Newton’s Laws of Dynamies

9-1 Momentum and force

The discovery of the laws of dynamics, or the laws of motion, was a dramatic
moment in the history of science. Before Newton’s time, the motions of things
like the planets were a mystery, but after Newton there was complete under-
standing. Even the slight deviations from Kepler’s laws, due to the perturbations
of the planets, were computable. The motions of pendulums, oscillators with
springs and weights in them, and 50 on, could all be analyzed completely after
Newton's laws were enunciated. So it is with this chapter: before this chapter we
could not calculate how a mass on a spring would move; much less could we
calculate the perturbations on the planet Uranus due to Jupiter and Saturn. After
this chapter we will be able to compute not only the motion of the oscillating mass,
but also the perturbations on the planet Uranus produced by Jupiter and Saturn!

Galileo made a great advance in the understanding of motion when he
discovered the principle of nertia: 1f an object is left alone, is not disturbed, it
continues to move with a constant velocity in a straight line if it was originally
moving, or it continues to stand still if it was just standing still. Of course this
never appears to be the case in nature, for if we slide a block across a table it stops,
but that 1s because 1t is not left to itself—it is rubbing against the table. It required
a certain imagination to find the right rule, and that imagination was supplied
by Galileo.

Of course, the next thing which is needed is a rule for finding how an object
changes its speed if something is affecting it. That is the contribution of Newton.
Newton wrote down three laws: The First Law was a mere restatement of the
Galilean principle of inertia just described. The Second Law gave a specific way
of determining how the velocity changes under different influences called forces.
The Third Law describes the forces to some extent, and we shall discuss that at
another time. Here we shall discuss only the Second Law, which asserts that the
motion of an object is changed by forces in this way: the time-rate-of-change of a
quantity called momentum 1s proportional to the force. We shall state this mathe-
matically shortly, but let us first explain the 1dea.

Momentum is not the same as velocity. A lot of words are used in physics,
and'they all have precise meanings in physics, although they may not have such
precise meanings in everyday language. Momentum is an example, and we must
define it precisely. If we exert a certain push with our arms on an object that is
light, it moves easily; if we push just as hard on another object that is much heavier
in the usual sense, then it moves much less rapidly. Actually, we must change the
words from “light” and “heavy” to less massive and more massive, because there
is a difference to be understood between the weigh: of an object and its inertia.
(How hard it is to get it going is one thing, and how much it weighs is something
else.) Weight and inertia are proportional, and on the earth’s surface are often
taken to be numerically equal, which causes a certain confusion to the student.
On Mars, weights would be different but the amount of force needed to overcome
inertia would be the same.

We use the term mass as a quantitative measure of inertia, and we may
measure mass, for example, by swinging an object in a circle at a certain speed and
measuring how much force we need to keep it in the circle. In this way we find a
certain quantity of mass for every object. Now the momentum of an object is a
product of two parts: its mass and its velocity. Thus Newton’s Second Law may
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be written mathematically this way:
_d
=7 (mv). ©.1)

Now there are several points to be considered. In writing down any law such as
this, we use many intuitive ideas, implications, and assumptions which are at
first combined approximately into our “law.” Later we may have to come back
and study in greater detail exactly what each term means, but if we try to do this
too soon we shall get confused. Thus at the beginning we take several things for
granted. First, that the mass of an object is constant; it isn’t really, but we shall
start out with the Newtonian approximation that mass is constant, the same all
the time, and that, further, when we put two objects together, their masses add.
These ideas were of course implied by Newton when he wrote his equation, for
otherwise it is meaningless. For example, suppose the mass varied inversely as the
velocity; then the momentum would never change in any circumstance, so the law
means nothing unless you know how the mass changes with velocity. At first
we say, it does not change.

Then there are some implications concerning force. As a rough approximation
we think of force as a kind of push or pull that we make with our muscles, but
we can define it more accurately now that we have this law of motion. The most
important thing to realize is that this relationship involves not only changes in
the magnitude of the momentum or of the velocity but also in their direction.
If the mass is constant, then Eq. (9.1) can also be written as

F=m %—z = ma. 9.2)
The acceleration a is the rate of change of the velocity, and Newton’s Second
Law says more than that the effect of a given force varies inversely as the mass;
it says also that the direction of the change in the velocity and the direction of the
force are the same. Thus we must understand that a change in a velocity, or an
acceleration, has a wider meaning than in common language: The velocity of a
moving object can change by its speeding up, slowing down (when it slows down,
we say it accelerates with a negative acceleration), or changing its direction of
motion. An acceleration at right angles to the velocity was discussed in Chapter 7.
There we saw that an object moving in a circle of radius R with a certain speed v
along the circle falls away from a straightline path by a distance equal to $(v2/R)t?
if ¢ is very small. Thus the formula for acceleration at right angles to the motion is

a = v%/R, 3

and a force at right angles to the velocity will cause an object to move in a curved
path whose radrus of curvature can be found by dividing the force by the mass to
get the acceleration, and then using (9.3).

9-2 Speed and velocity

In order to make our language more precise, we shall make one further
definition in our use of the words speed and velocity. Ordinarily we think of speed
and velocity as being the same, and in ordinary language they are the same. But in
physics we have taken advantage of the fact that there are two words and have
chosen to use them to distinguish two ideas. We carefully distinguish velocity,
which has both magnitude and direction, from speed, which we choose to mean
the magnitude of the velocity, but which does not include the direction. We can
formulate this more precisely by describing how the x-, y-, and z-coordinates of
an object change with time. Suppose, for example, that at a certain instant an
object is moving as shown 1 Fig. 9-1. In a given small interval of time At it
will move a certain distance Ax in the x-direction, Ay in the y-direction, and Az in
the z-direction. The total effect of these three coordinate changes is a displacement
As along the diagonal of a parallelepiped whose sides are Ax, Ay, and Az. In terms
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of the velocity, the displacement Ax is the x-component of the velocity times Az,
and similarly for Ay and Az:

Ax = v, A1, Ay = v, At, Az = y, AL, 9.4

9-3 Components of velocity, acceleration, and force

In Eq. (9.4) we have resolved the velocity into components by telling how fast the
object is moving in the x-direction, the y-direction, and the z-direction. The
velocity is completely specified, both as to magnitude and direction, if we give the
numerical values of its three rectangular components:

ry = dx/di, vy, = dy/dt, v, = dz/dt. 9.5)
On the other hand, the speed of the object 1s

ds/dt = |v] = Vol + 02 + 2 9.6)

Next, suppose that, because of the action of a force, the velocity changes to
some other direction and a different magnitude, as shown in Fig. 9-2. We can
analyze this apparently complex situation rather simply if we evaluate the changes
in the x-, y-, and z-components of velocity. The change in the component of the
velocity in the x-direction in a time Az is Av, = a, At, where a, is what we call the
x-component of the acceleration. Similarly, we see that Av, = a, At and Av, =
a, At. In these terms, we see that Newton’s Second Law, in saying that the force
is in the same direction as the acceleration, is really three laws, in the sense that
the component of the force in the x-, y-, or z-direction is equal to the mass times
the rate of change of the corresponding component of velocity:

F, = m(dv,/dt) = m(d*x/dt?) = ma,,
F, = m(dv,/df) = m(d?y/dt?) = ma,, 9.7
F, = m(dv./dt) = m(d®z/dt?) = ma,.

I

I

Just as the velocity and acceleration have been resolved into components by
projecting a line segment representing the quantity and its direction onto three
coordinate axes, so, in the same way, a force in a given direction is represented
by certain components in the x-, y-, and z-directions:

F, = Fcos (x, F),
Fcos(y, F), “.8)
F, = Fcos (z, F),

>
I

where F is the magnitude of the force and (x, F) represents the angle between the
x-axis and the direction of F, etc.

Newton’s Second Law is given in complete form in Eq. (9.7). If we know the
forces on an object and resolve them into x-, y-, and z-components, then we can
find the motion of the object from these equations. Let us consider a simple
example. Suppose there are no forces in the y- and z-directions, the only force
being in the x-direction, say vertically. Equation (9.7) tells us that there would be
changes in the velocity in the vertical direction, but no changes in the horizontal
direction. This was demonstrated with a special apparatus in Chapter 7 (see
Fig. 7-3). A falling body moves horizontally without any change in horizontal
motion, while it moves vertically the same way as it would move if the horizontal
motion were zero. In other words, motions in the x-, y-, and z-directions are
independent if the forces are not connected.

9-4 What is the force?

In order to use Newton’s laws, we have to have some formula for the force;
these laws say pay attention to the forces. 1f an object is accelerating, some agency
is at work; find it. Our program for the future of dynamics must be to find the
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Fig. 9-3.
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laws for the force. Newton himself went on to give some examples. In the case
of gravity he gave a specific formula for the force. In the case of other forces he
gave some part of the information in his Third Law, which we will study in the
next chapter, having to do with the equality of action and reaction.

Extending our previous example, what are the forces on objects near the
earth’s surface? Near the earth’s surface, the force in the vertical direction due
to gravity is proportional to the mass of the object and is nearly independent of
height for heights small compared with the earth’s radius R: F = GmM/R? = mg,
where g = GM/R? is called the acceleration of gravity. Thus the law of gravity
tells us that weight is proportional to mass; the force is in the vertical direction
and is the mass times g. Again we find that the motion in the horizontal direction
is at constant velocity. The interesting motion is in the vertical direction, and
Newton’s Second Law tells us

mg = m(d%x/dt?). ©.9)

Cancelling the m’s, we find that the acceleration in the x-direction is constant and
equal to g. This is of course the well known law of free fall under gravity, which
leads to the equations

vy = Vo + gt
xo + vot + 3gt 9.10)

X

As another example, let us suppose that we have been able to build a gadget
(Fig. 9-3) which applies a force proportional to the distance and directed oppositely
—a spring. If we forget about gravity, which is of course balanced out by the
initial stretch of the spring, and talk only about excess forces, we see that if we
pull the mass down, the spring pulls up, while if we push it up the spring pulls
down. This machine has been designed carefully so that the force is greater, the
more we pull it up, in exact proportion to the displacement from the balanced
condition, and the force upward is similarly proportional to how far we pull down.
If we watch the dynamics of this machine, we see a rather beautiful motion—up,
down, up, down, ... The question is, will Newton’s equations correctly describe
this motion? Let us see whether we can exactly calculate how it moves with this
periodic oscillation, by applying Newton’s law (9.7). In the present instance,
the equation is

—kx = m(dv,/dr). ©.11)

Here we have a situation where the velocity in the x-direction changes at a rate
proportional to x. Nothing will be gained by retaining numerous constants, so
we shall imagine either that the scale of time has changed or that there is an
accident in the units, so that we happen to have k/m = 1. Thus we shall try to
solve the equation

dvg/dt = —x. (0.12)

To proceed, we must know what v, is, but of course we know that the velocity is
the rate of change of the position.

9-5 Meaning of the dynamical equations

Now let us try to analyze just what Eq. (9.12) means. Suppose that at a
given time 7 the object has a certain velocity v, and position x. What is the velocity
and what is the position at a slightly later time ¢ + €? If we can answer this
question our problem is solved, for then we can start with the given condition and
compute how it changes for the first instant, the next instant, the next instant, and
so on, and in this way we gradually evolve the motion. To be specific, let us suppose
that at the time r = 0 we are given that x = 1 and v, = 0. Why does the object
move at all? Because there is a force on it when it is at any position except x = 0.
If x > 0, that force is upward. Therefore the velocity which is zero starts to
change, because of the law of motion. Once it starts to build up some velocity
the object starts to move up, and so on. Now at any time ¢, if € is very small,
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we may express the position at time ¢ - € in terms of the position at time ¢ and
the velocity at time ¢ to a very good approximation as

x(t + € = x(1) + ens(d). (9.13)

The smaller the €, the more accurate this expression is, but it is still usefully accurate
even if € is not vanishingly small. Now what about the velocity? In order to get
the velocity later, the velocity at the time ¢ + €, we need to know how the velocity
changes, the acceleration. And how are we going to find the acceleration? That
is where the law of dynamics comes in. The law of dynamics tells us what the
acceleration is. It says the acceleration is —x.

0:(t + € = v,(1) + eay(t) (9.14)
v:(8) — ex(1). 9.15)

Equation (9.14) is merely kinematics; it says that a velocity changes because of
the presence of acceleration. But Eq. (9.15) is dynamics, because it relates the
acceleration to the force; it says that at this particular time for this particular
problem, you can replace the acceleration by —x(7). Therefore, if we know both
the x and v at a given time, we know the acceleration, which tells us the new
velocity, and we know the new position—this is how the machinery works. The
velocity changes a little bit because of the force, and the position changes a little
bit because of the velocity.

9-6 Numerical solution of the equations

Now let us really solve the problem. Suppose that we take ¢ = 0.100 sec.
After we do all the work if we find that this is not small enough we may have to
go back and do it again with ¢ = 0.010 sec. Starting with our initial value x(0) =
1.00, what is x(0.1)? It is the old position x(0) plus the velocity (which is zero)
times 0.10 sec. Thus x(0.1) is still 1.00 because it has not yet started to move.
But the new velocity at 0.10 sec will be the old velocity »(0) = O plus € times the

acceleration. The acceleration is —x(0) = —1.00. Thus
2(0.1) = 0.00 — 0.10 X 1.00 = —0.10.
Now at 0.20 sec
x(0.2) = x(0.1) + €»(0.1)
= 1.00 — 0.10 X 0.10 = 0.99

and
2(0.2) = »(0.1) 4+ €a(0.1)
= —0.10 — 0.10 X 1.00 = —0.20.

And so, on and on and on, we can calculate the rest of the motion, and that is
just what we shall do. However, for practical purposes there are some little tricks
by which we can increase the accuracy. If we continued this calculation as we have
started it, we would find the motion only rather crudely because ¢ = 0.100 sec
is rather crude, and we would have to go to a very small interval, say e = 0.01.
Then to go through a reasonable total time interval would take a lot of cycles of
computation. So we shall organize the work in a way that will increase the pre-
cision of our calculations, using the same coarse interval € = (.10 sec. This can
be done if we make a subtle improvement in the technique of the analysis.
Notice that the new position is the old position plus the time interval e times
the velocity. But the velocity when? The velocity at the beginning of the time
interval is one velocity and the velocity at the end of the time interval is another
velocity. Our improvement is to use the velocity kalfway berween. 1If we know
the speed now, but the speed is changing, then we are not going to get the right
answer by going at the same speed as now. We should use some speed between
the “now” speed and the “then” speed at the end of the interval. The same
considerations also apply to the velocity: to compute the velocity changes, we
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Table 9-1

Solution of dv,/dt = —x

Interval: € = 0.10 sec

t x Uz ax
0.0 1.000 0.000 —1.000
—0.050
0.1 0.995 —0.995
—0.150
0.2 0.980 -0.980
—0.248
0.3 0.955 —0.955
—0.343
0.4 0.921 —0.921
—0.435
0.5 0.877 —0.877
—0.523 —
0.6 0.825 —0.825
—0.605
0.7 0.764 —0.764
—0.682
0.8 0.696 —0.696
—0.751
0.9 0.621 -0.621
-0.814
1.0 0.540 —0.540
——0.868 —
11 0.453 —0.453
—0.913
1.2 0.362 —0.362
—0.949
1.3 0.267 —0.267
—0.976
1.4 0.169 -0.169
—0.993
1.5 0.070 —0.070
——1.000—
1.6 —0.030 +0.030
x
10
05
0 05 10 L5 N\ t(sec)

Fig. 9-4. Graph of the motion of a

mass on a spring.

should use the acceleration midway between the two times at which the velocity
is to be found. Thus the equations that we shall actually use will be something
like this: the position later is equal to the position before plus € times the velocity
at the time in the middle of the interval. Similarly, the velocity at this halfway point
is the velocity at a time € before (which is in the middle of the previous interval)
plus e times the acceleration at the time 7. That is, we use the equations

x(t + € = x() + ev(t + €/2),
o(t + €/2) = v(t — €/2) + ea(?), (9.16)
a(t) = —x().

There remains only one slight problem: what is »(¢/2)? At the start, we are given
v(0), not v(—e/2). To get our calculation'started, we shall use a special equation,
namely, v(e/2) = »(0) + (&/2)a(0).

Now we are ready to carry through our calculation. For convenience, we
may arrange the work in the form of a table, with columns for the time, the position,
the velocity, and the acceleration, and the in-between lines for the velocity, as
shown in Table 9-1. Such a table is, of course, just a convenient way of representing
the numerical values obtained from the set of equations (9.16), and in fact the
equations themselves need never be written. We just fill in the various spaces in
the table one by one. This table now gives us a very good idea of the motion:
it starts from rest, first picks up a little upward (negative) velocity and it loses
some of its distance. The acceleration is then a little bit less but it is still gaining
speed. But as it goes on it gains speed more and more slowly, until as it passes
x = 0 at about t = 1.50 sec we can confidently predict that it will keep going,
but now it will be on the other side; the position x will become negative, the ac-
celeration therefore positive. Thus the speed decreases. It is interesting to compare
these numbers with the function x = cos ¢, which is done in Fig. 9-4. The agree-
ment is within the three significant figure accuracy of our calculation! We shall
see later that x = cos 7 is the exact mathematical solution of our equation of
motion, but it is an impressive illustration of the power of numerical analysis that
such an easy calculation should give such precise results.

9-7 Planetary motions

The above analysis is very nice for the motion of an oscillating spring, but
can we analyze the motion of a planet around the sun? Let us see whether we
can arrive at an approximation to an ellipse for the orbit. We shall suppose that
the sun is infinitely heavy, in the sense that we shall not include its motion. Suppose
a planet starts at a certain place and is moving with a certain velocity; it goes
around the sun 1 some curve, and we shall try to analyze, by Newton’s laws of
motion and his law of gravitation, what the curve is. How? At a given moment
it is at some position in space. If the radial distance from the sun to this position
is called r, then we know that there is a force directed inward which, according to
the law of gravity, is equal to a constant times the product of the sun’s mass and
the planet’s mass divided by the square of the distance. To analyze this further
we must find out what acceleration will be produced by this force. We shall need
the components of the acceleration along two directions, which we call x and y.
Thus if we specify the position of the planet at a given moment by giving x and y
(we shall suppose that z is always zero because there is no force in the z-direction
and, if there is no initial velocity v,, there will be nothing to make z other than
zero), the force is directed along the line joining the planet to the sun, as shown
in Fig. 9-5.

From this figure we see that the horizontal component of the force is related
to the complete force in the same manner as the horizontal distance x 1s to the
complete hypotenuse r, because the two triangles are similar. Also, if x 1s positive,
F.is negative. Thatis, F,/|F| = —x/r,or F, = —|Flx/r = —GMmx/r3. Now
we use the dynamical law to find that this force component is equal to the mass of
9-6



the planet times the rate of change of its velocity in the x-direction. Thus we find
the following laws:

m(dv,/dt) = —GMmx/r3,
m(dv,/dt) = —GMmy/r3, ©.17)
Vix? 4+ y2

This, then, is the set of equations we must solve. Again, in order to simplify the
numerical work, we shall suppose that the unit of time, or the mass of the sun, has
been so adjusted (or luck is with us) that GM = 1. For our specific example we
shall suppose that the initial position of the planet is at x = 0.500 and y = 0.000,
and that the velocity is all in the y-direction at the start, and is of magnitude
1.6300. Now how do we make the calculation? We again make a table with
columns for the time, the x-position, the x-velocity v, and the x-acceleration a,;
then, separated by a double line, three columns for position, velocity, and accelera-
tion in the y-direction. In order to get the accelerations we are going to need
Eq. (9.17); it tells us that the acceleration in the x-direction is —x/r®, and the
acceleration in the y-direction is —y/r3, and that r is the square root of x? + y2.
Thus, given x and p, we must do a little calculating on the side, taking the square
root of the sum of the squares to find » and then, to get ready to calculate the two
accelerations, it is useful also to evaluate 1/r3. This work can be done rather
easily by using a table of squares, cubes, and reciprocals: then we need only
multiply x by 1/r3, which we do on a slide rule.

Our calculation thus proceeds by the following steps, using time intervals
¢ = 0.100: Initial values at ¢ = O:

r

x(0) = 0.500 »(©0) = 0.000
2,(0) = 0.000 2,(0) = +1.630
From these we find:
r(0) = 0.500 1/r3(0) = 8.000
ay = —4,000 a,, = 0.000

Thus we may calculate the velocities v,(0.05) and v,(0.05):

,(0.05) = 0.000 — 4.000 X 0.050 = —0.200;
,(0.05) = 1.630 + 0.000 X 0.100 =  1.630.

Now our main calculations begin:

x(0.1) = 0.500 — 020 X 0.1 = 0.480
y©0.1) = 00 + 1.63 X 0.1 = 0.163
r = V04802 + 01632 = 0507
1/r3 = 7.67

a:(0.1) = 0.480 X 7.67 = —3.68
a,(0.1) = —0.163 X 7.67 = —1256
0,(0.15) = —0.200 — 3.68 X 0.1 = —0.568
2,(0.15) = 1.630 — 126 X 0.1 = 1505
x(0.2) = 0.480 — 0.568 X 0.1 = 0.423
$(0.2) = 0.163 + 1.50 X 0.1 = 0313

etc.

In this way we obtain the values given in Table 9-2, and in 20 steps or so we have
chased the planet halfway around the sun! In Fig. 9-6 are plotted the x- and
y-coordinates given in Table 9-2. The dots represent the positions at the succession
of times a tenth of a unit apart; we see that at the start the planet moves rapidly
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Table 9-2
Solution of dv,/dt = —x/r% dv,/dt = —y/r®, r = Vx% + y2
Interval: € = 0.100
Orbit v, =163 v, =0 x=05 y=0 at t=0

t x Vg az y vy ay r 1/r3
0.0 0.500 —4.00 0.000 0.00 0.500 | 8.000
—0.200 1.630
0.1 0.480 —3.68 0.163 —1.25 0.507 | 7.675
—0.568 1.505
0.2 0.423 —-291 0.313 —2.15 0.526 | 6.873
—0.859 1.290
0.3 0.337 -1.96 0.442 —2.57 0.556 | 5.824
—1.055 1.033
0.4 0.232 —1.11 0.545 —-2.62 0.592 | 4.81
—1.166 0.771
0.5 0.115 —0.453 0.622 —245 0.633 | 3.942
— | —1.211- - 0.526-
0.6 | —0.006 +0.020 0.675 —2.20 0.675 | 3.252
—1.209 0.306
0.7 { —0.127 +-0.344 0.706 -1.91 0.717 | 2.712
—1.175 0.115
0.8 | —0.245 +0.562 0.718 —1.64 0.758 | 2.296
—1.119 —0.049
0.9 | —0.357 +0.705 0.713 —1.41 0.797 | 1.975
—1.048 —0.190
1.0 | —0.462 +0.796 0.6%4 -1.20 0.834 | 1.723
—|——|- —0.968- -—0.310-
1.1 | —0.559 +0.858 0.663 —1.02 0.867 | 1.535
—0.882 —0.412
1.2 | —0.647 +0.90 0.622 —0.86 0.897 | 1.385
—0.792 —0.499
1.3 | —0.726 -+0.92 0.572 -0.72 0.924 | 1.267
—0.700 —0.570
14 | —0.796 +0.93 0.515 —0.60 0.948 { 1.173
—0.607 —0.630
1.5 | —0.857 +0.94 0.452 —0.50 0.969 | 1.099
— |- —0.513- - —0.680-
1.6 | —0.908 +0.95 0.384 —0.40 0.986 | 1.043
—0.418 —0.720
1.7 | —0.950 +0.95 0.312 —0.31 1.000 | 1.000
—0.323 —0.751
1.8 [ —0.982 +0.95 0.237 -0.23 1.010 | 0.970
—0.228 =0.773
1.9 | —1.005 +0.95 0.160 —0.15 1.018 | 0.948
—0.113 —0.778
20 | —1.018 -+0.96 0.081 —0.08 1.021 | 0.939
— |[—— |- —0.037- - —0.796 -
2.1 | —1.022 +0.95 0.001 0.00 1.022 | 0.936
+0.058 —=0.796
22 | —1.016 +0.96 —0.079 +0.07 1.019 | 0.945
—0.789
23

Crossed x-axis at 2.101 sec, .". period = 4.20 sec.
v, = 0 at 2.086 sec.

1.022 4 0.500
Cross x at 1.022, .". semimajor axis = 1022 + 0500 = 0.761.

2
v, = 0.79.
Predicted time 7(0.761)%% = (0.663) = 2.082.
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and at the end it moves slowly, and so the shape of the curve is determined. Thus
we see that we really do know how to calculate the motion of planets!

Now let us see how we can calculate the motion of Neptune, Jupiter, Uranus,
or any other planet. If we have a great many planets, and let the sun move too,
can we do the same thing? Of course we can. We calculate the force on a particular
planet, let us say planet number 7, which has a position x,, y,, z, (i = 1 may repre-
sent the sun, / = 2 Mercury, i = 3 Venus, and so on). We must know the positions
of all the planets. The force acting on one is due to all the other bodies which
are located, let us say, at positions x,, y,, z,. Therefore the equations are

N

dvy Gm,m,(x, — x,)
Mg = Z - —ﬁ_rT—_’
1=1 %]
dvy _ - — Gm.m,(y, — y,)
m, — = > . 9.18)
J=1 17
dv,, y Gm,m,(z, — z,)
m e - 37 Gt = 5)

127}

~
I
-

Further, we define 7, as the distance between the two planets / and j; this is equal to

ry =V = P2+ 00~ )+ @ — )% (9.19)

Also, >~ means a sum over all values of j—all other bodies—except, of course,
for j = i. Thus all we have to do is to make more columns, /ots more columns.
We need nine columns for the motions of Jupiter, nine for the motions of Saturn,
and so on. Then when we have all initial positions and velocities we can calculate
all the accelerations from Eq. (9.18) by first calculating all the distances, using
Eq. (9.19). How long will it take to do it? If you do it at home, it will take a
very long time! But in modern times we have machines which do arithmetic very
rapidly; a very good computing machine may take 1 microsecond, that is, a
millionth of a second, to do an addition. To do a multiplication takes longer,
say 10 microseconds. It may be that in one cycle of calculation, depending on
the problem, we may have 30 multiplications, or something like that, so one cycle
will take 300 microseconds. That means that we can do 3000 cycles of computation
per second. In order to get an accuracy, of, say, one part in a billion, we would
need 4 X 10° cycles to correspond to one revolution of a planet around the sun.
That corresponds to a computation time of 130 seconds or about two minutes.
Thus it take only two minutes to follow Jupiter around the sun, with all the
perturbations of all the planets correct to one part in a billion, by this method!
(It turns out that the error varies about as the square of the interval e. If we make
the interval a thousand times smaller, it is a million times more accurate. So, let
us make the interval 10,000 times smaller.)

So, as we said, we began this chapter not knowing how to calculate even the
motion of a mass on a spring. Now, armed with the tremendous power of Newton’s
laws, we can not only calculate such simple motions but also, given only a machine
to handle the arithmetic, even the tremendously complex motions of the planets,
1o as high a degree of precision as we wish!



