43

Diffusion

43-1 Collisions between molecules

We have considered so far only the molecular motions in a gas which is in
thermal equilibrium. We want now to discuss what happens when things are near,
but not exactly in, equilibrium. In a situation far from equilibrium, things are
extremely complicated, but in a situation very close to equilibrium we can easily
work out what happens. To see what happens, we must, however, return to the
kinetic theory. Statistical mechanics and thermodynamics deal with the equilibrium
situation, but away from equilibrium we can only analyze what occurs atom by
atom, so to speak.

As a simple example of a nonequilibrium circumstance, we shall consider
the diffusion of ions in a gas. Suppose that in a gas there is a relatively small
concentration of ions—electrically charged molecules. If we put an electric field
on the gas, then each ion will have a force on it which is different from the forces
on the neutral molecules of the gas. If there were no other molecules present, an
ion would have a constant acceleration until it reached the wall of the container.
But because of the presence of the other molecules, it cannot do that; its velocity
increases only until it collides with a molecule and loses its momentum. It starts
again to pick up more speed, but then it loses its momentum again. The net effect
is that an ion works its way along an erratic path, but with a net motion in the di-
rection of the electric force. We shall see that the ion has an average “drift” with
a mean speed which is proportional to the electric field—the stronger the field,
the faster it goes. While the field is on, and while the.ion is moving along, it is,
of course, not in thermal equilibrium, it is trying to get to equilibrium, which is to
be sitting at the end of the container. By means of the kinetic theory we can com-
pute the drift velocity.

It turns out that with our present mathematical abilities we cannot really
compute precisely what will happen, but we can obtain approximate results which
exhibit all the essential features. We can find out how things will vary with pressure,
with temperature, and so on, but it will not be possible to get precisely the correct
numerical factors in front of all the terms. We shall, therefore, in our derivations,
not worry about the precise value of numerical factors. They can be obtained only
by a very much more sophisticated mathematical treatment.

Before we consider what happens in nonequilibrium situations, we shall need
to look a little closer at what goes on in a gas in thermal equilibrium. We shall
need to know, for example, what the average time between successive collisions
of a molecule is.

Any molecule experiences a sequence of collisions with other molecules—in a
random way, of course. A particular molecule will, in a long period of time T,
have a certain number, N, of hits. If we double the length of time, there will be
twice as many hits. So the number of collisions is proportional to the time 7. We
would like to write it this way:

N=T/r (43.1)

We have written the constant of proportionality as 1/7, where 7 will have the di-
mensions of a time. The constant 7 is the average time between collisions. Suppose,
for example, that in an hour there are 60 collisions; then 7 is one minute. We
would say that 7 (one minute) is the average time between the collisions.

We may often wish to ask the following question: “What is the chance that a
molecule will experience a collision during the next small interval of time dt?”
The answer, we may intuitively understand, is dz/7. But let us try to make a more
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convincing argument. Suppose that there were a very large number N of molecules.
How many will have collisions in the next interval of time d¢? If there is equilibrium,
nothing is changing on the average with time. So N molecules waiting the time dt
will have the same number of collisions as one molecule waiting for the time N df.
That number we know is N dt/7. So the number of hits of N molecules is N dt/7
in a time dt, and the chance, or probability, of a hit for any one molecule is just
1/N as large, or (1/N)(N dt/7) = dt/t, as we guessed above. That is to say, the
fraction of the molecules which will suffer a collision in the time dr is dt/7. To take
an example, if 7 is one minute, then in one second the fraction of particles which
will suffer collisions is 1/60. What this means, of course, is that 1/60 of the
molecules happen to be close enough to what they are going to hit next that
their collisions will occur in the next minute.

When we say that 7, the mean time between collisions, is one minute, we do
not mean that all the collisions will occur at times separated by exactly one minute.
A particular particle does not have a collision, wait one minute, and then have
another collision. The times between successive collisions are quite variable.
We will not need it for our later work here, but we may make a small diversion to
answer the question: “What are the times between collisions?”” We know that for
the case above, the average time is one minute, but we might like to know, for
example, what is the chance that we get no collision for two minutes?

We shall find the answer to the general question: “What is the probability
that a molecule will go for a time ¢ without having a collision?”” At some arbitrary
instant—that we call ¢ = O—we begin to watch a particular molecule. What is
the chance that it gets by until ¢ without colliding with another molecule? To
compute the probability, we observe what is happening to all Ny molecules in a
container. After we have waited a time ¢, some of them will have had collisions.
We let N(¥) be the number that have not had collisions up to the time . N(?) is, of
course, less than Ny. We can find N(¢) because we know how it changes with time.
If we know that N(7) molecules have got by until ¢, then N(z + df), the number
which get by until # + dt, is less than N(¢) by the number that have collisions in
dt. The number that collide in df we have written above in terms of the mean time
T as dN = N(f)dt/r. We have the equation

Nt + df) = N(@t) — N(t)g- (43.2)

The quantity on the left-hand side, N(¢ + df), can be written, according to the
definitions of calculus, as N(f) + (dN/dr)dt. Making this substitution, Eq.
(43.2) yields

aNn@ _ _ N

- E (43.3)

The number that are being lost in the interval dt is proportional to the number that
are present, and inversely proportional to the mean life 7. Equation (43.3) is easily
integrated if we rewrite it as

dN(t) _ i

N S 7 (43.4)
Each side is a perfect differential, so the integral is
In N(¥) = —t/7 + (a constant), (43.5)
which says the same thing as
N(f) = (constant)e™"/". (43.6)

We know that the constant must be just N, the total number of molecules present,
since all of them start at ¢+ = O to wait for their “next” collision. We can write
our result as

N(t) = Noe™ '™, (43.7)
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If we wish the probability of no collision, P(f), we can get it by dividing N(¢) by
Ny, so
P(t) = eI, (43.8)

Our result is: the probability that a particular molecule survives a time ¢ without a
collision is e~*/", where 7 is the mean time between collisions. The probability
starts out at 1 (or certainty) for ¢+ = 0, and gets less as ¢ gets bigger and bigger.
The probability that the molecule avoids a collision for a time equal to 7 ise™! =
0.37... The chance is less than one-half that it will have a greater than average time
between collisions. That is all right, because there are enough molecules which go
collision-free for times much /onger than the mean time before colliding, so that the
average time can still be 7.

We originally defined 7 as the average time between collisions. The result we
have obtained in Eq. (43.7) also says that the mean time from an arbitrary starting
instant to the next collision is also . We can demonstrate this somewhat surprising
fact in the following way. The number of molecules which experience their next
collision in the interval df at the time ¢ after an arbitrarily chosen starting time is
N(®) dt/r. Their “time until the next collision” is, of course, just . The “average
time until the next collision” is obtained in the usual way:

N@)dr
T

Average time until the next collision = NL / t
0/0

Using N(f) obtained in (43.7) and evaluating the integral, we find indeed that 7
is the average time from any instant until the next collision.

43-2 The mean free path

Another way of describing the molecular collisions is to talk not about the
time between collisions, but about how far the particle moves between collisions.
If we say that the average time between collisions is 7, and that the molecules have
a mean velocity v, we can expect that the average distance between collisions,
which we shall call /, is just the product of 7 and ». This distance between collisions
is usually called the mean free path:

Mean free path / = 7. 43.9)

In this chapter we shall be a little careless about what kind of average we mean
in any particular case. The various possible averages—the mean, the root-mean-
square, etc.—are all nearly equal and differ by factors which are near to one. Since
a detailed analysis is required to obtain the correct numerical factors anyway, we
need not worry about which average is required at any particular point. We may
also warn the reader that the algebraic symbols we are using for some of the
physical quantities (e.g., / for the mean free path) do not follow a generally accepted
convention, mainly because there is no general agreement.

Just as the chance that a molecule will have a collision in a short time dt is
equal to dt/7, the chance that it will have a collision in going a distance dx is dx/I.
Following the same line of argument used above, the reader can show that the
probability that a molecule will go at least the distance x before having its next
collision is e~/

The average distance a molecule goes before colliding with another molecule—
the mean free path /—will depend on how many molecules there are around and
on the “size” of the molecules, i.e., how big a target they represent. The effective
“size” of a target in a collision we usually describe by a “collision cross section,”
the same idea that is used in nuclear physics, or in light-scattering problems.

Consider a moving particle which travels a distance dx through a gas which
has ny scatterers (molecules) per unit volume (Fig. 43-1). If we look at each
unit of area perpendicular to the direction of motion of our selected particle, we
will find there ny dx molecules. If each one presents an effective collision area or,
as it is usually called, “collision cross section,” o, then the total area covered by
the scatterers is o.ng dx.
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By “collision cross section” we mean the area within which the center of our
particle must be located if it is to collide with a particular molecule. If molecules
were little spheres (a classical picture) we would expect that o, = 7(ry + r5)?,
where r, and r, are the radii of the two colliding objects. The chance that our
particle will have a collision is the ratio of the area covered by scattering molecules
to the total area, which we have taken to be one. So the probability of a collision in
going a distance dx is just o.no dx:

Chance of a collision in dx = o.ny dx. (43.10)

We have seen above that the chance of a collision in dx can also be written in
terms of the mean free path / as dx//. Comparing this with (43.10), we can relate
the mean free path to the collision cross section:

[a—y

L 43.11)
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which is easier to remember if we write it as
ongl = 1. (43.12)

This formula can be thought of as saying that there should be one collision,
on the average, when the particle goes through a distance / in which the scattering
molecules could just cover the total area. In a cylindrical volume of length / and a
base of unit area, there are ny/ scatterers; if each one has an area o, the total area
covered is nylo,, which is just one unit of area. The whole area is not covered, of
course, because some molecules are partly hidden behind others. That is why
some molecules go farther than / before having a collision. It is only on the average
that the molecules have a collision by the time they go the distance/. From measure-
ments of the mean free path / we can determine the scattering cross section o, and
compare the result with calculations based on a detailed theory of atomic structure.
But that is a different subject! So we return to the problem of nonequilibrium
states.

43-3 The drift speed

We want to describe what happens to a molecule, or several molecules, which
are different in some way from the large majority of the molecules in a gas. We
shall refer to the ‘““majority” malecules as the “background” molecules, and we
shall call the molecules which are different from the background molecules “special”
molecules or, for short, the S-molecules. A molecule could be special for any
number of reasons: It might be heavier than the background molecules. It might
be a different chemical. It might have an electric charge—i.e., be an ion in a back-
ground of uncharged molecules. Because of their different masses or charges the
S-molecules may have forces on them which are different from the forces on the
background molecules. By considering what happens to these S-molecules we can
understand the basic effects which come into play in a similar way in many different
phenomena. To list a few: the diffusion of gases, electric currents in batteries,
sedimentation, centrifugal separation, etc.

We begin by concentrating on the basic process: an S-molecule in a back-
ground gas is acted on by some specific force F (which might be, e.g., gravitational
or electrical) and in addition by the not-so-specific forces due to collisions with the
background molecules. We would like to describe the general behavior of the
S-molecule. What happens to it, in detail, is that it darts around hither and yon as
it collides over and over again with other molecules. But if we watch it carefully
we see that it does make some net progress in the direction of the force F. We say
that there is a drift superposed on its random motion. We would like to know what
the speed of its drift is—its drift velocity—due to the force F.

If we start to observe an S-molecule at some instant we may expect that it is
somewhere between two collisions. In addition to the velocity it was left with after
its last collision it is picking up some velocity component due to the force F. Ina
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short time (on the average, in a time 7) it will experience a collision and start out on
a new piece of its trajectory. It will have a new starting velocity, but the same ac-
celeration from F.

To keep things simple for the moment, we shall suppose that after each
collision our S-molecule gets a completely “fresh” start. That is, that it keeps no
remembrance of its past acceleration by F. This might be a reasonable assumption
if our S-molecule were much lighter than the background molecules, but it is
certainly not valid in general. We shall discuss later an improved assumption.

For the moment, then, our assumption is that the S-molecule leaves each
collision with a velocity which may be in any direction with equal likelihood.
The starting velocity will take it equally in all directions and will not contribute
to any net motion, so we shall not worry further about its ipitial velocity after a
collision. In addition_to its random motion, each S-molecule will have, at any
moment, an additional velocity in the direction of the force ¥, which it has picked
up since its last collision. What is the average value of this part of the velocity?
It is just the acceleration F/m (where m is the mass of the S-molecule) times the
average time since the last collision. Now the average time since the last collision
must be the same as the average time until the next collision, which we have called
r, above. The average velocity from F, of course, is just what is called the drift
velocity, so we have the relation

Fr
Varity = —- (43.13)
This basic relation is the heart of our subject. There may be some complication
in determining what 7 is, but the basic process is defined by Eq. (43.13).

You will notice that the drift velocity is proportional to the force. There is,
unfortunately, no generally used name for the constant of proportionality. Differ-
ent names have been used for each different kind of force. If in an electrical prob-
lem the force is written as the charge times the electric field, F = gE, then the con-
stant of proportionality between the velocity and the electric field E is usually
called the “mobility.” In spite of the possibility of some confusion, we shall use
the term mobility for the ratio of the drift velocity to the force for any force. We
write

Varify = MF (4314)

in general, and we shall call u the mobility. We have from Eq. (43.13) that
u=7/m. (43.15)

The mobility is proportional to the mean time between collisions (there are fewer
collisions to slow it down) and inversely proportional to the mass (more inertia
means less speed picked up between collisions).

To get the correct numerical coefficient in Eq. (43.13), which is correct as
given, takes some care. Without intending to confuse, we should still point out
that the arguments have a subtlety which can be appreciated only by a careful and
detailed study. To illustrate that there are difficulties, in spite of appearances, we
shall make over again the argument which led to Eq. (43.13) in a reasonable but
erroneous way (and the way one will find in many textbooks!).

We might have said: The mean time between collisions is 7. After a collision
the particle starts out with a random velocity, but it picks up an additional velocity
between collisions, which is equal to the acceleration times the time. Since it takes
the time 7 to arrive at the next collision it gets there with the velocity (F/m)r. At the
beginning of the collision it had zero velocity. So between the two collisions it has,
on the average, a velocity one-half of the final velocity, so the mean drift velocity
is 3Fr/m. (Wrong!) This result is wrong and the result in Eq. (43.13) is right,
although the arguments may sound equally satisfactory. The reason the second
result is wrong is somewhat subtle, and has to do with the following: The argument
is made as though all collisions were separated by the mean time 7. The fact is
that some times are shorter and others are longer than the mean. Short times occur
more often but make less contribution to the drift velocity because they have less

43-5



metal

Area A

©

Gos with Ny ions
per unit volume
o

Fig. 43-2.
ionized gas.

Electric current from an

insulator

To battery with voltage V

chance “to really get going.” If one takes proper account of the distribution of
free times between collisions, one can show that there should not be the factor )
that was obtained from the second argument. The error was made in trying to -
relate by a simple argument the average final velocity to the average velocity itself.
This relationship is not simple, so it is best to concentrate on what is wanted:
the average velocity itself. The first argument we gave determines the average
velocity directly—and correctly! But we can perhaps see now why we shall not in
general try to get all of the correct numerical coefficients in our elementary deriva-
tions!

We return now to our simplifying assumption that each collision knocks out
all memory of the past motion—that a fresh start is made after each collision.
Suppose our S-molecule is a heavy object in a background of lighter molecules.
Then our S-molecule will not lose its “forward” momentum in each collision. It
would take several collisions before its motion was “randomized” again. We
should assume, instead, that at each collision—in each time 7 on the average
—it loses a certain fraction of its momentum. We shall not work out the details,
but just state that the result is equivalent to replacing 7, the average collision time,
by a new—and longer—r which corresponds to the average “forgetting time,”
i.e., the average time to forget its forward momentum. With such an interpretation
of 7 we can use our formula (43.15) for situations which are not quite as simple
as we first assumed.

43-4 Tonic conductivity

We now apply our results to a special case. Suppose we have a gas in a vessel
in which there are also some ions—atoms or molecules with a net electric charge.
We show the situation schematically in Fig. 43-2. If two opposite walls of the
container are metallic plates, we can connect them to the terminals of a battery
and thereby produce an electric field in the gas. The electric field will result in a
force on the ions, so they will begin to drift toward one or the other of the plates.
An electric current will be induced, and the gas with its ions will behave like a
resistor. By computing the ion flow from the drift velocity we can compute the
resistance. We ask, specifically: How does the flow of electric current depend
on the voltage difference V' that we apply across the two plates?

We consider the case that our container is a rectangular box of length b and
cross-sectional area A (Fig. 43-2). If the potential difference, or voltage, from one
plate to the other is ¥, the electric field E between the plates is ¥/b. (The electric
potential is the work done in carrying a unit charge from one plate to the other.
The force on a unit charge is E. If E is the same everywhere between the plates,
which is a good enough approximation for now, the work done on a unit charge
is just Eb, so ¥ = Eb.) The special force on an ion of the gas is gE, where q is
the charge on the ion. The drift velocity of the ion is then u times this force, or

| 4
Varitg = MF = pgE = uq 5 (43.16)

An electric current 1 is the flow of charge in a unit time. The electric current to
one of the plates is given by the total charge of the ions which arrive at the plate in
a unit of time. If the ions drift toward the plate with the velocity vq.s, then those
which are within a distance (vgys T ) will arrive at the plate in the time 7. If
there are n; ions per unit volume, the number which reach the plate in the time
Tis (n;* A varigy - T). Each ion carries the charge ¢, so we have that

Charge collected in T = gn;dvg,sT. (43.17)
The current I is the charge collected in T divided by T, so
I = qn,-Avd,ift. (4318)
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Substituting vg.is, from (43.16), we have
I= ,uqzni% V. (43.19)

We find that the current is proportional to the voltage, which is just the form of
Ohm’s law, and the resistance R is the inverse of the proportionality constant:

1 A
7= ug’n; 5 (43.20)

We have a relation between the resistance and the molecular properties #;, ¢, and
u, which depends in turn on m and 7. If we know n; and ¢ from atomic measure-
ments, a measurement of R could be used to determine y, and from u also 7.

43-5 Molecular diffusion

We turn now to a different kind of problem, and a different kind of analysis:
the theory of diffusion. Suppose that we have a container of gas in thermal
equilibrium, and that we introduce a small amount of a different kind of gas at
some place in the container. We shall call the original gas the “background” gas
and the new one the “special” gas. The special gas will start to spread out through
the whole container, but it will spread slowly because of the presence of the back-
ground gas. This slow spreading-out process is called diffusion. The diffusion is
controlled mainly by the molecules of the special gas getting knocked about by the
molecules of the background gas. After a large number of collisions, the special
molecules end up spread out more or less evenly throughout the whole volume. We
must be careful not to confuse diffusion of a gas with the gross transport that may
occur due to convection currents. Most commonly, the mixing of two gases occurs
by a combination of convection and diffusion. We are interested now only in the
case that there are no “wind” currents. The gas is spreading only by molecular
motions, by diffusion. We wish to compute how fast diffusion takes place.

We now compute the net flow of molecules of the “special” gas due to the
molecular motions. There will be a net flow only when there is some nonuniform
distribution of the molecules, otherwise all of the molecular motions would average
to give no net flow. Let us consider first the flow in the x-direction. To find the
flow, we consider an imaginary plane surface perpendicular to the x-axis and count
the number of special molecules that cross this plane. To obtain the net flow, we
must count as positive those molecules which cross in the direction of positive x
and subtract from this number the number which cross in the negative x-direction.
As we have seen many times, the number which cross a surface area in a time AT
is given by the number which start the interval AT in a volume which extends the
distance » AT from the plane. (Note that v, here, is the actual molecular velocity,
not the drift velocity.)

We shall simplify our algebra by giving our surface one unit of area. Then
the number of special molecules which pass from left to right (taking the +x-direc-
tion to the right) is n_ » AT, where n_ is the number of special molecules per unit
volume to the left (within a factor of 2 or so, but we are ignoring such factors!).
The number which cross from right to left is, similarly, n v AT, where n, is the
number density of special molecules on the right-hand side of the plane. If we
call the molecular current J, by which we mean the net flow of molecules per unit
area per unit time, we have

nv AT — nyw AT

J = AT

(43.21)

or
J = (n_ — n. (43.22)

What shall we use for n_ and n,? When we say “the density on the left,”
how far to the left do we mean? We should choose the density at the place from
which the molecules started their “flight,” because the number which start such
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trips is determined by the number present at that place. So by n_ we should mean
the density a distance to the left equal to the mean free path /, and by 7., the density
at the distance / to the right of our imaginary surface.

It is convenient to consider that the distribution of our special molecules in
space is described by a continuous function of x, y, and z which we shall call n,.
By n4(x, ¥, z) we mean the number density of special molecules in a small volume
element centered on (x, y, z). In terms of n, we can express the difference (ny —
n_) as

dn, dn

(i’l+ - n_) = -d-)z_‘ Ax = dx - 2L (4323)

Substituting this result in Eq. (43.22) and neglecting the factor of 2, we get

J. = —b % (43.24)
We have found that the flow of special molecules is proportional to the derivative
of the density, or to what is sometimes called the “gradient” of the density.

It is clear that we have made several rough approximations. Besides various
factors of two we have left out, we have used » where we should have used v,, and
we have assumed that n, and n_ refer to places at the perpendicular distance /
from our surface, whereas for those molecules which do not travel perpendicular
to the surface element, / should correspond to the slant distance from the surface.
All of these refinements can be made; the result of a more careful analysis shows
that the right-hand side of Eq. (43.24) should be multiplied by 1/3. So a better

answer is

Jy = — 2%, (43.25)

Similar equations can be written for the currents in the y- and z-directions.

The current J; and the density gradient dn,/dx can be measured by macroscopic
observations. Their experimentally determined ratio is called the “diffusion co-
efficient,” D. That is,

dn,
J,=—D e (43.26)
We have been able to show that for a gas we expect
D = L. (43.27)

So far in this chapter we have considered two distinct processes: mobility,
the drift of molecules due to “outside” forces; and diffusion, the spreading deter-
mined only by the internal forces, the random collisions. There is, however, a
relation between them, since they both depend basically on the thermal motions,
and the mean free path / appears in both calculations.

If, in Eq. (43.25), we substitute / = vr and 7 = um, we have

I, = —tmu %’%' (43.28)

But mv? depends only on the temperature. We recall that

imv? = 3kT, (43.29)
SO
dn,
J = _MkTEEc_' (43.30)

We find that D, the diffusion coefficient, is just kT times u, the mobility coefficient:
D = ukT. (43.31)

And it turns out that the numerical coefficient in (43.31) is exactly right—no extra
factors have to be thrown in to adjust for our rough assumptions. We can show,
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in fact, that (43.31) must always be correct—even in complicated situations
(for example, the case of a suspension in a liquid) where the details of our simple
calculations would not apply at ail.

To show that (43.31) must be correct in general, we shall derive it in a different
way, using only our basic principles of statistical mechanics. Imagine a situation
in which there is a gradient of “special”” molecules, and we have a diffusion current
proportional to the density gradient, according to Eq. (43.26). We now apply a
force field in the x-direction, so that each special molecule feels the force F. Accord-
ing to the definition of the mobility u there will be a drift velocity given by

Varisy = MF. (43.32)

By our usual arguments, the drift current (the net number of molecules which pass
a unit of area in a unit of time) will be

Jaritt = Madritts (43.33)
or

Jarisy = HapeF. (43.34)

We now adjust the force F so that the drift current due to F just balances the diffu-
sion, so that there is no net flow of our special molecules. We have J, + Jqrige = 0,
or

dn,

Da—;=

nouF. (43.35)
Under the “balance” conditions we find a steady (with time) gradient of density
given by
dn, _ ngufF
=D (43.36)
But notice! We are describing an equilibrium condition, so our equilibrium
laws of statistical mechanics apply. According to these laws the probability of
finding a molecule at the coordinate x is proportional to e~V/*T, where U is the
potential energy. In terms of the number density n,, this means that

e = noe~UIRT, (43.37)

If we differentiate (43.37) with respect to x, we find

dna _ —UkT 1 dU
e = noe “TT e (43.38)
or
dn, _ ng dU
dx kT dx’ (43.39)

In our situation, since the force F is in the x-direction, the potential energy U is
just —Fx, and —dU/dx = F. Equation (43.39) then gives

dna _ naF",
dx = kT

(43.40)

[This is just exactly Eq. (40.2), from which we deduced e~Y/*” in the first place,
so we have come in a circle]. Comparing (43.40) with (43.36), we get exactly Eq.
(43.31). We have shown that Eq. (43.31), which gives the diffusion current in terms
of the mobility, has the correct coefficient and is very generally true. Mobility and
diffusion are intimately connected. This relation was first deduced by Einstein.

43-6 Thermal conductivity

The methods of the kinetic theory that we have been using above can be used
also to compute the thermal conductivity of a gas. If the gas at the top of a con-
tainer is hotter than the gas at the bottom, heat will flow from the top to the bottom.
(We think of the top being hotter because otherwise convection currents would be
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set up and the problem would no longer be one of heat conduction.) The transfer
of heat from the hotter gas to the colder gas is by the diffusion of the “hot” mole-
cules—those with more energy—downward and the diffusion of the “cold” mole-
cules upward. To compute the flow of thermal energy we can ask about the energy
carried downward across an element of area by the downward-moving molecules,
and about the energy carried upward across the surface by the upward-moving
molecules. The difference will give us the net downward flow of energy.
The thermal conductivity « is defined as the ratio of the rate at which thermal
energy is carried across a unit surface area, to the temperature gradient:
%fld—? = —K % (43.41)
Since the details of the calculations are quite similar to those we have done above
in considering the flow of electric current in an ionized gas, we shall leave it as an
exercise for the reader to show that

knly
v —1

s (43.42)
where (v — 1)KT is the average energy of a molecule at the temperature T.
If we use our relation nlo, = 1, the heat conductivity can be written as

il w
A

(43.43)

We have a rather surprising result. We know that the average velocity of gas
molecules depends on the temperature but not on the density. We expect o, to
depend only on the size of the molecules. So our simple result says that the thermal
conductivity « (and therefore the rate of flow of heat in any particular circumstance)
is independent of the density of the gas! The change in the number of “carriers”
of energy with a change in density is just compensated by the larger distance the
“carriers” can go between collisions.

One may ask: “Is the heat flow independent of the gas density in the limit as
the density goes to zero? When there is no gas at all?” Certainly not! The formula
(43.43) was derived, as were all the others in this chapter, under the assumption
that the mean free path between collisions is much smaller than any of the dimen-
sions of the container. Whenever the gas density is so low that a molecule has a fair
chance of crossing from one wall of its container to the other without having a
collision, none of the calculations of this chapter apply. We must in such cases go
back to kinetic theory and calculate again the details of what will occur.
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