20

Operators

20-1 Operations and operators

All the things we have done so far in quantum mechanics could be handled
with ordinary algebra, although we did from time to time show you sorfie special
ways of writing quantum-mechanical quantities and equations. We would like
now to talk some more about some interesting and useful mathematical ways of
describing quantum-mechanical things. There are many ways of approaching the
subject of quantum mechanics, and most books use a different approach from the
one we have taken. As you go on to read other books you might not see right
away the connections of what you will find in them to what we have been doing.
Although we will also be able to get a few useful results, the main purpose of this
chapter is to tell you about some of the different ways of writing the same physics.
Knowing them you should be able to understand better what other people are
saying. When people were first working out classical mechanics they always wrote
all the equations in terms of x-, y-, and z-components. Then someone came along
and pointed out that all of the writing could be made much simpler by inventing
the vector notation. It’s true that when you come down to figuring something
out you often have to convert the vectors back to their components. But it’s
generally much easier to see what’s going on when you work with vectors and also
easier to do many of the calculations. In quantum mechanics we were able to
write many things in a simpler way by using the idea of the “state vector.” The
state vector |y) has, of course, nothing to do with geometric vectors in three
dimensions but is an abstract symbol that stands for a physical state, identified
by the “label,” or “name,” ¢. The idea is useful because the laws of quantum
mechanics can be written as algebraic equations in terms of these symbols. For
instance, our fundamental law that any state can be made up from a linear com-
bination of base states is written as

) =D Culi), (20.1)

where the C, are a set of ordinary (complex) numbers—the amplitudes C, = (/| ¢)
—while | 1), [ 2), | 3), and so on, stand for the base states in some base, or repre-
sentation.

If you take some physical state and do something to it—like rotating it, or
like waiting for the time Ar—you get a different state. We say, “performing
an operation on a state produces a new state.” We can express the same idea by
an equation:

l¢) = 41¥). (20.2)

An operation on a state produces another state. The operator A stands for some
particular operation. When this operation is performed on any state, say | ¢), it
produces some other state | ¢).

What does Eq. (20.2) mean? We define it this way. If you multiply the
equation by (i | and expand |y) according to Eq. (20.1), you get

(i1e) =D G A1) (20.3)

(The states | j) are from the same set as | i).) This is now just an algebraic equation.
The numbers (i | ¢) give the amount of each base state you will find in |¢), and
it is given in terms of a linear superposition of the amplitudes {j | ) that you find
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| ¥) in each base state. The numbers (i | 4 | j) are just the coefficients which tell
how much of (j| ) goes into each sum. The operator A4 is described numerically
by the set of numbers, or “matrix,”

Ay =il A1) (20.4)

So Eq. (20.2) is a high-class way of writing Eq. (20.3). Actually it is a little
more than that; something more is implied. In Eq. (20.2) we do not make any
reference to a set of base states. Equation (20.3) is an image of Eq. (20.2) in
terms of some set of base states. But, as you know, you may use any set you wish.
And this idea is implied in Eq. (20.2). The operator way of writing avoids making
any particular choice. Of course, when you want to get definite you have to choose
some set. When you make your choice, you use Eq. (20.3). So the operator
equation (20.2) is a more abstract way of writing the algebraic equation (20.3).
It’s similar to the difference between writing

c=aXb
instead of
¢ = ayb, — azb,,

¢y = ab, — asb,

c: = azb, — ayb..

The first way is much handier. When you want results, however, you will eventually
have to give the components with respect to some set of axes. Simularly, if you
want to be able to say what you really mean by 4, you will have to be ready to
give the matrix A4,, in terms of some set of base states. So long as you have in
mind some set 4;,, Eq. (20.2) means just the same as Eq. (20.3). (You should
remember also that once you know a matrix for one particular set of base states
you can always calculate the corresponding matrix that goes with any other base.
You can transform the matrix from one “representation” to another.)

The operator equation in (20.2) also allows a new way of thinking., If we
imagine some operator 4, we can use it with any state | ¢) to create a new state
A|¢). Sometimes a “state” we get this way may be very peculiar—it may not
represent any physical situation we are likely to encounter in nature. (For instance,
we may get a state that is not normalized to represent one electron.) In other
words, we may at times get ‘‘states” that are mathematically artificial. Such
artificial “states’ may still be useful, perhaps as the mid-point of some calculation.

We have already shown you many examples of quantum-mechanical op-
erators. We have had the rotation operator R,(8) which takes a state | y) and
produces a new state, which is the old state as seen in a rotated coordinate system.
We have had the parity (or inversion) operator P, which makes a new state by
reversing all coordinates. We have had the operators é,, &,, and &, for spin one-
half particles.

The operator J, was defined in Chapter 17 in terms of the rotation operator
for a small angle .

R = 1 + f% €. (20.5)

This just means, of course, that
R W) = [¥) + 7 € |¥). (20.6)

In this example, J, | ) is #1/ie times the state you get if you rotate | ) by the small
angle € and then subtract the original state. It represents a “state” which is the
difference of two states.

One more example. We had an operator p,—called the momentum operator
(x-component) defined in an equation like (20.6). If D,(L) is the operator which
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displaces a state along x by the distance L, then j, 1s defined by

D) = 1+ 7 b, (20.7)

where 8 is a small displacement. Displacing the state | ) along x by a small dis-
tance 6 gives a new state | ¢’). We are saying that this new state is the old state
plus a small new piece

5 8P 1 0).

The operators we are talking about work on a state vector like | ), which is
an abstract description of a physical situation. They are quite different from
algebraic operators which work on mathematical functions. For nstance, d/dx
is an “operator” that works on f(x) by changing 1t to a new funcuon f’(x) =
df/dx. Another example is the algebraic operator V2. You can see why the same
word is used 1n both cases, but you should keep in mind that the two kinds of
operators are different. A quantum-mechanical operator 4 does nor work on an
algebraic function, but on a state vector like | ¢). Both kinds of operators are
used in quantum mechanics and often in similar kinds of equations, as you will
see a little later. When you are first learning the subject it is well to keep the
distinction always in mind. Later on, when you are more familiar with the subject,
you will find that it 1s less important to keep any sharp distinction between the
two kinds of operators. You will, indeed, find that most books generally use the
same notation for both!

We'll go on now and look at some useful things you can do with operators.
But first, one special remark. Suppose we have an operator 4 whose matrix in
some base is 4,, = (i | A |j). The amplitude that the state 4 | ) 1s also in some
other state | ¢) is (¢ | A |¢). Is there some meaning to the complex conjugate of
this amplitude? You should be able to show that

@lAlv* = wl4 o), (20.8)
where A" (read “A dagger”) is an operator whose matrix elements are
Al = (4,0 (20.9)

To get the i, j element of A" you go to the j, i element of A4 (the indexes are reversed)
and take its complex conjugate. The amplitude that the state 4" | ¢) is in | ¢) is
the complex conjugate of the amplitude that 4 |y) is in | ¢). The operator A' is
called the “Hermitian adjoint” of 4. Many important operators of quantum
mechanics have the special property that when you take the Hermitian adjoint,
you get the same operator back. If B is such an operator, then

B = 8,

and it is called a “‘self-adjoint” or “Hermitian,” operator.

20-2 Average energies

So far we have reminded you mainly of what you already know. Now we
would like to discuss a new question. How would you find the average energy of
a system—say, an atom? If an atom is in a particular state of definite energy and
you measure the energy, you will find a certain energy E. If you keep repeating
the measurement on each one of a whole series of atoms which are all selected to
be in the same state, all the measurements will give E, and the “average” of your
measurements will, of course, be just E.

Now, however, what happens if you make the measurement on some state
| ¢) which is not a stationary state? Since the system does not have a definite
energy, one measurement would give one energy, the same measurement on another
atom in the same state would give a different energy, and so on. What would you
get for the average of a whole series of energy measurements?
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We can answer the question by projecting the state | ¢) onto the set of states
of definite energy. To remind you that this is a special base set, we’ll call the states
| 7.). Each of the states | 5,) has a definite energy E,. In this representation,

) =D Co ). (20.10)

When you make an energy measurement and get some number £,, you have found
that the system was in the state »,. But you may get a different number for each
measurement Sometimes you will get E;, sometimes E,, sometimes E3, and so
on. The probability that you observe the energy E, 1s just the probability of finding
the system in the state | 5;), which is, of course, just the absolute square of the
amplitude C; = (y, | ¢). The probability of finding each of the possible energies
E,is

P, =|C|% (20.11)

How are these probabilities related to the mean value of a whole sequence
of energy measurements? Let’s imagine that we get a series of measurements like
this: Ey, Eq, Eyq, Eg, Eq, Evo, E7, Es, Es, Ey, Eg, E4, and so on. We continue
for, say, a thousand measurements. When we are finished we add all the energies
and divide by one thousand. That’s what we mean by the average. There’s also
a short-cut to adding all the numbers. You can count up how many times you get
E,, say that is N, and then count up the number of times you get Es, call that
N, and so on. The sum of all the energies is certainly just

NiEy + N3Ey + N3Ey + -+ = 3 N,E..

The average energy is this sum divided by the total number of measurements which
is Just the sum of all the N,’s, which we can call N,

_ 2., NE,
Ey = == (20.12)

We are almost there. What we mean by the probability of something happen-
ing 1s just the number of times we expect it to happen divided by the total number
of tries. The ratio N,/N should—for large N—be very near to P,, the probability
of finding the state | 4,), although it will not be exactly P, because of the statistical
fluctuations. Let’s write the predicted (or “expected’) average energy as (E)ay;
then we can say that

(E)ay = »_ P.E.. (20.13)

The same arguments apply for any measurement. The average value of a measured
quantity A4 should be equal to

<A>av = Z P1An

where A, are the various possible values of the observed quantity, and P, is the
probability of getting that value.
Let’s go back to our quantum-mechanical state |¢). It’s average energy 1s

(Edav = ) |C.’E, = Y, CTC.E.. (20.14)
Now watch this trickery! First, we write the sum as

(2

Next we treat the left-hand (¢ | as a common “factor.” We can take this factor
out of the sum, and write it as

Wl ‘Z | n)Em | ¢>;.
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This expression has the form

W[ ¢)
where | ¢) is some “cooked-up” state defined by
[6) = D | n)Em | ¥). (20.16)

1t is, in other words, the state you get 1if you take each base state | ,) in the amount
E, <’71 ! lﬁ>

Now remember what we mean by the states | 5,). They are supposed to be
the stationary states—by which we mean that for each one,

H"’h) = Et|ﬂz>-

Since E, is just a number, the right-hand side is the same as | n,)E,, and the sum
in Eq. (20.16) is the same as

DH| n)(m | ¥).
7
Now i appears only in the famous combination that contracts to unity, so
Zﬁ| 771)("71]‘!’) = ﬁ2| 771)(’72]‘[’) = ﬁl¢>

Magic! Equation (20.16) is the same as
|6) = H|¥). (20.17)

The average energy of the state | ¢) can be written very prettily as
(Bl = W 1H[¥). (20.18)

To get the average energy you operate on | ¢) with H, and then multiply by (y |.
A simple result.

Our new formula for the average energy is not only pretty. It is also useful,
because now we don’t need to say anything about any particular set of base
states. We don’t even have to know all of the possible energy levels. When we go
to calculate, we’ll need to describe our state in terms of some set of base states,
but if we know the Hamiltonian matrix H,, for thar set we can get the average
energy. Equation (19.18) says that for any set of base states | i), the average
energy can be calculated from

(Edav = 2 WX H| )|, (20.19)

where the amplitudes (i | H | j) are just the elements of the matrix H,,.
Let’s check this result for the special case that the states | /) are the definite
energy states. For them, H|j) = E,|j).so (| H|j) = E, §,, and

(Ehow = 22 WIDES,(1¥) = D E¥ i)i]¥),
(%] 1
which is right.

Equation (20.19) can, incidentally, be extended to other physical measure-
ments which you can express as an operator. For instance, L, is the operator of
the z-component of the angular momentum L. The average of the z-component
for the state | ¢) is

<L2>av = <‘l’ Il:z ] ¢>'

One way to prove it is to think of some situation in which the energy is proportional
to the angular momentum. Then all the arguments go through in the same way.
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In summary, if a physical observable A is related to a suitable quantum-
mechanical operator A, the average value of A for the state | ¢) is given by

(Aav = W1 4| ¥). (20.20)
By this we mean that
Ao = W1 9), (20.21)
with i
[¢) = A|¢). (20.22)

20-3 The average energy of an atom

Suppose we want the average energy of an atom 1n a state described by a
wave function ¢(r); How do we find it? Let’s first think of a one-dimensional
situation with a state | ¢) defined by the amplitude (x | ¢) = ¥(x). We are asking
for the special case of Eq. (20.19) applied to the coordinate representation. Follow-
ing our usual procedure, we replace the states | 1) and | /) by | x) and | x’), and
change the sums to integrals. We get

(Eo = [ [@1x)0x| B2 [ 9) dx dx' (20.23)
This integral can, if we wish, be written in the following way:
/ W | x){x | ¢)dx, (20.24)
with
(x|9) = [ H| %) |9) dx. (20.25)

The integral over x’ in (20.25) is the same one we had in Chapter 16—see Eq.
(16.50) and Eq. (16.52)—and is equal to

2 2
— W) + VW),

We can therefore write

(x19) = {— L+ V(x)] e (20.26)

Remember that (¢ | x) = (x| ¥)* = ¢*(x); using this equality, the average
energy in Eq. (20.23) can be written as

2 g2
(E)ay = / v*(x) { - —2% ;ﬁ + V] ¥(x) dx. (20.27)

Given a wave function y(x), you can get the average energy by doing this integral.
You can begin to see how we can go back and forth from the state-vector ideas
to the wave-function ideas.

The quantity in the braces of Eq. (20.27) is an algebraic operator.} We will
write it as 30

o h2 dZ
= Tmae TV
With this notation Eq. (20.23) becomes
(Bar = [¥*()RY(x) dx. (20.28)

The algebraic operator ¢ defined here is, of course, not identical to the
quantum-mechanical operator H. The new operator works on a function of
position ¥(x) = (x|¢) to give a new function of x, ¢(x) = (x| ¢); while H

1 The “operator” V(x) means “multiply by V(x).”
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operates on a state vector | ) to give another state vector | ¢), without implying
the coordinate representation or any particular representation at all. Nor 15 &
strictly the same as H even 1n the coordinate representation. If we choose to
work in the coordinate representation, we would interpret A 1n terms of a matrix
(x| H| x'y which depends somehow on the two “indices™ x and x’; that is, we
expect—according to Eq. (20.25)—that (x| ¢) 1s related to all the amplitudes
(x| ¢) by an integration. On the other hand, we find that 3 1s a differential op-
erator. We have already worked out in Section 16-5 the connection between
(x| H| x') and the algebraic operator 3C.

We should make one qualification on our results. We have been assuming
that the amplitude y(x) = (x | ) is normalized. By this we mean that the scale
has been chosen so that

190 Pdx = 1;

so the probability of finding the electron somewhere is unity. If you should choose
to work with a ¢(x) which 1s not normalized you should write

[¥*xiep(x) dx
(Eay = ————— (20.29)

It’s the same thing.

Notice the similarity in form between Eq. (20.28) and Eq. (20.18). These
two ways of writing the same result appear often when you work with the x-repre-
sentation. You can go from the first form to the second with anyA4 which is a
local operator, where a local operator is one which in the integral

[x 1 A| 2% 1 9)

can be written as G ¥(x), where & is a differential algebraic operator. There are,
however, operators for which this is not true. For them you must work with
the basic equations in (20.21) and (20.22).

You can easily extend the derivation to three dimensions. The result is that}

(E)ay = [ W(r)iey(r)yd Vol, (20.30)
with
. o,
= — 5=V + V), (20.31)

and with the understanding that
[1¥1%dvol = 1. (20.32)

The same equations can be extended to systems with several electrons in a fairly
obvious way, but we won’t bother to write down the results.

With Eq. (20.30) we can calculate the average energy of an atomic state
even without knowing its energy levels. All we need is the wave function. It's
an important law. We’ll tell you about one interesting application. Suppose you
want to know the ground-state energy of some system—say the helium atom, but
it’s too hard to solve Schrodinger’s equation for the wave function, because there
are too many variables. Suppose, however, that you take a guess at the wave
function—pick any function you like—and calculate the average energy. That is,
you use Eq. (20.29)—generalized to three dimensions—to find what the average
energy would be if the atom were really in the state described by this wave function.
This energy will certainly be higher than the ground-state energy which is the lowest

1 We write d Vol for the element of volume. It is, of course, just dx dy dz, and the
integral goes from — = to 4+« 1n all three coordinates.
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P(x)

X

Fig. 20-1. A curve of probability
density representing a localized particle.

possible energy the atom can have.] Now pick another function and calculate its
average energy. If it is lower than your first choice you are getting closer to the
true ground-state energy. If you keep on trying all sorts of artificial states you
will be able to get lower and lower energies, which come closer and closer to the
ground-state energy. If you are clever, you will try some functions which have a
few adjustable parameters. When you calculate the energy it will be expressed
in terms of these parameters. By varying the parameters to give the lowest possible
energy, you are trying out a whole class of functions at once. Eventually you will
find that it is harder and harder to get lower energies and you will begin to be
convinced that you are fairly close to the lowest possible energy. The helium atom
has been solved 1n just this way—not by solving a differential equation, but by
making up a special function with a lot of adjustable parameters which are eventu-
ally chosen to give the lowest possible value for the average energy.

20-4 The position operator

What is the average value of the position of an electron in an atom? For any
particular state | ) what is the average value of the coordinate x? We’ll work in
one dimension and let you extend the ideas to three dimensions or to systems with
more than one particic. we have a state described by y(x), and we keep measuring
x over and over again. What is the average? It is

/ xP(x) dx,

where P(x) is the probability of finding the electron in a little element dx at x.
Suppose the probability density P(x) varies with x as shown in Fig. 20-1. The
electron is most likely to be found near the peak of the curve. The average value
of x is also somewhere near the peak. It is, in fact, just the center of gravity of
the area under the curve.

We have seen earlier that P(x) is just | ¢(x) |> = ¢*(x}¥(x), so we can write
the average of x as

(X)av = / PH(x)xY(x) dx. (20.33)

Our equation for (x),, has the same form as Eq. (20.33). For the average
energy, the energy operator & appears between the two s, for the average position
there is just x. (If you wish you can consider x to be the algebraic operator “multi-
ply by x.””) We can carry the parallelism still further, expressing the average posi-
tion in a form which corresponds to Eq. (20.18). Suppose we just write

<x>av = (‘/’ [0‘> (20.34)

la) = % [¥), (20.35)

with

and then see if we can find the operator ¥ which generates the state | «), which
will make Eq. (20.34) agree with Eq. (20.33). That is, we must find a | a), so that

Wle) = (O = [W]x0x(x|¥) dx. (20.36)
First, let’s expand (¢ | ¢) in the x-representation. It is
Wla) = [@]x)x]a)dx. (20.37)

Now compare the integrals in the last two equations. You see that in the x-repre-
sentation
x]a) = x(x|¢¥). (20.38)

{ You can also look at it this way. Any function (that is, state) you choose can be
written as a linear combination of the base states which are definite energy states. Since
in this combination there is a mixture of higher energy states in with the lowest energy
state, the average energy will be higher than the ground-state energy.
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Operating on |y) with % to get | ) is equivalent to multiplying ¢(x) = (x |¢)
by x to get a(x) = (x| a). We have a definition of % in the coordinate representa-

tion.f
[We have not bothered to try to get the x-representation of the matrix of the
operator %. If you are ambitious you can try to show that

x|x]x) = x8(x — X). (20.39)

You can then work out the amusing result that
X|x) = x|x) (20.40)
The operator % has the interesting property that when it works on the base states

| x) it is equivalent to multiplying by x.]
Do you want to know the average value of x2? It is

v = [WHEY(x) dx. (20.41)
Or, if you prefer you can write
(XP)ay = @)

la’) = £2|¢). (20.42)

with

By £2 we mean %%—the two operators are used one after the other. With the
second form you can calculate {x2),, using any representation (base-states) you
wish. If you want the average of x", or of any polynomial in x, you can see how
to get it.

20-5 The momentum operator

Now we would like to calculate the mean momentum of an electron—again,
we'll stick to one dimension. Let P(p) dp be the probability that a measurement
will give a momentum between p and p + dp. Then

(Plav = [p P(p)dp. (20.43)

Now we let {p | ¢) be the amplitude that the state | ¢) is in a definite momentum
state | p). This is the same amplitude we called (mom p |¢) in Section 16-3 and
is a function of p just as (x | ) is a function of x. There we chose to normalize
the amplitude so that

1
P(p) = 5 Kp | )™ (20.44)
We have, then,

(oo = [ @1 000191 22 (2045)

The form is quite similar to what we had for (x)ay.
If we want, we can play exactly the same game we did with (x),,. First, we
can write the integral above as

Jwipwin & (20.46)

You should now recognize this equation as just the expanded form of the amplitude
(¢ | B)—expanded in terms of the base states of definite momentum. From Egq.

1 Equation (20.38) does not mean that | @) = x|¢¥). You cannot “factor out” the
(x|, because the multiplier x in front of {x |y) is a number which is different for each
state (x |. It is the value of the coordinate of the electron in the state | x). See Eq. (20.40).
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(20.45) the state | B) is defined in the momentum representation by

(P18 =ppl¥ (20.47)
That is, we can now write
(Pav = & |8 (20.48)
with
18) = B ¥, (20.49)

where the operator p is defined in terms of the p-representation by Eq. (20.47).
[Again, you can if you wish show that the matrix form of j is

(plplp) =pp — p), (20.50)
and that

plp)y =plp). (20.51)

It works out the same as for x.]

Now comes an interesting question. We can write (p),, as we have done in
Egs. (20.45) and (20.48), and we know the meaning of the operator p i the mo-
mentum representation. But how should we interpret p in the coordinate representa-
tion? That is what we will need to know if we have some wave function ¥(x),
and we want to compute 1ts average momentum. Let's make clear what we mean.
If we start by saying that (p),, is given by Eq. (20.48), we can expand that equation
in terms of the p-representation to get back to Eq. (20.45). If we are given the
p-description of the state—namely the amplitude (p | ¢), which is an algebraic
function of the momentum p—we can get (p | ¢) from Eq. (20.47) and proceed
to evaluate the integral. The question now is: What do we do 1f we are given a
description of the state in the x-representation, namely the wave function y(x) =
x| 9)?

Well, let’s start by expanding Eq. (20.48) in the x-representation. It is

(Plav = [ | x)x | 8) dx. (20.52)

Now, however, we need to know what the state | 8) is in the x-representation.
If we can find it, we can carry out the integral. So our problem 1s to find the
function B(x) = (x| B).

We can find it in the following way. In Section 16-3 we saw how {p | ) was
related to (x | 8). According to Eq. (16.24),

(p|8) = [e7*Nx|B)dx. (20.53)

If we know (p | 8) we can solve this equation for (x | 8). What we want, of course,
is to express the result somehow in terms of Y(x) = {(x |¥), which we are assuming
to be known. Suppose we start with Eq. (20.47) and again use Eq. (16.24) to write

(P18 = plpl¥) = p[e™ ™ My(x) dx. (20.54)
Since the 1ntegral is over x we can put the p inside the integral and write
(18 = [er py(x) dx. (20.55)

Compare this with (20.53). You would say that (x | 8) is equal to py(x). No, No!
The wave function {x | ) = B(x) can depend only on x—not on p. That's the
whole problem.

However, some ingenious fellow discovered that the integral in (20.55) could
be integrated by parts. The derivative of e ~*?*" with respect to x is (—1/h)pe™*?*/%
so the integral in (20.55) is equivalent to

A / 4 (e 7 ™Myy(x) dx.

1) dx
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If we integrate by parts, it becomes
_ h —px/h +e h/ —ipz/h d‘l’
5 [e v, + S /e P dx.

So long as we are considering bound states, so that y(x) goes to zero at x = =,
the bracket is zero and we have

_ h —ipx/h d‘l/
Now compare this result with Eq. (20.53). You see that
i
i

(x[8) =5 % ¥ (x). (20.57)

We have the necessary piece to be able to complete Eq. (20.52). The answer is

{(Plav = /\//*(x) S — Y(x) dx. (20.58)

We have found how Eq. (20.48) looks in the coordinate representation.
Now you should begin to see an interesting pattern developing. When we
asked for the average energy of the state | y) we said it was
(Edoy = | @), with [¢1) = H[¥).
The same thing is written in the coordinate world as

(E)ay = / Yr()$(x) dx  with ¢(x) = Toy(x).

Here 3 is an algebraic operator which works a function of x. When we asked
about the average value of x, we found that it could also be written

<x>av = <‘/’ | a)9 with |a> x | ¥).
In the coordinate world the corresponding equations are
Khav = [¥*(a@) dx, with a(x) = xp(x).
When we asked about the average value of p, we wrote

<p>uv = <‘p |6>’ with |B> = 13 I \b)

In the coordinate world the equivalent equations were

~ -

(Phav = / WBC) dx, with () = Ly

In each of our three examples we start with the state | ¢) and produce another
(hypothetical) state by a quantum-mechanical operator. In the coordinate repre-
sentation we generate the corresponding wave function by operating on the wave
function ¥(x) with an algebraic operator. There are the following one-to-one
correspondences (for one-dimensional problems):

R . h2 d.,

H—o% = T 2m dx? + V),

£ - X, (20.59)
.o _hd
Pe e = 5 5%
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Table 20-1

Physical Quantity Operator Coordinate Form
N . 2,
Energy H = ——V" 4+ V(@
2m
Position X x
y y
2 z
A h a
M _ =
omentum Pz @ T ax
. “ i d
Py (Pll = 7 a_y
a h 9
: @, = ==
b ; i 0z

) 20.
oy (20.60)
and we have inserted the x subscript on ® to remind you that we have been working
only with the x-component of momentum.

You can easily extend the results to three dimensions. For the other com-
ponents 'of the momentum,

R - h o
Py ’(Pu_fay’
. N h oo
b &= 5

If you want, you can even think of an operator of the vector momentum and write

- N /) d a a

p—® = 7(‘%5}"‘ ey@’*"ez&)’
where e,, e,, and e, are the unit vectors in the three directions. 1t looks even more
elegant if we write

po @ = ? v. (20.61)

Our general resultiis that for at least some quantum-mechanical operators,
there are corresponding algebraic operators in the coordinate representation.
We summarize our results so far—extended to three dimensions—in Table 20-1.
For each operator we have the two equivalent forms:

l¢) = 4|¥) (20.62)
or

o(r) = Gy(r). (20.63)

We will now give a few illustrations of the use of these ideas. The first one is
just to point out the relation between @ and . If we use @, twice, we get

o 32
(5)10); = — 25;2

1 In many books the same symbol is used for A and é, because they both stand for the
same physics, and because 1t is convenient not to have to write different kinds of letters.
You can usually tell which one is intended by the context
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This means that we can write the equality

L

5 (&0 + 8,8, + B85 + V).

5‘c =
Or, using the vector notation,

k=56 + VO). (20.64)
(In an algebraic operator, any term without the operator symbol ( ~ ) means just a
straight multiplication.) This equation is nice because it’s easy to remember if
you haven’t forgotten your classical physics. Everyone knows that the energy is
(nonrelativistically) just the kinetic energy p?/2m plus the potential energy, and
¢ is the operator of the total energy.

This result has impressed people so much that they try to teach students all
about classical physics before quantum mechanics. (We think differently!) But
such parallels are often misleading. For one thing, when you have operators, the
order of various factors is important; but that is not true for the factors in a
classical equation.

In Chapter 17 we defined an operator j, in terms of the displacement operator
D, by [see Eq. (17.27)]

I ‘V) = Dz(‘s) l \b> = <1 + % 13:5) l ‘1’); (20-65)

where & is a small displacement. We should show you that this is equivalent to
our new definition. According to what we have just worked out, this equation
should mean the same as

Vo) = o) + 25

But the right-hand side is just the Taylor expansion of ¢(x + &), which is certainly
what you get if you displace the state to the left by & (or shift the coordinates to
the right by the same amount). Our two definitions of p agree!

Let’s use this fact to show something else. Suppose we have a bunch of parti-
cles which we label 1, 2, 3, . . ., in some complicated system. (To keep things simple
we’ll stick to one dimension.) The wave function describing the state is a function
of all the coordinates x,, xg, X3, ... We can write it as y(x;, X3, X3,...). Now
displace the system (to the left) by 8. The new wave function

V(x1, X2, x3,...) = Y(xy + 8, x2+ 8, x3+ 45,...)
can be written as
\b,(xlv X2, X35+ - ) = ‘I’(xl’ X2y X3y« - -)

+ la dd 4

Ex—l 8x2

According to Eq. (20.65) the operator of the momentum of the state |y) (let’s
call it the total momentum) is equal to

- h)o a a
@total—?lg;l"i-gx—z-i‘g‘g‘i"“:‘

But this is just the same as
Protal = Po1 + oz + Fog + -+ - (20.67)

The operators of momentum obey the rule that the total momentum is the sum of
the momenta of all the parts. Everything holds together nicely, and many of the
things we have been saying are consistent with each other.
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Fig. 20-2. Rotation of the axes
around the z-axis by the smail angle €.

What 1s £2 Well, a point P at x and y 1n the new coordinate system (really x’
and y’, but we will drop the primes) was formerly at x — ey and y + ex, as you

can see from Fig. 20-2. Since the amplitude for the electron to be at Pisn’t changed
by the rotation of the coordinates we can write

Returning to our quantum-mechanical operators, we can write

20-6 Angular momentum

Let’s for fun look at another operation—the operation of orbital angular
momentum. In Chapter 17 we defined an operator.J, in terms of R,(¢), the operator
of a rotation by the angle ¢ about the z-axis. We consider here a system described
simply by a single wave function (), which is a function of coordinates only,
and does not take into account the fact that the electron may have its spin either
up or down.

That is, we want for the moment to disregard intrinsic angular
momentum and think about only the orbital part. To keep the distinction clear,

we’ll call the orbital operator L,, and define it in terms of the operator of a rotation
by an infinitesimal angle € by

teo1o = (1+1eL) 1w

(Remember, this definition applies only to a state | ) which has no internal spin
variables, but depends only on the coordinates r = x, y, x) If we look at the
state | ¢) in a new coordinate system, rotated about the z-axis by the small angle
€, We see a new state

1) = R.(e)| ¥).

If we choose to describe the state | ¢) in the coordinate representation—that

is, by 1ts wave function (r), we would expect to be able to write

V() = <1 + % € £z> w(x). (20.68)

V(2,2 = W+ @y = ex2) = WD) + o 5 — e o
(remembering that € 1s a small angle). This means that
é, = ?(x% —y %) (20.69)
That’s our answer. But notice. It is equivalent to
£, = x®, — yo,. (20.70)

L. = xp, — yp.. (20.71)

This formula 1s easy to remember because it looks like the familiar formula of
classical mechanics; it is the z-component of

L=rXp. (20.72)

One of the fun parts of this operator business is that many classical equations

get carried over into a quantum-mechanical form. Which ones don’t? There
had better be some that don’t come out right, because if everything did, then
there would be nothing different about quantum mechanics. There would be no
new physics. Here is one equation which is different. In classical physics

xp, — px = 0.

What is 1t in quantum mechanics?
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Let’s work it out in the x-representation. So that we’ll know what we are doing
we put in some wave function y(x). We have

X(P:,‘JJ(X) - @zx‘l'(x);
or

ha h 0
x? wnﬁ(x)—?é;)a//(x).

Remember now that the derivatives operate on everything to the right. We get

hoy h hoay h
The answer is not zero. The whole operation is equivalent simply to multiplication
by —#/i:

Rps — PuX = — (20.74)

A
i
If Plank’s constant were zero, the classical and quantum results would be the same,
and there would be no quantum mechanics to learn!

Incidentally, if any two operators 4 and B, when taken together like this:

AB — B4,

do not give zero, we say that *‘the operators do not commute.” And an equation
such as (20.74) is called a “‘commutation rule.” You can see that the commutation
rule for p, and y is

bsy — ¥b2 = 0.

There is another very important commutation rule that has to do with angular
momenta. It is

L.L,— LI, =ihl,. (20.75)

You can get some practice with % and p operators by proving it for yourself.

It is interesting to notice that operators which do not commute can also occur
in classical physics. We have already seen this when we have talked about rotation
in space. If you rotate something, such as a book, by 90° around x and then 90°
around y, you get something different from rotating first by 90° around y and then
by 90° around x. It is, in fact, just this property of space that is responsible for
Eq. (20.75).

20-7 The change of averages with time

Now we want to show you something else. How do averages change with
time? Suppose for the moment that we have an operator 4, which does not itself
have time in it in any obvious way. We mean an operator like % or p. (We exclude
things like, say, the operator of some external potential that was being varied with
time, such as V(x, f).) Now suppose we calculate (4 ),,, in some state | ¢), which is

(Aay = WA ). (20.76)

How will (4),, depend on time? Why should it? One reason might be that the
operator itself depended explicitly on time—for instance, if it had to do with a
time-varying potential like ¥(x, ). But even if the operator does not depend on
t, say, for example, the operator A = %, the corresponding average may depend
on time. Certainly the average position of a particle could be moving. How does
such a motion come out of Eq. (20.76) if 4 has no time dependence? Well, the
state | ) might be changing with time. For nonstationary states we have often
shown a time dependence explicitly by writing a state as | y(¢)). We want to show
that the rate of change of (4),y is given by a new operator we will call 4. Remem-
ber that A is an operator, so that putting a dot over the 4 does not here mean taking
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the time derivative, but 1s just a way of writing a new operator A which is defined by

& M = w1 A1), 20.77)

Our problem is to find the operator A.
First, we know that the rate of change of a state is given by the Hamiltonian.
Specifically,

i 31w = By 20.78)

This is just the abstract way of writing our original definition of the Hamiltonian:

d

., dC,
ih—* = ;H,]C,. (20.79)

If we take the complex conjugate of this equation, it is equivalent to

~ih 5 40| = WO A (20380)

Next, see what happens if we take the derivatives with respect to ¢ of Eq. (20.76).
Since each y depends on ¢, we have

d d P ~(d
4= (2 )iy + wia(2 0)- (2081)

Finally, using the two equations in (20.78) and (20.79) to replace the derivatives,
we get

d ] A PN
7 e = 3 LW BA W) — w1 AR ).
This equation is the same as
9 My = | (BA — A |9
dt ( )av - h I .
Comparing this equation with Eq. (20.77), you see that
A= 7’;(1?2 — A, (20.82)

That is our interesting proposition, and it is true for any operator A.
Incidentally, if the operator A4 should irself be time dependent, we would have
had

P SN 904
A=45@HL- AN + 5 (20.83)

Let us try out Eq. (20.82) on some example to see whether it really makes
sense. For instance, what operator corresponds to £? We say it should be

= }l (Hz — xH). (20.84)

What is this? One way to find out is to work it through in the coordinate repre-
sentation using the algebraic operator for 4¢. In this representation the commutator
is

N . " d } {hz d?
J{,x—x(}(l—‘ﬁa;;—’r V()C) X — X ﬁaﬁ"*‘V(X) .

If you operate with this or any wave function ¥(x) and work out all of the de-
rivatives where you can, you end up after a little work with

_ v,
2m dx
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But this is just the same as

. hoa
—1 E G)I\II,
so we find that
Hs = £H = —i% P (20.85)
or that
P
x =" (20.86)

A pretty result. It means that if the mean value of x is changing with time the
drift of the center of gravity is the same as the mean momentum divided by m.
Exactly like classical mechanics.

Another example. What is the rate of change of the average momentum of a
state? Same game. Its operator is

P = (Hp — pH). (20.87)

&~

Again you can work it out in the x representation. Remember that p becomes
d/dx, and this means that you will be taking the derivative of the potential energy
¥ (in the 30)—but only in the second term. It turns out that it is the only term
which does not cancel, and you find that

76 — 67 = —in Y
dx
or that

. dv
p=-9 (20.88)

Again the classical result. The right-hand side is the force, so we have derived
Newton’s law! But remember—these are the laws for the operators which give
the average quantities. They do not describe what goes on in detail inside an
atom.

Quantum mechanics has the essential difference that px is not equal to %p.
They differ by a little bit—by the small number #. But the whole wondrous compli-
cations of interference, waves, and all, result from the little fact that %p — px is
not quite zero.

The history of this idea is also interesting. Within a period of a few months in
1926, Heisenberg and Schrédinger independently found correct laws to describe
atomic mechanics. Schrodinger invented his wave function ¢(x) and found his
equation. Heisenberg, on the other hand, found that nature could be described
by classical equations, except that xp — px should be equal to #/i, which he could
make happen by defining them in terms of special kinds of matrices. In our lan-
guage he was using the energy-representation, with its matrices. Both Heisenberg’s
matrix algebra and Schrodinger’s differential equation explained the hydrogen
atom. A few months later Schrédinger was able to show that the two theories
were equivalent—as we have seen here. But the two different mathematical forms
of quantum mechanics were discovered independently.
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