45

Illustrations of Thermodynamics

45-1 Internal energy

Thermodynamics is a rather difficult and complex subject when we come to
apply it, and it is not appropriate for us to go very far into the applications in this
course. The subject is of very great importance, of course, to engineers and chem-
ists, and those who are interested in the subject can learn about the applications
in physical chemistry or in engineering thermodynamics. There are also good
reference books, such as Zemansky’s Heat and Thermodynamics, where one can
learn more about the subject. In the Encyclopedia Britannica, fourteenth edition,
one can find excellent articles on thermodynamics and thermochemistry, and in
the article on chemistry, the sections on physical chemistry, vaporization, liquefi-
cation of gases, and so on.

The subject of thermodynamics is complicated because there are so many
different ways of describing the same thing. If we wish to describe the behavior of
a gas, we can say that the pressure depends on the temperature and on the volume,
or we can say that the volume depends on the temperature and the pressure.
Or with respect to the internal energy U, we might say that it depends on the
temperature and volume, if those are the variables we have chosen—but we might
also say that it depends on the temperature and the pressure, or the pressure and
the volume, and so on. In the last chapter we discussed another function of
temperature and volume, called the entropy .S, and we can of course construct as
many other functions of these variables as we like: U — TS is a function of tem-
perature and volume. So we have a large number of different quantities which can
be functions of many different combinations of variables.

To keep the subject simple in this chapter, we shall decide at the start to use
temperature and volume as the independent variables. Chemists use temperature
and pressure, because they are easier to measure and control in chemical experi-
ments, but we shall use temperature and volume throughout this chapter, except
in one place where we shall see how to make the transformation into the chemists’
system of variables.

We shall first, then, consider only one system of independent variables:
temperature and volume. Secondly, we shall discuss only two dependent functions:
the internal energy and the pressure. All the other functions can be derived from
these, so it is not necessary to discuss them. With these limitations, thermo-
dynamics is still a fairly difficult subject, but it is not quite so impossible!

First we shall review some mathematics. If a quantity is a function of two
variables, the idea of the derivative of the quantity requires a little more careful
thought than for the case where there is only one variable. What do we mean by
the derivative of the pressure with respect to the temperature? The pressure
change accompanying a change in the temperature depends partly, of course, on
what happens to the volume while T is changing. We must specify the change in V
before the concept of a derivative with respect to T has a precise meaning. We
might ask, for example, for the rate of change of P with respect to T if ¥ is held
constant. This ratio is just the ordinary derivative that we usually write as dP/dT.
We customarily use a special symbol, dP/dT, to remind us that P depends on an-
other variable ¥ as well as on T, and that this other variable is held constant. We
shall not only use the symbol @ to call attention to the fact that the other variable
is held constant, but we shall also write the variable that is held constant as a
subscript, (3P/3T)y. Since we have only two independent variables, this notation
is redundant, but it will help us keep our wits about us in the thermodynamic
jungle of partial derivatives.
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Let us suppose that the function f(x, y) depends on the two independent vari-
ables x and y. By (9f/dx), we mean simply the ordinary derivative, obtained in the
usual way, if we treat y as a constant:

AZ—0 Ax

ax

Similarly, we define

(a_f> — fimit f&Y T AY) — fx, ) |
/e  ay-o Ay

For example, if f(x, ») = x® + yx, then (8f/9x), = 2x + y, and (39f/8y). = x
We can extend this idea to higher derivatives: 82f/dy? or 3%f/dyox. The latter
symbol indicates that we first differentiate f with respect to x, treating y as a con-
stant, then differentiate the result with respect to y, treating x as a constant. The
actual order of differentiation is immaterial: 3%f/9xdy = 82f/9ydx.

We will need to compute the change Af in f(x, y) when x changes to x + Ax
and y changes to y + Ay. We assume throughout the following that Ax and Ay
are infinitesimally small:

Af = fix + Ax,y + Ay) — f(x, )
SO+ Ax,y + Ay) — fx,y + Ay) + fix,y + oy) — f(x,)

Ax (g)y + Ay (g—y) (45.1)

The last equation is the fundamental relation that expresses Af in terms of Ax
and Ay.

As an example of the use of this relation, let us calculate the change in the
internal energy U(T, V) when the temperature changes from Tto T + AT and the
volume changes from ¥ to V' + AV. Using Eq. (45.1), we write

U oU
AU = AT (ﬁ>v + AV(W>T- (45.2)

In our last chapter we found another expression for the change AU in the internal
energy when a quantity of heat AQ was added to the gas:

AU = AQ — PAV. (45.3)

In comparing Eqs. (45.2) and (45.3) one might at first be inclined to think that
P = (9U/9¥V)r, but this is not correct. To obtain the correct relation, let us first
suppose that we add a quantity of heat AQ to the gas while keeping the volume
constant, so that AV = 0. With AV = 0, Eq. (45.3) tells us that AU = AQ,
and Eq. (45.2) tells us that AU = (@U/dT)y AT, so that (8U/3T)y = AQ/AT.
The ratio AQ/AT, the amount of heat one must put into a substance in order to
change its temperature by one degree with the volume held constant, is called the
specific heat at constant volume and is designated by the symbol Cy. By this argu-

ment we have shown that
oU
(ﬁ)v = CV‘ (45'4)

Now let us again add a quantity of heat AQ to the gas, but this time we will
hold T constant and allow the volume to change by AV. The analysis in this case
is more complex, but we can calculate AU by the argument of Carnot, making use
of the Carnot cycle we introduced in the last chapter.

The pressure-volume diagram for the Carnot cycle is shown in Fig. 45-1.
As we have already shown, the total amount of work done by the gas in a reversible
cycle is AQ(AT/T), where AQ is the amount of heat energy added to the gas as it
expands isothermally at temperature T from volume ¥V to V + AV, and T — AT
is the final temperature reached by the gas as it expands adiabatically on the
second leg of the cycle. Now we will show that this work done is also given by
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the shaded area in Fig. 45-1. In any circumstances, the work done by the gas is
fP dV, and is positive when the gas expands and negative when the gas is com-
pressed. 1f we plot P vs. ¥, the variation of P and V is represented by a curve which
gives the value of P corresponding to a particular value of V. As the volume
changes from one value to another, the work done by the gas, the integral [P dV,
is the area under the curve connecting the initial and final values of V. When we
apply this idea to the Carnot cycle, we see that as we go around the cycle, paying
attention to the sign of the work done by the gas, the net work done by the gas
is just the shaded area in Fig. 45-1.

Now we want to evaluate the shaded area geometrically. The cycle we have
used in Fig. 45-1 differs from that used in the previous chapter in that we now
suppose that AT and AQ are infinitesimally small. We are working between adia-
batic lines and isothermal lines that are very close together, and the figure de-
scribed by the heavy lines in Fig. 45-1 will approach a parallelogram as the in-
crements AT and AQ approach zero. The area of this parallelogram is just AV AP,
where AV is the change in volume as energy AQ is added to the gas at constant
temperature, and AP is the change in pressure as the temperature changes by AT
at constant volume. One can easily show that the shaded area in Fig. 45-1 is
given by AV AP by recognizing that the shaded area is equal to the area enclosed
by the dotted lines in Fig. 45-2, which in turn differs from the rectangle bounded
by AP and AV only by the addition and subtraction of the equal triangular areas
in Fig. 45-2.

Now let us summarize the results of the arguments we have developed so far:

Work done by the gas = shaded area = AV AP = AQ (g)
or |
AT
—- - (heat needed to change V by AV )eonstantT
T (45.5)
= AV - (change in P when T changes by AT )¢onstantv
or

le—/ - (heat needed to change ¥V by AV)r = T(9P/dT)y.

Equation (45.5) expresses the essential result of Carnot’s argument. The whole of
thermodynamics can be deduced from Eq. (45.5) and the First Law, which is
stated in Eq. (45.3). Equation (45.5) is essentially the Second Law, although it
was originally deduced by Carnot in a slightly different form, since he did not
use our definition of temperature.

Now we can proceed to calculate (dU/3V)r. By how much would the internal
energy U change if we changed the volume by AV? First, U changes because heat
is put in, and second, U changes because work is done. The heat put in is

oP
AQ =T (éT)V AV,

according to Eq. (45.5), and the work done on the substance is —P AV. There-
fore the change AU in internal energy has two pieces:

oP
AU = T(ﬁT);fAV — PAV. (45.6)

Dividing both sides by AV, we find for the rate of change of U with ¥ at constant T

14 oP
(—a—I/)T = T<5T>V — P. (45.7)

In our thermodynamics, in which 7" and ¥V are the only variables and P and U are
the only functions, Eqs. (45.3) and (45.7) are the basic equations from which all
the result of the subject can be deduced.
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Fig. 45-1. Pressure-volume diagram
for a Carnot cycle. The curves marked
T and T — AT are isothermal lines; the
steeper curves are adiabatic lines. AY
is the volume change as heat AQ is
added to the gas at constant temperature
T. AP is the pressure change at constant
volume as the gas temperature is changed
fromTto T — AT.

Fig. 45-2. Shaded area = area
enclosed by dashed lines = area of
rectangle = AP AV.




45-2 Applications

Now let us discuss the meaning of Eq. (45.7) and see why it answers the
questions which we proposed in our last chapter. We considered the following
problem: in kinetic theory it is obvious that an increase in temperature leads to
an increase in pressure, because of the bombardments of the atoms on a piston.
For the same physical reason, when we let the piston move back, heat is taken
out of the gas and, in order to keep the temperature constant, heat will have to be
put back in. The gas cools when it expands, and the pressure rises when it is heated.
There must be some connection between these two phenomena, and this con-
nection is given explicitly in Eq. (45.7). If we hold the volume fixed and increase
the temperature, the pressure rises at a rate (0P/37T),,. Related to that fact is this:
if we increase the volume, the gas will cool unless we pour some heat in to main-
tain the temperature constant, and (U/d¥V)r tells us the amount of heat needed
to maintain the temperature. Equation (45.7) expresses the fundamental inter-
relationship between these two effects. That is what we promised we would find
when we came to the laws of thermodynamics. Without knowing the internal
mechanism of the gas, and knowing only that we cannot make perpetual motion
of the second type, we can deduce the relationship between the amount of heat
needed to maintain a constant temperature when the gas expands, and the pressure
change when the gas is heated!

Now that we have the result we wanted for a gas, let us consider the rubber
band. When we stretch a rubber band, we find that its temperature falls, and when
we heat a rubber band, we find that it pulls itself in. What is the equation that
gives the same relation for a rubber band as Eq. (45.3) gives for gas? For a
rubber band the situation will be something like this: when heat AQ is put in, the
internal energy is changed by AU and some work is done. The only difference will
be that the work done by the rubber band is —F AL instead of P AV, where F
is the force on the band, and L is the length of the band. The force F is a function
of temperature and of length of the band. Replacing PAV in Eq. (45.3) by —F AL,
we get

AU = AQ + FAL (45.8)

Comparing Eqgs. (45.3) and (45.8), we see that the rubber band equation is ob-
tained by a mere substitution of one letter for another. Furthermore, if we sub-
stitute L for ¥, and —F for P, all of our discussion of the Carnot cycle applies to
the rubber band. We can immediately deduce, for instance, that the heat AQ
needed to change the length by AL is given by the analog to Eq. (45.5): AQ =
—T(8F/dT), AL. This equation tells us that if we keep the length of a rubber
band fixed and heat the band, we can calculate how much the force will increase
in terms of the heat needed to keep the temperature constant when the band is
stretched a little bit. So we see that the same equation applies to both gas and a
rubber band. In fact, if one can write AU = AQ + AAB, where 4 and B repre-
sent different quantities, force and length, pressure and volume, etc., one can apply
the results obtained for a gas by substituting 4 and B for P and V. For example,
consider the electric potential difference, or “voltage,” E in a battery and the
charge AZ that moves through the battery. We know that the work done in a
reversible electric cell, like a storage battery, is EAZ. (Since we include no PAV
term in the work, we require that our battery maintain a constant volume.) Let
us see what thermodynamics can tell us about the performance of a battery. If
we substitute E for P and Z for V in Eq. (45.6), we obtain

AU oE
AU _ —T(a—T>Z _E 45.9)

Equation (45.9) says that the internal energy U is changed when a charge AZ moves
through the cell. Why is AU/AZ not simply the voltage E of the battery? The
answer is that a real battery gets warm when charge moves through the cell.
The internal energy of the battery is changed, first, because the battery did some
work on the outside circuit, and second, because the battery is heated. The re-
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markable thing is that the second part can again be expressed in terms of the
way in which the battery voltage changes with temperature. Incidentally, when
the charge moves through the cell, chemical reactions occur, and Eq. (45.9) sug-
gests a nifty way of measuring the amount of energy required to produce a chemical
reaction. All we need do is construct a cell that works on the reaction, measure
the voltage, and measure how much the voltage changes with temperature when
we draw no charge from the battery!

Now we have assumed that the volume of the battery can be maintained con-
stant, since we have omitted the PAV term when we set the work done by the
battery equal to EAZ. It turns out that it is technically quite difficult to keep the
volume constant. It is much easier to keep the cell at constant atmospheric
pressure. For that reason, the chemists do not like any of the equations we have
written above: they prefer equations which describe performance under constant
pressure. We chose at the beginning of this chapter to use ¥ and T as independent
variables. The chemists prefer P and T, and we will now consider how the results
we have obtained so far can be transformed into the chemists’ system of variables.
Remember that in the following treatment confusion can easily set in because we
are shifting gears from 7 and ¥V to T and P.

We started in Eq. (45.3) with AU = AQ — PAV; PAV may be replaced by
EAZ or AAB. 1f we could somehow replace the last term, PAV, by VAP, then
we would have interchanged ¥ and P, and the chemists would be happy. Well,
a clever man noticed that the differential of the product PV is d(PV) = PdV +
V dP, and if he added this equality to Eq. (45.3), he obtained

A(PV) = PAV + VAP
AU AQ — PAV

AU + PV) = AQ + VAP

In order that the result look like Eq. (45.3), we define U 4 PV to be something
new, called the enthalpy, H, and we write AH = AQ + VAP.

Now we are ready to transform our results into chemists’ language with
the following rules: U — H, P — —V, V' — P. For example, the fundamental
relationship that chemists would use instead of Eq. (45.7) is

oH 14
<W)T B T(G_T>P -V

It should now be clear how one transforms to the chemists’® variables T and P.
We now go back to our original variables: for the remainder of this chapter, T
and V are the independent variables.

Now let us apply the results we have obtained to a number of physical situa-
tions. Consider first the ideal gas. From kinetic theory we know that the internal
energy of a gas depends only on the motion of the molecules and the number of
molecules. The internal energy depends on T, but not on V. If we change ¥, but
keep T constant, U is not changed. Therefore (8U/dV)r = 0, and Eq. (45.7) tells
us that for an ideal gas

oP
T(ET)V — P =0 (45.10)

Equation (45.10) is a differential equation that can tell us something about P.
We take account of the partial derivatives in the following way: Since the partial
derivative is at constant ¥, we will replace the partial derivative by an ordinary
derivative and write explicitly, to remind us, “constant ¥.”” Equation (45.10) then
becomes

AP

TKT — P =0 const V, (45.11)

which we can integrate to get

InP
P

InT + const; const V,
const X T} const V. (45.12)
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condensable vapor compressed in a
cylinder. At the left, the substance is in
the liquid phase. At the right, the sub-
stance is vaporized. In the center, both
liquid and vapor are present in the
cylinder.
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Fig. 45-4. Pressure-volume diagram

for a Carnot cycle with a condensable
vapor in the cylinder. At the left, the
substance is in the liquid state. A
quantity of heat L is added at tempera-
ture T to vaporize the liquid. The vapor
expands adiabatically as T changes to
T — AT.

We know that for an ideal gas the pressure is equal to

P=g3

7% (45.13)

which is consistent with (45.12), since ¥ and R are constants. Why did we bother
to go through this calculation if we already knew the results? Because we have
been using two independent definitions of temperature! At one stage we assumed
that the kinetic energy of the molecules was proportional to the temperature, an
assumption that defines one scale of temperature which we will call the ideal gas
scale. The T in Eq. (45.13) is based on the gas scale. We also call temperatures
measured on the gas scale kinetic temperatures. Later, we defined the temperature
in a second way which was completely independent of any substance. From argu-
ments based on the Second Law we defined what we might call the “grand thermo-
dynamic absolute temperature” T, the T that appears in Eq. (45.12). What we
proved here is that the pressure of an ideal gas (defined as one for which the
internal energy does not depend on the volume) is proportional to the grand
thermodynamic absolute temperature. We also know that the pressure is pro-
portional to the temperature measured on the gas scale. Therefore we can deduce
that the kinetic temperature is proportional to the “‘grand thermodynamic ab-
solute temperature.” That means, of course, that if we were sensible we could
make two scales agree. In this instance, at least, the two scales 4ave been chosen
so that they coincide; the proportionality constant has been chosen to be 1. Most
of the time man chooses trouble for himself, but in this case he made them equal!

45-3 The Clausius-Clapeyron equation

The vaporization of a liquid is another application of the results we have
derived. Suppose we have some liquid in a cylinder, such that we can compress it
by pushing on the piston, and we ask ourselves, “If we keep the temperature
constant, how does the pressure vary with volume?” In other words, we want to
draw an isothermal line on the P-¥ diagram. The substance in the cylinder is not
the ideal gas that we considered earlier; now it may be in the liquid or the vapor
phase, or both may be present. If we apply sufficient pressure, the substance
will condense to a liquid. Now if we squeeze still harder, the volume changes
very little, and our isothermal line rises rapidly with decreasing volume, as shown
at the left in Fig. 45-3.

If we increase the volume by pulling the piston out, the pressure drops until
we reach the point at which the liquid starts to boil, and then vapor starts to form.
If we pull the piston out farther, all that happens is that more liquid vaporizes.
When there is part liquid and part vapor in the cylinder, the two phases are in
equilibrium—Iliquid is evaporating and vapor is condensing at the same rate. If
we make more room for the vapor, more vapor is needed to maintain the pressure,
so a little more liquid evaporates, but the pressure remains constant. On the
flat part of the curve in Fig. 45-3 the pressure does not change, and the value of
the pressure here is called the vapor pressure at temperature T. As we continue to
increase the volume, there comes a time when there is no more liquid to evaporate.
At this juncture, if we expand the volume further, the pressure will fall as for an
ordinary gas, as shown at the right of the P-V diagram. The lower curve in Fig.
45-3 is the isothermal line at a slightly lower temperature T — AT. The pressure
in the liquid phase is slightly reduced because liquid expands with an increase in
temperature (for most substances, but not for water near the freezing point)
and, of course, the vapor pressure is lower at the lower temperature.

We will now make a cycle out of the two isothermal lines by connecting them
(say by adiabatic lines) at the ends of the flat sections, as shown in Fig. 45-4.
The little jiggle in the lower right-hand corner of the figure will make little differ-
ence and we will neglect it. We are going to use the argument of Carnot, which
tells us that the heat added to the substance in changing it from a liquid to a vapor
is related to the work done by the substance as it goes around the cycle. Let
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us call L the heat needed to vaporize the substance in the cylinder. As in the
argument immediately preceding Eq. (45.5), we know that L(AT/T) = work
done by the substance. As before, the work done by the substance is the shaded
area, which is approximately AP(Ve — V1), where AP is the difference in vapor
pressure at the two temperatures T and T — AT, Vg is the volume of the gas, and
Vv, is the volume of the liquid, both volumes measured at the vapor pressure.
Setting these two expressions for the area equal, we get LAT/T = AP(Vg — V1),
or

__L (0P 4p/0T) (45.14)

T(Ve — V1) vaprEm o '
Equation (45.14) gives the relationship between the rate of change of vapor pres-
sure with temperature and the amount of heat required to evaporate the liquid.
This relationship was deduced by Carnot, but it is called the Clausius-Clapeyron
equation.

Now let us compare Eq. (45.14) with the results deduced from kinetic theory.
Usually V¢ is very much larger than ¥V, .So Vg — Vi = Vg = RT/P per mole.
1f we further assume that L is a constant, independent of temperature—not a very
good approximation—then we would have 8P/dT = L/ (RT?P). The solution
of this differential equation is

P = const e /BT (45.15)

Let us compare this with the pressure variation with temperature that we deduced
earlier from kinetic theory. Kinetic theory indicated the possibility, at least
roughly, that the number of molecules of vapor above a liquid would be

0= (L) ¢~ UG—UDIRT (45.16)
Va

where Uz — Uy is the internal energy per mole in the liquid minus the internal
energy per mole in the gas, i.e., the energy needed to vaporize a mole of liquid.
Equation (45.15) from thermodynamics and Eq. (45.16) from kinetic theory are
very closely related because the pressure is nkT, but they are not exactly the same.
However, they will turn out to be exactly the same if we assume L — Ug = const,
instead of L = const. If we assume L — Ug = const, independent of tempera-
ture, then the argument leading to Eq. (45.15) will produce Eq. (45.16).

This comparison shows the advantages and disadvantages of thermodynamics
over kinetic theory: First of all, Eq. (45.14) obtained by thermodynamics is exact,
while Eq. (45.16) can only be approximated, for instance, if U is nearly constant,
and if the model is right. Second, we may not understand correctly how the gas
goes into the liquid ; nevertheless, Eq. (45.14) is right, while (45.16) is only approxi-
mate. Third, although our treatment applies to a gas condensing into a liquid, the
argument is true for any other change of state. For instance, the solid-to-liquid
transition has the same kind of curve as that shown in Figs. 45-3 and 45-4. Intro-
ducing the latent heat for melting, M/mole, the formula analogous to Eq. (45.14)
then is (3Pme1/9T)y = M/[T(Viiq — Vsotia)]. Although we may not understand
the kinetic theory of the melting process, we nevertheless have a correct equation.
However, when we can understand the kinetic theory, we have another advantage.
Equation (45.14) is only a differential relationship, and we have no way of obtain-
ing the constants of integration. In the kinetic theory we can obtain the constants
also if we have a good model that describes the phenomenon completely. So there
are advantages and disadvantages to each. When knowledge is weak and the situa-
tion is complicated, thermodynamic relations are really the most powerful. When
the situation is very simple and a theoretical analysis can be made, then it is better
to try to get more information from theoretical analysis.

One more example: blackbody radiation. We have discussed a box containing
radiation and nothing else. We have talked about the equilibrium between the
oscillator and the radiation. We also found that the photons hitting the wall of
the box would exert the pressure P, and we found PV = U/3, where U is the
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total energy of all the photons and V is the volume of the box. If we substitute
U = 3PV in the basic Eq. (45.7), we find

aU oP
(W)T =3P = T<5T>V ~ P. (45.17)

Since the volume of our box is constant, we can replace (8P/dT ), by dP/dT to
obtain an ordinary differential equation we can integrate: In P = 4In T + const,
or P = const X T*. The pressure of radiation varies as the fourth power of the
temperature, and the energy content of the radiation, U/V = P/3, also varies as
T*. 1t is usual to write U/V = (40/c)T*, where ¢ is the speed of light and o is a
constant. It is not possible to get ¢ from thermodynamics alone. Here is a good
example of its power, and its limitations. To know that U/V goes as T* is a great
deal, but to know how big U/¥ actually is at any temperature requires that we go
into the kind of detail that only a complete theory can supply. For blackbody
radiation we have such a theory and we can derive an expression for the constant
o in the following manner.

Let /(w) dw be the intensity distribution, the energy flow through 1 m? in one
second with frequency between w and w + dw. The energy density distribution =
energy/volume = I(w)dw/c is

% = total energy density

= / energy density w and w + dw
0

W=

=/:I(wgdw.

From our earlier discussions, we know that

hewd
7T2c2(efia/kT ~

I(w) =

Substituting this expression for /(w) in our equation for U/¥V, we get

U_ 1 / © e’ dw
V = w3 Jo pelkT _ |
If we substitute x = %w/kT, the expression becomes

U _ D [* x%dx

V= h3m2c3 )y ez — 1

This integral is just some number that we can get, approximately, by drawing a
curve and taking the area by counting squares. It is roughly 6.5. The mathemati-
cians among us can show that the integral is exactly m*/15.* Comparing this
expression with U/V = (4a/c)T*, we find

k*n? _8 watts
T = GoRacz ~ 067 X 10 (meter)2 (degree)4 |
*Since (e* — 1)~! = == 4 ¢=2= 4 ..., the integral is

Z f e~ x3 dx,
n=1l /O

But f : e dx = 1/n, and differentiating with respect to n three times gives f : x3e—nz
dx = 6/n%, so the integral is 6(1 + % + g% + ...) and a good estimate comes from
adding the first few terms. In Chapter 50 we will find a way to show that the sum of the
reciprocal fourth powers of the integers is, in fact, w%/90.
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If we make a small hole in our box, how much energy will flow per second
through the hole of unit area? To go from energy density to energy flow, we multi-
ply the energy density U/V by ¢. We also multiply by %, which arises as follows:
first, a factor of &, because only the energy which is flowing out escapes; and second,
another factor %, because energy which approaches the hole at an angle to the
normal is less effective in getting through the hole by a cosine factor. The average
value of the cosine is 4. It is clear now why we write U/V = (40/c)T*: so that
we can ultimately say that the flux from a small hole is ¢7* per unit area.



