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Preface

The turn of the century has seen a dramatic increase in attention to the
mathematics education of young children. This book is the result of a
unique gathering of a diverse group of professionals involved with early
childhood mathematics. In this preface, we describe this recent focus of
attention, the conference that brought the professionals together to dis-
cuss critical issues in early mathematics education, and the result of their
collaborative work—this book. Thus, this book includes the combined
wisdom of experts, including mathematicians, mathematics educators,
researchers, curriculum developers, teachers, and policymakers regard-
ing the mathematics education of our nation's youngest learners.

MATHEMATICS IN EARLY CHILDHOOD

Why is there such a surge of attention to mathematics in early childhood?
First, increasing numbers of children attend early care and education pro-
grams. In 1999, 70% of 4-year-olds and 93% of 5-year-olds were enrolled in
preprimary education, up from 62% and 90%, respectively, in 1991 (U.S.
Department of Education, 2000, p. 7). Several states are instituting univer-
sal prekindergarten education, with about 1 million students enrolled in
1999, and that number is increasing (Hinkle, 2000). Various government
agencies, federal and state, provide financial support for prekindergarten
programs designed to facilitate academic achievement, particularly in
low-income children.

Second, there is an increased recognition of the importance of mathe-
matics (Kilpatrick, Swafford, & Findell, 2001). In a global economy with the
vast majority of jobs requiring more sophisticated skills than in the past,
American educators and business leaders have expressed strong concern
about students' mathematics achievement (these concerns are echoed in
international comparisons of mathematics achievement; see Mullis et al.,
1997). Furthermore, the mathematics achievement of American students
compares unfavorably with the achievement of students from several
other nations, even as early as kindergarten. Some cross-national differ-
ences in informal mathematics knowledge appear as early as 4 to 5 years
of age (see Klein & Starkey, chap. 14, this volume).

Third, differences are not just between nations. Cross-cultural differences
within the United States raise troubling equity concerns: "Children from dif-
ferent sociocultural backgrounds enter elementary school at different lev-
els of readiness for a standards-based mathematics curriculum" (Klein &

ix
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Starkey, chap. 14, this volume). This raises serious concerns of equity re-
garding children's prekindergarten experiences and elementary schools'
readiness to adapt instruction to children at different levels of mathematical
development. As mentioned, many government-funded programs serve
low-income children, who often experience difficulties in mathematics and
are at increased risk of school failure. Many of these children later experi-
ence difficulty in mathematics (Bowman, Donovan, & Burns, 2001;
Natriello, McDill, & Pallas, 1990). For these children especially, the long-term
success of their learning and development requires quality experience dur-
ing their early "years of promise" (Carnegie Corporation, 1998). These chil-
dren need to build the informal knowledge that provides the basis for later
learning of mathematics. Thus, equity demands that we establish guide-
lines for quality early mathematics education for all children.

Fourth and finally, research indicates that better mathematics education
can and should begin early. Research shows that higher quality programs
result in learning benefits into elementary school, including in mathemat-
ics. Unfortunately, most children are not in high-quality programs (Hinkle,
2000). This is critical. Even prekindergartners show a spontaneous interest
in mathematics. Caring for them well, in any setting, involves nurturing and
meeting their intellectual needs, which includes needs for mathematical
activity (Bowman et al., 2001; Kilpatrick et al., 2001). Early interventions in
mathematics can prevent later learning difficulties in school for all children
(Fuson, Smith, & Lo Cicero, 1997; see also Griffin, chap. 13, this volume).

For all these reasons, there has been much recent interest in, and atten-
tion to, the learning of mathematics before elementary school at both the
prekindergarten and kindergarten levels. According to the Glenn Commis-
sion report (2000), "at the daybreak of this new century and millennium...
the future well-being of our nation and people depends not just on how
well we educate our children generally, but on how well we educate them
in mathematics and science specifically" (p. 6).

In 2000, the National Council of Teachers of Mathematics (NCTM) re-
vised its standards to include prekindergartners for the first time. States are
creating or modifying their own mathematics standards and curriculum
guidelines for prekindergarten and kindergarten children. Nevertheless,
at present, most teachers and caregivers do not know what to do about
mathematics for the young children with whom they work.

THE CONFERENCE ON STANDARDS
FOR PREKINDERGARTEN AND KINDERGARTEN

MATHEMATICS EDUCATION

As federal, state, and professional organizations begin this new enterprise,
there are many opportunities to create developmentally appropriate
mathematics education for prekindergarten and kindergarten children. At
the same time, there is the danger of a veritable Babel of standards, some
of which may be developmentally inappropriate for young children. A lack
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of consistency across various standards and guidelines will continue to
produce "mile wide and inch deep" (National Center for Education Statis-
tics, 1996) curricula as publishers struggle to meet a variety of different
content standards and guidelines. At the early years, such lack of consis-
tency has a special danger of producing incoherent and developmentally
inappropriate curricula.

Therefore, early communication between, and coordination of efforts
by, the relevant educational leaders and agencies is critical. A group of
educators' decided to begin with a conference on standards for
prekindergarten and kindergarten mathematics education. This work was
funded by grants from the National Science Foundation and the
ExxonMobil Foundation to the State University of New York at Buffalo.

The Conference on Standards for Prekindergarten and Kindergarten
Mathematics Education was held on May 15-17, 2000, in Arlington, Vir-
ginia. This was a historic event: To our knowledge, it was the first confer-
ence to have ever brought together such a comprehensive range of
experts in the diverse fields relevant to the creation of educational stan-
dards. Participants included representatives from almost every state de-
veloping standards foryoung children's mathematics; federal government
officials; mathematicians; mathematics educators; researchers from
mathematics education, early childhood education, and psychology; cur-
riculum developers; teachers; policymakers; and representatives from na-
tional organizations such as the NCTM and the National Association for the
Education of Young Children (NAEYC).

The purpose of the Conference was to facilitate early communication
between, and ultimately coordination of efforts by, the educational lead-
ers and agencies that are developing mathematics standards, curricula,
and teaching methods for young children. We also wished to facilitate
communication between those developing standards and experts in re-
lated fields, with an emphasis on the latest research findings concerning
early mathematical thinking and education. Using resources such as re-
search from a variety of disciplines, a compilation of standards and goals
from various U.S. states (see the Appendix), and the recent NCTM Princi-
ples and Standards for School Mathematics (PSSM), the main goal was to
work collectively, to help those responsible for framing and implementing
early childhood mathematics standards.

All audiotapes of the presentations and discussions, especially those of
the working groups, were transcribed and studied along with the papers
presented at the conference. Based on these sources, the senior editor
(Clements), with advice from the other editors (Sarama and DiBiase), pro-
duced an initial draft of the main points and recommendations that

'The initial idea for the conference was generated by Douglas H. Clements, Julie Sarama,
Herb Ginsburg, Carole Greenes, and Robert Balfanz. Clements wrote the proposals and ob-
tained the funds for the grant. Clements and Sarama, along with the Conference Coordinator,
Ann-Marie DiBiase, ran the conferences and coordinated the work.
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emerged from the conference. An 18-person working group was selected
with the goal of representing the same groups participating in the original
conference (i.e., U.S. state departments of education, teachers, research-
ers, etc., as previously described). This working group met at the
ExxonMobil Foundation site in Irving, Texas, in October 2000 to critique
and complete this draft.2 This draft was then disseminated to a representa-
tive sample of the main conference's participants for their reactions. The
editors then incorporated advice from these participants into a final report,
which is Part I of this book. Their advice guided the working group in devel-
oping this book, which will be disseminated to all participants, as well as
other pertinent federal and state agencies, other organizations, and all
ExxonMobil teacher leaders.

The reader will note that this book has its roots in the initial conference,
which emphasized mathematics education in the prekindergarten and
kindergarten years. However, because many of the speakers and partici-
pants discussed NCTM's full range of prekindergarten to Grade 2, the stan-
dards and recommendations we provide cover all these ages.

WHAT DIFFERENT READERS WILL FIND IN THE BOOK

One main group of readers are those who create standards, scope and se-
quences, and curricula for young children, as well as professional devel-
opment materials and activities for their teachers. This includes school
district administrators and curriculum coordinators, curriculum writers,
publishers of mathematics education material, and teacher leaders. You
will find comprehensive summaries of research that provides specific
guidelines for your work in each of these Fields. Part I includes re-
search-based recommendations that frame the important ideas in the
field, detailed developmental guidelines for the mathematics develop-
ment of children from 2 to 8 years of age, and suggestions for standards,
curriculum, teaching, assessment, professional development, and policy.
The chapters in Part II elaborate on each of these themes.

The book should also be of interest to undergraduate or graduate stu-
dents, early childhood trainers or teacher educators, and faculty in mathe-
matics education. It contains summaries of research in early childhood
mathematics, as well as thoughtful articles on essential issues, that are not
available elsewhere. These are connected to practical implications that
provide valuable integration among theory, research, and practice.

2The Conference Working Group included the following: Mary Ellen Bardsley, Arthur J.
Baroody, Douglas Clements, Chris Confer, Juanita Copley, Carol Copple, Ann-Marie DiBiase,
Karen Fuson, Herbert Ginsburg, Joe Gonzales, Amy Kari, Alice Klein, Mary Lindquist, Jean
Moon, Maggie Myers, Julie Sarama, Carolyn Trammell, and Jennifer Ware. In addition, Ed-
ward Chittenden, Richard Lehrer, Leslie Steffe, and Chuck Thompson reacted to and helped
revise portions of the report.
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For all readers, the contributions from a wide variety of disciplines and
perspectives should be both illuminating and thought provoking. The next
section describes the organization and content of the book.

ORGANIZATION OF THE BOOK

The book is organized into two main parts and an online appendix
(http://www.gse.buffalo.edu/org/conference/). Part I, Major Themes and
Recommendations, consists of conclusions drawn from the expertise
shared at the Conference and specific recommendations for mathematics
education for young children. These recommendations provide specific
guidelines for policy, curriculum, and teaching, and thus are intended to
facilitate the creation of standards and curriculum materials for early
childhood mathematics that are consistent and inclusive, and are devel-
opmentally appropriate—attainable yet challenging—for young children.
Part II includes a compilation of papers written by the invited presenters,
organized into coherent sections and introductory notes by the editors in-
troducing and connecting these papers.

Thus, this book offers a framework for thinking about mathematics edu-
cation in Pre-K to Grade 2 (Part I) and substantive detail regarding young
students' understandings of mathematical ideas (Part II). Curriculum de-
velopers, mathematics supervisors, personnel in departments of educa-
tion, and teachers may find their attention first drawn by Part I. There we
lay out a coherent approach to curriculum, grounded in the best current
understandings of the literature. To make that framework come alive for
children there needs to be greater depth—more substance behind the co-
herent outline. That substance can be found in Part II. Research students
and faculty may find their attention first drawn by the richness of detail re-
garding student thinking that appears in Part II. It is worth noting, however,
that Part I offers an important way of seeing the forest for the trees—of see-
ing how the detail fits within the big picture.

Both Part I and Part II are organized into five sections. Standards in Early
Childhood Education deals with general policy and pedagogical issues re-
lated to the creation and use of standards for young children, including dif-
ferent types of standards and the advantages and disadvantages of
standards for the early childhood years. Mathematics Standards and
Guidelines includes research summaries about young children's develop-
ment and learning of specific mathematical topics and builds on this
knowledge base to describe the "big ideas" of important mathematical
topics at several, progressive, levels of detail, designed for different read-
ers. Curriculum, Learning, Teaching, and Assessment includes descrip-
tions of approaches to curriculum, instruction, and assessment that have
been supported by research and expert practice. Professional Develop-
ment describes research and expert practice that addresses the dire need
for better preparation of teachers and child-care workers. Finally, Toward
the Future: Implementation and Policy presents issues and recommenda-
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tions that we believe must be considered when putting all these recom-
mendations into practice.

The Appendix is available online only, at http://www.gse.buffalo.
edu/org/conference/ (see "Writings on Project"). This includes several
valuable additions. The first two articles are reactions to the conference
from two participants taking different perspectives, Debra Borkovitz and
Jennifer Ware. The third and fourth items are the agendas that were fol-
lowed for the main and follow-up conferences. The fifth item is a useful
document on state standards (compiled by Ann-Marie DiBiase), which in-
cludes links to each U.S. state's Web site for educational standards, as well
as personal contact information for a representative from each of the
states. Note that another helpful resource on the Web site are the bio-
graphical sketches of authors and conference panelists (see the link di-
rectly above "Writings on Project").
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Major Themes and Recommendations



Summary of Part I:
Assumptions and Recommendations

This section summarizes the two assumptions and the 16 recommenda-
tions that are described in detail in chapter 1, which comprises Part I.

Assumption 1: Knowledge of what young children can do and learn, as
well as specific learning goals, are necessary for teachers to realize any vi-
sion of high-quality early childhood education, (p. 26)

Assumption 2: Prekindergarten children have the interest and ability to
engage in significant mathematical thinking and learning, (p. 28)

Recommendation 1: Equity is a major concern in mathematics education
at all levels. There is an early developmental basis for later achievement dif-
ferences in mathematics: Children from different sociocultural back-
grounds may have different foundational experiences. Programs need to
recognize sociocultural and individual differences in what children know
and in what they bring to the educational situation. Knowledge of what chil-
dren bring should inform planning for programs and instruction, (p. 29)

Recommendation 2: The most important standards for early childhood
are standards for programs, for teaching, and for assessment. These
should be built on flexible, developmental guidelines for young children's
mathematical learning. Guidelines should be based on available research
and expert practice, focus on and elaborate the big ideas of mathematics,
and represent a range of expectations for child outcomes that are develop-
mentally appropriate, (p. 31)

Recommendation 3: Mathematics for young children should be an inte-
grated whole. Connections—between topics, between mathematics and
other subjects, and between mathematics and everyday life—should per-
meate children's mathematical experiences, (p. 73)

Recommendation 4: As important as mathematical content are general
mathematical processes such as problem solving, reasoning and proof,
communication, connections, and representation; specific mathematical
processes such as organizing information, patterning, and composing;
and habits of mind such as curiosity, imagination, inventiveness, persis-
tence, willingness to experiment, and sensitivity to patterns. All should be
involved in a high-quality early childhood mathematics program, (p. 73)

Recommendation 5: Curriculum development and teaching should be
informed by research on teaching and learning and by the wisdom of ex-
pert practice. Educators and policymakers should support and insist on
approaches to teaching, learning, curriculum, and assessment that are de-
veloped and tested extensively with children, (p. 74)
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Recommendation 6: Mathematical experiences for very young children
should build largely upon their play and the natural relationships between
learning and life in their daily activities, interests, and questions, (p. 75)

Recommendation 7: Teachers' most important role with respect to
mathematics should be Finding frequent opportunities to help children re-
flect on and extend the mathematics that arises in their everyday activities,
conversations, and play, as well as structuring environments that support
such activities. Teachers should be proactive as well in introducing mathe-
matical concepts, methods, and vocabulary, (p. 75)

Recommendation 8: Teachers should purposefully use a variety of
teaching strategies to promote children's learning. Children benefit from a
thoughtful combination of carefully planned sequences of activities and of
integrated approaches that occur throughout the day. Successful early
childhood teachers build on children's informal knowledge and everyday
activities, considering children's cultural background, language, and
mathematical ideas and strategies, (p. 76)

Recommendation 9: Children should benefit from the thoughtful, appro-
priate, ongoing use of various types of technology. Especially useful are
computer tools that enrich and extend mathematical experiences, (p. 76)

Recommendation 10: Teachers should endeavor to understand each
child's own mathematical ideas and strategies. Teachers should use those
understandings to plan and adapt instruction and curriculum, (p. 77)

Recommendation 11: Teachers should help children develop strong re-
lationships between concepts and skills. Skill development is promoted
by a strong conceptual foundation, (p. 77)

Recommendation 12: Interview and performance tasks and ongoing,
observational forms of assessment are useful and informative ways of as-
sessing young children's mathematical learning and should be integrated
as appropriate into the early childhood mathematics curriculum. The pri-
mary goal of assessing young children should be to understand children's
thinking and to inform ongoing teaching efforts, (p. 79)

Recommendation 13: Professional development should be based on re-
search and expert practice. It requires multiple strategies and an under-
standing of the variety of professional development models, with special
emphasis on the importance of teacher leaders and collegial support
groups. It needs to be sustained and coherent, (p. 82)

Recommendation 14: Deep knowledge of the mathematics to be taught,
together with knowledge of how children think and develop those skills
and understandings, is critical for improving teaching and should be
learned in preservice and professional development programs, (p. 83)

Recommendation 15: One effective way to promote professional de-
velopment is through the use of high-quality curriculum materials and
programs. These should be included in professional development pro-
grams, (p. 83)

4
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Recommendation 16: A coordinated effort should be created to trans-
late the information in this book into a variety of forms for different audi-
ences, (p. 85)

Recommendation 17: State agencies should collaborate across all states
to form more coherent and related state mandates and guidelines for
mathematics for young learners. Governments should provide adequate
funding and structures so as to provide high-quality early childhood edu-
cation for all children, including high-quality professional development for
the adults who care for them. (p. 85)



1
Major Themes and Recommendations

Douglas H. Clements
University at Buffalo, State University of New York

The Conference on Standards for Prekindergarten and Kindergarten Mathe-
matics Education was held to facilitate early communication between, and
coordination of efforts by, the educational leaders and agencies who are de-
veloping mathematics standards and curricula for young children. An
18-person working group, representative of conference participants, met in
a follow-up meeting to summarize the main points raised, and research pre-
sented, at the conference, as well as the recommendations for action.1 This
group synthesized the various resources compiled by the conference par-
ticipants (including transcriptions from each of the working groups and ple-
nary sessions of the conference). The first draft was circulated widely
among representatives of the more than 100 participants of the initial Con-
ference and several additional experts; their advice was considered in pro-
ducing the final revision of this chapter. Thus, these Major Themes and
Recommendations represent, to the best of our ability, the contributions of
existing research theory and the collaborative thinking of representatives
from the diverse fields concerned with early mathematics education.

'Chapter 1 (which comprises Part 1) was written by Douglas H. Clements, with assistance
and advice from the 18-person Conference Working Group (see pp. xii and Footnote 2 in the
Preface for more details). Participants of both the main Conference and the working group
included representatives from most of the U.S. states; federal government officials; mathe-
maticians; mathematics educators; researchers from mathematics education, early child-
hood education, and psychology; curriculum developers; teachers; policymakers; and
representatives from national organizations such as the National Council of Teachers of
Mathematics and National Association of Educators of Young Children.
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The five major themes are as follows:

• Standards in Early Childhood Education
• Mathematics Standards and Guidelines
• Curriculum, Learning, Teaching, and Assessment
• Professional Development
• Toward the Future: Implementation and Policy

STANDARDS IN EARLY EDUCATION

Should there be standards for early childhood mathematics education?
Should the nature of these standards change for children of different ages?
This section summarizes themes on general policy and pedagogical is-
sues related to the creation and use of standards for young children.

All individuals concerned with educational standards must conscien-
tiously distinguish two types of standards. One type prescribes standards
as requirements for mastery. The second type promotes standards as a vi-
sion of excellence.2 An example of the former is the use of standards in
making high-stakes decisions such as retaining students in a grade or de-
termining teachers' salaries. An example of the latter is the vision of math-
ematics education in the Principles and Standards for School Mathematics
(PSSM; National Council of Teachers of Mathematics [NCTM], 2000). Few
specific mastery requirements are provided in that document. That is the
basis for criticism by some. However, the NCTM has always taken the posi-
tion that its mission was to establish a vision, not to dictate details. We
agree with that position for the NCTM Standards, but also believe that cer-
tain specifics must be provided as the next step. Indeed, one rationale for
the collaborative work of the Conference was to provide additional spe-
cific information, for example, what to look for in a program, in children's
learning, and in teacher and caregiver3 preparation.

There is a substantial and critical difference between standards as a vi-
sion of excellence and standards as narrow and rigid requirements for
mastery. Only the former, including flexible guidelines and ways to achieve
learning goals, is appropriate for early childhood mathematics education
at the national level.

One aim of this book is to provide such specific yet flexible guidelines and
ways to achieve goals for early childhood mathematics education. This
book defines standards as guidelines that help realize visions of high-quality
mathematics education. Standards can be for program and teachers, for

2More than a year after this was written, we discovered a similar distinction in Thompson (2001).
3As we describe in a succeeding section, adults who care for and teach young children

are a particularly diverse population. For ease of expression, we use the term teacher for
adults working not only in organized settings, but also in all settings in which mathematical
learning of children is supported, from schools to day care to the child's home.



children, or for both. At the Conference, there was broad consensus that
standards for programs and teachers were essential. Such standards pro-
tect children from harm and contribute to their development and learning.

In contrast, early childhood educators historically have been resistant to
specifying learning goals for very young children (Bredekamp, chap. 2, this
volume). A major concern—from both a philosophical and pedagogical
perspective—is that, because children develop and learn at individually dif-
ferent rates, no one set of age-related goals can be applied to all children. A
specific learning time line may create inaccurate judgments and categori-
zations of individual children, limit the curriculum to those outcomes and
lead to inappropriate teaching of narrowly defined skills, and limit the devel-
opment of the "whole child" (Bredekamp, chap. 2, this volume).

In defining and implementing standards, we seek to avoid these abuses
and realizing the advantages of specifying goals. First, such standards can
demystify what children are able to do, by describing their mathematical
thinking and capabilities at various age levels. Second, they can provide
teachers of young children with needed guidance about appropriate ex-
pectations for children's learning and can focus that learning on important
knowledge and skills, including critical-thinking skills. Third, standards
can help parents better understand their children's development and
learning and provide appropriate experiences for them.

Fourth, in the classroom and home, such goals can help "level the playing
field," achieving equity by ensuring that the mathematical potential of all
young children is developed throughout their lives. Teachers have welcomed
more specific guidance on learning goals linked to age/grade levels, as those
published a recent joint position statement on developmentally appropriate
practices in early literacy (Bredekamp, chap. 2, this volume; National Associ-
ation for the Education of Young Children and the International Reading Asso-
ciation, 1998). Providing guidance is even more crucial for mathematics,
where teachers' own knowledge of the discipline is typically insufficient to
make these judgments (Bredekamp, chap. 2, this volume).

Fundamental questions for teachers are what to teach, when to teach it,
and how to teach it meaningfully. For goals to truly be useful guides, they
need to be more closely connected to age/grade levels than are those in
NCTM's visionary PSSM. This assertion, voiced by Bredekamp and others,
was echoed by most participants throughout the Conference. In summary,
high-quality standards can provide a foundation upon which to build a pro-
gram that is coherent with the K-l 2 system students will enter. We can as-
sume the following:

Assumption 1: Knowledge of what young children can do and learn, as well
as specific learning goals, are necessary for teachers to realize any vision of
high-quality early childhood education.

Admittedly, pressure to create standards also comes from the concern
that if experts do not do so, someone with far less experience will (Lindquist

1. MAJOR THEMES AND RECOMMENDATIONS 9
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& Joyner, chap. 20, this volume). However, we are not merely trying to fore-
stall the disaster of inappropriate standards; we are convinced that articulat-
ing standards is a useful and important act. We want to do this in a way that
balances higher expectations with the goal of fostering a love for learning, a
feeling of success, and the joy of being a child. Specific suggestions about
how to develop standards that minimize disadvantages and realize the ad-
vantages are discussed in a later section.

MATHEMATICS STANDARDS AND GUIDELINES

We need standards for mathematics in the early years. These standards
should lead to developmentally appropriate mathematics experiences for
young children. Developmentally appropriate means challenging but at-
tainable for most children of a given age range, flexible enough to respond
to inevitable individual variation, and, most important, consistent with
children's ways of thinking and learning. This definition of developmen-
tally appropriate also implies providing experiences that are consistent
with children's ways of thinking and learning.

Criteria for Curriculum Standards
for Early Childhood Mathematics

In developing standards for early childhood, emphasis should be placed
on standards for programs and for teaching. However, high-quality curric-
ula and teaching must be built on extensive knowledge of young chil-
dren's mathematical acting, thinking, and learning. This knowledge can
be structured as curriculum standards—descriptions of what programs
should enable children to know and to do. We believe that mathematics
curriculum standards for early childhood education should be flexible
guidelines along learning paths for young children's mathematical learn-
ing. These guidelines should meet the following criteria:

1. Guidelines should be based on available research and expert
practice (e.g., Baroody, chap. 6, this volume; Bredekamp, chap. 2,
this volume; Brown, Blondel, Simon, & Black, 1995; Clements &
Sarama, 1999; Fuson, Carroll, & Drueck, 2000; Kilpatrick,
Swafford, & Findell, 2001; Steffe, chap.8, this volume).

2. Guidelines should focus on the big ideas of the mathematics of
children (e.g., Bowman, Donovan, & Burns, 2001; Clements,
chap. 10, this volume; Fuson, chap. 5, this volume; Griffin, Case, &
Capodilupo, 1995; Heck, Weiss, Boyd, & Howard, 2002; Steffe,
chap. 8, this volume; Tibbals, 2000; Weiss, 2002).

3. Guidelines should represent a range of expectations for child out-
comes that are developmentally appropriate.
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Before we turn to specific curriculum standards, we elaborate on these
three criteria. The first addresses the importance of a foundation of research
and expert practice for guidelines. One topic of research is children's knowl-
edge of mathematics. Young children possess an informal knowledge of
mathematics that is surprisingly broad, complex, and sophisticated (e.g.,
Baroody, chap. 7, this volume; Clements, Swaminathan, Hannibal, & Sarama,
1999; Fuson, chap. 5, this volume; Geary, 1994; Ginsburg & Seo, chap. 4, this
volume; Kilpatrick et al., 2001; Piaget & Inhelder, 1967; Piaget, Inhelder, &
Szeminska, 1960; Steffe, chap. 8, this volume). Whether in play or instruc-
tional situations, children engage in a significant level of mathematical activ-
ity. Prekindergartners engage in substantial amounts of foundational free
play.4 They explore patterns and shapes, compare magnitudes, and count ob-
jects. Less frequently, they explore dynamic changes, classify, and explore
spatial relations. Important to note, this is true for children regardless of in-
come level and gender (Ginsburg & Kyoung-Hye, chap. 4, this volume). Pre-
schoolers engage in significant mathematical thinking and reasoning,
especially if they have sufficient knowledge about the materials they are us-
ing (e.g., toys), if the task is understandable and motivating, and if the context
is familiar and comfortable (Alexander, White, & Daugherty, 1997). Most en-
tering kindergartners show a surprising high entry level of mathematical skills
(Lindquist & Joyner, chap. 20, this volume). Mathematical knowledge begins
during infancy and undergoes extensive development over the first 5 years of
life. It is just as natural for young children to think mathematically as it is for
them to use language, because "humans are born with a fundamental sense
of quantity" (Geary, 1994, p. 1), as well as spatial sense, a propensity to search
for patterns, and so forth.

Young children can learn more interesting and substantial mathematics
than is introduced in most programs (Aubrey, 1997; Clements, 1984;
Geary, 1994; Griffin & Case, 1997; Klein & Starkey, chap. 14, this volume;
this is discussed more in subsequent sections). This leads to the following
assumption:

Assumption 2: Prekindergarten children have the interest and ability to en-
gage in significant mathematical thinking and learning.

Although young children possess rich experiential knowledge, they do
not have equal opportunities to bring this knowledge to an explicit level
of awareness. Without such "mathematization," there are fewer
chances for children to connect their informal experiences to later

4Such everyday foundational experiences form the intuitive, implicit conceptual founda-
tion for later mathematics. Later, children represent and elaborate these ideas—creating
models of an everyday activity with mathematical objects, such as numbers and shapes;
mathematical actions, such as counting or transforming shapes; and their structural relation-
ships. We call this process "mathematization." A distinction between foundational and
mathematics experiences is necessary to avoid confusion about the type of activity in which
children are engaged (cf. Kronholz, 2000).
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school experiences in mathematics. Mathematizing involves reinvent-
ing, redescribing, reorganizing, quantifying, structuring, abstracting, gen-
eralizing, and refining that which is first understood on an intuitive and
informal level in the context of everyday activity. For example, in one
prekindergarten, children were arguing, each saying, "My block building
is bigger!" The teacher—and not the children—saw that one child was
talking about height and the other talking about width, area, or even vol-
ume. She asked each, "How is your building big?" The resulting discus-
sion clarified for the children that they were discussing different
attributes. The children then discussed how they could represent the
height and width of their buildings. Some used their bodies to compare,
others stacked up unit blocks and counted. Two children decided to
count the blocks each used to determine which "really was biggest" (the
teacher planned to observe and see what they did about blocks of differ-
ent sizes). In this episode, the teacher helped children start to
mathematize and reflect on what had been an everyday, foundational
experience.5 Children need repeated experiences such as these to un-
derstand mathematical concepts. Such experiences are aided by rich
environments and interactions with adults and peers.

Differences in specific aspects of young children's mathematical
knowledge have been reported in two types of comparisons. First, there
are cross-national differences. Some mathematical knowledge is more
developed in East Asian children than in American children (Geary,
Bow-Thomas, Fan, Siegler, 1993; Ginsburg, Choi, Lopez, Netley, & Chi,
1997; Miller, C. M. Smith, Zhu, & Zhang, 1995; Starkey et al., 1999). Sec-
ond, there are differences related to socioeconomic status. Some math-
ematical knowledge is more developed in children from
middle-income, compared to lower-income, families (Griffin & Case,
1997; Jordan, Huttenlocher, & Levine, 1992; Kilpatrick et al., 2001; Saxe,
Guberman, & Gearhart, 1987; Starkey & Klein, 1992). We must meet the
special needs of all children, especially groups disproportionately
underrepresented in mathematics, such as children of color and chil-
dren whose home language is different from that of school. All these chil-
dren also bring diverse experiences on which to build meaningful
mathematical learning (Moll, Amanti, Neff, & Gonzalez, 1992).

Too often, children are not provided with equivalent resources and
support. They have different and inequitable access to foundational ex-
periences, mathematically structured materials such as unit blocks,
technology, and so forth. The settings in which children from different
sociocultural backgrounds are served too often have fewer resources
and lower levels of high-quality interaction. The needs of children with

5Certain everyday activities, such as matching cups to dolls, pouring water, or moving
around a room, provide essential experiences that build the intuitive, implicit conceptual
foundation for all later mathematics. We call these "foundational experiences."
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physical difficulties (e.g., hearing impaired) and learning difficulties
(e.g., the mentally retarded) must also be considered. There is a critical
need for everyone involved with education to address this problem, so
that children at risk receive equitable resources and additional time
and support for learning mathematics. This does not mean we should
treat children as if they were the same; it means equivalent resources
should be available to meet the needs of children who differ in myriad
ways, including socioculturally and individually (e.g., developmentally
delayed and gifted children).

Recommendation 1: Equity is a major concern in mathematics education at
all levels. There is an early developmental basis for later achievement differ-
ences in mathematics: Children from different sociocultural backgrounds
may have different foundational experiences. Programs need to recognize
sociocultural and individual differences in what children know and in what
they bring to the educational situation. Knowledge of what children bring
should inform planning for programs and instruction.

For all these reasons, we conclude that appropriate guidelines for
mathematics curriculum must be based on available research and ex-
pert practice. One central implication is that knowledge of children's
informal mathematical knowledge, across educational settings and so-
cioeconomic contexts, should play a major role in determining appro-
priate mathematical standards. This is one major area in which
research and expert practice inform guidelines for young children's
mathematical learning; other relevant areas, including curriculum,
learning, teaching, and educational reform, are described throughout
the remainder of this chapter.

The second criterion for curriculum standards is that guidelines for early
childhood mathematics should focus on the big ideas of mathematics
(Bowman et al., 2001; Clements, chap. 10, this volume; Fuson, chap. 5, this
volume; Griffin et al., 1995; Tibbals, 2000; Weiss, 2002). For our purposes,
we define the big ideas of mathematics as those that are mathematically
central and coherent, consistent with children's thinking, and generative of
future learning. Research and expert practice identify what is challenging
but accessible to children, especially at the Pre-K to Grade 2 levels, and
thus allow us to describe these big ideas.

The third criterion is that guidelines should represent a range of expecta-
tions for child outcomes. This is consistent with the notion of developmen-
tally appropriate as challenging but attainable for most children of a given
age range and flexible enough to respond to inevitable individual varia-
tion. That is, expectations may have to be adjusted for children with differ-
ent experiential backgrounds.

To meet all three criteria, the mathematical big ideas have to be elabo-
rated in ways that fully support teaching and learning. A "more useful strat-
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egy is to articulate goals/standards for young children as a developmental
or learning continuum"(Bredekamp, chap. 2, this volume).6 Research
strongly supports this approach. The few teachers in one study that actu-
ally had in-depth discussions in reform mathematics classrooms, saw
themselves not as moving through a curriculum, but as helping students
move through a learning trajectory (Fuson et al., 2000). Furthermore, re-
search on systemic reform initiatives supports the focus on both "big
ideas" and the "conceptual storylines" of curricula (Heck et al., 2002).
Learning trajectories should facilitate developmentally appropriate teach-
ing and learning for all children (cf. Brown et al., 1995). That is, continua, or
learning trajectories, should illuminate potential developmental paths,
and also encourage teachers to provide their children with activities ap-
propriate to their abilities—attainable, but challenging for each child.

Deep knowledge of children's mathematics is critical to improved
teaching (Ball & Bass, 2000; Ma, 1999). Furthermore, teachers should
maintain a developmental perspective. "Even the best-motivated set of in-
structional objectives can be counterproductive if the emphasis shifts
from engendering particular kinds of understanding to eliciting correct
performance on particular tasks" (Sophian, chap. 9, this volume). A devel-
opmental perspective keeps the development of the whole mathematical
idea and the whole child in mind, including how that idea and child will
develop through the years. For example, children should count not only
objects but also a variety of other mathematical units (cf. Shipley &
Shepperson, 1990). They may count the number of colors in a group of ob-
jects, or determine the number of whole eggs, when some eggs are bro-
ken into sections. Such counting is developmentally productive. It helps
children classify and think flexibly about what it is they are counting. Such
thinking prepares them for measurement and fraction tasks, where they
have to know what the unit is. Furthermore, children should be supported
to learn along a deep trajectory, which leads to a variety of strategies, such
as counting the counting numbers themselves (e.g., to answer 8 + 3,
counting, "8 ... 9 is one, ten is two, 11 is three ... 11!").

There is another way we need to focus on core competencies, but
avoid tunnel vision. A potential disadvantage of any such focus is in limit-
ing children's mathematical experiences. We believe, with the late
mathematics educator Bob Davis, that curriculum developers and teach-
ers should maintain two complementary types of objects: basic compe-
tencies and "things that go beyond." Most of what we discuss here are
basic competencies. Investigations that follow children's interests, that

6Several Conference participants presented variations on this theme. Sarama (chap. 15, this
volume), calls these "learning trajectories" (consistent with Clements & Sarama, 1999; Fuson
et al., 2000; Gravemeijer, 1999; Simon, 1995) and provides specific illustrations. Joyner said,
"While individual children do not learn in a linear, lock-step fashion, there is a general trajec-
tory that can be described to assist adults who are caring for and working with young children.
Unless we give adults some insight into children's potential, we are likely to continue to see a
huge gap in what children know and are able to do as they enter formal schooling."
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spontaneously occur, that accompany or emerge from a non-
mathematical project—these are "things that go beyond," which should
also be cherished and supported.

Learning trajectories make additional contributions. For example, they can
indicate when most children might learn certain topics. This would avoid the
time spent relearning concepts and skills in later grades—a wasteful pattern
of too many U.S. classrooms that is not present in countries more successful
in mathematics education (Fuson, chap. 5, this volume). Finally, guidelines
based on big ideas and learning trajectories could bring coherence and con-
sistency to mathematics goals and curricula across the United States. If state
representatives agree on core goals, then a variety of high-quality curricula
can be developed to meet these goals. In addition, programs at different loca-
tions can provide more consistent experiences for children who move. These
are especially important if we are to achieve equitable mathematics educa-
tion, especially given the high rates of moving in the United States (Fuson,
chap. 5, this volume; Klein & Starkey, chap. 14, this volume). Reviewing what
has been argued to this point, we conclude the following:

Recommendation 2: The most important standards for early childhood are
standards for programs, for teaching, and for assessment. These should be built
on flexible, developmental guidelines for young children's mathematical learn-
ing. Guidelines should be based on available research and expert practice, focus
on and elaborate the big ideas of mathematics, and represent a range of expec-
tations for child outcomes that are developmentally appropriate.

If these recommendations are ignored, or implemented ineffec-
tively—for example, if teachers are not provided adequate professional
development—children may experience frustration and learn little. We
elaborate on these issues in the following two sections.

The Important Mathematical Ideas for Pre-K to Grade 2

In the remainder of this section (and before moving to Recommendations
3-17), we describe specific guidelines for mathematical content. NCTM's
Principles and Standards for School Mathematics organizes content into
five areas: number and operations, algebra, geometry, measurement, and
data analysis and probability. In the early years, algebra is manifested
through work with classification, patterns and relations, operations with
whole numbers, explorations of function, and step-by-step processes
(NCTM, 2000, p. 91).

In the opinion of the Conference Working Group, the PSSM lists "expec-
tations," but does not specify the big ideas for each of these five areas. The
big ideas of mathematics for Fre-K to Grade 2, as well as the relations be-
tween the content areas, are diagrammed in Fig. 1.1. The content stan-
dards are surrounded by a connected ring of process standards, which
relate to all that they enclose.
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FIG. 1.1. The five main content areas and the big ideas of mathematics for PreK-grade 2,
as well as the relations between the content areas, surrounded by the five main processes.
Links: a = Number can be used to quantify properties of geometric objects (e.g., number of
sides or angles). Geometric objects provide models for number and operations (e.g., num-
ber line or arrays for multiplication, b = Number and operations are essential elements of
measurement. The measurement process subdivides continuous quantities such as length
to make them countable. Measurement provides a model and an application for both num-
ber and arithmetic operations, c = Geometry provides the major context for learning and
teaching measurement. Measurement quantifies the attributes of geometic figures, such as
side length or angle measure, d = In geometic measurment, the measurement process usu-
ally synthesizes the domain of number & operations, on the one hand, and geometry on the
other, e = Algebra can be used to identify, describe, and extend number patterns, f = Algebra
can be used to identify, describe, and extend geometric patterns g = Number concepts are
essential in analyzing data, h = Measures are often used and analyzed as data, i = Data analy-
ses can be used to organize information to uncover patterns.

Next we elaborate on the five content areas, emphasizing the three ma-
jor areas for Pre-K to Grade 2 mathematics education: Number and Opera-
tions, Geometry, and Measurement. The process standards are discussed
in Recommendation 3.

Number and Operations

Number and Operations is arguably the most important of the areas.
The learning of number and operations in the early childhood years
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may be the best-developed area in mathematics education research
(e.g., Baroody, chap. 7, this volume; Fuson, chap. 5, this volume; Kilpat-
rick et al., 2001; Steffe, chap. 8, this volume). The domain of children's
numerical concepts and operations can be thought of as consisting of
two foundational ideas, one for number and one for operation—al-
though these are highly interrelated. Operations are not limited to the
four operations of adding, subtracting, multiplying, and dividing. By
"operations" we include counting, comparing, grouping, uniting, parti-
tioning, and composing. These ideas can be broken down into six topi-
cal big ideas, as shown in Fig. 1.2.

The big topical ideas span prekindergarten through Grade 2. They rest on
early quantitative reasoning that begins to develop as early as the first year of
life. It is crucial that this early knowledge be supported by experiences in
homes, day-care settings, and prekindergartens so that all children build
this rich base of numerical experiences and cultural knowledge.

Counting. Number knowledge emerges surprisingly early in life and
develops considerably during the first three years. Infants can discriminate
among and match very small configurations (one to three) of objects. For
example, when 6-month-old infants are shown a series of pictures that
always depict three objects, albeit different types of objects from picture to
picture, they gradually lose interest in the pictures. If the configuration of
objects depicted in the pictures is then changed from three to two or four,
infants notice the change and become interested again (Starkey, Spelke, &
Gelman, 1990). So, they can "see" small configurations of objects nonverbally
(called subitizing). By 18 months of age, infants can notice which of two
collections contains more objects (Cooper, 1984). This provides an early
perceptual basis for number, but it is not yet "number knowledge."

This illustrates a critical point: Mathematical knowledge initially devel-
ops qualitatively. In this instance, children's ability to "see small collec-
tions" grows from perceptual, to imagined, to numerical patterns (Steffe,
1992). Perceptual patterns are those the child can, and must, immedi-
ately see or hear, such as domino patterns, finger patterns, or auditory
patterns (e.g., three beats). Later, children develop the ability to visual-
ize, or imagine, such patterns. Finally, children develop numerical pat-
terns, which they can operate on, as when they can mentally decompose
a five pattern into two and three and then put them back together to
make five again. These types of patterns may "look the same" on the sur-
face, but are qualitatively different. All can support mathematical growth
and thinking, but numerical patterns are the most powerful. As another
illustration, see Richardson's (chap. 12, this volume) story on how for
years she thought her children understood dice patterns. However,
when she finally asked them to reproduce the patterns, she was amazed
that they did not use the same number of counters, matching a dice nine
with a "square" arrangement that did not have nine dots. Thus, without
appropriate tasks and close observation, she did not see that her children



FIG. 1.2. The six main topical areas and their corresponding big ideas for the area of
number and operations.
Links: a = Counting, or knowledge of the counting sequence, can be used to compare or or-
der collections, b = Children use counting to compute sums and differences; for example, to
solve 4 + 2, saying "foooour...five six!" c = A (cardinal) number such as 5 can be decom-
posed and recomposed in various ways (e.g., 4 + 1, 3 + 2...) d = Counting larger collections
can be facilitated by creating larger groups and representing such collections can be eco-
nomically represented by place-value notation, e = Counting can be used to ensure equal
share and label their size, f = Understanding "same number as," "more," and "less" under-
lies recognizing whether a change makes a collection, g = Understanding "same number
as," "more," and "less" underlies recognizing what a whole is larger then a part and that the
sum of the parts equal a whole, h = Understanding "same number as," "more," and "less"
underlies recognizing that 42 ones = 4 tens + 2 ones = 3 tens + 12 ones or that 47 is larger
than 46. i = Understanding "same number as," "more," and "less" underlies decomposing a
whole into equal-size parts or vice versa, j = Understanding part-whole relations can deepen
understanding of additon and subtraction in a variety of ways, including additive
commutativity (Part 1 + Part 2 = the same whole as Part 2 + Part 1) and the addition-subtrac-
tion complement principle (Whole - Part 1 = ?, Part 1 + ? = Whole), k = An understanding of
grouping and place value can provide the basis for more efficient procedures for adding or
subtracting larger number than counting single objects. 1 = The addition doubles such as 4 +
4 = 8 are a basic example of equal partitioning, m = Part-whole relations underlie an under-
standing that the total value of the digits of a multidigit number must equal the whole (e.g., 4
tens + 2 ones = 42). n = Equal partitioning is just a special case of decompos-
ing/recomposing in that they parts are all equal, o = Understanding equal partitioning under-
lies understanding that one hundred can be decomposed into 10 tens.

18
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did not even accurately imagine patterns, and their patterns were cer-
tainly not numerical. Such insights are not well reflected in brief descrip-
tions, figures, and tables but are critical in understanding and promoting
children's mathematical thinking.

By 24 months of age, many toddlers have learned their first number
word (typically "two"). Words for larger collections do not appear until
children have begun to use verbal counting. Depending on the early envi-
ronment, children begin to try to count using verbal number names at age
2 or 3 years. Important developments in counting continue during the
prekindergarten years. Children from ages 2 to 5 learn more of the system
of number words ("one, two, three,...") due to a desire to count larger col-
lections and a curiosity about the number word system itself (Fuson,
1988).7 Learning the list of number words to ten requires learning an arbi-
trary list with no patterns. Children learn it as they do general language or
the ABCs (thus, rhythms and songs can help). To count objects, children
learn to coordinate this list of words with pointing or moving objects that
ties each word said in time to an object to be counted (Fuson, 1988). This
takes considerable practice to coordinate and can be facilitated by having
children touch objects as they count and by counting objects organized
into a row. However, children are also well prepared for such coordina-
tion, especially if rhythm is introduced, though they must concentrate and
try hard to achieve continuous coordination throughout the whole count-
ing effort. The easiest type of collection for 3-year-olds to count has only a
few objects that are arranged in a straight line and can be touched as chil-
dren proceed with their counting. Between 3 and 5 years of age, children
acquire more skill as they practice counting, and they become able to
cope with numerically larger collections in different arrangements, with-
out needing to touch or move objects during the act of counting.

Recognizing how many items are in small configurations of items re-
quires experiences in which the configurations are labeled with a number
word by adults or older children ("Here are two blocks."). Such experi-
ences enable children to build meaning for number words as telling how
many items in a configuration or collection of items. The capstone of early
numerical knowledge, and the necessary building block for all further
work with number and operations, is connecting the counting of objects in
a collection to the number objects in that collection. Initially, children may
not know how many objects there are in a collection after counting them.
If asked how many are there, they typically count again, as if the "how
many?" question is a directive to count rather than a request for how many
items are in the collection. Children must learn that the last number word
they say when counting refers to how many items have been counted.

7In this and other sections of chapter 1 (which comprises Part I), we cite some particularly
appropriate references, but we have not repeatedly cited the many instances in which we
have drawn from the researchers whose chapters are in Part II (e.g., for this section, Baroody,
Fuson, Griffin, Klein, & Starkey, and Steffe).
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Many 3-year-olds do learn this result of counting: "One, two, three, four.
There are four olives."

In summary, early numerical knowledge has four interrelated aspects:
instantly recognizing and naming how many items of a small configuration
(subitizing; e.g., "That's two crackers."), learning the list of number words
to at least ten, enumerating objects (i.e., saying number word in corre-
spondence with objects), and understanding that the last number word
said when counting refers to how many items have been counted. These
four aspects are learned initially by different kinds of experiences, but they
gradually become more connected. Indeed, having children represent
their quantitative concepts in different ways, such as with objects, spoken
words, and numerals, and connecting those representations, are impor-
tant aspects of all six topic areas (see Fig. 1.2). Each of the four aspects be-
gins with the smallest numbers and gradually includes larger numbers.
Seeing how many, or subitizing, ends at three to five items and moves into
decomposing/composing where small numbers are put together to see
larger numbers as patterns. We conclude by repeating that mathematical
knowledge develops qualitatively. As children's ability to subitize grows
from perceptual, to imagined, to numerical patterns, so too does their abil-
ity to count and operate on collections grow from perceptual (counting
concrete objects), to imagined (with six hidden objects and two shown,
saying, "Siiiix ... seven, eight! Eight in all!"), to numerical (counting num-
ber words, as in "8 + 3?9is 1, 10is2, 11 is 3 ... 11!").

Comparing and Ordering. Human beings naturally make per-
ceptual judgments of relative quantities. But children need to learn the
cultural methods of matching and counting to find out more dependably
which quantity is more. Prekindergartners can learn to use matching to
compare collections or to create equivalent collections. Many 3-year-olds
judge that two collections are equal when the objects in one collection are
placed in spatial proximity to (e.g., next to) the objects in another collection
in a one-to-one fashion. By age 4, many children use such matching to
create a collection equal to one that has already been constructed (Piaget &
Szeminska, 1952). For many 4-year-olds, the number-word sequence
develops into a kind of "mental number list." Consequently, children
determine which of a pair of collections has more items by counting each
collection and then using this mental number list to determine which
number comes later and thus which collection is larger.

Finding out how many more (or less/fewer) there are in one collection
than another is more demanding than simply comparing two collections
to find which has more. Children have to understand that the number of el-
ements in the collection with fewer items is contained in the number of
items in the collection with more items. That is, they have to mentally con-
struct a "part" of the larger collection (equivalent to the smaller collection)
that is not visually present. They then have to determine the "other part" or
the larger collection and find out how many elements are in this "leftover



1. MAJOR THEMES AND RECOMMENDATIONS 21

amount." The situational language in comparing situations is complex and
children need considerable experience solving comparing problems and
hearing and telling comparing stories.

Adding To/Taking Away. Even toddlers notice the effects of
increasing or decreasing small collections by one item. For example,
24-month-olds expect that when two objects (e.g., balls) are put into a
covered box and then one ball is removed from the box, that one ball
remains in the box. Likewise, when two balls are put into a box and then
another ball is put into the box, most expect that the box then contains
three balls. Prekindergarten children become more proficient in
reasoning about the effects of increasing or decreasing the items of two
collections of objects. When two collections are created simultaneously
by placing items one-for-one in separate locations, many pre-
kindergartners correctly judge that the items in the two collections are
equal even though they do not know exactly how many objects are in the
collections. If items of one collection are then increased or decreased,
children as young as age 3 correctly judge that the collection added to
contains more or the collection subtracted from contains fewer than the
collection that was not changed. However, problems involving two
collections that are initially unequal present a difficulty for 3-year-olds.
For example, if two collections initially differ by two objects, and one
object is added to the smaller collection, many 3-year-olds will
incorrectly say that the collection to which the object was added has
more. In contrast, some 5-year-olds know that this collection still has
fewer. They know that both the addition and the initial inequality must be
taken into account in reasoning about the effect of the addition on the
collections (Cooper, 1984).

Problems such as six and two more can be solved by children as soon as
they can accurately count. Children who cannot yet count on often follow
three steps: counting objects for the initial collection of six items, counting
two more items, and then counting the items of the two collections to-
gether. These children naturally use such counting methods to solve story
situations as long as they understand the language in the story. Research
and expert practice indicate that children develop, and eventually abbrevi-
ate, these solution methods. For example, when items are hidden from
view, children may put up fingers sequentially while saying, " 1, 2,3,4,5,6"
and then continue on, putting up two more fingers, "7, 8. Eight." Children
continue developing, and abbreviate their counting methods even further.
Rather than putting up fingers sequentially to count the six hidden items,
children who can count on simply say, "S-i-x—7, 8. Eight." Such counting
on is a landmark in children's numerical development. It is not a rote step.
It requires conceptually embedding the 6 inside the total.

Counting on when increasing collections and the corresponding count-
ing-back-from when decreasing collections are powerful numerical strat-
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egies for children. However, they are only beginning strategies. In the case
where the amount of increase is unknown, children count-up-to to find
the unknown amount. If six items are increased so that there are now nine
items, children may find the amount of increase by counting, "S-i-x; 7,8,9.
Three." And if nine items are decreased so that six remain, children may
count from nine down to six as follows: "Nine; 8, 7, 6. Three." However,
counting backward, especially more than three counts, is difficult for chil-
dren (Fuson, S. T. Smith, & Lo Cicero, 1997). When children realize that
they can find the amount of decrease by putting the items back with the six
and counting from six up to nine, they establish that subtraction is the in-
version of addition and from that time on, addition can be used instead of
subtraction. Children in many parts of the world learn to count up to the to-
tal to solve a subtraction situation because they realize that it is much eas-
ier. For example, the story "8 apples on the table. The children ate 5. How
many now?" could be solved by thinking, "I took away 5 from those 8, so 6,
7,8 (raising a finger with each count), that's 3 more left in the 8." This is an-
other landmark in children's numerical development, and it is at this point
that children can be encouraged to use strategic reasoning. For example,
some children go on to invent recomposing and decomposing methods
using doubles (6 + 7 is 6 + 6 = 12. 12 + 1 more = 13).

Composing and Decomposing. Composing and decomposing
are combining and separating operations that allow children to build
concepts of "parts" and "wholes." For example, children can develop the
ability to recognize that the numbers two and three are "hiding inside" five,
as are the numbers four and one. Such thinking develops significantly.
Most prekindergartners can "see" that two items and one item make three
items; even 3-year-olds can solve problems such as one and one more,
nonverbally (i.e., by creating a matching collection), although this ability is
limited to very small numbers. Later, children learn to separate a group
into parts in various ways and then to count to produce all of the number
"partners" of a given number; for example, 8 as 7 + 1, 6 + 2, 5 + 3, and so
on. Eventually, children can generate an image of eight, and mentally
operate on the elements of this image, combining them flexibly to
produce any of the family of addition situations. They can use such
combinations in solving problems.

Children can develop sophisticated composing and decomposing oper-
ations by bringing together two aspects of their early numerical knowl-
edge: "seeing numbers" (visualizing little numbers inside bigger numbers,
including seeing three as one and one and one) and counting. Children
can come to see all of the different number "partners" for a given number
by working with objects (e.g., six objects). Within a story context (e.g., ani-
mals in two different pens), children can separate the six objects into dif-
ferent partners that make six (five and one; four and two; three and three
are all six-partners). Two kinds of special patterns are especially powerful
and easy for children to see: doubles (3 + 3, 7 + 7), which allow access to
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combinations such as 7 + 8, and fives (6 made as 5 + 1, 7 as 5 + 2, etc.),
which allow for decomposition into fives and tens. These number patterns
and the number 10 can later in Grade 1 or 2 become the basis for adding
and subtracting numbers by recomposing. Recomposing around 10 is a
powerful and general method taught in many parts of the world (e.g., 8 + 6
= 8 + 2 + 4= 10 + 4= 14. These methods are especially useful in
multidigit addition and subtraction, which work with tens in each position.
These recomposing methods use the embedded numbers children
learned earlier. In addition, the arithmetic principles of commutativity (5 +
2 = 2 + 5) and associativity ((5 + 2) + 8 = 5 + (2 + 8)) can be developed
and discussed in such problem-solving sessions.

Such strategies develop number sense but also meet another major goal
in early childhood mathematics—strategic reasoning. If children interpret
15 - 8 as finding how many numbers from 8 up to and including 15, they
can reason strategically: 8 and 2 more are 10, and 10 and 5 more are 15, so
adding 5 and 2 gives the difference. Strategic reasoning empowers chil-
dren and adds enormously to their sense of numerical competence.

Children are fascinated with "big numbers," and elaborating their count-
ing strategies to find sums and differences of two-digit numbers enhances
this fascination. For example, to find the sum of 28 and 16, children might to
count, "Twenty-eight; thirty-eight, 39,40,41,42, 43, 44." And, to find the dif-
ference of eighty-one and thirty-five, children might count, "81; 71,61,51; 50,
49,48,47,46." Some children also count from thirty-five up to eighty-one by
tens and ones; others find many other strategies. Counting by tens and ones
to find sums and differences of two-digit numbers is not meant to replace
computational algorithms. Instead, these counting strategies are meant to
enhance the children's sense of numerical competence.

Strategies involving counting by tens and ones can be altered along with
children's developing understanding of numeration and place value. In
fact, altering these sophisticated counting strategies is a natural site for de-
veloping children's understanding of numeration and place value. Rather
than count by tens and ones to find the sum of 38 and 47, children could
decompose 38 into its tens and ones and 47 into its tens and ones. This en-
courages the children to reason with ten as a unit like the unit of one and
compose the tens together into 7 tens, or 70. After composing the ones to-
gether into 15 ones, they have transformed the sum into the sum of 70 and
15. To find this sum, the children take a 10 from the 15 and give it to the 70,
so the sum is 80 and 5 more, or 85. Strategies like this are modifications of
counting strategies involving ten and one just like strategies for finding the
sum of 8 and 7 (children who know that 8 and 2 are 10 take 2 from 7 and
give it to 8. So, 10 and 5.15) are modifications of counting strategies involv-
ing only one. This brings us to our next topic.

Grouping and Place Value. Grouping is the operation (process)
of combining objects into sets each having the same number of objects.
For example, we can group by threes and describe, say a set of 18, as 6



24 CLEMENTS

groups of three. The big idea of grouping involves making larger units (in
the case of the example, the new unit is made of three objects). Grouping
leads to skip counting and multiplication and to later understanding of
measuring with different units.

A special grouping organizes collections into groups of 10. That is, a nu-
merical collection can be measured using units of 1,10,100, or 1,000, and,
in a written multidigit numeral, the value of a digit depends on its position
in the numeral because different digit positions indicate different units. To
build understanding of numbers greater than ten, children must build on
their early numerical knowledge and decomposing/composing to under-
stand even the teen numbers as one 10 and some extras and later to un-
derstand numbers above 19 as some number of groups of 10 and some
extras. Beginning with the teen numbers, the written numerals and the
number words both refer to groups of 10 (e.g., 11 is one group of 10 and
one 1). The patterns in the number words are complex and do not help
children focus on 10 (e.g., eleven rather than "ten and one," thirteen rather
than "threeteen" or "ten and three," twenty rather than twoty or "two
tens," fifty rather than fivety; note that other languages, such as Chinese, in
which 13 is read as "ten and three," are much more helpful). Rather, they
mask the overall pattern. Also, neither "teen" nor "ty" say ten, although
they mean ten. The written numbers are clearer in their pattern, but the
written numerals are so succinct that they mislead children: A 52 looks like
a 5 and a 2 side-by-side, without suggesting 50 or 5 tens to the beginner.
Children can be helped to understand the 10-structured groupings named
by our number words and written numbers if they see and work with
quantities grouped into tens linked to number words and to written num-
bers. They may count 52 blocks into their own units of tens and ones, but
counting and stacking blocks cannot take the place of working with the
ideas and the symbols. That is, children might also pretend to make stacks
of blocks, while counting, "11 is one ten and one, 12 is two, ...,20 is two
tens" and so forth. They have to engage in many experiences to establish
10 as a benchmark and, more important, as a new unit (1 ten that contains
10 ones). Regular tens and ones words (52 is "five tens two ones") used
along with the ordinary words can help establish a language that symbol-
izes decomposing and composing.

Equal Partitioning. Partitioning is the operation of decomposing a
set of objects into sets of equal sizes. The simplest form of this big idea is
readily understandable by children. It emerges around 3 years of age,
when prekindergartners become able to share a small collection of
objects equally between two toy animals. Three-year-olds can divide a
collection into equal subsets (quotients) if the subsets are very small.
Many 4- and 5-year-olds can work with larger numbers by inventing a
one-to-one correspondence strategy to divide the initial collection into
equal subsets. The idea is foundational for all kinds of multiplication
situations and of measurement division (where you know the number in a
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group) and of partition division (where you know the number of groups).
But the complexities of finding exact solutions with larger numbers except
by trial and error and of reflecting on a series of repeated actions make this
a big idea best pursued in detail at older grades.

Notes on Multidigit Computation. The ideas and skills involved
in multidigit computation are supported by most of the big ideas of number
and operations. Unfortunately, given present-day instruction, many children
think of multidigit numbers only as single-digit numbers sitting side by side,
ignoring their place value, which invites different kinds of errors. To develop
computational methods that they understand, children require strong
experiences in kindergarten (or earlier) hearing the pattern of repeating
tens in the number words and relating them to quantities grouped in tens
and seeing teen numbers and two-digit numbers as embedded numbers
(52 is 50 and 2). First graders can use quantities grouped in tens or make
drawings of tens and ones to do two-digit addition with regrouping and
discuss how recording numerically their new ten: e.g., 48 + 26 makes 6 tens
(from 40 and 20) and 1 ten and 4 (from 8 + 6), so there is a total of 7 tens and
4 for 74. Children invent and leam from each other many effective methods
for adding such numbers and many ways to record their methods. Second
graders can go on to add 3-digit numbers by thinking of the groups of
hundreds, tens, and ones involved. And they can subtract (e.g., 82 -59) by
thinking of breaking apart 82 into 59 and another number.

Developmental Guidelines. Central aspects of each of these big
ideas and guidelines for children's development of those ideas are
outlined in Table 1.1. This is the first of three tables in Part I that
synthesize research (described in Parts I and II) on young children's
development of mathematical ideas. Tables such as this help summarize
ideas; however, they must leave information out, which can lead to
misinterpretations. The tables in this document should be read with four
major caveats in mind. First, tables tend to inadequately reflect the
qualitatively different ways of thinking and learning that young children
develop through the early years. For example, Table 1.1 includes
"seeing" small collections (subitizing) and counting small and, later,
larger collections. However, it does not capture well the many ways
children develop number sense. As just one instance, recall how
subitizing and counting grow from being perceptual, to being imagined,
and, finally, numerical (Steffe, 1992).

The second caveat is that curriculum developers, educators conducting
professional development, and teachers need different levels of detail for
each mathematical topic, from the biggest ideas of Fig. 1.1 to detailed
learning trajectories. The next level of detail for number and operations is
presented in the Table 1.1. It is important to note that complete learning
trajectories are more detailed, and different in nature from, the simple
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Developmental Guidelines for Number and Operations

Topic Pre-Ka Kindergarten

2-3 years 4 years 5 years 6 years 7 years

a. A key element of
object-counting
readiness is
nonverbally repre-
senting and gauging
the equivalence of
small collections.

Counting
Counting can be used to find out how many in a collection.

Make and imagine
small collections
of 1 to 4 items
nonverbally, such
as seeing which is
covered, and then
putting out.

Find a match equal to a collection of 1
to 4 items, such as matching:: or 4
drum beats to collections of 4 with dif-
ferent arrangements, dissimilar items,
or mixed items (e.g.,).



b. Another key ele-
ment of ob-
ject-counting
readiness is learn-
ing standard se-
quences of number
words, learning that
is facilitated by dis-
covering patterns.

-Verbally count by ones from ...

I t o l O 1 to 30 (and
more) with em-
phasis on count-
ing patterns; e.g.,
knowing that
"twenty-one,
twenty-two..." is
parallel to "one,
two..."

Flexibly start verbal county-by-one se-
quence from any point—that is, start a
count from a number other than the
"one" (ends early in first grade for
some)

1 to 100, with emphasis on patterns
(e.g., the decades "sixty, seventy" par-
allel "six, seven"; also, the teens such
as "fourteen" to "nineteen" parallel
"four" through "nine")

-Flexibly state the next number word ...

... after 2 to 9 with ... after 2 to 9 without a running start to
a running start 9; also, the word before from 2 to 9

Verbally count backward

from 5 from 10

<

by 10s

from 20

Skip count...

by 5s, 2s

1 to 1,000, with
emphasis on pat-
terns (e.g., the
hundreds, "one
hundred, two
hundred" parallel
"one, two")

by 3s, 4s
27
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CO Table 1.1 (continued)

Topic

c. Object counting in-
volves creating a
one-to-one corre-
spondence between
a number word in a
verbal counting se-
quence and each
item of a collection,
using some action
indicating each ac-
tion as you say a
number word.

d. Number patterns can
facilitate determining
the number of items
in a collection or rep-
resenting it

Pre

2-3 years

Count the items in a
4 , —

1 to 4 items

Count out (produc
<

1 to 4 items

< Verbally s

collections of 1 to
3

< Re

-Ka Kindergarten 1

4 years 5 years 6 years

i collection and know the last counting word tells "how many"
~-»

1 to 1 0 items 1 to 20 items 1 to 1 00 items

e) a collection of a specified size (lags a bit behind counting
items in a collection) — >

1 to 10 items 1 to 20 items 1 to 100 items, us-
ing groups of 10

Use sMp counting
«- • — — ma

2, 5, or 10 at a
time

aibitize (quickly "see" and label with a number) ... — >

collections of 1 to collections of 1 to 6; patterns up to 10
5 - -

present collections with a finger pattern . . . — ••>

2

7 years

to determine how
tny . _ — ̂

Switch among
counts (e,g., B100f

200, 300, 310, 320,
321,322,323")



land 2 up to 5 up to 10 teens as 10 and
more; used flexibly

to count on, etc.

e. Estimating the
number of a collec-
tion builds number
sense.

f. Representing collec-
tions and numerical
relations with writ-
ten symbols is a key
step toward ab-
stract mathematical
thinking.

•Estimate the number in a collection ..."

to 10 (some to
30), guessing

"small" or "large"
numbers

to 100, using mental number line,
benchmarks, and, later, composition

strategies

•Draw pictures or other informal symbols to represent a spoken number—>

•*— Draw pictures or other informal symbols to represent how many in a collection—^

^ Use numeral skills >

Recognize
one-digit numer-

als

Write one-digit
numerals; later,

teens

Write two-digit nu-
merals

Read number
words one, two,

three,... ten

Informally represent the equivalence
or inequivalence of two collections.

Write three-digit
numerals

Read two-
and three-digit
number words

Use symbols = , *
>, < (w/ single-

digits)
CO
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Table 1.1 (continued)

Topic Pre-Ka

Colh

a. Comparing and or-
dering build on non-

2-3 years

actions can be comf

Identify whether
collections are

Kindergarten

4 years 5 years

/

6 years

2

7 years

Comparing and Ordering
>ared or ordered, and numbers are one useful tool for doing so.

correspondence) to determine the equivalence or order
verbal knowledge
and experience
with real collections

b. Children compare,
first visually, then
using the verbal
counting sequence.

c. Learning language
for ordinal numbers
can build on chil-
dren's concrete
comparing and
knowledge of
counting words

the "same* num- (smaller or larger) of two collections, despite distracting ap-
ber or which is pearances, and use words equal, more, less, fewer
"more" visually

to 5 to 10 to 18

• Determine how many more/less?

Matching, Counting, Adding,
counting, 1-10 counting on, 1-20 subtracting, 1-100

< Understand and use verbal ordinal terms 3

"first" and "last" "first" to "fifth" "first" to "tenth" "first" to "thirtieth"

Read written ordinal terms first, sec-
ond, third, ... ninth and use them to

represent ordinal relations.



Adding To/Taking Away
A collection can be made larger by adding items to it and made smaller by taking some away from it.

a. Nonverbal problem Nonverbal addition and subtraction ...
solving supports * ^
later adding and one 'tem + one sums up to 4 and
subtracting. 'tern or two items subtraction in-

- one item volving 1 to 4
items

b. Solving problems Solve and make verbal word problems; add and subtract
using informal < using >
counting strategies
is a critical step concrete model- counting-based advanced
in learning adding in§ (objects or fin- strategies such as counting
and subtracting. gers), totals to 5 counting on, to- strategies, e.g,,

tals to 10 counting on or up
(for subtraction
and unknown

addends) to 18;
adding 3 #'s < 10

c. Solving problems < Solve verbal word problems of the following types: >
of different "types"
or structures ex- Join result Join result [all previous [all previous
tends ability to unknown unknown; types and] types and} start
succeed in varied part-part-whole, part-part-whole, unknown
situations and helps whole unknown; part unknown;
them build connec- separate, result compare
tions. unknown; some problems

can do simple
oo compare and join
~ change unknown
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Table 1.1 (continued)

Topic Pre-Ka Kindergarten 1 2

2-3 years 4 years 5 years 6 years 7 years

d. Linking symbolic Translate word problems (and their solutions) into number
addition and sub- sentences and vice versa; determine sums and differences
traction to concrete of number sentences by various means.
situations and solu- < ^
tions is necessary
for meaningfully
using formal
symbolic.

e. Facility with basic Find and use patterns and relations to devise reasoning
number combina- strategies
tions is achieved by
making a variety of e-§-' number-after e.g., doubles +/- 1 (6 + 7 is 6 + 6 + 1
strategies, particu- (°r before), i.e., + is 1 2 + 1 = 13), 3 + 5 = 5 + 3
larly reasoning 1 *s next counting (commutativity), addition comple-
strategies, rapid. word ments, 5-3 = ?as3 + ? = 5

Facility with basic
addition and
subtraction

combinations



Composing and Decomposing
A quantity (whole) can be "broken apart" (decomposed) into parts, and the parts can be combined (composed)

to form the whole.

a. Reasoning qualita-
tively about
part-whole rela-
tions provides basis
for more advanced
composing and de-
composing.

b. Number sense in-
clude knowledge of
number partners
(other names for a
number).

c. Part-whole knowl-
edge extends addi-
tion, subtraction.

Understand and reason qualitatively and intuitively about
part-whole relations

increasing
(decreasing) size
of an uncounted
part increases
(decreases)
the whole

(visual only)

changing a part
changes a

counted whole;
(e.g., adding to a
collection creates

a sum greater
than the starting

amount)

in a missing-
addend word

problem, a part
(e.g., starting

amount) is less
than the whole

OJ
00

Construct part-
ners with objects
up to 10; knowing

partners to 5
(e.g,,5 = 1 + 4,2

- + 3,3 + 2,4 + 1);
doubles to 10

(e.g,,3 + 3 = 6)

Informally solving
part-part-whole,
or "combine,"

word problems,
sums to 10.

Know partners up
tolO(e.g.,l +9),
especially with 5

as a partner
(e.g.,6 = 5 + l);

doubles to 20
(e.g., 12 = 6 + 6)

Know partner
involving de-

cades up to 100
(e,g,»50= 10 +

40,20+ 30 ...40
+ 10,100 = 10 +
90, ...90+ 10)

Recognition of additive commutativity
(e.g., 3 + 6 = 6 + 3); addition-subtrac-
tion complement (e.g., 5 - 3 = ?, think

of 3 + ? = 5), and inverse principle
(e.g. 5 + 3-3 = 5).
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Table 1.1 (continued}

Topic Pre-Ka Kindergarten 1 2

2-3 years 4 years 5 years 6 years 7 years

Grouping and Place Value
Items can be grouped to make aiaiger unit and, in a written multidigit number, the value of a digit depends

on its position because different digit positions indicate different units.

a. Concrete activities
provides a concep-
tual basis for these
grouping and
place-value con-
cepts.

b. Connecting
multidigit numerals
to concrete/pictorial
models provides a
meaningful basis
for multidigit nu-
meral skills.

Trade several small items for a larger one Trade, involving ...

grouping into 5s decomposing
or 10s; recogniz- a larger unit
ing place value, (esp. 10 and 100)
e.g., 23,32 are into smaller units;

different composing larger
units.

< Translate between group- "" >
mg/place~vaiue models, count words,

and numerals, and read/write
multidigit numerals meaningfully to...

I ten- 10ones

100

•Recognize base*ten equivalents

1,000

1 hundred = 10
tensor 100ones

1 thousand = 10
hundreds, etc.



c. Relating written View concretely
multidigit addition determined sums
and subtraction to to 18 as a corn-
concrete or pictorial posite of ten and
grouping and ones.
place-value model
promotes under- * ' Invent concrete and mental—™->
standing. procedures for adding and subtracting

multidigit numbers, including shortcuts
involves 10s, to,*,

100 i,000

Use and explain
renaming algo-

rithm, up to 1,000.

d. Grouping/place- <— Use a front-end strategy with >
value knowledge
helps estimate two-digit numbers 3- and 4-digit
sums and (e-§-> 51+36 + 7 numbers (e.g.,
differences. ls at *east 5 tens + 563 + 222 + 87

3 tens or 80) is at least 5
hundreds + 2

hundreds or 700)

00



CO

Table 1.1 (continued)

Topic Pre-Ka

2-3 years 4 years

Kindergarten

5 years

1

6 years

2

7 years

a. Concrete
equal-partitioning
experiences with
collections and then
continuous quanti-
ties lay the ground-
work for
understanding divi-
sion and fractions.

A quanti^ {whole) can be partitioned {decomposed) into equal size pieces (parts).

Use informal strategies to solve diwy-up fair-sharing problems with collections of...

up to 10 items be-
tween two people

up to 20 items
among 3-5 peo-
ple; knows fairs

shares have same
number

up to 100 items
(grouped by tens
and ones) among
up to 10 people

up to 1,000
(grouped by

hundreds, tens,
and ones) among
up to 20 people

-Use informal strategies to solve measuring-out
fair-sharing problems with...

up to 20 items and
shares of two to

five items

up to 100 items
(groups of tens
and ones) and
shares up to 10

items

up to 1,000
(grouped by

hundreds, tens,
and ones) and

shares of up to 20
items

—Use informal strategies to solve
diwy-up fair-sharing problems with

continuous quantities



1 to 10 wholes 1 to 20 wholes
and two to five and two to ten

people people

b. Connecting fraction <"; Verbally label a fair-share of < ««•« »
names to , f
equal-partitioning one of two as I 111 non-unit fractions,
experiences builds "half'or 2 3 4 5 € g p?±
knowledge that "one-half" 4 8
fractions involve a
whole divided into
equal size parts. or Part-of-whole meanmg of fractions

involving ...

unit fractions II nonunit fractions
2^3

Note. This is the first of several tables of developmental guidelines. // is essential to note that these are developmental guidelines from research. All such tables
should be interpreted or used after reading the description and caveats in the section "Developmental guidelines "on p. 25; 38. Table 1.1 was developed by an initial
structure developed by a subset of the Conference Working Group led by Karen Fuson, and was then greatly elaborated in collaboration with Arthur Baroody (see his
chapters in this volume—most of the table's content originally was written by Baroody in a draft of those chapters), to whom we owe a great deal of appreciation.

aAges reflect those typically found in classes or groups of children; for example, the first category, a typical classroom of "3-year-olds" may begin the year with
some 2-year-olds and end the year with some children just turning 4 years of age.
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lists ing of capabilities even in its most detailed form. Several chapters
provide better examples of learning trajectories in their more complete
form (e.g., Baroody, chap. 3, this volume; Clements, chap. 10, this volume;
Sarama, chap. 15, this volume).

The next two caveats emphasize that these developmental guidelines do
not constitute a curriculum. The third caveat is that children may work be-
yond those competencies, as they are able, both in the breadth and the
depth of their learning. These competencies are basic; mathematics should
also include "things that go beyond." The fourth and perhaps most impor-
tant caveat is that the competencies in these tables are not directions for cur-
riculum, teaching, or assessment. The activities in which children engage to
learn these competencies should provide rich, integrated experiences from
whichildren develop several competencies simultaneously. All aspects of
mathematical thinking (e.g., see Recommendation 3) should be empha-
sized in the teaching and learning of such competencies.

Geometry

Geometry, measurement, and spatial reasoning are important, inherently,
because they involve "grasping ... that space in which the child lives,
breathes and moves ... that space that the child must learn to know, ex-
plore, conquer, in order to live, breathe and move better in it"
(Freudenthal, in NCTM, 1989, p. 48). In addition, geometry learning in the
early years can be particularly meaningful because it can be consistent
with young children's way of moving their bodies (Papert, 1980). Espe-
cially for early childhood, geometry and spatial reasoning form the foun-
dation of much learning of mathematics and other subjects (Clements,
chap. 10, this volume). Although our knowledge of young children's geo-
metric and spatial thinking is not as extensive as their numerical thinking,
it has grown substantially and can be used as one basis for curriculum de-
velopment and teaching. Figure 1.3 represents the big topical ideas within
the major areas of geometry.

The big topical ideas of geometry discussed here, like number, span
birth through Grade 2. This early knowledge can be supported by experi-
ences in homes, day-care settings, and prekindergartens so that all chil-
dren build a strong foundation of geometric and spatial thinking.

Shape. Through their everyday activity, children build both intuitive
and explicit knowledge of geometric figures. Indeed, children often know
as much about shapes entering school as their geometry curriculum
"teaches" them in the early grades (Clements, chap. 10, this volume;
Lehrer, Osana, Jacobson, & Jenkins, 1993). For example, most children
can recognize and name basic two-dimensional (2-D) shapes at 4 years of
age, and they do increase their knowledge significantly throughout
elementary school (Clements, chap. 10, this volume). However, young
children can learn richer concepts about shape if their educational
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FIG. 1.3. The five main topical areas and their corresponding big ideas for the area of ge-
ometry and spatial sense.
Note: The shape is the main emphasis at the PreK-Grade 2 band, although all four subtopics
play some role, especially as they are connected with Shape.
Links: a = Transformations such as slides and turns are used to move and change geometric
shapes in a way that is mathematically precise. This is of practical use (e.g., in computer pro-
gramming or graphics) and also perhaps analysis of shapes (e.g., to ascertain congruence,
similarity, or symmetry), b = Visualization and spatial reasoning mutually support the growth
of all other areas of geometry, c = The domain of shape provides the structures for analyzing
locations, directions, and coordinates (e.g., grids composed of arrayss of squares are used in
maps). Ideas from the latter area can, in turn, provide alternate representations of shapes
(e.g., directions such as those in Logo's turtle geometry, repeat 4 [fd 100 rt 90], can precisely
represent shapes; coordinates can be similarly used to draw and represent shapes), d =
Transformations such as turning and sliding are consistent with directions for following a
path in a map (or those in Logo's "turtle geometry").

environment includes four features: varied examples and nonexamples,
discussions about shapes and their characteristics, a wider variety of
shape classes, and interesting tasks. First, curricula and teaching should
ensure that children experience many different examples of a type of
shape, so that they do not form narrow ideas about any class of shapes.
Showing nonexamples and comparing them to similar examples help
focus children's attention on the critical attributes of shapes and prompts
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discussion. For example, they might compare a chevron (/-A) or kite (O)

to a triangle ( / V). Second, these discussions should encourage children's
descriptions while encouraging the development of language. Children
can learn to explain why a shape belongs to a certain category—"It has

three straight sides" or does not belong ( y "The sides aren't straight!").
Eventually, they can internalize such arguments; for example, saying
about, -i"It is a weird, long triangle, but it has three straight sides!"

Third, curricula and teachers should include a wide variety of shape
classes. Early childhood curricula traditionally introduce shapes in four ba-
sic-level categories: circle, square, triangle, and rectangle. The unfortunate
notion that a square is not a rectangle is rooted by age 5 (Clements et al.,
1999; Hannibal & Clements, 2000). Instead, children should encounter
many examples of squares and rectangles, varying orientation, size, and so
forth, including squares as examples of rectangles. If children say "that's a
square," teachers might respond that it is a square, which is a special type of
rectangle, and they might try double-naming ("it's a square-rectangle").
Older children can discuss "general" categories, such as quadrilaterals and
triangles, counting the sides of various figures to choose their category. Also,
teachers might encourage them to describe why a figure belongs or does
not belong to a shape category. Then, teachers can say that because a trian-
gle has all equal sides, it is a special type of triangle, called an equilateral tri-
angle. Further, children should experiment with and describe a wider
variety of shapes, including but not limited to semicircles, quadrilaterals,

trapezoids ( / \ ), rhombi ( ^/__/ ), and hexagons.
In summary, children can and should discuss shapes and the parts and at-

tributes of shapes. This brings us again to our fourth feature of a high-quality
early childhood geometry environment—interesting tasks. Activities that
promote reflection and discussion include building models of shapes from
components. For example, children might build representations of squares
and other polygons with toothpicks and marshmallows. They might also
form shapes with their bodies, either singly or with their friends.

To understand angles, they must discriminate angles as critical parts of
geometric figures, and construct and mentally represent the idea of turns.
Children possess intuitive knowledge of turns and angles and 5-year-olds
can match angles in correspondence tasks (Beilin, Klein, & Whitehurst,
1982). The long developmental process of learning about turns and angles
is best begun in the early and elementary classrooms, as children deal
with corners of figures, comparing angle size, and turns. Computer-based
shape manipulation and navigation environments can help mathematize
these experiences. Especially important is understanding how turning
one's body relates to turning shapes and turning along paths in navigation
and learning to use numbers to quantify these turn and angle situations
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(see the "Measurement" section). For example, even 4-year-olds learn to
click on a shape to turn it and say, "I need to turn it three times!" (see
Sarama, chap. 15, this volume).

Concepts of 2-D shapes begin forming in the prekindergarten years and
stabilize as early as age 6 (Gagatsis & Patronis, 1990; Hannibal & Clements,
2000). It is therefore critical that children be provided better opportunities
to learn about geometric figures between 3 and 6 years of age. Curricula
should develop early ideas aggressively, so that by the end of Grade 2 chil-
dren can identify a wide range of examples and nonexamples of a wide
range of geometric figures; classify, describe, draw, and visualize shapes;
and describe and compare shapes based on their attributes.

Young children move through levels in the composition and decomposi-
tion of 2-D figures. From lack of competence in composing geometric
shapes, they gain abilities to combine shapes into pictures, then synthe-
size combinations of shapes into new shapes (composite shapes), even-
tually operating on and iterating those composite shapes (see Fig. 1.4).

FIG. 1.4. A learning trajectory for young children's composition of geometric figures.
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As with 2-D figures, children need more and richer experiences with
three-dimensional (3-D) figures. Manipulation and play with solids should
lead to discussions of their overall shape ("it's like an ice-cream cone")
and attributes ("all these are round and roll"). Construction activities in-
volving nets (foldout shapes of solids) may help students learn to discrimi-
nate between 2-D and 3-D figures.

Transformations and Symmetry. Pre-K-K, and even Grade 1-2
children, may be limited in their ability to mentally transform shapes, but
there is evidence that they can do so in solving simple problems.
Furthermore, they can learn to perform rotations on objects (physical or
virtual), and a rich curriculum or set of experiences, enhanced by such
manipulatives and computer tools, may reveal that such knowledge and
mental processes are valid educational goals for most young children.

Beginning as early as 4 years of age, children can create and use strate-
gies, such as moving shapes to compare their parts or to place one on top
of the other, for judging whether two figures are "the same shape." In the
Pre-K to Grade 2 range, they can develop sophisticated and accurate
mathematical procedures for determining congruence. Older pre-
kindergartners can learn to compare common geometric shapes that
have undergone a transformation such as rotation or flip (Beilin et al.,
1982). Children as young as 5-6 years can identify similar (scaled) shapes
in certain situations and use computers to create similar shapes. First and
second graders can identify similar shapes and use scaling transforma-
tions to check their predictions. Symmetry is also an area of strength. Very

young children create designs with both line ( fff ) and rotational (
symmetry with manipulatives and in art. Children in Grades K-2 can learn
to draw the other half of a geometric figure to create a symmetric figure
and identify lines of symmetry.

Visualization and Spatial Reasoning. One aspect of spatial
reasoning, spatial orientation, involves knowing the shape of one's
environment. This knowledge is intrinsically connected to knowledge of
locations and directions and so is discussed in the following subsection.
Another aspect of spatial reasoning is spatial visualization: the ability to
create a mental image of geometric objects, "examine" it mentally to
answer questions about it, and transform it. Prekindergarten children can
generate and inspect images, especially if they are provided opportunities
to develop this ability ("Think of a square. What do you see?). They can
also learn to transform them in certain ways ("Think of a square cut down
the middle. What do you have?"). Even prekindergarten and kindergarten
children show initial abilities to slide, turn, and flip shapes mentally in
certain settings, as previously discussed. All children should work on
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developing their ability to create, maintain, and represent mental images
of geometric shapes and of the environments in which they live.

Locations, Directions, and Coordinates. Infants and toddlers
spend a great deal of time exploring space and learning about the
properties and relations of objects in space. In the first year of life, infants
can perceive the shape and size of objects and can represent the location
of objects in a 3-D space (Haith & Benson, 1998; Kellman & Banks, 1998).
Infants can use landmarks to keep track of locations in their environment
(Acredolo & Evans, 1980) and associate objects as being near a person
such as a parent (Presson & Somerville, 1985). Toddlers and 3-year-olds
can place objects in specified locations near distant landmarks, but "lose"
locations that are not specified ahead of time once they move. They may
be able to form simple frameworks, such as the shape of the arrangement
of several objects, which has to include their own location (Huttenlocher
& Newcombe, 1984). Thus, very young children know and use the shape
of their environment in navigation activities. With guidance, they can learn
to mathematize this knowledge. They can learn about direction,
perspective, distance, symbolization, location, and coordinates. Some
studies have identified first grade as a good time to introduce learning of
simple maps, such as maps of objects in the classroom or routes around
the school or playground, but informal experiences in prekindergarten
and kindergarten are also beneficial, especially those that emphasize
building imagery from physical movement.

As stated previously, curriculum developers, educators conducting pro-
fessional development, and teachers need different levels of detail for
each mathematical topic, from the biggest ideas of Fig. 1.1 to detailed
learning trajectories. The next level of detail for geometry and measure-
ment is presented in Table 1.2. The four caveats described previously are
critical—tables inadequately reflect qualitatively different ways of think-
ing, details about learning are not included, children may work beyond
those goals, and competencies in these tables are not directions for curric-
ulum or teaching. To emphasize the second caveat, tables and figures do
not adequately describe the qualitatively different ways of thinking and
learning about geometry and space that young children develop through
the early years. See the chapters in Part II, and the references they contain,
for further information.

Measurement

Measurement is one of the main real-world applications of mathematics. As
previously stated, counting is a type of measurement—it measures how
many items in a collection (i.e., discrete quantity). Measurement of continu-
ous quantities involves assigning a number to attributes such as length, area,
and weight. Together, number and measurement are components of quanti-



Table 1.2
Developmental Guidelines for Geometry

Topic Pre-K Kindergarten

2-3 years 4 years 5 years

1

6 years

2

7 years

Geometric shapes
can be used to
represent and un-
derstand objects
in the world
around us.

Analyzing, compar-
ing, and classifying
shapes helps cre-
ate new knowl-
edge of shapes and
their relationships.

Match shapes, first
with same size and

orientation, then
with different sizes

and orientation

Recognize and
name some varia-
tions of the circle,
square, triangle,

rectangle

Recognize and name circle, square, triangle, rectangle,
in any size or orientation (varying shapes for triangles

and rectangles)

Recognize and name a variety of shapes
(e.g., semicircles, quadrilaterals, trapezoids, rhombi,

hexagons, in any orientation)

Build, dramatize,
and describe 2~D
shapes informally

•Visualize, describe, draw and represent 2-D shapes

Build, dramatize,
draw, and de-

scribe 2-D shapes
informally

Accurately build, draw, describe, and vi-
sualize 2-D shapes, including geometric

paths representing "route maps"

Identify congruent and noncongruent 2-D shapes •

Match shapes Match shapes and parts of shapes
to justify congruency

Use slides, flips,
and turns and

superposition to
show congruency



< Classify 2-D shapes by category >

Use shape class Use shape class names Use class
names informally to classify and sort membership for

shapes, based
on properties

< Name, describe, compare, and sort 3-D concrete objects >

Informal play with solids Informally build Name, describe, compare, and sort solids
(e.g., building blocks) with, name, de-

scribe solids

< Identify component parts of shapes »

Identify Identify and count Independently
and count sides sides and angles identify shape

in terms of their
components and
properties (defin-
ing attributes; e.g.,
"It has 1,2,3 sides
... it's a triangle.)"

<— Identify and describe faces of 3-D shapes as 2-D shapes —»

Informally identify Identify and describe faces of 3-D
*; faces of solids shapes as specific 2-D shapes
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O Table 1.2 (continued)

Topic

Shapes can be de-
composed into
other shapes or
into their compo-
nent parts; shapes
can be composed
into other shapes
and structures,
such as tilings.

Pre-K Kindergarten

2-3 years 4 years 5 years

7 2

6 years 7 years

* **. / > . . . t t A * * t _ i l t. <W

Use shapes in Cover an outline with shapes without Compose, com- Compose, corn-
isolation to make a leaving gaps, first with trial-and-error, blning shapes into birring shapes into

picture, then with foresight new shapes new shapes, sub-
^* Av ^^^ stituting a combi-
111 \ ) ^^^L nation of smaller

... , . , yHV '̂ ^^V' shapes for a larger
A Makes a picture by 'M£ ^^ F

 sh
™ combining shapes. ^ T

«• uccumjjuse ^uiccm. apctiij A-U simpes lu uicuvt: new siiapes *

Decompose simple shapes that have Decompose Decompose
obvious clues for breaking them apart shapes using shapes flexibly

imagery that is using independ-
suggested by the ently generated
task or teacher imagery

•*—"• Compose (put together) and decompose (break apart) 3-D shapes to make— >
real-world objects and other 3-D shapes, informally

^ &.
Understand and predict the effects of

different sequences of transformations
and compositions/decompositions



•Create tilings •

Single shapes Single shapes
and combinations

•Disembeddlng (finding "hidden shapes")

Locate some shapes in arrangements In
which figures overlap, but Me not em-

bedded InsWeef others

Dtsembed shapes
"- - " inside -.

of others

Single shapes
and combinations,
recording the pat-
tern symbolically

^serabed compli-
cated Bidden"

shapes Embedded
in others

Locations,
Directions,
and Coordinates
Mathematics can
be used to pre-
cisely specify di-
rections, routes,
and locations in
the world.

Understand and use ideas such as over,
under, above, on, beside, next

to, between.

Places toy objects
in correct relative
position to make

a map of the
classroom

•Use and make simple maps

Places toy objects
in correct relative
position to make

a map of the
classroom

Make and follow maps of familiar areas



OO Table 1.2 (continued)

Topic Pre-K Kindergarten

2-3 years 4 years 5 years 6 years 7 years

Transformations
and Symmetry
Mathematical
transformations
can be use to pre-
cisely move and
change shapes.

Symmetry can be
used to analyze,
understand, and
create shapes in
geometry and art.

•Uses coordinates to find and name locations

Orient objects Use coordinate labels to locate objects Use coordinates
vertically or pictures in simple situations to locate positions

or horizontally

•Perform slides, flips, and turns of 2-D shapes •

Identify and use motions informally Visualize slides. Predict the out-
flips, and turns come of side, flip,,
of 2*D shapes and turn motions

on 2-D shapes

Informally create 2-D shapes
and 3-D buildings that have line

or rotational symmetry

Identify and create Identify symmetry
shapes that have in 2-D shapes
line or rotational

symmetry

Identify the mirror
lines of shapes

with line symmetry



Visualization
and Spatial
Reasoning
Mental images can
be used to repre-
sent and manipu-
late shapes,
directions,
and locations.

•Create mental images of geometric shapes

Copy a shape or small collection
of shapes from memory after seeing

a model for several seconds

Draw shapes from
memory

Draw a collection
of shapes or com-
plex drawing from

memory

Create a shape from verbal directions

Relate ideas in geometry to ideas in number and measurement

Recognize geometric shapes
and structures in the environment

and specify their location

Give and follow
directions for mov-

ing in physical
space and on a
map, including
understanding

geometric paths as
representations of

movement

Understand that
maps answer

questions about
direction, distance

and location

Objects can be
represented from
different points
of view.

Recognize
and represent

shapes from differ-
ent perspectives
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tative reasoning. In this vein, measurement helps connect the two realms of
number and geometry, each providing conceptual support to the other.

Figure 1.4 represents the big topical ideas within Measurement. The first
box emphasizes concepts, the second skills.

As with number and geometry, children's understanding of measure-
ment develops during the prekindergarten years. Prekindergarten chil-
dren know that properties such as mass (amount), length, and weight
exist, but they do not initially know how to reason about these attributes or
to measure them accurately. If 3-year-olds have some amount of quantity
(e.g., clay) and then are given an additional amount of quantity (more
clay), they know that they have more than they did before. Three- and
4-year-olds encounter difficulty, however, when asked to judge which of
two amounts of quantity that they currently have (e.g., which of two
mounds of clay) is more. They tend to use perceptual cues to make this
judgment. For example, when one of two identical balls of clay is rolled
into a long sausagelike shape, children do not "conserve" the initial equiv-
alence of the clay balls, and instead judge that the sausage has more clay
than the ball because it is longer. Before kindergarten, many children lack
measurement rules such as lining up an end when comparing the lengths
of two objects (Piaget & Inhelder, 1967; Piaget et al., 1960), although they
can learn about such ideas. At age 4-5 years, however, many children can,

FIG. 1.4. The two main topical areas and their corresponding big ideas for the area of mea-
surement.
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with opportunities to learn, become less dependent on perceptual cues
and thus make progress in reasoning about or measuring quantities.

Attributes, Units, and Processes. Young children naturally
encounter and discuss quantities in their play (Ginsburg, Inoue, & Seo,
1999). They first learn to use words that represent quantity or magnitude of
a certain attribute. Then they compare two objects directly and recognize
equality or inequality, for example, of the length of two objects
(Boulton-Lewis, Wilss, & Mutch, 1996). Next, children should learn to
measure, connecting number to length. These involve learning many
ideas, including the following: the need for equal-size units; that a line
segment made by joining two line segments has a length equal to the sum
of the lengths of the joined segments; that a number can be assigned to a
length; and that you may need to repeat, or iterate, a unit, and subdivide
that unit, to find that number (to a given precision).

Understanding of area measure also involves learning and coordinat-
ing many ideas. Children must understand that decomposing and rear-
ranging shapes does not affect their area. Important is the ability to
coordinate two linear dimensions to build the idea of a 2-D space. This
explains why understanding of area is often not fully developed until
12-13 years of age. Young children should have experiences covering ar-
eas, and should develop the ability to cover using arrays (arrangements
in rows and columns) by Grade 2. Such structuring is not a simple task. El-
ementary school children often confuse perimeter and area. For exam-
ple, they believe that counting the units around a figure gives its area.
Teachers help when they offer many experiences comparing areas, en-
couraging children to use their own strategies (even one-by-one count-
ing) rather than teaching rote rules.

Techniques and Tools. Measurement involves critical skills,
including techniques for comparing and measuring, either by iterating
copies of a unit or using tools such as rulers. Children's development of
these skills is a slow process. However, traditional opinion, based on
Piaget, was that young children should not engage in measurement until
they conserve quantity and that they should follow a rigid instructional
sequence: gross comparisons of length, measurement with nonstandard
units such as paper clips, measurement with manipulative standard units,
and finally measurement with standard instruments such as rulers. Recent
research suggests that children benefit from using objects and rulers to
measure at any age. Not only do children prefer using rulers, but they can
use them meaningfully and in combination with manipulable units to
develop understanding of length measurement. Even if they do not
understand rulers fully or use them accurately, they can use rulers along
with manipulable units such as centimeter cubes and arbitrary units to
develop their measurement skills.
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Accurate measuring procedures such as placing manipulative units
without leaving spaces between them can be developed through many
experiences. Similarly, with rulers, teachers can help children develop
concepts and procedures such as accurate alignment (e.g., ignoring the
gap at the beginning of many rulers), starting at zero, and focusing on the
lengths of the units rather than only the numbers on the ruler. Counting
points rather than line segments is more likely in ruler activities and parti-
tioning tasks. That is, accepting earlier use of rulers is not the same as be-
lieving that such use implies mastery either of the tool or of measurement
concepts (Lehrer, Jenkins, & Osana, 1998). Rather, it is an additional way
to present experiences and problems that will help children develop un-
derstanding. Using manipulable units to make their own rulers helps chil-
dren connect their experiences and ideas.

Later, in second or third grade, teachers can introduce students explic-
itly to the ideas of the relationship between units and the need for standard
units. The relationship between the size and number of units, the need for
standardization of units, and additional measuring devices can be ex-
plored. The next level of detail for measurement is presented in Table 1.3.

Algebra, Patterns, and Data Analysis

Though number, geometry, and measurement are the main emphases at the
Pre-K to Grade 2 age, algebra and data analysis play supporting roles. Alge-
braic thinking can permeate much of the instruction of these main areas (and
the smaller amount of research done on such thinking should not diminish its
importance to the curriculum). Algebra begins with a search for patterns.
Identifying patterns helps bring order, cohesion, and predictability to seem-
ingly unorganized situations and allows one to make generalizations beyond
the information directly available. The recognition and analysis of patterns
are important components of the young child's intellectual development be-
cause they provide a foundation for the development of algebraic thinking.
Although prekindergarten children engage in pattern-related activities and
recognize patterns in their everyday environment, research has revealed that
an abstract understanding of patterns develops gradually during the early
childhood years (Klein & Starkey, chap. 14, this volume). It appears that this
ability undergoes considerable development. In the prekindergarten years,
children can learn to duplicate simple concrete patterns. In kindergarten,
they can leam to extend and create patterns. Furthermore, children learn to
recognize the relationship between patterns with nonidentical objects or be-
tween different representations of the same pattern (e.g., between visual and
motoric, or movement, patterns). This is a crucial step in using patterns to
make generalizations and to reveal common underlying structures. Through
kindergarten and the primary grades, children must learn to identify the core
unit (e.g., AB) that either repeats (ABABAB) or "grows" (ABAABAAAB), and
then use it to generate both these types of patterns.



Table 1.3
Developmental Guidelines for Measurement

Topic Pre-K Kindergarten

2-3 years 4 years 5 years 6 years 7 years

en
GJ

Concepts
Measuring can be
used to specify
and compare
"how much."

Recognize, compare, and order attributes such as length, volume, weight, area, and time

Discuss and compare attributes
informally, including comparing gross
differences. Develop language such as

"bigger," "longer," and "taller."

Measurement is
giving a number
to an attribute of
an objects, such as
length, area,
capacity, or
weight.

Compare length
directly

Name, discuss, and compare objects
according to attributes in solving

problems

Understand how to measure length

Compare length
transitively; length
of two objects can
be compared by

representing each
using string or pa-

per strip

Name, discuss,
distinguish,

compare, and
order objects

according to the
attributes of

length, volume,
weight, area,

and time

Compare the ef-
fects of measuring
length using units
of different size;
determine the

need for using a
standard unit of
measurement

Measure perimeter



Table 1.3 (continued)

Topic Pre-K

2-3 years 4 years

Kindergarten

5 years

1

6 years

2

7 years

Gross comparison
of areas by placing
one object on an-

other ("more
space")

Measure by laying length units
end-to-end

Understand how to measure area-

Cover area with
units and counts

individual squares
(not necessarily in
an organized way)

Partial row or col-
umn structuring
(e.g., "3 in this

rows and 3 in this
one makes 6,
umm, 7,8 ..."

[continues count-
ing by ones])

Measure by iterat-
ing single unit
and using ruler

Understands area
as array with row

and columns
(e.g., "3 in each

row... 3, 6, 9,12!"

• Understand how to measure turn and angle-

Use angle and turn
measure intuitively

in play

Understand that
turns can be

quantified (e.g., "I
turned the shape
on the computer

three times")

Assign numbers to
turns in certain

situations

Recognize attributes of volume, weight, area, and time-

Oi
£»



Skills and Tools
Measurement
can be done by
iterating a unit
or using a tool
such as a ruler.

• Measure by laying length units end-to-end

Measure with multiple copies of unit
of the same size, such as paper clips

laid end-to-end

Use repetition
of a single unit

to measure some-
thing larger than
the unit, for in-

stance, measuring
the length of a

room with a single
meter stick

Informal,
exploratory use
of simple ruler
(single units)

• Measure with tools

Use simple ruler to measure units

Common referents
can be used to
help estimate
measures.

en
Cn

Use common referents for measures
to make comparisons and estimates

Informal Develop and use referents to estimate
comparisons length measure (e.g., the top of door

and estimation knobs are about a meter from the floor)
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Moving into the primary grades, children can learn to find and extend
numerical patterns—extending their knowledge of patterns to thinking al-
gebraically about arithmetic (Baroody, 1993). Two central themes are
making generalizations and using symbols to represent mathematical
ideas and to represent and solve problems (Carpenter & Levi, 1999). For
example, children might generalize that when you add zero to a number
the sum is always that number or when you add three numbers it does not
matter which two you add first (Carpenter & Levi, 1999). In summary, stu-
dents in the primary grades can learn to formulate, represent, and reason
about generalizations and conjectures, although their justifications do not
always adequately validate the conjectures they create. This body of re-
search on young children's understanding of patterns can be used, in turn,
to establish developmentally appropriate learning trajectories for pattern
instruction in early mathematics education.

Data analysis contains one big idea: classifying, organizing, represent-
ing, and using information to ask and answer questions. The developmen-
tal continuum for data analysis includes growth in classifying and counting
and in data representations. Regarding the former, children initially learn
to sort objects and quantify their groups. For example, they might sort a
collection of buttons into those with one to four holes and count to find out
how many they have in each of the four groups. To do this, they focus on
and describe the attributes of objects, classifying according to those attrib-
utes, and quantify the resulting categories. Children eventually became
capable of simultaneously classifying and counting, for example, counting
the number of colors in a group of objects, as described previously.

After gathering data to answer questions, children's initial representations
often do not use categories. Their interest in data is on the particulars (Russell,
1991). For example, they might simply list each child in their class and each
child's response to a question. They then learn to classify these responses
and represent data according to category. Thus, children should use physical
objects to make graphs (objects such as shoes or sneakers, then
manipulatives such as connecting cubes), then picture graphs, then line
plots, and, finally, bar graphs that include grid lines to facilitate reading fre-
quencies (Friel, Curcio, & Bright, 2001). By second grade, most children
should be able to organize and display data through both simple numerical
summaries such as counts, tables, and tallies, and graphical displays, includ-
ing picture graphs, line plots, and bar graphs (Russell, 1991). They can com-
pare parts of the data, make statements about the data as a whole, and
generally determine whether the graphs answer the questions posed initially.

Themes

Several themes emerge across the mathematical topics. These are de-
scribed only briefly here, as they are developed within the chapters in Part
II. One theme is that, especially for younger students, it is more important
not to treat mathematical topics as isolated topics; rather, they should be
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connected to each other, often in the context of solving a significant prob-
lem or engaging in an interesting project (Clements, 2001; Fuson, chap. 5,
this volume).

Recommendation 3: Mathematics for young children should be an inte-
grated whole. Connections—between topics, between mathematics and
other subjects, andbetween mathematics and everyday life—should perme-
ate children's mathematical experiences.

In a similar vein, our focus on mathematical content is not a de-empha-
sis on other aspects of mathematical power, which includes not just con-
ceptual understanding, but also the flexible and thoughtful use of skills, the
ability to conduct mathematical inquiry, and a positive disposition toward
learning and using mathematics (Baroody with Coslick, 1998). Such as-
pects are essential for meaningful and substantive mathematics learning
and teaching and involve the incorporation of two groups of processes.
The first group includes the general processes of problem solving, repre-
senting, reasoning, communicating, and connecting, which should be in-
terwoven throughout the teaching and learning of content—the NCTM
process standards in Fig. 1.1. The second group includes mathematical
processes used across mathematical domains, such as organizing infor-
mation, patterning, decomposing/composing, and unitizing. Along with
such habits of mind as being curious, creative, and willing to take risks,
these processes might be the most long-lasting and important goals of
mathematics education.

Recommendation 4: As important as mathematical content are general
mathematical processes such as problem solving, reasoning and proof,
communication, connections, and representation; specific mathematical
processes such as organizing information, patterning, and composing; and
habits of mind such as curiosity, imagination, inventiveness, persistence,
willingness to experiment, and sensitivity to patterns. All should be involved
in a high-quality early childhood mathematics program.

This section describes our recommendations for flexible guidelines for
young children's mathematics. The following two sections address stan-
dards for programs and for teaching.

CURRICULUM, LEARNING, TEACHING, AND ASSESSMENT

What is the nature of a high-quality prekindergarten mathematics curricu-
lum? The trend to push the present kindergarten mathematics to pre-
school is not the answer (Lindquist & Joyner, chap. 20, this volume). Too
often, that curriculum is not even appropriate for kindergarten. Too many
U.S. curricula teach skills, but do not build on children's sense-making
ability. Teaching and learning are most effective if they build on children's
existing concepts (Bowman et al., 2001). Present textbooks predominate
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mathematics curriculum materials in U.S. classrooms and to a great ex-
tent determine teaching practices (Fuson, chap. 5, this volume; Goodlad,
1984), even in the context of reform efforts (Grant, Peterson, &
Shojgreen-Downer, 1996). Publishers attempt to meet the criteria of a mul-
titude of national, state, and local curriculum frameworks, and thus the
educational vision of any one is, at best, diluted (Clements, 2002). More-
over, teachers' reliance on textbooks minimizes any effect of such visions.

The Need for Curriculum to Be Informed
by Research and the Wisdom of Expert Practice

Why does curriculum development in the United States not improve? One
reason is that the vast majority of curriculum development efforts do not fol-
low scientific research procedures (Battista & Clements, 2000; Clements &
Battista, 2000). Only a minority follows even a minimal research-to-practice
model, in which general research theories or findings are considered before
designing a curriculum. "Based on the notion of a one-way translation of re-
search results to principles to instructional designs, it [the minimal re-
search-to-practice model] is flawed in its presumptions, insensitive to
changing goals in the subject matter field, unable to contribute to a revision of
the theory and knowledge on which it is built, and thus limited in its contribu-
tion to either theory or practice" (Clements, 2002, p. 605). More comprehen-
sive models use empirically based learning models of children's thinking and
learning, maintain close connections between activities and children's math-
ematical thinking, and employ design phases and cycles of revisions.8 Thus
they incorporate research on teaching and learning, action research, and the
wisdom of expert practice, as well as the full creative processes from devel-
opers, teachers, and children in cyclic manner. Research and curriculum de-
velopment must be closely connected, integrated, and interactive processes
that include the big ideas of mathematics, learning trajectories, multiple strat-
egies for assessment, and cycles of testing and revision.

Recommendation 5: Curriculum development and teaching should be in-
formed by research on teaching and learning and by the wisdom of expert
practice. Educators and policymakers should support and insist on ap-
proaches to teaching, learning, curriculum, and assessment that are devel-
oped and tested extensively with children.

Learning and Teaching

As stated previously, mathematics education for the young child should
be integrated. Young children do not perceive or act on their world as if
it were divided into separate cubbyholes. Successful prekindergarten

^ese efforts can lead to published curricula; however, similar processes and strengths are
found in emergent curricula that carefully document goals, processes, decisions, and learning.
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teachers help children develop experiential and mathematical knowl-
edge throughout the day (Clements, 2001). Such teaching capitalizes
on prekindergartners' high level of motivation to learn and practice
competencies in a self-directed manner. It promotes a view of mathe-
matics as positive, self-motivated, self-directed, problem-solving activ-
ity at the time children first develop their mathematical beliefs, habits,
and feelings. A core principle is that teaching should relate the ideas
and skills to what children know. Children's everyday activity, such as
play, building, or stories can be used to begin number work for each big
idea. Continual interweaving of such meaningful situations is neces-
sary for building meanings within each big idea. Such interweaving is
required to enable all children to learn the mathematical and situa-
tional language necessary to understand mathematical situations and
to solve problems.

Recommendation 6: Mathematical experiences for very young children
should build largely upon their play and the natural relationships between
learning and life in their daily activities, interests, and questions.

The teacher's role in mathematizing young children's play and everyday
activity is crucial. Early childhood teachers must design the environment
so that children engage in interesting mathematics throughout the class-
room and throughout the day. Teachers then must help children describe,
quantify, and generalize these experiences.

Recommendation 7: Teachers' most important role with respect to mathe-
matics should be finding frequent opportunities to help children reflect on
and extend the mathematics that arises in their everyday activities, conver-
sations, and play, as well as structuring environments that support such ac-
tivities. Teachers should be proactive as well in introducing mathematical
concepts, methods, and vocabulary.

In any of these roles, teachers must draw on the knowledge base on
what young children know and are able to learn and understanding of the
ways in which various concepts and skills build on others. To perform all
these roles well, teachers draw on their own specific knowledge about
what will be meaningful and engaging to the particular children in the
group, individually and collectively.

Teachers need to consistently integrate real-world situations, problem
solving, and mathematical content (Fuson, chap. 5, this volume). This inte-
gration is more than a pedagogical nicety; it is necessary to achieve both
sense making and the development of skills such as computational flu-
ency. It supports transfer to future learning and out-of-school contexts.
Finally, mathematics itself involves a vast web of connections among con-
cepts and topics (NCTM, 2000). Programs for prekindergarten to Grade 2
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should interweave real-world, meaningful contexts; problem solving; and
mathematical concepts and skills.

Young children benefit from a range of mathematical experiences, from
the incidental and informal to the systematic and planned. Mathematics
should be gleaned from myriad everyday situations (G. Fein, personal com-
munication, Sept. 20, 2000). For example, a group of young children investi-
gated many measurement ideas as they attempted to draw plans for a
carpenter, so that he could build them a new table (Malaguzzi, 1997). Infor-
mal games can be introduced, and modified, to create opportunities to
learn concepts and practice skills (Griffin, chap. 13, this volume; Kamii &
Housman, 1999). Stories can similarly be a source of mathematical explora-
tions (Casey, chap. 16, this volume; Sarama, chap. 15, this volume).
Teaching techniques are tools, and as such, must be used carefully, thought-
fully, and appropriately. This leads to the following recommendation:

Recommendation 8: Teachers should purposefully use a variety of teaching
strategies to promote children's learning. Children benefit from a thought-
ful combination of carefully planned sequences of activities and of inte-
grated approaches that occur throughout the day. Successful early
childhood teachers build on children's informal knowledge and everyday
activities, considering children's cultural background, language, and math-
ematical ideas and strategies.

An instructional approach that can make a unique contribution is the use
of technology. There have been waves of enthusiasm and criticism of tech-
nology in the media (most of which ignore or misinterpret empirical find-
ings). In contrast, research and expert practice have consistently supported
intelligent and appropriate use of technology for learning mathematics in
early childhood (Clements, 1999). Computer technology is especially ap-
propriate when it provides research-based computer tools that comple-
ment and expands what can be done with other media (Sarama, chap. 15,
this volume). For example, children might use mathematical tools to de-
compose computer-based manipulatives, or make them larger or smaller,
which is difficult or impossible with physical manipulatives. Software might
also make a unique contribution by guiding children through re-
search-based learning trajectories (Sarama, chap. 15, this volume). These
and other technologies should be integrated into everyday classroom expe-
riences. This leads to the following recommendation:

Recommendation 9: Children should benefit from the thoughtful, appropri-
ate, ongoing use of various types of technology. Especially useful are com-
puter tools that enrich and extend mathematical experiences.

Regardless of instructional approach or strategy, educators must re-
member that the ideas young children construct can be uniquely different
from those of adults (e.g., Piaget & Inhelder, 1967; Steffe & Cobb, 1988).
Early childhood teachers must be particularly careful not to assume that
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children "see" situations, problems, or solutions as adults do. Successful
teachers interpret what the child is doing and thinking and attempt to see
the situation from the child's point of view. Based on their interpretations,
they conjecture what the child might be able to learn or abstract from his
or her experiences. Similarly, when they interact with the child, they also
consider their own actions from the child's point of view. This makes early
childhood teaching both demanding and rewarding.

Recommendation 10: Teachers should endeavor to understand each child's
own mathematical ideas and strategies. Teachers should use those under-
standings to plan and adapt instruction and curriculum.

Not only are children's conceptions uniquely different from those of adults,
they are the best foundation on which to build subsequent learning. Research
and expert practice agree that children should learn skills in conjunction with
learning the corresponding concepts—indeed, learning skills before devel-
oping understanding can lead to learning difficulties (Baroody, chap. 6 & 7,
this volume; Clements, chap. 10, this volume; Fuson, chap. 5, this volume; Kil-
patrick et al., 2001; Sarama, chap. 15, this volume; Sophian, chap. 9, this vol-
ume; Steffe, chap. 8, this volume). Successful innovative curricula and
teaching build directly on students' thinking (the understandings and skills
they possess), provide opportunities for both invention and practice, and ask
children to explain their various strategies (Hiebert, 1999). Such programs fa-
cilitate conceptual growth and higher order thinking without sacrificing the
learning of skills. This leads to the following recommendation:

Recommendation 11: Teachers should help children develop strong relation-
ships between concepts and skills. Skill development is promoted by a strong
conceptual foundation.

Teachers should encourage children to create and describe their own
solution methods and should encourage methods found to be effective,
introducing them when appropriate. Teachers should encourage children
to describe and compare different solution methods.

Instruction that views children as active learners with relevant initial
knowledge and that provides substantial support during learning, is su-
perior to traditional instruction that lacks these characteristics (Fuson,
chap. 5, this volume).

Assessment

Educational assessments serve a variety of purposes (Chittenden, 1999).
Sometimes "assessments" are equated with "high-stakes" standards, as
discussed previously. Sometimes the term suggests a more diagnostic func-
tion, as in the identification of children with special needs. Finally, within the
classroom, "assessment" serves to guide instruction and learning.
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The purposes of assessment should determine the content of the as-
sessment, the methods of collecting evidence, and the nature of the possi-
ble consequences for individual students, teachers, schools, or programs.
In the past, misuse of tests and other instruments in early childhood have
stemmed from confusion of purpose. Instruments designed for one pur-
pose, such as identification, maybe totally inappropriate as instruments to
measure the success of a program. Here we emphasize assessment to
support learning.

Assessment that supports early childhood learning should enhance
teachers' powers of observation and understanding of children's mathe-
matical thinking and learning. It should draw upon a range of sources of
evidence of student learning, such as the following table (adapted from
Chittenden, 1991, 1999).

At appropriate ages, all of these sources can be useful. However, in early
childhood, group-administered, multiple-choice tests often are not ade-
quate assessment tools (Fuson, chap. 5, this volume; Lindquist & Joyner,
chap. 20, this volume). The younger the child, the more likely they can ac-
tually do harm. For individual assessment, observations, documentation
of children's talk, interviews, samples of student work, and performance
assessments that illuminate children's thinking constitute a positive ap-
proach to assessing children's strengths and needs (Lindquist & Joyner,
chap. 20, this volume). These strategies are more likely to illuminate chil-
dren's background knowledge and emerging ideas and skills and thus
provide insight that teachers need to achieve the vision of early childhood
mathematics education promoted here. The richer the instructional envi-
ronment, the broader the range of evidence for assessing learning. Careful
assessment is especially important for instruction of children with special
needs or disabilities.

General
Observation
and Records
of Activities

• anecdotal
records

• checklists
or logs of
projects

• inventories
of student
activities

Class
Discussions
and Conver-

sations

• group
meetings

• student
comments
and ques-
tions about
their work

• confer-
ences and
conversat-
ions

Work
Samples

• drawings
• writing and

journal
entries

• construct-
ions

Performance
Tasks

• conducting
investigat-
ions

• solving a
problem,
with expla-
nation

• telling or
writing a
story
problem

Tests
and Testlike
Procedures

• teacher-
made

• text-
book/unit
questions

• standard-
ized,
norm-refer-
enced
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Another useful way to think about the purposes of assessment in the
classroom is to consider three different functions it serves for teachers:
keeping track, checking up, and finding out (Chittenden, 1991). Keeping
track may involve knowing what activities and accomplishments each child
has finished, perhaps recorded with informal folders and inventories.
Checking up involves seeing if a child or class has learned something fairly
specific. For example, before beginning a series of planned activities, a
teacher may observe children working in an open-ended fashion with a set
of materials such as shapes, and ask general questions to ascertain their
level of interest, knowledge, thinking, and vocabulary related to shapes. In
the middle of the series of activities, the teacher may introduce a task and
observe and discuss the tasks with some of her children to develop a better
sense of the children's understanding and to determine if the group needs
more experience or is ready to move on to new, more challenging, tasks.

Emphasized here is the last of the three functions, finding out, which is
the teacher's attempt to figure out what's going on. What does the child
mean? How is she thinking? How did a child arrive at a particular solu-
tion/answer? What are they getting from the activities? Teachers again ask
questions, but without determining what the answer is ahead of time.
Rather, they inquire so as to understand the child's thinking. This may be
the most critical purpose for expert teaching. Such teachers ask children
to communicate their experiences in increasingly varied and abstract rep-
resentations, from dramatizations to verbal descriptions to drawings, both
for learning and for assessment.

Recommendation 12: Interview and performance tasks and ongoing, obser-
vational forms of assessment are useful and informative ways of assessing
young children's mathematical learning and should be integrated as appro-
priate into the early childhood mathematics curriculum. The primary goal of
assessing young children should be to understand children's thinking and to
inform ongoing teaching efforts.

Final Words on Curriculum, Learning,
Teaching, and Assessment

Curriculum designers and teachers must not forget issues of equity, espe-
cially as research indicates that well-developed programs have significant
benefits for at-risk children (Griffin, chap. 13, this volume; Klein & Starkey,
chap. 14, this volume). These children need additional support for mathe-
matics learning, such as opportunities to engage in foundational mathe-
matical experiences (e.g., counting experiences and building with blocks)
and to develop mathematical language about situations, as well as sup-
port for broader aspects of their environments. Summarizing points made
in previous sections, we conclude the following:

Curriculum designers and teachers can assume that all children have an
informal mathematics on which they can build. Not only should all chil-
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dren be exposed to challenging mathematics, but children at risk for low
performance in school mathematics and those from groups
underrepresented in mathematics should be provided more support, as
necessary, to be on par with other children by first grade. Children should
have high-quality mathematical experiences in the years before school in
order to improve their chance of learning and performing successfully in
school mathematics.

To return to the theme with which we began this section, administrators
and policymakers should accept and promote research-based curricula
and instructional approaches. These do not include curricula with only
spurious claims of being "based on research" (e.g., merely considering re-
search results when designing the curriculum, or, worse, citing research
results that are ostensibly consistent with the curriculum post hoc). In-
stead, curricula developers should consider research throughout develop-
ment, design and sequence activities in accord with research-based big
ideas and learning trajectories, field-test the curriculum in cycles of as-
sessment and revision, and conduct summative evaluations (Clements,
2002). Educators at all levels should reject curricula or instructional ap-
proaches that are not developed to be consistent with research on stu-
dents' learning of mathematics and that do not have the support of
empirical evaluation. This is a strong position, but one that will ultimately
benefit children. This is why we recommend that educators and
policymakers should insist on curricula and assessments that are devel-
oped and field-tested extensively with children.

PROFESSIONAL DEVELOPMENT

Research and expert practice from several fields suggests that the most
critical feature of a high-quality educational environment is a knowledge-
able and responsive adult (Bowman et al., 2001). So, ongoing, high-quality
professional development is essential to reform (Sarama & DiBiase, chap.
19, this volume). Professional development demands considerable atten-
tion, especially given the diversity of the teacher/caregiver population.
"Dramatic differences exist in the training and skills of those who care for
young children, even if only those caring for children in group settings are
considered" (Copple, chap. 3, this volume). Teacher/caregiver back-
grounds range from a bachelors degree or beyond (31%) to a high school
diploma or less (24%). "As we work to improve the quality of math curricu-
lum and instruction in the early years, we need to remember that this is the
reality: There are hundreds of thousands of virtually untrained early child-
hood workers, along with hosts of teachers with basic early childhood
training but little if any preparation relating to math teaching and learning"
(Copple, chap. 3, this volume).

Thus, a major deterrent to the implementation of a strong mathematics
program for children in prekindergarten to third grade is the inadequate prep-
aration of teachers. Early childhood teachers are often uncomfortable about
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mathematics (Copley, 1999), view necessary mathematics as only "counting,
adding, subtracting, and knowing shapes," and have little or no knowledge
about the mathematics standards" (Copple, chap. 3, this volume). Even
trained teachers often have limited knowledge of the mathematics they are
to teach, as well as children's thinking about that mathematics (Clements,
chap. 10, this volume). Teachers need three kinds of knowledge: knowledge
of mathematics, knowledge of children, and knowledge of instructional
practices (Kilpatrick et al., 2001), including knowledge of how mathematics
can be representing and presented pedagogically.

Effective professional development programs are those that actively in-
volved the teacher and provide high-quality supervision (Bowman et al.,
2001). Teachers are the ones chiefly responsible for implementing curricu-
lum and, more specifically, any changes in that curriculum. Therefore any
professional development must be relevant to teachers and must directly
address their specific needs and concerns. In addition, professional devel-
opment should incorporate findings on how teachers learn best. Research
has identified many specific findings and recommendations, but the fol-
lowing five emerge as consistent themes across many works (Sarama &
DiBiase, chap. 19, this volume):

1. Professional development should be standards based, ongoing,
and job embedded (i.e., practical, concrete, immediate, gradually
connecting to research and theory).

2. Teachers must have time to learn and work with colleagues, espe-
cially a consistent group.

3. Teachers should be provided with stable, high-quality sources of
professional development that includes observation, experimen-
tation, and mentoring, with plenty of time for reflection.

4. Professional development experiences should be grounded in a
sound theoretical and philosophical base and structured as a co-
herent and systematic programs.

5. Professional development experiences should respond to each in-
dividual's background, experiences, and current context or role.

6. Professional development experiences should address mathemat-
ics knowledge as well as mathematics education. It should be
grounded in particular curriculum materials that focus on children's
mathematical thinking and learning, including learning trajectories.

Professional development should follow "multiple pathways" to suc-
cess. The teaching and learning process is a complex endeavor that is em-
bedded in contexts that are highly diverse, a description especially true in
early childhood settings. Professional development must be integrated in
ways that best suit the local values, norms, policies, structures, resources,
and processes (McLaughlin, 1990). Thus, professional development de-
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mands multiple strategies and a variety of models (Guskey & Huberman,
1995; Sparks & Loucks-Horsley, 1989), including university courses, on-site
assistance, action research (Holly, 1991), study groups (Murphy, 1995),
coaching and mentoring (Showers & Joyce, 1996), examining student
work and thinking (Fennema, Carpenter, & Franke, 1997), professional
networks, satellite downlinks, and distance education. Innovative ap-
proaches should attempt to ameliorate present limitations. In-service
teachers frequently expressed their frustration with typical professional
development experiences. Workshops presented on Saturdays or after
school, conference opportunities that necessitate a large amount of prep-
aration for substitutes, and presentations that are geared to the intermedi-
ate grades all contributed to this frustration (Copley, 1999). Professional
development for early childhood educators in mathematics should be
viewed as a systematic, ongoing commitment of time and resources. This
leads to the following recommendation:

Recommendation 13: Professional development should be based on re-
search and expert practice. It requires multiple strategies and an understand-
ing of the variety of professional development models, with special
emphasis on the importance of teacher leaders and collegia! support groups.
It needs to be sustained and coherent.

Professional development educators will need to learn new mathemat-
ics, new ideas about children's thinking and learning, new curricula, and
new forms of teaching. All these are important. As mentioned previously,
deep knowledge of the mathematics to be taught is critical for improving
teaching (Ball & Bass, 2000; Ma, 1999). This will not be achieved by simply
taking more mathematics courses (Kilpatrick et al., 2001); instead, courses
must examine the nature of the mathematics that teachers use in the prac-
tice of teaching in the early years. Mathematical knowledge includes knowl-
edge of mathematical facts, concepts, and procedures, as well as the
relationships among these; knowledge of the ways that mathematical ideas
can be represented; and knowledge of mathematics as a discipline, such as
the nature of discourse in mathematics and the standards of evidence, argu-
mentation, and proof (Kilpatrick et al., 2001). Furthermore, teachers must
have a clear vision of the wider goals of instruction (e.g., including the "hab-
its of mind" described previously) and what proficiency means for each
specific mathematical topic they teach (Kilpatrick et al., 2001). Also, an un-
derstanding of how children's mathematical thinking and knowledge de-
velop is often a neglected component of reform and professional
development efforts (Baroody, chap. 6, this volume).

Practically all teachers need to know more about mathematics, chil-
dren's mathematical thinking, and how to work with children in mathe-
matics. They need to know much more about what mathematics young
children are interested in and capable of doing; many vastly underesti-
mate the range of young children's interests and the extent of their capabil-
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ities. Motivating and enhancing such knowledge will be a challenge,
especially as most teachers believe they already have adequate mathe-
matics preparation (Sarama & DiBiase, chap. 19, this volume). Profes-
sional development demands considerable attention, especially given the
diversity of the teacher/caregiver population. This leads to the following
recommendation:

Recommendation 14: Deep knowledge of the mathematics to be taught, to-
gether with knowledge of how children think and develop those skills and
understandings, is critical for improving teaching and should be learned in
preservice and professional development programs.

Professional development educators need to consider the context of the
learning situation, the unique and diverse characteristics of early child-
hood teachers, and research on how teachers learn. They should continue
expanding their knowledge about mathematics, about children's thinking
and learning, about curricula, and about forms of teaching.

Curriculum developers must consider the United States' diverse early
childhood contexts and ask themselves many interrelated questions. "Is
this curriculum or resource accessible for caregivers or teachers with rela-
tively little background in child development, early childhood education,
and math? Can they understand and make effective use of it? If not, what
experiences and resources will they need to do so? What can be done to
bring aspects of this curriculum into the home and other informal settings?
How can the value of mathematics in general—and this curriculum ap-
proach specifically—be communicated to parents and other lay persons?
Are there some simple things families can do with their children to en-
hance the impact of the curriculum (Copple, chap. 3, this volume)? Every
curriculum should support and enhance the teacher's understanding of
children's mathematical thinking. Research on systemic changes indi-
cates that this is a particularly effective strategy (Heck et al., 2002).

Recommendation 15: One effective way to promote professional develop-
ment is through the use of high-quality curriculum materials and programs.
These should be included in professional development programs.

For our part, we should not underestimate early childhood teachers.
When they have this awareness and knowledge about math and the rich
potentials for early math learning, a great many will think of wonderful
ways to "mathematize" their classroom and curriculum.

TOWARDS THE FUTURE: IMPLEMENTATION AND POLICY

Are children making expected progress? Are we accelerating learning prog-
ress for those children who come to prekindergarten far behind the typical
expectation for their peer group? To answer these questions, we must know
what the appropriate expectation is, we must know what to do to help chil-
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dren achieve it, and we must know how to assess what children have
learned. "Setting standards is only the first step. Connecting standards to
curriculum, teaching, and assessment is essential if the standards are to be
implemented" (Bredekamp, chap. 2, this volume). Documents such as
NCTM's PSSM recognize these connections, but do not address them fully,
especially in the area of prekindergarten. Making the vision expressed here
a reality is a daunting task that must involve all interested parties. In this final
section, we summarize suggestions for implementation and professional
development that emerged from the Conference.

Those responsible for policies and for implementation must consider
the diverse audiences and diverse settings of early childhood mathemat-
ics education. There is one other critical type of standard: standards for
policymakers and governments. These parties should combine their ex-
pertise with the knowledge represented in this book in creating consistent
guidelines for mathematics for young children. Moreover, they should pro-
vide adequate funding and structures so as to provide high-quality early
childhood education for all children.

An important issue, one that motivated the Conference, is producing or
revising state-level standards for early childhood mathematics. Lindquist
and Joyner (chap. 20, this volume) state that the importance and complex-
ity of this enterprise suggests that states adapt and use the work of others in
their own efforts to of producing or revising such guidelines. The guide-
lines provided in Part I constitute our effort to provide such a foundation.

A wide range of implementation strategies were suggested at the initial
Conference, including licensing, legislation/administrative policies, and
increased professional development and parent education (from sugges-
tions on seeing mathematics in everyday activities to providing guidelines
for selecting a prekindergarten). Finally, we return to our theme that all
concerned parties must work together to achieve these goals. Lindquist
and Joyner (chap. 20, this volume) suggest the following questions for all
concerned parties to ask themselves: How can the environment be influ-
enced to prepare the constituents for recommendations such as those
given here? What public relations issues need to be addressed? Who
should be involved; in particular, what professional organizations should
be brought in from the beginning? Who should take the lead? Who has the
responsibility for decisions? Lindquist and Joyner (chap. 20, this volume)
propose several strategies in this vein. They echo recommendations that
organizations and governmental bodies actively promote public under-
standing of early childhood education (Bowman et al., 2001), emphasizing
that special efforts need to be made to promote appropriate mathematical
teaching and learning in the early years. These might include (a) simple,
direct pamphlets that parents might get through libraries or doctors' of-
fices or stores, (b) booklets for prekindergarten directors and teachers, (c)
public service announcements (15- to 30-second spots that might be orga-
nized around themes, like math in the kitchen, math at bedtime, etc.), (d)
information for policymakers that can help them make appropriate deci-
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sions, and (e) professional development for caregivers in day-care/
prekindergarten settings that relates to observations of and conversations
with their children about mathematical ideas. These ideas lead to the fol-
lowing recommendation:

Recommendation 16: A coordinated effort should be created to translate the
information in this book into a variety of forms for different audiences.

Mathematics and early childhood educators should bring high-quality
exemplars, appropriate language, and realistic goals to these efforts, giv-
ing guidance to the documents related to the "what" and "how."

Recommendation 17: State agencies should collaborate across all states
to form more coherent and related state mandates and guidelines for
mathematics for young learners. Governments should provide adequate
funding and structures so as to provide high-quality early childhood edu-
cation for all children, including high-quality professional development
for the adults who care for them.
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The standards-based accountability movement that has dominated el-
ementary and secondary education reform for the last decade has now
reached preschool and kindergarten. The most obvious manifestation
of this trend is the requirement for child-outcome-based accountabil-
ity in the 1998 reauthorization of Head Start. Other evidence is readily
available as increasing numbers of states develop guidelines for
prekindergarten learning. Professional organizations are also extend-
ing their learning standards down to preschool, while technical reports
such as the National Research Council's Preventing Reading Diffi-
culties in Young Children include statements of literacy accomplish-
ments for children, even below the age of 3 (Snow, Burns, & Griffin,
1998). In its revised standards, the National Council of Teachers of
Mathematics (NCTM, 2000) for the first time includes prekindergarten
mathematics standards.

This chapter addresses the advantages and disadvantages of such
standards-based accountability strategies with very young children,
and the particular implementation issues involved in the field of early
childhood education.
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WHAT ARE THE DISADVANTAGES
AND ADVANTAGES OF HAVING SPECIFIC

MASTERY GOALS FOR YOUNG CHILDREN?

Historically, early childhood educators have been resistant to specifying
learning goals for very young children for several reasons. Their fre-
quently voiced concerns mirror the basic disadvantages of having spe-
cific mastery goals for young children's learning. A major concern has
arisen from the fact that children develop and learn at individually differ-
ent rates so that no one set of age-related goals can be applied to all chil-
dren. A specific learning timeline may create inaccurate judgments and
categorizations of individual children. Early childhood educators are
wary that outcomes will not be sensitive to individual, cultural, and lin-
guistic variation in young children. These concerns are not without basis
in reality given that readiness testing for preschool and/or kindergarten
entrance and exit are common, and negative consequences are more fre-
quent for certain groups of children.

A second common concern has been that specifying learning out-
comes would limit the curriculum to those outcomes and would also
lead to inappropriate teaching of narrowly defined skills. This concern
is similar to the "teach to the test" phenomenon that occurs with older
children. It arises in early childhood education primarily because the
field has a long, valued tradition of emergent curriculum and following
individual children's interests and needs in teaching. A related concern
is that the learning outcomes will be limited to a few academic areas
without adequately addressing the development of the "whole child."
Early childhood educators are especially concerned that the physical,
social, emotional, and aesthetic dimensions will be neglected, and
these are critical areas of development during the earliest years of life.
Finally, a fundamental concern is that mastery goals set for young chil-
dren will be developmentally inappropriate; that is, they will not be
achievable as well as challenging for the majority of children within a
given age range, nor will they be responsive to individual, cultural, and
linguistic diversity.

Though all these potential disadvantages are real and warrant attention,
each of them is based on the same assumption: that the mastery goals set will
be the wrong goals. If this assumption could be confronted and changed,
then many of the potential disadvantages could be turned into advantages.

Just as there are potential disadvantages, there are several potential ad-
vantages to specific mastery goals. First, teachers of young children need
guidance about what are appropriate expectations for children's learning.
When goals are achievable and challenging, that is, developmentally ap-
propriate, they provide a valuable and useful framework for planning and
implementing curriculum and individualizing teaching. A common criti-
cism of early childhood programs is that the curriculum lacks depth and
intellectual rigor (Bowman, Donovan, & Burns, 2001). Designing curricu-
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lum using agreed-upon, empirically based goals would undoubtedly raise
the bar on the learning experiences and outcomes for children.

Precedents are now arising in several arenas of work in early childhood
education. For example, the International Reading Association (IRA) and
the National Association for the Education of Young Children (NAEYC) re-
cently published a joint position statement on developmentally appropri-
ate practices in early literacy (IRA & NAEYC, 1998; Neuman, Copple, &
Bredekamp, 2000). In working on the position statement, we found that
teachers welcomed more specific guidance on learning goals linked to
age/grade levels. Such information not only helps guide planning and in-
struction, but also helps teachers identify children whose learning prog-
ress is outside the typical range.

The assumption that goals will be inappropriate or unachievable is un-
fair. As long as goals are developed drawing on research and the wisdom
of practice, goals can be excellent contributions, as the NCTM standards
have been. However, for specific mastery goals to truly be useful guides for
teachers, they need to be more closely connected to age/grade levels than
the NCTM standards have been. The NCTM (2000) standards list mathe-
matics accomplishments that cover the broad range of prekindergarten
through second grade and each section states: "all children should." This
format makes sense when the emphasis is on indicating the full range of
development and learning in a particular mathematics area. It also makes
sense from the point of view of not wanting to put limits on children's
learning nor on lowering our expectations for their achievement. These
are very important considerations; however, for most teachers the more
fundamental questions are what to teach and when to teach it. Teachers
need a clearer picture of the overall developmental/learning continuum
from which to assess children's learning. The NCTM standards do not in-
tend that every prekindergartner "should" have mastered all the math
content listed, and yet they could easily be interpreted that way. The intent
of the standards needs to be as clear as possible. Providing guidance about
appropriate mastery goals for children's learning is especially crucial in
the area of mathematics where teachers' own knowledge of the discipline
is usually inadequate to make these judgments.

HOW DO STANDARDS TAKE
INTO CONSIDERATION THE WIDE RANGE

OF WHAT IS DEVELOPMENTALLY APPROPRIATE?

Any standards document must acknowledge at the outset that there is a
wide range of individual variation, and there is a wide range of expecta-
tions that are well within the range of typical, that is, developmentally ap-
propriate. Such statements commonly appear on most standards
documents, but unfortunately, they are essentially ignored when stan-
dards are implemented in assessments or decisions about children.
Therefore, a more useful strategy is to articulate goals/standards for
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young children as a developmental or learning continuum. Certain sub-
ject areas including language, literacy, and mathematics lend themselves
more easily to such treatment.

The IRA/NAEYC (1998) position statement emphasized the concept of
learning to read and write as a developmental continuum rather than an
all-or-nothing phenomenon. The concept has been well accepted by early
childhood educators as well as reading specialists. A comparable collabo-
ration between experts in mathematics and early childhood would be a
useful strategy to promote understanding. The emphasis should come
from mathematics educators, however, because the message of individ-
ual variation may be more expected from early childhood educators and
therefore, less influential.

HOW DO WE IMPLEMENT SUCH STANDARDS
CONSIDERING SUCH A WIDE RANGE OF ADULTS

WHO CARE FOR CHILDREN, ESPECIALLY
PRESCHOOL CHILDREN?

The biggest challenge to implementing any set of learning goals for very
young children is the range of qualifications of the adults who teach them.
Preschool-age children are served in a variety of settings including family
child-care homes, child-care centers (which vary widely in quality), and
public schools. (In addition, many children do not experience an
out-of-home educational program.) The qualifications of workers in
these settings range from a high school diploma (or less) in child-care
centers to a CDA (child development associate) or associate degree in
Head Start to a baccalaureate degree with a teaching certificate for public
schools. Most state child-care licensing standards require very little
preservice training. Texas, for example, requires eight clock hours! There-
fore, the challenge of implementing early childhood curriculum reform
and standards-based accountability is overwhelming. It is also important
to point out that even among better educated teachers, very few have
taken more than one course in mathematics and perhaps part of a course
in math methods for young children.

The low qualifications of the early childhood workforce are directly linked
to very low salaries which are, in turn, related to high rates of turnover in the
field. To significantly raise educational qualifications of early childhood
teachers, it will be necessary to raise compensation significantly. Setting
high standards for children's learning will have little effect unless high stan-
dards are also set for teachers. However, we cannot wait until the intransi-
gent problem of compensation is solved before we act to improve the
quality of learning experiences and outcomes for young children.

In the meantime, the target for such standard-setting efforts such as that of
NCTM needs to be teacher educators, curriculum developers, trainers, and
others who influence the quality of practice in programs for children. For in-
stance, Head Start has an entire infrastructure of training and technical as-
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sistance providers, most of whom are blissfully unaware of NCTM, not to
mention new knowledge about mathematics learning in young children.
Commercial developers continue to offer the same, shallow "mathemat-
ics" worksheets with numbers 1-10 and sell that as a math curriculum.

A concerted effort needs to be made to come to consensus among early
childhood educators and mathematics educators about what the stan-
dards should be for preschool and kindergarten. Then an implementation
plan is needed to move the standards into practice by reeducating teacher
educators and making sure classroom teachers have the materials and
knowledge they need to implement well-designed curricula. Math is one
area of the early childhood curricula that if left to emerge is likely to be lim-
ited to passing out napkins and counting attendance.

SHOULD WE HAVE STANDARDS FOR CHILDREN
OR STANDARDS FOR PROGRAMS, OR BOTH?

Early childhood education has a history of program standards. These are
usually licensing standards for child care, but the field also has more than
15 years experience with NAEYC accreditation criteria, and more recently
family day-care accreditation by the National Association for Family Child
Care (NAFCC). These systems set the parameters within which a program
should operate. They do not specify any one curriculum, but they do have
curriculum implementation standards. For the most part, such standards
are based on research on the effects of various program components on
outcomes for children. Recently such outcome research has focused
more on child care and found that higher quality programs result in learn-
ing benefits into elementary school, including in mathematics (Cost,
Quality, and Child Outcomes Study Team, 1999).

Given the diversity of regulators, funders, and auspices in the field of early
childhood education, it remains necessary for the foreseeable future to es-
tablish program standards, at least in part because programs that meet such
standards don't just protect children from harm but actually contribute to
their development and learning. Program standards in early childhood pro-
vide the opportunity for adults to learn standards and, therefore, are essen-
tial to provide the context for child-outcome standards to be applied.

But we can no longer rely on program standards alone to ensure qual-
ity. We need to be sure that what we're doing with children is making a
difference for them. We also need to test program standards against out-
comes. Are children making expected progress? Are we accelerating
learning progress for those children who come to preschool far behind
the typical expectation for their peer group? To answer these questions,
we must know what the expected standard is, we must know what to do
to help children achieve it, and we must know how to assess what chil-
dren have learned. So setting standards is only the first step. Connecting
standards to curriculum, teaching, and assessment is essential if the
standards are to be implemented.
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The NCTM (2000) standards recognize these connections admirably and
address them to a large extent, but not in the area of preschool. There is
minimal attention to teaching the child below kindergarten and little clarity
about what appropriate expectations should be. For the document to be re-
ally useful, it must take the next step and get even more specific. Admittedly,
by doing so, other problems will arise, such as were referred to earlier under
disadvantages. But if this work is done very carefully and followed up by
training and technical assistance through early childhood networks, the re-
sults could be quite positive. We have already begun to see both positive
and negative effects on the field of the new information coming out of the
early literacy work. Compared to mathematics, language and literacy were
well-explored areas of the early childhood curriculum. So the potential to
create change is great. But the time is now, while there is still motivation and
before the curriculum becomes totally consumed by reading.

CONCLUSION

Perhaps, a bigger question than any of the four addressed here is how to
distinguish between what children can learn and what they should learn.
Standards should be research based and a growing body of research in
early mathematics education demonstrates that we have greatly under-
estimated children's cognitive capacities (Bowman et al., 2001). For ex-
ample, research demonstrates that children can learn numbers up to 100;
but should every child in preschool be expected to know numbers to 100?
Children tend to exhibit these competencies under particular conditions.
How can those conditions be translated into the average preschool or kin-
dergarten classroom? Any further work on setting more specific mathe-
matics learning goals for preschool/kindergarten needs to pass the can
versus should filter. The NCTM standards state "all children should" for
each standard. If that's the verb, then we know how the standards will
probably be used and should act accordingly.
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3
Mathematics Curriculum
in the Early Childhood Context

Carol E. Copple
National Association for the Education of Young Children

As we turn our attention to math curriculum and an array of exciting ex-
periments in curriculum development, we should pause a moment to
consider the context—actually, the enormously varied contexts—within
which children 5 and under spend their days.

VARIATION IN CHILD-CARE SETTINGS

Education and care settings for children through age 5 are highly diverse.
Of all children under 5 in the United States, almost a quarter are at home
with a parent. Others are cared for by a relative (23%), family child-care
provider (16%), or nanny/individual (6%). Finally, about a third of under-5
children—and nearly half of all 3- and 4-year-olds—are in some kind of
center-based program.1

Dramatic differences exist in the training and skills of those who care for
young children, even if only those caring for children in group settings are
considered. In the early childhood workforce, teacher/caregiver back-
grounds range from a bachelor's degree or beyond (31%) to a high school

Jeffery Capizzano, Gina Adams, & Freya Sonenstein (2000). "Child Care Arrangements
for Children Under Five: Variation Across States." Number B-7 of New Federalism: National
Survey of America's Families series. Washington, DC: The Urban Institute.
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diploma or less (24%).2 This variegated picture of the contexts in which
young children in the United States spend their time must be taken into ac-
count by curriculum developers and others seeking to shape young chil-
dren's mathematical experiences. Such innovators should be asking
themselves, for instance:

• Is this curriculum or resource accessible for caregivers or teach-
ers with relatively little background in child development, early
childhood education, and math? Can they understand and make
effective use of it? If not, what experiences and resources will they
need in order to do so?

• What can be done to bring aspects of this curriculum into the
home and other informal settings? How can the value of mathe-
matics in general—and this curriculum approach in specific—be
communicated to parents and other lay persons? Are there some
simple things families can do with their children to enhance the
impact of the curriculum?

COMMON FEATURES OF THE EARLY
CHILDHOOD CONTEXT

In the majority of programs, even across the quite varied landscape of
early childhood care and education, certain practices are likely to be
found. Although varying from program to program and teacher to
teacher, these practices are far more typical in settings for children up
through age 5 than they are in classrooms for elementary and higher
grades. Each of the following practices—and the overall context they
create for children—is relevant in developing effective curriculum de-
sign and implementation:

• Throughout much of the day children are free to move about the
room and go to any of the learning centers or activity ar-
eas—blocks, dramatic play, and so on. As they do so, children
manipulate a wide variety of things, including materials in mass
(e.g., sand, rice, water); discrete objects that may be sorted, clas-
sified, arranged in patterns, and counted; and materials/activities
in which shapes are salient (puzzles, tangrams, and the like).
Teachers generally provide opportunities for children to "mess
about" with materials and processes—allowing time to explore
and experiment—especially when things are first introduced.

2Whitebook, M., Howes, C., & Phillips, D. (1998). Worthy Work, Unlivable Wages: The
National Child Care Staffing Study, 1988-1997. Washington, DC: Center for the Child Care
Workforce; Current Population Surveys (1995), Bureau of Labor Statistics, U.S. Depart-
ment of Labor.
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However, teachers need more knowledge of the kinds of materi-
als and experiences that would be most valuable for children for
mathematical learning.

• As children pursue their own interests and investigations in art,
construction, dramatic play, sand and water play, and other activi-
ties, many teachers (with varying levels of skill) look for opportu-
nities to help them extend and elaborate their pursuits. Early
childhood teachers tend to talk and interact with children indi-
vidually and in small and large groups, typically conversing with
them rather than "lecturing." They ask open-ended questions
and make comments in order to get children to notice, think, and
express their ideas. However, because many teachers are not
proficient in following up on initial questions or remarks, their
questions often make little impact on children's thinking and con-
struction of knowledge. Sustained interactions relating to math
ideas are scarce indeed.

• Most early childhood teachers do not divide the day by subject or
discipline (math, science, language and literacy, etc.). Rather,
they plan an integrated curriculum, often organizing classroom
activity around a theme, unit, or project in the course of which
children will use and learn in all or most of the learning domains.
However, integrated curriculum has risks as well as strengths.
The mathematics that comes up in a given project or unit—for ex-
ample, children ringing up groceries on a cash register—may be
very superficial or so far from where the children are in their math
understanding that they get almost nothing mathematical from
the experience. Many teachers say that "math is everywhere" in
their classroom and curriculum, yet little of it registers with chil-
dren because teachers lack developmental knowledge of chil-
dren's math learning.

• Children are continually interacting with one another; as they
engage in cooperative play they communicate, negotiate, de-
bate, and work together to achieve joint purposes. Too often,
however, the learning environment and experiences are not de-
signed to spark mathematical conversations and investigations;
when these do occur, teachers rarely follow up on children's
comments and actions to deepen and extend their awareness of
the mathematics:

• Teachers or caregivers have closer contact with families, and
parents tend to feel more at home with them, than is the case with
teachers in higher grades. However, the vast potential afforded by
this rapport and daily communication is too rarely put to use by in-
volving parents in promoting children's learning and develop-
ment at home, or even sharing with them much about what the
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child is learning and doing in the program, in mathematics, for in-
stance. As for promoting children's enthusiastic engagement with
math, parents are almost never used as a resource.

In sum, there are a number of ways in which early childhood programs
are well suited to children's math learning. Children are not sitting pas-
sively; they are actively involved with materials, and they are talking with
one another and with teachers. All this is good, but it is not enough to en-
sure children's acquisition of mathematical knowledge and concepts.
Much of the potential offered by the early childhood context with respect
to mathematics learning is not being fully realized.

WHAT DO EARLY CHILDHOOD
TEACHERS NEED FROM US?

Staff working in early childhood settings need extensive training, some-
times even in the rudiments of safety and caring for children, not to men-
tion the fostering of children's learning. As we work to improve the
quality of math curriculum and instruction in the early years, we need to
remember that this is the reality: There are hundreds of thousands of vir-
tually untrained early childhood workers, along with hosts of teachers
with basic early childhood training but little if any preparation relating to
math teaching and learning.

For the least trained personnel, it will be well to focus on a few core mes-
sages. In the reading area, by analogy, a simple but powerful message is
"Read to children every day." We need to think about what such simple
and potent messages or practices might be for math.

Another fruitful direction of exploration is developing or identifying
materials—from simple toys and games to software—that take children
into interesting mathematical avenues without sophisticated teachers
on the spot (Nelson, 1999). Unquestionably, teachers' knowledge and
skill are vital to educational effectiveness. But as programs work to im-
prove the mathematics curriculum, teachers will have their own learning
curve. In the meantime, good materials add to teachers' learning as well
as children's by giving them excellent opportunities to observe what chil-
dren do and understand.

As for published curriculum resources, they certainly have a role to play
in improving early childhood mathematics. When knowledgeable experts
develop and extensively field-test a curriculum, they are providing a re-
source that few teachers could develop on their own. Yet without a degree
of professional development for teachers, most curricula will fall far short
of achieving their goals. We need to think a lot more about this problem.

Practically all teachers need to know more about mathematics—the na-
ture of the beast—and how to work with children in math. They need to
know much more about what math young children are interested in and
capable of doing; many vastly underestimate the range of young children's
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interests and the extent of their capabilities. Other chapters in this volume
address the critical issues of professional development for early childhood
teachers, to improve their own understanding and their knowledge of
how to further children's mathematical knowledge and understanding.

For our part, we should not underestimate early childhood teachers.
When they have this awareness and knowledge about mathematics and
the rich potentials for early math learning, a great many will think of won-
derful ways to "mathematize" their classroom and curriculum.
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What is developmentally appropriate for early mathematics education?
On the one hand, we want to help children get ready for school and suc-
ceed there. We know that children—especially low-income, minority
children—often have difficulty with school mathematics and science,
usually beginning around the third grade. Perhaps intensive early mathe-
matics education can provide the "basics" that can help prepare them to
achieve at an acceptable level. At the same time, we do not wish to pres-
sure young children, to subject them to harsh forms of instruction, and to
impose on them material they are not ready to learn. We do not want a
"push-down curriculum" forcing young children to engage in develop-
mentally inappropriate forms of written drill and practice in mathematics.

Our desire to prepare children for school success (and to avoid school
failure) thus clashes with our reluctance to impose inappropriate forms of
teaching on young children. This conflict then raises several basic ques-
tions: Are there approaches to early mathematics instruction that are de-
velopmentally appropriate for young children and that can help prepare
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them for school? Can these approaches be both enjoyable and effective
for all children—including low-income minority children?

We believe that in order to determine what is developmentally appropri-
ate for early mathematics education, early childhood educators need to
begin with a deeper understanding of children's mathematical interests,
motivations, and competence. Our recent research illuminates these is-
sues (Ginsburg, Inoue, & Seo, 1999). We observed young children's every-
day activities and attempted to learn about their spontaneous
mathematical interests and questions. We studied children from several
income and ethnic groups. This research on young children's everyday
mathematical activities provides useful information about what might be
developmentally appropriate in early mathematics education.

Several basic questions framed our research:

• How often do young children engage in mathematical activities
during their free play?

• In what kinds of mathematical activities do young children spon-
taneously engage during their free play?

• Does the everyday mathematics of low-income African-American
and Latino children differ from that of middle-income Afri-
can-American and Latino children and from that of White up-
per-income children?

METHOD

The participants were 90 4- and 5-year-old children drawn from five
schools (see Table 4.1). Of the 90 children, 30 were from low-income fam-
ilies (mean age = 4.92). The low-income group consisted of 18 African
Americans and 12 Latinos, 17 boys and 13 girls. The second group in-
cluded 30 children from middle-income families (mean age = 4.86). The
middle-income group consisted of 13 African Americans, 13 Latinos, and
4 Whites; there were 16 boys and 14 girls. The last group consisted of 30
White children from upper-income families (mean age = 4.98). The up-
per-income group consisted of 16 boys and 14 girls. The groups were un-
evenly distributed by ethnicity. Such is social reality in this country.

We began by observing these 90 children during their free play, one at a
time. We then introduced the video camera and cordless microphone to
their classrooms. After familiarizing the children with us and with the
video equipment, we videotaped the target child's play for 15 minutes
without interruption. A total of 90 15-minute episodes of children's free
play was collected.

To analyze children's everyday mathematical activities, mathematical
content codes were developed. The codes were developed inductively. In-
stead of imposing conceptual categories derived from the literature, we at-
tempted to draw analytic constructs from our pilot data, explored many
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TABLE 4.1
Participants in the Study

Categories

Income Level

Ethnic

Gender

Total

Centers

Low Income

Middle Income

Upper Income

African-Americans

Latinos

Whites

Boys

Girls

A

9

4

0

9

3

1

10

3

13

B

14

7

0

11

10

0

12

9

21

C

7

0

0

4

3

0

4

3

7

D

0

19

0

7

9

3

7

12

19

E

0

0

30

0

0

30

16

14

30

Total

30

30

30

31

25

34

49

41

99

possible explanatory categories, and looked for the best of several alterna-
tive accounts. Progressively newer analytic schemes emerged as we went
through lengthy and repetitive processes of coding, revision, and recoding.
The mathematical content codes involve the following categories:

• Classification: Systematic arrangement in groups according to es-
tablished criteria.

• Magnitude: Statement of magnitude or comparison of two or
more items to evaluate relative magnitude.

• Enumeration: Numerical judgment or quantification.
• Dynamics: Exploration of the process of change or transformation.
• Pattern and Shape: Exploration of patterns and spatial forms.
• Spatial Relations: Exploration of positions, directions, and dis-

tances in space.

Classification involves sorting, grouping, or categorizing activities. For
example, Anna takes out all the plastic bugs from the container, places
them on a table, and sorts them by types and then by colors. In the block
area, Aaron cleans up the blocks on the rug. He picks out one block at a
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time and puts it into one of the boxes that contains the same size and
shape of blocks.

Magnitude involves activities such as describing the global magnitude of
the objects, making direct or side-by-side comparison of objects, or mak-
ing magnitude judgments with or without quantification. For example,
Briana brings a newspaper and puts it on an art table. Amy says to her,
"This isn't big enough to cover the table." Abdul and Michael build struc-
tures with Legos. Abdul says to Michael, "Look at mine. Mine is big!" Mi-
chael says, "Mine is bigger!" They place their Lego structures side by side
and compare whose is taller.

Enumeration activity involves saying number words, counting,
subitizing, or reading or writing numbers. For example, Kasheef takes out
all the beads in a box and puts them on a table. He says to Britney, "Look! I
got 100!" He starts counting them as if to find out if he really has 100 beads.
He picks the beads out one by one and counts out loud, "one, two,
three...." Britney joins in counting and they manage to count up to 100,
with only a few errors. At another table, three girls draw the pictures of
their families. They talk about how many brothers and sisters they have
and how old their siblings are.

Dynamics involves activities such as putting things together, taking them
away or apart, or exploring motions like flipping or rotations. For example,
Jessica and three girls play with play-dough at a table. She presses her
dough with her hand, stretches it, and makes a flat circular shape. She
then cuts it in half with a stick and cuts each half again in half. She says, "I
made a pizza for all of us."

Pattern and Shape activities involve identifying or creating patterns or
shapes, or exploring geometric properties and relationships. For example,
Jennie makes a bead necklace, putting plastic beads into a string one by
one. She uses only yellow and red beads for her necklace and makes a yel-
low-red color pattern. Jose plays with wooden blocks. He puts a dou-
ble-unit block on the rug, two unit blocks on the double-unit block, and a
triangle unit on the middle of two unit blocks. He builds a symmetrical
structure with rectangular and triangular prisms.

Finally, Spatial Relations involves activities such as telling a location or
direction, or representing a location in three-dimensional space or on pa-
per. For example, Cory comes to Alex who is playing with a button puzzle
and asks him where he found it. "There," Cory says, pointing to a storage
unit in the block area. Alex goes to the storage unit and asks him again,
"Where?" Cory replies, "Second ones ... right side, no, the left side."
Teresa and Katie rearrange the furniture in a dollhouse. When Teresa puts
a couch beside a window, Katie moves it to the center of the living room,
saying, "The couch should be in front of the TV."

In coding the videotaped data, we divided each child's 15-minute-long
episode into 1-minute segments. We watched a minute-long segment and
then coded it in terms of the occurrence and the type of mathematical ac-
tivity (whether the target child engaged in mathematical activity and if so,
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what kind of mathematical activity the child engaged in). Pairs of inde-
pendent judges coded the 15-minute-long episodes of 30 children and
achieved satisfactory agreement in coding (89% perfect agreement for
mathematical content).

RESULTS

Frequency of Everyday Mathematics

How often do young children engage in mathematical activities in every-
day settings? When children play, they do not appear to be doing mathe-
matics. But our results show otherwise. We found that 79 children out of
90 (88%) engaged in at least one mathematical activity during their play.
We also examined the average percentage of minutes (recall that each of
the 90 children was taped for 15 minutes) in which mathematical activity
occurred. The result showed that children exhibited at least one mathe-
matical activity during an average of 43% of the minutes (about 7 of the 15
minutes). The result shows that young children engage in a considerable
amount of mathematical activity during their free play.

We then considered income-level differences (Fig. 4.1). Statistical analyses
showed that income level was not related to overall frequency of mathemati-

FIG. 4.1. Frequency of mathematical activity: income-level differences.
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cal activity. Low- and middle-income children showed virtually identical av-
erage percentages of minutes spent in mathematical activity (43.8% and
43.2%, respectively) and upper-income children slightly less (39.8%).

We also examined gender differences. Statistical analysis showed that
gender was not associated with overall frequency of mathematical activ-
ity. Boys and girls engaged in similar amounts of mathematical activity,
(41.3% and 43.5%, respectively, were the average percentages of minutes
of mathematical activity).

Relative Frequency of Different Types
of Mathematical Activity

We were also interested in how frequently different types of mathemati-
cal activity occurred. We examined the average percentage of minutes
during which a particular category of mathematical activity occurred
within a 15-minute episode. The results showed that the most frequently
occurring mathematical activity was Pattern and Shape (21%), and then
Magnitude (13%), Enumeration (12%), Dynamics (5%), Spatial Relations
(4%), and Classification (2%) (see Fig. 4.2).

Age was related to the overall frequency of mathematical activity. Older
children engaged in more mathematical activity than younger. Consider
next whether and how age was related to specific types of mathematical
activity. Statistical analyses showed that two of the three most frequent
categories of mathematical activity, Pattern and Shape and Enumeration,
were related to age, whereas other categories of mathematical activity
were not. Older children in this study dealt with patterns and shapes and
enumerated to a slightly greater extent than did younger children.

FIG. 4.2. Relative frequency of six types of mathematical activity: average percentage of
minutes within a 15-minute episode.
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What about income-level differences in specific types of mathematical
activity? As shown in Fig. 4.3, the relative frequency of different types of
mathematical activity was very similar across income groups. In all three
groups, Pattern and Shape, Magnitude, and Enumeration were the most fre-
quent types of mathematical activity. Statistical analyses showed that there
was no relation between income level and any of the categories of mathe-
matical activity with the exception of Spatial Relations, which middle- and
upper-income children engaged in to a small extent and low-income chil-
dren almost not at all. But this result should be evaluated with caution be-
cause the frequency of Spatial Relations was very small (4% overall).

We also examined gender differences in specific types of mathematical
activity. The relative frequency of different types of mathematical activity
was similar across gender (see Fig. 4.4). Statistical analyses showed that
boys and girls did not differ in specific types of mathematical activity ex-
cept for Spatial Relations, where boys exhibited 7% on the average per-
centage of minutes and girls 1%. Again, the results should be treated with
caution because the frequency of Spatial Relations was so low.

In brief, our findings revealed that the frequency of overall mathematical
activity and the relative frequency of different types of mathematical activ-
ity were related to age, but not to income level and gender. Older children
engaged in mathematical activity more often than did younger children,
particularly in Enumeration and Pattern and Shape. But different in-

FIG. 4.3. Relative frequency of six types of mathematical activity: income-level differ-
ences in the average percentage of minutes.
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FIG. 4.4. Relative frequency of six types of mathematical activity: gender differences.

come-level groups and also boys and girls did not differ in their everyday
mathematical activities.

However, these results do not capture possible differences in complex-
ity of mathematical activity. It is possible that two children engage in the
same amounts of Enumeration activity, or any other categories, and yet en-
gage in different levels of Enumeration activity. Thus, we examined the
complexity levels of three most frequent types of mathematical activ-
ity—Patterns and Shapes, Magnitude, and Enumeration.

Complexity of Pattern and Shape

Consider first the most frequent type of mathematical activity, Patterns
and Shapes. We examined several levels of complexity involving Pattern
and Shape:

• Level I—Figure Identification: Beth names the shapes as she plays
with pattern blocks.

• Level II—Patterning: Horace makes a line of alternating red and
blue blocks.

• Level III—Symmetry: Anna builds a simple block tower like the
letter U.

• Level IV—Shape Matching: Jose combines two triangles and
makes a rhombus. He then changes the position of one of the tri-
angle, adds another triangle, and makes a trapezoid.
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First, we examined the relative frequency of four levels of Patterns and
Shapes (Fig. 4.5). The most frequently occurring level of Pattern and Shape
activity was Level I, Figure Identification (47%), and then Level III (22%), Level
II (17%), and Level IV (14%). In other words, about 50% of the children's Pat-
tern and Shape activities involved recognizing, sorting, or naming shapes.

Secondly, income-level differences in the complexity of Pattern and
Shape were examined in all 39 children who engaged in Pattern and
Shape activity. In all three groups, Level I Figure Identification was most
frequent. Statistical analysis indicated a lack of income-level differences in
frequency of Level I activity. However, the three groups exhibited some dif-
ferences in Level III Symmetry activity. Whereas Type III was the second
most frequent one in low- and middle-income groups (35% and 25%, re-
spectively), it was the least frequent type in the upper-income group (9%).
Because the number of cases was insufficient, no statistical analysis was
conducted to examine the differences in Level III activity.

FIG. 4.5. Frequency of complexity levels: pattern and shape. Note: Level I = Figure Iden-
tification; Level II = Patterning; Level III = Symmetry; Level IV = Shape Matching.
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Finally, gender differences were examined. Again, Level I was most fre-
quent in both groups, amounting to 56% of boys' and 37% of girls' Pattern
and Shape activity. Statistical analysis indicated a lack of gender differ-
ences in frequency of Level I activity. Level HI Symmetry, however, pre-
sented some differences. Though it was the second most frequent type in
girls' Pattern and Shape activity (32%), it was the least frequent one in boys'
(13%). Because of insufficient number of cases, no statistical analysis was
conducted to further examine the differences in Level III activity.

Complexity of Magnitude

We also examined the complexity of children's Magnitude activities:

• Level I—Saying Quantity or Magnitude Words: Emily says, "Oh,
this is really big."

• Level II—Empirical Matching: John places his Lego structure next
to Aaron's structure and says, "Mine is bigger."

• Level III—Estimation without Quantification: John looks at
Aaron's Lego structure, adds more Lego pieces to his own struc-
ture, and makes it equal in height to Aaron's.

• Level IV—Estimation with Quantification: Victor and Paul lay
down blocks to create the base of a house. Victor says to Paul, "We
need three more" blocks to complete the base.

We examined the relative frequency of four levels of Magnitude (Fig.
4.6). The most frequently occurring level of Magnitude activity was Level I,
Saying Quantity or Magnitude Words (49%), and then Level III (24%), Level
II (15%), and Level IV (11%). About half of the children's Magnitude activity
involved saying words describing the global quantity or magnitude of the
objects; and about 30% involved making magnitude judgements without
direct comparison or quantification.

Then, income-level differences in complexity of Magnitude were exam-
ined in all 55 children who engaged in Magnitude. All three groups exhib-
ited similar scores on the average percentage of minutes of each level.
Level I, Saying quantity or magnitude words, was most frequent in all three
groups, 44% (low-income children), 53% (middle-income children), and
51% (upper-income children). Statistical analyses showed that income
level was not associated with the frequency of Level I, Saying quantity or
magnitude words, and Level HI, Estimation without quantification.

Finally, boys and girls showed similar scores on the average percentage
of minutes of each level. Level I was most frequent in both groups and in-
volved about half of boys' and girl's Magnitude activity (45% and 52%, re-
spectively). Statistical analyses indicated a lack of gender differences in
the frequency of Level I activity.



FIG. 4.6. Frequency of complexity levels: magnitude. Note: Level I = Saying Quantity or
Magnitude Words; Level II = Empirical Matching; Level III = Estimation without Quantifica-
tion; Level IV = Estimation with Quantification.

Complexity of Enumeration

We also examined complexity levels for Enumeration:

• Level I—Saying Number Words: Ann says, "I'm 5 years old."
• Level II—Counting: Laura counts some chips, tagging each of

them, "One, two, three, four, five." She says, "I got five."
• Level III—Subitizing/Estimation: Subitizing involves immediately

seeing that a set has a particular number, without overt counting.
Jack looks at the puzzle pieces on the table and quickly says, "I got
five." Zoe estimates, "I think there are about seven there."

• Level IV—Reading/Writing Numbers: Lucy points to the numbers
on the calendar and reads them out loud to her friend.

4. WHAT IS DEVELOPMENTALLY APPROPRIATE? 101
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The most frequently occurring level of Enumeration activity was Level
III, Subitizing/Estimation (39%), and then Level I (38%), Level II (13%), and
Level IV (10%). Children's Enumeration activity involved for the most part
subitizing, estimation, and saying number words (Fig. 4.7).

Income-level differences in complexity of Enumeration were examined
in all 49 children who engaged in Enumeration. In all three groups, Level I,
Saying number words, and III, Subitizing/estimation, were prevalent,
amounting to 70% to 80% of their Enumeration activity. Statistical analyses
showed that income level was not related to the frequency of Levels I and
III Enumeration activity.

Boys and girls also snowed similar scores on the average percentage of
minutes of each level. In both groups, Levels I and III were more prevalent
than Levels II and IV. Statistical analyses indicated a lack of significant dif-
ferences between boys and girls in the frequency of Level I and Level III
Enumeration activity.

FIG. 4.7. Frequency of complexity levels: enumeration. Note: Level I = Saying Number
Words; Level II = Counting; Level III = Subitizing/Estimation; Level IV = Reading/Writing
Numbers.
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In brief, we find a lack of income-level and gender differences in the
complexity of three most frequent types of mathematical activity, Pattern
and Shape, Magnitude, and Enumeration.

CONCLUSIONS

Our findings show that preschool and kindergarten children engage in a
significant amount of mathematical activity during free play. Young chil-
dren's everyday mathematics involves various types of mathematical activ-
ity. Children often explore patterns and shapes, compare magnitudes, and
enumerate. Less frequently, they explore dynamic changes, classify, and
examine spatial relations. We also find a lack of income-level and gender
differences in the frequency of overall mathematical activity, the relative
frequency of different types of mathematical activity, and the complexity of
specific mathematical activities such as Pattern and Shape, Magnitude,
and Enumeration. The bottom line is that preschool and kindergarten chil-
dren's mathematics is more advanced and powerful than is often realized,
and that children from different income-level groups display similar
amounts, patterns, and complexities of mathematical behavior.

What are the Implications of This
for Educational Practice and Policy?

Most important, educators should revise views about what is develop-
mentally appropriate. They should create State standards and policies
that serve to engage preschool and kindergarten children in challenging
and exciting mathematics programs. These can use children's spontane-
ous interests as a starting point, and help them—with what we call "artful
guidance" (see Greenes, 2000)—to learn about patterns and shapes,
about numbers and their transformations, about symmetries, and about
mathematical relations.

Educators should not limit early mathematics to play alone. Yes, children
do learn from play, but it appears that they can learn much more with artful
guidance and challenging activities provided by their teachers. At the
same time, educators should remember that children deserve more than
mindless drill sheets or workbook pages. They need to engage in diverse
and challenging mathematical activities.

Educators should institute challenging and exciting mathematics pro-
grams for all children—not only the privileged. Low-income minority chil-
dren can profit greatly from programs like these.

Finally, the field of early childhood should support programs of profes-
sional development that will help teachers to implement new programs in
mathematics. Teachers of young children need to learn new forms of ped-
agogy, new mathematical content, and new psychological insights. Con-
sequently, it is necessary to help teachers to learn how to implement new
mathematics programs. Teachers need to learn the necessary mathemat-
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ics if they don't know it already. Teachers also need assistance in under-
standing the mental lives and learning potential of young children—
including poor, minority children.
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5
Pre-K to Grade 2 Goals
and Standards: Achieving
21st-century Mastery for All

Karen C. Fuson
Northwestern University

Nationwide tests and international comparisons have repeatedly indi-
cated that many students in the United States are falling short of the math-
ematical proficiency required for the 21st century (National Research
Council, 2001). Robust mathematical learning by all young children is a
necessary base for later learning and is necessary to keep children from
falling permanently behind in mathematics. To accomplish such early
mastery by all, we must restructure the goals, standards, instruction, and
assessments for Pre-K through Grade 2 mathematics. This chapter sum-
marizes central issues involved in doing this so that we can attain mastery
by all children at the end of Grade 2.

This chapter is drawn from the extensive research literature, from my ser-
vice on the National Academy of Sciences National Research Council com-
mittee on mathematics learning, and from my curricular research
experience during 10 years in urban and suburban classrooms designing and
revising a research-based world-class mastery curriculum for kindergarten
through Grade 5. More detailed discussion of the research literature in this do-
main can be found in Fuson (1992a, 1992b, 2003) and in Adding It Up (Na-
tional Research Council, 2001). Examples and discussion of teaching can be
found in Fuson, Lo Cicero et al. (1997), Fuson et al. (2000), Lo Cicero, De La
Cruz, and Fuson (1999), and Lo Cicero, Fuson, and Allexaht-Snider (1999).
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The research evidence suggests that it is possible for all children to leave
Grade 2 with higher levels of understanding and skill than even children in
affluent areas presently demonstrate. It is vital that we increase the mas-
tery by all through Grade 2 because at present many children leave Grade
2 already so far behind that it is difficult to catch up. Some of these children
are in every school, but disproportionate numbers of such children are in
schools of poverty. Changing the present situation will enable our country
to have many more students successful at upper grades because they will
have a strong foundation in the early grades.

This paper is divided into three major parts. Part A focuses on curricular
and testing issues. It identifies two central issues: organizing the U.S. math-
ematics curriculum into big coherent conceptual chunks and relating
these to mastery standards-based testing rather than to standardized test-
ing. Part B overviews research concerning teaching for mastery by all. Part
C provides design principles, outlines curricular conceptual chunks, and
proposes mastery goals and process standards for a mastery curriculum
that can support mastery teaching for all.

The research overviewed in Part B focuses on the domains of number
systems (number words and written numbers), addition and subtraction
situations, and algebraic problem solving. These are the core topics of
prekindergarten through Grade 2. The goals and standards proposed in
Part C do include geometry, measure, and graphing data. The balance
among these various topics is discussed in Part C.

PART A: CURRICULAR AND TESTING ISSUES
THAT CAN FACILITATE ACHIEVING MASTERY FOR ALL

The Need to Focus on Big Coherent
Conceptual Grade-Level Chunks

Several current aspects of U.S. mathematics education coalesce to re-
quire that U.S. mathematics curricula become reorganized into big co-
herent conceptual grade-level chunks that are related over grade levels.

We first need to acknowledge that the goal of mastery for all, even in
the area of computational fluency, has been an elusive goal at least since
the 1950s. It is not the case that the United States has had a successful
computational curriculum that is now at risk of being thrown over by
"math reform." National reports, national research studies, and interna-
tional studies have for decades identified many aspects of computation
in which results were disappointing. These results were sometimes over-
shadowed by even worse results for problem solving or applications of
calculations, making calculation seem less of an issue than it has consis-
tently been. Many of the calls for math reform focused on understanding
have been at least partially focused on teaching for understanding as a
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way to eliminate computational errors and thus increase computational
performances. For example, on standardized tests national Grade 2
norms for two-digit subtraction requiring borrowing (e.g., 62 - 48) are
38% correct. Many children subtract the smaller from the larger number
in each column to get 26 as the answer to 62 - 48. This top-from-bottom
error is largely eliminated when children learn to subtract with under-
standing (e.g., Fuson & Briars, 1990; Fuson, Wearne etal., 1997; Hiebertet
al., 1997). Building on a foundation of understanding can help all stu-
dents achieve computational fluency.

Problems With Present U.S. Math Curricula. In comparisons
with the curricula of countries achieving well on international compar-
isons, the U.S. curriculum has been characterized as "underachieving"
and as "a mile wide and an inch deep" (McKnight et al., 1989; McKnight &
Schmidt, 1998; Peak, 1996). Successful countries select vital grade-level
topics and devote enough time so that students can gain initial under-
standings and mastery of those topics. They do not engage in repetitive
review of those topics in the next year; they move on to new topics. In the
United States no teacher and no grade level is responsible for a given topic.
Topics such as multidigit computations are distributed over several years,
doing one digit larger each year. Large amounts of time are devoted at the
beginning of each year and of each new topic to teach what was not
learned or was learned incorrectly in the year before.

This wastes huge amounts of learning time and bores the students
who have mastered concepts. It is also counterproductive because it is
much easier to help students build initial correct computational meth-
ods than to correct errors. For example, second graders using base-10
blocks for initial learning of multidigit addition and subtraction ex-
plained answers and achieved high levels of accuracy that were main-
tained over time (Fuson, 1986a; Fuson & Briars, 1990). This is in contrast
to the usual national performance of second graders at only 38% correct
on two-digit subtraction involving regrouping. Older students who had
been making subtraction errors for years did learn in one session with
base-10 blocks to correct their errors, but many later fell back to their
old errors (Resnick & Omanson, 1987). Carefully designed practice,
help during learning, and other aspects described later are important
for computational fluency. But the most crucial necessity at this point is
helping students learn in a timely fashion one correct generalizable
method that they understand. Such initial learning must be deep and
accurate. Only with understanding can interference from later similar
notations and methods be reduced.

Most people think that we do not have a national curriculum in the
United States. At one level this is true—each of the 50 states has its own
grade-level math learning goals, and each district within a state may
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(and usually does) further specify goals. These goals vary hugely across
different states. Furthermore, the National Council of Teachers of Math-
ematics (NCTM) Standards (2000) also is not a national curriculum. It
specifies only loosely defined topics within wide grade bands and artic-
ulates perspectives of balancing across mathematical topics and
across goals such as problem solving, communication, and computa-
tional fluency.

However, we do have a functional national curriculum, at least at the
Kindergarten to Grade 8 level. That curriculum is the topics that are in
each grade in the major commercial textbooks published by the
for-profit sector. An examination across these textbooks reveals remark-
able similarity. This similarity results from the necessity to sell textbooks
across all of the different states, with their differing state goals. Even if a
company focuses on the most populous states, where it is possible to sell
the most textbooks, the total topics across these states results in a large
list of topics for the grade level. Even though the books are large, the
number of topics means that few days can be allocated to each topic.
There is not time to develop understanding deeply. Because most teach-
ers use a commercial for-profit textbook, most students experience
these cursory treatments of most topics.

Furthermore, this national curriculum is heavily influenced by large
states that require textbooks to go through an approval process to appear
on a state-approved list. Some of the largest of these states have large
numbers of non-English-speaking students and students living in poverty.
This results in reducing expectations of reading and complexity because
of low expectations about what is possible for such students to learn.

There are no requirements that commercial textbooks have data about
the success of their programs. Because of the rapidly changing nature of
state goals, textbook companies are under difficult time lines to produce
learning materials. They cannot produce thoughtful materials or try out
their materials in classrooms. Furthermore, recent takeovers of many
textbook companies and present economic conditions result in much
textbook writing being done by short-term writers or development
houses rather than by experienced in-house writers, further reducing co-
herence of the learning materials. Finally, the physical appearance and
the availability of many peripheral materials are often the bases of a
choice of a textbook rather than the quality of the learning experiences it
provides. Art is often used to entertain and is irrelevant rather than being
used to convey mathematical ideas.

Equity Issues. Research indicates that children from diverse
backgrounds can learn mathematics if it is organized into big coherent
chunks (Kameenui & Carnine, 1998) and if children have opportunity and
time to understand each domain deeply. A three-phase model (Dixon et
ah, 1998) can enable students to learn deeply over a sustained period in
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one domain. Children from diverse backgrounds can learn mathematics.
But they need sustained and supported learning time in connected areas.

New Learning Goals for the 21st Century. Technology and
the information age have created new learning goals for mathematics all
over the world. Now adults in many situations must understand compu-
tational methods and be able to use them in a range of situations rather
than just get correct answers.

These new learning goals are accessible to high-poverty classrooms as
well as to more affluent classrooms. Knapp and associates (Knapp, 1995;
Zucker, 1995) found that successful teachers in high-poverty classrooms
supported conceptual understanding by focusing students on alternative
solution methods (not just on answers), elicited thinking and discussion
about solution methods, used multiple representations and real-life situa-
tions to facilitate meaning making, and modeled ways to probe meaning
of mathematical problems or methods. We used similar approaches to ob-
tain above-grade-level understanding with multidigit computation in
high-poverty Latino classrooms (Fuson, Smith, & Lo Cicero, 1997).

Organizing U.S Curricula Into Big Coherent Conceptual
Chunks. There is sufficient research information in many areas about

what is accessible to students, especially at the Pre-K to Grade 2 levels, to
outline ambitious but attainable mastery goals for all children at each of these
levels. Mastery goals focus on the most appropriate and most central
concepts and skills for these grade levels. They could result in mastery for all
children that is beyond the present levels of achievement in schools with few
students living in poverty. If states would work together to agree on some core
of goals (say 80% of the goals for each level), then several different
high-quality programs could be developed to focus on these goals. States
could vary the remaining 20% of goals if agreement could not be reached
beyond the 80%. Such research-based ambitious goals would provide all
states with a solid foundation of successful children at the lower grades who
would not be permanently out of the mathematics-learning pipeline.

These mastery goals would be grade-level specific, not by grade band (e.g.,
Grades 3-5). Grade-band goals such as used by NCTM and by states can lead
to excessive review and non-mastery at any grade level because the
grade-band specification is taken to mean "do at each Grade 3, 4, and 5"
rather than to mean "do well somewhere within the three Grades 3,4, and 5."

These goals would also not limit what children would or could learn. They
would simply be the baseline goals for which schools would be held account-
able. Research indicates that U.S. children can learn more than they do at
present. Increasing learning in the early grades will make it easier to be more
ambitious at the upper grades where U.S. students are considerably behind.
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PART B: RESEARCH CONCERNING TEACHING
FOR MASTERY BY ALL

Achieving Mastery for All: The Necessity to Move From
"Standardized" to Mastery Testing

U.S. children's learning has a scattershot "mile wide inch deep" nature for
another reason. Many school districts give standardized norm-referenced
tests to assess how students are achieving. Many people think that a "stan-
dardized" test is curriculum-fair, reflects important learning goals in a bal-
anced way, and assesses what students know about the content for that
grade level. Most standardized tests have none of these characteristics.
Profit-making companies develop them with no oversight concerning
what items they test. Different tests vary considerably in the topics they
cover and in the proportion of topics at each grade level.

The goal of standardized tests is to determine which half of the students
are above average and which half are below average (and which schools
and districts are above average or below average). To rank order students
in this way, many items must be difficult or complex. They must use diffi-
cult vocabulary or have 2 steps or have difficult formats or be complex in
other ways. Otherwise most students would get them right, and the tests
could not scale students.

Standardized tests are secret. Teachers, parents, and students are not al-
lowed to know what is on the test. This is supposedly to keep the test "ob-
jective." But in mathematics, it is easy to make parallel items that are
similar. The secrecy really just results in standardized tests not being cur-
riculum-fair. Teachers do not even know what to teach, so students may
fail items because they did not have an opportunity to learn those items.

All of these aspects of standardized tests render it difficult to prepare for
them sensibly. Frenzied test-preparation time reviewing and practicing
many different topics further reduces the chance for sustained learning
time on central topics, which could enable students to answer questions
that are complex rather than simple.

A further problematic aspect of standardized tests is the nature and tim-
ing of their results. They do not give sufficient information about perfor-
mance on particular items so that those can be remediated for individual
students (or such information is expensive). Results often are not returned
until the following year or at the very end of the school year, so results can-
not be used for instruction for the class in general or for specific students.

Many states have begun to shift to mastery testing—testing for specified
mastery topics that all students should master. This type of testing is more
appropriate. But the number and types of items must be sensible and not
overwhelming. Also, these are usually given at Grade 3 at the earliest,
where many children may already be too far behind. Districts meanwhile
often continue to use at many grade levels standardized tests that have all
of the problems described earlier. The combination of standardized tests
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and state mastery tests is overwhelming for teachers, who must prepare
for two kinds of high-stakes tests about which they necessarily have inade-
quate information.

Research-based grade-level tests that were public would enable a
whole community to work together to help all children in a school
achieve mastery of those goals. In the early years, such tests would need
to include some interview components because much early mathemati-
cal competence depends on counting skills and on whether children un-
derstand and can explain their methods. Periodic mastery testing
throughout the year, including some interviewing, would enable teach-
ers to use the testing information for instruction and to obtain extra help
for those students who need it. The money now used for standardized
testing could be used to organize such extra helping for students in vari-
ous ways, including family out reach programs to help families learn how
to help their children in mathematics.

Mastery for all will require additional learning time for some children
who enter preschool or kindergarten with less mathematical experience
than other children. There are many ways in which such extra learning
time might be organized. It might even take as much time as an extra year
in the earliest grades for some children who enter way behind and have no
prekindergarten experience. In Russia, this is acknowledged by organiz-
ing some schools and some classes within schools to take 4 years to do the
content of the first 3 years of school. Children learn the same con-
tent—they just have more time to do so. This is in contrast to the United
States, where we often pass children with weak backgrounds along and
do not allow them to learn the same content as children who enter with
stronger backgrounds. They get a "dumbed down" curriculum.

We must not confuse educatedness (present school-relevant knowl-
edge) with educatability (how much a child can learn). At present we of-
ten confound these by lowering the goals for those who enter with less
school knowledge (low educatedness) by assuming that they are less
educatable. Mastery rather than standardized testing, extra help and
learning time for those who need it, high ambitious goals for all, reorga-
nized curricula, and teaching as discussed later can greatly increase the
amount of mathematics learned by all U.S. children.

Instruction That Facilitates Mastery by All

Helpful Instructional Phases. What features of classrooms can
contribute to mastery by all? A recent review of the literature summarizes
the many studies that found an experimental instructional method
superior to a traditional control method (Dixon et al., 1998). The
less-effective traditional methods involved two phases: a teacher
presentation of some topic (with students observing passively) followed
by independent student practice of that topic, with or without teacher
monitoring, giving feedback, and so on.
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Superior learning was achieved by effective methods that had three
phases. In the initial orienting phase, teachers initially involved students in
the introduction of the topic through explanations, questions, and discus-
sion: Students were active learners whose initial knowledge about a do-
main was elicited. In the second supporting learning phase, students were
helped during a long period to move from teacher-regulated to self-regu-
lated solving. Teachers structured a significant period of help that was
gradually phased out. This helping was accomplished in different ways: by
scaffolded problems and visual or other supports, by peers, and by the
teacher or aides. During this sustained helping period, students received
feedback on their performance, got corrective help so that they did not
practice errors, and received (and often gave) explanations. The third
phase of effective instruction focused on long-term remembering. This in-
volved a brief assessment of students' ability to apply knowledge to un-
taught problems (near transfer) in which students worked independently.
Such assessments were then followed by help in seeing how the untaught
problems were like the earlier problems so that transfer could occur
meaningfully. This third phase of long-term remembering—practicing
taught and untaught problems—needs to be distributed over time. Such
distributed practice has been found to facilitate remembering in a wide
range of studies, as has experiencing similar but related problems and sit-
uations. Only a couple such problems are necessary, so remembering
work can involve a mixture of different kinds of problems.

Many textbooks now provide ideas to teachers about the orienting
phase; they describe introductory activities or manipulatives to help the
concepts become meaningful. The crucial aspect of this phase, however,
is that the teacher help the new concepts become related to the knowl-
edge of the particular learners in that classroom. Textbooks seldom help
teachers structure the long second phase of supporting learning. Pictures,
quantity drawings, or manipulatives may be used initially for one or two
pages, but they are dropped much too quickly. This second long phase
also requires more active helping than the teacher walking around helping
individuals as they solve problems.

One easy way to structure such a supported learning phase is using a
solve-and-explain blackboard structure. We use this structure frequently
in my project classrooms. The teacher sends as many students as possi-
ble to the board to solve a given problem while the rest of the class solves
that problem at their seats. Early in a given domain students make math
drawings to show the quantities in their problem as well as showing nu-
merical solutions. The teacher can watch student problem solving much
better when it is on the board than at the seat, and students at the board
often interact and help each other. Different solution methods are visible
on the board in the drawings and in the numerical methods. The teacher
then asks two (or three) students to explain their solution. These stu-
dents are chosen because explaining their methods will be helpful to the
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class at that point in learning. Problems with typical errors may be cho-
sen to illuminate and correct those errors in a supportive climate. Class-
mates listen carefully to the explanations and ask questions to clarify
their own understandings and to improve the specificity of (help edit) the
explanation. Students can follow the discussion even with weak lan-
guage skills because the drawings and numerical solutions are visible
and are pointed to during the explanations. This process greatly im-
proves communication skills of all kinds. Building such a classroom
structure takes initial teacher modeling of explaining and of questioning,
developing a helping classroom community, and practice over time for
students to improve in explaining and questioning. Early on, the teacher
must move to the side or back of the classroom and "bite her tongue" to
facilitate direct student-to-student talk. We have found that teachers can
build such a classroom even for first graders and for children from any
background. Teachers become amazed at the solution methods their
children develop and explain.

Other relevant results from the studies reviewed in Dixon et al. (1998)
were that instruction on learning particular mathematical strategies was
superior to not giving such instruction, working fewer problems in depth
was more effective than working more problems quickly, writing as well
as solving problems was helpful, and solving concept examples se-
quenced to facilitate generalization and discrimination was helpful.

The implications of all of these results are that all students had sustained
supported time to learn a given domain deeply and accurately. Such deep
sustained accurate learning over time is necessary for complex domains
requiring multistep solution methods. Students need to learn the central
principles of a domain (e.g., in multidigit addition and subtraction, thatyou
add or subtract like multiunits), learn the overall shape of a given method,
learn in detail the steps of the method, and weave this developing knowl-
edge together so that it operates fluidly and accurately. This is true whether
the students invent the method or learn it from other students or from the
teacher. Practice was important, but effective practice was supported by
monitoring and help focused on doing and on understanding. In contrast,
"drill and practice" frequently carries the connotation of rote practice, has
little sense of monitoring or feedback, and no sense of helping or of visual,
conceptual, psychological, or motivational support for learning through-
out the practicing phase.

A textbook issue that at present interferes with the more effective
three-phase method (and interferes with effective teacher presentation of
topics even in the less-effective two-phase traditional approach) is the com-
mon misuse of art (i.e., photographs, drawings, cartoons, etc.) in U.S. math
textbooks. In many other countries the art is designed to support conceptual
thinking. In the United States, art frequently distracts from conceptual un-
derstanding because it is irrelevant or overwhelmingly busy. All visual as-
pects of learning materials need to support learning, not interfere with it.
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Helping Diverse Learners. A related review of literature
concerning school success of diverse learners (Kameenui & Carnine, 1998)
identified six crucial aspects of successful teaching and of learning
materials for diverse learners: structuring around big ideas, teaching
conspicuous strategies, priming (e.g., eliciting or stimulating) background
knowledge, using mediated scaffolding (e.g., peer tutoring, giving feedback
about thinking, providing visual supports that provide cues for correct
methods), using strategic integration (integration into complex applications
to provide distributed practice in more complex situations), and designing
judicious review. Diverse learners are those who may experience
difficulties in learning because of low-income backgrounds, speaking
English as a second language (or not at all), or other background reasons.

The first of these six crucial aspects for diverse learners, structuring
around big ideas, has been discussed previously. The next three—teach-
ing conspicuous strategies, stimulating background knowledge, and using
mediated scaffolding (specific helpful supports)—are crucial in the initial
active learning phase and in the helping phase in the three-phase effective
teaching model outlined earlier. The final two crucial aspects—using stra-
tegic integration and designing judicious review—follow deep and effec-
tive initial learning in a domain. Strategic integration of various
computational methods into moderately complex problems increases
problem-solving competence by increasing the range of situations in
which students use that computational method. It also provides for prac-
tice that is effective because it is distributed over time.

Judicious review is defined as being plentiful, distributed, cumulative,
and appropriately varied. It follows initial deep learning. Distributed and
monitored practice requires working one or two examples occasionally,
with immediate help for wrong answers. This is important even after suc-
cessful meaningful learning because the nonsupportive or misleading
mathematical words or notations in many domains continually suggest
wrong methods (e.g., aligning a one-digit and a two-digit number on the left
because you write from left to right). Furthermore, many computational do-
mains are similar, and learning new domains creates interference with old
domains (e.g., you do multiply the tops and bottoms of fractions but you do
not add or subtract them if the bottoms are different). Therefore, after deep
and successful initial learning, distributed practice of a couple of problems
of a given kind can check whether errors are creeping in. Frequently, help-
ing students correct their methods is as simple as suggesting they remem-
ber their original supports. For example, as some errors crept into multidigit
methods learned with base-10 blocks, asking students to "think about the
blocks" was sufficient for them to self-correct their errors in subtracting with
zeroes in the top number (Fuson, 1986a).

The research of Knapp and associates (Knapp, 1995; Zucker, 1995) on
attributes of successful high-poverty classrooms underscores these re-
sults. They found that a balance between conceptual understanding and
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skill practice resulted in higher computational and problem-solving results
by lower achieving and higher achieving students.

Individual Differences. As in other subject-matter areas,
substantial social-class and ethnicity differences exist in mathematics
achievement (e.g., Ginsburg & Russell, 1981; Secada, 1992). Kerkmanand
Siegler (1993) found that low-income children had less practice in solving
problems and they executed strategies less well. Strategy instruction and
monitored practice were therefore recommended for such students.
Individual differences as early as first grade cut across gender and income
levels to differentiate children into what Siegler (1988) termed good
students, not-so-good students, and perfectionists. Roughly half of the
not-so-good students went on to be identified as having mathematical
disabilities by fourth grade versus none of the other groups. On single-digit
addition tasks, these students were characterized by use of more primitive
methods and by more production of errors on problems on which they
could have used (but did not use) more accurate but effortful strategies
(e.g., counting with their fingers). These students were producing
incorrect answers more often, thereby creating responses that competed
with their experiences of correct answers. Perfectionists and good
students had similar positive long-term outcomes, but the perfectionists
were much more likely to use slower and effortful methods even on
simpler problems than were the good students.

These results emphasize that methods of practice should facilitate indi-
viduals in understanding their own growth and progress rather than com-
paring individuals. Practice should also be varied so that sometimes speed
is important but, at other times, use of the practiced method in a complex
situation is important. An overemphasis on either could lead to rigidity
rather than computational fluency. Not-so-good students need help to
learn and use more accurate strategies.

There has been less work on mathematics disability than on reading dis-
ability, especially with younger children. Different kinds of mathematics
disability have been identified. Geary's (1994) review identifies four types
and recommends different kinds of learning supports for each kind. His re-
sults and recommendations are quite consistent with the research de-
scribed earlier. They emphasize using visual conceptual supports with
extra conceptual cues, teaching more-advanced solution methods, draw-
ing the problem situation, and using accessible algorithms that are easy to
learn conceptually and carry out procedurally.

Students with semantic memory disabilities have difficulty with verbal,
and especially phonetic, memory but many have normal visuo-spatial
skills. These students have great difficulty memorizing basic computations
because these rely on a phonetic code. Therefore instructional supports
that use visual rather than phonetic cues and teaching strategies for basic
calculations are recommended for these students.
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Students with procedural deficits use less-advanced methods than their
peers. Though many eventually catch up, this long period of using primi-
tive methods may be detrimental. Such children do not seem to invent
more-advanced methods as readily as do their peers. Therefore, concep-
tually based strategy instruction that helps them use and understand
more-advanced strategies such as counting on can be helpful.

Students with visuo-spatial disabilities have difficulties with concepts that
use spatial representations, such as place value. Research is not clear about
the developmental prognosis of such children, but suggested methods of
remediation are to support visual processing with extra cues. Because dis-
tinguishing left-right directionality is a special problem with such students,
the accessible methods described later in this chapter that can be carried
out in either direction might be especially helpful for such students.

Difficulties with mathematical problem solving that go beyond arithmetic
deficits also characterize some students. Supports for problem solving such
as drawing the problem situation are suggested as useful for these students.
Technology may also help provide complex problem-solving situations that
are nevertheless accessible to students with math disabilities (Goldman,
Hasselbring, & the Cognition and Technology Group at Vanderbilt, 1997).

Achieving Both Sense-Making and Computational Fluency

Real-World Situations, Problem Solving, and Computation
Need to Be Continually Intertwined. Traditionally in the United

States, computation of whole numbers has been taught first, and then
problems using that kind of computation have been presented as
applications. This approach has several problems. First, less-advanced
students sometimes never reached the application phase, limiting greatly
their learning. Second, word problems are usually put at the end of each
computational chapter, so sensible students never read the problems:
They just do the operation practiced in that chapter. This, plus the focus on
teaching students to focus on keywords in problems rather than building a
complete mental model of the problem situation, leads to poor problem
solving by students because they never learn to read and model the
problems themselves. Third, seeing problem situations only after learning
computations does not enable the meanings in the problem situations to
become linked to those computations. This limits the meaningfulness of
the computations and the ability of children to use the computations in a
variety of situations.

Research has indicated that beginning with problem situations yields
higher problem-solving competence and equal or better computational
competence. Children who start with problem situations directly model solu-
tions to these problems. They later move on to more advanced mathematical
approaches as they move through levels of solutions and of problem diffi-
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culty. Thus, the development of computational fluency and problem solving
is intertwined when both are codeveloping with understanding.

Problem situations can also provide vital kinds of numerical experi-
ences. We identify later four kinds of core arithmetical real-world situa-
tions. In each of these, children can learn mathematical language involved
in that kind of situation (e.g., "altogether," "the rest," "less than"), and they
can learn central numerical operations to use with numbers (e.g., decom-
posing, counting on, grouping).

Research for many years has contrasted conceptual and procedural as-
pects of learning mathematics. Which should come first has been de-
bated for a long time. The current state of the research presents a much
more complex relationship between conceptual and procedural aspects
than one preceding the other. Rather, they are continually intertwined and
facilitating each other. As a given child comes to understand more, the
given method becomes more integrated within itself and in relation to
other methods. As a method becomes more automatic, reflection about
some aspect may become more possible, leading to new understanding.
These conceptual and procedural intertwinings take place within individ-
uals in individual ways. It may not even be useful to distinguish between
these two aspects because doing and understanding are always inter-
twined in complex ways.

Furthermore, different researchers may refer to the same method as a
procedure or as a concept, depending on whether the focus is on carrying
out the method or on its conceptual underpinnings. And, in a given class-
room at a given time, some students may be carrying out what looks like
the same method, but they may well have different amounts of under-
standing of that method at that time. This is what the helping aspects of
classroom teaching is all about—helping everyone to relate their methods
to their knowledge in ways that give them fluency and flexibility.

The Importance of Children Experiencing the Range of
Real-World Addition and Subtraction Situations to Build
Meanings for Addition and Subtraction Operations.

Researchers around the world have identified three main types of
real-world addition and subtraction situations. Each type involves three
different quantities (a total and two addends), and each of these quantities
can be unknown. Learning to solve all of these problem variations by
focusing on the problem meaning and modeling it, and eventually writing
an algebraic equation with an unknown, provides vital experience in rich
algebraic problem solving that can prepare all children for algebra.
Research indicates that almost all of these problems are accessible to
Grade 1 children and all can be mastered by Grade 2 children. However,
typically in U.S. textbooks, only the simplest variation of each problem type
has been included, those that most children can already solve in
kindergarten. In contrast, in the texts of the former Soviet Union, problems
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were given equally across the various types and unknowns, and 40% of
first-grade problems and 60% of second-grade problems were two-step
problems (Stigler, Fuson, Ham, & Kim, 1986).

One type of addition and subtraction situation is what mathematicians
call a binary operation situation: You have two groups of objects and you
want to put them together (Put Together) or you have one group of objects
and you want to take them apart (Break Apart) to make two groups. This
type is sometimes called Combine; it may or may not have any physical ac-
tion in it. For example, you may have four dogs and three cats and ask how
many animals there are.

The second type is what mathematicians call a unary operation: You have
one group of objects (an initial state) and you want to add a group of objects
to it (Add To) or you want to take a group of objects away from it (Take
Away). These problems are sometimes called Change problems because
there is an initial state, a change (plus or minus), and a resulting state. Solu-
tions to these change problems undergo abbreviation over time that creates
more-advanced methods (these are discussed in a later section).

The third type compares two groups of objects to find out how much
more (Compare More) or how much less (Compare Less) one group has
than the other. There are many ways to ask the comparing sentence, and
most ways have a pair of sentences that reverse the direction of compari-
son. This type is particularly difficult for young children for three reasons.
First, the quantity more or less is not actually physically there in the situa-
tion. Second, the language is complex for children. Third, it is difficult to
understand the direction of a given comparison.

There are also several different types of multiplication and division
real-world situations. Some of these are accessible to children as young as
kindergarten or even Pre-K if the language is simple, the numbers are
small, and objects are available to model the problem. Equal-partitioning
situations seem to be particularly easy. These give rise to multiplication
(e.g., two groups of three), measurement division (e.g., six total parti-
tioned into groups of three), and fraction division (e.g., six total partitioned
into two equal groups).

Such situations in the form of word problems and real situations brought
into the classroom by students can provide contexts within which opera-
tions of addition, subtraction, multiplication, and division can come to
take on their whole range of required mathematical meanings. These
real-world meanings can be acted out, modeled with objects, and drawn
with simplified math drawings. Students can tell and write as well as read
and solve problems. Rich language use by retelling a story in your own
words can build listening, vocabulary, and comprehension skills. Children
in bilingual or ESL classes can learn mathematics in these ways. Preschool
children can solve and tell simple stories. Older children gradually come
to represent and solve stories using larger numbers and more-advanced
representations such as math drawings that show quantities but not the
actual things in the situation, equations, and numerical solution methods.
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There is an important distinction between a situation representation (an
equation or a drawing) and a solution representation. The most powerful
problem-solving approach is to understand the situation deeply—draw it
or otherwise represent it to oneself. This is the natural method used by
young students. But textbooks, and teachers under their influence, push
students to write solution representations that are not consistent with their
view of the situation. Students will write 8 + = 14 for a problem like "Erica
had $8. She babysat last night and now has $14. How much did she earn
babysitting?" Textbooks often push students to write 14-8 = , but this is not
how most students will represent or solve that problem. Allowing students
to represent the situation in their own way communicates that the goal of
problem solving is to understand the problem deeply. With this view, stu-
dents can experience success and move on to more difficult problems
throughout their school and out-of-school life.

Using in Classrooms the Research on Learning Progressions,
Multiple Solution Methods, and Advantages and Disadvantages
of Different Algorithms. Over the past 30 years, there has been a

huge amount of research all over the world concerning children's solution
methods in single-digit and multidigit addition and subtraction. This
research indicates that we need to change substantially our present
classroom teaching and learning practices in these areas. For Pre-K
through Grade 2 children, most classrooms usually contain children who
solve a given kind of problem in different ways, and most children have
more than one available method for some kinds of problems. This is quite
a different picture from the usual vision of mathematics problems as
having one kind of solution that must be taught by the textbook and by the
teacher and then learned and used by all children. This does not say that
children learn methods in an experiential vacuum. Their experiences are
vital, and teachers and classroom experiences are central to enabling
children to learn various methods.

Within each computational domain, individual learners move through
progressions of methods from initial transparent, problem-modeling, con-
cretely represented methods to less transparent, more problem-inde-
pendent, mathematically sophisticated and symbolic methods. At a given
moment, each learner knows and uses a range of methods that may vary
by the numbers in the problem, by the problem situation, and by other in-
dividual and classroom variables. A learner may use different methods
even on similar problems, and any new method competes for a long time
with older methods and may not be used consistently. Typical errors can
be identified for each domain and for many methods. Ways to help stu-
dents overcome these errors have been designed and studied. Detailed
understandings of methods in each domain enable us to identify prerequi-
site competencies that can be developed in learners to make those meth-
ods accessible to all learners.
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The constant cycles of mathematical doings and knowings in a given do-
main lead to learners' construction of representational tools that are used
mentally for finding solutions in that domain. For example, the counting
word list initially is just a list of words used to find how many objects there
are in a given group. Children use that list many times for counting, adding,
and subtracting. Gradually, the list itself becomes a mathematical object.
The words themselves become objects that are counted, added, and sub-
tracted; other objects are not necessary. For students who have opportuni-
ties to learn with understanding, the written place-value notation can
become a representational tool for multidigit calculations as the digits in
various positions are decomposed or composed.

Learners invent varying methods regardless of whether their class-
rooms have been focused on teaching for understanding or on rote mem-
orizing of a particular method. However, a wider range of effective
methods is developed in classrooms teaching for understanding. In class-
rooms in which teachers help students move through progressions to
more-advanced methods, children are more advanced. In rote class-
rooms, incomplete or little understanding is frequent. But students do re-
flect on patterns they abstract from the rotely learned methods, and
different students make different kinds of errors carrying out partially cor-
rect methods. Thus, even in traditional classrooms focused on memoriz-
ing standard computational methods, learners are not passive absorbers
of knowledge. They build and use their own meanings and doings, and
they generalize and reorganize these meanings and doings.

Because most people in the United States were taught only one method
to do multidigit addition, subtraction, multiplication, and division, they
think that there is only one way to do each of these (the way they were
taught). These methods are called algorithms—a general multistep proce-
dure that will produce an answer for a given class of problems. Computers
use many different algorithms to solve different kinds of problems. In-
venting new algorithms for new kinds of problems is an increasingly im-
portant area of applied mathematics. Throughout history and at the
present time around the world, many different algorithms have been in-
vented and taught for multidigit addition, subtraction, multiplication, and
division. Different algorithms have been taught at different times in U.S.
schools. Many immigrant children are taught one method at school and a
different method at home, and children who immigrate are often forced to
learn a new method that interferes with the old method they learned origi-
nally. This is difficult for them and is unnecessary.

Each algorithm has advantages and disadvantages. Therefore, part of
the decision making around mastery for all concerns which algorithms
might be supported in classrooms and the bases for selecting those algo-
rithms. Research has now identified some accessible algorithms that are
easier for children to understand and to carry out than the algorithms usu-
ally taught at present in the United States. These are described in a later
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section and more fully in Fuson (2003), Fuson and Burghardt (in press),
and Fuson, Wearne et al. (1997).

Single-Digit Addition and Subtraction:
Much More Than "Learning the Facts"

Learning single-digit addition and subtraction has for much of this cen-
tury been characterized in the United States as "learning math facts." The
predominant learning theory was of these facts as rote paired-associate
learning in which each pair of numbers was a stimulus (e.g., 7 + 6) and
the answer (13) needed to be memorized as the response to this stimulus.
"Memorizing the math facts" has been a central focus of the mathematics
curriculum, and many pages of textbooks presented these stimuli to
which children were to respond with their "memorized" response.

This view of how children learn basic single-digit computations was in-
validated by one line of research earlier this century (by Brownell, 1987)
and by much research from all over the world during the last 30 years. We
now have robust knowledge of how children in many countries actually
learn single-digit addition and subtraction.

The unitary progression of methods used all over the world by children
stems from the sequential nature of the list of number words. This list is
first used as a counting tool, and then it becomes a representational tool in
which the number words themselves are the objects that are counted
(Bergeron & Herscovics, 1990; Fuson, 1986b; Steffe, Cobb, & von
Glasersfeld, 1998). Counting becomes abbreviated and rapid. Children be-
gin to count on in addition situations (e.g., solve 8 + 6 by counting "8,9,10,
11, 12, 13, 14" rather than counting from 1 to 14). They also begin to count
up to solve subtraction situations, which is much easier and much more
accurate than is counting down, which is subject to errors. So to solve 14 -
8, they think, "8 have been taken away, so 9,10,11,12,13,14, that is 6 more
left." Children use this same strategy to solve unknown addend situations
(8 + ? = 14). Some (or in some settings, many) children later go on to
chunk numbers using thinking strategies, These chunkings turn additions
children do not know into additions they do know. Some of these use dou-
bles (e.g., I know 6 + 6 = 12, so 6 + 7 is 1 more than 12, which is 13), and
some use 10 (e.g., I know 8 + 2 = 10, so 8 + 6 is 4 more than 10, so 14). Of
course, all during this learning progression, children also learn some addi-
tions and subtractions automatically, especially for smaller numbers.

During this progression, which may last into third or even into fourth or
fifth grade for some children (because they are not helped through the pro-
gression), individual children use a range of different methods on different
problems. Learning-disabled children and others having difficulty with
math do not use methods that differ from this progression. They are just
slower than others in this progression (Geary, 1994; Ginsburg & Allardice,
1984; Goldman, Pellegrino, & Mertz, 1988; Kerkman & Siegler, 1993).
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Most of these methods are not ordinarily taught in the United States or in
many other countries. However, when these more-advanced methods are
not supported in the classroom, several years separates the earliest and
latest users of advanced methods. In contrast, helping children progress
through methods can lead all first graders to methods efficient enough to
use for all of later multidigit calculation. Counting on can be made concep-
tually accessible to first graders; it makes rapid and accurate addition of all
single-digit numbers possible. Single-digit subtraction is usually more diffi-
cult than is addition for U.S. children, primarily because children model
taking away by inventing counting-down methods, which are difficult and
error-prone. Children can easily learn to think of subtraction as counting
up to the known total if they think of (or draw) taking away the first objects,
e.g., 8 - 5 is: o o o o o o o o "I've taken away 5 so 3 more to make 8: "6, 7,8."
Teachers in many other countries help students see that subtraction can
be solved by forward counting and adding methods. Such methods make
subtraction as easy as, or easier than, addition. But at present, counting up
to solve subtraction rarely appears in U.S. textbooks.

Children's tools for beginning understandings of addition and subtrac-
tion are the counting word list ("one, two, three, four, etc."), the ability to
count objects, some indicating act (e.g., pointing, moving objects) tying
words said and objects counted together (one at a time), and the
count-cardinal knowledge that the last count word said tells how many
objects there are in all. These tools are learned in the preschool years by
many but not all children in the United States. Focused help in pre-K and in
kindergarten with all of this prerequisite knowledge could help all chil-
dren come to mastery more rapidly. With these tools, addition can be
done orally using concrete situations comprehensible to young learners.
They count out objects for the first addend, count out objects for the sec-
ond addend, and then count all of the objects (count all). This general
counting-all method then becomes abbreviated, interiorized, chunked,
and abstracted, as discussed earlier.

The widely reported superiority of East Asian students over U.S. students
in the early grades does not result from a focus on rote memorized addition
and subtraction "facts." It results from systematic visual and oral work that
provides the underpinnings for strategies that are then explicitly taught. East
Asian students, as well as students in many other parts of the world, are
taught a general thinking strategy: making a 10 by giving some from one ad-
dend to the other addend. This method is facilitated by the number words in
some countries (e.g., China, Japan, Korea, and Taiwan): 10, 11, 12, 13, and
so on, are said as "Ten, ten one, ten two, ten three, and so on."

Many of these children also learn numbers and addition using a
10-frame: an arrangement of small circles into two rows of five. This pat-
tern emphasizes 6,7,8, and 9 as 5 + 1,5 + 2,5 + 3, and 5 + 4. Work with this
visual pattern enables many children to "see" these small additions under
10 using a five-pattern. For example, some Japanese and Chinese adults
report adding 6 + 3 by thinking/seeing (5 and 1) + 3 = 5 and 4 = 9. This re-
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duction of 6 + 3 to 5 + 1 +3 = 5 + 4 = 9 is done rapidly and without effort,
as automatically as is recall. The 10-frame is also used to teach the "make a
10" method. For example, for 8 + 6,8 has 2 missing in the 10-frame, so 8 +
6 requires 2 from the 6 to fill the 10-frame, leaving 4 to make 10 + 4= 14. By
the end of first grade, most children in these countries rapidly use these
5-patterns or 10-patterns mentally to add and subtract single-digit num-
bers. The "make a 10" method is also taught in some European countries.

There are three prerequisites that children must learn in order to use the
"make a 10" method effectively. They must know what number makes 10
with each number (e.g., 10 = 8 + 2 or 6 + 4 or 7 + 3), be able to break apart
any number into any of its two addends (to make ten and the rest over ten),
and know 10 + n (e.g., 10 + 5 = 15). In countries that teach the "make a 10"
method, these prerequisites are developed before the "make a 10"
method is introduced. Children age 4 and 5 in China and Japan may have
extensive experiences in breaking apart a number into different numbers
hiding inside that number (e.g., 5 = 3 + 2 = 4+ 1). Many U.S. first and even
second graders do not have all of these prerequisites consolidated, and
they are rarely developed sufficiently in textbooks. Consequently few chil-
dren invent this strategy. The strategy also is rarely taught in this country.

Textbooks in the United States have in the past typically shown little un-
derstanding of children's progression of methods. They moved directly
from counting all (e.g., 4 + 3 shows four objects and then three objects) to
pages with only numbers, where children are to begin to "memorize their
facts" (which they can not do because no answers are given). Children re-
sponded by inventing the experiential trajectory of methods discussed
previously, what I often call the "secret under-the-table worldwide pro-
gression of solution methods." Some textbooks do now support some chil-
dren's methods. However, in the midst of so many other topics, textbooks
rarely provide sufficient time for children to master these methods.

This lack of fit between what is in textbooks and how children think is
exacerbated by other features of textbook treatment of addition.
Compared to other countries, the United States has had a delayed place-
ment of topics in the elementary school curriculum (Fuson, 1992a; Fuson,
Stigler, & Bartsch, 1988). Almost all of first grade was spent on addition and
subtraction below 10, and problems with totals above 12 were often in the
last chapters (which many teachers never reached). Such simple prob-
lems below 10 were then also emphasized and reviewed in Grade 2, re-
sulting overall in many more of the easier additions and relatively fewer of
the more difficult single-digit additions (Hamann & Ashcraft, 1986). Thus,
in contrast to East Asian children who are shown in first grade effective
methods for solving the difficult additions over 10 (i.e., with totals between
10 and 18) in visually and conceptually supported ways, many U.S. chil-
dren had little opportunity to solve such problems in first grade and were
not supported in any effective methods to do so.

Clearly U.S. children need more support than most of them receive at
present to move through the developmental progression of solution meth-
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ods. Many would also benefit from more work with visual patterns and
with seeing the numbers 6 through 10 as a five and some extra. Visual
quantity supports and language supports can help children understand the
teen numbers as one 10 and some extra ones. Teachers can use visual
quantity supports such as 10-frames or penny/dime strips (10 pennies on
one side grouped to show two fives and on the other side one dime) with
pennies to make teen numbers. Number cards can show the 10 inside
each teen number if the 10 card is twice as wide as the single-digit cards so
that they can be placed over the zero on the 10 card (see Fuson, Grandau,
& Sugiyama, 2001). First graders can learn counting on for addition and
counting up to for subtraction, and second graders can use methods that
make a 10 in multidigit addition and subtraction. Specific grade-level goals
in this domain are given in Part C.

Multidigit Addition and Subtraction:
The Need for Using Accessible Algorithms

There is considerable research on various ways in which children learn
various multidigit addition and subtraction methods, though not nearly as
much research as on single-digit addition and subtraction. In single-digit
addition and subtraction, the earliest steps in the learning progression are
similar in many different countries. In contrast, the multidigit addition and
subtraction domain seems to consist much more of different pieces that
are put together in different orders and in different ways by different chil-
dren (e.g., Hiebert & Wearne, 1986). Different children even within the
same class may see different patterns in the complex whole and thus fol-
low different learning progressions and use different methods. Further-
more, children learn less about aspects of multidigit numbers and
methods at home, so multidigit addition and subtraction depend much
more on what is taught in school.

Difficulties With Words and Numbers. As with teen numbers,
the English number words between 20 and 100 complicate the
teaching/learning task for multidigit addition and subtraction. English
names the hundreds and thousands regularly, but does not do so for the
tens. For example, 3,333 is said "3 thousand 3 hundred thirty 3" not "3 ten
3." English-speaking children must learn and use a special sequence of
decade words for 20, 30, 40, and so on. This sequence, like the teens, has
irregularities. Furthermore, teens words and decade words sound alike: In
a classroom it is often difficult to hear the difference between "eighteen"
and "eighty." The same numbers one through nine are reused to write
how many tens, hundreds, thousands, and so forth. Whether 3 tens or 3
hundreds or 3 thousands, it is shown by the relative position of the 3: The 3
is how many positions to the left of the number farthest to the right?
Relative position is a complex concept.



5. ACHIEVING MASTERY FOR ALL 125

The written place-value system is an efficient system that lets us write
large numbers, but it is also abstract and misleading: The numbers in ev-
ery position look the same. To understand the meaning of the numbers in
the various positions, first- and second-grade children need experience
with some kind of size visual quantity supports: manipulatives or drawings
that show tens to be collections of 10 ones and show hundreds to be simul-
taneously 10 tens and 100 ones, and so on. Various kinds of such size visual
quantity supports have been designed and used in teaching our written
system of place value. However, classrooms rarely have enough of such
supports for children themselves to use them (and many classrooms do
not use anything). Such supports are rarely used in multidigit addition and
subtraction, or they are used alone to get answers without sufficient link-
ing to a written method related to the manipulative method.

As a result, many studies indicate that many U.S. first and second graders
do not have or use quantity understandings of multidigit numbers (see re-
views in Fuson, 1990,1992a, 1992b). Instead, many children view numbers
as single digits side by side: 827 is functionally "eight two seven" and not
eight groups of 100, two groups of 10, and seven single ones. Children
make many different errors in adding and subtracting multidigit numbers,
and many who do add or subtract correctly cannot explain how they got
their answers.

Teaching for Understanding and Fluency. In contrast,
research instructional programs in the United States, Europe, and South
Africa indicate that focusing on understanding multidigit addition and
subtraction methods results in much higher levels of correct multidigit
methods and produces children who can explain how they got their
answers using quantity language (Beishuizen, 1993; Beishuizen,
Gravemeijer, & van Lieshout, 1997; Carpenter, Franke, Jacobs, &
Fennema, 1998; Fuson & Briars, 1990; Fuson & Burghardt, 1997, in press;
Fuson, Smith et al., 1997; Fuson, Wearne et al., 1997; McClain, Cobb, &
Bowers, 1998). Characteristics of all of these approaches are that students
used some kind of visual quantity support to learn meanings of hundreds,
tens, and ones, and these meanings were related to the oral and written
numerical methods developed in the classrooms.

Many different addition and subtraction methods were developed in
these studies, often in the same classrooms (see Fuson, Wearne et al.,
1997, and Fuson & Burghardt, in press, for summaries of many methods).
In most of these studies children invented various methods and described
them to each other, but in some studies conceptual supports were used to
give meaning to a chosen algorithm. Many studies were intensive studies
of children's thinking in one or a few classrooms, but some studies in-
volved 10 or more classrooms including one study of all second-grade
classrooms in a large urban school district (Fuson & Briars, 1990). In all
studies a strong emphasis was placed on children understanding and ex-
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plaining their method using quantity terms (e.g., using hundreds, tens,
ones, or the names of the object supports being used).

The function of visual quantity supports is to suggest meanings that can
be attached to the written numbers and to the steps in the solution method
with numbers. Therefore, methods of relating the visual quantity supports
and the written number method through linked actions and through ver-
bal descriptions of numerical method are crucial. However, in the class-
room, supports often are used without recording anything except the
answer at the end, and then students are shifted to written methods with-
out linking to the steps taken with the supports. Thus, the written numerals
do not necessarily take on meanings as tens, hundreds, and so on, and the
steps in the numeral method may be thought of as involving only single
digits rather than their actual quantity meanings. This leaves them vulnera-
ble to the many errors created by students without the meanings to direct
or constrain them. Even for students who initially learn a meaningful
method, the appearance of multidigit numbers as single digits may cause
errors to creep in. An important step in maintaining the meanings of the
steps is to have students occasionally explain their method using the
names for their quantity support (e.g., big cubes, etc., or money).

Solution Methods and Accessible Algorithms. Many different
methods of multidigit addition and subtraction are invented by children
and are used in different countries. There is not space here to describe all
of them or to analyze their respective advantages and disadvantages.
However, two addition methods and one subtraction method have been
selected for discussion. These are especially clear conceptually, are easy
for even less-advanced students to carry out, and are less prone to errors
than are many other methods. We also show the addition and the
subtraction algorithms that are currently taught most frequently in
textbooks in the United States. These methods are all shown in Fig. 5.1.

In Fig. 5.1 the algorithm on the top left is the addition method currently
appearing in most U.S. textbooks. It starts at the right, in contrast to read-
ing, which starts at the left. Most methods that children invent start at the
left, perhaps because of reading from the left and perhaps because we
read our number words starting at the left. The current addition algorithm
has two major problems. One is that many children object initially (if they
are in a position in which mathematical objections can be voiced) to put-
ting the little Is above the top number. They say that you are changing the
problem. And in fact, this algorithm does change the numbers it is adding
by adding in these carries to the top numbers. The second method in the
top row of Fig. 5.1 does not change the top number: The new 1 ten is writ-
ten down in the space for the total on this line. Children using base-ten
blocks (Fuson & Burghardt, 1993, in press) invented this method so that
they did not change the answer as they went. It is also easier to see the total
14 ones when the 1 is written so close to the 4. The second problem with
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the present U.S. algorithm is that it makes the single-digit adding in each
column difficult. You must add in the 1 to the top number, remember it
even though it is not written, and add that remembered number to the bot-
tom number. If instead you add the two numbers you see, you may forget
to go up to add on the 1 ten (or 1 hundred). The second method solves this
problem: You just add the two numbers you see and then increase that to-
tal by 1. This makes the adding much easier for less-advanced children.

Method B in Fig. 5.1 separates the two major steps in multidigit adding.
The total for adding each kind of multiunit is written on a new line, empha-
sizing that you are adding each kind of multiunit. The carrying-regroup-
ing-trading is just done as part of the adding of each kind of multiunit: The
new 1 ten of the next larger multiunit is just written in the next-left column.
One then does the final step of multidigit adding: Add all of the partial addi-
tions to find the total. Method B can be done in either direction (Fig. 5.1
shows the left-to-right version). Because you write out the whole value of
each addition (e.g., 500 + 800 = 1,300), this method facilitates children's
thinking about and explaining how and what they are adding.

The drawings at the far right can be used with any of the three methods
to support understanding of the major components of the methods. The
different sizes of the ones, tens, and hundreds in the drawings support the
first component: adding of those like quantities to each other. Ten of a
given unit can be encircled to make 1 of the next higher unit (10 ones = 1
ten, 10 tens = 1 hundred, 10 hundreds = 1 thousand). Circling the new 10
units can support the general "make a 10" single-digit methods. The com-
ponents each algorithm must also show are: (a) how to record the adding
of each kind of unit, the making of each 1 new larger unit from 10 of the
smaller units, and (b) the adding of the partial additions to make the total.

Under the drawing are summarized the two vital elements of using draw-
ings or objects to support understanding of addition methods. First is a long
Stage 1 in which the objects or drawings are linked to the steps in the algo-
rithms to give meanings to the numerical notations in those algorithms. A
second but crucial Stage 2 then lasts over an even longer period (over years)
in which students only carry out the numerical algorithm but they occasion-
ally explain it using words describing quantity objects or drawings so that
meanings stay attached to the steps of the algorithm. Stage 2 is vital because
of the single-digit appearance of our written numerals; these do not direct
correct methods or inhibit incorrect methods, as the objects and drawings
do, and errors can creep into understood methods, especially as children
learn other solution methods in other domains.

Two subtraction methods are shown in Fig. 5.1. The method on the left
is the most widely used current U.S. algorithm. It moves from right to left,
and it alternates between the two major subtraction steps: Step 1: re-
grouping (borrowing, trading) to get 10 more of a given unit so that unit
can be subtracted (necessary when the top unit is less than the bottom
unit); and Step 2: subtracting after the top number has been fixed. The re-
grouping maybe written in different ways (e.g., as a little 1 beside the 4 in-
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stead of crossing out the 4 and writing 14 above). The alternating
between the two major subtracting steps presents three kinds of difficul-
ties to students. One is initially learning this alternation. Two is then re-
membering to alternate the steps. The third is that the alternation renders
students susceptible to the pervasive subtracting error: subtracting a
smaller top number from a larger bottom number (e.g., doing 62 - 15 as
53). When moving left using the current method, a solver sees two num-
bers in a column while primed to subtract. For example, after regrouping
in 1,444 - 568 to get 14 in the rightmost column and subtracting 14 - 6 to
get 8, one sees 3 at the top and 6 at the bottom of the next column. Auto-
matically the answer 3 is produced (6-3 = 3). This answer must be inhib-
ited while one thinks about the direction of subtracting and asks whether
the top number is larger than the bottom (i.e., asks oneself whether re-
grouping or borrowing is necessary).

The accessible subtraction method shown in the bottom middle of Fig.
5.1 separates the two steps used in the current method, thus making each
conceptually clearer as well as procedurally easier. First, a student asks
the regrouping (borrowing) question for every column, in any direction.
The goal here is to rewrite the whole top number so that every top digit is
larger than the bottom digit. This makes the conceptual goal clearer: You
are rearranging the units in the top number so that they are available for
subtracting like units. Because this step is not intermixed with subtraction,
it makes it easier to discuss why you are not changing the top number
when you regroup. Regrouping the whole top number at once also pre-
vents the ubiquitous top-from-bottom error because each top number will
be as large as the bottom number when you begin to do all of the subtract-
ing. Doing the regrouping in any direction allows children to think in their
own way. The second major step then is to subtract every column. This
also can be done in any order. The separation into two major steps makes
the process easier than alternating between the steps.

The drawing at the bottom right of Fig. 5.1 shows how a size drawing or
size objects can support the two aspects of multidigit subtracting. There
are not enough ones, or tens, or hundreds to do the needed subtracting, so
1 larger unit is opened up to make 10 of the needed units. The subtraction
can be done from this 10, facilitating the "take from 10" single-digit sub-
traction method. Or students can count up to find the difference in the
written number problem.

The irregular structure of the English words between 20 and 99 contin-
ues to present problems in multidigit problems because all single-digit and
multidigit calculation is done using the words as oral intermediaries for
the written numbers, and these words do not show the tens in the num-
bers. Using English forms of the regular East Asian words ("1 ten 4 ones"
for 14) along with the ordinary English number words has been reported to
be helpful (Fuson et al., 1997). This permits children to generalize sin-
gle-digit methods meaningfully. For example, for 48 + 36, students can use
their single-digit knowings and think, "4 tens + 3 tens is 7 tens" rather than
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having to think "forty plus thirty is?" or use only single-digit language ("four
plus three is seven"), and thus ignoring the values of the numbers.

Textbook and Curricular Issues. U.S. textbooks have several
problematic features that complicate children's learning of multidigit
addition and subtraction methods. The grade placement of topics is
delayed compared to that of other countries (Fuson et al., 1988), and
problems generally have one more digit each year so that this topic
continues into Grade 5 or even 6. In contrast, multidigit addition and
subtraction for large numbers are completed in some countries by Grade
3. In the first grade in the United States, two-digit addition and subtraction
problems with no regrouping (carrying or borrowing) are given but no
problems requiring regrouping are given until almost a year later, in
second grade. Problems with no regrouping set children up for making the
most common errors, especially subtracting the smaller number from the
larger even when the larger number is on the bottom (e.g., 72 - 38 = 46).
This error is one major reason that on standardized tests only 38% of U.S.
second graders are accurate on problems such as 72 - 38.

Accessibility studies indicate that first graders can solve two-digit addition
problems with trading if they can use drawings or visual quantity supports
(Carpenter et al., 1998; Fuson, Smith et al., 1997). Because knowing when to
make one new ten is an excellent use of place-value knowledge, such prob-
lems can be thought of as consolidating place-value ideas, not just as doing
addition. Giving from the beginning subtraction problems that require re-
grouping would help children understand the general nature of two-digit
subtraction. This might well be delayed until second grade because chil-
dren find two-digit subtraction much more difficult than addition. But sec-
ond graders learning with visual quantity supports and with a focus on
understanding their methods can have high levels of success.

This review suggests some central features for effective learning materi-
als. Any algorithms that are included need to be accessible to children and
to teachers, and support needs to be provided so that they are learned with
understanding. The research-based accessible methods in Fig. 5.1 were in-
cluded here to indicate algorithms that are more accessible than those pres-
ently appearing in most U.S. textbooks. Furthermore, children need to use
visual quantity supports in initial experiences with multidigit solving and
multidigit algorithms so that these can be learned with meaning. Finally, stu-
dents and teachers need to use referents when discussing methods so that
everyone can follow the discussion. Drawing quantities can be helpful here.
Methods children learn at home can be discussed in the classroom and an-
alyzed to see how they work to add or subtract accurately.

Conclusion. Recent research clearly indicates that nontraditional
approaches can help U.S. children come to carry out, understand, and
explain methods of multidigit addition and subtraction rather than only
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carry out a method. This higher level of performance can also be done at
earlier grades than is presently expected only for answers. Features of
classrooms engendering this higher level of performance are: an
emphasis on understanding and explaining methods; initial use by
children of visual quantity supports or drawings that show the different
sizes of ones, tens, and hundreds in order to give meanings to methods
with numbers; and sufficient time and support for children to develop
meanings for methods with numbers and for prerequisite understandings
(these may be developed alongside the development of methods) and to
negotiate and become more skilled with the complexities of multistep
multidigit methods.

The most effective approach at present seems to be to make the learn-
ing of algorithms more mathematical by considering it an important arena
of mathematical pattern finding and invention that will use and contribute
to robust understandings of our place-value system of written numeration.
Meaningful discussion of various standard algorithms brought into the
classroom from children's homes (e.g., the subtraction algorithm widely
used in Latin America and Europe; see Ron, 1998) has an important role.
Seeking to discover why each one works provides excellent mathematical
investigations. It also is important to share accessible methods with
less-advanced children so that they have a method they understand and
can use. However, the focus should be on their understanding and ex-
plaining, not just on rote use.

All three of the accessible methods in Fig. 5.2 were invented by children
but also have been shared with and learned meaningfully by many chil-
dren. There may well be other methods not as yet discovered (or rediscov-
ered) that will be even more powerful. Comparing methods to see how
they take care of the crucial issues of that domain facilitates reflection by
everyone on the underlying conceptual and notational issues of that do-
main. This seems a much more appropriate focus in the 21st century,
where new machine algorithms will be needed and new technology will
require many people to learn complex multistep algorithmic processes. If
this focus is accompanied by a continual focus on testing and teaching ac-
cessible methods as well as on fostering invention, all children should be
able to learn and explain a multidigit addition and subtraction method as
well as carry it out accurately.

PART C: DESIGN PRINCIPLES, CURRICULAR CONCEPTUAL
CHUNKS, AND A PROPOSAL FOR MASTERY GOALS FOR ALL

One of the major themes in this chapter has been the need to reorganize
U.S. curricula into coherent chunks and spend more time on each of
these chunks. I now briefly outline a specific research-based proposal
about how to do this. This proposal is not the only way that coherent foci
could be developed. But it is an obvious one based on present research. It
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has also been worked out in considerable detail in my own classroom
curricular research, and developing versions of it have been used in a
wide range of classrooms. This proposal is overviewed in Tables 5.1 and
5.2 and in Fig. 5.3. Table 5.1 outlines design principles concerning aspects
of the coherent chunks and how they are related. Table 5.2 further speci-
fies goals at each grade level from Pre-K through Grade 2 to indicate how
these goals build from grade to grade without excessive repetition.

Figure 5.2 expresses in a schematized fashion the proposed eight coher-
ent chunks. Five chunks form the numerical core. The other three related
core chunks are geometry, measure, and graphing data. More specific
goals within each chunk are specified by grade/age level in Table 5.2. Table
5.2 assumes mastery of goals at the preceding age, so goals are not re-
peated. This is how goals in many other countries are structured. Many of
the goals in Table 5.2 take repeated experiencing over many days to come
to understanding and fluency.

The foundational chunk within the numerical core is number systems.
The systems of number words and of written number notations are devel-
oped and related to each other and to quantities in the world. This is
shown by the quantities, word, and notation triangle. The three types of ad-
dition/subtraction situations discussed earlier form three of the chunks of
the numerical core. Algebraic problem solving brings in number systems
as a problem-solving tool and relates the three types of real-world addi-
tion/subtraction situations. All of these take on related meanings through
problem solving. Language is used extensively as children pose and solve
problems and learn to use mathematical situational language. The black-
board structure described earlier for multidigit calculation works well for
story problem solving and posing as children make math drawings at the
board and explain their solutions. Children are helped to move through the
developmental progression of solution strategies.

Though some elementary ideas in multiplication/division domains can be
introduced early, it is much more cohesive and developmentally appropriate
to concentrate heavily and deeply on the whole range of addition/subtraction
situations and obtain mastery on them for quantities as large as three-digit
numbers in Pre-K to Grade 2. Time that could be spent on multiplication and
division is better spent on developing some notions of geometry (see later
discussion). In Grade 3 and beyond students can then begin substantive and
deep examination of the whole range of multiplication/division situations and
the extensions to rational numbers, decimals, and integers.

The five core numerical chunks, and their specific goals in Table 5.2, rep-
resent a more ambitious curriculum than is at present achieved even in
most of the higher socioeconomic schools in the United States. Concen-
trating on this core, and experiencing lots of language for addition/subtrac-
tion situations and for explaining solution methods, can bring mastery of
this ambitious core for students from all backgrounds.

Substantial geometric experiences are appropriate in Pre-K through
Grade 2. We in this country have not yet developed a coherent research-



TABLE 5.1
Design Principles for Mastery Curricula and Mastery Teaching

Real-world situations, problem solving, and computation need
to be continually intertwined in order to achieve sense-making
and computational fluency.
Each of the three types of addition/subtraction real-world situations (Break
Apart/Put Together, Add To/Take Away, Compare) forms one of the coherent
curricular chunks (Chunks 2, 3, and 4). Each of these is also integrated with
other related topics.
Algebraic problem solving (Chunk 5) relates all of these by coordinating
children's

a) use of situation drawings,
b) reading/writing/solving of word problems of each of the three types

using varying language,
c) use of equations with one unknown that varies (by Grade 2) across

all of the three possible unknowns,
d) explaining solution methods.

Computation is integrated with problem solving throughout Chunks 2, 3, 4, and
5, but is also a special focus of number system activities in Chunk 1.

a) For single-digit addition and subtraction, children are helped to move
through a learning progression of general methods to more-advanced
methods (at least to counting on for addition and counting up for
unknown addend and subtraction).

b) For multidigit addition and subtraction, children build mastery by
i) using visual and language conceptual supports for learning the

quantity triad so that they can invent, understand, and explain
methods,

ii) examining accessible research-based algorithms,
iii) discussing and explaining algorithms children bring from home,
iv) explaining their own solution method.

Practice is varied, distributed over time, cumulative, monitored with feedback,
and help is given as necessary. Practice first focuses on working enough in a
given domain so that a child "gets it" and then is distributed over time so that a
child is able to "keep it" (remember and use knowings built earlier).

Work in Pre-K through Grade 2 concentrates on building mastery in the addi-
tion and subtraction domains that is more ambitious than at present. Some ge-
ometry is introduced, as are some measure and graphing data ideas. Mastery
in Chunks 1 through 5 means that Grades 3, 4, and 5 can concentrate on build

(continued on next page)
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TABLE 5.1 (continued)

ing mastery in multiplication and division domains, including rational numbers
and integers. Substantial understandings in measure and geometry will also be
able to be built at those grade levels. All of this will be possible because of the
strong foundations from Chunks 1 through 8 in Pre-K to Grade 2 with little need
for repeating those chunks. The algebraic problem solving will continue in
multiplication and division situations and will provide a strong foundation for
Grade 8 algebra for all.

Note. The teaching of topics in Fig. 5.2 and Table 5.2 follows the process standards in Table 5.3
and the core connections in Fig. 5.3.

based stream of activities that develop over grade levels (but see other
chapters in this volume for what is now known). Some kinds of graphing
(pictographs and bar graphs) can be understood in Grades 1 and 2; these
are listed in Table 5.2. However, research and my own experiences in
many classrooms indicate that few concepts of measure are appropriate
to Pre-K through Grade 2. Developing the concepts of units for each kind of
measure is difficult and takes much special equipment. Even working cor-
rectly with length units takes time and special equipment. So length is in-
cluded as a goal, but it is not developed deeply until Grade 2, where
students have the conceptual numerical underpinnings and the physical
coordination to do many interesting geometric activities using rulers and
length. Area can be developed nicely and deeply along with multiplica-
tion/division in Grade 3, and volume, liquid capacity, weight/mass, and
temperature can follow in the other higher grades. This is not to say that
children cannot understand anything about these ideas at Pre-K through
Grade 2. But many states list many kinds of measures at each grade level,
contributing to the "mile wide inch deep" U.S. curricular problem. Post-
poning these as goals to a grade level where they can be mastery goals is
the most sensible course.

An example of the conceptual difficulties caused by length is the num-
ber line. The number line is used in many textbooks and classrooms as a
representational tool for adding and subtracting small whole numbers.
But many children (and some curricular materials) do not understand that
the number line is a length model. The fiveness is a length of five units.
Many children can only conceptualize discrete quantities, so the five to
them is the little mark above the 5 on the number line. Confusion about the
source of the fiveness (there are six little marks for the length of five units)
leads many children to be off by one when they add or subtract using the
number line. This discrete object versus length notion is the same differ-
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Mastery Goals for All: Toward World-Class Mathematics Learning

Coherent conceptual chunk Pre-K: Age 4/5 Kindergarten: Age 5/6 Grade 1 Grade 2

\. Number Systems and Meanings: Counting, Cardinality, Groups of 10,
Word-Quantity-Notation links

a) < 10, counting

b) 10 to 20, place value

c) 2-digit, 3-digit +/-

a) count, cardinality,
1-1 correspond-
ence 1—>10; fingers
< 5, recognize
numerals 1->10

b) count to 20 with
fingers (also flash
10 fingers one
time for teens, two
times for 20)

a) write #s 1-*10,
say next number
fingers < 10

b) which is closer to x?b) teens as tens and
ones: objects, fing-
ers; write numbers
11->20, dime = 10
pennies

c) count to 100 with c) two-digit #s as
flashes of 10
fingers

tens and ones;
count dimes and
pennies; two-digit
addition with re-
grouping; drawing
objects

c) two-digit -,
three-digit +/-
invented
and accessible
algorithms; explain
method you use



2. Break Apart/Put Together Situations and Embedded Numbers (Total & Partners)

Word problem language
Embedded numbers

a) all break-apart partners
of a number

(e.g.,6 = 5 + l = 4 + 2 =

b) using 5s in 6, 7, 8, 9, 10
(e.g., 9 = 5 + 4)

c) using 10 for +/-

oral use

a) break-apart
partners

<5(e.g.,5 = 4 + l = 2
3,4 = 3 + 1 = 2+ 2)

b) fingers, objects,
drawings

oral use oral, read/write oral, read/write

a) break-apart a) break-apart
partners of 6, 7, 10 partners of 9, 8

b) nickel as 5 pennies

c) see with objects,
fingers, drawings

c) introduce "make
a 10" strategies
for +/-

b) & c) count coins
P ,N,D

c) many use "make
a 10" in multidigit

3. Add To/Take Away: Change + and - Situations

Word problem language:
Addition and subtraction
methods

oral

direct model
solutions: objects,
fingers for totals < 5

oral

direct model
solutions: objects,
fingers for totals < 10

oo

oral, read/write

count on to find total
or part (count up to
for subtraction and
mystery addends) use
2 b, 2 c, 2 d in
Ch +/- situations

oral, read/write

see 5
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Coherent conceptual chunk Pre-K: Age 4/5 Kindergarten: Age 5/6 Grade 1 Grade 2

4. Compare: Match Situations

Word problem language

More/less

How many more/less?

Pictographs

oral

more, less, equal
matching 1-+6 objects
make an = set by
matching, by
counting

oral

activities for 6-* 10
with objects

oral, read/write oral, read/write

for l-> 18, all types but
inconsistent language

for 1 —> 18 all types in-
cluding inconsistent
language for l-> 1,000

read pictographs 1 -> 10 for 1 -> 18

5. Algebraic Problem Solving

situation equations for

a) Chunks 2, 3, 4 a) Oral, object, and
finger direct mod-
eling problem solv-
ing in conceptual
Chunks 2 and 3 to
prepare for 5) in
kindergarten; easy
problem types

a) Continue oral, ob-
ject, finger, and
drawing problem
solving in concep-
tual Chunks 2 and
3: write and solve
+/- equations for
easy problem types

a) Link situations,
math drawings and
equations for
Chunks 2, 3, 4; all
problem types ex-
cept Unknown Start
and Compare In-
consistent language

a) Link situations,
math drawings
and equations for
Chunks 2, 3, 4 for
all problem types;
also all types for
two-digit numbers



b) two-step, extra
information problems

b) begin these b) all types

c) arithmetic principles:
commutativity, +/- as in-
verse operations
(subtraction as an
unknown addend),
associativity

subtraction as taking
away a break-apart
partner

discuss all of these for
totals <20; notate with
letters

discuss all of these for
totals < 1,000; notate
with letters

6. Geometry

2D shapes: compose, see shapes;
decompose squares, compose,
arrays, patterns; decompose shapes
A : pattern blocks

Transformation geometry: turn shapes

cut out and draw
more complex pat-
terns and composi-
tions with squares
and pattern blocks

turn + draw

draw on square
arrays; draw pattern
blocks on grids

rotate and draw

what lengths make
a triangle?

rotate and draw
rotate, reflect, translate

2D^3D: nets
3D->2D: drawings from
viewpoints

Relative position,
navigation in space

block play, spatial lan-
guage

GO
CO

see surfaces of cube,
boxes (rectangular
prisms)

body in space
activities, spatial
language

shapes; flip and draw
shapes

cube: many nets for
a cube

midpoints of shapes,
diagonals

buildings from
cubes—> drawings
from 5 views
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Coherent conceptual chunk Pre-K: Age 4/5 Kindergarten: Age 5/6 Grade 1 Grade 2

7. Measure

Money penny as 1 <t

Length

Time

nickel as 5 pennies
dime = 10 pennies

experience cm
and inch lengths

make amounts with
pennies, nickels,
dimes; $1, $10

draw inch and cm
lengths for objects;
count inches,
centimeters

RN,D,Q;$1,$10,$100

measure using in, ft,
yd, cm, dm, meter;
measure perimeters

time to 1 min; 1/4, 1/2
past and before

8. Graphing Data

Pictographs (social studies,
science): use for comparing

pictographs for
numbers 1 to 10

pictographs for
numbers 1 to 20

pictographs for
comparing

and for other +/- problems

Number line, bar graph number line, bar graph

Table table: 1 row or column table: 2 rows and 2
columns

Note. We as a nation lose a great deal of learning time if we must accomplish the previous year's learning goals. The goals in this table assume mastery by all
at each grade without repetition. We need substantive and substantial math learning in day care, half-day Pre-K and kindergartens, and full-day kindergartens to
close that gap in Grade 1.
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FIG. 5.3. Core connections for meaningful mathematics standards.

ence between pictographs (where the objects each fill a square and the
squares—the objects—are numbered) and bar graphs (where a length
scale is used and the numbers are at the end of the little length marks). For
Pre-K, kindergarten, and Grade 1, discrete object models are more devel-
opmentally appropriate than is the number line. A discrete object number
sequence model like a board game where numbers appear on each
square is more accessible than the number line. The number line is impor-
tant when fractions are introduced (in Grade 3, under our core grade-level
concepts principle), because one can no longer label in the middle of
lengths because that is now a fractional part that requires its own label.

Understanding money can build upon and contribute to deep under-
standing of our number systems, so 5<t and 10<t (the nickel and dime) can
be understood first (see Table 5.2 for age/grade levels). Mastery of money,
especially of coins, takes a great deal of time because children have to
learn all of the different kinds of counting (by fives, by 10s, by 25s), learn to
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shift among types of counting, and learn how the types of counting match
with the coins in the face of misleading size cues (e.g., the dime is smaller
than the penny and the nickel but the dime has a larger value). The place-
ment of money topics in Table 5.2 reflects my extensive classroom-based
research concerning when these topics are accessible and sensibly re-
lated to other appropriate grade-level topics.

Time is like many topics in U.S. curricula: It appears every year, and each
year one more small piece is supposed to be learned (e.g., time to the hour
in kindergarten, time to the hour and half hour in first grade, and time to
five minutes in second grade). As with other types of measures, time takes
special equipment (which poorer schools do not have) and considerable
class time to learn deeply with meaning. It is more readily accessible at
Grade 2, and for these reasons we suggest postponing time as a topic until
it can be done deeply (time to single minutes) in Grade 2.

There are important relations across these eight chunks. Emphasizing
these can provide coherence to mathematical experiences. For example,
comparing and matching are used in pictographs (and in bar graphs that
are scaled versions of counted pictographs), and pictographs and length
drawings can help make comparing situations clearer. All kinds of addi-
tion/subtraction questions can be asked of tables and of graphed data.
Building meaning and coherence is the most important task in teaching
math. Helping children see all types of relations within and across these
eight conceptual chunks is a foundational goal.

The design principles in Table 5.1 summarize issues discussed in Part B
concerning results of research and describe relationships among the eight
chunks. Of course, how teaching is carried out is crucial for achieving
mastery by all. Process standards to guide such teaching are listed in Table
5.3. The top group is the NCTM Standards. The others emerged from dis-
cussions at the smaller conference following the large May 2000 confer-
ence on Pre-K to Grade 2 standards. Figure 5.3 outlines some further
discussion at the smaller conference concerning the necessary
connectedness of standards for early childhood. What children learn, how
they learn it, and how learning is assessed (particularly how teacher as-
sessment can be used to improve teaching) are fundamentally intercon-
nected. The connections specified at the bottom of Fig. 5.3 are important
at all ages, but they feel absolutely central for young children just begin-
ning school experiences. Children must learn from the beginning that
mathematical learning and teaching are about making sense of their
world. The formal mathematical language, notations, and methods must
be connected to children's everyday informal experiences to facilitate
continual sense making. The ideas in these process standards are dis-
cussed more in the Equity Pedagogy developed in my classroom research
(see Fuson et al., 2000).

The process goals are particularly important when teaching particular
strategies. Some mathematics educators are so concerned that chil-
dren's natural strategies like counting on and counting up to will be



TABLE 5.3
Process Standards for Pre-K to Grade 2

General Process Standards

Problem Solving

Representation

Reasoning

Communication

Connections

Mathematical Processes Used Across Domains

Organizing information

Patterning

Decomposing/composing

Unitizing

Describing one's thinking

Learning and using the language of mathematical situations

Orienting Mathematical Questions for Children to Learn to Use

Where is it in my world?

How can I describe it?

How can I represent it?

What happens when I break it apart?

What happens when I put it together?

What happens when I compare it?

What kind of quantity is it?

What kind of units are there?

Do I see a pattern?
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taught rotely and imposed on children before they are ready that they ad-
vocate not teaching strategies at all. My experience after helping teach-
ers teach thousands of first graders to count on for addition and count up
to for subtraction and for mystery addends is that teaching such strate-
gies helps to close the gap between more-advanced and less-advanced
students and it makes subtraction easier than addition. Of course, not all
students can do these strategies when they are first discussed. The strat-
egies can come from the more-advanced students who have already in-
vented them. These strategies do need to be related to the groups of
quantities involved. For example, for 8 + 6, one can make groups of 8 and
6 and then count the group of 8. You discover that the last counting word
you say is "eight." So children can see that they do not have to count from
1 to 8; they can abbreviate the count and begin the count of the total at 8
and count on 6 more (keeping track with fingers or other means of the six
more counts): "8,9,10,11,12,13,14. "Many children when first beginning
to count on do not trust that final cardinal number and need to do a run-
ning quick count "12345678" before counting the six added on more
slowly: "9, 10, 11, 12, 13, 14." For subtraction such as 14 - 8, taking away
the first 8 facilitates counting up to: "Take away 8, so now 9,10,11,12,13,
14, that's 6 left from the 14." If sense making is emphasized continuously,
and children are supported but not forced to use strategies, the dangers
of learning rotely can be minimized and less-advanced children can
learn to use more effective strategies.

A chief assumption of mastery goals learned by all children is that all
children are given an opportunity to learn the mastery goals in a
sense-making way. Children who are not reached in the pre-
kindergarten years may enter kindergarten with much less relevant
mathematical experience. They may require extra time and support
during the kindergarten year to catch up and learn the mastery goals.
My experience is that rich structured kindergarten experiences can en-
able many children to catch up, especially in a full-day program. How-
ever, for both mathematical and literacy goals, it may make sense to
form 3-year programs for some children to learn deeply the kindergar-
ten and Grade 1 goals. If children enter second grade as nonreaders, it is
difficult to catch up and accomplish Grade 2 goals in math or in literacy.
For children who are in Head Start and other prekindergarten programs,
it is essential that their programs be organized to meet the pre-
kindergarten goals. Efforts must also be made to reach parents who do
not send their children to preschools so that they can carry out mathe-
matical activities at home.

It should be underscored that the concentration of time and energy on
these eight chunks enables considerably more to be learned in all areas by
the end of Grade 2 than is the case at present. Thus the foundation will be
stronger and will also enable more substantive mathematics to be learned
in Grades 3 and above.
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CONCLUSION

A new more coherent view of goals, standards, and testing for Pre-K
through Grade 2 is necessary to achieve the new more complex goals of
mathematics learning and teaching necessary for the 21 st century. These
goals, standards, and testing require focused concentrated ambitious
grade-level topics that build across the age levels. Replacing "standard-
ized" testing with mastery testing linked to coherent and ambitious
grade-level goals can help focus everyone's energies on the same devel-
opmentally appropriate teaching/learning goals and facilitate mastery for
all. Some children may need additional learning time and support to
achieve mastery goals. This is more equitable than the present practice of
allowing children to move on with quite different amounts of learning
with some falling increasingly behind. Instruction organized into three
phases—orienting, supporting learning, and long-term remember-
ing—can facilitate learning by all. Real-world situations, problem solving,
and computation need to be continually intertwined to achieve
sense-making and computational fluency. Children can be helped to
learn more-advanced and rapid single-digit methods that can also be un-
derstood. Accessible multidigit addition and subtraction algorithms can
enable more children to learn with understanding and achieve high levels
of mastery. Finally, a specific proposal to organize the Pre-K through
Grade 2 curriculum into eight research-based coherent chunks was out-
lined. This permits deep coherent learning in each of the areas with
strong articulation and building across the grade levels. All of the attrib-
utes summarized here can coalesce into truly achieving mastery by all
children of ambitious world-class goals by the end of Grade 2.
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6
The Role of Psychological Research
in the Development of Early
Childhood Mathematics Standards

Arthur J. Baroody
University of Illinois at Urbana-Champaign

How important is it for early childhood and special educators to be knowl-
edgeable about children's mathematical teaching and learning? Current
teaching practices and teacher-training efforts suggest that it is not a prior-
ity or even important. Consider, for instance, that at the University of Illi-
nois at Urbana-Champaign (UIUC), elementary education majors are
required to take two mathematics methods courses for a total of six cred-
its (in addition to two mathematics content courses required of all ma-
jors). In contrast, early childhood education majors take a single
combination mathematics-science methods course. In effect, they take
1.5 credits of mathematics methods, less if science education faculty
teach the course. Even more grievously, before the Illinois State Board of
Education revised certification requirements effective 2002, special edu-
cation majors were not required to take even a single mathematics meth-
ods course. (They are now required to take one.) Unfortunately, an
inadequate preparation for teaching young and special children mathe-
matics is not unique to the early childhood and special education pro-
grams at UIUC.

The premise of this chapter is that early childhood and special education
teachers need a powerful and practical framework for teaching young
children and those with special needs. This framework should include a
deep understanding of the following:

149
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• The mathematics taught and how it relates to subsequent mathe-
matics instruction (content).

• Effective techniques for teaching mathematics (methods).
• The development of children's mathematical thinking and knowl-

edge (mathematical psychology).

In this chapter, I focus on the third component in this list because it is the
area of my research specialization. In Part I, I draw some conclusions
about the role of psychological research in changing early childhood
mathematics instruction. In Part II, I discuss why and how the early child-
hood standards should help early childhood and special education teach-
ers construct a powerful developmental framework. Next, I outline how
this could be accomplished in a practical manner. I end the chapter with a
conclusion about the importance of ensuring a truly professional training
for early childhood and special education practitioners—one that in-
cludes a sound developmental framework.

PART I: THE ROLES OF PSYCHOLOGICAL
RESEARCH IN IMPROVING EARLY CHILDHOOD

MATHEMATICS INSTRUCTION

Psychological theory and research can play at least two important roles in
promoting mathematics education reform: (a) changing beliefs about the
learning and teaching of young children and (b) providing a powerful devel-
opmental framework for developing and guiding better instructional prac-
tices. In this part of the chapter, I note how recent psychological research has
helped foster beliefs that early childhood mathematics instruction is possi-
ble and that a "child-centered" approach is not only feasible, but desirable. I
then delineate the reasons why early childhood and special education
teachers need a powerful developmental framework. Next, I describe an ex-
ample of how recent psychological research can help mold beliefs about
how young children are taught mathematics and why knowledge of such re-
search is necessary to teach early childhood mathematics effectively.

Fostering Beliefs About the Possibility and Nature
of Early Childhood Mathematics Learning

In this section, I discuss (a) the impact psychological research has already
had on educational leaders' beliefs about young children's mathematical
potential and how best to foster this potential and (b) some impediments
to reaching a wider audience.

Recognition of Young Children's Potential

Recent research indicates that preschoolers do have impressive infor-
mal mathematical strengths in a variety of areas. In particular, it appears



6. ROLE OF RESEARCH 151

that young children—despite important limitations—are capable of un-
derstanding much more about number and arithmetic than previously or
commonly thought possible.

Recognition by Educational Leaders. In her comments on the
National Council of Teachers of Mathematics (NCTM) symposium
"Linking Research and New Early Childhood Mathematics Standards"
(April 11, 2000), Maggie Myers correctly noted that psychological research
has already had an impact on educational, governmental, and industrial
leaders, namely promoting the belief that mathematics development
should be an important component of early childhood education and
prompting efforts to create standards to guide this development. For
example, on page 79 of chapter 4 ("Standards for Grades Pre-K-2") of the
Principles and Standards for School Mathematics (PSSM), the following
point is emphasized: "Teachers should not underestimate what young
students can learn" (NCTM, 2000). In brief, psychological research has
created a climate where discussing and developing early childhood
mathematics standards is now possible.

The Challenge Remaining. What remains is, perhaps, a greater
challenge—changing the belief of teachers, school administrators, and
the public at large about mathematics learning in early childhood. This
task is made more difficult because elementary education majors, overall,
have relatively high levels of mathematics anxiety and mathematics
avoidance (Hembree, 1990) and those of early childhood and special
educators may be particularly high (see, e.g., Ashcraft, Kirk, & Hopko,
1998, for a review of the literature). The difficulty of the task is
compounded by the largely negative attitude toward mathematics by the
general public (e.g., Ashcraft etal., 1998; McLeod, 1992). Nevertheless, it is
essential that early childhood and special education teachers and their
supporting cast (which should include administrators and parents) need
to be informed about young children's mathematical capabilities.

Recognition of How Best to Foster Young
Children's Potential

It is important not only to change teachers', other educators', and the
public's view of young children's mathematical potential, but to change
their views about how it can be fostered. Following, I briefly summarize
four different views of mathematics instruction and then discuss the chal-
lenge of changing the conventional or traditional view of teaching.

Four Views of Mathematics Teaching. Table 6.1 summarizes
four qualitatively different approaches to instruction. The skills approach



TABLE 6.1
Four Approaches to Mathematics Instruction

Instructional
Approach

Skills
Approach

Philosophical View

Name Nature of Knowledge

Dualism Right or wrong with no
shades of gray: There
is one correct procedure
or answer.

View of Authority

Absolute external
authority: As the expert,
the teacher is the judge
of correctness. Proce-
dures or answers that
differ from those advo-
cated by the teacher
are wrong and not tol-
erated. Teacher pro-
vides definitive
feedback (e.g., praise
for the correct answer).

Teaching Style

Completely
authoritarian and
extremely teacher
centered: Direct
instruction
(teaching by
imposition).

Aim of Instruction

Foster routine
expertise: the rote
memorization of ba-
sic skills (arithmetic
and geometric facts,
definitions, rules,
formulas, and pro-
cedures).

Conceptual Pluralism Continuum from right
Approach to wrong: There is a

choice of possible but
not equally valid proce-
dures or answers.
Objectively, there is
one best possibility.

Tolerant external
authority: Teacher
accepts diverse proce-
dures and answers but
strives for perfection,
namely, learning of the
best procedure or an-
swer. Teacher pro-
vides feedback (e.g.,
praises all ideas, par-
ticularly the conven-
tional one).

Semiauthoritarian
and teacher
centered: Direct
and semidirect
instruction
(teaching by "care-
ful" imposition).

Foster adaptive
expertise: the
meaningful
memorization of
facts, definitions,
rules, formulas,
and procedures.



Investigative
Approach

Instru-
mentalism

Problem-
Solving
Approach

Many right choices:
There is a choice of
possible procedures
or answers and often
many are good.

Extreme No right or wrong:
Relativism There are many

possible, equally
valid possibilities.

Open internal authority:
Teacher or student
remains committed to
a method or viewpoint
as long as it is effective.
Teacher responds to
incorrect procedures
or answers by posing a
question, problem, or
task that prompts stu-
dent reflection.

No external authority:
Teacher and each stu-
dent define his or her
own truth. Children
evaluate their own
conclusions.

Semidemocratic
and student cen-
tered: Semiindirect
instruction (guided
participatory
democracy).

w

Completely
democratic and
extremely student
centered: Indirect
instruction (teach-
ing by negotiation).

Foster all aspects of
mathematical profi-
ciency: productive
disposition (e.g., in-
terest, confidence
and constructive be-
liefs about learning
and using mathe-
matics), conceptual
understanding (the
basis for adaptive
expertise), compu-
tational fluency, and
strategic mathemati-
cal thinking (the ca-
pacity to conduct
mathematical in-
quiry including
problem solving
and reasoning).

Foster mathemati-
cal thinking—the
ability to conduct
mathematical
inquiry.



Focus of
Instruction

Teacher's/Students'
Roles

Organizing Principle Methods

Skills
Approach

Conceptual
Approach

Investigative
Approach

Procedural
content
(e.g., how
to add
multidigit
numbers).

Procedural
and con-
ceptual con-
tent (e.g.,
why you
carry when
adding
multidigit
numbers).

Procedural
content,
conceptual
content,
and the

Teacher serves as a di-
rector: an information
dispenser (informer)
and taskmaster (man-
ager). Because children
are viewed as unin-
formed and helpless,
students must be
spoonfed knowledge.

Teacher serves as a
shepherd: information
dispenser (informer)
and up-front guide
(conductor). Because
children are seen as ca-
pable of understanding
mathematics if helped,
they are engaged in
quasi-independent ac-
tivities and discussions.

Teacher serves as a
mentor: activity orga-
nizer (instigator) and
guide-on-the-side (mod-
erator). Because

Bottom-up (logically):
Sequential instruction
from most basic skills
to most complex skills
such as problem
solving.

Bottom-up (psycho-
logically): Sequential
instruction based on
the readiness of stu-
dents to construct
understanding.

Top-down (guided):
Teacher usually poses
a "worthwhile task"
(one that is challenging

•Teacher lectures and demonstrates.
•Textbook-based and largely symbolic.
• Children work in isolation.
• Practice with an emphasis on written,
sterile worksheets.

• Little or no use of manipulatives or tech-
nology.

• Didactic instruction supplemented by
guided discovery-learning.

•Textbook-based, but teacher uses, e.g.,
meaningful analogies and concrete
models to explain procedures.

•Whole-class, small group, and individual
instruction.

• Children imitate manipulative
procedures demonstrated by the teacher.

•Various methods with an emphasis on
indirect techniques that involve students
in exploring, conjecturing about, and de-
bating ideas (e.g., semi-guided discov-
ery learning).



processes
of mathe-
matical in-
quiry
(problem
solving,
reasoning,
conjectur-
ing, repre-
senting and
communi-
cating).

children have informal
knowledge and an in-
herent need to under-
stand, they are capable
of inventing their own
solutions and making
(at least some) sense of
mathematical situations
themselves (i.e., stu-
dents are engaged in
semi-independent ac-
tivities and discus-
sions).

and complex) as way
of exploring, learning
and practicing basic
concepts and skills;
teacher may take ad-
vantage of teachable
moments (e.g., ques-
tion or problem posed
by student).

•Projects, problems, everyday situations,
activities, science experiments, chil-
dren's literature, math games, etc.,
create a need for learning and practicing
math; textbooks serve a supporting role
(e.g., a source of worthwhile tasks and
resolving disagreements over definitions).

•Children often work together in groups.
•Students encouraged to invent, share, and
streamline their own concrete models
and, later, written procedures (including
the conventional one or equally or more
efficient nonconventional ones).

•Practice done purposefully.
• Use of technology is a key aim and cen-

tral to many learning tasks.

Problem-
Solving
Approach

Processes
of mathe-
matical in-
quiry:
problem
solving,
reasoning,
conjectur-
ing, repre-
senting,
and com-
municating.

Teacher serves as a
partner: participant,
monitor, and devil's
advocate. Students
engage in relatively
independent activities
and discussions.

Top-down (unguided):
Class tackles problems
of their own choosing,
whether or not stu-
dents have received
formal instruction on
the content involved.

•Open-ended or unstructured discovery
learning.

•Content instruction done incidentally as
needed; little or no use of textbooks.

•Students encouraged to invent, share,
and streamline their own concrete
models and, later, written procedures.

p—> Note. Based on Baroody with Coslick (1998) and Baroody (2003). Copyright © 1998 and 2003, respectively by Lawrence Erlbaum Associates. Adapted by permission.
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is the traditional lecture-and-drill approach, which Brownell (1935)
labeled "drill theory." The conceptual approach is essentially what
Brownell called "meaning theory" and embodied his ideas for reforming
the traditional skills approach. The problem-solving approach is basically
what Brownell called "incidental-learning theory," which was embodied
in John Dewey's early progressive-education movement and later in "Free
or Open Schools" (e.g., Silberman, 1973) and some Piagetian (radical
constructivists') curricula (e.g., Furth & Wachs, 1974; Neill, 1960). The
investigative approach, in effect, is a composite of what Brownell called
the meaning and incidental-learning theories. This purposeful,
meaningful, and inquiry-based approach embodies the NCTM's (1989,
1991, 2000) standards and "developmentally appropriate practices"
(Bredekamp & Copple, 1997). (See, e.g., Baroody, 2003, and Baroody with
Coslick, 1998, for a detailed comparison of these four approaches.)

Both psychological and educational research and practical consider-
ations suggest that the investigative approach is the best bet for promoting
all aspects of mathematical proficiency: conceptual understanding
(well-connected or meaningful learning), computational fluency (the effi-
cient, appropriate, and flexible use of basic skills), strategic mathematical
thinking (e.g., problem solving and reasoning), and a productive disposi-
tion (e.g., the interest, confidence, and persistence to learn mathematics
and to solve challenging problems; Baroody, 2003; Baroody with Coslick,
1998). (For a detailed discussion of mathematical proficiency, see Kilpat-
rick, Swafford & Findell, 2001; Schoenfeld, 1985, 1992.) Furthermore, al-
though more research is needed to settle the issue, there is some reason to
believe that even children with severe learning difficulties might benefit
from the investigative approach (Baroody, in press; see Baroody, 1996,
1999, for reviews of the literature).

The Challenge. As Ginsburg, Klein, and Starkey (1998) noted,
psychological research has had and can have an important impact on
educators' and the public's view of how mathematics should be taught.
Unfortunately, its impact on educational practice has not, to date, been
entirely positive. Indeed, Ginsburg et al. argued that although William
Brownell (1935) won the hearts and minds of mathematics educators with
his meaning theory, Thomdike (1922) won the hearts and minds of
practitioners with his drill theory. Many teachers and other adults cling to
the view that teaching involves talking and learning involves imitating and
practicing facts, definitions, procedures, and formulas until they are
memorized by rote. Indeed, many teachers and other adults believe that
mathematics should be taught the way they were taught, even if they
found it unappealing, anxiety-provoking, and/or largely unhelpful. In brief,
the conventional view of mathematics is the skills approach, not the
conceptual approach, let alone the more effective but more complicated
standards-based investigative approach. The challenge remaining is
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convincing teachers and the public at large that the standards-based
investigative approach is more effective than the traditional skills
approach, or even the conceptual approach. (See Baroody, 2003, for a
comparison of the investigative and conceptual approaches and why
reform efforts based on the latter may not be effective.)

Reasons Teachers Need a Deep Understanding
of Mathematical Psychology

Changing the beliefs of teachers (e.g., convincing them of the merits of a
child-centered approach), however, is not enough. Indeed, many early
childhood educators already believe in such an approach. Early child-
hood and special education teachers need a powerful and practical
framework in order to make the innumerable decisions needed to imple-
ment the investigative approach effectively. In the following sections, I
outline the general rationale for why teachers need an extensive knowl-
edge base, one that includes a deep understanding of mathematical psy-
chology. I then outline three important ways this developmental
framework can help educators.

General Reasons Why Early Childhood Educators Need
a Powerful Developmental Framework

John Dewey (1963), the father of the progressive-education movement,
recognized that his early efforts to implement a child-centered approach
were not successful and concluded that simply providing children experi-
ences in the form of free play or unstructured discovery learning (the prob-
lem-solving or incidental approach) did not ensure learning. He came to
the following conclusions:

1. Educational reform cannot simply be a knee-jerk reaction to tradi-
tional instruction (the skills approach). That is, new teaching methods
cannot be substituted for traditional methods simply because they are dif-
ferent from the latter. New teaching approaches, methods, or tools must
have their own (theoretical, empirical, and practical) justification. The
PSSM (NCTM, 2000), particularly chapters 1 ("A Vision for School Mathe-
matics") and 2 ("Principles for School Mathematics")—along with previ-
ous NCTM (1989, 1991, 1995) standards documents—provides a
well-articulated justification for current reform efforts.

2. Teachers must strive to provide educative experiences (experiences
that lead to learning or a basis for later learning), not mis-educative experi-
ences (experiences for experience's sake and that may impede develop-
ment). This sentiment is reflected in the following statement in the PSSM
(NCTM, 2000): "High-quality learning results from formal and informal ex-
periences during the preschool years. 'Informal' does not mean un-
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planned or haphazard" (p. 75).' It is further reflected in the "curriculum
principle": "A curriculum is more than a collection of activities; it must be
coherent, focused on important mathematics, and well articulated across
the grades" (NCTM, 2000, p. 14).

3. Educative experiences result "from an interaction of external fac-
tors, such as the nature of the subject matter and teaching practices, and
internal factors, such as a child's [developmental readiness] and inter-
ests" (Baroody, 1987, p. 37). The importance of both external and internal
factors is emphasized throughout the PSSM (NCTM, 2000). For instance,
the following quotes are clear allusions to the latter factor: "Teachers of
young students ... need to be knowledgeable about the many ways stu-
dents learn mathematics" (p. 75). "Teachers must recognize that young
students can think in sophisticated ways" (p. 77).

Teachers Need to Understand the Whys and Hows of the
Investigative Approach. In regard to Item 1 from the preceding

list, early childhood and special education teachers need to understand
the rationale for the reform movement (the standards-based investigative
approach) and its recommended methods. This includes the
psychological reasons why a purposeful, meaningful, and inquiry-based
approach makes more sense than a traditional skills approach, or even the
conceptual approach (as embodied, e.g., in the "California Standards,"
California Department of Education, 1999; see, Baroody, 2003, in press,
and Baroody with Coslick, 1998, for a more complete discussion of this
argument). Such knowledge will permit educators to substitute innovative
methods for traditional ones in a thoughtful and reflective manner—that
is, to use new educational tools flexibly, selectively, and adaptively.
Parenthetically, it will also enable teachers to justify their methods
effectively to interested others such as parents.

Teachers Need to Be Able to Critically Analyze Activities. In
regard to Item 2, educators must be provided with more than a bag of
tricks. They must be helped to construct the knowledge that enables them
to distinguish between worthwhile activities and those that are not. This
requires an extensive understanding of young children's mathematical
development. For instance, the still highly useful Mathematics Their Way
program (Baratta-Lorton, 1976) includes a number of physical activities
(e.g., hand clapping, foot stomping, and finger snapping) to "provide

'A popular view is that "play is children's work" (NCTM, 2000, p. 74; see also Bruner, Jolly,
& Sylva, 1976). Dewey's (1963) distinction between educative and mis-educative experience
can be interpreted to mean that not all play is the former—of equal value developmentally.
Although this qualification is important for practitioners to keep in mind, common sense dic-
tates that play for the sake of fun is valuable for young children and has a place in early child-
hood education. In other words, some balance between play for learning and play simply for
joy seems a reasonable goal for young children.
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experience saying one number with one motion" (p. 90). This one-to-one
correspondence between a physical action such as finger pointing and
uttering a count term is a key basis for object counting (enumeration).
Early childhood teachers who are knowledgeable about developmental
research would know that children typically master this prerequisite for
enumeration quite early—about 2 to 3 years of age. Thus, they might
choose the Mathematics Their Way activities just described as
precounting lessons for toddlers and children hampered by a
developmental delay, because it would be an educative experience for
them. They would not choose to do this activity for most 4- to 6-year-olds,
because it would be an unnecessary and hence, a mis-educative
experience for these children (Baroody with Coslick, 1998).

Teachers Must Understand Children's Knowledge and
Thinking in Order to Provide Worthwhile Activities. Item 3

from the earlier list underscores the point made previously in this
chapter's introduction. As the example in the preceding paragraph
illustrates, the powerful and practical framework necessary to make
effective teaching decisions must include knowledge of mathematical
psychology (internal factors) as well as knowledge of content and
methods (external factors). By understanding what young children know
about these foundational concepts and what they can do with them,
teachers can better incorporate developmentally appropriate activities to
nurture their students' mathematical development.

What Mathematical Psychology Can Tell Early Childhood
Educators

A deep understanding of mathematical psychology can help educators
decide what to teach, when to teach it, and how to teach. This point is illus-
trated by the example discussed in the next section.

What to Teach. As documented in subsequent chapters, young
children display a surprising array of informal mathematical competencies.
For example, not only do they seem ready to solve simple nonverbal and,
later, verbal addition and subtraction problems, many preschoolers also
seem capable of solving simple division (fair-sharing) problems. Not only do
they seem capable of reasoning about whole numbers, but they may be
capable of reasoning qualitatively about fractions.

When to Teach. As the Math Their Way example about one-to-one
counting discussed in the previous section demonstrates, a familiarity
with developmental psychology can be indispensable deciding when a
particular concept or skill should be the focus of instruction.
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How to Teach. Mathematical psychology can also provide
educators invaluable clues about how to teach young children, in general,
and how to help them learn specific skills, concepts, and inquiry
competencies in particular.

A Case in Point

Recent findings regarding children's informal addition strategy of count-
ing on (e.g., for 5 + 3, counting: "5; 6 [is one more], 7 [is two more], 8 is
three more]") illustrates how psychological research can be used to jus-
tify the investigative approach in efforts to change beliefs about early
childhood instruction and to illustrate a general (constructivist) teaching
principle. That is, it can help teachers, administrators, and parents recog-
nize how children can construct meaningful mathematical knowledge in
a purposeful and inquiry-based manner, and why this is ultimately more
beneficial to students than the traditional lecture-and-drill method. The
recent psychological research regarding counting on can also provide
specific guidelines for facilitating key achievements in young children's
informal addition development by specifying what to teach, when to
teach it, and, perhaps most important, how to teach it.

The General Principle: Guiding Children's Mathematical
Discoveries

Because psychological research has brought the relatively efficient
counting-on strategy to the attention of educators, various efforts have
been made to incorporate instruction on it into early childhood mathemat-
ics curricula and textbooks. Often, these efforts involve direct instruction,
such as modeling by a teacher or a textbook example and imitation by stu-
dents (see, e.g., p. 92 of Eicholz et al., 1991).

I agree with Les Steffe (2000) that imposing such a strategy on children
does not make sense. Children who do not understand the underlying
conceptual basis for this strategy may learn counting on by rote but not ap-
ply it when needed (i.e., they may forsake its use in favor of a more mean-
ingful strategy). Such children may also misapply the meaningless strategy
by, for instance, starting the keeping-track process too soon (e.g., for 5 + 3,
counting: "5 [is one more], 6 [is two more], 7 [is three more]—the sum is
7"; Baroody&Tiilikainen, 2003; Hopkins, 1998). Other children may simply
reject the strategy outright and not use it.

Consider, for instance, the case of Felicia (Baroody, 1984), who typically
used a counting-all procedure (e.g., for 3 + 5, counted: "1, 2, 3, 4, 5; 6 [is
onemore], 7 [is two more], 8 [is three more]—the sum is 8"). Although this
child used an abstract counting-on or counting-on-like strategy with large
addends (e.g., for 25 + 3, counted "25, 26, 27, 28" or "20, 21, 22, 23,24, 25,
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26,27,28"), when counting on was modeled for her using single-digit com-
binations, she noted that you can't add that way. Furthermore, she per-
sisted in using counting-all strategies with such combinations, even after
several demonstrations.

The case of Brianna illustrates the possible conceptual barriers to ac-
cepting and adopting a counting-on procedure (Baroody & Tiilikainen,
2003; Baroody, Tiilikainen, & Tai, 2000). This kindergartner consistently
considered as "smart" a concrete counting-all strategy (e.g, for 3 + 5,
count out three items and next five items to represent the addends 3
and 5, respectively, and then count all eight items put out to determine
the sum). However, she considered the counting-on strategy as "not
smart." For instance, when this strategy was modeled using 6 + 8, she
explained, "You're wrong. You started [counting the second addend] at
nine. You are supposed to start at one." This explanation is consistent
with Fuson's (1992) argument that to invent a verbal or abstract strategy,
children must recognize that both addends can be represented in a sin-
gle count: "the embedded integration of both addends." For the other
demonstration of counting on with 7 + 5, Brianna commented, "Maybe
we should count out seven blocks [represent the first addend]." This
explanation is consistent with Fuson's observation that children must
recognize that it is unnecessary to produce the first addend sequence:
"the embedded cardinal-count principle."

Nevertheless, I also agree with Karen Fuson's (2000) commentary on
Steffe's (2000) paper—that it can be helpful and sometimes even neces-
sary to promote the learning of counting on. Fortunately, recent research
suggests a way that teachers canguide children's invention of this proce-
dure, one that involves helping students make the conceptual break-
through needed to understand the procedure. Put differently, the
approach takes into account the concerns raised by both Steffe and
Fuson.

Specific Guidance About What, When, and How

Baroody (1995) found that children with normal or below-normal IQs
typically began counting on soon after discovering the number-after rule
for n + 1 combinations: "The sum of a n + 1 combination is simply the
number after n in the counting sequence" (e.g., the sum of 5 + 1 is the
number after five: six). Braten (1996), likewise, found this pattern with
children with learning difficulties. Apparently, this induced rule provided a
conceptual basis or scaffold for counting on. For example, children seem
to reason that if the sum of 5 + 1 is the number after five in the counting se-
quence, then the sum of 5 + 3 must be three numbers after five in the
counting sequence: "six, seven, eight." Furthermore, as might be ex-
pected if the number-after rule served as a scaffold for inventing counting
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TABLE 6.2

Adding by Counting on—Specific Guidelines About What,
When, and How to Teach

Developmental prerequisite
for counting on

Addition strategy
of counting on

What to teach:

When to teach:

How to teach:

The number-after rule for
n+ 1 combinations.

Once children have
developed and mastered the
number-after skill (e.g., can
efficiently specify that after
five comes six, without
counting from one).

Encourage children to dis-
cover and to discuss (share)
the connection between
their number-after knowl-
edge and n + 1 combina-
tions by providing
purposeful opportunities to
compute n + 1 sums and to
look for shortcuts.

The extension of the number-
after for n + 1 combinations
rule to larger (n + m)
combinations.

Once children can consis-
tently use their existing
number-after knowledge to
answer any n + 1 combina-
tion.

Encourage children to dis-
cover and to discuss (share)
the connection between
their number-after rule for
n + 1 combinations by pro-
viding purposeful opportuni-
ties to compute somewhat
larger n + m sums and to
look for shortcuts.

on, the majority (6 of 10) of children described in the Baroody (1995) re-
port first used this strategy (or first extended this strategy beyond n + 1 or 1
+ n combinations) with n + 2 or 2 + n combinations, which require mini-
mal attention to the keeping-track process.

This research suggests the specific guidelines in Table 6.2 for helping
children invent counting on for themselves (Baroody with Coslick,
1998). Prompting children to discover patterns and relations and then
apply them in somewhat novel contexts is psychologically sound be-
cause it encourages them to construct their own understandings and
procedures (Steffe, 2000). It is pedagogically sound because it involves
children in mathematical inquiry and thinking (e.g., looking for pat-
terns, using logical reasoning, communicating with peers). This ap-
proach also allows teachers to discharge their responsibility of
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promoting more advanced concepts and procedures in a nondidactic
but a reasonably efficient manner (cf. Fuson & Secada, 1986; Secada,
Fuson, &Hall, 1983).

CONCLUSIONS

In brief, as the discussion of how to teach counting on illustrates, psycho-
logical research can help make a powerful and convincing case for the
standards-based investigative approach by illustrating how it can be ef-
fective in promoting the learning of specific content, including basic skills
(facts, procedures, and formulas), concepts or principles, and inquiry
competencies (e.g., inductive and deductive reasoning; see Baroody
with Coslick, 1998, for additional examples). Psychological knowledge
can also be invaluable to educators as a guide for how to implement the
investigative approach, in general, and to how to use it to teach specific
content, in particular. It can also provide teachers the detailed knowledge
about what, when, and how to guide the development of these specific
mathematical competencies.

Even so, William James' (1939) caution to educators about using psy-
chological knowledge is still relevant:

I say moreover that you make a great, a very great mistake, if you think that
psychology, being the science of the mind's laws, is something from
which you can deduce definite programmes and schemes and methods
of instruction for immediate schoolroom use. Psychology is a science,
and teaching is an art, and sciences never generate arts directly out of
themselves. An intermediary inventive mind must make the application,
by using its originality, (pp. 7-8)

As illustrated in the "Number and Operations" chapter (Baroody, chap.
7, this volume), psychological knowledge is also constantly changing as
more effective measures are devised, new facts are discovered, and theo-
ries change to accommodate the new evidence. Moreover, psychological
findings are not the only basis for making educational decisions. Even if
young children are capable of constructing a particular concept, such as
fraction addition and subtraction, it does not necessarily follow that it
should be taught. Educators must weigh the relative advantages and dis-
advantages of doing so because, among other practical considerations,
teaching time is limited.

PART II: USING STANDARDS AS A VEHICLE
FOR PROFESSIONAL DEVELOPMENT

In this part of the chapter, I make a case for using national and state early
childhood standards as basis for helping educators, including teachers, su-
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pervisors, and curriculum developers construct the powerful developmen-
tal framework necessary to devise or implement effective child-centered
mathematics instruction for all young children. I conclude with comments
on the roles detailed psychological knowledge can and should play in early
childhood mathematics standards and the feasibility of including such in-
formation in these documents.

Using Standards Documents to Disseminate Knowledge
About Mathematical Learning

The Rationale

National and state standards can and, I believe, should play a role in
teacher professional development—in the belief-changing and frame-
work-building processes necessary to implement the investigative ap-
proach. This can be done, in part, by developing research-based standards
that create new and more accurate expectations of young children. In-
cluding brief summaries of recent research or, better yet, vignettes illus-
trating their findings could also serve this purpose. A broad and concerted
effort by the federal and state governments, the NCTM, and other inter-
ested parties should be undertaken to educate teachers, administrators,
curriculum developers, and the public about the national and state early
childhood standards and the evidence that supports them.

Using Numeral Reading and Writing as an Example

In an NCTM research presession talk (Baroody, 2000), I used the devel-
opment of numeral-reading and -writing skills to illustrate the value of psy-
chological knowledge for early childhood and special education teachers.
In the following subsections, I briefly summarize my key points, the reac-
tion of one of the discussants of this paper, and some conclusions about
the value of psychological knowledge to professional development.

Implications for Early Childhood Standards. Reading and
writing numerals involves constructing an accurate mental image of these
symbols, a mental representation that includes their parts and how these
parts fit together to make a whole. Writing numerals also requires a motor
plan, a step-by-step plan of execution for translating a mental image into
appropriate motor actions. Although young children typically construct a
mental image and motor plan with little help, this process—as the more
detailed discussion in my next chapter suggests—is not an uncomplicated
process. To ensure that instructional efforts are well directed and children
receive the guidance they need, teachers must be familiar with the details
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of this process.2 Furthermore, children with learning difficulties frequently
need more than a little guidance but, unfortunately, often do not get it
because their teachers are unaware of the psychological processes
underlying numeral-reading and -writing skills.

Given the points just made, I (Baroody, 2000) concluded that it is not suf-
ficient for national or state standards for early childhood mathematics to
simply state the goal, "Kindergartners should master reading and writing
numerals from 0 to 9." Such a statement does not provide teachers any
guidance on how to achieve the goal. I went on to conclude that national
and state early childhood standards could and should be used a vehicle for
helping teachers construct a better understanding of children's mathe-
matical learning (e.g., how they learn to read and write numerals).

A Counterargument. In her discussion of my (Baroody, 2000)
paper, Mary Lindquist noted that she never thought about sticks and loops
(analogies for the component parts of the numeral 6) when writing 6s and
implied that the psychological model for learning how to read and write
numerals was not important. She concluded that caring about and
listening carefully to children is sufficient to overcome the problems we
face in mathematics education. She further argued that (national or state)
standards are not an appropriate forum to educate practitioners and not
the place for detailed developmental information.

Psychological Knowledge: A Key But Sometimes Overlooked
Component of Professional Development. Few would argue

with the proposition that the professional development of teachers should
include a solid grounding in mathematical content and pedagogy (Howe,
1999; Ma, 1999; NCTM, 1991). The third critical component of such
development—an understanding of how children's mathematical
thinking and knowledge develop (e.g., Baroody with Coslick, 1998; NCTM,
1991)—is not always considered in reform efforts (Baroody, 1987; Kline,
1974; cf. Howe, 1999; Ma, 1999).

As I suggested earlier in this chapter, Dr. Lindquist was correct to imply that
practitioners and those responsible for training them should not accept psy-

Without a powerful psychological framework to guide them, teachers may blindly follow
teacher guides or curricula. In Mathematic Their Way, for instance, Baratta-Lorton (1976)
suggested having children copy a numeral with finger motions in the air or in the palm of their
hand. Unfortunately, such a procedure leaves no visible record for a child or a teacher to eval-
uate the child's successful execution of a motor plan. As a result, a child who is using an inac-
curate or incomplete motor plan may not receive the feedback needed to prompt a
correction to this plan. Furthermore, the authors of one elementary mathematics education
textbook (D'Augustine & Smith, 1992) recommended delaying numeral-writing instruction
until first grade—until after children developed the fine-motor coordination necessary for
this skill. This advice disregards the fact that the numeral-writing difficulties of kindergartners
are typically due to an incomplete or an inaccurate motor plan, not the lack of fine-motor co-
ordination.
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chological theories or evidence uncritically. However, whether or not she has
ever thought of a 6 as being composed of a stick and a loop is not relevant to
gauging the value of the numeral-reading and -writing model I (Baroody,
2000) discussed. For most adults and even many children, the mental images
(knowledge of the parts and part-whole relations) and motor plans for nu-
merals are nonconscious and may be largely or entirely nonverbal. "Sticks
and loops" is merely an analogy for this underlying knowledge—an analogy
that can be useful to parents and teachers, especially when a child asks,
"What does a 6 look like?" or "How do you make a 6?"

Even if a psychological model is not entirely accurate or complete—as is in-
evitably the case—its educational value depends on whether or not it yields
useful predictions, insights, or guidelines. The numeral-reading and -writing
model described earlier does effectively explain why, for instance, children
are more prone to confuse some numerals (2 and 5 or 6 and 9) but not others,
and why some children are prone to reversals, even with a model numeral in
front of them. Moreover, this model is extremely helpful—as empirical evi-
dence shows—in providing direction on how to overcome these difficulties.
In fact, I have used the model with good results with typical children, includ-
ing my own (Baroody with Coslick, 1998), children diagnosed as learning dis-
abled (Baroody & Kaufman, 1993), and those diagnosed as mentally retarded
(Baroody, 1987,1988). This model and its supporting evidence is merely one
example of the considerable body of psychological theory and research that
has proven to be useful in teaching young children mathematics.

Caring about and listening carefully to children are unarguably crucial
for effective teaching. However, by themselves, they are not enough; ef-
fective teaching also requires competence, which includes a powerful de-
velopmental framework (Baroody with Coslick, 1998). Without such
knowledge, teachers are not in a good position to help children no matter
how much they care or how carefully they listen.

Consider the case of a second-grade teacher whose own son was diag-
nosed as learning disabled and was having considerable difficulty writing
numerals. This woman, who cared deeply about her son, was unable to
respond effectively to his pleas for help because her training did not in-
clude an effective model of numeral reading and writing. When he asked,
for instance, "How do you make a 7?" she responded by drawing a 7. Un-
fortunately, such demonstrations were not enough for him to decipher
where to start and in which direction to head, where to stop, and what to
do next (i.e., to construct an accurate and complete motor plan). Despite
his mother's (and teachers') best efforts, then, the boy continued to have
numeral-writing difficulties throughout the elementary grades and be-
yond. If his mother (and teachers) had had the theoretical framework to
understand that his question (e.g., "How do you make a seven?") was, in
effect, a request for a motor plan, it is likely he could have been spared a
great deal of unnecessary anguish.

If early childhood and special education teachers are ever to achieve the
status oif genuine professionals, they must be helped to secure an accurate
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and detailed understanding of young children's mathematical learning.
The proposed early childhood standards should be a beginning of this pro-
fessional development. These documents are and should be inherently
educational in nature. Why the standards should include specific psycho-
logical knowledge and how this can be achieved is discussed next.

The Roles of Detailed Psychological Knowledge in Early
Childhood Standards and the Feasibility of Its Inclusion
in Such Documents

Fuson (2000) raised several important questions about the inclusion of
detailed psychological information in national or state standards docu-
ments: (a) What purpose would it serve? and (b) Is it practical? I address
these questions in turn.

Purposes

Using detailed developmental knowledge to develop specific standards
is useful, indeed, necessary for the following reasons:

• To serve as a guide for developing, maintaining, and evaluating
the high-quality pre-service teacher education programs neces-
sary to produce truly professional teachers who are capable of im-
plementing an NCTM standards-based investigative approach.

• To serve as a guide for developing, maintaining, and evaluating the
high-quality in-service teacher education programs necessary to up-
grade or maintain a truly professional teaching corps that is capable
of implementing an NCTM standards-based investigative approach.

• To develop and evaluate state, district, or school mathematics cur-
ricula that are consistent with an NCTM standards-based investi-
gative approach.

• To develop and evaluate assessment means consistent with the
NCTM (1991) Assessment Standards at all levels (commercial, na-
tional, state, district, school, or classroom levels).

• To serve as a resource for curriculum coordinators or classroom
teachers who are interested in implementing the NCTM stan-
dards-based investigative approach or who wish to further their
professional development on their own.

Feasibility

Fuson (2000) suggested that developing specific standards would re-
sult in hundreds of statements and would make standards documents so
overwhelming that they would, by and large, go unread. A practical solu-
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tion is to have four levels of standards within each conceptual domain:
(a) global standards that reflect the really big ideas, (b) general standards
that indicate the big ideas, (c) specific standards that summarize the ba-
sic developmental components, and (d) detailed standards that delin-
eate the developmental progression within each developmental
component. An attempt to lay out these levels of standards for a portion
of the number and operations domain, for example, is summarized in Ta-
ble 7.1 of chapter 7 of this volume.

A main standards document could lay out the first three levels of stan-
dards. That is, it could consist of a relatively few global standards, a number
of general standards, and include tables, figures, or appendices that sum-
marize the specific standards. This document could also indicate where an
interested party could go for the more-detailed standards. The detailed
standards could be laid out in a series of supplemental standards (e.g., one
for each of the global standards). In addition to or in place of printed supple-
mental standards, a Web site could include the detailed standards for each
specific standard. Indeed, the Web site could be designed to start with the
global standards and provide increasing specific standards. Visitors would
explore an area as deeply as they needed or desired.

CONCLUSION

In conclusion, federal and state governments now spend millions of dol-
lars on special education to, for example, provide children with special
needs small classes and, in many cases, a personal aide. Unfortunately,
the teachers of these smaller classes and the personal teaching aides—by
and large—do not have a deep understanding of how special children
learn mathematics. The result is that most mathematics instruction of
special children is ineffective. Put differently, much of the federal and
state investment in special education is simply wasted.

We risk the same result with our efforts to improve early childhood in-
struction, if a concerted effort is not made to help early childhood educators
construct a powerful and practical framework that includes a deep under-
standing of how young children learn mathematics. In order to help remedy
the insufficient attention paid to the mathematics instruction and learning
of young children, particularly those with special needs, the NCTM, state ed-
ucation departments, and the federal government—through their publica-
tions, the proposed national and state early childhood mathematics
standards, and other efforts—need to help early childhood and special pre-
and in-service teachers construct an accurate and extensive knowledge of
the mathematical teaching and learning of all children.

Helping pre- and in-service teachers construct a deep understanding of
the mathematics they need to teach, how children learn mathematics,
and how to foster this learning effectively is necessary for elevating teach-
ing to the level of a true profession (one comparable to medicine or law)
and for the success of the current reform movement. Many anti-NCTM-
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standards proponents, including some supporters of the California Stan-
dards, believe that it is not practical or even possible to help teachers
achieve professional-level knowledge—a deep understanding of mathe-
matics, psychology, and pedagogy. For this reason, they propose a differ-
ent approach to reform: skills-focused standards, "teacher-proof"
curricula, high-stakes standards-based testing, and accountability. The
aim is to eliminate incompetent teachers or ineffective schools (rather
than support their redevelopment).

I was disturbed to hear again and again at our October meeting in Dal-
las that the early childhood standards should not be too complicated
because, for example, teachers would be overwhelmed. By advocating
"dumbed down" standards, we are conceding that anti-NCTM-stan-
dards proponents' premise is correct, namely that the vast majority of
teachers are not bright or sufficiently motivated enough to acquire the
knowledge necessary to implement sophisticated instruction, such as
the investigative approach, effectively (cf. Brownell, 1935). (I am
ashamed that there were times during the meeting when I concluded
that this pessimistic conclusion was, in fact, a realistic assessment of
the situation.) By focusing on global and general standards to the exclu-
sion of specific and detailed standards, we help to set in concrete what
is, not on what could or should be.

Developing a simplified list of goals for each grade level has its uses and
should be done. However, it should be clearly tied to big mathematical
ideas and to more specific and detailed research-based goals. The latter is
necessary to counter the charges of anti-NCTM-standards proponents that
current reform efforts are merely "fuzzy math" and based on ideology
rather than science. In brief, the development of a coherent multilevel set
of standards as illustrated in chapter 7 of this volume is necessary to em-
power teachers to foster the mathematical power of all children.
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7
The Developmental Bases
For Early Childhood Number
and Operations Standards

Arthur J. Baroody
University of Illinois at Urbana-Champaign

"Historically, number [and operations on them have] been a corner-
stone of the entire mathematics curriculum" (National Council of
Teachers of Mathematics [NCTM], 2000, p. 32). Indeed, "all the mathe-
matics proposed for prekindergarten through grade 12 is strongly
grounded in number.... Young children's earliest reasoning is likely to
be about number situations, and their first mathematical representa-
tion will probably be of numbers" (NCTM, 2000, p. 32). Furthermore,
number and operations on them are essential for most everyday activi-
ties. That is, understanding their applications is a basic survival skill in
our highly technological and information-dependent society and, thus,
a key basis of a mathematical literacy, which is now as important as
language literacy.

In Part I of this chapter, I describe a general developmental framework
that includes three key transitions. In Part II, I summarize some of what re-
searchers have recently discovered about the development of young chil-
dren's number and arithmetic as they make these transitions. This
knowledge can provide early childhood and special education practitio-
ners with the specific developmental framework necessary to make pol-
icy, curriculum, and instructional decisions about early childhood
mathematics education.
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PART I: THREE KEY TRANSITIONS IN YOUNG CHILDREN'S
NUMERICAL AND ARITHMETIC COMPETENCIES

According to the Mental Models View proposed by Huttenlocher and her
colleagues (e.g., Huttenlocher, Jordan, & Levine, 1994; Mix, Huttenlocher,
& Levine, 2002a), how children represent number changes. The first key
change (transition) involves supplementing inexact, nonverbal represen-
tations with exact ones; the second entails the development of count-
ing-based number and arithmetic competencies; and the third
encompasses the learning of written symbols (Baroody, 2000, 2002).

Transition 1: The Development of Exact Precounting
Numerical and Arithmetic Processes

Proponents of the Mental Models View (e.g., Mix et al., 2002a) argue that
the development of a numerical representation is more complicated than
that suggested by the currently popular nativists' view (e.g., Wynn, 1998).
According to the latter, infants can differentiate between discrete quanti-
ties (collections of items quantified by counting) and continuous quanti-
ties (e.g., length, area, weight, time, and other quantities quantified by
measurement) and can nonverbally "count" and mentally represent
small collections with surprising precision. Nativists also assume that the
development of conventional counting knowledge is guided by this in-
nate precounting knowledge and builds directly on it.

According to the Mental Models View, children in the pre-Transition 1
phase do not initially differentiate between discrete and continuous quan-
tities and may represent both inexactly in terms of one or more perceptual
cues, such as contour length (Mix, Huttenlocher, & Levine, 2002b). Two
factors may account for Transition 1:

1. The evolution of object individuation provides precounters a basis
for constructing an understanding of one-to-one correspondence, which,
in turn, provides them a basis for identifying and representing discrete
quantities and the groundwork for an informal understanding of numeri-
cal equivalence and number. For instance, Mix (2001) noted that her
21-month-old son retrieved two dog treats for two pet dogs in another
room while saying, in effect, This [one] is for [the name of the first dog],
and this [one] is for [the name of the second dog].

2. Huttenlocher et al. (1994) hypothesized that children's ability to create
mental models of numbers and, thus, to represent them exactly should start
to develop at about age 2, when they begin to exhibit a variety of symbolic
activities, such as symbolic play (see also Piaget, 1951). Children between 2
and 3 years of age, for example, become capable of using a picture to under-
stand the layout of a real room or inferring the location of a hidden toy in a
room from a model of a miniature toy and room (DeLoache, 1987, 1991).
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Pre-Transition 1 and Transition 1 phases in the Mental Models View are
consistent with Piaget's (e.g., 1965; Piaget & Inhelder, 1969) view of number
development.1 He too concluded that children's earliest understanding of
number was nonverbal, tied to perception, and imprecise. That is, Piaget ar-
gued that number development begins before children acquire language or
other conventional knowledge, stems from (reflections on) perceptual cues
or actions, and, thus, at first, is essentially an estimation process. He also ar-
gued that one-to-one correspondence (rather than verbal-based counting) is
the psychological basis for the construction of a number concept.2

A key intermediate step to the next transition is recognizing that—like
color, size, and weight—numbers are an important basis for categorizing
and, thus, identifying and comparing items (Mix et al., 2002). Learning the
first few count words might focus children's attention on the attribute of
number and help them see a numerical commonality among even other-
wise (physically) dissimilar collections. That is, knowing number words
might serve to promote abstract quantitative thinking and an understand-
ing of numerical equivalence. Some evidence (Baroody, 2002; Baroody &
Benson, 2001) indicates that learning number words, in conjunction with
subitizing (immediate number recognition), indeed, may play an impor-
tant role in constructing an understanding of one to four, the intuitive num-
bers (cf. Klahr & Wallace, 1973; von Glasersfeld, 1982; Wagner & Walters,
1982;Wynn, 1990, 1992).

Constance Kamii, in her discussion of my paper presented at the Conference on Stan-
dards for Preschool and Kindergarten Mathematics Education (Baroody, 2000), noted that
Piaget distinguished between the form of representation and mental structures (e.g., the
conceptual content represented) and that he argued that the latter was more important. She
concluded her comments by dismissing the Mental Models view as unimportant and useless.
Although knowing only the form of number representation, for instance, does not necessarily
indicate the extent of a child's understanding of number, it is, in fact, important and useful to
understand. For one thing, the type of representation may limit a child's understanding of
number or their ability to reason about number in critical ways. As will be illustrated later in
the text, the development of more advanced number representation can provide children
with a more powerful means of thinking about and using numbers.

Indeed, Piaget (1951) himself devoted considerable effort to describing the development
of a symbolic function and how this development built on but differed from sensory-motor
intelligence. As Ginsburg and Opper (1969) noted:

"The ability to form mental symbols is an achievement of great magnitude. In the
sensorimotor period this capacity was lacking.... By contrast, the older child can use
mental symbols to stand for absent events or things. Things no longer need to be pres-
ent for the child to act on them. In this sense, the ability to symbolize eventually liber-
ates the child from the immediate present" (p. 78).
For a discussion of how representational intelligence (through the use of the symbolic

function) differs from sensory-motor intelligence, see Flavell (1963, pages 151 and 152, in-
cluding the footnote at the bottom of page 151).

2Unlike the Mental Models view, though, Piaget (1965) believed that children did not con-
struct an operational or genuine understanding of one-to-one correspondence until they
were about seven. This was signaled by the ability to conserve number—an achievement
that occurs well after children have learned verbal- and object-counting skills. In Piaget's
view, these counting skills were merely learned and used by rote, a view subsequent re-
search largely suggests is inaccurate.
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Transition 2: The Development of Counting-Based
Numerical and Arithmetic Competencies

Children's nonverbal and precounting numerical and arithmetical com-
petencies probably provide a scaffold or basis for assimilating count-
ing-based numerical and arithmetical knowledge (Transition 2).
Existing evidence indicates that young children are, in fact, more suc-
cessful on nonverbal versions of arithmetic tasks than on verbally pre-
sented story problems, as well as symbolic "number-fact" tasks
(Huttenlocher et al., 1994; Jordan, Huttenlocher, & Levine, 1992, 1994;
Levine, Jordan, & Huttenlocher, 1992; see Jordan, Hanich, & Uberti,
2003, for a detailed discussion).

Transition 3: The Development of Written
Representations

In this third major transition, children assimilate written representations
to nonverbal and verbal-based knowledge of number and arithmetic
(Ginsburg, 1977). Transition 3 begins as early as about 3 years of age and,
typically, is gradual. For reviews of the literature on this topic, see Donlan
(2003), Munn (1998), and Sinclair and Sinclair (1986).

PART II: RECENT DEVELOPMENTAL RESEARCH
AND ITS EDUCATIONAL IMPLICATIONS

In this part of the chapter, I summarize the developmental research and
its educational implications regarding two really big ideas that are the ba-
sis for the number and operations standard for Grades Pre-K to 2 in chap-
ter 4 of the NCTM's (2000) Principles and Standards for School
Mathematics (PSSM):

• Really Big Idea 1: One of the most essential of human tools, num-
bers can play several roles, involve numerous relations, and can
be represented in various ways.

• Really Big Idea 2: Numbers can be operated on (used to perform
computations) in various interrelated ways to model a variety of
real-world transformations or situations.

More specifically, I examine six key areas of early number and arith-
metic development, namely, using numbers to quantify collections, us-
ing numbers to compare collections, adding and subtracting
single-digit numbers, understanding part-whole relations, equal parti-
tioning or grouping, and grouping and place value. These concepts
form the core of young children's number sense and provide a key basis
for understanding and assimilating school-taught mathematics. For
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each area/concept, I first note the "big idea" underlying it. I then sum-
marize the recent research findings about how each of the basic com-
petencies develop between toddlerhood and the third year of formal
number and arithmetic instruction (i.e., second grade) and how each is
related to the developmental transitions discussed in Part I. Next, I com-
ment on whether the number and operations standard (and other rele-
vant standards) for Grades Pre-K to 2 mentioned in chapter 3 and
delineated in chapter 4 of the PSSM (NCTM, 2000) adequately empha-
size crucial components of these six competencies. Finally, I make rec-
ommendations regarding number and operation standards for early
childhood. Four levels of proposed goals (standards) for the first two big
ideas (based on the developmental research reviewed in this chapter)
are delineated in Table 7.1. Note that these goals range from highly gen-
eral to highly specific.

Understanding, Representing, and Using Cardinal Numbers

• Big Idea 1.1: Counting can be used to find out how many items a
collection contains or to make a collection of a particular size.

Numbers have four meanings or roles. A key and, perhaps, the earliest de-
veloping meaning is the cardinal meaning. A cardinal number identifies
how many items there are in a collection (e.g., This sentence has five
words). Numbers can also be used to specify how much (i.e., a measure-
ment meaning indicating size such as, My grading pencil is only two
inches long), where (i.e., an ordinal meaning indicating position or order,
as in Go to Room 34), or what (a nominal meaning in which a number
serves as a name, as in Player 21 is really good).

Like physical characteristics such as color or other abstract categories such
as fair versus unfair, cardinal numbers are an extremely useful tool for classi-
fying things and, thus, identifying and comparing them (e.g., "Get mommy
the cup with two flowers on it"; Mix et al., 2002a). Object counting (enumera-
tion) provides a systematic means for applying number words to items and
enhances or enables children to represent mentally and exactly collections,
particularly those of more than about four items. Counting further enhances
or enables children to create a given number of items (production). An un-
derstanding of cardinal number also includes an ability to identify equivalent

• akcollections (e.g., recognizing • •, * *, # and • • all as pairs or
• ak *

"two" recognizing ••,***,* and • • • all as trios or "three"
and so forth). Both informal and formal written representations of cardinal
numbers (e.g., representing a collection of three items as | | I or 3) can
greatly extend our use of numbers (e.g., serve as a memory aid or represent
large numbers such as 198,253 compactly).
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Table 7.1

A Sample of Possible Early Childhood Number and Operations Goals

A x . Ae/Grade Level

Goals
• 4 • 5

Nl. Instruction from prekindergarten to Grade 2 should enable all students to understand the roles of
numbers, relations among them, and both informal and formal ways of representing numbers
relations (based on Really Big Idea 1).
Nl.l Use numbers to count with understanding—that is, connect number words to the quantities

they represent so as to recognize how many in a collection or to count out collections of a
particular size (based on Big Idea 1).
Nl .1.1 Represent and number small collections of one to four items without counting.

Nl.l.la Nonverbally subitize one or, perhaps, two items.
Nl.l.lb Verbally subitize and reliably and discriminately recognize (e.g., point

to) collections of "one" and "two" or label such collections with the
number word "one" or "two."

Nl.l.lc Verbally subitize and reliably and discriminately recognize collections
up to "four" or label such collections with a number word.

Nl. 1.2 Represent and create small collections of one to four items without counting.
N1.1.2a Nonverbally produce one or, perhaps, two items.
N1.1.2b Quasi-verbal production of one or two items (e.g., responds to a verbal

request for two items by subitizing and offering two items or by holding
up two fingers).

N1.1.2c Nonverbal or quasi-verbal production of up to four items (e.g., responds
to a verbal request for four items by subitizing and offering four items or
by holding up four fingers).

Nl.l.3 String number words together to create the counting (by ones) sequence.
N1.1.3a Use a nonstandard sequence, such as "two five" or "twothreeeten."
N1.1.3b Start sequence with one, e.g., "one two."
N1.1.3c Cite numbers in the correct sequence to "ten."
N1.1.3d Use teen pattern to cite correct sequence to "nineteen."
N1.1.3e Use repeating patterns to cite correct sequence to "twenty-nine."



Nl.l .3f Use repeating patterns to cite correct sequence to "one hundred."
Nl. 1.4 Use the counting sequence to enumerate collections—that is, to count objects to

identify the number of items in a collection.
N1.1.4a Pair a number word of the count sequence with each item of a small

collection and identify a collection by repeating the count.
N1.1.4b Construct the count-cardinal concept—that is, recognize that the last

number word used to label items in a collection also represents the total.
N1.1.4c Accurately enumerate any type of collection of up to five items.
N1.1.4d Recognize the identity-conservation or number-constancy principle.
N1.1.4e Recognize the order-irrelevance principle.
N1.1.4f Accurately enumerate collections to 10.
Nl -1.4g Accurately enumerate collections to 20.

Nl. 1.5 Use the counting sequence to produce (count out) collections of a specified size.
Nl.l.Sa Construct the cardinal-count concept—that is, recognize that a cardinal

label for a collection such as "four" is equivalent to actually counting
the collection.

Nl. 1.5b Accurately produce up to five items in response to a verbal request
(verbal production).

Nl .1.5c Verbal production of up to 10 items.
Nl.l.Sd Verbal production of up to 20 items.

Nl.1.6 Flexibly start verbal count-by-one sequence from any point—that is, start a count
from a number other than "one."

Nl.l.7 Flexibly cite the number after a specified count term.
N1.1.7a State number after 1 to 9 with a running start (e.g., "What comes after

1, 2, 3, 4, 5?").
Nl.l.Tb State number after 1 to 9 with an abbreviated running start (e.g.,

"What comes after 3, 4, 5?").
N1.1.7c State number after 1 to 9 without any running start.
N1.1.7d State the number after 10 to 28.
N1.1.7e State the number after 29 to 99.

Nl.1.8 Flexibly cite the number before a specified count term.
Nl.l.Sa State number before 2 to 10.
Nl.l.Sb State number before 11 to 29.

Nl.l.9 Verbally count backward.
N1.1.9a Verbally count backward form "five."
Nl.1.9b Verbally count backward from "ten."
N1.1.9c Verbally count backward form "twenty."

Nl.l.10 Apply decade-count skills.
N1.1.1 Oa Skip count by tens to 100.
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Nl.l.lOb Flexibly state the decade after 10 to 90.
Nl.'l.ll Flexibly use other skip counts.

Nl.l.lla Verbally count by fives to 100.
Nl.l.llb Verbally count by twos to 20.
Nl.l.llc Count objects by fives.
Nl.l.lld Count objects by twos.
N 1 . 1 . 1 1 e Verbally count odd numbers to 19.

Nl.1.12 Explicitly distinguish between the cardinal meaning/use of number and other
(ordinal, measurement, and nominal) meanings/uses of number.

Nl .2 Use numbers to compare quantities by developing an understanding of the relative position
and magnitude of whole numbers and the connection between ordinal and cardinal numbers.
Nl.2.1 Visually (qualitatively) identify which collection is "more."

N1.2.1a Correctly indicate "same" or "more" with collections that are
obviously equal or not equal (perception of "same" or "more").

N1.2.1b Correctly indicate "more" with collections up to about four that differ
in number by one (perception of fine differences).

Nl .2.2 Use (nonverbal or verbal) subitizing (overt or covert) counting to make
equivalence judgments of small collections.
N1.2.2a Nonverbally identify as equivalent or nonequivalent static

(simultaneously presented) collections consisting of one to four items.
N1.2.2b Nonverbally match equivalent sets of disks and dots — two homogeneous

sets consisting of highly similar items.
N1.2.2c Match equivalent sets of shells and dots — two homogeneous sets

consisting of dissimilar items.
N1.2.2d Identify a (static) collection (e.g., three dots) with a sequential

presentation (e.g., three successively presented dots).
N1.2.2e Make a cross-modal match (e.g., match three dots with three bell

rings).
N1.2.2f Match a static collection with a sequentially repeated event (e.g.,

match three dots with three puppet jumps).
Nl .2.2g Match equivalent sets of random objects and dots — a heterogeneous

collection and a set of dissimilar items.
Nl .2.3 Recognize equivalent collections of more than four items despite appearances.

N1.2.3a Recognize equivalent collections despite appearances. Apply the
same-number (number-identity) principle: Two collections with same
cardinal designation are equal in number regardless of appearances.

N1.2.3b Conserves number.
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Nl .2.4 Use larger-number principle (the later a number appears in the counting sequence,
the larger the quantity represented) to make gross comparisons—that is, to order
widely separated numbers.
N1.2.4a Make gross comparisons of "more" up to "ten."
Nl .2.4b Make gross comparisons of "less" up to "ten."
N1.2.4c Make gross comparison of "more" up to "one hundred."

Nl .2.5 Use larger-number principle and number after knowledge to make fine
comparisons—that is, to order two adjacent numbers in the counting sequence.
N1.2.5a Make fine comparisons of more up to "five."
N1.2.5b Make fine comparisons of more up to "ten."
Nl .2.5c Make fine comparisons of more up to "one hundred."
Nl.2.5d Make fine comparisons of less up to "ten."
N1.2.5e Make fine comparisons of less up to "one hundred."

Nl.2.6 Understand and effectively apply verbal ordinal terms.
N1.2.6a Recite the ordinal terms (first, second, third .. .) to "tenth."
N1.2.6b Describe the parallels and differences between the ordinal and

cardinal sequences.
N1.2.6c Recognize that ordinal terms are relational—are meaningful only if a

point of reference is specified.
N1.2.6d Recite and apply effectively ordinal terms to "twenty-ninth."

Represent collections up to 10 and numerical relations by connecting numerals to number
words and the quantities both represent.
Nl.3.1 Draw pictographic symbols (drawings of objects) or iconic symbols (e.g., tallies)

to respond to a spoken number (nonfunctional use of informal numerical symbols).
Nl.3.2 Use pictographic or iconic symbols to represent the cardinal value of a collection

(functional use of informal numerical symbols).
Nl.3.3 Execute and apply numeral skills.

N1.3.3a Recognize/identify one-digit numerals (e.g., is able to point out a
"three" given a choice of fine numerals).

N1.3.3b Read one-digit numerals.
N1.3.3c Copy or write one-digit numerals.
N1.3.3d Use one-digit written numbers to represent the cardinal value of a

collection (functional use of numerals).
N1.3.3e Identify the larger of two written numerals.

N 1.3.4 Use relational symbols effectively.
N1.3.4a Informally represent the equivalence or inequivalence of two

collections.
N1.3.4b Correctly identify and use the formal relational symbols = , * , > , <

with single-digit numbers.
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Nl.3.5 Use written number words and relational terms effectively.
N1.3.5a Identify written number words one, two, three,... nine with their

corresponding verbal words and numerals and use them to represent the
cardinal value of a collection.

N1.3.5b Describe the parallels between abbreviated ordinal terms (1st, 2nd, 3rd
. . . 9th) and cardinal terms.

N1.3.5c Identify written ordinal terms first, second, third,... ninth with their
corresponding verbal words and use them to represent ordinal relations.

N1.3.5d Identify written relational terms equals, unequal, greater than, and
less than with their corresponding verbal terms and written symbols.

O2. Instruction from pre-kindergarten to Grade 2 should enable all students to understand the various
meanings of operations, to recognize how the operations are related, to compute fluently, and to
make reasonable estimates (Really Big Idea 2).
O2.1 Understand the change meaning of addition and subtraction of whole numbers (Big Idea 1)

and use this knowledge to make sensible estimates and to develop calculational
proficiency.
02.1.1 Nonverbally and mentally determine sums and differences.

O2.1.1a Nonverbally add one item and another or subtract one item from two.
O2.1.1b Nonverbally estimate sums up to five and their subtraction

complements (e.g., for "3 + 2" put out four to six items as the answer).
O2.1.1c Nonverbally determine sums up to three and differences up to "3 - 2."
O2.1.1d Nonverbally determine sums up to five and their subtraction

counterparts.
02.1.2 Estimate the sums of addition word problems and their subtraction complements

up to.. .
O2.1.2a 10;
O2.1.2b 20.

02.1.3 Use direct-modeling strategies (concrete counting all or take away) to solve
addition and subtraction word problems with . . .
O2.1.3aSums to 10 and corresponding differences;
O2.1.3bSums to 18 and corresponding differences.

02.1.4 Use more-advanced counting strategies to solve addition word problems with
sums to 18.
O2.1.4a Use the embedded-addend concept to indirectly model addition (i.e.,

use verbal counting all).
O2.1.4b Use the number-after rule to determine sums for n + 1 and 1 + n

combinations
O2.1.4c Use the embedded cardinal-count concept to solve addition problems

by counting on and subtraction problems by counting down or up.



O2, 1 .5 Connect formal addition and subtraction to concrete or informal knowledge.
O2.1.5a Translate addition and subtraction word problems (and their

solutions) into a number sentence and vice versa.
O2.1.5b Solve symbolic expression using a variety of strategies.

O2. 1 .6 Use thinking strategies and existing knowledge to reason out unknown sums to 18
and their subtraction counterparts (e.g., 7 + 8 = 7 + 7 + 1 = 14 + 1 = 15 or 15 - 7 = ? ->
7 + ? = 15 -» so ? = 8).

O2.1.7 Achieve fluency with basic addition and subtraction combinations regardless of
strategy used.
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Note. Asterisks (*) indicate the average age in which children learn a skill. The xs indicate the age range children normally learn the skill.
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Development

An understanding of cardinal number (Big Idea 1.1; Goal Nl. l in Table
7.1) deepens gradually over the course of early childhood. It can begin by
recognizing the number of items in small collections (e.g., • • seeing as
"two"), even before children learn to count objects reliably. The use of ob-
ject counting and then written numbers develops.

Transition 1. The development of an ability to mentally represent
small collections exactly by means of a mental image, mental marker, or
other nonverbal means—without number-word labels (nonverbal
subitizing) and in conjunction with number-word labels (verbal
subitizing)—provides the foundation of a cardinal number concept (Goal
N 1.1.1 in Table 7.1). Nonverbal subitizing (Goal Nl.l.la) may permit
nonverbal production of small collections—the ability to create a collection
that matches (is equivalent to) their mental representation of a previously
viewed collection (Goal N1.1.2a and possibly Goal N1.1.2c in Table 7.1;
Huttenlocher et al., 1994). Children typically start recognizing small
collections of one to about four items and identifying them reliably with a
number word between 2 and 4 years of age (Goals N1.1.1 b and N1.1.1 c; e.g.,
Baroody, 2002; Ginsburg & Baroody, 2003; Wagner & Walters, 1982). Verbal
subitizing may underlie nonverbal production of four, three, or even two
items and quasi-verbal production, which involves creating a collection of a
specified size (e.g., "give me two cookies") without counting (N1.1.2b and
N1.1.2c; Baroody, 1986, 2002; Wilkins & Baroody, 2000). In brief, the key
finding is that 3-year-olds typically have already developed reasonably
accurate ways of representing, labeling, and creating small collections
before learning to count collections in a reliable manner.

Transition 2. Between 3.5 and 4 years of age, children develop
verbal- and object-counting skills, which provide them a more powerful
tool for representing and using numbers.

For children to verbally count to 100 (Goal N1.1.3 in Table 7.1), they need
to know (a) the single-digit sequence 1 to 9, (b) a 9 signals a transition
(e.g., 19 signals the end of the teens and the need to begin a new series),
(c) the decade terms for the new series (e.g., 20 follows 19), (d) the rules
for generating the new series (e.g., the 20s and all subsequent series are
generated by combining the decade term with, in turn, each term in the
single-digit sequence, and (e) the exceptions to the rules (Baroody,
1989a). Learning the counting sequence, then, requires both memorizing
arbitrary terms or rote counting (e.g., the first nine single-digit terms and
the first three decade terms) and pattern recognition or rule-governed
counting (e.g., the aforementioned points b and d and the decade se-
quence starting with forty).
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Counting a collection (enumeration; Goal N 1.1.4 in Table 7.1) involves
matching counting words one for one with each item in the collection. To
enumerate a collection of objects correctly, a child must (a) generate the
correct counting-word sequence, (b) label each object in a set with a sin-
gle counting word (one-for-one tagging), and (c) keep track of counted
and uncounted objects so that each object is tagged only once.

The development of object-counting ability in the preschool years is
marked by a growing or deepening understanding of cardinality. The con-
struction of a cardinality principle (Gelman & Gallistel, 1978), sometimes
called the count-cardinal concept (Fuson, 1988,1992), is an important first
step in meaningful object counting (see Goal N1.1.4b in Table 7.1). Per-
haps by comparing the outcome of enumerating a small collection with
the number label generated by verbal subitizing, preschoolers discover
the cardinality principle: The last number word in the enumeration pro-
cess has special significance because it represents the total number of
items in a collection and can be used to answer the How many? questions
posed by others (Fuson, 1988; Fuson & Hall, 1983; Gelman & Gallistel,
1978; Schaeffer, Eggleston, & Scott, 1974; von Glasersfeld, 1982). The re-
verse concept, namely the cardinal-count concept (Goal Nl.l.Sa in Table
7.1), appears to be a key prerequisite for verbal (counting-based) produc-
tion—counting out a specified number of objects (Goal Nl.l.Sb in Table
7.1; Baroody, 1987a; Wilkins & Baroody, 2000). A counting-based cardinal-
ity concept is further deepened when children discover the identity-con-
servation or number-constancy principle—that the cardinal value of a
collection does not change despite changes in appearances (e.g., a linear
array of five items is still "five" if arranged in a circular pattern; Goal
N1.1.4d; e.g., Ginsburg & Baroody, 2003; Piaget, 1964). A relatively deep un-
derstanding of a counting-based cardinality concept is achieved when
they discover the order-irrelevance principle—that the order in which the
items of a collection are enumerated does not matter as long as each item
is counted once and only once (Goal N1.1.4e, e.g., Baroody, 1992b, 1993;
Piaget, 1964). An understanding of cardinality is further deepened as chil-
dren's understanding of comparing two (or more) collections grows (Goal
N1.2), which is discussed later.

Transition 3. The third major transition in children's number
knowledge is learning how to use written symbols to represent numerical
situations or meanings. This transition may begin as early as 3 years of age
or as late as 6 years, depending on a child's home and preschool
environment. Sinclair and Sinclair (1986) noted that there are two
important aspects of this symbolic competence: (a) children's personal
production of these symbols when needed and (b) their understanding or
ideas about written symbols. The former can be equated with knowledge
of form; the latter, knowledge of function:
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• Knowledge of form. Knowledge of form includes constructing a
mental image of a symbol. This entails recognizing the compo-
nent parts of a symbol (e.g., noticing that a 6 consists of a "stick"
and a "loop") and part-whole relations (e.g., knowing how the
parts of a 6 fit together to make the whole, such as the loop is at-
tached to the bottom of the stick). Knowledge of the component
parts and part-whole relations enables children to distinguish one
written symbol from another and, thus, to identify and to read
them. For instance, the implicit or explicit knowledge that a 6 con-
sists of a "loop" and "stick" enables a child to distinguish a 6 from
all other numerals except 9. Although 6 and 9 share the same
parts, children can distinguish between them because the loop of
each is attached to the stick in two distinct ways: bottom versus
top and right versus left, respectively. The fact that the numerals
such as 2 and 5 or 6 and 9 share common parts helps explain why
some children—particularly those with learning difficulties—con-
fuse these numerals.
Knowledge of form also involves constructing an implicit or explicit
motor plan for symbols, a step-by-step plan of execution for translat-
ing a mental image into motor actions (Goodnow & Levine, 1973). A
motor plan—which specifies where to start, what direction to pro-
ceed, when to stop, how to change direction, and where to stop)—is
necessary for copying and writing numerals. A plan for the numeral
6, for instance, specifies start at the top right and draw a stick that
slants to the left; then make a loop by first going right.
Even if a child's mental image for a written symbol is complete or
accurate, he or she will not be able to write it correctly and may re-
peatedly make the same mistake if his or her motor plan is incom-
plete or inaccurate. This can even happen when children have a
model numeral in front of them (i.e., when "merely" copying a nu-
meral). Reversals (i.e., writing a symbol backward) are often the re-
sult of an incomplete or inaccurate motor plan. Writing 6
backwards some of the time indicates that a child may be unsure
whether to start on the (top) right and draw a slanted line toward
the left or vice versa. A child who consistently writes a 6 backwards
may well have an inaccurate motor plan, one that specifies "start
on the (top) left and draw a slanted line toward right." Children with
learning difficulties, particularly, may have such writing problems
(Baroody, 1987a, 1988a; Baroody & Kaufman, 1993).

• Knowledge of function. Knowledge of function includes knowing
the various meanings of a numeral (namely cardinal, measure-
ment, nominal, and ordinal meanings). It also involves knowing
when and why written representations would be useful and how
they can be used effectively.
Hughes' (1986) study indicates "that children do have personally
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meaningful ways of writing quantity before they use the conven-
tional notation" (Munn, 1998, p. 60). He found that 3- and
4-year-olds most often used idiosyncratic representations (inter-
pretable only to the child), pictographic representations (drawing
of objects involved), iconic representations (e.g., tally marks), or a
combination of pictographic and iconic representations.

Implications for Early Childhood Standards

Transitions 1 and 2. The PSSM (NCTM, 2000) correctly suggests
that a major goal of the early childhood education should be building on
and extending children's rich and varied intuitive and informal knowledge
of number. A mention of infants' ability to recognize and discriminate
small numbers (pre-Transition 1) accurately implies that number
development begins before children acquire conventional knowledge
such as counting. Furthermore, the importance of counting experiences is
justifiably emphasized with such comments as "counting is a foundation
for students' early work with number" (p. 79). The importance of
Transitions 1 and 2 is clearly implied by statements such as children
"connect number words [and] the quantities they represent" (p. 78) and
"can associate number words with small collections of objects" (p. 79).

Although (a) estimation, (b) mental representation of number, and (c)
automatic recognition of number (subitizing) are discussed, their mention
seems to be in reference to verbal-based number skills, not their possible
predecessors (nonverbal number skills):

1. The only direct mention of number estimation (estimating the size of
a collection) suggests that children use benchmarks (a known smaller
quantity) to gauge the size of a relatively large collection. Recognizing that
a collection of 12 items is a little more than 10 by visually noticing two
groups of five, for instance, is likely only after children can readily identify
and verbally label collections of five items and efficiently determine the
sum of 5 + 5. Pre-Transition 1 and many Transition 1 children might benefit
from estimation experiences with intuitive numbers, and Transition 1 and
early Transition 2 children might do so from estimation experiences with
five to nine items (Baroody & Gatzke, 1991).

2. The following statement about mentally representing number is po-
tentially misleading because of the research cited: "In these early years, stu-
dents develop the ability to deal with numbers mentally and to think about
numbers without having a physical model (Steffef,] Cobb, [& von
Glasersfeld,] 1988)" (p. 80). If the PSSM writers had intended this statement
to refer to Transition 1, then they should have cited Huttenlocher and col-
leagues (e.g., 1994). This transition in number-representation ability and
even Transition 2 comes well before the more abstract representational
abilities (e.g., mentally solving relatively difficult missing-addend problems)
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discussed by Steffe, Cobb, and von Glasersfeld (1988). Put differently, Goals
N 1.1.1 and N1.1.2 in Table 7.1 are achievable before the age of 6 years or
so—before children are successful on Steffe et al.'s missing-addend task.

The general guidelines for promoting Transition 2 are crucial but do not
provide the detailed direction teachers need to help young children
achieve this transition. For example, no mention is made of integrating the
critical components for enumerating collections: (a) generating a correct
verbal number sequence, (b) creating a one-to-one correspondence be-
tween verbal numbers and items in a collection, and (c) keeping track of
which items have been counted and which have not. Furthermore, there
is no indication at what age children face these various challenges.
(Three-year-olds often have difficulty coordinating the first two compo-
nents, particularly when beginning or ending a count; whereas, 4.5- to
5.5-year-olds have the most difficulty with the aforementioned third com-
ponent; Fuson, 1988.)

Early childhood standards should include clear and explicit expecta-
tions about Transitions 1 and 2 (e.g., in Table 7.1, see Goals N 1.1.1 and
Nl.1.2 and Nl.1.3 to Nl.1.7, respectively)—including the development of
verbal-based number estimation, mental representation, and subitizing.
Moreover, some mechanism or mechanisms must be found to help edu-
cate early childhood and special education teachers, curriculum develop-
ers, and so forth about the specifics underlying both Transitions 1 and 2.

Transition 3. In a clear reference to Transition 3, the PSSM (NCTM,
2000) includes the following expectation for Pre-K to 2 students: "connect
... numerals to the quantities they represent" (p. 78). It is further noted that
"concrete models can help students ... bring meaning to [their] use of
written symbols" (p. 80).

The PSSM (NCTM, 2000) also includes the expectation that young chil-
dren should "develop understanding of... the ordinal and cardinal num-
bers and their connections" (p. 78). It further implies that they should
understand the measurement meaning of number. No mention, however,
is made of the nominal meaning (using numbers as names, such as "Your
bus is number 24").

The PSSM (NCTM, 2000) includes the clear expectation that children ini-
tially be allowed to use their own written representations of number (see,
e.g., Fig. 1.30 on p. 131 and the second and third paragraphs on p. 136). Their
use of pictographic or iconic representations, at least, is consistent with ex-
isting research (e.g., Hughes, 1986) and makes sense. If children use idio-
syncratic representations, which are uninterpretable by others and,
perhaps, in some cases, even by themselves later, then they miss the point
about why we use written representations for numbers. Such children need
help appreciating the communicative function of written representations.

Furthermore, the PSSM (NCTM, 2000) is silent about symbol-form in-
struction. The issues of how to help children construct a mental image of
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numerals or a motor plan for these symbols is not mentioned. Given that
written representations of numerals and other mathematical concepts are
indispensable aspects of nearly all mathematics instruction and innumer-
able everyday activities, it is essential that early childhood standards in-
clude some discussion of this topic.

Early childhood standards, then, should include the expectation that young
students understand all meanings of number, including the nominal meaning
(Goal N 1.1.12 in Table 7.1). They should also include the recommendation
that children develop and use their own invented written representations of
numbers before learning conventional symbols—with the caveat that they be
helped to understand the communicative function of symbols (Goal N 1.3.2).
Additionally, mechanisms must be found to help practitioners understand the
mechanics of helping children learn to read and write conventional symbols
(e.g., Goal Nl .3.3). (For a detailed discussion of how instruction can help chil-
dren construct an accurate mental image and motor plan for each numeral,
see Unit 4*2 in Baroody with Coslick, 1998.)3

Understanding, Representing, and Using Ordinal
Relations or Numbers

• Big Idea 1.2: Two (or more) collections can be compared or or-
dered, and numbers are one useful tool for doing so.

In her critique of my paper presented at the Conference on Early Math Standards
(Baroody, 2000), Connie Kamii noted that reversing numerals was common among pre-sec-
ond-graders and not a cause of concern because children naturally outgrow such errors. She
concluded that students do not need help writing numerals correctly. In general, Kamii's
comments are all true. However, many children recognize for themselves that they are writ-
ing numerals incorrectly (e.g., in reverse), are puzzled or concerned about this, and ask for
help (e.g., How do you make an 8?). Teachers should recognize that such questions are a re-
quest for an accurate motor plan. Furthermore, children with learning difficulties frequently
do not spontaneously discover or invent correct motor plans and, in such cases, reversals (or
other errors) may persist for years (Baroody, 1987a, 1988a; Baroody & Kaufman, 1993). For
such children, remedial efforts, including help with constructing a motor plan, are necessary.

Coincidentally, a request from Diane Goodman, a Senior Editor at Riverside Publishing
(via Doug Clements and Danny Breidenbach of NCTM), several weeks after the NCTM
presession underscores the value of the psychological model for numeral-reading and -writ-
ing discussed above and in the text of this chapter. The question asked was, "Which format
of the 4 [open versus closed] is most (sic) appropriate for Grades K-2 and why?

Without a theoretical model, the choice between an open 4 and a closed 4 is arbitrary or
difficult to make. It follows from the model discussed that the open 4 is somewhat more pref-
erable, because it does not involve a diagonal. Although this may not be a factor in forming a
mental image of the numeral or reading it, the mental image children do form may impact
the ease with which they master a motor plan. Writing numerals (and letters) composed only
of horizontal and vertical lines is easier than doing so for those that involve a diagonal. A mo-
tor plan for the latter requires orienting in two directions at once. For instance, for the closed
4, the plan for the diagonal would be to start at the upper right and slant down to the lower left
(would involve both up-down and right-left directions). Theoretically, the most efficient way
to teach reading and writing 4s, then, would be to use open 4s. This way, children's mental
image would be consistent with the easier motor plan for written 4s.
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Comparing quantities (numerical relations) can involve determining
whether two (or more) collections of distinct items are equal, which one is
the larger (largest) or which one is the smaller (smallest). Comparing collec-
tions is a basic survival skill used, for example, to determine whether every-
one in a group got a fair share of candies, which team got more points and
won a game, or which brand is cheaper for a given unit price. Comparing
two obviously different collections can be done visually. Numbers allow us to
compare two collections close in size (e.g., 11 versus 12 items) or even huge
collections precisely (e.g., 1,000,214 is greater than 1,000,213).

Development

Transition 1. Children first develop an intuitive (nonverbal and
imprecise) sense of number order (for collections of up to three or four
items). This occurs between 12 and 18 months, somewhat later than they
do that of cardinal number (Cooper, 1984; Strauss & Curtis, 1981, 1984).
Currently, little is known about the transition from an inexact to an exact
ordinal sense of numerosity. A possible basis of Transition 1 is learning
relational terms such as more and less. Children about 2 years of age can
reliably identify as more the larger of two collections, as long as the
perceptual cue(s) for the difference are salient—that is, one row of items
is clearly longer, denser, or covers more area than another (Goal N1.2.1 a in
Table 7.1). This appears to be the beginning of assimilating language-
based number knowledge to their nonverbal knowledge of numerosity.
Gauging which of two collections is less is more difficult and develops later
because, in part, children rarely hear or use the term (e.g., Donaldson &
Balfour, 1968; Kaliski, 1962; Weiner, 1974). Transition 1 may permit
preschoolers to nonverbally and reliably identify as equivalent or non-
equivalent two small, static (simultaneously presented) collections, both
consisting of identical elements (N1.2.2a in Table 7.1; Mix, 1999a; Siegel,
1973) or highly similar elements, such as one collection of disks and one of
dots (N1.2.2b; Mix, 1999b).

Transition 1 or 2. The development of verbal-based number
representations of number appears to account for three important
extensions in children's ability to make equivalence judgments with small
collections, all of which are consistent with Resnick's (1992) model of
increasing generality of thinking.

1. The first is the ability to compare collections of increasingly dissimilar
elements (Mix, 1999b). Specifically, children older than 3.5 years or so can
compare two homogeneous collections of dissimilar objects, such as a col-
lection of shells and a collection of dots (Goal N1.2.2c in Table 7.1; Mix,
1999b). Between 4 and 4.5, children can compare heterogeneous collections
of dissimilar items (Goal N1.2.2g; Mix, 1999b; cf. Gelman & Gallistel, 1978).
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2. The second important extension is that after 3.5 years, children be-
come capable of making nonstatic comparisons—that is those that occur
over time (Mix, 1999a). This includes comparing a collection presented si-
multaneously with one in which the items are presented successively
(Goal N1.2.2d in Table 7.1; Mix, 1999a; Mix, Huttenlocher, & Levine, 1996),
comparing a (simultaneous) visual display and a sequential auditory dis-
play (N1.2.2e; Mix et al., 1996), and a (simultaneous) visual display and a
sequential event (N1.2.2f; Mix, 1999a).

3. The third is cross-model transfer such as the ability to recognize equiv-
alent visual and auditory displays (again see Goal N1.2.2e; Mix et al., 1996).

A key element in the transition to using the counting sequence as a use-
ful tool is recognizing that numbers can be used to identify equivalent
collections. Specifically, by counting and visually comparing small col-
lections, children can recognize the same number-name principle: Two
collections are equal if they share the same number name, despite differ-
ences in the physical appearance of the collection (see Nl .2.3a; Baroody
with Coslick, 1998). Because it is a general (abstract) principle, young
children can use it to compare any size collection that they can count.

Construction of the same number-name principle appears to underlie the
later development of a relatively sophisticated or advanced understanding
of numerical equivalence, what Piaget (1965) called number conservation.
Number conservation involves recognizing the numerical equivalence of
two uncounted and nonsubitizeable collections over time and despite ap-
pearances—that is, over a number-irrelevant physical transformation that
results in a misleading perceptual cue (N1.2.3b in Table 7.1). Initially, chil-
dren do not realize that if one collection put into one-to-one correspon-
dence with another is then physically, but not numerically, changed (e.g.,
lengthened or shortened), then it is still equivalent to the other collection.
Even counting the collections may not help. After children construct the
same number-name principle and gain confidence in this counting-based
knowledge, they can then apply it in relatively complicated contexts such as
the number-conservation task. That is, once they trust that this principle is
applicable, children can disregard misleading perceptual cues and "con-
serve" equivalence relations (e.g., recognize that two previously matched
collections still have the same number, even though one is longer and looks
like it has "more"). In time, children construct the following general (quali-
tative) principle: If nothing is added to or subtracted from two equivalent
collections, then they continue to have the same number (despite appear-
ances). This relatively abstract principle allows children to conserve num-
ber with logical certainty—that is, without counting or rematching the items
in the collections (see Baroody, 1987a, for a review of the research support-
ing this position).

Post-Transition 2. After Transition 2, children learn how to use
the counting sequence to compare collections or numbers. By verbally
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subitizing or counting two small and (obviously) unequal collections,
they may discover the larger-number principle: The later a number word
appears in the counting sequence, the larger the collection it represents
(e.g., four represents a larger collection than two does because it comes
later in the counting sequence than two; Schaeffer et al., 1974). This
permits them to use numbers to mentally make gross comparisons—
determine the larger of two widely separated numbers (Goal Nl.2.4 in
Table 7.1). Once children can automatically cite the number after
another in the counting sequence (e.g., The number after four is five},
they can use the larger-number principle to mentally compare two
adjacent numbers (e.g., Who is older, someone 9 or someone 8?—the
9-year-old because 9 comes after 8; Goal Nl.2.5 in Table 7.1). This
relatively abstract number skill has many everyday applications and can
be used for even huge numbers (1,000,129 is greater than 1,000,128
because, according to our counting rules, the former comes after the
latter). Typically, children can cite the number after another up to ten and
can use this knowledge and the larger-number principle to mentally
compare any two numbers up to five before they enter kindergarten (are
4.5 to 5.5 years of age; Goal N1.2.5a). By the time they leave kindergarten
(are 5.5 to 6 years old), children typically can compare any two numbers
at least up to ten (Goal N1.2.5b).

Another important aspect of the Post-Transition 2 phase is learning and
applying the ordinal-number sequence ("First, second, third, ..."; Goal
Nl.2.6 in Table 7.1). The process of learning the ordinal terms (Goal
N1.2.6a) can be facilitated by noticing the parallels (and dissimilarities)
with the counting (cardinal) sequence (e.g., sixth—>six + th;
seventh—>seven + th; Goal Nl .2.6b). The key to understanding and apply-
ing ordinal terms is recognizing, at least implicitly, that they are relational
terms—defined relative to a reference point (Goal Nl .2.6c). For example,
the "first in line" can be defined by which direction a line of children is fac-
ing or its direction of movement, such as toward the classroom door. Un-
fortunately, this defining attribute of ordinal numbers is often not made
clear to children.

Transition 3. By assimilating written numerals to their knowledge
of the verbal counting sequence, children can quickly recognize that
written numbers embody an ordinal relation and choose the larger of
two numerals (within their known counting sequence; Goal N1.3.3e in
Table 7.1). Likewise, by connecting written representations for ordinal
numbers (first, second, third,... or 1 st, 2nd, 3rd ...) or ordinal relations (<
and >) to their existing (verbal-based) understanding of numerical
relations, children can readily understand and use these formal terms.
Learning difficulties arise when children have not had the opportunity to
learn prerequisite skills and concepts or when written representations
for ordinal numbers are not related to this knowledge.
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Implications for Early Childhood Standards

No mention is made of Transition 1 (Goal Nl.2.1 and possibly Goal
Nl.2.2) in the PSSM (NCTM, 2000). General guidelines are provided for
promoting Transitions 2 and 3 (e.g., "develop understanding of the relative
position and magnitude of whole numbers and of ordinal... numbers and
their connection [to cardinal numbers]"; p. 78). Again, though, these
guidelines are not sufficiently detailed to help teachers plan instruction.
Consider, for instance, the critical but often overlooked skill of comparing
numbers. The PSSM clearly lays out the expectation that students need to
"develop understanding of the relative position and magnitude of whole
numbers" (p. 78) and that they should be encouraged to discover that "the
next whole number in the counting sequence is ... more than the number
just named" (p. 79). However, there are few clues about the developmen-
tal progression and prerequisites necessary to make such a discovery.
(The prerequisites for fine-number comparisons [Goal Nl.2.5], for exam-
ple, are the larger-number principle [Goal Nl .2.4] and automatically citing
the number after another [Goal N1.1.7c]). In brief, the same conclusions
made about the early childhood standards regarding cardinal number ap-
ply here also. (See Unit 4» 1 in Baroody with Coslick, 1998, for guidelines
and recommendations on teaching this topic.)

Single-digit Addition and Subtraction

• Big Idea 2.1: A collection can be made larger by adding items to it
and made smaller by taking some away from it.

An understanding of addition and subtraction (a key aspect of Really Big
Idea 2 noted earlier) includes Big Idea 2.1 and is fundamental to success
with school mathematics. For example, the former is essential for under-
standing more advanced and related topics such as multiplication (e.g., 3
x 5 = 5 + 5 + 5, which equals 15) orfractions (e.g.,~isliterally-+-+-). An

3 o 3 D

understanding that a collection of items can be made larger by adding ad-
ditional items or smaller by taking some away is also fundamental to
countless aspects of everyday life (e.g., combining a team's scores for
each of four quarters to determine its final score, adding sales tax to a
price to determine total costs, or subtracting the dollars spent from a
checking account). Clearly, addition and subtraction of whole numbers
should be a core topic of any early childhood curriculum.

Development

Recent research indicates that children start constructing an under-
standing of these arithmetic operations long before school. Whether this
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starts in infancy (pre-Transition 1) as nativists claim (e.g., Wynn, 1998) or
not, an intuitive understanding of addition and subtraction (Goal O2.1.1 in
Table 7.1) clearly seems to develop before children are capable of count-
ing-based arithmetic efforts (post-Transition 2), which, in turn, develops
before written arithmetic competencies (post-Transition 3).

As with making number comparisons, then, children's informal addition
is initially relatively concrete (in the sense that they are working
nonverbally with real collections or mental representation of them) and
limited to small collections of four or fewer. Later, as they master and can
apply their counting skills, they extend their ability to engage in informal
arithmetic both in terms of more abstract contexts (word problems and,
even later, symbolic expressions such as 2 + 1 = ?) and more abstract
numbers (namely, numbers greater than four).

Transition 1. Transition 1 children develop the ability to solve
simple nonverbal addition or subtraction problems (e.g., Huttenlocher et
al., 1994). Such problems involve showing a child a small collection (one
to four items), covering it, adding or subtracting an item or items, and then
asking the child to indicate the answer by producing a matching number
of disks. For one item plus another item ("1 + 1"), for instance, a correct
response would involve putting out two disks rather than, say, one disk or
three disks. In the Huttenlocher et al. study, for example, most children
who had recently turned 3 years old could correctly solve problems
involving "1 + 1" or "2 - 1" (i.e., they could imagine adding one object to
another or could mentally subtract one object from a collection of two
objects). Most who were about to turn 4 years old could solve " 1 + 2," "2 +
1," "3 - 1," "3 - 2" as well, and at least a quarter could also solve" 1 + 3," "2
+ 2," "3 + 1," "4 + 1," "4 - 1," and "4 - 3." By the age of 4, children typically
can mentally add or subtract any small number of items (Ginsburg &
Baroody, 2003).

How do children so young manage these feats of simple addition and
subtraction? They apparently can reason about their mental representa-
tions of numbers. For "2 + 1," for instance, they form a mental representa-
tion of the initial amount (before it is hidden from view), form a mental
representation of the added amount (before it is hidden), and then can
imagine the added amount added to the original amount to make the lat-
ter larger. In other words, they understand the most basic concept of addi-
tion—it is a transformation that makes a collection larger. Similarly, they
understand the most basic concept of subtraction—it is a transformation
that makes a collection smaller.

Transition 2. Later—but typically before they receive formal
arithmetic instruction in school—children can solve simple addition
and subtraction word problems by using counting strategies (e.g.,
Carpenter & Moser, 1982, 1984; DeCorte & Verschaffel, 1987; Fuson,
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1992; Huttenlocher et al., 1994), including those involving numbers
larger than four. How do they manage this? Basically, children decipher
the meaning of the story by relating it to their informal understanding of
addition as a "make-larger" transformation ("change add-to" view) or
their informal understanding of subtraction as a "make-smaller"
transformation ("change take-away" view; e.g., Baroody with Coslick,
1998; Carpenter, Hiebert, & Moser, 1983). They then—at least
initially—use objects (e.g., blocks, fingers, or tallies) to model the
meaning (type of transformation) indicated by the word problem.
Consider the following problem: Rafella helped her mom decorate
three cookies before lunch. After lunch, she helped decorate five more
cookies. How many cookies did Rafella help decorate altogether?
Young children might model this problem by using a concrete
counting-all procedure: counting out three items to represent the initial
amount, counting out five more items to represent the added amount,
and then counting all the items put out to determine the solution.

Research further reveals that children invent increasingly sophisti-
cated counting strategies to determine sums and differences (e.g.,
Baroody, 1984, 1987b; Carpenter & Moser, 1982, 1983, 1984; Resnick &
Ford, 1981; Steffe et al., 1988). At some point, children abandon using
objects to directly model the meaning of a problem and rely on verbal
(abstract) counting procedures, which require a keeping-track pro-
cess: keeping track of how far to count beyond the first addend. To solve
the aforementioned problem, for instance, they might count up to the
number representing the initial amount ("1, 2, 3") and continue the
count five more times to represent the amount added ("4 [is one more],
5 [is two more], 6 [is three more], 7 [is four more], 8 [is five more]—8
cookies altogether"; the keeping-track process is the italicized por-
tion). One shortcut for this strategy, disregarding addend, can reduce
the effort required to keep track. For 3 + 5, for instance, counting the
larger addend first reduces the keeping-track process from five steps
(as shown in the previous example) to two steps (" 1,2,3, 4, 5; 6 [is one
more], 7 [istwomore],8 [is three more]—the sum is 8"). Another short-
cut many children spontaneously invent is counting on: starting with
the number representing the initial (or larger) amount, instead of
counting from one. For 3 + 5, for example, this would involve starting
with the cardinal value olfive and counting three more times: "5; 6 (is
one more}, 7 (is two more}, and 8 (is three more}—8 cookies alto-
gether." (See Baroody & Tiilikainen, 2003, for a detailed discussion of
addition-strategy development.)

Transition 3 and Post-Transition 3. Research evidence makes
clear that instruction needs to ensure that written arithmetic
representations should be connected to children's informal arithmetic
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knowledge (e.g., Baroody, 1987a; Baroody with Coslick, 1998; Ginsburg,
1977; Hughes, 1986).

Probably one of the greatest concerns to early childhood educators is
"number-fact" mastery. How the basic number combinations such as 7 +
1 = 8 and 4 x 5 = 20 are registered in, represented by, and retrieved from
long-term memory (LTM) are still baffling issues (see, e.g., Ashcraft, 1985,
versus Baroody, 1985; and Brownell, 1935, versus Thorndike, 1922). Al-
most two decades ago, Mark Ashcraft (1982) published an article in Devel-
opmental Review summarizing the state of the knowledge in the area.
Specifically, he concluded that:

1. Addition number facts were organized in LTM in a manner analo-
gous to the addition tables studied by schoolchildren,

2. Rules involving 0 or 1 (e.g., any number plus 0 is simply that number)
served merely as slow backup strategies in case fact retrieval failed.

Research indicates that both these assumptions are probably wrong
(see, e.g., Baroody, 1985,1994, for re views of the literature). For example, a
series of training experiments (Baroody, 1988b, 1989a, 1992a) demon-
strated that rules involving 0 and 1 transferred to unpracticed addition
combinations, allowing children to answer such combinations efficiently.
In a more recent review of the literature, Ashcraft (1992) himself con-
cluded that the consensus in the field was (a) his original table-analogy
model was no longer viable and (b) combinations involving 0 or 1 might
well be produced by fast rules.

Research further indicates that other relational knowledge may play a
key role in both number-combination learning and representation
(e.g., Baroody, 1999; Baroody, Ginsburg, & Waxman, 1983). For in-
stance, research indicates that knowledge of commutativity may affect
how basic combinations are mentally represented or organized
(Butterworth, Marschesini, & Girelli, 2003; Rickard & Bourne, 1996;
Rickard, Healy, & Bourne, 1994; Sokol, McCloskey, Cohen, & Aliminosa,
1991). In and of itself, then, practice, is not THE key factor determining
what number combinations children remember (e.g., Baroody, 1988b,
1999), as suggested by information-processing models (e.g., Siegler,
1988; Siegler & Shipley, 1995). Another important finding is that even
adults use a variety of strategies to determine sums and differences effi-
ciently (e.g., LeFevre, Sadesky, & Bisanz, 1996; LeFevre, Smith-Chant,
Hiscock, Daley, & Morris, 2003). In brief, new research suggests that in-
ternalizing the basic number combinations is not simply a matter of
memorizing individual facts by rote but may also involve automatizing
relational knowledge and that experts do not simply retrieve facts from
LTM but may use a variety of automatic or near-automatic strategies, in-
cluding efficient rules and reasoning strategies.
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Implications for Early Childhood Standards

Given its importance for school mathematics and everyday life, early
childhood instruction should also focus on helping children devise and
share increasingly efficient strategies for generating sums and differences.

Transitions 1 and 2. The PSSM (NCTM, 2000) does not explicitly
address the development of precounting (Pre-Transition 2) addition and
subtraction or how this might provide a basis for verbal-counting-based
arithmetic (Transition 2).

In regard to post-Transition 2 developments, general, but not specific,
guidelines are provided. Children's use of informal addition strategies is
encouraged. For instance, it is explicitly noted that "they often solve addi-
tion and subtraction problems by counting concrete objects, and many...
invent problem-solving strategies based on counting strategies" (NCTM,
2000, pp. 79-80). Other general guidelines explicitly, or at least implicitly,
noted include "students should encounter a variety of meanings for addi-
tion and subtraction" (p. 34; see, e.g., BaroodywithCoslick, 1998, for a tax-
onomy of operation meanings), children should be "encouraged to
develop, record, explain, and critique one another's strategies for solving
computational problems" (p. 35; see also p. 84) and instruction and prac-
tice should be done in context (in a purposeful manner). However, practi-
tioners are not provided specific guidelines. For example, although
teachers are encouraged to foster the relatively sophisticated counting-on
strategy, no advice is provided on how this can be accomplished (for such
advice, see pp. 160-163 of chap. 6 in this volume).

Early childhood standards should include expectations regarding the
development of nonverbal addition and subtraction and how their verbal
counterparts can build on this knowledge (see Goals O2.1.1 to O2.1.4 in
Table 7.1). Mechanisms must also be found to help teachers learn specific
guidelines for fostering young children's nonverbal and verbal addition
and subtraction.

Transition 3 and Post-Transition 3. In regard to Transition 3,
instruction should build on and extend children's informal knowledge by
helping them (a) to "connect... formal expressions or equations such as 5
+ 3 [and] 5 + ? = 8" to problem situations and their informal solutions for
them and (b) to "relate symbolic expressions to various problems"
(Baroody with Coslick, 1998, pp. 5-11 and 5-12). The PSSM (NCTM, 2000)
implicitly, if not explicitly, includes the first recommendation by
underscoring the importance of solving problems and connecting various
representations of problem strategies and solutions. It clearly and
explicitly makes the aforementioned second recommendation in several
places (see, e.g., pp. 34, 83, and 139).
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The recommendations regarding mastery of basic number combina-
tions made in chapters 3 and 4 of the PSSM (NCTM, 2000) are not en-
tirely consistent, which may reflect the conflicting views held by the
PSSM writers on this surprisingly complicated issue. The expectations
for Pre-K to 2 outlined in chapter 4 include "develop fluency with basic
number combinations for addition and subtraction," where fluency is
defined as "using efficient and accurate methods for computing" (p.
78). Not equating fluency with the retrieval of isolated facts memorized
by rote but equating it with various speedy and reliable methods is
clearly consistent with recent research that even adults do so to deter-
mine basic sums (e.g., LeFevre et al., 1996). Substituting basic number
combinations for the misleading term basic number facts further rein-
forces this key point.

Important to note, chapter 4 of the PSSM (NCTM, 2000) includes the
recommendation that "students should develop strategies for knowing
basic number combinations that build on their thinking about, and un-
derstanding of, numbers" and that they be provided tasks that "help
them develop the relationships within addition and subtraction" (p. 84;
see, e.g., Baroody, 1999; Fuson, 1992; Steinberg, 1985). A search of PSSM
uncovered two examples of these recommendations: discovery of (a)
the number-after rule ("the next whole number in the counting se-
quence is one more than the number just named"; p. 79) and (b) the
complementary relation between addition and subtraction (e.g., 5-3 = ?
can be thought of as 3 + ? = 5; p. 138).

\nPSSM (NCTM, 2000) chapter 3, references are also made to "knowing
basic number combinations" (pp. 32 and 33), but this appears to imply a
different meaning than that suggested in chapter 4. In contrast to the later
chapter where knowing the basic number combinations is, at least implic-
itly, equated with fluency, a distinction between the two terms appears to
be made in the earlier chapter. After the former is identified as essential
comes the statement "equally essential is computational fluency" (p. 32).
This same apparent distinction appears on page 35: "By the end of grade 2,
students should know the basic addition and subtraction combinations,
should be fluent in adding two-digit numbers ... (italics added).4

Early childhood standards should include explicit expectations about
how written addition and subtraction can be linked to children's existing
knowledge, including the recommendation that they be encouraged to
represent as equations word problems and their informally determined
solutions (see Goal O2.1.5 in Table 7.1). Given the common misconcep-
tions and confusion about the issue of combination mastery, these stan-

4An almost identical sentence appeared in the PSSM draft (NCTM, 1998), except that recall
was used instead of know, and facts was used instead of combinations. Although these
changes appear to contradict the argument that knowing is not being contrasted with flu-
ency, they seem to be a Clintonian gambit to use words ambiguously when compared with
the clear-cut statement from page 78 in Chapter 4 quoted earlier.
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dards should also include (above and beyond the general Goals O2.1.6
and O2.1.7) the following explicit and clear-cut expectations:

1. Fluency with each family of number combinations should build
on two requisite developmental phases: (a) counting-based strat-
egies for determining sums and differences (e.g., counting on)
and (b) reasoning-based strategies fordoing so (e.g., 7 + 8 = 7 + 7
+ 1 = 14 + 1 = 15). (A family of combinations consists of combi-
nations that share a common pattern or relation. A combination
may belong to more than one family.)

2. To promote the second (reasoning-based) phase and lay the
groundwork for the third (fluency), teachers should encourage
children to look for patterns and relations and use them to devise,
implement, and share reasoning ("thinking") strategies.

3. To promote the third phase (fluency) and to minimize the amount
of practice required to achieve it, practice should focus on helping
students automatize reasoning (thinking) strategies, not memo-
rizing individual facts by rote.

4. Practice should be done in a purposeful, meaningful, and—when
possible—inquiry-based manner.

5. Fluency can embody a variety of strategies, including—but not
limited to—the recall of (isolated) facts.

Furthermore, the general principles just listed should be accompanied
by at least one example. For instance, Principle 2 could be illustrated by the
examples cited in the PSSM (NCTM, 2000; the number-after rule for n + 1
combinations or translating subtraction combinations into known com-
plementary addition combinations) or any one of the examples listed in
Box 5.6 on pages 5-31 and 5-32 in Baroody with Coslick (1998). Principle 4
could be illustrated by cases where problems, games, and other activities
can be used to provide purposeful, meaningful, and inquiry-based prac-
tice (see, e.g., Box 5.4 and Activity Files 5.6 to 5.8 on pp. 5-28 and 5-29 of
Baroody with Coslick, 1998).

Part-Whole Relations

• Big Idea 1.3/2.2: A quantity (a whole) can consist of parts and can
be "broken apart" (decomposed) into them, and the parts can be
combined (composed) to form the whole.

An understanding of how a whole is related to its parts—what Piaget
(1965) termed "additive composition"—includes recognizing that a
whole is the sum of its parts (Part 1 + Part 2 = Whole) and that the whole is
larger than any single part (Whole > Part 1 or Part 2). The construction of a
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part-whole concept is an enormously important achievement (e.g.,
Resnick & Ford, 1981). Some scholars consider it to be the basis for a deep
understanding of number (Really Big Idea 1) and arithmetic (Really Big
Idea 2) and a key link between these two concepts (e.g., Piaget, 1965;
Resnick, 1992). (This is why this big idea is represented above by the com-
bined designation 1.3/2.2.)

Deep Understanding of Number. A part-whole concept may be
the foundation for understanding the following more advanced concepts
of number: (a) place-value representation (e.g., the whole 123 can be
decomposed into the parts 1 one hundred, 2 tens, and 3 ones; 12 tens and 3
ones; 1 one hundred, 1 ten, and 13 ones; and so forth), (b) common
fractions (in the representation alb, the numerator a indicates the number
of equal-size parts of a whole of interest, and the denominator b indicates
the total number of equal parts into which the whole is subdivided), and
(c) ratios—including probability (the probability of an outcome = its
frequency/frequency of all outcomes = frequency of the part of
interest/frequency of all parts or the whole).

More Advanced Understanding of Arithmetic. A part-whole
concept is assumed to underlie a more formal part-whole ("binary")
meaning of addition and subtraction (Resnick, 1992). Unlike children's
informal change add-to view of addition (embodied in Problem A as
follows), part-whole situations do not involve a physical action that results
in increasing an initial amount (see, e.g., Problem B as follows).

• Problem A. Arillo had three candies. His mom gave him two
more. How many candies does Arillo have now?

• Problem B. Bree held three of her candies in her left hand and two
in her right hand. How many candies did she have in all?

A part-whole concept is considered to be a conceptual basis for under-
standing and solving missing-addend word problems such as the follow-
ing Problems C and D and missing-addend equations such as ? + 3 = 5 and
7-2 = 7 (Resnick, 1992; Riley, Greeno, & Heller, 1983):

• Problem C. Angie bought some candies. Her mother bought her
three more candies. Now Angie has five candies. How many can-
dies did Angie buy?
| Problem D. Blanco had some pennies. She lost two pennies play-

ing. Now she has seven pennies. How many pennies did Blanco
have before she started to play?
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A part-whole concept may be the psychological basis for arithmetic
concepts such as the principles of additive commutativity (Part 1 + Part 2
= Part 2 + Part 1) and associativity ([Part 1 + Part 2] + Part 3 = Part 1 + [Part
2 + Part 3]; Resnick, 1992; Rileyetal., 1983). Furthermore, an understand-
ing of part-whole relations may serve to connect the operations of addi-
tion and subtraction in the following three ways: the basic complement
principle (Whole - Part 1 = ?, which is related to Part 1 + ? = Whole), the
advanced complement principle (Part 1 + Part 2 = Whole, which is re-
lated to Whole - Part 1 = Part 2 or Whole - Part 2 = Part 1), and the inverse
principle (Part 1 + Part 2 - Part 2 = Part 1 or Part 1 - Part 2 + Part 2 = Part 1;
e.g., Baroody, 1999).

A Link between Number and Arithmetic. Finally, a part-whole
concept may underlie an understanding of "number families" or the
different-names-for-a-number concept (a number can be represented in
various ways because a whole can be composed or decomposed in
various ways) and is one key link between number and arithmetic. The
number represented by 5 can also be represented by, for example, 0 + 5,1

+ 4, 2 + 3, 3 + 2, 4 + 1, 5 + 0, 6 - 1, 7 - 2 (as well as 1 1 1 1 l,THi V, five,

and •••••).

Development

Part-Whole Concept. Using a matching task to eliminate the need
for verbal responses, Boisvert, Standing, and Moller (1999) found that a
majority of children as young as 2.5 years of age could correctly identify a
composite figure (the whole) made up of conceptually different units (the
parts). For instance, asked to find a "cat made of triangles," participants
more often pointed to the corresponding picture than they did to a picture
of a cat, a picture of triangles, and a picture of a giraffe made of triangles.
The results contradicted earlier evidence that preschoolers cannot pay
attention to both the whole and its parts simultaneously (e.g., Elkind,
Koegler, & Go, 1964).

The construction of a part-whole concept may begin with inexact non-
verbal (pre-Transition 1) experiences, such as putting together interlock-
ing blocks or pieces of playdough and taking them apart. This could lead to
an intuitive understanding that a whole is larger than its composite parts.
Transition 1 could result in a more precise understanding of additive com-
position, at least with quantities children could nonverbally subitize and
mentally represent. Specifically, it may provide the basis for recognizing
that one discrete quantity and another invariably make a particular total
(e.g., two items and one more item always yield three items) and, even
perhaps, that the order in which these particular discrete amounts are
combined does not affect the total.
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Irwin (1996) examined the following two key aspects of a proto-
quantitative part-whole concept identified by Resnick (1992) and found
that the majority of children as young as 4 years old understood both:

1. The co-variation principle entails recognizing the equivalence of
adding the same number of items to a part and its whole (If Part 1 +
Part 2 = Whole, then [Part 1 + a number] + Part 2 = Whole + the
number) or subtracting the same number of items from a part and
the whole [Part 1 - a number] + Part 2 = Whole - the number).

2. The compensation principle involves understanding the effect of
taking a number of items from one part and adding the same num-
ber of items to the other part (If Part 1 + Part 2 = Whole, then [Part
1 + a number] + [Part 2 - the number] = Whole).

Irwin's (1996) participants were significantly less successful on corre-
sponding tasks with counted wholes and utterly unsuccessful on a sym-
bolic version involving verbally stated numbers. Her results, then, appear
to be consistent with Resnick's (1992) model.5

Class Inclusion. One task Piaget (1965) used to study the
development of part-whole knowledge was the "class-inclusion" task.
This task entailed showing children two collections such as five roses and
three daisies and asking them if there were more flowers or more roses.
Children before about 7 years of age typically responded that there were
more of the latter.

5Three problems with Irwin's (1996) methodology, however, render her results inconclu-
sive. It is not clear that she really measured part-whole understanding at Resnick's (1992)
protoquantities level. For example, 4-year-olds compared an experimenter's collection of
three items with their own three-item collection, which was subdivided into parts of two
items and one item. These collections could easily have been non-verbally subitized, verbally
subitized, or subvocally or surreptitiously counted. In other words, children could easily have
been using any of several exact-number processes, instead of an inexact process that charac-
terizes Resnick's protoquantities level. Second, it is not clear whether Irwin was actually
measuring part-whole-knowledge or something else with the so-called protoquantities task.
Her participants could have been responding correctly to the co-variation trials simply by no-
ticing that an item was added or taken away rather than considering the effects on the child's
whole relative to the tester's (cf. Brush, 1978). In effect, the children might have been inter-
preting the task in terms of a change add-to view of addition, not in terms of part-whole view.
Third, the putative variable of interests, namely the conceptual level, was not the only way the
protoquantities-level task differed from the quantities- and numbers-level tasks. With the first
task, a child could readily see (by nonverbal or verbal subitizing or by subvocal counting) that
a collection of items was split evenly between the tester and him- or herself. With the quanti-
ties-level task, for example, the child was asked to give the tester a specified number of items,
which the latter then hid in one hand. The tester next placed an unspecified number of items
in the other hand, which was then operated on in various ways. The participant could, then,
not be sure that the collections in the two hands, were, in fact, equal and may not have been
thinking in terms of a specific number of items. Furthermore, unlike the so-called
protoquantities task, children did not see both parts in the quantities task.
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However, subsequent analyses and research strongly indicate that
Piaget (1965) underestimated young children's part-whole knowledge, in
part, because the wording of his class-inclusion task was unfamiliar and
confusing to them (Brainerd, 1978; Kohnstamm, 1967; Markman, 1979;
Trabasso et al., 1978; Winer, 1980). When collective terms such as family
or army are used in class-inclusion questions, children as young as 4 are
successful on the task (Fuson, Lyons, Pergament, Hall, & Kwon, 1988;
Markman, 1973). Controlling for a variety of extraneous difficulties,
Sophian and McCorgray (1994, Experiment 2) found that 5- and 6-year
olds, but not 4-year-olds were successful on a class-inclusion task.

Sophian and McCorgray (1994, Experiment 1) and Sophian and Vong
(1995), likewise, found that 5- and 6-year-olds, but not 4-year-olds, recog-
nized that the starting amount (Part 1) in a missing-start change add-to
problem had to be less than the numerical total of two numbers (the
Whole). Irwin (1996) noted that this accomplishment apparently reflects
the transition from protoquantitive knowledge about class-inclusion rela-
tions to quantitative knowledge about it. This research is discussed further
in the next subsection.

Missing-Addend Problems. Young children's inability to solve
missing-addend word problems and equations has been taken as yet
more evidence that they lack a part-whole concept (e.g., Riley et al.,
1983). Some have interpreted such evidence as support for Piaget's (1965)
conjecture that the pace of cognitive development determines the math-
ematical concepts children can and cannot learn and have concluded that
instruction on missing addends is too difficult to be introduced in the early
primary grades (Kamii, 1985).

The results of several recent studies suggest otherwise (e.g., Sophian &
Vong, 1995). Sophian and McCorgray (1994, Experiment 1), for instance,
gave 4-, 5-, and 6-year-olds problems like Problems C and D discussed ear-
lier. Problems were read to a participant and acted out using a stuffed bear
and pictures of items. When reference was made to the initial unknown
amount, the participant was shown a round box covered by an envelope.
When reference was made to adding objects, a picture of their objects was
shown to the child and then put in the envelope (out of sight). For problems
involving subtraction, a picture of the objects taken was removed from the
box, shown to the child, and then placed out of sight. When the result was
mentioned, the participant was shown a picture of the corresponding
items. Although 5- and 6-year-olds typically had great difficulty determining
the exact answers of such problems, they at least gave answers that were in
the right direction. For Problem C, for instance, children knew that the an-
swer (a part) had to be less than five (the whole). For Problem D, for exam-
ple, they recognized that the answer (the whole) had to be larger than seven
(the larger of the two parts). These results suggest that 5- and 6-year-olds
can reason (qualitatively) about missing-addend situations and, thus, have
a basic understanding of part-whole relations.
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Related Number and Arithmetic Concepts. The available
evidence does not provide a clear indication of when children construct a
more formal part-whole view of addition and subtraction (see Baroody,
Wilkins, & Tiilikainen, 2003, for a review). Moreover, efforts to trace the
development of additive commutativity from a protoquantitative level to
general abstract reasoning have, to date, not confirmed the progression of
levels hypothesized by Resnick (1992; again see Baroody et al., 2003, for a
review). What is known is that, between 5 and 7 years of age, children
discover that whether Part 2 is added to Part 1 or vice versa, the sum is the
same—whether the task involves unknown quantities, known quantities,
or symbolic expressions (Baroody, 1987b; Baroody & Gannon, 1984;
Baroody et al., 1983; Bermejo & Rodriguez, 1993; Cowan & Renton, 1996;
Sophian, Harley, & Martin, 1995). Furthermore, children appear to
recognize commutativity earlier when the task involves part-whole
problems than when it entails change add-to problems (Wilkins, Baroody,
& Tiilikainen, 2001). The latter may be more difficult because change
add-to problems imply adding in a particular order. Children who can
overcome this implied order constraint (e.g., recognize that five and three
more has the same sum as three and five more) have constructed a
relatively deep understanding of additive commutativity.

Even the basic complementary relation between addition and subtrac-
tion (Whole - Part 1 = Part 2, which is related to Part 1 + Part 2 = Whole)
appears to be far less salient to young children than is additive
commutativity (Baroody, 1999; Baroody etal., 1983). This principle may be
a basis for a reasoning out difference (e.g., 5 - 3 = ? can be thought of as 3
+ ? = 5), discussed earlier.

Furthermore, many prefirst graders may not recognize that a quantity (a
whole) can be decomposed or created in various ways (e.g.,
Baratta-Lorton, 1976; Baroody with Coslick, 1998). Young children's
change add-to view of addition and change take-away view of subtraction
may contribute to this incomplete understanding of part-whole relations
(Baroody, 1987a). For instance, a child may believe that five and two more
is seven (Part 1 + Part 2 = a Whole) and not realize that four and three
more can have the same outcome ([Part 1 -1 ] + [Part 2 + 1 ] = the Whole).
In effect, children may have to rediscover the compensation principle at
the level of abstract number. This may occur about the age of 7 years,
when children begin to compute and either mentally compare sums and
differences or compare written equations.

Implications for Early Childhood Standards

In the PSSM draft (NCTM, 1998), part-whole relations are mentioned in
two passages, the first implicitly and the second explicitly: (a) "develop an
understanding of multiple relationships among whole numbers by... com-
posing [and] decomposing number" (p. 109); (b) "Children gradually de-
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velop part-part-whole concepts. For example, in a situation where there are
4 red balls and 3 blue balls, three and four are parts and seven is the whole"
(p. 111). Nothing is explicitly said, however, about why a part-whole con-
cept is important (e.g., providing a basis for assimilating missing-addend
problems) or how a teacher might foster its development.

The preceding Point a was retained in the PSSM (NCTM, 2000) in a re-
vised form as one of the Pre-K to 2 expectations. Inexplicably, though, the
direct mention of the part-whole concept (Point b, preceding) was not.
As was the case in the PSSM draft (NCTM, 1998), the PSSM (NCTM, 2000)
does not include direct mention of how a part-whole concept underlies
an understanding of key concepts and skills. The discussions of the con-
cepts of additive commutativity and associativity, missing-addend addi-
tion, the relations between addition and subtraction, measurement,
place value, and other names for a number concept (e.g., see pp. 33, 34,
80, and 82-84), for instance, are not tied to a part-whole understanding.
A discussion of fractions only implicitly makes a connection to this key
idea: "Young children can be encouraged ... to see fractions as part of a
unit whole or of a collection" (p. 33).

The early childhood standards should explicitly identify the part-whole
concept as one of the "big ideas" that forms the nucleus of early mathe-
matics instruction, one that holds this nucleus together as a coherent body
of knowledge. It should further illustrate why it is important (see, e.g.,
Resnick, 1992) and how this key knowledge can be fostered (see, e.g.,
chap. 6 in Baroody with Coslick, 1998).

Grouping and Place Value

• Big Idea 1.4/2.3: Items can be grouped to make a larger unit and, in
a written multidigit number, the value of a digit depends on its po-
sition because different digit positions indicate different units.

Grouping items by larger units such as making groups often, hundreds, and
so forth can make counting large collections easier (e.g., instead of count-
ing a collection of 63 items by one, counting: "10, 20, 30, 40, 50, 60, 61, 62,
63"). Along with place-value concepts (e.g., the position of a digit indicates
its value), grouping concepts serve as the underlying rationale for our sys-
tem of written, multidigit numbers (e.g., the 2 in 258 represents two groups
of one hundred; the 5, five groups of ten; the 8, eight singles). These con-
cepts are also the basis for multidigit arithmetic procedures with either
whole numbers or decimals, including renaming ("carrying" and "borrow-
ing"; e.g., for 97 + 48, the sum of the units place digits 15 can be thought of
as a group of 10 and 5 singles and so a 1 can be placed atop the tens column
to represent 1 group of ten and the 5 can be recorded in the units place).

A grouping concept, which includes other base systems (grouping by
numbers other than 10), also has a variety of everyday applications. For ex-
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ample, money equivalents are based on groupings of 5 (5 pennies = 1
nickel, 5 nickels = 1 quarter, 5 dimes = 1 half dollar, etc.) and 10 (10 pen-
nies = 1 dime, 10 dimes = 1 dollar, etc.), electronic devices such as calcu-
lators or computers operate on a base-2 system, and produce retailers
regularly use groups of 12 to quantify their purchases and sales (12 items =
1 dozen, 12 dozen = 1 gross, 12 grosses = 1 great gross; see Baroody with
Coslick, 1998, 2000, for examples and explanations).

Development

Unlike Asian counting sequences, the English sequence does not clearly
underscore grouping and place-value concepts (Big Idea 1.4/2.3 listed earlier;
see, e.g., Fuson & Burghardt, 2003; Miura & Okamoto, 2003). Thus, although
English-speaking children may begin to construct some understanding of
these concepts before school, most probably do not develop a deep under-
standing of them without effective instruction. The normal course of develop-
ment in this country, then, is to move from a counting-based view of number
(e.g., view a verbal number such as twenty-three or a multidigit written num-
ber such as 23 as a collection of 23 items, not as two groups of ten and three
units) to one based on grouping and place value at least to some degree. The
development of a grouping and a place-value concept is intertwined with
each other and other concepts.

Transitions 1 and 2. After Transition 1, preschoolers may engage
in intuitive grouping activities, such as repeatedly add two blocks to a toy
pickup truck to create a "full load" (a larger unit of blocks), which is
transported to make a house (an even larger unit of blocks). Transition 2
makes it more likely that children will construct a broader, more accurate,
and more explicit understanding of grouping. With the advent of
meaningful counting (enumeration and production), children can create
equal groups of even larger numbers and use numbers to ensure their
equality. Dealing with larger numbers, in turn, can create a real need for
forming groups of groups (i.e., even larger units). For example, in keeping
track of hundreds of points, it behooves children to make piles of 10 (treat
10 items as a single group of ten) and to group 10 groups of ten into a
hundred. This may lead to recognizing "hierarchical grouping"—that each
larger unit is composed in the same way (e.g., tens are composed of 10
ones; hundreds, of JO tens; thousands, of 10 hundreds; and so forth).
Children take another important step when they recognize that grouping
can be reversed (e.g., that a ten can be decomposed into 10 ones; e.g.,
Cobb&Wheatley, 1988).

The construction of a place-value concept may begin in pre-Transi-
tion 2 form when a young child, for instance, plays target games. A child
in this phase of development may know that hitting the target is good
and that hitting the bull's-eye of the target is even better. Transition 2, es-
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pecially, can result in associating a particular value with, say, hitting the
target and hitting the bull's-eye.

Transition 3. The transition to written representations of numbers,
particularly informal ones (twelve = |||||||||| 11), can further facilitate the
development of a grouping concept. It can be especially important for the
construction of place-value understanding. A step toward an understand-
ing that the position of a digit in a multidigit nu meral defines its value may
be recognizing that 23 and 32 represent different amounts or that the latter
is larger than the former (Donlan, 2003). Furthermore, children need to
learn that (a) items can be grouped, and grouped items are treated differ-
ently from ungrouped items; (b) the group size (10 in base-10) is used re-
peatedly to group smaller groups (e.g., ten 10s are grouped to make 100,
ten 100s make 1,000, and so forth); and (c) successively larger groups are
arranged from right to left and the number in each group is denoted by a
single-digit numeral (Hendrickson, 1983). Furthermore, when adding or
subtracting multidigit numbers, only digits of the same group size can be
combined or subtracted (Fuson, 1992).

Children who have not been given the opportunity to construct grouping
and place-value concepts may have difficulty learning multidigit skills. The
symptoms of such difficulties have been widely observed and include "writ-
ing numerals as they sound" (e.g., writing twenty-three as 203; e.g.,
Ginsburg, 1977), making "face-value errors" (e.g., interpreting 23 as two of
something, such as two uncircled items, and three of something else, such
as three circled items; e.g., Ross, 1989), and using "buggy algorithms" (e.g.,
subtracting the smaller digit from the larger regardless of position, as in 254 -
67 = 213; Ashlock, 1998; Brown & Burton, 1978; Buswell & Judd, 1925).

Implications for Early Childhood Standards

Grouping and place-value concepts are emphasized in the PSSM (NCTM,
2000) and justifiably so. The importance of using various models to help
children construct these concepts is mentioned in a number of places. For
example, one of the expectations for Grades Pre-K to 2 is that children "use
multiple models to develop initial understandings of place value and the
base-ten number system" (NCTM, 2000, p. 78). Also clearly emphasized is
the need to develop flexibility in thinking about numbers. The example of
students modeling twenty-five with 25 beans and two dimes and a nickel,
for instance, could be interpreted as helping children see that multidigit
numbers have both a counting-based meaning and a grouping-based
meaning. Key connections between place-value/grouping concepts and
counting and written multidigit numbers are also discussed.

There is little mention, though, about the earliest forms of grouping and
place-value concepts (Transition 1 experiences) in the PSSM (NCTM,
2000). Also not discussed are the relative merits of different models that
can provide bases for Transitions 2 and 3 (see Fig. 7.1) or the pedagogical
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FIG. 7.1. Models for grouping and place-value concepts. These are increasing abstract
models of multidigit numbers using objects or pictures.

benefits of introducing other bases (see chapter 6 in Baroody with
Coslick, 1998 and 2000, for a discussion of both of these issues). Although
the PSSM (NCTM, 2000) includes the caution that using concrete materi-
als, especially in a rote manner, does not ensure understanding (e.g.,
Baroody 1989b; Clements & McMillen, 1996), it does not lay out adequate
guidelines for using manipulative in a meaningful manner (see, e.g.,
Baroody, with Coslick, 1998; Fuson & Burghardt, 2003; Miura & Okamoto,
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2003). The early childhood standards should address all the issues raised
in the preceding discussion.

Equal Composing and Decomposing

• Big Idea 1.5/2.4: A whole can be composed from or decomposed
into equal size parts.

Like a part-whole concept, equal composing and decomposing is an-
other big idea in that it provides the conceptual basis for important as-
pects of number (Really Big Idea 1) and operations on numbers (Really
Big Idea 2) and further connects these major domains. Equal composing
(e.g., combining collections of equal size to form a whole) is a concep-
tual basis for multiplication, which is simply a special case of addition
(namely combining collections of equal size}. Analogously, decompos-
ing a whole into equal-size groups (equal partitioning) is a conceptual
basis of division. For example 14 + 4 = 3 r2 can be thought of as 14 items
shared fairly among four people would result in shares of 3 items each
with 2 items left over (unshared). Equal partitioning is also the concep-
tual basis for fractions (and measurement). For example, the fraction 3/8
can represent taking 3 pieces of a pizza (a whole), which has been sub-
divided into 8 equal pieces.

Development

Even before they learn to count, children may be interested in sharing or
splitting up (more or less) equally small, discrete (and continuous) quanti-
ties. With the development of counting, children secure another method
of ensuring or checking on equal shares, particularly for quantities larger
than four items.

Multiplication. Many children find multiplication to be easier than
subtraction because the former builds on addition and the latter involves
informal calculations that are relatively difficult to do mentally (see
Baroody, 1987a, for a detailed discussion). Specifically, multiplication is
relatively easy to understand if instruction helps students see that it is
simply repeated addition—the addition of a like term.

Division. Research has shown that many children of kindergarten
age can respond appropriately to fair-sharing problems involving
diwying-up situations, such as Problem E as follows:

• Problem E. Three sisters Martha, Maria, and Marsha were given a
plate of six cookies by their mom. If the three sisters shared the six
cookies fairly, how many cookies would each sister get?
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Some children solve this type of problem by using a dealing-out strategy:
Count out objects to represent the amount; then deal out the cookies one
at a time into piles; repeat the process until all the objects have been
passed out; and then count the number of items in each pile to determine
the solution (e.g., Davis & Pitkethly, 1990; Hiebert & Tonnessen, 1978;
Hunting & Davis, 1991; Miller, 1984). For the aforementioned Problem E,
this would entail counting out six items, dealing out one item at a time to
each of three piles, repeating the dealing-out process, and finally counting
the two items in one of the piles to determine the answer. Even the opera-
tion of division, then, can be introduced at a concrete level to children as
early as kindergarten.

Fair-sharing problems can also involve measuring-out situations, as
Problem F illustrates:

| Problem F. Jerry has 12 cookies. If he made shares of 3 cookies
each, how many children could share the cookies fairly?

An understanding of measure-out division is important for (a) a more
complete understanding of the operation and, in time, how division is re-
lated to a groups-of multiplication and (b) making sense of fraction and dec-
imal division. Research suggests, though, that many children are not
familiar with and have more difficulty solving measure-out problems
(Fischbein, Deri, Nello, & Marino, 1985). Because they are inclined to relate
symbolic division to a divvy-up meaning exclusively, students are puzzled by
expressions such as 1 + 1 or 0.75 •*• 0.25 (Baroody with Coslick, 1998).

2 8

Fractions. Equal partitioning of both discrete and continuous
quantities to solve fair-sharing problems can provide a key informal basis for
understanding fractions (e.g., Baroody with Coslick, 1998; Hunting & Davis,
1991; Mack, 1990,1993; Streefland, 1993). For instance, trying to share three
cookies between two children can give rise to dividing each of the cookies
into two equal-size pieces (halves) and giving each child a half of each
cookie, or one whole cookie and half of another (1 + - + - = - or 1-). Some

2 2 2 2 2
children might solve the same problem by giving each child a whole cookie
and half of the third cookie (1 -). A class discussion could make explicit the

£

following fundamental fraction concepts: (a) the shares must be fair or
equal in size (fractions involve a special situation in which all the parts of a
whole are equal in size), (b) three halves literally means three one-halves
(fractions embody multiplicative reasoning; e.g., = - = 1+1+1 = 3x1), and

(c) three halves and one and a half represent the same amount (a fractional
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amount can have different names—which we call equivalent fractions ).
Unfortunately, formal instruction on fractions typically moves too quickly
with abstract symbols and, thus, does not provide an adequate conceptual
basis for understanding fractions (e.g., the idea that parts must be equal;
e.g., Behr, Harel, Post, & Lesh, 1992).

Fraction addition and subtraction may not deserve emphasis in early child-
hood education. However, as with an understanding of whole numbers
(Piaget, 1965), a relatively complete and accurate understanding of fractions
depends, in part, on understanding the role of additive composition. For in-
stance, an accurate understanding of one half includes recognizing that a half
is less than a whole and that two halves ("- + -") make a whole.

2 2

Perhaps most surprising of all is the research indicating that preschool-
ers may understand simple fraction addition and subtraction. Mix, Levine,
and Hutlenlocher (1999) presented 3-, 4-, and 5-year-olds nonverbal prob-
lems that involved, for instance, first showing half of a circular sponge and
then putting it behind a screen, next showing half of another circular
sponge and then also putting it behind the screen, and finally presenting
four choices (e.g., one fourth of a sponge, one half of a sponge, three
fourths of a sponge, and a whole sponge) and asking which was hidden by
the screen. The 3-year-olds were correct only 25% of the time (i.e., re-
sponded at a chance level—no better than could be expected by random
guessing). The 4- and 5-years olds, though, responded at an above-chance
level. For instance, over half were correct on trials involving"1 + 1," "- + -,"

5 4 2 4 4

"1-1," and "1-1."
2 4 4

In his discussion of my paper presented at the Conference on Standards
for Preschool and Kindergarten Mathematics Education (Baroody, 2000),
Kevin Miller correctly cautioned that Mix and her colleagues' (1999) evi-
dence does not necessarily mean that their participants understood frac-
tions (e.g., as a part of a whole subdivided into equal-size parts), let alone
fraction addition and subtraction. He noted that children could be re-
sponding to perceptual cues such as area. Clearly, further research is
needed to assess whether most or even some 5-year-olds understand frac-
tion addition and subtraction.

Implications for Early Childhood Standards

Multiplication. The PSSM (NCTM, 2000) includes explicit mention
of the conceptual basis of multiplication (equal composing). "Through
work situations involving equal subgroups within a collection, students
can associate multiplication with the repeated joining (addition) of groups
of equal size" (p. 84).
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Division. The PSSM (NCTM, 2000) includes explicit mention of
division and its conceptual basis (equal partitioning): "Understand
situations that entail... divisions, such as equal groupings of objects and
sharing equally" (p. 78). This document also clearly indicates that
fair-sharing problems can provide a conceptual basis for developing these
ideas: "Division can begin to have meaning for students in
prekindergarten through grade 2 as they solve problems that arise in their
environment, such as how to share a bag of raisins fairly among four
people" (p. 34). The PSSM (NCTM, 2000) does not distinguish between
divvy-up fair-sharing problems (like the one in the previous sentence or
the earlier Problem E) and measure-out fair-sharing problems (such as the
earlier Problem F).

The proposed EC standards should not only recommend the use of fair
sharing, in general, but the use of such problems involving both diwy-up and
measuring-out situations. For a detailed discussion of the distinction between
these two types of division problems and how a teacher can use everyday sit-
uations to introduce each, see pages 5-17 to 5-24, particularly Fig. 5.4 on page
5-20 and Activity 5.5 on page 5-21 in Baroody with Coslick (1998).

Fractions. The PSSM (NCTM, 2000) does include specific mention
of fractions. For instance, page 33 includes the statement: "Beyond
understanding whole numbers, young children can be encouraged to
understand and represent commonly used fractions in context, such as -

of a cookie or - of a pizza, and to see fractions as part of a unit whole or of a
8

collection." The list of expectations for Pre-K to Grade 2 regarding number
and operations on page 78 echoes the first portion of the previous
statement ("understand and represent commonly used fractions, such as
("-, 1, and 1"). Unfortunately, this key goal is not clearly related to the

T <J Z,

foundational concept of equal partitioning. The proposed early childhood
standards should not only include the expectations about fractions
outlined earlier but explicitly link this expectation to providing young
children with equal-partitioning experience with discrete quantities first
and then with continuous quantities. The former involves using a single
diwy-up strategy for all problems, whereas the latter entails using different
strategies for different problems (e.g., subdividing a cookie between two
people requires finding a diameter; subdividing it among three does not).

For Pre-K to Grade 2, the PSSM (NCTM, 1998) mentions operations on
whole numbers only. Gaining understanding of fraction relations, includ-
ing addition of fractions, is a goal for Grades 3 to 5 (see, e.g., PSSM, p. 33).
Given that young children may be successful on nonverbal fraction addi-
tion and subtraction tasks (Mix et al., 1999), it may make sense that—at the
very least—early childhood instruction should involve them in qualitative
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reasoning about such operations using concrete models and, later, frac-
tion words and written representations. Even if the 5-year-old participants
in the Mix et al. study were merely responding to area, this may provide a
basis for qualitative reasoning about the effects of adding and subtracting
fractions (halves at least). Along with equal-partitioning experience, this
may provide a basis for an understanding of commonly used fractions
such as -,- and -, including the recognition that two one fourths ( - + -")

4 3 2 5 5 4 4
or two one thirds ("1 + -") is less than a whole, and three halves is greater

O «j

than a whole.

CONCLUDING COMMENTS

Advocating a detailed level of standards should not be interpreted as sug-
gesting a laundry list of lessons or units for teachers to implement. That is,
I am not advocating that teachers have one lesson or unit for each de-
tailed standard. Typically, several detailed goals could be addressed in an
integrated lesson or unit. For example, consider the game Animal Spots
(Wynroth, 1986). On each turn, a player rolls a die with, for example, 0 to 5
dots on a side. The player counts the dots (Goals N1.1.3b, N1.1.3c, N1.1.4a,
N1.1.4b, and N1.1 Ac in Table 7.1) or subitizes the number of dots (Goals
N1.1.1 b and N1.1.1 c), counts out a corresponding number of pegs (Goals
Nl. 1.5a and N1.1.5b), and puts the pegs ("spots") into the holes of board
cut out in the form of a leopard or giraffe. The first player to fill all the holes
in his or her animal board is the winner.

Note also that playing this game is consistent with an investigative ap-
proach described earlier in chapter 6 (this volume). Children are engaged
in an activity that is purposeful to them (i.e., it involves learning and prac-
ticing mathematical competencies in an inherently real, interesting, and
meaningful manner). Because it involves using mathematical competen-
cies in context, children can better understand why and how the compe-
tencies are used (i.e., the games provide a basis for meaningful or
conceptual learning). For example, if one child counts five dots and an-
other sees four, the discrepancy can provide an opportunity for discussing
one-to-one counting and keeping-track strategies (strategies for distin-
guishing between already-counted items and items yet to be counted).
The discrepancy can also provide an opportunity for engaging in mathe-
matical inquiry. For instance, a teacher might ask if both answers could be
correct, how the group could decide which was correct, and why the in-
correct answer is incorrect and how it came about.
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8
PSSM From a Constructivist
Perspective

Leslie P. Steffe
University of Georgia

Affirmation of the equity principle (PSSM; National Council of Teachers
of Mathematics [NCTM], 1998) that mathematics instructional programs
should promote the learning of mathematics by all students is not only
necessary, but also critical in the mathematics education of children. It
has widespread and pervasive implications for school mathematics that
can be enacted by teachers through what they understand as mathe-
matics for children and as children's learning of that mathematics. The
disposition toward mathematics in PSSM is clearly stated in the discus-
sion of the mathematics curriculum principle: "Mathematics curricu-
lum as enacted at multiple levels—teacher lesson plans, a year-long
instructional program, school or district curriculum guidelines, and
state or province frameworks or standards—provides the basis from
which teachers make decisions about what content to address, what
emphases to choose, [etc.]" (p. 27).

It is customary for mathematics educators to speak in this way and to re-
gard mathematics curriculum as content for children to learn quite apart
from the children who are to learn it and quite apart from the teachers who
are to teach it. There are passages in the PSSM, however, that recognize
that young children think in ways that are different from that of an adult:

Young children make sense of the world by reasoning and problem solving,
and teachers should recognize that young children think in ways that can be
sophisticated. At the same time, it should be recognized that a child's ways
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of knowing and communicating is different from that of an adult. Children
will find their own ways of representing and communicating their ideas.
(NCTM, 1998, p. 106)

I find the preceding passage compatible with my concept of the mathe-
matics of children. But in keeping with the mathematics curriculum princi-
ple, the authors of PSSM continue the cited passage with the sentence, "By
the end of the second grade, children should begin to use many conven-
tional representations with understanding" (NCTM, 1998, p. 106). So, the
mathematics curriculum principle, when juxtaposed with the cited pas-
sage, does create an unavoidable tension between children's mathemati-
cal ways of knowing and communicating and what is regarded as
mathematics curricula for children. Is it the case that such things as school
or district curriculum guidelines, and state or province frameworks or stan-
dards should provide the basis from which teachers make decisions about
what content to address? My argument is that teachers' decisions should be
based on their understanding of children's mathematics and that this un-
derstanding should constitute the primary basis for their decisions. In saying
this, my interest is in mathematics as a living subject rather than in mathe-
matics as a subject of being. That is, my interest is in the ways and means of
operating mathematically by human beings and in constituting those ways
and means as the basis for mathematical curricula. In my way of thinking,
we can certainly formulate such things as yearlong "curriculum guidelines"
in order to communicate expectations, but in doing so, these instruments of
communication should include children as coauthors.

I did not mention teachers as coauthors of curriculum guidelines be-
cause I assume that the writers of curriculum guidelines themselves
should be mathematics teachers who deeply understand children's math-
ematics. In any case, children's knowledge as well as teachers' knowl-
edge should be taken into account in the design of mathematics curricula,
and the way children's knowledge can be taken into consideration is
through the curriculum designers' knowledge of children's mathematics.
My basic goal in this chapter is to discuss some of the knowledge of chil-
dren's mathematics that I have learned as a result of teaching children and
to present that knowledge as legitimate mathematical knowledge.

THE MATHEMATICS OF CHILDREN

Shouldn't we consider children as rational beings whose mathematical
knowledge is as legitimate as the mathematical knowledge of the adults
who teach them?11 don't see how we can take the equity principle seri-
ously unless we adults are willing to attribute mathematical concepts
and operations to children that are rational and coherent but, yet, may

'The question of what it means to be legitimate has several parts. Perhaps the most basic
part is that an adult can formulate an internally consistent and explanatory model of chil-
dren's mathematical knowledge.
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differ from those of an adult. Even if such an attribution is made, it is not
unusual for the mathematical concepts and operations of children to be
viewed as being eventually replaced by more conventional concepts
and operations rather than as being modified, reorganized, and en-
larged as a result of children's mathematical interactions within their so-
cial and cultural milieu. In my view, this is unfortunate because then the
conventional mathematical concepts and operations of school mathe-
matics serve as the ultimate source of validation of the explanations that
are offered of children's mathematical knowledge. Such practices led
the authors of PSSM to comment that: "School mathematics has been
viewed as a sorting machine, in which many students are considered
unlikely to study higher mathematics and in which a few students are
identified as capable of succeeding in the discipline of mathematics or
in mathematically related fields of study" (NCTM, 1998, p. 24). This view
of school mathematics as independent of the children who are to learn it
starts at the very beginning of children's mathematics education and
proceeds on throughout their school years. In fact, children who are at
risk in their mathematics education can be identified at the very begin-
ning of their first grade in school (Wright, 2000).

Constructing a mathematics of children is especially crucial in cases
where the equity principle is taken seriously. Perhaps an example best il-
lustrates what I mean. In a course on children's mathematical learning I of-
fered in the fall semester of 1999, each student in the course spent 1 hour
in each of 10 weeks teaching a first-grade child. My request to the assistant
principal of the school that the students be permitted to teach first-grade
children resulted in 31 of the 32 students being assigned a child who was
termed by the school as "developmentally delayed".2 The 31 children
amounted to approximately 40% of the first-grade population of the
school. Although this percentage of students might seem greater than one
would expect, it is not at all out of the ordinary in the southeastern region
of the United States.

There are a host of questions that immediately arise concerning these
developmentally delayed children. Among them are the following:

1. Is there a model to explain these children's mathematics other
than the phrase "developmentally delayed" that would be useful
to a mathematics teacher?

2. What does it mean for teachers to have high expectations for
these students (NCTM, 1998)?

These children were indeed developmentally delayed in mathematics.
Only 1 of the 32 children that my students worked with could count on, and

By using this term, the school did not mean special education students requiring special
services and placement into self-contained classrooms. Rather, the term referred to the fact
that the cognitive development of the children was delayed.
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this child could count on before the student to whom he was assigned
started to work with him.3 The 31 other children did not learn to count on
over the 10 week period that my students worked with them, and it was
not at all apparent to me that they would learn to count on in the near fu-
ture. So, although I am in great sympathy with the equity principle that
"Mathematics instructional programs should promote the learning of
mathematics by all students" (NCTM, 1998, p. 23), it is also obvious to me
that major modifications in our conception of what constitutes school
mathematics and mathematics learning are necessary.

I use the phrase "children's mathematics" to refer to the mathematical
concepts and operations that I assume children have constructed before I
attempt to teach them. This phrase is important because I start with the as-
sumption as a mathematics teacher that children do not come to the class-
room as blank slates. Rather, they come with complex ways and means of
operating mathematically, and I assume that it is my job to learn these
ways and means and to learn how to affect them productively. Such an as-
sumption, however, is not helpful to a mathematics teacher without an un-
derstanding of what those concepts and operations might consist of.
Consequently, I introduce the phrase "mathematics of children" to refer to
those models that I make to explain my observations of children's mathe-
matical language and actions. Mathematics of children is a construction of
the observer, and it is a kind of mathematics that can be learned in the con-
text of teaching children.

COUNTING SCHEMES AS MATHEMATICS OF CHILDREN

When formulating a model of children's mathematics within a domain of
their mathematical activity, I use the concept of scheme (Piaget, 1980;
von Glasersfeld, 1981). The notion of scheme has proven to be a particu-
larly useful concept in explaining children's mathematics because it is
based on the observable activity of children. However, what the child es-
tablishes as a situation of a scheme is often not observable, in which case,
the situation must be inferred from the activity and from the results of the
activity. It is this kind of situation that most concerns me in this chapter.

There are three parts of a scheme: the situation, the child's activity, and
the results of the child's activity. The child's activity is regarded as purpose-
ful activity in that the child engages in the activity to attain a goal.

Situations of Counting

Two of my most basic observations in teaching children are (a) that they
count in a variety of situations when it is their goal to find how many or to
make comparisons and/or judgments concerning how many and (b) that,
even though I might observe a child counting, the child may not be able to

3This child's mathematical development was not delayed.
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count on.4 So, I begin the discussion of children's counting schemes by
discussing two primitive schemes that precede counting on. First, I con-
sider the countable unit items that children establish prior to counting that
occur in composite wholes. The first such composite whole children es-
tablish are perceptual collections, and I sketch the main events in the con-
struction of the elements of such collections. I also distinguish among
perceptual collections, figurative collections, and the first composite
whole that I consider numerical.

Perceptual Collections. Children construct conceptual items very
early on in life that they use in establishing an experience, such as a "dog
experience." When the conceptual item can be used in generating a
visualized image of a past experience, I regard it as an object concept. When
an object concept attains permanence, the child believes that an object still
exists after it is hidden from view (von Glasersfeld, 1995).5 When a child has
constructed an object as permanent, this permits the child to form a
collection of perceptual items (like the houses on the hill or the boats in the
harbor). These examples imply that the child has already learned to
categorize the items together on the basis of some common features.

Just because the items of a collection are permanent objects for a child,
this does not necessarily imply that the collection per se has been estab-
lished as a permanent object. This distinction between an object concept
that a child uses to constitute what an observer would say are permanent
objects, and one that a child uses to constitute what an observer would say
is apermanent collection of such objects is rarely made. But the distinction
is crucial in the child's progress toward the construction of numerical con-
cepts, because a numerical concept is based on collections of objects.

The houses on the hill or the boats in the harbor both afford the child an
opportunity to construct an awareness of perceptual plurality. That is,
when classifying the objects together, the child establishes an awareness
of more than one perceptual item, which is an awareness of perceptual
plurality. This awareness is a quantitative property that is introduced into
the perceptual collection by the acting child. In fact, it is one of the first
quantitative properties and is essential in the construction of a counting
scheme because it serves the child in establishing a goal of making an
awareness of more than one perceptual item definite by counting.6 How-
ever, an awareness of perceptual plurality is to be distinguished from an
awareness of numerosity, which we see later is a quantitative property of a
more abstracted composite whole than a perceptual collection.

A perceptual collection is an experiential composite whole that exists for
a child in the immediate here and now. How it might come to be estab-

4As I explain later, I consider counting on as the first numerical counting scheme.
5Piaget (1934/1955) demonstrated that a child can recognize an object long before he or

she is aware of the object after it leaves his or her visual field.
6In other words, the child forms the goal of finding how many items are in the perceptual

collection.
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lished as permanent involves the ability of the child to regenerate an expe-
rience of the collection in the absence of the items of the collection. We
know that during the first 2 years of a child's life, the child establishes ob-
ject permanence (Piaget, 1934/1955), and this involves using the object
concept in generating a visualized image of a past object experience.
However, using an object concept to generate more than two or three im-
ages—a collection of images—does not follow immediately on from the
ability to use it in generating a single image (Steffe, 1994).

Collections of Perceptual Unit Items. There is a distinction
between a perceptual item and a perceptual unit item. Perceptual items
are produced by compounding sensory material from various sensory
channels together, and the records of this operation constitute the
beginnings of an object concept. In the construction of an object concept,
say, "ball," the child might compound the sensory material produced by
visually scanning a rolling thing, hitting the ball while the lying on his or her
back, rolling over the ball on his or her tummy, pushing the ball, throwing
the ball, and so forth. The construction of the object concept does not
happen in one fell swoop, but entails many encounters in which the object
concept is modified in its use. In any event, compounding sensory
material together marks the beginning of the unitizing operation, an
operation that continues to function throughout our lifetimes.

In that case where the object concept, ball, is used in establishing a "ball
experience," one can think of the object concept as being active in the ex-
perience much like a resonating tuning fork. I don't think of an object con-
cept as simply constituting a current experience that is identical to one
past, but instead as being modified in its use. Each new ball experience is
not exactly like a past ball experience to which it might be compared. Be-
cause the object concept is continually modified in its use, it is legitimate
to say that it is used in processing sensory material in constituting an expe-
rience. If the child establishes several perceptual items using an object
concept, an occasion may arise where the child reconsiders the percep-
tual items, that is, where the child reviews the perceptual items already es-
tablished using the object concept that was used in establishing them. In
this case, the child may unitize each perceptual item and produce percep-
tual unit items. For example, if a child establishes a perceptual collection
like the houses on the hill, the child may return to this experience and
compare, say, an adjacent pair of houses. In fact, the child may focus, not
on particular sensory features of the houses, but rather on the houses as
unitary things, thus essentially ignoring the sensory features of the houses
that were used in classifying them together.

In constituting the houses as unitary things, the basis of the classification
changes from particular recurrent sensory features to the unitariness of the
perceptual items. A result of this change is that classification based on recur-
rent sensory features is not the basic element in the construction of number
as many authors often suggest (Reys, Suydam, Lindquist, & Smith, 1999).
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When a child can establish perceptual unit items, perceptual items of no
particular kind can be taken together as unit items to be counted. An exam-
ple might be a small red triangular logic block, a ball, a pipe cleaner, a mar-
ble, a doll, and a bracelet. There may still be a need for perceptual items to
use in making unit items, but what these perceptual items might be is not
relevant for the classification. They simply become things that form a collec-
tion of things. Perceptual unit items certainly can be established outside of
the counting context. In fact, the child's ability to make a collection of per-
ceptual unit items is assumed as the most elementary composite whole
that should be considered as a situation of a counting scheme.

The Perceptual and Figurative Stages
of the Counting Scheme

Children who can count collections of perceptual unit items but who also
require such collections to be in their perceptual field in order to count
are called counters of perceptual unit items. Of the 31 children I men-
tioned earlier, at least 25 were counters of perceptual unit items. These
children were in the perceptual stage of their counting scheme and the
others were in the figurative stage. It is easy to distinguish between chil-
dren in these two stages because those in the figurative stage can count
items that are not in their immediate perceptual field. What this means is
that the collections of perceptual unit items that the children establish are
for the first time constituted by the children as permanent.

When the child can use his or her object concepts in producing an im-
age of more than two or three perceptual unit items, I refer to the compos-
ite whole the child produces as a collection of figurative items.7 When
counting a collection of perceptual items that are hidden from view, some
children just entering the figurative stage of their counting scheme point to
or otherwise indicate places on the screening device behind or under
which they think perceptual items are hidden, and coordinate the pointing
act with the utterances of number words (which is counting). What these
children are doing is extending the activity of counting from counting per-
ceptual unit items to counting their images of perceptual unit items, which
is a major advancement in the children's counting scheme. Because
counting propels them forward, they often create figurative items in the
activity of counting. But they are usually consumed by the counting activity
and stop fortuitously, usually when reaching a boundary of the screening
device (cf. Steffe, von Glasersfeld, Richards, & Cobb, 1983).

Making visualized images of perceptual unit items is a dynamic opera-
tion, and the child is considered as being in the activity of making the im-
ages.8 There is a result of the activity (the visualized perceptual unit items),

7Sometimes I say "figurative collection" in abbreviation.
^o imagine what it means to be in the experience of visualizing several perceptual unit

items that are hidden from view, the experience of visualizing the inside of a box might be
comparable in that one has to "go inside" of the box and imagine what it might look like.
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but one should not assume that the child can set these visualized items "at
a distance" and unitize each of them, making figurative unit items that can
be counted. For example, a child might be able to make separate images
of two hidden collections of perceptual unit items, but be quite incapable
of using these separate images to make an image of one collection of per-
ceptual unit items separated into two hidden parts. In this case, if the child
was asked to count all of the hidden items, the child would count the items
hidden in the two locations by starting with "one" each time. To start with
"one" only once, and count the items in the two hidden collections as if
they were the items of one collection hidden in two separate locations, re-
quires an additional operation. Other than producing two figurative collec-
tions, the child would also need to take these two figurative collections
together to form one figurative collection. This entails the child setting the
figurative collections at a distance9 and then taking them together. The
means by which this is accomplished is unitizing the items of the two figu-
rative collections, creating figurative unit items.10

The results of taking two figurative collections together (I call taking two
figurative collections together a figurative join of the two collections) are
easy to observe. First, the child creates substitute countable items in the ac-
tivity of counting, such as the motoric acts of repeatedly pointing with a fin-
ger or sequentially putting up fingers.'' Second, the children count the items
of the first hidden collection and then count the items of the second collec-
tion as a continuation of counting the items of the first collection. For exam-
ple, to find how many items are hidden in two locations, six in one location
and seven in the other, such a child might utter "1,2,3,4,5,6" in synchrony
with sequentially putting up six fingers, and then continue on counting in
this way, "7,8,9,10,11,12,13" and stop when they recognize a finger pattern
for "seven." They still need to count to establish meaning for a number
word, but the items the children actually count differ from those they in-
tended to count. Counting is still a sensorimotor activity and the children
cannot take it as a given. They necessarily count to establish meaning for
number words that are beyond the range of their figurative patterns. These
children are yet to count on and always start to count from "one."

I consider the perceptual and figurative stages of the children's count-
ing schemes as prenumerical stages. These children do produce unit
items, but the unit items are perceptual or figurative unit items rather
than arithmetical unit items. The children are yet to construct a number
sequence, although they do produce sequences of counted items as re-

9"Setting the collections at a distance" means that the child is aware of the visualized
items of the collection as if the child were actually looking at them.

'°Unitizing the items of the two figurative collections is an act of categorization that is anal-
ogous to how a child categorizes items together on the basis of their unitariness—as things
that are taken together.

"if the child simultaneously puts up fingers to establish a finger pattern, I consider the
child as replacing one perceptual collection for another. In this case, the child counts his or
her fingers as perceptual items.
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suits of using their counting schemes. However, these are experiential
sequences that exist for the child in the immediate here and now and
have no permanence.

NUMERICAL COUNTING SCHEMES

The major advance the child makes in constructing counting on is that the
child can use its counting scheme to generate an experience of counting
without actually counting. Imagine that two collections of perceptual
items are screened from view, that a child is told how many items are be-
hind each screen, and that the child is asked to find how many items are
behind both screens. A child who has constructed counting on can gener-
ate an experience of counting the items behind one of the two screens
without actually counting, and then extend counting beyond this imag-
ined experience when counting the items behind both screens. There is
still a certain restriction in how the child keeps track of the counting acts
in the extension of counting in that the child stops when recognizing a nu-
merical pattern. The child is yet to learn to explicitly count the counting
acts of the extension. Nevertheless, a major advancement has been
made in the child's counting scheme in that the scheme has been consti-
tuted as a number sequence.

Construction of Counting-On

One might feel compelled to ask how the child learns to generate an ex-
perience of counting without actually counting because, prior to this
event, an experiential sequence of counted items constituted the child's
"number sequence." When considering that a child, in principle, can gen-
erate the experience of counting up to any number word, say,
"ninety-nine" that it might know without actually counting, it is not at all
easy to explain such learning. But monitoring counting is the key (Steffe,
1991). Monitoring counting—intentionally keeping track of the counting
acts in an extension of counting—has to be learned, and learning it in-
volves the coordination of two operations. First, the child re-presents12 the
counting acts of an extension of counting and, second, the child unitizes
each re-presented counting act. This produces a sequence of arithmeti-
cal unit items. Similar to the way in which an object concept can be used
to produce an object experience, an arithmetical unit item can be willfully
used to produce a counting experience—an experience of a counting act.
The experience may be a sensorimotor or an imagined action. In either
case, the action has the status of an operation. So after the construction of
arithmetical units, it is legitimate to speak of counting operations rather
than simply counting acts. It is easy to observe the difference between
counting acts that have been constituted as operations and those that
haven't, and I elaborate on that difference in the next section.

A re-presentation of a counting act is a regeneration of a past counting act in visualized
imagination.
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The emergence of monitoring counting can occur for children who have
constructed the figurative counting scheme. For example, I observed a
child, Tyrone, learn to monitor his counting acts "8, 9, 10, 11, 12," which
were a continuation of his already completed counting acts, "1,2,3,4,5,6,
7." However, it wasn't until some time later that he reorganized his count-
ing scheme in such a way that he could count on, which constitutes indi-
cation that he constructed the initial number sequence.

To illustrate how I decided that Tyrone's counting scheme was a figura-
tive scheme, I present a protocol from a teaching episode with him that I
held in October of his first grade in school (Steffe, 1991). In the protocol,
"T" stands for "Teacher" and "Ty" for "Tyrone".

Protocol I: Tyrone's figurative counting scheme.
T: (Places a card covered by two cloths in front of Tyrone)

There are eight squares here (touches one of the cloths),
and three here (touches the other cloth).

Ty: (Utters 1, 2, 3, 4, 5, 6, 7, 8 while looking at at and synchro-
nously touching the first cloth. Continues uttering 9, 10, 11
while looking at and synchronously touching the second
cloth.) Eleven.

There are several important indications that Tyrone had constructed the
figurative counting scheme. His activity of looking at and touching the first
cloth at distinct locations each time he performed a counting act indicates
that he was aware of the items of the hidden collection of squares. This in
turn indicates that he used his object concept, square, to create images of
the squares he intended to count. Furthermore, his continuation of count-
ing, "9, 10,11" indicates that he took the items of the two hidden collec-
tions as belonging to one collection in the way that I previously explained.
So, I infer that Tyrone had constructed at least figurative unit items. That
Tyrone did not count on three more past eight—"Eight; 9, 10, 11.
Eleven"—constitutes contraindication that he had constructed a numeri-
cal concept, eight, and the initial number sequence.

Whatever the nature of the items were that Tyrone established prior to
counting, he coordinated the utterance of the number word sequence "1,
2, 3, 4, 5, 6, 7, 8" with repeatedly touching the cloth. These counting acts
served in isolating possible locations of hidden perceptual items, and the
pointing acts he created in the activity of counting were substitutes for
these hidden items. As such, it is no exaggeration to say that Tyrone was
counting his pointing acts, and that he created the items he counted in the
activity of counting. Still, it is possible that the pointing acts were imple-
mentations of arithmetical unit items even though his failure to count on
starting at "eight" can be used as a contraindication. So, for clarification, I
presented him with another task of the same kind:
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Protocol II: Tyrone's construction of monitoring counting.
T: Tyrone, there are seven here (points to one cloth), and five

here (points to the other cloth).
Ty: (Touches the first cloth seven times while whispering) 1, 2,

3, 4, 5, 6, 7. (His points of contact form no identifiable pat-
tern. He continues on, touching the second cloth six times
in a row while whispering) 8, 9, 10, 11, 12, 13.

Ty: (Starts over from "one" without suggestion. In the midst of
touching the second cloth, he loses track, so he starts over
from "one" again. This time, he deliberately touches the
second cloth five times in a row while looking intently at his
points of contact) 8,9,10,11,12 (looks up) 13,14. Fourteen!

T: How many are there under this cloth (pointing to the cloth
hiding five squares).

Ty: Five. (Again counts over the first cloth, and then continues
touching the second cloth five times in a row, but this time
he stares into space) 8, 9, 10, 11, 12—(looks at T) Twelve!

Tyrone obviously did not have a five pattern available that he could use to
keep track of counting five more times beyond counting to "seven,"
though he did have an available pattern for "three" that he used to keep
track of counting three more times beyond counting to "eight." But in the
case of a continuation of counting five more times beyond counting to
"seven," he actually constructed a pattern for "five" in the activity of count-
ing that he used to keep track of counting five more times. These observa-
tions indicate that, prior to constructing a pattern for "five," Tyrone's
pattern for "three" was a figurative rather than a numerical pattern.

I infer that it was a figurative pattern because, first, even though he could
use it to keep track of counting three items "9,10,11," there was no neces-
sity for him to monitor counting to keep track of counting. And, second,
when there was a necessity for him to keep track of counting five more
times beyond counting to seven, he did not monitor his counting acts in his
first trial. Rather, he simply continued counting beyond counting to seven
until he apparently realized that he didn't know when to stop. This obser-
vation corroborates my earlier inference that Tyrone's counting scheme
was a figurative scheme, and that his counting acts were not counting op-
erations. He was yet to construct arithmetical unit items.

The fact that he experienced an ambiguity in knowing when to stop
counting is critical because it led to self-regulation of counting activity.
Self-regulation emerges from within the child, and is a critical precursor to
monitoring counting. Without the self-regulation that Tyrone exemplified
(he independently started over twice), there could be no monitoring of
counting and, hence, no construction of counting on or of arithmetical unit
items. The act of simply recognizing a row of five squares does not require
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an intentional monitoring of the activity that produces a numerical pattern,
five. When Tyrone was producing a pattern consisting of the records of his
points of contact of his finger on the cloth, he had to establish what pattern
he produced after each touch because there were no visible traces of his
touches (it is not indicated in the protocol, but Tyrone was in deep concen-
tration as he looked intently at the cloth). This involves the construction of
a feedback system in the counting scheme in which the counted items
feed back into and are constituted as a part of the countable items.

The first time Tyrone made a continuation of counting, he produced
counted items (a pointing act along with the utterance of a number word13).
There was no indication in the two first trials that Tyrone constituted the
counted items he established as belonging to the items he intended to
count, items that I call countable items. It is important here to reestablish
that Tyrone produced a visualized image of the squares that were hidden
under the second cloth even though his visualization initially was indefinite
in that he did not "see" five co-occurring squares.14 But he was aware of
squares, and this made it possible for him to intend to count the hidden
squares. As he counted, his acts of pointing were coordinated with uttering
number words, and these coordinated acts served in locating hidden
squares. In that he was not able to see the squares he intended to count, he
substituted his pointing acts for the hidden squares as his countable items
as he went along. In this case, what Tyrone actually counted (his point acts)
differed from what he intended to count (the squares).

Tyrone's residual experience of counting acts constituted his counted
items. But, given that it was his goal to count five hidden squares beyond
counting seven of them, his production of counted items did not close the
counting episode because he could not recognize having touched the
cloth five times. This explains the ambiguity he experienced while count-
ing. The feedback system that he created amounted to asking himself,
"How many have I counted?" after each counting act. For example, after
touching the cloth and saying, "ten," Tyrone would need to re-present the
counted items "eight, nine, ten", and "look at" the re-presented result as if
it were a trio of perceptual items. This "looking" involves Tyrone unitizing
each re-presented counting act, which is the operation that permits "plac-
ing the counting acts at a distance and looking at them."

Unitizing means that he focused his attention on each item he re-pre-
sented. Focusing attention on a regeneration of the first item he counted,
then the second, then the third, permitted him to become explicitly aware
of the trio of counted items. Unitizing a re-presented counting act creates
what I have called an arithmetical unit item, which is an abstracted unit
pattern that contains records of the experience of the sensorimotor count-

13In that Tyrone intently focused on the cloth in his first two trials, I infer that he was focus-
ing on the places he touched. Still, the pointing acts were involved, and were at least an auxil-
iary part of the counted items.

14Had he been able to imagine five co-occurring squares, he could have used this pattern in
knowing when to stop counting, which would have closed off the need to monitor counting.
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ing act that was re-presented. The abstracted unit pattern is simply a per-
manently recorded unitizing operation, which, when implemented,
constitutes a counting operation. A counting operation consists of an im-
plementation of the records of counting that are contained in the unit pat-
tern along with unitizing the implemented sensory material.

After Tyrone constituted "8, 9, 10" as a sequence of three arithmetical
unit items, he was "above" his counting activity looking down at it, which
is another way of saying that he was aware of having just counted three
times. Being aware that his trio of counting acts was not five led to his
awareness that he needed to count again. In this way, he constituted the
items he already counted as a part of the items he intended to count, and
so one could say that the partial results of his counting scheme (his
counted items) fed back into the (again) partial situation (his countable
items) of his counting scheme. He could consider the items he counted as
counted items as well as a part of those items he intended to count in the
activity of counting. This is what I call a feedback system in his counting
scheme, and it is foundational in the construction of monitoring counting.

Tyrone created a numerical pattern consisting of five arithmetical unit
items in linear sequence as a result of his activity, as indicated in the last trial
of Protocol II. He had learned to regulate his counting acts by monitoring
counting in specific uses of his counting scheme. However, it would not be
plausible that this accommodation would be sufficient for him to a priori es-
tablish any five adjacent counting acts of his figurative counting scheme as a
numerical pattern (e.g., "48,49,50,51,52), nor would it be plausible that he
constructed similar numerical concepts for other number words. Neverthe-
less, by early January of his first grade he had reorganized his counting
scheme and could now count on! Prior to the Christmas holidays, he was
never observed counting on, so it was likely that he reorganized his counting
scheme while he was on vacation. Such observations are not at all unusual
and they speak toward a developmental process only the results of which
are observable. After Christmas vacation, he definitely had constructed nu-
merical concepts to which his number words referred, and I call these nu-
merical concepts numerical composites.

A numerical composite is a sequence of arithmetical unit items. Before
they are actually carried out, the counting acts symbolized by the number
word "seven," for example, are what I mean by a numerical composite.
So, I regard the numerical composite, seven, as a sequence of arithmeti-
cal unit items that contain records of counting acts. A numerical compos-
ite is a mathematics-of-children concept, as are the notions of the
perceptual, the figurative, and the numerical counting scheme that is in-
dicated by counting on.

Counting-On as a Nonteachable Scheme

As stated earlier, the 31 first-grade children did not learn to count on over
the 10-week period my students worked with them. And as we've learned
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from the previous discussion, self-regulation of counting activity by chil-
dren who are in the figurative stage of their counting scheme initiates
learning to count-on (cf. Steffe, Cobb, & von Glasersfeld, 1988, for a more
extensive discussion). Self-regulation emerges from within the child, and
it can be only indirectly brought forth by a teacher through presenting
problematic situations for children to solve. So, if "teaching" is interpreted
as direct teaching, then counting on is surely a nonteachable scheme.

When regarding school mathematics as consisting of important mathe-
matics like place value, function, scaling and similarity, or the structure of
the number system, important mathematics-of-children concepts such as
the perceptual counting scheme, the figurative counting scheme, and the
counting scheme that is indicated by counting on—the initial number se-
quence—are in danger of being suppressed in favor of the conventional
concepts. Place value, for example, is regarded in PSSM (NCTM, 1998) as a
teachable mathematical concept much like van Oers (1996) regarded the
cultural practice of mathematics. According to van Oers, the cultural prac-
tice of mathematics "can be transformed into curriculum content and, as
such, it can be taught" (p. 94). Following Vygotsky, he did take the personal
meanings that students may attach to the "actions, rules, methods, and
values as provided by a school subject" into account, and they are a consti-
tutive part of his basis for instructional practice in mathematics education.
However, the personal meanings of which he spoke are in the main left
unspecified because they are conceptualized relative to the cultural prac-
tices of mathematics. In van Oers' system, the teacher embodies the math-
ematical practices of a wider society and children's personal meanings of
mathematics are gauged relative to that mathematics. In my way of think-
ing, the mathematics-of-children is also a construction of the mathematics
teacher. By means of teaching children, the teacher constructs important
mathematics of children concepts like numerical composite and initial
number sequence15 that she would not regard as a part of her understand-
ing of the mathematical practices of a wider society, which are adult prac-
tices and are not based on children's mathematics.

My advocacy that the mathematics of children be the primary mathe-
matics of interest in mathematics teaching might seem to suppress the
cultural practices of mathematics that are known to the teacher in favor of
an overemphasis on children's methods. It might be thought that I am ad-
vocating that children be left with immature mathematical ways and
means of operating that would prove insufficient as they encounter cul-
tural practices of mathematics. However, this is not my advocacy at all be-

Neither of these two concepts should be regarded as misconceptions. There are situa-
tions in which a mathematics teacher might observe children counting on to solve a situation
in which counting on is not adequate to solve. In such cases, children would make "mis-
takes" like counting nine more past six when asked to find how many of nine items are hid-
den when six of them are visible. Although such "mistakes" are valuable indicators of what
the child can't currently do, from the child's point of view, there is no awareness of a "mis-
take" when solving the task. I categorize such mistakes as "necessary mistakes."



8. PSSM FROM A CONSTRUCTIVIST PERSPECTIVE 235

cause of my view of mathematics as an integral part of living systems. I
regard teachers' mathematical knowledge much in the same way that I re-
gard children's mathematical knowledge. One difference is that I believe
that the teacher's mathematical knowledge should include the mathe-
matics of children. It should be the goal of the teacher to learn the mathe-
matical knowledge of children, what mathematical knowledge might be
placed into their zones of potential construction16, and situations of learn-
ing that might transform the children's zones of potential construction into
zones of actual construction. It also should be the goal of the teacher to
learn how to interact mathematically with children in order to bring forth,
sustain, and modify their children's mathematical knowledge. This opens
mathematics teaching into a creative and problem-solving enterprise,
where the basic problem is to learn how to bring forth in children the
mathematical concepts and operations that would enable them to solve
the problems they are not currently able to solve.

The boundary between the mathematical knowledge of the teacher that
she would say is knowledge of children's mathematics, and the mathe-
matical knowledge that she would not currently attribute to the children
she is teaching is a very fuzzy and constantly changing boundary. I fully ap-
preciate that constructing a mathematics of children is very demanding,
but it is one of the things that marks a mathematics teacher as a profes-
sional. Constructing a mathematics of children empowers mathematics
teachers in a way that is not possible when the focus is on teaching a pre-
determined and a priori mathematics curriculum. There, the focus is often
on transferring the teacher's mathematical knowledge from the head of
the teacher to the heads of children by means of the words of the lan-
guage. In contrast, the mathematics of children emerges from within chil-
dren and it must be constructed by children.

A very experienced mathematics educator for whom I have great re-
spect once asked me if I thought counting on could be taught. Should it
be considered as a part of the mathematics curriculum? I was apprehen-
sive then and I still am that if we agree that counting on is an important
kind of counting scheme (the initial number sequence), teachers will
consider it as teachable in the transfer sense in which I have been speak-
ing. For children who have constructed the initial number sequence,
counting on does not need to be taught, and for children in the stage of
the figurative (or perceptual) counting scheme, it should not be a goal of
the teacher to teach the children to count on in the transfer sense. In
other words, it should never be a goal of a teacher to directly teach chil-
dren to count on. I would prefer that a teacher not demonstrate how to
count on unless there is good reason for the teacher to believe that the in-
volved children can already count on or can easily curtail always count-

A zone of potential construction is determined by the teacher. It consists of those mathe-
matical concepts and operations that the teacher has experienced other children learn who
are like the current children (cf. Olive, 1994).
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ing from one. In my experience teaching children, a demonstration of
how to count-on is rarely effective.17

Double Counting

The mathematics of children certainly does not stop with counting on (the
initial number sequence). In fact, the construction of the initial number se-
quence is a starting point rather than an end point. Nevertheless, it opens
possibilities that are not available to children in the figurative stage of the
counting scheme. Double counting is one of these possibilities, and con-
cerns how children keep track of counting in an extension of the counting
acts that are symbolized by a number word. For example, in that case
where nine items are hidden from view and, say, eight more are put with
them, if a child counts: "Nine. 10 is 1,11 is 2,12 is 3,13 is 4,14 is 5,15 is 6,16 is
7,17 is 8; Seventeen," the child counts his or her counting acts in the exten-
sion of the first nine counting acts that are symbolized by "nine." The impor-
tant thing in the example of double counting is that the child uses "eight" to
symbolize counting acts from "nine" onward and uses them as input for
making countable items. The child knows that he or she is going to count
eight more times beyond nine, and uses his or her number sequence to
generate an image of counting beyond "nine" prior to counting.

Just as counting on should not be regarded as directly teachable, nei-
ther should double counting. Like counting on, double counting is not a
procedural aspect of counting. But again, I introduce the caveat that a
teacher may have good reason to believe that a child is on the verge of
double counting and thereby may create a sequence of learning situa-
tions that may afford the child the opportunity to construct double
counting on his or her own.

One reason a teacher might believe that a child is on the verge of con-
structing double counting is if the child's method of keeping track of
counting carries the force of double counting. For example, if the child
continues to count on beyond "nine" by sequentially putting up eight fin-
gers in synchrony with uttering "ten, eleven, twelve, thirteen, fourteen, fif-
teen, sixteen, seventeen" and stops after recognizing a finger pattern for
"eight," this is an indication that keeping track of counting carries the force
of double counting, because the child generates an experience of the con-
tinuation of counting before actually counting. In the extension of counting
beyond "nine," the child takes the counting scheme as its own input be-
cause what the child counts are not images of perceptual items, but rather
images of counting acts.

Double counting in this way indicates that the child has constructed a
number sequence beyond the initial number sequence. I call this number
sequence the tacitly nested number sequence. The major advancement in

17I have encouraged children to "put six in my [the child's] head" and then count on, say,
four more. In my judgment, these children were in transition to the initial number sequence.



8. PSSM FROM A CONSTRUCTIMST PERSPECTIVE 237

the construction of the tacitly nested number sequence is that the child
can take the number sequence as its own input for making countable
items. The child is no longer constrained to counting objects that are per-
ceptually present nor to counting her or his images of such objects when
they are hidden from view. It is as if the child has two number sequences,
one to use as material to make countable items, and the other to use in
counting these countable items.

The Explicitly Nested Number Sequence

The major importance of double counting is that it opens the way for chil-
dren to construct strategic reasoning in additive and subtractive situa-o o

tions. For example, I asked a child named Johanna (Steffe, 1992) to take
12 blocks, told her that together we had 19, and asked her how many I
had. After sitting silently for about 20 seconds, she said, "seven" and ex-
plained, "Well, ten plus nine is nineteen; and I take away the two—I
mean, ten plus two is twelve, and nine take away two is seven!" This kind
of strategic reasoning is well beyond double counting from "twelve" up to
and including "nineteen" and it is in the province of a child who has con-
structed the explicitly nested number sequence. But it should not be re-
garded as a necessary consequence of that construction. Strategic
reasoning is a goal for children who have constructed the explicitly
nested number sequence and is a good example of what I mean by math-
ematics for children. Children who have constructed the explicitly nested
number sequence may not engage in strategic reasoning unless it is en-
couraged by a teacher or another adult who has responsibility for the
mathematical education of children.

An indication that a child has constructed the explicitly nested number
sequence that is less demanding than strategic reasoning is where a child
has put a handful of pennies with, say, 19 pennies, and then counts all of
the pennies and finds that there are 27. If the child double counts from
"nineteen" up to and including "twenty-seven" to find how many pennies
were added to the 19, this would be an indication that the child has con-
structed the explicitly nested number sequence. A more solid indication
would be where the child takes a handful of pennies away from the 27
pennies and counts those that remain and finds that there are 16. If the
child counts from 27 down to 16 to find how many pennies were taken
away (e.g., the child might utter "27,26,..., 17" synchronously with putting
up fingers and recognize the fingers put up as "eleven"), this would be a
corroboration that the child has constructed the explicitly nested number
sequence.18 Still another indication would be where the child takes away
the same 8 pennies that he or she added right after counting to solve the
original situation, and knows that 17 are left without counting.

18A child might also count, "26, 25, ..., 16" synchronously with putting up fingers.
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ADDING AND SUBTRACTING SCHEMES

Counting up to, counting down to, and strategic reasoning cannot be di-
rectly taught any more than counting on or double counting can, because
they all involve monitoring actual or symbolized counting activity in their
construction. They all constitute ways of adding or subtracting in the stage
of the explicitly nested number sequence. There are ways of adding and
subtracting that precede those that I also consider adding and subtracting
schemes. In the perceptual and figurative stages of children's counting
schemes, perhaps we should not say that children engage in adding be-
cause that term is normally reserved for a numerical scheme. But for the
sake of simplicity, I use "adding" to refer to certain ways of operating in
which I have observed children in those stages engage.

Adding Scheme in the Perceptual Stage: Counting All

In the perceptual and figurative stages of the counting scheme, we
have to consider the whole of the counting scheme in order to formu-
late a model of children's adding. In the perceptual stage, it is impor-
tant for the involved collections of perceptual items to have category
names, like marbles or toys, so that an adding language may be devel-
oped along with the particular actions. The situations that can be imag-
ined are inexhaustible, so I present only example situations and leave it
to the reader to contextualize them.

At the most basic level, I involve children in the perceptual stage in
sensorimotor action. For example, I might ask one child to count out four
toys and another child three toys. I might then ask each child how many
toys the other child counted out, and then ask each to find how many toys
would be in a box if they put all of the toys into the box. Asking the chil-
dren to find how many toys the other child counted out is done to encour-
age the children to decenter and to take the other's results of counting
into consideration. Asking how many toys would be in a box if they put all
of them into the box is done to encourage the children to take the two
perceptual collections of toys together as countable items. Taking the
two separate collections together to form a single collection of percep-
tual unit items is the basic meaning of addition in this stage, and I call it a
perceptual join. It is a joining action that in my opinion is far more impor-
tant than physically placing the toys together.

The sequence in which the questions are asked does encourage count-
ing at each step. As each child counts out four or three toys, as the case
maybe, counted collections of perceptual unit items are produced. Then,
asking each child to find how many toys the other child counted out again
encourages establishing a second counted collection of perceptual unit
items. Finally, asking the last question of the sequence of three questions
encourages the children to reprocess the collections of counted percep-
tual unit items by scanning the collections when taking them together.
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This is an important point because the children conceptually join four
counted perceptual unit items and three counted perceptual unit items. In
that case, children in the perceptual stage do make and maintain a distinc-
tion between the two collections of perceptual unit items and count them,
"1, 2, 3, 4 (pointing to each item of the quadriad of perceptual unit items);
5, 6, 7 (pointing to the trio of perceptual unit items). Seven." I refer to the
adding scheme as counting all if I can also observe it in other situations like
the one in the example.

It is not unusual to find children in the perceptual stage of the count-
ing scheme who simply count their own collection of perceptual items
when asked to find how many toys there would be in a box if both chil-
dren put all of their toys into the box. In this case, I encourage these chil-
dren to work alone and actually enact putting the two collections of toys
they count out into a box and then count the toys in the box. These chil-
dren usually establish no relationship between the counted collection
of toys in the box and the two counted collections of toys prior to placing
them into the box. No claim of an adding scheme on the part of these
children should be made.

Adding Scheme in the Figurative Stage:
Counting All with Intuitive Extension

In the Figurative stage of the counting scheme, the goal is to encourage chil-
dren to categorize the items of two collections of counted perceptual unit
items together after the items have been placed into an opaque container,
and then count the items of the two hidden collections together. An exam-
ple might be where a child counts out seven discs and places them into an
opaque container, counts out five more discs and places them into the con-
tainer, and then counts all of the discs in the container without looking at
them. The child might touch the container seven times at specific places in
synchrony with uttering the number words "one, two,..., seven", and then
continue on counting, touching the container five more times in synchrony
with uttering the number words "eight, nine, ten, eleven, twelve." The child
knows to stop when recognizing a spatial pattern for "five" formed by the
locations of the points of contact with the container.

The child might also sequentially put up fingers in synchrony with utter-
ing "one, two,..., seven" and then continue on sequentially putting up fin-
gers in synchrony with uttering "eight, nine, ten, eleven, twelve" and stop
when recognizing a finger pattern for "five." In this case, the child reuses
two fingers to make a finger pattern for "five." In both cases, however, the
child counts the elements of a pattern for "five," a spatial pattern in the first
case and a finger pattern in the second case, and stops when completing
the pattern. Because the child is not monitoring counting but simply coor-
dinating the elements of a pattern with uttering number words, I call the
child's adding scheme counting all with intuitive extension.
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Adding Scheme in the Stage of the Initial Number
Sequence: Counting-On With Numerical Extension

The adding scheme of children in the stage of the initial number se-
quence involves numerical composites rather than collections of percep-
tual or figurative unit items. The difference is relatively easy to observe.
Consider, for example, the following situation:

There are seven marbles in this cup (rattling marbles in the cup). Here are
eight more marbles (places eight more marbles in the cup). How many mar-
bles are there in the cup?

If the child says there are seven marbles in the cup and then proceeds
to count the additional marbles—"8,9,10,11,12,13,14,15—fifteen!"—it
suggests that in uttering "seven" the child knows that the number word,
in the given context, stands for a specific collection of individual percep-
tual unit items that satisfy the child's concept "marble" and that, if
counted, they could be coordinated with utterances of the number
words from "one" to "seven." The child knows this and therefore does
not have to run through the counting activity that would actually imple-
ment it. This is another way of saying that the child has constructed a nu-
merical composite, seven.

But there is more going on in the child's adding scheme than his or her
meaning of "seven." First, the child's meaning of "eight" is quite similar
to his or her meaning of "seven" in that "eight" refers to eight counting
acts that the child could carry out without actually doing it. That is, I as-
sume the child established two numerical composites, one corre-
sponding to "seven" and the other to "eight" prior to counting. The child
then juxtaposes these two sequences together, where the sequence for
eight extends beyond the sequence for seven. The child then counts to
specify the unknown numerosity of this juxtaposed sequence. The
reader might wonder why I didn't simply model this as the child taking
the two collections of marbles together into one collection. The reason
is that the child's number words now refer to numerical structures that I
call numerical composites. Based on the way the child counted (count-
ing on rather than counting all), I infer that the number words "seven"
and "eight" referred to these numerical structures and I call the ob-
served adding scheme counting on with numerical extension. I use "nu-
merical extension" because counting on eight more times was an
implementation of a numerical composite, eight. The goal of the child
in counting "8, 9, 10, 11, 12, 13, 14, 15—fifteen!" is to specify the
numerosity of the numerical composite established by juxtaposing the
two numerical composites seven and eight. It is in this sense that count-
ing on with numerical extension is regarded as a child-generated addi-
tion algorithm. I also regard the adding schemes of children in the two
preceding stages as child generated.
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Subtracting Scheme in the Stage of the Initial Number
Sequence: Its Purposes

There are no compelling arguments that I know for attempting to bring
forth a counting-all scheme for subtracting in the case of children in the
perceptual and figurative stages of their counting schemes. For those chil-
dren who can count on with numerical extension, however, there are
good reasons for developing very particular learning situations involving
what is commonly known as take-away subtraction. An example situa-
tion is to ask the child to place, say, 15 blocks into an opaque container
and then to take out 3 of them and put them into another opaque con-
tainer so they can't be seen. The child is to find how many blocks remain
in the first container. In presenting this situation, I assume that the child
can count backward from at least "twenty."

There are two goals in presenting the situation. The first is for the child to
re-present the forward-counting acts to "fifteen" and use these counting
acts starting from "fifteen" as material for making countable items in
counting backward: "fifteen, fourteen, thirteen."19 This is done to encour-
age the child to take the initial number sequence as his or her own input
material, which is what is necessary for children to construct the next
number sequence after the initial number sequence—the tacitly nested
number sequence. The second goal is to encourage the children to unite
the three counting acts together into a composite unit after they reach "thir-
teen is three." If the child has the goal to find how many blocks are left in
the container, the child could stop at "thirteen," "step out" of the sensory
experience of counting, and "look at" what he or she has just done. By
"looking at" what he or she has just done, the child sets the three counting
acts at a distance and takes them as one thing. That is, the child com-
pounds (or unites) the trio of re-presented counting acts together into a
unitary thing, and produces a unit containing three units.

If the child does in fact unite a re-presentation of "fifteen, fourteen, thir-
teen" together into a unit, this moves the child20 to a plane above counting.
The child is now looking backward toward 1 from 13. There are three pos-
sibilities now for how the child operates and I have observed all of them.

First, the child may re-present the counting acts backward from
"twelve" to "one" and then change their direction from backward- to for-
ward-counting acts. In this case, the child simply says "twelve" to indicate
how many blocks are left. This bidirectionality of counting indicates that
the child takes the counting acts as material of the uniting operation and
unites them together into a composite unit because then the child would

Note that I used a number small enough so that the child can use a numerical pattern to
keep track of how many times he or she counts backward. It may be necessary to ask the child
to take out one item at a time rather than three items together in order for them to initiate count-
ing backward to find how many items are left after taking more than one item out at a time.

It is important to remember that the child is working wholly in re-presentation. From the
observer's perspective, the child is engaging in thought.
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be "above" the counting acts and operating on them. The child knows that
the counting acts from "twelve" down to "one" are the self-same counting
acts as counting from "one" up to "twelve," but in a different direction.

Second, the child may continue to count from "twelve" down to "one."
Here, there are two possibilities:

1. The child may simply utter the number words without keeping track.
This is important, because the child will not have reached his or her goal
after counting. Consequently, the child may independently reinitialize
counting, this time keeping track by sequentially putting up fingers in syn-
chrony with uttering the number-word sequence.

2. The child keeps track of her or his counting acts by putting up fingers
upon initializing counting starting from "twelve."

In both cases the child monitors counting and thereby takes each count-
ing act as a unit item. This is what I call reinteriorizing counting acts and it
leads to the next number sequence. After the child completes its counting
activity, there is a distinct possibility that the child will unite the records of
counting into a composite unit.

Third, the child may introduce a novelty—double counting. That is, the
child might count "twelve is one, eleven is two,..., one is twelve. Twelve!"
By saying "twelve," the child indicates that he or she unites the counting
acts into a composite unit. So, introducing take-away subtraction to chil-
dren in this stage in the way I have explained is done not to teach subtrac-
tion, but rather for the purpose of the children making vertical progress in
the construction of their number sequence.

Additive situations where the numerosity of the numerical extension is
beyond the range of the child's numerical patterns also can be used to en-
courage the construction of the next number sequence. In sum, the main
goal of the teacher for children whose adding scheme is counting on with
numerical extension should be for the children to make vertical progress
to the next number sequence. Of course, there are many subsidiary goals
(which I refer to as lateral learning goals) that can be elaborated in a math-
ematical scope and sequence which do entail important mathematics for
these children to learn that is within their learning level.

The Construction of Subtracting as the Inversion of Adding

The tacitly nested number sequence is essentially a transitional sequence
between the initial and the explicitly nested number sequences. In fact, a
teacher may not even realize that a child is undergoing such a transition
even though the transition may last as long as 3 and sometimes even up to
5 months (Steffe et al., 1988). But as soon a child can make a numerical
extension that carries the force of double counting (or else actually dou-
ble count), the teacher can present tasks, which I call "hidden items"
tasks, to find out if the child can find how many items of a collection of
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items of known numerosity are hidden from view. For example, a child
might be presented with a situation where 9 of 16 items are hidden from
view and asked to find how many are hidden. If the child solves the task by
first counting the visible items, and then counting from "eight" up to "six-
teen" while keeping track of how many times he or she counted, this
would be in the province of the tacitly nested number sequence.

Counting up to does not necessarily indicate that the child disembeds
the remainder of the counting acts past "eight" up to and including "six-
teen" from the whole of the sequence of counting acts from "one" to "six-
teen." After counting the visible items up to "seven," the child is in the
midst of counting, and may make a distinction between the first seven
counting acts and those yet to be carried out to "sixteen." That is, the child
may make two composite units, one containing the first seven counting
acts and the others that remain, but the child may not disembed either of
the two composite units from the containing unit. Disembedding is analo-
gous to how an adult might take the even numbers to 100 out of all of the
numbers to 100 while leaving the numbers to 100 intact. Disembedding is a
conceptual act that takes elements out of a given composite unit and uses
them to make a new composite unit. But the elements that are taken out of
the composite unit are left in the composite unit, so disembedding does
not conceptually destroy the composite unit from which elements are
taken. One might think of disembedding as creating new elements identi-
cal to some of those contained in a composite unit.

Rather than being content with the child counting from "eight" up to and
including "sixteen" to find how many items are hidden, the teacher might
ask the child if he or she can find out how many items are hidden by count-
ing backwards. The purpose of doing so is to encourage the child to take
the sequence of counting acts he or she has just produced in the forward
direction as input for counting backwards. This encourages the child to
take the counted items as countable items and to count them again. These
counting operations are similar to the operations that are involved in
disembedding in that the child posits a composite unit and then mentally
extracts part of the elements from all of the elements. By "mentally ex-
tract," I mean that the child "lifts" an element from itself while leaving the
element in place, thus creating two elements. This is precisely what hap-
pens when a child takes a counted item as a countable item—the child
creates two identical unit items, one already counted and one to count.
The main goal is for the child to be able to decide when to count forward
and when to count backwards when solving hidden-items tasks.21

The reader may wonder why I haven't mentioned conventional notation
like "7 + _ = 16" as an important step in solving the missing-items situations,
or other conventional notation like "16 - 7 = ."It is not that I haven't or

For example, if 47 of 52 items were hidden in one location and 5 in another, and if the
child knows how many are hidden in both locations together and in one of the two locations,
the goal is for the child to make decisions concerning the easiest way to count to find how
many items are hidden in the other location.
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wouldn't encourage children to learn to use such conventional notation.
The reason is that initially, in the construction of the concepts and opera-
tions that constitute children's mathematics, children's natural language
serves as their primary symbol system and it is the means whereby children
maintain the spontaneity of their spontaneous development.

When the child learns to disembed the composite unit containing the re-
mainder of the first seven elements of the number sequence to 16 from the
whole-number sequence without destroying the sequence, I refer to the
child's number sequence as explicitly nested. There is a second feature of
the explicitly nested number sequence which, when coupled with the
disembedding operation, produces great economy in the child's reason-
ing. In the case of the tacitly nested number sequence, a number word like
"seven" refers to a composite unit containing a sequence of seven unit
items, which I symbolize using conventional notation for the purposes of
illustration: {1, 2, 3, 4, 5, 6, 7}. In the case of the explicitly nested number
sequence, "seven" refers to a composite unit containing a singleton unit
that can be iterated seven times to fill out the composite unit.22 These two
advancements permit the child to collapse 16 into two unitary items—a
unit containing the first seven items of the sequence and a unit containing
the remaining items of the sequence to 16.23 The child can then disembed
both the unit of 7 and the unit containing the sequence of units following 7
to 16 and consider them as two unitary and component parts of 16 both
apart from 16 and in 16. So, the child can produce three numbers—7, the
remainder of 7 in 16, and 16—and establish relationships among them.
This permits the child to construct subtracting as the inversion of adding
because the child has only three unitary items to deal with—7,9, and 16. It
also permits the child to establish subtraction as the difference of two
numbers rather than as the more primitive concept of take away. To under-
stand what is meant by the difference of 16 and 7, say, a child maintains 7
as embedded in 16 but also as a number apart from 16. The difference of
the two numbers can then be conceptualized as the gap between
them—how many units of one follow 7 in 16? These operations also permit
the child to construct strategic reasoning as exemplified by Johanna.

22The unit of one takes on the characteristic of being iterable if, first, it refers to a sequence
of units of one such as {1, 2,3,4, 5,6, 7}, and second, if it can be repeated to produce the se-
quence. The unit of one produced upon each repetition can be taken together with those that
precede it to form an intermediate sequence of units of one. It is also possible for the child to
unite the units of each intermediate sequence into a composite unit even though the child
may not engage in these operations while iterating the unit.

23When the child regards the unit to which "seven" refers as if it were a unit of one, this
frees the child to consider what follows 7 in the number sequence to 16. In that consideration,
the child can use the iterable unit of one as a symbol for all of the units that follow 7. This frees
the child from producing an image of a sequence of units of one, and so the child can easily
focus his or her attention on the composite unit that contains the sequence. In this way, the
child can be aware of two composite units that he or she can treat as if they were units of one;
the composite unit to which "seven" refers and the composite unit containing the sequence
of units which follow 7 in the number sequence to 16.
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Constructing Composite Units as Iterable

After children have constructed the explicitly nested number sequence,
the tendency might be to head as quickly as possible toward such learn-
ing objectives as "adding or subtracting numbers through 999 + 999." If
this is interpreted as meaning the children should learn standard compu-
tational algorithms, I would consider it as a major disaster in their mathe-
matical education. But if it is interpreted to mean that the children
produce child-generated algorithms, then there is a chance for them to
maintain their insight and creativity in mathematics while learning what
all too often is considered as procedures. The children certainly have con-
structed some very powerful ways and means of operating and it should
be the teacher's goal to bring forth accommodations of these ways and
means so that the children's methods blossom into ever more powerful
and spontaneous methods.

The children's explicitly nested number sequence is a number se-
quence involving the unit of 1 and those who have constructed this num-
ber sequence essentially live in a "ones world." "One hundred," for
example, refers to 1 iterated 100 times; but not to 50 iterated twice, to 25 it-
erated 4 times, to 10 iterated 10 times, to 5 iterated 20 times, and so forth. A
major goal for children who have constructed the explicitly nested num-
ber sequence is for them to construct composite units as iterable in the
way that their unit of one is iterable. An illustrative task is to ask the chil-
dren a question like "If you count up to 12 by threes, how many threes
would you count?" The typical first attempt is" 1,2,3, that is one; 4,5,6, that
is two; 7,8,9, that is three; 10,11,12, that is four. Four." This may be one of
the first times the child repeats a composite unit more than once. Never-
theless, the child has already constructed one as an iterable unit, so it
would seem that the construction of three as an iterable unit would be
within their zone of potential construction.

In any case, a child who has recently constructed the explicitly nested
number sequence is yet to construct three or any other composite unit as
an iterable unit. This realization is staggering, because in conceptually re-
organizing, say, 60 into a unit of six units of 10, it is of great advantage for 10
to be available to children as an iterable unit. Bringing forth the construc-
tion of the operations that produce a unit of units of units (a unit containing
six units of 10, e.g.) is a major goal for the children in the stage of the explic-
itly nested number sequence. This goal, when elaborated within the math-
ematics of children, supersedes all conventional learning objectives
concerned with place value; because in learning numeration, it is conven-
tional for children to begin by interpreting a two-digit numeral as so many
tens and so many ones without first constructing the operations necessary
to reorganize, say, a unit containing a sequence of 37 units of one into a
unit containing three units of 10 and one unit of 7. To accomplish such a re-
organization, the child must have established the units of 10 and 1 as units
to measure other composite units. This means that 10 and 1 must be con-
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structed at least as iterable units that are embedded in a way of operating
that the child can use to measure other composite units.

Establishing 10 as an Iterable Unit. Children in the stage of the
explicitly nested number sequence can produce the number-word
sequence "ten, twenty, thirty, ..., one hundred" before they have
constructed the unit of 10 as iterable. This introduces a practical difficulty
because such children often circumvent constructing an iterable unit of 10
simply because they can solve most of the tasks they encounter in school
mathematics without doing so. For example, when asked to find how
many dimes could be traded for 100 pennies, I have observed children
simply utter "10, 20, ..., 100" in synchrony with putting up fingers and
answer "ten," but yet have no idea how to find how many stacks of
pennies with 10 pennies per stack could be made out of 100 pennies
without actually making the stacks. Because they treat a dime as a unit of
one rather than a unit that symbolizes a unit containing 10 units of one, I
refer to their apparent counting-by-10 activity as pseudo counting by 10.1
have observed a similar phenomenon in the case of counting by two.

Because of pseudo counting by 10, it might seem easier for children to
find how many stacks with 10 blocks per stack could be made from, say, 70
blocks than how many stacks with 3 blocks per stack could be made from,
say, 15 blocks. But I have not found this to be the case at all because
pseudo counting by 10 is usually not activated by such conceptual tasks.
Rather, such tasks appear to the child to be a novel problems that have to
be solved. One of my goals in presenting these tasks is for the children to
use double counting in solving them. For example, after counting to 10, my
goal is to bring forth double counting in the following way;" 11 is one, 12 is
two, 13 is three, ...,20 is ten. Two tens. 21 is one, 22 is two, 23 is three, ...,30
is ten. Three tens...." Upon reaching "seventy," the child would know that
seven tens have been counted. This encourages abstracting that each de-
cade in the number sequence for one is of numerosity 10, a number se-
quence for the unit of 10 (10, 20, 30, 40, ...) whose elements can be
counted and whose elements refer to a decade in the corresponding num-
ber sequence for one, and a unit of 10 that can be iterated.

Once children have constructed 10 as an iterable unit, they can take
counting by 10 as a given in a way that is quite analogous to how they can
take counting by 1 as a given in the case of units of 1. That is, "seventy" or
"70" can symbolize counting by 10 seven times and what this counting
activity produces—a unit containing seven units of 10. This permits the
child to construct child-generated algorithms for finding sums and differ-
ences of numbers in the decades. For example, when finding how many
blocks in a container containing 73 blocks after 47 more are placed into
the container, the child who can take counting by 10 and 1 (a slight modi-
fication of counting by 10) as a given can count on by 10 and 1 to find how
many blocks there are. For example, the child might count "73; 83, 93,
103, 113—114, 115, 116, 117, 118, 119, 120. One hundred twenty." Such



8. PSSM FROM A CONSTRUCTIVIST PERSPECTIVE 247

child-generated algorithms permit the child to maintain ownership of
their mathematics and to build great confidence in their own ways and
means of operating.24

Are child-generated algorithms to be considered as a step in the con-
struction of standard paper-and-pencil algorithms? I consider standard
computational algorithms as neolithic devices that should not regulate
what is emphasized in the mathematics curriculum as was the case in
1930 (National Society for the Study of Education, 1930). Rather, child-gen-
erated algorithms should be emphasized along with the construction of
systems of units that are relevant for the decimal system of numeration.
Until children have constructed the relevant systems of units, the standard
algorithms should not be of concern because there is a grave danger of the
standard algorithms providing the children with a way of operating in
which constructing and reasoning with systems of units is not necessary.
Once reasoning with systems of units and the reflective thought they imply
are available to children, they will be ready to creatively generate more or
less conventional ways of operating as productive thought.

Criteria for Judging When a Composite Unit Is Iterable.
For a composite unit to be judged as iterable, the child must be aware of
such composite units prior to operating. That is, the child must have
constructed a composite unit containing another composite unit that can
be iterated so many times, a structure that is strictly analogous to the
numerical structure the child constructs in the case of the iterable unit of
one. Rather than speak of seven ones, for example, the child can also
speak of seven fours because the child is aware of a unit containing a
composite unit of four that can be iterated seven times. The ability to solve
the following missing-composite-units task is an excellent indication that
the child has constructed the composite unit of four as iterable if the child
solves it as I explain.

There are six strings of four toys each under this cover. Some more toys are
put under the cover. There are now 44 toys under the cover. How many
strings of four can be made from the toys added?

If the child proceeds to find how many toys originally were under the
cover by counting by four six times, and then continues on making units of
four while keeping track of how many more units of four could be made,
this is a strong indication that the child has constructed four as an iterable
composite unit. For example, the child might proceed as follows: "Four,

I advocate that such child-generated algorithms be constructed by children for numbers
up to 1,000. In this context, I encourage children to engage in strategic reasoning of the sort in
which Johanna engaged. Strategic reasoning is critical because it is by this means that chil-
dren can curtail their child-generated algorithms. For example, to find the sum of 73 and 47
strategically, children might reason as follows: "Seven tens and four tens are eleven tens.
Eleven tens is one hundred and ten. Seven and three is ten, so one hundred and twenty."
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that is one; eight, that is two; twelve, that is three; sixteen, that is four;
twenty, that is five; twenty-four, that is six. Twenty-eight, that is one;
thirty-two, that is two; thirty-six, that is three; forty, that is four; forty-four,
that is five. Five!" In the solution, I would infer that the child could imagine
making a continuation of counting by four six times prior to counting. In
this continuation, the child would be aware of an unknown numerosity of
fours that could be made from the toys added.

So, in situations designed to bring forth the construction of composite
units as iterable, rather than simply ask children to count by four up to a cer-
tain number, I ask them, for example, how many stacks of four they could
make out of, say, 24 blocks. I ask this question because I want to encourage
the children to imagine a sequence of stacks of four blocks each, and I
might encourage them to describe what they intend to do as they solve the
task before they engage in solving activity. In this way, I encourage them to
visualize the results of making stacks of four and, in doing so, to use their nu-
merical concept of four several times in producing visualized images of
stacks of four blocks. If I am successful, the child usually refers to these visu-
alized images as they engage in keeping track of counting by four.

Once I establish with the children that they can, in fact, find how many
stacks of two, three, four, or five blocks can be made from given numbers
of blocks without actually making the stacks, several options open up.
First, I can ask the children to regenerate parts of their solutions. For exam-
ple, in the case of the 24 blocks, I might ask the children how many blocks
are in the six stacks they made. This orients the children to take the results
of their solution as input for further operating, which should be regarded as
the primary means of children making progress. It is also the very begin-
nings of recursion, a process that the authors of PSSM emphasize along
with iteration and the comparison of algorithms "because of their utility in
a technological world" (NCTM, 1998, p. 28). Throughout this chapter, I
have emphasized all three of these processes as basic in the mathematics
of children, not only as a product of the mental operations that constitute
this mathematics, but also in the construction of these mental operations.

FINAL COMMENTS AND SUMMARY

My purpose in writing this chapter was to sketch out a possibility for the
mathematics of children to become the rational bridgehead25 of school
mathematics. I have certainly not exhausted this topic nor have I at-
tempted to be exhaustive. There are many more things that need to be
discussed in the topics considered herein, as well as other topics that
must be considered. I regard the mathematics of children as a mathemat-
ics that only children can bring to life through their interactions. As Tom
Kieren (1994) has reminded us many times, an adult can only provide the

25A rational bridgehead consists of allegedly unique common core beliefs (Konold &
Johnson, 1991).
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occasions for bringing such a mathematics forth, sustaining it, and modi-
fying it. But in doing so, the adult is coimplicated in the mathematics of
children. So, I regard teachers as playing an incontestable functional role
in the mathematical education of children. There are several places in the
chapter where I have tried to suggest that role, but I know these sugges-
tions are merely that—suggestions.

Making the mathematics of children the rational bridgehead of school
mathematics not only involves a change of paradigm, but also a willing-
ness to open oneself to the world of children's mathematics and to as-
sume that, within that world, children's mathematical thinking is every bit
as coherent and rational as the thinking of the adult. In fact, I have always
found children to be internally consistent in how they operate mathemati-
cally, an observation that serves as a foundation for my advocacy that we
take their mathematics seriously.

It is often difficult to imagine what the mathematical concepts and oper-
ations of children might be like and how they might be constructed in es-
tablishing a coherent view of children's mathematics under the
assumption that children are indeed rational beings. Starting with the ob-
ject concepts that human beings construct during the first 2 years of life, I
traced a constructive itinerary that begins with perceptual unit items, then
proceeds to figurative unit items, arithmetical unit items, the iterable unit
of one, and finally to iterable composite units. Furthermore, I identified the
operations that produce these five different unit types as re-presenting,
unitizing, monitoring, and uniting. By unitizing the items of a perceptual
collection, a child constructs perceptual unit items. Because the child
learns to focus on the unitary aspect of the perceptual items rather than on
some specific sensory feature, the child can classify what would other-
wise be quite disparate perceptual items together on the basis of their
unitariness. This is the first abstraction in the construction of the numerical
units I have called arithmetical units. In this itinerary, classifying does not
produce numerical structure. It is unitizing re-presented perceptual items
that produces numerical structure.

A numerical composite is a sequence of arithmetical unit items that
have been constructed as a result of monitoring counting. Unitizing the el-
ements of a re-presented sequence of counted perceptual unit items is in-
volved in monitoring, and the unit items that are produced, called
arithmetical units, can be used in producing countable units because they
contain records of the experience of counting acts. Consequently, a nu-
merical composite is simply a number sequence that is symbolized by a
number word like "seven." As children make progress, they construct
composite units containing these number sequences and operations with
these composite units. Moreover, they learn to operate with these com-
posite units in ways that enable an adult to guide and shape the operations
into quite advanced ways of reasoning mathematically.

Children's number sequences are fundamental in their mathematical
education, but they are not to be regarded as being constituted in the same
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way as the conventional concept of a number sequence in mathematics. I
traced the construction of children's counting schemes through essen-
tially four stages: the perceptual, the figurative, the initial number se-
quence, and the explicitly nested number sequence. The tacitly nested
number sequence is a more or less transitional stage between the preced-
ing and succeeding number sequences. The first number sequence that I
mentioned, the initial number sequence, is nothing but an interiorization
of the figurative counting scheme, and each succeeding number se-
quence is an interiorization of the one preceding. This understanding of
children's number sequences provides us with a new insight into chil-
dren's construction of number and extends it into the province of their
mathematics education. The explanation offered by Piaget and
Szeminska (1952) for children's construction of number culminated with
a structure similar to the initial number sequence. Although this is a crucial
structure in children's conceptual development, it is only a beginning
point in the children's constructive itineraries. At every stage, I stressed
counting as a scheme rather than as an activity. In fact, a number se-
quence is nothing but a numerical counting scheme. As a scheme, count-
ing is goal directed and purposeful. It serves in the construction of adding
and subtracting schemes, child-generated algorithms, the structure of a
unit of units of units, and the establishment of a scheme for measuring
numbers, among other things.
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9
A Prospective Developmental
Perspective on Early Mathematics
Instruction

Catherine Sophian
University of Hawaii

A developmental perspective on early instruction is often equated with the
notion of age-appropriateness or readiness. On this view, a developmen-
tally appropriate curriculum is one that is well matched with the cognitive
abilities and/or learning styles of the age group for which it is intended. An-
other kind of developmental perspective, one that I call a prospective de-
velopmental perspective, is concerned with the impact of early
mathematics instruction on aspects of mathematics learning that become
important later in development. In this chapter, I address the significance of
incorporating a prospective developmental perspective in the formulation
of standards for early mathematics instruction. The modes of instruction
that produce the greatest immediate learning may not always be the ones
that are best for the long term. Accordingly, instructional standards should
be directed toward maximizing the long-term as well as the short-term ef-
fectiveness of early mathematics instruction.

I focus on the arena of fraction learning to develop this idea. In doing so, I
am not necessarily advocating the inclusion of fractions in preschool or
kindergarten mathematics curricula. Rather, my recommendation is that
in deciding how and what to teach young children about whole numbers
we should keep in mind the conceptual foundation that they need to ac-
quire in order to be in a position to make sense of fractions whenever they
are introduced.

253
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Instruction in fractions in the middle to late elementary school years is
widely considered a watershed, a transition point at which many children
begin to have serious trouble with mathematics. It is often argued that frac-
tions are difficult because they do not fit well with children's intuitive ideas
about numbers, which are a good foundation for learning about counting
and related whole-number operations but not for fractions. A troubling im-
plication of this view is that the early years of mathematics instruction, in
which the focus is on whole numbers, cannot prepare children for the
transition to fractions and rational number concepts. The prospective de-
velopmental perspective suggests another possibility, however. It may be
that prevalent modes of instruction in the first years of school, though ef-
fective for beginning mathematics content, actually contribute to the diffi-
culty children experience in making the transition to fractions or, at least,
fail to pave the way for that transition as effectively as they might. If so, it is
important to rethink the ways we teach whole-number concepts to chil-
dren in the first years of school in light of long-term as well as short-term
educational objectives.

I suggest that much of the difficulty in fraction learning stems from con-
ceptual issues that are not unique to fractions, but that have their origins in
the way very young children think about counting and whole-number
quantities. In particular, I suggest that limitations on the ways young chil-
dren think about units of quantification in their early counting are the
source of much of the difficulty they later have in making sense of frac-
tions. I present three kinds of evidence that bear on this idea.

First, in order to clarify the nature of the difficulties that so often plague
fraction learning, I take a close look at a basic but problematic aspect of
fraction knowledge in older children and adults—understanding the ordi-
nal relations among fractions with different denominators. I report com-
parisons across groups of students ranging from fourth graders to
university undergraduates. The university students no longer show a mis-
conception that is common among fourth and fifth graders—the belief
that a larger denominator makes for a greater fractional value. Despite this
progress, however, they make other systematic errors, indicating that the
mathematics education they have received has not succeeded in estab-
lishing a solid understanding of how the value of a fraction is related to the
values of the numbers that make up its numerator and denominator. I
liken these errors to the well-known "bugs" in multidigit subtraction (Van
Lehn, 1983). Like those bugs, I suggest, the ordinality errors reflect an inad-
equate grasp of the semantics or meaning of mathematical representa-
tions, in this case representations of fractional values.

Second, I review research on young children's understanding of units of
quantification in counting that I believe helps to illuminate the difficulties
older children (and even adults) have in understanding the values of frac-
tions. The main point I want to draw from this research is that young chil-
dren tend to conflate units of quantification with physically bounded
entities (everyday objects). Thus, although their counting performance is
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good as long as objects are an appropriate unit of enumeration, they have
difficulty as soon as it is necessary to work with other kinds of units. This
limitation has strong ramifications for fraction learning, because fractions
entail the coordination of alternative levels of quantification (the unit and
the fractional part).

Finally, in support of the idea that difficulties in reasoning about fractions
and ratios are closely related to limitations on children's understanding of
mathematical units, I present evidence from recent research on children's
judgments about spatial proportionality. In particular, the results show
that, whereas even preschool and kindergarten children can make judg-
ments of spatial proportionality, the availability of numerical units disrupts
rather than facilitates proportional comparison at early ages. This Finding, I
believe, is symptomatic of the overly restricted range of numerical activi-
ties and relations typically presented to young children.

In the concluding sections of the chapter, I address the question of how
the perspective I have articulated can be put into practice. I report a very
short-term training study that illustrates the malleability of young chil-
dren's thinking about number and quantity. Then, I briefly describe an ex-
perimental Pre-K mathematics curriculum that was recently imple-
mented on an experimental basis in several Head Start classrooms. And fi-
nally, I offer some closing reflections on the ramifications of recognizing
that children can know something in many different ways for efforts to for-
mulate appropriate standards and put them into practice. Even the
best-motivated set of instructional objectives can be counterproductive if
the emphasis shifts from engendering particular kinds of understanding to
eliciting correct performance on particular tasks.

MISCONCEPTIONS ABOUT ORDINAL RELATIONS
AMONG FRACTIONS

The errors that children—and even adults—make in comparing the values
of fractions with unlike denominators are a telling indication of the nature
of the difficulties that plague fraction learning. They are not just random er-
rors but reflect specific ways of interpreting fraction values that change de-
velopmentally and yet that often remain erroneous even in adulthood.

In one research project (Sophian & Dulloog, 2000), we asked students in
Grades 4,5, and 7 and university undergraduates to judge which fraction in
each of a series of pairs was the larger. In one problem set, the fractions ap-
peared in their "base" (nonreducible) form; in the other, the same fractional
values were presented using a common denominatoi (12ths). The com-
mon-denominator problems, not surprisingly, elicited predominantly cor-
rect performance at every grade level; it was the pattern of performance on
the different-denominator problems that was of primary interest.

Within the different-denominator problems, patterns of performance
across grade levels were very different for problems that involved compar-
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ing two unit fractions (e.g., — vs. -, or - vs. -) than for problems that in-
& S 12 3 2 6

volved the "complements" of those fractions—the values obtained by
i i o i r ^

subtracting each fraction from 1 (e.g., — vs. -, or - vs. -). On the unit-frac-
12 3 2 6

tion problems, the seventh graders and the university students did mark-
edly better than the fourth or fifth graders, M = 95% correct for seventh
graders and 94% correct for university students, versus 41% correct for
fourth graders and 54% correct for fifth graders. However, on the comple-
ment problems, the performance of the university students was substan-
tially lower, M = 78% correct, whereas that of the fourth and fifth graders
was higher, M = 80% and 81% correct, respectively. The seventh graders'
performance remained high, M = 92% correct, as it had been on the
unit-fraction problems.

The greater difficulty of the unit fractions than of their complements for
fourth and fifth grade students likely reflects the often-observed miscon-
ception that the value of a fraction increases as the sizes of the numbers of
which it is comprised increase. The greater difficulty of the complements
than of the unit fractions for university students is more surprising, how-
ever, and suggests that although students eventually overcame the mis-
conceptions that were evident at early ages, they did not acquire a firm
grasp of how fraction values are related. Whatever they did learn that al-
lowed them, by seventh grade, to respond correctly to the full range of
problems presented, soon faded and left them prone to new kinds of er-
rors. Two undergraduates were systematically incorrect on the comple-
ment pairs, suggesting that they incorrectly extended the rule that a large
denominator makes for a small fractional value from the unit fractions, for
which it is always true, to the complement pairs, for which it is not true
(because the numerators of those fractions covary in size with the denom-
inators). The rest of the undergraduates showed less marked error pat-
terns, but the fact that they erred predominantly on complement
problems suggests that many of them were also influenced by this kind of
reasoning, albeit to a smaller degree. Altogether 13 university students
made more errors on the complement problems than on the unit prob-
lems, whereas only 2 made more errors on the unit problems.

The regularities in the errors the undergraduates made on common-de-
nominator problems are reminiscent of the "buggy arithmetic" errors
noted in schoolchildren's performance of complex whole-number opera-
tions such as subtraction with borrowing (cf., Resnick, 1982; Van Lehn,
1983). Although the students in this research were not asked to produce a
computational result, such as a difference, clearly they had to carry out
some sequence of numerical operations to arrive at their responses to the
different-denominator problems. And the systematic differences in error
rates between unit problems and complement problems make it clear
that the mistakes they made in doing so were not just random but
stemmed from systematically incorrect comparison processes. In particu-
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lar, it seems likely that students sometimes considered only the relative
magnitude of the denominators, without considering the value of the nu-
merators. However, the observed errors could also have resulted from
other forms of faulty reasoning. More detailed information about students'
comparison processes and not just their final judgments would be needed
to identify the specific bugs in their reasoning (and also the specific forms
of reasoning through which correct responses were generated).

Regardless of those specifics, however, what is important about the errone-
ous comparison processes that resulted in incorrect judgments here, like the
"bugs" identified in earlier research on arithmetic computations, is that they
clearly do not respect the semantics of the problems—that is, the quantitative
relations that are being represented. Buggy arithmetic appears to result from
an effort to extend known rules to new problem situations, without grasping
the quantitative relations that constrain the ways the numbers are manipu-
lated. In a similar way, the errors we have found in university students' judg-
ments about fraction magnitudes appear to reflect the overextension of a rule
that works when only the denominators differ (as is the case for unit frac-
tions) to problems in which numerators as well as denominators vary. But, as
is the case with buggy subtraction (Resnick, 1982), this overgeneralization
would not be plausible if students grasped the semantics of what they were
doing. Because the value of a fraction depends on its numerator as well as its
denominator, it is semantically as well as procedurally wrong to base a mag-
nitude judgment only on the denominator. What the "bugs" in students' mag-
nitude judgments imply, then, is that they have not achieved an
understanding of the semantics of fractions, the way in which their numera-
tors and denominators together specify particular quantitative values.

Fundamentally, the principle that is involved in understanding how the nu-
merator and the denominator of a fraction together determine its value is the
iteration of units of measurement: The denominator specifies the size of the
units and the numerator specifies how many of those units there are. The key
to understanding that, for unit fractions, the size of the denominator is in-
versely related to the value of the fraction is understanding that fractional
units are obtained by partitioning, and the more parts one creates from a
given whole the smaller each individual part will be. Coming to understand
this is the conceptual foundation for overcoming the misconception that big
denominators make for large fractional values. But what if a child does not ac-
quire this conceptual foundation? Such children may still learn the correct or-
dering of unit fractions, but in doing so all they will have acquired is an
arbitrary rule. As a result, they are likely to have trouble extending what they
have learned to the more complex case of nonunit fractions, particularly frac-
tions in which numerators as well as denominators vary.

The general point that emerges from this analysis is that to learn about
fractions effectively, children need to understand the semantics of frac-
tions, not just the procedural rules that apply to them. And the foundation
for the semantics of fractions is the idea of generating a new unit of mea-
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surement by partitioning the original one (Davydov, 1991). It is here that I
believe there is a fundamental connection between fraction learning and
the learning about counting and whole-number operations that occurs as
children are just beginning their schooling.

THE CONFLATION OF PHYSICAL OBJECTS
AND UNITS IN EARLY COUNTING

In counting, children generally take individual objects as units—each
item is counted once and only once in order to arrive at the cardinal value
of the set. At early ages, they find it quite difficult to adopt other counting
units—for instance, to count the number of different shapes in a collec-
tion where each shape appears more than once, or to count two sepa-
rated parts of an object as a single thing (Gal'perin & Georgiev, 1969;
Shipley & Shepperson, 1990; Sophian & Kailihiwa, 1998). But, as Gal'perin
and Georgiev pointed out, there is a profound difference between an indi-
vidual and a mathematical unit:

Mastery of the initial concept of the unit is the most important step in the for-
mation of elementary arithmetic concepts (they are all built on the unit or
presuppose it). But the prevailing idea of the unit as an entity (a separate
thing) ... is mathematically incorrect and psychologically wrong. It orients
children to the visual properties of magnitudes and to their evaluation
through direct comparison ... [and] hinders the correct formation of ele-
mentary mathematical notions, (p. 197)

They noted that, although children eventually come to distinguish spon-
taneously between units and individuals, this distinction is likely to be frag-
ile and easily lost if it is not systematically established through instruction.

One limitation associated with treating individuals as units is that children
do not recognize the significance of variations in the size of units when they
form individual items out of a continuous quantity. For instance, Gal'perin
and Georgiev (1969) had 6- to 7-year-old children carry out a subtraction ac-
tivity in which they put five spoonfuls of rice in a pile, then removed four
from it and were asked how many spoonfuls remained in the original pile.
Because children tended not to take care to fill the spoons completely when
removing rice from the pile, many of them ended up with more than one
spoonful left. Moreover, for the most part they were not able to make sense
of what had happened. Eighteen children estimated by sight that three or
four spoonfuls were left, failing to connect the problem with the mathemati-
cal relation 5 - 4 = 1. Ten others insisted that only one spoonful was left and
were unable to explain why it looked like so much. Only four children were
able to connect the unduly large remainder to the fact that they had not
completely filled the spoon when removing the four spoonfuls.

Another line of research that vividly illustrates young children's indiffer-
ence to variations in item size is work on sharing problems, in which chil-
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dren are asked to divide materials among two or three recipients making
sure that each gets an equal share. A common approach to this type of
problem is distributive sharing—giving one item to each recipient in turn,
and then another and another until all the items have been distributed
(Frydman & Bryant, 1988; Miller, 1984). This behavior makes use of
one-to-one correspondence to ensure that each recipient gets the same
number of items. It is effective in generating equal shares so long as all the
items are the same size and every round of distribution is completed (i.e.,
the items do not run out on the last round, leaving someone short-
changed). But when Miller asked children to create equal shares of contin-
uous quantities, the children cut the material into pieces to be distributed
with little regard for the sizes of the pieces. Even more strikingly, when they
came up short in passing out the last round of pieces, several children
solved the problem by taking one of the pieces the shortchanged individ-
ual had received earlier in the process and cutting it in two to create an-
other piece for him! Obviously (to an adult eye), this action did not change
the overall amount that individual received; but so indifferent were the
children to the ramifications of differences in the sizes of the pieces that
they were content to have equated the numbers of pieces each recipient
got in this way.

Clearly, there are situations in which the number of discrete items is the
focus of interest and not their size or other characteristics. What is impor-
tant about young children's focus on discrete objects in counting is not that
this is the wrong unit, but that it is based on a failure to differentiate be-
tween physical and quantitative units (Gal'perin & Georgiev, 1969). The
conflation of physical and quantitative units is profoundly limiting for
mathematical development because it precludes the consideration of al-
ternative units of quantification and the relations between them, relations
that are essential for understanding measurement, place value, fractions,
and much more.

Sophian and Kailihiwa (1998) obtained direct evidence that young
children are inflexible in their choice of units of quantification by asking
children to quantify arrays of objects that lent themselves well to two
different levels of quantification. The arrays were composed of objects
that were made up of two separable pieces (like the halves of an Easter
egg), and some of the objects were presented intact whereas others
were separated into their pieces. Children were asked two alternative
questions about these arrays: "How many pieces can we get from all
these things?" versus "How many whole eggs [e.g. ] can we get from all
these things?" As in Shipley and Shepperson's (1990) work, some chil-
dren counted discrete items (this was most common among the
4-year-olds, the youngest age group tested). Many, however, did gener-
ate either counts of the component pieces (treating the separable parts
of the objects as separate items, even when they were joined to form in-
tact objects) or counts of aggregates (treating pairs of pieces as single
items, even when they had not been put together). Yet, the children
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were strikingly poor at adapting their choice of counting unit to the
question that was posed.

In an initial study, most 4- and 5-year-old children (and even a substantial
minority of 7-year-olds) selected one type of counting unit and stuck with it
from trial to trial regardless of which question the experimenter posed. A fol-
low-up study endeavored to make the contrast between the two questions
more salient by asking both questions, one right after the other, about each ar-
ray that was presented. This procedure was successful in eliciting a more dif-
ferentiated choice of counting units from 5-year-olds but not from 4-year-olds.
These results are interesting from an instructional perspective because, even
though they indicate important limitations on early quantitative reasoning,
they also demonstrate the impact that even small variations in problem pre-
sentation can have on that reasoning. The finding that kindergarten children
can be induced to adopt different counting units by simply juxtaposing alter-
native quantification questions about the same array of objects suggests that
there is considerable potential for early instruction to help children discover
the fundamental distinction between a mathematical unit and an individual.

SPATIAL RATIOS AND NUMERICAL UNITS

The idea that childrqen have difficulty understanding numerical ratios be-
cause they lack an appropriate understanding of mathematical units
raises the possibility that young children may be better able to grasp ratio
relations if they are introduced in a form that does not entail the use of
units. For instance, even young children have an idea of what it means for
something (or someone) to be fat or skinny, and it seems likely that such
judgments are not based on width alone but on how wide something is
relative to its height.

Several recent studies have provided evidence that children as young as 4
and 5 years of age can successfully compare spatial ratios that do not entail
the use of fractional units. For instance, in one study (Sophian, 2000, Experi-
ment 2) 4- and 5-year-old children were asked to identify which of two small
rectangles matched a larger sample in shape, that is, in how elongated or
close to square it was. The children responded correctly to 93% of problems
on which there was a large contrast between the choice stimuli (e.g., the
small rectangles embodied width-to-height ratios of .25:1 vs. .5:1) and to
82% of problems on which the contrast was not as great (e.g., .33:1 vs. .5:1).

To more directly investigate the idea that units are a source of difficulty in
ratio reasoning, a subsequent study compared children's performance on
ratio comparison problems in which spatial stimuli were constructed either
of continuous regions or of regions that were visibly partitioned into units
(Sophian & Yamashita, 2000). Examples of the stimuli for the two conditions
can be seen in Fig. 9.1. Children were asked to compare the sizes of two dif-
ferently colored regions that together comprised a sample figure, and then
to complete a new figure, given one of its two regions, so that the balance or
mix of the two colors in it was the same as that in the sample.
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FIG. 9.1. Examples of (a) continuous and (b) partitioned stimuli used in the study by
Sophian and Yamashita (2000). In each example, the figure on the left is a sample stimulus
composed of two regions (light and dark), and the rectangular figure on the right is one region
of a test stimulus that the child is to complete.

This task was quite difficult for young children. Children averaged less
than 10% correct responses at both 5 and 7 years, and only 27% correct
even at 10 years (fifth grade). A common error, particularly at the younger
ages, was to disregard the ratio relations in the problem and simply make
the region being generated the same size as the correspondingly colored
region in the sample. These size-match errors accounted for 26% of chil-
dren's responses at 5 years, 29% at 7 years, and 19% at 10 years. But what
was illuminating was that both correct responses and size-match errors
varied substantially across the conditions, and in different ways at different
ages. The means for each condition are plotted in Fig. 9.2. Whereas
10-year-olds benefited from numerical information, in that they were
more likely to respond correctly and less likely to make size-match errors
in working with partitioned regions than in working with continuous ones,
both 5- and 7-year-olds showed just the opposite pattern. The availability
of numerical information appears to have diverted young children's atten-
tion away from global spatial relations that they were able to utilize (to
some degree) in the continuous condition to construct a proportional
match to the sample. It exacerbated the tendency, which was pronounced
even in the continuous condition, to respond nonproportionally, reproduc-
ing the absolute size of the corresponding region in the sample rather than
the relation between the two regions.

These negative effects of partitioning, like the limitations on children's
reasoning about numerical units that other studies have identified, indi-
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FIG. 9.2. Correct responses and size-match errors on problems involving continuous
versus partitioned stimuli (data from Sophian and Yamashita, 2000).

cate that the ways young children use numbers are too restricted to sup-
port the kinds of mathematical learning that will be expected of them in
future years. Early mathematics education, therefore, must go beyond
"standard" numerical activities in which discrete objects are the unit and
absolute magnitude is the focus. From the very beginning of mathematics
instruction, learning activities should be designed to expand the ways in
which children use and understand numbers, to move them beyond rou-
tine procedures to an exploration of the quantitative relations and con-
cepts on which mathematical meaning depends.
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TEACHING CHILDREN ABOUT UNITS
THROUGH MEASUREMENT

In order to determine the feasibility of addressing profound mathematical
concepts such as that of a unit in early childhood mathematics instruction, I
conducted an experimental study (Sophian, 2002) that examined pre-
schoolers' reasoning about effects of unit size. In the study, 3- and
4-year-old children were asked questions such as whether more small
bears or more large bears (examples provided) would be able to sit to-
gether on a given bench. In addition to evaluating children's initial under-
standing of the relation between unit size and number, the study also
evaluated how responsive their thinking was to a series of demonstration
trials on which they were shown what happened as different sizes of ob-
jects were put in the space. On these trials, the experimenter began, as she
did on regular test trials, by asking the child whether more of one kind of
object or more of the other would fit into a given space. As soon as the child
answered, however, she said, "Let's see," and began putting small and
large objects, one at a time, into corresponding spaces. (E.g., she first put a
large bear on one bench and a small bear on a second identical bench;
then she put a second large bear beside the first one and a second small
bear beside the first of those.) As she did so, she drew the child's attention
to how the two spaces were filling up, saying, for example, "There's not
much more room here now, is there? But there is still plenty of room over
here." When one of the spaces was full, she again asked whether more of
one kind of object or more of the other fit; then she stated the correct an-
swer if the child had not, and asked the child why that was so.

On average, children responded correctly to just 36% of the pretest prob-
lems. In other words, they incorrectly judged that more large than small
items would fit in a given space almost twice as often (on 64% of the prob-
lems) as they correctly judged that more small items would fit. After six
demonstration trials, however, their performance rose to 64% correct—still
far from errorless but substantially better than it had been on corresponding
problems at the start of the study. Because the specific types of containers
and objects used for the posttest problems were ones that the child had not
seen before, this improvement cannot be attributed simply to learning
about the relation between particular objects and particular containers.
Rather, the results of the study indicate that, although uninstructed pre-
school children have little understanding of the significance of unit size for
measurement-related problems, their understanding grows rapidly when
they have the opportunity to make relevant observations.

These results, and the broader prospective developmental perspective
advanced in this chapter, are the foundation for a Pre-K mathematics curric-
ulum that I recently deveoped as part of a project funded by the Head
Start—University Partnerships program1. This curriculum engages children

'Barbara DeBaryshe was the principal investigator for this project.
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in hands-on activities involving counting, comparing, transforming, and
measuring that are designed to address both the concept of unit and the
idea of additive composition (that parts combine to form wholes and
wholes can be decomposed into parts). For example, in several activities
children explore the impact of using alternative measurement units (small
vs. larger cups to measure volume; longer vs. shorter handprints to measure
length) on the numerical values obtained. In others, they put together dupli-
cates of one geometric shape to make new shapes (e.g., two identical right
triangles can be combined to form either another triangle or a rectangle)
and then consider how the areas of the different shapes created in this way
compare. Measurement is at the heart of the curriculum because it is indis-
pensable for understanding units, which are fundamentally a means of
measuring. In addition, because measurement activities give children a
way to experiment with units and quantities, they provide an ideal bridge
between the hands-on exploration that comes naturally to young children
and the abstractions of mathematics toward which they are heading.

CONCLUSION: APPLYING A PROSPECTIVE
DEVELOPMENTAL PERSPECTIVE IN EARLY

CHILDHOOD CLASSROOMS

A major challenge in formulating appropriate standards for early child-
hood mathematics education, and also for using the standards appropri-
ately once they have been formulated, stems from the fact that there are
many ways of knowing (Sophian, 1999). Learning to solve a set of prob-
lems by adhering to a prescribed procedural sequence is a very different
thing from being able to generate an appropriate procedure oneself or un-
derstanding the quantitative significance of each step in the procedure
and its relationship to the goal specified in the problem.

Adopting a prospective developmental perspective is largely a matter of
thinking carefully about how to teach the content we already teach, so as
to ensure that children come to know it in a way that they can build on as
their learning advances. But because correct performance on any given
task may be obtained in a number of ways, the goal of fostering develop-
mentally important ways of knowing cannot be satisfied by simply adding
new tasks to the early childhood curriculum and ensuring that children
learn to perform them correctly. The inclusion of greater diversity in the
counting activities we present to young children can be valuable, but it is
critical to keep the focus on how children think about the activities they are
engaged in and not just on whether or not they get the right answers.

In part because of the historical emphasis on performance rather than
understanding in schools, a widespread view is that it is important not to
confront children with problems that are too difficult for them. But, insofar
as the goal of instruction is to promote new ways of thinking, this approach
may do more harm than good. Mathematical problems that are sufficiently
rich to stimulate advances in children's thinking are not likely to fit neatly
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within prescribed levels of difficulty. Instead, they will generally be amena-
ble to analysis at a range of levels, some of which are certain to be beyond
a young child's grasp. Thus, in developing a curriculum that addresses the
development of mathematical thinking, it is important to recognize that
children need not be able to understand a problem at all levels in order to
benefit from working with it.

For instance, consider the suggestion I have made that young children
be encouraged to explore the results of using different sizes of objects as
measurement units. There are many aspects of this activity that are un-
likely to be fully understood by preschool or kindergarten-age children.
Measurement is a complex concept, involving conservation, transitive in-
ference, and indeed the notion of a unit itself. But children do not need to
understand all of this in order to make sense of the activity and to learn
from it. They do not even need to realize that what they are doing is mea-
suring objects, albeit with unconventional units. What matters is that the
activity gives them an opportunity to discover that, for certain kinds of nu-
merical activities, the sizes of objects are critically important. Likewise,
observing the numerical consequences of applying different-size units to a
series of objects is a concrete way of stimulating children's thinking about
numerical relations. Multiplicative relationships among numbers are un-
likely to be familiar to preschool and kindergarten children, but some chil-
dren may gain insight into them by seeing the patterns of numbers they get
as they apply different sizes of units to various objects (especially if the unit
sizes are chosen so that one unit is a simple multiple of the other, e.g.,
twice as long or twice as heavy). Others may only notice the ordinal regu-
larities in the results—for example, that when the smaller counters were
used, more of them were needed to cover a given length. This too is a valu-
able discovery, as an understanding of inverse relations is critical to mak-
ing sense of ratios and fractions.

Though I have focused here on the problems students have with fraction
learning and on how looking ahead to that challenge might inform the de-
sign of early mathematics instruction, in closing I want to underscore that
the notion of a prospective developmental perspective is much broader
than this. In general terms, the recommendation I am making is that the
design of mathematics instruction for early childhood be informed by con-
sideration of the long-range goals and challenges of mathematics educa-
tion as well as by an analysis of what very young children know and can
learn. Thinking about what children will need to know in order to make
sense of fractions served as a useful illustration of this idea because we
know enough about the difficulties children have with fractions to make
some tangible suggestions about how early childhood mathematics in-
struction could help. In other arenas, too, we need to look closely at our
long-term instructional goals, at where difficulties arise as we undertake
to meet those goals, and at how we might prepare children for those chal-
lenges in the ways we teach them in the very first years of schooling.
Where we do not have sufficient knowledge to answer these questions,
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the prospective developmental perspective may serve as a useful tool in
framing a research agenda as well as in formulating instructional goals.
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10
Geometric and Spatial Thinking
in Early Childhood Education

Douglas H. Clements
University at Buffalo, State University of New York

Geometry and spatial reasoning are inherently important because they
involve "grasping ... that space in which the child lives, breathes and
moves ... that space that the child must learn to know, explore, conquer,
in order to live, breathe and move better in it" (Freudenthal, in National
Council of Teachers of Mathematics [NCTM], 1989, p. 48). In addition, es-
pecially for early childhood, geometry and spatial reasoning form the
foundation of much learning of mathematics and other subjects.

Although our knowledge of young children's geometric and spatial thinking
is not as extensive as that of their numerical thinking, it has grown substan-
tially and can be used as a basis for curriculum development and teaching.
Here, we briefly review these two main areas of this research: shape and
transformation (two-dimensional [2-D] figures; angle; three-dimensional
[3-D] figures; congruence, symmetry, and transformations; composition and
decomposition) and spatial thinking (spatial orientation: maps and naviga-
tion; and spatial visualization and imagery). We conclude with implications
for curriculum and instruction in early childhood geometry.

SHAPE AND TRANSFORMATION

2-D Geometric Figures

Too often, teachers and curriculum writers assume that children in early
childhood classrooms have little or no knowledge of geometric figures.

267
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Furthermore, teachers have had few experiences with geometry in their
own education or in their professional development. Thus, it is unsurpris-
ing that most classrooms exhibit limited geometry instruction. One early
study found that kindergarten children had a great deal of knowledge
about shapes and matching shapes before instruction began. Their
teacher tended to elicit and verify this prior knowledge but did not add
content or develop new knowledge. That is, about two thirds of the inter-
actions had children repeat what they already knew in a repetitious for-
mat as in the following exchange (Thomas, 1982):

Teacher: Could you tell us what type of shape that is?
Children: A square.
Teacher: Okay. It's a square.

A more recent study confirmed that current practices in the primary
grades also promote little conceptual change: First-grade students in one
study were more likely than older children to differentiate one polygon
from another by counting sides or vertices (Lehrer, Jenkins, & Osana,
1998). Over time, children were less likely to notice these attributes, given
conventional instruction of geometry in the elementary grades.

Such neglect evinces itself in student achievement. Students are not
prepared for learning more sophisticated geometry, especially when
compared to students of other nations (Carpenter, Corbitt, Kepner,
Lindquist, & Reys, 1980; Fey et al., 1984; Kouba et al., 1988; Stevenson,
Lee, & Stigler, 1986; Stigler, Lee, & Stevenson, 1990). In the recent TIMMS
work, U.S. students scored at or near bottom in every geometry task
(Beaton et al., 1996; Lappan, 1999).

Such comparisons may be present even among preschoolers in various
countries (Starkey et al., 1999). On a geometry assessment, 4-year-olds
from America scored 55% compared to those from China at 84%. Thus,
cultural supports are lacking from the earliest years in the United States.

How do children think and learn about shapes? It is possible they are born
with a tendency to form certain mental prototypes. People in a Stone Age
culture with no geometric concepts were asked to choose a "best example"
of a group of shapes1, such as a group of quadrilaterals and near-quadrilater-
als (Rosch, 1975). People chose a square and circle more often, even when
close variants were in the group. For example, the group with squares in-
cluded squarelike shapes that were not closed, had curved sides, and had
nonright angles. So, people might have "built-in" preferences for closed,
symmetric shapes (cf. Bornstein, Ferdinandsen, & Gross, 1981).

Culture shapes these preferences. We conducted an extensive exami-
nation of materials that teach children about shapes from books, toy
stores, teacher supply stores, and catalogs. With few exceptions (and with

Of course, all physical shapes are 3-D; however, we follow common usage in referring to, for
instance, a triangle pattern block as a "triangle" (instead of a pattern block with a triangle face).
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signs that this is changing in recent years), these materials introduce chil-
dren to triangles, rectangles, and squares in rigid ways. Triangles are usu-
ally equilateral or isosceles and have horizontal bases. Most rectangles are
horizontal, elongated shapes about twice as long as they are wide. No
wonder so many children, even throughout elementary school, say that a
square turned is "not a square anymore, it's a diamond" (cf. Lehrer et al.,
1998). Research indicates that such rigid visual prototypes can rule chil-
dren's thinking throughout their lives (Burger & Shaughnessy, 1986; Fisher,
1978; Fuys, Geddes, & Tischler, 1988; Kabanova-Meller, 1970; Vinner &
Hershkowitz, 1980; Zykova, 1969).

Specifically, what visual prototypes and ideas do preschool children
form about common shapes? Decades ago, Fuson and Murray (1978) re-
ported that by 3 years of age more than 60% of children could name a cir-
cle, square, and triangle. More recently, Klein, Starkey, and Wakeley (1999)
reported shape-naming accuracy of 5-year-olds as: circle, 85%; square,
78%; triangle, 80%; rectangle, 44%.

We recently conducted several studies with hundreds of children, ages
3 to 6 years. In the first study (Clements, Swaminathan, Hannibal, &
Sarama, 1999), we used the same line drawings we previously used with
elementary students for comparison purposes. Children identified cir-
cles quite accurately: 92%, 96%, and 99% for 4-, 5-, and 6-year-olds, re-
spectively. Only a few of the youngest children chose the ellipse and
curved shape (Fig. 10.1). Most children described circles as "round," if
they described them at all. Thus, the circle was easily recognized but rel-
atively difficult to describe for these children. Evidence suggests that they
matched the shapes to a visual prototype.

FIG. 10.1. Student marks circles. From Razel and Eylon (1991). Copyright © 1991 by the
authors. Adapted by permission.
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Children also identified squares fairly well: 82%, 86%, and 91% for 4-, 5-,
and 6-year-olds, respectively. Younger children tended to mistakenly
choose nonsquare rhombi ("diamonds" such as No. 3 in Fig. 10.2). How-
ever, they were no less accurate in classifying squares without horizontal
sides (Nos. 5 and 11). Children were more likely to be accurate in their
square identification when their justifications for selection were based on
the shape's attributes (e.g., number and length of sides).

They were less accurate at recognizing triangles and rectangles. How-
ever, their scores were not low; about 60% correct for triangles (see Fig.
10.3). Children's visual prototype seems to be of an isosceles triangle.

Young children tended to accept "long" parallelograms or right trape-
zoids (Shapes 3,6,10, and 14 in Fig. 10.4) as rectangles. Thus, children's vi-
sual prototype of a rectangle seems to be a four-sided figure with two long
parallel sides and "close to" square corners.

Although young children in this study were less accurate recognizing tri-
angles and rectangles, their results are not remarkably smaller than those
of elementary students (Clements, Battista, & Sarama, 2001) as shown in
Figs. 10.5 and 10.6 (in addition, many of the elementary students were
from relatively high socioeconomic status [SES] populations). Indeed, for
all shapes assessed two trends were evident. First, as discussed previ-
ously, very young children possess knowledge of geometric figures. Sec-
ond, children show a steady, but hardly remarkable, improvement from
preschool through the elementary grades.

In the second study, we asked children ages 3 to 6 to sort a variety of ma-
nipulative forms. We found that certain mathematically irrelevant charac-
teristics affected children's categorizations: skewness, aspect ratio, and,

FIG. 10.2. Student marks squares. From Razel and Eylon (1991). Copyright © 1991 by the
authors. Adapted by permission.



FIG. 10.3. Student marks triangles. From Burger and Shaughnessy (1986). Copyright © 1986
by ??. And from Clements and Battista (1991). Copyright © 1991 by the authors. Adapted by per-
mission.

FIG. 10.4. Student marks rectangles. From Burger and Shaughnessy (1986). Copyright ©
1986 by??. And from Clements and Battista (1991). Copyright © 1991 by the authors. Adapted
by permission.
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FIG. 10.5. Accuracy of rectangle identification in two studies

FIG. 10.6. Accuracy of triangle identification in two studies.
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for certain situations, orientation. With these manipulatives, orientation
had the least effect. Most children accepted triangles even if their base was
not horizontal, although a few protested. Skewness, or lack of symmetry,
was more important. Many rejected triangles because "the point on top is
not in the middle." For rectangles, on the other hand, many children ac-
cepted nonright parallelograms and right trapezoids. Also important was
aspect ratio, the ratio of height to base. Children preferred an aspect ratio
near one for triangles, that is, about the same height as width. Other forms
were "too pointy" or "too flat." Children rejected both triangles and rectan-
gles that were "too skinny" or "not wide enough."

These are simple tasks, chosen initially for their consistency with other
research-based tasks and traditional curricular goals. Yet they do illustrate
both the strength of children's initial competencies and the weakness of
the cultural and instructional support for building upon them. Further, chil-
dren's capabilities exceed naming, describing, and sorting shapes. We
turn to additional aspects of children's knowledge of shape and spatial
structure.

Angle and Turn

Angles are turning points in the study of geometry and spatial relation-
ships. Unfortunately, one does not have to turn far for examples of chil-
dren's difficulty with the angle concept (Lindquist & Kouba, 1989).
Children have many different ideas about what an angle is. These ideas
include "a shape," a side of a figure, a tilted line, an orientation or heading,
a corner, a turn, and a union of two lines (Clements & Battista, 1990). Stu-
dents do not find angles to be salient attributes of figures (Clements,
Battista, Sarama, & Swaminathan, 1996; Mitchelmore, 1989). When copy-
ing figures, students do not always attend to the angles.

Similarly, regarding the size of angles, children frequently focus on the
length of the line segments that form its sides, the tilt of the top line seg-
ment, the area enclosed by the triangular region defined by the drawn
sides, the length between the sides, or the proximity of the two sides
(Clements & Battista, 1989). Some misconceptions decrease over the ele-
mentary years, such as orientation; but others, such as the effect of seg-
ment length, do not change, and some, such as the distance between end
points, increase (Lehrer et al., 1998).

Nevertheless, there are some initial competencies on which instruction
might build. Preschoolers use angles intuitively in their play, such as block
building (Ginsburg, Inoue, & Seo, 1999). In an early study, though
5-year-olds showed no evidence of attention to angle in judging congru-
ence, they could match angles in correspondence tasks (Beilin, 1984;
Beilin, Klein, & Whitehurst, 1982). Some primary-grade children can dis-
tinguish between angles based on size (Lehrer et al., 1998).

There is some research on instructional approaches that attempt to de-
velop these early abilities. One uses multiple concrete analogies (Mitchel-
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more, 1993). Practical experience in various situations (e.g., turns, slopes,
meetings, bends, directions, corners, opening) helps children understand
angular relationships in each situation individually. Gradually, children de-
velop general angle concepts by recognizing common features of these sit-
uations. Research on teaching activities based on these ideas revealed that
most elementary-age students understood physical relations. Turn, or rota-
tion, was a difficult concept to understand in concrete physical contexts.

Other research supports the importance of integration across situations
and ideas. One study took as the starting point children's experience with
physical rotations, especially rotations of their own bodies (Clements et
al., 1996). During the same time, they gained limited knowledge of assign-
ing numbers to certain turns, initially by establishing benchmarks. A syn-
thesis of these two domains—turn-as-body-motion and turn-as-
number—constituted a critical juncture in learning about turns for many
elementary students. This and other studies have used the Logo turtle to
help children mathematize2 their physical experiences.

Related topics include parallel and perpendicular lines. Both are difficult
concepts for students in some applications. However, children as young as
3 and 4 years use parallelism in alignment tasks and 6-year-olds can name
parallel and nonparallel lines, although they have difficulty locating paral-
lels in complex figures (Mitchelmore, 1992).

Teaching Australian Grade 1 students about perpendicular lines was
abandoned because students were unable to conceptualize perpendicu-
lars as lines in a special angular relationship (Mitchelmore, 1992). However,
as noted, preschoolers deliberately use parallelisms and perpendicularly in-
tuitively in their block-building play (Ginsburg et al., 1999). It remains to be
seen if curricula and teaching approaches that build on these early begin-
nings can effectively facilitate lasting learning outcomes.

3-D Figures

Similar to findings regarding 2-D figures, students do not perform well
with 3-D shapes. Most intermediate-grade students have difficulty naming
solids (Carpenter, Coburn, Reys, & Wilson, 1976). South African first grad-
ers used different names for solids (such as "square" for cube) but were
capable of understanding and remembering features they discussed
(Nieuwoudt & van Niekerk, 1997). U.S. students' reasoning about solids
was much like that about plane figures; they referred to a variety of char-
acteristics, such as "pointyness" and comparative size or slenderness
(Lehrer et al., 1998). Students also treated the solid wooden figures as

2We define mathematization as representing and elaborating mathematically—creating
models of an everyday activity with mathematical objects, such as numbers and shapes;
mathematical actions, such as counting or transforming shapes; and their structural relation-
ships. Mathematizing involves reinventing, redescribing, reorganizing, quantifying, structur-
ing, abstracting, and generalizing that which is first understood on an intuitive and informal
level in the context of everyday activity.
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malleable, suggesting that the rectangular prism could be transformed
into a cube by "sitting on it."

Use of plane figure names for solids may indicate a lack of discrimination
between two and three dimensions (Carpenter et al., 1976). Learning only
plane figures in textbooks during the early primary grades may cause some
initial difficulty in learning solids. Construction activities involving nets (fold-
out shapes of solids) may be valuable as they require children to switch be-
tween more-analytic 2-D and synthetic 3-D situations (Nieuwoudt & van
Niekerk, 1997).

Congruence, Symmetry, and Transformations

Young children develop beginning ideas not just about shapes, but also
about congruence and transformations. Although many young children
judge congruence (Are these two shapes "the same"?) based on whether
they are, on the whole, more similar than different (Vurpillot, 1976), even
4-year-olds and some younger children can generate strategies for verify-
ing congruence for some tasks. Preschoolers often try to judge congru-
ence using an edge-matching strategy, although only about 50% can do it
successfully (Beilin, 1984; Beilin et al., 1982). They gradually develop a
greater awareness of the type of differences between figures that are con-
sidered relevant and move from considering various parts of shapes to
considering the spatial relationships of these parts (Vurpillot, 1976). In
about first grade, they consider both multiple attributes and their spatial
relationships and begin to use superposition. Thus, strategies supercede
one another in development (e.g., motion-based superposition) becom-
ing more powerful, sophisticated, geometrical, and accurate.

Other studies have focused on geometric motions. Some have reported
that younger students' abilities are slight. For example, one study snowed
that second graders learned manual procedures for producing transfor-
mation images but did not learn to mentally perform such transformations
(Williford, 1972). In contrast, other studies indicate that even young chil-
dren can learn something about these motions and appear to internalize
them, as indicated by increases on spatial ability tests (Clements, Battista,
Sarama, & Swaminathan, 1997; Del Grande, 1986). Slides appear to be the
easiest motions for students, then flips and turns (Perham, 1978); how-
ever, the direction of transformation may affect the relative difficulty of
turn and flip (Schultz & Austin, 1983). Results depend on specific tasks, of
course; even 4- to 5-year olds can do turns if they have simple tasks and ori-
entation cues (Rosser, Ensing, Glider, & Lane, 1984). Furthermore, some
studies indicate that second-grade students are capable of mental rotation
involving imagery (Perham, 1978; Rosser, Lane, & Mazzeo, 1988).

Under the right conditions, children of all ages can apply similarity trans-
formations to shapes. Even 4- and 5-year-olds can identify similar shapes
in some circumstances (Sophian & Crosby, 1998). The coordination of
height and width information to perceive the proportional shape of a rect-
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angle (fat vs. skinny, wide or tall) might be a basic way of accessing propor-
tionality information. This may serve as a foundation for other types of
proportionality, especially fractions. Similarly, other research shows first
graders can engage in and benefit from similarity tasks (Confrey, 1992).

Children have intuitive notions of symmetry from the earliest years
(Vurpillot, 1976). Symmetric stimuli are not only preferred but are consis-
tently detected faster, discriminated more accurately, and often remem-
bered better than asymmetrical ones. Preference for vertical symmetry
develops between 4 and 12 months of age (Bornstein et al., 1981) and ver-
tical bilateral symmetry remains easier for students to handle than hori-
zontal symmetry (Genkins, 1975). However, many concepts of symmetry
are not firmly established before 12 years of age (Genkins, 1975). Julie
Sarama has noticed that children often use and refer to rotational symme-
try as much as they do line symmetry in working with pattern blocks
(Sarama, Clements, & Vukelic, 1996).

Computer environments can be particularly helpful in learning congru-
ence, transformations, and symmetry (Clements, Battista et al., 2001). In-
deed, the effects of Logo microworlds on symmetry were particularly
strong for young (kindergarten) students. Writing Logo commands for the
creation of symmetric figures, testing symmetry by flipping figures via
commands, and discussing these actions apparently encouraged students
to build richer and more general images of symmetric relations (with pos-
sibly some overgeneralization). Students had to abstract and externally
represent their actions in a more explicit and precise fashion in Logo activ-
ities than, say, in free-hand drawing of symmetric figures.

Composition and Decomposition

Another of the many processes young children can perform with geomet-
ric shapes is composition. I take this opportunity here to both overview the
research on children's composing and decomposing competencies and il-
lustrate how research can be used to go beyond "checklist" approaches to
curriculum. The following is a research-based developmental sequence,
or learning trajectory, that approximately spans ages 4 to 8 years. (This
learning trajectory, first noted in Sarama et al., 1996, has been explicated by
these researchers in and for the Building Blocks project; Clements, Sarama,
& Wilson, 2001.) The basic competence is combining shapes to produce
composite shapes.3 At each level, a child does the following (see Table 1.2
in chap. 1, this volume for a synopsis and illustrations):

1. Precomposer. Children manipulate shapes as individuals, but are un-
able to combine them to compose a larger shape. For example, children

3The notion of creating and then iterating units and higher order units to construct pat-
terns, measure, or compute has been established as a basis for mathematical understanding
and analysis (Steffe & Cobb, 1988).
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might use a single shape for a sun, a separate shape for a tree, and another
separate shape for a person.

2. Piece Assembler. Children at this level are similar to precomposers,
but they can concatenate shapes to form pictures. In free-form "make a
picture" tasks, for example, each shape used represents a unique role, or
function in the picture (e.g., one shape for one leg). Children can fill simple
frames using trial and error (Mansfield & Scott, 1990; Sales, 1994), but have
limited ability to use turns or flips to do so; they cannot use motions to see
shapes from different perspectives (Sarama et al., 1996). Thus, children at
the first two levels view shapes only as wholes and see few geometric rela-
tionships between shapes or between parts of shapes (i.e., a property of
the shape).

3. Picture Maker. Children can concatenate shapes to form pictures in
which several shapes play a single role (e.g., a leg might be created from
three contiguous squares), but use trial and error and do not anticipate
creation of new geometric shapes. Shapes are chosen using gestalt config-
uration or one component such as side length (Sarama et al., 1996). If sev-
eral sides of the existing arrangement form a partial boundary of a shape
(instantiating a schema for it), the child can find and place that shape. If
such cues are not present, the child matches by a side length. The child
may attempt to match corners, but does not possess angle as a quantita-
tive entity, so they try to match shapes into corners of existing arrange-
ments in which their angles do not fit. Rotating and flipping are used,
usually by trial and error, to try different arrangements (a "picking and dis-
carding" strategy). Thus, they can complete a frame that suggests that
placement of the individual shapes but in which several shapes together
may play a single semantic role in the picture.

4. Shape Composer. Children combine shapes to make new shapes or
fill puzzles, with growing intentionality and anticipation ("I know what will
fit"). Shapes are chosen using angles as well as side lengths. Eventually,
the child considers several alternative shapes with angles equal to the ex-
isting arrangement. Rotation and flipping are used intentionally (and men-
tally, i.e., with anticipation) to select and place shapes (Sarama et al.,
1996). They can fill complex frames (Sales, 1994) or cover regions
(Mansfield & Scott, 1990). Imagery and systematicity grow within this and
the following levels. In summary, there is intentionality and anticipation,
based on the shapes' attributes, and thus, the child has imagery of the
component shapes, although imagery of the composite shape develops
within this level (and throughout the following levels).

5. Substitution Composer. Children deliberately form composite units
of shapes (Clements, Battista, Sarama, & Swaminathan, 1997) and recog-
nize and use substitution relationships among these shapes (e.g., two pat-
tern block trapezoids can make a hexagon).

6. Shape Composite Iterater. Children construct and operate on com-
posite units intentionally. They can continue a pattern of shapes that leads
to a "good covering," but without coordinating units of units (Clements,
Battista, Sarama, & Swaminathan, 1997).
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7. Shape Composer with Superordinate Units. Children build and apply
(iterate and otherwise operate on) units of units of units.

These levels represent a synthesis across divergent studies. We are in
the process of empirically evaluating the validity of this sequence with a
cross-sectional approach and designing off- and on-computer activities
for each level for evaluation with teaching experiments (see Sarama,
chap. 15, this volume).

SPATIAL THINKING

Why do we need to develop children's "spatial sense," especially in
mathematics classes? Spatial ability and mathematics achievement are
related (Fennema & Sherman, 1977,1978; Guay & McDaniel, 1977; Lean
& Clements, 1981; Wheatley, 1990). Though we do not fully understand
why and how, children who have strong spatial sense do better at math-
ematics. To have spatial sense you need spatial abilities. Two major abil-
ities are spatial orientation and spatial visualization (Bishop, 1980;
Harris, 1981;McGee, 1979).

Spatial Orientation: Maps and Navigation

Spatial orientation—knowing the shape of one's environment—represents
a domain of early cognitive strength for young children. It is probably a
"core domain"—a "built-in" area of knowledge that includes the ability to
actively and selectively seek out pertinent information and certain interpre-
tations of ambiguous information (Gelman & Williams, 1997). Toddlers, for
example, eschew other cues and instead use geometric information about
the overall shape of their environment to solve location tasks.

Spatial orientation is knowing where you are and how to get around in
the world, that is, understanding and operating on relationships between
different positions in space, especially with respect to your own position.
Young children learn practical navigation early—as all adults responsible
for their care will attest. Channeling that experience is valuable. For exam-
ple, when nursery school children tutor others in guided environments,
they build geometrical concepts (Filippaki & Papamichael, 1997).

Young children can mathematize their experiences with navigation.
They can use and create simple maps and begin to build mental repre-
sentations of their spatial environments. This is illustrated in 3-year-olds'
building of simple, but meaningful maps with landscape toys such as
houses, cars, and trees (Blaut & Stea, 1974); however, we know less
about what specific abilities and strategies they use to do so. For exam-
ple, kindergarten children making models of their classroom cluster fur-
niture correctly (e.g., they put the furniture for a dramatic play center
together), but may not relate the clusters to each other (Siegel &
Schadler, 1977). Also unclear is what kind of "mental maps" young chil-
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dren possess. Some researchers believe that people first learn to navi-
gate only by noticing landmarks, then by routes, or connected series of
landmarks, then by scaled routes, and finally by putting many routes and
locations into a kind of "mental map." Only older preschoolers learn
scaled routes for familiar paths; that is, they know about the relative dis-
tances between landmarks (Anooshian, Pascal, & McCreath, 1984). Even
young children, however, can put different locations along a route into
some relationship, at least in certain situations. For example, they can
point to one location from another even though they never walked a path
that connected the two (Uttal & Wellman, 1989). A significant proportion
(40%) of 4-year-olds only can not identify that a direct and indirect route
to a given location are not the same distance, but can explain why the di-
rect route was shorter (Fabricius & Wellman, 1993).

Developing spatial orientation competencies, and eventually under-
standing maps, is a long-term process. Children slowly develop many dif-
ferent ways to represent the locations of objects in space. Infants associate
objects as being near a person such as a parent (Presson & Somerville,
1985), but cannot associate objects to distance landmarks. Toddlers and
3-year-olds can place objects in prespecified locations near distant land-
marks, but "lose" locations that are not specified ahead of time once they
move. Children as young as 3.5 years were able, like adults, to accurately
walk along a path that replicated the route between their seat and the
teacher's desk in their preschool classroom (Rieser, Caring, & Young,
1994). They can build imagery of locations and use it, but they must physi-
cally move to show their competence. So, they maybe able to form simple
frameworks, such as the shape of the arrangement of several objects, that
has to include their own location. With no landmarks, even 4-year-olds
make mistakes (Huttenlocher & Newcombe, 1984). Kindergartners build
local frameworks that are less dependent on their own position. They still
rely, however, on relational cues such as being close to a boundary. By
third grade, children can use larger, encompassing frameworks that in-
clude the observer of the situation.

Neither children nor adults actually have "maps in their heads"—that
is, their "mental maps" are not like a mental picture of a paper map. In-
stead, they are filled with private knowledge and idiosyncrasies and ac-
tually consist of many kinds of ideas and processes. These may be
organized into several frames of reference. The younger the child, the
more loosely linked these representations are. These representations
are spatial more than visual. Blind children are aware of spatial relation-
ships by age 2, and by 3 begin to learn about spatial characteristics of cer-
tain visual language (Landau, 1988).

What about physical maps? We have seen that 3-year-olds have some
capabilities building simple "maps." There are many individual differ-
ences in such abilities. In one study, most preschoolers rebuilt a room
better using real furniture than toy models. For some children, however,
the difference was slight. Others placed real furniture correctly, but
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grouped the toy models only around the perimeter. Some children placed
the models and real furniture randomly, showing few capabilities (Liben,
1988). Even children with similar mental representations may produce
quite different maps due to differences in drawing and map-building skills
(Uttal & Wellman, 1989).

Most children can learn from maps. For example, 4- to 7-year-olds had to
learn a route through a playhouse with six rooms. Children who examined a
map beforehand learned a route more quickly than those who did not (Uttal
& Wellman, 1989). Similarly, 5- to 6-year-olds can use maps to navigate their
way out of a cave (Jovignot, 1995). As with adults, then, children learn layouts
better from maps than from navigation alone. Even preschoolers know that a
map represents space (Liben & Yekel, 1996). More than 6- or 7-year-olds,
however, they have trouble knowing where they are in the space. Therefore,
they have difficulty using information available from the map relevant to their
own position (Uttal & Wellman, 1989). Preschoolers, like older people, could
preserve the configuration of objects when reconstructing a room depicted
on a map. However, preschoolers placed objects far from correct locations
and performed worse with asymmetric than symmetric configurations (Uttal,
1996). They have difficulty aligning maps to the referent space (Liben & Yekel,
1996). They may understand that symbols on maps represent objects but
have limited understanding of the geometric correspondence between
maps and the referent space; both understandings are developing, but have
far to go, by the end of the preschool years (Liben & Yekel, 1996). By the pri-
mary grades, most children are able to draw simple sketch maps of the area
around their home from memory. They also can recognize features on aerial
photographs and large-scale plans of the same area (Boardman, 1990).

What accounts for differences and age-related changes? Maturation and
development are significant. Children need mental processing capacity to
update directions and location. The older they get, the more spatial mem-
ories they can store and transformations they can perform. Such increase
in processing capacity, along with general experience, determines how a
space is represented more than the amount of experience with the partic-
ular space (Anooshian et al., 1984). Both general development and learn-
ing are important. Instruction on spatial ability, symbolization, and
metacognitive skills (consciously self-regulated map-reading behavior
through strategic map referral) can increase 4- to 6-year-olds' compe-
tence with reading route maps, although it does not overcome age-related
differences; Frank, 1987).

Though young children possess impressive initial abilities, they have
much to learn about maps. For example, preschoolers recognized roads
on a map, but suggested that the tennis courts were doors (Liben &
Downs, 1989)! In addition, older students are not competent users of
maps. School experiences fail to connect map skills with other curriculum
areas, such as mathematics (Muir & Cheek, 1986).

Fundamental is the connection of primary to secondary uses of maps
(Presson, 1987). Even young children form primary, direct relations to



10. GEOMETRIC AND SPATIAL THINKING 281

spaces on maps. They must grow in their ability to treat the spatial relations
as separate from their immediate environment. These secondary mean-
ings require people to take the perspective of an abstract frame of refer-
ence ("as if you were there") that conflicts with the primary meaning. You
no longer imagine yourself "inside," but rather must see yourself at a dis-
tance, or "outside," the information. Such meanings of maps challenge
people into adulthood, especially when the map is not aligned with the
part of the world it represents (Uttal & Wellman, 1989). Using oblique
maps (e.g., tables are show with legs) aids preschoolers' subsequent per-
formance on plan ("bird's-eye view") maps (Liben & Yekel, 1996). How-
ever, these must not be overly simple iconic picture maps, but must
challenge children to use geometric correspondences. Adults need to
connect the abstract and concrete meanings of map symbols. Similarly,
many of young children's difficulties do not reflect misunderstanding
about space, but the conflict between such concrete and abstract frames
of reference. In summary, children (a) develop abilities to build relation-
ships among objects in space, (b) extend the size of that space, and (c)
link primary and secondary meanings and uses of spatial information.

These findings reemphasize that we must be careful how we interpret
the phrase "mental map." Spatial information may be different when it is
garnered from primary and secondary sources, such as maps.

What about the mathematics of maps? Developing children's ability to
make and use mental maps is important, and so is developing geometric
ideas from experiences with maps. We should go beyond teaching iso-
lated "map skills" and geography to engage in actual mapping, surveying,
drawing, and measuring in local environments (Bishop, 1983). Such activi-
ties can begin in the early years.

Our goal is for children to both read and make maps meaningfully. In
both of these endeavors, four basic questions arise: direction—which
way?, distance—how far?, location—where?, and identification—what
objects? To answer these questions, students need to develop a variety of
skills. Children must learn to deal with mapping processes of abstraction,
generalization, and symbolization. Some map symbols are icons, such as
an airplane for an airport, but others are more abstract, such as circles for
cities. Children might first build with objects such as model buildings, then
draw pictures of the objects' arrangements, then use maps that are "min-
iaturizations" and those that use abstract symbols. Some symbols may be
beneficial even to young children. Overreliance on literal pictures and
icons may hinder understanding of maps, leading children to believe, for
example, that certain actual roads are red (Downs, Liben, & Daggs, 1988).

Similarly, children need to develop more sophisticated ideas about di-
rection and location. Young children should master environmental direc-
tions, such as above, over, and behind. They should develop navigation
ideas, such as left, right, and front, and global directions such as north,
east, west, and south, from these beginnings. Perspective and direction
are particularly important regarding the alignment of the map with the
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world. Some children of any age will find it difficult to use a map that is not
so aligned. Teachers should introduce such situations gradually and per-
haps only when necessary.

Young children can learn to relate various reference frames, which
brings us to the notion of coordinates. The Piagetian position is that coordi-
nate frameworks are analogical to a container made up of a network of
sites or positions (Piaget & Inhelder, 1967). Objects within this container
maybe mobile, but the positions are stationary. From the simultaneous or-
ganization of all possible positions in three dimensions emerges the coor-
dinate system. This involves the gradual replacement of relations of order
and distance between objects with similar relations between the positions
themselves. The space is "emptied of objects." Thus, intuition of space is
not an innate apprehension of the properties of objects, but a system of re-
lationships borne in actions performed on these objects.

In this arena, as in others, we see there is a long developmental process, but
some early competencies on which to build. For example, very young children
can orient a horizontal or vertical line in space (Rosser, Horan, Mattson, &
Mazzeo, 1984). Similarly, 4- to 6-year-old children (a) can extrapolate lines from
positions on both axes and determine where they intersect, (b) are equally
successful going from point to coordinate as going from coordinate to point,
and (c) can extrapolate as well with or without grid lines (Somerville & Bryant,
1985). Piagetian theory seems correct in postulating that the coordination of re-
lations develops after such early abilities. Young students fail on double-axis ori-
entation tasks even when misleading perceptual cues are eliminated (Rosser,
Horan et al., 1984). Similarly, the greatest difficulty is coordinating two extrapo-
lations, which has its developmental origins at the 3- to 4-year-old level, with the
ability to extrapolate those lines developing as much as a year earlier
(Somerville, Bryant, Mazzocco, & Johnson, 1987). These results suggest an ini-
tial inability to utilize a conceptual coordinate system as an organizing spatial
framework (Liben & Yekel, 1996). Some 4-year-olds can use a coordinate refer-
ence system, whereas most 6-year-olds can (Blades & Spencer, 1989). How-
ever, 4-year-olds can coordinating dimensions if the task is set in a meaningful
context in which the orthogonal dimensions are cued by the line of sights of
imaginary people (Bremner, Andreasen, Kendall, & Adams, 1993).

Coordinate of coordinates is not limited to two orthogonal dimensions.
Children as young as 5 years can metrically represent spatial information
in a polar coordinate task, using the same two dimensions as adults radius
and angle, although children do not use categorizations of those dimen-
sions until age 9 (Sandberg & Huttenlocher, 1996).

In summary, even young children can use coordinates that adults pro-
vide for them. However, when facing traditional tasks, they and their older
peers may not yet be able or predisposed to spontaneously make and use
coordinates for themselves.

Computer activities can facilitate learning of navigational and map
skills. Young children can abstract and generalize directions and other
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map concepts working with the Logo turtle (Borer, 1993; Clements,
Battista, Sarama, Swaminathan, & McMillen, 1997; Clements &
Meredith, 1994; Goodrow, Clements, Battista, Sarama, & Akers, 1997;
Kull, 1986; Try, 1989; Watson, Lange, & Brinkley, 1992; Weaver, 1991) al-
though results are not guaranteed . The interface must be appropriate
and activities must be well planned (Watson & Brinkley, 1990/1991).
Giving the turtle directions such as forward 10 steps, right turn, forward
5 steps, they learn orientation, direction, and perspective concepts,
among others. Walking paths and then re-creating those paths on the
computer help them abstract, generalize, and symbolize their experi-
ences navigating. For example, one kindergartner abstracted the geo-
metric notion of "path" saying, "A path is like the trail a bug leaves after it
walks through purple paint."

Logo can also control a floor turtle robot, which may have special bene-
fits for certain populations. For example, blind and partially sighted chil-
dren using a computer-guided floor turtle developed spatial concepts
such as right and left and accurate facing movements (Gay, 1989).

Other simple (non-Logo) navigational programs may have similar bene-
fits. For example, using such software (with on-screen navigation) has
shown to increase kindergartners' understanding of the concepts of left
and right (Carlson & White, 1998).

Coordinate-based games on computers can help older children learn-
ing location ideas (Clements, Sarama, Gomez, Swaminathan, & McMillen,
in press). When children enter a coordinate to move an object but it goes
to a different location, the feedback is natural, meaningful, nonevaluative,
and so particularly helpful.

Many people believe that maps are "transparent"—that anyone can "see
through" the map immediately to the world that it represents. This is not
true. Clear evidence for this is found in students' misinterpretations of
maps. For example, some believe that roads colored red on a map are red
in the real world; others may believe that a river is a road or that a pictured
road is not a road because "it's too narrow for two cars to go on." Even
adults do not really understand maps. They believe that maps are simply
miniaturizations of the world.

Students should see that maps do not show what "is"; rather, they com-
municate a certain "view." They should understand that maps are differ-
ent ways of viewing the world, in a way that is comparable to different
artistic interpretations. They are models that help us see what we often
can not see in the real world. Different models show the world in different
ways—"This is what the world would look like if...." In the long term, stu-
dents should understand that maps let us "see" aspects of the world that
we could not see without them. They allow us to inspect and transform the
larger world in new ways. They empower us in perceiving relationships
about the world that we would not have noticed without the structural
characteristics of the map.
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Spatial Visualization and Imagery

Spatial visualization is the ability to generate and manipulate images.
Kosslyn (1983) defined four classes of image processes: generating an
image, inspecting an image to answer questions about it, maintaining an
image in the service of some other mental operation, and transforming
and operating on an image. Thus, spatial visualization involves under-
standing and performing imagined movements of 2-D and 3-D objects. To
do this, you need to be able to create a mental image and manipulate it.
An image is not a "picture in the head." It is more abstract, more mallea-
ble, and less crisp than a picture. It is often segmented into parts. As we
saw, some images can cause difficulties, especially if they are too inflexi-
ble, vague, or filled with irrelevant details.

People's first images are static. They can be mentally re-created, and
even examined, but not transformed. For example, you might attempt to
think of a group of people around a table. In contrast, dynamic images
can be transformed. For example, you might mentally "move" the image
of one shape (such as a book) to another place (such as a bookcase, to
see if it will fit). In mathematics, you might mentally move (slide) and ro-
tate an image of one shape to compare that shape to another one. Piaget
argued that most children cannot perform full dynamic motions of im-
ages until the primary grades (Piaget & Inhelder, 1967, 1971). However,
preschool children show initial transformational abilities, as we dis-
cussed in previous sections.

Spatial Sense

Spatial sense includes two main spatial abilities: spatial orientation
and spatial visualization and imagery. Other important knowledge in-
cludes how to represent ideas in drawing and how and when you can
use such abilities.

This view clears up some confusion regarding the role of spatial sense
in mathematics thinking. "Visual thinking" and "visual strategies" are not
the same as spatial sense. Spatial sense as we describe it—all the abili-
ties we use in "making our way" in the spatial sphere—is related to math-
ematical competencies (Brown & Wheatley, 1989; Clements & Battista,
1992; Fennema & Carpenter, 1981; Wheatley, Brown, & Solano, 1994).

Visual thinking, as in the initial levels of geometric thinking, is think-
ing that is tied down to limited, surface-level, visual ideas. Children
move beyond that kind of visual thinking as they learn to manipulate dy-
namic images, as they enrich their store of images for shapes, and as
they connect their spatial knowledge to verbal, analytic knowledge.
Teachers might encourage children to describe why a shape does or
does not belong to a shape category.
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EARLY CHILDHOOD GEOMETRY:
IMPLICATIONS FOR INSTRUCTION

These findings have substantial implications for curriculum and instruc-
tion in early childhood education. This section describes these implica-
tions. (This research review was generated to inform the Building Blocks
curriculum project—see Sarama, chap. 15, this volume—so its main
goal was to generate research-based guidelines for curriculum and
teaching. It should be noted that Table 1.2 in chap. 1 of this book was cre-
ated from the review.)

Geometric Figures

The belief that children are geometric tabula rasa is untenable; pre-
school children exhibit working knowledge of shapes. Instruction
should build on this knowledge and move beyond it. Unfortunately,
present curriculum and practice (including the home and preschool)
rarely does so. Very young children can learn rich concepts about shape
if provided with varied examples and nonexamples, discussions about
shapes and their characteristics, and interesting tasks. Let us consider
each of these in more depth.

Research indicates that curricula should ensure that children experi-
ence many different examples of a type of shape. For example, Fig. 10.3
shows a rich variety of triangles and distractors that would be sure to gen-
erate discussion. We should also show nonexamples that, when com-
pared to similar examples, help focus attention on the critical attributes.

Discussions should encourage children's descriptions while encouraging
the development of precise language. Early talk can clarify the meanings of
terms. With such clarification, children can learn to explain why a shape be-
longs to a certain category—"It has three straight sides." Eventually, they can
internalize such arguments; for example, thinking, "It is a weird, long, trian-
gle, but it has three straight sides!" Finding and identifying shapes by feeling
is one useful activity (see Fig. 10.7; Sarama, chap.15, this volume).

We should encourage children to describe why a figure belongs or does
not belong to a shape category. Visual (prototype-based) descriptions
should, of course, be expected and accepted, but attribute and property
responses should also be encouraged. They may initially appear sponta-
neously for shapes with stronger and fewer prototypes (e.g., circle,
square). They should be especially encouraged for those shape categories
with more possible prototypes, such as triangles. In all cases, the tradi-
tional, single-prototype approach must be extended.

Early childhood curricula traditionally introduce shapes in four ba-
sic-level categories: circle, square, triangle, and rectangle. The idea that a
square is not a rectangle is rooted by age 5 (Clements et al., 1999; Hannibal
& Clements, 2000). It is time to rethink our presentation of squares as an
isolated set. If we try to teach young children that "squares are rectangles,"
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FIG. 10.7. Children build polygons with plastic sticks.

especially through direct telling, confusion is likely. If, on the other hand,
we continue to teach "squares" and "rectangles" as two separate groups,
we will block children's transition to more flexible categorical thinking.

In our study (Clements et al., 1999), 4-year-olds were more likely to ac-
cept the squares as rectangles, possibly because they were less predis-
posed (because their prototype of rectangles was less distinguished from
that of squares) or able to judge equality of all sides. Although the squares
were included in the rectangle-recognition task (by the original task de-
signers) to assess hierarchical inclusion, we did not expect or find such
thinking in these young children. Their responses do show, however, that
the path to such hierarchical thinking is a complex and twisting one with
changes at several levels. This again raises the question of whether the
strictly visual-prototype approach to teaching geometric shapes is a neces-
sary prerequisite to more flexible categorical thinking or a detriment to the
early development of such thinking. Kay (1987) provided first graders with
instruction that (a) began with the more general case, quadrilaterals, pro-
ceeded to rectangles, and then to squares; (b) addressed the relevant
characteristics of each class and the hierarchical relationships among
classes; and (c) used terms embodying these relationships ("square-rect-
angle"). At the end of instruction, most students identified characteristics
of quadrilaterals, rectangles, and squares, and about half identified hierar-



10. GEOMETRIC AND SPATIAL THINKING 287

chical relationships among these classes, although none had done so pre-
viously. Although the depth of these first graders' understanding
(especially of hierarchical relations) and the generalizations made on the
basis of the empirical results must be questioned (Clements & Battista,
1992), so too should we question the wisdom of the traditional, proto-
type-only approach, which may lay groundwork that must be overturned
to develop hierarchical thinking.

Probably the best approach is to present many examples of squares and
rectangles, varying orientation, size, and so forth, including squares as ex-
amples of rectangles. If children say "that's a square," teachers might re-
spond that it is a square, which is a special type of rectangle, and they
might try double-naming ("it's a square-rectangle"). Older children can
discuss "general" categories, such as quadrilaterals and triangles, count-
ing the sides of various figures to choose their category. Also, teachers
might encourage them to describe why a figure belongs or does not be-
long to a shape category. Then, teachers can say that because a triangle
has all equal sides, it is a special type of triangle, called an equilateral trian-
gle. Children might also "test" right angles on rectangles with a "right angle
checker" (angle as turn is addressed in the following section).

Logo microworlds can be evocative in generating thinking about
squares and rectangles for young children. In one large study (Clements,
Battista et al., 2001), some kindergartners formed their own concept (e.g.,
"it's a square rectangle") in response to their work with the microworlds.
This concept was applied only in certain situations: Squares were still
squares, and rectangles, rectangles, unless you formed a square while
working with procedures—on the computer or in drawing—that were de-
signed to produce rectangles. The concept was strongly visual in nature,
and no logical classification per se, such as class inclusion processes,
should be inferred. The creation, application, and discussion of the con-
cept, however, were arguably a valuable intellectual exercise.

Also, children can and should discuss the parts and attributes of shapes.
Activities that promote such reflection and discussion include building
shapes from components. For example, children might build squares and
other polygons with toothpicks and marshmallows or other objects (see
Fig. 10.7). They might also form shapes with their bodies, either singly or
with their friends (see Fig. 10.8). Again, computer-based shape manipula-
tion and navigation (including turtle geometry and simpler) environments
can help mathematize these experiences.

Shape concepts begin forming in the preschool years and stabilize as
early as age 6 (Gagatsis & Patronis, 1990; Hannibal & Clements, 2000). It is
therefore critical that children be provided better opportunities to learn
about geometric figures between 3 and 6 years of age. Curricula should
develop early ideas aggressively, so that by the end of Grade 2 children can
identify a wide range of examples and nonexamples of a wide range of
geometric figures; classify, describe, draw, and visualize shapes; and de-
scribe and compare shapes based on their attributes.
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FIG. 10.8. Children make a rhombus with their bodies.

Angle and Turn

Students struggle with angles. To understand angles, they must under-
stand the various aspects of the angle concept, overcome difficulties with
orientation, discriminate angles as critical parts of geometric figures, and
construct and represent the idea of turns. Furthermore, they must con-
struct a high level of integration between these aspects. Some argue that
this difficult concept should not be a component of the early childhood
mathematics curriculum. In contrast, the research reviewed here indi-
cates that children do have initial competencies in the domain of turns
and angles, and that the long developmental process is best begun in the
early and elementary classrooms, as children deal with corners of figures,
comparing angle size, and turns. Computers can help children quantify
turns and angles (Fig. 10.9).

The role parallelism and perpendicularity should play are less clear. It
may be that embedded in an overall approach to angle, turn, shape, and
spatial structure, these ideas can be successfully nurtured, but whether
they should be abstracted and discussed as separate concepts (e.g.,
lessons on perpendicular lines) requires additional research-based
curriculum development.
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FIG. 10.9. Turning shapes with computer tools helps children quantify turns.

3-D Figures

As with 2-D figures, children need more and richer experiences with sol-
ids. Research indicates that construction activities involving nets (foldout
shapes of solids) may help students learn to discriminate between 2-D
and 3-D figures. Practitioners and curriculum developers report success
providing many other experiences; we need research to better describe,
explain, and develop these approaches.

Congruence, Symmetry, and Transformations

Beginning as early as 4 years of age, children can create and use strategies
for judging whether two figures are "the same shape." In the Pre-K to
Grade 2 range, they can develop sophisticated and accurate mathemati-
cal procedures for determining congruence.

There is mixed evidence regarding young children's ability with geo-
metric motions. Pre-K-K, and even Grade 1-2 children, maybe limited in
their ability to mentally transform shapes, although there is evidence that
even these sophisticated processes are achievable. Furthermore, they
can learn to perform rotations on objects (physical or virtual), and a rich
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curriculum, enhanced by such manipulatives and computer tools, may
reveal that knowledge and mental processes are valid educational goals
for most young children.

Similarity is a surprising area of competence for young children. Young
children can identify similar shapes in certain situations and use comput-
ers to create similar shapes. First and second graders can identify similar
shapes and use scaling transformations to check their predictions.

Symmetry is also an area of strength (see Fig. 10.10). There is undevel-
oped potential in generating curricula that seriously consider children's in-
tuitions, preference, and interest in symmetry.

Composition and Decomposition

Preschool children move through levels in the composition and decom-
position of 2-D figures. From lack of competence in composing geomet-
ric shapes, they gain abilities to combine shapes into pictures, then
synthesize combinations of shapes into new shapes (composite
shapes), eventually operating on and iterating those composite shapes.
Few curricula challenge students to move through these levels. See
Sarama (chap. 15, this volume) for an elaborated example of the Build-
ing Blocks approach to this critical area.

FIG. 10.10. Children intuitively use symmetry in their block buildings.
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Spatial Orientation: Maps and Navigation

Spatial orientation—knowing the shape of one's environment—is per-
haps even more an area of early intuitive knowledge than the domain of
small shapes. Very young children know and use the shape of their envi-
ronment in navigation activities, and, with guidance, can learn to
mathematize this knowledge. They can learn about direction, perspec-
tive, distance, symbolization, location, and coordinates. Some studies
have identified first grade as the period of most efficient learning of maps,
but informal experiences in preschool and kindergarten are also benefi-
cial, especially those that emphasize building imagery from physical
movement. (See Fig. 10.11.)

Spatial Visualization and Imagery

Even preschool and kindergarten children show initial transformational
abilities in certain settings (see the "Transformations" section). All chil-
dren should work on developing their ability to create, maintain, and rep-
resent mental images of mathematical objects.

FIG. 10.11. Walking around a rectangular rug, and talking about the experience, helps
children build imagery and knowledge of two-dimensional shapes.
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Final Words

Research has clearly identified that children's informal numerical knowl-
edge develops through the preschool years. Though not as extensively
documented, there is sufficient research indicating that informal geomet-
ric knowledge similarly develops throughout the early childhood years.
There is some evidence that there is little to lose, and much to gain, by fos-
tering that development. Especially given children's affinity toward,
knowledge of, and ability to gain geometric and spatial knowledge, it
would be an educational shame to allow the U.S. obsession with number
(both in practice and research) to reinstantiate itself in the nascent do-
main of early childhood mathematics education.
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Primary-grade students were making a simple map of their classroom. They
began by saying that they needed to measure the room. Pleased, the teacher
passed out meter sticks. They began laying these down but soon stopped,
puzzled. "We need more." Teacher: "More meter sticks?" "Yeah. There's not
enough." Teacher: "Maybe you could work together and solve that." "No.
Even all of 'em wouldn't reach." Teacher: "I mean is there a way you could
measure with just the meter sticks you have?" Silence. Teacher: "How about
this? Can you lay a meter stick down, mark the end with your finger, and then
move it?" "Wow! Good idea!" (Clements, 1999). It was a new idea that, ap-
parently, not one of the students had apparently encountered before.

Is this apparent lack of knowledge of measurement a "fluke"? It may not
be. Many students use measurement instruments or count units in a rote
fashion (Clements & M. T. Battista, 1992). In international comparisons,
U.S. students score lower in measurement and geometry than in other
topics (National Center for Education Statistics, 1996). We need much
stronger measurement instruction in the early years. Fortunately, we know
quite a bit about the concepts and skills children need to develop and how
they develop them. Here, we briefly review young children's understand-
ing of measurement then consider their development of length, area, and
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angle and turn measurement in more depth. We conclude with implica-
tions for curriculum and instruction in early childhood measurement.

YOUNG CHILDREN AND MEASUREMENT

Children's understanding of measurement has its roots in the preschool
years. Preschool children know that continuous attributes such as mass,
length, and weight exist, although they cannot quantify or measure them
accurately. Even 3-year-olds know that if they have some clay and then
are given more clay, they have more than they did before. Preschoolers
cannot reliably make judgments about which of two amounts of clay is
more; they use perceptual cues such as which is longer. At age 4-5 years,
however, most children can learn to overcome perceptual cues and
make progress in reasoning about and measuring quantities.

Young children naturally encounter and discuss quantities (Ginsburg &
Seo, chap. 4, this volume). They first learn to use words that represent
quantity or magnitude of a certain attribute. Then they compare two ob-
jects directly and recognize equality or inequality (Boulton-Lewis, Wilss, &
Mutch, 1996). At this point, they are ready to learn to measure, connecting
number to the quantity. (Measurement is defined as assigning a number to
continuous quantities.) We next examine this development in more detail
for the case of length.

LENGTH MEASUREMENT

As a first simple definition, we can say that length is a characteristic of an
object and can be found by quantifying how far it is between the end-
points of the object. Distance refers to the empty space between two
points. Measuring length and distance, and learning about length mea-
surement, is more complex. Measuring consists of two aspects, identify-
ing a unit of measure and subdividing (mentally and physically) the object
by that unit, placing that unit end to end (iterating) alongside the object.
Subdividing and unit iteration are complex mental accomplishments that
are too often ignored in traditional measurement curriculum materials
and instruction. Therefore, many researchers go beyond the physical act
of measuring to investigate students' understandings of measuring as
covering space and quantifying that covering.

We discuss length in the following two sections. First, we identify several
key concepts that underlie measuring (adapted from Stephan &
Clements, in press). Second, we describe research-based instructional
approaches that were designed to help students develop concepts and
skills of length measurement.

Concepts in Linear Measurement

Several important concepts underpin children's learning of length mea-
surement. We can use these concepts to understand how students are
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thinking about space as they go through the physical activity of measuring.
These concepts are: (a) partitioning, (b) unit iteration, (c) transitivity, (d)
conservation, (e) accumulation of distance, and (f) relation to number.

Partitioning is the mental activity of slicing up an object into the
same-sized units. This idea is not obvious to children. It involves mentally
seeing the object as something that can be partitioned (or "cut up") before
even physically measuring. Asking students what the hash marks on a
ruler mean can reveal how they understand partitioning length (Clements
& Barrett, 1996; Lehrer, in press). Some students, for instance, may under-
stand "five" as a hash mark, not as a space that is cut into five equal-size
units. As students come to understand that units can also be partitioned,
they come to grips with the idea that length is continuous (e.g., any unit
can itself be further partitioned).

Unit iteration is the ability to think of the length of a small block as part of
the length of the object being measured and to place the smaller block re-
peatedly along the length of the larger object (Kamii & Clark, 1997). Stu-
dents initially may iterate a unit leaving gaps between subsequent units or
overlapping adjacent units (Lehrer, in press). For these students, iterating
is a physical activity of placing units end to end in some manner, not an ac-
tivity of covering the space/length of the object with no gaps. When stu-
dents count each unit iteration, teachers should focus students'
conversations on that to which they are referring. For example, if a student
iterates a unit five times, the "five" represents five units of length. For some
students "five" signifies the hash mark next to the numeral five instead of
the amount of space covered by five units (see Stephan, Cobb,
Gravemeijer, & Estes, in press). In this way, the marks on a ruler "mask"
the intended conceptual understanding involved in measurement. Many
students see no problem mixing units (e.g., using both paper clips and pen
tops) or using different-size units (e.g., small and large paper clips) as long
as they cover the entire length of the object in some way (Clements, M.
Battista, & Sarama, 1998; Lehrer, in press).

Furthermore, students often begin counting at the numeral" 1" on a ruler
(i.e., 1 as the zero point; Lehrer, in press) or, when counting paces heel to
toe, start their count with the movement of the first foot (i.e., they miss the
first foot and count the "second" foot as one from an adult perspective;
Lehrer, in press; Stephan et al., in press). Students probably are not think-
ing about measuring as covering space. Rather, the numerals on a ruler (or
the placement of a foot) signify when to start counting, not an amount of
space that has already been covered (i.e., "one" is the space from the be-
ginning of the ruler to the hash mark, not the hash mark itself). Finally,
many students initially find it necessary to iterate the unit until it "fills up"
the length of the object and will not extend the unit past the endpoint of the
object they are measuring (Stephan et al., in press).

Transitivity is the understanding that if the length of Object 1 is equal to
(or greater/less than) the length of Object 2 and Object 2 is the same length
as (or greater/less than) Object 3, then Object 1 is the same length as (or
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greater/less than) Object 3. Children might, for example, use a stick to
judge whether two towers, one on the floor and one on a table, are the
same height. A child who can reason in this manner can take a third or
middle item (the stick) as a referent by which to compare the heights or
lengths of other objects. Given this definition, most researchers argue that
students must reason transitively before they can understand measure-
ment (Boulton-Lewis, 1987; Hiebert, 1981; Kamii & Clark, 1997). Some re-
searchers conclude that the ruler is useless as a measuring tool if a student
cannot yet reason transitively (Kamii & Clark, 1997). This may only be par-
tially true, as we discuss in a following section.

Conservation of length is the understanding that as an object is moved,
its length does not change. For example, if children are shown two
equal-length rods aligned, they say they are the same length. If one is
moved to project beyond the other, children 4.5 to 6 years will say the pro-
jecting rod is longer. At 5 to 7 years, many children hesitate or vacillate;
beyond that, they answer immediately, as if it were obvious. Conserva-
tion of length is not equivalent to the concept of measurement but rather
develops as the child learns to measure (Inhelder, Sinclair, & Bovet,
1974). Some researchers hold that conservation is essential for, but not
equivalent to, a full conception of measurement (Copeland, 1974). For
example, Piaget, Inhelder, and Szeminska (1960) argued that transitivity
is impossible for students who do not conserve lengths because once
they move a unit, it is possible, in the student's view, for the length of the
unit to change. Most researchers agree that students develop the notion
of conservation before transitivity (Boulton-Lewis, 1987). Though re-
searchers agree that conservation is essential for a complete under-
standing of measurement, several articles caution that students do not
necessarily need to develop transitivity and conservation before they can
learn some measurement ideas (Boulton-Lewis, 1987; Clements, 1999;
Hiebert, 1981). Two measurement ideas that do seem to require conser-
vation and transitivity are: (a) the inverse relation between the size of the
unit and the number of those units and (b) the need to use equal-length
units when measuring. On many tasks that appear to require general log-
ical reasoning, children find their own strategy to measure, and they do
so correctly. These solution strategies do not necessarily match the struc-
tural logic of the task. For example, children use intermediate measure-
ments to compare two lengths without explicitly asking the transitivity
question. They move a unit to measure the length of an object and do not
worry about whether the length is being conserved. Finally, children of
all developmental levels solve simple measurement tasks that do not ap-
pear to rely heavily on general reasoning.

Accumulation of distance is the understanding that as you iterate a unit
along the length of an object and count the iteration, the number words
signify the space covered by all units counted up to that point. Piaget et al.
(1960) characterized students' measuring activity as an accumulation of
distance when the result of iterating forms nesting relationships to each
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other. That is, the space covered by three units is nested in or contained in
the space covered by four units. For example, in Stephan et al. (in press),
students measured the lengths of objects by pacing heel to toe and count-
ing their steps. As one student paced the length of a rug, the teacher
stopped the student midmeasure and asked her what she meant by "8."
Some students claimed that 8 signified the space covered by the eighth
foot whereas others argued that it was the space covered from the begin-
ning of the first foot to the end of the eighth. These latter students were
measuring by accumulating distances. Most researchers have observed
this type of interpretation in 9 to 10-year-olds (Clements, 1999; Copeland,
1974; Kamii & Clark, 1997; Piaget et al., 1960). However, Stephan et al. (in
press) showed that, with meaningful instruction, children as young as 6
years old construct an accumulation of distance interpretation.

Relation between number and measurement: Children's chief experi-
ence with mathematics in elementary school is often that of counting ob-
jects (e.g., blocks). This type of counting can be thought of as measuring
discrete units. Students must reorganize their understanding of the objects
they are counting to measure continuous units. Thus, it is not surprising
that students' counting plays a role in their development of measuring
conceptions. They make measurement judgments based on counting
ideas. For example, Inhelder et al. (1974) showed students two rows of
matches that were the same length but each row was composed of a dif-
ferent number of matches (See Fig. 11.1).

Although, from the adult perspective, the lengths of the rows were the
same, many children argued that the row with 6 matches was longer be-
cause it had more matches. Other studies have also found that children draw
on their counting experiences to interpret their measuring activity. Anyone
who has taught measurement knows that students often start measuring
with the numeral" 1" as the starting point instead of 0. After all, when we mea-
sure, the first number word we say is "one." Lehrer (in press) argues that
measurement assumes a "zero point," a point from which a measurement
begins. The zero point need not be 0, but if students understand measuring
only as "reading the ruler," then they will not understand this idea. Lubinski
and Thiessan (1996) found that with meaningful instruction focusing on stu-
dents' interpretations of their measuring activity, students were able to use
flexible starting points on a ruler to indicate measures successfully.

A

B

FIG. 11.1. A task assessing children's use of counting ideas in measurement situations.
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Although researchers debate the order of the development of these con-
cepts and the ages at which they are developed, they agree that these
ideas form the foundation for measurement and should be considered
during any measurement instruction. When a teacher has these ideas in
mind during instruction, she is better able to interpret students' under-
standing and ask questions that will lead them to construct these ideas. It
is clear, however, that traditional measurement instruction is insufficient
for helping students build these conceptions. What kinds of instructional
activities does a teacher use to build these ideas?

Learning and Teaching Linear Measurement

Traditionally, the goal of measurement instruction has been to help stu-
dents learn the skills necessary to use a conventional ruler. In contrast, re-
search and recent reform curricula suggest developing the conceptual
building blocks that lead to estimating and measuring meaningfully. Dif-
ferent approaches have been taken to achieve these goals.

Kamii and Clark (1997) stressed that comparing lengths is at the heart of
developing the notions of conservation, transitivity, and unit iteration, but
most textbooks do not have these types of tasks. Textbooks tend to ask
questions such as "How many paper clips does the pencil measure?"
rather than "How much longer is the blue pencil than the red pencil?" Al-
though Kamii and Clark advocated beginning instruction by comparing
lengths with nonstandard or standard units (not a ruler), they cautioned
that such an activity is often done by rote. Teachers must focus students on
the mental activity of transitive reasoning and accumulating distances.
One type of task that involves indirect comparisons is to ask students if the
doorway is wide enough for a table to go through. This involves an indirect
comparison (and transitive reasoning) and therefore de-emphasizes
physical measurement procedures.

Most recent curricula advise a sequence of instruction in which students
compare lengths, measure with nonstandard units, incorporate the use of
manipulative standard units, and measure with a ruler (Clements, 1999;
Kamii & Clark, 1999). The basis for this sequence is, explicitly or implicitly,
Piaget et al.'s (1960) developmental theory of measurement. The argu-
ment is that this approach motivates students to see the need for a stan-
dard measuring unit. Researchers who advocate this approach argue that,
when classroom discussions focus on students' meaning during measur-
ing, they are able to construct sophisticated understanding (Lehrer, in
press; Lubinski & Thiessan, 1996; Stephan et al., in press).

For example, such an approach might begin with children pacing from
one point to another. As students discussed their measuring activity, ideas
concerning unit iteration and identical units emerge (Lehrer, in press;
McClain, Cobb, Gravemeijer, & Estes, 1999; Stephan et al., in press). Stu-
dents progress from counting paces to constructing a unit of units, such as
a "footstrip" consisting traces of their feet glued to a roll of adding-machine
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tape. Students may then confront the idea of expressing their result in dif-
ferent-size units (e.g., 15 paces or three footstrips each of which has 5
paces). They also discuss how to deal with leftover space, to count it as a
whole unit or as part of a unit. Measuring with units of units helps students
think about length as a composition of these units. Furthermore, it pro-
vided the basis for constructing rulers.

A somewhat different approach is suggested by other research
(Boulton-Lewis, 1987; Clements, 1999; Clements, M. T. Battista, Sarama,
Swaminathan, & McMillen, 1997; Nunes, Light, & Mason, 1993) that ques-
tions the wisdom of concentrating first on nonstandard units. For example,
Boulton-Lewis et al. (1996) found that children used nonstandard units un-
successfully. They were successful at an earlier age with standard units
and measuring instruments. The researchers concluded that nonstandard
units is not a good way to initially help children understand the need for
standardized conventional units in the length measuring process. Just as
interesting were students' strategy preferences. Students of every age, es-
pecially in Years 1 and 3, preferred to use standard rulers, even though
their teachers were encouraging them to use nonstandard units. One
teacher did not allow use of rulers in her classroom, saying they had be-
come a distraction because children wanted to use them!

Another study (Nunes et al., 1993) suggests that children can meaning-
fully use rulers before they "reinvent" such ideas as units and iteration.
They had 6- to 8-year-old children communicate about lengths using
string, centimeter rulers, or one ruler and one broken ruler starting at 4 cm.
The traditional ruler supported the children's reasoning more effectively
than the string; children's performance almost doubled. Their strategies
and language (it is as long as the "little line [half] just after three") indi-
cated that children gave "correct responses based on rigorous proce-
dures, clearly profiting from the numerical representation available
through the ruler" (p. 46). They even did better with the broken ruler than
the string, showing that they were not just "reading numbers off" the ruler.
The unusual situation confused children only 20% of the time. The re-
searchers concluded that conventional units already chosen and built into
the ruler do not make measurement more difficult. Indeed, children bene-
fited from the numerical representation provided even by the broken ruler.

The Piagetian-based argument, that children must conserve length be-
fore they can make sense of ready-made systems such as rulers (or com-
puter tools, such as those discussed in the following section), may be an
overstatement. Findings of these studies support a Vygotskian perspec-
tive, in which rulers are viewed as cultural instruments children can ap-
propriate. That is, children can use rulers, appropriate them, and so build
new mental tools. Not only do children prefer using rulers, but they can use
them meaningfully and in combination with manipulable units to develop
understanding of length measurement.

Based on research such as this, Clements (1999) suggested the following
sequence of instruction. Students should be given a variety of experiences
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comparing the size of objects (e.g., finding all the objects in the classroom
longer than their forearm). Next, students should engage in experiences
that allow them to connect number to length. Teachers should provide stu-
dents with both conventional rulers and manipulative units using standard
units, such as centimeter cubes. As they explore with these tools the ideas of
unit iteration (not leaving space between successive units, e.g.), correct
alignment, (with a ruler) and the zero-point concept can be developed. He
cautioned that teachers should focus on the meaning that the numerals on
the ruler have for students, such as enumerating lengths rather than discrete
numbers. In other words, classroom discussions should focus on "What are
you counting?" Using manipulable units to make their own rulers helps chil-
dren connect their experiences and ideas. In second or third grade, teach-
ers might introduce the need for standard units and the relation between
the size and number of units. The relationship between the size and number
of units, the need for standardization of units, and additional measuring de-
vices can be explored.

In a related vein, children should develop measurement sense. Teachers
should present problems involving drawing and estimating lengths and ob-
serve children's strategies for solving these problems. Length tasks such as
sketching a rectangle with particular dimensions may be presented, and
teachers can observe whether students partition the lengths. Students who
draw marks may need to have such perceptible units to quantify the length.
These children can be presented with similar tasks, such as drawing a
10-by-5-cm rectangle, with an emphasis on equal-interval partitioning and
the creation of different units of length. Students who do not and cannot seg-
ment lines to iterate units and partition lengths can be guided to continually
tie the results of that activity to their counting. For example, they might draw
a toy, measure it, and draw it again using the same (and later, a smaller)
measure. They could measure distances by counting their steps along a
path. Teachers should emphasize experiences and ideas of motion and dis-
tance. Finally, some students show sophisticated strategies. They draw pro-
portional figures and visually partition line segments to assign them a length
measure. These students can visually segment distances and use
part-whole strategies to find unknown lengths. They have an "internal"
measurement tool. This is not a static image, but a mental process of mov-
ing along an object, segmenting it, and counting the segments, even along
complex paths, such as the perimeter of a shape. Students can impose such
a "conceptual ruler" onto objects and geometric figures (Steffe, 1991). This
is a critical point in their development of measurement sense. They might
be given more complex "missing measures" problems such as determining
the all the measures in Fig. 11.2.

Turtle geometry experiences especially help students link number and
geometry in measurement activities and build measurement sense. Turtle
geometry provides both motivation and meaning for many length mea-
surement activities. This illustrates an important general guideline: Stu-
dents should use measurement as a means for achieving a goal, not as an
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FIG. 11.2. A "missing measures" problem that challenges students to integrate geomet-
ric, number, and measurement ideas.

end in itself only. Note that even young children can abstract and general-
ize measurement ideas working with computers (Clements et al., 1997;
Clements & Meredith, 1994; Kull, 1986; Try, 1989) if the interface is appro-
priate and activities are well planned (Watson & Brinkley, 1990/1991).
Giving the turtle directions such as forward 10 steps, right turn 90°, forward
5 steps, they learn both length and turn and angle concepts.

Finally, Clements and Barrett (1996) found that introducing perimeter
tasks not only teaches that important concept, but introduces children to
the need for coordinating measures of parts of paths with the measure
around the entire path. Perimeter tasks also emphasize measurable attrib-
utes of units as children examine grids and other ways of partitioning the
sides and perimeter of a shape; by setting tasks that require a child to iden-
tify measured features, like focusing on the edges of a square tile rather
than the entire tile as a unit, children learn to discriminate length from
area. These researchers found that when children had to relate length
units (e.g., cm) to side length and to perimeter within the same figure, they
began to forge an invariant, multiplicative relation—they begin to define
each line segment with reference to a particular set of repeated images of
smaller, unit-size segments chained together—resulting from the iteration
of the units. As the children "measured on" around a perimeter and then
coordinated the value to a sum of individual sides, they developed coordi-
nated images of collections of units. In this way, students internalize the
process of iteration along paths and learn to relate measures of line seg-
ments with the iteration of unit-size segments as a basis for quantitative
comparisons of perimeter.

Although different approaches have been suggested by research, sev-
eral conclusions are consistent across most studies. First, measurement
should not be taught as a simple skill; instead, it is a complex combination
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of concepts and skills that develops slowly over years. We have discussed
six of these concepts. Second, initial informal activities should establish
the attribute of length and develop concepts such as "longer," "shorter,"
and "equal in length" and strategies such as direct comparison. Third, em-
phasis on children solving real measurement problems, and, in so doing,
building and iterating units, as well as units of units, helps children devel-
opment strong concepts and skills. Fourth, teachers should help children
closely connect the use of manipulative units and rulers. Even though re-
search suggests varying instructional strategies, some convergence might
be detected. For example, research does not support the early use ofmul-
tiple nonstandard units. Either standard units and rulers might be used, or
nonstandard units such as footsteps introduced in a carefully designed se-
quence of activities that leads to the use of standard units.

AREA MEASUREMENT

Area is an amount of two-dimensional surface that is contained within a
boundary and that can be quantified in some manner (Baturo & Nason,
1996). Area measurement assumes that: (a) a suitable two-dimensional
region is chosen as a unit, (b) congruent regions have equal areas, (c) re-
gions do not overlap, and (d) the area of the union of two regions is the
sum of their areas (Reynolds & Wheatley, 1996). Thus, finding the area of
a region can be thought of as tiling (or partitioning) a region with a two-di-
mensional unit of measure. Such understandings are complex, and chil-
dren develop them over time. For example, they must develop the
understanding that decomposing and rearranging shapes does not affect
their area. Perhaps most challenging is developing the ability to use two
linear dimensions to build the idea of a two-dimensional space. Without
such understandings and abilities, children often learn a rule, such as
multiplying two lengths, without meaning.

Although area measurement is typically stressed in Grades 3-5 (National
Council of Teachers of Mathematics, 2000), the literature suggests that
there are some less formal aspects of area measurement that can be intro-
duced in earlier grades. We describe some of the important concepts that
form the foundation for area measurement and then describe some in-
structional approaches that promote these ideas.

Concepts of Area Measurement

There are at least five foundational concepts that are involved in learning
to measure area: (a) partitioning, (b) unit iteration, (c) conservation, (d)
structuring an array, and (e) linear measurement. As with linear measure-
ment, partitioning is the mental act of cutting two-dimensional space with
a two-dimensional unit. Teachers often assume that the product of two
lengths structures a region into an area of two-dimensional units for stu-
dents. However, the construction of a two-dimensional array from linear
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units is nontrivial. Students' first experiences with area might include til-
ing a region with a two-dimensional unit of choice and, in the process, dis-
cuss issues of leftover spaces, overlapping units, and precision.
Discussions of these ideas lead students to mentally partition a region into
subregions that can be counted.

As they cover regions with area units with no gaps or overlapping, chil-
dren can also develop the concept of unit iteration to measure area. As
with length measurement, children often cover space, but do not extend
units over the boundaries (Stephan et al., in press). Also, children often
choose units that physically resemble the region they are covering, for ex-
ample, choosing bricks to cover a rectangular region and beans to cover
an outline of their hands (Lehrer, in press; Nunes et al., 1993). They also
mix unit shapes, rectangular and triangular, to cover the same region.
Once these problems have been solved, students need to structure
two-dimensional space into an organized array of units, a concept to
which we return later.

Similar to linear measurement, conservation of area is an important idea
that is often neglected in instruction. Students have difficulty accepting
that when they cut a given region and rearrange its parts to form another
shape, the area remains the same (Lehrer, in press). Students should ex-
plore and discuss the consequences of folding or rearranging pieces to es-
tablish that one region, cut and reassembled, covers the same space.
Related research shows that young children use different strategies to
make judgments of area. For example, 4- and 5-year-olds may match only
one side of figures when attempting to compare their areas. They also use
height + width rules to make area judgments (Cuneo, 1980). Children
from 6 to 8 years use a linear extent rule, such as the diagonal of a rectan-
gle. Only after this age to most children move to multiplicative rules. This
leads to our next concept.

Students need to structure an array to understand area as truly two-di-
mensional. Children develop through a series of levels in developing this
difficult competence, including the following: (a) little or no ability to orga-
nize, coordinate, and structure two-dimensional space (cannot represent
covering a rectangle with tiles without overlaps or gaps); (b) complete
covering, but counting incorrectly (cannot keep track of which units were
counted; e.g., counts around the border and then unsystematically counts
internal units); (c) covering and counting but again with no row or column
structuring; (d) the local, incomplete use of rows or columns (e.g., counts
some, but not all, rows as a unit); (e) structuring the rectangle as a set of
rows; (0 iterating those rows (e.g., counting each row of 5, "5, 10,15 ...";
(g) iterating the rows in coordination with the number of squares in a col-
umn (e.g., counting by 5); (h) understanding that the rectangle's dimen-
sions provide the number of squares in rows and columns and thus
meaningfully calculating area from these dimensions (M. T. Battista,
Clements, Arnoff, K. Battista, & Borrow, 1998; Outhred & Mitchelmore,
1992, 2000). Without this competence, students cannot use the area for-
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mula meaningfully. They are also more likely to confuse concepts such as
perimeter and area, for example, believing that counting the units around
a figure gives its area.

Finally, most articles explicitly mention that a good foundation in linear
measurement is a necessary condition for understanding area measure-
ment. This is obviously the case because area measurement, in its more
sophisticated form, is the product of two linear measurements.

Teaching Area Measurement

What kind of activities help students learn initial area concepts, structure
arrays, and finally learn all five concepts to form a complete foundation
for measuring area meaningfully? First, students should investigate cover-
ing regions with a unit of measure. They should realize that there are to be
no gaps or overlapping and that the entire region should be covered.

Second, they should learn how to structure arrays. This is a long-term
process, but second graders can make significant gains. Figuring out how
many squares in pictures of arrays, with less and less graphic information
of clues, is an excellent task (see Akers, M. T. Battista, Goodrow, Clements,
& Sarama, 1997; M. T. Battista et al., 1998). Students can also tile rectangu-
lar regions and keep count. However, only using square manipulatives
may eventually provide too much support; for example, students may not
be able to overlap them (Outhred & Mitchelmore, 2000). Instead, as stu-
dents create arrays, they should also be encouraged to draw the results of
their covering (cf. Akers et al. , 1997; Reynolds & Wheatley, 1996). Such
drawings can reveal how students are actually structuring the array—or
not. For example, some students draw a series of square tiles within the re-
gion they were measuring, yet there were obvious gaps between tiles.
Other students draw an array that had unequal number of units in each
row. Students need to be provided tasks and instruction that leads them
through the levels of learning this structuring (Akers et al., 1997; M. T.
Battista et al., 1998).

Third, students should learn that the length of the sides of a rectangle
can determine the number of units in each row and the number of rows in
the array. Fourth—and this usually is appropriate only in the intermediate
grades—children can meaningfully learn to multiply the two dimensions
as a shortcut for determining the total number of squares. An appropriate
understanding of linear measurement (that the length of a side specifies
the number of unit lengths that will fit along it) is essential. Only then can
students construct the area formula.

Thus, instruction in area should not begin with rulers. In one study
(Nunes et al., 1993), children failed to solve area problems when they used
a ruler but were able to devise multiplicative solutions when given a
chance to cover with a unit. If instruction begins with a ruler, one of the
most common mistakes is for children to measure the length of each side
and add the two linear measures. Lehrer, Jenkins, and Osana (1998) sug-
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gested engaging students in tasks requiring them to find the area of an ir-
regular surface with a unit of their choice. For example, their students
were asked to trace their hands and find their area using a variety of
manipulatives (e.g., centimeter cubes, beans). Though most children
chose objects that most physically resemble the shape of their hands (i.e.,
beans), this task provided the opportunity for students to discuss how to
deal with leftover space that is uncovered. Because the students were un-
sure how to solve the dilemma of counting the extra space, the teacher in-
troduced a square grid as a measurement device. They gradually
accepted this notation and used it to estimate and combine partial units.

As a follow-up task, students can be asked to draw and measure islands
with their newly constructed square grids. This type of task gives students
more opportunity to measure with square units and to combine parts of
units together to form whole units. The teacher should not focus on the
calculation processes students develop but rather on the meaning that
their procedures have for them. Finally, students may be moved toward
building arrays with tasks such as finding the area of zoo cages. Students in
Lehrer's study (in press) were given a set of various, polygonal outlines
that represented the floor plan of different zoo cages. Students were pro-
vided with rulers if they found them necessary. Though some students
measured the lengths of each side of a rectangle, they incorrectly argued
that the resulting area would be 40 inches. Other students partitioned the
rectangular cages into array structures and argued that they really meant
40 square units. In this way, students were provided a chance to relate the
familiar array structure to ideas of length.

In summary, the too-frequent practice of simple counting of units to find
area (achievable by preschoolers) leading directly to teaching formulas is
a recipe for disaster. Instead, educators should build upon young chil-
dren's initial spatial intuitions and appreciate the need for students to: (a)
construct the idea of measurement units (including development of a
measurement sense for standard units; e.g., finding common objects in
the environment that have a unit measure), (b) have many experiences
covering quantities with appropriate measurement units and counting
those units, (c) spatially structure the object they are to measure (e.g., link-
ing counting by groups to the structure of rectangular arrays; building
two-dimensional concepts); and eventually (often in the intermediate
grades), (d) construct the inverse relationship between the size of a unit
and the number of units used in a particular measurement, and (e) con-
struct two-dimensional space and corresponding multiplicative relations.

ANGLE AND TURN MEASURE

Mathematically, angle has been defined in distinct but related ways. For
example, an angle can be considered the figure formed by two rays ex-
tending from the same point. Angle also can be defined as the amount of
turning necessary to bring one line or plane into coincidence with or par-
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allel to another. Methods of measuring the size of angles are based on the
division of a circle. The degree, one 360th of a full angle, is the most com-
mon unit used in elementary school.

As with length and area, children need to understand concepts such as par-
titioning and unit iteration to understand angle and turn measure. Due to the
nature of this domain of measurement, and our focus on young children, we
emphasize basic concepts of understanding what is being measured.

Angle and turn measure are difficult concepts for students. When judg-
ing the size of angles, students frequently focus on the length of the line
segments that form its sides, the tilt of the top line segment, the area en-
closed by the triangular region defined by the drawn sides, the length be-
tween the sides, or the proximity of the two sides (Clements & M. T.
Battista, 1989). Some misconceptions decrease over the elementary
years, such as orientation; but others, such as the effect of segment length,
do not change, and some, such the distance between endpoints, increase
(Lehrer et al., 1998).

One might argue that angle and turn measure are both difficult and rela-
tively esoteric mathematical concepts and therefore need not be intro-
duced to young children. However, there are valid reasons to include
these as goals for early childhood mathematics education. First, children
can and do use angle and turn measures informally. Second, use of angle
size, at least implicitly, is necessary to work with shapes; for example, chil-
dren who distinguish a square from a nonsquare rhombus are recognizing
angle size relationships. Third, angle measure plays a pivotal role in geom-
etry throughout school, and laying the groundwork early is a sound curric-
ular goal. Fourth, there is research evidence that young children can learn
these concepts successfully (Lehrer et al., 1998).

As noted in the previous chapter on geometry (Clements, chap. 10, this
volume), however, there are initial foundations on which children can
build. (That chapter discusses several studies related to angle concepts
that we do not repeat here.) For example, children in preschool use angles
implicitly as in block building (Ginsburg, Inoue, & Seo, 1999). Children as
young as 5 appear to use angles to represent locations of objects in a circle
(i.e., an intuitive use of polar coordinates; Sandberg & Huttenlocher, 1996).
In an early study, though 5-year-olds showed no evidence of attention to
angle in judging congruence, they could match angles in correspondence
tasks (Beilin, 1984; Beilin, Klein, & Whitehurst, 1982). Some primary-grade
children can distinguish between angles based on size (Lehrer et al.,
1998). So, helping children mathematize their intuitive use of angle size,
matching shapes by angles, and using angles to complete puzzles are all
within the competence of most children from a very young age.

Children do much more than recognize that geometric figures have cor-
ners. They appear to reliably distinguish among angles of different mea-
sure, and can mentally decompose a figure into separate attributes of
length and angle (Lehrer et al., 1998). Still, as noted previously, they often
confound angle and length measures, so careful instructional attention
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must be given to angle and turn measure. They especially need help learn-
ing to integrate turns, and, in general, a dynamic understanding of angle
measure-as-rotation, into their understandings of angles.

One particularly useful instructional tool to accomplish these goals is
through the use of the computer. Certain computer environments help
children quantify angles and especially turns, attaching numbers to these
quantities to achieve true measurement. Here we examine two types of
computer environments.

The first type is the computer manipulative, perhaps the more appropri-
ate of the two for younger children. In Shapes, for example, children work
with on-screen geometric figures. They use turn-and-flip tools to make pic-
tures and designs and to solve puzzles (see Fig. 11.3).

Just using these tools helps children bring the concept of a turn to an ex-
plicit level of awareness (Sarama, Clements, & Vukelic, 1996). For exam-
ple, 4-year-old Leah first called the tool the "spin" tool, which made
sense—she clicked it repeatedly, "spinning" the shape. Within 1 week,
however, she called it the turn tool and used the left or right tool deliber-
ately. Similarly, when Mitchell worked off-computer, he quickly manipu-
lated the pattern block pieces, resisting answering any questions as to his
intent or his reasons. When he finally paused, a researcher asked him how

FIG. 11.3. A computer shapes manipulative, from the Building Blocks project (DLM Math
Software, see Clements & Sarama, 2003a. 2003b).
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he had made a particular piece fit. He struggled with the answer and then
finally said that he "turned it." When working on-computer, he seemed
aware of his actions, in that when asked how many times he turned a par-
ticular piece, he said," Three," without hesitation (Sarama et al., 1996).

A second computer environment is Logo's turtle geometry. Logo can
also assist children in learning ideas of angle and turn measurement. A
first grader explained how he turned the turtle 45°: "I went 5, 10, 15, 20 ...
45! [rotating her hand as she counted]. It's like a car speedometer. You go
up by fives!" (Clements & M. T. Battista, 1991). This child is mathematizing
turning: She is applying a unit to an act of turning and using her counting
abilities to determine a measurement.

Research indicates that the traditional Logo philosophy of body
syntony—or connections with one's physical movements—is a critical in-
structional component. One study showed that children learned turn mea-
sure first through physical rotations, especially rotations of their own bodies
(Clements, M. T. Battista, Sarama, & Swaminathan, 1996). During the same
time, they gained limited knowledge of assigning numbers to certain turns
with turtle geometry, initially by establishing benchmarks. A synthesis of
these two domains—turn-as-body-motion and turn-as-number—consti-
tuted a critical juncture in learning about turns for many primary-grade stu-
dents. This and other studies have used the Logo turtle to help children
mathematize1 their physical experiences. In one study across Grades K-6,
the youngest children improved on certain turn and angle tasks the most rel-
ative to controls (Clements & M. T. Battista, 2001). These tests involved diffi-
cult distractors, which demanded, for example, that children differentiate
between greater angle measure and greater side length. Thus, thinking
about angles and turns in turtle geometry helped children as young as kin-
dergarten develop robust concepts of their measure.

To understand angles, students must understand the various aspects of
the angle concept. They must overcome difficulties with orientation, dis-
criminate angles as critical parts of geometric figures, and construct and
represent the idea of turns, among others. Furthermore, they must con-
struct a high level of integration among these aspects. This is a difficult task
that is best begun early, as children deal with corners of figures, comparing
angle size, and turns.

CONCLUSION

Measurement is one of the principal real-world applications of mathe-
matics. It bridges two critical realms of mathematics: geometry or spatial

'We define mathematization as representing and elaborating mathematically—creating
models of an everyday activity with mathematical objects, such as numbers and shapes;
mathematical actions, such as counting or transforming shapes; and their structural relation-
ships. Mathematizing involves reinventing, redescribing, reorganizing, quantifying, structur-
ing, abstracting, and generalizing that which is first understood on an intuitive and informal
level in the context of everyday activity.
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relations and real numbers. Number and operations are essential ele-
ments of measurement. The measurement process subdivides continu-
ous quantities such as length to make them countable. Measurement
provides a model and an application for both number and arithmetic op-
erations. In this way, measurement helps connect the two realms of num-
ber and geometry, each providing conceptual support to the other.

Research on linear, area, and angle and turn measurement indicates
that measuring in general is more complex than learning the skills or pro-
cedures for determining a measure. The conceptual, mental activities of
children as they engage in measuring situations should be the focus of in-
struction. Table 1.3 in chapter 1 of this book provides research-based
guidelines for curriculum goals and learning trajectories in early child-
hood measurement based on the research reviewed here.
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Making Sense

Kathy Richardson
Mathematical Perspectives Teacher Development Center

Making sense is at the heart of mathematics and so it must also be at the
heart of the mathematics we do with young children. Mathematical com-
petence develops in children, who learn that mathematics makes sense
and who learn to trust their own abilities to make sense of it. Asking chil-
dren to perform without understanding interferes with their development
of mathematical ideas. It is not always obvious which experiences help
build understanding in young children and which do not. We often make
assumptions that children are thinking what we are thinking when they
perform correctly. For example, when I taught preschool, I had my chil-
dren work with dot cards. I would show them cards with the same dot ar-
rangements that we find on dice, and they learned to recognize these
arrangements. One day, I asked them to use counters and build what they
saw on the card. To my amazement, I found that they did not use the cor-
rect number of counters. Instead they made an X shape to match the
shape of the five dots and they made a "squarish" shape to match the ar-
rangement of the nine dots. I thought I was teaching them quantity but
they were focused on what the card looked like. I learned from this that I
must always interact with children in ways that ask them to show me
what they know.

The experience with the dot cards is not unique. In my 30 years of study-
ing the thinking of young children, I have observed many situations in
which children appear to understand but, upon further examination, I find
they do not. This "illusion" of learning can mislead those charged with the
task of helping children develop foundational mathematical understand-
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ings. When teachers assume children understand more than they do, they
do not provide the experiences necessary for the development of an un-
derstanding of these ideas. And even more detrimental, children ap-
proach the learning of mathematics as tasks to complete rather than as a
sense-making process.

Consider the task of learning to count to 10. Children can appear to know
more than they do about counting if situations are set up to prevent errors.
It is not uncommon for adults to create situations that help children get the
right answer rather than to bump up against the underlying ideas. I met
one of the children who helped me understand this problem during her
first week of kindergarten. Stephanie appeared eager to work with me as
she joined me at the back of her classroom. I placed a group of 15 counters
on the table and asked her to find out how many there were. Stephanie
very carefully touched each counter as she said, "One, two, three, four,
five, six, seven, eight, nine, ten...." Without any hesitation at all, she contin-
ued to count the remaining counters saying, "One, two, three, four, five."
When she finished counting, I asked, "How many are there?" Stephanie
replied, "Five." In order to see what would happen when Stephanie did not
face the problem of running out of words with which to count, I asked her
to hand me five. This time she started counting aloud, but the counting
faded away and she ended up handing me the whole pile of 15 counters. I
asked her how many she had handed me and she answered, "Five." Then
I asked her to place five counters on a paper that had 10 dots on it, ar-
ranged in two rows of 5. She proceeded to cover each of the 10 dots with a
counter. I again asked her how many counters were on the paper and she
answered, "Five." At this point, I decided to see what she would do if I had
her work with a smaller number. I removed some of the counters leaving
seven on the table and asked Stephanie to count this pile. All the time we
were working, Stephanie was watching my face for clues to whether she
was right or wrong. Now, it seemed as though she finally remembered
what she was supposed to do. Before counting the pile of seven, she care-
fully lined up the counters in a row and then very precisely and deliberately
touched each one saying, "One, two, three, four, five, six, seven." I asked
her, "How many?" and she responded, "Seven."

It appeared that Stephanie had been taught the behaviors necessary to
get the right answer when counting but she hadn't learned the underlying
idea or essence of what counting is about. She had been shown how to
line up the counters so she would be able to keep track easily. She had
been taught to say one counting word as she touched each object and she
knew she had to repeat the last word she said when asked, "How many?"
If I had not asked her to apply what she knew to an unfamiliar situation, I
might have assumed she not only could get right answers but that she un-
derstood as well. However, when Stephanie was given more than 10 to
count, she had no way to approach this. Children who understand more
about counting than Stephanie did might respond with "I can't count that
high." Or they often just stop when they run out of words they know. But
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even more revealing of her lack of understanding than starting over with
"one" when she ran out of words, was her inability to deal with the re-
quests to count smaller amounts when the situations varied from what she
had been taught. The problem was not that she couldn't count past 10 but
that she had misconceptions about what the task of counting is about.

When children understand counting, they are able to count in many differ-
ent situations. We can't assume children understand what they need to know
about counting if we only see them count in one kind of setting. I learned this
from another child whom I observed filling a small plastic container with
cubes. He counted each cube as he dropped it into the container. When he
put the eighth cube into the container, the container was full so he stopped
counting and wrote 8 on his paper. Because this task didn't seem to challenge
him, I decided to make the task a bit harder by having him fill the container
without counting, dump out the counters onto the table and then count and
see how many he had. This would require him to organize and keep track of
the objects, something unnecessary when he was counting as he filled the
container. He chose a smaller container and filled it as I had directed him to
do. I could see that the container held four objects. He dumped the counters
out and proceeded to count them. He pointed at the objects and said the
counting sequence but he didn't stop when he had counted them all. Instead,
he continued to count the objects over and over again. I realized then that fill-
ing the container was the cue he needed to stop counting and now he didn't
have that support. I stopped him while he was counting and asked him to
hand me three of the four objects. He handed me one. I then asked him to
hand me two objects. He gave me the rest of the counters in the pile. At first, I
thought it might be a language problem so I had his teacher repeat the assess-
ment in the child's native language. He showed he still couldn't count compe-
tently unless the situation were structured for him.

Conscientious parents and teachers work hard to prepare children for
kindergarten but they do not always give the children the experiences that
will help them most in the long run. My experiences working with kinder-
garten children bear this out. I am reminded of one particular group of kin-
dergarten children who had been identified and placed in a class
designed to provide them with extra help in mathematics. Most of them
had attended a preschool for at-risk children before coming to kindergar-
ten. Through my assessments, I found that most of them knew how to
count by rote and recognize numerals to 10 or even to 20. However, only
one of them could actually count three or four objects. Though what they
had learned was important, it was not what they most needed in order to
make the expected progress in kindergarten. Children who have been
identified as at risk who leave their preschool experience appearing to
know what is necessary but without the underlying ideas to build on will
continue to fall behind if these needs are not met.

Undeveloped ideas and misconceptions are a normal part of the child's
evolving understanding. We can't prevent these misconceptions by teach-
ing children to say words or perform procedures they don't understand. If
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we want children to make sense of mathematics, we must provide a vari-
ety of experiences that ask the children to think about what they are doing
and to focus on critical elements of the concept. It is through encountering
an idea in different settings and in many different ways over time that gen-
eralizations begin to form. If we insist that children must always have cor-
rect responses for concepts they are not ready to understand, they must
resort to rote memory of these correct responses, as they will not be able
to make sense of the situations by themselves. When we try to teach chil-
dren our way of thinking or our way of getting answers before they can un-
derstand, we only interfere with their sense-making process. They stop
looking for their own meaning and instead look to the teacher to see if they
are right or wrong. As long as teachers think their job is to make sure chil-
dren "do it right," children will be limited in their ability to understand and
make sense of concepts.

Children can say the right answer and not know what they are saying, as
with the dot cards. They can also give the "wrong" answer and still be pon-
dering an important idea. We do not need to know ahead of time when giv-
ing a child a task or a question whether it will be out of reach or not. If we
are willing to learn from the children's honest responses, we will be able to
present ideas to them in all their complexity rather than oversimplifying
them in order to ensure "success." Another experience comes to mind. A
group of children were asked to figure out which jar held the most rice. In
the set were three mustard jars that were the same shape but of different
sizes. One of the children was convinced that they should all hold the
same amount of rice. Even after pouring the rice from one jar to the other,
he said, "I see it. But I don't believe it!" This response indicates that the
child is still searching and trying to make sense. He is not content with ac-
cepting something just because "teacher said."

As I worked with children over the years, I had to redefine what it meant
to be a good teacher. Being a good teacher is not about getting all your chil-
dren to perform at a particular level at a particular time. Being a good
teacher is about knowing what your children already know and what they
are still grappling with. It is valuing where each child is on their own per-
sonal journey and not comparing them to anyone else. Standards and
goals give me an idea of what I must be working toward with my children.
One child may be a long way from achieving a particular standard whereas
another child may have reached this standard long ago. My job is to chal-
lenge all my children no matter if they are just figuring out how to hand me
2 jellybeans or if they are figuring out how to share 12 jellybeans with two
people. I don't need to be reluctant to find out what a child really knows
but to be excited by the process they are engaged in.

The opportunity is here to develop mathematics programs that enhance
and maximize the children's learning rather than those that promote the
kinds of learning that give the appearance of high expectations but that in
reality result in inappropriate practices that interfere with the real work
and growth of children.
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Imagine for a moment that you are 3 or 4 years old and the world you ex-
perience is not the single, integrated entity known to adults but rather, is
a multitude of separate, independent, and unrelated worlds. We can call
one such world, the "world of counting numbers." Already, in your 4 or 5
years on this earth, you have learned quite a bit about this world. You can
count from 1 to 5 (or 1 to 10), you know that you must touch one and only
one object in a set as you do so, and you probably also know that the last
number word said "tells" you how many are in the set. You may even be
able to count backward from five to one and to count on from the bigger
number when asked to figure out how many there are when you add two
small numbers. As yet, however, you may have little idea of the uses to
which these skills can be put to help you make sense of another world
you are also intimately familiar with: the "world of quantity," in all its
physical manifestations.

In your few years on earth, you have also learned quite a bit about this
quantitative world. You can recognize and describe global, perceptually sa-
lient, differences in the world of objects (e.g., one group is "bigger" or
"smaller" than another), in the world of dot sets (e.g., one pattern has
"more" dots), in the world of paths and lines (e.g., one position is "farther"
along), and in the world of scale measures (e.g., on a thermometer, one po-
sition is "higher" up). You may even be able to recognize global differences
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in the world of dials (e.g., one point is "farther around" than another is). As
yet, however, you may have no idea that the counting words you have
learned can help you describe these different manifestations of quantity
more precisely or help you describe changes in these quantity arrays. Lack-
ing this overarching concept, it is very likely that these representations of
quantity may themselves seem to reside in separate, unrelated worlds.

A third world that you have very likely been exposed to but that is proba-
bly still mysterious is the "world of formal symbols." Although you may be
able to say the names of the written numerals and possibly even of the op-
eration signs (e.g., "plus," "minus"), you may have little idea of the quanti-
ties associated with each symbol or the operations (e.g., addition,
subtraction) each entails. A major goal of the Pre-K-2 Number Worlds pro-
gram (Griffin, 1997, 1998, 2000; Griffin & Case, 1995) is to help children
broaden and deepen their understanding of each of these worlds and es-
tablish a rich set of connections among them.

How will we know if children have achieved this integrated set of under-
standings? Consider the following situations:

• John bought four candies. Then he bought three more.
• John drove four miles. Then he drove three miles farther.
• Yesterday the temperature was four degrees. Today it went up by

three degrees.
• Yesterday the show came on at 4 o'clock. Today it will come on 3

hours later.

If children have constructed the interconnected set of understandings
referred to previously, they will have no difficulty representing these prob-
lem situations, seeing the equivalence among them, solving the problem,
and writing a number sentence (4 + 3 = 7) to record the process.

Consider what they have learned to make this possible. In each of these
situations, numbers are represented in different ways: as objects in the
first example, as segments along a path in the second, as positions on a
scale in the third, and as points on a dial in the fourth. Although adults and
older children immediately see these situations as equivalent and as en-
tailing a simple addition operation, when we consider the physical opera-
tions involved in each, they can be seen to be quite different—so different
that they might seem to be from different worlds. In the first situation, one
has a number of small objects (candies) that one can physically move
from one location to another. One can see a larger group of objects at the
end of one's work and count up the number of units it contains. In the sec-
ond situation, however, the object that moves is oneself and the only result
that one can see at the end is that one occupies a different location.

To solve the aforementioned addition problems, children must not only
appreciate the equivalence of the different forms of representation but
they must also understand that the language used to talk about numbers
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and about change in magnitude differs, as well, across these representa-
tional contexts. Finally, children must understand that each quantity and
each change in magnitude indicated in the aforementioned situations can
be represented symbolically with a common symbol system. This is a sub-
stantial developmental achievement and it is typically not mastered until
the first or second grade, marking one milestone among many in the de-
velopment of children's mathematical understanding.

The name of the Number Worlds program was specifically chosen to
capture several aspects of the developmental progression alluded to in the
foregoing and to capture several features of the Pre-K-2 program that was
developed, over a period of 12 years, to facilitate this process. Although
many children appear to make this transition quite naturally, supported by
their early home and school experiences, there are many children in the
United States who do not and who start their first formal learning of arith-
metic without the knowledge needed to make sense of the instruction that
is provided (Griffin, Case, & Siegler, 1994). It was with these children in
mind—children who typically live in low-income communities, children
who are at risk for school failure—that an early version of the Number
Worlds program called Rightstart was developed. The program has subse-
quently been expanded to include four grade levels and to serve the needs
of all children, from a variety of cultures, linguistic backgrounds, and in-
come levels. The new name reflects this broader scope.

More specifically, the name "Number Worlds" captures three overarch-
ing goals of the program. First, it was designed to help children integrate
the three worlds referred to earlier, namely: the world of counting num-
bers, the world of quantity, and the world of formal symbols. Second, it
was designed to expose children to the major ways number and quantity
are represented, and talked about, in our culture. Third, it was designed to
provide visual-spatial learning environments, "worlds to explore" in the
classroom, that encourage children to construct the desired knowledge in
a hands-on, interactive fashion. In the remainder of this chapter, these
goals are described in greater detail along with several other features of
the program that support their realization.

KNOWLEDGE GOALS

The informal description of the knowledge goals of the program pro-
vided earlier suggests that the Number Worlds program is, above all
else, a developmental approach. It is based on careful research on the
manner in which children spontaneously construct mathematical
knowledge between the ages of 4 and 8 years, given a "good-enough"
environment in which to do so; on the ways this knowledge is se-
quenced and organized in children's thought across this age range; and
on the learning opportunities that provide the best fit for young chil-
dren's sense-making capabilities within this age range (see Griffin &
Case, 1997, for a review of this research).
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The learning objectives that are built into the Number Worlds program at
each grade level reflect this natural developmental progression. This
makes good sense, educationally, because the knowledge that is targeted
at each grade level is knowledge that is known (a) to be within the devel-
opmental capabilities of most, if not all, children within each age group
and (b) to provide a natural building block for knowledge at the next level.
The knowledge that is targeted at each grade level can also be seen to be
foundational for success in school math because the children on whom
this developmental progression is based (i.e., the typical subjects in devel-
opmental research) are typically children from middle- to upper-mid-
dle-income homes who do well in school math. Finally, because many
children from all income levels are known to struggle with school math,
having an opportunity to broaden, deepen, and consolidate knowledge
that may be acquired quite naturally, at least in a bare-bones fashion, can
be seen to be highly beneficial.

The developmental milestones that research has identified as crucial
building blocks for success in school math have been described, in part, in
the opening paragraphs. They can be summarized as follows. By the age of
4 years, most children have constructed an initial counting schema (i.e., a
well-organized knowledge structure for counting), which enables them to
verbally count from one to five, to use the one-to-one correspondence
rule, and to use the cardinality rule (Gelman, 1978). By the same age, most
children have also constructed an initial quantity schema, which gives
them an intuitive understanding of relative amount (they can compare
two groups of objects that differ in size and tell which has a lot or a little)
and of the transformations that change this amount (they know that one
group will get bigger or smaller if objects are added to it or taken away).
Most preschoolers can also use words to talk about these quantity rela-
tions and transformations (Starkey, 1992). As suggested earlier, however,
most preschoolers do not use these schemas in a coordinated or inte-
grated fashion (Siegler & Robinson, 1982). It is as if they were stored in sep-
arate files in children's minds.

Around the age of 5-6 years, as children's knowledge of counting and
quantity becomes more elaborate and differentiated, their knowledge
also gradually becomes more integrated, eventually merging in a single
knowledge network called a central conceptual structure for number
(Case & Griffin, 1990; Griffin, Case, & Siegler, 1994). With this higher order
knowledge structure (referred to elsewhere as a "central organizing
scheme"), children come to realize that a question about addition or sub-
traction can be answered, in the absence of any concrete set of objects,
simply by counting forward or backward along the counting string. They
also come to realize that a simple verbal statement about a transformation
such as "I have four things, then I get one more" has an automatic entail-
ment with regard to quantity. One does not even need to see the objects
that are involved or know anything else about them. These simple under-
standings actually betoken a major revolution in children's understanding
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that changes the world of formal mathematics from something that can
occur only "out there" to something that can occur inside their own heads,
and under their own control. As this change takes place, children begin to
use their counting skills in a wide range of other contexts. In effect, chil-
dren realize that counting is something one can do to determine the rela-
tive value of two objects on a wide variety of dimensions (e.g., width,
height, weight, musical tonality) (Griffin, Case, & Capodilupo, 1995).

Around 6-7 years, supported by their entry to formal schooling, children
learn the written numerals that represent numbers. When this new under-
standing is linked to their central conceptual structure for number, chil-
dren understand that the numerals stand as symbols for number words as
both ordered "counting tags" and as indicators of numerical cardinality si-
multaneously. Finally, around the age of 7-8 years, children construct a
more elaborate bidimensional central conceptual structure for number,
which permits them to represent two quantitative dimensions in a coordi-
nated fashion and solve problems requiring this level of complexity (e.g.,
place value and problems involving double-digit numbers in the domain of
arithmetic; problems involving hours and minutes in the domain of time;
problems involving dollars and cents in the domain of money) (Griffin,
Case, & Sandieson, 1992).

The major goals of the Number Worlds program at four grade levels are
informed by these research findings. Thus, in the Pre-K program, the major
focus is on ensuring that children acquire well-developed counting and
quantity schemas. In the kindergarten program, the major focus is on en-
suring that children develop a well-consolidated central conceptual struc-
ture (for single-digit numbers). In the Grade 1 program children are given
ample opportunity to link this structure to the formal symbol system and to
construct the more elaborated knowledge network this entails. Finally, the
focus of the Grade 2 program is on helping children construct the
bidimensional central conceptual structure (for double-digit numbers),
which underlies a solid understanding of the base-10 system and opera-
tions within this system.

In addition to these explicit grade-level objectives, there are two addi-
tional objectives that span all grade levels. The first is to ensure that chil-
dren are exposed to the major ways that numbers are represented and
talked about in developed societies. As mentioned earlier, numbers can
be represented as a group of objects, as a position on a line, or as a point on
a dial, for example, and the language used to describe quantity and
changes in quantity varies considerably across these contexts. In order to
maximize the chances that children will develop a good intuitive sense of
numbers, including their spatial magnitude—and that they will be able to
relate these intuitions to their explicit knowledge of written numerals—it is
important that they understand the equivalence of different ways of repre-
senting numbers and that they are able to match and/or produce such rep-
resentations. This objective and the ways it is addressed in the Number
Worlds program is described further in the following section.
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The second additional objective is to ensure that all children have am-
ple opportunity to move forward at their own pace once they have ac-
quired the foundational knowledge for the next level. To accomplish the
latter objective, a set of implicit knowledge objectives is built into each
level of the program. These make knowledge that is explicitly targeted at
the next level available at the current level for children who are ready to
take advantage of it. Thus, in the Pre-K program, activities that teach
counting are always taught in the context of quantity representations. In
the kindergarten program, activities that teach elements of the central
conceptual structure for number are always taught in the context of writ-
ten numerals, and so on. Making higher level knowledge available in an
implicit fashion serves two purposes in the program. It not only allows in-
dividual children to move forward at their own pace but it also scaffolds
higher order learning for all children.

REPRESENTATIONS FOR NUMBER IN DIFFERENT LANDS

The Number Worlds program is divided into five different "lands" at each
grade level, with each land exposing children to a particular form of num-
ber representation. Learning activities developed for each land (an aver-
age of 15 activities per land at each grade level) share a particular form of
number representation while they simultaneously address specific
knowledge goals for each grade level. The five forms of representation
and the Lands in which they appear are illustrated in Fig. 13.1. As the fig-
ure suggests, the first land children are exposed to is Object Land, where
numbers are represented by the bundling of several objects such as pen-
nies or fingers into groups. This is the first way in which numbers were
represented historically (Schmandt-Basserat, 1978) and the first one that
children naturally learn. In Object Land, children first work with real ob-
jects (e.g., "How many crackers will you have left after you eat one?" "Af-
ter you eat one more?") and then move to working with pictures of
objects (e.g., "Are there enough hats so that each clown will have one?"
"How many more do you need?" "How do you know?").

The second land children are introduced to is Picture Land, where num-
bers are represented as sets of stylized, semiabstract dot set patterns.
These patterns provide a link between the world of moveable objects and
the world of abstract symbols. Unlike the real objects they represent, dot
set pictures cannot be physically placed in one-to-one correspondence for
easier comparison. Instead, a child must make a mental correspondence
between two sets, for example by noticing that the pattern for five is the
same as four, but the five pattern has one extra dot in the center. As chil-
dren engage in Picture Land activities (e.g., by playing an assortment of
card games and dice games similar in format to War, Fish, and Concentra-
tion) they gradually come to think of these patterns as forming the same
sort of ordered series as do the number worlds themselves. Numerals, an-
other way of representing numbers, are also part of Picture Land and they
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are used extensively in the activity props that are provided and by the chil-
dren themselves, in the upper levels of the program, as they create written
records to describe the quantity transactions they have been enacting.

A third way to represent numbers is as segments along a line, such as
the lines that are found on board games like Chutes and Ladders. The
language that is used for numbers in this context is the language of dis-
tance. In Line Land (by playing games on a Human Game Mat and on an
assortment of smaller number line game boards), children come to un-
derstand that a number such as four can refer not only to a particular
place on a line, but also to a number of moves along the line. One can talk
about going four numbers forward, from the number four, on one's
fourth turn! Perhaps the most important transition that children must
make, as they move from the world of small countable objects to the
world of abstract numbers and numerical operations, is to treat the phys-
ical addition or subtraction of objects as equivalent to movement for-
ward or backward along a line. All children eventually make this
correspondence; however, until they do, they are unable to move from
physical operations to mental operations with any insight.

Yet another way to represent numbers is with bar graphs and scales,
such as thermometers. In Sky Land, this sort of representation is always
used in a vertical direction, such that bigger numbers are higher up. These
forms of representation make a convenient context for introducing chil-
dren to the use of numbers as a measure, as a way to keep track of continu-
ous quantity in standard units. Systems for measuring continuous quantity
have the same long history as do systems for enumerating discrete objects
(Damerow, Englund, & Nissen, 1995), and it is important to develop chil-
dren's intuitions for their properties from the outset. A lesson from the
Number Worlds Pre-K program that is used as a warm-up activity to intro-
duce children to Sky Land is included in the Appendix. This lesson is re-
peated in increasingly sophisticated versions in all levels of the program.

Dials are the final representation of number included in Number Worlds.
Sundials and clocks are more sophisticated ways of representing numbers
because they incorporate the cyclic quality—a path that repeats it-
self—that certain real-world dimensions such as time and the natural
rhythm of the seasons possess. Children develop spatial intuitions in Circle
Land (e.g., by playing games on a skating rink configuration, which re-
quires them to chart progress within and across revolutions in order to de-
termine a winner) that become the foundation for understanding many
concepts in mathematics that deal with circular motion (e.g., pie charts,
time and number bases).

Although the lands have been introduced in a fixed order here, from eas-
iest to most difficult, an important goal of the Number Worlds program is to
help children appreciate the equivalence of these forms of representation
and of the language used to talk about number in these contexts. To
achieve this, Level 1 activities in each land (i.e., activities that target knowl-
edge objectives that are foundational for higher level learning) are intro-
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duced early in the school year, followed by Level 2 activities in each land,
and finally Level 3 activities. As the year progresses, warm-up activities
from each land are increasingly used in conjunction to facilitate the con-
struction of the interconnected knowledge network illustrated in Fig. 13.1.

PROCESS GOALS (DESIGN PRINCIPLES)

The process goals of the Number Worlds program (i.e., the learning pro-
cesses children are expected to engage in and teachers are expected to
encourage) are entirely consistent with those recommended in the Na-
tional Council of Teachers of Mathematics (NCTM; 2000) standards. In
previous publications (e.g., Griffin & Case, 1997), we have referred to
these process goals as design principles to reflect our efforts, as the de-
velopers of this curriculum, to ensure that each activity we created for
the program not only made these processes possible but also actively
scaffolded them. Four of the most important process goals of the pro-
gram are described next.

Problem Solving

As has been suggested in the foregoing discussion, most of the activities
included in the program provide opportunities for children to explore a
variety of visual-spatial worlds in which elements of the number system
(which vary in complexity across levels of the program) are salient. Most
of the activities are also set in a game format. The problems children en-
counter as they move through these environments, motivated by the
goals of the game, require them to actively interact with (and often to use)
components of the number system (and/or representations of quantity)
that have been built into the game. In many activities, success in the game
is dependent on efficient use of the number system, or success in solving
the number problems that the situation presents. In the sample activity
provided in the Appendix (one of the simplest activities in the whole pro-
gram), children are unable to blast off—an action they never tire of—until
they successfully count down from five to one (or from a higher number
selected by the teacher) and until the red liquid in thermometer corre-
spondingly drops and reaches the zero (blast-off) mark. The game format
that is provided for most of the activities engages children emotionally
and motivates them to actively participate in solving the increasingly
complex number problems that the activities present.

Communication

Communication is vital in a Number Worlds classroom and it has been built
into the program in many ways. Most of the activities are collaborative
ones, which have been developed for small-group work. In these activities,
as well as in many whole-class activities, communication is required to
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move the activity or game forward. For example, in the Line Land Number
Line Game, which a group of four children play on a game board displaying
four numbered paths (from 1 to 10), children take turns rolling a die, com-
puting the quantity shown, asking the banker to give them that many count-
ing chips, aligning the chips along their path (counting out loud as they do
so), and moving their pawn that many spaces along the path (counting out
loud once more) until it rests on the final chip that has been placed. At each
point in this process, children are encouraged to challenge each other if
they think the count is wrong, in terms of the number of chips asked for, the
number provided by the banker, the placement of the chips along the path
(e.g., skipping a numbered square), or the movement of the pawn along
the path (e.g., starting to count from the square you start from instead of the
next numbered square in the sequence). Because the first child to reach
the winner's circle (in the 10th square) is the winner, children are moti-
vated to watch and listen closely as others take their turns and to challenge
each other if the need arises.

This basic game format is repeated in the Sky Land Elevator Up and Ele-
vator Down Games, where children take turns moving their elevator man
pawn up (or down) an elevator in a 10-story building, and in the Circle
Land Skating Party Game, where children move their pawns around a cir-
cular skating rink (numbered from 0—the Start position—to 9) to see how
many times they can skate around the rink in the allotted amount of time,
and how many Award Cards (picked up each time they pass through the
Start position) they can collect. To scaffold a high level of mathematical
talk—as opposed to talk about who is winning, losing, or cheating—a set
of question cards has been developed for most small-group games. Dia-
logue suggestions have also been included in the activity descriptions pre-
pared for teachers. Both of these props focus attention on the sorts of
questions that might prove useful at various points in game play (e.g.,
Where are you now? Where will you be when you make that move? Who
is closer to the goal? How many more do you need? How do you know?
How did you figure it out?). Although teachers will initially pose these
questions, it is expected that children will eventually learn many of them
"by heart" and use them independently to guide their own learning. Addi-
tional dialogue suggestions help teachers to ensure that children will learn
the standard linguistic terms that are used for referring to numbers in dif-
ferent contexts (e.g., larger numbers are "farther along" in Line Land, are
"higher up" in Sky Land, and are "farther around" in Circle Land). Commu-
nication is also "institutionalized" in the Wrap-Up component of a typical
Number Worlds lesson (described in the following section).

Reasoning

Reasoning is so much a part of problem solving and communication that
it is somewhat redundant to give it a separate heading. However, there
are at least two ways that the Number Worlds program fosters reasoning
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that may not be implied in the foregoing discussion. First, the program
places a heavy emphasis on helping children integrate implicit and ex-
plicit knowledge. The activities encourage children to build up represen-
tations that involve a strong global-spatial component, and they help
children move back and forth between these intuitive representations to
representations that are more explicit, and that involve a strong verbal
component. By doing so, they encourage children to reason with both
sides of their brain and to create links across them, possibly strengthening
neural pathways across brain hemispheres in the process (Dehaene &
Cohen, 1995). Second, one of the ways it accomplishes this is to place a
heavy emphasis on prediction (e.g., How far along will you be when you
make that move?) as well as explanation, in contexts that allow predic-
tions to be tested soon after they are framed and articulated.

Universal Empowerment (Equity)

Most Number Worlds activities were designed to be multileveled: to allow
for multiple levels of understanding so children with different entering
knowledge, and different learning rates, can all learn something from
each activity. For example, in the Skating Party Game described earlier,
children who have not yet learned to identify quantity in dot-set patterns
will receive repeated opportunities to develop this basic understanding
as they count the dots on each die configuration they roll. Children who
have mastered this basic skill are given opportunities to make relative
quantity estimates (e.g., Who is farther around? Who has gone the short-
est distance? How do you know?) and children who are adept at these
comparisons are given opportunities to solve more challenging predic-
tion problems (e.g., How much farther do you need to go to get an Award
Card? How did you figure it out?). The activities are also designed to be ap-
propriate for children with a wide range of talents, as well as children
from a wide range of cultural, social, and economic backgrounds. They
are intended to give all children the opportunity to advance on a broad
number of fronts, at a rate that is appropriate for them.

USING THE NUMBERWORLDS PROGRAM

Each day's lesson usually starts with a Warm-Up activity. In the Pre-K and
kindergarten levels of the program, these activities often give children
practice counting up and counting down in one (or more) of the five Num-
ber Worlds lands. These activities are typically short, lasting about 5 to 10
minutes depending on the number of children who wish to take turns par-
ticipating. They are always taught in a whole-class format, often with chil-
dren sitting in a circle around the teacher.

The Warm-Up activity is followed by a longer period of Large-Group or
Small-Group Work, which lasts about 20 minutes in the lower levels of
the program and about 40 minutes in the upper levels. The large-group
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games and activities can be used with the whole class. The small-group
games and activities are played by small groups of four children working
together. Once children become familiar with the small-group games,
they can play them by themselves, without teacher supervision. How-
ever, whenever possible it is always better to have the teacher or another
adult assigned to each small group to foster communication and to facili-
tate learning. During any particular lesson, small groups of children may
play different games, depending on their level of understanding and their
learning needs. This becomes easier to manage as children gain familiar-
ity with the rules and procedures of different games and can play them
more or less independently.

Group Work is always followed by a Wrap-Up period, which gives chil-
dren a chance to reflect on and to discuss what they did during math time
that day and wrhat they learned. Wrap-Up is always conducted in a
whole-class setting. When it follows Whole-Group work, it typically takes
the form of a general discussion, with volunteers describing what they
did during the activity and what they learned. When it follows
Small-Group Work, a Reporter from each group usually takes the lead de-
scribing what his or her group did that day and what they learned. As with
all the other components of each day's math lesson, Wrap-Up is facili-
tated by careful teacher questioning to encourage children to focus on
the knowledge the lesson was designed to teach and to help them
deepen and broaden their understanding.

For example, in the activity that was most recently mentioned (The
Skating Party Game), a teacher might follow up a child's description of the
number of award cards collected by each member of his or her group with
the questions: Did everyone in your group have the same number of turns?
If so, how come one member of your group skated around the rink three
times (collecting three award cards) and another member of your group
skated around the rink only two times (collecting two award cards)? If the
Reporter canvasses the group and responds that the child who covered
the greatest distance must have skated faster (as opposed to rolling high
numbers on several turns), the group can be encouraged to test their hy-
pothesis on subsequent rounds of game play and "to pay careful attention
to what helps you go farther (or less far) in this game."

Teachers are also encouraged to take advantage of many opportunities
that arise each day to teach math in informal situations. Lining up for recess
or for lunch in groups that share a certain feature (e.g., all children wearing
dresses and all children wearing pants) provides opportunities to count the
number in each group, to compare quantity, and to become familiar with or-
dinal position (e.g., first, second, third). Counting stairs as you ascend and
descend, sorting and counting snacks, and counting Number Worlds mate-
rials before putting them away provide other opportunities.

Most of the activities included in Number Worlds program were de-
signed to be used over and over. In fact, the learning opportunities they
provide are greatly enhanced by this repetition. Several games and activi-
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ties also have extension activities in the form of Challenges and Variations
that introduce children to higher level concepts and skills, and that provide
opportunities for them to deepen and broaden their knowledge. (Note:
The activity included in the Appendix provides an example of both of these
features of the program.)

PROGRAM EVALUATION

The Number Worlds program has now been tried out in several different
communities in Canada and in the United States. For research purposes,
the samples we have followed have always been drawn from schools
serving low-income, predominantly inner-city communities. This deci-
sion was based on the assumption that if the program works for children
known to be at risk for school failure, there is a good chance that it will
work as well, or even better, for children from more affluent communi-
ties. Several different forms of evaluation have also been conducted.

In the first form of evaluation, children who received the kindergarten
level of the program (formerly called Rightstart) were compared with
matched controls, who received a readiness program of a different sort.
On tests of mathematical knowledge, on a set of more general develop-
mental measures, and on a set of experimental measures of learning po-
tential, children who received the Number Worlds program consistently
outperformed those in the control groups (Griffin et al., 1992, 1995). In a
second type of study, children who received the kindergarten level of the
program (and who graduated into a variety of more traditional first-grade
classrooms) were followed up 1 year later, and evaluated on an assort-
ment of mathematical and scientific tests, using a double-blind proce-
dure. Once again, those who had received the Number Worlds program
in kindergarten were found to be superior on virtually all measures, in-
cluding teacher evaluations of "general number sense" (Griffin & Case,
1996; Griffin etal., 1994).

The expansion of the Number Worlds program to include curricula for
Grades 1 and 2 permitted a third form of evaluation: a longitudinal study
in which children were tracked over a 3-year period. At the beginning of
the study and the end of each year, children who received the Number
Worlds program were compared with two other groups: (a) a second
low-SES (socioeconomic status) group who were originally tested as
having superior achievement in mathematics, and (b) a mixed-SES
(largely middle-class) group who also showed a higher level of perfor-
mance at the outset and who attended an acclaimed magnet school with
a special mathematics coordinator and an enriched mathematics pro-
gram. Over the course of this study, which extended from the beginning
of kindergarten to the end of Grade 2, children who received the Number
Worlds program gradually outstripped both other groups on the major
measure used throughout this study: a developmental test of number
knowledge (i.e., the Number Knowledge Test; see Griffin & Case, 1997).
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On this measure, as well as on a variety of other mathematics tests (e.g.,
measures of number sense), the Number Worlds group outperformed
the second low-SES group from the end of kindergarten onward. On tests
of procedural knowledge (i.e., the Computation Test; see Stigler, Lee, &
Stevenson, 1990) administered at the end of Grade 1, they also compared
very favorably with groups from China and Japan that were tested on the
same measures (Griffin, in press; Griffin & Case, 1997).

These findings provide clear evidence that the Number Worlds program
works for the population of children most in need of effective school-based
instruction: children living in poverty. In a variety of studies, it enabled chil-
dren from diverse cultural backgrounds to start their formal learning of arith-
metic on an equal footing with their more advantaged peers. It also enabled
them to keep pace with their more advantaged peers (and even outperform
them on some measures) as they progressed through the first few years of
formal schooling, and to acquire the higher level mathematics concepts
that are central for continued progress in this area. In addition to the mathe-
matics learning and achievement demonstrated in these studies, two other
findings are worthy of note. Both teachers and children who have used the
Number Worlds program consistently report a positive attitude to the teach-
ing and learning of math. For teachers, this often represents a dramatic
change in attitude. Doing math is now seen as fun, as well as useful, and
both teachers and children are eager to do more of it.

RELATIONSHIP TO NCTM 2000 STANDARDS

To those familiar with the NCTM (2000) standards, it must by now be ap-
parent that the Number Worlds program and the standards share a num-
ber of features. A high level of consistency is present in: (a) their general
philosophy; (b) their explicit grounding in current research on how chil-
dren think, and know, and come to understand mathematics; (c) their
knowledge objectives for Pre-K to Grade 2; and (d) their process goals. Al-
though the general framework of the standards and the program is re-
markably consistent, there are two differences that should be noted.

First, the Number Worlds program is narrower in scope. It seeks to teach
the first two content standards (i.e., the Number & Operations Standard and
the Algebra Standard) in considerable depth. Though it lays a foundation for
learning in the remaining content areas (i.e., the Geometry Standard, the
Measurement Standard, and the Data Analysis Standard), it does not explic-
itly address the complete set of learning objectives listed for these stan-
dards. This was a deliberate choice in emphasis and it was based on three
factors: (a) the central role that number and algebra (e.g., quantity) con-
cepts play in all areas of the discipline, (b) the amount of number knowl-
edge many children still need to acquire when they start school, and (c) the
amount of time most teachers have to teach mathematics.

Second, what the Number Worlds program sacrifices in scope, it makes
up for in depth as well as breadth in the knowledge it chooses to teach. For
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example, a primary goal of the program—ensuring that all children ac-
quire well-consolidated central conceptual structures for number—is
given depth as well as breadth by the program's additional emphasis on
exposing children systematically to multiple representations for number
and to the standard and nonstandard ways numbers are talked about in
these representational contexts.

Finally, as suggested by the program evaluation findings, the Number
Worlds program provides a powerful way to address the content stan-
dards it "privileges" and that it was developed to teach. The strength of the
findings maybe attributed to the more limited focus of the program. How-
ever, it may also be due to the sorts of learning opportunities it provides.
Number World activities not only foster the five process goals recom-
mended in the standards (e.g. Problem Solving, Reasoning & Proof, Com-
munication, Connections) but they require that these processes be
enacted in order for the activities to work. Although this often creates chal-
lenges for novice teachers—who must learn how to structure and facili-
tate collaborative, small-group learning; how to turn control for learning
over to the children; how to scaffold children's mathematical talk—it also
creates an opportunity to implement these processes in their classroom,
and to discover the rich sorts of learning they make possible. This journey
is sometimes a struggle for teachers. However, it usually proves to be an
exhilarating and rewarding adventure, one that teachers are committed to
perpetuate and one they find was well worth the effort it took to achieve.
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Appendix

2
Blastoff!

WHOLE
C Kf Q U f=* J-L

Learning Objectives
• Count down from 5 to 1 and from 10 to 1
• Associate counting down with decreases in the

height of a scale measure

Materials
• Sky Land Classroom Thermometer

Prepare Ahead
• Use a red grease pencil to color the thermometer

from the bulb up to 5.
• An eraser to use with the grease pencil on the

thermometer

Seeing the level of the mercury drop in a ther-
mometer while counting down will give children a
good foundation for subtraction.

Activity
Play Blastoff! to give the children practice

counting down from 5 to 1.
• Tell the children to pretend they are on a rocket

ship, getting ready to blast off.
• Explain that you will erase the level of the red

pencil on the thermometer as the children count
backwards from 5 to 1, and when you reach the
bottom, everyone should call "Blastoff!" and
jump up out of their seats.

• If necessary, model this for the children by
erasing the level of the red pencil on the

thermometer down from 5 to 1, one notch at a
time, while you say each number in the count-
down sequence, and then jumping up while
calling "Blastoff!"

• Have the children count down while you erase
the pencil on the thermometer.

• Make sure everyone counts down correctly and
waits for the blastoff signal before jumping up.

Once the children are familiar with the proce-
dure, invite volunteers to erase the level of the red
pencil on the thermometer while the other children
count down and get ready to jump up.
• If anyone jumps up too soon or too late, have

the children repeat the sequence.
• If a counting mistake is made, have the children

begin the sequence over.

Challenge
Once the children are comfortable counting

down from 5 to 1, repeat the procedure having the
children count down from 10 to 1.

Teacher's Note

Blastoff! is played in each of the five
Number Worlds™ lands, in a format appropriate to
each land. Playing this game in the different lands
will help to reinforce the idea that the lands are not
entirely separate entities, but rather that they all
share important number concepts. Each land repre-
sents a different way of expressing aspects of the
number system that are common to all the lands.

Number Wbr1ds~ Activity Cards - Kindergarten
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Blastoff!
Variation I: It's a Chilly Day

Learning Objectives
• Identify the next number down in sequence
• Associate counting down with decreases in the

height of a scale measure

Materials
• Sky Land Classroom Thermometer

Prepare Ahead
• Use a red grease pencil to color the thermometer

from the bulb up to 5.
• An eraser to use with the grease pencil on the

thermometer

Activity
Tell the children to pretend that it is getting

colder and the temperature is dropping from 5
down to 1.
• Sit in a semicircle with the children.
• Have the children take turns around the circle

saying the next number down in the countdown
sequence, starting with 5.

• Each time that a child says the next number
down correctly, erase the level of the red pencil
on the thermometer by one to correspond with
the number counted.

• If a child makes a mistake or cannot remember
the next number down, have the child begin the
sequence over by saying the number 5.

Challenge
Each time the group successfully counts down to

1, repeat the procedure starting with the next num-
ber yp to 10 as the children become ready for each
new step. If the children are not ready to count
down from a higher number, wait until they are
ready.

Blastoff.
Variation 2:The Incredible Shrinking People

Learning Objectives
• Count down from 5 to 1 and from 10 to 1

Activity
Tell the children to pretend that they are

Incredible Shrinking People.
• Have the children stand up and reach their

hands up in the air.
• Have the children slowly count backwards from

5 to 1 white they lower themselves to the floor
so that after saying the number 1, they are in a
crouching position.

Challenge
If the children are comfortable with counting

down the number sequence, have the children
count up and grow after counting down and shrink-
ing, so that after saying the number 5 the children
are standing straight up again with their hands in
the air.
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14
Fostering Preschool Children's
Mathematical Knowledge:
Findings From the Berkeley
Math Readiness Project

Alice Klein
Prentice Starkey
University of California, Berkeley

Comparative studies of mathematics achievement in different countries
over the past 15 years have revealed that the achievement of American
students compares unfavorably with that of students from several other
nations, particularly East Asian nations, at the middle and high school lev-
els (e.g., Peak, 1996; Takahira, Gonzales, Frase, & Salganik, 1998).
Cross-national differences in mathematics achievement have been
found in the early elementary school grades as well (e.g., Frase, 1997;
Stevenson, 1987; Stevenson, Lee, & Stigler, 1986). Moreover, there is evi-
dence that specific aspects of mathematical knowledge, such as number
words and addition, are more developed in East Asian children than in
American children prior to their entry into elementary school (e.g., Geary,
Bow-Thomas, Fan, & Siegler, 1993; Ginsburg, Choi, Lopez, Netley, & Chi,
1997; Miller, Smith, Zhu, & Zhang, 1995; Starkey et al., 1999). Taken to-
gether, cross-national research on mathematics achievement has had a
significant impact on the education reform movement in the United
States by focusing attention on the need to raise standards for mathemat-
ics education in this country.
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When we examine mathematics achievement within the United States,
studies have found considerable achievement differences across socio-
economic strata. In general, students from low-income families are at risk
for underachievement in mathematics. Moreover, this achievement gap
between students from low-income and middle-income families has
been documented not just in high school (Dorsey, Mullis, Lindquist, &
Chambers, 1988), but from the earliest grades of elementary school, in-
cluding kindergarten (Entwisle & Alexander, 1990; Griffin, Case, & Siegler,
1994; Jordan, Huttenlocher, & Levine, 1992).

How can we interpret this evidence of cross-SES (socioeconomic sta-
tus) differences in mathematics achievement from the beginning of ele-
mentary school? One view is that these SES-related achievement
differences are due to differences in mathematics instruction in school.
An alternative view, however, is that there is an earlier developmental ba-
sis for differences in mathematics achievement observed later in school.
According to this view, cross-SES differences in young children's mathe-
matical thinking develop during the preschool years, and then these differ-
ences are either increased or reduced by instructional practices in school.

Research has revealed that preschool children construct informal mathe-
matical knowledge about the world around them. This knowledge depends
on the presence or mental representation of sets of concrete entities such
as objects (e.g., Baroody, 1992; Clements, Swaminathan, Hannibal, &
Sarama, 1999; Gelman & Gallistel, 1978; see Ginsburg, Klein, & Starkey,
1998, for a recent review). Furthermore, findings indicate that at least some
aspects of numerical knowledge, such as simple addition and the use of
counting strategies, are more developed in middle-income preschoolers
than in their low-income peers (e.g., Jordan, Huttenlocher, & Levine, 1994;
Saxe, Guberman, & Gearhart, 1987; Starkey & Klein, 1992). This socioeco-
nomic gap in children's numerical cognition is evident even for children at-
tending Head Start during the prekindergarten year (Klein & Starkey, 1995;
Starkey & Klein, 2000). In summary, the evidence that there are cross-SES
differences in children's informal mathematical knowledge before kinder-
garten supports the view that there is an earlier, developmental basis for
subsequent differences in school mathematics achievement.

Cross-socioeconomic differences in mathematical development are es-
pecially problematic for the goal of equity in early mathematics instruction.
Because children from different socioeconomic backgrounds do not pos-
sess a comparable foundation of informal mathematical knowledge, they
enter elementary school at different levels of readiness to learn school
mathematics. Thus, there is a need to intensify our efforts to support young
children's informal mathematical development so that all children will be
ready to learn a standards-based mathematics curriculum in school.

The remainder of this chapter focuses on an early mathematics inter-
vention project, the Berkeley Math Readiness Project, which we recently
conducted. In particular, we discuss some findings from this project that
bear on the issue of a socioeconomic gap in preschool children's mathe-
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matical development. Our project had two principal objectives. The first
was to conduct a comprehensive study of low- and middle-income chil-
dren's informal mathematical knowledge during the prekindergarten
year. We expected that this study not only would broaden the knowledge
base on socioeconomic differences in early mathematical development,
but also would reveal specific mathematical concepts that need greater
support during the preschool years. The second objective was to develop
a conceptually broad prekindergarten mathematics curriculum and im-
plement it in a variety of preschool programs to determine its effectiveness
at fostering preschool children's mathematical knowledge.

THE BERKELEY MATH READINESS PROJECT

The Berkeley Math Readiness Project sought to support young children's
mathematical development by developing an early childhood mathemat-
ics curriculum for use in classrooms and at home. Prekindergarten chil-
dren enrolled in 10 preschool classrooms, 5 serving middle-income
families and 5 serving low-income families, participated in the project. At
each socioeconomic level, both Intervention and Comparison Groups of
children were included in the design.

Children in the Intervention Groups received the mathematics curricu-
lum during their prekindergarten year. By contrast, children in the Com-
parison Groups, who were selected from the same preschool classrooms
with the same teachers during the year preceding the intervention, did not
receive the math curriculum. The number and mean age of each group of
children at the end of the prekindergarten year were as follows: Middle-In-
come Intervention Group (n = 41; mean age, 4 years, 11 months); Mid-
dle-Income Comparison Group (/? = 42; mean age, 4 years, 11 months);
Low-Income Intervention Group (n = 37; mean age, 5 years, 0 months);
Low-Income Comparison Group; n = 43; mean age, 4 years, 10 months).

A pretest-posttest design was employed to examine the effectiveness of
the curricular intervention at enhancing prekindergarten children's math-
ematical knowledge. Children in the Intervention Groups were tested in
the fall and the spring of their prekindergarten year with the Child Math As-
sessment (CMA, described later). Children in the Comparison Groups
were given the CMA in the spring of their prekindergarten year.

The basic pedagogical approach taken in the intervention was to provide
all prekindergarten children in a classroom with a broad mathematics cur-
riculum over the course of the year. The content of our prekindergarten
mathematics curriculum (Klein, Starkey, & Ramirez, 2002) was consistent
with NCTM's (National Council of Teachers of Mathematics) new Principles
and Standards for School Mathematics (NCTM, 2000) and with the findings
of developmental research concerning the composition of early mathemat-
ical knowledge (e.g., Clements, 2000; Ginsburgetal., 1998). It was designed
to foster children's informal mathematical knowledge in the domains of nu-
merical and spatial-geometric cognition. There were teacher-guided
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small-group activities for use in the preschool classrooms as well as par-
ent-guided dyadic activities for use at home. The curriculum was organized
into seven topical units, each with multiple sets of math activities accompa-
nied by concrete materials. It included the following units: (a) Enumeration
and Number Sense, (b) Arithmetic Reasoning, (c) Spatial Sense, (d) Geo-
metric Reasoning, (e) Pattern Sense and Unit Construction, (f) Nonstandard
Measurement and (g) Logical Relations. The math activities were designed
to be sensitive to the needs of individual children. They could be extended
downward for children who were not developmentally ready for a particu-
lar activity, and upward for children who were developmentally ready for a
more challenging activity.

Teachers were given a curriculum manual containing instructions for
each math activity and descriptions of materials to use. They learned how
to implement the mathematics curriculum by attending summer and win-
ter workshops and by receiving on-site assistance throughout the year
from a staff member of the project. Moreover, in the workshops and
end-of-the-year meetings, teachers discussed their classroom experi-
ences and provided feedback about specific math activities that needed
further development.

We also developed a new instrument, the Child Math Assessment
(CMA), to assess young children's informal mathematical knowledge
across a broad range of concepts. Sixteen tasks comprising the CMA
were informed by the basic research literature on young children's
mathematical development. The CMA assessed knowledge of number,
arithmetic, space and geometry, patterns, and nonstandard measure-
ment, and the tasks encompassed a range of difficulty (e.g., tasks in-
volving smaller and larger set sizes, visible and hidden objects).
Furthermore, it should be noted that there was a conceptual, but not an
identical, overlap between math activities in the curriculum and tasks
from the CMA. For example, Imagine a Shape was a curriculum activity
that supported spatial visualization. It involved the completion of differ-
ent shapes in customary and rotated orientations. In contrast, the Trian-
gle Transformation task from the CMA assessed spatial visualization. It
involved matching corresponding sides of congruent triangles that dif-
fered by a spatial transformation (slide, rotation, or flip).

RESULTS

We first report analyses of the overall effect of the curricular intervention
on the development of children's mathematical knowledge. These in-
clude comparisons of the extent of informal mathematical knowledge in
low-income and middle-income children who received the curriculum
(the Intervention Groups) and those who did not (the Comparison
Groups). We then report findings on three specific tasks that assessed
children's knowledge of addition and patterns.
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Children's Overall Accuracy

We examined children's mathematical knowledge across a broad range
of concepts by computing a composite mathematics score on the CMA
for each child. This score represented the mean proportion of correct so-
lutions across all mathematical problems presented to the child.
Children's knowledge of number, arithmetic, geometry, nonstandard
measurement, and patterns were reflected in the composite score.

We performed a two-way repeated measures ANOVA (analysis of vari-
ance) on the composite scores of low-income and middle-income inter-
vention children during the fall (pretest) and spring (posttest) assessments.
There was a significant main effect for socioeconomic group, F(l/76) =
32.10,p < .001, with the composite scores of middle-income children being
higher than those of low-income children (Fig. 14.1). Note that at the begin-
ning of the prekindergartenyear, middle-income children solved more than
one half of the problems assessed by the CMA, whereas low-income chil-
dren solved only one third of the problems. There also was a significant

FIG. 14.1. Composite scores of low- and middle-income intervention children.



348 KLEIN AND STARKEY

main effect for time of assessment, F(l/76) = 267.89, p < .001, with chil-
dren's scores in the spring being higher than their fall scores. In addition, the
Group x Time interaction was significant, F( 1/76) = 6.61, p < .02. Low-in-
come children's scores increased more in the spring relative to their starting
point in the fall (from 34% to 63% correct) than middle-income children's
scores (from 56% to 77% correct). This finding indicates that low-income
children in particular experienced rapid mathematical development by par-
ticipating in this curricular intervention.

We then performed a two-way between-groups ANOVA with age as a
covariate to compare the spring composite scores of children in the Inter-
vention Groups with children in the Comparison Groups. Again there was
a significant main effect for socioeconomic group, F(l/158) = 44.95, p <
.001. Mathematical knowledge over all tasks was more developed in mid-
dle-income children than in low-income children.

However, there was also a significant main effect for curriculum group
(Intervention vs. Comparison), F( I/158) = 26.12,p < .001. Children in the
Intervention Groups had higher scores than children in the Comparison
Groups. When presented with a broad prekindergarten math curriculum,
both middle-income and low-income intervention children exhibited
more extensive mathematical knowledge than comparison children did
at the end of their prekindergarten year. Thus, the intervention significantly
enhanced the informal mathematical knowledge of both middle-income
and low-income children.

Children's Knowledge of Addition and Patterns

Although our analyses of children's composite scores demonstrate the
general need for and benefits of an early childhood mathematics curricu-
lum, these analyses do not reveal children's informal mathematical
knowledge at a sufficient level of detail to inform mathematics standards
or instruction. Thus, we now examine children's performance on three
specific tasks that assessed aspects of their knowledge of addition and
patterns: Two-Set Addition, Pattern Duplication, and Pattern Extension.
After examining the accuracy of children's answers (correct vs. incorrect)
on these tasks, we report the results from error analyses to illustrate de-
velopmental changes that were not apparent in the accuracy analyses.
We argue that if mathematics standards and instruction aspire to be de-
velopmentally sensitive, they should reflect an awareness of the some-
times subtle changes that occur in children's early mathematical thinking
as they progress toward full understanding of a concept.

A two-set addition task was used to assess children's ability to judge the
effects of an addition operation on the relative number of objects in two
sets. This task required children to use one-to-one correspondence to rep-
resent the initial sets of objects and to solve the addition problem. The ex-
perimenter simultaneously constructed two sets of objects (marbles)
using one-to-one correspondence and saying, "I am putting a marble in
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this container and a marble in that container, and another marble in this
container and another marble in that container." As the experimenter
spoke, she dropped a marble through a hole in each of two opaque con-
tainers until the two initial sets contained unequal numbers of marbles
(four vs. six). Then the child was asked whether the containers had the
same number of marbles or whether one container had more. If one con-
tainer was judged to have more, the child was asked to indicate which
one. Next, the experimenter added one marble to the set with four mar-
bles, resulting in final sets that contained unequal numbers of marbles
(four plus one vs. six). The child was then asked whether the containers
had the same number of objects or whether one container had more.

A pattern duplication task assessed children's ability to copy a linear repeat-
ing pattern of small colored blocks. A simple ABAB pattern was presented in
this task. The experimenter placed a preconstructed pattern of blocks on her
side of the table and asked the child to make a pattern that "looks just like
mine." The child was given a source set of colored blocks that contained
more than the minimum number needed to copy the pattern.

A pattern extension task assessed children's ability to complete a lin-
ear repeating pattern of small colored blocks. The same type of ABAB
pattern was presented in this task as in pattern duplication. The experi-
menter began by constructing two repetitions (units) of the pattern of
blocks in front of the child, and then asked the child to "finish making the
pattern." The experimenter gestured to the last block placed to indicate
where the child should continue to extend the pattern. The child was
given a source set of colored blocks that contained more than the mini-
mum number needed to extend the pattern.

Children's solutions to the two-set addition, pattern duplication, and pat-
tern extension problems were scored as correct/incorrect. Accuracy
scores were calculated for middle-income and low-income Intervention
and Comparison Groups. Table 14.1 presents the mean percentage cor-
rect on two-set addition, pattern duplication, and pattern extension prob-
lems for these groups. This table includes data for the Intervention Groups
of children in the fall (pretest) and spring (posttest) as well as for the Com-
parison Groups of children in the spring of their prekindergarten year.

The general pattern of results on these problems was consistent with the
analyses of children's composite scores. A strong effect of socioeconomic
group on early math knowledge was evident. Middle-income children ex-
hibited more extensive mathematical knowledge on these problems than
low-income children did in the fall as well as in the spring. However, the
pervasive effect of the curricular intervention on children's mathematical
development was also evident. Specifically, both middle-income and
low-income Intervention Groups exhibited significant progress in their ad-
dition and pattern knowledge after participating in the curriculum activi-
ties. Furthermore, their knowledge on these problems was greater than in
the corresponding Comparison Groups. Two-way between-group
ANOVAs with age as a covariate revealed that the accuracy scores of inter-
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g TABLE 14.1

Mean Percentage Correct on Two-Set Addition, Pattern Duplication, and Pattern Extension Problems:
Middle-Income and Low-Income Groups

Group

Ml Intervention — Pretest

MI Intervention — Posttest

MI Comparison3

LI Intervention — Pretest

LI Intervention — Posttest

LI Comparison3

Two-Set Addition

Inequality Problem

44

80

62

16

51

33

Type of Problem

Pattern Duplication

ABAB Problem

56

95

76

24

78

53

Pattern Extension

ABAB Problem

27

34

14

0

32

14

Note. MI = middle-income. LI = low-income.
aMl and LI Comparison groups were assessed at the same time of the year (spring) as the MI and LI Intervention groups at the posttest.
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vention and comparison children differed significantly on two-set addi-
tion, pattern duplication, and pattern extension, all ps < .02.

One unanticipated finding was that children's performance on the pat-
tern extension task was markedly lower than their performance on pat-
tern duplication. Low-income children in the fall were unable to extend
even a simple ABAB pattern, and only 27% of the middle-income children
could do so. Although individual accuracy scores on pattern extension in-
dicated that some children clearly benefited from the intervention, the
majority of children did not improve at the posttest. Thus, pattern exten-
sion is a later development than pattern duplication.

Accuracy scores are useful indicators of learning, but they have at least
two limitations. First, they are insensitive to developmental progress that
does not yet produce correct answers. Second, they do not reveal the spe-
cific nature of children's misunderstandings when an incorrect answer is
given. Yet, this is precisely the kind of information that teachers need in or-
der to foster young children's informal mathematical knowledge. Conse-
quently, we conducted error analyses to specify the difficulties that
preschool children exhibited as they were learning about two-set addi-
tion, pattern duplication, and pattern extension.

Two-Set Addition Errors. Table 14.2 presents the percentage of
error types made by low- and middle-income intervention children on the
two-set addition inequality problem at the pretest and posttest. Error
analyses revealed that at both socioeconomic levels children made several
distinct types of errors. Response perseveration was the most develop-
mentally immature type of error. For children making this error, the
occurrence of addition did not alter their judgments of the relative number
of objects in the sets. The typical form this error took was for children to
judge incorrectly that the initial sets (four vs. six) were the "same number".
Then, the experimenter added one object to the four-object set, but
children perseverated by responding "same number" to the final sets.

Primitive errors were also developmentally immature, but they were
more advanced than simple response perseveration. For children making
this error, the occurrence of addition did alter their judgments, but their
judgments did not take into account the absolute number of objects in the
initial sets. Children used one-to-one correspondence to judge correctly
that the six-object set contained more than the four-object set. Then the ex-
perimenter added one object to the four-object set, but children judged in-
correctly that this set now contained more objects than the other set. That is,
they judged that if addition is performed on Set A, it has more objects (Set A
+ 1 > Set B). They had failed to integrate the number of objects added (+1)
with the numerical value of the initial sets (Set A has four and Set B has six).

Qualitative errors were more advanced developmentally than the
other error types. Children correctly judged the initial sets to be unequal,
and they attempted to integrate addition with the number of objects in
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TABLE 14.2

Percentage of Error Types on the Two-Set Addition Inequality Problem: Middle-Income
and Low-Income Intervention Groups — Pretest Versus Posttest

Group

Middle-Income

Middle-Income

Low-Income

Low-Income

Time of
Assessment

Pretest

Posttest

Pretest

Posttest

Total Errors

26

8

31

17

Perseverative

43%

12%

48%

0%

Error Types

Primitive

12%

0%

7%

18%

Qualitative

46%

88%

45%

82%
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the initial sets. They erred because they apparently integrated the addi-
tion operation with an imprecise representation of the initial inequality
(Set A has fewer objects than Set B) rather than a precise representation
(Set A has two fewer objects than Set B). Consequently, they went on to
judge (incorrectly) that the addition of one object to the four-object set
compensated for the initial inequality, producing equal sets (if Set A < Set
B, then Set A + 1 = Set B).

Children who produced a correct solution to the problem apparently repre-
sented the initial inequality precisely. They judged that the smaller set had
fewer objects than the larger set, even after the addition of one object (e.g., if
Set Ahas two fewer objects than Set B, then Set A + 1 has fewer than Set B).

The distribution of errors children made changed over the course of the
intervention. At the pretest, low-income children made response
perseveration or primitive errors frequently and more often than middle-in-
come children did (46% vs. 34% of children, respectively). Both groups of
children made these errors more often at the pretest prior to the interven-
tion (40%) than at the posttest after the intervention (5%). Thus, during the
intervention many children learned to use one-to-one correspondence to
judge correctly the initial sets, and they learned to take the addition opera-
tion into account in attempting to solve two-set addition problems.

The overall percentage of children who made qualitative errors did not
change a great deal from the pretest (32%) to the posttest (28%), but the
composition of the group making these errors did change. Several chil-
dren who made response perseveration or primitive errors at the pretest
progressed to qualitative errors at the posttest, and several who made
qualitative errors at the pretest correctly solved the two-set addition prob-
lem at the posttest. In the latter case, children had learned to integrate the
addition operation with the number of objects in the initial sets in order to
solve the problem. The principal effect of the intervention was to develop
more advanced arithmetic problem solving strategies.

Pattern Duplication Errors. We next analyze the errors children
made on the pattern duplication problem. Table 14.3 presents the
percentage of error types made by low- and middle-income intervention
children on the pattern duplication ABAB problem at the pretest and
posttest. Children's errors were classified into three principal types that
reflected different developmental levels of pattern knowledge.

The first type of error, No Initial Unit, reflected the least developed
knowledge of patterns. In attempting to duplicate the model pattern, chil-
dren did not even begin their construction with the initial unit AB. Exam-
ples of this error type included BAAB and AABA. A more developmentally
advanced type of error, Only Initial Unit, reflected a partial knowledge of
repeating patterns. Children who made this type of error apparently un-
derstood that the pattern began with the initial unit AB, but they did not sys-
tematically iterate this initial unit throughout their construction. Examples
of this error type included ABBA and ABAAB.
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5£ TABLE 14.3
Percentage of Error "types on the Pattern Duplication ABAB Problem: Middle-Income and Low-Income Intervention

Groups — Pretest Versus Posttest

Group

Middle-Income

Middle-Income

Low-Income

Low-Income

Time of
Assessment

Pretest

Posttest

Pretest

Posttest

Total Errors

18

2

28

8

No Initial Unit AB

50%

100%

75%

25%

Error Types

Only Initial Unit
AB

33%

0%

18%

38%

Model Pattern +
Extra Blocks

17%

0%

7%

38%
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The most advanced type of pattern duplication error we observed was
the Model Pattern plus Extra Blocks error. In this error, children correctly
constructed the initial unit AB and then systematically iterated the initial
unit until they duplicated the model pattern. However, after duplicating
the model pattern, they did not stop. Children incorrectly added one or
two extra blocks from the source set. Examples of this error type included
ABABA and ABABAA.

Error analyses at the pretest revealed that low-income children made a
greater number of errors than middle-income children. However, both
groups of children made the same predominant error type, No Initial Unit,
on pattern duplication. This finding suggests that many 4-year-old children
at the beginning of the prekindergarten year find it difficult to analyze the
unit of a repeating pattern.

The intervention had a significant effect on the number and type of er-
rors made by middle-income and low-income children at the posttest.
There was a marked decrease in the overall number of errors for both
groups. Although 44% of the children in the middle-income group made
pattern duplication errors at the pretest, only 5% did so at the posttest. An
even steeper decrease was observed for the low-income children, drop-
ping from 76% of the children at the pretest to 22% at the posttest. Further-
more, those low-income children who still made errors at the posttest
exhibited a shift from the least advanced error type (No Initial Unit) to the
more advanced error types over the course of the intervention.

Pattern Extension Errors. Table 14.4 presents the percentage of
error types made by middle-income and low-income intervention
children on the pattern extension ABAB problem at the pretest and
posttest. Note that children made the same three types of errors as they
had on pattern duplication. Error analyses at the pretest demonstrated that
both groups of children made a greater number of errors on pattern
extension (86% of children) than on pattern duplication (59% of children).
Nevertheless, the same predominant error type, No Initial Unit, occurred
on both tasks. This converging finding from pattern duplication and
pattern extension supports the view that the majority of prekindergarten
children, regardless of socioeconomic background, experienced
difficulty at the beginning of the year with a fundamental property of
repeating patterns—identification of the core unit of the pattern.

Posttest analyses of pattern extension errors revealed that the interven-
tion produced a qualitative shift in children's predominant error types, but it
did not significantly reduce the number of errors made by middle-income
and low-income children. The percentage of children making the least ad-
vanced error type (No Initial Unit) decreased from 32% to 2% among mid-
dle-income children and from 51% to 14% among low-income children. In
contrast, the percentage of children making developmentally more ad-
vanced errors (Only Initial Unit and Model Pattern plus Extra Blocks) rose
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os TABLE 14.4

Percentage of Error Types on the Pattern Extension ABAB Problem: Middle-Income and Low-Income Intervention
Groups — Pretest Versus Posttest

Group

Middle-Income

Middle-Income

Low-Income

Low-Income

Time of
Assessment

Pretest

Posttest

Pretest

Posttest

Total Errors

30

27

37

25

/Vo Initial Unit AB

43%

4%

51%

20%

Error Types

Only Initial Unit
AB

20%

11%

27%

8%

Model Pattern +
Extra Blocks

37%

85%

22%

72%
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from 41% to 63% in the middle-income group and from 49% to 54% in the
low-income group. It appears that over the course of the intervention, many
children became able to analyze the unit of a repeating pattern.

In summary, more errors were made on the two-set addition, pattern
duplication, and pattern extension tasks by low-income children than by
middle-income children, but both groups of intervention children made
the same types of errors. The principal qualitative difference between
these groups was that low-income children exhibited less advanced types
of errors than middle-income children, especially at the pretest.

The error analyses also revealed developmental progress in children's
informal mathematics knowledge that was not evident from accuracy
scores alone. Many children in the Intervention Groups who were not yet
able to correctly solve the addition or pattern problems nevertheless
made more advanced types of errors at the posttest. This reduction in the
percentage of children making immature types of errors from the pretest
to the posttest was a robust effect of the intervention. Thus, the error analy-
ses provided valuable evidence of and insight into the development of pre-
school children's understandings of addition and patterns.

CONCLUSIONS AND IMPLICATIONS FOR EARLY
MATHEMATICS STANDARDS

A broad socioeconomic gap in informal mathematical knowledge was
present at the beginning of the prekindergarten year. This gap included not
just numerical concepts and arithmetic reasoning, but also spatial con-
cepts and geometric reasoning, knowledge of patterns, and nonstandard
measurement. Preschool teachers who participated in the curricular inter-
vention received training in early mathematical development and educa-
tion through workshops, and they were provided with ongoing support
throughout the year. These teachers learned to deliver a conceptually
broad mathematics curriculum that significantly enhanced children's in-
formal mathematical knowledge in all areas assessed. General analyses
revealed that both low- and middle-income children in the Intervention
Groups made significant developmental progress in their mathematical
thinking relative to children in the Comparison Groups. Moreover, low-in-
come children made more progress during the prekindergarten year, rela-
tive to their starting point at the pretest, than middle-income children did.
Consequently, by the end of the prekindergarten year, the socioeconomic
gap in informal mathematical knowledge was reduced.

Our error analyses of addition and pattern knowledge revealed impor-
tant details about children's mathematical development. Both socioeco-
nomic groups made the same types of errors on the addition and pattern
tasks, but the low-income children made less advanced types of errors
more frequently. A principal outcome of the intervention was a develop-
mental shift in children's understandings from less advanced error types
either to more advanced error types or to correct solutions. Finally, al-
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though the develop- ment of children's understandings of two-set addition
and pattern duplication were found to be well under way during the
prekindergarten year, their understanding of pattern extension was just
beginning to develop. Our findings indicate that curricular enhancements
during the prekindergarten year are feasible and produce beneficial devel-
opmental outcomes for young children.

In conclusion, these analyses demonstrated that it is not sufficient to as-
sess children's knowledge of a mathematical concept on the basis of ac-
curacy scores alone. It is also important to assess the types of errors that
individual children make. This deeper level of assessment will reveal diffi-
culties that children encounter while learning specific mathematical con-
cepts. Data on the nature of children's misunderstandings are potentially
very useful to preschool teachers and others who want to support chil-
dren's informal mathematical development.

In creating mathematics standards for young children and planning
their learning opportunities, our research suggests a need for greater
specificity along two dimensions—children's developmental status and
their socioeconomic status. Consider first the developmental dimen-
sion. There is a need for further differentiation within the Pre-K to Grade 2
band of the PSSM (NCTM, 2000) regarding the expectations for mathe-
matical knowledge at specific age or grade levels. As shown in our inter-
vention study, considerable development in mathematical knowledge
can occur within the span of one school year. Thus, the expectations for
younger children in the Pre-K to Grade 2 band should differ from those for
older children. This differentiation would facilitate curriculum planning
and teaching that accommodate to developmental differences in chil-
dren's early mathematical knowledge.

The second dimension concerns socioeconomic differences in
young children's informal mathematical knowledge. Given the exis-
tence of a socioeconomic gap in this knowledge, there is a need to
specify the full developmental range of mathematical knowledge mani-
fested in the preschool population. This specification will help teachers
plan ways to support effectively the mathematical development of all
young children. By creating early mathematics standards and curricula
that reflect the developmental and socioeconomic variation in early
mathematical knowledge that exists in the population, we will be tak-
ing a major step toward achieving the goal of equal educational oppor-
tunity for all children.

ACKNOWLEDGMENTS

Preparation of this chapter was supported by OERI/U.S. Department of Ed-
ucation Grant R307F60024 and by National Science Foundation (IERI)
Grant REC-9979974 to the authors. This chapter is based on a paper pre-
sented at the 78th Annual Meeting of the NCTM, April 2000.



14. FOSTERING PRESCHOOL 359

REFERENCES

Baroody, A. J. (1992). The development of preschoolers' counting skills and principles. In J.
Bideau, C. Meljac, & J. P. Fischer (Eds.), Pathways to number (pp. 99-126). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Clements, D. H. (2000, April). Geometric and spatial thinking in early childhood education. In
J. Sarama (Chair), Linking research and the new early childhood mathematics standards.
Paper presented at the 78th Annual Meeting of the National Council of Teachers of Mathe-
matics, Chicago, IL.

Clements, D. H., Swaminathan, S., Hannibal, M. A. Z., & Sarama, J. (1999). Young children's
concepts of shape. Journal for Research in Mathematics Education, 30, 192-212.

Dorsey, J. A., Mullis, I. V. S., Lindquist, M. M., & Chambers, D. L. (1988). The mathematics re-
port card: Are we measuring up? (NAEP Report No. 17-M-01). Princeton, NJ: Educational
Testing Service.

Entwisle, D. R., & Alexander, K. L. (1990). Beginning school math competence: Minority and
majority comparisons. Child Development, 61, 454-471.

Frase, M. (1997). Pursuing excellence: a study of U.S. fourth-grade mathematics and science
achievement in international context. Initial findings from the Third International Mathe-
matics and Science Study (GPO Report No. 065-000-00959-5). Washington, DC: U.S. Gov-
ernment Printing Office. (ERIC Document Reproduction Service No. ED410098)

Geary, D. C., Bow-Thomas, C. C., Fan, L., & Siegler, R. S. (1993). Even before formal instruc-
tion, Chinese children outperform American children in mental addition. Cognitive Devel-
opment, 8, 517-529.

Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA:
Harvard University Press.

Ginsburg, H. P., Choi, Y. E., Lopez, L. S., Netley, R., & Chi, C.-Y. (1997). Happy birthday to you:
The early mathematical thinking of Asian, South American, and U.S. children. In T. Nunes
& P. Bryant (Eds.), Learning and teaching mathematics: An international perspective (pp.
1-45). East Sussex, England: Lawrence Erlbaum Associates/Taylor & Francis.

Ginsburg, H. P., Klein, A., & Starkey, P. (1998). The development of children's mathematical
thinking: Connecting research with practice. In W. Damon, I. E. Sigel, & K. A. Renninger
(Eds.), Handbook of child psychology (5th edition), Child psychology in practice (Vol. 4,
pp. 401-476). New York: Wiley.

Griffin, S., Case, R., & Siegler, R. S. (1994). Rightstart: Providing the central conceptual prereq-
uisites for first formal learning in arithmetic to students at risk for school failure. In K.
McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice
(pp. 25-49). Cambridge, MA: MIT Press.

Jordan, N. C., Huttenlocher, J., & Levine, S. C. (1992). Differential calculation abilities in young
children from middle- and low-income families. Developmental Psychology, 28, 644-653.

Jordan, N. C., Huttenlocher, J., & Levine, S. C. (1994). Assessing early arithmetic abilities: Ef-
fects of verbal and nonverbal response types on the calculation performance of middle-
and low-income children. Learning and Individual Differences, 6, 413-432.

Klein, A., & Starkey, P. (1995, April). Preparing for the transition to school mathematics: The
Head Start Family Math Project. In P. Starkey (Chair), School readiness and early achieve-
ment of impoverished children. Symposium conducted at the meeting of the Society for
Research in Child Development, Indianapolis, IN.

Klein, A., Starkey, P., & Ramirez, A. (2002). Pre-Kmathematics curriculum. Glendale, IL: Scott,
Foresman.

Miller, K. F., Smith, C. M, Zhu, J. J., & Zhang, H. C. (1995). Preschool origins of cross-national
differences in mathematical competence: The role of number-naming systems. Psycho-
logical Science, 6, 56-60.

National Council of Teachers of Mathematics. (2000). Principles and standards for school
mathematics. Reston, VA: Author.

Peak, L. (1996). Pursuing excellence: a study of U.S. eighth-grade mathematics and science
teaching, learning, curriculum, and achievement in international context. Initial findings
from the Third International Mathematics and Science Study (GPO Report No.



360 KLEIN AND STARKEY

065-000-01018-6). Washington, DC: U.S. Government Printing Office. (ERIC Document Re-
production Service No. ED400209)

Saxe, G. B., Guberman, S. R., & Gearhart, M. (1987). Social processes in early number develop-
ment. Monographs of the Society for Research in Child Development, 52, (2, Serial No. 216).

Starkey, P., & Klein, A. (1992). Economic and cultural influences on early mathematical devel-
opment. In F. L. Parker, R. Robinson, S. Sombrano, C. Piotrowski, J. Hagen, S. Randolph, &
A. Baker (Eds.), New directions in child and family research: Shaping head start in the 90s
(p. 440). New York: National Council of Jewish Women.

Starkey, P., & Klein, A. (2000). Fostering parental support for children's mathematical devel-
opment: An intervention with Head Start families. Early Education and Development, 11,
659-680.

Starkey, P., Klein, A., Chang, I., Dong Q., Pang L., & Zhou, Y. (1999, April). Environmental sup-
ports for young children's mathematical development in China and the United States. Pa-
per presented at the biennial meeting of the Society for Research in Child Development,
Albuquerque, NM.

Stevenson, H. W. (1987). The Asian advantage: The case of mathematics. American Educator,
47, 26-31.

Stevenson, H. W, Lee, S. Y, & Stigler, J. W. (1986). Mathematics achievement of Chinese, Jap-
anese, and American children. Science, 231, 693-699.

Takahira, S., Gonzales, P., Frase, M., & Salganik, L. H. (1998). Pursuing excellence: A study of
U.S. twelfth-grade mathematics and science achievement in international context. Initial
findings from the Third International Mathematics and Science Study (National Center for
Educational Statistics Report No. 98-049). Washington, DC: U.S. Government Printing Of-
fice. (ERIC Document Reproduction Service No. ED419717)



15
Technology in Early Childhood
Mathematics: Building Blocks
as an Innovative Technology-
Based Curriculum

Julie Sarama
University at Buffalo, State University of New York

Building Blocks is a new Pre-K to Grade 2, software-enhanced, mathemat-
ics curriculum designed to comprehensively address the year 2000 stan-
dards of the National Council of Teachers of Mathematics, Principles and
Standards for School Mathematics. In this chapter, I describe the basic fea-
tures of the Building Blocks program, including the research on which it
was based, and specific activities from the program, including the results of
field tests of those activities with a range of teachers and children.

THE DESIGN OF BUILDING BLOCKS

Building Blocks is designed to enable all young children to build solid con-
tent knowledge and develop higher-order, or critical, thinking. To achieve
this, we (Douglas H. Clements and I) needed to consider the audience,
determine the basic approach to learning and teaching, and draw from
theory and research in each phase of the design and development pro-
cess. In this section, I briefly overview these three areas; I describe them
in more detail in the following sections.

The demographics of the early end of the age range imply that materials
should be designed for home, day care, and classroom environments, and
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for children from a variety of backgrounds, interests, and ability levels. To
reach this broad spectrum, the materials are progressively layered—users
will be able to "dig deeper" into them to reach increasingly rich, but de-
manding, pedagogical and mathematical levels.

Based on theory and research on early childhood learning and teaching
(Bowman, Donovan, & Burns, 2001; Clements, 2001), we determined that
Building Blocks' basic approach would be finding the mathematics in, and
developing mathematics from, children's activity. The materials are de-
signed to help children extend and mathematize their everyday activities,
from building blocks to art to songs and stories to puzzles. Activities are de-
signed based on children's experiences and interests, with an emphasis
on supporting the development of mathematical activity. So, the materials
do not rely on technology alone, but integrate three types of media: com-
puters, manipulatives (and everyday objects), and print.

Many claim a research basis for their materials, but these claims are often
vacuous, citing vague theories without specifics (Sarama & Clements, in
press). Building Blocks is research based in several fundamental ways. Our
design process is based on the assumption that curriculum and software
design can and should have an explicit theoretical and empirical founda-
tion, beyond its genesis in someone's intuitive grasp of children's learning. It
also should interact with the ongoing development of theory and re-
search—reaching toward the ideal of testing a theory by testing the software
and the curriculum in which it is embedded. Our model includes specifica-
tion of mathematical ideas (computer objects) and processes/skills (com-
puter tools) and extensive field-testing from the first inception through to
large summative evaluation studies (Clements, 2002; Clements & Battista,
2000; Sarama & Clements, in press). Phases of this nine-step design process
model are: drafting curriculum goals, building an explicit model of chil-
dren's knowledge and learning in the goal domain, creating an initial de-
sign, investigating components of the software design, assessing prototypes
and curriculum (with one-on-one interviews with students and teachers),
conducting pilot tests (in a few classrooms), conducting field tests in nu-
merous classrooms, and publishing the materials. All the while, feedback
from the field results in further refinement to the design of the software and
activities, which then results in further testing. In this way, we continually
loop through the earlier phases of the model.

Several steps deserve a bit more elaboration. The step of "building an ex-
plicit model of children's knowledge and learning in the goal domain" in-
volves the adaptation, creation, and use of learning trajectories. Building
Blocks is structured on empirically based learning trajectories through the
big ideas and skill areas of mathematics (Clements & Battista, 1992; Fuson,
1997). The step of "creating an initial design" is based largely on these
learning trajectories (which are discussed in detail in Part I and several
chapters of this volume), but also on other bodies of research. For exam-
ple, what mathematics is included is based on research on what topics are
developmentally appropriate for, generative for, and interesting to young
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children. As another example, the design directly applies research on
making computer software for young children motivating and education-
ally effective (Clements, Nastasi, & Swaminathan, 1993; Clements &
Swaminathan, 1995). It is to this last issue that I next turn.

DEVELOPMENTALLY APPROPRIATE PRESCHOOL
MATHEMATICS SOFTWARE

The extensive use of software in Building Blocks requires mining the ex-
isting research for what it tells us about young children's use of, and learn-
ing from, computer programs. Although the basic question of whether
computers are "developmentally appropriate" for young children at all is
still debated, I do not discuss it in detail, as the research is clear that, used
wisely, computer use can be meaningful, motivating, and beneficial for
children 3 years of age and above (Davidson & Wright, 1994; Haugland,
2000; Haugland& Wright, 1997; Sarama& Clements, 2002; Shade, 1994).

The research also indicates that not all uses of computers are valuable
and that teachers must work hard to integrate technology effectively
(Wright, 1998). As an example of the first finding, although hundreds of
products are now available for young children that include mathematics,
most of these products fall into one of three categories (Clements &
Nastasi, 1992; Sarama & Clements, 2002). The first category is drill pro-
grams, often disguised by multimedia "bells and whistles." Such programs
can be effective at their intended purpose, providing practice, but they do
not develop conceptual knowledge. Too often, the drill in these packages
is not optimally designed (e.g., not using the computer's management ca-
pabilities to provide targeted practice). The second, related, category, of-
ten called "Edutainment," also has attractive multimedia features, but
limited mathematics content and pedagogy. The third category, explor-
atory environments, has potential for mathematical investigations, but un-
fortunately young children usually explore them only on the surface level.
For both the second and third categories, there is little learning, by children
or educators (Sarama & Clements, 2002).

In contrast, programs with focused goals and coherent pedagogy can
help young children develop both concepts and skills (Clements &
Nastasi, 1992; Sarama & Clements, 2002). For example, the flexibility of
computer technologies allows the creation of a vision not limited by tradi-
tional materials and pedagogical approaches (cf. Confrey, 1996). As just
one illustration, computer-based communication can allow representa-
tions and actions not possible with other media. As an example of the lat-
ter, blocks can be actually glued together, trucks can leave paths in the
sand, and these paths can be changed, moved, saved, and used later with
other vehicles. The Building Blocks materials not only ensure that the ac-
tions and objects mirror concepts and procedures, but also that they are
embedded in tasks and developmentally appropriate settings (e.g., narra-
tives, fantasy worlds, building projects).
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The second research finding is that guidance by the teacher is essential
for effective integration of technology. Teachers must introduce, monitor,
and mediate children's interactions with computer programs (Clements &
Nastasi, 1992; Sarama & Clements, 2002). Building Blocks integrates tech-
nology activities with off-computer activities, and helps the teacher pro-
vide such mediation by providing pedagogical guidance for both off- and
on-computer activities in the teachers' materials.

We designed Building Blocks within this general research framework.
We also looked at the research on particular uses of computers to teach
mathematics to young children. One decision was to use computer
manipulatives. Some early childhood educators may argue that young
children benefit much more from the tactile experience of interacting with
concrete manipulates. But can on-screen manipulatives still be "con-
crete"? One has to examine what concrete means. Sensory characteristics
do not adequately define it (Clements & McMillen, 1996; Wilensky, 1991).

First, it cannot be assumed that children's conceptions of the
manipulatives are similar to adults' (Clements & McMillen, 1996). For ex-
ample, a student working on place value with beans and beansticks used
the bean as 10 and the beanstick as 1 (Hiebert & Wearne, 1992). Second,
physical actions with certain manipulatives may suggest different mental
actions than those we wish students to learn. For example, researchers
found a mismatch among students using the number line to perform addi-
tion. When adding five and four, the students located 5, counted "one, two,
three, four," and read the answer. This did not help them solve the prob-
lem mentally, for to do so they have to count "six, seven, eight, nine" and at
the same time count the counts—6 is 1,7 is 2, and so on. These actions are
quite different (Gravemeijer ,1991). Thus, manipulatives themselves do
not carry the meaning of the mathematical idea. Students must act on
these manipulatives in the context of well-planned activities, and ulti-
mately reflect on these actions. Later, we expect them to have a "con-
crete" understanding that goes beyond these physical manipulatives.

It appears that there are different ways to define concrete (Clements &
McMillen, 1996). We define Sensory-Concrete knowledge as that in which
students must use sensory material to make sense of an idea. For exam-
ple, at early stages, children cannot count, add, or subtract meaningfully
unless they have actual things. They build Integrated-Concrete knowledge
as they learn. Such knowledge is connected in special ways. This is the
root of the word concrete—"to grow together." What gives sidewalk con-
crete its strength is the combination of separate particles in an intercon-
nected mass. What gives Integrated-Concrete thinking its strength is the
combination of many separate ideas in an interconnected structure of
knowledge (Clements & McMillen, 1996).

For example, computer programs may allow children to manipulate
on-screen pattern blocks. Children working with physical pattern
blocks may develop sophisticated ideas of symmetry and geometric re-
lationships, but research has shown they often do not (Sarama,
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Clements, & Vukelic, 1996). The computer manipulatives offer several
mathematical and practical benefits. The software encourages explicit
awareness of the geometric motions used in creating a design. Specific
tools can allow children to dynamically explore composition and de-
composition of shapes. The "flatness" of the on-screen manipulatives
facilitates exploration of relationships between shapes (e.g., Matthew
became frustrated working off-computer after working with the soft-
ware because he was unable to cover half of his blue rhombus to get a
much desired blue triangle).

Practical benefits include being able to easily move a design when more
space is needed. Off-computer, moving the physical manipulatives often
results in the design falling apart. On-computer, children can glue the
shapes together before quickly sliding the entire design to another part of
the screen. Similarly, most children simply destroy their pattern block de-
signs when it is "clean-up" time. Children working on computer can save
their work and later come back to reflect, reproduce, or extend.

Computers encourage students to make their knowledge explicit,
which helps them build Integrated-Concrete knowledge. Specific theoret-
ically and empirically grounded advantages of using computer
manipulatives include (Clements & McMillen, 1996): providing a manage-
able, clean manipulative; offering flexibility; changing arrangement or rep-
resentation; storing and later retrieving configurations; recording and
replaying students' actions; linking the concrete and the symbolic with
feedback; dynamically linking multiple representations; changing the very
nature of the manipulative; linking the specific to the general; encouraging
problem posing and conjecturing; scaffolding problem solving; focusing
attention and increasing motivation; and encouraging and facilitating
complete, precise explanations.

Of course, multimedia and other computer capabilities should be (and,
in Building Blocks are) used when they serve educational purposes. Fea-
tures such as animation, music, surprise elements, and especially consis-
tent interaction get and hold children's interest (Escobedo & Evans, 1997).
They can also aid learning, //designed to be consistent with, and support-
ing, the pedagogical goals. In addition, access to technology is an impor-
tant equity issue. We plan on having much of our materials running on the
widely available Internet (Word Wide Web).

In summary, we designed the Building Blocks project to combine the art
and science of teaching and learning with the science of technology, with
the latter serving the former. Such synthesis of (a) curriculum and technol-
ogy development as a scientific enterprise and (b) mathematics educa-
tion research will reduce the separation of research and practice in
mathematics and technology education. This will produce materials
based on research and research based on effective and ecologically
sound learning situations. Moreover, these results will be immediately ap-
plicable by practitioners (parents, teachers, and teacher educators), ad-
ministrators and policymakers, and curriculum and software developers.
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MATHEMATICAL CONTENT

What mathematics should we teach? Basic mathematics for preschool
children can be organized into two areas: (a) geometric and spatial ideas
and skills and (b) numeric and quantitative ideas and skills. Research
shows that young children are endowed with intuitive and informal capa-
bilities in both these areas (Bransford, Brown, & Cocking, 1999; Clements,
1999a). Three mathematical themes should be woven through both these
main areas: (a) patterns, (b) data, and (c) sorting and sequencing. These
are children's mathematical building blocks, or ways of knowing the
world mathematically. We illustrate one approach to developing these
concepts through our Building Blocks project.1

As stated, we believe a good mathematics curriculum is based on finding
the mathematics in, and developing mathematics from, children's activity.
In this approach, children extend and mathematize their everyday activi-
ties, from art to songs to puzzles to, of course, building blocks (this is another
meaning behind the Building Blocks name). So, we designed activities
based on children's experiences and interests, with an emphasis on sup-
porting the development of mathematical activity. Mathematization em-
phasizes representing—creating models of activity with mathematical
objects, such as numbers and shapes, and mathematical actions, such as
counting or transforming shapes. Our materials embody these ac-
tions-on-objects in a way that mirrors what research has identified as critical
mental actions—children's cognitive building blocks (the third meaning of
the name). These cognitive building blocks include creating, copying, and
combining objects such as shapes or numbers. A following section illus-
trates how such actions-on-objects are embedded in the activities.

ROLE OF THE COMPUTER

An illustration of mathematical actions-on-objects, and how they are em-
bodied in both off-computer and computer activities, builds on young
children's experiences with and love of puzzles. This set of activities is
briefly described in Fig. 15.1. Children fill in outline puzzles using an ex-
tended set of pattern blocks. The objects they use are basic geometric
shapes. The actions they perform on these objects include sliding, turn-
ing, flipping, and combining or composing. They initially solve outline
puzzles with physical pattern blocks off the computer (Fig. 15.la). They
solve similar puzzles at the computer, enjoying that the blocks "snap" and
stay together accurately (Fig. IS.lb). More importantly, they use the com-
puter's tools to perform actions on the shapes (Fig. 15.1c). Because they
have to figure out how to move the blocks and choose a motion such as

'"Building Blocks—Foundations for Mathematical Thinking, Pre-Kindergarten to Grade 2:
Research-Based Materials Development." is being developed at the State University of New
York at Buffalo and Wayne State University, where Julie Sarama is the codirector. See
http://www.gse.buffalo.edu/org/buildingblocks/.



FIG. 15.1 a. Children solve puzzles by fill-
ing a puzzle outline with pattern blocks. They
solve each one in several different ways if
they are interested.

FIG. IS.lb. Then children do a similar
activity on the computer, where the pattern
blocks snap together in a satisfying manner
and stay put.

FIG. 15.1 c. Also, the computer's tools for
actions such as sliding and turning help chil-
dren become more aware of these mathe-
matical processes.

FIG. 15.1 d. Children might be challenged
to find a way to use the fewest (or the most)
blocks to fill an outline.

FIG. 15.la-15.ld. The "Shape Puzzles" activity.

367
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slide or turn, they are more conscious of these geometric motions.
Four-year-old Leah initially referred to the "spinning" tools, but later
called them the "turn shapes" tools, and after several months was de-
scribing directions and quantities, such as "OK, get this [right or clock-
wise] turn tool and turn it three times!" Such choices also encourage
children to be more deliberate. They "think ahead" and talk to each other
about what shape and action to choose next. In these ways, the computer
slows down their actions and increases their reflection. Just as important,
using the motion tools deliberately helps children become familiar with
seeing shapes in different orientations and realizing that changing the ori-
entation does not affect the shape's name or class. In a related activity,
children are challenged to build a picture or design with physical blocks
and copy it onto the computer. Again, this requires the use of specific tools
for the geometric motions of slide, flip, and turn and encourages children
to reflect on the orientation of the shapes. Children who are experienced
or advanced may be challenged in several ways. Some might enjoy find-
ing a way to use the fewest blocks to fill an outline (Fig. 15.Id).

How are learning trajectories embodied in this activity? Our theoretical
learning trajectory (see Clements, chap. 10, this volume) guides the selec-
tion of puzzles for children at different levels of the trajectory. For example,
the puzzle in Fig. 15.2a would be presented to the child at the level of
Pre-Composer, whereas the puzzle in Fig. 15.2b would be presented to the
child at the level of Picture Maker (just to be sure you know what it is, Fig.
15.2c shows the final picture), and the puzzle in Fig. 15.2d would be pre-
sented to the child at the level of Shape Composer.

These are powerful mathematical processes to perform on shapes, but
not out of the reach of preschoolers (although some will reach only the
lower levels). Research shows that preschoolers know a considerable
amount about shapes (Clements, Swaminathan, Hannibal, & Sarama,
1999; Lehrer, Jenkins, & Osana, 1998), and they can do more than we as-
sume, especially working with computers (Sarama et al., 1996). In the
broad area of geometry and space, they can do the following: recognize,
name, build, draw, describe, compare, and sort two- and three-dimen-
sional shapes, investigate putting shapes together and taking them apart,
recognize and use slides and turns, describe spatial locations such as
"above" and "behind," and describe and use ideas of direction and dis-
tance in getting around in their environment (Clements, 1999a).

In the area of number, preschoolers can learn to count with under-
standing (Fuson, 1988; Gelman, 1994), recognize "how many" in small
sets of objects (Clements, 1999b; Reich, Subrahmanyam, & Gelman,
1999), compare numbers (Griffin, Case, & Capodilupo, 1995), and learn
simple ideas of addition and subtraction (Aubrey, 1997; Clements, 1984;
Siegler, 1996). They can count higher and generally participate in a much
more exciting and varied mathematics than usually considered
(Ginsburg, Inoue, & Seo, 1999; Trafton & Hartman, 1997). Challenging
number activities don't just develop children's number sense; they can
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FIG. 15.2. Screens from the "Shape Puzzles" computed activity.

also develop children's competencies in such logical competencies as
sorting and ordering (Clements, 1984).

As an illustration, Building Blocks includes a set of activities in which chil-
dren learn one-to-one correspondence, counting, and equality. For example,
children "get just enough" treats or scissors for the children at their table and
in other real-world situations throughout the day. A computer activity chal-
lenges them to help a character get ready for a party, beginning with setting
the table. At a higher level of the same activity, an on-screen character re-
quests a certain number of items to add to the table. If a dish is missing, a
character at the table may say, "I don't have a dish!" This type of natural feed-
back helps young children learn. In related activities, children decide how to
share a given number of treats among those sitting at the table. Teachers
might talk to the children about the way they are figuring out how many items
they will need. Do they "deal out" the supplies each time? Or do they count
the number of people, and use that number when getting supplies?
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IN CLASSROOMS

We have completed the first three of the steps of classroom testing investi-
gating components of the software design, assessing prototypes and cur-
riculum (with one-on-one interviews with students and teachers),
conducting pilot tests (in a few classrooms). In this section, I provide sum-
maries and examples of the results of these tests.

The first pilot test for the geometry materials was limited in time—we
had only 6 weeks (27 sessions) and so we attempted to condense the
main Building Blocks activities for geometry. Pre- and posttests were given
to the students. The children's average pretest score was 69. Their average
posttest score was 84. Thus, despite limited exposure to the activities,
there was a substantial average gain.

On what specific items did children make the greatest gains? They in-
creased their scores on several difficult paper-and-pencil items in which
they had to identify shapes, especially increasing in their ability not to be
"fooled" by shapes that "looked like" triangles, squares, rectangles, and
especially rhombi and quadrilaterals, but were not. In a similar vein, al-
though they made only small gains in identifying figures that were
congruent, they significantly increased their ability to correctly state that
certain figures that looked to be congruent were actually not. On four
items that asked children to make shapes with sticks, they increased mod-
erately on initially choosing the correct number of sticks, while tripling
their scores on making correct angles. Similarly, they substantially in-
creased their ability to copy a complex design of three embedded shapes
by manipulating transparent versions of the individual shapes.

What activities engendered this learning? The children in this group in-
teracted with shapes in many different ways. They made pictures with pa-
per cutouts of shapes, completed pattern block puzzles, searched for
shapes in their environment and recorded what they saw (with adult help,
if needed), sorted shapes, built shapes with straws and blocks, and identi-
fied shapes in storybooks. On computer they matched shapes, explored
pattern block puzzles (including the use of geometric transformations),
and identified shapes in the context of building Mystery Toys.

Let's look at a specific example. When sorting rectangles and
nonrectangles, the teacher focused the children's attention on the sides.
Chandra was able to tell the teacher which pile to put a new shape in, but
was unable to articulate her sorting rule. Her partner, Marnie, similarly
said, "It matches," while pointing to the correct pile. For the next shape (a
right trapezoid), Chandra again pointed to the correct pile but gave color
as her reason for doing so. Alethea joined the group and disagreed, saying
the shape should go in the rectangle pile. Mitchell joined, pointed to the
nonperpendicular side and said, "No, [it's not a rectangle, because] some-
one cut it right here."

Later, the teacher asked Tiffany if she knew the name of the trapezoid.
She immediately said, "trapezoid," and pointed to the computer, indicating
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where they had learned that vocabulary term. In the computer activity Mys-
tery Toys, each shape name is pronounced as children match shapes. Later,
the children are asked to click on the correct shape when the computer pro-
nounces its name. This was a popular activity with the children and they en-
joyed imitating the "computer" voice when they named shapes.
Throughout the study, discussions encouraged children's descriptions
while encouraging the development of precise language. Early talk clarified
the meanings of terms. With such clarification, children learned to explain
why a shape belongs to a certain category—"It has three straight sides."
Eventually, they internalized such arguments, for example, thinking, "It is a
weird, long triangle, but it has three straight sides!" Finding and identifying
shapes by feeling was one particularly useful activity (see Fig. 15.3).

We piloted the number activities in another classroom of eight children;
we altered the assessment extensively, so averages were not computed.
Children made gains on all but a couple of items (most of which showed a
"ceiling" or "floor" effect; e.g., counting verbally to 10) that remained the
same from pre- to posttest. Increases were small (e.g., average gain of .25
points or more) on the following items:

• Recognizing the number of objects in collections of one to five
(four children could recognize the number of small collections of
one to five at pretest; the other four could recognize about half; all
could recognize all collections on the posttest).

FIG. 15.3. "Feely box" activities support both physical exploration and the development
of vocabulary and communication competencies.
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• Counting 8 objects.
• Adding and subtracting small numbers (totals < 4) without objects.
• Ordering "towers" of 6 to 12 connecting cubes.
• Identifying the number between two numbers (e.g., "What num-

ber is between 5 and 7?").

Children made moderate gains (average of 1/3 to Vfe point) on the follow-
ing items:

• Comparing the number in small collections (e.g., shown cards with
• • • and • * • and asked, "Are these the same number?").

• Recognizing counting mistakes that a doll made (moderate gains
on two subitems; small gains on two subitems).

• Counting out (producing) sets of 6.
• Labeling sets of one to five with numerals.
• Recognizing which hidden set was larger when they were initially

equal and items were added or subtracted.

Children made moderate gains (average above '/2 point) on the follow-
ing items:

• Quickly recognizing the number in small collections (i.e.,
subitizing; one to six objects).

• Adding and subtracting with objects (e.g., "If there were six dogs
and only four bones, how many dogs wouldn't get a bone?").

What activities facilitated children's learnings on the number items?
Children counted objects continually throughout the study. Reading
"non-math" books as well as books showing numerals were part of circle
time, but books also became part of the centers. It was in the centers that
children were able to interact with the books more extensively. Tanya was
looking at the book One Hungry Monster and wanted to figure out how
much food the monster ate on one of the pages. She put cubes near each
numeral counting as she did, "1, ... 1,2 ... 1,2,3." She then counted,
" 1,2,3,4,5,6 ... 6!" On computer, children's counting was supported by the
management system, which automatically adjusted the activity for diffi-
culty and provided appropriate feedback and help.

The children had multiple opportunities to perform simple addition and
subtraction. A toy dinosaur shop was set up in the socio-dramatic play area
of the classroom. As Geri played with Janelle and Andre, she filled many
"dinosaur orders." This involved reading a numeral on a card and counting
out the correct quantity for her "customers" and collecting the correct



15. BUILDING BLOCKS 373

amount of play money. Eventually, Janelle wanted to "trick" Geri and gave
her two cards, a 2 and a 5. The teacher suggested Geri give Janelle two of
one kind and five of another. She carefully counted out the two piles, put
them together and counted the total. She then asked Janelle for $7.

Ordering towers of connecting cubes became part of pretend play
when children were "making stairs" for small characters to climb. On the
computer, children moved along the learning trajectory built into the
software, first "finding the next stair," then building an entire staircase,
then finding missing stairs.

Counting out sets of objects was another activity that the children had
multiple opportunities to engage in throughout the year. In small groups,
children placed the requested number of objects in play scenes, made
cookies with chips, and filled dinosaur orders as previously described. In
the beginning of the study, some children could only count out two ob-
jects. In these small groups, children worked on counting out different
quantities depending on their capabilities. On computer, the children
counted out chips on a cookie, silverware and plates for a party, or the cor-
rect number of dinosaurs to fill an order. The management system auto-
matically adjusted the difficulty level (the number of items requested).

SUMMARY

Although mentioned briefly, it is easy to overlook the power of our com-
bined strategies. Research-based computer tools stand at the base, pro-
viding computer analogs to critical mathematical ideas and processes.
These are used, or implemented, with activities and a management sys-
tem that guides children through fine-grained, research-based learning
trajectories (developed over years of synthesizing our own and others'
empirical work). These activities-through-trajectories connect children's
informal knowledge to more formal school mathematics. The result is a
package that will be motivating for children, but is also comprehensive in
that it includes both exploratory environments that include specific tasks
and guidance, building concepts and well-managed practice building
skills, a full set of critical curriculum components, and a full range of
mathematical activities. The initial pilot tests results indicate that such an
approach can result in significant assessed learning gains consistent with
the new Standards of the National Council of Teachers of Mathematics (a
complete field test is being completed at the time of this writing).
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Mathematics Problem-Solving
Adventures: A Language-Arts-
Based Supplementary Series
for Early Childhood That Focuses
on Spatial Sense

Beth Casey
Boston College

THE MAJOR ELEMENTS OF THIS EARLY
CHILDHOOD SUPPLEMENTARY MATHEMATICS SERIES,

'ROUND THE RUG MATH

Two key elements of this new 6-book early childhood mathematics series
are summarized as follows:

• Through math story sagas, these mathematics-language arts ma-
terials make use of an oral- storytelling tradition to provide con-
text, continuity, and motivation for the learning of early math-
ematical concepts. Using this oral-storytelling approach, the sto-
ries and math activities have been designed to address gender, ra-
cial/ethnic, and cognitive equity issues.

• A major thrust of the present mathematics program is to introduce
both spatial and linguistic-based mathematical thinking during the
early childhood years, right at the point when students have their
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first contact with mathematics as a formal discipline. These supple-
mentary materials are specifically designed to provide young learn-
ers with rich opportunities to develop their visualization and spatial
reasoning skills when solving mathematics problems.

RATIONALE FOR THE USE OF ORAL STORYTELLING
AS THE MEDIUM FOR TEACHING MATHEMATICS

TO YOUNG CHILDREN

A problem with mathematics in general, and especially for young chil-
dren, is that students are asked to do mathematics activities that have lit-
tle intrinsic meaning and interest to them. Thus, they are often
disengaged when doing mathematics. Most of the prior mathematics pro-
grams that have attempted to use "relevant" and "real world" mathemat-
ics activities have drawn on problems that are connected to children in
their everyday life (such as counting the number of children who are
standing in line or using the calendar to teach counting). Though these
are useful and effective strategies, much of what is lacking is the ability to
locate a problem in a relevant context that is rich enough in its dramatic
elements—elements such as character development, plot, surprise, con-
flict, and suspense—so that the child is substantially drawn into this con-
text. This is one way that literature can effectively forge a link with
mathematics. Literature is a powerful medium for placing mathematics
in a meaningful context, and there has been a movement to incorporate
mathematics and literature in recent years (Coombs & Harcourt, 1986;
Schiro, 1997; Sherrill, 1994; Welchman-Tischler, 1992).

Using Oral Storytelling to Make the Literature/Mathematics
Link. This series extends the literacy-based approach to include oral

story telling. The use of storytelling characters to pose mathematics problems
harnesses the excitement and imagination of the children and directs that
energy toward mathematics learning. When the reason for solving a
mathematics problem is intertwined with young children's fascination with
fantasy as well as their love of being playful, then they will put all their energies
into solving the mathematics problems. Thus, the mathematics problems in
this book series become relevant and "real" to the children because they are
presented within a meaningful, story-based context.

The very nature of the oral delivery of a story is what significantly differ-
entiates it from a story read from a book. Rather than focusing on the book,
the children are challenged to create mental pictures of the events as the
story unfolds. An added advantage of storytelling is that the storytellers'
eyes are on the listeners, which leads to a more electric and closer con-
nection to the audience (Beatty, 1994). In addition, storytelling is a particu-
larly comfortable medium for early childhood teachers to use for the
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teaching of mathematics, due to their strong orientation toward the teach-
ing of reading and language arts.

In the past, even when children's literature has been used to teach mathe-
matics concepts, there has been little attempt to extend the book-related
mathematics activities beyond one or two lessons. In the 'Round the Rug
Math supplementary book described here, the lessons are part of an ongo-
ing saga where one mathematics lesson is connected to another in a mean-
ingful way through the medium of the story. The National Council of
Teachers of Mathematics (NCTM) Connections Standard (NCTM, 2000) rec-
ommends that students should understand how mathematical ideas build
on one another to produce a whole. Through the use of storytelling sagas, as
the stories evolve and become more intricate, so does the mathematics.

One book from the series, Tan and the Shape Changer (Schiro, Casey, &
Anderson, 2002), is set in ancient China, and focuses on part-whole rela-
tions using isosceles right triangles as the base figure. The first mathemat-
ics activity that the children do is to explore ways of combining
different-size triangles in order to make a dragon collage. This free explo-
ration of the triangles is an important prerequisite to later strategies for
solving part-whole problems. By free exploration, the children discover,
on their own, important mathematical relationships. They investigate at-
tributes of triangles and learn how they can be combined to create new
wholes (Albert, 2000b). For example:

Tamila discovered that two isosceles right triangles could make a square.
She also discovered that she could combine triangles of three different sizes
to make a square ... [Anotherl student had combined isosceles right trian-
gles to produce a square, a large triangle, and a parallelogram. These are typ-
ical examples of what many of the children were able to accomplish through
this activity on their own, with no template or specific instructions provided
... Ori's dragon shows two different types of patterning. In constructing the
tail of her dragon, she used triangles to form an alternating pattern of upright
and upside-down triangles. In the head of her dragon collage, another pat-
tern was formed by layering triangles of different sizes.... Alex used pattern-
ing to tranform the triangles into the body of the dragon. She created a
snake-like body by combining two rows of triangles, mirror-images of one
another, with one row filling the empty spaces created by the row of triangles
below. (Albert, 2000b, pp. 7-8)

As the story and mathematics continue in this book, both the character
of the Shape Changer in the story and the mathematics puzzles them-
selves, involve shape changing. In the story, the character of the Shape
Changer turns from an old man to a dragon to a fox fairy and back to an old
man again. At the same time, the little boy named Tan discovers he can
combine two isosceles right triangles to create a square, a large triangle,
and a parallelogram. The students also produce these three shapes from
the two triangles. They work on this problem on their own, again without
any model or template.
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Next, Tan and the children are further challenged to explore how to
make the shapes under a cloth. This requires them to depend on their tac-
tile sense to solve the problem rather than their visual sense. In one in-
ner-city kindergarten classroom, two boys continued working on this
problem during choice time, and the teacher had them demonstrate how
they solved the problem to rest of the class. They took a long time to show
how to combine the two triangles to make the parallelogram under the
cloth, and the other children watched intently and spontaneously cheered
when the problem was solved.

As Tan and the Shape Changer evolves, the students gradually combine
more triangles to make more complex shapes. However, as they create
these more complex triangle puzzles, they discover that their original three
puzzle shapes are actually hidden within these more complex puzzles.
Thus, in this storytelling saga on part-whole relations, a strong connection
is made from one mathematics lesson to another, both through the ongo-
ing story line and through the developing mathematics.

Use of animal characters as puppets who pose problems to the chil-
dren is again an important way in which literacy, the arts, and mathemat-
ics are linked within this series. Finding solutions to the mathematics
problems is of key importance to the puppet characters in the story, and,
thus, to the children. The puppet characters are treasured by the chil-
dren, and teachers from a variety of classrooms commented that the
puppets were treated almost as members of the class, and integrated by
the children, on their own, across other learning activities. In the book
Teeny visits Shapeland (Casey, Goodrow, Schiro, & Anderson, 2002), the
puppet is a turtle named Teeny who lives alone in a pond and is looking
for a family. One day as Teeny is sunning himself on a rock with his feet,
head, and tail tucked inside his shell, two children point out that he looks
like a circle. So Teeny makes a wish that he could go to a place where
there are all kinds of circles who might be his relatives. He falls asleep
and dreams he is in an imaginary place called Shapeland, and joins a
group of shapes who combine to become Red Wagon (made out of four
circles, a rectangle, and a triangle for a handle). Teeny and Red Wagon
encounter a number of adventures as they travel to Figure City for the
Shape Family Parade. Within the stories, Teeny has a pivotal role in pos-
ing mathematical problems and riddles, and in asking the children for
help in solving these problems. In order to help the story characters, the
students consider the attributes of two-dimensional (such as circles, tri-
angles, and rectangles) and three-dimensional shapes (such as spheres,
boxes, and pyramids), and use these attributes to solve sorting problems.
In the stories and activities, children take a closer look at a wider range of
attributes and shapes, as they consider relationships among two-dimen-
sional and three-dimensional shapes.

In one episode, there is a pile of wood blocking the road. Teeny the Turtle
helps figure out a way to clear the road, and he makes up a riddle for his
shape friends. For the students, solving the riddle (see the following) in-
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volves taking Popsicle sticks from the pile that has been laid on top of the
paper road, in order to use them to make different shapes:

Make each of your shapes with pieces of wood.
For the first shape use three. What shape can it be?

Let's all make some more. For the next shape, use four.
Two short sticks, two long. You cannot go wrong.

No matter how many pieces of wood that you take,
There's one last shape that you cannot make.

The road will be clear, if you show me why,
Then the riddle is solved, and we all can go by." (Casey, Goodrow et al., 2002)

The preschool and kindergarten children become very involved explor-
ing with the shapes to solve this riddle. Many of the children of this age tend
to identify only an equilateral triangle as a triangle. But as the children ex-
plore, they learn that there are many different looking shapes with
three-sides and three-corners that can still be labeled triangles. In one class-
room the children discovered that if you use a large enough number of
straight sticks, you can make a shape that is almost circlelike, but you never
can actually make a circle. At the end of this math activity, the children real-
ize that by solving the riddle, all the wood as been cleared from the road,
and Teeny and Red Wagon can continue on their way to Figure City.

The oral stories in these books provide a major link, not only between
mathematics and emergent literacy/language arts, but to the rest of the
early childhood curriculum as well. To a large extent, in the majority of
other early primary mathematics programs, the mathematics content is
de-contextualized from the rest of the curriculum. The present mathemat-
ics series is firmly grounded in the total early childhood curriculum, and
the story sagas provide an opportunity for thematic development that can
be extended to all parts of the curriculum. Teachers are presented with
curriculum webs that explicitly show how these mathematics books can
be connected to activities across the early childhood curriculum. For ex-
ample, inFrogletsDo The Measuring (Anderson, Casey, & Kerrigan, 2002),
it is suggested in the curriculum web that, for related science activities, the
students: (a) find out about real frogs, where real frogs live, and what they
eat; (b) sort collections of plastic frogs, and explain how they sorted, for in-
stance by color, by habitat, or by size; and (c) make a diorama showing the
habitats of different kinds of frogs.

Achieving Equity Through the Medium of Storytelling.
Storytelling provides an important motivating force for children of all

cultures, both mainstream and minority. Throughout history, oral stories
have offered the members of cultural groups a way of understanding their
world and of passing on their understandings to succeeding generations.
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Our storytelling approach to the teaching of mathematics is an out-
growth of the recent popular movement to integrate mathematics and lit-
erature (Coombs & Harcourt, 1986; Schiro, 1997; Sherrill, 1994). However,
storytelling is particularly useful, because mathematics learning becomes
accessible to children from strong oral-based cultural/literary traditions
(Pellowski, 1990). This dependence on an oral tradition in African-Ameri-
can and Hispanic cultures may put children from these cultures at a disad-
vantage when learning mathematics, which often is taught in a totally
de-contextualized way (Albert, 2000a). Thus, incorporating mathematics
education within a familiar context of oral storytelling is a promising way
of making these skills more relevant to children from cultures that have a
rich oral tradition (Heath, 1989; Rogoff & Morelli, 1989).

The present stories introduce multicultural characters meaningful to
children of both mainstream and minority cultures by incorporating story
characters from different parts of the world, including Arab lands, Puerto
Rico, China, Africa, and Europe. Using storytelling relating to different cul-
tural contexts and multicultural characters provides a base from which all
children can connect meaningfully to a variety of cultures and to different
parts of the world. This also allows the teacher to integrate these mathe-
matics materials with early childhood content across a wider range of the
curriculum including social studies.

Furthermore, the presentation of mathematics concepts within these
action-based adventure stories makes the learning process more mean-
ingful to all children. In these books, the children become active partici-
pants as the stories unfold. This is particularly critical for the younger, less
developmentally mature children, who tend to become distracted or dis-
engaged from the learning process. Allen (1991) and Boykin's (1992) re-
search on mathematical learning in African-American children showed
that many children remembered information better if it was communi-
cated using action words along with active involvement by characters
within a story (as compared to facts presented in a de-contextualized
form). In our development of the materials, we found this to be true of chil-
dren in all the classrooms, both urban and suburban. Through the use of
chants and movements and poems that actively involve the children in the
story and in the mathematics, the books are able to capture the children's
interest and motivation for learning mathematics.

We have field-tested our lessons in cognitiuely diverse, full-inclusion class-
rooms as well. The developmental, hands-on tasks provide a range of learn-
ing opportunities for children from diverse ability backgrounds, including
those with language and cognitive delays. Thus, the open-ended nature of the
materials in the books makes them more easily adaptable for children with
diverse needs. To address the needs of children at different developmental
levels, suggestions for meeting individual needs are provided for the mathe-
matics activities. Optional mathematics activities are also included, so that
teachers can provide additional experiences for children who need more in-
tensive work or for those who want to develop the mathematics ideas further.



16. MATHEMATICS PROBLEM-SOLVING ADVENTURES 383

One child in particular stands out from one of the field sites. She was a
student with severe special needs placed in a full-inclusion kindergarten
classroom in Boston. This child loved the puppet and held it as much as
possible. She was not physically able to sort shapes on her own, but her
teacher would hold up a shape, and she could articulate and point suffi-
ciently to indicate a sorting pile. Based on her choice, the teacher would
place the shape in that category.

THE LANGUAGE ARTS SKILLS ACQUIRED
THROUGH THESE MATERIALS

Comprehension Skills. These early childhood mathematical
materials also address important language arts competencies. The
acquisition of listening skills and the ability to demonstrate comp-
rehension of the story elements and sequence are major skills developed
throughout this book. An important aspect of the saga is that the children
are encouraged to carry over discussions about ongoing story lines for
several days or weeks. They are often asked to predict what will happen in
the stories, and to actively participate in the storytelling process. A rich
range of language-based activities, including poems, chants, and actions,
are all woven together. Often the ability to apply the story content to the
mathematics activities themselves demonstrates the level of
comprehension that the children have achieved about the story content
(Casey, Paugh, & Ballard, 2002).

Communication Skills. As the children collaboratively solve the
mathematics problems and report on their solutions to their classmates,
they are developing their expressive language. This is achieved through
their communications with each other. Children are encouraged to review
the story and mathematics from the previous lesson, and this helps both
communication and comprehension of the story and the mathematics. The
use of a narrative approach seems to have facilitated comprehension and
communication of both the language arts and the mathematics content in
one second-grade classroom that we used as a field site. The second
graders were presented with a new book in the series, but in the prior year,
when they were first graders, they had been using a book on measurement
from the series. When they encountered the frog puppet again, the children
were very excited, and recounted the story and the measurement concepts
from the material they had learned from the previous year.

RATIONALE FOR THE FOCUS ON SPATIAL SENSE
IN THE TEACHING OF MATHEMATICS OF YOUNG CHILDREN

There is evidence that skill at spatial thinking has an important role in math-
ematics achievement, with positive correlations found between spatial
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ability and mathematics achievement at all grade levels (Casey, Nuttall, &
Pezaris, 1997; Casey, Nuttall, Pezaris, & Benbow, 1995; Clements & Battista,
1992). Furthermore, the K-4 standards for school mathematics from the
NCTM (NCTM, 1989,2000) strongly recommend an increased emphasis on
teaching geometry and spatial sense. The development of spatial sense is
connected to the development of spatial skills, which involves the ability to
think and reason through the transformation of mental pictures. The spatial
way of thinking is contrasted with an alternative learning style or mode of
information processing that draws on linear, logical-deductive reasoning,
accessed through the verbal system (Baddeley, 1986). Both strategies can
be applied to mathematics problem solving (Battista, 1990). For example,
many mathematics problems can be solved either by drawing a diagram of
the solution (a spatial solution) or by laying out the step-by-step algorithmic
solution (a verbal, logical-deductive solution).

Numerous mathematicians report using spatial skills when they visual-
ize mathematical relations, and physical scientists report using such skills
when they visualize and reason about the models of the physical world
(Clements & Battista, 1992; Hershkowitz, Parzysz, & Van Dormolen, 1996).
Spatial reasoning can be an important component in solving many types of
mathematics problems, including: (a) the use of diagrams and drawings
(e.g., for algebraic word problems), (b) searching for numerical patterns,
(c) graphing numbers, (d) considering how fractions can be broken down
into geometrical regions, and (e) conceptualizing mathematical functions
(Wheatley, 1990).

Individuals who can utilize both spatial and analytical reasoning sys-
tems have an advantage in solving problems in many fields. The early
childhood years are the time when children start to form their strategies
for solving mathematics problems. With carefully constructed mathe-
matics materials that develop both spatial and linguistic-based mathe-
matical thinking, this period of learning has the potential to produce the
most influential and long-lasting effects on the ways children solve math-
ematics problems. It is also the beginning of the educational pipeline that
will funnel students either away from or toward eventual careers in
mathematics, technology, and the sciences.

Given the strong emphasis on the development of spatial sense in the
NCTM standards (1989,2000), it is problematic that many early elementary
mathematics curricula concentrate on number sense and barely touch on
geometry or spatial thinking (Clements & Battista, 1992; Fuys & Liebow,
1993). The present approach is designed to remedy this gap in the field.
Even when geometry is addressed in the mathematics curriculum in the
elementary and middle school years, it typically focuses on shape naming,
formulas, and rules, rather than on spatial reasoning. Furthermore, in or-
der to develop spatial sense, it is not sufficient just to increase geometry
content in the curriculum. Because spatial sense is involved in diverse
mathematical areas (Wheatley, 1990), in this early childhood mathemati-
cal series, we have developed spatial thinking in a wide range of content
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areas, including measurement, part-whole relations, block building,
shape attributes, representations, graphing and mapping, and patterning.

For example, in the saga, Sneeze the Dragon Builds a Castle (Casey,
Paugh, & Ballard, 2002), preschool and kindergarten children use block
building to achieve specific mathematical goals. In this story, Sneeze car-
ries the children back in time to the Middle Ages when Sneeze was a little
dragon. Sneeze was a friendly dragon who only breathed fire when she
sneezed. However, this got her into trouble when she accidentally burnt a
hole right in the middle of the design plans for a castle being built for the
king and queen. In these stories, Sneeze asks for help from the children.
The mathematics activities involve problem solving how to help Sneeze
create three-dimensional models out of blocks, representing different
parts of the castle complex.

Block-building skills in middle school and high-ability high school stu-
dents have been found to relate to their mathematics achievement (Pezaris
et ah, 1998), including performance on the math SATs (Bassi, 2000). A criti-
cal block-building skill involves the ability to balance a complex structure of
blocks upon a base of upright blocks. This spatial and constructional ability
draws upon engineering and architectural principles. In the saga about
Sneeze, age-appropriate spatial constructs related to the aforementioned
block-building skills are gradually introduced, and developed across the se-
ries of activities in the book. The early precursors to these complex balanc-
ing skills start from the construction of a simple arched doorway in the
castle wall, to the more sophisticated bridges across the moat with ramps
and stairways, and finally to the two-level castle tower.

Geometric relations are acquired as children start to learn such terms as
inside-outside, under-over, top-bottom, and straight-curved. The concept
of enclosure is introduced at the outset of this book in relation to the castle
wall. Developing understanding of enclosure may be important not only to
construction, but also to the understanding of geometric shapes, open and
closed figures, and even to later ideas of perimeter and area. In addition,
when block building, children are continually sorting and classifying
based on geometric properties relating to shape. The children's represen-
tational constructs are developing, along with estimation and measure-
ment, part-whole relations, visualization, and spatial planning skills
(Casey, Paugh, & Ballard, 2002).

Achieving Equity Through the Development of Spatial Skills.
Johnson and Meade (1987) conducted a study of more than 1,800 school-
children and found evidence of a male advantage in spatial skills starting
at fourth grade. More important, these spatial skills have been shown to
mediate gender differences in mathematics among both high school and
middle school students (Casey et ah, 1995; Casey, Nuttall, & Pezaris, 1997,
2001), and geometry items often show the largest gender difference on
mathematics tests (Mullis et ah, 1998; Rosser, 1989).
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The male advantage in overall mathematics test performance doesn't
emerge until high school and beyond. However, there is evidence for sub-
stantial gender differences in problem-solving strategies as early as Grade
1—with girls tending to depend on concrete strategies like counting and
modeling and boys tending to use more abstract strategies that depend on
conceptual understanding (Carr & Jessup, 1997; Fennema, Carpenter,
Jacobs, Franke, & Levi, 1998).

It is during the early years that boys' active involvement in spatial games
and activities starts to emerge. Girls have fewer out-of-school spatial expe-
riences than boys (Baenninger & Newcombe, 1996). Given the dearth of
spatial and geometry skills taught in elementary schools, many girls may
never tap their potential to think spatially. Therefore, it is important to pro-
vide a mathematics curriculum right from the start that attempts to equal-
ize these spatial experiences, and that solidly connects spatial thinking to
mathematical reasoning in a systematic way.

The 'Round the Rug Math series was designed to be interesting to a wide
range of girls by teaching the spatial concepts within the context of peo-
ple-oriented adventure stories. At the same time, the interactive and spa-
tial nature of the adventure stories makes mathematics lessons more
compelling to highly active boys. The goal is to enable early childhood
teachers to facilitate different styles of problem solving in all children.

FAMILY AND CAREGIVER INVOLVEMENT

To meaningfully involve parents and other caregivers such as grandpar-
ents in the learning process, the teachers are provided with optional
math activities that include the family. These are mathematics activities
for the children to do at home with a family member or caregiver. The
children do the activity, and when they return to school, share their work
with the class. This is an opportunity for the teacher to acknowledge and
help children to value the cultures that may be represented in the class-
room, as well as to engage the family or caregiver in doing mathematics
with the child. It also is a way of pointing out mathematics and spatial re-
lationships in the child's world. In one Boston classroom of diverse stu-
dents, the parents worked with their children to make beautiful dragons.
In another family activity in the same book on China (Tan and the Shape
Changer, Schiro et al., 2002), the students showed their caregivers how
to turn a square into two isosceles right triangles. The children also dem-
onstrated how the two triangles can be combined to make other new
shapes (parallelogram and triangle).

OVERVIEW OF THE MATHEMATICS CONTENT
COVERED IN THIS SERIES

This series uses an inquiry-based approach in which children are encour-
aged to problem solve, talk about their mathematical thinking, and repre-
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sent their solutions and strategies through pictures, constructions,
numbers, and words. Each book is designed to emphasize big ideas in
mathematics, and the use of spatial sense is integrated throughout. They
are also based on developmentally appropriate practices (Bredekamp &
Copple, 1997) through the use of hands-on learning, meaningful activi-
ties, and an integrated curriculum approach. Following is a brief sum-
mary of the content covered in the six books in the series:

• Shape attributes: classifying, sorting, and representing two-dimen-
sional and three-dimensional shapes. (Casey, Goodrow, Schiro, &
Anderson, 2002)

• Developing an understanding of spatial relations and spatial sense
through block building. (Casey, Paugh, & Ballard, 2002)

• Understanding part-whole relationships using mathematical puz-
zles. (Schiro, Casey, & Anderson, 2002)

• Visual estimation and measurement. (Anderson, Casey, &
Kerrigan, 2002)

• Examining spatial and number patterns and prealgebra. (Casey,
Anderson, & Schiro, 2002)

• Representations in pictures, numbers, and words: data analysis
and graphing. (Casey, Napoleon, Schiro, & Anderson, 2002)

ADDRESSING THE NCTM STANDARDS

In conclusion, the NCTM Mathematics Content Pre-K-12 Standards
(2000) have been addressed in this spatially based supplementary series
in a manner consistent with the Pre-K-2 NCTM Focus Areas. The most re-
cent NCTM standards (2000) for the Pre-K-2 level give equal weight to ge-
ometry and number content, in terms of the amount of emphasis in the
curriculum. When measurement and data analysis are considered as
well, number content holds a much smaller part of the recommended
curriculum than is typically taught in most early childhood classrooms.

Furthermore, a major goal of this chapter was to show how this supple-
mentary series addresses the NCTM (2000) process-based standards: (a)
by encouraging children to develop their spatial sense when solving math-
ematics problems, (b) embracing the "Equity Principle" in promoting
mathematical learning for all students, (c) developing mathematics com-
munication skills, (d) emphasizing spatial representation skills, (e) em-
phasizing problem-solving and reasoning skills, and (f) helping children
connect mathematical ideas to contexts outside of mathematics.
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Early Childhood Mathematics
Instruction: Seeing the Opportunities
Among the Challenges

Rachelle Feiler
San Diego Slate University

A significant part of the discussion about the adoption and implementa-
tion of mathematics standards for early childhood education (ECE) has
centered on the challenges involved. The challenges are real and impor-
tant, but a focus on the challenges may obscure the opportunities that ex-
ist. Just as teachers ask what knowledge students have that can be built
upon to develop new mathematical understanding, it is important that the
focus of implementation of the Principles and Standards for School Math-
ematics (PSSM; National Council of Teachers of Mathematics [NCTM],
2000) be on using what teachers know to develop new practices.

This chapter uses a developmental perspective on teacher change to
support the importance of drawing connections between what teachers
already do well and new practices that make sense to them. One point of
convergence can be found in goals shared by the standards for develop-
mentally appropriate endorsed by the National Association for the Educa-
tion of Young Children (NAEYC; Bredekamp & Copple, 1997) and the
process standards of NCTM (2000). Examples are provided herein to illus-
trate this convergence, and recommendations for additional ways to sup-
port early childhood teachers' implementation of the PSSMare proposed.
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DEVELOPMENTAL PERSPECTIVE ON TEACHER CHANGE

Goldsmith and Shifter (1997) described teacher change from a develop-
mental perspective. They proposed that teachers' mathematical practice
develops through an orderly progression of qualitatively different stages,
spurred on by transition mechanisms when there is motivation to change.
Finding an effective transition mechanism is key to stimulating change.

Goldsmith and Shifter (1997) suggested some criteria for an effective
mechanism, grounded in both constructivist and sociocultural perspec-
tives. An effective transition mechanism is one that connects new experi-
ences to prior understandings such that individuals must modify prior
understandings in light of the new experience. An effective mechanism can
also be a cultural tool that an individual appropriates that shapes the individ-
ual's experience such that new ways of thinking and behaving result.

To assist early childhood teachers to make a qualitative shift in their de-
velopment of mathematical practice, it is necessary to find mechanisms to
facilitate transition to the next stage of development. A focus on the pro-
cesses included in the process standards is one mechanism that may con-
nect teachers' prior understanding to new experience, while at the same
time providing a new cultural tool that teachers may appropriate.

CONNECTING DEVELOPMENTALLY APPROPRIATE
PRACTICE AND THE PROCESS STANDARDS

There is little research that examines existing instructional practices in
early childhood mathematics education (see Wadlington & Burns, 1993,
for one notable exception). There is, however, a body of literature re-
garding ECE practices more generally, which includes some recom-
mendations for mathematics learning in the early years (e.g.,
Bredekamp & Copple, 1997; Hart, Burts, & Charlesworth, 1997). This lit-
erature on developmentally appropriate practice suggests that many
early childhood teachers value the development of critical thinking and
communication skills as goals for their programs, even if they don't ad-
dress them in mathematical contexts. The value of critical thinking and
communication skills is also evident in the five process standards in-
cluded in the NCTM PSSM (NCTM, 2000).

The process standards describe the problem-solving, reasoning, com-
munication, connection-building, and representation skills and under-
standings young children should develop. Framing the goals of
mathematics education within these processes, which many early child-
hood teachers identify as valued elements of their current practice, can
provide a point of convergence for the early childhood and mathematics
education communities. For example, many teachers of young children
place high priority on helping their students develop positive social skills
and on building community in their classrooms. To this end, they often as-
sist students in developing the skills to identify social problems, generate
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and evaluate multiple strategies, and work with peers to decide on the so-
lution with the best fit.

The following vignette illustrates a social problem-solving event in an
early childhood classroom. Prior to the class discussion described next, Ms.
LaVerne1 observed twin sisters arguing on the playground. Susan was upset
because she felt Jennie had "stolen" her friends. Ms. LaVerne saw this as an
opportunity to engage her whole class in a problem-solving exercise:

Ms. LaVerne reminds everyone to join her on the rug as they come inside
from the playground. As children take their seats on the perimeter of the
rug, Ms. LaVerne motions for Susan and Jennie to sit next to her at the head
of the rug. When everyone has settled in quietly, Ms. LaVerne explains that
the two girls have a problem and they need all their friends to help them
solve it. Ms. LaVerne reminds the class of the rules for discussion: Listen
quietly, no put-downs, raise your hand to speak. Then she asks the girls to
explain the problem to the class. Susan , in a tearful voice, tells the group
that she does not want Jennie to visit their class any more because Jennie is
taking all her friends. Jennie insists she is not trying to take the friends away,
but they want to play with her and she wants to play with them. Susan in-
sists that, as the rightful member of this class, she should get to set the rules
and Jennie should follow them. Ms. LaVerne interrupts the sisters' ex-
change to suggest that the other students might have some suggestions.
Several children offer ideas—Jennie could go back to her class immedi-
ately, Susan could visit Jennie's class and steal her friends, the two could
play together with the friends in this class, each sister could pick one friend
to be theirs alone and that friend could not choose to play with someone
else. As each idea is presented the sisters listen and offer some comment.
No, Jennie cannot go back to her class right now because the class is not in
their room. The sisters cannot share all the friends; that's how the trouble
started. Finally they settle on each nominating one friend, and the two
friends agree to play with their assigned sister. Ms. LaVerne tells the class
she is proud of the way the sisters talked about their differences and of the
way the class helped them solve their problem. She then asks the students
to gather around her to hear a story.

Ms. LaVerne's class spent 20 minutes discussing the problem of sharing
friends. In that time they listened as two children explained the problem,
several students generated strategies for solving the problem, and the oth-
ers evaluated the solutions, contributed more information and, finally,
helped establish the final outcome. This process is not so different from
the teacher posing a mathematical problem, asking children to find a way
to solve it, and then asking children to share their solution strategies while
the class listens and discusses each one.

Another example of the ways in which the process standards converge
with the early childhood instructional landscape comes from the Reggio
Emilia approach. The schools of Reggio Emilia, Italy, have developed an

All teacher and student names are pseudonyms.
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approach to ECE that places a heavy emphasis on young children ques-
tioning, discovering, and representing their thinking. Representation is
said to occur in "100 languages" (Edwards, Gandini, & Forman, 1993). For
example, a group of 3- to 5-year-olds studying sunflowers might observe
them, sketch them, paint them, and sculpt them out of clay. Children could
touch the flowers, talk about them, and perhaps taste sunflower seeds. All
the while teachers photograph children at work, record conversations,
and document the process of discovery and representation. This context
is rich with opportunities to promote the skills embedded in the process
standards. Mathematics can easily be considered one of the hundred lan-
guages, and mathematical concepts can be studied in an intensive way
according to children's interests (see, e.g., Shoe and Meter, Malaguzzi,
1997, which documents a project where children measured a table in or-
der to provide a carpenter with instruction on how to reproduce it; see also
Sarama, chap. 15, this volume).

Opportunities, then, do exist to build connections between develop-
mentally appropriate practice and the process standards. The question re-
mains: How does this convergence become a transition mechanism,
where the processes described in the standards become a catalyst that
moves teacher development to a qualitatively different stage?

FACILITATING CHANGE: THE PROCESS STANDARDS
AS A TRANSITION MECHANISM

One study sheds some light on how the process standards might function
as a transition mechanism. In a research project reported in more detail
elsewhere (Feiler, 2002), Megan Franke and I collaborated with a group of
early childhood teachers, including Ms. LaVerne, to integrate more sys-
tematic mathematics instruction into their curriculum. The teachers
were part of a program that emphasized children's construction of under-
standing and communication of ideas. One teacher, Ms. Harris, was espe-
cially skilled at listening to her 4-year-old students and supporting them to
express their thinking in a variety of ways. When we began our collabora-
tion, most of Ms. Harris' discussions with students involved social-emo-
tional issues or instruction in literacy or art.

Over the course of the year that we worked together Ms. Harris began to
try new things with her students. When we showed videotape of a kinder-
garten teacher solving word problems with students, Ms. Harris decided to
try some word problems with her students. The following excerpt from
field notes of Ms. Harris' instruction details her first experience of solving
word problems with a small group of students:

Ms. H: If we were baking cookies in the Red Room and we baked
five cookies and in the Green Room they did the same job
and they brought us the five cookies that they baked, how
many cookies would we have altogether?
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All: [Almost immediately.] 10!
Ms. H: [Looks surprised.] Wow. That's so easy for you! [pause] I

want to know how each of you figured it out. Sally, how did
you figure it out?

Sally: Because one 5 and another 5 is 10. [Holds up all fingers on
one hand, and then all fingers on the other hand. ]

Ms. H: So you were really thinking about that. Good. Penny, how
did you figure it out?

Penny: In my head.
Ms. H: Yes, I know you were thinking, but how did you know it was

10?
Penny: [Looks thoughtful, but doesn't speak.]
Ms. H: [After waiting about 30 seconds] Why don't you think more

about it and I'll come back to you, OK? [Penny nods. ] John,
tell me how you figured it out.

John: I know because my sister told me that 5 plus 5 is 10.
James: Me too! That's how I figured it out. [Ms. Harris starts to ask a

question.]
John: You don't even have a sister!
James: But I knew it was 10.
Ms. H: Well, that problem was very easy for you, I can tell. Let me

try another one ... [pauses to think of a problem]. Now, if it
was Penny's birthday and she brought cupcakes ... If she
brought 18 cupcakes, does everyone get a cupcake?
[Children appear to think, but don't seem clear about the
question.] How many children are in our class?

James, Penny, and John:23.
Ms. H: So would we all get one?
Sally: No.
Ms. H: Tell me how you figured it out.
Penny: What if someone wasn't here?
Ms. H: [Laughs.] That's a good question. Let's say everyone was

here and we were all sitting on the rug. If Penny brought in
18 cupcakes, would she have to call home and ask her
mother to bring more? How many of us would not get a cup-
cake?

John: Sarah, and Leslie, and —
Sally: Five.
Ms. H: Oh. Tell me how you figured that out. [Sally does not re-

spond verbally. Looks at her unifix cubes.]
John: It's five.
Ms. H: How did you figure it out?
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John: Because there are 23 people in class and 18 is less than 19.
Ms. H: That's true, 18 is less than 19. How did you know that we

would need 5 more than 18? ...

Ms. Harris connected her strengths in listening to and supporting her
children's thinking with the mathematical problem-solving process we
had discussed. This new problem-solving practice provided her with op-
portunities to listen to children's thinking about mathematics, something
she hadn't really done before. At the end of the year we asked Ms. Harris to
talk about her experience with solving problems and how her instruction
had changed. She said,

I didn't do problem solving to the extent that I have done, especially with the
smaller group with the kids. Due to the fact that I thought that they weren't
ready for it. But I'm realizing that they are and they're very capable of it... so
the questions that I might ask might be too hard for some, too easy for others
but yet I get to figure out the people who are capable of solving it, where they
need to go next. And the people who can't solve, it helps me understand
what they might need next time.

Ms. Harris learned a great deal about young children's mathematical un-
derstandings and what her students could learn with her assistance by lis-
tening as students solved problems. Building on her strengths, she
developed an interest in the mathematics and in what her students knew.
The processes of solving problems, reasoning, and communicating about
mathematics served as a bridge between her well-established practices
and teaching mathematics.

In the case of Ms. Harris, problem-solving, reasoning, and communica-
tion processes were transition mechanisms that facilitated the develop-
ment of her mathematical practice. The processes connected Ms. Harris'
new experience with mathematical problem solving to her prior experi-
ence in such a way that she had to modify her prior understanding of chil-
dren's mathematical thinking. Mathematical problem solving can also be
viewed as a cultural tool that Ms. Harris appropriated which, as a result, led
to new ways of thinking and behaving that supported her development.

CONCLUSION

The story of Ms. Harris illustrates the great potential for building on the
strengths of early childhood teachers to implement the PSSM (NCTM,
2000). However, it is important to remember that most early childhood
teachers, including Ms. Harris, will need the assistance of others to de-
velop the knowledge of mathematics and children's mathematical think-
ing that they need to implement all of the principles and standards well.
Some teachers may need additional support in making explicit connec-
tions between their current practices and the mathematics practices sup-
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ported by the PSSM. For example, shortly after Ms. LaVerne's class
discussion about the two sisters sharing friends, the idea of posing mathe-
matical problems to the whole class was raised in a collaborative meet-
ing. Ms. LaVerne's response was immediate: "They would mutiny on me
after five minutes!" She did not believe her students, who had worked to-
gether for 20 minutes on the sisters' problem, would be as engaged by a
problem centered on mathematics.

Ms. LaVerne's response may represent a common attitude about math-
ematics that will have to be addressed in order to implement the Stan-
dards in early childhood classrooms. For many reasons, early childhood
teachers often assume children will not be engaged by mathematics, or
believe young children do not have a sufficient attention span for "aca-
demic" work. Even Ms. Harris initially did not believe that her students
were ready for mathematical problem solving. The mathematics educa-
tion community has come a long way in redefining mathematics as a dy-
namic discipline full of opportunity for inquiry and discovery. This
conception of mathematics does not yet seem to be prevalent among
early childhood educators.

Early childhood teachers can bring a great deal to the task of implement-
ing mathematics standards. To maximize the benefits of teachers' strengths
it is critical to support early childhood teachers in building on their strengths
by helping them connect mathematics to other practices. The best place to
start may be with the process standards. Problem solving, critical thinking,
communication, and representation are already valued by many early
childhood educators. With some careful consideration, teachers' engage-
ment with the process standards can be used as a vehicle to build interest in
and develop their understanding of mathematical content.

There are two other critical ways in which the mathematics education
community can support early childhood teachers. First, more examples
related to the PSSM (NCTM, 2000) should be drawn from early childhood
classrooms. This will help teachers identify the practices they already use
and give them confidence that they and their students are capable of
learning the mathematical content included in the Standards. Finally, pro-
viding more specific information regarding expectations for student learn-
ing within the broad Pre-K to Grade 2 band will help early childhood
teachers set appropriate goals and understand the expected progression
of learning for their students.

The ECE conference was a unique opportunity to bring together groups
that seldom mingle: mathematicians, policymakers, mathematics educa-
tors, and early childhood educators. Although the focus on challenges is
important in determining ways to address the critical problems of adop-
tion and implementation of the Standards, we would be misguided in not
bringing to the discussion the strengths of early childhood programs and
practitioners. If we do not build on early childhood teachers' strengths and
current best practices we run the risk of alienating the very community the
PSSM (NCTM, 2000) should serve.
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the Standards
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Angela Garcia is a first-grade teacher in a large urban school district. Four
years ago, she became part of an early childhood professional develop-
ment project, a collaboration between the local university, 12 in-service
teachers, and a group of 25 beginning preservice teachers. Since that
time, her disposition toward mathematics has drastically changed, her
use of effective instructional strategies has improved, and best of all, she
listens to her students communicate and learn so that she can better
teach. Listen to her describe a lesson she recently taught to first graders:

I was really excited to introduce capacity measurement with a discov-
ery-type lesson to my kids. A few years ago, I would never have tried i t . . . I
was never good at math; in fact, I hated it! If I didn't have the book with the
answers, I was never going to do anything. In fact, I must confess ... I began
teaching first grade because I knew it didn't require much math. I knew I
could do first-grade math but I wasn't sure about second! Anyway, let me tell
you what happened. I distributed five plastic containers to every group. I
asked children to put the containers in order ... the one that holds the least
amount of water to the one that would hold the most. Immediately, they be-
gan talking and putting the containers in order. I had planned on telling them
how to compare the capacities of each container, giving them a pitcher and
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another container so they could do their measuring. In the meantime, they
began discussing how they were going to prove their answer to be correct. In
fact, I overheard some of them say, "You know, Mrs. Garcia, is never going to
believe this ... she always makes us prove everything!" After spending a few
minutes listening to their reasoning, I then announced where they could find
additional materials, a water source, and paper towels. Then, I stood back!
Amazing things happened. Some groups demonstrated that they under-
stood transitivity and had conservation of volume. Others used better re-
cording and measurement techniques than 1 was going to suggest. Still
others devised creative procedures for ordering the containers. As a result,
their group presentations were well reasoned and presented clearly. Many of
the other group members asked questions about their results and required
their peers to give justifications for their answers. In fact, I was silent for most
of the math period while children were reasoning, communicating, and
solving problems. It was great.... the kids were great!"

Powerful mathematics! Angela told this story during a group discussion
with other first-grade teachers involved in the Early Childhood Mathemat-
ics Collaborative. Fortunately, this type of sharing is a common event. Be-
gun 4 years ago at the University of Houston, the Early Childhood
Collaborative was developed to provide early childhood preservice and
in-service teachers with opportunities to teach and learn mathematics. It
now involves 3 public schools, 63 in-service teachers, and more than 165
preservice teachers representing 7 prekindergarten, 18 kindergarten, 13
first-grade, 14 second-grade, and 17 third-grade classrooms. Formed to
address specific professional development issues, the Early Childhood
Collaborative focuses primarily on young children and their understand-
ing of mathematics. In addition, a variety of effective professional develop-
ment techniques are implemented to enhance teachers' understanding of
mathematics and children. The purpose of this chapter is to describe the
Early Childhood Collaborative as just one example of a way to promote a
shared vision of learning and teaching mathematics.

THE PROBLEM WITH PROFESSIONAL DEVELOPMENT

A major deterrent to the implementation of a strong mathematics pro-
gram for children in preschool to third grade is the inadequate prepara-
tion of teachers. Early childhood teachers are often phobic about
mathematics, view necessary mathematics as only "counting, adding,
subtracting, and knowing shapes," and have little or no knowledge
about the mathematics standards (Copley & Petri, 1998; Copley & Sultis,
1997; Johnson, 1999). Data collected from a 5-year survey of teacher
candidates revealed that prospective early childhood teachers gener-
ally feel most comfortable teaching reading and other language-ori-
ented skills. To them, mathematics is a difficult subject to teach and one
area that they often ignore except for counting and simple arithmetic op-
erations. Early childhood teachers are often unaware of the essential
processes of mathematics, specifically, reasoning, problem solving,
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connections between mathematics and the world of the young child,
and the communication skills critical to early conceptual understand-
ing. In addition, their knowledge, beliefs, and instructional strategies are
focused on computation skills rather than problem solving, and they
generally demonstrate procedural steps to solutions rather than listen-
ing to their students' methods and reasoning (Carpenter, Fennema, Pe-
terson, & Carey, 1988; Fennema et al., 1996).

Some professional development issues involving both preservice and
in-service teachers are especially prevalent. First of all, the fact that many
early childhood teachers feel uncomfortable with mathematics was con-
firmed with surveys completed by both preservice and in-service teach-
ers. Comments like, "I don't do math" or "I know kindergarten math ...
that's enough!" or "Young children shouldn't do mathematics ... it's noto o

appropriate!" caused concern and illuminated the need for professional
development in mathematics education. Second, preservice teachers
needed as many nonevaluative experiences as possible before they began
their more formal student teaching experiences. Although they were re-
quired to frequently observe in classrooms, preservice teachers often ex-
pressed their concern and fear of "real teaching" or of "being in front of a
group of children." They had little or no practice in teaching real children
before they were evaluated by their supervising or cooperating teacher.
Third, in-service teachers frequently expressed their frustration with typi-
cal professional development experiences. Workshops presented on Sat-
urdays or after school, conference opportunities that necessitated a large
amount of preparation for substitutes, and presentations that were geared
to the intermediate grades all contributed to their frustration with profes-
sional development opportunities. Fourth, and most important, teachers
reported that their children's mathematics achievement was lower than
they expected. Classroom observations of mathematics instruction,
teachers' lack of knowledge about the standards, and state assessment
concerns all contributed to the identification of a need for better profes-
sional development.

GOALS OF THE COLLABORATIVE

Copley and Padron (1999) synthesized a list of professional development
standards based on NCTM's (National Council of Teachers of Mathemat-
ics) Professional Standards for Teaching Mathematics (1991), and Guide-
lines for Preparation of Early Childhood Professionals: Associate,
Baccalaureate, and Advanced Levels (National Association for the Educa-
tion of Young Children, Council for Exceptional Children, and National
Board for Professional Teaching Standards, 1996). The six standards state
that effective professional development programs allow the early child-
hood teacher to: (a) develop good dispositions toward mathematics, (b)
experience good teaching in mathematics, (c) focus on learning about
children, (d) participate in a variety of professional development opportu-
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nities situated in a learning community, (e) demonstrate an ability to im-
plement integrative curriculum, and (f) utilize appropriate strategies to
establish family partnerships (Copley & Padron, 1999).

The goals of the Collaborative are based on the identified needs for pro-
fessional development in mathematics as well as the Integrated Profes-
sional Development Standards for Early Childhood. Generally, the goal of
the Collaborative is to improve the mathematics instruction of the early
childhood teacher. Specifically, the methods used to accomplish this goal
are identified as:

• Preservice teachers are given many opportunities to teach mathe-
matics in early childhood classrooms in nonevaluative settings.

• Mathematics is taught to both preservice and in-service teachers
using modeling, classroom observations, coaching, and study
groups.

• Study groups and coaching sessions for in-service teachers are
conducted as part of the regular classroom teaching day and do
not occur during break times, planning times, after school, or on
Saturdays.

• Mathematics standards from NCTM and early childhood guide-
lines from NAEYC are the foci for the content of the professional
development experiences.

• Children's thinking and learning of mathematics is observed, re-
searched, and discussed by both preservice and in-service teachers.

DESCRIPTION OF COLLABORATIVE

The Early Childhood Collaborative involves three components: (a) begin-
ning (preservice) teachers teaching in early childhood classrooms (four
or five per classroom), (b) practicing (in-service) teachers meeting in
study groups while the beginning teachers "cover" their classes, and (c)
the university professor modeling mathematics lessons in early child-
hood classrooms for both beginning and practicing teachers. The school
sites were selected by adherence to specific criteria, namely, proximity to
the university, diversity of student population, number of early childhood
teachers, willingness to participate in a 3-year commitment, administra-
tive support, and the need for mathematics professional development. All
three schools were in Houston or the surrounding area. More than 30 lan-
guages were spoken by students in these schools; in fact, many of the
classes were bilingual or taught using English as a Second Language
(ESL) strategies. All three schools contained first- or second-year teachers
as well as teachers with 25 years or more experience. The average num-
ber of years of teaching experience for the practicing teachers was slightly
more than 4 years. In addition, many of the teachers were provisionally
certified or had been issued emergency certification. (In 1998-1999,
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Texas spent more than $235 million on prekindergarten initiatives in pub-
lic schools [Children's Defense Fund, 2000] so there are many needs and
opportunities for early childhood teachers.)

Component 1: Beginning (Preservice) Teachers. The begin-
ning teachers were involved in the Collaborative before field-based
methods courses or student teaching. Initial surveys indicated that the
beginning teachers had little experience working with young children,
and almost no experience working with mathematics. Because they
lacked the necessary skills to select appropriate mathematics lessons, the
university professor prepared and modeled the lessons before they taught
them. Beginning teachers received lesson plans 1 week before each
collaborative session and were encouraged to think creatively and flexibly
about the classroom possibilities. As part of their early childhood class
requirements, all beginning teachers were required to be involved in a
collaborative experience.

Component 2: Practicing (In-service) Teachers. The prac-
ticing teachers in the Collaborative were early childhood teachers in
public schools. While the beginning teacher teams covered their classes,
the practicing teachers met with the university professor and discussed
mathematics standards. Teachers and the university professor shared
activities, beliefs, observations, and questions about mathematics and
how children learn. The process standards of problem solving, reasoning,
communicating, connecting, and representing were stressed throughout
the sessions as well as methods to meet the needs of children.

Component 3: University Professor. During each collaborative
session, the university professor taught in several early childhood
classrooms. Observed by both practicing and beginning teachers, the
university professor led debriefing sessions about the lessons. In most
cases, the modeled lessons directly related to the standard taught by the
beginning teachers and the standard discussed in the study groups.

During the 1999-2000 school year, the five content standards suggested
in Principles and Standards for School Mathematics: Discussion Draft
(NCTM, 1998) were studied. Every month, a new content standard was in-
troduced and lessons were modeled that addressed that particular con-
tent standard. In addition, the process standards were introduced,
examples noted, and teaching strategies discussed. The schedule for the
Collaborative sessions were: (a) Introduction to Mathematics, (b) Princi-
ples for School Mathematics, (c) Organizing for Thinking, (d) Data Analy-
sis, Statistics, and Probability, (e) Number and Operations, (f) Patterns,
Functions, and Algebraic Thinking, (g) Geometry and Spatial Sense, (h)
Measurement, (i) Strategies for Family Involvement, and (j) Factors That
Affect Practices. Lessons directly correlated to the content standards and
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developed for the TEXTEAM Professional Development Institute (State
Systemic Initiative, 1999-2000) were field-tested in the classrooms by both
the preservice and in-service teachers. In total, there were 30 Collabora-
tive sessions held during the 1999-2000 school year, 10 at each school.
Each Collaborative session lasted the entire school day, approximately 6
hours. Although the schedule differed slightly at each school, generally,
the preservice teachers met with the university professor for the first hour
to review the lessons and make final preparations for their teaching. Then,
during the day, teams of preservice teachers taught in three different class-
rooms while the in-service teachers met with the university professor in
study groups. Finally, preservice and in-service teachers observed the uni-
versity professor teach in one or two classrooms noting children's thinking
and reactions. The day ended with a debriefing session between the
preservice teachers and the university professor.

TYPICAL PROFESSIONAL DEVELOPMENT SESSION

Each Collaborative session involved a meeting of in-service teachers with
the university professor in 1 -hour study groups. These sessions always fol-
lowed the same procedure: (a) brief introduction to any change/addi-
tions to the Collaborative, (b) reports of practicing teachers who
observed the university professor, (c) sharing of children's work or ideas
specific to the standard discussed during the previous session, (d) pre-
sentation of new standard along with specific ideas for implementing the
standards, and (e) reading assignment from the Standards document and
teaching suggestions.

As an illustration, the following session, the second of two on geometry,
occurred in a kindergarten/prekindergarten group. Because much of the
content was new to them, the six teachers had requested two sessions on
geometry, one session specifically dealing with three-dimensional (3-D)
shapes and the second with two-dimensional (2-D) shapes. As the teach-
ers arrived, they investigated the new materials (3-D tangram blocks, bev-
eled curved blocks, and some wooden geoblocks with atypical shapes)
displayed on the table. The teacher who had observed the university pro-
fessor shared the lesson that she had observed.

"Nita introduced the best game, called 'Build the Tallest Tower!' I was
amazed by the children's total attention and their block choices as they
built their creations." The teacher described the activity, emphasizing the
children's choices of building materials. "I thought they would automati-
cally put the bigger blocks on the bottom... they didn't! Instead, they chose
the prettiest colors or shapes. The square pyramid was their favorite and
when they put it on the top, the other team members look so dismayed!
They knew it would be a problem to make that tower taller." The other
teachers began asking about the game directions and the teacher shared
how she played the game later in the week with the specific adaptations
she had made to the activity. When everyone seemed ready, the university
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professor debriefed the lesson by posing questions about the specific ped-
agogy employed during the lesson:

What questions did I ask to get the children to compare the towers' heights?
How did I respond when the towers fell? What questions did I ask to get chil-
dren to reflect and think about their tower building strategies? How did I
make this a game for everyone, rather than a competition? What were the
children learning about 3-D shapes? What were they learning about num-
ber? How did their understanding of the attributes of 3-D shapes change from
the beginning of the game to the end?

After this discussion, the other teachers shared their observations of their
children's work in geometry over the past few weeks. Several teachers
talked about the building creations that were made in the block centers and
the conversations they heard as children told their friend "how to make one
good like me!" One kindergarten teacher shared her experience with blue-
prints (blue butcher paper drawn with white crayons) that children used to
represent their building creations so that they could remember what they
had built. One prekindergarten teacher told about her children's success
when she placed the building cards vertically rather than on the table. Still
others told about the center ideas that they had tried that were part of the
preservice teachers' lessons from the week before. The "3-D clay trans-
form" and "shape sculptures" activities were particular favorites.

In the last 20 minutes of the session, the university professor introduced
the topic of 2-D shapes. She briefly mentioned the specific 2-D activities
the preservice teachers were doing in their classes and reminded them of
the Web site they could use to access the activities. Then, she showed
them a 2-minute video clip of two 5-year-olds discussing the attributes of a
triangle and a square. To their surprise, both 5-year-olds stated that a trian-
gle was not a triangle if it was in the wrong position, that is, "on its end" or
"on its tip." In addition, they stated that a tipped square was really a "very
fat diamond" and definitely "not a square." The university professor en-
couraged them to question their children in the same way during the next
weeks. She again told the group when and where she would be teaching
the next week, restated that she would be teaching a lesson on 2-D shapes
and their position in space, and concluded with a reading assignment for
the next session. The teachers left to relieve their preservice substitutes,
still talking about geometry and how it "was so much more" than they had
ever thought about before.

EVALUATION PLAN FOR THE COLLABORATIVE

The first two school years of the Collaborative (1996-1997 and
1997-1998) were learning experiences. Based on these experiences as
well as other school-based projects, the issue of trust and credibility be-
tween the university professor, in-service teachers, and preservice
teachers was recognized as an essential characteristic to the success of
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any collaborative project. Typically, that trust takes about a year to de-
velop (Copley & Petri, 1998; Copley & Sultis, 1997). For that reason, the
Collaborative was not formally evaluated until the 1998-1999 school
year and the evaluation methods employed were as nonintrusive as pos-
sible. Interviews, questionnaires (National Council of Supervisors of
Mathematics, 1994), and open-ended responses were the primary
means of data collection. Obviously, results obtained from these instru-
ments are primarily self-reported and tell only how teachers perceive
their mathematics curriculum and instruction.

During the school year 1999-2000, more detailed evaluation plans are
being implemented. In addition to the questionnaires and open-ended re-
sponses, structured interviews (Richardson, 1994), multiple case studies,
concept mapping (Raymond, 1997), videotapes of study sessions, and les-
son think-alouds are being used to analyze the effect of the Early Child-
hood Collaborative (Jenkins, 2000; Petri, 2000). Coded classroom
observations are planned for the 2000-2001 school year (Carlan, 2000).
Research indicates that although teachers' perceptions are important, ob-
servational data of classroom situations would provide an additional
source of reliable and valid data.

PRELIMINARY RESULTS

In the 1998-1999 Collaborative, differences between the teacher-re-
ported instructional practices in August 1998 and May 1999 were calcu-
lated using paired / tests in three different areas. When teachers were
asked to report their perception of how prepared they were to use spe-
cific instructional practices important to mathematics, significant differ-
ences in their perceptions of preparedness were found on four of the
items. Specifically, teachers felt more well prepared to:

• Manage a class of students who were using manipulatives.
• Use computers as an integral part of mathematics instruction.
• Use a variety of alternative assessment strategies.
• Invoke parents in the mathematics education of their children.

In addition, a review of the lesson plans used during the study groups in-
dicated that manipulative use, assessment strategies, and parent involve-
ment were all emphasized in at least 80% of the Collaborative sessions.

Teachers were also asked to report the amount of emphasis different math-
ematical content would receive in their classrooms. Teachers reported that
three particular content areas would receive significantly more emphasis af-
ter the Collaborative experience. Geometry and spatial sense increased the
most, with measurement and number sense following closely behind. When
asked to describe their answers, teachers reported that their view of geome-
try and number had been greatly expanded and that previous to the collabo-
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rative experience, they had taught only names of shapes, counting
sequences, and basic operations. Their use of normal early childhood activi-
ties (block center, manipulative center, and calendar routines, specifically)
was now viewed as an opportunity to "do mathematics."

Most important, teachers were asked to report their use of specific in-
structional activities. There were four activities that teachers reported that
they used significantly more after the Collaborative experience. They said
that they increasingly:

• Asked their students to make conjectures and explore possible
methods to solve problems.

• Required students to draw pictures or write their reasoning about
how to solve a problem.

• Had students use calculators.
• Used manipulative materials.

A review of the lesson plans indicated that calculators were used in about
25% of the sessions and that manipulatives were used in every session. In
addition, the process standard of reasoning and a child's communication of
that reasoning were processes emphasized in almost every modeled les-
son, study group, or lesson taught by the teams of beginning teachers.

Preliminary data have been collected for the 1999-2000 school year.
Jenkins (2000) conducted a multiple case study of beginning (preservice)
teachers using the results of structured interviews, open-ended re-
sponses, and lesson think-alouds. She used Raymond's (1997) classifica-
tion system to code teacher's beliefs as traditional, primarily traditional,
even mix, primarily nontraditional, or nontraditional. In only one semester,
all preservice teachers involved in the case studies exhibited some
change toward more nontraditional beliefs in the areas of teaching mathe-
matics, learning mathematics, and in their predictions about their future
practice. Jenkins (2001) also investigated any longitudinal effects of the
collaborative by conducting four case studies of beginning teachers over
three semesters, including one semester when students were not in-
volved in the collaborative. Using data collected over the three semesters,
she evaluated the data for reoccurring themes using reflective analysis
and Raymond's (1997) classification system as a framework. Jenkins
found that the beginning teachers continued to exhibit some change to-
ward more nontraditional beliefs in mathematics even during the semes-
ter they were not enrolled in the collaborative.

Petri (2001) collected pre- and post-Collaborative data (structured in-
terviews, individual conceptual maps, questionnaires, lesson think-
alouds) from 22 practicing (in-service) teachers. Similar to the Jenkins
study, she analyzed the results using Raymond's (1997) classification sys-
tem as a framework. More than half of the teachers exhibited some
change toward more nontraditional beliefs in mathematics over the
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years' time. In the conceptual maps developed by the practicing teach-
ers, every group reported that the collaborative experience was one of
three factors that had influenced their teaching practices during the
school year. State assessment policies and administrative support were
the other two most important influences.

SUMMARY

The Early Childhood Collaborative is a work in progress. Although formal
evaluation has not been completed, statements made by participants
during the interviews and recorded in the open-ended assessments indi-
cate a strong relationship between the Integrated Standards for Profes-
sional Development listed at the beginning of this chapter and the Early
Childhood Collaborative (except for the sixth standard, which involves
family partnership). Quotes from participants in the 1998-1999 and
1999-2000 Collaborative are included in the following descriptions.

Standard 1: Developing Good Dispositions
Toward Mathematics

The changes in preservice teachers' dispositions are perhaps the most
obvious during the collaborative experience. Initially, preservice teachers
made many statements that indicated that they were not anticipating
teaching mathematics. "I was scared and intimidated to go and teach at
these schools. They weren't like the ones I went to ... and we were ex-
pected to teach math! It is not my subject!" "I was worried but I felt better
when I realized that no one would really know if I blew it. . . just my other
team members and they are in the same boat as me." After the experi-
ence, teachers' confidence was amazing. They often asked to be sched-
uled for additional sessions and talked excitedly to their peers in other
programs about their experiences. They often talked about the change in
their dispositions. "It felt safe knowing you were not going into the room
alone. The other people in the room were like me ... they didn't know any
more than I did... and no one was evaluating me. I could just learn how to
do it!" "I learned that mathematics was a lot more than I ever did in
school. We worked puzzles with shapes, made patterns out of all kinds of
things, and I found out that math is fun." In-service teachers also reported
that they liked mathematics more after the Collaborative than they did be-
fore. Many said that they found their day "integrated" with mathematics
just because they liked it.

Standard 2: Experiencing Good Teaching in Mathematics

Both in-service and preservice teachers reported that they liked the ob-
servations and modeling of early childhood mathematics lessons.



18. THE EARLY CHILDHOOD COLLABORATIVE 411

Preservice teachers focused on the management techniques used by
the university professor. "I was fortunate to see her teach the students,
which helped me see ways to manage classrooms." "By watching, I
learned some good classroom management techniques, how to better
explain, and how to have a good time while teaching." "I learned more
mathematics observing in these classrooms than I did in my own math-
ematics classrooms in college." "Amazingly, [the university professor]
seemed to teach the most by just listening and asking questions.
Children seemed to always be involved with her. Maybe it's because
she calls them by name." In-service teachers seemed to learn more
mathematics by observing the teaching. "I had no idea that so much
could be taught with tangrams!" "Boy did I learn about spatial sense ...
now my activities make sense ... in fact I can create my own now that I
understand how children think and what they should be doing!" "It was
such a relief to learn about the importance of comparing in measure-
ment. I had been spending all of my time on the wrong stuff!" "Finally,
an extension of linear patterns. I was so tired of AAB, AB, and ABAC pat-
terns ... and so were my kids!"

Standard 3: Focused Learning About Children
and the Mathematics Content of Specific Interest to Them

One of the benefits of the Collaborative reported by the practicing teach-
ers is the benefit to their students. They reported that they especially liked
opportunities to share old ideas and suggestions for helping their students
with special needs. They liked the resources for children's developmen-
tal levels. The manipulatives that were purchased by the school, the ev-
eryday items that they could use to help children understand math-
ematics, and the alternative assessment methods that were introduced
were all specifically mentioned. Most teachers reported that they knew
more about their children's mathematical understanding after the Collab-
orative than they did before it began.

The preservice teachers also learned a great deal about children and
their understanding of mathematics. "Many of the lessons allowed chil-
dren to make sense of math in their own way. The understanding was
achieved through children's direct experiences and their thinking about
those experiences." "For one second-grade class, I asked the class to be
original and make up their own pictures using geometric shapes. I was
truly amazed at some of the pictures they made and how they could de-
scribe their pictures using fractions and flipping and sliding." "Children
really love to learn and they like mathematics!" "The more I was in-
volved, the more children were." "I feel that the Early Childhood Collabo-
rative should really be called 'Child Collaborative.' It gave me a plus to
watch children!"
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Standard 4: Participating in a Variety
of Professional Development Opportunities
Situated in a Learning Community

Everyone was very positive about the professional development experi-
ence and the Early Childhood Collaborative model. Practicing teachers
often mentioned the model lessons taught by the university professor
and the help they received from the lesson plans of the beginning teach-
ers. They continually mentioned the enthusiasm of the preservice
teachers and the fact that their children waited anxiously for the "young,
exciting teachers." Many teachers mentioned that they loved the study
groups and the fact that they felt valued because they were conducted
during instructional time. Some teachers also mentioned that they ap-
preciated not having to prepare for a substitute because the beginning
teachers came with ready activities.

When asked about the perceived effects on the children in these class-
rooms, there was total agreement on this issue. Everyone spoke very posi-
tively about their children's experiences. In fact, representative quotes from
their interviews reflect an overwhelming support of the preservice teachers
and their teaching. "My children were so excited about the mathematics
they were learning without even knowing it was math!" "The lessons were
fun and dynamic ... my students got so excited when I put out their name
tags. They constantly asked when those 'good' teachers were coming
back." One teacher summarized the effect of the beginning teacher's in-
volvement as 'an all-win situation.' My students learned, I learned, and the
beginning teachers learned! How often does that happen?"

The preservice teachers made the most comments about this aspect of
the collaborative. "I got over my fear of looking silly in front of my peers and
really went for it. The more I was involved, the more the children were."" I
learned to be patient, and have innovative ideas when it comes to teach-
ing students." "Teaching in the classrooms gave me a feel of what grade
levels I prefer to teach." "I loved meeting teachers in the classrooms." I
think I can do this!... and what's more ... I want to!" "I saw a big difference
in myself this semester. Last semester I would sit back and wait for some-
one to take charge and lead the activities. This time around I was the one
who took charge and the one the other teachers looked to for help."
"Sometimes I did really well in teaching and there were a few times I didn't
do great. At any rate, I learned from those experiences."

Standard 5: Demonstrating an Ability to Implement
Integrative Curriculum

Before the Collaborative experience, only one teacher could describe the
Standards in any way; other teachers reported either that they had heard
of them and did not know much about them or that they had never heard
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of them at all. During the last collaborative session in April, every teacher
could list the five content standards proposed by NCTM in their draft
(1998) and most of the process standards. When asked about their impor-
tance, one teacher responded, "Mathematics just connects to everything!
I find that I am using mathematics ideas in almost everything.... when I
talk to children at centers, when I do routine activities, during circle time,
and even during story time! I am mathetized!"

LOOKING AHEAD

Putman and Borko (2000) recently synthesized research on teacher
learning. The situated "communities of discourse" described in their ar-
ticle specifically relate to the Early Childhood Collaborative. Theo-
rectically, the collaborative is based on discourse between the
university professor, experienced teachers, and beginning teachers.
The university professor introduced research-based knowledge about
mathematics, learning and teaching as well as Principles and Standards
for School Mathematics proposed in the 1998 draft document (NCTM,
1998). The experienced teachers shared and reflected on their teaching
practices and the learning that did or did not occur in their classrooms.
The beginning teachers were introduced to children in classroom situa-
tions and discovered learning possibilities in mathematics. As the pre-
liminary results indicate, the collaborative was a generally rewarding
experience for those involved. However, though a potentially powerful
type of professional development, the Early Childhood Collaborative did
not totally function as a "community of discourse" as described by
Putman and Borko. Frequently, the discourse was imbalanced with the
university professor's agenda being the primary focus rather than the
teachers' ideas and their empowerment to implement those ideas. Con-
versely, the discourse of both experienced and beginning teachers al-
most as often involved managerial or administrative issues and failed to
connect to the more important issues of teaching and learning. In addi-
tion, possibilities for mentor relationships between experienced and be-
ginning teachers were not fully explored. Future plans for the
collaborative include: (a) involvement of district curriculum specialists
to guide the practicing teachers' study groups, (b) observation sessions
that involve groups of beginning teachers watching experienced teach-
ers, and (c) the development of a cadre of experienced teachers to
coach other practicing teachers in the collaborative. These issues, as
well as others identified by the analyses of data collected during the
2000-2001 school year, will be addressed in future collaboratives.

The Early Childhood Collaborative is a learning experience for everyone
involved. Many lessons have already been learned and will continue to be
learned in the years to come. It is just one example of a professional devel-
opment model that can be used to communicate and implement the stan-
dards in private or public schools. Perhaps it is one avenue to promote a
shared vision of learning and teaching mathematics.
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The most powerful instrument for change, and therefore the place to begin,
lies at the very core of education—with teaching itself.

All children have the right to a high-quality mathematics education
(Clements, Copple, & Hyson, 2002; National Council of Teachers of Math-
ematics [NCTM j|, 2000; Schoenfeld, 2002). Professional development pro-
grams are widely regarded as the most significant way of achieving this
goal (Bowman, Donovan, & Burns, 2001; Darling-Hammond, 1998; Fergu-
son, 1991; Guskey, 1997; Hilliard, 1997; Johnson & McCracken, 1994;
Loucks-Horsley, Hewson, Love, & Stiles, 1998; Schoenfeld, 2002). Profes-
sional development programs have been defined as systematic attempts
to alter the professional practices, beliefs, and understanding of school
personnel for an articulated purpose (Bowman, 1995; Bredekamp &
Copple, 1997; Greene, 1994). After presenting background information,
including present barriers to implementing effective professional devel-
opment, principles and standards, and theoretical foundations, we then
review the literature on professional development in early childhood,
mathematics education, early childhood mathematics education, and,
briefly, technology. We conclude by drawing implications.

415
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BACKGROUND

All citizens need a broad range of basic mathematical understanding, and
many careers require an increasing level of proficiency (Campbell & Sil-
ver, 1999; Glenn Commission, 2000; Kilpatrick, Swafford, & Findell, 2001;
U.S. Department of Labor Bureau of Labor Statistics, 2000). However, U.S.
proficiency is well below what is desired (Kilpatrick et al., 2001; Mullis et
al., 1997,2000). Moreover, children who live in poverty and who are mem-
bers of linguistic and ethnic minority groups demonstrate significantly
lower levels of achievement (Bowman et al., 2001; Campbell & Silver,
1999; Denton & West, 2002; Mullis et al., 2000; Natriello, McDill, & Pallas,
1990; Secada, 1992; Starkey & Klein, 1992). These achievement differ-
ences have origins in the earliest years—low-income children have been
found to possess less extensive mathematical knowledge than middle-in-
come children of Pre-K and kindergarten age (Denton & West, 2002;
Ginsburg & Russell, 1981; S. Griffin, Case, & Capodilupo, 1995; Jordan,
Huttenlocher, & Levine, 1992; Saxe, Guberman, & Gearhart, 1987; see
also Klein & Starkey, chap. 14, this volume). Head Start children make
minimal improvement in addition and subtraction knowledge over the
Pre-K year (Zill et al., 2001). Furthermore, the SES (socioeconomic status)
gap is broad and encompasses several aspects of informal mathematical
knowledge: numerical, arithmetic, spatial/geometric, patterning, and
measurement knowledge (Klein & Starkey, chap. 14, this volume).

One main reason for this gap is that children from low-income families
receive less support for mathematical development in many of their
home and school environments (Blevins-Knabe & Musun-Miller, 1996;
Holloway, Rambaud, Fuller, & Eggers-Pierola, 1995; Saxe et al., 1987;
Starkey et al., 1999). Also, public Pre-K programs serving low-income
families provide fewer learning opportunities and supports for mathe-
matical development, including a narrower range of mathematical con-
cepts (Bryant, Burchinal, Lau, & Sparling, 1994; Farran, Silveri, & Gulp,
1991). The need for professional development is clear. In this section, we
overview relevant background research, including general professional
development, economic and institutional factors, teacher knowledge,
and principles and standards.

Research Issues

Research suggests that the most critical feature of a high-quality educa-
tional environment is a knowledgeable and responsive adult (Bowman et
al., 2001; Darling-Hammond, 1997; Ferguson, 1991; Schoenfeld, 1985) and
that high-quality professional development is essential to reform (Dar-
ling-Hammond, 1998). Although professional development endeavors are
widely valued (Loucks-Horsley et al., 1998), and there is no shortage of sug-
gested guidelines for successful professional development, most are not
based on research. Furthermore, empirical studies often fail to measure
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relevant teacher behaviors and student outcomes (Guskey, 1997). Finally,
carefully executed and methodologically rigorous studies are uncommon.
There are at least three reasons for this deficit (Wolfe, 1991). First, the topic
is complex and the methodological problems associated with its study are
severe. Second, studies are often done "in" or "to" schools without serving
the schools' needs, leading to the rejection of research (W. H. Griffin, 1983;
Wolfe, 1991). Third, practitioners expect that research efforts should result
in some recommendations for improved practice that are available in a
reasonable amount of time, in a form that is usable and comprehensible.
However, the translation of research findings into practical applications
can be extended to several years (Wolfe, 1991).

Research summaries have produced guidelines for more effective prac-
tice (F. Wood & Thompson, 1993); however, they more often document in-
adequacies than prescribe solutions. This maybe due to the abundance of
documentation on projects that have failed to bring about demonstrable
improvements and enduring change (Frechtling, Sharp, Carey, &
Baden-Kierman, 1995). Furthermore, the guidelines posed by different re-
searchers are often long, unprioritized, lists of recommendations, some of
which contradict the guidelines of others.

Even the results of empirical studies are too general and theoretical for
pragmatically minded educators (Guskey, 1994). For example, specific el-
ements of effective professional development have not been identified
because (a) educators have not consciously discussed and defined vari-
ous criteria of effectiveness, (b) meta-analyses have focused mostly on
simple main effects, ignoring or de-emphasizing key contextual variables,
and (c) issues of quality have been largely ignored, probably because rich
descriptions are more difficult to collect (Fullan, 1991).

Criteria of effectiveness can be classified in four categories (Guskey,
1994). The first is determining participants' reactions to the experience, of-
ten using self-report questionnaires (Guskey, 1997). Often referred to as
"happiness indicators," this information tends to be highly subjective and
not particularly reliable (Sparks, 1995). The second category involves
measuring the knowledge and skills that participants acquire as a result of
professional development. This information helps improve program for-
mat, content, and organization, but it is difficult to use for making compari-
sons or judging relative worth (Guskey, 1997; Guskey & Huberman, 1995).
The third category entails measuring the participants' actual use of knowl-
edge and skills they have gained. The fourth category—rarely used—in-
volves measuring the impact of participants' changes in knowledge and
skills on student outcomes.

Despite the limitations of the main research corpus, there are re-
search findings that can guide professional development (Bowman et
al., 2001; Conference Board of the Mathematical Sciences, 2001; Na-
tional Association for the Education of Young Children [NAEYC],2002;
Peisner-Feinbergetal., 1999; U.S. Department of Education, 1999). First,
we consider pertinent barriers.
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Economic and Institutional Barriers

There are significant barriers to any professional development en-
deavor. When considering early childhood professionals, the barriers
can appear insurmountable.

A significant economic barrier for improving early childhood profes-
sional development lies in the contention that there are few incentives for
individuals working in child-care centers or family child-care homes to
seek specialized preparation for jobs that pay little more than minimum
wage. "According to the 2000 OES survey, only 18 occupations report hav-
ing mean wages lower than childcare workers" (Laverty, Siepak, Burton,
Whitebook, & Bellm, 2002, p. 4). Furthermore, the cost of attending profes-
sional development can be prohibitive for those with low wages. Unlike
K-8 institutions, family/group/center-based care centers cannot close for
a day. Substitutes have to be found (and paid for) if caregivers wish to at-
tend a workshop or class during working hours.

Institutional and regulatory barriers also must be addressed.
Child-care/preschool programs and public school are regulated by two un-
related unconnected systems with different standards and bureaucracies.
Child-care/preschool personnel are regulated by licensing boards, whereas
public school personnel are regulated by state boards of education/certifi-
cation. These two disparate systems sometimes allow for upward mobility
within, but allow virtually no movement across systems (Wilier, 1994).

Licensing and certification also place different emphases on experi-
ence and training. Many early childhood practitioners in America are not
required to have any early childhood training to work with young chil-
dren (Wilier, 1994).

There is a lack of a coordination and articulation across delivery sys-
tems. Existing college training programs are not always accessible in
terms of location, class scheduling, and degree-completion policies to in-
dividuals currently employed in early care and education programs. That
is, programs at 4-year institutions are essentially dictated by state certifica-
tion standards for teachers and those standards vary almost as much as li-
censing standards. As a result, there is no consistency even in the
definition of "early childhood" among 4-year institutions, and many pro-
vide less specialized early childhood preparation than the associate-de-
gree programs (Wilier, 1994). An equally challenging problem is that there
are insufficient numbers of specialized early childhood programs to pro-
vide qualified personnel for all the possible positions or to prepare future
leaders in the field. Azer and Hanrahan (1998) indicated that in 1998, 26
states were in the discussion/planning stage for implementing articulation
agreements between 2- and 4-year colleges.

Finally, institutional barriers to changing practice, especially in the direc-
tion of innovative education, are embedded in schools, and throughout
the broader multilayered, decentralized U.S. system (Grant, Peterson, &
Shojgreen-Downer, 1996). One particularly vexing issue is the unrealized
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potential and missed opportunities for facilitation of reform due to diver-
gent beliefs of the relevant social groups, often about what were ostensibly
observable "facts" (e.g., that there are computers available for teachers;
Sarama, Clements & Henry, 1998).

Teacher Knowledge

Teachers must develop knowledge of subject-matter content they teach,
the ability to communicate this content to children, and the ability to de-
velop higher-order thinking skills (Ball & Bass, 2000; Darling-Hammond,
1998; Caret, Porter, Desimone, Birman, & Yoon, 2001; Loucks-Horsley et
al., 1998; NCTM, 2000; Schoenfeld, 1988). Teachers, especially teachers of
young children, are not prepared to do so (NCTM, 1991). Consistent with
the wider U.S. culture, teachers believe that mathematics is a set of facts
and that memorizing these facts is an appropriate route to learning math-
ematics (Caret et al., 2001; NCTM, 2000). These beliefs are notoriously re-
sistant to change and they affect teachers' practices and their students'
learning (Lampert & Ball, 1998; Peterson, Fennema, Carpenter, & Loef,
1989). Where their knowledge is limited teachers will tend to depend on
the text for context, de-emphasize interactive discourse in favor of
seatwork assignments, and in general, portray the subject as a collection
of static factual knowledge (Brophy, 1991). Many early childhood educa-
tors identify this discipline as their weakest area of concentration
(Schram, Wilcox, Lanier, & Lappan, 1988). Furthermore, traditional ap-
proaches to in-service teacher education, like traditional teaching ap-
proaches, explain new information—new classroom strategies,
techniques, and perspectives—without considering how these ideas
might fit with teachers' preexisting knowledge and beliefs. Often reform-
ers fail to acknowledge individual backgrounds and beliefs of teachers
(even when they do so with children; Darling-Hammond, 1990).

In contrast to those who know mathematics as facts and rules, teachers
who have conceptual understandings of mathematics are more effective
than those who see mathematics as rules and procedures (Fennema &
Franke, 1992; Ma, 1999; Schoenfeld, 1992). They view mathematics as hav-
ing interrelated structural elements, as a way to better understand the
world around us and to communicate about that world, and as a creative
medium for solving myriad problems (Romberg, 1983; Schoenfeld, 1985;
Steen, 1988). Furthermore, their knowledge is a thoroughly connected
web of concepts and procedures, including links to the real world
(Hiebert, 1986; Ma, 1999; Resnick & Ford, 1981) . This is a different ap-
proach to the construct of "teachers' mathematics knowledge" than the
number of mathematics courses taken in college—a measure that tended
to have little relationship to student learning (Fennema & Franke, 1992;
Geary, 1994). In contrast, research defining "teachers' knowledge" as be-
ing more explicit, better connected, and more integrated has found that
teachers with more knowledge teach mathematics more dynamically,



420 SARAMAANDDIBIASE

representing it in more varied ways and more fully responding to student
ideas and questions (Brophy, 1991).

Teacher beliefs also encompass beliefs about pedagogy, students' capa-
bilities, and the nature of learning and teaching (especially in reform or
constructivist contexts; Grant etal., 1996;Prawat, 1992; Thompson, 1992).
Even when teachers learn new notions, such as constructivism, their un-
derstandings may not be consistent with those of researchers, developers,
or teacher educators (Clements, 1997; Prawat, 1992) and their practice
may reflect surface features of the theory or reform (Ball, 1992; Sarama,
Clements, Henry, & Swaminathan, 1996).

Changing teacher beliefs is difficult. Teachers have experienced
years of "apprenticeship of observation" (Lortie, 1975)—countless
hours observing practice. Unlike other professions, these observations
have crystallized beliefs that have the weight of personal conviction,
emotion, and intuition and the force of palpable truths. Changing be-
liefs requires three general conditions: (a) teachers must be dissatis-
fied with their existing beliefs in some way, (b) they must find the
alternatives presented to be both intelligible and practical, and (c) they
must Figure out some way to connect new beliefs with earlier concep-
tions (Ely, 1990; Etchberger & Shaw, 1992; Posner, Striken, Hewson, &
Gertzog, 1982). Professional developers can attempt to influence be-
liefs by first acknowledging the complexity of the process. Time for
teacher training must be adequate, and strategies must be used that ac-
count for teachers' prior knowledge and experiences. In addition,
teachers should examine the time and energy that must be put forth in
implementing an innovation and weigh this personal cost relative to re-
wards attained (Wright, 1987). Teachers reject innovations that appear
unconnected to the curriculum, viewing them as yet more "add ons"
(Ferris & Roberts, 1994). Such rejection is more likely when the innova-
tion requires the use of computer technology, especially when teachers
are not comfortable with the technology. Professional development has
special challenges in early childhood settings. Even graduates of 4-year
early childhood programs with state licensure usually lack adequate
preparation in mathematics, and those with less education have virtu-
ally no preparation (Kilpatrick et al., 2001). Early childhood teachers are
often uncomfortable with math (Copley, 1999), view necessary math as
only "counting, adding, subtracting, and knowing shapes," have little or
no knowledge about the math standards, and do not use re-
search-based math curricula (Sarama, 2002; see also Copley, chap. 18,
this volume). Teachers' implicit, mixed beliefs, and inconsistencies be-
tween explicit and implicit beliefs, deny them a clear vision for reform
(cf. Genishi, Ryan, Ochsner, & Yarnall, 2001; Sarama et al., 1998). Even
the notion of "academics" is frequently rejected (Adcock & Patton,
2001; Weikart, 1999). In summary, teachers' knowledge and beliefs rep-
resent a substantial challenge to any professional development effort.
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Principles and Standards

Several national organizations have made efforts to address issues sur-
rounding mathematics education for young children, including profes-
sional development. The NCTM released its first Standards document in
1989. In 2000, the NCTM introduced the first major revision of its Stan-
dards, which, unlike its predecessors, addresses mathematics education
before kindergarten (2000). The inclusion of preschool stems from the
recognition of the value of high-quality experiences in the early years in
determining long-term success. The NCTM also recognizes the role of the
adult in providing the appropriate environment, encouraging thinking,
valuing uniqueness, and supporting play. Specific recommendations re-
garding professional development call for both mathematical and peda-
gogical knowledge. "They [teachers] must adjust their practices and
extend their knowledge to reflect changing curricula and technologies
and to incorporate new knowledge about how students learn mathemat-
ics" (p. 370). The sole responsibility does not rest with the teacher how-
ever: "We need instead to address issues in a systemic way, providing
teachers with the sources they need for professional growth" (p. 370).

The NAEYC has worked over several decades to promote high-quality
early childhood programs for all young children by facilitating professional
development (NAEYC, 2002; Wilier, 1994). Their recent statement of
guidelines for professional preparation (NAEYC, 2002), compared to their
earlier documents, emphasizes subject-matter content and places a more
explicit emphasis on a "continuum of teaching strategies" and develop-
mentally effective approaches. They describe five standard categories:
promoting child development and learning; building family and commu-
nity relationships; observing, documenting, and assessing to support
young children and families; teaching and learning (including connecting
with children and families, using developmentally effective approaches,
understanding content knowledge, and building meaningful curriculum);
and becoming a professional.

The NAEYC and NCTM have recently joined together to issue a position
statement that outlines appropriate mathematics for early childhood
(Clements, Copple et al., 2002). The position statement is applicable for pro-
fessionals working in all early childhood settings and calls professional de-
velopment "an urgent priority." The recommendation most relevant to this
chapter is to "create more effective early childhood teacher preparation
and continuing professional development." The statement further recom-
mends that preparation include the following connected components:

(1) knowledge of the mathematical content and concepts most relevant for
young children—including in-depth understanding of what children are
learning now and how today's learning points toward the horizons of later
learning (Kilpatrick et al., 2001); (2) knowledge of young children's learning
and development in all areas—including but not limited to cognitive devel-
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opment, and knowledge of the issues and topics that may engage children at
different points in their development; (3) knowledge of effective ways of
teaching mathematics to all young learners; (4) knowledge and skill in ob-
serving and documenting young children's mathematical activities and un-
derstanding; and (5) knowledge of resources and tools that promote
mathematical competence and enjoyment.

In addition, greater emphasis should be placed on teachers' enjoyment of
mathematics, confidence in their mathematical knowledge and skills, and
positive mathematical attitudes. Effective programs combine mathematics
content, pedagogy, and knowledge of child development and family rela-
tionships. Courses and practicum experiences should help teachers ask
questions that stimulate mathematical thinking in young children.

The NCTM and NAEYC standards and guidelines are consistent with
other reports on professional development in general. Working under the
premise that access to high-quality preparation, induction, and profes-
sional development is the right of every teacher, the National Commission
on Teaching and America's Future (NCTAF; 1996) argues that schools
should be genuine learning organizations for students and teachers. To in-
crease the time teachers have to learn and work with colleagues, the re-
port recommends flattening district hierarchies so more resources can be
invested more in classrooms and less in nonteaching personnel.

The NCTAF recommends reforming the teacher reward system, redi-
recting a portion of compensation for professional development to recog-
nize teachers' knowledge and skill, rather than "seat time" only. Standards
developed by the National Board of Professional Teaching Standards
(NBPTS) can be used to recognize such knowledge and skill.

These recommendations are consistent with the National Staff Devel-
opment Council's (1995) advocacy for professional development that is
results driven, standards based, and job embedded. Both organizations
share the conviction that ongoing, high-quality professional develop-
ment is essential to reform and that teachers must have time to learn and
work with colleagues.

Finally, all the documents reviewed in this section emphasize the impor-
tance of diversity and inclusion. These issues are the focus of the "recom-
mended practices" of the Division of Early Childhood of the Council of
Exceptional Children (Sandall, McLean, & Smith, 2000). These recom-
mendations include that professional development activities are system-
atically designed and implemented, that training should involve teams of
participants (e.g., general early childhood teachers, early childhood spe-
cial educators, paraeducators, therapists), and that teachers should be
provided with knowledge and skills relative to the inclusion of young chil-
dren with disabilities.

In summary, professional development is critical to improvement and
innovation in early childhood mathematics education, because teachers
are the agents who must carry out the demands of high standards (Cuban,
1990; Caret et al., 2001; NCTM, 2000). To do this, teachers must be im-
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mersed in the subject-matter content that they teach, have the knowledge
to communicate this content to children, and develop higher-order think-
ing skills (Loucks-Horsley et al., 1998; NCTM, 2000).

GENERAL PROFESSIONAL DEVELOPMENT

What lessons can be learned from research on professional development
in general (across subject matter and ages). Research1 indicates that pro-
fessional development should be multifaceted, extensive, ongoing, re-
flective, focused on common actions and problems of practice and
especially children's thinking, grounded in particular curriculum materi-
als, and, as much as possible, situated in the classroom (D. K. Cohen,
1996; Darling-Hammond & McLaughlin, 1995; Fullan, 1992; Caret et al.,
2001; Kaser, Bourexis, Loucks-Horsley, & Raizen, 1999; Renyi, 1998; Rich-
ardson & Placier, 2001). The focus should be on making small changes
guided by a consistent, coherent, grand vision (Ferrucci, 1997). It should
involve interaction, including sharing, risk taking, and learning from and
with peers. For curriculum innovation, it is important to develop teachers'
knowledge and beliefs that the curriculum is appropriate and its goals are
valued and attainable (Elmore, 1996), keeping all professional develop-
ment activities targeted toward those goals (Fullan, 2000). In sum, suc-
cessful professional development is not separate from teachers'
day-to-day professional responsibilities, but an ongoing activity woven
into the fabric of their professional lives, including focus on curriculum,
assessment, leadership, and collegial sharing (Guskey, 1997; Lieberman,
1995; Miles & Louis, 1990). As a caveat, teachers respond differently to
particular approaches, and so combinations of approaches may be most
effective (Richardson & Placier, 2001).

What does not work well is easily viewed as the converse of these char-
acteristics: one-shot workshops; topics selected not by the teachers, but
by others (two thirds of teachers report they have no say in what or how
they learn on the job; Darling-Hammond, 1998), and not addressing teach-
ers' concerns; groups that are not from the same site; and lack of a con-
ceptual basis for the programs or their implementation (Fullan, 1982).

A handful of the research-based guidelines require elaboration. As
much as possible, professional development should be embedded in
teachers' ongoing practice. Situated cognition literature (e.g., Brown, Col-
lins, & Duguid, 1989) emphasizes that knowledge and skills are embedded
in the context in which they are learned. Thus, professional development
might be built into the school day through flexible scheduling and ex-
tended blocks of time, such as when students are on vacation (Renyi,
1998). The implication is not that all professional development has to oc-

A caveat, which applies to most of the research corpus, is that much of this research does
not identify critical factors, relies on teacher reports, and infrequently assesses student
achievement.
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cur in teachers' classrooms, but that we should strive to understand what
different contexts can yield (Putnam & Borko, 2000). For example, one
team introduced materials and activities in a workshop session. Teachers
attempted to enact these ideas in their own classrooms and reconvened
to discuss their experiences.

Another implication of such embeddedness is that the timing of
preservice education should be changed. For example, there is empirical
support for the proposal that university courses might better be taken, and
certification received, after several years of a mentoring/apprenticeship ap-
proach in a professional development school (Richardson & Placier, 2001).

Involvement of peers has frequently been found to be an important
component of professional development. In one large study, the greatest
reported gains in teacher learning were in sites where entire schools stud-
ied their student results and agreed on what they needed to learn collec-
tively (Caret et al., 2001; Renyi, 1998). Also helpful is garnering support
from the community through vision statements, business and community
partnerships, technological support, and federally funded institutes. With-
out the engagement of the community, research-based programs are of-
ten not sustained (Darling-Hammond, 1998). In another success story, a
core of teachers was able to sustain a new curriculum because the princi-
pal aggressively supported their group and sought support from other
groups, such as parents (Ferrucci, 1997).

Another underutilized partnership is that between schools and universities.
These can "create new, more powerful kinds of knowledge about teaching
and schooling, as the 'rub between theory and practice' produces more prac-
tical, contextualized theory and more theoretically grounded, broadly in-
formed practice" (Darling-Hammond & McLaughlin, 1995, p. 599).

Finally, in a major research review, Richardson and Placier (2001)
concluded that major, sustainable professional development programs
require a "normative-reeducative" approach, based on concepts of
personal growth and development and on collaboration within the or-
ganization that leads to collective change. This approach can lead to
deep changes in content and pedagogical knowledge and in under-
standings about schooling, teaching, and learning. These in turn imply
changes in beliefs and therefore cultures. A notable example is the
movement to implement constructivist-oriented changes in mathemat-
ics, a topic to which we turn.

MATHEMATICS EDUCATION

Embodying several of the guidelines summarized in the previous sec-
tion, Korthagen and Kessels (1999) proposed using the van Hiele model
of levels of mathematical thinking to professional development in math-
ematics. In the van Hiele model (van Hiele, 1986), thinking develops
from a Gestalt-like visual level through increasingly sophisticated levels
of description, analysis, abstraction, and proof. Teachers can "reduce"
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subject matter to a lower level, leading to rote memorization, but stu-
dents cannot bypass levels and achieve understanding. Korthagen and
Kessels proposed that teachers' knowledge is originally Gestalt-
like—perceptual and (only) situated. They argued, therefore, that pre-
senting abstract theories is also a "reduction in level." Instead, they pro-
posed starting at the teachers' initial level, educing issues and problems
from teachers' concrete work in the context of their classrooms, build-
ing up toward educational theories. Eventually, as the relationship be-
tween theory and practice becomes reciprocal across all levels of
abstraction and generalization, the professional development efforts
will have a significant and lasting impact on teaching practice. Empirical
support of this approach has been promising (Korthagen, 2001). Several
national evaluations gave the program high ratings (e.g., in one, 71%
positive vs. 41% for the sample as a whole). In another study, 86% of the
respondents considered their preparation program as relevant or highly
relevant to their present work as a teacher. Yet another study indicated
that concrete learning effects during the first year of teaching depended
on the degree to which theoretical elements in their preparation pro-
gram were perceived by the students as functional for practice during
student teaching, and on the cyclical alternation between school-based
and university-based periods in the program.

This model emerged from mathematics education theory. In this sec-
tion, we summarize research and development efforts in mathematics ed-
ucation across the grades.

Research on Professional Development in Mathematics

Research in mathematics education confirms that professional develop-
ment is an, if not the most, important factor in improving education for
students. A study conducted by the U.S. Department of Education found
that students made greater gains in mathematics when teachers gave
high ratings to their professional development in mathematics (Westat &
Policy Studies Associates, 2001). Gains in test scores between Grades 3
and 5 were 50% higher for those students whose teachers rated their pro-
fessional development high, rather than low.

The characteristics of more and less successful professional development
are also consistent with the findings of general research. A common, but un-
successful, external intervention is (solely) adopting new curricula. More
successful is supporting "interactions among teachers and children around
educational material" (Ball & D. K. Cohen, 1999, p. 3, emphasis in original).
This strategy creates extensive opportunities for teachers to focus on mathe-
matics, goals, and children's work and its improvement, which improves
teachers' knowledge of subject matter, teaching, and learning (D. K. Cohen,
1996) and increases child achievement (Ball & D. K. Cohen, 1999).

The emphasis on curriculum is particularly strong in professional de-
velopment in mathematics (Ball & D. K. Cohen, 1999). Using data from a
1994 survey of California elementary school teachers and 1994 student
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California Learning Assessment System (CLAS) scores, D. K. Cohen and
Hill (2000) found that teachers who worked directly with curriculum ma-
terials associated with NCTM's mathematics standards were more likely
than those who experienced other kinds of professional development to
report reform-oriented teaching practices in mathematics. In addition,
the more teachers had engaged in such professional development and
the more they engaged in reform-oriented practice, the higher were their
students' mathematics achievement. This was so even when controlling
for student characteristics and school condition. Cohen and Hill (2000)
concluded that when professional development is focused on learning
and teaching academic content and when the professional development
curriculum overlaps with that for students, teaching practice and student
performance will improve. Efforts that lack these elements are less likely
to succeed. The researchers also noted that they needed the help of pro-
fessional educators to succeed.

Unfortunately, curriculum planning at this level of detail is unusual in the
United States. It is more typical in Japan, where members of professional
teaching communities often spend several years teaching and revising the
hypothesized learning trajectories that underpin a sequence of mathe-
matics "research lessons" (Stigler & Hiebert, 1999).

A long-term professional development and research project in the
United States is Teaching to the Big Ideas (TBI). In TBI, teachers address
central organizing principles of mathematics that emerge in classroom
contexts when instruction is organized around and responsive to stu-
dent thinking. Schifter, Bastable, and Russell (1997) found that there are
particular themes—embodying critical concepts—that arise time after
time with different groups of learners and with which students must
grapple with as they confront the limitations of their existing concep-
tions. By listening to students, remarking on common areas of confu-
sion or persistently intriguing questions, and then analyzing underlying
issues, teachers identify these big ideas. In the first year of the project,
teachers began to think about mathematics in terms of ideas, rather
than just facts, procedures, and strategies; learned to listen to and ana-
lyze student thinking; and considered the pedagogical implications of
committing to helping students become powerful mathematical think-
ers. In the second and third years, teachers regularly wrote two- to
five-page classroom episodes for seminars, presenting some aspect of
the mathematical thinking of a single student or a group of students to
raise mathematical and pedagogical issues that invite discussion
among colleagues.

Taking a different tack on case-based teacher education, Lampert
and Ball (1998) developed hypermedia learning environments that
combined videotapes of classroom mathematics lessons, instructional
materials, teacher journals, student notebooks, students' work, and
teacher and student interviews, as well as tools for browsing, annotat-
ing, and constructing arguments.
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Summary

Researchers and educators in mathematics education have developed
models on the leading edge of professional development theory and re-
search. A significant shared feature has been extensive efforts to connect
theory, research, and practice. This research corpus has also confirmed
and extended several findings from the general literature. First, profes-
sional development is important in improving student achievement. Sec-
ond, one-shot workshops and introducing curriculum (without
correlated professional development) are common, but ineffective, ap-
proaches to school improvement. Third, a subject-matter focus is re-
quired and orienting teachers to that focus is a significant challenge. Also
important are foci on students' thinking and learning about mathematics
topics, students' learning in the context of interactions with peers and
adults around a reform curriculum, issues of higher order thinking, and
strategies for working with special populations. Fourth, effective profes-
sional development in mathematics is extensive, ongoing, active, involv-
ing observation, experimentation, and mentoring (Ferrucci, 1997;
Hiebert, 1999; Kemis & Lively, 1997). Fifth, starting with theory and re-
search is not as effective as starting with practice, and then integrating
theory and research into reflections on this practice. Sixth, research les-
sons (also called "lesson study") and case-based teacher education are
promising professional development strategies.

MODELS IN EARLY CHILDHOOD

A conceptual framework of early childhood professional development
must achieve a balance between inclusion and exclusivity (Bredekamp &
Wilier, 1992; Greene, 1994). It must recognize that individuals enter the
profession with diverse educational qualification and support ongoing
professional development for individuals at all levels and in all roles
(Jeffrey & Lambert, 1995; Lally, Young-Holt, & Mangione, 1994).

The NAEYC (NAEYC & National Association of Early Childhood Special-
ists, 1991) recommended that early childhood professionals with com-
parable qualifications, experience, and job responsibilities should
receive comparable compensation regardless of their work setting. Un-
fortunately, although the work of all early childhood professionals has
been undervalued, those professionals in nonschool settings have been
the most undercompensated (Jalongo & Isenberg, 2000; Morgan, 1994).
Teachers in early childhood programs accredited by NAEYC earned
roughly half that of their counterparts in public schools, holding educa-
tion and experience constant.

In addition, early childhood professionals should be encouraged to seek
additional professional preparation and should be rewarded accordingly
(Bredekamp & Wilier, 1992). Early childhood professionals need to be
able to advance while continuing to work with children, thereby providing
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higher quality services for children (Bloom, 1994; Bredekamp & Wilier,
1993; Saracho, 1993).

Career Lattice

Early childhood experts support the development of early childhood pro-
fessionals within a "career lattice" as a means of helping individuals in the
field understand that they have options and what those options are,
thereby increasing professionalism and decreasing turnover (Kagan &
Force, 1994; Morgan, 1994). A career lattice (Bredekamp & Wilier, 1992)
provides for the multiple roles and settings within the early childhood pro-
fession (vertical strand), each allowing for steps for greater preparation
tied to increased responsibility and compensation within that role/setting
(horizontal levels), and allows for movement across roles (diagonals).

Head Start

Head Start is the largest early childhood program in the nation, employing
195,000 paid staff in 2001 (U.S. Department of Health and Human Ser-
vices, 2002). A majority of the program's teachers enter the field without a
baccalaureate degree in early childhood education, so orientation and
on-the-job learning are emphasized. Head Start was instrumental in insti-
tuting the Child Development Associate (CDA) Credential and requires
that at least one teacher in each classroom hold a CDA Credential or other
appropriate qualification . The program provides a formal national train-
ing and technical assistance network and allocates funds for professional
development to each program (Wolfe, 1991).

Head Start released Performance Standards in which the Program De-
sign and Management section emphasizes that agencies must ensure that
Head Start staff and consultants have the knowledge, skills, and experi-
ence required to perform their assigned functions responsibly (CFR
1304.52) (Bowman et al., 2001). This includes establishing and imple-
menting a structured approach to staff training and development, and at-
taching academic credit whenever possible. This professional develop-
ment system should be designed to help build relationships among staff
and to assist staff in acquiring or increasing the knowledge and skills
needed to fulfill their job responsibilities, in accordance with the require-
ments of 45 CFR 1306.23.

The FACES (Family and Child Experience Survey) study that began col-
lecting data in 1997 found that nearly one third of all Head Start teachers
had a bachelor's or graduate degree in education, and teachers averaged
nearly 12 years of teaching experience. The higher the teacher's educa-
tional level, the better the observed classroom quality.

High/Scope

Weikart (1994) maintained that the notion, "Get a job. Learn how it's done
...," is an oversimplification, but does speak to the basic philosophy be-
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hind High/Scope's approach to staff development. In-service learning in
High/Scope classrooms is the preferred method for gaining skills to im-
plement the High/Scope curriculum.

High/Scope research staff conducted two studies, one with trainers (i.e.,
analyzing the reports of participants in 40 seven-week training projects
and surveying 203 certified High/Scope trainers) and one with teachers
(interviewing 244 High/Scope and 122 non-High/Scope comparison teach-
ers). Both studies support a systematic approach to in-service training. Ex-
perimental groups were rated higher than comparison groups on
providing a good physical environment (organization and access to di-
verse materials), creating a consistent daily routine (plan-do-review), and
supporting adult-child interactions . Their summaries suggest that an in-
vestment in a systematic dissemination and training model can produce
large-scale and long-lasting benefits for programs and children.

Families

The Family-to-Family initiative funded by the Dayton Hudson Foundation
is designed to improve the quality of family child care by providing profes-
sional development opportunities, accreditation, and parent education to
providers. The Family-to-Family project, implemented in 32 sites around
the country, offers a 15-hour professional family-day-care training course
to help providers become accredited (N. Cohen & Modigliani, 1994). An
average of 90 providers are served at single-site projects each year.

Cohen and Modigliani (1994) found that mentor and partner programs
helped providers learn the material and complete the course by giving the
providers personal attention and individual assistance. The self-study
techniques were also found to be a vehicle to apply knowledge to the
workplace. The professional development opportunities offered had a
positive long-term effect in that participants had higher self-esteem, an in-
creased sense of professionalism, and a commitment to deliver high-qual-
ity care (N. Cohen & Modigliani, 1994).

Summary

The early childhood professional career lattice can serve as a means of
encouraging professional development at all levels, including appropri-
ate training for administrators. Professional development is an integral
part of such large programs as Head Start and High/Scope, and research
confirms the importance of such professional development in positively
affecting young children's development and learning.

MODELS IN EARLY CHILDHOOD
MATHEMATICS EDUCATION

Consistent with research reviewed to this point, the National Education
Goals Panel (1997) recommended that subject-matter knowledge and
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teaching skills in mathematics be strengthened, especially for the early
childhood teacher. Most teachers of young children have limited knowl-
edge of mathematics and mathematics education (Clements, Copple et
al., 2002), especially the processes and thinking strategies of mathemat-
ics in early childhood (Copley & Padron, 1999; Fennema et al., 1996;
NCTM, 2000). The curricula with which they work has been institutional-
ized as narrow and limited due to historical pedagogic and institutional
struggles (Balfanz, 1999). Furthermore, teachers serving economically
disadvantaged, limited-English-proficient or lower achieving students of-
ten devote less time and emphasis to the higher level thinking skills inte-
gral to the learning of mathematics (Copley & Padron, 1999). Especially
given that teachers' expectations for children play a role in determining
students' achievement, the professional development of early childhood
teachers must address content, processes, and dispositions in mathe-
matics. Unfortunately, few professional development programs focus on
early childhood mathematics at all, much less to the breadth and depth
required. Instead, the primary foci of professional development for early
childhood teachers include definitions of developmentally appropriate
curriculum and the importance of play (Copley & Padron, 1999). This sec-
tion reviews the small body of literature in this specific area; because it is
our target area, we describe each study in more detail.

Research on Professional Development Programs

A seminal professional development research program is Cognitively
Guided Instruction (CGI). For more than a decade, Fennema, Carpenter, and
Franke (1997) have been investigating the impact of helping primary-grade
teachers understand their children's mathematical thinking. The basic
premise of CGI is that assisting teachers to construct relationships between
an explicitly research-based model of children's thinking and their own chil-
dren's thinking will improve their teaching and their student's learning. The
researchers have assessed the program's effect on teachers' knowledge and
beliefs, their instruction, and their children's learning.

The CGI model begins with an explication of the content domain (i.e.,
"problem types") and solution strategies that young children typically use
to solve problems dealing with each domain. The model is robust in that
most young children use the solution strategies included in the model,
strategies that are readily observed by teachers. Thus, teachers establish
the validity of the model and modify it as they assess their own children's
thinking. This knowledge enables teachers to find out what their own chil-
dren know and understand about mathematics (Fennema et al., 1996).
Consistent with CGI's model of children's learning, the program assumes
that teachers approach CGI workshops with informal knowledge about
children's mathematical thinking. The goal of CGI is to work with teachers
to assist them to focus and build on this initial knowledge. Workshops are
structured so that participants engage in activities that enable them to con-
sider the research-based model in relationship to their experiences with
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children. Collaboratively with the researchers, the teachers view video-
tapes of children solving problems and identify relationships between the
solution strategies and the problem types. Experienced CGI teachers as-
sist in some of the workshops by responding to teachers' questions and
concerns about how their classrooms are organized and how they use
children's thinking to guide instruction (e.g., should specific strategies like
"counting on" be explicitly taught?).

From 1985 to 1989, Carpenter and Fennema (1992) investigated how
CGI influenced first-grade teachers' instruction, beliefs, and learning of
their children. CGI teachers spent more time having children solve prob-
lems, expected multiple solution strategies from their children, and lis-
tened to their children more than did control teachers. Furthermore, they
found positive relationships between students' learning, their teachers'
beliefs, and their teachers' knowledge about their own students' think-
ing. From 1989 to 1993, the research team assessed CGI's influences on
Grade 1-3 teachers (Fennema et al., 1996). During the study, 18 of the 21
teachers' instruction changed so that their children spent more time
solving problems and discussing their thinking. The beliefs of 18 teachers
also changed so that they believed more strongly that children can and
should solve problems without direct instruction. For every teacher for
whom 4 years of data were available, class achievement in concepts and
problem solving was higher at the end of the study than it was before the
workshops. For most teachers, a shift in emphasis from drill on proce-
dure to problem solving did not lead to a deterioration in traditional com-
putational skill (Fennema et al., 1996). Finally, teachers who participated
in CGI continued to implement the principles of the program 4 years after
it ended (Franke, Carpenter, Levi, & Fennema, 2001). All 22 teachers
maintained some use of children's thinking and 10 teachers continued
learning in noticeable ways. The 10 teachers engaged in generative
growth (a) viewed children's thinking as central, (b) possessed detailed
knowledge about children's thinking, (c) discussed frameworks for
characterizing the development of children's mathematical thinking, (d)
perceived themselves as creating and elaborating their own knowledge
about children's thinking, and (e) sought colleagues who also possessed
knowledge about children's thinking for support.

Several implications emerge from the CGI project. First, knowledge of
their own children's thinking emerging from study of research-based
models enables teachers to make instructional decisions such that chil-
dren's learning of mathematics improves. Second, learning to find out
what children know about mathematics and to use that knowledge to
make instructional decisions is not simple and takes time. Follow-up
workshops and support for teachers, including time for discussion and re-
flection, are critical. Some teachers do not initially believe that knowledge
of children's thinking is significant. Third, when new knowledge is funda-
mentally incompatible with existing knowledge and beliefs, teachers tend
to reject the new knowledge or modify it to make it fit their existing struc-
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ture. Therefore, direct attention to these beliefs is essential. Fourth, teach-
ers themselves become change agents when they see that innovation
results in better learning for their children.

Consistent with the CGI model are several successful efforts that focus
on research-based models of children's thinking and learning (Hiebert,
1999; see also Bredekamp, chap. 2, this volume). In our own work, we put
research-based learning trajectories at the core of our teacher/child/cur-
riculum triad (Clements, 2002; Clements, Sarama, & DiBiase, 2002;
Sarama, 2002; Sarama & Clements, 2002). We find that learning trajecto-
ries help teachers focus on the "conceptual storyline" of reform curricu-
lum, a critical element that is often missed (Heck, Weiss, Boyd, & Howard,
2002; Weiss, 2002). This is supported by other research; for example, the
few teachers in one study that actually held in-depth discussions in reform
math classrooms, saw themselves not as moving through a curriculum,
but as helping children move through a learning trajectory (Fuson, Carroll,
& Drueck, 2000). Putting learning trajectories at the center facilitates
teachers' learning about math, how children think about and learn this
math, and how such learning is supported by the curriculum and its teach-
ing strategies, by illuminating potential developmental paths (Ball & D. K.
Cohen, 1999), and thus bringing coherence and consistency to math goals
and curricula, and assessments.

Another successful program that takes a different approach is Copley
and Padron's collaborative model. (The researchers abstracted six princi-
ples for effective professional development programs from three sets of
standards from the NCTM, NAEYC, and National Research Council.) Such
programs allow the early childhood teacher to : (a) develop good disposi-
tions toward mathematics, (b) experience good teaching in mathematics,
(c) focus on learning about children and mathematics, (d) participate in a
variety of professional development opportunities situated in the learning
community, (e) demonstrate an ability to implement integrative curricu-
lum, and (f) utilize appropriate strategies to establish family partnerships
(Copley & Padron, 1999). Based on these goals, university courses and col-
laborative arrangements were created for early childhood teachers (Cop-
ley & Padron, 1999). The collaborative arrangement involves three
components: beginning teachers teaching in teams of three to four in early
childhood classrooms; practicing teachers meeting in study groups while
the beginning teachers monitor their classes; and the university professor
modeling mathematics lessons in early childhood classrooms for both be-
ginning and practicing teachers. Course assignments for in-service teach-
ers include classroom coaching experiences, presentation of a
districtwide series of workshops of mathematics and science, mentorship
of a preservice early childhood teacher, and portfolios containing assess-
ments of children's learning in mathematics and science. Throughout the
duration of the sessions, the in-service teachers experience good mathe-
matics teaching, model the pedagogy necessary to transfer knowledge
into practice, write and implement integrated curriculum, and then share
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their knowledge with preservice teachers through workshops and
mentoring programs.

Student evaluations of this graduate class have been positive. In addi-
tion, 32 practicing teachers reported (pre and post) information about
their instructional practices using a questionnaire distributed by the Na-
tional Council of Supervisors of Mathematics. Significant differences oc-
curred in teachers' perceptions of preparedness on four items:
managing children using manipulatives, using computers as an integral
part of mathematics instruction; using a variety of alternative assessment
strategies; and involving parents in mathematics education. Teachers
also said they would give more emphasis to number sense, geometry
and spatial sense, and measurement. They reported that they increased
the following behaviors: asking their students to make conjectures and
exploring possible methods to solve a mathematics problem, writing
their reasoning about how to solve a problem, and using calculators and
manipulatives. Note several caveats: No power analysis was conducted,
the data are self-reported, and there was no comparison group. On the
basis of the data provided, the collaborative provides preservice teach-
ers with the opportunity to get experience in teaching well-planned les-
sons in authentic settings and reflect on their lessons with peer and
professor advice. In-service teachers experience professional develop-
ment as part of their regular teaching day and they collaboratively reflect
on lessons taught by themselves or the university professor. (See Copley,
chap. 18, this volume, for more information.)

Several researchers have worked with teachers on cooperative re-
search projects that share features with CGI and Copley's Collaborative
Coaching Project. For example, T. Wood, Cobb, and Yackel (1991) exam-
ined teacher learning in the context of an ongoing mathematics research
project based on constructivist views of learning and set in a sec-
ond-grade classroom. The teacher changed her beliefs about learning
and teaching as she resolved conflicts and dilemmas between her previ-
ously established form of practice and the project's emphasis on chil-
dren's construction of mathematical meaning. The changes that
occurred as the teacher reorganized her practice were analyzed and in-
terpreted by using selected daily video recordings of mathematics les-
sons along with field notes, open-ended interviews, and data from
project meetings. The analyses indicated that changes occurred to her
beliefs about the nature of (a) mathematics from rules and procedures to
meaningful activity, (b) learning from passivity to interacting and com-
municating, and (c) teaching from transmitting information to initiating
and guiding students' development of knowledge.

Project IMPACT (Increasing the Mathematical Power of All Children and
Teachers) is another successful university-school partnership, involving
predominantly minority, K-3 classrooms near the University of Maryland
(Campbell & Robles, 1997). Project IMPACT addresses a constructivist per-
spective of mathematics learning and focuses on how to promote teacher,
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and then student, understanding through interaction and collaboration.
The intent is for teachers to organize their instruction to build on children's
existing knowledge, relating mathematical procedures and curriculum
objects to problem solving. In IMPACT schools, children are to do more
than solve mathematics problems, they are to explain how they solved a
problem and why they solved a problem in that way.

The professional development model involves a summer in-service pro-
gram, an on-site mathematics specialist, and planning periods each week
for all teachers in the appropriate grade levels at each school. The summer
program addresses the pedagogical content knowledge, the mathematics
content knowledge, and the beliefs of the teachers. Topics include:
adult-level mathematics content; teaching mathematics for understand-
ing, including questioning, use of manipulative materials, and integration
of mathematic topics; research on children's learning of mathematics;
and teaching mathematics in culturally diverse classrooms. Teachers con-
sider a variety of instructional approaches and materials that support a
constructivist perspective of mathematics learning, emphasizing interac-
tion and collaboration rather than limiting teaching to a direct-instruction
model. Activities always have a second purpose such as illustrating a par-
ticular teaching strategy, or motivating teachers to create parallel tasks.
Teachers also observe others modeling teaching practices, and then
practice these instructional strategies with a small group of children.
Finally, time for teachers to plan for the ensuing year is also provided dur-
ing the summer. A mathematics specialist is assigned to each participant
school to observe and assist teachers as they implement their new ap-
proaches with a classroom of children, serving to resolve teachers' con-
cern and to support change throughout the school year.

At the conclusion of the five summer programs, the researchers surveyed
the teachers to determine if they would have volunteered for Project IM-
PACT if they had been given an option. Of the 99 respondents, 62 said they
would have volunteered, 30 said they would not have volunteered, and 7 did
not comment. Throughout the duration of the last four summer programs,
the teachers were also asked, "How do you think the goals of Project IM-
PACT would be affected if all teachers of a grade level in a school were not
required to participate?" Of the 74 teachers who were surveyed, 62 teacher
said the goals of the Project would be negatively influenced, 5 teachers said
it would have no influence, and 7 teachers did not respond. When asked to
delineate their role, IMPACT specialists noted that they assisted teachers in
making connections between mathematics topics and between mathe-
matics and other disciplines, creating "noncontrived" problems that were
meaningful in the culture of the classroom and addressed critical mathe-
matical objectives, developing questioning and wait time, responding to in-
correct answers and fostering involvement and growth among all children,
supporting reflection, learning how to share with colleagues and how to
support colleagues, and communicating with parents and other partici-
pants. The common weekly planning periods encouraged reflection and
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supported professional interaction, but without a "leader," these planning
periods easily become stressful and potentially divisive.

The project was evaluated with experiments that included random as-
signment and student outcomes measures (project-developed small-
group and individual student mathematics assessments). Implementa-
tion was monitored with classroom observations. By the middle of second
grade, significant differences favoring IMPACT students were reported for
place value, whole-number concepts, rational number, and geometry;
there were no significant difference for computation. Third-grade results
were similar, except that there were no significant differences for geome-
try. The IMPACT treatment did not eliminate racial discrepancies in stu-
dent achievement; there were higher mean achievement scores for both
the Black and the White children, as compared to the Black and the White
children in the comparison schools. The data for the Hispanic and Asian
children were mixed.

Survey Research: Teacher's Beliefs and Preferences
Regarding Professional Development

Given the diversity of the teacher/caregiver population, professional de-
velopment in early childhood mathematics is especially challenging. To
help meet this challenge, Sarama surveyed early childhood care provid-
ers on issues concerning professional development. About 400 people re-
sponded, including teachers and caregivers from family and group day
care, day-care centers, public and parochial schools, traditional nursery
schools, and Head Start centers. Results were combined whenever possi-
ble (i.e., when questions were the same).

The first question was: "Are you at all interested in professional develop-
ment in mathematics?" Ninety-four percent of the early childhood educa-
tors responded that they were. What is the best way to reach these busy
professionals? Forty-three percent receive their information through mail-
ings, and 31 % from their workplace via supervisors, bulletin boards, and so
forth. Of those who receive educational magazines or journals, 43% of re-
spondents receive trade publications, such as Mailbox, and 22% receive
the main journal published by the NAEYC, Young Children.

Thirty-nine percent would prefer to meet every 2 weeks; an almost
equal number (24% and 23% respectively) preferred to meet monthly or
weekly. This was surprising, as expert advisers had suggested that monthly
meetings might be "too much."

Although 60% of the participants preferred to meet in their workplace,
58% also chose a local college. Previous research has indicated that the
collegiate atmosphere can be intimidating to early childhood profession-
als (Copley & Padron, 1999). Other popular choices included schools
(44%) and teacher-training centers (35%). Most respondents felt that at-
tending in-service was not too difficult (63%), with fewer than 10% choos-
ing either "very difficult" or "easy." Transportation did not seem to be an
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issue; only 14% stated that it would influence their decision on whether or
not to attend a professional development opportunity. Ninety-two percent
said that they would use their own car to attend.

Expert advisers have suggested that financial rewards and job ad-
vancement would be key motivators. Although 30% of the respondents
did choose "increased pay" and 14% chose "job advancement," 66%
chose "curriculum materials" and 43% chose "personal satisfaction."
Forty-one percent of the respondents also chose a credential as a motiva-
tor and 31% chose college credit. This is consistent with surveys of a
wider span of teachers, who are motivated to develop their ability to help
children learn (Renyi, 1998).

Another set of questions dealt with beliefs about mathematics educa-
tion, answers to which could help inform any professional development
effort. Asked at what age children should start large group mathematics in-
struction, the family and group care providers chose ages 2 or 3 most of-
ten, whereas the other group felt large-group instruction should not start
until age 4. The survey asked whether teachers should have a "standard
list of math topics that should be taught to preschoolers." Respondents
agreed that it was important: 39% said "very important" and 47% said it
was "important." Open-ended responses indicated a desire for general
guidelines for the age-appropriateness of topics.

When asked about their main mathematics activities, 67% chose counting,
60%, sorting, 51%, numeral recognition, 46%, patterning, 34%, number con-
cepts, 32%, spatial relations, 16%, making shapes, and 14%, measuring. Un-
fortunately, geometry and measurement concepts were the least popular.

Most teachers use manipulatives (95%), number songs (84%), basic
counting (74%), and games (71%); fewused software (33%) orworkbooks
(16%). They preferred children to "explore math activities" and engage in
"open-ended free play" rather than participate in "large-group lessons" or
be "doing math worksheets." The data for technology are promising in that
71% of the respondents have access to the Internet, 67% have a computer
available for use by the children whom they teach, and 80% would be in-
terested in some sort of distance learning.

Finally, respondents said they would be interested in attending profes-
sional development at a center specifically designed for mathematics
and technology. Ninety-three percent were interested in visiting a model
classroom. Having an outside agency keep track of professional develop-
ment credits was more important to the respondents than was receiving
credit for every course.

Wolfe (1991) conducted an exploratory study designed to identify
what practices Head Start staff believe facilitate the transfer of their
learning to their work with children. Wolfe administered a survey, de-
veloped in conjunction with Head Start staff and professional develop-
ment experts, to staff in 32 randomly selected grantees in three states.
The participants recommended small-group discussion and demon-
stration/modeling as the professional development activities that they
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would most prefer, followed by handouts, lecture, observing actual
practice, games/simulations, role play, and video/movies. The least rec-
ommended instructional strategies were assignments and follow-up
phone calls (Wolfe, 1991). Observing actual practice and follow-up as-
sistance were ranked highest when participants were asked what strat-
egies they felt would have the largest effect on their work with children.
They ranked worksheets, follow-up letters, and panel discussions as
the least likely to have an effect. These results confirm that what teach-
ers desire and believe to be effective is not consistent with the current
system of delivery (D. K. Cohen & Hill, 2000).

Summary

There is a critical need for professional development in early childhood
mathematics education. Teachers and caregivers of young children
have limited knowledge of mathematics and mathematics education
and are not disposed to enjoy mathematical activity or learn more about
it. Furthermore, this is a serious equity concern, as teachers serving stu-
dents who are lower SES, limited in English proficiency, or lower achiev-
ing de-emphasize mathematics in general and higher level thinking in
particular. Finally, most available programs do not focus on early child-
hood mathematics at all.

More optimistically, we have a considerable knowledge base regarding
young children's learning of mathematics, and a growing research base
regarding professional development. Successful professional develop-
ment projects emphasize research on children's learning, made meaning-
ful to teachers. Most do this in the context of curriculum and reflection
upon that curriculum, although in familiar domains such as beginning
arithmetic, CGI has shown positive results just emphasizing models of
children's thinking. Most of the projects also involve collaborative efforts
that involve extensive interactions among teachers and university profes-
sors, although the nature and specifics of these projects vary. Copley's Col-
laborative involves substantial modeling and mentoring in early childhood
classrooms. Others balance summer programs with support provided
during the school year. All integrate research and theory, connecting it
closely to teachers' practice.

Survey research indicates that those in professional development have
to branch out from the traditional publications, including not only trade
publications but also such techniques as direct mailing. Although only a
third of teachers used computers with their children, they had access to
computers and the Internet, so professional development educators may
be able to reach them through nontraditional means. Results strongly indi-
cate that participants receive high-quality mathematics curriculum mate-
rials when attending professional development. Instructors should take
care that participants receive enough experience with the materials to
make sure they can be used effectively. Tying professional development to
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carefully documented credits that lead to a credential (early mathematics
specialist) may also be a potent motivator.

Teachers believed that guidelines of appropriate ages for approaching
various mathematics topics would be better accepted than a mandatory
"check-list" of required topics (supporting the approach taken by this
book). They had a limited view of appropriate and fun mathematics activi-
ties, which professional development educators might address.

Innovative and effective professional development models may use a variety
of research-based approaches. In addition, classroom-based inquiry, team
teaching by mathematics and early childhood education specialists, discus-
sion of case studies, and analysis of young children's work samples tend to
strengthen teachers' confidence and engagement in early childhood mathe-
matics.. . Delivering this kind of ongoing professional development requires
a variety of innovative strategies. For early childhood staff living in isolated
communities or lacking knowledgeable trainers, distance learning with lo-
cal facilitators is a promising option. Literacy initiatives are increasingly us-
ing itinerant or school-wide specialists; similarly, mathematics education
specialists could offer resources to a number of early childhood programs.
Partnerships between higher education institutions and local early child-
hood programs can help provide this support. Finally, school-district-spon-
sored professional development activities that include participants from
community child care centers, family child care, and Head Start programs
along with public school kindergarten/primary teachers would build coher-
ence and continuity for teachers and for children's mathematical experi-
ences. (Clements, Copple et al., 2002, p. 15)

IMPLICATIONS

Educational change depends on what teachers do and think—it's as simple
and as complex as that.

—Fullan(1982,p. 107)

Research confirms the importance of such professional development in
positively affecting young children's development and learning, across all de-
velopmental areas and in mathematics specifically. To be effective, profes-
sional development in early childhood mathematics should do the following:

• Address both knowledge of, and beliefs about, mathematics and
mathematics education.

• Develop knowledge and beliefs regarding specific subject-matter
content, including deep conceptual knowledge of the mathemat-
ics to be taught as well as the processes of mathematics.

• Respond to each individual's background, experiences, and cur-
rent context or role.

• Be extensive, ongoing, reflective, and sustained.



19. THE PROFESSIONAL DEVELOPMENT CHALLENGE 439

• Actively involve teachers in observation, experimentation, and
mentoring.

• Focus on common actions and problems of practice, and, as
much as possible, be situated in the classroom.

• Focus on making small changes guided by a consistent, coherent,
grand vision.

• Ground experiences in particular curriculum materials and allow
teachers to learn and reflect on that curriculum, implement it, and
discuss their implementation.

• Consider approaches such as research lessons and case-based
teacher education.

• Focus on children's mathematical thinking and learning, includ-
ing learning trajectories.

• Include strategies for developing higher order thinking and for
working with special populations.

• Address equity and diversity concerns.
• Involve interaction, networking, and sharing with peers/col-

leagues.
• Include a variety of approaches.
• Use the early childhood professional career lattice as a means of

encouraging professional development at all levels.
• Ensure the support of administration for professional develop-

ment to promote sustained and wide-scale reform.
• Consider school-university partnerships, especially collaborative

efforts involving extensive interactions among teachers and uni-
versity professors.

• Sustain efforts to connect theory, research, and practice
• Investigate the use of nontraditional publications, including trade

publications, direct mailing, and distance learning for communi-
cations.

• Provide participants with high-quality mathematics curriculum
materials and ensure that participants receive adequate experi-
ence to use the materials effectively.

• Address economic, institutional, and regulatory barriers.

Professional development in early childhood mathematics is a national
concern. Formal training as usually constituted is ineffective (Lampert &
Ball, 1998; Zeichner & Tabachnick, 1982). Most professional development
is not ongoing, continuous, reflective, and motivating. Research-based
suggestions such as those presented here hold the potential to make a sig-
nificant difference in the learning of young children by catalyzing substan-
tive change in the knowledge and beliefs of their teachers.
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Should national guidelines for mathematics instruction be developed for
preschool? The simple answer to this question is "yes," but the purpose of
national guidelines and the process to develop these are complex. In this
chapter we address why guidelines should be developed, what should be
considered in developing guidelines, and who should be involved.

The chapter includes many of the closing remarks that were made in re-
action to the conference sessions. Since that time we have reflected on
the issues and offer additional thoughts about developing national guide-
lines for preschool mathematics.

WHY SHOULD NATIONAL GUIDELINES BE DEVELOPED?

We posit three reasons why national guidelines for preschool mathe-
matics should be developed. First, such guidelines can increase both
the quantity and quality of the experiences all young children have with
mathematics. Second, guidelines can assure that assessment of young
children is appropriate and useful. Third, national guidelines can pro-
vide guidance to the variety of stakeholders who are required to develop
state or local guidelines and plan programs as well as for those who care
for young children.

449
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Increasing Quantity and Quality of Early
Mathematical Experiences

Preschool mathematics is attracting more and more attention, and is in
need of careful, thoughtful guidance. We are expecting more of young
children in their beginning years, and often those expectations are unreal-
istically low or unrealistically high.

The recent report, America's Kindergartners, of the Early Childhood Lon-
gitudinal Study (U.S. Department of Education, 2000) shows surprising
high entry-level mathematical skills of most of our youngsters. A question
to be asked is whether this is good enough. Can we balance higher expec-
tations with the aim of preschool to foster a love for learning, a feeling of
success, and the joy of being a child?

The trend to push the present kindergarten mathematics to preschool is
not the answer. Too often that curriculum is not even appropriate for kinder-
garten. Certainly children of this age can learn the concepts and skills, but
they may also be learning that mathematics did not have to make sense.
The power of children not yet faced with a more formal curriculum is the
ability to do tasks with understanding. Guidance is needed to help prevent a
push downward of the curriculum without thoughtful consideration of the
ramifications. Because mathematics has not been central to many pre-
school programs, there is a lack of knowledge about what is appropriate.
This often leads to putting the traditional 5-year kindergarten program with
4-year-olds and a first-grade curriculum in the kindergartners.

Guiding Assessment

Today many states and districts are involved in the politics of high-stakes
accountability. It seems likely that standards for preschool mathematics
are coming—especially as they relate to screening for children preparing
to enter kindergarten. As screening profiles and assessments for monitor-
ing progress are developed, they must be accompanied by strategies for
providing assistance for children who need it and never be used to pre-
vent children from opportunities to learn. Certainly, high-stakes assess-
ments should not be used to label children or sort children into groups.

We have been amazed as we watch young children in action at what they
can do and how quickly they have learned those skills. Through ongoing as-
sessments involving observation and conversation, caregivers and teachers
can provide mathematical experiences that meet the needs of all children.

Providing Leadership

States have produced or are being mandated to produce or revise guide-
lines for preschool curriculum. Developing guidelines is not an easy task,
and too often not enough support is given to the groups so mandated.
States are likely to have different agencies with staffs who have expertise
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in early childhood or in mathematics, but not necessarily in both. A pro-
ject that gives the time, effort, and expertise needed in a sensitive and im-
portant period of children's lives could be most useful for states to adapt
and use in their own efforts.

There are such standards for mathematics and other subject areas fo-
cused at school-level curriculum, but no national standards address pre-
school mathematics. Principles and Standards for School Mathematics
(PSSM) (National Council for Teachers of Mathematics [NCTM], 2000) is a
document that highlights the importance of mathematics for young chil-
dren. It advocates environments and interactions that are child oriented
yet rich in opportunities to explore mathematical ideas. It talks about the
importance of adults adding language to the informal and intuitive mathe-
matics of young children and building upon children's interests and curi-
osity. It reminds us that children are far more capable than we have ever
expected and that we must listen to their thinking and reasoning rather
than telling them how to think. PSSM discusses content and process stan-
dards that are components of a coherent, rich mathematics program from
the earliest years through high school, but it does not detail standards that
are specific to preschool children.

Adults working with children need guidance in what to observe and how
to encourage young children's develop of mathematical ideas and disposi-
tions. We all get a joy as a young child learns to count, and we have some
feeling that it is not an all-or-nothing skill. What other ideas of mathematics
should be included? Do we know what to look for, what to encourage, and
when to be surprised? We are asking many people who have been care-
givers to young children to also become teachers of content areas.

WHAT SHOULD BE CONSIDERED IN DEVELOPING
NATIONAL GUIDELINES?

In developing guidelines many issues will arise, but some decisions
should be made before beginning the project. In this section, we discuss
some practical considerations including the purpose and type of guide-
lines, additional materials, and dissemination.

Purpose and Type of Guidelines

Often projects are undertaken with the best of intentions, but without
the clarity needed. This may lead to mixed messages, misunderstand-
ings, and misuse of the product. Thus, one of the first assignments
should be to articulate the purpose of the guidelines in terms of why they
are being developed, for whom they are being developed, and how they
are intended to be used.

Similarly, by developing the main messages of the guidelines before de-
tails are addressed, everyone involved in the production will be moving in
the same direction. This does not mean that questions will not arise and
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that these messages will be refined during the process. In developing the
main messages, there should be careful consideration of those in the pre-
school part of PSSM (NCTM, 2000).

The type of guidelines also should be determined. We recommend that
these would be "opportunity to learn" standards (program standards) that
bring together the content from mathematics with the focus on children
from the National Association for the Education of Young Children
(NAEYC). Commentary that accompanies the standards should describe
what it looks like when children have these experiences. This should be a
strong set of statements honoring young children—their ways of knowing
and doing—and advocating opportunities for children to build both confi-
dence and competence in mathematics. Additional commentary should
describe the actions of teachers, caregivers, and parents that are neces-
sary for the standards to be implemented.

The format should be user friendly for a variety of audiences and should
become a part of professional development for those who work with
young children. The document should reflect this century's media. It
should not be only a print document, but should make judicious use of
electronic examples, videos, and other means to reach the broad audi-
ence for which it is intended.

Additional Materials

There is a need for other materials to accompany the guidelines. Some of
these will be for more detailed help in implementing the guidelines
whereas others will be designed for making a variety of audiences aware
of the guidelines.

In particular, we recommend that such material describes the develop-
ment of mathematical ideas across the earliest years (such a description is
of course, provided in Part I of this book—Eds.). This could be a continuum
that describes general benchmarks for the youngest learners ages 1 to 5.
Although individual children do not learn in a linear, lock-step fashion,
there is a general trajectory that can be described to assist adults who are
caring for and working with young children. Providing some insight into
children's potential for adults will likely reduce the huge gap in what chil-
dren know and are able to do as they enter formal schooling because of
their early mathematical experiences. This material should indicate
where most children are likely to be as they enter kindergarten so that as
districts and states are required to establish screening instruments, the
guidelines can talk about ranges and refer to the opportunity standards.

Dissemination

An organized campaign should be mounted to translate this information
into a variety of forms for different audiences. There needs to be a way to
assure that different stakeholders have appropriate documents. At this
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point, the form of these is not as important as making the decision that dis-
semination is to be an essential part of the project.

Some ideas that have already surfaced are included here as a starting
place for the group working on dissemination. There can be simple,
reader-friendly pamphlets that parents might get through libraries, doc-
tors' offices, or shopping malls. Booklets for preschool directors and
teachers might give more detailed information about the guidelines. Pub-
lic service announcements designed to reach a broad audience might be
organized around theme such as math in the kitchen, math at bedtime, or
math in the neighborhood. Fact sheets for policymakers might be devel-
oped to help them extend their experiences with few children to a broader
view about children's mathematical capabilities from birth to 5 years of
age can help them make appropriate decisions.

The next section speaks to the role of different groups in developing
guidelines, but it is also essential to involve all of these groups and others in
the dissemination efforts. Everyone must hear the message that our young
children can learn more mathematics and be better prepared for schooling
if we provide appropriate experiences and honor their ways of learning.

WHO SHOULD BE INVOLVED IN DEVELOPING
NATIONAL GUIDELINES?

As we look at the standards movement in K-l 2 education in the various
subject areas, there is no doubt that the strongest examples are those
developed by professional societies. These groups have the basic ex-
pertise for developing such standards and the staying power to lead the
implementation.

In the case of guidelines for mathematics for preschool, it is essential to
have the expertise of both the early childhood professional groups and the
mathematics education groups. We recommend that the NCTM and the
NAEYC form a working group to draft and develop the Guidelines for Early
Mathematics Learning.

If these two organizations could take the lead, then they need to involve
many others. Some of these may be members of the organizations, but
there is the need to reach out to others such as the following:

• Mathematics and early childhood educators can bring quality ex-
emplars, appropriate language, and realistic goals to the table,
give guidance to the documents related to the "what" and "how,"
help sort out the issues of "yes, they can ... but should they."

• State agency consultants should be included both on the team
that is developing the guidelines and in making plans for dissemi-
nation. They have an essential role in providing initial guidance to
the development, reacting to drafts, planning for coordination
with their state guidelines, and moving the effort forward.
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• Researchers should be involved at each stage by helping to iden-
tify and clarify the findings from various studies that can inform the
guidelines. There is much relevant research such as that which
was reported at this conference that would give credence to the
recommendations.

• Parents and other caregivers should be included for they often are
the first providers of mathematical experiences. A mathematical
rich environment can be provided in every household with every-
day materials and encouraging questions. This view should not be
missed in developing such guidelines.

• Those who work in social services and special education have a
history of working with special needs of preschool programs and
should be part of the development and dissemination efforts.

• There are other professional organizations involved with family and
education issues that need to be brought to the table. These groups
have many grassroots chapters that reach many providers for
young children. The developers need to be aware of what these
groups have done and how their work can complement this effort.

• Policymakers should assure that legislation and policies affecting
the establishment of programs for young children and the imple-
mentation of these guidelines focus resources of state and local
groups rather than creating competing agencies. A collaboration
of resources and groups with various emphases can serve chil-
dren well if careful thought is given to how they interact and sup-
port each other's services.

Unless all groups can come together and give guidance to this effort,
recognizing that there is always more to learn and much we do not
know, we will find ourselves in various "camps" that cause as much
confusion as clarification.

CLOSING

Before developing guidelines, those involved need to consider how to po-
sition the document. How can the environment be massaged to ready the
constituents for such a document? What public relations issues need to
be addressed before and after the document? Who else should be in-
volved; in particular, what professional organizations should be brought
in from the beginning? Who should take the lead? Who has the responsi-
bility for decisions?

This conference has begun the process and certainly speaks to the need
for the NAYEC and NCTM to continue to work together. However, there are
some fundamental surrounding questions that need to be addressed such
as those mentioned here.
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These are not simple issues; resolutions of these issues are needed be-
fore moving ahead. The conference has brought together many of those
needed in the process, and has given us a time to think and begin the dis-
cussion. We would encourage this group to take the next steps and turn to
the leaders of this conference to assume responsibility for action.

REFERENCES

National Council of Teachers of Mathematics. (2000). Principles and standards for school
mathematics. Reston, VA: Author.

U.S. Department of Education, National Center for Education Statistics. (2000). America's kin-
dergartners: Findings from the Early Childhood Longitudinal Study, kindergarten class of
1998-99, fall 1998. Washington, DC: U.S. Government Printing Office.



Author Index

Note: f indicates figure
n indicates footnote

t indicates table

A

Abravanel, E.,292
Acredolo, L. P., 43, 69
Adams, L., 282,293
Adcock, S. G., 420, 440
Akers.J., 283,294, 310,5/5
Albert, L. R, 379, 382,388
Alexander, K. L., 344,359
Alexander, P. A., 11,69
Aliminosa, D., 196,279
Allardice, B. S., \2\,147
Allen, B., 382,388
Allexaht-Snider, M., 105,147
Amanti, C., 12, 71
Anderson, K., 379, 380, 381, 386, 387,

388, 389
Andreasen, G., 282,295
Anooshian, L. J., 279, 280,292
Arnoff,J., 309, 310,5/5
Ashcraft, M. H., 123, 747, 151, / 70, 196,

214
Ashlock, R. B, 207,2/4
Atchison, W. F., 268,294
Aubrey, C, 11,69,368,574
Austin, J. D., 275,296
Averna, S., 385,559
Azer, S., 418, 440

B

Baddeley, A., 384,388

Baden-Kierman, N., 417,442
Baenninger, M., 386,555
Balfanz, R., 430,440
Balfour, G., 190,2/6
Ball, D. L, 14, 66, 69, 418, 419, 425,

426, 432, 439,440, 445
Ballard, N., 383, 385, 387,555
Banks, M. S., 43, 71
Baratta-Lorton, M., 158, 165n, /70, /72,

204,2/4
Barnett, C. S., 160,171
Baroody, A. J., 56, 57, 69, 155n, 156,

158, 159, 160, 161, 162, 163,
164,165, 166, / 70, /72, 174,
175, 184,185,186,187,189,
191, 193, 194, 195, 196, 197,
198, 199,201,204,205,208,
209,210,211,212,2/4,275,
2/6, 2/9, 344,559

Barrett, J., 301,307,5/5
Bartsch, K., 123, /46
Bass, H., 14,66,69,418,440
Bassi, J., 385,555, 559
Bastable, V, 426,445
Battista, K., 309, 310,5/5
Battista, M. T., 58, 69, 70, 270, 2 7 \ f , 273,

274, 275, 276, 277, 283, 284,
287,295,294,299,301,305,
307,309,310,312,314,5/5,
5/6, 362,574, 384,555, 559

Baturo, A., 308,5/5
Beaton, A. E., ix, xiu, 268,292, 385,

559,416,444
Beatty, J. J., 378,555
Behr, M.J., 211,2/5
Beilin, H., 40, 42, 69, 273, 275,292, 312,

5/5
Beishuizen, M., 125, /45

457



458 AUTHOR INDEX

Bellm, D., 417,444 Brownell, W. A., 121,145, 156, 169,
Benbow, C. P., 384, 385,388 170, 196,215
Benson, A., 175,275 Bruner, J. S., 158n, / 70
Benson, J. B., 43, 71 Brush, L, 202n, 215
Bereiter, C., / 72 Bryant, D. M., 416, 441
Bergeron, J. C., 121,145 Bryant, P., 259,266, 282,296, 297
Bermejo, V, 204,215 Burchinal, M., 416, 417,441, 444
Birman, B. R, 419, 422, 423, 424, 442 Burger, W. R, 269, 21\f, 293
Bisanz, J., 196, 197,2/7 Burghardt, B. H., 121, 125, 126,146,
Bishop, A. J., 281,292 206, 208,276
Black, P., 10, 14, 69 Burns, J. M., 394, 400
Blades, M., 282,252 Burns, M., 772
Blaut, J. M., 278,252 Burns, M. S., x, xiv, 10, 13, 57, 64, 65,
Blevins-Knabe, B., 416,440 68, 69, 77, 78, 82,82, 362,374,
Blondel, E., 10, 14, 69 415, 416, 417, 428, 440
Bloom, P., 428, 440 Burton, A., 418, 444
Boardman, D., 280,293 Burton, R. B., 207,275
Boisvert, M., 201,275 Burts, D. C., 394,400
Borer, M., 283,293 Buswell, G. T., 207,275
Borko, H., 413,414, 424, 444 Butterworth, B., 196,275
Bornstein, M. H., 268, 276,293 Byler, P., 417, 444
Borrow, C. V. A., 309, 310,315
Boulton-Lewis, G. M., 51, 69, 300, 302, C

305,375
Bourexis, P. S., 423,443 Campbell, P. R, 416, 433, 441
Bourne, L. E., Jr., 196,275 Capodilupo, A., 10, 13, 71, 329, 337,
Bovet, M., 302, 303,316 340, 368,375, 416, 443
Bowers, J., 125,147 Carey, D. A, 403, 474
Bowman, B. T., x, xiv, 10, 13, 57, 64, Carey, N., 417, 442

65, 68, 69, 78, 82, 82, 362,374, Carlan, V. G, 408,474
415, 416, 417, 428, 440 Carlson, S. L, 283,253

Bow-Thomas, C. C., 12, 70, 343,359 Carnine, D. W, 108, 114, 747
Boyd, S., 10, 14, 67, 77, 432, 443 Carnine, S. W, 108, 111, 113, 745
Boykin, A. W., 382,388 Carpenter, T, 56, 66, 69, 70 107, 121,
Brainerd, C. J., 203,275 125, 130, 745, 146, 147, 194,
Bransford, J. D., 366,374 195,275,276, 268, 274, 275,
Braten, L, 161, 7 70 284,253,254, 386,355, 403,
Bredekamp, S., 79,82, 156,770, 772, 414 419 430 431 447 442

386,388, 393, 394,400, 415, 444
427,428,440 Can, M., 388

Bremner, J. G., 282,253 Carroll, W. C., 10, 14, 70
Briars, D. J., 107, 125, 746 Carroll, W. M., 432,442
Bright, G. W, 56, 70 Case, R, 10, 11, 12, 13, 77, 326, 327,
Brinkley, V. M., 283,257, 307,37 7 328, 329, 333, 337, 338,335,
Brophy, J. E., 419, 420,440 340, 343,355, 368,375, 416,
Brown, A. L., 366,374 443
Brown, C. A., 268,255 Casey, B, 379, 380, 381, 383, 385, 386,
Brown, D. L, 284,253, 257 387,388, 389
Brown, J. S., 207,275, 423, 440 Casey, M. B., 384, 385, 387,388, 389
Brown, M., 10, 14, 65 Chambers, D. L., 344,355



AUTHOR INDEX 459

Chang, I, 12, 72, 268,297, 343,360,
416,445

Chard, D., 108, 111, 113, 745
Charles, R. I., 160,777
Charlesworth, R., 394,400
Cheek, H.N, 280,256
Chi, C.-Y, 12,70,343,555
Chittenden, E., 61, 62, 63, 69, 70
Choi,Y. E., 12,70,343,555
Chrostowski, S. J., 416, 444
Clark, C., 416,446
Clark, F., 301, 302, 303, 304,576
Clements, D., 299,575
Clements, D. H., 10, 11, 14n, 40, 41, 57,

58, 59, 60, 64, 65, 70, 77, 208,
276, 269, 270,277/; 273, 274,
275, 276, 277, 283, 284, 285,
286, 287,255, 254, 256, 299,
300,301,302,303,304,305,
307,309,310,312,313,314,
575,576,577,344,345,555,
362, 363, 364, 365, 366, 368,
369,574,575,384,555,415,
418,420,421,430,432,438,
447, 445

Clements, M. A., 278,255
Clifford, R.M., 417,444
Cobb, P., 60, 72, 121, 125, 747, 745, 187,

188, 195,206,276,275,227,
234, 242,257, 276n, 257, 301,
303,304,576,577,433,446

Coburn,!., 274, 275,255
Cocking, R. R., 366,574
Cohen, D. K., 423, 425, 426, 432, 437,

440, 447
Cohen, L., 335,555
Cohen, N., 429,447
Cohen, N. J., 196,275
Collins, A., 423,440
Confrey, J., 276,255, 363,574
Connell, D., 416,446
Coombs, B., 378, 382,389
Cooney, T.J., 107,747
Cooper, R. G., 17, 21, 70, 190,276
Copeland, R., 302, 303,576
Copple, C., 79,82, 156, 770, 772, 386,

555,393,394,400,415,421,
430, 438,440, 447

Copley, J., 65, 66, 70, 772, 402, 403,
404, 408,474, 420, 430, 432,
435,447

Corbitt, M. K., 268,255
Coslick, R. T., 57, 65, 155n, 156, 158,

159,162,163, 165,166,770,
189, 191, 193, 195, 196, 197,
199,204,205,208,210,212,
275

Cowan, R., 204,276
Crosby, M. E., 275,257
Crosswhite, F. J., 107,747
Cuban, L., 422, 447
Culkin, M. L.,417,444
Gulp, A., 416,442
Cuneo, D., 309,576
Curcio, F. R., 56, 70
Curtis, L. E., 190,275

D

Daggs, D. G., 281,254
Daley, K. E., 196,277
Damerow, P., 332,555
Darling-Hammond, L., 415, 416, 418,

419,423,424,447
D'Augustine, C., 165n, 770
Daugherty, M., 11,65
Davidson, J., 363,574
Davis, G., 210,276,277
Davydov, V. V, 258,266
DeCorte, E., 194,276
Dehaene, S., 335,555
De La Cruz, Y, 105, 142, 746, 747
Del Grande, J.J., 275,254
D'Elio, M. A., 416,446
DeLoache, J. S., 174,276
Denton, K., 416,447
Deri, M., 210,276
Desimone, L., 419, 422, 423, 424,442
Dewey,J., 157, 158n, 777
Diamond, J., 254
DiBiase, A. -M., 432, 447
Dixon, R. C., 108,111,113,745
Dolecki, R, 203,275
Donaldson, M., 190,276
Dong, Q., 343,560
Donlan, C, 176,207,276
Donovan, M. S., x, xiv, 10, 13, 57, 64,

65, 68, 65, 77, 78, 82,52, 362,
574,415,416,417,428,440

Dorsey, J. A., 544, 555
Dossey,J.A., 107,747
Downs, R. M., 280, 281,254, 255



460 AUTHOR INDEX

Drueck, J. V, 10, 14, 70, 432,442 Frank, R. E., 280,294
Duguid, P., 423, 440 Franke, L., 403, 414
Dulloog, L., 255,266 Franke, M. L, 66, 70, 125, 130,145,

386,389, 419, 430, 431,442
E Frase, M., 343,359, 360

Frechtling, J., 417,442
Edwards, C., 396,400 Friel, S. N., 56, 70
Eggers-Pierola, C, 416,443 Fromboluti, C. S., / 72
Eggleston, V. H., 185, 192,218 Frydman, O., 259,266
Eicholz, R. E., 160, / 71 Fullan, M. G., 417, 423, 438,442
Elkind, D., 201,216 Fuller, B., 416,443
Elmore, R. F, 423,441 Furth, H. G, 156, 7 71
Ely, D. P., 420,441 Fuson, K. C., x, xiv, 10, 14, 19, 22, 70,
Enipson, S., 403,414, 430,431,442 105, 107, 109, 114, 118, 121,
Engelmann, S., 772 123, 124, 125, 126, 130, 142,
Englund, R. K., 332,339 147, 148, 161, 163, 167, 777,
Ensing, S. S., 275,296 185, 188, 194, 198, 203, 206,
Entwistle, D. R., 343,359 207, 208,216, 269,294, 362,
Epstein, A., 442 368,374, 375, 432,442
Escobedo, T. H., 365,374 Fuys, D., 269,294, 384,389
Estes, B., 301, 303, 304,316, 317
Etchberger, M., 420,442 G
Evans, D., 43, 69
Evans, S., 365,374 Gagatsis, A., 41, 70, 287,294
Eylon, B. -S., 269/, 27% 296 Gallistel, C. R., 185, 190,276, 344,359

Gallucio, L., 385,389
F Gal'perin, P., 258, 259,266

Gandini, L., 396,400
Fabricius, W. V., 279,294 Gannon, K. E., 204,275
Fan, L., 12, 70, 343,359 Garden, R. A., 416, 444
Farran, D. C., 416,442 Caret, M. S., 419, 422, 423, 424,442
Feiler, R., 396, 400 Caring, A. E., 279,296
Fennema, E.,66, 70, 107, 121, 125, 130, Gatzke, M. S., 187,275

745, 146, 147, 278, 284,294, Gay, R, 283,294
386,389, 403,414, 419, 430, Gearhart, M., 12, 72, 344,360, 416,445
431, 441, 442, 444 Geary, D. C, 11, 12, 70, 115, 121,146,

Ferdinandsen, K.', 26S, 276,293 343,359, 419,442
Ferguson, R. E, 415, 416,442 Geddes, D., 269,294
Ferris A 420 442 Gelman, R., 17, 72, 185, 190,276, 278,
Ferrucci,'B. J.', 423, 424, 427,442 294, 328,339, 344,359, 368,
Fey, J., 268,294 375
Filippaki, N., 278,294 Genishi, C., 420,442
Findell, B, ix, x,xiv, 10, 11, 12, 17, 61, Genkins, E. F., 276,294

65, 66, 71, 156, 777, 416, 420, Georgiev, L. S., 258, 259,266
421 443 Gertzog, W, 420,444

Fischbein, E.' 210,276 Ginsberg, H. P., 11, 12, 51, 70, 92, 704,
Fisher, N. D., 269,294 115, 121, 747, 156, 777, \75n,
Flavell, J. H., 175n, 276 176, 184, 185, 194, 196, 207,
Fleenor, C. R., 160, 777 275, 276,277, 273, 274,294,
Ford, W., 195, 200,275, 419, 444 312,576, 343, 344, 345,359,
Forman, G., 396,400 368,374, 416,442



AUTHOR INDEX 461

Girelli, L, 196,275
Glider, P. J., 275,296
Go, E., 201,2/6
Goldman, S. R., 116, 121,747
Goldsmith, L. T., 394,400
Gomez, R. M. G., 283,293
Gonzalez, E. J., ix, xiv, 268,292, 385,

389,416,444
Gonzalez, N., 12, 71
Gonzalez, R, 343,360
Good, R. A., 268,254
Goodlad, J. L, 58, 70
Goodnow, J., 186,277
Goodrow, A., 283,294, 310,315, 380,

381,387,355
Grandau, L., 124, 746
Grant, S. G., 58, 70, 418, 420, 442
Gravemeijer, K., 14n, 77, 125, 745, 301,

303,304,376,377,364,375
Greene, E., 415, 427,443
Greenes, C., 103, 704
Greeno, J. G., 201, 203,275
Gregory, K.D., 416,444
Griffin, P., 77,82
Griffin, S, 10, 11, 12, 13, 77, 326, 327,

328, 329, 333, 337, 338,339,
340, 343,359, 368,375, 416,
417,443

Griffin, W. H., 443
Gross, C.G., 268, 276,293
Guay, R. B., 278,294
Guberman, S. R., 12, 72, 344,360, 416,

445
Guskey, T. R., 66, 77, 415, 417, 423,443

H

Haith, M. M., 43, 77
Hall,J., 163, 777, 185,203,276
Ham, M., 118,745
Hamann, M.S., 123,747
Hanich, L. B., 176,277
Hannibal, M. A. Z., 11, 40, 41, 70, 77,

269, 285, 286, 287,293, 294,
344,359, 368,374

Hanrahan, C, 418,440
Harcourt, L., 378, 382,359
Harel, G., 211,275
Harley, H., 204,279
Harris, L. J., 294
Hart, C. H., 394,400

Hartman, C. L., 368,375
Hasselbring, T. S., 116,747
Haugland, S. W, 363,375
Healy.A. R, 196,275
Heath, S. B., 382,359
Heck, D. J., 10, 14, 67, 77, 432,443
Heid, M. K., 268,294
Heller, J. I., 201,203,275
Hembree, R., 151,777
Hendrickson, A. D., 207,277
Henry, J.J., 418, 420,445
Herscovics, N., 121,745
Hershkowitz, R., 269,297, 384,359
Hewson, P. W., 415, 416, 419, 420, 423,

444
Hiebert, J., 61, 77, 107, 121, 124, 125,

746, 747, 195,210,275,277,
302,376,364,375,419,426,
427,443, 446

Hill, H. C., 426, 437, 447
Hilliard,A.,415,443
Hinkle, D., ix, x, xiv
Hiscock, K., 196,277
Holloway, S. D.,416,443
Holly, P., 66, 77
Hopkins, S., 160,777
Hopko, D., 151,770
Horan, P. E, 282,296
Housman, L. B., 60, 77
Howard, M., 10, 14, 67, 77, 432, 443
Howe.R., 165, 777
Howell, R. D.,294
Howes, C, 417,444
Huberman, M., 66, 77, 417, 443
Hudson, K., 105, 142,746
Hughes, M., 186, 188, 196,277
Human, P., 107, 121, 125, 746, 747
Hunting, R. P., 210,277
Huttenlocher, J., 12, 43, 77, 174, 175,

176,177, 187, 191, 194,195,
211,212,277,275,279,282,
295,296,312,377,343,359,
416,443

Hyson, M., 415, 421, 430, 438, 447

I

Inhelder, B., 11, 50, 60, 72, 175,275,
282, 284,296, 302, 303,376,
377



462 AUTHOR INDEX

Inoue, N., 51, 70, 92,104, 273, 274,294, Kerrigan, M., 381, 387,388
312,316, 368,575 Kessels, J. P. A. M., 424, 443

Irwin, K. C., 202,217 Kieren, T., 248,250
Isen, A. M., 203,219 Kifer, E, 107,147
Isenberg, J., 427, 443 Kilpatrick, J., ix, x, xiv, 10, 11, 12, 17,

61,65,66,77, 156,777,416,
J 420,421,445

Kim, M.S., 118,745
Jacobs, V, 125, 130, 745, 386,389, 414 Kirk, E. P., 151, 770
Jacobs, V. R., 430, 431, 442 Klahr, D, 175,217
Jacobson, C., 38, 77 Klein, A., 12, 40, 42, 69, 72, 156, 777,
Jalongo, M. R., 427, 445 268, 269, 273, 275,292,295,
James, W, 163, 777 297, 312,575, 343, 344, 345,
Jeffrey, T. S., 427,445 359, 360, 416, 445
Jenkins, K., 408, 409,474 Kline, M., 165, 7 77
Jenkins, M., 38, 52, 77, 268, 269, 273, Knapp, M. S., 109, 114, 747

295, 310, 312,576, 368,575 Koegler, R. R., 201,216
Jessup, D. L.,. 388 Kohnstamm, G. A., 203,217
Johnson, D. K., 248n, 250 Konold, C., 248n, 250
Johnson, E. S., 555, 559 Korthagen, F. A. J., 424, 425,445
Johnson, J., 268, 282,294, 402, 474, Kosslyn, S. M., 284,295

415, 443 Kouba, V. L., 268, 273,295
Johnson, S. P., 282,297 Kronholz, J., 1 In, 71
Jolly, A., 158n, 7 70 Kull, J. A., 283,295, 307,576
Jordan, N. C, 12, 77, 174, 176, 187, 194, Kwang, K., 416,446

195,277, 344,559, 416, 445 Kwon, Y, 203,276
Jovignot, F., 280,295
Joyce, B., 66, 72 L
Judd, C. H., 207,275

Lally, R., 427,445
K Lambert, L., 427,445

Lampert, M., 419, 426, 439, 445
Kabanova-Meller, E. N, 269,295 Landau, B, 279,295
Kagan, S. L., 417, 428,445, 444 Lane, S., 275,296
Kalihiwa, C., 258, 259,266 Lange, G., 283,297
Kaliski, L., 190,277 Lanier, P., 419, 445
Kameenui, E. J., 108, 111, 113, 114, Lappan, G., 268,295, 419,445

745, 747 Lau, L. B., 416, 447
Kamii, C., 60, 77, 203,277, 301, 302, Laverty, K., 418, 444

303, 304,576 Lean, G., 278,295
Kantowski, M. G., 268,294 Lee, D. -S., 108, 111, 113, 745
Kaser, J. S., 423, 445 Lee, S. -Y, 268,297, 338,540, 343,560
Kaufman, L. C., 166, 770, 186,275 LeFevre, J., 196, 197,277
Kay, C. S., 286,295 Lehrer, R., 38, 52, 77, 268, 269, 273,
Kellman, P. J., 43, 77 295, 301, 303, 304, 309, 310,
Kelly, D. L., ix, xiv, 268,292, 385,559, 312,576, 368,575

416,444 Lesh, R., 211,275
Kemis, M., 427, 445 Levi, L., 56, 69, 386,559, 474, 430, 431,
Kendall, G., 282,295 442
Kepner, H. S., 268,295 Levine, S. C., 12, 77, 174, 175, 176, 177,
Kerkman, D. D., 115, 121,747 186, 187, 191, 194, 195,211,



AUTHOR INDEX 463

212,217, 218, 343,359, 416, McLanahan, A. G., 203,219
443 McLaughlin, M. W, 65, 71, 423, 424,

Liben, L. S, 280, 281, 282,294, 295 441
Lieberman, A., 423,444 McLean, M. E., 422,445
Liebow, A. K., 384,389 McMillen, S., 208, 283,216, 293, 305,
Light, P., 305, 309, 310,317 307,316, 364, 365,374
Lijuan, P., 12, 72, 268,297, 416,445 Meade, A. C., 385,389
Lindquist, M., 226,257, 268, 273,293, Meredith, J. S., 283,293, 307,316

295, 344,359 Mertz, D. L, 121,147
Lively, M. A., 427, 443 Miles, M., 423, 444
Lo Cicero, A., x, xiv, 22, 70, 105, 109, Miller, K., 12, 71, 210,217, 259,266,

125,130,142,747 343,559
Loef, M., 419,444 Mitchelmore, M. C., 273, 274,295, 309,
Lopez, L. S., 12, 70, 343,359 310,317
Lortie, D., 420, 444 Miura, I. T., 206, 208,217
Loucks-Horsley, S., 66, 72, 415, 416, Mix, K. S., 174, 175, 177, 190, 191, 211,

419,423,443,444 212,275
Louis, K., 423, 444 Modigliani, K., 429, 441
Love, N., 415, 416, 419, 423, 444 Moll, L. C., 12, 71
Lubinski, C., 303, 304,316 Moller, L., 201,275
Lyons, B. G, 203,276 Morelli, G., 382,389

Morgan, G., 427, 428, 444
M Morris,!, 196,277

Moser,J.,275
Ma, L, 14, 66, 71, 165, 777, 419,444 Moser, J. M., 194, 195,276
Mack, N. K., 210,277 Muir, S. P., 280,296
Malaguzzi, L., 60, 77, 396, 400 Mullis, I. V. S., ix, xiv, 268,292, 344,359,
Mangione, P., 227, 443 385,389, 416, 444
Mansfield, H. M, 277,295 Munn, P, 176, 187,275
Markman, E., 203,27 7 Murphy, C., 66, 72
Marino, M. S, 210,276 Murray, C., 269,294
Marschesini, N., 196,275 Murray, H, 107, 121, 125, 746, 747
Martin, C. S. M., 204,279 Musun-Miller, L., 416,440
Martin, M. O., ix, xiv, 268,292, 385,389, Mutch, S. L, 51, 69, 300, 305,575

416,444
Mason, J., 305, 309, 310,577 N
Mathias.M., 772
Mattson, S. L., 282,296 Napoleon, L, 387,388
Mazzeo, J., 275, 282,296 Nason, R., 308,575
Mazzocco, M. M. M., 282,297 Nastasi, B. K., 363, 364,574
McClain, K., 125, 747, 304,576 Natriello, G., x, xv, 416, 444
McCleod, D. B., 151, 777 Neff, D., 12, 77
McCloskey, M., 196,279 Neill, A. S., 156, 7 77
McCorgray, P., 203,279 Nello, M. S., 210,276
McCracken, J., 415, 445 Nelson, G., 86,87
McCreath, H., 279, 280,290 Netley, R., 12, 70, 343,559
McDaniel, E., 278,294 Neuman, S., 79,82
McDill, E. L., x, xv, 416,444 Newcombe, N., 43, 77, 279,295, 386,
McGee, M. G.,295 388
McKey, R. H., 416, 446 Nieuwoudt, H. D, 274, 275,296
McKnight, C. C., 107, 747 Nissen, H. J., 332,559



464 AUTHOR INDEX

Nunes, T., 305, 309, 310,317
Nuttall, R. L., 384, 385,388, 389

O

O'Brien, R., 416, 446
Ochsner, M., 420,442
O'Connor, K. M., 416,444
O'Daffer, P. G, 160,/7/
Okamoto.Y, 206, 208,2/7
Olive, J., 235n, 250
Olivier, A., 107, 121, 125,146, 147
Omanson, S., 107,147
Opper, S., 175r?, 217
Osana, H., 38, 52, 71, 268, 269, 273,

295, 310, 312,3/6, 368,375
Outhred, L. N., 309, 310,317

P

Padron, Y., 403, 404,414, 430, 432, 435,
441

Pai-Samant, S., 416,446
Pallas,A.M.,x,j«;, 416,444
Pang, L., 343,360
Papamichael, Y, 278,294
Papert, S., 38, 72
Parzysz, C., 384,389
Pascal, VU., 279, 280,292
Patronis, T., 41, 70, 287,294
Patton, M. M., 420,440
Paugh, P., 383, 385, 387,388
Peak, L, 107,747, 343,559
Peisner-Feinberg, E. S., 417, 444
Pellegrino, J. W, 121,747
Pellowski, A., 382,389
Pergament, G. G., 203,276
Perham, F, 275,296
Peterson, P. L., 58, 70, 403, 414, 418,

419,420,442,444
Petri, D., 402, 408, 409, 474
Pezaris, E., 384, 385,388, 389
Piaget, J., 11, 20, 50, 60, 72, 174, 175,

185,191,199,200,202,203,
211,275, 224, 225n, 226,250,
250, 257, 282, 284,296, 302,
303 317

Pitkethly,A.,'210,276
Placier, P, 423, 424,445
Porter, A. C., 419, 422, 423, 424, 442
Posner, G., 420,444

Post,!., 211,2/5
Prawat, R. S., 420, 444
Presson, C. C, 43, 72, 279, 280,296
Putnam, R. T., 413, 414, 424,444

Q
Qi, D., 12, 72, 268,297, 416,445

R

Raizen, S. A., 423,443
Rambaud, M. R, 416,443
Ramirez, A., 345,359
Raymond, A. M., 408, 409, 414
Razel, M., 269f, 27Of, 296
Reich, S., 368,375
Renton, M., 204,2/6
Renyi, J., 423, 424, 436, 444
Resnick, G., 416,446
Resnick, L., 107,147, 190, 195, 200,

201,202,205,2/5,256,257,
266,416,419,444

Reynolds, 308, 310,5/7
Reys, R., 226,251, 268, 274, 275,293
Richards, J., 227,251
Richardson, V, 408, 4/4, 423, 424, 445
Rickard, T. C., 196,2/5
Rieser.J.J., 279,296
Riley, C. A., 203,219
Riley, M.S., 201,203,2/5
Rinck, N., 172
Roberts, N, 420, 442
Robinson, M., 328,340
Robles, J., 433, 441
Rodriguez, P., 204,2/5
Rogoff, B., 382,389
Romberg, T., 419,445
Ron, P., 105, 131, 142, 746, 747
Rosch, E., 268,296
Rosen, L. P., 268,294
Ross, S. H., 207,2/5
Rosser, P., 559
Rosser, R. A., 275, 282,296
Russell, R. L, 115, 747, 416,442
Russell, S. J., 56, 72, 426,445
Rustici.J., 417, 444
Ryan, S., 420, 442

S
Sadesky, G. S., 196,197,277



AUTHOR INDEX 465

Sales, C, 277,296
Salganik, L. H., 343,360
Sandall, S. R., 422, 445
Sandberg, E. H., 282,296, 312,317
Sandieson, R., 329, 337,340
Saracho, O. N., 427, 445
Sarama, J., 10, 11, 14n, 40, 70, 269, 270,

273, 274, 276, 277, 283, 285,
286, 287,293,294, 296, 301,
305,307,310,313,314,5/5,
576,577,344,559,362,363,
364,368,574,575,418,420,
432, 441, 445

Saxe, G. B., 12, 72, 344,560, 416, 445
Schadler, M., 278,296
Schaeffer, B., 185,192,275
Schifter, D., 426, 445
Schiro, M., 378, 379, 380, 381, 382, 386,

387,388, 389
Schmandt-Basserat, D., 330,340
Schmidt, W. H., 107, 747
Schoenfeld, A. H., 156, 777, 415, 416,

419,445
Schram, P., 419,445
Schultz, K. A., 296
Scott, J., 277,295
Scott, J.L, 185, 192,275
Scott, P. B., 294
Secada, W. G., 115, 745, 163, 777, 416,

445
Seo, K. -H., 11, 51, 70, 92, 704, 273, 274,

294,312,576, 368,575
Shade, D. D., 363,575
Sharp, L, 417,442
Shaughnessy, J. M., 269, 27\f, 295
Shaw, K., 420, 442
Shepperson, B., 14, 72, 258, 259,266
Sherman, J., 278,294
Sherman, J. A., 294
Sherrill, C., 378, 382,559
Shifter, D., 394, 400
Shipley, C, 196,275
Shipley, E. F., 14, 72, 258, 259,266
Shojgreen-Downer, A., 58, 70, 418, 420,

442
Showers, B., 66, 72
Siegel, A. W., 278,296
Siegel, L. S., 190,275
Siegler, R. S., 12, 70, 115, 121, 747, 745,

196,275,327,328,337,540,
343, 344,559, 368,575

Siepak, K.,418,444
Silberman,C. E., 156, 777
Silver, E. A., 268,295, 416,447
Silveri, B., 416,442
Simon, M. A., 14n, 72
Simon, S., 10, 14,69
Simmons, D. C., 108, 111, 113,745
Sinclair, A., 176, 185,279
Sinclair, H., 302, 303,576
Sinclair, M., 176, 185,279
Smith, B. J., 445
Smith, CM., 12,77,343,559
Smith, C.W., Jr., 770
Smith, N.L., 226,257
Smith, S., 105, 142, 746
Smith, S.S., 165,772
Smith, S. T., x, xiv, 22, 70, 105, 109, 125,

130, 746
Smith, T. A., ix, xiv, 268,292, 385,559,

416,422,444
Smith-Chant, B. L, 196,277
Snow, C., 77,52
Sokol.S. M., 196,279
Solano, A., 284,297
Somerville, S. C., 43, 72, 279, 282,297
Sophian, C., 203, 204,279, 255, 258,

259, 260, 261/; 262/i 263, 264,
266,275,297

Sparks, D., 66, 72, 417,445
Sparling, J.J., 416,447
Spelke, E. S., 17,72
Spencer, C., 282,292
Standing, L, 201,275
Starkey, P., 12, 17, 72, 156, 777, 268,

295, 297, 328,540, 343, 344,
345,559,560,416, 445

Stea, D., 278,292
Steeby, R., 105, 142, 746
Steen, L., 419, 446
Steffe, L. P, 17, 25, 60, 72, 121, 745,

160, 161,162,777, 187, 188,
195,279, 226,227,229,230,
234, 237, 242,257, 276n, 297,
306,577

Steinberg, R. M., 198,279
Stephan, M, 300, 301, 303, 304,577
Stevenson, H. W, 268,297, 338,540,

343,560
Stigler, J. W, 118, 746, 745, 268,297,

338,540, 343,560, 426, 446
Stiles, K.E., 416,419,423,444



466 AUTHOR INDEX

Strauss, M. S., 190,2/9
Streefland, L., 210,2/9
Striken, K., 420,444
Subrahmanyam, K., 368,375
Sugiyama, P., 124,146
Sultis, B., 402, 408, 414
Suydam, M. N.,226,25/
Swafford, J., ix, x,xiu, 10, 11, 12, 17, 61,

65,66,77,747, 156,777,268,
295,416,420

Swaminathan, S., 11, 40, 70, 269, 273,
274, 275, 277, 283, 285, 286,
293,305,307,314,3/6,344,
359, 363, 368,374, 420,445

Sylva, K., 158n, 770
Szeminska, A., 11, 20, 50, 72, 250,257,

302,303,3/7

T

Tabachnick, B., 439, 446
Tai,Y, 161,770
Takahira, S., 343,360
Thiessen, D, 772, 303, 304,3/6
Thomas, B., 268,297
Thompson, A. G., 420,446
Thompson, S., 8, 72, 417, 446
Thorndike, E. L., 156, 777, 196,2/9
Tibbals, C., 10, 13,72
Tiilikainen, S., 160, 161, 770, 195, 204,

2/5, 2/9
Tischler, R., 269,294
Tonnessen, L. H., 210,2/7
Trabasso, T., 203,2/9
Trafton, P. R., 368,375
Travers, K. T., 107,747
Try,K. M., 283,297, 307,3/7
Trzynski, M., 385,389
Tucker, T., 203,279

U

Urberti, H. Z., 176,2/7
Uttal, D. H., 279, 280, 281,297

V

Vaden-Kiernan, M., 416,446
Van Dormolen, J., 384,359
van Hiele, P. M., 424,446
Van Lehn, K., 256,266

van Lieshout, E. C. D. M., 125, 745
van Niekerk, R., 274, 275,296
vanOers,B., 234,257
Verschaffel, L, 194,2/6
Vinner, S., 269,297
Vong, K. I, 203,279
von Glasersfeld, E., 121, 745, 175, 185,

187, 188, 195,2/9, 224,225,
227 234 242 25/

Vukelic, E. B.', 276, 277,296, 313, 314,
3/7,365,368,375

Vurpillot, E., 275, 276,297

W

Wachs, H., 156,777
Wadlington, E., 394,400
Wagner, S., 175,184,279
Wakeley, A., 269,295
Wallace,! G., 175,2/7
Wallin.J., 108, 111, 113,745
Walters,!, 175, 184,2/9
Watson, J. A., 283,297, 307,3/7
Waxman, B., 196,2/5
Wearne, D., 107, 121, 124, 125, 746,

747, 364,375
Weaver, C. L., 283,297
Weikart, D. P., 420, 428, 446
Weiner, S. L., 190,279
Weiss, I. R., 10, 13, 14, 67, 77, 72, 432,

443, 446
Welchman-Tischler, R., 378,359
Wellman, H. M., 279, 280, 281,294, 297
West, J., 416,447
Wheatley, G., 206,2/6, 278, 284,293,

297,308,310,3/7,384,359
White, C. S., 11,69
White, S. H., 283,293
Whitebook, M., 418, 444
Whitehurst, B., 40, 42, 69, 273, 275,

292,312,3/5
Whitin, D.J., 772
Wilcox, S., 419,445
Wilde, S., 772
Wilensky, U.,364,375
Wilkins, J. L. M., 184, 185, 204,275, 2/9
Wilier, B., 418, 421, 427, 428,440, 446
Williams, E. M, 278,294
Williford, H. J, 275,297
Wilson, D. C, 276,293
Wilson, J., 274, 275,293



AUTHOR INDEX 467

Wilss, L. A., 51, 69, 300, 305,315
Winer, G. A, 203,219
Wolfe, B., 417, 428, 436, 437, 446
Wood, R, 417,446
Wood, T., 433, 446
Wright, A., 420,446
Wright, J., 363,375
Wright, J. L., 363,374, 375
Wright, R.J, 223,257
Wynn,K., 174, 175, 194,2/9
Wynroth, L.,219

Y

Yackel, E., 433, 446
Yamashita, E., 260, 261/, 262/, 266
Yang, Z., 12, 72, 268,297, 416, 445
Yarnall, M. M., 420,442

Yazejian, N., 417, 444
Yekel, C. A., 280, 281, 282,255
Yoon, K. S., 419, 422, 423, 424, 442
Young, M. F., 279,296
Young, S. L, 160,171
Young-Holt, C. L., 427,443

Z

Zeichner, K., 439, 446
Zelazo.J., 417,444
Zhang, H., 12, 71, 343,359
Zhou, Y, 360
Zhu.J., 12,77,343,359
Zill, N., 416,446
Zucker,A.A., 109, 114,745
Zykova.V. I., 269,297



Subject Index

Note: /indicates figure
t indicates table

A

Accountability
child-outcome-based, 77

Adding to/taking away, 21-22
Addition and subtraction

multidigit, 124-125, \27f
real world, 117-118
schemes, 238-248
single digit, 121-124, 193-199

learning, 121-124
Algebra, 52
Algorithms, 120-121

accessible, 126-132
the need for using, 124

Angle and turn, 273-274, 288
measure, 311-314

Arithmetical unit items, 229
Artful guidance, 103
Asian students

superiority of, 122
Assessment, 61-63

B

Basic competencies, 13-14
Berkeley Math Readiness Project

addition assessment in, 348-349,
350f, 351

and PSSM, 358
concept of, 345
consistency with NCTM standards,

345-346

curriculum, 346
developmental progress in,

357-358
pattern assessment in, 348-349,

350t, 351
pre-test-post-test design of, 345

Big ideas, 13
for numbers and operations stan-

dard, 176
Binary operation, 118
Building Blocks

basic approach of, 362
classroom testing of, 370-373
design of, 361-363
materials used in, 362

C

Cardinal numbers, 177, 184-187
Career lattice, 428
Child-care settings

variation in, 83-84
Child Math Assessment (CMA), 346
Classification, 93-94
CMA, 346
Comparing and ordering, 20-21, 118
Composition and decomposition,

22-23, 276-278, 290
Computational fluency, 116-131
Computers

Building Blocks software for, 363
benefits of, 365

role of, 366-369
Conference on Standards for

Prekindergarten and Kinder-
garten Mathematics Educa-
tion, x-xii

469



470 SUBJECT INDEX

Congruence, 275-276, 289-290
Content

main areas for Pre-K to Grade 2, 16/
Count cardinal concept, 755
Counting, 17, 19-20

double, 236-237
guidelines for teaching, 162t
physical objects and units in,

258-260
schema, 328
situations of, 224-227
strategies, 195

Counting-on
as a nonteachable scheme,

233-236
by rote, 323
construction of, 229-233
tags, 329
understanding, 323-324
with numerical extension, 240

Curriculum, 57-58, 63-64
Berkeley Math Readiness Project,

346
coherent grade-level, 106-109
conceptual chunks in Pre-K to

Grade 2, \32f
development, 58
emergent, 78
integrated, 85
organizing, 109-110
principle, 158
problems with, 107-108
reorganization of, 131 -145
resources, 86

D

Data Analysis, 52, 56
Decade words, 124
Development

delay of in children, 223-224
milestones of, 328
of counting-based numerical and

arithmetic competencies,
176

of numerical representation,
174-175

Diverse learners, 114-115
Diversity

and equity issues, 108-109

in child-care settings, 83-84
in the field of early childhood edu-

cation, 81
Division, 118,209,212
Drill and practice, 113
Dynamics, 94

E

Early Childhood Collaborative,
404-406

benefits of, 411
evaluation plan for, 407-408
professional development in, 412
review of lesson plans used in,

408-410
Educational reform, 157
Educative experiences, 157-158
Enumeration, 94

complexity of, 101-102
Equal

composing and decomposing,
209-213

partitioning, 24-25

F

Fractions, 210-211,212-213
ordinal relations among, 255-258

G

Geometric
figures

in curriculum, 285-287
2-D, 267-273
3-D, 274-275, 289

motions, 275
Geometry, 38-43

developmental guidelines for Pre-K
to Grade 2, 44-49f

locations, directions, and coordi-
nates, 43

shape,38-42
transformation and symmetry, 42
visualization and spatial reasoning,

42-43
Graphs, 56
Grouping and place value, 23-24,

205-209



SUBJECT INDEX 471

H

Head Start, 77, 80-81,428
High/Scope, 428-429

I

Income level, 95-96, 115-116

K

Knowledge
of form, 186
of function, 186-187
sensory-concrete, 364

L

Learning
disabled children, 121, 149-150
goals for children, 9

advantages of, 78-79
disadvantages of, 78
resistance to, 78

illusion of, 321-322
money, 141-142
through play, 59
time, 142
trajectories, 15

Licensing standards, 81
Long-term remembering, 112
Low-income children, 91-92, 103-104,

115,416
intervention and composite scores

for, 346, 347f, 348

M

Magnitude, 94
complexity of, 100, 101/"

Mastery goals, 78-79, 105-145
and testing, 110-111
design principles for, 134-135f
grade-level specific, 109
helpful instructional phases of,

111-113
toward world-class mathematics

learning, 136-140J
Materials

for mathematical learning, 85

in learning centers, 84
Mathematical

content, 15, 366
curricula

equity issues of, 108-109
problems with, 107-108

knowledge
as a role in determining stan-

dards, 13
differences in, 12,

ethnic, 115-116
gender, 97-98
income level, 97-98, 115-116

cross-national, 12
psychology, 159

feasibility of, 167-168
purposes of, 167

reform, 106
themes, 56-57

Mathematics
and technology, 60
big ideas of, 13

for Pre-K to Grade 2, 15-25,
26-371, 38-43

conceptual approach to, 152-155/
deepening awareness of, 85-86
developmentally appropriate, 92,

103-104
disability, 115-116
everyday, 95-96
frequency of types, 96-98
guidelines for preschool, 449-455
in real world situations, 117-119
investigative approach to, 152/
of children concept, 222-224
problem solving approach to,

152-155/
skills approach to, 152-155J
standards and guidelines, 10

core connections for, 141/"
criteria for curriculum standards

in early childhood,
10-15

range of expectation, 13
Measurement, 43, 50-52

and young children, 300
angle and turn, 311-314
area, 308-311

concepts of, 308-310
teaching, 310-311
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attributes, units, and processes, 51
linear, 300-308

concepts in, 300-304
learning and teaching, 304-308

sense, 306
teaching about units through,

263-264
techniques and tools, 51-52

Memorized response, 121
Mental Models View, 174-175
Minority children, 92-93 103-104, 416
Missing-addend problems, 203
Money learning, 141-142
Multidigit computation, 25
Multiplication, 118, 209, 211

N

National Council of Teachers of Math-
ematics (NCTM), 8, 79

Needs of children with physical diffi-
culties, 12-13

Numbers and operations, 16-17, \8f
developmental guidelines for,

26-37^
goals, 178-183^

Number
cardinal, 177, 184-187
central conceptual structure for,

328, 329
bidimensional, 329

changes and how children repre-
sent them, 174

development, 187
line, 135, 141
mentally representing, 187-188
ordinal, 189-193
representational contexts of,

326-327, 329
sequence, 237
words, 124-125

Number Worlds program,
Circle Land, 332
design principles of, 333
goals of, 327-330
Group Work, 336
Line Land, 332
Object Land, 330
Picture Land, 330
program evaluation, 337-338

relationship to NCTM 2000 stan-
dards, 338-339

Representations for numbers in dif-
ferent lands, 3 3 I f

Rightstart, 327
Sky Land, 332
Warm-up activity, 335-336
Wrap-up period, 336

Numerical
cardinality, 329
concepts, 225

O

Object concept, 225
Oral storytelling

achieving equity through, 381-383
and communication skills, 383
and comprehension skills, 383
and mathematics link, 378-381

Ordinal numbers, 189-193
Orienting phase, 112

P

Part-whole relations, 199-205
Pattern, 52, 56, 94

complexity of, 98-100
Perceptual

collections, 225-227
plurality, 225
unit items, 226-227

Permanent objects, 225
Place value system

and grouping, 205-209
written, 125

Play
interweaving learning with, 59
mathematizing, 59

Practice, 113
Principles and Standards for School

Mathematics (PSSM), 8, 68,
176

in the Berkeley Math Readiness
Project, 358

Problem solving, 116-117
in classroom discussion, 395
in the Number Worlds program,

333
Procedural deficits, 116
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Process standards for Pre-K to Grade
2, 143/, 394-395

Professional Development, 64-67,
86-87, 163-168,423-424,
438-439

developing guidelines for, 451-455
economic barriers in, 418
institutional barriers in, 418-419
in the Early Childhood Collabora-

tive, 406-407, 412
methods for accomplishing, 404
principles and standards in,

421-423
research in, 416-417, 430-435

mathematics, 425-427
teacher's beliefs and preferences

regarding, 435-437
teaching standards, 403
the problem with, 402-403

Project IMPACT, 433-435
Psychological research, see Research

Quantity schema, 328
Questions, 85

R

Research
developmental,
instructional programs, 125
on learning progressions, 119-120
on multiple solution methods, 119
psychological, 150-168

general principle of, 160-161
recognition by educational lead-

ers, 151
Rightstart, 327

S

Sensory-concrete knowledge, 364
Semantic memory disabilities, 115
Shape, 38-42, 94

and transformation, 267,
275-276

complexity of, 98-100
Situation representation, 119

Socioeconomic status (SES) differ-
ences

in mathematical achievement, 344
in mathematical development, 344

Solution
methods, 126-130
representation, 119

Spatial
orientation, 278-283, 291
ratios, 260-262
relations, 94
sense, 284, 383-385

achieving equity through,
385-386

and NCTM standards, 387
visualization and imagery, 284, 291

Standards for early education
as a vision for excellence, 8
as requirements for mastery, 8
defining and implementing, 9
for children, 81-82
for programs, 81-82
licensing, 81
NCTM, 79
range of expectation, 79-80

Supporting learning phase, 112
Symbols,

formal, 326
to represent mathematical ideas, 56
to solve problems, 56

Symmetry, 275, 289-290

T

Teacher
backgrounds, 64
change, 420

developmental perspectives on,
394

facilitating, 396-398
disposition toward teaching math,

410
guidance for effective integration of

technology, 364-365
inadequate preparation of, 64-65
knowledge, 419-420
professional development of, 64-67
qualifications of, 8-81
redefining, 324
training, 86-87

Q
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Teaching, 58-61
for understanding and fluency,

125-126
investigative approach to, 152-155 ,̂

158
positive, 59, 410-411

Technology, 60
and new learning goals, 109
teacher guidance in, 364-365

Teen words, 124
Tests

for mastery topics, 110-111
standardized, 110

Textbooks, 113-114
lack of progression of methods in,

123
Time

learning, 142

Transitions in numerical and arithme-
tic competencies, 174-176

U

Unary operation, 118
Unitary progression of methods, 121

Visualization and spatial reasoning,
42-43

W

Written representations
development of, 176, 185-187
difficulties with, 124-125

V
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