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Harmonies

50-1 Musical tones

Pythagoras is said to have discovered the fact that two similar strings under
the same tension and differing only in length, when sounded together give an
effect that is pleasant to the ear /f the lengths of the strings are in the ratio of two
small integers. If the lengths are as one is to two, they then correspond to the
octave in music. If the lengths are as two is to three, they correspond to the in-
terval between C and G, which is called a fifth. These intervals are generally
accepted as “pleasant” sounding chords.

Pythagoras was so impressed by this discovery that he made it the basis of a
school—Pythagoreans they were called—which held mystic beliefs in the great
powers of numbers. It was believed that something similar would be found out
about the planets—or “spheres.” We sometimes hear the expression: “the music
of the spheres.” The idea was that there would be some numerical relationships
between the orbits of the planets or between other things in nature. People usually
think that this is just a kind of superstition held by the Greeks. But is it so different
from our own scientific interest in quantitative relationships? Pythagoras’ dis-
covery was the first example, outside geometry, of any numerical relationship in
nature. It must have been very surprising to suddenly discover that there was a
Jfact of nature that involved a simple numerical relationship. Simple measurements
of lengths gave a prediction about something which had no apparent connection to
geometry—the production of pleasant sounds. This discovery led to the extension
that perhaps a good tool for understanding nature would be arithmetic and mathe-
matical analysis. The results of modern science justify that point of view.

Pythagoras could only have made his discovery by making an experimental
observation. Yet this important aspect does not seem to have impressed him.
If it had, physics might have had a much earlier start. (It is always easy to look
back at what someone else has done and to decide what he should have done!)

We might remark on a third aspect of this very interesting discovery: that the
discovery had to do with two notes that sound pleasant to the ear. We may question
whether we are any better off than Pythagoras in understanding why only certain
sounds are pleasant to our ear. The general theory of aesthetics is probably no
further advanced now than in the time of Pythagoras. In this one discovery of the
Greeks, there are the three aspects: experiment, mathematical relationships, and
aesthetics. Physics has made great progress on only the first two parts. This
chapter will deal with our present-day understanding of the discovery of Pythagoras.

Among the sounds that we hear, there is one kind that we call noise. Noise
corresponds to a sort of irregular vibration of the eardrum that is produced by the
irregular vibration of some object in the neighborhood. If we make a diagram to
indicate the pressure of the air on the eardrum (and, therefore, the displacement
of the drum) as a function of time, the graph which corresponds to a noise might
look like that shown in Fig. 50-1(a). (Such a noise might correspond roughly to
the sound of a stamped foot.) The sound of music has a different character. Music
is characterized by the presence of more-or-less sustained tones—or musical
“notes.” (Musical instruments may make noises as well!) The tone may last for a
relatively short time, as when a key is pressed on a piano, or it may be sustained
almost indefinitely, as when a flute player holds a long note.

What is the special character of a musical note from the point of view of the
pressure in the air? A musical note differs from a noise in that there is a periodicity
in its graph. There is some uneven shape to the variation of the air pressure with
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time, and the shape repeats itself over and over again. An example of a pressure-
time function that would correspond to a musical note is shown in Fig. 50-1(b).

Musicians will usually speak of a musical tone in terms of three character-
istics: the loudness, the pitch, and the “quality.” The “loudness” is found to
correspond to the magnitude of the pressure changes. The “pitch” corresponds to
the period of time for one repetition of the basic pressure function. (“Low”
notes have longer periods than “high” notes.) The “quality” of a tone has to do
with the differences we may still be able to hear between two notes of the same
loudness and pitch. An oboe, a violin, or a soprano are still distinguishable even
when they sound notes of the same pitch. The quality has to do with the structure
of the repeating pattern.

Let us consider, for a moment, the sound produced by a vibrating string. If
we pluck the string, by pulling it to one side and releasing it, the subsequent motion
will be determined by the motions of the waves we have produced. We know that
these waves will travel in both directions, and will be reflected at the ends. They
will slosh back and forth for a long time. No matter how complicated the wave is,
however, it will repeat itself. The period of repetition is just the time T required
for the wave to travel two full lengths of the string. For that is just the time re-
quired for any wave, once started, to reflect off each end and return to its starting
position, and be proceeding in the original direction. The time is the same for
waves which start out in either direction. Each point on the string will, then, return
to its starting position after one period, and again one period later, etc. The
sound wave produced must also have the same repetition. We see why a plucked
string produces a musical tone.

50-2 The Fourier series

We have discussed in the preceding chapter another way of looking at
the motion of a vibrating system. We have seen that a string has various natural
modes of oscillation, and that any particular kind of vibration that may be set
up by the starting conditions can be thought of as a combination—in suitable
proportions—of several of the natural modes, oscillating together. For a string
we found that the normal modes of oscillation had the frequencies wg, 2w,
3wg, - . . The most general motion of a plucked string, therefore, is composed of
the sum of a sinusoidal oscillation at the fundamental frequency wg, another at the
second harmonic frequency 2w, another at the third harmonic 3w, etc. Now the
fundamental mode repeats itself every period T; = 27/wg. The second harmonic
mode repeats itself every To = 27/2wqy. It also repeats itself every Ty = 2T,
after two of its periods. Similarly, the third harmonic mode repeats itself after a
time 7, which is 3 of its periods. We see again why a plucked string repeats its
whole pattern with a periodicity of 7';. It produces a musical tone.

We have been talking about the motion of the string. But the sound, which is
the motion of the air, is produced by the motion of the string, so its vibrations too
must be composed of the same harmonics—though we are no longer thinking about
the normal modes of the air. Also, the relative strength of the harmonics may be
different in the air than in the string, particularly if the string is “coupled” to the
air via a sounding board. The efficiency of the coupling to the air is different for
different harmonics.

If we let f(#) represent the air pressure as a function of time for a musical tone
[such as that in Fig. 50-1(b)], then we expect that f(f) can be written as the sum of
a number of simple harmonic functions of time—Ilike cos wt—for each of the various
harmonic frequencies. If the period of the vibration is 7, the fundamental angular
frequency will be w = 27 /T, and the harmonics will be 2w, 3w, etc.

There is one slight complication. For each frequency we may expect that the
starting phases will not necessarily be the same for all frequencies. We should,
therefore, use functions like cos (wf + ¢). It is, however, simpler to use instead
both the sine and cosine functions for each frequency. We recall that

cos (wf + ¢) = (cos ¢ cos wt — sin ¢ sin wr) (50.1)
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and since ¢ is a constant, any sinusoidal oscillation at the frequency w can be
written as the sum of a term with cos w? and another term with sin wz.

We conclude, then, that any function f(r) that is periodic with the period T
can be written mathematically as

S(0) = ao
+ a; cos wt + by sin wt
+ as cos 2wt + by sin 2wt
+ azcos 3wt + bz sin 3wt
+ ... +... (50.2)

where w = 27/T and the a’s and b’s are numerical constants which tell us how
much of each component oscillation is present in the oscillation f(7). We have
added the “zero-frequency” term a so that our formula will be completely general,
although it is usually zero for a musical tone. It represents a shift of the average
value (that is, the “zero” level) of the sound pressure. With it our formula can
take care of any case. The equality of Eq. (50.2) is represented schematically in
Fig. 50-2. (The amplitudes, a, and b,, of the harmonic functions must be suitably
chosen. They are shown schematically and without any particular scale in the
figure.) The series (50.2) is called the Fourier series for f().

We have said that any periodic function can be made up in this way. We
should correct that and say that any sound wave, or any function we ordinarily
encounter in physics, can be made up of such a sum. The mathematicians can
invent functions which cannot be made up of simple harmonic functions—for
instance, a function that has a “reverse twist” so that it has two values for some
values of #! We need not worry about such functions here.

50-3 Quality and consonance

Now we are able to describe what it is that determines the “quality” of a
musical tone. It is the relative amounts of the various harmonics—the values of
the a’s and b’s. A tone with only the first harmonic is a “pure” tone. A tone
with many strong harmonics is a “rich” tone. A violin produces a different pro-
portion of harmonics than does an oboe.

We can “manufacture” various musical tones if we connect several “oscilla-
tors” to a loudspeaker. (An oscillator usually produces a nearly pure simple
harmonic function.) We should choose the frequencies of the oscillators to be w,
2w, 3w, etc. Then by adjusting the volume control on each oscillator, we can add
in any amount we wish of each harmonic—thereby producing tones of different
quality. An electric organ works in much this way. The “keys” select the frequency
of the fundamental oscillator and the “stops” are switches that control the relative
proportions of the harmonics. By throwing these switches, the organ can be made
to sound like a flute, or an oboe, or a violin.

It is interesting that to produce such “artificial” tones we need only one oscilla-
tor for each frequency—we do not need separate oscillators for the sine and cosine
components. The ear is not very sensitive to the relative phases of the harmonics.
It pays attention mainly to the total of the sine and cosine parts of each frequency.
Our analysis is more accurate than is necessary to explain the subjective aspect of
music. The response of a microphone or other physical instrument does depend
on the phases, however, and our complete analysis may be needed to treat such
cases.

The “quality” of a spoken sound also determines the vowel sounds that we
recognize in speech. The shape of the mouth determines the frequencies of the
natural modes of vibration of the air in the mouth. Some of these modes are set
into vibration by the sound waves from the vocal chords. In this way, the ampli-
tudes of some of the harmonics of the sound are increased with respect to others.
When we change the shape of our mouth, harmonics of different frequencies are
given preference. These effects account for the difference between an ‘“‘e—e—e”
sound and an ‘“‘a-a—a” sound.
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We all know that a particular vowel sound—say “e—e-¢’—still “sounds like”
the same vowel whether we say (or sing) it at a high or a low pitch. From the
mechanism we describe, we would expect that particular frequencies are emphasized
when we shape our mouth for an “e-e-e,” and that they do not change as we change
the pitch of our voice. So the relation of the important harmonics to the funda-
mental—that is, the “quality”—changes as we change pitch. Apparently the mech-
anism by which we recognize speech is not based on specific harmonic relation-
ships.

What should we say now about Pythagoras’ discovery? We understand that
two similar strings with lengths in the ratio of 2 to 3 will have fundamental fre-
quencies in the ratio 3 to 2. But why should they “sound pleasant” together?
Perhaps we should take our clue from the frequencies of the harmonics. The
second harmonic of the lower shorter string will have the same frequency as the
third harmonic of the longer string. (It is easy to show—or to believe—that a
plucked string produces strongly the several lowest harmonics.)

Perhaps we should make the following rules. Notes sound consonant when
they have harmonics with the same frequency. Notes sound dissonant if their upper
harmonics have frequencies near to each other but far enough apart that there are
rapid beats between the two. Why beats do not sound pleasant, and why unison
of the upper harmonics does sound pleasant, is something that we do not know
how to define or describe. We cannot say from this knowledge of what sounds
good, what ought, for example, to smell good. In other words, our understanding
of it is not anything more general than the statement that when they are in unison
they sound good. It does not permit us to deduce anything more than the proper-
ties of concordance in music.

It is easy to check on the harmonic relationships we have described by some
simple experiments with a piano. Let us label the 3 successive C’s near the middle
of the keyboard by C, C’, and C"’, and the G’s just above by G, G’, and G’””. Then
the fundamentals will have relative frequencies as follows:

cC-2 G-3
C-4 G-6
C'-8  G'-12

These harmonic relationships can be demonstrated in the following way: Suppose
we press C' slowly—so that it does not sound but we cause the damper to be
lifted. If we then sound C, it will produce its own fundamental and some second
harmonic. The second harmonic will set the strings of C’ into vibration. If we
now release C (keeping C’ pressed) the damper will stop the vibration of the C
strings, and we can hear (softly) the note C’ as it dies away. In a similar way, the
third harmonic of C can cause a vibration of G’. Or the sixth of C (now getting
much weaker) can set up a vibration in the fundamental of G”.

A somewhat different result is obtained if we press G quietly and then sound
C’. The third harmonic of C’ will correspond to the fourth harmonic of G, so
only the fourth harmonic of G will be excited. We can hear (if we listen closely)
the sound of G”, which is two octaves above the G we have pressed! It is easy to
think up many more combinations for this game.

We may remark in passing that the major scale can be defined just by the
condition that the three major chords (F-A-C); (C-E-G); and (G-B-D) each
represent tone sequences with the frequency ratio (4: 5:6). These ratios—plus
the fact that gn octave (C-C’, B-B/, etc.) has the ratio 1: 2—determine the whole
scale for the “ideal” case, or for what is called “just intonation.” Keyboard in-
struments like the piano are not usually tuned in this manner, but a little “fudging”
is done so that the frequencies are approximately correct for all possible starting
tones. For this tuning, which is called “tempered,” the octave (still 1: 2) is divided
into 12 equal intervals for which the frequency ratio is (2)!/!2. A fifth no longer
has the frequency ratio 3/2, but 2712 = 1.499, which is apparently close enough
for most ears.
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We have stated a rule for consonance in terms of the coincidence of harmonics.
Is this coincidence perhaps the reason that two notes are consonant? One worker
has claimed that two pure tones—tones carefully manufactured to be free of har-
monics—do not give the sensations of consonance or dissonance as the relative
frequencies are placed at or near the expected ratios. (Such experiments are difficult
because it is difficult to manufacture pure tones, for reasons that we shall see later.)
We cannot still be certain whether the ear is matching harmonics or doing arith-
metic when we decide that we like a sound.

50-4 The Fourier coefficients

Let us return now to the idea that any note—that is, a periodic sound—can be
represented by a suitable combination of harmonics. We would like to show how
we can find out what amount of each harmonic is required. It is, of course, easy
to compute f(7), using Eq. (50.2), if we are given all the coefficients a and b. The
question now is, if we are given f(f) how can we know what the coefficients of the
various harmonic terms should be? (It is easy to make a cake from a recipe; but
can we write down the recipe if we are given a cake?)

Fourier discovered that it was not really very difficult. The term ay is certainly
easy. We have already said that it is just the average value of f(f) over one period
(from¢t = Otos = T). We can easily see that this is indeed so. The average value
of a sine or cosine function over one period is zero. Over two, or three, or any whole
number of periods, it is also zero. So the average value of all of the terms on the
right-hand side of Eq. (50.2) is zero, except for ay. (Recall that we must choose
w = 27/T)

Now the average of a sum is the sum of the averages. So the average of f(7) is
just the average of ao. But aq is a constant, so its average is just the same as its
value. Recalling the definition of an average, we have

1 T
@ = 7 _/0 ft) dt. (50.3)

The other coefficients are only a little more difficult. To find them we can use
a trick discovered by Fourier. Suppose we multiply both sides of Eq. (50.2) by
some harmonic function—say by cos 7wz. We have then

S - cos Twt = ag - cos Twt
+ a; cos wt - cos Twt + by sin wt - cos Twt
+ as cos 2wt - cos Twt -+ by sin 2wt * cos Twt

+... +...
+ ay cos Twt - cos Twt + by sin 7wt - cos Twt
+ - + - (50.4)

Now let us average both sides. The average of a, cos 7wt over the time T is pro-
portional to the average of a cosine over 7 whole periods. But that is just zero.
The average of almost all of the rest of the terms is also zero. Let us look at the
ay term. We know, in general, that

cos Acos B = Lcos(4 + B) + 3cos (4 — B). (50.5)

The a, term becomes
za1(cos 8wt + cos 6wi). (50.6)

We thus have two cosine terms, one with 8 full periods in T and the other with 6.
They both average to zero. The average of the a; term is therefore zero.

For the a, term, we would find a, cos 9wt and a, cos Swt, each of which also
averages to zero. For the ag term, we would find cos 16wt and cos (—2w?). But
cos (—2wt) is the same as cos 2wi, so both of these have zero averages. It is clear
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that all of the a terms will have a zero average except one. And that one is the
az term. For this one we have

%az(cos 14wt + cos 0). (50.7)

The cosine of zero is one, and its average, of course, is one. So we have the result
that the average of all of the a terms of Eq. (50.4) equals 3a5.
The b terms are even easier. When we multiply by any cosine term like cos nwt,
we can show by the same method that all of the b terms have the average value zero.
We see that Fourier’s “trick” has acted like a sieve. When we multiply by
cos 7wt and average, all terms drop out except a7, and we find that

Average [f(f) - cos Twt] = aq/2, (50.8)
or

T
a7 = % /0 (1) - cos Twt dt. (50.9)

We shall leave it for the reader to show that the coefficient b7 can be obtained
by multiplying Eq. (50.2) by sin 7wt and averaging both sides. The result is

T
b; = %/0 J(t) + sin Twi dt. (50.10)

Now what is true for 7 we expect is true for any integer. So we can summarize
our proof and result in the following more elegant mathematical form. If m and
n are integers other than zero, and if w = 27/7, then

T
I / sin nwt cos mwt dt = 0. (50.11)
0
T
1I. / COS nwt cos mwt dt = :
o 0 ifn>=m (50.12)
T T/2ifn = m.
II1. / sin nwt sin mwt dt =
0
IV. f(t) = ao+ ) ancosnwt + D by, sin nwt. (50.13)
n=1 n=1
1 T
V. a = T j f@) - dt. (50.14)
0
5 [T
a, = T/ S(#) - cos nwt dt. (50.15)
0
2 T
b = % / f(2) - sin nwt dt. (50.16)
0

In earlier chapters it was convenient to use the exponential notation for repre-
senting simple harmonic motion. Instead of cos wt we used Re €', the real part
of the exponential function. We have used cosine and sine functions in this
chapter because it made the derivations perhaps a little clearer. Our final result of
Eq. (50.13) can, however, be written in the compact form

f(1) = Re i ane™™", (50.17)

n=0

where @, is the complex number a, — ib, (with by = 0). If we wish to use the
same notation throughout, we can write also

2 T
4 = 7 fo fOe ™ dt (> 1). (50.18)
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We now know how to “analyze” a periodic wave into its harmonic compon-
ents. The procedure is called Fourier analysis, and the separate terms are called
Fourier components. We have not shown, however, that once we find all of the
Fourier components and add them together, we do indeed get back our f(f). The
mathematicians have shown, for a wide class of functions, in fact for all that are
of interest to physicists, that if we can do the integrals we will get back f(¢). There
is one minor exception. If the function f(7) is discontinuous, i.e., if it jumps suddenly
from one value to another, the Fourier sum will give a value at the breakpoint
halfway between the upper and lower values at the discontinuity. So if we have the
strange function f(r) = 0,0 < ¢ < tg,and f(t) = 1 for ¢ty < t < T, the Fourier
sum will give the right value everywhere except at 1, where it will have the value 3
instead of 1. It is rather unphysical anyway to insist that a function should be
Zero up to tg, but 1 right at to. So perhaps we should make the “rule” for physicists
that any discontinuous function (which can only be a simplification of a real
physical function) should be defined with halfway values at the discontinuities.
Then any such function—with any finite number of such jumps—as well as all
other physically interesting functions, are given correctly by the Fourier sum.

As an exercise, we suggest that the reader determine the Fourier series for
the function shown in Fig. 50-3. Since the function cannot be written in an explicit
algebraic form, you will not be able to do the integrals from zero to T in the usual
way. The integrals are easy, however, if we separate them into two parts: the
integral from zero to 7/2 (over which f(¢) = 1) and the integral from T/2 to T
(over which f(rf) = —1). The result should be

fit) = ;ir (sin wf -+ ¥ sin 3ef + sin St + - -), (50.19)

where w = 27 /T. We thus find that our square wave (with the particular phase
chosen) has only odd harmonics, and their amplitudes are in inverse proportion
to their frequencies.

Let us check that Eq. (50.19) does indeed give us back f(7) for some value of 7.
Let us choose 1 = T/4, or wt = w/2. We have

) = %(sing + a3 Lan Ty ) (50.20)
4 1 1 1
=;<1_§+§_7+..) (50.21)

The series* has the value 7/4, and we find that f(r) = 1.

50-5 The energy theorem

The energy in a wave is proportional to the square of its amplitude. For a
. -« . . T 2
wave of complex shape, the energy in one period will be proportional to fo (0 dr.
We can also relate this energy to the Fourier coefficients. We write
T
0

T o0 00
f fA@yde = / [ao 4+ D ancosnwt + Y bysin nwt]2 dr.  (50.22)
0 n=1 n=1

When we expand the square of the bracketed term we will get all possible cross
terms, such as aj cos 5wt by cos Twr. We have shown above, however, [Egs.
(50.11) and (50.12)) that the integrals of all such terms over one period is zero.

o" The series can be evaluated in the following way. First we remark that

o [dx/(1 + x?)] = tan—! x. Second, we expand the integrand in a series 1/(1 + x?) =
1 — x2 4+ x* — x8 4 ... We integrate the series term by term (from zero to x) to
obtaintan~!x = 1 — x3/3 4+ x5/5 — x7/7 4+ ... Setting x = 1, we have the stated
result, since tan~11 = 7/4.
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We have left only the square terms like a? cos? 5wr. The integral of any cosine
squared or sine squared over one period is equal to T/2, so we get

T
/ 2 dt
0

Tad + 2 (@t + @b+ -+ B+ BY )

T 0
Ta§ + 5 n;l (ah + b7). (50.23)
This equation is called the “energy theorem,” and says that the total energy in a
wave is just the sum of the energies in all of the Fourier components. For example,
applying this theorem to the series (50.19), since [f()]® = 1 we get

SRENE\ (R

2 \r 32 52 072 )¢
so we learn that the sum of the squares of the reciprocals of the odd integers is
m2/8. In a similar way, by first obtaining the Fourier series for the function and

using the energy theorem, we can prove that 1 + 1/2* + 1/3* + -+ -is w%/90,
a result we needed in Chapter 45.

50-6 Nonlinear responses

Finally, in the theory of harmonics there is an important phenomenon which
should be remarked upon because of its practical importance—that of nonlinear
effects. In all the systems that we have been considering so far, we have supposed
that everything was linear, that the responses to forces, say the displacements or
the accelerations, were always proportional to the forces. Or that the currents in
the circuits were proportional to the voltages, and so on. We now wish to consider
cases where there is not a strict proportionality. We think, at the moment, of some
device in which the response, which we will call x,,; at the time ¢, is determined
by the input x;, at the time . For example, x;, might be the force and x,,, might
be the displacement. Or x;, might be the current and x,, the voltage. If the device
is linear, we would have

xout(t) = Kxin(t),

where K is a constant independent of ¢ and of x;,. Suppose, however, that the
device is nearly, but not exactly, linear, so that we can write

Xour(t) = K[xin(f) + exhu(D)],

where e is small in comparison with unity. Such linear and nonlinear responses are
shown in the graphs of Fig. 50-4.

Nonlinear responses have several important practical consequences. We
shall discuss some of them now. First we consider what happens if we apply a
pure tone at the input. We let x;, = cos wt. If we plot x,,; as a function of time
we get the solid curve shown in Fig. 50-5. The dashed curve gives, for comparison,
the response of a linear system. We see that the output is no longer a cosine
function. It is more peaked at the top and flatter at the bottom. We say that the
output is distorted. We know, however, that such a wave is no longer a pure
tone, that it will have harmonics. We can find what the harmonics are. Using
Xxin = cos wt with Eq. (50.25), we have

(50.24)

(50.25)

Xout = K(cos wt + € cos® wi). (50.26)
From the equality cos? 8 = (1 — cos 26), we have
Xout = K (cos wt + % — 5 cos 2wt) . (50.27)

The output has not only a component at the fundamental frequency, that was
present at the input, but also has some of its second harmonic. There has also
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appeared at the output a constant term K(e/2), which corresponds to the shift of
the average value, shown in Fig. 50-5. The process of producing a shift of the
average value is called rectification.

A nonlinear response will rectify and will produce harmonics of the frequencies
atits input. Although the nonlinearity we assumed produced only second harmon-
ics, nonlinearities of higher order—those which have terms like x¥ and x%, for
example—will produce harmonics higher than the second.

Another effect which results from a nonlinear response is modulation. If our
input function contains two (or more) pure tones, the output will have not only
their harmonics, but still other frequency components. Let x;, = 4 cos wit +
B cos wyt, where now w; and wy are not intended to be in a harmonic relation.
In addition to the linear term (which is K times the input) we shall have a compo-
nent in the output given by

Xout = Ke(A cos wit + Bcos war)? (50.28)
= Ke(A® cos® wit + B2 cos? wyt + 24B cos w,f cos wol).  (50.29)

The first two terms in the parentheses of Eq. (50.29) are just those which gave
the constant terms and second harmonic terms we found above. The last term is
new.

We can look at this new “‘cross term” AB cos w17 cos wsf in two ways. First,
if the two frequencies are widely different (for example, if w, is much greater than
wsp) we can consider that the cross term represents a cosine oscillation of varying
amplitude. That is, we can think of the factors in this way:

ABcos witcos wyt = C(f) cos wy?, (50.30)
with
C(f) = ABcos wst. (50.31)

We say that the amplitude of cos w is modulated with the frequency ws.
Alternatively, we can write the cross term in another way:

AB cos wit cos wot = %9 [cos (w1 + w2)t + cos (w3 — wg)t]. (50.32)

We would now say that two new components have been produced, one at the sum
frequency (w; + ws), another at the difference frequency (w; — wy).

We have two different, but equivalent, ways of looking at the same result.
In the special case that w; >> ws, we can relate these two different views by re-
marking that since (w; + w3) and (w; — ws) are near to each other we would
expect to observe beats between them. But these beats have just the effect of
modulating the amplitude of the average frequency w by one-half the difference
frequency 2w,. We see, then, why the two descriptions are equivalent.

In summary, we have found that a nonlinear response produces several effects:
rectification, generation of harmonics, and modulation, or the generation of
components with sum and difference frequencies.

We should notice that all these effects (Eq. 50.29) are proportional not only
to the nonlinearity coefficient €, but also to the product of two amplitudes—either
A®, B? or AB. We expect these effects to be much more important for strong
signals than for weak ones.

The effects we have been describing have many practical applications. First,
with regard to sound, it is believed that the ear is nonlinear. This is believed to
account for the fact that with loud sounds we have the sensation that we hear
harmonics and also sum and difference frequencies even if the sound waves contain
only pure tones.

The components which are used in sound-reproducing equipment—amplifiers,
loudspeakers, etc.—always have some nonlinearity. They produce distortions in
the sound—they generate harmonics, etc.—which were not present in the original
sound. These new components are heard by the ear and are apparently objection-
able. It is for this reason that “Hi-Fi” equipment is designed to be as linear as
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possible. (Why the nonlinearities of the ear are not “objectionable” in the same
way, or how we even know that the nonlinearity is in the loudspeaker rather than
in the ear is not clear!)

Nonlinearities are quite necessary, and are, in fact, intentionally made large
in certain parts of radio transmitting and receiving equipment. In an AM trans-
mitter the “voice” signal (with frequencies of some kilocycles per second) is
combined with the ‘“‘carrier” signal (with a frequency of some megacycles per
second) in a nonlinear circuit called a modulator, to produce the modulated
oscillation that is transmitted. In the receiver, the components of the received signal
are fed to a nonlinear circuit which combines the sum and difference frequencies
of the modulated carrier to generate again the voice signal.

When we discussed the transmission of light, we assumed that the induced
oscillations of charges were proportional to the electric field of the light—that the
response was linear. That is indeed a very good approximation. It is only within
the last few years that light sources have been devised (lasers) which produce an
intensity of light strong enough so that nonlinear effects can be observed. It is
now possible to generate harmonics of light frequencies. When a strong red light
passes through a piece of glass, a little bit of blue light—second harmonic—
comes out!
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