13

Work and Potential Energy (A)

13-1 Energy of a falling body

In Chapter 4 we discussed the conservation of energy. In that discussion, we
did not use Newton’s laws, but it is, of course, of great interest to see how 1t comes
about that energy is in fact conserved in accordance with these laws. For clarity
we shall start with the simplest possible example, and then develop harder and
harder examples.

The simplest example of the conservation of energy is a vertically falling object,
one that moves only in a vertical direction. An object which changes its height
under the influence of gravity alone has a kinetic energy T (or K.E.) due to its
motion during the fall, and a potential energy mgh, abbreviated U or P.E., whose
sum is constant:

imv® + mgh = const,
KE PE
or
T + U = const. (13.1)

Now we would like to show that this statement is true. What do we mean, show
it is true? From Newton’s Second Law we can easily tell how the object moves,
and it is easy to find out how the velocity varies with time, namely, that it increases
proportionally with the time, and that the height varies as the square of the time.
So if we measure the height from a zero point where the object is stationary,
it is no miracle that the height turns out to be equal to the square of the velocity
times a number of constants. However, let us look at it a little more closely.

Let us find out directly from Newton’s Second Law how the kinetic energy
should change, by taking the derivative of the kinetic energy with respect to time
and then using Newton’s laws. When we differentiate {mv? with respect to time,
we obtain

dr

T di _
dt

5= (13.2)

d ,

=7 Gmv°) = im2v
since m is assumed constant. But from Newton’s Second Law, m(dv/df) = F,
so that

dr/dt = Fo. (13.3)

In general, it will come out to be F - v, but in our one-dimensional case let us leave
it as the force times the velocity.

Now in our simple example the force is constant, equal to —mg, a vertical
force (the minus sign means that it acts downward), and the velocity, of course, is
the rate of change of the vertical position, or height 4, with time. Thus the rate
of change of the kinetic energy is —mg(dh/dt), which quantity, miracle of miracles,
is the rate of change of something else! It is the time rate of change of mgh!
Therefore, as time goes on, the changes in kinetic energy and in the quantity mgh
are equal and opposite, so that the sum of the two quantities remains constant.
Q.E.D.

We have shown, from Newton’s second law of motion, that energy is con-
served for constant forces when we add the potential energy mgh to the kinetic
energy $mv?. Now let us look into this further and see whether it can be generalized,
and thus advance our understanding. Does it work only for a freely falling body,
or is it more general? We expect from our discussion of the conservation of energy
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dh/dt

Fig. 13-1. An object moving on a
frictionless curve under the influence of
gravity.

that it would work for an object moving from one point to another in some kind
of frictionless curve, under the influence of gravity (Fig. 13-1). If the object
reaches a certain height 4 from the original height H, then the same formula should
again be right, even though the velocity is now in some direction other than the
vertical. We would like to understand why the law is still correct. Let us follow
the same analysis, finding the time rate of change of the kinetic energy. This
will again be muv(dv/dt), but m(dv/dt) is the rate of change of the magnitude of the
momentum, i.e., the force in the direction of motion—the tangential force F,. Thus

dr dv
— ml) —-——

dt 7 Fa.

Now the speed is the rate of change of distance along the curve, ds/dr, and the
tangential force F) is not mg but is weaker by the ratio of the distance ds along the
path to the vertical distance dh. In other words,

dh
ds’

ds dh\(ds dh
Fegi=—me\a\ai) = ~™ @

since the ds’s cancel. Thus we get —mg(dh/dt), which is equal to the rate of change
of mgh, as before.

In order to understand exactly how the conservation of energy works in
general in mechanics, we shall now discuss a number of concepts which will help
us to analyze 1t.

First, we discuss the rate of change of kinetic energy in general in three
dimenstons. The kinetic energy in three dimensions is

Fi= —mgsing = —mg
so that

T = ¥m@; + vy + v3).
When we differentiate this with respect to time, we get three terrifying terms:

dr dv, d dv,
*‘—1? = m(vx 'av? + Uy —dlity + Ve »dyt—> * (134)

But m(dv,/dr) is the force F, acting on the object in the x-direction. Thus the right
side of Eq. (13.4) is Fov, + Fy,v, + F.v,. We recall our vector analysis and recog-
nize this as F - v; therefore

dT/dr = F -v. (13.5)

This result can be derived more quickly as follows: if a and b are two vectors,
both of which may depend upon the time, the derivative of a - b is, in general,

d@-b)/dt = a-db/dt + (da/df)-b. (13.6)
We then use this in the forma = b = v:

1,2 1.
d@gm®) _ d@Emv-v) _ ,n‘_”l'.v=F-v=I<‘-£1E

dt dt dt dr’ (13.7)

Because the concepts of kinetic energy, and energy in general, are so impor-
tant, various names have been given to the important terms in equations such as
these. 4mv? is, as we know, called kinetic energy. F - v is called power: the force
acting on an object times the velocity of the object (vector “dot™ product) is the
power being delivered to the object by that force. We thus have a marvelous
theorem: the rate of change of kinetic energy of an object 1s equal to the power
expended by the forces acting on it.

However, to study the conservation of energy, we want to analyze this still
more closely. Let us evaluate the change in kinetic energy in a very short time d.
If we multiply both sides of Eq. (13.7) by dt, we find that the differential change in

13-2



the kinetic energy is the force “dot” the differential distance moved:

dT = F - ds. (13.8)
If we now integrate, we get

2
AT=/ F - ds. (13.9)
1

What does this mean? It means that if an object is moving in any way under the
influence of a force, moving in some kind of curved path, then the change in K.E.
when it goes from one point to another along the curve is equal to the integral of
the component of the force along the curve times the differential displacement ds,
the integral being carried out from one point to the other. This integral also has a
name; it 18 called the work done by the force on the object. We see immediately
that power equals work done per second. We also see that 1t is only a component
of force in the direction of motion that contributes to the work done. In our simple
example the forces were only vertical, and had only a single component, say F,
equal to —mg. No matter how the object moves in those circumstances, falling
in a parabola for example, F - ds, which can be written as F, dx + F,dy + F, dz,
has nothing left of 1t but F, dz = —mg dz, because the other components of force
are zero. Therefore, in our simple case,

22

2
f F - ds =/ —mgdz = —mg(zs — 7)), (13.10)
1 E

so again we find that it is only the vertical height from which the object falls that
counts toward the potential energy.

A word about units. Since forces are measured in newtons, and we multiply
by a distance in order to obtain work, work is measured in newton - meters (n - m),
but people do not like to say newton-meters, they prefer to say joules (j). A
newton-meter is called a joule; work is measured in joules. Power, then, is joules
per second, and that is also called a wair (w). If we multiply watts by time, the
result is the work done. The work done by the electrical company in our houses,
technically, is equal to the watts times the time. That is where we get things like
kilowatt hours, 1000 watts times 3600 seconds, or 3.6 X 10° joules.

Now we take another example of the law of conservation of energy. Consider
an object which initially has kinetic energy and is moving very fast, and which
slides against the floor with friction. It stops. At the start the kinetic energy is not
zero, but at the end it is zero; there is work done by the forces, because whenever
there is friction there is always a component of force in a direction opposite to that
of the motion, and so energy is steadily lost. But now let us take a mass on the end
of a pivot swinging in a vertical plane in a gravitational field with no friction. What
happens here is different, because when the mass 1s going up the force is downward,
and when 1t is coming down, the force is also downward. Thus F - ds has one
sign going up and another sign coming down. At each corresponding point of the
downward and upward paths the values of F - ds are exactly equal in size but of
opposite sign, so the net result of the integral will be zero for this case. Thus the
kinetic energy with which the mass comes back to the bottom is the same as it had
when it left, that is the principle of the conservation of energy. (Note that when
there are friction forces the conservation of energy seems at first sight to be invalid.
We have to find another form of energy. It turns out, in fact, that keat is generated
in an object when it rubs another with friction, but at the moment we supposedly
do not know that.)

13-2 Work done by gravity

The next problem to be discussed is much more difficult than the above;
it has to do with the case when the forces are not constant, or simply vertical, as
they were in the cases we have worked out. We want to consider a planet, for
example, moving around the sun, or a satellite in the space around the earth.
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A

Fig. 13-2. A small mass m falls under
the influence of gravity toward a large
mass M.

Fig. 13-3. A closed path in a gravi-
tational field.

We shall first consider the motion of an object which starts at some point 1
and falls, say, directly toward the sun or toward the earth (Fig. 13-2). Will there
be a law of conservation of energy in these circumstances? The only difference is
that in this case, the force is changing as we go along, it is not just a constant. As
we know, the force is GM/r? times the mass m, where m is the mass that moves.
Now certainly when a body falls toward the earth, the kinetic energy increases as
the distance fallen increases, just as it does when we do not worry about the
variation of force with height. The question is whether it is possible to find another
formula for potential energy different from mgh, a different function of distance
away from the earth, so that conservation of energy will still be true.

This one-dimensional case is easy to treat because we know that the change
in the kinetic energy is equal to the integral, from one end of the motion to the other,
of —GMm/r? times the displacement dr:

2
T, — T, = ——/1 GMm % (13.11)

There are no cosines needed for this case because the force and the displacement
are in the same direction. It is easy to integrate dr/r2; the result is —1/r, so
Eq. (13.11) becomes

rs r
Thus we have a different formula for potential energy. Equation (13.12) tells us
that the quantity (3mv? — GMm/r) calculated at point 1, at point 2, or at any
other place, has a constant value.

We now have the formula for the potential energy in a gravitational field for
vertical motion. Now we have an interesting problem. Can we make perpetual
motion in a gravitational field? The gravitational field varies; in different places
it is in different directions and has different strengths. Could we do something
like this, using a fixed, frictionless track: start at some point and lift an object out
to some other point, then move it around an arc to a third point, then lower it a
certain distance, then move it in at a certain slope and pull it out some other way,
so that when we bring it back to the starting point, a certain amount of work has
been done by the gravitational force, and the kinetic energy of the object is in-
creased? Can we design the curve so that it comes back moving a little bit faster
than it did before, so that it goes around and around and around, and gives us
perpetual motion? Since perpetual motion is impossible, we ought to find out that
this is also impossible. We ought to discover the following proposition: since there
is no friction the object should come back with neither higher nor lower velocity—
it should be able to keep going around and around any closed path. Stated in
another way, the total work done in going around a complete cycle should be zero
for gravity forces, because if it is not zero we can get energy out by going around.
(If the work turns out to be less than zero, so that we get less speed when we go
around one way, then we merely go around the other way, because the forces, of
course, depend only upon the position, not upon the direction; if one way is plus,
the other way would be minus, so unless it is zero we will get perpetual motion
by going around either way.)

Is the work really zero? Let us try to demonstrate that it is. First we shall
explain more or less why it is zero, and then we shall examine it a little better
mathematically. Suppose that we use a simple path such as that shown in Fig.
13-3, in which a small mass is carried from point 1 to point 2, and then is made
to go around a circle to 3, back to 4, then to 5, 6, 7, and 8, and finally back to 1.
All of the lines are either purely radial or circular, with M as the center. How
much work is done in carrying m around this path? Between points 1 and 2, it is
GMm times the difference of 1/r between these two points:

2 2
W12=f F~ds=[ —GMm ¥ = —GMm<l—l>-
1 1 r T2 r
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From 2 to 3 the force is exactly at right angles to the curve, so that W,3 = 0.
The work from 3 to 4 is

4
Was =/ F-ds = —GMm(l -~ l)-
3 rs rs

In the same fashion, we find that Wy5 = 0, Wss = —GMm(l/r¢ — 1/r5),
W67 = O, W78 = —GMm(l/rg — l/r7), and ng = 0. Thus
1 1 1 1 1 1 1 1
W= GM’”(E‘#E‘H““;;‘#;‘?S‘)'

But we note that ro = r3, ry = rs,r¢ = ry, and rg = ry. Therefore W = 0.

Of course we may wonder whether this is too trivial a curve. What if we use
a real curve? Let us try it on a real curve. First of all, we might like to assert that
a real curve could always be imitated sufficiently well by a series of sawtooth
Jjiggles like those of Fig. 13-4, and that therefore, etc., Q.E.D., but without a little
analysis, it is not obvious at first that the work done going around even a small
triangle is zero. Let us magnify one of the triangles, as shown in Fig. 13-4. Is the
work done in going from a to b and b to ¢ on a triangle the same as the work done
in going directly from a to ¢? Suppose that the force is acting in a certain direction;
let us take the triangle such that the side bc is in this direction, just as an example.
We also suppose that the triangle is so small that the force is essentially constant
over the entire triangle. What is the work done in going from a to ¢? Itis

Weoe = /cF-ds = Fscos ¥,
a

since the force is constant. Now let us calculate the work done in going around
the other two sides of the triangle. On the vertical side ab the force is perpendicular
to ds, so that here the work is zero. On the horizontal side bc,

W, =EF-ds = Fx.

Thus we see that the work done in going along the sides of a small triangle is
the same as that done going on a slant, because s cos 6 is equal to x. We have
proved previously that the answer is zero for any path composed of a series of
notches like those of Fig. 13-3, and also that we do the same work if we cut across
the corners instead of going along the notches (so long as the notches are fine
enough, and we can always make them very fine); therefore, the work done in
going around any path in a gravitational field is zero.

This is a very remarkable result. It tells us something we did not previously
know about planetary motion. It tells us that when a planet moves around the
sun (without any other objects around, no other forces) it moves in such a manner
that the square of the speed at any point minus some constants divided by the
radius at that point is always the same at every point on the orbit. For example,
the closer the planet is to the sun, the faster it is going, but by how much? By
the following amount: if instead of letting the planet go around the sun, we were
to change the direction (but not the magnitude) of its velocity and make it move
radially, and then we let it fall from some special radius to the radius of interest,
the new speed would be the same as the speed it had in the actual orbit, because
this is just another example of a complicated path. So long as we come back to the
same distance, the kinetic energy will be the same. So, whether the motion is the
real, undisturbed one, or is changed in direction by channels, by frictionless con-
straints, the kinetic energy with which the planet arrives at a point will be the same.

Thus, when we make a numerical analysis of the motion of the planet in its
orbit, as we did earlier, we can check whether or not we are making appreciable
errors by calculating this constant quantity, the energy, at every step, and it should
not change. For the orbit of Table 9-2 the energy does change,* it changes by

* The energy is 2(v2 -+ v) —1/r in the units of Table 9-2.
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Fig. 13-4. A “smooth” closed path,
showing a magnified segment of it ap-
proximated by a series of radial and
circumferential steps, and an enlarged
view of one step.



some 1.5 percent from the beginning to the end. Why? Either because for the
numerical method we use finite intervals, or else because we made a slight mistake
somewhere in arithmetic.

Let us consider the energy in another case: the problem of 2 mass on a spring,.
When we displace the mass from its balanced position, the restoring force is
proportional to the displacement. In those circumstances, can we work out a
law for conservation of energy? Yes, because the work done by such a force is

W = /:Fdx - f: —kxdx = —Lkx? (13.13)
Therefore, for a mass on a spring we have that the kinetic energy of the oscillating
mass plus $kx? is a constant. Let us see how this works. We pull the mass down;
it is standing still and so its speed is zero. But x is not zero, x is at its maximum,
so there is some energy, the potential energy, of course. Now we release the mass
and things begin to happen (the details not to be discussed), but at any instant the
kinetic plus potential energy must be a constant. For example, after the mass is
on its way past the original equilibrium point, the position x equals zero, but that
is when it has its biggest »2, and as it gets more x? it gets less »2, and so on. So
the balance of x? and v2 is maintained as the mass goes up and down. Thus we
have another rule now, that the potential energy for a spring is $kx2, if the force
is —kx.

13-3 Summation of energy

Now we go on to the more general consideration of what happens when there
are large numbers of objects. Suppose we have the complicated problem of many
objects, which we label i = 1, 2, 3,..., all exerting graviational pulls on each
other. What happens then? We shall prove that if we add the kinetic energies of
all the particles, and add to this the sum, over all pairs of particles, of their mutual
gravitational potential energy, —GMm/r,,, the total is a constant:

Gm,m;
2 z
-2; %m,v, + E — —r:]‘—] = const. (1314)

(pairs 23y

How do we prove it? We differentiate each side with respect to time and get zero.
When we differentiate 1m,:%, we find derivatives of the velocity that are the forces,
just as in Eq. (13.5). We replace these forces by the law of force that we know from
Newton’s law of gravity and then we notice that what is left is the same as the time

derivative of
z _ Gmm,

pairs 127}

The time derivative of the kinetic energy is
d dv
E E %mlv% = Z my, - ”dTl
1 1

> F.-v, (13.15)

(3 - o),

1 J r17

II

The time derivative of the potential energy is

d Gm,m Gm,m,\{ dr,
G 3 - 3 (+ (%),

pairs r 1 pairs (¥}

But

Fy = \/(xz - x])2 + (yz - y])2 + (Zz - 21)2;
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so that

dr, 1 o\ fdx, dx
= I [2("1 xﬂ(m ??7)

dy, d
+2(y. — »y) (—;_t - —dlt]>

v, —~V,
Ty

= ri]'

v, v
_ 2
—r 2,2,

Ty Ty

sincer,, = —r,,, while r,, = r,,. Thus

pairs Ty r?, 21

EDIEELLEDY [Gmlm’ Py, 4 ST VJ (13.16)
parrs

Now we must note carefully what > {3} and 3~ mean. In Eq. (13.15),

2 7 pairs
2. {3} means that i takes on all values i = 1, 2, 3, ... in turn, and for each value

r g
of i, the index j takes on all values except i. Thus if i = 3, j takes on the values
1,2,4,...

In Eq. (13.16), on the other hand, > means that given values of i and j occur

pairs
only once. Thus the particle pair 1 and 3 contributes only one term to the sum.

To keep track of this, we might agree to let i range over all values 1,2, 3, ..., and
for each i let j range only over values greater than i. Thus if i = 3, j could only
have values 4, 5, 6, . . . But we notice that for each j, j value there are two contribu-
tions to the sum, one involving v,, and the other v,, and that these terms have the
same appearance as those of Eq. (13.14), where all values of 7 and j (except i = j)
are included in the sum. Therefore, by matching the terms one by one, we see
that Eqgs. (13.16) and (13.15) are precisely the same, but of opposite sign, so that
the time derivative of the kinetic plus potential energy is indeed zero. Thus we
see that, for many objects, the kinetic energy is the sum of the contributions from
each individual object, and that the potential energy is also simple, it being also
just a sum of contributions, the energies between all the pairs. We can understand
why it should be the energy of every pair this way: Suppose that we want to find
the total amount of work that must be done to bring the objects to certain distances
from each other. We may do this in several steps, bringing them in from infinity
where there is no force, one by one. First we bring in number one, which requires
no work, since no other objects are yet present to exert force on it. Next we bring
in number two, which does take some work, namely W, = —Gmmy/rys.
Now, and this is an important point, suppose we bring in the next object to position
three. At any moment the force on number 3 can be written as the sum of two
forces—the force exerted by number 1 and that exerted by number 2. Therefore
the work done is the sum of the works done by each, because if F3 can be resolved
into the sum of two forces,
F3 = Fy3 + Fas,
then the work is

/Fg'ds = fF13-ds+ /F%'ds = Wiz + Was.

That is, the work done is the sum of the work done against the first force and the
second force, as if each acted independently. Proceeding in this way, we see that
the total work required to assemble the given configuration of objects is precisely
the value given in Eq. (13.14) as the potential energy. It is because gravity obeys
the principle of superposition of forces that we can write the potential energy as
a sum over each pair of particles.
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Fig. 13-5. The gravitational force F
on a mass point produced by an infinite
plane sheet of matter.

13-4 Gravitational field of large objects

Now we shall calculate the fields which are met in a few physical circumstances
involving distributions of mass. We have not so far considered distributions of
mass, only particles, so it is interesting to calculate the forces when they are
produced by more than just one particle. First we shall find the gravitational force
on a mass that is produced by a plane sheet of material, infinite in extent. The
force on a unit mass at a given point P, produced by this sheet of material (Fig.
13-5), will of course be directed toward the sheet. Let the distance of the point
from the sheet be a, and let the amount of mass per unit area of this huge sheet be .
We shall suppose u to be constant; it is a uniform sheet of material. Now, what
small field dC is produced by the mass dm lying between p and p + dp from the
point O of the sheet nearest point P? Answer: dC = G(dmr/r3). But this field
is directed along r, and we know that only the x-component of it will remain when
we add all the little vector dC’s to produce C. The x-component of dC is

dmr, dma

dC:c:G 73 =G——r§-

Now all masses dm which are at the same distance r from P will yield the same
dC,, so we may at once write for dm the total mass in the ring between p and
p + dp, namely dm = u2rpdp (Qmpdp is the area of a ring of radius p and
width dp, if dp < p). Thus

dC, = Gu2mp ‘irgﬁ-

Then, since 72 = p% + a2, pdp = rdr. Therefore,

" d 1 1
C, = 27Gua /a ;g = 27Gua ((—1 - ;) = 27Gp. (13.17)

Thus the force is independent of distance ! Why? Have we made a mistake?
One might think that the farther away we go, the weaker the force would be. But
no! If we are close, most of the matter is pulling at an unfavorable angle; if we are
far away, more of the matter is situated more favorably to exert a pull toward
the plane. At any distance, the matter which is most effective lies in a certain cone.
When we are farther away the force is smaller by the inverse square, but in the
same cone, in the same angle, there is much more matter, larger by just the square
of the distance! This analysis can be made rigorous by just noticing that the
differential contribution in any given cone is in fact independent of the distance,
because of the reciprocal variation of the strength of the force from a given mass,
and the amount of mass included in the cone, with changing distance. The force
is not really constant of course, because when we go on the other side of the sheet
it is reversed in sign.

We have also, in effect, solved an electrical problem: if we have an electrically
charged plate, with an amount ¢ of charge per unit area, then the electric field at
a point outside the sheet is equal to o/2¢g, and is in the outward direction if the
sheet is positively charged, and inward if the sheet is negatively charged. To prove
this, we merely note that G, gravity, plays the same role as 1/4re, for electricity.

Now suppose that we have two plates, with a positive charge +o on one
and a negative charge —o on another at a distance D from the first. What is the
field? Outside the two plates it is zero. Why? Because one attracts and the other
repels, the force being independent of distance, so that the two balance out! Also,
the force between the two plates is clearly twice as great as that from one plate,
namely £ = o/¢, and is directed from the positive plate to the negative one.

Now we come to a most interesting and important problem, whose solution
we have been assuming all the time, namely, that the force produced by the earth
at a point on the surface or outside it is the same as if all the mass of the earth
were located at its center. The validity of this assumption is not obvious, because
when we are close, some of the mass is very close to us, and some is farther away,
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and so on. When we add the effects all together, it seems a miracle that the net
force is exactly the same as we would get if we put all the mass in the middle!

We now demonstrate the correctness of this miracle. In order to do so, how-
ever, we shall consider a thin uniform hollow shell instead of the whole earth.
Let the total mass of the shell be m, and let us calculate the potential energy of a
particle of mass m’ a distance R away from the sphere (Fig. 13-6) and show that the
potential energy is the same as it would be if the mass m were a point at the center.
(The potential energy is easier to work with than is the field because we do not
have to worry about angles, we merely add the potential energies of all the pieces
of mass.) If we call x the distance of a certain plane section from the center, then
all the mass that is in a slice dx is at the same distance r from P, and the potential
energy due to this ring is —Gm’ dm/r. How much mass is in the small slice dx?
An amount

2myudx _ 2wyudxa
sinf ¥

dm = 2xyuds = = 2mau dx,

where 4 = m/4ma? is the surface density of mass on the spherical shell. (It is a
general rule that the area of a zone of a sphere is proportional to its axial width.)
Therefore the potential energy due to dm is
7 '
AW = — Gm' dm _ Gm21raudx.

r r

But we see that

r?P=y24+ (R—x)?=yp?+ x2+ R? — 2Rx
= a?2 + R%? — 2Rx.

Thus
2rdr = —2Rdx
or
dx _ dr.
r R
Therefore,
'
AW = — Gm21raudr’
R
and so
Gm'? R+a
W _ Gm2may / 0
R R—a
_ _ Gm2map, _ Gm'(4ma’y)
= R 4= R
_ _ Gm'm (13.18)

R

Thus, for a thin spherical shell, the potential energy of a mass m’, external to the
shell, is the same as though the mass of the shell were concentrated at its center.
The earth can be imagined as a series of spherical shells, each one of which con-
tributes an energy which depends only on its mass and the distance from the
center; adding them all together we get the total mass, and therefore the earth acts
as though all the material were at the center!

But nortice what happens if our point is on the inside of the shell. Making
the same calculation, but with P on the inside, we still get the difference of the two
r’s, but now in the forma + R —(a — R) = 2R, or twice the distance from the
center. In other words, W comes out to be W = — Gm’m/a, which is independent
of R and independent of position, i.e., the same energy no matter where we are
inside. Therefore no force; no work is done when we move about inside. If the
potential energy is the same no matter where an object is placed inside the sphere,
there can be no force on it. So there is no force inside, there is only a force outside,
and the force outside is the same as though the mass were all at the center.
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Fig. 13-6. A thin spherical shell of
mass or charge.



