48

Beats

48-1 Adding two waves

Some time ago we discussed in considerable detail the properties of light 48-1 Adding two waves
waves and their interference—that is, the effects of the superposition of two waves .
from different sources. In all these analyses we assumed tﬁat the frequencies of the 48-2 Beat notes and modulation
sources were all the same. In this chapter we shall discuss some of the phenomena 48-3 Side bands
which result from the interference of two sources which have different frequencies.

It is easy to guess what is going to happen. Proceeding in the same way as we
have done previously, suppose we have two equal oscillating sources of the same 48-5 Probability amplitudes for
frequency whose phases are so adjusted, say, that the signals arrive in phase at particles
some point P. At that point, if it is light, the light is very strong; if it is sound, it
is very loud; or if it is electrons, many of them arrive. On the other hand, if the
arriving signals were 180° out of phase, we would get no signal at P, because the 48-7 Normal modes
net amplitude there is then a minimum. Now suppose that someone twists the
“phase knob’’ of one of the sources and changes the phase at P back and forth, say,
first making it 0° and then 180°, and so on. Of course, we would then find variations
in the net signal strength. Now we also see that if the phase of one source is slowly
changing relative to that of the other in a gradual, uniform manner, statting at
zero, going up to ten, twenty, thirty, forty degrees, and so on, then what we would
measure at P would be a series of strong and weak “‘pulsations,” because when the
phase shifts through 360° the amplitude returns to a maximum. Of course, to
say that one source is shifting its phase relative to another at a uniform rate is the
same as saying that the number of oscillations per second is slightly different for
the two.

So we know the answer: if we have two sources at slightly different frequencies
we should find, as a net result, an oscillation with a slowly pulsating intensity.

That is all there really is to the subject!

It is very easy to formulate this result mathematically also. Suppose, for ex-
ample, that we have two waves, and that we do not worry for the moment about
all the spatial relations, but simply analyze what arrives at P. From one source, let
us say, we would have cos w,t, and from the other source, cos w,?, where the two
w’s are not exactly the same. Of course the amplitudes may not be the same, either,
but we can solve the general problem later; let us first take the case where the
amplitudes are equal. Then the total amplitude at P is the sum of these two cosines.

If we plot the amplitudes of the waves against the time, as in Fig. 48-1, we see that
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where the crests coincide we get a strong wave, and where a trough and crest
coincide we get practically zero, and then when the crests coincide again we get a
strong wave again.

Mathematically, we need only to add two cosines and rearrange the result
somehow. There exist a number of useful relations among cosines which are not
difficult to derive. Of course we know that

eieHD) - giagid 48.1)

and that gi“ has a real part, cos a, and an imaginary part, sin a. If we take the real
part of e"®*® we get cos (a + b). If we multiply out:

‘%™ = (cosa + isina)(cosb + isinb),

we get cosacos b — sinasin b, plus some imaginary parts. But we now need
only the real part, so we have

cos{a + b) = cosacosbh — sinasin b. (48.2)

Now if we change the sign of b, since the cosine does not change sign while the
sine does, the same equation, for negative b, is

cos (@ — b) = cosacosb + sinasinb. (48.3)

If we add these two equations together, we lose the sines and we learn that the
product of two cosines is half the cosine of the sum, plus half the cosine of the
difference:

cosacosb = %cos(a + b) + icos(a — b). (48.9)

Now we can also reverse the formula and find a formula for cos a + cos 8 if
we simply let « = a + band 8 =a — b. Thatis, a = 3a + B) and b =
3(a — B), so that

cosa + cosB = 2cos $(a + B)cos 3(a — B). (48.5)
Now we can analyze our problem. The sum of cos w7 and cos wst is
cosw;? + coswat = 2cos 3wy + wg)tcos $(w; — w)t. (48.6)

Now let us suppose that the two frequencies are nearly the same, so that §(w; + w3)
is the average frequency, and is more or less the same as either. But w; — wy is
much smaller than w; or w, because, as we suppose, w; and w, are nearly equal.
That means that we can represent the solution by saying that there is a high-
frequency cosine wave more or less like the ones we started with, but that its “‘size”
is slowly changing—its ‘“‘size” is pulsating with a frequency which appears to be
3(w; — wg). But is this the frequency at which the beats are heard? Although
(48.6) says that the amplitude goes as cos 1(w; — wy), what it is really telling us is
that the high-frequency oscillations are contained between two opposed cosine
curves (shown dotted in Fig. 48-1). On this basis one could say that the amplitude
varies at the frequency 3(w; — ws), but if we are talking about the intensity of
the wave we must think of it as having twice this frequency. That is, the modulation
of the amplitude, in the sense of the strength of its intensity, is at frequency w; —
wg, although the formula tells us that we multiply by a cosine wave at half that
frequency. The technical basis for the difference is that the high frequency-wave
has a little different phase relationship in the second half-cycle.

Ignoring this small complication, we may conclude that if we add two waves
or frequency w; and wy, we will get a net resulting wave of average frequency
#(w; + w2) which oscillates in strength with a frequency w; — ws.

If the two amplitudes are different, we can do it all over again by multiplying
the cosines by different amplitudes 4; and 4., and do a lot of mathematics, re-
arranging, and so on, using equations like (48.2)-(48.5). However, there are other,
easier ways of doing the same analysis. For €xample, we know that it is much
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easier to work with exponentials than with sines and cosines and that we can repre-
sent A cos w; as the real part of 4,¢“1%, The other wave would similarly be the
real part of Aze™2". If we add the two, we get 4,e®1! 4+ A,e™2!, If we then
factor out the average frequency, we have

Aleiwlt+ A2eiw2t — el/Zi(w1+w2)t[A1e1/2i(w1—w2)t+ A28_1/2i(w1_‘°2”]. (487)

Again we have the high-frequency wave with a modulation at the lower frequency.

48-2 Beat notes and modulation

If we are now asked for the intensity of the wave of Eq. (48.7), we can either
take the absolute square of the left side, or of the right side. Let us take the left
side. The intensity then is

I= A} + A3 4 24,45 cos (w; — w)t. (48.8)

We see that the intensity swells and falls at a frequency w; — w,, varying between
the limits (4, + A43)® and (4; — A3)% If 4; = A,, the minimum intensity
is not zero.

One more way to represent this idea is by means of a drawing, like Fig. 48-2.
We draw a vector of length 4, rotating at a frequency w,, to represent one of the
waves in the complex plane. We draw another vector of length 45, going around
at a frequency ws, to represent the second wave. If the two frequencies are exactly
equal, their resultant is of fixed length as it keeps revolving, and we get a definite,
fixed intensity from the two. But if the frequencies are slightly different, the two
complex vectors go around at different speeds. Figure 48-3 shows what the
situation looks like relative to the vector 4,e™1t, We see that 4, is turning slowly
away from A, and so the amplitude that we get by adding the two is first strong,
and then, as it opens out, when it gets to the 180° relative position the resultant
gets particularly weak, and so on. As the vectors go around, the amplitude of the
sum vector gets bigger and smaller, and the intensity thus pulsates. It is a relatively
simple idea, and there are many different ways of representing the same thing.

The effect is very easy to observe experimentally. In the case of acoustics, we
may arrange two loudspeakers driven by two separate oscillators, one for each
loudspeaker, so that they each make a tone. We thus receive one note from one
source and a different note from the other source. If we make the frequencies
exactly the same, the resulting effect will have a definite strength at a given space
location. If we then de-tune them a little bit, we hear some variations in the
intensity. The farther they are de-tuned, the more rapid are the variations of
sound. The ear has some trouble following variations more rapid than ten or so
per second.

We may also see the effect on an oscilloscope which simply displays the sum
of the currents to the two speakers. If the frequency of pulsing is relatively low, we
simply see a sinusoidal wave train whose amplitude pulsates, but as we make the
pulsations more rapid we see the kind of wave shown in Fig. 48-1. As we go to
greater frequency differences, the “bumps” move closer together. Also, if the
amplitudes are not equal and we make one signal stronger than the other, then we
get a wave whose amplitude does not ever become zero, just as we expect. Every-
thing works the way it should, both acoustically and electrically.

The opposite phenomenon occurs too! In radio transmission using so-called
amplitude modulation (AM), the sound is broadcast by the radio station as follows:
the radio transmitter has an Ac electric oscillation which is at a very high frequency,
for example 800 kilocycles per second, in the broadcast band. If this carrier signal
is turned on, the radio station emits a wave which is of uniform amplitude at 800,000
oscillations a second. The way the “information” is transmitted, the useless kind
of information about what kind of car to buy, is that when somebody talks into a
microphone the amplitude of the carrier signal is changed in step with the vibrations
of sound entering the microphone.
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Fig. 48—4. A modulated carrier wave.
In this schematic sketch, w./w, = 5.
In an actual radiowave, w./w,, ~ 100.
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Fig. 48-5. The frequency spectrum
of a carrier wave w, modulated by a
single cosine wave w,,.

If we take as the simplest mathematical case the situation where a soprano is
singing a perfect note, with perfect sinusoidal oscillations of her vocal cords,
then we get a signal whose strength is alternating as shown in Fig. 48-4. The
audiofrequency alternation is then recovered in the receiver; we get rid of the
carrier wave and just look at the envelope which represents the oscillations of the
vocal cords, or the sound of the singer. The loudspeaker then makes corre-
sponding vibrations at the same frequency in the air, and the listener is then
essentially unable to tell the difference, so they say. Because of a number of dis-
tortions and other subtle effects, it is, in fact, possible to tell whether we are listening
to a radio or to a real soprano; otherwise the idea is as indicated above.

48-3 Side bands

Mathematically, the modulated wave described above would be expressed
as
S = (1 4+ bcos wyl)cos wt, (48.9)

where w, represents the frequency of the carrier and w,, is the frequency of the
audio tone. Again we use all those theorems about the cosines, or we can use
e”; it makes no difference—it is easier with ¥, but it is the same thing. We
then get

S = coswet + $bcos (w, + wm)t + Lbcos (w, — wm)t. (48.10)

So, from another point of view, we can say that the output wave of the system
consists of three waves added in superposition: first, the regular wave at the fre-
quency w,, that is, at the carrier frequency, and then two new waves at two new
frequencies. One is the carrier frequency plus the modulation frequency, and the
other is the carrier frequency minus the modulation frequency. If, therefore, we
make some kind of plot of the intensity being generated by the generator as a
function of frequency, we would find a lot of intensity at the frequency of the carrier,
naturally, but when a singer started to sing, we would suddenly also find intensity
proportional to the strength of the singer, b2, at frequency w, + wm and we — Wy,
as shown in Fig. 48-5. These are called side bands; when there is a modulated
signal from the transmitter, there are side bands. If there is more than one note
at the same time, say w,, and w,,, there are two instruments playing; or if there is
any other complicated cosine wave, then, of course, we can see from the mathematics
that we get some more waves that correspond to the frequencies w, == wp'.

Therefore, when there is a complicated modulation that can be represented
as the sum of many cosines,* we find that the actual transmitter is transmitting
over a range of frequencies, namely the carrier frequency plus or minus the maxi-
mum frequency that the modulation signal contains.

Although at first we might believe that a radio transmitter transmits only at
the nominal frequency of the carrier, since there are big, superstable crystal
oscillators in there, and everything is adjusted to be at precisely 800 kilocycles,
the moment someone announces that they are at 800 kilocycles, he modulates the
800 kilocycles, and so they are no longer precisely at 800 kilocycles! Suppose that
the amplifiers are so built that they are able to transmit over a good range of the
ear’s sensitivity (the ear can hear up to 20,000 cycles per second, but usually radio
transmitters and receivers do not work beyond 10,000, so we do not hear the
highest parts), then, when the man speaks, his voice may contain frequencies
ranging up, say, to 10,000 cycles, so the transmitter is transmitting frequencies

* A slight side remark: In what circumstances can a curve be represented as a sum of
a lot of cosines? Answer: In all ordinary circumstances, except for certain cases the
mathematicians can dream up. Of course, the curve must have only one value at a given
point, and it must not be a crazy curve which jumps an infinite number of times in an
infinitesimal distance, or something like that. But aside from such restrictions any
reasonable curve (one that a singer is going to be able to make by shaking her vocal
cords) can always be compounded by adding cosine waves together.
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which may range from 790 to 810 kilocycles per second. Now if there were another
station at 795 kc/sec, there would be a lot of confusion. Also, if we made our
receiver so sensitive that it picked up only 800, and did not pick up the 10 kilo-
cycles on either side, we would not hear what the man was saying, because the
information would be on these other frequencies! Therefore it is absolutely es-
sential to keep the stations a certain distance apart, so that their side bands do not
overlap and, also, the receiver must not be so selective that it does not permit
reception of the side bands as well as of the main nominal frequency. In the case
of sound, this problem does not really cause much trouble. We can hear over a
=+20 kc/sec range, and we have usually from 500 to 1500 kc/sec in the broadcast
band, so there is plenty of room for lots of stations.

The television problem is more difficult. As the electron beam goes across
the face of the picture tube, there are various little spots of light and dark. That
“light” and “dark” is the “‘signal.” Now ordinarily the beam scans over the whole
picture, 500 lines, approximately, in a thirtieth of a second. Let us consider that the
resolution of the picture vertically and horizontally is more or less the same, so
that there are the same number of spots per inch along a scan line. We want to
be able to distinguish dark from light, dark from light, dark from light, over, say,
500 lines. In order to be able to do this with cosine waves, the shortest wavelength
needed thus corresponds to a wavelength, from maximum to maximum, of one
250th of the screen size. So we have 250 X 500 X 30 pieces of information per
second. The highest frequency that we are going to carry, therefore, is close to
4 megacycles per second. Actually, to keep the television stations apart, we have
to use a little bit more than this, about 6 mc/sec; part of it is used to carry the sound
signal, and other information. So, television channels are 6 megacycles per second
wide. It certainly would not be possible to transmit Tv on an 800 kc/sec carrier,
since we cannot modulate at a higher frequency than the carrier.

At any rate, the television band starts at 54 megacycles. The first transmission
channel, which is channel 2 (!), has a frequency range from 54 to 60 mc/sec, which
is 6 mc/sec wide. “But,” one might say, “we have just proved that there were
side bands on both sides, and therefore it should be twice that wide.”” It turns out
that the radio engineers are rather clever. If we analyze the modulation signal
using not just cosine terms, but cosine and sine terms, to allow for phase differences,
we then see that there is a definite, invariant relationship between the side band on
the high-frequency side and the side band on the low-frequency side. What we
mean is that there is no new information on that other side band. So what is done
is to suppress one side band, and the receiver is wired inside such that the informa-
tion which is missing is reconstituted by looking at the single side band and the
carrier. Single side-band transmission is a clever scheme for decreasing the band
widths needed to transmit information.

48-4 Localized wave trains

The next subject we shall discuss is the interference of waves in both space and
time. Suppose that we have two waves travelling in space. We know, of course,
that we can represent a wave travelling in space by ¢*“*~*®. This might be, for
example, the displacement in a sound wave. This is a solution of the wave equation
provided that w? = kZc?, where c is the speed of propagation of the wave. In
this case we can write it as e**®—?_ which is of the general form f(x — cf). There-
fore this must be a wave which is travelling at this velocity, w/k, and that is ¢
and everything is all right.

Now we want to add two such waves together. Suppose we have a wave that
is travelling with one frequency, and another wave travelling with another fre-
quency. We leave to the reader to consider the case where the amplitudes are
different; it makes no real difference. Thus we want to add *@1? %12 |- gi(@at—k32),
We can add these by the same kind of mathematics we used when we added signal
waves. Of course, if ¢ is the same for both, this is easy, since it is the same as what
we did before:

eiwl(t—x/c) + eiwz(t—x/c) — eiwl t’ + e’iwgt', (4811)

48-5



except that #/ = ¢t — x/c is the variable instead of #. So we get the same kind of
modulations, naturally, but we see, of course, that those modulations are moving
along with the wave. In other words, if we added two waves, but these waves were
not just oscillating, but also moving in space, then the resultant wave would move
along also, at the same speed.

Now we would like to generalize this to the case of waves in which the relation-
ship between the frequency and the wave number k is not so simple. Example:
material having an index of refraction. We have already studied the theory of the
index of refraction in Chapter 31, where we found that we could write k = nw/c,
where 7 is the index of refraction. As an interesting example, for x-rays we found
that the index » is

Ng:

T 2emw?’

n=1 (48.12)
We actually derived a more complicated formula in Chapter 31, but this one is as
good as any, as an example.

Incidentally, we know that even when w and k are not linearly proportional,
the ratio w/k is certainly the speed of propagation for the particular frequency and
wave number. We call this ratio the phase velocity, it is the speed at which the phase,
or the nodes of a single wave, would move along:

=2 (48.13)

This phase velocity, for the case of x-rays in glass, is greater than the speed of
light in vacuum (since » in 48.12 is less than 1), and that is a bit bothersome,
because we do not think we can send signals faster than the speed of light!

What we are going to discuss now is the interference of two waves in which
w and k have a definite formula relating them. The above formula for n says that
k is given as a definite function of w. To be specific, in this particular problem, the
formula for k in terms of w is
a
we

k=

olE

, (48.14)

o

wherea = Ng?/2¢om, a constant. At any rate, for each frequency there is a definite
wave number, and we want to add two such waves together.
Let us do it just as we did in Eq. (48.7):

ei(wll—klx) + ei(wgt—kzx) — el/2i[(w1+02)l—(kl+k2)$]

X {el/zi[(wl—w2)t—(kl——kz)I] + e—1/2i[(w1—wz)t—(kl—kz)x]} . (48.15)

So we have a modulated wave again, a wave which travels with the mean frequency
and the mean wave number, but whose strength is varying with a form which de-
pends on the difference frequency and the difference wave number.

Now let us take the case that the difference between the two waves is relatively
small. Let us suppose that we are adding two waves whose frequencies are nearly
equal; then (w; + wjy)/2 is practically the same as either one of the w’s, and
similarly for (k1 4+ k3)/2. Thus the speed of the wave, the fast oscillations, the
nodes, is still essentially w/k. Butlook, the speed of propagation of the modulation
is not the same! How much do we have to change x to account for a certain amount
of 1? The speed of this modulation wave is the ratio

_ W1 T wy

=T (48.16)

The speed of modulation is sometimes called the group velocity. 1f we take the

case that the difference in frequency is relatively small, and the difference in wave

number is then also relatively small, then this expression approaches, in the limit,
dw

vy = - (48.17)
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In other words, for the slowest modulation, the slowest beats, there is a definite
speed at which they travel which is not the same as the phase speed of the waves—
what a mysterious thing!

The group velocity is the derivative of w with respect to k, and the phase velocity
is w/k.

Let us see if we can understand why. Consider two waves, again of slightly
different wavelength, as in Fig. 48-1. They are out of phase, in phase, out of
phase, and so on. Now these waves represent, really, the waves in space travelling
with slightly different frequencies also. Now because the phase velocity, the velocity
of the nodes of these two waves, is not precisely the same, something new happens.
Suppose we ride along with one of the waves and look at the other one; if they both
went at the same speed, then the other wave would stay right where it was relative
to us, as we ride along on this crest. We ride on that crest and right opposite us
we see a crest; if the two velocities are equal the crests stay on top of each other.
But it is not so that the two velocities are really equal. There is only a small differ-
ence in frequency and therefore only a small difference in velocity, but because of
that difference in velocity, as we ride along the other wave moves slowly forward,
say, or behind, relative to our wave. So as time goes on, what happens to the node?
If we move one wave train just a shade forward, the node moves forward (or back-
ward) a considerable distance. That is, the sum of these two waves has an envelope,
and as the waves travel along, the envelope rides on them at a different speed.
The group velocity is the speed at which modulated signals would be transmitted.

If we made a signal, i.e., some kind of change in the wave that one could recog-
nize when he listened to it, a kind of modulation, then that modulation would
travel at the group velocity, provided that the modulations were relatively slow.
(When they are fast, it is much more difficult to analyze.)

Now we may show (at long last), that the speed of propagation of x-rays in a
block of carbon is not greater than the speed of light, although the phase velocity
is greater than the speed of light. In order to do that, we must find dw/dk, which
we get by differentiating (48.14): dk/dw = 1/c + a/w?c. The group velocity,
therefore, is the reciprocal of this, namely,

4

Vg
which is smaller than ¢! So although the phases can travel faster than the speed of
light, the modulation signals travel slower, and that is the resolution of the apparent
paradox! Of course, if we have the simple case that w = kc, then dw/dk is also
c. So when all the phases have the same velocity, naturally the group has the same
velocity.

48-5 Probability amplitudes for particles

Let us now consider one more example of the phase velocity which is extremely
interesting. It has to do with quantum mechanics. We know that the amplitude
to find a particle at a place can, in some circumstances, vary in space and time, let
us say in one dimension, in this manner:

¥ = A, (48.19)

where w is the frequency, which is related to the classical idea of the energy through
E = hw, and k is the wave number, which is related to the momentum through
p = %k. We would say the particle had a definite momentum p if the wave number
were exactly k, that is, a perfect wave which goes on with the same amplitude
everywhere. Equation (48.19) gives the amplitude, and if we take the absolute
square, we get the relative probability for finding the particle as a function of posi-
tion and time. This is a constant, which means that the probability is the same to
find a particle anywhere. Now suppose, instead, that we have a situation where we
know that the particle is more likely to be at one place than at another. We would
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Fig. 48-6. A localized wave train.

represent such a situation by a wave which has a maximum and dies out on either
side (Fig. 48-6). (It is not quite the same as a wave like (48.1) which has a series of
maxima, but it is possible, by adding several waves of nearly the same w and k
together, to get rid of all but one maximum.)

Now in those circumstances, since the square of (48.19) represents the chance
of finding a particle somewhere, we know that at a given instant the particle is
most likely to be near the center of the “lump,” where the amplitude of the wave
is maximum. If now we wait a few moments, the waves will move, and after some
time the “lump” will be somewhere else. If we knew that the particle originally was
situated somewhere, classically, we would expect that it would later be elsewhere
as a matter of fact, because it has a speed, after all, and a momentum. The quantum
theory, then, will go into the correct classical theory for the relationship of mo-
mentum, energy, and velocity only if the group velocity, the velocity of the modula-
tion, is equal to the velocity that we would obtain classically for a particle of the
same momentum.

It is now necessary to demonstrate that this is, or is not, the case. According
to the classical theory, the energy is related to the velocity through an equation like

2
mc

E = 0" 48.20

V1= v2/c2 ( )

Similarly, the momentum is
my

Vi e

That is the classical theory, and as a consequence of the classical theory, by eliminat-
ing v, we can show that

p= (48.21)

E? — p%c?® = m%c*,

That is the four-dimensional grand result that we have talked and talked about,
that p,p, = m?; that is the relation between energy and momentum in the classical
theory. Now that means, since these E’s and p’s are going to become w’s and k’s,
by substitution of E = #wand p = #k, that for quantum mechanics it is necessary
that
7202
c?

~ #%k2 = m?c, (48.22)

This, then, is the relationship between the frequency and the wave number of a
quantum-mechanical amplitude wave representing a particle of mass m. From
this equation we can deduce that w is

w = vk + m2c2/R2.

The phase velocity, w/k, is here again faster than the speed of light!

Now let us look at the group velocity. The group velocity should be dw/dk,
the speed at which the modulations move. We have to differentiate a square root,
which is not very difficult. The derivative is

do ke |
dk /2 F m2c2 [h2

Now the square root is, after all, w, so we could write this as dw/dk = c’k/w.
Further, k/w is p/E, so

cp
A

But from (48.20) and (48.21), ¢®p/E = v, the velocity of the particle, according
to classical mechanics. So we see that whereas the fundamental quantum-mechani-
cal relationship E = #w and p = #k, for the identification of w and k with the
classical E and p, only produces the equation w? — k2¢? = m2c*/A2, now we
also understand the relationships (48.20) and (48.21) which connected E and p
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to the velocity. Of course the group velocity must be the velocity of the particle
if the interpretation is going to make any sense. If we think the particle is over
here at one time, and then ten minutes later we think it is over there, as the quantum
mechanics said, the distance traversed by the “lump,” divided by the time interval,
must be, classically, the velocity of the particle.

48-6 Waves in three dimensions

We shall now bring our discussion of waves to a close with a few general
remarks about the wave equation. These remarks are intended to give some view
of the future—not that we can understand everything exactly just now, but rather to
see what things are going to look like when we study waves a little more. First of
all, the wave equation for sound in one dimension was

1o
ax2 2 or2

s

where c is the speed of whatever the wave is—in the case of sound, it is the sound
speed; in the case of light, it is the speed of light. We showed that for a sound wave
the displacements would propagate themselves at a certain speed. But the excess
pressure also propagates at a certain speed, and so does the excess density. So we
should expect that the pressure would satisfy the same equation, as indeed it does.
We shall leave it to the reader to prove that it does. Hint: p. is proportional to the
rate of change of X with respect to x. Therefore if we differentiate the wave equation
with respect to x, we will immediately discover that 8x/dx satisfies the same equa-
tion. That is to say, p, satisfies the same equation. But P, is proportional to p.,
and therefore P, does too. So the pressure, the displacements, everything, satisfy
the same wave equation.

Usually one sees the wave equation for sound written in terms of pressure
instead of in terms of displacement, because the pressure is a scalar and has no
direction. But the displacement is a vector and has direction, and it is thus easier
to analyze the pressure.

The next matter we discuss has to do with the wave equation in three dimen-
sions. We know that the sound wave solution in one dimension is e*“*~*, with
w = kc,, but we also know that in three dimensions a wave would be repre-
sented by e'@!—k=—ky—k? where, in this case, w? = k2cj, which is, of course,
(K24 kﬁ + k2)c?. Now what we want to do is to guess what the correct wave equa-
tion in three dimensions is. Naturally, for the case of sound this can be deduced by
going through the same dynamic argument in three dimensions that we made in
one dimension. But we shall not do that; instead we just write down what comes
out: the equation for the pressure (or displacement, or anything) is

a%p,
ax2

a%p,
dy2

%P, _ 1 9°P,
9z2 2 9

n n (48.23)

That this is true can be verified by substituting in ¢!@t=k-0  Clearly, every time we
differentiate with respect to x, we multiply by —ik,. If we differentiate twice, it
is equivalent to multiplying by —k2, so the first term would become —k2P,, for
that wave. Similarly, the second term becomes —ije, and the third term becomes
—k2P,. On the right, we get —(w?/c?)P,. Then, if we take away the P.’s and
change the sign, we see that the relationship between k and w is the one that we want.

Working backwards again, we cannot resist writing down the grand equation
which corresponds to the dispersion equation (48.22) for quantum-mechanical
waves. If ¢ represents the amplitude for finding a particle at position x, y, z, at
the time 7, then the great equation of quantum mechanics for free particles is this:

3% 1 3% mic?

2
¢ 96 _10e_mC 4 (48.24)
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First of all, the relativity character of this expression is suggested by the appearance
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of x, y, z and ¢ in the nice combination relativity usually involves. Second, it is a
wave equation which, if we try a plane wave, would produce as a consequence that
—k® + w?/c® = m®c?/h?, which is the right relationship for quantum mechanics.
There is still another great thing contained in the wave equation: the fact that any
superposition of waves is also a solution. So this equation contains all of the
quantum mechanics and the relativity that we have been discussing so far, at least
so long as it deals with a single particle in empty space with no external potentials
or forces on it!

48-7 Normal modes

Now we turn to another example of the phenomenon of beats which is rather
curious and a little different. Imagine two equal pendulums which have, between
them, a rather weak spring connection. They are made as nearly as possible the
same length. If we pull one aside and let go, it moves back and forth, and it pulls
on the connecting spring as it moves back and forth, and so it really is a machine
for generating a force which has the natural frequency of the other pendulum.
Therefore, as a consequence of the theory of resonance, which we studied before,
when we put a force on something at just the right frequency, it will drive it. So,
sure enough, one pendulum moving back and forth drives the other. However, in
this circumstance there is a new thing happening, because the total energy of the
system is finite, so when one pendulum pours its energy into the other to drive it,
it finds itself gradually losing energy, until, if the timing is just right along with the
speed, it loses all its energy and is reduced to a stationary condition! Then, of
course, it is the other pendulum ball that has all the energy and the first one which
has none, and as time goes on we see that it works also in the opposite direction,
and that the energy is passed back into the first ball; this is a very interesting and
amusing phenomenon. We said, however, that this is related to the theory of
beats, and we must now explain how we can analyze this motion from the point of
view of the theory of beats.

We note that the motion of either of the two balls is an oscillation which has
an amplitude which changes cyclically. Therefore the motion of one of the balls
is presumably analyzable in a different way, in that it is the sum of two oscillations,
present at the same time but having two slightly different frequencies. Therefore it
ought to be possible to find two other motions in this system, and to claim that
what we saw was a superposition of the two solutions, because this is of course a
linear system. Indeed, it is easy to find two ways that we could start the motion,
each one of which is a perfect, single-frequency motion—absolutely periodic.
The motion that we started with before was not strictly periodic, since it did not
last; soon one ball was passing energy to the other and so changing its amplitude;
but there are ways of starting the motion so that nothing changes and, of course,
as soon as we see it we understand why. For example, if we made both pendulums
go together, then, since they are of the same length and the spring is not then doing
anything, they will of course continue to swing like that for all time, assuming no
friction and that everything is perfect. On the other hand, there is another possible
motion which also has a definite frequency: that is, if we move the pendulums
oppositely, pulling them aside exactly equal distances, then again they would be
in absolutely periodic motion. We can appreciate that the spring just adds a little
to the restoring force that the gravity supplies, that is all, and the system just keeps
oscillating at a slightly higher frequency than in the first case. Why higher?
Because the spring is pulling, in addition to the gravitation, and it makes the system
a little “stiffer,” so that the frequency of this motion is just a shade higher than that
of the other.

Thus this system has two ways in which it can oscillate with unchanging
amplitude: it can either oscillate in a manner in which both pendulums go the
same way and oscillate all the time at one frequency, or they could go in opposite
directions at a slightly higher frequency.

Now the actual motion of the thing, because the system is linear, can be
represented as a superposition of the two. (The subject of this chapter, remember,
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is the effects of adding two motions with different frequencies.) So think what
would happen if we combined these two solutions. If at 1 = 0 the two motions
are started with equal amplitude and in the same phase, the sum of the two motions
means that one ball, having been impressed one way by the first motion and the
other way by the second motion, is at zero, while the other ball, having been dis-
placed the same way in both motions, has a large amplitude. As time goes on,
however, the two basic motions proceed independently, so the phase of one relative
to the other is slowly shifting. That means, then, that after a sufficiently long time,
when the time is enough that one motion could have gone 900%™ oscillations,
while the other went only “900,” the relative phase would be just reversed with
respect to what it was before. That is, the large-amplitude motion will have fallen
to zero, and in the meantime, of course, the initially motionless ball will have
attained full strength!

So we see that we could analyze this complicated motion either by the idea
that there is a resonance and that one passes energy to the other, or else by the
superposition of two constant-amplitude motions at two different frequencies.
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