19

The Hydrogen Atom and
The Periodie Table

19-1 Schrodinger’s equation for the hydrogen atom

The most dramatic success 1n the history of the quantum mechanics was the
understanding of the details of the spectra of some simple atoms and the under-
standing of the periodicities which are found in the table of chemical elements.
In this chapter we will at last bring our quantum mechanics to the point of this
important achievement, specifically to an understanding of the spectrum of the
hydrogen atom. We will at the same time arrive at a qualitative explanation of the
mysterious properties of the chemical elements. We will do this by studying 1n
detail the behavior of the electron in a hydrogen atom—for the first time making
a detailed calculation of a distribution-in-space according to the ideas we developed
in Chapter 16.

For a complete description of the hydrogen atom we should describe the mo-
tions of both the proton and the electron. It is possible to do this in quantum
mechanics in a way that is analogous to the classical idea of describing the motion
of each particle relative to the center of gravity, but we will not do so. We wiil
just discuss an approximation in which we consider the proton to be very heavy,
so we can think of it as fixed at the center of the atom.

We will make another approximation by forgetting that the electron has a
spin and should be described by relativistic laws of mechanics. Some small cor-
rections to our treatment will be required since we will be using the nonrelativistic
Schrodinger equation and will disregard magnetic effects. Small magnetic effects
occur because from the electron’s point-of-view the proton is a circulating charge
which produces a magnetic field. In this field the electron will have a different
energy with its spin up than with 1t down. The energy of the atom will be shifted
a little bit from what we will calculate. We will ignore this small energy shift.
Also we will imagine that the electron is just like a gyroscope moving around in
space always keeping the same direction of spin. Since we will be considering a
free atom in space the total angular momentum will be conserved. In our approxi-
mation we will assume that the angular momentum of the electron spin stays con-
stant, so all the rest of the angular momentum of the atom—what is usually called
“orbital” angular momentum—will also be conserved. To an excellent approxi-
mation the electron moves in the hydrogen atom like a particle without spin—the
angular momentum of the motion is a constant,

With these approximations the amplitude to find the electron at different
places in space can be represented by a function of position 1n space and time.
We let ¥(x, y, z, t) be the amplitude to find the electron somewhere at the time z.
According to the quantum mechanics the rate of change of this amplitude with

time is given by the Hamiltonian operator working on the same function. From
Chapter 16,

g O s
i E = SC'P, (191)
with
s‘c———hiv2+V( 19.2
= -5 ). (19.2)

Here, m is the electron mass, and V(r) is the potential energy of the electron in the
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Fig. 19-1. The spherical polar co-
ordinates r, 8, ¢ of the point P.

electrostatic field of the proton. Taking ¥ = 0 at large distances from the proton
we can writet

e
V = - T *
The wave function ¥ must then satisfy the equation
., 0 2 2
iho = — 5=V — = (19.3)

We want to look for definite energy states, so we try to find solutions which
have the form

¥, 1) = e “PEY(p), (194
The function ¥(r) must then be a solution of
2 2
— vy - ( e—) " 19.)

where E is some constant—the energy of the atom.

Since the potential energy term depends only on the radius, it turns out to
be much more convenient to solve this equation in polar coordinates rather than
rectangular coordinates. The Laplacian is defined in rectangular coordinates by

9* a2 a2
2=_ v v .
ax2+6y2+ 9z2

We want to use instead the coordinates r, 6, ¢ shown in Fig. 19-1. These
coordinates are related to x, y, z by

Xx = rsin 6 cos ¢; y = rsinésin ¢; z = rcosé.

It's a rather tedious mess to work through the algebra, but you can eventually
show that for any function f(r) = f(r, 6, ¢),

3 1 9
VY, 0,9) = ; ar—Z )+ 5 lsm 6 96 (sm 6 a{9> T SnZo 29«7{ ' (198)

So in terms of the polar coordinates, the equation which is to be satisfied by
¥(r, 0, ¢) is

1 82 1 9 oy 1 62¢' 2m
y o O+ lsm 6 36 (sm 6 5@) T nio el — TRz E + v.
(19.7)

19-2 Spherically symmetric solutions

Let’s first try to find some very simple function that satisfies the horrible
equation in (19.7). Although the wave function ¥ will, in general, depend on the
angles ¢ and ¢ as well as on the radius r, we can see whether there might be a special
situation in which ¢ does not depend on the angles. For a wave function that
doesn't depend on the angles, none of the amplitudes will change in any way if
you rotate the coordinate system. That means that all of the components of the
angular momentum are zero. Such a ¢ must correspond to a state whose total
angular momentum is zero. (Actually, it is only the orbital angular momentum
which is zero because we still have the spin of the electron, but we are ignoring
that part.) A state with zero orbital angular momentum is called by a special name.
It is called an “s-state”—you can remember “s for spherically symmetric.”{

t As usual, e? = ¢2/4re.

1 Since these special names are part of the common vocabulary of atomic physics, you
will just have to learn them. We will help out by putting them together in a short “dic-
tionary” later in the chapter.
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Now 1f ¢ is not going to depend on 6 and ¢ then the entire Laplacian contains
only the first term and Eq. (19.7) becomes much simpler:

1 d° 2m e’
L w=-2(s+2) (19.8)
Before you start to work on solving an equation like this, it’s a good 1dea to get

rid of all excess constants like e2, m, and #, by making some scale changes. Then
the algebra will be easier. If we make the following substitutions:

h2
r = ;1-1—95'()’ (199)
and
E=me (19.10)
= © :

then Eq. (19.8) becomes (after multiplying through by p)

2
‘% = — <e + %>p¢. (19.11)

These scale changes mean that we are measuring the distance r and energy E as
multiples of “natural” atomic units. That is, p = r/rp, where rp = #%/me?,
is called the “Bohr radius” and is about 0.528 angstroms. Similarly, ¢ = E/Ep,
with Ep = me*/2h%. This energy is called the “Rydberg” and is about 13.6
electron volts.

Since the product py appears on both sides, it is convenient to work with it
rather than with ¢ itself. Letting

o =1, (19.12)
we have the more simple-looking equation
d*f 2

Now we have to find some function f which satisfies Eq. (19.13)—in other
words, we just have to solve a differential equation. Unfortunately, there is no
very useful, general method for solving any given differential equation. You just
have to fiddle around. Our equation is not easy, but people have found that it
can be solved by the following procedure. First, you replace f, which 1s some
function of p, by a product of two functions

flp) = e"*g(p). (19.14)

This just means that you are factoring e~* out of f(p). You can certainly do that
for any f(p) at all. This just shifts our problem to finding the right function g(p).
Sticking (19.14) into (19.13), we get the following equation for g:
d’g dg , (2 A
Since we are free to choose a, let’s make

a? = —¢, (19.16)
and get
&g _

dg [ 2

Y ou may think we are no better off than we were at Eq. (19.13), but the happy
thing about our new equation is that it can be solved easily in terms of a power
series in p (It is possible, in principle, to solve (19.13) that way too, but 1t 1s
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much harder.) We are saying that Eq. (19.17) can be satisfied by some g(p) which
can be written as a series,

o) = 3 a, (19.18)
k=1

in which the g, are constant coefficients. Now all we have to do is find a suitable
infinite set of coefficients! Let’s check to see that such a solution will work. The
first derivative of this g(p) is

A=1
and the second derivative is
d’g - k—2
7k > ak(k — 1)p* 2.

k=1

Using these expressions in (19.17) we have

S k(k = Dage*™? — 3 2akarg*™" + > 240" = 0. (19.19)
k=1 k=1 k=1

It’s not obvious that we have succeeded; but we forge onward. It will all look
better if we replace the first sum by an equivalent. Since the first term of the sum
is zero, we can replace each k by k 4+ 1 without changing anything in the infinite
series; with this change the first sum can equally well be written as

>k + Dkagypn
k=1
Now we can put all the sums together to get
>5[k + Dkaeyy — 20ka + 2a5)p' ™" = 0. (19.20)
k-'=1

This power series must vanish for all possible values of p. 1t can do that only
if the coefficient of each power of p is separately zero. We will have a solution
for the hydrogen atom if we can find a set a; for which

k + Dkaryy — 2(ak — Da, = 0 (19.21)

for all k > 1. That 1s certainly easy to arrange. Pick any a; you like. Then
generate all of the other coefficients from

Aak — 1),
k(k +1) °*

Aryy = (19.22)
With this you will get a,, a3, a4, and so on, and each pair will certainly satisfy
(19.21). We get a series for g(p) which satisfies (19.17). With it we can make a
¥, that satisfies Schrodinger’s equation. Notice that the solutions depend on the
assumed energy (through «), but for each value of ¢, there 1s a corresponding series.

We have a solution, but what does it represent physically? We can get an
idea by seeing what happens far from the proton—for large values of p. Out there,
the high-order terms of the series are the most important, so we should look at
what happens for large k. When k > 1, Eq. (19.22) is approximately the same as

2a
g4y = & Ak,

which means that
'3
Uppr =~ Q,;i,)—- (19.23)

But these are just the coefficients of the series for e*2*. The function of g is a
rapidly increasing exponential. Even coupled with e~ to produce f(p)—see
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Eq. (19.14)—it still gives a solution for f(p) which goes like ¢* for large p. We
have found a mathematical solution but not a physical one. It represents a situa-
tion in which the electron is /east likely to be near the proton! It is always more
likely to be found at a very large radius p. A wave function for a bound electron
must go to zero for large p.

We have to think whether there is some way to beat the game, and there 1s.
Observe! If it just happened by luck that « were equal to 1/n, where n 1s any
integer, then Eq. (19.22) would make a,,; = 0. All higher terms would also be
zero. We wouldn’t have an infinite series but a finite polynomial. Any polynomial
increases more slowly than ¢**, so the term ¢~ will eventually beat it down, and
the function f will go to zero for large p. The only bound-state solutions are those
for whicha = 1/n, with n = 1,2, 3, 4, and so on.

Looking back to Eq. (19.16), we see that the bound-state solutions to the
spherically symmetric wave equation can exist only when

L1,
916 n2

The allowed energies are just these fractions times the Rydberg, Er = me*/2#2,
or the energy of the nth energy level is

E, = —Ep ;ll— (19.24)

There is, incidentally, nothing mysterious about negative numbers for the energy.
The energies are negative because when we chose to write ¥ = —e?/r, we picked
our zero point as the energy of an electron located far from the proton. When it
is close to the proton, its energy is less, so somewhat below zero. The energy is
lowest (most negative) for n = 1, and increases toward zero with increasing n.

Before the discovery of quantum mechanics, it was known from experimental
studies of the spectrum of hydrogen that the energy levels could be described by
Eq. (19.24), where Er was found from the observations to be about 13.6 electron
volts. Bohr then devised a model which gave the same equation and predicted
that Eg should be me*/2h2. But it was the first great success of the Schrédinger
theory that it could reproduce this result from a basic equation of motion for the
electron.

Now that we have solved our first atom, let’s look at the nature of the solution
we got. Pulling all the pieces together, each solution looks like this:

. Yo = f—"‘@ =¢ _:n £.(0), (19.25)
g(p) = Zv; arp* (19.26)

and .
Qi1 = %”—;—1;—) a. (19.27)

So long as we are mainly interested in the relative probabilities of finding the
electron at various places we can pick any number we wish for a;. We may as well
set a; = 1. (People often choose a; so that the wave function is ‘“normalized,”
that is, so that the integrated probability of finding the electron anywhere 1n the
atom is equal to 1. We have no need to do that just now.)

For the lowest energy state, n = 1, and

Vi) = e™". (19.28)

For a hydrogen atom in 1ts ground (lowest-energy) state, the amplitude to find the
electron at any point drops off exponentially with the distance from the proton.
It is most likely to be found right at the proton, and the characteristic spreading
distance is about one unit in p, or about one Bohr radius, rz.

19-5



Fig. 19-2. The wave functions for
the first three | = O states of the hydro-
gen atom. (The scales are chosen so that
the total probabilities are equal.)

Putting n = 2 gives the next higher level. The wave function for this state
will have two terms. It 1s

Ya(p) = <1 — g) e "2, (19.29)

The wave function for the next level 1s

¥3(p) = (1 — 233 22—7 p2> e~*/3, (19.30)

The wave functions for these first three levels are plotted in Fig. 19-2. You can
see the general trend All of the wave functions approach zero rapidly for large
p after oscillating a few times. In fact, the number of “bumps” 1s just equal to
n—or, if you prefer, the number of zero-crossings of ¥, 1sn — 1.

¥

n=2

19-3 States with an angular dependence

In the states described by the y,,(r) we have found that the probability ampli-
tude for finding the electron 1s spherically symmetric—depending only on r, the
distance for the proton. Such states have zero orbital angular momentum. We
should now 1nquire about states which may have some angular dependences.

We could, if we wished, just investigate the strictly mathematical problem of
finding the functions of r, 8, and ¢ which satisfy the differential equation (19.7)—
putting in the additional physical conditions that the only acceptable functions
are ones which go to zero for large ». You will find this done in many books.
We are going to take a short cut by using the knowledge we already have about
how amplitudes depend on angles in space.

The hydrogen atom in any particular state 1s a particle with a certain “spin”
J—the quantum number of the total angular momentum. Part of this spin comes
from the electron’s intrinsic spin, and part from the electron’s motion. Since
each of these two components acts independently (to an excellent approximation)
we will again ignore the spin part and think only about the “orbital” angular
momentum. This orbital motion behaves, however, just like a spin. For example,
if the orbital quantum number is /, the z-component of angular momentum can
bel, /] —1,1—2,...,—1 (We are, as usual, measuring in umts of #.) Also,
all the rotation matrices and other properties we have worked out still apply
(From now on we will really ignore the electron’s spin; when we speak of “angular
momentum” we will mean only the orbital part.)

Since the potential ¥ 1n which the electron moves depends only on r and not
on # or ¢, the Hamiltonian is symmetric under all rotations. It follows that the
angular momentum and all 1ts components are conserved. (This is true for motion
in any “‘central field”"—one which depends only on r—so is not a special feature of
the Coulomb e?/r potential )
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Now let's think of some possible state of the electron; its internal angular
structure will be characterized by the quantum number /. Depending on the
“orientation” of the total angular momentum with respect to the z-axis, the
z-component of angular momentum will be m, which is one of the 2/ + 1 possi-
bilities between +/ and —/. Let’s say m = 1. With what amplitude will the elec-
tron be found on the z-axis at some distance r? Zero. An electron on the z-axis
cannot have any orbital angular momentum around that axis. Alright, suppose
m is zero, then there can be some nonzero amplitude to find the electron at each
distance from the proton. We’ll call this amplitude F(r). It is the amplitude to
find the electron at the distance r up along the z-axis, when the atom is in the
state | /, 0), by which we mean orbital spin / and z-component m = 0.

If we know Fy(r) everything is known. For any state |/, m), we know the
amplitude y;,,,(r) to find the electron anywhere in the atom. How? Watch. Suppose
we have the atom in the state | /, m), what is the amplitude to find the electron at
the angle 6, ¢ and the distance r from the origin? Put a new z-axis, say 2’, at that
angle (see Fig. 19-3), and ask what is the amplitude that the electron will be at
the distance r along the new axis z’? We know that it cannot be found along 2z’
unless its z’-component of angular momentum, say », is zero. When m’ is zero,
however, the amplitude to find the electron along 2z’ is F;(r). Therefore, the result
is the product of two factors. The first is the amplitude that an atom in the state
| I, m) along the z-axis will be in the state | /, m’ = 0) with respect to the z'-axis.
Multiply that amplitude by F;(r) and you have the amplitude y; »(r) to find the
electron at (r, 8, ¢) with respect to the original axes.

Let’s write it out. We have worked out earlier the transformation matrices
for rotations. To go from the frame x, y, z to the frame x’, ', z’ of Fig. 19-3,
we can rotate first around the z-axis by the angle ¢, and then rotate about the new
y-axis (') by the angle . This combined rotation is the product

R (6)R.(9).

The amplitude to find the state /, m’ = 0 after the rotation is

(I,0| Ry(®)RAe) | I, m). (19.31)
Our result, then, is

Yim() = (1,0 | R(OR(e) | I, m)Fi(r). (19.32)

The orbital motion can have only integral values of /. (If the electron can be
found anywhere at » > 0, there is some amplitude to have m = 0 in that direction.
And m = O states exist only for integral spins.) The rotation matrices for / = 1
are given in Table 17-2. For larger / you can use the general formulas we worked
out in Chapter 18. The matrices for R,(¢) and R,(6) appear separately, but you
know how to combine them. For the general case you would start with the state
| 1, m) and operate with R,(¢) to get the new state R.(¢) | /, m). Then you operate
on this state with R,(6) to get the state R,(6)R.(¢) | /, m) (which is just &' | I, m)).
Multiplying by (/, 0 | gives the matrix element (19.31).

The matrix elements of the rotation operation are algebraic functions of 6
and ¢. The particular functions which appear in (19.31) also show up in many
kinds of problems which involve waves in spherical geometries and so has been
given a special name. Not everyone uses the same convention; but one of the most
common ones is

(1L,O| Ry(O)R9) | I, m) = aYim(8, ¢). (19.33)

The functions Y, .(8, ¢) are called the spherical harmonics, and a is just a numerical
factor which depends on the definition chosen for Y; ,,. For the usual definition,

-
a= \/m . (19.34)

With this notation, the hydrogen wave functions can be written
Vin(r) = Y1,m(6, 9)F,(r). (19.35)
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Fig. 19-4. The decay of an excited

state of Ne2’,

The angle functions Y7,,.(6, ¢) are important not only 1in many quantum-
mechanical problems, but also in many areas of classical physics in which the V2
operator appears, such as electromagnetism. As another example of their use in
quantum mechanics, consider the disintegration of an excited state of Ne?’
(such as we discussed 1n the last chapter) which decays by emitting an a-particle
and going into O!°:

Ne?* — O'® + He'.

Suppose that the excited state has some spin / (necessarily an integer) and that the
z-component of angular momentum is m. We might now ask the following:
given [ and m, what 1s the amplitude that we will find the a-particle going off in a
direction which makes the angle 6 with respect to the z-axis and the angle ¢ with
respect to the xz-plane—as shown in Fig. 19-4.

To solve this problem we make, first, the following observation. A decay in
which the a-particle goes straight up along z must come from a state with m = 0.
This is so because both O!® and the a-particle have spin zero, and because their
motion cannot have any angular momentum about the z-axis Let’s call this
amplitude a (per unit solid angle). Then, to find the amplitude for a decay at the
arbitrary angle of Fig. 19-4, all we need to know is what amplitude the given imitial
state has zero angular momentum about the decay direction. The amplitude for
the decay at 6 and ¢ 1s then a times the amplitude that a state | /, m) with respect
to the z-axis will be in the state | /, 0) with respect to z’—the decay direction. This
latter amplitude is just what we have written in (19.31). The probabulity to see the
a-particle at 8, ¢ is

P(6,¢) = a® [{1,0| Ry(O)R.(¢) | 1, m)|*.

As an example, consider an initial state with / = 1 and various values of m.
From Table 17-2 we know the necessary amplitudes. They are

(1,0 RyOR(S) | 1, +1) = — \—}5 sin 6e',
(1,0 R,(O)R.(8) | 1,0) = cosé, (19.36)
(10| RAOR($) [ 1, ~1) = — Ql—i sin "7

These are the three possible angular distribution amplitudes—depending on the
m-value of the 1nitial nucleus.

Amplitudes such as the ones in (19.36) appear so often and are sufficiently
important that they are given several names. If the angular distribution amplitude
is proportional to any one of the three functions or any linear combination of them,
we say, “The system has an orbital angular momentum of one.” Or we may say,
“The Ne2% emits a p-wave a-particle.” Or we say, “The a-particle 1s emitted 1n
an / = 1 state.” Because there are so many ways of saying the same thing it is
useful to have a dictionary. If you are going to understand what other physicists
are talking about, you will just have to memorize the language. In Table 19-1
we give a dictionary of orbital angular momentum.

If the orbital angular momentum is zero, then there is no change when you
rotate the coordinate system and there s no variation with angle—the *““dependence”
on angle 1s as a constant, say 1. This is also called an “s-state”, and there is only
one such state—as far as angular dependence is concerned. If the orbital angular
momentum is 1, then the amplitude of the angular variation may be any one of the
three functions given—depending on the value of m—or it may be a linear combina-
tion. These are called “p-states,” and there are three of them. If the orbital angular
momentum 1s 2 then there are the five functions shown. Any linear combination
is called an **/ = 2,” or a “d-wave” amplitude. Now you can immediately guess
what the next letter is—what should come after s, p, d? Well, of course, f, g, A,
and so on down the alphabet! The letters don’t mean anything. (They did once
mean something—they meant ‘‘sharp” lines, “principal” lines, ““diffuse” lines and
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Table 19-1

Dictionary of orbital angular momentum

(! = ; = an integer)

Orbital
angular = ¢ Angular dependence Name Number of | Orbital
momentum, comp;;nen ’ of amplitudes am states parity
!
0 0 1 s 1 +
+1 - sin 0 e“”]
V2
1 <0 cos 8 r b 3 —
1
-1 ——sinfe®
V2 )
+2 Vo sin? § e2¢
4
+1 %ﬁsmocosﬁew’
2 < 0 3(3cos?6 — 1) d 5 +
-1 - -\/—651n0c050e—“”
2
-2 Ve sin? § e—2¢
4
3 L LO|ROR(P) |1, m Wl f
4 = Yin(0,¢) g 20 4+ 1 (=1y
5 J = P}(cos g)erm® h i

“fundamental” lines of the optical spectra of atoms. But those were in the days
when people did not know where the lines came from. After f there were no
special names, so we now just continue with g, 4, and so on.)

The angular functions in the table go by several names—and are sometimes
defined with slightly different conventions about the numerical factors that appear
out in front. Sometimes they are called “spherical harmonics,” and written as
Y, (0, ). Sometimes they are written P/*(cos 8)e*?, and if m = 0, simply as
Py(cos §). The functions Py(cos §) are called the “Legendre polynomials™ in
cos 6, and the functions P;*(cos 6) are called the “associated Legendre functions.™
You will find tables of these functions in many books.

Notice, incidentally, that all the functions for a given / have the property that
that they have the same parity—for odd / they change sign under an inversion and
for even / they don’t change. So we can write that the parity of a state of orbital
angular momentum [ is (—1)".

As we have seen, these angular distributions may refer to a nuclear disintegra-
tion or some other process, or to the distribution of the amplitude to find an elec-
tron at some place in the hydrogen atom. For instance, if an electron is 1n a p-state
(I = 1) the amplitude to find it can depend on the angle in many possible ways—
but all are linear combinations of the three functions for / = 1 in Table 19-1.
Let’s take the case cos 8. That’s interesting. That means that the amplitude 1s
positive, say, in the upper part (§ < m/2), 1s negative in the lower part (6 > m/2),
and is zero when 8 is 90°. Squaring this amplitude we see that the probability of
finding the electron varies with 6 as shown in Fig. 19-5—and is independent of ¢
This angular distribution is responsible for the fact that in molecular binding the
attraction of an electron in an/ = 1 state for another atom depends on direction—
1t is the origin of the directed valences of chemical attracuon.

19-9
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Fig. 19-5. A polar graph of cos® 6,
which is the relative probability of finding
an electron at various angles from the
z-axis {for a given r) in an atomic state
withl = 1 and m = O.



19-4 The general solution for hydrogen

In Eq. (19.35) we have written the wave functions for the hydrogen atom as

Yim(t) = Y1m(8, $)F(r). (19.37)

These wave functions must be solutions of the differential equation (19.7). Let’s
see what that means. Put (19.37) into (19.7); you get

Yim 8° (. 9Yim Fi  8Yim
y o ’)+r2smaao<s’ =35 ) T 7oz oe2

- 211';’ (E + --> YinF.  (19.38)

Now multiply through by »2/F; and rearrange terms. The result is

1 o . J Yi"{> 1 62)’Lm
sin 6 38 (s‘“o 3% ) T sn?e g

[Fz l: ;22 CF) + 5 7z (E + )” Yim  (19.39)

The left-hand side of this equation depends on 6 and ¢, but not on r. No matter
what value we choose for r, the left side doesn’t change. This must also be true
for the right-hand side. Although the quantity in the square brackets has r’s all
over the place, the whole quantity cannot depend on r, otherwise we wouldn’t
have an equation good for all ». As you can see, the bracket also does not depend
on § or ¢. It must be some constant. Its value may well depend on the /-value of
the state we are studying, since the function F; must be the one appropriate to that
state; we’ll call the constant K;. Equation (19.35) is therefore equivalent to two
equations:

1L o (. ,0Yim 1 9?
sin 6 99 (S‘“ o —a_;—> + g0z 302 = —Ki¥im (19.40)
19° F
32(F1)+h2 (E+ ) Fi=K - (19.41)

Now look at what we’ve done. For any state described by / and m, we know
the functions Y;,,,; we can use Eq. (19.40) to determine the constant K;. Putting
K, into Eq. (19.41) we have a differential equation for the function F;(r). If we
can solve that equation for F;(r), we have all of the pieces to put into (19.37) to
give Y(r).

What is K;? First, notice that it must be the same for all m (which go with a
particular /), so we can pick any m we want for Y, ,, and plug it into (19.40) to
solve for K;. Perhaps the easiest one to use is Y; ;. From Eq. (18.24),

R [L1) = e | L) (19.42)
The matrix element for R,() is also quite simple:
(LO|RA8) |1, 1y = b (sin 6), (19.43)
where b is some number.t Combining the two, we obtain

Yl,l < e”‘* sinl 6. (1944)

1 You can with some work show that this comes out of Eq. (18.35), but 1t is also easy
to work out from first principles following the ideas of Section 18-4. A state | /,/) can
be made out of 2/ spin one-half particles all with spins up; while the state | /, 0) would
have / up and !/ down. Under the rotation the amplitude that an up-spin remains up
1s cos 6/2, and that an up-spin goes down is sin 6/2. We are asking for the amplitude
that / up-spins stay up, while the other / up-spins go down. The amplitude for that 1s
(cos /2 sin 6/2)* which 1s the same as sin‘ 8.
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Putting this function into (19.40) gives
K =10+ 1. (19.45)

Now that we have determined K, Eq. (19.41) tells us about the radial function
Fi(r). It1s, of course, just the Schrodinger equation with the angular part replaced
by 1ts equivalent K;F;/r?. Let’s rewrite (19 41) in the form we had in Eq (19.8),
as follows:

e
~ G EtT T - (19.46)

1 d® 2m 2+ 1)h2}
- = = 1 F1.
A mystertous term has been added to the potential energy. Although we got this
term by some mathematical shenanigan, 1t has a simple physical origin. We can
give you an 1dea about where it comes from in terms of a semi-classical argument.
Then perhaps you will not find it quite so mysterious.

Think of a classical particle moving around some center of force. The total
energy is conserved and is the sum of the potential and kinetic energies

U = V(r) + imv? = constant.

In general, » can be resolved nto a radial component », and a tangential compo-
nent r8; then

v? = 2 + (r9)>

Now the angular momentum mr24 1s also conserved; say it is equal to L. We can
then write

mrie = L, or rf = —£’
mr

and the energy 1s

2

2

L
— 1,2 —
U= {mvi + V(@) + 3

If there were no angular momentum we would have just the first two terms.
Adding the angular momentum L does to the energy just what adding a term
L%/2mr? to the potential energy would do. But this is almost exactly the extra
term in (19 46) The only difference is that /(! 4+ 1) appears for the angular
momentum instead of /%42 as we might expect. But we have seen before (for ex-
ample, Volume II, Section 34-7)f that this is just the substitution that is usually
required to make a quasi-classical argument agree with a correct quantum-
mechanical calculation. We can, then, understand the new term as a “pseudo-
potential”” which gives the “centrifugal force” term that appears in the equations
of radial motion for a rotating system. (See the discussion of “pseudo-forces” in
Volume I, Section 12-5.)

We are now ready to solve Eq. (19.46) for Fy(r). 1t 1s very much like Eq.
(19.8), so the same technique will work again. Everything goes as before until
you get to Eq. (19.19) which will have the additional term

=0+ 1Y ap' (19.47)
k=1

This term can also be written as
~I( + 1){"—; -3 ak+1pk‘1}- (19.48)
k=1

(We have taken out the first term and then shifted the runming index k down
by 1.) Instead of Eq. (19.20) we have
SUUkGe 4 1) — 10 + Djagy — 2ok — Dagdo*™!
k=1

A Dar o (19.49)
p
1 See Appendix to this volume.
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Fig. 19-6. Rough sketches showing
the general nature of some of the hydro-
gen wave functions. The shaded regions
show where the amplitudes are large.
The plus and minus signs show the relative
sign of the amplitude in each region.

There is only one term in p~!', so it must be zero. The coefficient a; must be zero
(unless [ = 0 and we have our previous solution). Each of the other terms is
made zero by having the square bracket come out zero for every k. This condition
replaces Eq. (19.21) by
_ 20k — 1)
Bl =k F D —Id+ 1)

(19.50)

This is the only significant change from the spherically symmetric case.

As before the series must terminate if we are to have solutions which can
represent bound electrons. The series will end at k = nif an = 1. We get again
the same condition on «, that it must be equal to 1/n, where n is some integer.
However, Eq. (19.50) also gives a new restriction. The index k cannot be equal to
1, the denominator becomes zero and a;,; is infinite. That is, since a; = 0, Eq.
(19.50) implies that all successive a; are zero until we get to a;yy, which can be
nonzero. This means that k must start at / + 1 and end at ».

Our final result is that for any / there are many possible solutions which we
can call F,,; where n > I + 1. Each solution has the energy

4
me” 1
En = - —272.—2 <;§>' (19.51)

The wave function for the state of this energy with the angular quantum numbers
land m is

'//n,l,m = Yl,m(a, d))Fn.l(p)a (1952)
with
pEua(p) = 7% > awp. (19.53)
ke=lt1

The coefficients a; are obtained from (19.50). We have, finally, a complete de-
scription of the states of a hydrogen atom.

19-5 The hydrogen wave functions

Let’s review what we have discovered. The states which satisfy Schrodinger’s
equation for an electron in a Coulomb field are characterized by three quantum
numbers n, I, m, all integers. The angular distribution of the electron amplitude
can have only certain forms which we call Y; ,,. They are labeled by I, the quantum
number of total angular momentum, and m, the “magnetic” quantum number,
which can range from —/to 4-/. For each angular configuration, various possible
radial distributions F, ;(r) of the electron amplitude are possible; they are labeled
by the principle quantum number n —which can range from / 4- 1to «. The energy
of the state depends only on n, and increases with increasing n.

The lowest energy, or ground, state is an s-state. It has { = 0, n = 0, and
m = 0. Itis a “nondegenerate’ state—there is only one with this energy, and its
wave function is spherically symmetric. The amplitude to find the electron is a
maximum at the center, and falls off monatonically with increasing distance from
the center. We can visualize the electron amplitude as a blob as shown in Fig.
19-6(a).

There are other s-states with higher energies, for n = 2,3,4,... For each
energy there is only one version (m = 0), and they are all spherically symmetric.
These states have amplhitudes which alternate in sign one or more times with
increasing r. There are n — 1 spherical nodal surfaces—the places where y goes
through zero. The 2s-state (/ = 0, n = 2), for example, will look as sketched in
Fig. 19-6(b). (The dark areas indicate regions where the amplitude is large, and
the plus and minus signs indicate the relative phases of the amplitude.) The energy
levels of the s-states are shown 1n the first column of Fig. 19-7.

Then there are the p-states—with / = 1. For each n, which must be 2 or
greater, there are three states of the same energy, one each form = +1,m = 0,
and m = —1. The energy levels are as shown in Fig. 19-7. The angular de-
pendences of these states are given in Table 19-1. For instance, for m = 0, if the
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amplitude is positive for § near zero, it will be negative for 6 near 180°. There 1s
a nodal plane coincident with the xy-plane. For n > 2 there are also spherical
nodes. The n = 2, m = 0 amplitude 1s sketched in Fig. 19-6(c), and the n = 3,
m = 0 wave function is sketched 1n Fig. 19-6(d).

You might think that since m represents a kind of “orientation™ in space,
there should be similar distributions with the peaks of amplitude along the x-axis
or along the y-axis. Are these perhaps the m = +1 and m = —1 states? No.
But since we have three states with equal energies, any linear combinations of the
three will also be stationary states of the same energy. It turns out that the *“x”-
state—which corresponds to the “z”-state, or m = 0 state, of Fig. 19-6(c)—is
a linear combination of the m = +1 and m = —1 states. The corresponding

YA 1)

'y”-state is another combination. Specifically, we mean that

= 1,0)

o _ LAl 4+ L1
V2

e |1’ +l> - ’1’ _1>.

’ V2

These states all look the same when referred to their particular axes.

The d-states (/ = 2) have five possible values of m for each energy, the lowest
energy has n = 3. The levels go as shown in Fig. 19-7. The angular dependences
get more complicated. For instance the m = 0 states have two conical nodes, so
the wave function reverses phase from +, to —, to + as you go around from the
north pole to the south pole. The rough form of the amplitude is sketched 1n (e)
and (f) of Fig. 19-6 for the m = 0 states with n = 3 and n = 4. Again, the
larger n’s have spherical nodes.

We will not try to describe any more of the possible states. You will find the
hydrogen wave functions described in more detail in many books. Two good
references are L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics,
McGraw-Hill (1935); and R. B. Leighton, Principles of Modern Physics, McGraw-
Hill (1959). You will find in them graphs of some of the functions and pictorial
representations of many states.

We would like to mention one particular feature of the wave functions for
higher /: for / > 0 the amplitudes are zero at the center. That 1s not surprising,
since it’s hard for an electron to have angular momentum when its radius arm is
very small. For this reason, the higher the /, the more the amplitudes are ‘“pushed
away” from the center. If you look at the way the radial functions F(r) vary for
small r, you find from (19.53) that

Foi(r) = r'.

Such a dependence on r means that for larger /’s you have to go farther fromr = 0
before you get an appreciable amplitude. This behavior is, incidentally, determined
by the centrifugal force term in the radial equation, so the same thing will apply
for any potential that varies slower than 1/r? for small r—which most atomic
potentials do.

19-6 The periodic table

We would like now to apply the theory of the hydrogen atom in an approxi-
mate way to get some understanding of the chemist’s periodic table of the elements.
For an element with atomic number Z there are Z electrons held together by the
electric attraction of the nucleus but with mutual repulsion of the electrons. To
get an exact solution we would have to solve Schrodinger’s equation for Z electrons
in a Coulomb field. For helium the equation is
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where V? 1s a Laplacian which operates on ry, the coordinate of one electron;
V3 operates on r,; and 1o = |r; —ro|. (We are again neglecting the spin of the
electrons.) To find the stationary states and energy levels we would have to find
solutions of the form

‘// = f(rl,rg)e_(”ﬁ””.

The geometrical dependence is contained in f, which 1s a function of six variables
—the simultaneous positions of the two electrons. No one has found an analytic
solution, although solutions for the lowest energy states have been obtained by
numerical methods.

With 3, 4, or 5 electrons 1t is hopeless to try to obtain exact solutions, and 1t 1s
going too far to say that quantum mechanics has given a precise understanding of
the periodic table. It is possible, however, even with a sloppy approximation—and
some fixing—to understand, at least qualitatively, many chemical properties
which show up in the periodic table.

The chemical properties of atoms are determined primarily by their lowest
energy states. We can use the following approximate theory to find these states
and their energies. First, we neglect the electron spin, except that we adopt the
exclusion principle and say that any particular electronic state can be occupied
by only one electron. This means that any particular orbital configuration can
have up to two electrons—one with spin up, the other with spin down. Next we
disregard the details of the interactions between the electrons in our first approxi-
mation, and say that each electron moves in a central field which is the combined
field of the nucleus and all the other electrons. For neon, which has 10 electrons,
we say that one electron sees an average potential due to the nucleus plus the other
nine electrons. We imagine then that in the Schrodinger equation for each electron
we put a V(r) which is a 1/r field modified by a spherically symmetric charge
density coming from the other electrons.

In this model each electron acts like an independent particle. The angular
dependence of its wave function will be just the same as the ones we had for the
hydrogen atom. There will be s-states, p-states, and so on; and they will have the
various possible m-values. Since V(r) no longer goes as 1/r, the radial part of the
wave functions will be somewhat different, but it will be qualitatively the same, so
we will have the same radial quantum numbers, n. The energies of the states will
also be somewhat different.

H

With these ideas, let’s see what we get. The ground state of hydrogen has
I = m = 0 and n = 1; we say the electron configuration is 1s. The energy is
—13.6 ev. This means that it takes 13.6 electron volts to pull the electron off the
atom. We call this the ““ionization energy”, W;. A large ionization energy means
that it is harder to pull the electron off and, 1n general, that the material is chem-
ically less active.

He

Now take helium. Both electrons can be in the same lowest state (one spin
up and the other spin down). In this lowest state the electron moves in a potential
which is for small r like a Coulomb field for z = 2 and for large r like a Coulomb
field for z = 1. The result is a “hydrogen-like” 1s state with a somewhat lower
energy. Both electrons occupy identical 1s states (! = 0, m = 0). The observed
1onization energy (1o remove one electron) is 24.6 electron volts. Since the 1s
“shell” is now filled—we allow only two electrons—there is practically no tendency
for an electron to be attracted from another atom. Helium is chemically inert.

L

The lithium nucleus has a charge of 3. The electron states will again be hy-
drogen-like, and the three electrons will occupy the lowest three energy levels.
Two will go into 1s states and the third will go into ann = 2 state. But with/ = 0
or [ = 1? In hydrogen these states have the same energy, but in other atoms they
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don’t, for the following reason. Remember that a 2s state has some amplitude to
be near the nucleus while the 2p state does not. That means that a 2s electron will
feel some of the triple electric charge of the Li nucleus, but that a 2p electron will
stay out where the field looks like the Coulomb field of a single charge. The extra
attraction lowers the energy of the 2s state relative to the 2p state. The energy
levels will be roughly as shown in Fig. 19-8—which you should compare with the
corresponding diagram for hydrogen in Fig. 19-7. So the lithium atom will have
two electrons in 1s states and one in a 2s. Since the 2s electron has a higher energy
than a 1s electron it is relatively easily removed. The ionization energy of lithium
is only 5.4 electron volts, and it is quite active chemically.

So you can see the patterns which develop; we have given in Table 19-2 a
list of the first 36 elements, showing the states occupied by the electrons in the
ground state of each atom. The Table gives the ionization energy for the most
loosely bound electron, and the number of electrons occupying each “shell”—
by which we mean states with the same n. Since the different /-states have different

Table 19-2

The electron configurations of the first 36 elements

Electron Configuration

VA Element Wi(ev)
1s 2s 2p|3s 3p 3d|4s 4p 4d 4f

1 | H hydrogen 13.6 1
2 | He helium 24.6 2
3| Li lithium 5.4 1
4 | Be beryllium 9.3 2
5| B boron 8.3 2 1
6 { C carbon 11.3 FILLED | 2 2 Number of electrons
7 | N nitrogen 14.5 (¥} 2 3 in each state
81 O oxygen 13.6 2 4
9 F fluorine 174 2 5
10 | Ne neon 21.6 2 6
11 | Na sodium 5.1 1
12 | Mg magnesium 7.6 2
13 | Al aluminum 6.0 2 1
14 | Si  silicon 8.1 —FILLED— 2 2
15 { P phosphorus | 10.5 2 3
16 | S sulfur 10.4 2 ®) 2 4
17 | Cl chlorine 13.0 2 5
18 | A argon 15.8 2 6
19 | K potassium 43 1
20 | Ca calcium 6.1 2
21 | Sc scandium 6.5 1|2
22 | Ti titanium 6.8 212
23 | V  vanadium 6.7 ——FILLED—— 3|2
24 | Cr chromium 6.8 511
25 | Mn manganese 7.4 ) ®) ®) 512
26 | Fe iron 7.9 6| 2
27 | Co cobalt 7.9 710 2
28 | Ni nickel 7.6 8| 2
29 | Cu copper N 104 1
30 | Zn zinc 9.4 10| 2
31 | Ga gallium 6.0 2 1
32 | Ge germanium 7.9 — FILLED—— 2 2
33 | As arsenic 9.8 2 3
34 | Se selenium 9.7 2 4
35 | Br bromine 11.8 @ ® 18 2 5
36 | Kr krypton 14.0 2 6
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energies, each /-value corresponds to a sub-shell of 2(2/ 4 1) possible states (of
different m and electron spin). These all have the same energy—except for some
very small effects we are neglecting.

Be

Beryllium is like lithium except-that it has two electrons in the 2s state as
well as two in the filled s shell.

B to Ne

Boron has 5 electrons. The fifth must go into a 2p state. Thereare2 X 3 = 6
different 2p states, so we can keep adding electrons until we get to a total of 8.
This takes us to neon. As we add these electrons we are also increasing Z, so the
whole electron distribution gets pulled in closer and closer to the nucleus and the
energy of the 2p states goes down. By the time we get to neon the ionization energy
is up to 21.6 volts. Neon does not easily give up an electron. Also there are no
more low-energy slots to be filled, so it won’t try to grab an extra electron. Neon
is chemically inert. Fluorine, on the other hand, does have an empty position where
an electron can drop into a state of low energy, so it is quite active in chemical
reactions.

Na to A

With sodium the eleventh electron must start a new shell—going into a 3s
state. The energy level of this state is much higher; the ionization energy jumps
down; and sodium is an active chemical. From sodium to argon the s and p states
with n = 3 are occupied in exactly the same sequence as for lithium to neon.
Angular configurations of the electrons in the outer unfilled shell have the same
sequence, and the progression of ionization energies is quite similar. You can see
why the chemical properties repeat with increasing atomic number. Magnesium
acts chemically much like beryllium, silicon like carbon, and chlorine like fluorine.
Argon is inert like neon.

You may have noticed that there is a slight peculiarity in the sequence of
ionization energies between lithium and neon, and a similar one between sodium
and argon. The last electron is bound to the oxygen atom somewhat less than
we might expect. And sulphur is similar. Why should that be? We can under-
stand it if we put in just a little bit of the effects of the interactions between in-
dividual electrons. Think of what happens when we put the first 2p electron onto
the boron atom. It has six possibilities—three possible p-states, each with two
spins. Imagine that the electron goes with spin up into the m = 0 state, which
we have also called the “z” state because it hugs the z-axis. Now what will happen
in carbon? There are now two 2p electrons. If one of them goes into the “z”
state, where will the second one go? It will have lower energy if it stays away from
the first electron, which it can do by going 1nto, say, the “x’" state of the 2p shell.
(This state is, remember, just a linear combination of the m = 41land m = —1
states.) Next, when we go to nitrogen, the three 2p electrons will have the lowest
energy of mutual repulsion if they go one each into the “x,” “y,” and “z” con-
figurations. For oxygen, however, the jig is up. The fourth electron must go into
one of the filled states—with opposite spin. It is strongly repelled by the electron
already 1n that state, so its energy will not be as low as it might otherwise be, and
it is more easily removed. That explains the break in the sequence of binding
energies which appears between nitrogen and oxygen, and between phosphorus
and silicon.

K to Zn

After argon, you would, at first, think that the new electrons would start to
fill up the 3d states But they don’t. As we described earlier—and illustrated in
Fig. 19-7—the higher angular momentum states get pushed up in energy. By the
time we get to the 3d states they are pushed to an energy a little bit above the energy
of the 4s state. So in potassium the last electron goes into the 4s state. After this
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shell is filled (with two electrons) at calcium, the 3d states begin to be filled for
scandium, titanium, and vanadium.

The energies of the 3p and 4s states are so close together that small effects
can shift the balance either way. By the time we get to put four electrons into the
3d states, their repulsion raises the energy of the 4s state just enough that its energy
is slightly above the 3d energy, so one electron shifts over. For chromium we don’t
get a 4, 2 combination as we would have expected, but instead a 5, 1 combination.
The new electron added to get manganese fills up the 4s shell again, and the states
of the 3d shell are then occupied one by one until we reach copper.

Since the outermost shell of manganese, iron, cobalt, and nickel have the same
configurations, however, they all tend to have similar chemical properties. (This
effect is mueh more pronounced in the rare-earth elements which all have the same
outer shell but a progressively filling inner shell which has much less influence on
their chemical properties.)

In copper an electron 1s robbed from the 4s sheli, finally completing the 3d
shell. The energy of the 10, 1 combination is, however, so close to the 9, 2 con-
figuration for copper that just the presence of another atom nearby can shift the
balance. For this reason the two last electrons of copper are nearly equivalent,
and copper can have a valence of either 1 or 2 (It sometimes acts as though 1ts
electrons were in the 9, 2 combination.) Similar things happen at other places and
account for the fact that other metals, such as iron, combine chemically with either
of two valences. By zinc, both the 3d and 4s shells are filled once and for all.

Ga 1o Kr

From gallium to krypton the sequence proceeds normally again, filling the
4p shell. The outer shells, the energies, and the chemical properties repeat the
pattern of boron to neon and aluminum to argon.

Krypton, like argon and neon, is known as “noble” gas. All three are chem-
ically ““inert.” This means only that, having filled shells of relatively low energy,
there are few situations in which there is an energy advantage for them to join in a
simple combination with other elements. Having a filled shell 1s not enough.
Beryllium and magnesium have filled s-shells, but the energy of these shells is too
high to lead to stability. Similarly, one would have expected another ‘“noble”
element at nickel, if the energy of the 3d shell had been lower (or the 4s, higher).
On the other hand, krypton is not completely inert; it will form a weakly-bound
compound with chlorine.

Since our sample has turned up most of the main features of the periodic
table, we stop our examination at element number 36—there are still seventy or
so more!

We would Iike to bring up only one more point—that we not only can under-
stand the valences to some extent but also can say something about the directional
properties of the chemical bonds. Take an atom like oxygen which has four 2p
electrons. The first three go into “x,” “p,” and “z” states and the fourth will
double one of these states, leaving two—say “x” and “y”—vacant. Consider then
what happens in H2O. Each of the two hydrogens are willing to share an electron
with the oxygen, helping the oxygen to fill a shell. These electrons will tend to go
nto the “x” and “y” vacancies. So the water molecule should have the two hy-
drogen atoms making a right angle with respect to the center of the oxygen. The
angle is actually 105°. We can even understand why the angle 1s larger than 90°.
In sharing their electrons the hydrogens end up with a net positive charge. The
electric repulsion “strains” the wave functions and pushes the angle out to 105°.
The same situation occurs in H,S. But because the sulphur atom is larger, the
two hydrogen atoms are farther apart, there 1s less repulsion, and the angle 1s
only pushed out to about 93°. Selenium is even larger, so in H,Se the angle 1s
very nearly 90°.

We can use the same arguments to understand the geometry of ammonia,
H3;N. Nitrogen has room for three more 2p electrons, on each for the “x,” “y,”
and “z" wype states. The three hydrogens should join on at right angles to each
other. The angles come out a little larger than 90°—again from the electric repul-
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sion—but at least we see why the molecule of H3N is not flat. The angles in
phosphene, H 3P, are close to 90°, and in H3As are still closer. We assumed that
NH ; was not flat when we described it as a two-state system. And the nonflatness
is what makes the ammonia maser possible. Now we see that also that shape can
be understood from our quantum mechanics.

The Schrédinger equation has been one of the great triumphs of physics. By
providing the key to the underlying machinery of atomic structure it has given
an explanation for atomic spectra, for chemistry, and for the nature of matter.
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