1091
Plücker, Julius, 249, 1103
plurality elections, 1047
plus (+) and minus (−) signs, 1096
Plutarch, 59, 763
plutonium bombs, 79–80, 80, 81
pocket calculators, 1107
Poe, Edgar Allan

Descent into the Maelstrom, 558
The Gold Bug, 558
Philosophy of Composition, 560

poetry, 596–597, 777–779
Poincaré, Jules Henri, 360, 521, 531, 547, 803, 1005,  

1042–1043
“Analysis situs,” 1105
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Poincaré conjecture, 360, 1107
Poincaré disc model, 1043
Poinsot, Louis, 782
Poisson, Siméon-Denis, 707, 802, 1103
Pol Pot (Saloth Sar), 71
polar coordinate system, 353–354
polarized light, 547
Pollock, Jackson, 749–750
Pólya, George, 355, 360, 369, 707, 766
polygons, 779–782
polyhedra, 782–784
polynomials, 784–786
Pompeiu, Dimitrie, 361
Poncelet, Jean-Victor, 249, 281, 883, 1102
Pons, Stanley, 350
Ponte Vecchio (Italy), 130
Pontryagin, Lev, 404
Pontryagin’s Maximum Principle, 404
Ponzi schemes, 759
pool. See billiards
popular music, 786–788
population growth, 385, 408
population paradox, 234
Porphyry

Life of Pythagoras, 826
Porta, Giambattista della

Natural Magic, 862
portable document format (PDF), 303
Portuguese Society of Mathematics, 365
Posidonius of Rhodes, 1063
positive rational numbers, 725
positron-emission tomography (PET), 126, 127
Post, Charles, 252
Post Cereal, 252
Post Office Protocol (POP), 518
Postel, Jonathan, 518
Potts, Renfrey, 1014
power centrality, 926
power laws, 791
Powerball, 563, 564
Powers, Kerns H., 986
Prairie style architecture, 1080, 1080
Prandtl, Ludwig, 31
Prandtl–Glauert, 31
Pratchet, Terry

Discworld, 902
prayer wheels, 1066
pre-calculus, 1098, 1099
Prechter, Robert, Jr., 599
Precious Mirror of the Four Elements (Si Yuan Yujian)  

(Zhu Shijie), 187

precolonial Africa, 23, 24
predator–prey models, 788–790
predicting attacks, 790–792

National Security Agency and, 508
National Security Agency (NSA), 39, 214, 229, 509

predicting divorce, 792–793
predicting preferences, 793–796
preference ballots, 1047–1048
pregnancy, 796–797
prehistory, 798–799
premiums, insurance, 506, 507–508
Preparing Mathematicians to Educate Teachers (PMET), 270
Presidential Medal of Freedom, 180
President’s Council of Advisors, 526
pressurization, 26
Preyer, Lunsford Richardson, 287
Price, G. Baley, 1079
Price, Richard, 802
Primary Colors (Klein), 958
primary sampling units (PSUs), 1019
Prime Number formula, 722
prime numbers, 719, 720–721, 722, 883, 939
Prime Obsession (Derbyshire), 560
Primer (movie), 1082
Prince (Machiavelli), 861
Principia (Newton), 847, 1029, 1101
Principia Mathematica (Russell and Whitehead), 362,  

1074–1075, 1105
Principles and Standards for School Mathematics (NCTM), 

151, 222, 277, 867
Principles of Philosophy (Descartes), 366
printing, 1096–1097
prions, 673
Prisoner’s Dilemma, 414, 983
private mortgage insurance (PMI), 483
probability, 800–803

in baseball, 98–99
in basketball, 99–100
betting and, 105–107
birthday problem, 113–115
fraud detection and, 5
Native Americans and, 699
normal distribution theory and, 802–803
objective and subjective approaches, 802
study of, 800–802
subjective, 106–107
of survival, 535
See also probability theory

Probability of Precipitation (PoP), 1056–1057
probability theory, 5, 112, 368–369, 507–508

See also probability
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On the Problem of the Rotation of a Solid Body about a Fixed 
Point (Kovalevsky), 1104

problem solving in society, 733–734, 804–808
Proceedings of the London Mathematical Society (journal), 

1104
Process Standards (NCTM), 151
Proclus Diadochus

Commentary on Euclid, Book I, 1093
Eudemian Summary, 1092

product method (GDP), 466
product-limit estimator, 1006
professional associations, 809–811
Professional Standards for Teaching Mathematics (NCTM), 

277
Programme for International Student Assessment (PISA), 

265, 278, 328, 1070
Progressive Education movement, 274–275
Project 8 (video game), 374
Project Gueledon, 172
Project Gutenberg, 303
ProjectCalc series calculators, 141
proof, 222–224, 611–612, 812–815
Proof (movie), 163, 682, 1085
Proof (play), 775, 776
Proofs from THE BOOK (Ziegler and Aigner), 625
On the Propagation of Heat in Solid Bodies (Fourier), 987
protractors, 658
PROVERB computer program, 7
Provincial Letters (Pascal), 860
psychological testing, 815–817
Psychological Testing (Anastasi), 816
Psychology of Invention in Mathematical Field, The 

(Hadamard), 560
psychometrics, 816, 816–817
psychophysics, 653–654
Pteryges, Ooon, and Pelekys (Wine, Egges, and Hatchet) 

(Simias), 779
Ptolemy, Claudius

The Almagest, 18, 18, 772, 1011, 1093, 1095
arcs and curves table, 1011
coordinate geometry and, 248
Earth centered universe and, 78, 437–438, 460
ecumene description, 573
Geographia, 1011
table of chords, 54

Ptolemy I Soter, 1092
Ptolemy II Philadelphus, 1092
public key cryptosystems, 282, 786
Pujols, Albert, 477
pulleys, 818–819
Purkinje, Johannes, 389

Putin, Vladimir, 385
puzzles, 819–823

See also mathematical puzzles
pyramids, 423, 447
pyrotechnics. See fireworks
Pythagoras’ Cave, 173
Pythagoras of Samos, 38, 364, 458, 458–459, 727, 824, 

825–826, 1091
Pythagorean and Fibonacci tuning, 823–825
Pythagorean numbers, 34, 121
Pythagorean School, 586, 624, 825–827
Pythagorean theorem, 827–829

algebra and, 38
building structures and, 649–650
coordinate geometry and, 248
dissection proof of, 1094, 1095
Greek mathematics and, 459
irrational numbers and, 726, 727
in Sulbausutras, 424

Pythagorean Triple, 828–829, 1091
Pythagorean tuning, 67

Q
Qin Jiushao

Shushu Jiuzhang (Mathematical Treatise in Nine Sections), 
186–187

Qin Shi Huang (emperor), 185, 1093
quadratic equations, 40, 785–786, 939–940, 1095, 1101
quadratrix, 1092
quadrature of the circle problem. See circles
quality control, 831–833
quanta, 836
quantitative literacy, 714
quantum computing, 548
quantum field theory (QFT), 548

See also quantum mechanics
quantum groups, 532
quantum mechanics, 80, 548, 673, 775–776, 855
quarterback ratings, 398
quartic equations, 785–786, 1097
quartz crystal clocks, 203
quasi-empirism, 622
quaternions, 724, 1029–1030
Queneau, Raymond

Cent Mille Milliards de poèmes (One Hundred Thousand 
Billion Poems), 779

Questi et inventioni diverse (Tartaglia), 390
Quetelet, Adolphe, 500, 707, 803, 894, 942, 1042

A Treatise on Man and the Development of His Faculties, 
653

Quetelet index, 122–123
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queuing theory, 134–135, 211, 509, 1000
Quillen, Daniel, 228
quilting, 833–834
Quincy School, 897
Quine, Willard Van Orman, 914
Quipus, 493–494, 931–932
Quota Rule, 233, 234
Qur’an, 730
QWERTY keyboard calculators, 142

R
R (software), 291
R peak, 43
rabbit problem, 1095
Race to the Top (RTTT) program, 279
Racine, Father, 73
racquet games, 835–836
radar, 502, 503

See also doppler radar
radiation, 836–838
radio, 838–840, 839
Radio Corporation of America (RCA), 96
radio-frequency identification (RFID), 577, 913
Radó, Ferenc, 361
Radon, Johann, 146
Rafaello Sanzio (Raphael). See Raphael
Raffles, (Thomas) Stamford, 71
Raffles Institute, 71
Raghavan, Prabhakar, 840–841
Rahn, J. H., 1099
railroads. See trains
Rajagopal, C. T., 73
Ramanujan, Srinivasa

as amateur mathematician, 598, 599
mathematics education and, 73
number theory and, 262, 1074, 1105
religion and, 600

Rameau, Jean-Philippe
Treatise on Harmony, 229

Ramelli, Agostino, 862
“ramiform” pattern, 174
Ramsay, Michael, 320
Ramsey, Frank, 211
Ramsey theory, 211, 453–454
RAND Corporation, 36, 41, 119, 215, 414, 842
random access memory (RAM), 769
randomness, 571, 800, 841–843
rankings, 843–845
Rao–Blackwell theorem, 119
Raphael

School of Athens, 861

rate of change. See function rate of change
Raven’s Matrices, 512
Rawls, John, 356
reactive transport (RT) models, 1054
read-only memory (ROM), 140, 769
Reagan, Ronald, 150
reality, measuring, 1027–1028
Realm of Algebra, The (Asimov), 36
reasoning and proof in society, 845–850

abstractions/symbolism and, 847–848, 863
Euclidean Logic and, 848–849
legal arguments and, 849
origins of mathematical proofs, 845–846

rebates. See coupons and rebates
Rebbelibs, 737, 738
Reber, Grote, 838
recipes. See cooking
Record system, 418
Recorde, Robert, 1097
recreational mathematics, 595
recursive functions. See functions, recursive
recycling, 850–853
red, green, blue (RGB) additive model, 515
redistricting, 443–445
redshift, 317
reduction to absurdity, 559, 1101
Reed, Lowell, 314, 320
Reed–Frost epidemic model, 314
Reed–Solomon codes, 309, 320, 784
Rees, Mina, 1079
Reeve, W.D., 40
reflexive theory, 509
Réflexsur la résolution algébrique des équations (Lagrange), 

765
refraction, 547
Regelous, Stephen, 289
regimento das léguas (regiment of the leagues), 576
Register System, 418
Regression Towards Mediocrity in Hereditary Stature 

(Galton), 895
Regular Division of the Plane with Asymmetric Congruent 

Polygons (Escher), 355, 765
Reidemeister, Kurt, 531
Reidemeister moves, 531
Rejewski, Marian, 1077
relativity, 853–855, 1005

See also Einstein, Albert; theory of relativity
religious symbolism, 855–857
religious writings, 857–860
Renaissance, 860–862
Rényi, Alfréd, 361, 518, 596
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representation theory, 863
representations in society, 863–868

in 21st century, 866
internal/external structures, 863, 864
mathematics as language and, 867–868
multiple approaches to, 863–865
problem solving and, 866–867
translational skills and, 865–866

Republic, The (Plato), 173, 356–357, 858
Research and Development Corporation (RAND).  

See RAND Corporation
Research Experiences for Undergraduates (REUs), 272
Resin Identification Codes, 852
resource intensity, 381
Résumé of Lessons of Infinitesimal Calculus (Cauchy), 144
resurrection of Jesus, 731
retirement planning. See pensions, IRAs, and Social 

Security
Reulle, David

Conversations on Mathematics With a Visitor from Outer 
Space, 901

Revenue Act (1926), 757
Revere, Paul, 212, 869
Revolutionary War, U.S., 868–870
Rey, José-Manuel, 581
Reynolds, Osborne, 30, 1052
Reynolds, Simon, 787
Reynolds number, 30, 1052
Rheticus, George Joachim, 1097
Rhind papyrus

construction and, 423
discovery of, 146
doubling/halving numbers and, 332
estate description, 411
linear equations and, 554, 554
origniation of, 1091
puzzles and, 819
recreational mathematics and, 333
See also Moscow papyrus

rhythms, 996–997
ribonucleic acid (RNA), 421
Riccati, Jacopo, 155
Ricci, Matteo, 187
Rice, Marjorie, 599
Richard the Lion Hearted (king), 648
Richards, Donald St. P., 167
Richardson, Lewis Fry, 791, 1055, 1064, 1075
Richman, Hal, 377
Richter, Charles, 370
Richter scale, 323–324
Rich-Twinn Octagon House, 780

Ride, Sally, 870–872
Exploring Our Solar System, 871
The Mystery of Mars, 871
To Space and Back, 871
The Third Planet, 871
Voyager, 871

Rider, Paul, 139, 141
Riemann, Bernhard

contributions of, 201, 560, 724, 1104
geometric formulations and, 334, 429, 438, 555, 848, 854
Green’s theorem and, 1030
limits and, 144
number theory problems and, 721
Prime Obsession (Derbyshire), 560

Riemann, Hugo, 434
Riemann hypothesis, 201, 560, 721, 724
Riemann integral, 146
Riemannanian geometry, 438
Riese, Adam, 1096
Riesz, Frigyes, 146, 360
right-brain learning, 541–542
Rind, Alexander Henry, 146
Ring, Douglas, 977
Ring of Fire, 442
Rio Riot 20GB, 685
Rior, Antonio Maria, 261
risk management, 872–874
risk pooling, 506–507
risk transfer, 506–507
risk-return relationship, 677
Rissanen, Jorma, 977
Rithmomachia (Philosopher’s Game), 121–122
Rittenhouse, David, 674
river-crossing puzzle, 16
Rivest, Ronald, 213
RNA, 421
Robbins, Benjamin, 63, 64
Robert of Chester, 33, 1094
Roberts, Louis, 476
Robertson, Edmund, 221
Robertson, Malcolm S., 628–629
Roberval, Gilles Personne de, 354, 1099
Robins, Benjamin, 391–392, 671

New Principles of Gunnery, 391
Robinson, Abraham, 144, 553
Robinson, David, 162–163
Robinson, Karl, 167
Robinson, Michael, 101
roBlocks construction system, 877
Robonaut 2, 876
robots, 522, 678–679, 874–877
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Rockefeller, John D., 131
Roe v. Wade, 117
Roger, Everett, 378
Rohde, Douglas, 419
Rolle, Michel, 1100
roller coasters, 877–878
ROM. See read-only memory (ROM)
Roman mathematics, 8, 711–712, 878–880
Roman numerals, 8, 418, 711–712, 862, 879
Romanian Master of Sciences, 361
Romanian National Olympiad, 361
Romanowski, Miroslaw, 708
Romig, H. G., 832
rond de jambe à terre (ballet), 90, 91
Röntgen, Wilhelm Conrad, 659, 837
Roosevelt, Franklin D., 79, 334, 755, 888
Rosa, Edward, 547
Rosales, Rodolfo, 488
Rosenblaum, Joshua

Fermat’s Last Tango and, 689–690
Rosencrantz and Guildenstern are Dead (Stoppard), 775
Rosnaugh, Linda, 781
Ross, Mary G., 880–881
Ross, Ronald, 314
rostro, 879
Rota, Gian-Carlo, 597
Roth, Klaus, 363
Rothermel, Richard C., 402
Rothschild, Linda, 811
Rotisserie League Baseball, 378
row operations, 634
Royal Air Force (RAF) Coastal Command, 1078
Royal Society of London, 115, 149, 1099
Royal Spanish Mathematical Society, 365
Royal Statistical Society, 119
Rozycki, Zerzy, 1077
RSA public key system, 213–214
Ruan Yuan, 187
“Rubaiyat” (Khayyam), 1095
Rubik’s Cube, 765, 822
Rubin, Andrew, 977
Rucker, Rudy, 902–903

Message Found in a Copy of Flatland, 902
Spaceland, 902

Ruddock, Graham, 265–266
Rudin, Mary Ellen, 589
Rudin, Walter, 589
Rudolff, Christoff

Die Coss, 1096
Ruffini, Paolo, 765, 786
“rule of circular parts,” 1098
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