18

Angular Momentum

18-1 Electric dipole radiation

In the last chapter we developed the idea of the conservation of angular
momentum in quantum mechanics, and showed how it might be used to predict
the angular distribution of the proton from the disintegration of the A-partcle
We want now to give you a number of other, similar, illustrations of the con-
sequences of momentum conservation in atomic systems Our first example is
the radiation of light from an atom. The conservation of angular momentum
(among other things) will determine the polarization and angular distribution
of the emitted photons.

Suppose we have an atom which is in an excited state of definite angular
momentum—say with a spin of one—and it makes a transition to a state of angular
momentum zero at a lower energy, emitting a photon. The problem is to figure
out the angular distribution and polarization of the photons. (This problem 1s
almost exactly the same as the A disintegration, except that we have spin-one
instead of spin one-half particles.) Since the upper state of the atom 1s spin one,
there are three possibilities for 1ts z-component of angular momentum. The value
of m could be +1, or 0, or —1. We will take m = 41 for our example. Once
you see how 1t goes, you can work out the other cases. We suppose that the atom
is sitting with its angular momentum along the 4 z-axis—as in Fig. 18-1(a)—and
ask with what amplitude it will emit right circularly polarized light upward along
the z-axis, so that the atom ends up with zero angular momentum—as shown in
part (b) of the figure. Well, we don’t know the answer to that. But we do know
that right circularly polarized light has one unit of angular momentum about its
direction of propagation. So after the photon is emitted, the situation would
have to be as shown n Fig. 18-1(b)—the atom is left with zero angular momentum
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Fig. 18-3. If the process of (a) is
transformed by an inversion through the
center of the atom, it appears as in {b).

about the z-axis, since we have assumed an atom whose lower state is spin zero.
We will let a stand for the amplitude for such an event. More precisely, we let a
be the amplitude to emit a photon into a certain small solid angle AQ, centered
on the z-axis, during a time dr. Notice that the amplitude to emit a LHC photon
in the same direction is zero. The net angular momentum about the z-axis would
be —1 for such a photon and zero for the atom for a total of — 1, which would
not conserve angular momentum.

Similarly, if the spin of the atom is initially “down” (—1 along the z-axis),
it can emit only a LHC polarized photon in the direction of the +z-axis, as shown
in Fig. 18-2. We will let 4 stand for the amplitude for this event—meaning again
the amplitude that the photon goes into a certain solid angle AQ. On the other
hand, if the atom is in the m = O state, it cannot emit a photon in the +z-direction
at all, because a photon can have only the angular momentum +1 or —1 along
1ts direction of motion.

Next, we can show that b is related to a. Suppose we perform an inversion of
the situation in Fig. 18-1, which means that we should imagine what the system
would look like if we were to move each part of the system to an equivalent point
on the opposite side of the origin. This does not mean that we should reflect the
angular momentum vectors, because they are artificial. We should, rather, invert
the actual character of the motion that would correspond to such an angular
momentum. In Fig. 18-3(a) and (b) we show what the process of Fig. 18-1 looks
like before and after an inversion with respect to the center of the atom. Notice
that the sense of rotation of the atom is unchanged.t In the inverted system of
Fig. 18-3(b) we have an atom with m = 41 emitting a LHC photon downward.

If we now rotate the system of Fig. 18-3(b) by 180° about the x- or y-axis, it
becomes identical to Fig. 18-2. The combination of the inversion and rotation
turns the second process into the first. Using Table 17-2, we see that a rotation
of 180° about the y-axis just throws an m = —1 state into an m = 41 state,
so the amplitude b must be equal to the amplitude a excepr for a possible sign
change due to the inversion. The sign change in the inversion will depend on the
parities of the initial and final state of the atom.

In atomic processes, parity is conserved, so the parity of the whole system
must be the same before and after the photon emission. What happens will depend
on whether the parities of the initial and final states of the atom are even or odd—
the angular distribution of the radiation will be different for different cases. We
will take the common case of odd parity for the initial state and even parity for the
final state; it will give what is called “electric dipole radiation.” (If the imtial
and final states have the same parity we say there is “magnetic dipole radiation,”
which has the character of the radiation from an oscillating current in a loop.)
If the parity of the initial state is odd, its amplitude reverses its sign in the inversion
which takes the system from (a) to (b) of Fig. 18-3. The final state of the atom
has even parity, so its amplitude doesn’t change sign. If the reaction is going to
conserve parity, the amplitude b must be equal to a in magnitude but of the
opposite sign.

We conclude that if the amplitude is a that an m = 41 state will emit a
photon upward, then for the assumed parities of the initial and final states the
amplitude that an m = —1 state will emit a LHC photon upward is —a.}

We have all we need to know to find the amplitude for a photon to be emitted
at any angle 8 with respect to the z-axis. Suppose we have an atom originally
polarized with m = +1. We can resolve this state into 41, 0, and —1 states
with respect to a new z’-axis in the direction of the photon emission. The ampli-
tudes for these three states are just the ones given in the lower half of Table 17-2.

t When we change x, y, z into —x, —y, —z, you might think that all vectors get re-
versed. That is true for polar vectors like displacements and velocities, but not for an
axial vector like angular momentum—or any vector which 1s derived from a cross product
of two polar vectors. Axial vectors have the same components after an inversion.

1 Some of you may object to the argument we have just made, on the basis that the final
states we have been considering do not have a definite parity. You will find in Added
Note 2 at the end of this chapter another demonstration, which you may prefer.
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The amplitude that a RHC photon is emitted in the direction 6 is then a times the
amplitude to have m = -1 in that direction, namely,

a(+ | R(O)] +) = 5 (1 + cos 0). (18.1)

The amplitude that a LHC photon is emitted in the same direction 1s —a times the
amplitude to have m = —1 in the new direction. Using Table 17-2, 1t is

—a{— | R,(0)| +) = -_‘LZ (1 — cos 6). (18.2)

If you are interested in other polarizations you can find out the amplitude for them
from the superposition of these two amplitudes To get the intensity of any
component as a function of angle, you must, of course, take the absolute square
of the amplitudes.

18-2 Light scattering

Let’s use these results to solve a somewhat more complicated problem—
but also one which is somewhat more real. We suppose that the same atoms are
sitting in their ground state (j = 0), and scatter an incoming beam of light.
Let’s say that the light 1s going initially in the + z-direction, so that we have photons
coming up to the atom from the —z-direction, as shown in Fig. 18-4(a). We can
consider the scattering of light as a two-step process: The photon is absorbed,
and then is re-emitted. If we start with a RHC photon as in Fig. 18-4(a), and
angular momentum is conserved, the atom will be in an m = 41 state after the
absorption—as shown in Fig. 18-4(b). We call the amplitude for this process c.
The atom can then emit a RHC photon in the direction 6—as in Fig. 18-4(c).
The total amplitude that a RHC photon is scattered in the direction 6 is just
¢ times (18.1). Let’s call this scattering amplitude (R’ | S| R); we have

(R"| S| R) = 5‘25 (1 + cos 8). (18.3)

There is also an amplitude that a RHC photon will be absorbed and that
a LHC photon will be emitted. The product of the two amplitudes is the amplitude
(L’| S| R) that a RHC photon is scattered as a LHC photon. Using (18.2), we have

(L'| S| Ry = —925 (1 — cos 8). (18.4)

Now let’s ask about what happens if a LHC photon comes in. When it is
absorbed, the atom will go into an m = —1 state. By the same kind of arguments
we used in the preceding section, we can show that this amplitude must be —c.
The amplitude that an atom in the m = —1 state will emit a RHC photon at the
angle 8 is a times the amplitude (+ | R,(8) | — ), whichis #(1 — cos 6). So we have

(R|S|L)y = —% (1 — cos 6). (18.5)

Finally, the amplitude for a LHC photon to be scattered as a LHC photon is
(L'| S| L) = 925 (1 + cos 8). (18.6)

(There are two minus signs which cancel.)

If we make a measurement of the scattered intensity for any given combina-
tion of circular polarizations it will be proportional to the square of one of our four
amplitudes. For instance, with an incoming beam of RHC light the intensity of
the RHC light in the scattered radiation will vary as (I + cos 6)2.

That’s all very well, but suppose we start out with linearly polarized hight.
What then? If we have x-polarized light, it can be represented as a superposition
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of RHC and LHC light. We write (see Section 11-4)

1
= — (R L)). 18.7
[ x) \/E(I )+ 1L)) (18.7)
Or, if we have y-polarized light, we would have
= L (R —|L. 18.8
| ») \/i(l ) — | L) (18.8)

Now what do you want to know? Do you want the amplitude that an x-polarized
photon will scatter into a RHC photon at the angle #? You can get it by the usual
rule for combining amplitudes. First, multiply (18.7) by (R’ | S to get

(R|S|x) = \% (R | S|R) + (R'| S| L)), (18.9)

and then use (18.3) and (18.5) for the two amplitudes. You get
ac
R'|S|x) = — cosé. 18.10
(R"| S| x) V3 (18.10)

If you wanted the amplitude that an x-photon would scatter into a LHC photon,
you would get

LS| x) = _\a/_ci cos 8. (18.11)

Finally, suppose you wanted to know the amplitude that an x-polarized photon
will scatter while keeping its x-polarization. What you want is (x’ | S'| x). This
can be written as

(X[ S|x) = | RXR'|S|x) + X' |L'XL| S| x). (18.12)
If you then use the relations
| RY) = % A %) + i), (18.13)
1) = S 0) ~ i, (18.19)
it follows that
1
| R") = > 18.15
(x'| R') v (18.15)
1
'Ly = —- 18.16
(x| L") v ( )
So you get that
(x| §]x) = ac cos 6. (18.17)

The answer is that a beam of x-polarized light will be scattered at the direction 6
(in the xz-plane) with an intensity proportional to cos? 6. If you ask about y-polar-
ized light, you find that

G| S|x) =0. (18.18)

So the scattered light is completely polarized in the x-direction.

Now we notice something interesting. The results (18.17) and (18.18) corre-
spond exactly to the classical theory of light scattering we gave in Vol. 1, Section
32-6, where we imagined that the electron was bound to the atom by a linear
restoring force—so that it acted like a classical oscillator. Perhaps you are think-
mg: “It’s so much easier in the classical theory; if it gives the right answer why
bother with the quantum theory?” For one thing, we have considered so far
only the special—though common—case of an atom with a j = 1 excited state
and aj = 0 ground state. If the excited state had spin two, you would get a differ-
ent result. Also, there is no reason why the model of an electron attached to a
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spring and driven by an oscillating electric field should work for a single photon.
But we have found that it does in fact work, and that the polarization and intensi-
ties come out right. So in a certain sense we are bringing the whole course around
to the real truth. Whereas we have, in Vol. 1, done the theory of the index of
refraction, and of light scattering, by the classical theory, we have now shown that
the quantum theory gives the same result for the most common case. In effect
we have now done the polarization of sky hght, for instance, by quantum me-
chanical arguments, which is the only truly legitimate way.

It should be, of course, that all the classical theories which work are sup-
ported ultimately by legitimate quantum arguments. Naturally, those things
which we have spent a great deal of time in explaining to you were selected from
Just those parts of classical physics which still maintain validity in quantum
mechanics. You’ll notice that we did not discuss in great detail any model of the
atom which has electrons going around 1n orbits. That’s because such a model
doesn’t give results which agree with the quantum mechanics. But the electron
on a spring—which is not, in a sense, at all the way an atom “looks”—does
work, and so we used that model for the theory of the index of refraction.

18-3 The annihilation of positronium

We would like next to take an example which is very pretty. It is quite inter-
esting and, although somewhat complicated, we hope not too much so. Our
example is the system called positronium, which is an “atom’’ made up of an elec-
tron and a positron—a bound state of an e* and an e™. It is like a hydrogen
atom, except that a positron replaces the proton. This object has—like the hydro-
gen atom—many states. Also like the hydrogen, the ground state is split into a
“hyperfine structure” by the interaction of the magnetic moments. The spins of
the electron and positron are each one-half, and they can be either parallel or
antiparallel to any given axis. (In the ground state there is no other angular
momentum due to orbital motion.) So there are four states: three are the sub-
states of a spin-one system, all with the same energy; and one is a state of spin
zero with a different energy. The energy splitting is, however, much larger than
the 1420 megacycles of hydrogen because the positron magnetic moment is so
much stronger—1000 times stronger—than the proton moment.

The most important difference, however, is that positronium cannot last
forever. The position is the antiparticle of the electron; they can annihilate each
other. The two particles disappear completely—converting their rest energy into
radiation, which appears as v-rays (photons). In the disintegration, two particles
with a finite rest mass go into two or more objects which have zero rest mass.}

We begin by analyzing the disintegration of the spin-zero state of the posi-
tronium. It disintegrates into two 7-rays with a lifetime of about 10~ second.
Initially, we have a positron and an electron close together and with spins anti-
parallel, making the positronium system. After the disintegration there are two
photons going out with equal and opposite momenta (Fig. 18-5). The momenta
must be equal and oppostte, because the total momentum after the disintegration
must be zero, as it was before, if we are taking the case of annihilation at rest.
If the positronium is not at rest, we can ride with it, solve the problem, and then
transform everything back to the lab system. (See, we can do anything now;
we have all the tools.)

First, we note that the angular distribution is not very interesting. Since
the mitial state has spin zero, it has no special axis—it is symmetric under all
rotations. The final state must then also be symmetric under all rotations. That
means that all angles for the disintegration are equally likely—the amplitude is
the same for a photon to go in any direction. Of course, once we find one of
the photons in some direction the other must be opposite.

t In the deeper understanding of the world today, we do not have an easy way to
distinguish whether the energy of a photon 1s less “matter” than the energy of an electron,
because as you remember all the particles behave very similarly. The only distinction 1s
that the photon has zero rest mass.
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tronium annihilation along the z-axis.

The only remaining question, which we now want to look at, is about the
polarization of the photons. Let’s call the directions of motion of the two photons
the plus and minus z-axes. We can use any representations we want for the polar-
ization states of the photons; we will choose for our description right and left
circular polarization—always with respect to the directions of motion. Right
away, we can see that if the photon going upward is RHC, then angular momentum
will be conserved if the downward going photon is also RHC. Each will carry 41
unit of angular momentum with respect to its momentum direction, which means
plus and minus one unit about the z-axis. The total will be zero, and the angular
momentum after the disintegration will be the same as before. See Fig. 18-6.

The same arguments show that if the upward going photon is RHC, the
downward cannot be LHC. Then the final state would have two units of angular
momentum. This is not permitted if the initial state has spin zero. Note that
such a final state is also not possible for the other positronium ground state of
spin one, because it can have a maximum of one unit of angular momentum in
any direction.

Now we want to show that two-photon annihilation is not possible at all
from the spin-one state. You might think that if we took thej = 1, m = O state—
which has zero angular momentum about the z-axis—it should be like the spin-zero
state, and could disintegrate into two RHC photons. Certainly, the disintegration
sketched in Fig. 18-7(a) conserves angular momentum about the z-axis. But now
look what happens if we rotate this system around the y-axis by 180°; we get the
picture shown in Fig. 18-7(b). It is exactly the same as in part (a) of the figure.
All we have done is interchange the two photons. Now photons are Bose particles;
if we interchange them, the amplitude has the same sign, so the amplitude for the
disintegration in part (b) must be the same as in part (a). But we have assumed
that the initial object 1s spin one. And when we rotate a spin-one object in a state
with m = 0 by 180° about the y-axis, its amplitudes change sign (see Table 17-2
for ¢ = ). So the amplitudes for (a) and (b) in Fig. 18-7 should have opposite
signs; the spin-one state cannot disintegrate into two photons.

When positronium is formed you would expect it to end up in the spin-zero
state 1/4 of the time and in the spin-one state (with m = —1,0, or +1)3/4 of the
time. So 1/4 of the time you would get two-photon annihilations. The other 3/4

s é

(b)

,\
s
3 o
]
@
/\\
\ ]
N
at—
[
o -
~N
{ 1
N o

Fig. 18-7.

ete- ete—

<> <

e :

For the | = 1 state of positronium, the process {a) and its 180°

rotation about y (b) are exactly the same.

1 Note that we always analyze the angular momentum about the direction of motion of
the particle. If we were to ask about the angular momentum about any other axis, we
would have to worry about the possibility of “orbital” angular momentum—from a
p X rterm. For instance, we can’t say that the photons leave exactly from the center
of the positromum. They could leave like two things shot out from the rim of a spinning
wheel. We don’t have to worry about such possibilities when we take our axis along the
direction of motion.
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of the time there can be no two-photon annihilations. There is still an annihilation,
but it has to go with three photons. It is harder for it to do that and the Iifetime
is 1000 times longer—about 10~7 second. This is what is observed experimentally.
We will not go into any more of the details of the spin-one annihilation.

So far we have that if we only worry about angular momentum, the spin-zero
state of the positronium can go into two RHC photons. There is also another
possibility: it can go into two LHC photons as shown in Fig. 18-8. The next
question is, what is the relation between the amplitudes for these two possible
decay modes? We can find out from the conservation of parity.

To do that, however, we need to know the parity of the positronium. Now
theoretical physicists have shown in a way that is not easy to explain that the
parity of the electron and the positron—its antiparticle—must be opposite, so
that the spin-zero ground state of positronium must be odd. We will just assume
that it is odd, and since we will get agreement with experiment, we can take that
as sufficient proof.

Let’s see then what happens if we make an inversion of the process in Fig.
18-6. When we do that, the two photons reverse directions and polarizations.
The inverted picture looks just like Fig. 18-8. Assuming that the parity of the
positronium is odd, the amplitudes for the two processes in Figs. 18-6 and 18-8
must have the opposite sign. Let’s let | R;R,) stand for the final state of Fig.
18-6 in which both photons are RHC, and let | L;L,) stand for the final state of
Fig. 18-8, in which both photons are LHC. The true final state—let’s call it | F)—
must be

| F) = | RiRy) — | L1Ly). (18.19)

Then an inversion changes the R’s into L’s and gives the state
P|F) = |LiLs) — | RiRy) = — | F), (18.20)

which is the negative of (18.19). So the final state | F) has negative parity, which
is the same as the initial spin-zero state of the positronium. This is the only final
state that conserves both angular momentum and parity. There is some amplitude
that the disintegration into this state will occur, which we don’t need to worry
about now, however, since we are only interested in questions about the polariza-
tion.

What does the final state of (18.19) mean physically? One thing it means is
the following: If we observe the two photons in two detectors which can be set
to count separately the RHC or LHC photons, we will always see two RHC
photons together, or two LHC photons together. That is, if you stand on one side
of the positronium and someone else stands on the opposite side, you can measure
the polarization and tell the other guy what polarization he will get. You have a
50-50 chance of catching a RHC photon or a LHC photon; whichever one you get,
you can predict that he will get the same.

Since there is a 50-50 chance for RHC or LHC polarization, it sounds as
though it might be like linear polarization. Let’s ask what happens if we observe
the photon in counters that accept only linearly polarized light. For 7Y-rays it is
not as easy to measure the polarization as it is for light; there is no polarizer which
works well for such short wavelengths. But let’s imagine that there is, to make the
discussion easier. Suppose that you have a counter that only accepts light with
x-polarization, and that there is a guy on the other side that also looks for linear
polarized light with, say, y-polarization. What is the chance you will pick up the
two photons from an annihilation? What we need to ask is the amplitude that
| F) will be in the state | x;y,). In other words, we want the amplitude

<‘x1y2 I F>»
which is, of course, just

(x1y2 | R1R2) — (x1yg | L1Ls). (18.21)

Now although we are working with two-particle amplitudes for the two
photons, we can handle them just as we did the single particle amplitudes, since
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each particle acts independently of the other. That means that the amplitude
(x1y2 | R1R3) is just the product of the two independent amplitudes (x, | R,)
and (ys | Rg). Using Table 17-3, these two amplitudes are 1/4/2 and i//2, so

(x1y2 | R1Ry)

i
+3-
Similarly, we find that

(xwa|Lily) = — %

Subtracting these two amplitudes according to (18.21), we get that
(x| F) = + i (18.22)

So there is a unit probabilityt that if you get a photon in your x-polarized detector,
the other guy will get a photon in his y-polarized detector.

Now suppose that the other guy sets his counter for x-polarization the same
as yours. He would never get a count when you got one. If you work it through,
you will find that

(x1x5 | F) = 0. (18.23)

It will, naturally, also work out that if you set your counter for y-polarization he
will get coincident counts only if he is set for x-polarization.

Now this all leads to an interesting situation. Suppose you were to set up
something like a piece of calcite which separated the photons into x-polarized
and p-polarized beams, and put a counter in each beam. Let’s call one the x-counter
and the other the y-counter. If the guy on the other side does the same thing,
you can always tell him which beam his photon is going to go into. Whenever
you and he get simultaneous counts, you can see which of your detectors caught
the photon and then tell him which of his counters had a photon. Let’s say that
in a certain disintegration you find that a photon went into your x-counter; you
can tell him that he must have had a count in his y-counter.

Now many people who learn quantum mechanics in the usual (old-fashioned)
way find this disturbing. They would like to think that once the photons are emitted
it goes along as a wave with a definite character. They would think that since
“any given photon” has some “amplitude” to be x-polarized or to be y-polarized,
there should be some chance of picking it up in either the x- or y-counter and that
this chance shouldn’t depend on what some other person finds out about a com-
pletely different photon. They argue that “someone else making a measurement
shouldn’t be able to change the probability that I will find something.” Our
quantum mechanics says, however, that by making a measurement on photon
number one, you can predict precisely what the polarization of photon number
two is going to be when it is detected. This point was never accepted by Einstein,
and he worried about it a great deal—it became known as the “Einstein-Podalsky-
Rosen paradox.” But when the situation 1s described as we have done it here,
there doesn’t seem to be any paradox at all; 1t comes out quite naturally that what
is measured in one place is correlated with what is measured somewhere else. The
argument that the result is paradoxical runs something like this:

(1) If you have a counter which tells you whether your photon is RHC or LHC,
you can predict exactly what kind of a photon (RHC or LHC) he will find.

(2) The photons he receives must, therefore, each be purely RHC or purely LHC,
some of one kind and some of the other.

(3) Surely you cannot alter the physical nature of his photons by changing the
kind of observation you make on your photons. No matter what measure-
ments you make on yours, his must still be either RHC or LHC.

T We have not normalized our amplitudes, or multiphed them by the amplitude for
the disintegration into any particular final state, but we can see that this result is correct
because we get zero probability when we look at the other alternative—see Eq. (18.23).
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(4) Now suppose he changes his apparatus to split his photons into two linearly
polarized beams with a piece of calcite so that all of his photons go either
into an x-polarized beam or into a y-polarized beam. There 1s absolutely no
way, according to quantum mechanics, to tell into which beam any par-
ticular RHC photon will go. There is a 509, probability it will go into the
x-beam and a 509, probability it will go into the y-beam. And the same
goes for a LHC photon.

(5) Since each photon is RHC or LHC—according to (2) and (3)—each one
must have a 50-50 chance of going into the x-beam or the y-beam and there
is no way to predict which way it will go.

(6) Yet the theory predicts that if you see your photon go through an x-polarizer
you can predict with certainty that his photon will go into his y-polarized
beam. This is in contradiction to (5) so there is a paradox.

Nature apparently doesn’t see the “paradox,” however, because experiment
shows that the prediction in (6) is, in fact, true. We have already discussed the key
to this “paradox™ in our very first lecture on quantum mechanical behavior in
Chapter 35, Vol. I. In the argument above, steps (1), (2), (4), and (6) are all
correct, but (3), and its consequence (5), are wrong; they are not a true description
of nature. Argument (3) says that by your measurement (seeinga RHC or a LHC
photon) you can determine which of two alternative events occurs for him (seeing
a RHC or a LHC photon), and that even if you do nor make your measurement
you can still say that his event will occur either by one alternative or the other.
But it was precisely the point of Chapter 35, Vol. I, to point out right at the begin-
ning that this is not so in Nature. Her way requires a description 1n terms of inter-
fering amplitudes, one amplitude for each alternative. A measurement of which
alternative actually occurs destroys the interference, but if a measurement is
not made you cannot still say that “one alternative or the other is still occurring.”

If you could determine for each one of your photons whether it was RHC and
LHC, and also whether it was x-polarized (all for the same photon) there would
indeed be a paradox. But you cannot do that—it is an example of the uncertainty
principle.

Do you still think there is a “‘paradox”? Make sure that it is, in fact, a paradox
about the behavior of Nature, by setting up an imaginary experiment for which
the theory of quantum mechanics would predict inconsistent results via two
different arguments. Otherwise the “paradox” is only a conflict between reality
and your feeling of what reality “ought to be.”

Do you think that it is notr a “paradox,” but that it is still very peculiar?
On that we can all agree. It is what makes physics fascinating.

18-4 Rotation matrix for any spin

By now you can see, we hope, how important the idea of the angular mo-
mentum is in understanding atomic processes. So far, we have considered only
systems with spins—or “‘total angular momentum”—of zero, one-half, or one.
There are, of course, atomic systems with higher angular momenta. For analyzing
such systems we would need to have tables of rotation amplitudes like those in
Section 17-6. That is, we would need the matrix of amplitudes for spin 3, 2,
3, 3, etc. Although we will not work out these tables in detail, we would like
to show you how it 1s done, so that you can do it if you ever need to.

As we have seen earlier, any system which has the spin or “‘total angular mo-
mentum” j can exist in any one of (2j + 1) states for which the z-component of
angular momentum can have any one of the discrete values in the sequence j,
j—1Lj—=2,...,—=(j — 1), —j (all in units of #). Calling the z-component of
angular momentum of any particular state m#h, we can define a particular
angular momentum state by giving the numerical values of the two “angular
momentum quantum numbers” ;y and m. We can indicate such a state by the state
vector |j, m). In the case of a spin one-half particle, the two states are then
| %, %) and | %, —%); or for a spin-one system, the states would be written in this
notation as | 1, +1), | 1,0), | 1, —1). A spin-zero particle has, of course, only the

one state | 0, 0). 18-9



Now we want to know what happens when we project the general state | j, m)
into a representation with respect to a rotated set of axes. First. we know that j
is a number which characterizes the system, so it doesn’t change. If we rotate the
axes, all we do is get a mixture of the various m-values for the same j. In general,
there will be some amplitude that in the rotated frame the system will be in the
state | j, m'), where m’ gives the new z-component of angular momentum. So what
we want are all the matrix elements (j, m’ | R| j, m) for various rotations. We
already know what happens if we rotate by an angle ¢ about the z-axis. The new
state is just the old one multiplied by e*"*—it still has the same m-value. We can
write this by

RA($) |j,m) = e™ | j, m). (18.24)
Or, if you prefer,
G’ | RA@) | jym) = 8™ (18.25)

(where 8,, ., is 1 if m’ = m, or zero otherwise).

For a rotation about any other axis there will be a mixing of the various
m-states. We could, of course, try to work out the matrix elements for an arbitrary
rotation described by the Euler angles 3, «, and v. But it 1s easier to remember
that the most general such rotation can be made up of the three rotations R,(7),
R,(a), R.(8); so if we know the matrix elements for a rotation about the y-axis,
we will have all we need.

How can we find the rotation matrix for a rotation by the angle 6 about the
y-axis for a particle of spin j? We can'’t tell you how to do it in a basic way (with
what we have had). We did it for spin one-half by a complicated symmetry argu-
ment. We then did it for spin one by taking the special case of a spin-one system
which was made up of two spin one-half particles. If you will go along with us and
accept the fact that in the general case the answers depend only on the spin j, and
are independent of how the inner guts of the object of spin j are put together, we
can extend the spin-one argument to an arbitrary spin. We can, for example,
cook up an artificial system of spin § out of three spin one-half objects. We can
even avoid complications by imagining that they are all distinct particles—like a
proton, an electron, and a muon. By transforming each spin one-half object, we
can see what happens to the whole system—remembering that the three amplitudes
are multiplied for the combined state. Let’s see how it goes in this case.

Suppose we take the three spin one-half objects all with spins “up’; we can
indicate this state by | + + +). If we look at this system in a frame rotated about
the z-axis by the angle ¢, each plus stays a plus, but gets multiplied by /2.
We have three such factors, so

Re)| + + +) =2 | + + +). (18.26)

Evidently the state | + 4+ +) is just what we mean by the m = -+ state, or
the state | £, +3).

If we now rotate this system about the y-axis, each of the spin one-half objects
will have some amplitude to be plus or to be minus, so the system will now be a
mixture of the eight possible combinations |+ + +), |+ + =), |+ — +),
l—++)]+—=)|—+ ~)|—— ) or| — — —). Itis clear, however,
that these can be broken up into four sets, each set corresponding to a particular
value of m. First, we have | + + +), for which m = £. Then there are the
three states | + + —), | + — +), and | — + +)—each with two plusses and
one minus. Since each spin one-half object has the same chance of coming out
minus under the rotation, the amounts of each of these three combinations should
be equal. So let’s take the combination

1
V3
with the factor 1/+/3 put in to normalize the state. If we rotate this state about

the z-axis, we get a factor *'2 for each plus, and e~**2 for each minus. Each
term in (18.27) is multiplied by e'*2, so there is the common factor e**'2. This

18-10
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one “—" pieces. For instance,
[+ + =) =d%c|+" +'+') + a®d|+' +' ~') + abe |+~ +)
+ bac| =" +'+') + abd |+’ —' —') + bad | —~" +' —")
+ b%c| =" —"+') + b¥| - —' —"). (18.33)

Adding two similar expressions for | + — +) and | — + +) and dividing by
/3, we find B
[3,4+1,8) = v/3a%|3,+3T)
+(a%d + 2abc) | 3,+1,T)
+(2bad + b%) | 3,—1,T)
Continuing the process we find all the elements (jT | iS) of the transformation ma-

trix as given in Table 18-2. The first column comes from Eq. (18.32); the second
from (18.34). The last two columns were worked out in the same way.

Table 18-2
Rotation matrix for a spin % particle

(The coefficients a, b, c, and 4 are given in Table 12-4.)

(iT| iS) 2,42,8) 3,+3.5) 3.-%.5) 13.,~3.5)
G437 ad V3 a2e V3 ac? 0 3
&,+3.7| /3 a?% a’d + 2abc ¢2b + 2dac V3c2d
3,-17| V'3 ab? 2bad + b%c 2cdb + d?a V3 cd?
3,-3,7| b3 V3 b2d /'3 bd? a3

Now suppose the 7T-frame were rotated with respect to .S by the angle 6 about
their y-axes. Then a, b, ¢, and d have the values [see (12.54)] a = d = cos 6/2,
and ¢ = —b = sin §/2. Using these values in Table 18-2 we get the forms
which correspond to the second part of Table 17-2, but now for a spin  system.

The arguments we have just gone through are readily generalized to a system
of any spin j. The states |j, m) can be put together from 2; particles, each of
spin one-half. (There are j + m of them 1n the | +) state and j — m in the | —)
state.) Sums are taken over all the possible ways this can be done, and the state
1s normalized by multiplying by a suitable constant. Those of you who are mathe-
matically inclined may be able to show that the following result comes outt:

Gym' | RO | J,my = [(G + m)I(G — m)!(j + m")I(j — m')]'2

X3 (= 1)*(cos 8/2)> ™ ~™—K(sin g/2)" ™ +2*
~ (m—m + K+ m — k) — m— k)k!

) (18.35)

where k is to go over all values which give terms > 0 in all the factorials.

This is quite a messy formula, but with 1t you can check Table 17-2 for j = 1
and prepare tables of your own for larger j. Several special matrix elements are of
extra importance and have been given special names. For example the matrix
elements for m = m’ = 0 and integral j are known as the Legendre polynomials
and are called P, (cos 6):

G, 01 R(8)] j,0) = P,(cos 6). (18.36)

T If you want details, they.are given 1n an appendix to this chapter.
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The first few of these polynomials are:

Py (cos6) = 1, (18.37)
P, (cos 6) = cos b, (18.38)
P, (cos 8) = 3(3cos28 — 1), (18.39)
P35 (cos 8) = 3(5cos3 8 — 3 cos 6). (18.40)

18-5 Measuring a nuclear spin

We would like to show you one example of the application of the coefficients
we have just described. It has to do with a recent, interesting experiment which
you will now be able to understand. Some physicists wanted to find out the spin
of a certain excited state of the Ne2° nucleus. To do this, they bombarded a
carbon target with a beam of accelerated carbon ions, and produced the desired
excited state of Ne?%—called Ne2%*—in the reaction

C12 + C12—>N620* + a1,

where a; is the a-particle, or He*. Several of the excited states of Ne2? produced
this way are unstable and disintegrate in the reaction

Ne20* — 016 + q,.

So experimentally there are two a-particles which come out of the reaction. We
call them a; and «»; since they come off with different energies, they can be
distinguished from each other. Also, by picking a particular energy for a; we
can pick out any particular excited state of the Ne2°,

The experiment was set up as shown in Fig. 18-9. A beam of 16-Mev carbon
ions was directed onto a thin foil of carbon. The first a-particle was counted in a
silicon diffused junction detector marked «;—set to accept a-particles of the
proper energy moving in the forward direction (with respect to the incident C'?
beam). The second a-particle was picked up in the counter a, at the angle 6
with respect to a;. The counting rate of coincidence signals from o; and oy were
measured as a function of the angle 6.

The idea of the experiment is the following. First, you need to know that the
spins of C*2, O'®, and the a-particle are all zero. If we call the direction of motion
of the initial C'2 the + z-direction, then we know that the Ne2%* must have zero
angular momentum about the z-axis. None of the other particles has any spin;
the C!? arrives along the z-axis and the «, leaves along the z-axis so they can’t
have any angular momentum about it. So whatever the spin j of the Ne20* is,
we know that it is in the state | j,0). Now what will happen when the Ne2%
disintegrates into an O'® and the second a-particle? Well, the a-particle is picked
up in the counter a; and to conserve momentum the O!% must go off in the op-
posite direction.t About the new axis through «,, there can be no component of
angular momentum. The final state has zero angular momentum about the new
axis, so the Ne2%* can disintegrate this way only if it has some amplitude to have
m' equal to zero, where m’ is the quantum number of the component of angular
momentum about the new axis. In fact, the probability of observing a at the angle
6 is just the square of the amplitude (or matrix element)

(U, 01 R(6) |/, 0). (18.41)

To find the spin of the Ne2%* state in question, the intensity of the second
a-particle was plotted as a function of angle and compared with the theoretical

+ We can neglect the recoil given to the Ne20* in the first collision. Or better still,
we can calculate what it is and make a correction for it.
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and j, = 1, namely, the deuterium atom in which particle a is an electron (e) and
particle b is the nucleus—a deuteron (d). We have then that j, = j. = 3. The
deuteron is formed of one proton and one neutron in a state whose total spin is
one, so j, = jq = l. We want to discuss the hyperfine states of deuterium—just
the way we did for hydrogen. Since the deuteron has three possible states m, =
mq = +1, 0, —1, and the electron has two, m, = m, = +3%, —43, there are
six possible states as follows (using the notation | e, m; d, mq)):

le,+3%;d,+1),
|e,4%;d,0); | e,—%;d,+1),
le,+%;d,—1); le,~3; d,0),
le,—1:d,—1).

(18.42)

You will notice that we have grouped the states according to the values of the sum
of m, and myq—arranged in descending order.

Now we ask: What happens to these states if we project into a different
coordinate system? If the new system is just rotated about the z-axis by the angle
¢, then the state | e, m,; d, mq) gets multiplied by

eimetpimdd — pilmetme)e (18.43)

(The state may be thought of as the product | e, m,) | d, m4), and each state vector
contributes independently its own exponential factor.) The factor (18.43) is of the
form e"™?, so the state | e, m.; d, mq) has a z-component of angular momentum

equal to
M = m, + ma. (18.44)

The z-component of the total angular momentum is the sum of the z-components of
angular momentum of the parts.

In the list of (18.42), therefore, the state in the top line has M = +3, the
two in the second line have M = +3, the next two have M = —1, and the
last state has M = —3. We see immediately one possibility for the spin J of the
combined state (the total angular momentum) must be £, and this will require
four states with M = +3, +4, —4, and —35.

There is only one candidate for M = £, so we know already that

U= 8 M= +8) = |etd:d, +1). (18.45)

But what is the state | J = 2, M = 1)? We have two candidates in the second line
of (18.42), and, in fact, any linear combination of them would also have M = 3.
So, in general, we must expect to find that

|J=3M=+3) = afe,+3;d0) + Ble,—~3;d,+1), (18.46)

where « and 3 are two numbers. They are called the Clebsch-Gordon coefficients.
Our next problem is to find out what they are.

We can find out easily if we just remember that the deuteron is made up of a
neutron and a proton, and write the deuteron states out more explicitly using the
rules of Table 18-3. If we do that, the states listed in (18.42) then look as shown in
Table 18-4.

We want to form the four states of J = £, using the states in the table.
But we already know the answer, because in Table 18-1 we have states of spin
% formed from three spin one-half particles. The first state in Table 18-1 has
|J = $, M = +%)anditis| + 4+ +), which—in our present notation—is the
same as | e,+%; n,+4, p,4+3), or the first state in Table 18-4. But this state is
also the same as the first in the list of (18.42), confirming our statement in (18.45).
The second line of Table 18-1 says—changing to our present notation—that

1
V3
+ e, +4:0,—%;p,4+3) + | e,—4; 0,43 p+3)) (18.47)
18-15
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Table 184

Angular momentum states for a deuterium atom

m=3

le,+3;d,4+1) = | e,+4; n,+3; p,+%)

m=3}

| e,4+3%;d,0) = J\/-E{I e, +4;n,+%;p,—%) + e, 44 n,—%;p,+3)}

le,—~%;d,+1) = |e,—%;n,+%; p,+%)

m=—}%
le,+4;d,—1) = | e,+3;n,—3;p,—%)

e,—%;d,0) = \/LE {le,(~3;n,+%;p,—3) + | e,—3:n,—3; p,+3)}

m=—3

le,—%;d,—1) = |e,—4;n,—3%;p,—3%)

The right side can evidently be put together from the two entries in the second line
of Table 18—4 by taking 1/2/3 of the first term with /1/3 of the second. That is,
Eq. (18-47) is equivalent to

|J=%M=13) =v2/3|e+$d0) + VI/3|e—%d1).  (1848)
We have found our two Clebsch-Gordon coefficients @ and 8 in Eq. (18.46):

a = V2/3, B =+V1/3. (18.49)

Following the same procedure we can find that

|J=3M= -3 =V1/3|e+}d—1)+V2/3|e,~%;d,0).  (18.50)
And, also, of course,
|J=%M= -3 =|e—5d,—1) (18.51)

These are the rules for the composition of spin 1 and spin % to make a total J = 3.
We summarize (18.45), (18.48), and (18.50) in Table 18-5.

We have, however, only four states here while the system we are considering
has six possible states. Of the two states in the second line of (18.42) we have used
only one linear combination to form |J = 3, M = +4). There is another linear
combination orthogonal to the one we have taken which also has M = +3,
namely

V1/3|e43;d,0) — V2/3 | e,—3%;d,+1). (18.52)
Table 18-5

The J = # states of the deuterium atom

|J =% M= +3) = |e+}d+1)

|J =3 M= +3) = \V2/3|e,4+%:d,0) + V1/3 ] e,—%; d,1)
I17=% M=~} =VI/3|e+4d,—1) + V2/3|e,—%;d,0)
|7 =3,M=—3) =|e—%;d,~1)
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Similarly, the two states in the third line of (18.42) can be combined to give two

orthogonal states, each with M = —1. The one orthogonal to (18.52) is
V2/3|e43;d,—1) — V1/3 | e,—3%;d,0). (18.53)
These are the two remaining states. They have M = m, + mq = =%; and

must be the two states corresponding to J = }. So we have

IJ = %,M = %) =V 1/3|C,+12~,d,0> - \/2—75[8,—%; d’+1>3
(18.54)
[J =3 M= -3 =+2/3]e+3d,—1) — V1/3]e,—3%;d,0).

We can verify that these two states do indeed behave like the states of a spin
one-half object by writing out the deuterrum parts in terms of the neutron and
proton states—using Table 18-3. The first state in (18.53) is

\/1/_6{l e7+%; na+%; p;‘%) + | C,+?i;; n:—'%; p:+%>}
—V2/3|e,—%;n,+%;p,4+3), (18.55)

which can also be written

V133[V1/2 {{e43;n,4%; p,—3) — |e,—%; n,+3; p,+3)}

+ V172 {|e,+3;0,—%; p+3) — le.—3:n,+3; p, 43}
(18.56)

Now look at the terms in the first curly brackets, and think of the e and p taken
together. Together they form a spin-zero state (see the bottom line of Table 18-3),
and contribute no angular momentum. Only the neutron is left, so the whole of
the first curly bracket of (18.56) behaves under rotations like a neutron, namely
as a state with J = 4, M = +3. Following the same reasoning, we see that
in the second curly bracket of (18.56) the electron and neutron team up to produce
zero angular momentum, and only the proton contribution—with m, = $—is
left. The terms behave like an object with J = §, M = +3%. So the whole ex-
pression of (18.56) transforms like |J = +3%, M = +3) as it should. The

= —1 state which corresponds to (18.57) can be written down (by changing
the proper +4’s to —4’s) to get

V13[V1/2 {|e 43 0,~4p,—%) — | e—%;0,—5; p,+5)}
+ V 1/2 {| e,-i—%;n,—%—;p,—%) - |e,_%§n,+%§P’_%>}]'
(18.57)

You can easily check that this is equal to the second line of (18.54), as it should be
if the two terms of that pair are to be the two states of a spin one-half system. So our
results are confirmed. A deuteron and an electron can exist in six spin states, four
of which act like the states of a spin £ object (Table 18-5) and two of which act
like an object of spin one-half (18.54).

The results of Table 18-5 and of Eq. (18.54) were obtained by making use of
the fact that the deuteron is made up of a neutron and a proton. The truth of the
equations does not depend on that special circumstance. For any spin-one object
put together with any spin one-half object the composition laws (and the coeffi-
cients) are the same. The set of equations in Table 18-5 means that if the co-
ordinates are rotated about, say, the y-axis—so that the states of the spin one-half
particle and of the spin-one particle change according to Table 18-1,and Table
18-2—the linear combinations on the right-hand side will change in the proper
way for a spin £ object. Under the same rotation the states of (18.54) will
change as the states of a spin one-half object. The results depend only on the
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Table 18-6

Composition of a spin one-half particle (j, = %)
and a spin-one particle Gy = D).

|J=8M=3% =|a+}b+1)
|J=8M=1% =+V2/3|a+%b0)+V1/3]|a—3%;b+1)
|7 =8 M=-%) = V1/3|a+}b6,—1) + V2/3| a,—4; b0)
|J =8 M=-8) = |a,—%;5,-1)
|J =4 M =+%) = V1/3|a,4%;60) — V2/3|a,—%; b,+1)
|J =4 M =-1%) = V2/3|a+}:b,—1) — V1/3| a,—%; b,0)

rotation properties (that is, the spin states) of the two original particles but not
in any way on the origins of their angular momenta. We have only made use of
this fact to work out the formulas by choosing a special case in which one of the
component parts is itself made up of two spin one-half particles in a symmetric
state. We have put all our results together in Table 18-6, changing the notation
“e” and “d” to “a”’ and “‘b” to emphasize the generality of the conclusions.

Suppose we have the general problem of finding the states which can be
formed when two objects of arbitrary spins are combined. Say one has j, (so its
z-component m, runs over the 2j, + 1 values from —j, to +j,;) and the other has
Jb (with z-component m; running over the values from —j, to +;5). The combined
states are | a, m,; b, m,), and there are (2j, + 1)(2j, + 1) different ones. Now
what states of total spin J can be found?

The total z-component of angular momentum M is equal to m, + m;, and
the states can all be listed according to M [as in (18.42)]. The largest M is unique;
it corresponds to m, = j, and m, = j;, and is, therefore, just j, + j». That
means that the largest total spin J is also equal to the sum j, + ji:

J = (M)max = ja + Jb

For the first M value smaller than (M),.x, there are two states (either m, or m,
is one unit less than its maximum). They must contribute one state to the set that
goes with J = j, + Ji, and the one left over will belong to a new set with J =
Ja + j» — 1. The next M-value—the third from the top of the list—can be formed
in three ways. (Fromm, = j, — 2, mp = jp; fromm, = j, — 1, my = j, — 1;
and from m, = j,, my = j, — 2.) Two of these belong to groups already started
above; the third tells us that states of J = j, + j, — 2 must also be included.
This argument continues until we reach a stage where in our list we can no longer
go one more step down in one of the m’s to make new states.

Let j;, be the smaller of j, and j, (if they are equal take either one); then only
2j, values of J are required—going in integer steps from j, + j, down to j, — js.
That is, when two objects of spin j, and j, are combined, the system can have a
total angular momentum J equal to any one of the values

ja +]b
Jot+ s — 1

J=< Jatjo—2 (18.58)
Ija _.]bl

(By writing | j, — j» | instead of j, — j, we can avoid the extra admonition that
ja Z ]b)

For each of these J values there are the 2J + 1 states of different M-values—
with M going from +J to —J. Each of these is formed from linear combinations
of the original states | a, m,; b, my) with appropriate factors—the Clebsch-Gordon
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coefficients for each particular term. We can consider that these coefficients give
the “amount” of the state | j,, ma; ji, ms) Which appears in the state | J, M). So
each of the Clebsch-Gordon coefficients has, if you wish, six indices identifying
its position in the formulas like those of Tables 18-3 and 18-6. That is, calling
these coefficients C(J, M; j,, mg; j», mp), we could express the equality of the
second line of Table 18-6 by writing

CEA+4 3 +51,0) = V273,
CE+44 -3 L+ = VI1/3.

We will not calculate here the coefficients for any other special cases.} You
can, however, find tables in many books. You might wish to try another special
case for yourself. The next one to do would be the composition of two spin-one
particles. We give just the final result in Table 18-7.

These laws of the composition of angular momenta are very important in

particle physics—where they have innumerable applications. Unfortunately, we
have no time to look at more examples here.

Table 18-7

Composition of two spin-one particles (j, = 1,j, = 1)

|J =2, M = +2) = | a,+1; b,+1)

1 1

J=2M=+1) = — | a,4+1;50) + — | a,0; b,41)

| V2 V2

lJ=2,M= 0) = Ja+l6-1) + L a—1;b4+1) + —=| a,0; 5,0)

3 ’\/g bl 3 k] Vg t] 5 t V-é " b

1 1

|J=2,M = —1) = ——|a0;b,—1) + —— | a,—1; b,0)
\/§| \2

|J=2,M==2) = |a—1;b6—1)

1 1
J=1,M=+41) = ——|a+1;50) — — | a,0; b,+1)
| V2 V2
1 1
[J=1,M= 0)=—/a+1;b—1) — — |a,—1; b,41)
V2 V2
[J= 1, M= —1) = 1 1a0;6,—1) — 2| a,—1; 5,0)
V2 V2

|J =0, M

1
0) = — {la,2+1;5,—1) + | a,—1; b,41) — | 4,0; 5,0
NG I ) »

Added Note 1: Derivation of the rotation matrix}

For those who would like to see the details, we work out here the general
rotation matrix for a system with spin (total angular momentum) j. It is really not
very important to work out the general case; once you have the idea, you can find
the general results in tables in many books. On the other hand, after coming
this far you might like to see that you can indeed understand even the very com-
plicated formulas of quantum mechanics, such as Eq. (18.35), that come into the
description of angular momentum.

T A large part of the work is done now that we have the general rotation matrix Eq.
(18.35).

1 The matenal of this appendix was originally included in the body of the lecture.
We now feel that 1t 1s unnecessary to include such a detailed treatment of the general case.
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We extend the arguments of Section 184 to a system with spin j, which we
consider to be made up of 2j spin one-half objects. The state with m = j would
be |+ + + * -+ +) (with j plus signs). For m = j — 1, there will be 2/ terms
like |+ +4++4+—)|++ -+ —+), and so on. Let’s consider the
general case in which there are r plusses and s minuses—with » + s = 2j. Under
a rotation about the z-axis each of the r plusses will contribute e***/2, The result
is a phase change of i(r/2 — s/2)¢. You see that
r—s

m = P

(18.59)

Just as for J = £, each state of definite m must be the linear combination with
plus signs of all the states with the same r and s—that is, states corresponding to
every possible arrangement which has r plusses and s minuses. We assume that
you can figure out that there are (r + s)!/r!s! such arrangements. To normalize
each state, we should divide the sum by the square root of this number. We can
write

1 ]1—1/2
[%] (+++ - Ftto—— )
+ (all rearrangements of order)} = | j, m) (18.60)
with
="§S, m=’;S. (18.61)

It will help our work if we now go to still another notation. Once we have
defined the states by Eq. (18.60), the two numbers » and s define a state just as
well as j and m. It will help us keep track of things if we write

| jym) = 1%), (18.62)
where, using the equalities of (18.67)

r=j+m, s=j—m
Next, we would like to write Eq. (18.60) with a new special notation as

. r r+ ) 2 .
my = 19 = [CED T e (1863
Note that we have changed the exponent of the factor in front to plus 4. We do
that because there are just N = (r + s)!/rls! terms inside the curly brackets.

Comparing (18.63) with (18.60) it is clear that
{I +)r l_>s} perm

is just a shorthand way of writing

{|+ + -+ — —) + all rearrangements}
N k]

where N is the number of different terms in the bracket. The reason that this
notation is convenient is that each time we make a rotation, all of the plus signs
contribute the same factor, so we get this factor to the rth power. Similarly, all
together the s minus terms contribute a factor to the sth power no matter what the
sequence of the terms is.

Now suppose we rotate our system by the angle 8 about the y-axis. What we
want is R,(6) | ;). When R,(6) operates on each | +) it gives

RO | +) = [+)C+ [ =)S, (18.64)

where C = cos /2 and S = sin 6/2. When R,(8) operates on each | — ) it gives

R(O)]| =) =|—)C—[+)S.
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So what we want is

B q1/2
R@19 = |2 RO+ T =) oo
[ J1/2
=155 RO RO [ =) o
[ /2
O e+ 128 =)C = |40 perm: (1865)

Now each binomial has to be expanded out to its appropriate power and the two
expressions multiplied together. There will be terms with | 4) to all powers from
zero to (r + s). Let’s look at all of the terms which have | +) to the »* power.
They will appear always multiplied with | — ) to the s’ power, where s’ = 2j — r’.
Suppose we collect all such terms. For each permutation they will have some
numerical coefficient involving the factors of the binomial expansion as well as
the factors C and S. Suppose we call that factor 4,.. Then Eq. (18.65) will look like

7458 i ,
RO [0 = 2 {4 )" | =)} perm. (18.66)
r'=0

Now let’s say that we divide 4, by the factor [(*' + s")!/r'!s"!']*% and call the
quotient B,.. Equation (18.66) is then equivalent to

r & I" + S, 1/2 r’ 8’
R(0)|2) = D B [W] 14471 =) hoerm: (18.67)
— st

(We could just say that this equation defines B, by the requirement that (18.67)
gives the same expression that appears in (18.65).)

With this definition of B, the remaining factors on the right-hand side of
Eq. (18.67) are just the states |7,). So we have that

RO = i B | %), (18.68)

r’'=0

with s’ always equal to r 4+ s — #’. This means, of course, that the coefficients
B, are just the matrix elements we want, namely

(v | R(8)|3) = By (18.69)

Now we just have to push through the algebra to find the various B,.. Com-
paring (18.39) with (18.37)—and remembering that ' + s’ = r + s—we see
that B, is just the coefficient of a”'5* in the following expression:

Mg\ 12
(W) (aC + bS)'(bC — aS)’. (18.70)
It is now only a dirty job to make the expansions by the binomial theorem, and

collect the terms with the given power of a and 6. If you work it all out, you find
that the coefficient of a’'5* in (18.70) is

r'ls' 12 kor—r' 4+ 2k ~s4r'—2k r! s!
[r!s!] Z; (=1)'s ¢ =7+ — k) = kK

(18.71)

The sum is to be taken over all integers k which give terms of zero or greater in the
factorials. This expression is then the matrix element we wanted.
Finally, we can return to our original notation in terms of j, m, and m’ using

r=j+4+m, r=j+m, s =j— m, s =j—m.

Making these substitutions, we get Eq. (18.34) in Section 18-4.
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Added Note 2: Conservation of parity in photon emission

In Section 1 of this chapter we considered the emission of light by an atom
that goes from an excited state of spin 1 to a ground state of spin 0. If the excited
state has 1ts spin up (m = +1), it can emit a RHC photon along the +z-axis or
a LHC photon along the —z-axis. Let’s call these two states of the photon | R,,)
and | Lqn). Neither of these states has a definite parity. Letting P be the parity
operator, P | Ryp) = | Lan) and P | Lay) = | Rup).

What about our earlier proof that an atom in a state of definite energy must
have a definite parity, and our statement that parity is conserved in atomic proc-
esses? Shouldn’t the final state in this problem (the state after the emission of a
photon) have a defimite parity? It does if we consider the complete final state
which contains amplitudes for the emission photons into all sorts of angles. In
Section 1 we chose to consider only a part of the complete final state.

If we wish we can look only at final states that do have a definite parity. For
example, consider a final state | ) which has some amplitude « to be a RHC
photon going along +z and some amplitude 8 to be a LHC photon going along
~z. We can write

[¥F) = a| Rup) + B8 Lan). (18.72)

The parity operation on this state gives

Plyr) = a| L) + 8| Rup)- (18.73)
This state will be = | ¢p)if 8 = aorif 8 = —a. So a final state of even parity 1s
l ‘/’F_‘U = a {Rup> + lLdn>}’ (1874)

and a state of odd parity is
[¥r) = af{| Rup) — | Lan)}. (18.75)

Next, we wish to consider the decay of an excited state of odd parity to a
ground state of even parity. If parity is to be conserved, the final state of the
photon must have odd parity. It must be the state in (18.75). If the amplitude to
find | Ryp) is «, the amplitude to find | L4n) is —o.

Now notice what happens when we perform a rotation of 180° about the
y-axis. The initial excited state of the atom becomes an m = —1 state (with no
change in sign, according to Table 17-2). And the rotation of the final state gives

R,(180°) [¥r) = a{| Ran) — | Lwp)}. (18.76)

Comparing this equation with (18.75), you see that for the assumed parity of the
final state, the amplitude to get a LHC photon along +z from the m = —1
initial state is the negative of the amplitude to get a RHC photon from the m = +1
initial state. This agrees with the result we found in Section 1.

18-22



