31

The Origin of the Refractive Index

31-1 The index of refraction

We have said before that light goes slower in water than in air, and slower,
slightly, in air than in vacuum. This effect is described by the index of refraction
n. Now we would like to understand how such a slower velocity could come about.
In particular, we should try to see what the relation is to some physical assumptions,
or statements, we made earlier, which were the following:

(a) That the total electric field in any physical circumstance can always be
represented by the sum of the fields from all the charges in the universe.

(b) That the field from a single charge is given by its acceleration evaluated with
a retardation at the speed c, always (for the radiation field).

But, for a piece of glass, you might think: “Oh, no, you should modify all
this. You should say it is retarded at the speed ¢/n.” That, however, is not right,
and we have to understand why it is not.

It is approximately true that light or any electrical wave does appear to travel
at the speed c¢/n through a material whose index of refraction is n, but the fields are
still produced by the motions of all the charges—including the charges moving in
the material-——and with these basic contributions of the field travelling at the
ultimate velocity ¢. Our problem is to understand how the apparently slower
velocity comes about.

We shall try to understand the effect in a very simple case. A source which
we shall call “the external source” is placed a large distance away from a thin
plate of transparent material, say glass. We inquire about the field at a large
distance on the opposite side of the plate. The situation is illustrated by the
diagram of Fig. 31-1, where S and P are imagined to be very far away from the
plate. According to the principles we have stated earlier, an electric field anywhere
that is far from all moving charges is the (vector) sum of the fields produced by the
external source (at S) and the fields produced by each of the charges in the plate
of glass, every one with its proper retardation at the velocity c. Remember that the
contribution of each charge is not changed by the presence of the other charges.
These are our basic principles. The field at P can be written thus:

Z Eeach charge

all charges

E = G3L.1)

or
E=E + Eeach charges

all other charges

(31.2)

where E, is the field due to the source alone and would be precisely the field at
P if there were no material present. We expect the field at P to be different from
E, if there are any other moving charges.

Why should there be charges moving in the glass? We know that all material
consists of atoms which contain electrons. When the electric field of the source acts
on these atoms it drives the electrons up and down, because it exerts a force on the
electrons. And moving electrons generate a field—they constitute new radiators.
These new radiators are related to the source S, because they are driven by the
field of the source. The total field is not just the field of the source S, but it is
modified by the additional contribution from the other moving charges. This
means that the field is not the same as the one which was there before the glass
was there, but is modified, and it turns out that it is modified in such a way that

31-1

31-1 The index of refraction
31-2 The field due to the material
31-3 Dispersion

314 Absorption

31-5 The energy carried by an
electric wave

31-6 Diffraction of light by a screen

“Transmitted" Wave
—- P

Arriving Wave

S /
- A
Source of ;.'ri f_;c old
electric wove
"Reflected”
Wave lass plate
Fig. 31-1. Electric waves passing

through a layer of transparent material.



\
7

Y CIAG
~

v

7
VACUUM 7
[
Ve ya /
/o, ’
(7 /\'Q‘;/
wave "= 8y
crests N\ y 7 L7

7/

GG T

~

Fig. 31-2. Relation between refrac-

tion and velocity change.

the field inside the glass appears to be moving at a different speed. That is the idea
which we would like to work out quantitatively.

Now this is, in the exact case, pretty complicated, because although we have
said that all the other moving charges are driven by the source field, that is not
quite true. If we think of a particular charge, it feels not only the source, but like
anything else in the world, it feels all of the charges that are moving. It feels, in
particular, the charges that are moving somewhere else in the glass. So the total
field which is acting on a particular charge is a combination of the fields from the
other charges, whose motions depend on what this particular charge is doing! You
can see that it would take a complicated set of equations to get the complete and
exact formula. It is so complicated that we postpone this problem until next year.

Instead we shall work out a very simple case in order to understand all the
physical principles very clearly. We take a circumstance in which the effects from
the other atoms is very small relative to the effects from the source. In other words,
we take a material in which the total field is not modified very much by the motion
of the other charges. That corresponds to a material in which the index of refraction
is very close to 1, which will happen, for example, if the density of the atoms is
very low. Our calculation will be valid for any case in which the index is for any
reason very close to 1. In this way we shall avoid the complications of the most
general, complete solution.

Incidentally, you should notice that there is another effect caused by the motion
of the charges in the plate. These charges will also radiate waves back toward the
source S. This backward-going field is the light we see reflected from the surfaces
of transparent materials. It does not come from Jjust the surface. The backward
radiation comes from everywhere in the interior, but it turns out that the total effect
is equivalent to a reflection from the surfaces. These reflection effects are beyond
our approximation at the moment because we shall be limited to a calculation for a
material with an index so close to 1 that very little light is reflected.

Before we proceed with our study of how the index of refraction comes about,
we should understand that all that is required to understand refraction is to under-
stand why the apparent wave velocity is different in different materials. The
bending of light rays comes about just because the effective speed of the waves is
different in the materials. To remind you how that comes about we have drawn
in Fig. 31-2 several successive crests of an electric wave which arrives from a
vacuum onto the surface of a block of glass. The arrow perpendicular to the wave
crests indicates the direction of travel of the wave. Now all oscillations in the wave
must have the same frequency. (We have seen that driven oscillations have the
same frequency as the driving source.) This means, also, that the wave crests for
the waves on both sides of the surface must have the same spacing along the surface
because they must travel together, so that a charge sitting at the boundary will
feel only one frequency. The shortest distance between crests of the wave, however,
is the wavelength which is the velocity divided by the frequency. On the vacuum
sideitis A\ = 2mc/w, and on the other side itis A = 27v/w or 2we/wn,ifv = c/n
is the velocity of the wave. From the figure we can see that the only way for the
waves to “fit” properly at the boundary is for the waves in the material to be
travelling at a different angle with respect to the surface. From the geometry of
the figure you can see that for a “fit” we must have No/sin 6y = \/sin 8, or
sin fo/sin 6 = n, which is Snell’s law. We shall, for the rest of our discussion,
consider only why light has an effective speed of ¢/n in material of index n, and
no longer worry, in this chapter, about the bending of the light direction.

We go back now to the situation shown in Fig. 31-1. We see that what we
have to do is to calculate the field produced at P by all the oscillating charges in
the glass plate. We shall call this part of the field E,, and it is just the sum written
as the second term in Eq. (31.2). When we add it to the term E;, due to the source,
we will have the total field at P.
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This is probably the most complicated thing that we are going to do this year,
but it is complicated only in that there are many pieces that have to be put to-
gether; each piece, however, is very simple. Unlike other derivations where we
say, “Forget the derivation, just look at the answer!,” in this case we do not
need the answer so much as the derivation. In other words, the thing to under-
stand now is the physical machinery for the production of the index.

To see where we are going, let us first find out what the “correction field”
E, would have to be if the total field at P is going to look like radiation from the
source that is slowed down while passing through the thin plate. If the plate had
no effect on it, the field of a wave travelling to the right (along the z-axis) would be

E, = Eycosw(t — z/c) (3L.3)
or, using the exponential notation,
E, = Egpe™( =9, (31.4)

Now what would happen if the wave travelled more slowly in going through
the plate? Let us call the thickness of the plate Az. If the plate were not there the
wave would travel the distance Az in the time Az/c. But if it appears to travel at
the speed c/n then it should take the longer time n Az/c or the additional time
At = (n — 1) Az/c. After that it would continue to travel at the speed ¢ again.
We can take into account the extra delay in getting through the plate by replacing
tin Eq. 31.4) by (¢ — A orby [t — (n — 1) Az/c]. So the wave after insertion
of the plate should be written

Enttor plate = Ege™l!—(nhasle=2/cl, (31.5)

We can also write this equation as
Enftcr plate = e—w(n—l)Azjc E()e w(t—zlc)’ (3 1 6)

which says that the wave after the plate is obtained from the wave which could
exist without the plate, i, e., from E,, by multiplying by the factor e~ ®—1azle,
Now we know that multiplying an oscillating function like e** by a factor e just
says that we change the phase of the oscillation by the angle 6, which is, of course,
what the extra delay in passing through the thickness Az has done. It has retarded
the phase by the amount w(n — 1) Az/c (retarded, because of the minus sign in
the exponent).

We have said earlier that the plate should add a field E, to the original field
E, = Ee™" %/ but we have found instead that the effect of the plate is to
multiply the field by a factor which shifts its phase. However, that is really all right
because we can get the same result by adding a suitable complex number. It is
particularly easy to find the right number to add in the case that Az is small, for
you will remember that if x is a small number then e” is nearly equal to (1 + x).
We can write, therefore,

em—DAzle _ 1 _ ju(n — 1) Az/c. G1.7)
Using this equality in Eq. (31.6), we have
Enstor plate = Eoe™! ™4/ — ﬁ’i"—c_l—“f Egettt—2/0), (31.8)
E, E,

The first term is just the field from the source, and the second term must just be
equal to E,, the field produced to the right of the plate by the oscillating charges
of the plate—expressed here in terms of the index of refraction n, and depending,
of course, on the strength of the wave from the source.

What we have been doing is easily visualized if we look at the complex number
diagram in Fig. 31-3. We first draw the number E, (we chose some values for z
and ¢ so that E, comes out horizontal, but this is not necessary). The delay due to
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slowing down in the plate would delay the phase of this number, that is, it would
rotate E, through a negative angle. But this is equivalent to adding the small
vector E, at roughly right angles to E,. But that is Jjust what the factor —; means
in the second term of Eq. (31.8). It says that if E; is real, then E, is negative
imaginary or that, in general, E, and E, make a right angle.

31-2 The field due to the material

We now have to ask: Is the field E, obtained in the second term of Eq. (31.8)
the kind we would expect from oscillating charges in the plate? If we can show
that it is, we will then have calculated what the index » should be! [Since # is the
only nonfundamental number in Eq. (31.8).] We turn now to calculating what
field E, the charges in the material will produce. (To help you keep track of the
many symbols we have used up to now, and will be using in the rest of our calcula-
tion, we have put them all together in Table 31-1)

Table 31-1
Symbols used in the calculations

field from the source

= field produced by charges in the plate

= thickness of the plate

= perpendicular distance from the plate

= index of refraction

= frequency (angular) of the radiation

= number of charges per unit volume in the plate

aZi—::uEg’P’

= number of charges per unit area of the plate

q. = charge on an electron

m = mass of an electron

wp = resonant frequency of an electron bound in an atom

If the source S (of Fig. 31-1) is far off to the left, then the field E, will have
the same phase everywhere on the plate, so we can write that in the neighborhood
of the plate

E, = Ege“'=#9 (31.9)

Right at the plate, where z = 0, we will have
E, = Exe™! (at the plate) (31.10)

Each of the electrons in the atoms of the plate will feel this electric field and
will be driven up and down (we assume the direction of E o is vertical) by the electric
force gE. To find what motion we expect for the electrons, we will assume that the
atoms are little oscillators, that is, that the electrons are fastened elastically to the
atoms, which means that if a force is applied to an electron its displacement from
its normal position will be proportional to the force.

You may think that this is a funny model of an atom if you have heard about
electrons whirling around in orbits. But that is Just an oversimplified picture.
The correct picture of an atom, which is given by the theory of wave mechanics,
says that, so far as problems involving light are concerned, the electrons behave as
though they were held by springs. So we shall suppose that the electrons have a
linear restoring force which, together with their mass m, makes them behave like
little oscillators, with a resonant frequency w,. We have already studied such os-
cillators, and we know that the equation of their motion is written this way:

d2
m (sz + wﬁx) = F, (31.11)

where F is the driving force.
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For our problem, the driving force comes from the electric field of the wave
from the source, so we should use

F = q.E, = q,Epe™’, (31.12)

where ¢, is the electric charge on the electron and for E, we use the expression
E, = Eye*! from (31.10). Our equation of motion for the electron is then

2 .
m (%—}‘ + w?,x> = gq.Eqe™". (31.13)

We have solved this equation before, and we know that the solution is

x = x¢e™!, (31.14)

where, by substituting in (31.13), we find that

xg = — 2o, (1.15)
m(wy — w°)
so that

x = —3F it (31.16)
m(wy — w°)

We have what we needed to know—the motion of the electrons in the plate. And
it is the same for every electron, except that the mean position (the “zero” of the
motion) is, of course, different for each electron.

Now we are ready to find the field E, that these atoms produce at the point P,
because we have already worked out (at the end of Chapter 30) what field is pro-
duced by a sheet of charges that all move together. Referring back to Eq. (30.19),
we see that the field E, at P is just a negative constant times the velocity of the
charges retarded in time the amount z/¢. Differentiating x in Eq. (31.16) to get
the velocity, and sticking in the retardation [or just putting x, from (31.15)
into (30.18)] yields

E, = — 5t [iw —Gebo 5 e""’“-””]- (31.17)

m(wo — W

Just as we expected, the driven motion of the electrons produced an extra wave
which travels to the right (that is what the factor e®*~#/? says), and the amplitude
of this wave is proportional to the number of atoms per unit area in the plate
(the factor ) and also proportional to the strength of the source field (the factor
E,). Then there are some factors which depend on the atomic properties (g., m,
and wg), as we should expect.

The most important thing, however, is that this formula (31.17) for E, looks
very much like the expression for E, that we got in Eq. (31.8) by saying that the
original wave was delayed in passing through a material with an index of refraction
n. The two expressions will, in fact, be identical if

2
n—az=—"9 . (31.18)
) 2egm(ws — w?)

Notice that both sides are proportional to Az, since », which is the number of
atoms per unit area, is equal to N AZ, where N is the number of atoms per unit
volume of the plate. Substituting N AZ for 5 and cancelling the Az, we get our main
result, a formula for the index of refraction in terms of the properties of the atoms
of the material—and of the frequency of the light:

Ng;

vg. | (31.19)
2eom(wy — w?)

This equation gives the “explanation” of the index of refraction that we wished to
obtain.
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31-3 Dispersion

Notice that in the above process we have obtained something very interesting.
For we have not only a number for the index of refraction which can be computed
from the basic atomic quantities, but we have also learned how the index of
refraction should vary with the frequency w of the light. This is something we
would never understand from the simple statement that “light travels slower in a
transparent material.” We still have the problem, of course, of knowing how many
atoms per unit volume there are, and what is their natural frequency wo. We do
not know this just yet, because it is different for every different material, and we
cannot get a general theory of that now. Formulation of a general theory of the
properties of different substances—their natural frequencies, and so on—is
possible only with quantum atomic mechanics. Also, different materials have
different properties and different indexes, so we cannot expect, anyway, to get a
general formula for the index which will apply to all substances.

However, we shall discuss the formula we have obtained, in various possible
circumstances. First of all, for most ordinary gases (for instance, for air, most
colorless gases, hydrogen, helium, and so on) the natural frequencies of the electron
oscillators correspond to ultraviolet light. These frequencies are higher than the
frequencies of visible light, that is, w is much larger than  of visible light, and to
a first approximation, we can disregard w? in comparison with w3. Then we find
that the index is nearly constant. So for a gas, the index is nearly constant. This
is also true for most other transparent substances, like glass. If we look at our
expression a little more closely, however, we notice that as w rises, taking a little
bit more away from the denominator, the index also rises. So n rises slowly with
frequency. The index is higher for blue light than for red light. That is the reason
why a prism bends the light more in the blue than in the red.

The phenomenon that the index depends upon the frequency is called the
phenomenon of dispersion, because it is the basis of the fact that light is “dispersed”
by a prism into a spectrum. The equation for the index of refraction as a function
of frequency is called a dispersion equation. So we have obtained a dispersion equa-
tion. (In the past few years “dispersion equations” have been finding a new use in
the theory of elementary particles.)

Our dispersion equation suggests other interesting effects. If we have a
natural frequency wo which lies in the visible region, or if we measure the index
of refraction of a material like glass in the ultraviolet, where w gets near w,, we
see that at frequencies very close to the natural frequency the index can get enor-
mously large, because the denominator can go to zero. Next, suppose that w is
greater than wq. This would occur, for example, if we take a material like glass,
say, and shine x-ray radiation on it. In fact, since many materials which are opaque
to visible light, like graphite for instance, are transparent to x-rays, we can also
talk about the index of refraction of carbon for x-rays. All the natural frequencies
of the carbon atoms would be much lower than the frequency we are using in the
x-rays, since x-ray radiation has a very high frequency. The index of refraction is
that given by our dispersion equation if we set wg equal to zero (we neglect 3 in
comparison with w?).

A similar situation would occur if we beam radiowaves (or light) on a gas of
free electrons. In the upper atmosphere electrons are liberated from their atoms by
ultraviolet light from the sun and they sit up there as free electrons. For free
electrons wy = 0 (there is no elastic restoring force). Setting wo = 0in our disper-
sion equation yields the correct formula for the index of refraction for radiowaves
in the stratosphere, where N is now to represent the density of free electrons (num-
ber per unit volume) in the stratosphere. But let us look again at the equation, if
we beam x-rays on matter, or radiowaves (or any electric waves) on free electrons
the term (w§ — w?) becomes negative, and we obtain the result that n is Jess than
one. That means that the effective speed of the waves in the substance is faster
than ¢! Can that be correct?

It is correct. In spite of the fact that it is said that you cannot send signals
any faster than the speed of light, it is nevertheless true that the index of refraction

of materials at a particular frequency can be either greater or less than 1. This
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just means that the phase shift which is produced by the scattered light can be
either positive or negative. It can be shown, however, that the speed at which you
can send a signal is not determined by the index at one frequency, but depends on
what the index is at many frequencies. What the index tells us is the speed at which
the nodes (or crests) of the wave travel. The node of a wave is not a signal by itself.
In a perfect wave, which has no modulations of any kind, i.e., which is a steady
oscillation, you cannot really say when it “‘starts,” so you cannot use it for a timing
signal. In order to send a signal you have to change the wave somehow, make a
notch in it, make it a little bit fatter or thinner. That means that you have to
have more than one frequency in the wave, and it can be shown that the speed at
which signals travel is not dependent upon the index alone, but upon the way that
the index changes with the frequency. This subject we must also delay (until
Chapter 48). Then we will calculate for you the actual speed of signals through
such a piece of glass, and you will see that it will not be faster than the speed of
light, although the nodes, which are mathematical points, do travel faster than
the speed of light.

Just to give a slight hint as to how that happens, you will note that the real
difficulty has to do with the fact that the responses of the charges are opposite to
the field, i.e., the sign has gotten reversed. Thus in our expression for x (Eq. 31.16)
the displacement of the charge is in the direction opposite to the driving field,
because (w2 — w?) is negative for small wo. The formula says that when the
electric field is pulling in one direction, the charge is moving in the opposite direc-
tion.

How does the charge happen to be going in the opposite direction? It certainly
does not start off in the opposite direction when the field is first turned on. When
the motion first starts there is a transient, which settles down after awhile, and
only then is the phase of the oscillation of the charge opposite to the driving field.
And it is then that the phase of the transmitted field ¢an appear to be advanced
with respect to the source wave. It is this advance in phase which is meant when
we say that the “phase velocity” or velocity of the nodes is greater than c¢. In
Fig. 31-4 we give a schematic idea of how the waves might look for a case where
the wave is suddenly turned on (to make a signal). You will see from the diagram
that the signal (i.e., the start of the wave) is not earlier for the wave which ends up
with an advance in phase.
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Let us now look again at our dispersion equation. We should remark that
our analysis of the refractive index gives a result that is somewhat simpler than you
would actually find in nature. To be completely accurate we must add some
refinements. First, we should expect that our model of the atomic oscillator should
have some damping force (otherwise once started it would oscillate forever, and
we do not expect that to happen). We have worked out before (Eq. 23.8) the
motion of a damped oscillator and the result is that the denominator in Eq. (31.16),
and therefore in (31.19), is changed from (w§ — w?) to (w§ — w? + iYw), where
7 is the damping coefficient.

We need a second modification to take into account the fact that there are
several resonant frequencies for a particular kind of atom. It is easy to fix up our
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Fig. 31-5. The index of refraction as
a function of frequency.

dispersion equation by imagining that there are several different kinds of oscil-
lators, but that each oscillator acts separately, and so we simply add the contri-
butions of all the oscillators. Let us say that there are N, electrons per unit of
volume, whose natural frequency is w; and whose damping factor is v,. We
would then have for our dispersion equation

n=1 + q? Nk .
2eom k wf — w? + Yw

(31.20)

We have, finally, a complete expression which describes the index of refraction that
is observed for many substances.* The index described by this formula varies with
frequency roughly like the curve shown in Fig. 31-5.

You will note that so long as w is not too close to one of the resonant frequen-
cies, the slope of the curve is positive. Such a positive slope is called “normal”
dispersion (because it is clearly the most common occurrence). Very near the
resonant frequencies, however, there is a small range of w’s for which the slope is
negative. Such a negative slope is often referred to as “anomalous” (meaning
abnormal) dispersion, because it seemed unusual when it was first observed, long
before anyone even knew there were such things as electrons. From our point of
view both slopes are quite “normal”! '

31-4 Absorption

Perhaps you have noticed something a little strange about the last form
(Eq. 31.20) we obtained for our dispersion equation. Because of the term iv we
put in to take account of damping, the index of refraction is now a complex
number! What does that mean? By working out what the real and imaginary parts

of n are we could write
n=n —in, 31.2D)

where n" and n' are real numbers. (We use the minus sign in front of the in”
because then n"” will turn out to be a positive number, as you can show for yourself.)

We can see what such a complex index means by going back to Eq. (31.6),
which is the equation of the wave after it goes through a plate of material with an
index n. If we put our complex n into this equation, and do some rearranging, we
get

Epter plate = e “"/'4%/¢ gmiet'=Dlzlc p,iu(t—z/c) (31.22)
plate 0 .
N’
A B

The last factors, marked B in Eq. (31.22), are just the form we had before, and
again describe a wave whose phase has been delayed by the angle w(n’ — 1) Az/c
in traversing the material. The first term (A) is new and is an exponential factor
with a real exponent, because there were two i’s that cancelled. Also, the exponent
is negative, so the factor is a real number less than one. It describes a decrease
in the magnitude of the field and, as we should expect, by an amount which is
more the larger Az is. As the wave goes through the material, it is weakened. The
material is “absorbing™ part of the wave. The wave comes out the other side with
less energy. We should not be surprised at this, because the damping we put in
for the oscillators is indeed a friction force and must be expected to cause a loss
of energy. We see that the imaginary part '’ of a complex index of refraction
represents an absorption (or “attenuation”) of the wave. In fact, n”” is sometimes
referred to as the “absorption index.”

We may also point out that an imaginary part to the index n corresponds to
bending the arrow E, in Fig. 31-3 toward the origin. Itis clear why the transmitted
field is then decreased.

* Actually, although in quantum mechanics Eq. (31.20) is still valid, its interpretation
is somewhat different. In quantum mechanics even an atom with one electron, like
hydrogen, has several resonant frequencies. Therefore N; is not really the number of
electrons having the frequency wy, but is replaced instead by Nf;, where N is the number
of atoms per unit volume and f; (called the oscillator strength) is a factor that tells how
strongly the atom exhibits each of its resonant frequencies ws.
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Normally, for instance as in glass, the absorption of light is very small.
This is to be expected from our Eq. (31.20), because the imaginary part of the
denominator, iYxw, is much smaller than the term (w; — w?). But if the light fre-
quency w is very close to wy then the resonance term (wi — w?) can become small
compared with iv;w and the index becomes almost completely imaginary. The
absorption of the light becomes the dominant effect. It is just this effect that gives
the dark lines in the spectrum of light which we receive from the sun. The light
from the solar surface has passed through the sun’s atmosphere (as well as the
earth’s), and the light has been strongly absorbed at the resonant frequencies of
the atoms in the solar atmosphere.

The observation of such spectral lines in the sunlight allows us to tell the
resonant frequencies of the atoms and hence the chemical composition of the sun’s
atmosphere. The same kind of observations tell us about the materials in the stars.
From such measurements we know that the chemical elements in the sun and in
the stars are the same as those we find on the earth.

31-5 The energy carried by an electric wave

We have seen that the imaginary part of the index means absorption. We
shall now use this knowledge to find out how much energy is carried by a light
wave. We have given earlier an argument that the energy carried by light is
proportional to E2, the time average of the square of the electric field in the wave.
The decrease in E due to absorption must mean a loss of energy, which would go
into some friction of the electrons and, we might guess, would end up as heat in
the material.

If we consider the light arriving on a unit area, say one square centimeter, of
our plate in Fig. 31-1, then we can write the following energy equation (if we assume
that energy is conserved, as we do/):

Energy in per sec = energy out per sec 4 work done per sec. (31.23)

For the first term we can write aE2, where a is the as yet unknown constant of
proportionality which relates the average value of E? to the energy being carried.
For the second term we must include the part from the radiating atoms of the
material, so we should use a(E, + E,)2, or (evaluating the square) a(E2 +
2E,E, + E?).

All of our calculations have been made for a thin layer of material whose
index is not too far from 1, so that E, would always be much less than E; (just to
make the calculations easier). In keeping with our approximations, we should,
therefore, leave out the term E2, because it is much smaller than E,E,. You may
say: “Then you should leave out E,E, also, because it is much smaller than E2.”
It is true that E,E, is much smaller than E2, but we must keep E, E, or our approxi-
mation will be the one that would apply if we neglected the presence of the material
completely! One way of checking that our calculations are consistent is to see that
we always keep terms which are proportional to N Az, the area density of atoms
in the material, but we leave out terms which are proportional to (N Az)? or any
higher power of N Az. Ours is what should be called a “low-density approxi-
mation.”

In the same spirit, we might remark that our energy equation has neglected
the energy in the reflected wave. But that is OK because this term, 100, is propor-
tional to (N Az)2, since the amplitude of the reflected wave is proportional to
N Az.

For the last term in Eq. (31.23) we wish to compute the rate at which the
incoming wave is doing work on the electrons. We know that work is force times
distance, so the rate of doing work (also called power) is the force times the veloc-
ity. Itisreally F -V, but we do not need to worry about the dot product when the
velocity and force are along the same direction as they are here (except for a
possible minus sign). So for each atom we take g.E,v for the average rate of
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Fig. 31-6. Diffraction by a screen.

doing work. Since there are N Az atoms in a unit area, the last term in Eq. (31.23)
should be N Azq, E,v. Our energy equation now looks like

aFf = az? + 2aEE, + N Azq, E,. (31.29)
The E? terms cancel, and we have
2aE,E, = NAzq, E,v. (31.25)

We now go back to Eq. (30.19), which tells us that for large z

_ NAzg,
E, = W U(ret by Z/C) (31.26)

(recalling that n = N Az). Putting Eq. (31.26) into the left-hand side of (31.25),
we get

2a

N A4 D) oot by 2/2).

2€oc

However, E,(at z) is E, (at atoms) retarded by z/c. Since the average is inde-

pendent of time, it is the same now as retarded by z/c, or is E, (at atom) - v, the

same average that appears on the right-hand side of (31.25). The two sides are
therefore equal if

=1, or a = €. (31.27)

We have discovered that if energy is to be conserved, the energy carried in an elec-
tric wave per unit area and per unit time (or what we have called the intensity)
must be given by eocE2. If we call the intensity S, we have

_ intensity L
S = or = €ocE?, (31.28)
energy/area/time

where the bar means the time average. We have a nice bonus result from our theory
of the refractive index!

31-6 Diffraction of light by a screen

It is now a good time to take up a somewhat different matter which we can
handle with the machinery of this chapter. In the last chapter we said that when
you have an opaque screen and the light can come through some holes, the distribu-
tion of intensity—the diffraction pattern—could be obtained by imagining instead
that the holes are replaced by sources (oscillators) uniformly distributed over the
hole. In other words, the diffracted wave is the same as though the hole were a
new source. We have to explain the reason for that, because the hole is, of course,
Just where there are no sources, where there are no accelerating charges.

Let us first ask: “What is an opaque screen?” Suppose we have a completely
opaque screen between a source S and an observer at P, as in Fig. 31-6(a). If the
screen is “opaque” there is no field at P. Why is there no field there? According
to the basic principles we should obtain the field at P as the field E; of the source
delayed, plus the field from all the other charges around. But, as we have seen
above, the charges in the screen will be set in motion by the field E,, and these
motions generate a new field which, if the screen is opaque, must exactly cancel
the field E, on the back side of the screen. You say: “What a miracle that it bal-
ances exactly! Suppose it was not exactly right!” If it were not exactly right (re-
member that this opaque screen has some thickness), the field toward the rear
part of the screen would not be exactly zero. So, not being zero, it would set
into motion some other charges in the material of the screen, and thus make a little
more field, trying to get the total balanced out. So if we make the screen thick
enough, there is no residual field, because there is enough opportunity to finally
get the thing quieted down. In terms of our formulas above we would say that the
31-10



screen has a large and imaginary index, so the wave is absorbed exponentially as it
goes through. You know, of course, that a thin enough sheet of the most opaque
material, even gold, is transparent.

Now let us see what happens with an opaque screen which has holes in it, as
in Fig. 31-6(b). What do we expect for the field at P? The field at P can be repre-
sented as a sum of two parts—the field due to the source S plus the field due to the
wall, i.e., due to the motions of the charges in the walls. We might expect the
motions of the charges in the walls to be complicated, but we can find out what
fields they produce in a rather simple way.

Suppose that we were to take the same screen, but plug up the holes, as indi-
cated in part (c) of the figure. We imagine that the plugs are of exactly the same
material as the wall. Mind you, the plugs go where the holes were in case (b).
Now let us calculate the field at P. The field at P is certainly zero in case (c), but
it is also equal to the field from the source plus the field due to all the motions of
the atoms in the walls and in the plugs. We can write the following equations:

Case (b): E,.p = E; + Eya,
Case (¢): Eiyp = 0 = E; + E4an + Efug,

where the primes refer to the case where the plugs are in place, but E; is, of course,
the same in both cases. Now if we subtract the two equations, we get

Eut P = (Ewall - E\,vall) - Ex’)lug-

Now if the holes are not too small (say many wavelengths across), we would not
expect the presence of the plugs to change the fields which arrive at the walls except
possibly for a little bit around the edges of the holes. Neglecting this small effect,
we can set Ey,1 = Efq.u and obtain that

Eyxp= — ;I)lug-

We have the result that the field at P when there are holes in a screen (case b) is the
same (except for sign) as the field that is produced by that part of a complete opaque
wall which is located where the holes are! (The sign is not too interesting, since we
are usually interested in intensity which is proportional to the square of the field.)
It seems like an amazing backwards-forwards argument. It is, however, not only
true (approximately for not too small holes), but useful, and is the justification
for the usual theory of diffraction.

The field Ej,, is computed in any particular case by remembering that the
motion of the charges everywhere in the screen is just that which will cancel out
the field E, on the back of the screen. Once we know these motions, we add the
radiation fields at P due just to the charges in the plugs.

We remark again that this theory of diffraction is only approximate, and will
be good only if the holes are not too small. For holes which are too small the
Ely.q term will be small and then the difference between Efan and Eyan (which
difference we have taken to be zero) may be comparable to or larger than the small
El1.g term, and our approximation will no longer be valid.
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