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Waves

51-1 Bow waves

Although we have finished our quantitative analyses of waves, this added
chapter on the subject is intended to give some appreciation, qualitatively, for
various phenomena that are associated with waves, which are too complicated to
analyze in detail here. Since we have been dealing with waves for several chapters,
more properly the subject might be called “some of the more complex phenomena
associated with waves.”

The first topic to be discussed concerns the effects that are produced by a
source of waves which is moving faster than the wave velocity, or the phase velocity.
Let us first consider waves that have a definite velocity, like sound and light. If
we have a source of sound which is moving faster than the speed of sound, then
something like this happens: Suppose at a given moment a sound wave is generated
from the source at point x, in Fig. 51-1; then, in the next moment, as the source
moves to xj, the wave from x; expands by a radius r; smaller than the distance
that the source moves; and, of course, another wave starts from X2. When the
sound source has moved still farther, to x5, and a wave is starting there, the wave
from x, has now expanded to r,, and the one from xy has expanded to r3. Of
course the thing is done continuously, not in steps, and therefore, we have a series
of wave circles with a common tangent line which goes through the center of the
source. We see that instead of a source generating spherical waves, as it would if it
were standing still, it generates a wavefront which forms a cone in three dimensions,
or a pair of lines in two dimensions. The angle of the cone is very easy to figure
out. In a given amount of time the source moves a distance, say x3 — X1, pro-
portional to v, the velocity of the source. In the meantime the wavefront has moved
out a distance r3, proportional to c,, the speed of the wave. Therefore it is clear
that the half-angle of opening has a sine equal to the ratio of the speed of the waves,
divided by the speed of the source, and this sine has a solution only if ¢y, is less
than v, or the speed of the object is faster than the speed of the wave:

. Co
sin § = " (51.1)

Incidentally, although we implied that it is necessary to have a source of
sound, it turns out, very interestingly, that once the object is moving faster than the
speed of sound, it will make sound. That is, it is not necessary that it have a certain
tone vibrational character. Any object moving through a medium faster than the
speed at which the medium carries waves will generate waves on each side, auto-
matically, just from the motion itself. This is simple in the case of sound, but it
also occurs in the case of light. At first one might think nothing can move faster
than the speed of light. However, light in glass has a phase velocity less than the
speed of light in a vacuum, and it is possible to shoot a charged particle of very
high energy through a block of glass such that the particle velocity is close to the
speed of light in a vacuum, while the speed of light in the glass may be only %
the speed of light in the vacuum. A particle moving faster than the speed of light
in the medium will produce a conical wave of light with its apex at the source,
like the wave wake from a boat (which is from the same effect, as a matter of
fact). By measuring the cone angle, we can determine the speed of the particle.
This is used technically to determine the speeds of particles as one of the methods
of determining their energy in high-energy research. The direction of the light is
all that needs to be measured.
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Fig. 51-1. The shock wave front lies
on a cone with apex at the source and
half-angle 6 = sin~' v/c,.



Pressure

Fig. 51-2. A shock wave induced in
a gas by a projectile moving faster than
sound.

This light is sometimes called Ceretikov radiation, because it was first observed
by Cerenkov. How intense this light should be was analyzed theoretically by Frank
and Tamm. The 1958 Nobel Prize for physics was awarded jointly to all three for
this work.

The corresponding circumstances in the case of sound are illustrated in Fig.
51-2, which is a photograph of an object moving through a gas at a speed greater
than the speed of sound. The changes in pressure produce a change in refractive
index, and with a suitable optical system the edges of the waves can be made
visible. We see that the object moving faster than the speed of sound does, indeed,
produce a conical wave. But closer inspection reveals that the surface is actually
curved. It is straight asymptotically, but it is curved near the apex, and we have
now to discuss how that can be, which brings us to the second topic of this chapter.

ty>t
t2>t| 37 "2

Fig. 51-3. Wavefront “snapshots” at

Distance successive instants in time.

51-2 Shock waves

Wave speed often depends on the amplitude, and in the case of sound the speed
depends upon the amplitude in the following way. An object moving through the
air has to move the air out of the way, so the disturbance produced in this case
is some kind of a pressure step, with the pressure higher behind the wavefront than
in the undisturbed region not yet reached by the wave (running along at the normal
speed, say). But the air that is left behind, after the wavefront passes, has been
compressed adiabatically, and therefore the temperature is increased. Now the
speed of sound increases with the temperature, so the speed in the region behind
the jump is faster than in the air in front. That means that any other disturbance
that is made behind this step, say by a continuous pushing of the body, or any other
disturbance, will ride faster than the front, the speed increasing with higher pressure.
Figure 51-3 illustrates the situation, with some little bumps of pressure added to
the pressure contour to aid visualization. We see that the higher pressure regions
at the rear overtake the front as time goes on, until ultimately the compressional
wave develops a sharp front. If the strength is very high, “ultimately” means
right away; if it is rather weak, it takes a long time; it may be, in fact, that the sound
is spreading and dying out before it has time to do this.

The sounds we make in talking are extremely weak 1eliative (o Uit WmOpheR
pressure—only 1 part in a million or so. But for pressure changes of the order of 1
atmosphere, the wave velocity increases by about twenty percent, and the wavefront
sharpens up at a correspondingly high rate. In nature nothing happens infinitely
rapidly, presumably, and what we call a “sharp” front has, actually, a very slight
thickness; it is not infinitely steep. The distances over which it is varying are of the
51-2




order of one mean free path, in which the theory of the wave equation begins to
fail because we did not consider the structure of the gas.

Now, referring again to Fig. 51-2, we see that the curvature can be understood
if we appreciate that the pressures near the apex are higher than they are farther
back, and so the angle 6 is greater. That is, the curve is the result of the fact that the
speed depends upon the strength of the wave. Therefore the wave from an atomic
bomb explosion travels much faster than the speed of sound for a while, until it gets
so far out that it is weakened to such an extent from spreading that the pressure
bump is small compared with atmospheric pressure. The speed of the bump then
approaches the speed of sound in the gas into which it is going. (Incidentally, it
always turns out that the speed of the shock is higher than the speed of sound in
the gas ahead, but is lower than the speed of sound in the gas behind. That is,
impulses from the back will arrive at the front, but the front rides into the medium
in which it is going faster than the normal speed of signals. So one cahinot tell,
acoustically, that the shock is coming until it is too late. The light from the bomb
arrives first, but one cannot tell that the shock is coming until it arrives, because
there is no sound signal coming ahead of it.)

This is a very interesting phenomenon, this piling up of waves, and the main
point on which it depends is that after a wave is present, the speed of the resulting
wave should be higher. Another example of the same phenomenon is the following.
Consider water flowing in a long channel with finite width and finite depth. If a
piston, or a wall across the channel, is moved along the channel fast enough, water
piles up, like snow before a snow plow. Now suppose the situation is as shown in
Fig. 51-4, with a sudden step in water height somewhere in the channel. It can be
demonstrated that long waves in a channel travel faster in deeper water than they
do in shallow water. Therefore any new bumps or irregularities in energy supplied
by the piston run off forward and pile up at the front. Again, ultimately what we
have is just water with a sharp front, theoretically. However, as Fig. 51-4 shows,
there are complications. Pictured is a wave coming up a channel; the piston is at
the far right end of the channel. At first it might have appeared like a well-behaved
wave, as one might expect, but farther along the channel, it has become sharper and
sharper until the events pictured occurred. There is a terrible churning at the
surface, as the pieces of water fall down, but it is essentially a very sharp rise with
no disturbance of the water ahead.

Actually water is much more complicated than sound. However, just to illus-
trate a point, we will try to analyze the speed of such a so-called bore, in a channel.
The point here is not that this is of any basic importance for our purposes—it is
not a great generalization—it is only to illustrate that the laws of mechanics that
we already know are capable of explaining the phenomenon.

Imagine, for a moment, that the water does look something like Fig. 51-5(a),
that water at the higher height 4, is moving with a velocity », and that the front is
moving with velocity u into undisturbed water which is at height #;. We would like
to determine the speed at which the front moves. In a time At a vertical plane
initially at x; moves a distance v Ar to x,, while the front of the wave has moved
u At

Now we apply the equations of conservation of matter and momentum. First,
the former: Per unit channel width, we see that the amount A,v A7 of matter that
has moved past x; (shown shaded) is comperisated by the other shaded region,
which amounts to (h; — hy)u At So, dividing by At, vhy = u(he — h;). That
does not yet give us enough, because although we have 4, and 4,, we do not know
either u or v; we are trying to get both of them.

Now the next step is to use conservation of momentum. We have not discussed
the problems of water pressure, or anything in hydrodynamics, but it is clear any-
way that the pressure of water at a given depth is just enough to hold up the column
of water above it. Therefore the pressure of water is equal to p, the density of water,
times g, times the depth below the surface. Since the pressure increases linearly
with depth, the average pressure over the plane at x, say, is 1pgh,, which is also
the average force per unit width and per unit height pushing the plane toward x.,.
So we multiply by another 4, to get the total force which is acting on the water
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pushing from the left. On the other hand, there is pressure in the water on the
right also, exerting an opposite force on the region in question, which is, by the
same kind of analysis, 3pghi. Now we must balance the forces against the rate of
change of the momentum. Thus we have to figure out how much more momentum
there is in situation (b) in Fig. 51-5 than there was in (a). We see that the additional
mass that has acquired the speed v is just phsu At — phav At (per unit width), and
multiplying this by v gives the additional momentum to be equated to the impulse
F At

(phau At — phyv Aty = (3pghs — %pgh?) At.

If we eliminate » from this equation by substituting vhg = u(hs — h,), already
found, and simplify, we get finally that u® = ghy(h; + h3)/2h;.

If the height difference is very small, so that 4, and 4, are nearly equal, this
says that the velocity =+/gh. As we will see later, that is only true provided the
wavelength of the wave is longer than the depth of the channel.

We could also do the analogous thing for sound waves—including the con-
servation of internal energy, not the conservation of entropy, because the shock is
irreversible. In fact, if one checks the conservation of energy in the bore problem,
one finds that energy is not conserved. If the height difference is small, it is almost
perfectly conserved, but as soon as the height difference becomes very appreciable,
there is a net loss of energy. This is manifested as the falling water and the churning
shown in Fig. 51-4.

In shock waves there is a corresponding apparent loss of energy, from the
point of view of adiabatic reactions. The energy in the sound wave, behind the
shock, goes into heating of the gas after shock passes, corresponding to churning of
the water in the bore. In working it out, three equations for the sound case turn
out to be necessary for solution, and the temperature behind the shock is not the
same as the temperature in front, as we have seen.

If we try to make a bore that is upside down (4, < 4;), then we find that the
energy loss per second is negative. Since energy is not available from anywhere,
that bore cannot then maintain itself; it is unstable. If we were to start a wave of
that sort, it would flatten out, because the speed dependence on height that resulted
in sharpening in the case we discussed would now have the opposite effect.

51-3 Waves in solids

The next kind of waves to be discussed are the more complicated waves in
solids. We have already discussed sound waves in gas and in liquid, and there is a
direct analog to a sound wave in a solid. If a sudden push is applied to a solid, it is
compressed. It resists the compression, and a wave analogous to sound is started.
However there is another kind of wave that is possible in a solid, and which is not
possible in a fluid. If a solid is distorted by pushing it sideways (called shearing),
then it tries to pull itself back. That is by definition what distinguishes a solid from
a liquid: if we distort a liquid (internally), hold it a minute so that it calms down,
and then let go, it will stay that way, but if we take a solid and push it, like shearing
a piece of “Jello,” and let it go, it flies back and starts a shear wave, travelling in
the same way the compressions travel. In all cases, the shear wave speed is less
than the speed of longitudinal waves. The shear waves are somewhat more anal-
ogous, so far as their polarizations are concerned, to light waves. Sound has no
polarization, it is just a pressure wave. Light has a characteristic orientation per-
pendicular to its direction of travel.

In a solid, the waves are of both kinds. First, there is a compression wave,
analogous to sound, that runs at one speed. If the solid is not crystalline, then a
shear wave polarized in any direction will propagate at a characteristic speed.
(Of course all solids are crystalline, but if we use a block made up of microcrystals
of all orientations, the crystal anisotropies average out.)

Another interesting question concerning sound waves is the following: What
happens if the wavelength in a solid gets shorter, and shorter, and shorter? How
short can it get? It is interesting that it cannot get any shorter than the space
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between the atoms, because if there is supposed to be a wave in which one point
goes up and the next down, etc., the shortest possible wavelength is clearly the
atom spacing. In terms of the modes of oscillation, we say that there are longi-
tudinal modes, and transverse modes, long wave modes, short wave modes. As
we consider wavelengths comparable to the spacing between the atoms, then the
speeds are no longer constant; there is a dispersion effect where the velocity is not
independent of the wave number. But, ultimately, the highest mode of transverse
waves would be that in which every atom is doing the opposite of neighboring
atoms.

Now from the point of view of atoms, the situation is like the two pendulums
that we were talking about, for which there are two modes, one in which they both
go together, and the other in which they go apart. It is possible to analyze the
solid waves another way, in terms of a system of coupled harmonic oscillators, like
an enormous number of pendulums, with the highest mode such that they oscillate
oppositely, and lower modes with different relationships of the timing.

The shortest wavelengths are so short that they are not usually available
technically. However they are of great interest because, in the theory of thermo-
dynamics of a solid, the heat properties of a solid, for example specific heats, can
be analyzed in terms of the properties of the short sound waves. Going to the
extreme of sound waves of ever shorter wavelength, one necessarily comes to
the individual motions of the atoms; the two things are the same ultimately.

A very interesting example of sound waves in a solid, both longitudinal and
transverse, are the waves that are in the solid earth. Who makes the noises we do
not know, but inside the earth, from time to time, there are earthquakes—some
rock slides past some other rock. That is like a little noise. So waves like sound
waves start out from such a source very much longer in wavelength than one usu-
ally considers in sound waves, but still they are sound waves, and they travel around
in the earth. The earth is not homogeneous, however, and the properties of pressure,
density, compressibility, and so on, change with depth, and therefore the speed
varies with depth. Then the waves do not travel in straight lines—there is a kind
of index of refraction and they go in curves. The longitudinal waves and the
transverse waves have different speeds, so there are different solutions for the differ-
ent speeds. Therefore if we place a seismograph at some location and watch the
way the thing jiggles after there has been an earthquake somewhere else, then we do
not just get an irregular jiggling. We might get a jiggling, and a quieting down, and
then another jiggling—what happens depends upon the location. If it were close
enough, we would first receive longitudinal waves from the disturbance, and then,
a few moments later, transverse waves, because they travel more slowly. By
measuring the time difference between the two, we can tell how far away the earth-
quake is, if we know enough about the speeds and composition of the interior
regions involved.

An example of the behavior pattern of waves in the earth is shown in Fig. 51-6.
The two kinds of waves are represented by different symbols. If there were an earth-
quake at the place marked “source,” the transverse waves and longitudinal waves
would arrive at different times at the station by the most direct routes, and there
would also be reflections at discontinuities, resulting in other paths and times. It
turns out that there is a core in the earth which does not carry transverse waves.
If the station is opposite the source, transverse waves still arrive, but the timing is
not right. What happens is that the transverse wave comes to the core, and when-
ever the transverse waves come to a surface which is oblique, between two materials,
two new waves are generated, one transverse and one longitudinal. But inside the
core of the earth, a transverse wave is not propagated (or at least, there is no evi-
dence for it, only for a longitudinal wave); it comes out again in both forms and
comes to the station.

It is from the behavior of these earthquake waves that it has been determined
that transverse waves cannot be propagated within the inner circle. This means
that the center of the earth is liquid in the sense that it cannot propagate transverse
waves. The only way we know what is inside the earth is by studying earthquakes.
So, by using a large number of observations of many earthquakes at different
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stations, the details have been worked out—the speed, the curves, etc. are all known.
We know what the speeds of various kinds of waves are at every depth. Knowing
that, therefore, it is possible to figure out what the normal modes of the earth are,
because we know the speed of propagation of sound waves—in other words, the
elastic properties of both kinds of waves at every depth. Suppose the earth were
distorted into an ellipsoid and let go. It is just a matter of superposing waves
travelling around in the ellipsoid to determine the period and shapes in a free mode.
We have figured out that if there is a disturbance, there are a lot of modes, from the
lowest, which is ellipsoidal, to higher modes with more structure.
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Fig. 51-7. Power versus frequency
as detected at seismographs in Nafg,
Perv, and Isabella, California. The
coherence is a measure of the coupling
between the stations. [From Benioff, Press
and Smith, J. Geoph. Research 66, 605
(1961)].

The Chilean earthquake of May 1960 made a loud enough “noise” that the
signals went around the earth many times, and new seismographs of great delicacy
were made just in time to determine the frequencies of the fundamental modes of
the earth and to compare them with the values that were calculated from the theory
of sound with the known velocities, as measured from the independent earthquakes.
The result of this experiment is illustrated in Fig. 51-7, which is a plot of the strength
of the signal versus the frequency of its oscillation (a Fourier analysis). Note that
at certain particular frequencies there is much more being received than at other
frequencies; there are very definite maxima. These are the natural frequencies of
the earth, because these are the main frequencies at which the earth can oscillate.
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served splitting.

In other words, if the entire motion of the earth is made up of many different modes,
D we would expect to obtain, for each station, irregular bumpings which indicate a
superposition of many frequencies. If we analyze this in terms of frequencies, we
should be able to find the characteristic frequencies of the earth. The vertical dark
lines in the figure are the calculated frequencies, and we find a remarkable agree-
ment, an agreement due to the fact that the theory of sound is right for the inside

A very curious point is revealed in Fig. 51-8, which shows a very careful
measurement, with better resolution of the lowest mode, the ellipsoidal mode of

[ \ /\ A the earth. Note that it is not a single maximum, but a double one, 54.7 minutes and
v 53.1 minutes—slightly different. The reason for the two different frequencies was
\ not known at the time that it was measured, although it may have been found in
the meantime. There are at least two possible explanations: One would be that
there may be asymmetry in the earth’s distribution, which would result in two simi-
V lar modes. Another possibility, which is even more interesting, is this: Imagine
: the waves going around the earth in two directions from the source. The speeds
obisc ooe: coms coes coss ooso oase  will not be equal because of effects of the rotation of the earth in the equations of
motion, which have not been taken into account in making the analysis. Motion
in a rotating system is modified by Coriolis forces, and these may cause the ob-

Regarding the method by which these quakes have been analyzed, what is

obtained on the seismograph is not a curve of amplitude as a function of frequency,
but displacement as a function of time, always a very irregular tracing. To find
the amount of all the different sine waves for all different frequencies, we know that
the trick is to multiply the data by a sine wave of a given frequency and integrate,
i.e., average it, and in the average all other frequencies disappear. The figures
were thus plots of the integrals found when the data were multiplied by sine
waves of different cycles per minute, and integrated.

51-6



51-4 Surface waves

Now, the next waves of interest, that are easily seen by everyone and which
are usually used as an example of waves in elementary courses, are water waves.
As we shall soon see, they are the worst possible example, because they are in no
respects like sound and light; they have all the complications that waves can have.
Let us start with long water waves in deep water. If the ocean is considered in-
finitely deep and a disturbance is made on the surface, waves are generated. All
kinds of irregular motions occur, but the sinusoidal type motion, with a very small
disturbance, might look like the common smooth ocean waves coming in toward
the shore. Now with such a wave, the water, of course, on the average, is standing
still, but the wave moves. What is the motion, is it transverse or longitudinal?
It must be neither; it is not transverse, nor is it longitudinal. Although the water at
a given place is alternately trough or hill, it cannot simply be moving up and down,
by the conservation of water. That is, if it goes down, where is the water going
to go? The water is essentially incompressible. The speed of compression of
waves—that is, sound in the water—is much, much higher, and we are not con-
sidering that now. Since water is incompressible on this scale, as a hill comes
down the water must move away from the region. What actually happens is that
particles of water near the surface move approximately in circles. When smooth
swells are coming, a person floating in a tire can look at a nearby object and see
it going in a circle. So it is a mixture of longitudinal and transverse, to add to the
confusion. At greater depths in the water the motions are smaller circles until,
reasonably far down, there is nothing left of the motion (Fig. 51-9).

A water wave

Fig. 51-9. Deep-water waves are
formed from particles moving in circles.
Note the systematic phase shifts from
circle to circle. How would a floating Water molecules move in

object move? circular orbits when
wave passes by
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To find the velocity of such waves is an interesting problem: it must be some
combination of the density of the water, the acceleration of gravity, which is the
restoring force that makes the waves, and possibly of the wavelength and of the
depth. If we take the case where the depth goes to infinity, it will no longer depend
on the depth. Whatever formula we are going to get for the velocity of the phases
of the waves must combine the various factors to make the proper dimensions,
and if we try this in various ways, we find only one way to combine the density,
g, and ) in order to make a velocity, namely, v/g\, which does not include the den-
sity at all. Actually, this formula for the phase velocity is not exactly right, but
a complete analysis of the dynamics, which we will not go into, shows that the
factors are as we have them, except for \/27:

Vohase = V @N/2m (for gravity waves).

It is interesting that the long waves go faster than the short waves. Thus if a boat
makes waves far out, because there is some sports-car driver in a motorboat
travelling by, then after a while the waves come to shore with slow sloshings at
first and then more and more rapid sloshings, because the first waves that come are
long. The waves get shorter and shorter as the time goes on, because the velocities
go as the square root of the wavelength.

One may object, ‘““That is not right, we must look at the group velocity in order
to figure it out!” Of course that is true. The formula for the phase velocity does
not tell us what is going to arrive first; what tells us is the group velocity. So we
have to work out the group velocity, and it is left as a problem to show it to be
one-half of the phase velocity, assuming that the velocity goes as the square root
of the wavelength, which is all that is needed. The group velocity also goes as the
square root of the wavelength. How can the group velocity go half as fast as the
phase? If one looks at the bunch of waves that are made by a boat travelling
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along, following a particular crest, he finds that it moves forward in the group
and gradually gets weaker and dies out in the front, and mystically and mysteriously
a weak one in the back works its way forward and gets stronger. In short, the waves
are moving through the group while the group is only moving at half the speed
that the waves are moving.

Fig. 51-10. The wake of a boat.

Because the group velocities and phase velocities are not equal, then the waves
that are produced by an object moving through are no longer simply a cone, but
it is much more interesting. We can see that in Fig. 51-10, which shows the waves
produced by an object moving through the water. Note that it is quite different
than what we would have for sound, in which the velocity is independent of wave-
length, where we would have wavefronts only along the cone, travelling outward.
Instead of that, we have waves in the back with fronts moving parallel to the motion
of the boat, and then we have little waves on the sides at other angles. This entire
pattern of waves can, with ingenuity, be analyzed by knowing only this: that the
phase velocity is proportional to the square root of the wavelength. The trick is
that the pattern of waves is stationary relative to the (constant-velocity) boat; any
other pattern would get lost from the boat.

The water waves that we have been considering so far were long waves in which
the force of restoration is due to gravitation. But when waves get very short in
the water, the main restoring force is capillary attraction, i.e., the energy of the
surface, the surface tension. For surface tension waves, it turns out that the phase
velocity is

Uphase = \/m (for ripples),

where T is the surface tension and p the density. It is the exact opposite: the phase
velocity is higher, the shorter the wavelength, when the wavelength gets very small.
When we have both gravity and capillary action, as we always do, we get the com-
bination of these two together:

Uphase = \/Tk/p + g/k,

where k = 27/\ is the wave number. So the velocity of the waves of water is
really quite complicated. The phase velocity as a function of the wavelength is
shown in Fig. 51-11; for very short waves it is fast, for very long waves it is fast,
and there is a minimum speed at which the waves can go. The group velocity can
be calculated from the formula: it goes to £ the phase velocity for ripples and 3
the phase velocity for gravity waves. To the left of the minimum the group velocity
is higher than the phase velocity; to the right, the group velocity is less than the
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phase velocity. There are a number of interesting phenomena associated with
these facts. In the first place, since the group velocity is increasing so rapidly as
the wavelength goes down, if we make a disturbance there will be a slowest end of
the disturbance going at the minimum speed with the corresponding wavelength,
and then in front, going at higher speed, will be a short wave and a very long wave.
It is very hard to see the long ones, but it is easy to see the short ones ina water tank.

So we see that the ripples often used to illustrate simple waves are quite inter-
esting and complicated ; they do not have a sharp wavefront at all, as is the case for
simple waves like sound and light. The main wave has little ripples which run out
ahead. A sharp disturbance in the water does not produce a sharp wave because
of the dispersion. First come the very fine waves. Incidentally, if an object moves
through the water at a certain speed, a rather complicated pattern results, because
all the different waves are going at different speeds. One can demonstrate this with
a tray of water and see that the fastest ones are the fine capillary waves. There are
slowest waves, of a certain kind, which go behind. By inclining the bottom, one
sees that where the depth is lower, the speed is lower. If a wave comes in at an
angle to the line of maximum slope, it bends and tends to follow that line. In this
way one can show various things, and we conclude that waves are more compli-
cated in water than in air.

The speed of long waves in water with circulational motions is slower when the
depth is less, faster in deep water. Thus as water comes toward a beach where the
depth lessens, the waves go slower. But where the water is deeper, the waves are
faster, so we get the effects of shock waves. This time, since the wave is not so
simple, the shocks are much more contorted, and the wave over-curves itself, in
the familiar way shown in Fig. 51-12. This is what happens when waves come into
the shore, and the real complexities in nature are well revealed in such a circum-
st.nce. No one has yet been able to figure out what shape the wave should take
as it breaks. It is easy enough when the waves are small, but when one gets large
and breaks, then it is much more complicated.

Fig. 51-12, A water wave.

An interesting feature about capillary waves can be seen in the disturbances
made by an object moving through the water. From the point of view of the object
itself, the water is flowing past, and the waves which ultimately sit around it are
always the waves which have just the right speed to stay still with the object in the
water. Similarly, around an object in a stream, with the stream flowing by, the
pattern of waves is stationary, and at just the right wavelengths to go at the same
speed as the water going by. But if the group velocity is less than the phase velocity,
then the disturbances propagate out backwards in the stream, because the group
velocity is not quite enough to keep up with the stream. If the group velocity is
faster than the velocity of the phase, the pattern of waves will appear in front of
the object. If one looks closely at objects in a stream, one can see that there are
little ripples in front and long “‘slurps” in the back.
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Another interesting feature of this sort can be observed in pouring liquids.
If milk is poured fast enough out of a bottle, for instance, a large number of lines
can be.seen crossing both ways in the outgoing stream. They are waves starting
from the disturbance at the edges and running out, much like the waves about an
object in a stream. There are effects from both sides which produce the crossed
pattern.

We have investigated some of the interesting properties of waves and the vari-
ous complications of dependence of phase velocity on wavelength, the speed of
the waves on depth, and so forth, that produce the really complex, and therefore
interesting, phenomena of nature.
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