5

Time and Distance

5-1 Motion

In this chapter we shall consider some aspects of the concepts of time and
distance. It has been emphasized earlier that physics, as do all the sciences, de-
pends on observation. One might also say that the development of the physical
sciences to their present form has depended to a large extent on the emphasis
which has been placed on the making of quantitative observations. Only with
quantitative observations can one arrive at quantitative relationships, which are
the heart of physics.

Many people would like to place the beginnings of physics with the work
done 350 years ago by Galileo. and to call him the first physicist. Until that time,
the study of motion had been a philosophical one based on arguments that could
be thought up in one’s head. Most of the arguments had been presented by
Aristotle and other Greek philosophers, and were taken as “proven.” Galileo
was skeptical, and did an experiment on motion which was essentially this: He
allowed a ball to roll down an inclined trough and observed the motion. He did
not, however, just look; he measured how far the ball went in how long a time.

The way to measure a distance was well known long before Galileo, but there
were no accurate ways of measuring time, particularly short times. Although he
later devised more satisfactory clocks (though not like the ones we know), Galileo’s
first experiments on motion were done by using his pulse to count off equal in-
tervals of time. Let us do the same.

We may count off beats of a pulse as the ball rolls down the track: “one. ..
two...three...four...five...six...seven...eight...” We ask a friend to
make a small mark at the location of the ball at each count; we can then measure
the distance the ball travelled from the point of release in one, or two, or three,
etc., equal intervals of time. Galileo expressed the result of Ais observations in
this way: if the location of the ball is marked at 1, 2, 3, 4, . . . units of time from
the instant of its release, those marks are distant from the starting point in propor-
tion to the numbers 1, 4, 9, 16, ... Today we would say the distance is propor-
tional to the square of the time:
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The study of motion, which is basic to all of physics, treats with the questions:
where? and when?

5-2 Time

Let us consider first what we mean by zime. What is time? It would be nice
if we could find a good definition of time. Webster defines “a time” as ““a period,”
and the latter as “a time,” which doesn’t seem to be very useful. Perhaps we should
say: “Time is what happens when nothing else happens.” Which also doesn’t
get us very far. Maybe it is just as well if we face the fact that time is one of the
things we probably cannot define (in the dictionary sense), and just say that, it
is what we already know it to be: it 1s how long we wait!

What really matters anyway 1s not how we define time, but how we measure
it. One way of measuring time is to utilize something which happens over and
over again in a regular fashion—something which is periodic. For example, a
day. A day seems to happen over and over again. But when you begin to think
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about it, you might well ask: “Are days periodic; are they regular? Are all days
the same length?” One certainly has the impression that days in summer are longer
than days in winter. Of course, some of the days in winter seem to get awfully
long if one is very bored. You have certainly heard someone say, “My, but this
has been a long day!”

It does seem, however, that days are about the same length on the average.
Is there any way we can test whether the days are the same length—either from
one day to the next, or at least on the average? One way is to make a comparison
with some other pertodic phenomenon. Let us see how such a comparison might
be made with an hour glass. With an hour glass, we can “create” a periodic
occurrence if we have someone standing by it day and night to turn it over when-
ever the last grain of sand runs out.

We could then count the turnings of the glass from each morning to the next.
We would find, this time, that the number of “hours” (i.e., turnings of the glass)
was not the same each “day.” We should distrust the sun, or the glass, or both.
After some thought, it might occur to us to count the “hours™ from noon to noon.
(Noon is here defined nor as 12:00 o’clock, but that instant when the sun is at its
highest point.) We would find, this time, that the number of “hours” each day
is the same.

We now have some confidence that both the “hour” and the ‘“day” have a
regular periodicity, i.e., mark off successive equal intervals of time, although we
have not proved that either one is “really” periodic. Someone might question
whether there might not be some omnipotent being who would slow down the
flow of sand every night and speed it up during the day. Our experiment does not,
of course, give us an answer to this sort of question. All we can say is that we find
that a regularity of one kind fits together with a regularity of another kind. We
can just say that we base our definition of time on the repetition of some apparently
periodic event.

5-3 Short times

We should now notice that in the process of checking on the reproducibility
of the day, we have received an important by-product. We have found a way of
measuring, more accurately, fractions of a day. We have found a way of counting
time in smaller pieces. Can we carry the process further, and learn to measure
even smaller intervals of time?

Galileo decided that a given pendulum always swings back and forth in equal
intervals of time so long as the size of the swing is kept small. A test comparing
the number of swings of a pendulum in one “hour” shows that such is indeed the
case. We can in this way mark fractions of an hour. If we use a mechanical device
to count the swings—and to keep them going—we have the pendulum clock of
our grandfathers.

Let us agree that if our pendulum oscillates 3600 times in one hour (and if
there are 24 such hours in a day), we shall call each period of the pendulum one
“second.” We have then divided our original unit of time into approximately
10° parts. We can apply the same principles to divide the second into smaller and
smaller intervals. It is, you will realize, not practical to make mechanical pen-
dulums which go arbitrarily fast, but we can now make electrical pendulums,
called oscillators, which can provide a periodic occurrence with a very short
period of swing. In these electronic oscillators it is an electrical current which
swings to and fro, in a manner analogous to the swinging of the bob of the pendulum.

We can make a series of such electronic oscillators, each with a period 10
times shorter than the previous one. We may “calibrate” each oscillator against
the next slower one by counting the number of swings it makes for one swing of
the slower oscillator. When the period of oscillation of our clock is shorter than
a fraction of a second, we cannot count the oscillations without the help of some
device which extends our powers of observation. One such device is the electron-
beam oscilloscope, which acts as a sort of microscope for short times. This device
plots on a fluorescent screen a graph of electrical current (or voltage) versus time.
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By connecting the oscilloscope to two of our oscillators in sequence, so that it
plots a graph first of the current in one of our oscillators and then of the current
in the other, we get two graphs like those shown in Fig. 5-2. We can readily
determine the number of periods of the faster oscillator in one period of the
slower oscillator.

With modern electronic techniques, oscillators have been built with periods
as short as about 107'? second, and they have been calibrated (by comparison
methods such as we have described) in terms of our standard unit of time, the
second. With the invention and perfection of the “laser,” or light amplifier, in
the past few years, it has become possible to make oscillators with even shorter
periods than 10~"7 second, but it has not yet been possible to calibrate them by
the methods which have been described, although it will no doubt soon be possible.

Times shorter than 107! 2 second have been measured, but by a different tech-
nique. In effect, a different definition of “time” has been used. One way has been
to observe the distance between two happenings on a moving object. 1If, for
example, the headlights of a moving automobile are turned on and then off,
we can figure out how long the lights were on if we know where they were turned
on and off and how fast the car was moving. The time is the distance over which
the lights were on divided by the speed.

Within the past few years, just such a technique was used to measure the
lifetime of the w°-meson. By observing in a microscope the minute tracks left in
a photographic emulsion in which 7°-mesons had been created one saw that a
m?-meson (known to be travelling at a certain speed nearly that of light) went a
distance of about 10™7 meter, on the average, before disintegrating. It lived for
only about 107'% sec. It should be emphasized that we have here used a some-
what different definition of “time” than before. So long as there are no inconsist-
encies in our understanding, however, we feel fairly confident that our definitions
are sufficiently equivalent.

By extending our techniques—and if necessary our definitions—still further
we can infer the time duration of still faster physical events. We can speak of the
period of a nuclear vibration. We can speak of the lifetime of the newly discovered
strange resonances (particles) mentioned in Chapter 2. Their complete life occupies
a time span of only 1072* second, approximately the time it would take light
(which moves at the fastest known speed) to cross the nucleus of hydrogen (the
smallest known object).

What about still smaller times? Does “time” exist on a still smaller scale?
Does it make any sense to speak of smaller times if we cannot measure—or
perhaps even think sensibly about—something which happens in a shorter time?
Perhaps not. These are some of the open questions which you will be asking and
perhaps answering in the next twenty or thirty years.

5-4 Long times

Let us now consider times longer than one day. Measurement of longer times
Is easy; we just count the days—so long as there is someone around to do the
counting. First we find that there is another natural periodicity: the year, about
365 days. We have also discovered that nature has sometimes provided a counter
for the years, in the form of tree rings or river-bottom sediments. In some cases
we can use these natural time markers to determine the time which has passed
since some early event.

When we cannot count the years for the measurement of long times, we must
look for other ways to measure. One of the most successful is the use of radio-
active material as a “clock.” In this case we do not have a periodic occurrence,
as for the day or the pendulum, but a new kind of “regularity.”” We find that the
radioactivity of a particular sample of material decreases by the same fraction
for successive equal increases in its age. If we plot a graph of the radioactivity
observed as a function of time (say in days), we obtain a curve like that shown in
Fig. 5-3. We observe that if the radioactivity decreases to one-half in T days
(called the “half-life””), then it decreases to one-quarter in another T days, and so
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Fig. 5-2. Two views of an oscilloscope
screen. In (a) the oscilloscope is connected
to one oscillator, in (b) it is connected to an
oscillator with a period one-tenth as long.
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Fig. 5-3. The decrease with time of
radioactivity. The activity decreases by
one-half in each “half-life,” T.
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on. In an arbitrary time interval ¢ there are 7/7 “half-lives,” and the fraction left
after this time ¢ is (3)%/7.

If we knew that a piece of material, say a piece of wood, had contained an
amount A4 of radioactive material when it was formed, and we found out by a direct
measurement that it now contains the amount B, we could compute the age of
the object, 7, by solving the equation

@Y7 = B/A.

There are, fortunately, cases in which we can know the amount of radioactivity
that was in an object when it was formed. We know, for example, that the carbon
dioxide in the air contains a certain small fraction of the radioactive carbon
isotope C!* (replenished continuously by the action of cosmic rays). If we measure
the toral carbon content of an object, we know that a certain fraction of that amount
was originally the radioactive C1*; we know, therefore, the starting amount A
to use in the formula above. Carbon-14 has a half-life of 5000 years. By careful
measurements we can measure the amount left after 20 half-lives or so and can
therefore “date” organic objects which grew as long as 100,000 years ago.

We would like to know, and we think we do know, the life of still older things.
Much of our knowledge is based on the measurements of other radioactive iso-
topes which have different half-lives. If we make measurements with an isotope
with a longer half-life, then we are able to measure longer times. Uranium, for
example, has an isotope whose half-life is about 10° years, so that if some material
was formed with uranium in it 10° years ago, only half the uranium would remain
today. When the uranium disintegrates, it changes into lead. Consider a piece
of rock which was formed a long time ago in some chemical process. Lead, being
of a chemical nature different from uranium, would appear in one part of the rock
and uranium would appear in another part of the rock. The uranium and lead
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would be separate. If we look at that piece of rock today, where there should only
be uranium we will now find a certain fraction of uranium and a certain fraction
of lead. By comparing these fractions, we can tell what percent of the uranium
disappeared and changed into lead. By this method, the age of certain rocks has
been determined to be several billion years. An extension of this method, not
using particular rocks but looking at the uranium and lead in the oceans and using
averages over the earth, has been used to determine (within the past few years)
that the age of the earth itself is approximately 5.5 billion years.

It is encouraging that the age of the earth is found to be the same as the age
of the meteorites which land on the earth, as determined by the uranium method.
It appears that the earth was formed out of rocks floating in space, and that the
meteorites are, quite likely, some of that material left over. At some time more than
five billion years ago, the universe started. It 1s now believed that at least our part
of the universe had its beginning about ten or twelve billion years ago. We do
not know what happened before then. In fact, we may well ask again: Does the
question make any sepse? Does an earlier time have any meaning?

5-5 Units and standards of time

We have implied that it is convenient if we start with some standard unit of
time, say a day or a second, and refer all other times to some multiple or fraction
of this unit. What shall we take as our basic standard of time? Shall we take the
human pulse? If we compare pulses, we find that they seem to vary a lot. On
comparing two clocks, one finds they do not vary so much. You might then say,
well, let us take a clock. But whose clock? There is a story of a Swiss boy who
wanted all of the clocks in his town to ring noon at the same time. So he went
around trying to convince everyone of the value of this. Everyone thought it was
a marvelous idea so long as all of the other clocks rang noon when his did! It is
rather difficult to decide whose clock we should take as a standard. Fortunately,
we all share one clock—the earth. For a long time the rotational period of the
earth has been taken as the basic standard of time. As measurements have been
made more and more precise, however, it has been found that the rotation of the
earth is not exactly periodic, when measured in terms of the best clocks. These
“best” clocks are those which we have reason to believe are accurate because they
agree with each other. We now believe that, for various reasons, some days are
longer than others, some days are shorter, and on the average the period of the
earth becomes a Iittle longer as the centuries pass.

Until very recently we had found nothing much better than the earth’s
period, so all clocks have been related to the length of the day, and the second
has been defined as 1/86400 of an average day. Recently we have been gaining
experience with some natural oscillators which we now believe would provide a
more constant time reference than the earth, and which are also based on a natural
phenomenon available to everyone. These are the so-called “atomic clocks.”
Their basic internal period is that of an atomic vibration which is very insensitive
to the temperature or any other external effects. These clocks keep time to an
accuracy of one part in 10° or better. Within the past two years an improved
atomic clock which operates on the vibration of the hydrogen atom has been de-
signed and built by Professor Norman Ramsey at Harvard University. He believes
that this clock might be 100 times more accurate still. Measurements now in
progress will show whether this is true or not.

We may expect that since it has been possible to build clocks much more
accurate than astronomical time, there will soon be an agreement among scientists
to define the unit of time in terms of one of the atomic clock standards.

5-6 Large distances

Let us now turn to the question of distance. How far, or how big, are things?
Everybody knows that the way you measure distance is to start with a stick and
count. Or start with a thumb and count. You begin with a unit and count. How

5-5



Fig. 5-4. The height of a Sputnik is
determined by triangulation
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Fig. 5-5. The distance of nearby
stars can be measured by triangulation,
using the diameter of the earth’s orbit as
a baseline,

does one measure smaller things? How does one subdivide distance? In the same
way that we subdivided time: we take a smaller unit and count the number of
such units it takes to make up the longer unit. So we can measure smaller and
smaller lengths.

But we do not always mean by distance what one gets by counting off with a
meter stick. It would be difficult to measure the horizontal distance between two
mountain tops using only a meter stick. We have found by experience that dis-
tance can be measured in another fashion: by triangulation. Although this means
that we are really using a different definition of distance, when they can both be
used they agree with each other. Space is more or less what Euclid thought it
was, so the two types of definitions of distance agree. Since they do agree on the
earth it gives us some confidence in using triangulation for still larger distances.
For example, we were able to use triangulation to measure the height of the first
Sputnik. We found that it was roughly 5 X 105 meters high. By more careful
measurements the distance to the moon can be measured in the same way. Two
telescopes at different places on the earth can give us the two angles we need.
It has been found in this way that the moon is 4 X 10® meters away.

We cannot do the same with the sun, or at least no one has been able to yet.
The accuracy with which one can focus on a given point on the sun and with which
one can measure angles is not good enough to permit us to measure the distance
to the sun. Then how can we measure the distance to the sun? We must invent
an extension of the idea of triangulation. We measure the relative distances of
all the planets by astronomical observations of where the planets appear to be,
and we get a picture of the solar system with the proper relative distances of every-
thing, but with no absolute distance. One absolute measurement is then required,
which has been obtained in a number of ways. One of the ways, which was believed
until recently to be the most accurate, was to measure the distance from the earth
to Eros, one of the small planetoids which passes near the earth every now and then.
By triangulation on this little object, one could get the one required scale measure-
ment. Knowing the relative distances of the rest, we can then tell the distance, for
example, from the earth to the sun, or from the earth to Pluto.

Within the past year there has been a big improvement in our knowledge of
the scale of the solar system. At the Jet Propulsion Laboratory the distance from
the earth to Venus was measured quite accurately by a direct radar observation.
This, of course, is a still different type of inferred distance. We say we know
the speed at which light travels (and therefore, at which radar waves travel),
and we assume that it is the same speed everywhere between the earth and Venus.
We send the radio wave out, and count the time until the reflected wave comes
back. From the zime we infer a distance, assuming we know the speed. We have
really another definition of a measurement of distance.

How do we measure the distance to a star, which is much farther away?
Fortunately, we can go back to our triangulation method, because the earth moving
around the sun gives us a large baseline for measurements of objects outside the
solar system. If we focus a telescope on a star in summer and in winter, we might
hope to determine these two angles accurately enough to be able to measure the
distance to a star.

What if the stars are too far away for us to use triangulation? Astronomers
are always inventing new ways of measuring distance. They find, for example,
that they can estimate the size and brightness of a star by its color. The color
and brightness of many nearby stars—whose distances are known by triangula-
tion—have been measured, and it is found that there is a smooth relationship
between the color and the intrinsic brightness of stars (in most cases). If one now
measures the color of a distant star, one may use the color-brightness relationship
to determine the intrinsic brightness of the star. By measuring how bright the star
appears to us at the earth (or perhaps we should say how dim it appears), we can
compute how far away it is. (For a given intrinsic brightness, the apparent bright-
ness decreases with the square of the distance.) A nice confirmation of the correct-
ness of this method of measuring stellar distances is given by the results obtained
for groups of stars known as globular clusters. A photograph of such a group is
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Fig. 5-6. A cluster of stars near the center of our galaxy. Their distance from the
earth is 30,000 light-years, or about 3 X 10?° meters.

shown in Fig. 5-6. Just from looking at the photograph one is convinced that these
stars are all together. The same result is obtained from distance measurements
by the color-brightness method.

A study of many globular clusters gives another important bit of informa-
tion. It is found that there is a high concentration of such clusters in a certain
part of the sky and that most of them are about the same distance from us. Cou-
pling this information with other evidence, we conclude that this concentration of
clusters marks the center of our galaxy. We then know the distance to the center
of the galaxy—about 10%° meters.

Knowing the size of our own galaxy, we have a key to the measurement of
still larger distances—the distances to other galaxies. Figure 5-7 is a photograph
of a galaxy, which has much the same shape as our own. Probably it is the same
size, too. (Other evidence supports the idea that galaxies are all about the same
size.) If it is the same size as ours, we can tell its distance. We measure the angle
it subtends in the sky; we know its diameter, and we compute its distance—
triangulation again!

Fig. 5-7. A spiral galaxy like our own. Presuming that its diameter is similar to
that of our own galaxy, we may compute its distance from its apparent size. It is 30
million light-years (3 X 102% meters) from the earth.
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Fig. 5-8. The most distant object, 3C295 in BOOTES (indicated by the arrow),
measured by the 200-inch telescope to date (1960).

Photographs of exceedingly distant galaxies have recently been obtained with
the giant Palomar telescope. One is shown in Fig. 5-8. It is now believed that
some of these galaxies are about halfway to the limit of the universe—10?% meters
away—the largest distance we can contemplate!

5-7 Short distances

Now let’s think about smaller distances. Subdividing the meter is easy. With-
out much difficulty we can mark off one thousand equal spaces which add up to
one meter. With somewhat more difficulty, but in a similar way (using a good
microscope), we can mark off a thousand equal subdivisions of the millimeter to
make a scale of microns (millionths of a meter). It is difficult to continue to smaller
scales, because we cannot ‘“‘see” objects smaller than the wavelength of visible
light (about 5 X 107 meter).

We need not stop, however, at what we can see. With an electron microscope,
we can continue the process by making photographs on a still smaller scale, say
down to 1078 meter (Fig. 5-9). By indirect measurements—by a kind of triangula-
tion on a microscopic scale— we can continue to measure to smaller and smaller
scales. First, from an observation of the way light of short wavelength (x-radiation)
is reflected from a pattern of marks of known separation, we determine the wave-

Fig. 5-9. Electron micrograph of some virus molecules. The “large” sphere is for
calibration and is known to have a diameter of 2 X 10~7 meter (2000 A).
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A grain of salt
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length of the light vibrations. Then, from the pattern of the scattering of the same
light from a crystal, we can determine the relative location of the atoms in the
crystal, obtaining results which agree with the atomic spacings also determined
by chemical means. We find in this way that atoms have a diameter of about
10719 meter.

There is a large “gap” in physical sizes between the typical atomic dimension
of about 1071% meter and the nuclear dimensions 10~ 1% meter, 10~° times smaller.
For nuclear sizes, a different way of measuring size becomes convenient. We meas-
ure the apparent area, o, called the effective cross section. If we wish the radius,
we can obtain it from ¢ = 7r?, since nuclei are nearly spherical.

Measurement of a nuclear cross section can be made by passing a beam of
high-energy particles through a thin slab of material and observing the number
of particles which do not get through. These high-energy particles will plow right
through the thin cloud of electrons and will be stopped or deflected only if they
hit the concentrated weight of a nucleus. Suppose we have a piece of material
1 centimeter thick. There will be about 108 atomic layers. But the nuclei are so
small that there is little chance that any nucleus will lie behind another. We might
imagine that a highly magnified view of the situation—looking along the particle
beam—would look like Fig. 5-10.

The chance that a very small particle will hit a nucleus on the trip through
is just the total area covered by the profiles of the nuclei divided by the total
area in the picture. Suppose that we know that in an area 4 of our slab of material
there are NV atoms (each with one nucleus, of course). Then the total area “‘covered”
by the nuclei is No/A. Now let the number of particles of our beam which arrive
at the slab be n; and the number which come out the other side be ns. The frac-
tion which do not get through is (n; — ny)/n, which should just equal the
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nuclei were observed.
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fraction of the area covered. We can obtain the radius of the nucleus from the
equation*
2 A ny — ny
7Y = = o ———=
T N ny

From such an experiment we find that the radii of the nuclei are from about 1 to 6
times 10~ 1% meter. The length unit 107! meter is called the fermi, in honor of
Enrico Fermi (1901-1958).

What do we find if we go to smaller distances? Can we measure smaller
distances? Such questions are not yet answerable. It has been suggested that the
still unsolved mystery of nuclear forces may be unravelled only by some modifica-
tion of our idea of space, or measurement, at such small distances.

It might be thought that it would be a good idea to use some natural length
as our unit of length—say the radius of the earth or some fraction of it. The
meter was originally intended to be such a unit and was defined to be (7/2) X 1077
times the earth’s radius. It is neither convenient nor very accurate to determine
the unit of length in this way. For a long time it has been agreed internationally
that the meter would be defined as the distance between two scratches on a bar
kept in a special laboratory in France. More recently, it has been realized that
this definition is neither as precise as would be useful, nor as permanent or universal
as one would like. Itis currently being considered that a new definition be adopted,
an agreed-upon (arbitrary) number of wavelengths of a chosen spectral line.

Measurements of distance and of time give results which depend on the ob-
server. Two observers moving with respect to each other will not measure the same
distances and times when measuring what appear to be the same things. Distances
and time intervals have different magnitudes, depending on the coordinate system
(or “frame of reference”) used for making the measurements. We shall study this
subject in more detail in a later chapter.

Perfectly precise measurements of distances or times are not permitted by the
laws of nature. We have mentioned earlier that the errors in a measurement of
the position of an object must be at least as large as

Ax = h/Ap,

where 4 is a small quantity called “Planck’s constant” and Ap is the error in
our knowledge of the momentum (mass times velocity) of the object whose posi-
tion we are measuring. It was also mentioned that the uncertainty in position
measurements is related to the wave nature of particles.

The relativity of space and time implies that time measurements have also a
minimum error, given in fact by

At = h/AE,

where AE is the error in our knowledge of the energy of the process whose time
period we are measuring. If we wish to know more precisely when something
happened we must know less about what happened, because our knowledge of
the energy involved will be less. The time uncertainty is also related to the wave
nature of matter.

* This equation is right only if the area covered by the nuclei is a small fraction of the
total, i.e., if (n; — m2)/ni is much less than 1. Otherwise we must make a correction
for the fact that some nuclei will be partly obscured by the nuclei in front of them.

5-10



