42

Applications of Kinetie Theory

42-1 Evaporation

In this chapter we shall discuss some further applications of kinetic theory.
In the previous chapter we emphasized one particular aspect of kinetic theory,
namely, that the average kinetic energy in any degree of freedom of a molecule or
other object is 3kT. The central feature of what we shall now discuss, on the other
hand, is the fact that the probability of finding a particle in different places, per
unit volume, varies as e 7Potntial ecneray/kT . we sha]l make a number of applications
of this.

The phenomena which we want to study are relatively complicated: a liquid
evaporating, or electrons in a metal coming out of the surface, or a chemical re-
action in which there are a large number of atoms involved. In such cases it is no
longer possible to make from the kinetic theory any simple and correct statements,
because the situation is too complicated. Therefore, this chapter, except where
otherwise emphasized, is quite inexact. The idea to be emphasized is only that
we can understand, from the kinetic theory, more or less how things ought to be-
have. By using thermodynamic arguments, or some empirical measurements of
certain critical quantities, we can get a more accurate representation of the phe-
nomena.

However, it is very useful to know even only more or less why something
behaves as it does, so that when the situation is a new one, or one that we have not
yet started to analyze, we can say, more or less, what ought to happen. So this
discussion is highly inaccurate but essentially right—right in idea, but a little bit
simplified, let us say, in the specific details.

The first example that we shall consider is the evaporation of a liquid. Suppose
we have a box with a large volume, partially filled with liquid in equilibrium and
with the vapor at a certain temperature. We shall suppose that the molecules of
the vapor are relatively far apart, and that inside the liquid, the molecules are
packed close together. The problem is to find out how many molecules there are
in the vapor phase, compared with the number there are in the liquid. How dense
is the vapor at a given temperature, and how does it depend on the temperature?

Let us say that n equals the number of molecules per unit volume in the vapor.
That number, of course, varies with the temperature. If we add heat, we get more
evaporation. Now let another quantity, 1/V,, equal the number of atoms per
unit volume in the liquid: We suppose that each molecule in the liquid occupies a
certain volume, so that if there are more molecules of liquid, then all together they
occupy a bigger volume. Thus if V, is the volume occupied by one molecule, the
number of molecules in a unit volume is a unit volume divided by the volume of
each molecule. Furthermore, we suppose that there is a force of attraction between
the molecules to hold them together in the liquid. Otherwise we cannot understand
why it condenses. Thus suppose that there is such a force and that there is an energy
of binding of the molecules in the liquid which is lost when they go into the vapor.
That is, we are going to suppose that, in order to take a single molecule out of the
liquid into the vapor, a certain amount of work W has to be done. There is a
certain difference, W, in the energy of a molecule in the liquid from what it would
have if it were in the vapor, because we have to pull it away from the other molecules
which attract it.

Now we use the general principle that the number of atoms per unit volume
in two different regions is ny/n; = e ‘E27EV/*T S0 the number n per unit volume
in the vapor, divided by the number 1/¥, per unit volume in the liquid, is equal to

nV, = e WIkT 42.1)
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because that is the general rule. It is like the atmosphere in equilibrium under
gravity, where the gas at the bottom is denser than that at the top because of the work
mgh needed to lift the gas molecules to the height /. In the liquid, the molecules
are denser than in the vapor because we have to pull them out through the energy
“Kill” W, and the ratio of the densities is e~ " /*7.

This is what we wanted to deduce—that the vapor density varies as e to the
minus some energy or other over kT. The factors in front are not really interesting
to us, because in most cases the vapor density is very much lower than the liquid
density. In those circumstances, where we are not near the critical point where
they are almost the same, but where the vapor density is much lower than the
liquid density, then the fact that n is very much less than 1/¥, is occasioned by the
fact that W is very much greater than k7. So formulas such as (42.1) are interesting
only when W is very much bigger than k7, because in those circumstances, since
we are raising e to minus a tremendous amount, if we change T a little bit, that
tremendous power changes a bit, and the change produced in the exponential factor
is very much more important than any change that might occur in the factors out
in front. Why should there be any changes in such factors as ¥,? Because ours
was an approximate analysis. After all, there is not really a definite volume for
each molecule; as we change the temperature, the volume ¥V, does not stay constant
—the liquid expands. There are other little features like that, and so the actual
situation is more complicated. There are slowly varying temperature-dependent
factors all over the place. In fact, we might say that W itself varies slightly with
temperature, because at a higher temperature, at a different molecular volume,
there would be different average attractions, and so on. So, while we might think
that if we have a formula in which everything varies in an unknown way with
temperature then we have no formula at all, if we realize that the exponent W/kT
is, in general, very large, we see that in the curve of the vapor density as a function
of temperature most of the variation is occasioned by the exponential factor, and
if we take W as a constant and the coefficient 1/V, as nearly constant, it is a good
approximation for short intervals along the curve. Most of the variation, in other
words, is of the general nature e~ W/*T.

It turns out that there are many, many phenomena in nature which are
characterized by having to borrow an energy from somewhere, and in which the
central feature of the temperature variation is e to the minus the energy over k7.
This is a useful fact only when the energy is large compared with kT, so that most
of the variation is contained in the variation of the kT and not in the constant and
in other factors.

Now let us consider another way of obtaining a somewhat similar result for
the evaporation, but looking at it in more detail. To arrive at (42.1), we simply
applied a rule which is valid at equilibrium, but in order to understand things better,
there is no harm in trying to look at the details of what is going on. We may also
describe what is going on in the following way: the molecules that are in the vapor
continually bombard the surface of the liquid; when they hit it, they may bounce
off or they may get stuck. There is an unknown factor for that—maybe 50-50,
maybe 10 to 90—we do not know. Let us say they always get stuck—we can ana-
lyze it over again later on the assumption that they do not always get stuck. Then
at a given moment there will be a certain number of atoms which are condensing
onto the surface of the liquid. The number of condensing molecules, the number
that arrive on a unit area, is the number n per unit volume times the velocity ».
This velocity of the molecules is related to the temperature, because we know that
4mw? is equal to 3kT on the average. So v is some kind of a mean velocity. Of
course we should integrate over the angles and get some kind of an average, but it
is roughly proportional to the root-mean-square velocity, within some factor. Thus

N,=m (42.2)

is the number which arrive per unit area and are condensing.

At the same time, however, the atoms in the liquid are jiggling about, and
from time to time one of them gets kicked out. Now we have to estimate how fast
they get kicked out. The idea will be that at equilibrium the number that are
kicked out per second and the number that arrive per second are equal.
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How many get kicked out? In order to get kicked out, a particular molecule
has to have acquired by accident an excess energy over its neighbors—a consider-
able excess energy, because it is attracted very strongly by the other molecules in the
liquid. Ordinarily it does not leave because it is so strongly attracted, but in the
collisions sometimes one of them gets an extra energy by accident. And the chance
that it gets the extra energy W which it needs in our case is very small if W > kT.
In fact, e~ "/*7 is the chance that an atom has picked up more than this much en-
ergy. That is the general principle in kinetic theory: in order to borrow an excess
energy W over the average, the odds are e to the minus the energy that we have to
borrow, over kT. Now suppose that some molecules have borrowed this energy.
We now have to estimate how many leave the surface per second. Of course, just
because a molecule has the necessary energy does not mean that it will actually
evaporate, since it may be buried too deeply inside the liquid or, even if it is near
the surface, it may be travelling in the wrong direction. The number that are going
to leave a unit area per second is going to be something like this: the number of
atoms there are near the surface, per unit area, divided by the time it takes one to
escape, multiplied by the probability e=%/*¥7 that they are ready to escape in the
sense that they have enough energy.

We shall suppose that each molecule at the surface of the liquid occupies a
certain cross-sectional area 4. Then the number of molecules per unit area of
liquid surface will be 1/4. And now, how long does it take a molecule to escape?
If the molecules have a certain average speed », and have to move, say, one molec-
ular diameter D, the thickness of the first layer, then the time it takes to get across
that thickness is the time needed to escape, if the molecule has enough energy.
The time will be D/». Thus the number evaporating should be approximately

N, = (1/A)w/Dye="*T, (42.3)

Now the area of each atom times the thickness of the layer is approximately the
same as the volume ¥, occupied by a single atom. And so, in order to get equilib-
rium, we must have N, = N,, or

m = (v/V)e VT, 42.4)

We may cancel the v’s, since they are equal; even though one is the velocity of a
molecule in the vapor and the other is the velocity of an evaporating molecule,
these are the same, because we know their mean kinetic energy (in one direction)
is kT. But one may object, “No! No! These are the especially fast-moving ones;
these are the ones that have picked up excess energy.” Not really, because the
moment they start to pull away from the liquid, they have to Jose that excess
energy against the potential energy. So, as they come to the surface they are slowed
down to the velocity »! It is the same as it was in our discussion of the distribution
of molecular velocities in the atmosphere—at the bottom, the molecules had a
certain distribution of energy. The ones that arrive at the top have the same distri-
bution of energy, because the slow ones did not arrive at all, and the fast ones were
slowed down. The molecules that are evaporating have the same distribution of
energy as the ones inside—a rather remarkable fact. Anyway, it is useless to try to
argue so closely about our formula because of other inaccuracies, such as the prob-
ability of bouncing back rather than entering the liquid, and so on. Thus we have
a rough idea of the rate of evaporation and condensation, and we see, of course,
that the vapor density n varies in the same way as before, but now we have under-
stood it in some detail rather than just as an arbitrary formula.

This deeper understanding permits us to analyze some things. For example,
suppose that we were to pump away the vapor at such a great rate that we removed
the vapor as fast as it formed (if we had very good pumps and the liquid was
evaporating very slowly), how fast would evaporation occur if we maintained a
liquid temperature 7? Suppose that we have already experimentally measured
the equilibrium vapor density, so that we know, at the given temperature, how
many molecules per unit volume are in equilibrium with the liquid. Now we would
like to know how fast it will evaporate. Even though we have used only a rough
analysis so far as the evaporation part of it is concerned, the number of vapor
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molecules arriving was not done so badly, aside from the unknown factor of re-
flection coefficient. So therefore we may use the fact that the number that are
leaving, at equilibrium, is the same as the number that arrive. True, the vapor is
being swept away and so the molecules are only coming out, but if the vapor were
left alone, it would attain the equilibrium density at which the number that come
back would equal the number that are evaporating. Therefore, we can easily see
that the number that are coming off the surface per second is equal to the unknown
reflection coefficient R times the number that would come down to the surface
per second were the vapor still there, because that is how many would balance the
evaporation at equilibrium:

N. = mR = R/Vy)e W/*T, (42.5)

Of course, the number of molecules that hit the liquid from the vapor is easy to
calculate, since we do not need to know as much about the forces as we do when
we are worrying about how they get to escape through the liquid surface; it is
much easier to make the argument the other way.

42-2 Thermionic emission

We may give another example of a very practical situation that is similar to
the evaporation of a liquid—so similar that it is not worth making a separate
analysis. It is essentially the same problem. In a radio tube there is a source of
electrons, namely a heated tungsten filament, and a positively charged plate to
attract the electrons. Any electron that escapes from the surface of the tungsten is
immediately swept away to the plate. That is our ideal “pump,” which is “pump-
ing” the electrons away all the time. Now the question is: How many electrons
per second can we get out of a piece of tungsten, and how does that number vary
with temperature? The answer to that problem is the same as (42.5), because it
turns out that in a piece of metal, electrons are attracted to the ions, or to atoms,
of the metal. They are attracted, if we may say it crudely, to the metal. In order
to get an electron out of a piece of metal, it takes a certain amount of energy or
work to pull it out. This work varies with the different kinds of metal. In fact, it
varies even with the character of the surface of a given kind of metal, but the total
work may be a few electron volts, which, incidentally, is typical of the energy
involved in chemical reactions. We can remember the latter fact by remembering
that the voltage in a chemical cell like a flashlight battery, which is produced by
chemical reactions, is about one volt.

How can we find out how many electrons come out per second? It would be
quite difficult to analyze the effects on the electrons going out; it is easier to
analyze the situation the other way. So, we could start out by imagining that we did
not draw the electrons away, and that the electrons were like a gas, and could
come back to the metal. Then there would be a certain density of electrons at
equilibrium which would, of course, be given by exactly the same formula as (42.1),
where V, is the volume per electron in the metal, roughly, and W is equal to g.¢,
where ¢ is the so-called work function, or the voltage needed to pull an electron off
the surface. This would tell us how many electrons would have to be in the
surrounding space and striking the metal in order to balance the ones that are
coming out. And thus it is easy to calculate how many are coming out if we sweep
away all of them, because the number that are coming out is exactly equal to the
number that would be going in with the above density of electron “vapor.” In
other words, the answer is that the current of electricity that comes in per unit
area is equal to the charge on each times the number that arrive per second per
unit area, which is the number per unit volume times the velocity, as we have
seen many times:

I = g = (qu/Va)e %/ T, (42.6)

Now one electron volt corresponds to kT at a temperature of 11,600 degrees. The
filament of the tube may be operating at a temperature of, say, 1100 degrees, so
the exponential factor is something like e~ '?; when we change the temperature a
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little bit, the exponential factor changes a lot. Thus, again, the central feature of
the formula is the e ~%*/*”. As a matter of fact, the factor in front is quite wrong—
it turns out that the behavior of electrons in a metal is not correctly described by
the classical theory, but by quantum mechanics, but this only changes the factor in
front a little. Actually, no one has ever been able to get the thing straightened out
very well, even though many people have used the high-class quantum-mechanical
theory for their calculations. The big problem is, does W change slightly with
temperature? If it does, one cannot distinguish a W changing slowly with tempera-
ture from a different coefficient in front. That is, if W changed linearly, say, with
temperature, so that W = W, + akT, then we would have

e~ WIKT . =Wo + akT)KT _ ,—a,—WolkT'

Thus a linearly temperature-dependent W is equivalent to a shifted “constant.”
It is really quite difficult and usually fruitless to try to obtain the coefficient in
the front accurately.

42-3 Thermal ionization

Now we go on to another example of the same idea; always the same idea.
This has to do with ionization. Suppose that in a gas we have a whole lot of atoms
which are in the neutral state, say, but the gas is hot and the atoms can become
ionized. We would like to know how many ions there are in a given circumstance
if we have a certain density of atoms per unit volume at a certain temperature.
Again we consider a box in which there are N atoms which can hold electrons.
(If an electron has come off an atom, it is called an ion, and if the atom is neutral,
we simply call it an atom.) Then suppose that, at any given moment, the number
of neutral atoms is n,, the number of ions is #;, and the number of electrons is n.,
all per unit volume. The problem is: What is the relationship of these three
numbers?

In the first place, we have two conditions or constraints on the numbers. For
instance, as we vary different conditions, like the temperature and so on, n, + n;
would remain constant, because this would be simply the number N of atomic
nuclei that are in the box. If we keep the number of nuclei per unit volume fixed,
and change, say, the temperature, then as the ionization proceeded some atoms
would turn to ions, but the total number of atoms plus ions would be unchanged.
That is, n, + n; = N. Another condition is that if the entire gas is to be electri-
cally neutral (and if we neglect double or triple ionization), that means that the
number of ions is equal to the number of electrons at all times, or n; = n,. These
are subsidiary equations that simply express the conservation of charge and the
conservation of atoms.

These equations are true, and we ultimately will use them when we consider
a real problem. But we want to obtain another relationship between the quantities.
We can do this as follows. We again use the idea that it takes a certain amount
of energy to lift the electron out of the atom, which we call the ionization energy,
and we would write it as W, in order to make all of the formulas look the same. So
we let W equal the energy needed to pull an electron out of an atom and make an
ion. Now we again say that the number of free electrons per unit volume in the
“vapor” is equal to the number of bound electrons per unit volume in the atoms,
times e to the minus the energy difference between being bound and being free,
over kT. That is the basic equation again. How can we write it? The number of
free electrons per unit volume would, of course, be n,, because that is the definition
of n,. Now what about the number of electrons per unit volume that are bound
to atoms? The total number of places that we could put the electrons is apparently
ne + n;, and we will suppose that when they are bound each one is bound within a
certain volume ¥,. So the total amount of volume which is available to electrons
which would be bound is (n, + n;)V,, so we might want to write our formula as

g —W kT

fle = zna + ni)Va
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The formula is wrong, however, in one essential feature, which is the following:
when an electron is already on an atom, another electron cannot come to that
volume anymore! In other words, all the volumes of all the possible sites are not
really available for the one electron which is trying to make up its mind whether
or not to be in the vapor or in the condensed position, because in this problem there
is an extra feature that when one electron is where another electron is, it is not
allowed to go—it is repelled. For that reason, it comes out that we should count
only that part of the volume which is available for an electron to sit on or not. That
is, those which are already occupied do not count in the total available volume,
but the only volume which is allowed is that of the ions, where there are vacant
places for the electron to go. Then, in those circumstances, we find that a nicer
way to write our formula is

net; 1 —wpr
= e . 42.7)

This formula is called the Saha ionization equation. Now let us see if we can under-
stand qualitatively why a formula like this is right, by arguing about the kinetic
things that are happening.

First, every once in a while an electron comes to an ion and they combine to
make an atom. And also, every once in a while, an atom gets into a collision and
breaks up into an ion and an electron. Now those two rates must be equal. How
fast do electrons and ions find each other? The rate is certainly increased if the
number of electrons per unit volume is increased. It is also increased if the number
of ions per unit volume is increased. That is, the total rate at which recombination
is occurring is certainly proportional to the number of electrons times the number
of ions. Now the total rate at which ionization is occurring due to collistons must
be dependent linearly on how many atoms there are to ionize. And so the rates
will balance when there is some relationship between the product n.n; and the
number of atoms, n,. The fact that this relationship happens to be given by this
particular formula, where W is the ionization energy, is of course a little bit more
information, but we can easily understand that the formula would necessarily
involve the concentrations of the electrons, ions, and atoms in the combination
neni/ng. to produce a constant independent of the n’s, and dependent only on
temperature, the atomic cross sections, and other constant factors.

We may also note that, since the equation involves the numbers per unit
volume, if we were to do two experiments with a given total number N of atoms
plus ions, that is, a certain fixed number of nuclei, but using boxes with different
volumes, the n’s would all be smaller in the larger box. But since the ratio n.n;/n,
stays the same, the total number of electrons and ions must be greater in the larger
box. To see this, suppose that there are N nuclei inside a box of volume V, and
that a fraction f of them are ionized. Thenn, = fN/V = n;,andn, = (1—f)N/V.
Then our equation becomes

2N e Wi
1—fV V.

(42.8)

In other words, if we take a smaller and smaller density of atoms, or make the vol-
ume of the container bigger and bigger, the fraction f of electrons and ions must
increase. That ionization, just from ‘“‘expansion” as the density goes down, is the
reason why we believe that at very low densities, such as in the cold space between
the stars, there may be ions present, even though we might not understand it from
the point of view of the available energy. Although it takes many, many kT of
energy to make them, there are ions present.

Why can there be ions present when there is so much space around, while if
we increase the density, the ions tend to disappear? Answer: Consider an atom.
Every once in a while, light, or another atom, or an ion, or whatever it is that
maintains thermal equilibrium, strikes it. Very rarely, because it takes such a
terrific amount of excess energy, an electron comes off and an ion is left. Now
that electron, if the space is enormous, wanders and wanders and does not come
near anything for years, perhaps. But once in a very great while, it does come back
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to an ion and they combine to make an atom. So the rate at which electrons are
coming out from the atoms is very slow. But if the volume is enormous, an electron
which has escaped takes so long to find another ion to recombine with that its
probability of recombination is very, very small; thus, in spite of the large excess
energy needed, there may be a reasonable number of electrons.

42-4 Chemical kinetics

The same situation that we have just called “ionization” is also found in a
chemical reaction. For instance, if two objects 4 and B combine into a compound
AB, then if we think about it for a while we see that 4B is what we have called an
atom, B is what we call an electron, and A4 is what we call an ton. With these
substitutions the equations of equilibrium are exactly the same in form:

RARB _ (o= WIkT (42.9)
4B

This formula, of course, is not exact, since the “‘constant” ¢ depends on how much
volume is allowed for the 4 and B to combine, and so on, but by thermodynamic
arguments one can identify what the meaning of the W in the exponential
factor is, and it turns out that it is very close to the energy needed in the reaction.

Suppose that we tried to understand this formula as a result of collisions,
much in the way that we understood the evaporation formula, by arguing about
how many electrons came off and how many of them came back per unit time.
Suppose that 4 and B combine in a collision every once in a while to form a
compound AB. And suppose that the compound 4B is a complicated molecule
which jiggles around and is hit by other molecules, and from time to time it gets
enough energy to explode and break up again into 4 and B.

Now it actually turns out, in chemical reactions, that if the atoms come to-
gether with too small an energy, even though energy may be released in the reaction
A + B — AB, the fact that 4 and B may touch each other does not necessarily
make the reaction start. It usually is required that the collision be rather hard, in
fact, to get the reaction to go at all—a “‘soft” collision between 4 and B may not
do it, even though energy may be released in the process. So let us suppose that
it is very common in chemical reactions that, in order for 4 and B to form AB,
they cannot just hit each other, but they have to hit each other with sufficient energy.
This energy is called the activation energy—the energy needed to ‘““activate” the
reaction. Call A* the activation energy, the excess energy needed in a collision in
order that the reaction may really occur. Then the rate R, at which 4 and B
produce AB would involve the number of atoms of A4 times the number of atoms
of B, times the rate at which a single atom would strike a certain cross section
0 45, times a factor e~4™/*7_ which is the probability that they have enough energy:

Ry = nanpgvoage A (42.10)

Now we have to find the opposite rate, R,. There is a certain chance that 4B will
fly apart. In order to fly apart, it not only must have the energy W which it needs
in order to get apart at all but, just as it was hard for 4 and B to come together, so
there is a kind of hill that 4 and B have to climb over to get apart again ; they must
have not only enough energy just to get ready to pull apart, but a certain excess.
It is like climbing a hill to get into a deep valley; they have to climb the hill coming
in and they have to climb out of the valley and then over the hill coming back
(Fig. 42-1). Thus the rate at which 4B goes to 4 and B will be proportional to the
number 74 5 that are present, times e~ T4™/T

R, = c'nype~WHADIT, (42.11)

The ¢’ will involve the volume of atoms and the rate of collisions, which we can
work out, as we did the case of evaporation, with areas and times and thicknesses;
but we shall not do this. The main feature of interest to us is that when these two
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rates are equal, the ratio of them is equal to unity. This tells us that n ANng/Nap =
ce”"/¥T _as before, where ¢ involves the cross sections, velocities, and other factors
independent of the n’s.

The interesting thing is that the rate of the reaction also varies as e—°onst/*T,
althougle the constant is not the same as that which governs the concentrations;
the activation energy A4* is quite different from the energy W. W governs the pro-
portions of A, B, and AB that we have in equilibrium, but if we want to know how
fast 4 + B goes to 4B, that is not a question of equilibrium, and here a different
energy, the activation energy, governs the rate of reaction through an exponential
factor.

Furthermore, 4* is not a fundamental constant like . Suppose that at the
surface of the wall—or at some other place—A4 and B could temporarily stick there
in such a way that they could combine more easily. In other words, we might
find a “tunnel” through the hill, or perhaps a lower hill. By the conservation of
energy, when we are all finished we have still made 4B out of 4 and B, so the
energy difference W will be quite independent of the way the reaction occurred,
but the activation energy A* will depend very much on the way the reaction occurs.
This is why the rates of chemical reactions are very sensitive to outside conditions.
We can change the rate by putting in a surface of a different kind, we can put it in
a “different barrel” and it will go at a different rate, if it depends on the nature of
the surface. Or if we put in a third kind of object it may change the rate very much;
some things produce enormous changes in rate simply by changing the 4* a little
bit—they are called catalysts. A reaction might practically not occur at all because
A* is too big at the given temperature, but when we put in this special stuff, the
catalyst, then the reaction goes very fast indeed, because A* is reduced.

Incidentally, there is some trouble with such a reaction, 4 plus B, making 4B,
because we cannot conserve both energy and momentum when we try to put two
objects together to make one that is more stable. Therefore, we need at least a
third object C, so the actual reaction is much more complicated. The forward
rate would involve the product nangne, and it might seem that our formula is
going wrong, but no! When we look at the rate at which 4B goes the other way,
we find that it also needs to collide with C, so there is an » 4 8N¢ in the reverse rate;
the n¢’s cancel out in the formula for the equilibrium concentrations. The law of
equilibrium, (42.9), which we first wrote down is absolutely guaranteed to be true,
no matter what the mechanism of the reaction may be!

42-5 Einstein’s laws of radiation

We now turn to an interesting analogous situation having to do with the black-
body radiation law. In the last chapter we worked out the distribution law for the
radiation in a cavity the way Planck did, considering the radiation from an oscilla-
tor. The oscillator had to have a certain mean energy, and since it was oscillating,
it would radiate and would keep pumping radiation into the cavity until it piled
up enough radiation to balance the absorption and emission. In that way we
found that the intensity of radiation at frequency w was given by the formula

fico>dew
T2 (T 1)'

This result involved the assumption that the oscillator which was generating the
radiation had definite, equally spaced energy levels. We did not say that light had
to be a photon or anything like that. There was no discussion about how, when an
atom goes from one level to another, the energy must come out in one unit of en-
ergy, fiw, in the form of light. Planck’s original idea was that the matter was
quantized but not the light: material oscillators cannot take up just any energy,
but have to take it in lumps. Furthermore, the trouble with the derivation
is that it was partially classical. We calculated the rate of radiation from an
oscillator according to classical physics; then we turned around and said, “No,
this oscillator has a lot of energy levels.” So gradually, in order to find the
right result, the completely quantum-mechanical result, there was a slow develop-
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ment which culminated in the quantum mechanics of 1927. But in the meantime,
there was an attempt by Einstein to convert Planck’s viewpoint that only oscillators
of matter were quantized, to the idea that light was really photons and could be
considered in a certain way as particles with energy #fiw. Furthermore, Bohr had
pointed out that any system of atoms has energy levels, but they are not necessarily
equally spaced like Planck’s oscillator. And so it became necessary to rederive or
at least rediscuss the radiation law from a more completely quantum-mechanical
viewpoint.

Einstein assumed that Planck’s final formula was right, and he used that
formula to obtain some new information, previously unknown, about the inter-
action of radiation with matter. His discussion went as follows: Consider any two
of the many energy levels of an atom, say the mth level and the nth level (Fig. 42-2).
Now Einstein proposed that when such an atom has light of the right frequency
shining on it, it can absorb that photon of light and make a transition from state
n to state m, and that the probability that this occurs per second depends upon the
two levels, of course, but is proportional to how intense the light is that is shining
on it. Let us call the proportionality constant B,,,,, merely to remind us that this
is not a universal constant of nature, but depends on the particular pair of levels:
some levels are easy to excite; some levels are hard to excite. Now what is the
formula going to be for the rate of emission from m to n? Einstein proposed that
this must have two parts to it. First, even if there were no light present, there
would be some chance that an atom in an excited state would fall to a lower state,
emitting a photon; this we call spontaneous emission. 1t is analogous to the idea
that an oscillator with a certain amount of energy, even in classical physics, does
not keep that energy, but loses it by radiation. Thus the analog of spontaneous
radiation of a classical system is that if the atom is in an excited state there is a
certain probability A4,,,, which depends on the levels again, for it to go down from m
to n, and this probability is independent of whether light is shining on the atom or
not. But then Einstein went further, and by comparison with the classical theory
and by other arguments, concluded that emission was also influenced by the pres-
ence of light—that when light of the right frequency is shining on an atom, it has
an increased rate of emitting a photon that is proportional to the intensity of the
light, with a proportionality constant B,,,. Later, if we deduce that this coefficient
is zero, then we will have found that Einstein was wrong. Of course we will find
he was right.

Thus Einstein assumed that there are three kinds of processes: an absorption
proportional to the intensity of light, an emission proportional to the intensity of
light, called induced emission or sometimes stimulated emission, and a spontaneous
emission independent of light.

Now suppose that we have, in equilibrium at temperature 7, a certain number
of atoms N, in the state n and another number N,, in the state m. Then the total
number of atoms that are going from n to m is the number that are in the state n
times the rate per second that, if one is in #, it goes up to m. So we have a formula
for the number that are going from n to m per second:

Ry_m = NypBuml(w). (42.13)

The number that will go from m to n is expressed in the same manner, as the num-
ber N,, that are in m, times the chance per second that each one goes down to n.
This time our expression is

Ry = m[Amn + anl(w)] (4214)

Now we shall suppose that in thermal equilibrium the number of atoms going up
must equal the number coming down. That is one way, at least, in which the
number will be sure to stay constant in each level.* So we take these two rates

* This is not the only way one can arrange to keep the numbers of atoms in the various
levels constant, but it is the way it actually works. That every process must, in thermal
equilibrium, be balanced by its exact opposite is called the principle of detailed balancing.
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Fig. 42-2. Transitions between two
energy levels of an atom.
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Fig. 42-3. By exciting, say by blue
light, a higher state h, which may emit a
photon leaving atoms in state m, the
number in this state m becomes sufficiently
large to start laser action.

to be equal at equilibrium. But we have one other piece of information: we know
how large N,, is compared with N,—the ratio of those two is e~ Em—En)/kT
Now Einstein assumed that the only light which is effective in making the transition
from n to m is the light which has the frequency corresponding to the energy
difference, so E,, — E, = #w in all our formulas. Thus

N,, = Nye /T (42.15)

Thus if we set the two rates equal: N,B,,,J(w) = Ny[4Apm, + BnJ(w)], and
divide by N, we get

Bond(@)e™* T = Apn + Bunl(w). (42.16)
From this equation, we can calculate I(w). It is simply
Iw) = A 42.17)

o kT '
Bnme - an

But Planck has already told us that the formula must be (42.12). Therefore we
can deduce something: First, that B,,, must equal B,,,, since otherwise we cannot
get the (¢™/*” — 1). So Einstein discovered some things that he did not know how
to calculate, namely that the induced emission probability and the absorption prob-
ability must be equal. This is interesting. And furthermore, in order for (42.17)
and (42.12) to agree,

Amn/Bnn  mustbe  #w®/xc? (42.18)

So if we know, for instance, the absorption rate for a given level, we can deduce
the spontaneous emission rate and the induced emission rate, or any combination.

This is as far as Einstein or anyone else could go using such arguments. To
actually compute the absolute spontaneous emission rate or the other rates for
any specific atomic transition, of course, requires a knowledge of the machinery
of the atom, called quantum electrodynamics, which was not discovered until
eleven years later. This work of Einstein was done in 1916.

The possibility of induced emission has, today, found interesting applications.
If there is light present, it will tend to induce the downward transition. The transi-
tion then adds its #iw to the available light energy, if there were some atoms sitting
in the upper state. Now we can arrange, by some nonthermal method, to have a
gas in which the number in the state m is very much greater than the number in the
state n. This is far out of equilibrium, and so is not given by the formula e=#/*7
which is for equilibrium. We can even arrange it so that the number in the upper
state is very large, while the number in the lower state is practically zero. Then
light which has the frequency corresponding to the energy difference E,, — E,
will not be strongly absorbed, because there are not many atoms in state n to
absorb it. On the other hand, when that light is present, it will induce the emission
from this upper state! So, if we had a lot of atoms in the upper state, there would
be a sort of chain reaction, in which, the moment the atoms began to emit, more
would be caused to emit, and the whole lot of them would dump down together.
This is what is called a Jaser, or, in the case of the far infrared, a maser.

Various tricks can be used to obtain the atoms in state m. There may be higher
levels to which the atoms can get if we shine in a strong beam of light of high
frequency. From these high levels, they may trickle down, emitting various pho-
tons, until they all get stuck in the state m. If they tend to stay in the state m
without emitting, the state is called metastable. And then they are all dumped
down together by induced emissions. One more technical point—if we put this
system in an ordinary box, it would radiate in so many different directions spon-
taneously, compared with the induced effect, that we would still be in trouble.
But we can enhance the induced effect, increase its efficiency, by putting nearly
perfect mirrors on each side of the box, so that the light which is emitted gets
another chance, and another chance, and another chance, to induce more emission.
Although the mirrors are almost one hundred percent reflecting, there is a slight
amount of transmission of the mirror, and a little light gets out. In the end, of
course, from the conservation of energy, all the light goes out in a nice uniform
straight direction which makes the strong light beams that are possible today with
lasers.
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