10

Other Two-State Systems

10-1 The hydrogen molecular ion

In the last chapter we discussed some aspects of the ammonia molecule under
the approximation that it can be considered as a two-state system. It is, of course,
not really a two-state system—there are many states of rotation, vibration, transla-
tion, and so on—but each of these states of motion must be analyzed in terms of
two internal states because of the flip-flop of the nitrogen atom. Here we are going
to consider other examples of systems which, to some approximation or other,
can be considered as two-state systems. Lots of things will be approximate because
there are always many other states, and in a more accurate analysis they would
have to be taken into account. But in each of our examples we will be able to
understand a great deal by just thinking about two states.

Since we will only be dealing with two-state systems, the Hamiltonian we
need will look just like the one we used in the last chapter. When the Hamiltonian
is independent of time, we know that there are two stationary states with definite—
and usually different—energies. Generally, however, we start our analysis with a
set of base states which are nor these stationary states, but states which may,
perhaps, have some other simple physical meaning. Then, the stationary states
of the system will be represented by a linear combination of these base states.

For convenience, we will summarize the important equations from Chapter
9. Let the original choice of base states be | 1) and | 2). Then any state | ¢) is
represented by the linear combination

) = [ IXT[¥) + [ 22 [¥) = [DCy + | 2)Cs. (10.1)

The amplitudes C; (by which we mean either C; or C,) satisfy the two linear differ-
ential equations

_, dC;
ih = = XJ: H;;Cj, (10.2)

where both / and j take on the values 1 and 2.
When the terms of the Hamiltonian H;; do not depend on 1, the two states of
definite energy (the stationary states), which we call

) = | DemMEt and | ypp) = | Me PEIY

have the energies
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The two C’s for each of these states have the same time dependence. The state
vectors | 1) and | II) which go with the stationary states are related to our original
base states | 1) and | 2) by

(10.3)

D) = | Day + | 2)as,
1) = | Day + | 2)a5.

(10.4)
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Fig. 10-1. A set of base states for

two protons and an electron.

The a’s are complex constants, which satisfy
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ay Err — Hyy (10.6)
If Hyy and Hj, are equal—say both are equal to Eq—and H,y = Hyy = — A,

then Ey = Eq + A, E;f = Eo — A, and the states | ) and | II) are particularly
simple:
1
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Now we will use these results to discuss a number of interesting examples
taken from the fields of chemistry and physics. The first example is the hydrogen
molecular ion. A positively ionized hydrogen molecule consists of two protons
with one electron worming its way around them. If the two protons are very far
apart, what states would we expect for this system? The answer is pretty clear:
The electron will stay close to one proton and form a hydrogen atom in its lowest
state, and the other proton will remain alone as a positive ion. So, if the two
protons are far apart, we can visualize one physical state in which the electron is
“attached” to one of the protons. There is, clearly, another state symmetric to
that one in which the electron is near the other proton, and the first proton is the
one that is an ion. We will take these two as our base states, and we’ll call them
| 1) and | 2). They are sketched in Fig. 10-1. Of course, there are really many
states of an electron near a proton, because the combination can exist as any one
of the excited states of the hydrogen atom. We are not interested in that variety
of states now; we will consider only the situation in which the hydrogen atom is in
the lowest state—its ground state—and we will, for the moment, disregard spin
of the electron. We can just suppose that for all our states the electron has its
spin “up” along the z-axis.}

Now to remove an electron from a hydrogen atom requires 13.6 electron volts
of energy. So long as the two protons of the hydrogen molecular ion are far apart,
it still requires about this much energy—which is for our present considerations a
great deal of energy—to get the electron somewhere near the midpoint between the
protons. So it is impossible, classically, for the electron to jump from one proton
to the other. However, in quantum mechanics it is possible—though not very
likely. There is some small amplitide for the electron to move from one proton
to the other. As a first approximation, then, each of our base states | /) and | 2)
will have the energy E,, which is just the energy of one hydrogen atom plus one
proton. We can take that the Hamiltonian matrix elements H,, and Hs, are
both approximately equal to £,. The other matrix elements H,, and H,, which
are the amplitudes for the electron to go back and forth, we will again write as — A.

You see that this is the same game we played in the last two chapters. If we
disregard the fact that the electron can flip back and forth, we have two states of
exactly the same energy. This energy will, however, be split into two energy levels
by the possibility of the electron going back and forth—the greater the probability
of the transition, the greater the split. So the two energy levels of the system are
Ey 4+ A and Ey — A, and the states which have these definite energies are given
by Egs. (10.7).

t This is satisfactory so long as there are no important magnetic fields. We will discuss
the effects of magnetic fields on the electron later in this chapter, and the very small
effects of spin in the hydrogen atom in Chapter 12.
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From our solution we see that if a proton and a hydrogen ion are put any-
where near together, the electron will not stay on one of the protons but will flip
back and forth between the two protons. If it starts on one of the protons, it will
oscillate back and forth between the states | I) and | 2)—giving a time-varying
solution. TIn order to have the lowest energy solution (which does not vary with
time), it is necessary to start the system with equal amplitudes for the electron to
be around each proton. Remember, there are not two electrons—we are not saying
that there is an electron around each proton. There is only one electron, and it
has the same amplitude—1/+/2 in magnitude—to be in either position.

Now the amplitude A4 for an electron which is near one proton to get to the
other one depends on the separation between the protons. The closer the protons
are together, the larger the amplitude. You remember that we talked in Chapter
7 about the amplitude for an electron to “penetrate a barrier,” which it could not
do classically. We have the same situation here. The amplitude for an electron
to get across decreases roughly exponentially with the distance—for large distances.
Since the transition probability, and therefore A4, gets larger when the protons are
closer together, the separation of the energy levels will also get larger. If the system
is in the state | I), the energy E, + A increases with decreasing distance, so these
quantum mechanical effects make a repulsive force tending to keep the protons
apart. On the other hand, if the system is in the state | /1), the total energy decreases
if the protons are brought closer together; there is an arrractive force pulling the
protons together. The variation of the two energies with the distance between the
two protons should be roughly as shown in Fig. 10-2. We have, then, a quantum-
mechanical explanation of the binding force that holds the Hd ion together.
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Fig. 10-2. The energies of the two stationary Fig. 10-3. The energy levels of the H, ion as a
states of the H;" ion as a function of the distance function of the interproton distance D. {(En = 13.6 ev.)

between the two protons.

We have, however, forgotten one thing. In addition to the force we have just
described, there is also an electrostatic repulsive force between the two protons.
When the two protons are far apart—as in Fig. 10-1—the “bare” proton sees only
a neutral atom, so there is a negligible electrostatic force. At very close distances,
however, the “‘bare™ proton begins to get “inside” the electron distribution—that
is, it is closer to the proton on the average than to the electron. So there begins
to be some extra electrostatic energy which is, of course, positive. This energy—
which also varies with the separation—should be included in E,. So for £, we
should take something like the broken-line curve in Fig. 10-2 which rises rapidly
for distances less than the radius of a hydrogen atom.We should add and subtract
the flip-flop energy A from this E,. When we do that, the energies E; and E;; will
vary with the interproton distance D as shown in Fig. 10-3. [In this figure, we
have plotted the results of a more detailed calculation. The interproton distance
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is given in units of 1 A(10~8cm), and the excess energy over a proton plus a hydro-
gen atom is given in units of the binding energy of the hydrogen atom—the so-
called “Rydberg” energy, 13.6 ev.] We see that the state | I/) has a minimum-en-
ergy point. This will be the equilibrium configuration—the lowest energy condition
—for the HY ion. The energy at this point is lower than the energy of a separated
proton and hydrogen ion, so the system is bound. A single electron acts to hold
the two protons together. A chemist would call it a “one-electron bond.”

This kind of chemical binding is also often called ‘“‘quantum mechanical
resonance” (by analogy with the two coupled pendulums we have described
before). But that really sounds more mysterious than it is, it’s only a “resonance”
if you start out by making a poor choice for your base states—as we did also!
If you picked the state | II), you would have the lowest energy state—that’s all.

We can see in another way why such a state should have a lower energy than
a proton and a hydrogen atom. Let’s think about an electron near two protons
with some fixed, but not too large, separation. You remember that with a single
proton the electron is ‘“‘spread out” because of the uncertainty principle. It seeks
a balance between having a low coulomb potential energy and not getting con-
fined into too small a space, which would make a high kinetic energy (because of
the uncertainty relation Ap Ax = #). Now if there are two protons, there is more
space where the electron can have a low potential energy. It can spread out—
lowering its kinetic energy—without increasing its potential energy. The net
result is a lower energy than a hydrogen atom. Then why does the other state | I)
have a higher energy? Notice that this state is the difference of the states | 1) and
| 2). Because of the symmetry of | /) and | 2), the difference must have zero
amplitude to find the electron half-way between the two protons. This means that
the electron is somewhat more confined, which leads to a larger energy.

We should say that our approximate treatment of the HJ ion as a two-state
system breaks down pretty badly once the protons get as close together as they
are at the minimum in the curve of Fig. 10-3, and so, will not give a good value
for the actual binding energy. For small separations, the energies of the two
“states” we imagined in Fig. 6-1 are not really equal to E£,; a more refined quan-
tum mechanical treatment is needed.

Suppose we ask now what would happen if instead of two protons, we had
two different objects—as, for example, one proton and one lithium positive ion
(both particles still with a single positive charge). In such a case, the two terms
H, and H,, of the Hamiltonian would no longer be equal; they would, in fact,
be quite different. If it should happen that the difference (H;1; — Hgg) is, in
absolute value, much greater than 4 = — Hy,, the attractive force gets very weak,
as we can see in the following way.

If we put Hy,H,; = A? into Eqgs. (10.3) we get

H,, + Hj, H,, — sz\/ 442
E = + 1 s
2 2 = Hay

When Hy; — H» is much greater than 42, the square root is very nearly equal to

242
1 _—_ .
t Wy = Ha)

The two energies are then

E; = Hyy +
(10.8)

Err = Hyo

They are now very nearly just the energies H;; and H,» of the isolated atoms,
pushed apart only slightly by the flip-flop amplitude A.
The energy difference E; — Ejgis

242
(Hy1 — H322) + fflm
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The additional separation from the flip-flop of the electron is no longer equal to
24; it is smaller by the factor 4/(H,; — Hj3), which we are now taking to be
much less than one. Also, the dependence of Er — E;; on the separation of the
two nuclei is much smaller than for the H ion—it is also reduced by the factor
A/(Hy1 — Hjs). We can now see why the binding of unsymmetric diatomic
molecules is generally very weak.

In our theory of the HF ion we have discovered an explanation for the
mechanism by which an electron shared by two protons provides, in effect, an
attractive force between the two protons which can be present even when the
protons are at large distances. The attractive force comes from the reduced energy
of the system due to the possibility of the electron jumping from one proton to
the other. In such a jump the system changes from the configuration (hydrogen
atom, proton) to the configuration (proton, hydrogen atom), or switches back.
We can write the process symbolically as

(H,p) = (p, H).

The energy shift due to this process is proportional to the amplitude 4 that an
electron whose energy is — Wy (its binding energy in the hydrogen atom) can
get from one proton to the other.

For large distances R between the two protons, the electrostatic potential
energy of the electron is nearly zero over most of the space it must go when it
makes its jump. In this space, then, the electron moves nearly like a free particle
in empty space—but with a negative energy! We have seen in Chapter 3 [Eq.
(3.7)] that the amplitude for a particle of definite energy to get from one place
to another a distance r away is proportional to

e<i/ﬁ)pr

5

r

where p is the momentum corresponding to the definite energy. In the present
case (using the nonrelativistic formula), p is given by

2

P _ _
£ - —wu (10.9)

This means that p is an imaginary number,

(the other sign for the radical gives nonsense here).
We should expect, then, that the amplitude 4 for the HF ion will vary as

o~ (V2ZmWHIME
A~ —r (10.10)
for large separations R between the two protons. The energy shift due to the
electron binding is proportional to A4, so there is a force pulling the two protons
together which is proportional—for large R—to the derivative of (10.10) with
respect to R.

Finally, to be complete, we should remark that in the two-proton, one-electron
system there is still one other effect which gives a dependence of the energy on R.
We have neglected it until now because it is usually rather unimportant—the
exception is just for those very large distances where the energy of the exchange
term A has decreased exponentially to very small values. The new effect we are
thinking of is the electrostatic attraction of the proton for the hydrogen atom,
which comes about in the same way any charged object attracts a neutral object.
The bare proton makes an electric field & (varying as 1/R?) at the neutral hydrogen
atom. The atom becomes polarized, taking on an induced dipole moment u
proportional to 8. The energy of the dipole is u&, which is proportional to &2—or
to 1/R*. So there is a term in the energy of the system which decreases with the
fourth power of the distance. (It is a correction to Ey.) This energy falls off with
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distance more slowly than the shift 4 given by (10.10); at some large separation
R it becomes the only remaining important term giving a variation of energy with
R—and, therefore, the only remaining force. Note that the electrostatic term has
the same sign for both of the base states (the force is attractive, so the energy is
negative) and so also for the two stationary states, whereas the electron exchange
term A gives opposite signs for the two stationary states.

10-2 Nuclear forces

We have seen that the system of a hydrogen atom and a proton has an energy
of interaction due to the exchange of the single electron which varies at large
separations R as

e—-aR

R

, (10.11)

with ¢ = v/2mWpy/#. (One usually says that there is an exchange of a “virtual”
electron when—as here—the electron has to jump across a space where it would
have a negative energy. More specifically, a “‘virtual exchange” means that the
phenomenon involves a quantum mechanical interference between an exchanged
state and a nonexchanged state.)

Now we might ask the following question: Could it be that forces between
other kinds of particles have an analogous origin? What about, for example, the
nuclear force between a neutron and a proton, or between two protons? In an
attempt to explain the nature of nuclear forces, Yukawa proposed that the force
between two nucleons is due to a similar exchange effect—only, in this case, due
to the virtual exchange, not of an electron, but of a new particle, which he called
a “meson.” Today, we would identify Yukawa’s meson with the m-meson (or
“pion”) produced in high-energy collisions of protons or other particles.

Let’s see, as an example, what kind of a force we would expect from the ex-
change of a positive pion (7+) of mass m, between a proton and a neutron. Just
as a hydrogen atom H° can go into a proton p* by giving up an electron e~

H® > pt + e, (10.12)
a proton p™T can go into a neutron n® by giving up a2 7+ meson:
pt—-n® 4+ ot (10.13)

So if we have a proton at a and a neutron at b separated by the distance R, the
proton can become a neutron by emitting a 7+ which is then absorbed by the
neutron at b, turning it into a proton. There is an energy of interaction of the
two-nucleon (plus pion) system which depends on the amplitude 4 for the pion
exchange—just as we found for the electron exchange in the Hj ion.

In the process (10.12), the energy of the H? atom is less than that of the proton
by Wy (calculating nonrelativistically, and omitting the rest energy mc? of the
electron), so the electron has a negative kinetic energy—or imaginary momentum—
as in Eq. (10.9). In the nuclear process (10.13), the proton and neutron have
almost equal masses, so the 7w will have zero toral energy. The relation between
the total energy F and the momentum p for a pion of mass m; is

E2 - p202 + m12rc4

Since E is zero (or at least negligible in comparison with m,), the momentum is
again imaginary:
p = imgc.

Using the same arguments we gave for the amplitude that a bound electron
would penetrate the barrier in the space between two protons, we get for the nuclear
case an exchange amplitude 4 which should—for large R—go as

e—-(m,c/fz)lf
— .14
R (10.14)
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The interaction energy is proportional to A, and so varies in the same way. We
get an energy variation in the form of the so-called Yukawa potential between
two nucleons. Incidentally, we obtained this same formula earlier directly from
the differential equation for the motion of a pion in free space [see Chapter 28,
Vol. 11, Eq. (28.18)].

We can, following the same line of argument, discuss the interaction between
two protons (or between two neutrons) which results from the exchange of a
neutral pion (7%). The basic process is now

pt—pt + 7% (10.15)

A proton can emit a virtual 7%, but then it remains still a proton. If we have two
protons, proton No. 1 can emit a virtual % which is absorbed by proton No. 2.
At the end, we still have two protons. This is somewhat different from the H7 ion.
There the H® went into a different condition—the proton—after emitting the
electron. Now we are assuming that a proton can emit a 7° without changing its
character. Such processes are, in fact, observed in high-energy collisions. The
process is analogous to the way that an electron emits a photon and ends up still
an electron: e — e + photon. (10.16)
We do not “see” the photons inside the electrons before they are emitted or after
they are absorbed, and their emission does not change the “nature” of the electron.

Going back to the two protons, there is an interaction energy which arises
from the amplitude 4 that one proton emits a neutral pion which travels across
(with imaginary momentum) to the other proton and is absorbed there. This
amplitude is again proportional to (10.14), with my the mass of the neutral pion.
All the same arguments give an equal interaction energy for two neutrons. Since
the nuclear forces (disregarding electrical effects) between neutron and proton,
between proton and proton, between neutron and neutron are the same, we con-
clude that the masses of the charged and neutral pions should be the same. Experi-
mentally, the masses are indeed very nearly equal, and the small difference is about
what one would expect from electric self-energy corrections (see Chapter 28,
Vol. I1).

There are other kinds of particles—like K-mesons—which can be exchanged
between two nucleons. It is also possible for two pions to be exchanged at the
same time. But all of these other exchanged “objects” have a rest mass m, higher
than the pion mass #x, and lead to terms in the exchange amplitude which vary as

e—(mxc/ﬂ)R

R

These terms die out faster with increasing R than the one-meson term. No one
knows, today, how to calculate these higher-mass terms, but for large enough
values of R only the one-pion term survives. And, indeed, those experiments which
involve nuclear interactions only at large distances do show that the interaction
energy is as predicted from the one-pion exchange theory.

In the classical theory of electricity and magnetism, the coulomb electrostatic
interaction and the radiation of light by an accelerating charge are closely related—
both come out of the Maxwell equations. We have seen in the quantum theory that
light can be represented as the quantum excitations of the harmonic oscillations of
the classical electromagnetic fields in a box. Alternatively, the quantum theory
can be set up by describing light in terms of particles—photons—which obey Bose
statistics. We emphasized in Section 4-5 that the two alternative points of view
always give identical predictions. Can the second point of view be carried through
completely to include all electromagnetic effects? In particular, if we want to
describe the electromagnetic field purely in terms of Bose particles—that is, in
terms of photons—what is the coulomb force due to?

From the “particle” point of view the coulomb interaction between two
electrons comes from the exchange of a virtual photon. One electron emits a photon
—as in reaction (10.16)—which goes over to the second electron, where it is
absorbed in the reverse of the same reaction. The interaction energy is again given
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by a formula like (10.14), but now with m, replaced by the rest mass of the photon
—which is zero. So the virtual exchange of a photon between two electrons gives
an interaction energy that varies simply inversely as R, the distance between the
two electrons—just the normal coulomb potential energy! In the “particle” theory
of electromagnetism, the process of a virtual photon exchange gives rise to all the
phenomena of electrostatics.

ELECTRONS

7/ 6

/
/o Fig. 10~4. A set of base states for
the H, molecule.
7

10-3 The hydrogen molecule

As our next two-state system we will look at the neutral hydrogen molecule
H,. Itis, naturally, more complicated to understand because it has two electrons.
Again, we start by thinking of what happens when the two protons are well
separated. Only now we have two electrons to add. To keep track of them, we’ll
call one of them “electron a” and the other “electron 4.” We can again imagine
two possible states. One possibility is that “electron a” is around the first proton
and “‘electron b is around the second, as shown in Fig. 10-4(a). We have simply
two hydrogen atoms. We will call this state | /). There is also another possibility:
that “electron b is around the first proton and that “electron «” is around the
second. We call this state | 2). From the symmetry of the situation, those two
possibilities should be energetically equivalent, but, as we will see, the energy of
the system is nof just the energy of two hydrogen atoms. We should mention that
there are many other possibilities. For instance, “electron @’ might be near the
first proton and “‘electron 4 might be in another state around t}lle same proton.
We’'ll disregard such a case, since it will certainly have higher energy (because of
the large coulomb repulsion between the two electrons). For greater accuracy, we
would have to include such states, but we can get the essentials of the molecular
binding by considering just the two states of Fig. 10.4. To this approximation we
can describe any state by giving the amplitude (I | ¢) to be in the state | I) and an
amplitude (2 | ) to be in state | 2). In other words, the state vector | ¢) can be
written as the linear combination

(o) = 20 | il e

To proceed, we assume—as usual—that there is some amplitude A that the
electrons can move through the intervening space and exchange places. This
possibility of exchange means that the energy of the system is split, as we have seen
for other two-state systems. As for the hydrogen molecular ion, the splitting is
very small when the distance between the protons is large. As the protons approach
each other, the amplitude for the electrons to go back and forth increases, so the
splitting increases. The decrease of the lower energy state means that there is an
attractive force which pulls the atoms together. Again the energy levels rise when
the protons get very close together because of the coulomb repulsion. The net
final result is that the two stationary states have energies which vary with the sep-
aration as shown in Fig. 10-5. At a separation of about 0.74 A, the lower energy
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level reaches a minimum; this is the proton-proton distance of the true hydrogen
molecule.

Now you have probably been thinking of an objection. What about the fact
that the two electrons are identical particles? We have been calling them “electron
a” and “electron b,” but there really is no way to tell which is which. And we have
said in Chapter 4 that for electrons—which are Fermi particles—if there are two
ways something can happen by exchanging the electrons, the two amplitudes will
interfere with a negative sign. This means that if we switch which electron is which,
the sign of the amplitude must reverse. We have just concluded, however, that
the bound state of the hydrogen molecule would be (atr = 0)

- L
| 1) = \/§(|]>+ | 2).

However, according to our rules of Chapter 4, this state is not allowed. If we
reverse which electron is which, we get the state

1
$(|2> + [ 1),

and we get the same sign instead of the opposite one.

These arguments are correct if both electrons have the same spin. 1t is true that
if both electrons have spin up (or both have spin down), the only state that is per-
mitted is

L

1) = \/i(lD = 12)).
For this state, an interchange of the two electrons gives
(12— | 1),
which is — | I), as required. So if we bring two hydrogen atoms near to each

other with their electrons spinning in the same direction, they can go into the
state | I) and not state | /7). But notice that state | I) is the upper energy state.
Its curve of energy versus separation has no minimum. The two hydrogens will
always repel and will not form a molecule. So we conclude that the hydrogen
molecule cannot exist with parallel electron spins. And that is right.

On the other hand, our state | I7) is perfectly symmetric for the two electrons.
In fact, if we interchange which electron we call a and which we call b we get back
exactly the same state. We saw in Section 4-7 that if two Fermi particles are in
the same state, they muss have opposite spins. So, the bound hydrogen molecule
must have one electron with spin up and one with spin down.

The whole story of the hydrogen molecule is really somewhat more compli-
cated if we want to include the proton spins. It is then no longer right to think of
the molecule as a two-state system. It should really be looked at as an eight-state
system—there are four possible spin arrangements for each of our states | 1) and
| 2)—so we were cutting things a little short by neglecting the spins. Our final
conclusions are, however, correct.

We find that the lowest energy state—the only bound state—of the H 2 mole-
cule has the two electrons with spins opposite. The total spin angular momentum
of the electrons is zero. On the other hand, two nearby hydrogen atoms with spins
parallel—and so with a total angular momentum %A—must be in a hi gher (unbound)
energy state; the atoms repel each other. There is an interesting correlation be-
tween the spins and the energies. It gives another illustration of something we
mentioned before, which is that there appears to be an “interaction” energy be-
tween two spins because the case of parallel spins has a higher energy than the
opposite case. In a certain sense you could say that the spins try to reach an
antiparallel condition and, in doing so, have the potential to liberate energy-—not
because there is a large magnetic force, but because of the exclusion principle.
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We saw in Section 10-1 that the binding of two different ions by a single elec-
tron is likely to be quite weak. This is nor true for binding by two electrons. Sup-
pose the two protons in Fig. 10-4 were replaced by any two ions (with closed inner
electron shells and a single ionic charge), and that the binding energies of an
electron at the two ions are different. The energies of states | 1) and | 2) would
still be equal because in each of these states we have one electron bound to each
ion. Therefore, we always have the splitting proportional to 4. Two-electron
binding is ubiquitous—it is the most common valence bond. Chemical binding
usually involves this flip-flop game played by two electrons. Although two atoms
can be bound together by only one electron, it is relatively rare—because it re-
quires just the right conditions.

Finally, we want to mention that if the energy of attraction for an electron to
one nucleus is much greater than to the other, then what we have said earlier about
ignoring other possible states is no longer right. Suppose nucleus a (or it may be
a positive ion) has a much stronger attraction for an electron than does nucleus b.
It may then happen that the total energy is still fairly low even when both electrons
are at nucleus a, and no electron is at nucleus b. The strong attraction may more
than compensate for the mutual repulsion of the two electrons. If it does, the
lowest energy state may have a large amplitude to find both electrons at a (making
a negative ion) and a small amplitude to find any electron at 5. The state looks like
a negative ion with a positive ion. This is, in fact, what happens in an “ionic”
molecule like NaCl. You can see that all the gradations between covalent binding
and ionic binding are possible.

You can now begin to see how it is that many of the facts of chemistry can
be most clearly understood in terms of a quantum mechanical description.

10-4 The benzene molecule

Chemists have invented nice diagrams to represent complicated organic
molecules. Now we are going to discuss one of the most interesting of them—the
benzene molecule shown in Fig. 10-6. It contains six carbon and six hydrogen
atoms in a symmetrical array. Each bar of the diagram represents a pair of elec-
trons, with spins opposite, doing the covalent bond dance. Each hydrogen atom
contributes one electron and each carbon atom contributes four electrons to
make up the total of 30 electrons involved. (There are two more electrons close to
the nucleus of the carbon which form the first, or K, shell. These are not shown
since they are so tightly bound that they are not appreciably involved in the cova-
lent binding.) So each bar in the figure represents a bond, or pair of electrons,
and the double bonds mean that there are two pairs of electrons between alternate
pairs of carbon atoms.

There is a mystery about this benzene molecule. We can calculate what energy
should be required to form this chemical compound, because the chemists have
measured the energies of various compounds which involve pieces of the ring—for
instance, they know the energy of a double bond by studying ethylene, and so on.
We can, therefore, calculate the total energy we should expect for the benzene
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Fig. 10-7. Two possibilities of orthodibromobenzene. The two bromines could
be separated by a single bond or by a double bond.
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molecule. The actual energy of the benzene ring, however, is much lower than we
get by such a calculation; it is more tightly bound than we would expect from what
is called an “unsaturated double bond system.” Usually a double bond system
which is not in such a ring is easily attacked chemically because it has a relatively
high energy—the double bonds can be easily broken by the addition of other
hydrogens. But in benzene the ring is quite permanent and hard to break up.
In other words, benzene has a much lower energy than you would calculate from
the bond picture.

Then there is another mystery. Suppose we replace two adjacent hydrogens
by bromine atoms to make ortho-dibromobenzene. There are two ways to do this,
as shown in Fig. 10-7. The bromines could be on the opposite ends of a double
bond as shown in part (a) of the figure, or could be on the opposite ends of a single
bond as in (b). One would think that ortho-dibromobenzene should have two
different forms, but it doesn’t. There is only one such chemical.}

Now we want to resolve these mysteries—and perhaps you have already
guessed how: by noticing, of course, that the “ground state” of the benzene ring
is really a two-state system. We could imagine that the bonds in benzene could
be in either of the two arrangements shown in Fig. 10-8. You say, “But they are
really the same; they should have the same energy.” Indeed, they should. And for
that reason they must be analyzed as a two-state system. FEach state represents a
different configuration of the whole set of electrons, and there is some amplitude
A that the whole bunch can switch from one arrangement to the other—there is a
chance that the electrons can flip from one dance to the other.

As we have seen, this chance of flipping makes a mixed state whose energy is
lower than you would calculate by looking separately at either of the two pictures
in Fig. 10-8. Instead, there are two stationary states—one with an energy above
and one with an energy below the expected value. So actually, the true normal
state (lowest energy) of benzene is neither of the possibilities shown in Fig. 10-8,
but it has the amplitude 1/4/2 to be in each of the states shown. It is the only
state that is involved in the chemistry of benzene at normal temperatures. In-
cidentally, the upper state also exists; we can tell it is there because benzene has a
strong absorption for ultraviolet light at the frequency w = (Er — Er;)/h. You
will remember that in ammonia, where the object flipping back and forth was three
protons, the energy separation was in the microwave region. In benzene, the
objects are electrons, and because they are much lighter, they find it easier to flip
back and forth, which makes the coefficient 4 very much larger. The result is
that the energy difference is much larger—about 1.5 ev, which is the energy of
an ultraviolet photon. ]

What happens if we substitute bromine? Again the two “possibilities” (a)
and (b) in Fig. 10-7 represent the two different electron configurations. The only
difference is that the two base states we start with would have slightly different
energies. The lowest energy stationary state will still involve a linear combination
of the two states, but with unequal amplitudes. The amplitude for state | /) might
have a value something like 1/2/3, say, whereas state | 2) would have the magnitude

t We are oversimplifying a little. Originally, the chemists thought that there should
be four forms of dibromobenzene: two forms with the bromines on adjacent carbon atoms
(ortho-dibromobenzene), a third form with the bromines on next-nearest carbons (meta-
dibromobenzene), and a fourth form with the bromines opposite to each other (para-
dibromobenzene). However, they found only three forms—there is only one form of
the ortho-molecule.

1 What we have said is a little misleading. Absorption of ultraviolet light would be
very weak in the two-state system we have taken for benzene, because the dipole moment
matrix element between the two states is zero. [The two states are electrically symmetric,
so in our formula Eq. (9.55) for the probability of a transition, the dipole moment u
is zero and no light is absorbed.] If these were the only states, the existence of the upper
state would have to be shown in other ways. A more complete theory of benzene, how-
ever, which begins with more base states (such as those having adjacent double bonds)
shows that the true stationary states of benzene are slightly distorted from the ones we
have found. The resulting dipole moments permit the transition we mentioned in the text
to occur by the absorption of ultraviolet light.
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Fig. 10-9. Two base states for the
molecule of the dye magenta.

\/1/3. We can’t say for sure without more information, but once the two energies
H,, and H;,, are no longer equal, then the amplitudes C, and C5 no longer have
equal magnitudes. This means, of course, that one of the two possibilities in the
figure is more likely than the other, but the electrons are mobile enough so that
there is some amplitude for both. The other state has different amplitudes (like
\/1/3 and —+/2/3) but lies at a higher energy. There is only one lowest state,
not two as the naive theory of fixed chemical bonds would suggest.

10-5 Dyes

We will give you one more chemical example of the two-state phenomenon—
this time on a larger molecular scale. It has to do with the theory of dyes. Many
dyes—in fact, most artificial dyes—have an interesting characteristic; they have a
kind of symmetry. Figure 10-9 shows an ion of a particular dye called magenta,
which has a purplish red color. The molecule has three ring structures—two of
which are benzene rings. The third is not exactly the same as a benzene ring
because it has only two double bonds inside the ring. The figure shows two equally
satisfactory pictures, and we would guess that they should have equal energies.
But there is a certain amplitude that all the electrons can flip from one condition
to the other, shifting the position of the “unfilled” position to the opposite end.
With so many electrons involved, the flipping amplitude is somewhat lower than it
is in the case of benzene, and the difference in energy between the two stationary
states is smaller. There are, nevertheless, the usual two stationary states | /) and | II)
which are the sum and difference combinations of the two base states shown in the
figure. The energy separation of | I) and | II) comes out to be equal to the energy
of a photon in the optical region. If one shines light on the molecule, there is a
very strong absorption at one frequency, and it appears to be brightly colored.
That’s why it’s a dye!

Another interesting feature of such a dye molecule is that in the two base
states shown, the center of electric charge is located at different places. As a result,
the molecule should be strongly affected by an external electric field. We had a
similar effect in the ammonia molecule. Evidently we can analyze it by using
exactly the same mathematics, provided we know the numbers E; and A. Gener-
ally, these are obtained by gathering experimental data. If one makes measure-
ments with many dyes, it is often possible to guess what will happen with some
related dye molecule. Because of the large shift in the position of the center of
electric charge the value of u in formula (9.55) is large and the material has a high
probability for absorbing light of the characteristic frequency 24/A. Therefore,
it is not only colored but very strongly so—a small amount of substance absorbs
a lot of light.

The rate of flipping—and, therefore, A—is very sensitive to the complete struc-
ture of the molecule. By changing A, the energy splitting, and with it the color of
the dye, can be changed. Also, the molecules do not have to be perfectly sym-
metrical. We have seen that the same basic phenomenon exists with slight modifica-
tions, even if there is some small asymmetry present. So, one can get some modi-
fication of the colors by introducing slight asymmetries in the molecules. For
example, another important dye, malachite green, is very similar to magenta, but
has two of the hydrogens replaced by CHj;. It’s a different color because the A4 is
shifted and the flip-flop rate is changed.

10-6 The Hamiltonian of a spin one-half particle in a magnetic field

Now we would like to discuss a two-state system involving an object of spin
one-half. Some of what we will say has been covered in earlier chapters, but doing
it again may help to make some of the puzzling points a little clearer. We can
think of an electron at rest as a two-state system. Although we will be talking in
this section about “an electron,” what we find out will be true for any spin one-half
particle. Suppose we choose for our base states | /) and | 2) the states in which the
z-component of the electron spin is +7/2 and —#/2.
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These states are, of course, the same ones we have called (+) and (—) in
earlier chapters. To keep the notation of this chapter consistent, though, we call
the “plus” spin state | 1) and the “minus” spin state | 2)—where “plus” and “minus”
refer to the angular momentum in the z-direction.

Any possible state ¥ for the electron can be described as in Eq. (10.1) by
giving the amplitude C; that the electron is in state | 1), and the amplitude C,
that it is in state | 2). To treat this problem, we will need to know the Hamiltonian
for this two-state system—that is, for an electron in a magnetic field. We begin
with the special case of a magnetic field in the z-direction.

Suppose that the vector B has only a z-component B,. From the definition
of the two base states (that is, spins parallel and antiparallel to B) we know that
they are already stationary states with a definite energy in the magnetic field.
State | 1) corresponds to an energyt equal to —uB, and state | 2) to +uB,. The
Hamiltonian must be very simple in this case since C,, the amplitude to be in state
| 1), is not affected by C3, and vice versa:

., dC
z 7471 = EiC, = —uB,Cy,
(10.17)
lhd—c—z = Egc = +uBzC2.
dt
For this special case, the Hamiltonian is
Hyy = —pB, Hy; =0,
Hyy =0, Hyy = +uB.. (10.18)

So we know what the Hamiltonian is for the magnetic field in the z-direction, and
we know the energies of the stationary states.

Now suppose the field is nof in the z-direction. What is the Hamiltonian?
How are the matrix elements changed if the field is not in the z-direction? We
are going to make an assumption that there is a kind of superposition principle
for the terms of the Hamiltonian. More specifically, we want to assume that if
two magnetic fields are superposed, the terms in the Hamiltonian simply add—if
we know the H;; for a pure B, and we know the H,; for a pure B, then the H;;
for both B, and B, together is simply the sum. This is certainly true if we consider
only fields in the z-direction—if we double B,, then all the H;; are doubled. So
let’s assume that H is linear in the field B. That’s all we need to be able to find
the H;; for any magnetic field.

Suppose we have a constant field B. We could have chosen our z-axis in its
direction, and we would have found two stationary states with the energies = ubB.
Just choosing our axes in a different direction won’t change the physics. Our
description of the stationary states will be different, but their energies will still be

=+ uB—that is,
Er = —uVB; + B + B

and (10.19)
Er;p = +uV B2+ B2+ BZ.

fi

The rest of the game is easy. We have here the formulas for the energies.
We want a Hamiltonian which is linear in B,, B,, and B,, and which will give these
energies when used in our general formula of Eq. (10.3). The problem: find the
Hamiltonian. First, notice that the energy splitting is symmetric, with an average
value of zero. Looking at Eq. (10.3), we can see directly that that requires

Hyy = —Hyy.

(Note that this checks with what we already know when B, and B, are both zero;

T We are taking the rest energy moc? as our *‘zero” of energy and treating the magnetic
moment g of the electron as a negative number, since it points opposite to the spin.
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in that case Hy; = —uB, and Hyy = uB,.) Now if we equate the energies of
Eq. (10.3) with what we know from Eq. (10.19), we have

_ 2
<H”—2@) + [Hiof* = w*(B; + Bj + BY). (10.20)

(We have also made use of the fact that Hy; = H7,, so that H,.H5, can also
be written as [H1,|2) Again for the special case of a field in the z-direction, this
gives

u’B? + |Hyo|® = u’BY.

Clearly, |H,,| must be zero in this special case, which means that H,, cannot
have any terms in B,. (Remember, we have said that all terms must be linear in
B, B,, and B,.)

So far, then, we have discovered that H;; and H,, have terms in B,, while
H,, and Hyy do not. We can make a simple guess that will satisfy Eq. (10.20) if
we say that

Hyy = —uB,,

Hyp = uB, (10.21)
|Hio® = u®(B2 + BY).

And it turns out that that’s the only way it can be done!

“Wait”—you say—“H;, is not linear in B; Eq. (10.21) gives H;, =
uv/B2 + B2 Not necessarily. There is another possibility which is linear,
namely,

and

Hiy = w(B; + iBy).
There are, in fact, several such possibilities—most generally, we could write
Hys = w(B, = iBy)eias

where § is some arbitrary phase. Which sign and phase should we use? It turns
out that you can choose either sign, and any phase you want, and the physical
results will always be the same. So the choice is a matter of convention. People
ahead of us have chosen to use the minus sign and to take ¢ = —1. We might
as well follow suit and write

H12 = _M(Bx - iBy)y H21 = _M(Bx + IBII)

(Incidentally, these conventions are related to, and consistent with, some of the
arbitrary choices we made in Chapter 6.)

The complete Hamiltonian for an electron in an arbitrary magnetic field is,
then

Hyy = —uB,, Hyy = —u(B, — iBy),
t ' v (10.22)
Hyy = —uw(B; + iBy), Hyy = +uB,.
And the equations for the amplitudes C, and C, are
., dC ,
ih =+ = —u[B:C1 + (B: — iB,)Cq],
(10.23)
., dC ;
ih % = —ul(B: + iB,)C1 — B.Cy]

So we have discovered the “equations of motion for the spin states™ of an
electron in a magnetic field. We guessed at them by making some physical argu-
ment, but the real test of any Hamiltonian is that it should give predictions in
agreement with experiment. According to any tests that have been made, these
equations are right. In fact, although we made our arguments only for constant
fields, the Hamiltonian we have written is also right for magnetic fields which
vary with time. So we can now use Eq. (10.23) to look at all kinds of interesting
problems.
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10-7 The spinning electron in a magnetic field

Example number one: We start with a constant field in the z-direction. There
are just the two stationary states with energies =uB,. Suppose we add a small
field in the x-direction. Then the equations look like our old two-state problem.
We get the flip-flop business once more, and the energy levels are split a little
farther apart. Now let’s let the x-component of the field vary with time—say, as
cos wr. The equations are then the same as we had when we put an oscillating
electric field on the ammonia molecule in Chapter 9. You can work out the de-
tails in the same way. You will get the result that the oscillating field causes
transitions from the +-z-state to the —z-state—and vice versa—when the hori-
zontal field oscillates near the resonant frequency wo = 2uB,/A. This gives the
quantum mechanical theory of the magnetic resonance phenomena we described
in Chapter 35 of Volume II (see¢ Appendix).

It is also possible to make a maser which uses a spin one-half system. A
Stern-Gerlach apparatus is used to produce a beam of particles polarized in, say,
the -+-z-direction, which are sent into a cavity in a constant magnetic field. The
oscillating fields in the cavity can couple with the magnetic moment and induce
transitions which give energy to the cavity.

Now let’s look at the following question. Suppose we have a magnetic field
B which points in the direction whose polar angle is 6 and azimuthal angle is
¢, as in Fig. 10-10. Suppose, additionally, that there is an e¢lectron which has been
prepared with its spin pointing along this field. What are the amplitudes C, and
C, for such an electron? In other words, calling the state of the electron 1),
we want to write

[9) = | 1)Cy + | 2)Cs,

where C; and C, are
Cl = <I I¢>’ C2 = <2|\1’>’

where by | /) and | 2) we mean the same thing we used to call | +) and | ~—>
(referred to our chosen z-axis).

The answer to this question is also in our general equations for two-state
systems. First, we know that since the electron’s spin is parallel to B it is in a
stationary state with energy E; = —upB. Therefore, both C; and Cs must vary
as e ~*E1% ag in (9.18); and their coefficients ay and a, are given by (10.5), namely,

4 _ &
do EI—Hll

(10.24)

An additional condition is that a; and a, should be normalized so that laq)? +
las|® = 1. We can take Hy, and Hy, from (10.22) using

B, = Bcosé, B, = Bsin 6 cos ¢, B, = Bsin 6sin ¢.

So we have

Hll = —[.LBCOSO,
) (10.25)
H;y = —uBsin 0 (cos ¢ — isin ¢).

The last factor in the second equation is, incidentally, e ™%, so it is simpler to write
H;, = —uBsin §e~ %, (10.26)

Using these matrix elements in Eq. (10.16)—and canceling —uB from numer-
ator and denominator—we find

ay sin 08_“»

= . 27
as 1 — cosé (10.27)
With this ratio and the normalization condition, we can find both a; and a,.
That’s not hard, but we can make a short cut with a little trick. Notice that
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Fig. 10-10. The direction of B is
defined by the polar angle # and the
azimuthal angle ¢.



1 — cos® = 2sin?(8/2), and that sin8 = 2sin (8/2) cos (6/2). Then Eq.
(10.27) is equivalent to

0 _is

a cos E e
ez (10.28)

42 sin o

2

So one possible answer is
] . 0

- Z e, , = sin -, 10.29
ay cos 5 e ay; = sin 5 ( )

since it fits with (10.28) and also makes
lay]? + lag]® = 1.

As you know, multiplying both a; and a, by an arbitrary phase factor doesn’t
change anything. People generally prefer to make Egs. (10.29) more symmetric
by multiplying both by e* 2. So the form usually used is

[ ) .8 L
a; = cos~ e 2 g, = sin 3 e T2 (10.30)

and this is the answer to our question. The numbers ¢ and a, are the amplitudes
to find an electron with its spin up or down along the z-axis when we know that
its spin is along the axis at 6 and ¢. (The amplitudes C; and C, are just a; and
a, times e *Er4R)

Now we notice an interesting thing. The strength B of the magnetic field
does not appear anywhere in (10.30). The result is clearly the same in the limit that
B goes to zero. This means that we have answered in general the question of how
to represent a particle whose spin is along an arbitrary axis. The amplitudes of
(10.30) are the projection amplitudes for spin one-half particles corresponding to
the projection amplitudes we gave in Chapter 5 [Eqgs. (5.38)] for spin-one par-
ticles. We can now find the amplitudes for filtered beams of spin one-half particles
to go through any particular Stern-Gerlach filter.

Let | +z) represent a state with spin up along the z-axis, and | —z) represent
the spin down state. If | +2z’) represents a state with spin up along a z’-axis which
makes the polar angles 6 and ¢ with the z-axis, then in the notation of Chapter
5, we have

(+z|+2') = cos —g— e 2 (—z|+Z) = sin ge‘“wz. (10.31)

These results are equivalent to what we found in Chapter 6, Eq. (6.36), by purely
geometrical arguments. (So if you decided to skip Chapter 6, you now have the
essential results anyway.)

A$ our final example lets look again at one which we’ve already mentioned a
number of times. Suppose that we consider the following problem. We start
with an electron whose spin is in some given direction, then turn on a magnetic
field in the z-direction for 25 minutes, and then turn it off. What is the final state?
Again let’s represent the state by the linear combination | ¢) = | 1)Cy + | 2)C..
For this problem, however, the states of definite energy are also our base states
| I) and | 2). So C; and Cj only vary in phase. We know that

Ci() = C1(0)e—E1th = C (0)et™BUA
and
Cy() = Cz(O)e“"En‘/ﬁ = Cy(0)e— B,

Now initially we said the electron spin was set in a given direction. That means
that initially C; and C, are two numbers given by Eqs. (10.30). After we wait
for a period of time 7', the new C; and C, are the same two numbers multiplied
respectively by e™B:T'" and e~™B:T/"  What state is that? That’s easy. It’s
exactly the same as if the angle ¢ had been changed by the subtraction of 2uB.T/#
and the angle 8 had been left unchanged. That means that at the end of the time
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T, the state | ¢) represents an electron lined up in a direction which differs from
the original direction only by a rofation about the z-axis through the angle A¢ =
2uB,T/#h. Since this angle is proportional to T, we can also say the direction of the
spin precesses at the angular velocity 2uB,/# around the z-axis. This result we
discussed several times previously in a less complete and rigorous manner. Now
we have obtained a complete and accurate quantum mechanical description of
the precession of atomic magnets.

It is interesting that the mathematical ideas we have just gone over for the
spinning electron in a magnetic field can be applied to any two-state system.
That means that by making a mathematical analogy to the spinning electron,
any problem about two-state systems can be solved by pure geometry. It works
like this. First you shift the zero of energy so that (Hy; + Hsp) is equal to
zero so that Hy; = —H,,. Then any two-state problem is formally the same
as the electron in a magnetic field. All you have to do is identify —uB, with H;,
and —u(B, — iB,) with H,. No matter what the physics is originally—an
ammonia molecule, or whatever—you can translate it into a corresponding
electron problem. So if we can solve the electron problem in general, we have
solved all two-state problems.

And we have the general solution for the electron! Suppose you have some
state to start with that has spin “up” in some direction, and you have a magnetic
field B that points in some other direction. You just rotate the spin direction around
the axis of B with the vector angular velocity w(?) equal to a constant times the
vector B (namely w = 2uB/#). As B varies with time, you keep moving the axis
of the rotation to keep it parallel with B, and keep changing the speed of rotation
so that it is always proportional to the strength of B. See Fig. 10-11. If you keep
doing this, you will end up with a certain final orientation of the spin axis, and the
amplitudes C; and Cj are just given by the projections—using (10.30)—into your
coordinate frame. You see, it’s just a geometric problem to keep track of where you
end up after all the rotating. Although it’s easy to see what’s involved, this geo-
metric problem (of finding the net result of a rotation with a varying angular
velocity vector) is not easy to solve explicitly in the general case. Anyway, we see,
in principle, the general solution to any two-state problem. In the next chapter
we will look $ome more into the mathematical techniques for handling the im-
portant case of a spin one-half particle—and, therefore, for handling two-state
systems in general.
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Fig. 10-11. The spin direction of an
electron in a varying magnetic field B{t)
precesses at the frequency w(f) about an
axis parallel to B.




