34

Relativistie Effeets in Radiation

34-1 Moving sources

In the present chapter we shall describe a number of miscellaneous effects in
connection with radiation, and then we shall be finished with the classical theory
of light propagation. In our analysis of light, we have gone rather far and into
considerable detail. The only phenomena of any consequence associated with
electromagnetic radiation that we have not discussed is what happens if radiowaves
are contained in a box with reflecting walls, the size of the box being comparable
to a wavelength, or are transmitted down a long tube. The phenomena of so-called
cavity resonators and waveguides we shall discuss later; we shall first use another
physical example—sound—and then we shall return to this subject. Except for
this, the present chapter is our last consideration of the classical theory of light.

We can summarize all the effects that we shall now discuss by remarking that
they have to do with the effects of moving sources. We no longer assume that the
source is localized, with all its motion being at a relatively low speed near a fixed
point.

We recall that the fundamental laws of electrodynamics say that, at large
distances from a moving charge, the electric field is given by the formula
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The second derivative of the unit vector er- which points in the apparent direction
of the charge, is the determining feature of the electric field. This unit vector does
not point toward the present position of the charge, of course, but rather in the
direction that the charge would seem to be, if the information travels only at the
finite speed ¢ from the charge to the observer.

Associated with the electric field is a magnetic field, always at right angles
to the electric field and at right angles to the apparent direction of the source,
given by the formula

B = —er X E/c. (34.2)

Until now we have considered only the case in which motions are nonrela-
tivistic in speed, so that there is no appreciable motion in the direction of the source
to be considered. Now we shall be more general and study the case where the mo-
tion is at an arbitrary velocity, and see what different effects may be expected in
those circumstances. We shall let the motion be at an arbitrary speed, but of course
we shall still assume that the detector is very far from the source.

We already know from our discussion in Chapter 28 that the only things
that count in d?ep /dt? are the changes in the direction of ep. Let the coor-
dinates of the charge be (x, y, z), with z measured along the direction of observa-
tion (Fig. 34-1). At a given moment in time, say the moment 7, the three compo-
nents of the position are x(7), y(r), and z(r). The distance R is very nearly equal
to R(r) = Ry + z(r). Now the direction of the vector er’ depends mainly on
x and y, but hardly at all upon z: the transverse components of the unit vector are
x/R and p/R, and when we differentiate these components we get things like
R? in the denominator:
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Fig. 34-1. The path of a moving
charge. The true position at the time
7 is at T, but the retarded position is at A.
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So, when we are far enough away the only terms we have to worry about are the
variations of x and y. Thus we take out the factor R, and get
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where R is the distance, more or less, to ¢; let us take it as the distance OP to the
origin of the coordinates (x, y, z). Thus the electric field is a constant multiplied
by a very simple thing, the second derivatives of the x- and y-coordinates. (We
could put it more mathematically by calling x and y the transverse components of
the position vector r of the charge, but this would not add to the clarity.)

Of course, we realize that the coordinates must be measured at the retarded
time. Here we find that z(7) does affect the retardation. What time is the retarded
time? If the time of observation is called ¢ (the time at P) then the time 7 to which
this corresponds at A is not the time ¢, but is delayed by the total distance that the
light has to go, divided by the speed of light. In the first approximation, this delay
is Ry/c, a constant (an uninteresting feature), but in the next approximation we
must include the effects of the position in the z-direction at the time 7, because
if ¢ is a little farther back, there is a little more retardation. This is an effect that
we have neglected before, and it is the only change needed in order to make our
results valid for all speeds.

What we must now do is to choose a certain value of ¢ and calculate the value
of 7 from it, and thus find out where x and y are at that 7. These are then the
retarded x and y, which we call x’ and y’, whose second derivatives determine the
field. Thus 7 is determined by

c c
and

X(@ = x(m), YO = y@). (34.4)

Now these are complicated equations, but it is easy enough to make a geometrical
picture to describe their solution. This picture will give us a good qualitative feeling
for how things work, but it still takes a lot of detailed mathematics to deduce
the precise results of a complicated problem.
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Fig. 34-2. A geometrical solution of
Eq. (34.5) to find x’(t).

34-2 Finding the ‘‘apparent’’ motion

The above equation has an interesting simplification. If we disregard the un-
interesting constant delay R,/c, which just means that we must change the origin
of ¢ by a constant, then it says that

ct = cr + z(7), x' = x(1), y = y(1). (34.5)

Now we need to find x’ and y’ as functions of 7, not 7, and we can do this in the
following way: Eq. (34.5) says that we should take the actual motion and add a
constant (the speed of light) times 7. What that turns out to mean is shown in
Fig. 34-2. We take the actual motion of the charge (shown at left) and imagine
that as it is going around it is being swept away from the point P at the speed ¢
(there are no contractions from relativity or anything like that; this is just a mathe-
matical addition of the ¢7). In this way we get a new motion, in which the line-
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of-sight coordinate is cz, as shown at the right. (The figure shows the result for a
rather complicated motion in a plane, but of course the motion may not be in
one plane—it may be even more complicated than motion in a plane.) The point
is that the horizontal (i.e., line-of-sight) distance now is no longer the old z, but
is z + cr, and therefore is ct. Thus we have found a picture of the curve, x’
(and y’) against ¢! All we have to do to find the field is to look at the acceleration
of this curve, i.e., to differentiate it twice. So the final answer is: in order to find
the electric field for a moving charge, take the motion of the charge and translate
it back at the speed ¢ to “open it out”; then the curve, so drawn, is a curve of the
x' and y’ positions of the function of 7. The acceleration of this curve gives the
electric field as a function of ¢. Or, if we wish, we can now imagine that this whole
“rigid” curve moves forward at the speed ¢ through the plane of sight, so that the
point of intersection with the plane of sight has the coordinates x" and y’. The
acceleration of this point makes the electric field. This solution is just as exact as
the formula we started with—it is simply a geometrical representation.

X x‘(t)

Fig. 34-3. The x'(t} curve for «a
particle moving at constant speed v = o
0.94c¢, a circle.

z

If the motion is relatively slow, for instance if we have an oscillator just going
up and down slowly, then when we shoot that motion away at the speed of light,
we would get, of course, a simple cosine curve, and that gives a formula we have
been looking at for a long time: it gives the field produced by an oscillating charge.
A more interesting example is an electron moving rapidly, very nearly at the
speed of light, in a circle. If we look in the plane of the circle, the retarded x'(7)
appears as shown in Fig. 34-3. What is this curve? If we imagine a radius vector
from the center of the circle to the charge, and if we extend this radial line a little
bit past the charge, just a shade if it is going fast, then we come to a point on the
line that goes at the speed of light. Therefore, when we translate the motion back
at the speed of light, that corresponds to having a wheel with a charge on it rolling
backward (without slipping) at the speed c; thus we find a curve which is very
close to a cycloid—it is called a hypocycloid. If the charge is going very nearly at
the speed of light, the “cusps” are very sharp indeed; if it went at exactly the speed
of light, they would be actual cusps, infinitely sharp. “Infinitely sharp” is inter-
esting; it means that near a cusp the second derivative is enormous. Once in each
cycle we get a sharp pulse of electric field. This is not at all what we would get from
a nonrelativistic motion, where each time the charge goes around there is an
oscillation which is of about the same “‘strength” all the time. Instead, there are
very sharp pulses of electric field spaced at time intervals 1/T, apart, where T
is the period of revolution. These strong electric fields are emitted in a narrow cone
in the direction of motion of the charge. When the charge is moving away from
P, there is very little curvature and there is very little radiated field in the
direction of P.

34-3 Synchrotron radiation

We have very fast electrons moving in circular paths in the synchrotron; they
are travelling at very nearly the speed ¢, and it is possible to see the above radiation
as actual light! Let us discuss this in more detail.

In the synchrotron we have electrons which go around in circles in a uniform
magnetic field. First, let us see why they go in circles. From Eq. (12.10), we know
that the force on a particle in a magnetic field is given by

F = qv X B, (34.6)
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Fig. 34-4. A charged particle moves
in a circvlar (or helical) path in a uniform
magnetic field.

and it is at right angles both to the field and to the velocity. As usual, the force is
equal to the rate of change of momentum with time. If the field is directed upward
out of the paper, the momentum of the particle and the force on it are as shown
in Fig. 34-4. Since the force is at right angles to the velocity, the kinetic energy,
and therefore the speed, remains constant. All the magnetic field does is to change
the direction of motion. In a short time At, the momentum vector changes at right
angles to itself by an amount Ap = FA¢, and therefore p turns through an angle
A6 = Ap/p = quB At/p, since |[F| = quB. But in this same time the particle has
gone a distance As = v At. Evidently, the two lines AB and CD will intersect at a
point O such that 04 = OC = R, where As = R AG6. Combining this with the
previous expressions, we find R A§/At = Rw = v = quBR/p, from which we find

P = ¢gBR 34.7)
and
w = quB/p. (34.8)

Since this same argument can be applied during the next instant, the next, and so
on, we conclude that the particle must be moving in a circle of radius R, with angu-
lar velocity cw.

The result that the momentum of the particle is equal to a charge times the
radius times the magnetic field is a very important law that is used a great deal.
It is important for practical purposes because if we have elementary particles which
all have the same charge and we observe them in a magnetic field, we can measure
the radii of curvature of their orbits and, knowing the magnetic field, thus deter-
mine the momenta of the particles. If we multiply both sides of Eq. (34.7) by ¢,
and express g in terms of the electronic charge, we can measure the momentum in
units of the electron volt. In those units our formula is

pe(ev) = 3 X 10%(g/q.)BR, (34.9)

where B, R, and the speed of light are all expressed in the mks system, the latter
being 3 X 10%, numerically.

The mks unit of magnetic field is called a weber per square meter. There is an
older unit which is still in common use, called a gauss. One weber/m~2 is equal
to 10* gauss. To give an idea of how big magnetic fields are, the strongest magnetic
field that one can usually make in iron is about 1.5 X 10% gauss; beyond that, the
advantage of using iron disappears. Today, electromagnets wound with super-
conducting wire are able to produce steady fields of over 10° gauss strength—that
is, 10 mks units. The field of the earth is a few tenths of a gauss at the equator.

Returning to Eq. (34.9), we could imagine the synchrotron running at a billion
electron volts, so pc would be 10° for a billion electron volts. {(We shall come back
to the energy in just a moment.) Then, if we had a B corresponding to, say, 10,000
gauss, which is a good substantial field, one mks unit, then we see that R would
have to be 3.3 meters. The actual radius of the Caltech synchrotron is 3.7 meters,
the field is a little bigger, and the energy is 1.5 billion, but it is the same idea. So
now we have a feeling for why the synchrotron has the size it has.

We have calculated the momentum, but we know that the total energy,
including the rest energy, is given by W = +/p2c2? + m2c*, and for an electron
the rest energy corresponding to mc? is 0.511 X 108 ev, so when pc is 10° ev we
can neglect mc?, and so for all practical purposes W = pc when the speeds are
relativistic. It is practically the same to say the energy of an electron is a billion
electron volts as to say the momentum times c is a billion electron volts. If W =
10? ev, it is easy to show that the speed differs from the speed of light by but one
part in eight million!

We turn now to the radiation emitted by such a particle. A particle moving
on a circle of radius 3.3 meters, or 20 meters circumference, goes around once in
roughly the time it takes light to go 20 meters. So the wavelength that should be
emitted by such a particle would be 20 meters—in the shortwave radio region.
But because of the piling up effect that we have been discussing (Fig. 34-3), and
because the distance by which we must extend the radius to reach the speed c is
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only one part in eight million of the radius, the cusps of the hypocycloid are
enormously sharp compared with the distance between them. The acceleration,
which involves a second derivative with respect to time, gets twice the “‘compression
factor” of 8 X 10° because the time scale is reduced by eight million twice in the
neighborhood of the cusp. Thus we might expect the effective wavelength to be
much shorter, to the extent of 64 times 10'? smaller than 20 meters, and that
corresponds to the x-ray region. (Actually, the cusp itself is not the entire
determining factor; one must also include a certain region about the cusp. This
changes the factor to the 3/2 power instead of the square, but still leaves us above
the optical region.) Thus, even though a slowly moving electron would have
radiated 20-meter radiowaves, the relativistic effect cuts down the wavelength so
much that we can see it! Clearly, the light should be polarized, with the electric
field perpendicular to the uniform magnetic field.

To further appreciate what we would observe, suppose that we were to take
such light (to simplify things, because these pulses are so far apart in time, we
shall just take one pulse) and direct it onto a diffraction grating, which is a lot of
scattering wires. After this pulse comes away from the grating, what do we see?
(We should see red light, blue light, and so on, if we see any light at all.) What
do we see? The pulse strikes the grating head-on, and all the oscillators in the
grating, together, are violently moved up and then back down again, just once.
They then produce effects in various directions, as shown in Fig. 34-5. But the
point P is closer to one end of the grating than to the other, so at this point the
electric field arrives first from wire A, next from B, and so on; finally, the pulse
from the last wire arrives. In short, the sum of the reflections from all the successive
wires is as shown in Fig. 34-6(a); it is an electric field which is a series of pulses,
and it is very like a sine wave whose wavelength is the distance between the pulses,
just as it would be for monochromatic light striking the grating! So, we get colored
light all right. But, by the same argument, will we not get light from any kind of a
“pulse”? No. Suppose that the curve were much smoother; then we would add
all the scattered waves together, separated by a small time between them (Fig.
34-6b). Then we see that the field would not shake at all, it would be a very smooth
curve, because each pulse does not vary much in the time interval between pulses.

The electromagnetic radiation emitted by relativistic charged particles cir-
culating in a magnetic field is called synchrotron radiation. It is so named for obvi-
ous reasons, but it is not limited specifically to synchrotrons, or even to earthbound
laboratories. It is exciting and interesting that it also occurs in nature!
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Fig. 34-5. The light which strikes a
grating as a single, sharp pulse is scat-
tered in various directions as different
colors.
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Fig. 34-6. The total electric field due
to a series of (a) sharp pulses and (b)
smooth pulses.

Fig. 34-7.
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Fig. 34-8. The crab nebula as seen
through a blue filter and a polaroid.
(a) Electric vector vertical. (b) Electric
vector horizontal.
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Fig. 34-9. A fast electron passing
near a nucleus radiates energy in the
direction of its motion.

34-4 Cosmic synchrotron radiation

In the year 1054 the Chinese and Japanese civilizations were among the most
advanced in the world; they were conscious of the external universe, and they
recorded, most remarkably, an explosive bright star in that year. (It is amazing
that none of the European monks, writing all the books of the middle ages, even
bothered to write that a star exploded in the sky, but they did not.) Today we may
take a picture of that star, and what we see is shown in Fig. 34-7. On the outside
is a big mass of red filaments, which is produced by the atoms of the thin gas
“ringing” at their natural frequencies; this makes a bright line spectrum with
different frequencies in it. The red happens in this case to be due to nitrogen. On
the other hand, in the central region is a mysterious, fuzzy patch of light in a
continuous distribution of frequency, i.e., there are no special frequencies associated
with particular atoms. Yet this is not dust “lit up” by nearby stars, which is one
way by which one can get a continuous spectrum. We can see stars through it, so
it is transparent, but it is emitting light.

In Fig. 34-8 we look at the same object, using light in a region of the spectrum
which has no bright spectral line, so that we see only the central region. But in this
case, also, polarizers have been put on the telescope, and the two views correspond
to two orientations 90° apart. We see that the pictures are different! That is to say,
the light is polarized. The reason, presumably, is that there is a local magnetic field,
and many very energetic electrons are going around in that magnetic field.

We have just illustrated how the electrons could go around the field in a circle.
We can add to this, of course, any uniform motion in the direction of the field, since
the force, gv X B, has no component in this direction and, as we have already
remarked, the synchrotron radiation is evidently polarized in a direction at right
angles to the projection of the magnetic field onto the plane of sight.

Putting these two facts together, we see that in a region where one picture is
bright and the other one is black, the light must have its electric field completely
polarized in one direction. This means that there is a magnetic field at right angles
to this direction, while in other regions, where there is a strong emission in the other
picture, the magnetic field must be the other way. If we look carefully at Fig. 34-8,
we may notice that there is, roughly speaking, a general set of “lines” that go one
way in one picture and at right angles to this in the other. The pictures show a kind
of fibrous structure. Presumably, the magnetic field lines will tend to extend rela-
tively long distances in their own direction, and so, presumably, there are long
regions of magnetic field with all the electrons spiralling one way, while in another
region the field is the other way and the electrons are also spiralling that way.

What keeps the electron energy so high for so long a time? After all, it is 900
years since the explosion—how can they keep going so fast? How they maintain
their energy and how this whole thing keeps going is still not thoroughly understood.

34-5 Bremsstrahlung

We shall next remark briefly on one other interesting effect of a very fast-
moving particle that radiates energy. The idea is very similar to the one we have
just discussed. Suppose that there are charged particles in a piece of matter and
a very fast electron, say, comes by (Fig. 34-9). Then, because of the electric field
around the atomic nucleus the electron is pulled, accelerated, so that the curve
of its motion has a slight kink or bend in it. If the electron is travelling at very
nearly the speed of light, what is the electric field produced in the direction c?
Remember our rule: we take the actual motion, translate it backwards at speed c,
and that gives us a curve whose curvature measures the electric field. It was coming
toward us at the speed », so we get a backward motion, with the whole picture
compressed into a smaller distance in proportion as ¢ — v is smaller than c¢. So,
if 1 — v/c « 1, there is a very sharp and rapid curvature at B’, and when we take
the second derivative of that we get a very high field in the direction of the motion.
So when very energetic electrons move through matter they spit radiation in a for-
ward direction. This is called bremsstrahlung. As a matter of fact, the synchrotron
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is used, not so much to make high-energy electrons (actually if we could get them
out of the machine more conveniently we would not say this) as to make very
energetic photons—gamma rays—by passing the energetic electrons through a solid
tungsten “target,” and letting them radiate photons from this bremsstrahlung effect.

34-6 The Doppler effect

Now we go on to consider some other examples of the effects of moving sources.
Let us suppose that the source is a stationary atom which is oscillating at one of
its natural frequencies, wo. Then we know that the frequency of the light we would
observe is w,. But now let us take another example, in which we have a similar
oscillator oscillating with a frequency w,, and at the same time the whole atom,
the whole oscillator, is moving along in a direction toward the observer at velocity
v. Then the actual motion in space, of course, is as shown in Fig. 34-10(a). Now
we play our usual game, we add cr; that is to say, we translate the whole curve
backward and we find then that it oscillates as in Fig. 34-10(b). In a given amount
of time 7, when the oscillator would have gone a distance v7, on the x’ vs. c? diagram
it goes a distance (¢ — ). So all the oscillations of frequency w1 in the time A7 are
now found in the interval A7 = (1 — v/c) At; they are squashed together, and
as this curve comes by us at speed ¢, we will see light of a higher frequency, higher
by just the compression factor (1 — v/c). Thus we observe

w=—2 . (34.10)

We can, of course, analyze this situation in various other ways. Suppose that
the atom were emitting, instead of sine waves, a series of pulses, pip, pip, pip, pip,
at a certain frequency w;. At what frequency would they be received by us? The
first one that arrives has a certain delay, but the next one is delayed less because in
the meantime the atom moves closer to the receiver. Therefore, the time between
the “pips” is decreased by the motion. If we analyze the geometry of the situation,
we find that the frequency of the pips is increased by the factor 1/(1 — v/¢).

Is w = wo/(1 — v/c), then, the frequency that would be observed if we took
an ordinary atom, which had a natural frequency wo, and moved it toward the
receiver at speed v? Noj; as we well know, the natural frequency w; of a moving
atom is not the same as that measured when it is standing still, because of the
relativistic dilation in the rate of passage of time. Thus if wo were the true natural
frequency, then the modified natural frequency w, would be

w; = wo V1 — v2/c2. (34.11)
Therefore the observed frequency w is
w I
I ey e (34.12)

The shift in frequency observed in the above situation is called the Doppler
effect: if something moves toward us the light it emits appears more violet, and if
it moves away it appears more red.

We shall now give two more derivations of this same interesting and important
result. Suppose, now, that the source is standing still and is emitting waves at
frequency wo, while the observer is moving with speed v toward the source. After
a certain period of time 7 the observer will have moved to a new position, a distance
vt from where he was at 1 = 0. How many radians of phase will he have seen go
by? A certain number, wof, went past any fixed point, and in addition the observer
has swept past some more by his own motion, namely a number vtk o (the number
of radians per meter times the distance). So the total number of radians in the
time ¢, or the observed frequency, would be wy = wg + kov. We have made
this analysis from the point of view of a man at rest; we would like to know how
it would look to the man who is moving. Here we have to worry again about the
difference in clock rate for the two observers, and this time that means that we
have to divide by /T — v2/c?. So if k, is the wave number, the number of radians
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per meter in the direction of motion, and w, is the frequency, then the observed
frequency for a moving man is

wo + kov .
NI

For the case of light, we know that kg = wq/c. So, in this particular problem,
the equation would read

w =

(34.13)

— @l + v/e)
V1 — v2/c2

which looks completely unlike formula (34.12)! Is the frequency that we would
observe if we move toward a source different than the frequency that we would
see if the source moved toward us? Of course not! The theory of relativity says
that these two must be exactly equal. 1If we were expert enough mathematicians we
would probably recognize that these two mathematical expressions are exactly
equal! In fact, the necessary equality of the two expressions is one of the ways by
which some people like to demonstrate that relativity requires a time dilation,
because if we did not put those square-root factors in, they would no longer be
equal.

Since we know about relativity, let us analyze it in still a third way, which
may appear a little more general. (It is really the same thing, since it makes no
difference how we do it!) According to the relativity theory there is a relationship
between position and time as observed by one man and position and time as seen
by another who is moving relative to him. We wrote down those relationships
long ago (Chapter 16). This is the Lorentz transformation and its inverse:

(34.14)

=Xt X -
V1 — v2/c2 V1 — v2/c2

p = ot ox/c® _ r—wx/e G419
V1 — v2/c2 V91— v2/c2

If we were standing still on the ground, the form of a wave would be cos (wt — kx);
all the nodes and maxima and minima would follow this form. But what would a
man in motion, observing the same physical wave, see? Where the field is zero, the
positions of all the nodes are the same (when the field is zero, everyone measures
the field as zero); that is a relativistic invariant. So the form is the same for the
other man too, except that we must transform it into his frame of reference:

v — ox'/c? x' — ot
cos (wt — kx) = cos [w /

V1 — v2/c? B V1 — v2/c2 ‘
If we regroup the terms inside the brackets, we get

2
cos (wt — kx) = cos —M t — M x/
vV 1 — v2/c2 V1 — v2/c2

= cos[ o r— K x']. (34.16)

This is again a wave, a cosine wave, in which there is a certain frequency o’, a
constant multiplying #, and some other constant, &', multiplying x’. We call k’ the
wave number, or the number of waves per meter, for the other man. Therefore
the other man will see a new frequency and a new wave number given by

, w + kv

2
ko= Kkt wv/c” (34.18)

V1 — v2/c2 .

If we look at (34.17), we see that it is the same formula (34.13), that we obtained
by a more physical argument.
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34-7 The w, k four-vector

The relationships indicated in Eqs. (34.17) and (34.18) are very interesting,
because these say that the new frequency ' is a combination of the old frequency
w and the old wave number k, and that the new wave number is a combination of
the old wave number and frequency. Now the wave number is the rate of change
of phase with distance, and the frequency is the rate of change of phase with time,
and in these expressions we see a close analogy with the Lorentz transformation of
the position and time: if w is thought of as being like ¢, and & is thought of as being
like x divided by c2, then the new «’ will be like #, and the new k’ will be like
x'/c?. That is to say, under the Lorentz transformation w and k transform the same
way as do t and x. They constitute what we call a four-vector; when a quantity has
four components transforming like time and space, it is a four-vector. Everything
seems all right, then, except for one little thing: we said that a four-vector has to
have four components; where are the other two components? We have seen that
w and k are like time and space in one space direction, but not in all directions,
and so we must next study the problem of the propagation of light in three space
dimensions, not just in one direction, as we have been doing up until now.

Suppose that we have a coordinate system, x, y, z, and a wave which is travel-
ling along and whose wavefronts are as shown in Fig. 34-11. The wavelength of
the wave is A, but the direction of motion of the wave does not happen to be in
the direction of one of the axes. What is the formula for such a wave? The
answer is clearly cos (wt — ks), where k = 2w /) and s is the distance along the
direction of motion of the wave—the component of the spatial position in the
direction of motion. Let us put it this way: if r is the vector position of a point
in space, then s is r - e;, where e; is a unit vector in the direction of motion.
That is, s is just 7 cos (r, e;), the component of distance in the direction of motion.
Therefore our wave is cos (wt — ke ' r).

Now it turns out to be very convenient to define a vector k, which is called
the wave vector, which has a magnitude equal to the wave number, 27/, and is
pointed in the direction of propagation of the waves:

k = 2mwer/N = key. (34.19)

Using this vector, our wave can be written as cos (wt — k - r), or as cos (wt —
k.x — kyy — k,z). What is the significance of a component of k, say k,?
Clearly, k, is the rate of change of phase with respect to x. Referring to Fig.
34-11, we see that the phase changes as we change x, just as if there were a wave
along x, but of a longer wavelength. The “wavelength in the x-direction” is longer
than a natural, true wavelength by the secant of the angle « between the actual
direction of propagation and the x-axis:

Az = M\/cos a. (34.20)

Therefore the rate of change of phase, which is proportional to the reciprocal of
Az, is smaller by the factor cos «; that is just how k, would vary—it would be the
magnitude of k, times the cosine of the angle between k and the x-axis!

That, then, is the nature of the wave vector that we use to represent a wave
in three dimensions. The four quantities w, k,, k,, k, transform in relativity as a
four-vector, where w corresponds to the time, and k,, k,, k. correspond to the
x-, y-, and z-components of the four-vector,

In our previous discussion of special relativity (Chapter 17), we learned that
there are ways of making relativistic dot products with four-vectors. If we use the
position vector x,, where u stands for the four components (time and three space
ones), and if we call the wave vector k,, where the index u again has four values,
time and three space ones, then the dot product of x, and k, is written 2’k,x,
(see Chapter 17). This dot product is an invariant, independent of the coordinate
system; what is it equal to? By the definition of this dot product in four dimensions,
it is

2 kyx, = wt — kyx — kyy — k,z (34.21)
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Fig. 34-11. A plane wave travelling
in an oblique direction.




(a)

Fig. 34-12. A distant source S is
viewed by (a) a stationary telescope, and
(b) a laterally moving telescope.

Fig. 34-13. The magnetic force on a
charge which is driven by the electric
field is in the direction of the light beam.

We know from our study of vectors that Z’k,x, is invariant under the Lorentz
transformation, since k, is a four-vector. But this quantity is precisely what appears
inside the cosine for a plane wave, and it ought to be invariant under a Lorentz
transformation. We cannot have a formula with something that changes inside
the cosine, since we know that the phase of the wave cannot change when we change
the coordinate system.

34-8 Aberration

In deriving Egs. (34.17) and (34.18), we have taken a simple example where k
happened to be in a direction of motion, but of course we can generalize it to other
cases also. For example, suppose there is a source sending out light in a certain
direction from the point of view of a man at rest, but we are moving along on the
earth, say (Fig. 34-12). From which direction does the light appear to come?
To find out, we will have to write down the four components of k, and apply the
Lorentz transformation. The answer, however, can be found by the following
argument: we have to point our telescope at an angle to see the light. Why?
Because light is coming down at the speed ¢, and we are moving sidewise at the
speed v, so the telescope has to be tilted forward so that as the light comes down it
goes ‘“‘straight” down the tube. It is very easy to see that the horizontal distance
is vz when the vertical distance is cz, and therefore, if ¢’ is the angle of tilt, tan ¢’ =
v/c. How nice! How nice, indeed—except for one little thing: 6’ is not the angle
at which we would have to set the telescope relative to the earth, because we made
our analysis from the point of view of a “fixed” observer. When we said the hori-
zontal distance is vz, the man on the earth would have found a different distance,
since he measured with a “squashed” ruler. It turns out that, because of that con-
traction effect,

tang = — | (34.22)
V1 — v2/c2
which is equivalent to
sin§ = v/c. (34.23)

It will be instructive for the student to derive this result, using the Lorentz trans-
formation.

This effect, that a telescope has to be tilted, is called aberration, and it has been
observed. How can we observe it? Who can say where a given star should be?
Suppose we do have to look in the wrong direction to see a star; how do we know
it is the wrong direction? Because the earth goes around the sun. Today we have
to point the telescope one way; six months later we have to tilt the telescope the
other way. That is how we can tell that there is such an effect.

34-9 The momentum of light

Now we turn to a different topic. We have never, in all our discussion of the
past few chapters, said anything about the effects of the magnetic field that is
associated with light. Ordinarily, the effects of the magnetic field are very small,
but there is one interesting and important effect which is a consequence of the
magnetic field. Suppose that light is coming from a source and is acting on a
charge and driving that charge up and down. We will suppose that the electric
field is in the x-direction, so the motion of the charge is also in the x-direction: it
has a position x and a velocity v, as shown in Fig. 34-13. The magnetic field is at
right angles to the electric field. Now as the electric field acts on the charge and
moves it up and down, what does the magnetic field do? The magnetic field acts
on the charge (say an electron) only when it is moving; but the electron is moving,
it is driven by the electric field, so the two of them work together: While the thing
is going up and down it has a velocity and there is a force on it, B times » times q;
but in which direction is this force? It is in the direction of the propagation of light.
Therefore, when light is shining on a charge and it is oscillating in response to that
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charge, there is a driving force in the direction of the light beam. This is called
radiation pressure or light pressure.

Let us determine how strong the radiation pressure is. Evidently itis F = quB
or, since everything is oscillating, it is the time average of this, (F). From (34.2) the
strength of the magnetic field is the same as the strength of the electric field divided
by ¢, so we need to find the average of the electric field, times the velocity, times the
charge, times 1/c: (F) = q(vE)/c. But the charge g times the field E is the electric
force on a charge, and the force on the charge times the velocity is the work dW/dt
being done on the charge! Therefore the force, the “pushing momentum,” that is
delivered per second by the light, is equal to 1/c times the energy absorbed from the
light per second! That is a general rule, since we did not say how strong the oscilla-
tor was, or whether some of the charges cancel out. In any circumstance where light
is being absorbed, there is a pressure. The momentum that the light delivers is al-
ways equal to the energy that is absorbed, divided by c:

dw/dt ]
c

(F) = (34.24)

That light carries energy we already know. We now understand that it also
carries momentum, and further, that the momentum carried is always 1/c times
the energy.

When light is emitted from a source there is a recoil effect: the same thing in
reverse. If an atom is emitting an energy W in some direction, then there is a
recoil momentum p = W/c. If light is reflected normally from a mirror, we get
twice the force.

That is as far as we shall go using the classical theory of light. Of course we
know that there is a quantum theory, and that in many respects light acts like a
particle. The energy of a light-particle is a constant times the frequency:

W=h = hw (34.25)

We now appreciate that light also carries a momentum equal to the energy divided
by ¢, so it is also true that these effective particles, these photons, carry a momentum

p = W/c = fiw/c = hk. (34.26)

The direction of the momentum is, of course, the direction of propagation of the
light. So, to put it in vector form,

W = tw, p=rk (34.27)

We also know, of course, that the energy and momentum of a particle should form
a four-vector. We have just discovered that w and k form a four-vector. Therefore
it is a good thing that (34.27) has the same constant in both cases; it means that the
quantum theory and the theory of relativity are mutually consistent.

Equation (34.27) can be written more elegantly as p, = #k,, a relativistic
equation, for a particle associated with a wave. Although we have discussed this
only for photons, for which k (the magnitude of k) equals w/c and p = W/c, the
relation is much more general. In quantum mechanics all particles, not only
photons, exhibit wavelike properties, but the frequency and wave number of the
waves is related to the energy and momentum of particles by (34.27) (called the
deBroglie relations) even when p is not equal to W/c.

In the last chapter we saw that a beam of right or left circularly polarized
light also carries angular momentum in an amount proportional to the energy & of
the wave. In the quantum picture, a beam of circularly polarized light is regarded
as a stream of photons, each carrying an angular momentum =# along the direc-
tion of propagation. That is what becomes of polarization in the corpuscular point
of view—the photons carry angular momentum like spinning rifle bullets. But this
“bullet” picture is really as incomplete as the “wave” picture, and we shall have
to discuss these ideas more fully in a later chapter on Quantum Behavior.
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