14

Semiconductors

14-1 Electrons and holes in semiconductors

One of the remarkable and dramatic developments in recent years has been
the application of solid state science to technical developments 1n electrical devices
such as transistors. The study of semiconductors led to the discovery of their
useful properties and to a large number of practical applications. The field 1s
changing so rapidly that what we tell you today may be incorrect next year. It
will certainly be incomplete. And it is perfectly clear that with the continuing
study of these materials many new and more wonderful things will be possible
as time goes on. You will not need to understand this chapter for what comes
later in this volume, but you may find it interesting to see that at least something
of what you are learning has some relation to the practical world.

There are large numbers of semiconductors known, but we’ll concentrate
on those which now have the greatest technical application. They are also the
ones that are best understood, and 1n understanding them we will obtain a degree
of understanding of many of the others. The semiconductor substances in most
common use today are silicon and germanium. These elements crystallize in the
diamond lattice, a kind of cubic structure in which the atoms have tetrahedral
bonding with their four nearest neighbors. They are insulators at very low tempera-
tures—near absolute zero—although they do conduct electricity somewhat at
room temperature. They are not metals; they are called semiconductors.

If we somehow put an extra electron into a crystal of silicon or germanium
which 1s at a low temperature, we will have just the situation we described in the
last chapter. The electron will be able to wander around in the crystal jumping
from one atomic site to the next. Actually, we have looked only at the behavior
of electrons in a rectangular lattice, and the equations would be somewhat different
for the real lattice of silicon or germanium. All of the essential points are, however,
illustrated by the results for the rectangular lattice.

As we saw in Chapter 13, these electrons can have energies only in a certain
energy band—called the conduction band. Within this band the energy is related
to the wave-number k of the probability amplitude C (see Eq. 13.24) by

E=E, — 2A,cosk,a — 2A, cos k,b — 2A cos k,c. (14.1)

The A’s are the amplitudes for jumping in the x-, y-, and z-directions, and a, b.
and ¢ are the lattice spacings in these directions.
For energies near the bottom of the band, we can approximate Eq. (14.1) by

E = En. + A k3 + AP’k + A.c°k3 (14.2)

(see Section 13-4)

If we think of electron motion 1n some particular direction, so that the com-
ponents of k are always 1n the same ratio, the energy is a quadratic function of
the wave number—and as we have seen of the momentum of the electron. We
can write

E = E., + ak?, (14.3)

where « is some constant, and we can make a graph of E versus k as in Fig, 14-1.
We'll call such a graph an “energy diagram.” An electron in a particular state of
energy and momentum can be indicated by a point such as S 1n the figure
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As we also mentioned in Chapter 13, we can have a similar situation if we
remove an electron from a neutral insulator. Then, an electron can jump over
from a nearby atom and fill the “hole,” but leaving another “hole” at the atom it
started from. We can describe this behavior by writing an amplitude to find the
hole at any particular atom, and by saying that the sole can jump from one atom to
the next. (Clearly, the amplitudes A4 that the hole jumps from atom a to atom b
is just the same as the amplitude that an electron on atom b jumps into the hole
at atom a.) The mathematics is just the same for the hole as it was for the extra
electron, and we get again that the energy of the hole is related to its wave number
by an equation just hke Eq. (14.1) or (14.2), except, of course, with different nu-
merical values for the amplitudes 4,, 4,, and 4,. The hole has an energy related
to the wave number of its probability amplitudes. Its energy lies in a restricted
band, and near the bottom of the band 1ts energy varies quadratically with the
wave number-—or momentum—just as in Fig. 14-1. Following the arguments of
Section 13-3, we would find that the hole also behaves like a classical particle
with a certain effective mass—except that in noncubic crystals the mass depends
on the direction of motion. So the hole behaves like a positive particle moving
through the crystal. The charge of the hole-particle is positive, because it is located
at the site of a missing electron: and when it moves in one direction there are ac-
tually electrons moving in the opposite direction.

If we put several electrons into a neutral crystal, they will move around much
like the atoms of a low-pressure gas. If there are not too many, their interactions
will not be very important. If we then put an electric field across the crystal, the
electrons will start to move and an electric current will flow. Eventually they would
all be drawn to one edge of the crystal, and, if there is a metal electrode there,
they would be collected, leaving the crystal neutral.

Similarly we could put many holes into a crystal. They would roam around
at random unless there is an electric field. With a field they would flow toward
the negative terminal, and would be “collected”—what actually happens is that
they are neutralized by electrons from the metal terminal.

One can also have both holes and electrons together. If there are not too
many, they will all go their way independently. With an electric field, they will
all contribute to the current. For obvious reasons, electrons are called the negarive
carriers and the holes are called the positive carriers.

We have so far considered that electrons are put into the crystal from the
outside, or are removed to make a hole. It is also possible to “create” an electron-
hole pair by taking a bound electron away from one neutral atom and putting it
some distance away in the same crystal. We then have a free electron and a free
hole, and the two can move about as we have described.

The energy required to put an electron info a state S—we say to ‘“‘create”
the state S—is the energy E~ shown in Fig, 14-2. It is some energy above E_,.
The energy required to “‘create” a hole in some state S’ is the energy E* of Fig.
14-3, which is some energy greater than E; . Now if we create a pair in the states
S and &, the energy required 1s just E~ + ET.

]

Fig. 14-2. The energy E™ is required Fig. 14-3. The energy E¥ is required

to “create” a free electron.

to “create” a hole in the state §'.
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The creation of pairs is a common process (as we will see later), so many
people like to put Fig. 14-2 and Fig. 14-3 together on the same graph—with the
hole energy plotted downward, although it is, of course a positive energy. We have
combined our two graphs in this way in Fig. 14-4. The advantage of such a
graph 1s that the energy E,... = E~ + ET required to create a pair with the
electron 1n S and the hole 1n S 1s just the vertical distance between S and S’ as
shown in Fig. 14-4. The minimum energy required to create a pair is called the
“gap” energy and is equal to Eq, + Ei.

Sometimes you will see a simpler diagram called an energy level diagram which
is drawn when people are not interested in the k variable. Such a diagram—shown
in Fig. 14-5—just shows the possible energies for the electrons and holes.}

How can electron-hole pairs be created? There are several ways. For ex-
ample, photons of hght (or x-rays) can be absorbed and create a pair if the photon
energy is above the energy of the gap. The rate at which pairs are produced is
proportional to the light intensity. If two electrodes are plated on a wafer of the
crystal and a “bias” voltage is applied, the electrons and holes will be drawn to
the electrodes. The circuit current will be proportional to the intensity of the light.
This mechanism is responsible for the phenomenon of photoconductivity and the
operation of photoconductive cells.

Electron hole pairs can also be produced by high-energy particles. When a
fast-moving charged particle—for instance, a proton or a pion with an energy of
tens or hundreds of Mev—goes through a crystal, its electric field will knock elec-
trons out of therr bound states creating electron-hole pairs. Such events occur
hundreds of thousands of times per millimeter of track. After the passage of the
particle, the carriers can be collected and 1n doing so will give an electrical pulse.
This is the mechanism at play in the semiconductor counters recently put to use
for experiments 1n nuclear physics. Such counters do not require semiconductors:
they can also be made with crystalline insulators. In fact, the first of such counters
was made using a diamond crystal which is an insulator at room temperature.
Very pure crystals are required 1if the holes and electrons are to be able to move
freely to the electrodes without being trapped. The semiconductors silicon and
germanium are used because they can be produced with high purity in reasonable
large sizes (centimeter dimensions).

So far we have been concerned with semiconductor crystals at temperatures
near absolute zero. At any finite temperature there is still another mechanism by
which electron-hole pairs can be created. The pair energy can be provided from
the thermal energy of the crystal. The thermal vibrations of the crystal can transfer
their energy to a pair—giving rise to “spontaneous” creation.

The probability per unit time that the energy as large as the gap energy E,,,
will be concentrated at one atomic site is proportional to e~ Ze0/*7 where T is the
temperature and « is Boltzmann’s constant (see Chapter 40, Vol. I). Near absolute
zero there is no appreciable probability, but as the temperature rises there is
an increasing probability of producing such pairs. At any finite temperature the
production should continue forever at a constant rate giving more and more
negative and positive carriers. Of course that does not happen because after
awhile the electrons and holes accidentally find each other—the electron drops
into the hole and the excess energy is given to the lattice. We say that the electron
and hole “annihilate.” There is a certain probability per second that a hole meets
an electron and the two things annthilate each other.

If the number of electrons per unit volume is &, (n for negative carriers)
and the density of positive carriers is N, the chance per unit time that an electron
and a hole will find each other and annihilate is proportional to the product N, N,.
In equilibrium this rate must equal the rate that pairs are created. You see that in

+ In many books this same energy diagram is interpreted in a different way. The energy
scale refers only to electrons. Instead of thinking of the energy of the hole, they think of
the energy an electron would have if 1t filled the hole. This energy 1s Jower than the free-
electron energy—in fact, just the amount lower that you see in Fig. 14-5. With this
interpretation of the energy scale, the gap energy is the minimum energy which must be
given to an electron to move 1t from its bound state to the conduction band.
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equilibrium the product of N, and N, should be given by some constant times the
Boltzmann factor:

N,N, = const ¢~ Fer/xT (14 4)

When we say constant, we mean nearly constant. A more complete theory—which
includes more details about how holes and electrons “find”’ each other—shows
that the “constant” is slightly dependent upon temperature, but the major de-
pendence on temperature is in the exponential.

Let’s consider, as an example, a pure material which is originally neutral.
At a finite temperature you would expect the number of positive and negative
carriers to be equal, N, = N,. Then each of them should vary with temperature
as e~ Fean/ 2T The variation of many of the properties of a superconductor—the
conductivity for example—is mainly determined by the exponential factor because
all the other factors vary much more slowly with temperature. The gap energy for
germanium is about 0.72 ev and for silicon 1.1 ev.

At room temperature k7T is about 1/40 of an electron volt. At these tempera-
tures there are enough holes and electrons to give a significant conductivity, while
at, say, 30°K—one-tenth of room temperature—the conductivity is imperceptible.
The gap energy of diamond is 6 or 7 ev and diamond is a good insulator at room
temperature.

14-2 Impure semiconductors

So far we have talked about two ways that extra electrons can be put into an
otherwise ideally perfect crystal lattice. One way was to inject the electron from
an outside source; the other way, was to knock a bound electron off a neutral
atom creating simultaneously an electron and a hole. It is possible to put electrons
into the conduction band of a crystal in still another way. Suppose we imagine a
crystal of germanium in which one of the germanium atoms is replaced by an
arsenic atom. The germanium atoms have a valence of 4 and the crystal structure
is controlled by the four valence electrons. Arsenic, on the other hand, has a
valence of 5. It turns out that a single arsenic atom can sit in the germanium lattice
(because it has approximately the correct size), but in doing so it must act as a
valence 4 atom—using four of its valence electrons to form the crystal bonds and
having one electron left over. This extra electron is very loosely attached—the
binding energy is less than 1/10 of a volt. At room temperature the electron easily
picks up that much energy from the thermal energy of the crystal, and then takes
off on its own—moving about in the lattice as a free electron. An impurity atom
such as the arsenic is called a donor site because it can give up a negative carrier
to the crystal. If a crystal of germanium is grown from a melt to which a very small
amount of arsenic has been added, the arsenic donor sites will be distributed
throughout the crystal and the crystal will have a certain density of negative
carriers built in.

You might think that these carriers would get swept away as soon as any small
electric field was put across the crystal. This will not happen, however, because
the arsenic atoms in the body of the crystal each have a positive charge. If the body
of the crystal is to remain neutral, the average density of negative carrier electrons
must be equal to the density of donor sites. If you put two electrodes on the edges
of such a crystal and connect them to a battery, a current will flow; but as the
carrier electrons are swept out at one end, new conduction electrons must be
introduced from the electrode on the other end so that the average density of
conduction electrons is left very nearly equal to the density of donor sites.

Since the donor sites are positively charged, there will be some tendency for
them to capture some of the conduction electrons as they diffuse around inside
the crystal. A donor site can, therefore, act as a trap such as those we discussed
in the last section. But if the trapping energy is sufficiently small—as it is for arsenic
—the number of carriers which are trapped at any one time is a small fraction
of the total. For a complete understanding of the behavior of semiconductors
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one must take into account this trapping. For the rest of our discussion, however,
we will assume that the trapping energy is sufficiently low and the temperature is
sufficiently high, that all of the donor sites have given up their electrons. This is,
of course, just an approximation.

It is also possible to build into a germanium crystal some impurity atom
whose valence is 3, such as aluminum. The aluminum atom tries to act as a
valence 4 object by stealing an extra electron. It can steal an electron from some
nearby germanium atom and end up as a negatively charged atom with an effective
valence of 4. Of course, when it steals the electron from a germanium atom, it
leaves a hole there; and this hole can wander around in the crystal as a positive
carrier. An impurity atom which can produce a hole in this way is called an
acceptor because 1t “‘accepts” an electron. If a germanium or a silicon crystal is
grown from a melt to which a small amount of aluminum impurity has been
added, the crystal will have built-in a certain density of holes which can act as
positive carriers.

When a donor or an acceptor impurity is added to a semiconductor, we say
that the material has been “doped.”

When a germanium crystal with some built-in donor impurities is at room
temperature, some conduction electrons are contributed by the thermally induced
electron-hole pair creation as well as by the donor sites. The electrons from both
sources are, naturally, equivalent, and it is the total number N, which comes into
play in the statistical processes that lead to equilibrium. If the temperature is not
too low, the number of negative carriers contributed by the donor impurity atoms
is roughly equal to the number of impurity atoms present. In equilibrium Eg.
(14.4) must still be valid; at a given temperature the product N, N, is determined.
This means that if we add some donor impurity which increases N,, the number
N, of positive carriers will have to decrease by such an amount that N, N, is
unchanged. If the impurity concentration is high enough, the number N, of nega-
tive carriers is determined by the number of donor sites and is nearly independent
of temperature—all of the variation in the exponential factor is supplied by N,,
even though it is much less than N,,. An otherwise pure crystal with a small con-
centration of donor impurity will have a majority of negative carriers; such a
material is called an “n-type” semiconductor.

If an acceptor-type impurity is added to the crystal lattice, some of the new
holes will drift around and annihilate some of the free electrons produced by
thermal fluctuation. This process will go on until Eq. (14.4) is satisfied. Under
equilibrium conditions the number of positive carriers will be increased and the
number of negative carriers will be decreased, leaving the product a constant. A
material with an excess of positive carriers 1s called a “p-type” semiconductor.

If we put two electrodes on a piece of semiconductor crystal and connect
them to a source of potential difference, there will be an electric field inside the
crystal. The electric field will cause the positive and the negative carriers to move,
and an electric current will flow. Let’s consider first what will happen in an
n-type material in which there is a large majority of negative carriers. For such
material we can disregard the holes, they will contribute very little to the current
because there are so few of them. In an ideal crystal the carriers would move across
without any impediment. In a real crystal at a finite temperature, however,—
especially in a crystal with some impurities—the electrons do not move completely
freely. They are continually making collisions which knock them out of their
original trajectories, that is, changing their momentum. These collisions are just
exactly the scatterings we talked about in the last chapter and occur at any irregu-
larity in the crystal lattice. In an n-type material the main causes of scattering are
the very donor sites that are producing the carriers. Since the conduction electrons
have a very slightly different energy at the donor sites, the probability waves are
scattered from that point. Even in a perfectly pure crystal, however, there are
(at any finite temperature) irregularities in the lattice due to thermal vibrations.
From the classical point of view we can say that the atoms aren’t lined up exactly
on a regular lattice, but are, at any instant, slightly out of place due to their thermal
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vibrations. The energy E, associated with each lattice point in the theory we
described in Chapter 13 varies a little bit from place to place so that the waves of
probability amplitude are not transmitted perfectly but are scattered in an irregular
fashion. At very high temperatures or for very pure materials this scattering may
become important, but in most doped materials used in practical devices the
impurity atoms contribute most of the scattering. We would like now to make an
estimate of the electrical conductivity of such a material.

When an electric field is applied to an n-type semiconductor, each negative
carrier will be accelerated in this field, picking up velocity until it is scattered from
one of the donor sites. This means that the carriers which are ordinarily moving
about in a random fashion with their thermal energies will pick up an average
drift velocity along the lines of the electric field and give rise to a current through
the crystal. The drift velocity is in general rather small compared with the typical
thermal veloctties so that we can estimate the current by assuming that the average
time that the carrier travels between scatterings is a constant. Let’s say that the
negative carrier has an effective electric charge ¢,. In an electric field &, the force
on the carrier will be g,&. In Section 43-3 of Volume I we calculated the average
drift velocity under such circumstances and found that it is given by Fr/m, where
F is the force on the charge, 7 is the mean free time between collistons, and m is the
mass. We should use the effective mass we calculated in the last chapter but
since we want to make a rough calculation we will suppose that this effective mass
is the same in all directions. Here we will call 1t m,,. With this approximation the
average drift velocity will be

Vdnft = q’::‘rn ) (14.5)
n

Knowing the drift velocity we can find the current. Electric current density j is
just the number of carriers per unit volume, N,, multiplied by the average drift
velocity, and by the charge on each carrier. The current density is therefore

NougaTa

j = NpVanitgn8 = m,

&. (14.6)

We see that the current density is proportional to the electric field; such a semi-
conductor material obeys Ohm’s law. The coefficient of proportionality between
Jj and &, the conductivity o, is

2
o = NalaTn (14.7)

my

For an n-type material the conductivity is relatively independent of temperature.
First, the number of majority carriers &, 1s determined primarily by the density
of donors in the crystal (so long as the temperature is not so low that too many
of the carrers are trapped). Second, the mean time between collisions 7, is mainly
controlled by the density of impurity atoms, which is, of course, independent of
the temperature.

We can apply all the same arguments to a p-type material, changing only the
values of the parameters which appear in Eq. (14.7). If there are comparable
numbers of both negative and positive carriers present at the same time, we must
add the contributions from each kind of carrier. The total conductivity will be

given by
o = Nn 37'n + NpquI’_

(14.8)
m, my,

For very pure materials, N, and N, will be nearly equal. They will be smaller
than in a doped material, so the conductivity will be less. Also they will vary
rapidly with temperature (like e~ Fe»/<T) as we have seen), so the conductivity
may change extremely fast with temperature.
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14-3 The Hall effect

It is certainly a peculiar thing that in a substance where the only relatively
free objects are electrons, there should be an electrical current carried by holes
that behave like positive particles. We would like, therefore, to describe an experi-
ment that shows in a rather clear way that the sign of the carrier of electric current
is quite definitely positive. Suppose we have a block made of semiconductor
material—it could also be a metal—and we put an electric field on 1t so as to draw a
current in some direction, say the horizontal direction as drawn in Fig. 14-6.
Now suppose we put a magnetic field on the block pointing at a right angle to
the current, say inro the plane of the figure. The moving carriers will feel a mag-
netic force g(v X B). And since the average dnft velocity 1s either right or left—
depending on the sign of the charge on the carrier—the average magnetic force on
the carriers will be either up or down. No, that is not right! For the directions
we have assumed for the current and the magnetic field the magnetic force on the
moving charges will always be up. Positive charges moving n the direction of j
(to the right) will feel an upward force. If the current s carried by negative charges,
they will be moving left (for the same sign of the conduction current) and they
will also feel an upward force. Under steady conditions, however, there is no
upward motion of the carriers because the current can flow only from left to right.
What happens is that a few of the charges initially flow upward, producing a sur-
face charge density along the upper surface of semiconductor—leaving an equal
and opposite surface charge density along the bottom surface of the crystal. The
charges pile up on the top and bottom surfaces until the electric forces they produce
on the moving charges just exactly cancel the magnetic force (on the average) so
that the steady current flows horizontally. The charges on the top and bottom
surfaces will produce a potential difference vertically across the crystal which can
be measured with a high-resistance voltmeter, as shown in Fig. 14-7. The sign
of the potential difference registered by the voltmeter will depend on the sign of
the carrier charges responsible for the current.

When such experiments were first done it was expected that the sign of the
potential difference would be negative as one would expect for negative conduction
electrons. People were, therefore, quite surprised to find that for some materials
the sign of the potential difference was in the opposite direction. It appeared that
the current carrier was a particle with a positive charge. From our discussion of
doped semiconductors it is understandable that an n-type semiconductor should
produce the sign of potential difference appropriate to negative carriers, and that
a p-type semiconductor should give an opposite potential difference, since the
current is carried by the positively charged holes.

The original discovery of the anomalous sign of the potential difference in
the Hall effect was made in a metal rather than a semiconductor. It had been
assumed that in metals the conduction was always by electron; however, it was
found out that for berylium the potential difference had the wrong sign. It 1s now
understood that in metals as well as in semiconductors it is possible, in certain
circumstances, that the “objects” responsible for the conduction are holes. Al-
though it is ultimately the electrons in the crystal which do the moving, neverthe-
less, the relationship of the momentum and the energy, and the response to external
fields is exactly what one would expect for an electric current carried by positive
particles.

Let’s see if we can make a quantitative estimate of the magnitude of the volt-
age difference expected from the Hall effect. If the voltmeter in Fig 14-7 draws a
negligible current, then the charges inside the semiconductor must be moving
from left to right and the vertical magnetic force must be precisely cancelled by a
vertical electric field which we will call & (the “tr”” is for ‘“‘transverse”). If this
electric field is to cancel the magnetic forces, we must have

Etr = —Vanft X B. (149)

Using the relation between the drift velocity and the electric current density given
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in Eq. (14.6), we get

8” = - "‘I]I—V jB

The potential difference between the top and the bottom of the crystal is, of course,
this electric field strength multiphed by the height of the crystal. The electric field
strength &, in the crystal is proportional to the current density and to the mag-
netic field strength. The constant of proportionalty 1/gN 1s called the Hall
coefficient and is usually represented by the symbol Ry. The Hall coefficient de-
pends just on the density of carriers—provided that carriers of one sign are in a
large majority. Measurement of the Hall effect is, therefore, one convenient way
of determining experimentally the density of carriers in a semiconductor.

14-4 Semiconductor junctions

We would like to discuss now what happens if we take two pieces of germanium
or silicon with different internal characteristics—say different kinds or amounts
of doping—and put them together to make a “junction.” Let’s start out with what
is called a p-n junction in which we have p-type germanium on one side of the
boundary and a-type germanium on the other side of the boundary—as sketched
n Fig. 14-8. Actually, it 1s not practical to put together two separate pieces of
crystal and have them in uniform contact on an atomic scale. Instead, junctions
are made out of a single crystal which has been modified in the two separate
regions. One way 1s to add some suitable doping impurity to the “melt” after
only half of the crystal has grown. Another way is to paint a little of the impurity
element on the surface and then heat the crystal causing some impurity atoms to
diffuse into the body of the crystal. Junctions made in these ways do not have a
sharp boundary, although the boundaries can be made as thin as 10™* centimeters
or so. For our discussions we will imagine an ideal situation in which these two
regions of the crystal with different properties meeting at a sharp boundary.

On the n-type side of p-n junction there are free electrons which can move
about, as well as the fixed donor sites which balance the overall electric charge.
On the p-type side there are free holes moving about and an equal number of
negative acceptor sites keeping the charge balanced. Actually, that describes the
situation before we put the two materials 1n contact. Once they are connected
together the situation will change near the boundary. When the electrons in
the n-type material arrive at the boundary they will not be reflected back as they
would at a free surface, but are able to go right on into the p-type material. Some
of the electrons of the n-type material will, therefore, tend to diffuse over into the
p-type material where there are fewer electrons. This cannot go on forever because
as we lose electrons from the n-side the net positive charge there increases until
finally an electric voltage is built up which retards the diffusion of electrons into
the p-side. In a similar way, the positive carriers of the p-type material can diffuse
across the junction into the n-type material. When they do this they leave behind
an excess of negative charge. Under equilibrium conditions the net diffusion cur-
rent must be zero. This brought about by the electric fields which are established
in such a way as to draw the positive carriers back toward the p-type material.

The two diffusion processes we have been describing go on simultaneously
and, you will notice, both act in the direction which will charge up the n-type
material 1n a positive sense and the p-type material in a negative sense. Because
of the finite conductivity of the semiconductor material, the change in potential
from the p-side to the n-side will occur in a relatively narrow region near the bound-
ary; the main body of each block of material will have a uniform potential. Let's
imagine an x-axis in a direction perpendicular to the boundary surface. Then the
electric potential will vary with x, as shown in Fig. 14-9(b). We have also shown
in part (c) of the figure the expected variation of the density N, of n-carriers and
the density N, of p-carriers. Far away from the junction the carrier densities
N, and N, should be just the equilibrium density we would expect for individual
blocks of materials at the same temperature. (We have drawn the figure for a
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junction in which the p-type material is more heavily doped than the n-type
material.) Because of the potential gradient at the junction, the positive carriers
have to climb up a potential hill to get to the p-type side. This means that under
equilibrium conditions there can be fewer positive carriers in the n-type material
than there are 1n the p-type material Remembering the laws of statistical me-
chanics, we expect that the ratio of p-type carriers on the two sides to be given by
the following equation:

Np(p-side)  _, viur

—Nm = e . (14.10)
The product ¢,V in the numerator of the exponential is just the energy required to
carry a charge of ¢, through a potential difference V.

We have a precisely similar equation for the densities of the n-type carriers:

Nu(n-side) g vpr

Ny (p-side) )
If we know the equilibrium densities in each of the two materials, we can use
either of the two equations above to determine the potential difference across the
junction.

Notice that if Egs. (14.10) and (14.11) are to give the same value for the
potential difference ¥V, the product N,N, must be the same for the p-side as for
the n-side. (Remember that g, = —g,.) We have seen earlier, however, that this
product depends only on the temperature and the gap energy of the crystal.
Provided both sides of the crystal are at the same temperature, the two equations
are consistent with the same value of the potential difference.

Since there is a potential difference from one side of the junction to the other,
it looks something like a battery. Perhaps if we connect a wire from the n-type side
to the p-type side we will get an electrical current. That would be nice because
then the current would flow forever without using up any material and we would
have an 1nfinite source of energy in violation of the second law of thermodynamics!
There is, however, no current if you connect a wire from the p-side to the n-side.
And the reason 1s easy to see. Suppose we imagine first a wire made out of a piece
of undoped material. When we connect this wire to the n-type side, we have a
junction. There will be a potential difference across this junction. Let’s say that
it is just one-half the potential difference from the p-type material to the n-type
material. When we connect our undoped wire to the p-type side of the junction,
there is also a potential difference at this junction—again, one-half the potential
drop across the p-n junction. At all the junctions the potential differences adjust
themselves so that there is no net current flow in the circuit. Whatever kind of wire
you use to connect together the two sides of the n-p junction, you are producing
two new junctions, and so long as all the junctions are at the same temperature, the
potential jumps at the junctions all compensate each other and no current will
flow 1n the circuit. It does turn out, however—if you work out the details—that 1f
some of the junctions are at a different temperature than the other junctions,
currents will flow. Some of the junctions will be heated and others will be cooled
by this current and thermal energy will be converted into electrical energy. This
effect is responsible for the operation of thermocouples which are used for measur-
ing temperatures, and of thermoelectric generators. The same effect is also used
to make small refrigerators.

If we cannot measure the potential difference between the two sides of an
n-p junction, how can we really be sure that the potential gradient shown in Fig.
14-9 really exists? One way is to shine light on the junction. When the light
photons are absorbed they can produce an electron-hole pair. In the strong
electric field that exists at the junction (equal to the slope of the potential curve of
Fig. 14-9) the hole will be driven into the p-type region and the electron will be
driven 1nto the n-type region. If the two sides of the junction are now connected
to an external circuit, these extra charges will provide a current. The energy of
the light will be converted into electrical energy in the junction. The solar cells
which generate electrical power for the operation of some of our satellites operate
on this principle.

(14.11)
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In our discussion of the operation of a semiconductor junction we have been
assuming that the holes and the electrons act more-or-less independently—except
that they somehow get into proper statistical equilibrium. When we were describing
the current produced by light shining on the junction, we were assuming that an
electron or a hole produced in the junction region would get into the main body of
the crystal before being annihilated by a carrier of the opposite polarity. In the
immediate vicinity of the junction, where the density of carriers of both signs is
approximately equal, the effect of electron-hole annihilation (or as it is often
called, “recombination”) is an important effect, and in a detailed analysis of a semi-
conductor junction must be properly taken into account. We have been assuming
that a hole or an electron produced in a junction region has a good chance of
getting into the main body of the crystal before recombining. The typical time
for an electron or a hole to find an opposite partner and annihilate it is for typical
semiconductor materials in the range between 10~ and 1077 seconds. This time
is, incidentally, much longer than the mean free time 7 between collisions with
scattering sites in the crystal which we used in the analysis of conductivity. In
a typical n-p junction, the time for an electron or hole formed in the junction region
to be swept away into the body of the crystal is generally much shorter than the
recombination time. Most of the pairs will, therefore, contribute to an external
current.

14-5 Rectification at a semiconductor junction

We would like to show next how it is that a p-n junction can act like a rectifier.
If we put a voltage across the junction, a large current will flow if the polarity is in
one direction, but a very small current will flow if the same voltage is applied in the
opposite direction. If an alternating voltage is applied across the junction, a net
current will flow in one direction—the current is “rectified.” Let’s look again at
what 1s going on in the equilibrium condition described by the graphs of Fig.
14-9. In the p-type material there is a large concentration N, of positive carriers.
These carriers are diffusing around and a certain number of them each second
approach the junction. This current of positive carriers which approaches the
Jjunction 1s proportional to N,. Most of them, however, are turned back by the
high potential hill at the junction and only the fraction ¢~ 9V/*T gets through.
There is also a current of positive carriers approaching the junction from the other
side. This current is also proportional to the density of positive carriers in the
n-type region, but the carrier density here is much smaller than the density on the
p-type side. When the positive carriers approach the junction from the n-type
side, they find a hill with a negative slope and immediately slide downhill to the
p-type side of the junction. Let’s call this current /,. Under equilibrium the cur-
rents from the two directions are equal. We expect then the following relation;

Iy ~ Ny(n-side) = N,(p-side)e™?"/ T, (14.12)

You will notice that this equation is really just the same as Eq. (14-10). We have
just derived 1t 1n a different way.

Suppose, however, that we lower the voltage on the n-side of the junction by
an amount A¥V—which we can do by applying an external potential difference to
the junction. Now the difference in potential across the potential hill is no longer
V but ¥V — AV. The current of positive carriers from the p-side to the n-side will
now have this potential difference in its exponential factor. Calling this current
I,, we have

I ~ N,(p-side)e 1V =21

This current is larger than J,, by just the factor ¢?*¥/*T. So we have the following
relation between I and /,:

I; = IetdVinT, (14.13)

The current from the p-side increases exponentially with the externally applied
voltage AV. The current of positive carriers from the n-side, however, remains
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constant so long as AV is not too large. When they approach the barrier, these 1/1,
carriers will still find a downhill potential and will all fall down to the p-side

(If AV is larger than the natural potential difference V, the situation would change, &1

but we will not consider what happens at such high voltages.) The net current J of 51
positive carriers which flows across the junction 1s then the difference between the

currents from the two sides: 4t
I = Iy(eteVil —_ 1), (14.14)

3 4

The net current I of holes flows into the n-type region. There the holes diffuse
into the body of the n-region, where they are eventually annihilated by the majority 2
n-type carriers—the electrons. The electrons which are lost in this annihilation
will be made up by a current of electrons from the external terminal of the n-type I+
material. AVKT

When AV 1s zero, the net current in Eq. (14.14) is zero For positive AV the 0
current increases rapidly with the applied voltage. For negative AV the current
reverses 1n sign, but the exponential term soon becomes negligible and the negative ~ — 7~~~ 777~ bT
current never exceeds /o—which under our assumptions is rather small. This
back current /g is limited by the small density of the minority carriers on the n-side
of the junction.

If you go through exactly the same analysis for the current of negative carriers
which flows across the junction, first with no potential difference and then with a
small externally applied potential difference AV, you get again an equation just
like (14.14) for the net electron current. Since the total current is the sum of the
currents contributed by the two carriers, Eq. (14.14) still applies for the total
current provided we identify 7y as the maximum current which can flow for a
reversed voltage.

The voltage-current characteristic of Eq. (14.14) 1s shown in Fig. 14-10. It
shows the typical behavior of solid state diodes—such as those used in modern
computers. We should remark that Eq. (14.14) 1s true only for small voltages.
For voltages comparable to or larger than the natural internal voltage difference
¥, other effects come into play and the current no longer obeys the simple equation. (b)

You may remember, incidentally, that we got exactly the same equation we
have found here in Eq. (14.14) when we discussed the “mechanical rectifier”—the
ratchet and pawl—in Chapter 46 of Yolume I. We get the same equations in the
two situations because the basic physical processes are quite similar. ,

Fig. 14-10. The current through a
junction as a function of the voltage
across it.

Fig. 14-11. The potential distribu-
tion in a transistor with no applied

Perhaps the most important application of semiconductors is in the transistor.  voltages.

The transistor consists of two semiconductor junctions very close together. Its
operation 1s based in part on the same principles that we just described for the
semiconductor diode—the rectifying junction. Suppose we make a little bar of
germanium with three distinct regions, a p-type region, an n-type region, and
another p-type region, as shown in Fig. 14-11(a). This combination is called a

p-n-p transistor. Each of the two junctions 1n the transistor will behave much in

the way we have described 1n the last section. In particular, there will be a potential ~ (qg)
gradient at each junction having a certain potential drop from the n-type region to

each p-type region. If the two p-type regions have the same internal properties, y
the variation in potential as we go across the crystal will be as shown 1n the graph
of Fig. 14-11(b).

Now let’s imagine that we connect each of the three regions to external voltage
sources as shown in part (a) of Fig. 14-12 We will refer all voltages to the terminal
connected to the left-hand p-region so it will be, by definition, at zero potential.
We will call this terminal the emitter. The n-type region 1s called the base and it is
connected to a slightly negative potential. The right-hand p-type region is called
the collector, and is connected to a somewhar larger negative potential. Under
these circumstances the variation of potential across the crystal will be as shown in
the graph of Fig. 14-12(b).

Let’s first see what happens to the positive carriers, since it is primarily their Fig. 14-12. The potential distribu-
behavior which controls the operation of the p-n-p transistor. Since the emitter is  tion in an operating transistor.
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at a relatively more positive potential than the base, a current of positive carriers
will flow from the emitter region into the base region. A relatively large current
flows, since we have a junction operating with a “‘forward voltage”’—corresponding
to the right-hand half of the graph in Fig, 14-10. With these conditions, positive
carriers or holes are being “emitted” from the p-type region into the n-type region.
You might think that this current would flow out of the n-type region through the
base terminal b. Now, however, comes the secret of the transistor. The n-type
region is made very thin—typically 1073 cm or less, much narrower than its trans-
verse dimensions. This means that as the holes enter the n-type region they have
a very good chance of diffusing across to the other junction before they are anni-
hilated by the electrons in the n-type region. When they get to the right-hand
boundary of the n-type region they find a steep downward potential hill and im-
mediately fall into the right-hand p-type region. This side of the crystal 1s called
the collector because it “collects” the holes after they have diffused across the n-type
region. In a typical transistor, all but a fraction of a percent of the hole current
which leaves the emitter and enters the base is collected in the collector region,
and only the small remainder contributes to the net base current. The sum of the
base and collector currents is, of course, equal to the emitter current.

Now imagine what happens if we vary slightly the potential ¥ on the base
terminal. Since we are on a relatively steep part of the curve of Fig. 14-10, a
small variation of the potential V' will cause a rather large change in the emitter
current I,. Since the collector voltage ¥V, is much more negative than the base
voltage, these slight variations in potential will not effect appreciably the steep
potential hill between the base and the collector. Most of the positive carriers
emitted into the n-region will still be caught by the collector. Thus as we vary
the potential of the base electrode, there will be a corresponding variation 1n the
collector current I,. The essential point, however, is that the base current I,
always remains a small fraction of the collector current. The transistor 1s an
amplifier; a small current [, introduced into the base electrode gives a large current
—100 or so times higher—at the collector electrode.

What about the electrons—the negative carriers that we have been neglecting
so far? First, note that we do not expect any significant electron current to flow
between the base and the collector. With a large negative voltage on the collector,
the electrons in the base would have to climb a very high potential energy hill and
the probability of doing that is very small. There is a very small current of elec-
trons to the collector.

On the other hand, the electrons in the base can go into the emitter region.
In fact, you might expect the electron current in this direction to be comparable to
the hole current from the emitter into the base. Such an electron current isn’t
useful, and, on the contrary, is bad because it increases the total base current
required for a given current of holes to the collector. The transistor is, therefore,
designed to minimize the electron current to the emitter. The electron current is
proportional to N,(base), the density of negative carriers in the base material
while the hole current from the emitter depends on N,(emitter), the density of
positive carriers in the emitter region. By using relatively little doping in the n-type
material N,(base) can be made much smaller than N (emitter). (The very thin
base region also helps a great deal because the sweeping out of the holes in this
region by the collector increases significantly the average hole current from the
emitter into the base, while leaving the electron current unchanged.) The net
result is that the electron current across the emitter-base junction can be made
much less than the hole current, so that the electrons do not play any significant
role in operation of the p-n-p transistor. The currents are dominated by motion of
the holes, and the transistor performs as an amplifier as we have described above.

It is also possible to make a transistor by interchanging the p-type and n-type
materials in Fig. 14-11. Then we have what is called an n-p-n transistor. In the
n-p-n transistor the main currents are carried by the electrons which flow from the
emitter into the base and from there to the collector. Obviously, all the arguments
we have made for the p-n-p transistor also apply to the n-p-n transistor if the po-
tentials of the electrodes are chosen with the opposite signs.
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