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1. What is Computational Geometry?

 CG Solves geometric problems that require clever 
geometric algorithms

 Ex 1: Where is the nearest phone, metro, pub,…?

[Berg]
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1. What is Computational Geometry?

 CG Solves geometric problems that require clever 
geometric algorithms

 Ex 1: Where is the nearest phone, metro, pub,…?

Ex 2: How to get there?

[Berg]
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1.1 What is Computational Geometry? (…)

 Ex 3: Map overlay

Copyright: http://webhelp.esri.com/arcgisdesktop
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1.2 What is Computational Geometry? (…)

 Good solutions need both:

– Understanding of the 
geometric properties of the problem

– Proper applications of 
algorithmic techniques (paradigms) and data structures
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1.3 What is Computational Geometry? (…)

 Computational geometry 
= systematic study of algorithms and data structures for 
geometric objects (points, lines, line segments, n-gons,…) 
with focus on exact algorithms that are asymptotically fast

– “Born” in 1975 (Shamos), boom of papers in 90s
(first papers sooner: 1850 Dirichlet, 1908 Voronoi,…)

– Many problems can be formulated geometrically 
(e.g., range queries in databases)
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1.4 What is Computational Geometry? (…)

 Problems:
– Degenerate cases (points on line, with same x,…)

• Ignore them first, include later

– Robustness - correct algorithm but not robust
• Limited numerical precision of real arithmetic
• Inconsistent eps tests (a=b, b=c, but a ≠ c)

 Nowadays:
– focus on practical implementations, not just on 

asymptotically fastest algorithms
– nearly correct result is better than nonsense or crash

?



2. Why to study computational geometry?
 Graphics- and Vision- Engineer should know it 

(„Data structures and algorithms in nth-Dimension“) 
- DSA, PRP

 Set of ready to use tools 
 You will know new approaches to choose from
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2.1 How to teach computational geometry?

 Typical “mathematician” method:  
– definition-theorem-proof

 Our “practical” approach:
– practical algorithms and their complexity
– practical programing using a geometric library

 Is it OK for you?
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3. Typical application domains

 Computer graphics
– Collisions of objects
– Mouse localization 
– Selection of objects in region
– Visibility in 3D (hidden surface removal)
– Computation of shadows

 Robotics
– Motion planning (find path - environment with obstacles)
– Task planning (motion + planning order of subtasks)
– Design of robots and working cells

[Berg]

[Farag]
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 GIS
– How to store huge data 

and search them quickly
– Interpolation of heights
– Overlap of different data 

• Extract information about regions or relations between data 
(pipes under the construction site, plants x average rainfall,…)

• Detect bridges on crossings of roads and rivers…

 CAD/CAM
– Intersections and unions of objects
– Visualization and tests without need to build a prototype
– Manufacturability 

3.1 Typical application domains (…)

[Berg]
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3.2 Typical application domains (…)

 Other domains
– Molecular modeling
– DB search
– IC design

[Berg]

[Berg]
[Berg]
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4. Typical tasks in CG

 Geometric searching - fast location of :

The nearest neighbor Points in given range
(range query)
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4.1 Typical tasks in CG

 Convex hull
= smallest enclosing convex polygon in E2 or 

n-gon in E3 containing all the points

Convex Hull CH(V )

V – set of points
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4.2 Typical tasks in CG

 Voronoi diagrams
– Space (plane) partitioning into regions whose points are 

nearest to the given primitive (most usually a point)
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4.3 Typical tasks in CG

 Planar triangulations and space tetrahedronization 
of given point set

[Maur]
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4.4 Typical tasks in CG

 Intersection of objects
– Detection of common parts of objects
– Usually linear (line segments, polygons, n-gons,…)

a

b

c
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4.5 Typical tasks in CG

 Motion planning
– Search for the shortest path between two points in the 

environment with obstacles 

[Berg]
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5. Complexity of algorithms and data struc.
 We need a measure for comparison of algorithms

– Independent on computer HW and prog. language
– Dependent on the problem size n
– Describing the behavior of the algorithm for different data

 Running time, preprocessing time, memory size
– Asymptotical analysis – O(g(n)), W(g(n)), Q(g(n))
– Measurement on real data

 Differentiate: 
– complexity of the algorithm (particular sort) and 
– complexity of the problem (sorting)

– given by number of edges, vertices, faces,… = problem size
– equal to the complexity of the best algorithm
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5.1 Complexity of algorithms

 Worst case behavior
– Running time for the “worst” data 

 Expected behavior (average)
– expectation of the running time for problems of particular 

size and probability distribution of input data
– Valid only if the probability distribution is the same as 

expected during the analysis
– Typically much smaller than the worst case behavior 
– Ex.: Quick sort O(n2) worst and O(n logn) expected
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6. Programming techniques (paradigms) of CG

3 phases of a geometric algorithm development
1. Ignore all degeneracies and design an algorithm

2. Adjust the algorithm to be correct for degenerate cases
– Degenerate input exists
– Integrate special cases in general case
– It is better than lot of case-switches (typical for beginners)
– e.g.:

lexicographic order for points on vertical lines
or Symbolic perturbation schemes

3. Implement alg. 2 (use sw library)
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6.1 Sorting

 A preprocessing step 
 Simplifies the following processing steps
 Sort according to: 

– coordinates x, y,…, or lexicographically to [y,x],
– angles around point

 O(n logn) time and O(n) space
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6.2 Divide and Conquer (divide et impera)

 Split the problem until it is solvable, merge results

 Prerequisite
– The input data set must be separable
– Solutions of subsets are independent 
– The result can be obtained by merging of sub-results

DivideAndConquer(S)
1. If known solution then return it
2. else
3. Split input S to k distinct subsets Si
4. Foreach i call DivideAndConquer(Si)
5. Merge the results and return the solution
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6.3 Sweep algorithm

 Split the space by a hyperplane (2D: sweep line)   
– “Left” subspace   – solution known 
– “Right” subspace – solution unknown

 Stop in event points and update the status
 Data structures:

– Event points – points, where to stop the sweep line
and update the status, sorted

– Status – state of the algorithm in the current position of 
the sweep line

 Prerequisite:
– Left subspace does not influence the right subspace



Felkel: Computational geometry

(26)

6.3b Sweep-line algorithm

Event points – ordered in event queue

a

b

c

Status: {a}, {a,b}, {c,a,b}, {c,b,a}, …

Event types for segments:
- start
- end
- intersection
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6.4 Prune and search

 Eliminate parts of the state space, where the 
solution clearly does not exist
– Binary search

– Search trees

– Back-tracking (stop if solution worse than current 
optimum)

< >

prune

1

2
3 4

5
6

7 8
9
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6.5 Locus approach

 Subdivide the search space into regions of 
constant answer

 Use point location to determine the region
– Nearest neighbor search example 

Region of the 
constant answer:
All points in this 
region are nearest 
to the yellow point
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6.6 Dualisation

 Use geometry transform to change the problem 
into another that can be solved more easily

 Points ↔ hyper planes
– Preservation of incidence (A œ p   fl p*œ A*)

 Ex. 2D: determine if 3 points lie on a common line   

p

A*

B

B*
A

p*

↔

C
C*
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6.7 Combinatorial analysis

= The branch of mathematics which studies the
number of different ways of arranging things

 Ex. How many subdivisions of a point set can be 
done by one line?
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6.8 New trends in Computational geometry

 From 2D to 3D and more from mid 80s, from linear 
to curved objects 

 Focus on line segments, triangles in E3 and hyper 
planes in Ed

 Strong influence of combinatorial geometry
 Randomized algorithms
 Space effective algorithms (in place, in situ, data 

stream algs.)
 Robust algorithms and handling of singularities
 Practical implementation in libraries (CGAL, …)
 Approximate algorithms



7. Robustness issues

 Geometry in theory is exact
 Geometry with floating-point arithmetic is not exact

– Limited numerical precision of real arithmetic
– Numbers are rounded to nearest possible representation
– Inconsistent epsilon tests (a=b, b=c, but a∫c)

 Naïve use of floating point arithmetic causes 
geometric algorithm to
– Produce slightly or completely wrong output
– Crash after invariant violation 
– Infinite loop
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[siggraph2008-CGAL-course]



Geometry in theory is exact

 ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) => ccw(p,q,r)

 Correctness proofs of algorithms rely on such 
theorems
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[siggraph2008-CGAL-course]

p

q r

s



Geometry with float. arithmetic is not exact

 ccw(s,q,r) & !ccw(p,s,r) & ccw(p,q,s) => ccw(p,q,r)

 Correctness proofs of algorithms rely on such 
theorems => such algorithms fail
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[siggraph2008-CGAL-course]

p

q r

s
wrong result of the orientation predicate



[http://cs.wikipedia.org/wiki/Soubor:Single_double_extended2.gif]

Floating-point arithmetic is not exact

a) Limited numerical precision of real numbers
 Numbers represented as normalized

 The mantissa m is a 24-bit (53-bit) value whose 
most significant bit (MSB) is always 1 and is, 
therefore, not stored.

 Stored numbers are rounded to 24/53 bits mantissa 
– lower bits are lost 
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±m2e
23 bits stored 

52 bits stored 

4 Bytes

8 Bytes



Floating-point special values
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- 0 10000000000000000000000000000000

-Infinity 11111111100000000000000000000000

+0 00000000000000000000000000000000

NaN ?1111111100000000000000000000001

+Infinity 01111111100000000000000000000000



b) Smaller numbers are shifted right during additions
and subtractions to align the digits of the same order

Example for float: 
 12 – p for p ~ 0.5

– 1210 = 11002   = 01000001010000000000000000000000 2

– p = 0.510 = 00111111000000000000000000000000 2

– p = 0.500000810 = 00111111000000000000000000001101 2

– Mantissa of p is shifted 4 bits right to align with 12
(to have the same exponent 23)

p = 0.500000810 = 01000001000010000000000000000000 21101
–>  four least significant bits (LSB) are lost

– The result is 11.5 instead of 11.4999992

1

Normalized mantisa 23 bit1

Floating-point arithmetic is not exact
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23

2-1

1

Invisible leading bit – not stored



Floating-point arithmetic is not exact

b) Smaller numbers are shifted right during additions
and subtractions to align the digits of the same order

Example for float: 
 12 – p for p ~ 0.5 (such as 0.5+2^(-23) )

– Mantissa of p is shifted 4 bits right to align with 12 
–>  four least significant bits (LSB) are lost

 24 – p for p ~ 0.5
– Mantissa of p is shifted 5 bits right to align with 24 -> 5 LSB are lost

Try it on  [http://www.h-schmidt.net/FloatConverter/IEEE754.html or 
http://babbage.cs.qc.cuny.edu/IEEE-754/index.xhtml]
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Orientation predicate - definition

௫ ௬௫ ௬௫ ௬௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௬
Three points          

– lie on common line = 0
– form a left turn = +1 (positive)
– form a right turn = –1 (negative)
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r

q

p



Experiment with orientation predicate 

 orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))
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r = [24, 24]

q = [12, 12]

[0.5, 0.5]

p = [0.5 + dx , 0.5 + dy],   dx , dy = k.2-53

– right turn

dx,
p

dy,

Ideal return values

double

Value of the LSB

+  left turn



Real results of orientation predicate 

 orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))
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Return values during the experiment for exponent > -52

– right turn
p

dy, +  left turn
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Return values during the experiment for exponent > -52

– right turn
p

dy, +  left turn

Where is the yellow line?



Real results of orientation predicate 

 orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))
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Return values during the experiment for exponent > -52

– right turn
p

dy, +  left turn

Never lie on common line

orientation , ,ݍ ݎ 	≠ 0
Robust predicate returns 

slightly non-zero values

Where is the yellow line?



Real results of orientation predicate 

 orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))
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Return values during the experiment for exponent -52

Pivot r 24 Pivot p 0.5
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Return values during the experiment for exponent -52

Pivot r 24 Pivot p 0.5



Real results of orientation predicate 

 orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

Felkel: Computational geometry

(42)

Return values during the experiment for exponent -52

Pivot r 24 Pivot p 0.5



Floating point orientation predicate double exp=-53 
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[Kettner] with correct coolors

Pivot p



Errors from shift ~0.5 right in subtraction

 4 bits shift => 24 values rounded to the same value

 5 bits shift => 25 values rounded to the same value

 Combined intervals of size 8, 16, 24,…
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0 16 32 48 64 80 96

0 8 16 24 32 40 48   56 64  72 80      

0 8 16 24 32 40 48   56 64  72 80   88



Orientation predicate – pivot selection

௫ ௬௫ ௬௫ ௬
௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫

Felkel: Computational geometry

(45)



Orientation predicate – pivot selection

௫ ௬௫ ௬௫ ௬
௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫

Felkel: Computational geometry

(45)



Orientation predicate – pivot selection

௫ ௬௫ ௬௫ ௬
௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫

Felkel: Computational geometry

(45)

௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௫



Orientation predicate – pivot selection

௫ ௬௫ ௬௫ ௬
௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫

Felkel: Computational geometry

(45)

௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௫

4 bits lost 4 bits lost

4 bits lost 4 bits lost



Orientation predicate – pivot selection

௫ ௬௫ ௬௫ ௬
௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫

Felkel: Computational geometry

(45)

௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௫

4 bits lost 4 bits lost

4 bits lost 4 bits lost

5 bits lost 5 bits lost

5 bits lost 5 bits lost



Orientation predicate – pivot selection

௫ ௬௫ ௬௫ ௬
௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫

Felkel: Computational geometry

(45)

௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௬ ௬ ௬ ௬ ௫ ௫௫ ௫ ௫

4 bits lost 4 bits lost

4 bits lost 4 bits lost

5 bits lost 5 bits lost

5 bits lost 5 bits lost



Little improvement - selection of the pivot

 Pivot – subtracted from the rows in the matrix
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Pivot p 0.5 Pivot q 12 Pivot r 24

[Kettner]

(b) double exp=-53 



Little improvement - selection of the pivot

 Pivot – subtracted from the rows in the matrix

=> Pivot q (point with middle x or y coord.) is the best
But it is typically not used – pivot search is too
complicated in comparison to the predicate itself
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Pivot p 0.5 Pivot q 12 Pivot r 24

[Kettner]

(b) double exp=-53 



Epsilon tweaking
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[Kettner]



Epsilon tweaking

 Use tolerance ε =0.00005 to 0.0001 for float
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Epsilon tweaking

 Use tolerance ε =0.00005 to 0.0001 for float
 Points are declared collinear if float_orient returns 

a value ≤ ε 0.5+2^(-23) , the smallest repr. value 0.500 000 06
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[Kettner]

Idea: boundary for ε

Idea
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[Kettner]

Boundary for ε= 0.00005

Reality

Idea: boundary for ε

Idea
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Epsilon tweaking

 Use tolerance ε =0.00005 to 0.0001 for float
 Points are declared collinear if float_orient returns 

a value ≤ ε 0.5+2^(-23) , the smallest repr. value 0.500 000 06

 Boundary is fractured as before, but brighter
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(47)

[Kettner]

Boundary for ε= 0.00005

Reality

Boundary for ε= 0.0001

Reality

Idea: boundary for ε

Idea



Epsilon tweaking

 Use tolerance ε =0.00005 to 0.0001 for float
 Points are declared collinear if float_orient returns 

a value ≤ ε 0.5+2^(-23) , the smallest repr. value 0.500 000 06

 Boundary is fractured as before, but brighter
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[Kettner]

Boundary for ε= 0.00005

Reality

Boundary for ε= 0.0001

Reality

Idea: boundary for ε

Idea

– is the wrong approach



Consequences in convex hull algorithm
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p5 erroneously inserted
Inserting p6 =>

a) p6 sees p4p5 first
=> forms p4 p6 p5

b) p6 sees p1p2 first 
=> forms p1 p6 p2

[Kettner04]
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Exact Geometric Computing [Yap]

Make sure that the control flow in the
implementation corresponds to the control flow 
with exact real arithmetic

[siggraph2008-CGAL-course]



Solution

1. Use predicates, that always return the correct 
result -> Schewchuck, YAP, LEDA or CGAL

2. Change the algorithm to cope with floating point 
predicates but still return something meaningful
(hard to define)

3. Perturb the input so that the floating point 
implementation gives the correct result on it

Felkel: Computational geometry
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Computational Geometry
Algorithms Library

8. CGAL

Slides from [siggraph2008-CGAL-course]
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CGAL

 Large library of geometric algorithms
– Robust code, huge amount of algorithms
– Users can concentrate on their own domain

 Open source project
– Institutional members 

(Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U, ETHZ, 
Geometry Factory, FU Berlin, Forth, U Athens)

– 500,000 lines of C++ code
– 10,000 downloads/year (+ Linux distributions)
– 20 active developers
– 12 months release cycle



Felkel: Computational geometry

(53)

CGAL algorithms and data structures

[siggraph2008-CGAL-course]



Felkel: Computational geometry

(54)

Exact geometric computing

Predicates Constructions

orientation in_circle intersection circumcenter

[siggraph2008-CGAL-course]
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CGAL Geometric Kernel (see [Hert] for details)

 Encapsulates 
– the representation of geometric objects 
– and the geometric operations and predicates on these objects

 CGAL provides kernels for
– Points, Predicates, and Exactness
– Number Types
– Cartesian Representation
– Homogeneous Representation
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Points, predicates, and Exactness

[CGAL at SCG ‘99]
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Number Types

[CGAL at SCG ‘99]

Precission
x

slow-down
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Cartesian with double

[CGAL at SCG ‘99]

…
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Cartesian with double

[CGAL at SCG ‘99]

…
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Cartesian with Filtered_exact and leda_real

[CGAL at SCG ‘99]

A single-line declaration
changes the 

precision of all computations

…

Number type
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Exact orientation test – homogeneous rep.

[CGAL at SCG ‘99]
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9 References – for the lectures
 Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: 

Computational Geometry: Algorithms and Applications, Springer-Verlag, 
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5 
http://www.cs.uu.nl/geobook/

 [Mount] Mount, D.: Computational Geometry Lecture Notes for Spring 2007 
http://www.cs.umd.edu/class/spring2007/cmsc754/Lects/comp-geom-
lects.pdf

 Franko P. Preperata, Michael Ian Shamos: Computational Geometry. An 
Introduction. Berlin, Springer-Verlag,1985

 Joseph O´Rourke: .: Computational Geometry in C, Cambridge University 
Press, 1993, ISBN 0-521- 44592-2 
http://maven.smith.edu/~orourke/books/compgeom.html

 Ivana Kolingerová: Aplikovaná výpočetní geometrie, Přednášky, MFF UK 
2008

 Kettner et al. Classroom Examples of Robustness Problems in Geometric 
Computations, CGTA 2006,  
http://www.mpi-inf.mpg.de/~kettner/pub/nonrobust_cgta_06.pdf
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9.1 References – CGAL
CGAL
 www.cgal.org
 Kettner, L.: Tutorial I: Programming with CGAL 
 Alliez, Fabri, Fogel: Computational Geometry Algorithms Library, 

SIGGRAPH 2008
 Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain Pion, and Michael 

Seel. An adaptable and extensible geometry kernel. Computational 
Geometry: Theory and Applications, 38:16-36, 2007. 
[doi:10.1016/j.comgeo.2006.11.004]



9.2 Useful geometric tools
 OpenSCAD - The Programmers Solid 3D CAD Modeler, 

http://www.openscad.org/

 J.R. Shewchuk - Adaptive Precision Floating-Point Arithmetic and Fast 
Robust Predicates, Effective implementation of Orientation and InCircle 
predicates http://www.cs.cmu.edu/~quake/robust.html

 OpenMESH - A generic and efficient polygon mesh data structure, 
https://www.openmesh.org/

 VCG Library - The Visualization and Computer Graphics Library, 
http://vcg.isti.cnr.it/vcglib/

 MeshLab - A processing system for 3D triangular meshes -
https://sourceforge.net/projects/meshlab/?source=navbar
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9.3 Collections of geometry resources
 N. Amenta, Directory of Computational Geometry Software, 

http://www.geom.umn.edu/software/cglist/. 
 D. Eppstein, Geometry in Action, 

http://www.ics.uci.edu/~eppstein/geom.html. 
 Jeff Erickson, Computational Geometry Pages, 

http://compgeom.cs.uiuc.edu/~jeffe/compgeom/
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10. Computational geom. course summary

 Gives an overview of geometric algorithms
 Explains their complexity and limitations
 Different algorithms for different data
 We focus on

– discrete algorithms and precise numbers and predicates
– principles more than on precise mathematical proofs
– practical experiences with geometric sw



GEOMETRIC SEARCHING
PART 1:  POINT LOCATION

PETR FELKEL
FEL CTU PRAGUE

Version from 25.1.2019
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 Point location (static) – Where am I?
– (Find the name of the state, pointed by mouse cursor)
– Search space S: a planar (spatial) subdivision
– Query: point Q
– Answer: region containing Q

 Orthogonal range searching  – Query a data base
(Find points, located in d-dimensional axis-parallel box)

– Search space S: a set of points
– Query: set of orthogonal intervals q
– Answer: subset of points in the box
– (Was studied in DPG)

Geometric searching problems
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Point location

 Point location in polygon
 Planar subdivision
 DCEL data structure
 Point location in planar subdivision

– slabs
– monotone sequence
– trapezoidal map
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1. Ray crossing - O(n)

Point location in polygon by ray crossing
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Point location in polygon

2.  Winding number - O(n)
(number of turns around the point)
– Sum oriented angles i = —(pi, z, pi+1)
– If (sum i = 2p) then inside (1 turn)
– If (sum i = 0) then outside (no turn)
– About 20-times slower than ray crossing

2p 0
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Point location in polygon
3.  Position relative to all edges

– For convex polygons
– If (left from all edges) then inside

 Position of point in relation to the line segment 
(Determination of convex polygon orientation) 

Convex polygon, non-collinear points  = ,ݔ ,ݕ 1 , 	 ାଵ = ,ାଵݔ ,ାଵݕ 1 , 	 ାଶ = ,ାଶݔ] ,ାଶݕ 1]
> 0  => point left from edge (CCW polygon)  
< 0  => point right from edge (CW polygon)

pi pi+1

pi+2

ݔ ݕ ାଵݔ1 ାଵݕ ାଶݔ1 ାଶݕ 1
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Area of Triangle

=  Vector perpendicular to both vectors AB and AC
 For vectors in plane is perpendicular to the plane 

(normal)
 In 2D (plane xy) – only z-coordinate is non-zero
 |AB x AC| = z-coordinate of the normal vector

= area of parallelopid
= 2x area T of triangle ABC

A B

C

A B

C

A B

C

Vector product of vectors AB x AC

AB x AC



Felkel: Computational geometry

(8)

Area of Triangleܶ = ଵଶ ܘ × ܘܙ = ݍ − ܙ = ݎ − 2ܶ = ௬ܙ௫ܘ − ௫ܙ௬ܘ using vector product ܘ × ܙ ݍ
ݎ

p

q

= sign(௫ݍ௬ + ௬ݎ௫ݍ + ௬௫ݎ − ௬ݎ௫ − ௬௫ݍ − =(௬ݍ௫ݎ sign ௫ݍ − ௫ ௬ݎ − ௬ − ௬ݍ − ௬ ௫ݎ − ௫ pivot 
2ܶ = ௫ ௬ ௫ݍ1 ௬ݍ ௫ݎ1 ௬ݎ 1

Orientation is computed as sign 2T =
using coordinates of points
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Point location in polygon

4.  Binary search in angles
Works for convex and star-shaped polygons
1. Choose any point q inside / in the polygon core
2. q forms wedges with polygon edges
3. Binary search of wedge výseč based on angle
4. Finaly compare with one edge (left, CCW => in, 

right, CW => out)

q

p1

p2

p3

p4

p5

z
z´

CCW CW
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Planar graph

Planar graph   U=set of nodes, H=set of arcs  

=  Graph G = (U,H) is planar, if it can be embedded into 
plane without crossings

Planar embedding of planar graph G = (U,H) 
=  mapping of each node in U to vertex in the plane and 

each arc in H into simple curve (edge) between the two 
images of extreme nodes of the arc, so that no two 
images of arc intersect except at their endpoints

Every planar graph can be embedded in such a way that 
arcs map to straight line segments [Fáry 1948] 
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Planar subdivision

=   Partition of the plane determined by straight line 
planar embedding of a planar graph.
Also called  PSLG – Planar Straight Line Graph

 (embedding of a planar graph in the plane such 
that its arcs are mapped into straight line 
segments)

connected disconnected
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Planar subdivision

Vertex = embedding of graph node

Edge = embedding of graph arc 
(open – without vertices)

Complexity (size) of a subdivision = sum of number of vertices +
+ number of edges + 
+ number of faces it consists of

Euler’s formula: |V| - |E| + |F| >= 2

Face = maximal connected subset of a plane that 
doesn’t contain points on edges nor vertices 

(open  polygonal region whose 
boundary is formed by edges and vertices 
from the subdivision)
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DCEL = Double Connected Edge List

 A structure for storage of planar subdivision
 Operations like:

Pointers to next 
and prev edge

Walk around boundary of a 
given face

Get incident face

Half-edge, op. Twin(e),
unique Next(e), Prev(e) 

[Berg] [Berg]
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DCEL = Double Connected Edge List

 Vertex record v
– Coordinates(v) and pointer to one IncidentEdge(v)

 Face record f
– OuterComponent(f) pointer (boundary)
– List of holes – InnerComponent(f)

 Half-edge record e
– Origin(e), Twin(e), IncidentFace(e)
– Next(e), Prev(e)
– [ Dest(e) = Origin(Twin(e)) ]

 Possible attribute data for each

[Berg]
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DCEL = Double Connected Edge List

[Berg]
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T
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DCEL simplifications

 If no operations with vertices and no attributes
– No vertex table (no separate vertex records)
– Store vertex coords in half-edge origin (in the half-edge table)

 If no need for faces (e.g. river network)
– No face record and no IncidentFace() field (in the half-edge table)

 If only connected subdivision allowed
– Join holes with rest by dummy edges
– Visit all half-edges by simple graph traversal 
– No InnerComponent() list for faces
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Point location in planar subdivision

 Using special search structures
an optimal algorithm can be made with

– O(n) preprocessing,
– O(n) memory and
– O(log n) query time.

 Simpler methods
1.Slabs O(log n) query, O(n2) memory
2.monotone chain tree O(log2 n) query, O(n2) memory 
3.trapezoidal map O(log n) query expected time

O(n) expected memory
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1. Vertical (horizontal) slabs       [Dobkin and Lipton, 1976]

 Draw vertical or horizontal lines through vertices
 It partitions the plane into vertical slabs

– Avoid points with same x coordinate (to be solved later)

[Berg]
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Horizontal slabs example

2. Find slab part in Tx for x

1. Find slab 
in Ty  for y

Tx and Ty are arrays
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Horizontal slabs complexity

 Query time ܱ(log	݊ ) time in slab array ௬ܶ (size max 2n endpoints)
+ ܱ(log	݊ ) time in slab array ௫ܶ (slab crossed max by ݊

edges)

 Memory ଶ
– Slabs: Array with y-coordinates of vertices … ܱ(݊)
– For each slab ܱ(݊) edges intersecting the slab

[Berg]

4݊
ସ slabs
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Horizontal slabs complexity

 Query time ܱ(log	݊ ) time in slab array ௬ܶ (size max 2n endpoints)
+ ܱ(log	݊ ) time in slab array ௫ܶ (slab crossed max by ݊

edges)

 Memory ଶ
– Slabs: Array with y-coordinates of vertices … ܱ(݊)
– For each slab ܱ(݊) edges intersecting the slabܱ(݊2)	 construction ܱ(log	݊ ) queryܱ(݊2) memory

[Berg]

4݊
ସ slabs
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2. Monotone chain tree [Lee  and Preparata, 1977]

 Construct monotone planar subdivision
– The edges are all monotone in the same direction

 Each separator chain 
– is monotone (can be projected to line and searched)
– splits the plane into two parts – allows binary search

 Algorithm
– Preprocess: Find the separators (e.g., horizontal)
– Search: 

Binary search among separators (Y)         … O(log n) times
Binary search along the separator (X)      … O(log n) 

– Not optimal, but simple
– Can be made optimal, but the algorithm 

and data structures are complicated

O(log2 n) query
O(n2) memory
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0. Construct the chains 
and the chain tree

1. Start with the middle chain
2. Find projection of x in the projection of 

the chain – determine the segment
3. Identify position of x in relation to the 

segment – Left or Right 
(This is the position of x relatively to the 
whole chain)

4. Continue in L or R chain -> goto 2.
or stop if in the leaf 

Monotone chain tree example

A B

D

E
F

G
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0. Construct the chains 
and the chain tree

1. Start with the middle chain
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3. Trapezoidal map (TM) search
 The simplest and most practical known optimal algorithm
 Randomized algorithm with O(n) expected storage and 

O(log n) expected query time
 Expectation depends on the random order of segments 

during construction, not on the position of the segments
 TM is refinement of original subdivision
 Converts complex shapes into simple ones
 Weaker assumption on input:

– Input individual segments, 
not polygons

– S = {s1, s2, …, sn}
– Si subset of first i segments 
– Answer: segment below 

the pointed trapezoid (D)
[Berg]
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Trapezoidal map of line segments in general position

Input: individual segments S

– They do not intersect, except
in endpoints

– No vertical segments
– No 2 distinct endpoints with

the same x-coordinate

Trapezoidal map T

– Bounding rectangle
– 4 Bullets up and down
– Stop on input segment or 

on bounding rectangle

[Mount]

Constru-
ction
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Trapezoidal map of line segments in general position

 Faces are trapezoids D
with vertical sides

 Given n segments, TM has
– at most 6n+4 vertices
– at most 3n+1 trapezoids

 Proof:
– each point 2 bullets -> 1+2 points
– 2n endpoints * 3 + 4 = 6n+4 vertices

– start point –> max 2 trapezoids
– end point  –> 1 trapezoid
– 3 * (n segments) + 1 left D => max 3n+1 D

[Mount]

BBOX
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Trapezoidal map of line segments in general position

 Faces are trapezoids D
with vertical sides

 Given n segments, TM has
– at most 6n+4 vertices
– at most 3n+1 trapezoids

 Proof:
– each point 2 bullets -> 1+2 points
– 2n endpoints * 3 + 4 = 6n+4 vertices

– start point –> max 2 trapezoids
– end point  –> 1 trapezoid
– 3 * (n segments) + 1 left D => max 3n+1 D

+1
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Trapezoidal map of line segments in general position

Each face has 
 one or two vertical sides (trapezoid or triangle) and 
 exactly two non-vertical sides 
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[Berg]

Two vertical sidesOne vertical side



Two non-vertical sides

Non-vertical side 
 is contained in one of the segments of set S
 or in the horizontal edge of bounding rectangle R
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top(D) - bounds from above

bottom(D) - bounds from below
[Berg]

segments:



Vertical sides – left vertical side of D
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D

D

DD

Left vertical side is defined by the segment end-point p=leftp(D)
(a) common left point p itself
(b) by the lower vert. extension of left point p ending at bottom() 
(c) by the upper vert. extension of left point p ending at top()
(d) by both vert. extensions of the right point p
(e) the left edge of the bounding rectangle R (leftmost D only)

[Berg]



Vertical sides - summary

Vertical edges are defined by segment endpoints
 leftp(D) = the end point defining the left edge of D
 rightp(D) = the end point defining the right edge of D

leftp(D) is 
 the left endpoint of top() or bottom() or both (c, b, a)
 the right point of a third segment (d)
 the lower left corner of the bounding rectangle R         (e)
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Trapezoid D

 Trapezoid D is uniquely defined by 
– the segments top(D), bottom(D)
– And by the endpoints leftp(D), rightp(D)
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Adjacency of trapezoids segments in general position

 Trapezoids D and D’ are adjacent, if they meet along a 
vertical edge

 D1= upper left neighbor of D (common top(D) edge)
 D2 = lower left neighbor of D (common bottom(D))
 D3 is a right neighbor of D (common top(D) & bottom(D) )
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[Berg]



Adjacency of trapezoids segments in general position

 Trapezoids D and D’ are adjacent, if they meet along a 
vertical edge

 D1= upper left neighbor of D (common top(D) edge)
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[Berg]



Representation of the trapezoidal map T

Special trapezoidal map structure Τ(S) stores:
 Records for all line segments and end points
 Records for each trapezoid D ϵ Τ(S)

– Definition of D - pointers to segments top(D), bottom(D), 
- pointers to points leftp(D), rightp(D)

– Pointers to its max four neighboring trapezoids
– Pointer to the leaf    in the search structure D (see below)

 Does not store the geometry explicitly!
 Geometry of trapezoids is computed in O(1)
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X
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Construction of trapezoidal map 
 Randomized incremental algorithm

1. Create the initial bounding rectangle (T0 =1D) … O(n)
2. Randomize the order of segments in S
3. for  i = 1 to n do
4. Add segment Si to trapezoidal map Ti

5. locate left endpoint of Si in Ti-1

6. find intersected trapezoids
7. shoot 4 bullets from endpoints of Si

8. trim intersected vertical bullet paths
[Mount]
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Trapezoidal map point location

 While creating the trapezoidal map T
construct the Point location data structure D

 Query this data structure
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Point location data structure D

 Rooted directed acyclic graph (not a tree!!)
– Leaves – trapezoids, each appears exactly once
– Internal nodes – 2 outgoing edges, guide the search

• x-node – x-coord x0 of segment start- or end-point
left child lies left of vertical line x=x0
right child lies right of vertical line x=x0

– used first to detect the vertical slab 
• y-node – pointer to the line segment of the subdivision (not only its y!!!)

left – above, right – below 
•

[Mount]

p1

s1

X
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TM search example

[Mount]
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Construction – addition of a segment

a) Single (left or right) endpoint - 3 new trapezoids

Trapezoid A replaced by
– * x-node for point p
– add left leaf for X D

– add right subtree
– * y-node for segment s
– add left leaf for Y D above
– add right leaf Z D below

[Mount]
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Construction – addition of a segment

b) Two segment endpoints – 4 new trapezoids

Trapezoid A replaced by
– * x-node for point p
– * x-node for point q
– * y-node for segment s
– add leaves for U, X, Y, Z[Mount]
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Construction – addition of a segment

c) No segment endpoint – create 2 trapezoids

Y

Z

sA

Trapezoid A replaced by
– * y-node for segment s
– add leaves for Y, Z

[Mount]
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Segment insertion example

[Mount]
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Segment insertion example

[Mount]
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Analysis and proofs

 This holds:
– Number of newly created D for inserted segment:

ki = K+4 => O(ki) = O(1)   for K trimmed bullet paths
– Search point O(log n) in average

=> Expected construction O(n(1+ log n)) = O(n log n) 

 For detailed analysis and proofs see 
– [Berg] or [Mount]
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Handling of degenerate cases - principle 

 No distinct endpoints lie on common vertical line
– Rotate or shear the coordinates x’=x+�y, y’=y

[Berg]
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Handling of degenerate cases - realization

 Trick 
– store original (x,y), not the sheared x’,y’

– we need to perform just 2 operations:
1. For two points p,q determine if transformed 

point q is to the left, to the right or on vertical line through 
point p

– If xp = xq then compare yp and yq (on only for yp = yq )
– => use the original coords (x, y) and lexicographic order

2. For segment given by two points decide if 3rd point q lies 
above, below, or on the segment p1 p2

– Mapping preserves this relation
– => use the original coords (x, y) 
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Point location summary
 Slab method [Dobkin and Lipton, 1976]

– O(n2) memory O(log n) time 
 Monotone chain tree in planar subdivision [Lee  and Preparata,77]

– O(n2) memory O(log2 n) time
 Layered directed acyclic graph (Layered DAG) in planar 

subdivision [Chazelle , Guibas, 1986] [Edelsbrunner, Guibas, and Stolfi, 1986]

– O(n) memory O(log n) time => optimal algorithm 
of planar subdivision search
(optimal but complex alg.
=> see elsewhere)

 Trapeziodal map
– O(n) expected memory O(log n) expected time
– O(n log n) expected preprocessing (simple alg.)
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Range search

 Orthogonal range searching
 Canonical subsets
 1D range tree
 2D-nD Range tree

– With fractional cascading (Layered tree)

 Kd-tree
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Orthogonal range searching
– Given a set of points P, find the points in the region Q

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]
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Orthogonal range searching
– Given a set of points P, find the points in the region Q
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Orthogonal range searching
– Given a set of points P, find the points in the region Q

• Search space:  a set of points P (somehow represented)
• Query: intervals Q (axis parallel rectangle)
• Answer: points contained in Q

– Example: Databases (records->points)
• Find the people with given range of salary, date of birth, kids, …

in YYYYMMDD format

2D: axis parallel rectangle 3D: axis parallel box

[Berg]
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Orthogonal range searching

 Query region = axis parallel rectangle
– nDimensional search can be decomposed into 

set of 1D searches (separable)
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Other range searching variants
 Search space S: set of 

– line segments, 
– rectangles, …

 Query region Q: any other searching region 
– disc, 
– polygon, 
– halfspace, …

 Answer: subset of S laying in Q

 We concentrate on points in orthogonal ranges



How to represent the search space?

Basic idea:
 Not all possible combination can be in the output

(not the whole power set)
 => Represent only the “selectable” things

(a well selected subset –> one of the canonical
subsets)
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How to represent the search space?

Basic idea:
 Not all possible combination can be in the output

(not the whole power set)
 => Represent only the “selectable” things

(a well selected subset –> one of the canonical 
subsets)

Felkel: Computational geometry
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Example?
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Subsets selectable by given range class

 The number of subsets that can be selected by 
simple ranges Q is limited 

 It is usually much smaller than the power set of P
– Power set of P where P = {1,2,3,4} (potenční množina)

is {{ }, {1},{2},{3},{4}, {1,2},{1,3},{1,4}, {2,3},…,{2,3,4}, 
{1,2,3,4} }    … O(2n)
i.e. set of all possible subsets

– Simple rectangular queries are limited
• Defined by max 4 points along 4 sides   

=> O(n4) of O(2n) power set
• Moreover – not all sets can be formed 

by       query Q
e.g. sets {1,4} and {1,2,4} cannot be formed

[Mount]
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Canonical subsets Si

Search space represented as a collection 
of canonical subsets 1 2 ݇ , each ݅	 	 ,  

– Si may overlap each other (elements can be multiple times there)

– Any set can be represented as disjoint union disjunktní sjednocení

of canonical subsets ܵ݅ each element knows from which subset it came

– Elements of disjoint union are ordered pairs (ݔ, ݅)
(every element ݔ with index ݅ of the subset ܵ݅)

Si may be selected in many ways 
• from n singletons {݅} … ܱ(݊)
• to power set of ܲ … ܱ(2݊)

– Good DS balances between total number of canonical
subsets and number of CS needed to answer the query
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1D range queries (interval queries)

 Query: Search the interval ݈ ݄݅
 Search space: Points 1 2 ݊ on the line

a) Binary search in an array
• Simple, but
• not generalize to any higher dimensions

b) Balanced binary search tree
• 1D range tree
• maintains canonical subsets
• generalize to higher dimensions

0 ݊
݈ݔ ݄݅ݔ
Selected points
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1D range tree definition

 Balanced binary search tree (with repeated keys)
– leaves – sorted points
– inner node label – the largest key in its left child
– Each node associate with subset of descendants 

=> ܱ(݊) canonical subsets
31

[Mount]

≤ 15 > 15
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Canonical subsets and <2,23> search

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]
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1D range tree search interval <2,23>

 Canonical subsets for any range found in O(log n)
– Search xlo: Find leftmost leaf u with key(u) ¥ xlo 2 ->
– Search xhi: Find leftmost leaf v with key(v) ¥ xhi 23 ->
– Points between u and v lie within the range => report

canon. subsets of maximal subtrees between u and v
– Split node = node, where paths to u and v diverge

31
split node

[Mount]

to u to v

to u and v

3

24
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1D range tree search

 Reporting the subtrees (below the split node)
– On the path to u whenever the path goes left, report 

the canonical subset (CS) associated to right child
– On the path to v whenever the path goes right, report 

the canonical subset associated to left child
– In the leaf u, if key(u) œ [xlo:xhi] then report CS of u
– In the leaf v, if key(v) œ [xlo:xhi] then report CS of v

31
split node

[Mount]
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 Path lengths O( log n ) 
=> O( log n ) canonical subsets 

(subtrees)

 Range counting queries
– Return just the number of points in given range
– Sum the total numbers of leaves stored in maximum

subtree roots … O( log n) time

 Range reporting queries
– Return all k points in given range
– Traverse the canonical subtrees    … O( log n + k) time 

 O(n) storage,  O(n log n) preprocessing (sort P)

split node

1D range tree search complexity

[Berg]



Input:
Output:
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split node

Find split node
FindSplitNode( T, [x:x’])

Tree T and Query range [x:x’], x § x’
The node, where the paths to x and x’ split 
or the leaf, where both paths end

1. t = root(T)
2. while( t is not a leaf and (x’ § t.x or t.x < x) ) // t out of the range [x:x’]
3. if( x’ § t.x) t = t.left
4. else t = t.right
5. return t

position

x’ § t.x

position

x§ t.x < x’

position

t.x < x

[Berg]

STOP



Input:
Output:
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1D range search (2D on slide 30)

1dRangeQuery( t, [x:x’]) 
1d range tree t and Query range :ݔ] [′ݔ
All points in t lying in the range

1. tsplit = FindSplitNode( t, x, x’ )           // find interval point t œ [x:x’]
2. if( tsplit is leaf )    // e.g. Searching [16:17] or [16:16.5] both stops in the leaf 17 in the previous example 

3. check if the point in tsplit must be reported // ௫ݐ ∈ :ݔ] [′ݔ
4. else // follow the path to x, reporting points in subtrees right of the path
5. t = tsplit.left
6. while( t is not a leaf )
7. if( x § t.x) 
8. ReportSubtree( t.right ) // any kind of tree traversal
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported
12. // Symmetrically follow the path to x’ reporting points left of the path   

t = tsplit.right …
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Multidimensional range searching

 Equal principle – find the largest subtrees 
contained within the range

 Separate one n-dimensional search 
into n 1-dimensional searches

 Different tree organization
– Orthogonal (Multilevel) range search tree 

e.g. nd range tree
– Kd tree
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From 1D to 2D range tree

 Search points from [Q.xlo, Q.xhi] [Q.ylo, Q.yhi]
 1d range tree: log n canonical subsets based on x
 Construct an y auxiliary tree for each such subset

31

[Mount]



y-auxiliary tree for each canonical subset 
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2D range tree

[Mount]



Input:
Output:
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2D range search
2dRangeQuery( t, [x:x’] μ [y:y’] ) 

2d range tree t and Query range
All points in t laying in the range

1. tsplit = FindSplitNode( t, x, x’ )
2. if( tsplit is leaf )
3. check if the point in tsplit must be reported      … t.x œ [x:x’], t.y œ [y:y’] 
4. else // follow the path to x, calling 1dRangeQuery on y 
5. t = tsplit.left // path to the left
6. while( t is not a leaf )
7. if( x § t.x) 
8. 1dRangeQuerry( tassoc( t.right ), [y:y’] ) // check associated subtree
9. t = t.left
10. else t = t.right
11. check if the point in leaf t must be reported      … t.x § x’, t.y œ [y:y’] 
12. Similarly for the path to x’ … // path to the right
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2D range tree

 Search 2 … in , in 
 Space– ܱ(݊) the tree for x-coords– ܱ(݊	log	݊ )	trees for y-coords

• Point p is stored in all canonical subsets
along the path from root to leaf with p,

• once for ݔ-tree level (only in one (range-ݔ
• each canonical subsets is stored in one auxiliary tree• log	݊ 	levels of ݔ-tree => ܱ(݊	log	݊ )	space for ݕ-trees

 Construction -
– Sort points (by ݔ and by ݕ). Bottom up construction

[Berg]
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Canonical subsets

31

 Canonical subsets for this subtree are
{ {1}, {3}, …, {31},
{1, 3}, {4, 7}, …, {29, 31}
{1, 3, 4, 7}, {9, 12, 14, 15}, …, {25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15}, {17, 20, 22, 24, 25, 27, 29, 31}
{1, 3, 4, 7, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29, 31}

}

#
16
8
4
2
1

O(n)

[Mount]
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nD range tree (multilevel search tree)

Split node

split node
canonical subsets

of 1. dimension
(nodes œ [x:x’])

Tree for each dimension

canonical subsets
of 2. dimension

[Berg]



Fractional cascading - principle

 Two sets S1, S2 stored in sorted arrays A1, A2

 Report objects in both arrays whose keys in [y:y’]
 Naïve approach – search twice independently

– O(logn1+k1) – search in A1 + report k1 elements
– O(logn2+k2) – search in A2 + report k2 elements

 Fractional cascading – adds pointers from A1 to A2
– O(logn1+k1) – search in A1 + report k1 elements
– O(1 + k2) – jump to A2 + report k2 elements
– Saves the O(logn2) – search

Felkel: Computational geometry
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Fractional cascading – principle for arrays

 Add pointers from 1 to 2
– From element in 1ܣ with a key ݅ݕ point to the element in 2ܣ with the smallest key larger or equal to ݅ݕ

 Example query with the range [20 : 65]
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[Berg]
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Fractional cascading in the 2D range tree

 How to save one log n during last dim. search?
– Store canonical subsets in arrays sorted by y
– Pointers to subsets for both child nodes ܮݒ and ܴݒ– (1) search in lower levels => in two dimensional 

search (	log2	݊	)	time -> (	log	݊ 	)	
internal node in x-tree

points p1 to p6 sorted by - y

right son of v

Pointer to the smallest 
larger or equal y-value

[Mount]

nil
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Orthogonal range tree - summary

 Orthogonal range queries in plane
– Counting queries (	log2	݊	)	time,

or with fractional cascading (	log	݊ 	)	time
– Reporting queries plus (	݇	)	time, for ݇ reported points
– Space (	݊	log	݊ 	)
– Construction (	݊	log	݊ 	)

 Orthogonal range queries in d-dimensions, ¥
– Counting queries ,time	(	݊	݈݀݃	)

or with fractional cascading (logௗିଵ ݊	)	time
– Reporting queries plus (	݇	)	time, for ݇ reported points
– Space (݊	logௗିଵ ݊	)
– Construction (݊ logௗିଵ ݊ ) time
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Kd-tree

 Easy to implement
 Good for different searching problems

(counting queries, nearest neighbor,…)
 Designed by Jon Bentley as k-dimensional tree

(2-dimensional kd-tree was a 2-d tree, …)
 Not the asymptotically best for orthogonal range

search (=> range tree is better)
 Types of queries

– Reporting – points in range
– Counting  – number of points in range
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Kd-tree principle

 Subdivide space according to different dimension
( -coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space 

 In node t store: cutDim, cutVal, (size (for counting queries))

[Mount]

= Cutting line
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Kd-tree principle

 Subdivide space according to different dimension
( -coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space 

 In node t store: cutDim, cutVal, (size (for counting queries))
Each tree node 
represents a region

[Mount]

= Cutting line
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Kd-tree principle
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 This subdivides space into rectangular cells
=> hierarchical decomposition of space
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Kd-tree principle

 Subdivide space according to different dimension
( -coord, then -coord, …)

 This subdivides space into rectangular cells
=> hierarchical decomposition of space 

 In node t store: cutDim, cutVal, (size (for counting queries))

Where is a mistake in the figure?

[Mount]

= Cutting line
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Kd-tree principle

 Which dimension to cut?     (cutDim)
– Cycle through dimensions (round robin)

• Save storage – cutDim is implicit ~ depth in the tree
• May produce elongated cells (if uneven data distribution)

– Greatest spread (the largest difference of coordinates)
• Adaptive
• Called “Optimal kd-tree”

 Where to cut?      (cutVal)
– Median, or midpoint between upper and lower median

-> (݊)
– Presort coords of points in each dimension (ݔ, ,ݕ … )	for (1)	median – resp. (݀) for all ݀ dimensions
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7     

p9

p10

p8

p6

Subdivision [Mount]

§ >
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7     

p9

p10

p8

p6

Subdivision [Mount]
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Kd-tree principle

 What about points on the cell boundary?
– Boundary belongs to the left child
– Left: pcutDim § cutVal
– Right: pcutDim > cutVal

p1

p2

p4 p5

p3

p7

p9

p10

p8

p6

Subdivision [Mount]

§

§

§

>

>

>
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Kd-tree construction in 2-dimensions
BuildKdTree(P, depth)

A set of points P and current depth.
The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even)
4. then split P with a vertical line l through median x into two subsets 

P1 and P2 (left and right from median) 
5. else split P with a horiz. line l through median y into two subsets

P1 and P2 (below and above the median)
6. t left =  BuildKdTree(P1, depth+1)
7. t right =  BuildKdTree(P2, depth+1)
8. create node t storing l, tleft and tright children      // l = cutDim, cutVal
9. return t

If median found in O(1) and array split in O(n)
T(n) = 2 T(n/2) + n  => O(n log n) construction



Input:
Output:
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Kd-tree construction in 2-dimensions
BuildKdTree(P, depth)

A set of points P and current depth.
The root of a kD tree storing P.

1. If (P contains only one point) [or small set of (10 to 20) points]
2. then return a leaf storing this point
3. else if (depth is even)
4. then split P with a vertical line l through median x into two subsets 

P1 and P2 (left and right from median) 
5. else split P with a horiz. line l through median y into two subsets

P1 and P2 (below and above the median)
6. t left =  BuildKdTree(P1, depth+1)
7. t right =  BuildKdTree(P2, depth+1)
8. create node t storing l, tleft and tright children      // l = cutDim, cutVal
9. return t

If median found in O(1) and array split in O(n)
T(n) = 2 T(n/2) + n  => O(n log n) construction

Split according to (depth%max_dim) dimension
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Kd-tree test variants

a) Compare rectang. array Q with rectangular cells C
– Rectangle C:[xlo, xhi, ylo, yhi] – computed on the fly
– Test of kD node cell C against query Q (in one cutDim)

1. if cell is disjoint with Q  … C … Q = « … stop
2. If cell C completely inside Q … C Œ Q … stop and report cell points
3. else cell C overlaps Q … recurse on both children

– Recursion stops on the largest subtree (in/out)

cutDim

Chi § Qlo

cutDim

Qhi § Clo

cutDim

Clo § Qhi § Chi

cutDim

Clo § Qlo § Chi

cutDim

Qlo § Clo Chi § Qhi

Test interval-interval

1 2 3

if (CutDim == x) Clo = xlo



Input:
Output:
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Kd-tree rangeCount (with rectangular cells)
int rangeCount(t, Q, C)

The root t of kD tree, query range Q and t’s cell C.
Number of points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) return 1 // or loop this test for all points in leaf
3. else return 0 // visited, not counted
4. else // (t is not a leaf)
5. if (C … Q = « )  return 0 … disjoint
6. else if (C Œ Q)  return t.size … C is fully contained in Q
7. else 
8. split C along t’s cutting value and dimension, 

creating two rectangles C1 and C2.
9. return rangeCount(t.left, Q, C1) + rangeCount(t.right, Q, C2)

// (pictograms refer to the next slide)

C1

C
C2

4

k
1
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Kd-tree rangeCount example

[Mount]

Tree node (rectangular region)

(prune)
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Kd-tree test variants

b) Compare Q with cutting lines
– Line = Splitting value p in one of the dimensions
– Test of single position given by dimension against Q

1. Line p is right from Q … recurse on left child only (prune right child)
2. Line p intersects Q … recurse on both children
3. Line p is left from Q … recurse on right child only (prune left ch.)

– Recursion stops in leaves - traverses the whole tree

[Havran]

position

Qhi § p

position

Qlo § p § Qhi

position

Qlo § p

Test point-interval



Input:
Output:
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Kd-tree rangeSearch (with cutting lines)
int rangeSearch(t, Q)

The root t of (a subtree of a) kD tree and query range Q.
Points at leaves below t that lie in the range.

1. if (t is a leaf)
2. if (t.point lies in Q) report t.point // or loop test for all points in leaf
3. else return
4. else  (t is not a leaf)
5. if (Qhi § t.cutVal) rangeSearch(t.left, Q)  // go left only
6. if (Qlo > t.cutVal) rangeSearch(t.right, Q) // go right only
7. else
8. rangeSearch(t.left, Q) // go to both
9. rangeSearch(t.right, Q)
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Kd-tree - summary

 Orthogonal range queries in the plane
(in balanced 2d-tree) 

– Counting queries  O( ◊n ) time
– Reporting queries O( ◊n + k ) time, 

where k = No. of reported points
– Space O( n )
– Preprocessing: Construction O( n log n ) time 

(Proof: if presorted points to arrays in dimensions. Median in O(1) 
and split in O(n) per level, log n levels of the tree) 

 For d¥2: 
– Construction O(d n log n), space O(dn), Search O(d n^(1-1/d) + k)



Proof sqrt(n)
Každé sudé patro se testuje osa x. 
• V patře 0 je jeden uzel a jde se do obou synů (v patře 1 se jde taky do 

obou)
• v patře 2 jsou 4 uzly, z nich jsou ale 2 bud úplně mimo, nebo úplně in 

=> stab jen 2
• v 4. patře stab 4 z 8, …
• v i-tém patře stab 2^i uzlů
Výška stromu je log n
Proto tedy sčítám sudé členy z 0..log n z 2^i. Je to exponenciála, proto 
dominuje poslední člen
2^(log n /2)  = 2^log (sqrt(n)) = sqrt(n)
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Orthogonal range tree (RT)

 DS highly tuned for orthogonal range queries
 Query times in plane

n = number of points
k = number of reported points

2d tree versus 2d range tree
O( ◊n + k ) time of Kd > O( log n ) time query
O( n ) space of Kd < O( n log n ) space
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Talk overview

 Motivation and Definitions
 Graham’s scan – incremental algorithm
 Divide & Conquer
 Quick hull
 Jarvis’s March – selection by gift wrapping
 Chan’s algorithm – optimal algorithm

www.cguu.com
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Convex hull (CH) – why to deal with it?

 Shape approximation of a point set or complex shapes
(other common approximations include: minimal area enclosing
rectangle, circle, and ellipse,…) – e.g., for collision detection

 Initial stage of many algorithms to filter out irrelevant
points, e.g.:

– diameter of a point set
– minimum enclosing convex shapes (such as rectangle, circle,

and ellipse) depend only on points on CH
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not convex

!!!

Convexity

 A set S is convex
– if for any points p,q  S  the lines segment pq  S, or
– if any convex combination of p and q is in S

 Convex combination of points p, q is any point that
can be expressed as
(1 – ) p + q, where 0    1

 Convex hull CH(S) of set S – is (similar definitions)
– the smallest set that contains S (convex)
– or: intersection of all convex sets that contain S
– Or in 2D for points: the smallest convex polygon

containing all given points

p
q

=0
=1

convex

Line test
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 Metric space – each two of points have defined a distance
 r-neighborhood of a point p and radius r > 0

= set of points whose distance to p is strictly less than r 
(open ball of diameter r centered about p)

 Given set S, point p is
– Interior point of S – if ,ݎ∃ ݎ > 0, (r-neighborhood about p)  S
– Exterior point – if it lies in interior of the complement of S
– Border point – is neither interior neither exterior

Definitions from topology in metric spaces

p

p

r

p

Interior point

Exterior point

Border point

r

S



Felkel: Computational geometry

(7)

Definitions from topology in metric spaces
 Set S is Open (otevřená)

– p  S  (r-neighborhood about p of radius r)  S
– it contains only interior points, none of its border points

 Closed (uzavřená)

– If it is equal to its closure S (uzávěr = smallest closed set containing S in topol. space)

(r-neighborhood about p of radius r)  S  )

 Clopen (otevřená i uzavřená) – Ex. Empty set , finite set of disjoint components

– if it is both closed and open space Q = rational numbers
(S= all positive rational numbers whose square is bigger than 2)   S = (2, ) in Q, 2  Q, S = S

 Bounded (ohraničená) Unbounded                   

– if it can be enclosed in a ball of finite radius 
 Compact (kompaktní)

– if it is both closed and bounded 

Goes to
infinity

A
re

 b
or

de
r p

oi
nt

s 
 p∈ܵ?

G
oe

s 
to

 in
fin

ity
?
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– Ex. Empty set , finite set of disjoint components

if it is both closed and open space Q = rational numbers
(S= all positive rational numbers whose square is bigger than 2)   S = (2, ) in Q, 2  Q, S = S

S
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Definitions from topology in metric spaces

 Convex set S may be bounded or unbounded

 Convex hull CH(S) of a finite set S of points in the 
plane

= Bounded, closed, (= compact) convex polygon

point
segment
polygon

[Mount]

Open

Bounded
Bounded
Closed
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Convex hull representation

 CCW enumeration of vertices
 Contains only the extreme points

(“endpoints” of collinear points)

 Simplification for the whole semester:
Assume the input points are in general position, 

– no two points have the same x-coordinates and 
– no three points are collinear

-> We avoid problem with non-extreme points on x
(solution may be simple – e.g. lexicographic ordering)
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Online x offline algorithms

 Incremental algorithm
– Proceeds one element at a time (step-by-step)

 Online algorithm (must be incremental)

– is started on a partial (or empty) input and
– continues its processing as additional input data  

becomes available (comes online, thus the name). 
– Ex.: insertion sort

 Offline algorithm (may be incremental)

– requires the entire input data from the beginning
– than it can start
– Ex.: selection sort (any algorithm using sort)
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Graham’s scan

 Incremental O(n log n) algorithm
 Objects (points) are added one at a time
 Order of insertion is important

1. Random insertion
–>  we need to test: is-point-inside-the-hull(p)

2. Ordered insertion
Find the point  with the smallest y coordinate first
a) Sort points  according to increasing angles around the point	(angle of 	and ݔ axis)
b) Andrew’s modification: sort points  according to x and add

them left to right (construct upper & lower hull)
Sorting x-coordinates is simpler to implement than sorting of angles
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Graham’s scan – b) modification by Andrew

 O(n log n) for unsorted points, O(n) for sorted pts.
 Upper hull, then lower hull. Merge.
 Minimum and maximum on x belong to CH

p1

pn

lower hull

upper hull
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Graham’s scan – incremental algorithm
GrahamsScan(points p)

points p
CCW points on the convex hull

1. sort points according to increasing x-coord -> {p1, p2, …, pn}
2. push( p1, H), push( p2, H )
3. for i = 3 to n do
4. while( size(H)  2 and orient( sos, tos, pi )  0 )  // skip left turns
5. pop H // (back-tracking)
6. push( pi, H )     // store right turn 
7. store H to the output (in reverse order)   // upper hull
8. Symmetrically the lower hull

tos pisos pi pitossos tossos

pop

upper hull

pop H pop H

tos
sos

Stack H

push pop
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Position of point in relation to segment

> 0 r is left from pq, CCW orient
orient( p, q, r ) = 0 if ( p, q, r ) are collinear

< 0 r is right from pq, CW orient

q

p
q

r
p

q

r

left from pqPoint r is: on segment pq right from pq

is CCW orientedTriangle pqr: degenerated
to line

is CW oriented

p
q

r

p
qr p

r

Convex polygon with edges pq and qr or

p
qr
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Is Graham’s scan correct?
Stack H at any stage contains upper hull of the points  {1, … , ,݆ }, processed so far

– For induction basis ܪ = ,ଵ} –… true	ଶ}  = last added point to CH,  = its predecessor on CH
– Each point  that lies between  and  lies below  and should 

not be part of UH after addition of  => is removed before push . 
[orient(, , ( 	> ݇ ,0	 is right from  ⇒  is removed from UH]

– Stop, if 2 points in the stack or after construction of the upper hull

[Mount]

Points on stack H
= CH ({ଵ, ,ଶ …	, ({ିଵ

pk

CHi-1 CHi
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Complexity of Graham’s scan

 Sorting according x – O(n log n)
 Each point pushed once – O(n)
 Some (di  n) points deleted while processing pi

– O(n)
 The same for lower hull – O(n) 

 Total O(n log n) for unsorted points
O(n) for sorted points
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Divide & Conquer

 (n log(n)) algorithm
 Extension of mergesort
 Principle

– Sort points according to x-coordinate,
– recursively partition the points and solve CH.
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ConvexHullD&C( points P )
points p
CCW points on the convex hull

1. Sort points P according to x
2. return hull( P )

3. hull( points P )
4. if |P|  3 then
5. compute CH by brute force, 
6. return
7. Partition P into two sets L and R (with lower & higher coords x)
8. Recursively compute HL = hull(L), HR = hull(R)
9. H = Merge hulls(HL, HR) by computing
10. Upper_tangent( HL, HR) // find nearest points, HL CCW, HR CW
11. Lower_tangent( HL, HR) // (HL CW, HR CCW)
12. discard points between these two tangents
13. return H

Convex hull by D&C 
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Convex hull by D&C 
Upper tangent
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Search for upper tangent (lower is symmetrical)

Upper_tangent( HL, HR)
two non-overlapping CH’s
upper tangent ab

1. a = rightmost HL
2. b = leftmost HR

3. while( ab is not the upper tangent for HL, HR ) do 
4. while( ab is not the upper tangent for HL)  a = a.succ // move CCW
5. while( ab is not the upper tangent for HR)  b = b.pred // move  CW
6. Return ab

Where:   (ab is not the upper tangent for HL) => orient(a, b, a.succ)  0
which means a.succ is left from line ab

m = |HL|+ |HR|  |L| + |R|   => Upper Tangent:  O(m) = O(n)

a

b

HL

HR
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Convex hull by D&C complexity

 Initial sort O(n log(n))
 Function hull()

– Upper and lower tangent O(n)
– Merge hulls O(1) O(n)
– Discard points between tangents  O(n)

 Overall complexity
– Recursion

– Overall complexity of CH by D&C: => O(n log(n))

T(n) = 1 … if n  3
2T(n/2) + O(n) … otherwise
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Quick hull

 A variant of Quick Sort
 O(n log n) expected time, max O(n2)
 Principle

– in praxis, most of the points lie in the interior of CH
– E.g., for uniformly distributed points in unit square, we

expect only O(log n) points on CH

 Find extreme points (parts of CH)
quadrilateral, discard inner points

– Add 4 edges to temp hull T
– Process points outside 4 edges

[Mount]
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Process each of four groups of points outside

 For points outside ab (left from ab for clockwise CH)
– Find point c on the hull – max. perpend. distance to ab
– Discard points inside triangle abc (right from the edges) 
– Split points into two subsets 

- outside ac (left from ac)  and outside cb (left from cb)
– Process points outside ac and cb recursively
– Replace edge ab in T by edges ac and cb

[Mount]

discard inner points
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Quick hull complexity

 n points remain outside the hull
 T(n) = running time for such n points outside

– O(n) - selection of splitting point c
– O(n) - point classification to inside & (n1+n2) outside
– n1+n2  n
– The running time is given by recurrence

1                   if n = 1
T(n1) + T(n2)  where n1+n2  n

– If evenly distributed that max ݊ଵ, ݊ଶ  ,݊ߙ 0 ൏ ߙ ൏ 1
then solves as QuickSort to O(cn log n) where c=f()
else O(n2) for unbalanced splits

T(n) =

  ࢻ 		
ߙ

 > ࢻ 		 OK

WRONG

n1

n2
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Jarvis’s March – selection by gift wrapping

 Variant of O(n2) selection sort
 Output sensitive algorithm
 O(nh) … h = number of points on convex hull
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Jarvis’s March
JarvisCH(points P)

points p
CCW points on the convex hull

1. Take point pmin with minimum y-coordinate,
// pmin will be the first point in the hull – append it to the hull as h1

2. Take a horizontal line, i.e., create temporary point p0 = (–, h1.y)
3. j = 1
4. repeat
5. Rotate the line around hj until it bounces to the nearest point q = pq

// compute the smallest angle by the “smallest orient(hj-1 , hj, q)”
6. j++

append the bounced nearest point q to the hull as next hj
7. until (q  pmin)

Complexity:   O( n ) +  O( n ) * h => O( h*n ) 
good for low number of points on convex hull

h1= pmin h2

hh
p0



Input:
Output:

Felkel: Computational geometry

(29)

Jarvis’s March
JarvisCH(points P)

points p
CCW points on the convex hull

1. Take point pmin with minimum y-coordinate,
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7. until (q  pmin)

Complexity:   O( n ) +  O( n ) * h => O( h*n ) 
good for low number of points on convex hull

h1= pmin h2

hh
p0

Output sensitive algorithm
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Output sensitive algorithm

 Worst case complexity analysis analyzes the worst
case data

– Presumes, that all (const fraction of) points lie on the CH
– The points are ordered along CH

=> We need sorting => (n log n) of CH algorithm

 Such assumption is rare
– usually only much less of points are on CH

 Output sensitive algorithms
– Depend on: input size n and the size of the output h
– Are more efficient for small output sizes
– Reasonable time for CH is O(n log h),  h = Number of points on the CH
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Chan’s algorithm

 Cleverly combines Graham’s scan and Jarvis’s
march algorithms

 Goal is O(n log h) running time
– We cannot afford sorting of all points - (n log n)
=> Idea: work on parts, limit the part sizes to polynomial hc

the complexity does not change => log hc = log h
– h is unknown – we get the estimation later
– Use estimation m, better not too high => h  m  h2

 1. Partition points P into r-groups of size m, r = n/m
– Each group take O(m log m) time - sort + Graham 
– r-groups take O(r m log m) = O(n log m) - Jarvis
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Merging of m parts in Chan’s algorithm 

 2. Merge r-group CHs as “fat points”
– Tangents to convex m-gon can be found in O(log m)

by binary search

[Mount][Mount]

r = n/m disjoint subsets
of size at most m

Jarvis Chan
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Chan’s algorithm complexity

 h points on the final convex hull
=> at most h steps in the Jarvis march algorithm
– each step computes r-tangents, O(log m) each
– merging together O(hr log m) 

 Complete algorithm O(n log h)
– Graham’s scan on partitions    O(r .m log m)=O(n log m)
– Jarvis Merging:  O(hr log m)  = O(h n/m log m),    …4a) 

h  m  h2 = O(n log m)
– Altogether O(n log m)
– How to guess m?  Wait!

1) use m as an estimation of h    2) if it fails, increase m

r-groups of size m, r = n/m
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Chan’s algorithm for known m
PartialHull( P, m)

points P
group of size m

1. Partition P into r = n/m disjoint subsets {p1, p2, …, pr} of size at most m
2. for i=1 to r do

a) Convex hull by GrahamsScan(Pi), store vertices in ordered array
3. let p1 = the bottom most point of P and p0 = (–, p1.y)
4. for k = 1 to m do     // compute merged hull points

a) for i = 1 to r do  // angle to all r subsets => points qi
Compute the point qi  P that maximizes the angle  pk-1, pk, qi

b) let pk+1 be the point q  {q1, q2, …, qr} that maximizes  pk-1, pk, q
(pk+1 is the new point in CH)

c) if pk+1 = p1 then return {p1, p2, …, pk}
5. return “Fail, m was too small”

O(log m)

[Mount]

Ja
rv

is
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Chan’s algorithm – estimation of m
ChansHull

points P
convex hull p1…pk

1. for t = 1, 2, … , lg lg ℎ do {
a) let m = min(22^t, n)
b) L = PartialHull( P, m)
c) if L  “Fail, m was too small” then return L

}
Sequence of choices of m are {  4, 16, 256,…, 22^t ,…, n } … squares

Example: for h = 23 points on convex hull of n = 57 points, the algorithm 
will try this sequence of choices of m {  4, 16, 57 } 

1. 4 and 16 will fail
2. 256 will be replaced by n=57



Felkel: Computational geometry

(36)

Complexity of Chan’s Convex Hull?

 The worst case: Compute all iterations
 tth iteration takes O( n log 22^t) = O(n 2t)
 Algorithm stops when 22^t  h  => t = lg lg h
 All t = lg lg h iterations take:

)log(lg2222

122 fact that   theUsing
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 All t = lg lg h iterations take:

)log(lg2222

122 fact that   theUsing
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2x more work in the worst case

t iterations
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Conclusion in 2D

 Graham’s scan: O(n log n), O(n) for sorted pts
 Divide & Conquer: O(n log n)
 Quick hull: O(n log n), max O(n2) ~ distrib.
 Jarvis’s march: O(hn), max O(n2) ~ pts on CH
 Chan’s alg.: O(n log h) ~ pts on CH

asymptotically optimal
but

constants are too high to be useful



Felkel: Computational geometry
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Talk overview

 Upper bounds for convex hull in 2D and 3D
 Other criteria for CH algorithm classification
 Recapitulation of CH algorithms
 Terminology refresh
 Convex hull in 3D

– Terminology
– Algorithms

• Gift wrapping
• D&C Merge
• Randomized Incremental

www.cguu.com
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Upper bounds for Convex hull algorithms

 O(n) for sorted points and for simple polygon

 O(n log n) in E2, E3 with sorting
– insensitive about output

 O(n h), O(n logh), h is number of CH facets
– output sensitive
– O(n2) or O(n logn) for n ~ h

 O(log n) for new point insertion in realtime algs.
=> O(n log n) for n-points

O(log n) search where to insert
Computational geometry

(3)



Other criteria for CH algorithm classification

 Optimality – depends on data order (or distribution)
In the worst case  x In the expected case

 Output sensitivity – depends on the result ~ O(f(h))
 Extendable to higher dimensions?
 Off-line versus on-line

– Off-line – all points available, preprocessing for search speedup
– On-line – stream of points, new point pi on demand, just one new 

point at a time, CH valid for {p1, p2 ,…, pi }
– Real-time – points come as they “want”

(come not faster than optimal constant O(log n) inter-arrival delay)

 Parallelizable x serial
 Dynamic – points can be deleted
 Deterministic x approximate (lecture 13)  

Computational geometry

(4)



Graham scan

 O(n log n) time and O(n) space is
– optimal in the worst case
– not optimal in average case 

(not output sensitive)
– only 2D
– off-line
– serial (not parallel)
– not dynamic (no deleted points)

O(n) for polygon (discussed in seminar)

tos

p

sos

pop

Computational geometry
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Jarvis March – Gift wrapping

 O(hn) time and O(n) space is
– not optimal in worst case  O(n2)
– may be optimal if h << n (output sensitive)
– 3D or higher dimensions (see later)
– off-line
– serial (not parallel)
– not dynamic

p1 p2

ph

Computational geometry
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Divide & Conquer

 O(n log n) time and O(n) space is
– optimal in worst case (in 2D or 3D)
– not optimal in average case (not output sensitive)
– 2D or 3D (circular ordering), in higher dims not optimal
– off-line
– Version with sorting (the presented one) – serial
– Parallel for overlapping merged hulls 

(see Chapter 3.3.5 in Preparata for details)
– not dynamic

a
b

Computational geometry
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Quick hull

 O(n log n) expected time, O(n2) the worst case  
and O(n) space in 2D is

– not optimal in worst case  O(n2)
– optimal if uniform distribution  

then h << n (output sensitive)
– 2D, or higher dimensions [see http://www.qhull.org/]
– off-line
– parallelizable 
– not dynamic

[Mount]

Computational geometry
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Chan

 O(n log h) time and O(n) space is
– optimal for h points on convex hull (output sensitive)
– 2D and 3D --- gift wrapping
– off-line
– Serial (not parallel)
– not dynamic

[Mount]

Computational geometry
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On-line algorithms

 Preparata’s on-line algorithm
 Overmars and van Leeuven

Computational geometry
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Preparata’s 2D on-line algorithm

 New point p is tested
– Inside –> ignored
– Outside –> added to hull

• Find left and right supporting lines (touch at supporting points)
• Remove points between supporting points
• Add p to CH between supporting lines 

[Preparata]

Computational geometry
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Overmars and van Leeuven

 Allow dynamic 2D CH 
(on-line insert & delete) 

 Manage special tree with all intermediate CHs
 Will be discussed on seminar [7]

[Preparata]

Computational geometry
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Convex hull in 3D

 Terminology
 Algorithms

1. Gift wrapping
2. D&C Merge
3. Randomized Incremental
4. Quick hull … minule

Computational geometry

(15)



Terminology

Computational geometry

 Polytope (d-polytope) 
= a geometric object with "flat" sides Ed

(may be or may not be convex)
 Flat sides mean that 

the sides of a (k)-polytope 
consist of (k-1)-polytopes that 
may have (k-2)-polytopes in common.

2-polytop
= polygon

3-polytop
= polyhedron

(16)



 Convex Polytope (convex d-polytope) 
= convex hull of finite set of points in Ed

 Simplex (k-simplex, d-simplex) 
= CH of k + 1 affine independent points 

= “Special” Convex Polytope with all the points on the CH

Terminology

1-simplex 2-simplex 3-simplex

convex
2-polytop

Computational geometry

(vectors ݑ ݑ	− are 
linearly independent)

convex 
3-polytop

(17)



Terminology (2)
 Affine combination

= linear combination of the points {p1, p2, …, pn} 
whose coefficients {l1, l2, …, ln} sum to 1, and li œ R

 Affine independent points
= no one point can be expressed as affine combination of 
the others

 Convex combination
= linear combination of the points {p1, p2, …, pn} 

whose coefficients {l1, l2, …, ln} sum to 1, and li œ R+
0

(i.e., "i œ {1,…,n}, li ¥ 0)

p1
p2

p

p1

p2

p


n

i
ii p

1


Computational geometry

⇒ 	l݅ ∈ 0, 1
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Terminology (3)
 Any (d-1)-dimensional hyperplane h divides the space into 

(open) halfspaces h+ and h–, 
so that En = h+ ( h ( h–

 Def: h+ = h+ ( h, h– = h– ( h   (closed halfspaces)

 Hyperplane supports a convex polytope P
(Supporting hyperplane – opěrná nadrovina) 

– if h ' P is not empty and
– if P is entirely contained within either h+ or h–

hP h+

h–

h+

h
h–

P P h
h+

h–
In 2D:

P’

Computational geometry
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Faces and facets

 Face of the convex polytope
= Intersection of convex polytope P

with a supporting hyperplane h
– Faces are convex polytopes of dimension d ranging 

from 0 to d – 1 
– 0-face = vertex
– 1-face = edge
– (d – 1)-face = facet

In 3D we often say face, but more precisely a facet
(In 3D a 2-face = facet) 
(In 2D a 1-face = facet)

Proper faces:
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, acd, bcd

Computational geometry
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Proper faces

 Proper faces
= Faces of dimension d ranging from 0 to d – 1

 Improper faces
= proper faces + two additional faces:

– {} = Empty set = face of dimension -1
– Entire convex polytope = face of dimension d

Improper faces in 3D:
Empty set {}
Vertices: a,b,c,d
Edges: ab, ac, ad, bc, bd, cd
Facets: abc, abd, bcd
Entire polytope: abcd

Computational geometry

(21)



Incident graph

 Stores topology of the polytope
 Ex: 3-simplex:

 d-simplex is a very regular face structure:
– 1-face for each pair of vertices 
– 2-face for each triple of vertices 

Dimension

-1

0

1

2

3
[Boissonnat]

Computational geometry

(22)



Facts about polytopes

 Boundary o polytope is union of its proper faces
 Polytope has finite number of faces (next slide).  

Each face is a polytope
 Convex polytope is convex hull of its vertices 

(the def),  its bounded
 Convex polytope is the intersection of finite 

number of closed halfspaces h+

(conversely not: intersection of closed halfspaces
may be unbounded => called unbounded 
polytope)

Computational geometry
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Number of faces on a d-simplex

 Number of j-dimensional faces on a d-simplex
= number of (j+1)-element subsets from domain of 
size (d+1)

 Ex.: Tetrahedron = 3-simplex:
– facets (2-dim. faces)

– edges (1-dim. faces)

– vertices (0-dim faces)

4
!1!3
!4

12
13












6
!2!2

!4
11
13












4
!3!1
!4

10
13
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Complexity of 3D convex hull is O(n)

 3-polytope - has polygonal faces
 convex 3-polytope (CH of a point set in 3D)
 simplical 3-polytope

– has triangular faces (=> more edges and vertices)

 simplical convex 3-polytope with all n points on CH 
– the worst case complexity 
– => maximum # of edges and vertices
– has triangular facets, each generates 3 edges, 

shared by 2 triangles => 3F = 2E 2-manifold

F = 2V – 4 => F ≤ 2V – 4 F = O(n)
E = 3V – 6     => E ≤ 3V – 6  E = O(n)

–
Computational geometry
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Complexity of 3D convex hull is O(n)

 The worst case complexity if all n points on CH
=> use simplical convex 3-polytop for complexity derivation

1. has all points on its surface – on the Convex Hull
2. has triangular facets, each generates 3 edges, shared 

by 2 triangles => 3F = 2E
2-manifold

 V – E + F = 2     … Euler formula for V = n points
V – E + 2E/3 = 2 F = 2E / 3

V – 2 = E / 3 F = 2V – 4 
E = 3V – 6,    V = n F = O(n)
E = O(n)

–
Computational geometry

F = 2E / 3

(26)



1. Gift wrapping in higher dimensions

 First known algorithm for n-dimensions (1970)
 Direct extension of 2D alg.
 Complexity O(nF) 

– F is number of CH facets 
– Algorithm is output sensitive

– Details on seminar, 
assignment [10]

[Preparata]
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1. Gift wrapping in higher dimensions

 First known algorithm for n-dimensions (1970)
 Direct extension of 2D alg.
 Complexity O(nF) 

– F is number of CH facets 
– Algorithm is output sensitive

– Details on seminar, 
assignment [10]

[Preparata]

Computational geometry

(27)



2. Divide & conquer 3D convex hull [Preparata, Hong77]

 Sort points in x-coord
 Recursively split, construct CH, merge
 Merge takes O(n) => O(n log n) total time

[Rourke]

Computational geometry
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

 Merge(C1 with C2) uses gift wrapping
– Gift wrap plane around edge e – find new point p on C1 or on C2

(neighbor of a or b)
– Search just the CW or CCW neighbors around a, b

C1

C2

[Rourke]

Computational geometry
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

 Performance O(n log n) rely on circular ordering
– In 2D: Ordering of points around CH
– In 3D: Ordering of vertices around 2-polytop C0

(vertices on intersection of new CH edges with 
separating plane H0)
[ordering around 
horizon of C1 and C2
does not exist, 
both horizons may 
be non-convex and 
even not simple
polygons]

– In ¥ 4D: Such ordering does not exist
[Boissonnat]

Computational geometry
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

Merge(C1 with C2)
 Find the first CH edge L connecting C1 with C2

 e = L
 While not back at L do

– store e to C
– Gift wrap plane around edge e – find new point P on C1 or on C2

(neighbor of a or b)
– e = new edge to just found end-point P
– Store new triangle eP to C

 Discard hidden faces inside CH from C
 Report merged convex hull C

Computational geometry

(33)



Divide & conquer 3D convex hull   [Preparata, Hong 77]

Merge(C1 with C2)
 Find the first CH edge L connecting C1 with C2

 e = L
 While not back at L do

– store e to C
– Gift wrap plane around edge e – find new point P on C1 or on C2

(neighbor of a or b)
– e = new edge to just found end-point P
– Store new triangle eP to C

 Discard hidden faces inside CH from C
 Report merged convex hull C

Computational geometry
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Divide & conquer 3D convex hull   [Preparata, Hong 77]

 Problem of the wrapping phase [Edelsbrunner 88]

– The edges on horizon do not form simple circle but a 
“barbell” 0,2,4,0,1,3,5,1

Do not stop here!

[Berg]

Left horizon
barbell (činka)

Computational geometry
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3. Randomized incremental alg. principle
1. Create tetrahedron (smallest CH in 3D)

– Take 2 points p1 and p2

– Search the 3rd point not lying on line p1p2

– Search the 4th point not lying in plane p1p2 p3 …if not found, use 2D CH

2. Perform random permutation of remaining points {p5,…, pn}
3. For pr in {p5,…, pn} do add point pr to CH(Pr-1)

Notation: for r ¥ 1 let Pr = {p1,…, pr} is set of already processed pts
– If pr lies inside or on the boundary of CH(Pr-1) then do nothing
– If pr lies outside of CH(Pr-1) then 

• find and remove visible faces
• create new faces (triangles) connecting pr with lines of horizon

[Berg]



Conflict graph
 Stores unprocessed points with facets of CH they see

 Bipartite graph
points pt, t > r   … unprocessed points
facets of CH(Pr)… facets of convex hull
conflict  arcs     … conflict, as visible

facets cannot be 
in CH

 Maintains sets:
Pconflict(f) … points, that see f
Fconflict(pr)… facets visible from pr

(visible region – deleted after insertion of pr)
[Berg]

Computational geometry

facets of CHunprocessed points

conflicts
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Conflict graph – init and final state 
 Initialization

– Points {p5,…, pn} (not in tetrahedron)
– Facets of the tetrahedron (four)
– Arcs – connect each tetrahedron 

facet with points visible from it 

 Final state
– Points – {} = empty set
– Facets of the convex hull
– Arcs - none

[Berg]

Computational geometry
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Visibility between point and face
 Face f is visible from a point p if that point lies in the open 

half-space on the other side of hf than the polytope

f

p

q

f is visible from p    (p is above the plane)

f is not visible from q

hf

p ϵ Pconflict(f),   p is among the points that see the face f
f ϵ  Fconflict(p)   f  is among the faces visible from point p

Computational geometry
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Visibility between point and face
 Face f is visible from a point p if that point lies in the open 

half-space on the other side of hf than the polytope

f

p

q

f is visible from p    (p is above the plane)

f is not visible from q

f is not visible from r lying in the plane of f
(this case will be discussed next)

rhf

p ϵ Pconflict(f),   p is among the points that see the face f
f ϵ  Fconflict(p)   f  is among the faces visible from point p

Computational geometry
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New triangles to horizon
 Horizon = edges e incident to visible and invisible facets 

 New triangle f connects edge e on horizon and point pr and
– creates new node for facet f

– add arcs to points visible from f (subset from Pcoflict(f1) ( Pcoflict(f2) )
 Coplanar triangles on the plane epr are 

merged with new triangle. 
Conflicts in G are copied from the deleted triangle (same 
plane)

[Berg]

[Berg]

updates the conflict graph

Computational geometry
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Overview of new point insertion

Processing of point  outside
- Remove facets that  sees from the CH 

(do not delete them from the graph )
- Find horizon edges (around the hole in CH)
- Create new facets from horizon edges to 

- add them to CH
- create face nodes ݂ in ܩ for them

- Compute what  sees – search only from ௧ ଵ ௧ ଶ )
- Delete node  and face ௧  from 

Computational geometry
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Input:
Output:

Incremental Convex hull algorithm
IncrementalConvexHull(ࡼ)

Set of ݊ points in general position in 3D space 
The convex hull ܥ = (ܲ)ܪܥ of ܲ

1. Find four points that form an initial tetrahedron, ܥ = ,1})ܪܥ ,	2 ,	3 ({	4
2. Compute random permutation {5, ,6 … , of the remaining points	{݊
3. Initialize the conflict graph ܩ with all visible pairs (ݐ, ݂), 

where ݂ is facet of ܥ and ௧, 	ݐ > 	4, are non-processed points
4. for ݊ to 5 =	ݎ do …inserting ݎ, into ܥ
5. if(ܨ௧() is not empty) then ݎ… is outside, insert ݎ, into ܥ
6. Delete all facets ܨ௧() from ܥ … only from hull C, not from G
7. Walk around visible region boundary, create list ܮ of horizon edges
8. for all ݁ ∈ do	ܮ
9. connect ݁ to  by a new triangular facet ݂
10. if ݂	is coplanar with its neighbor facet ݂’ along ݁
11. then merge ݂ and ݂’ in ܥ, take conflict list from ݂’
12. else … determine conflicts for new facet ݂

… [continue on the next slide]



Input:
Output:

Incremental Convex hull algorithm (cont…)
12. else … not coplanar => determine conflicts for new facet f
13. Insert ݂ into hull ܥ
14. Create node for ݂ in ܩ //… new face in conflict graph G
15. Let ଵ݂ and ଶ݂ be the facets incident to ݁ in the old ܪܥ( ܲିଵ)
16. ܲ(݁) 	= ܲ௧( ଵ݂) ∪ ܲ௧( ଶ݂)
17. for all points 	 ∈ ܲ(݁) do
18. if ݂ is visible from , then add(, ݂) to ܩ… new edges in G
19. Delete the node corresponding to  and the nodes corresponding

to facets in ܨ௧() from together with their incident arcs ,ܩ
20. return ܥ
Complexity: Convex hull of a set of points in 3ܧ can be computed 

incrementally in ܱ(݊	log	݊ )	randomized expected time
(process ܱ(݊) points, but number of facets and arcs depend on the order 
of inserting points – up to ܱ(݊2)) For proof see: [Berg, Section11.3]



Convex hull in higher dimensions

 Convex hull in d dimensions can have (nd/2) 
Proved by [Klee, 1980]

 Therefore, 4D hull can have quadratic size
 No O(n log n) algorithm possible for d>3
 These approaches can extend to d>3

– Gift wrapping
– D&C
– Randomized incremental
– QuickHull

Computational geometry
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Conclusion

 Recapitulation of 2D algorithms
 >=3D algorithms

– Gift wrapping
– D&C
– Randomized incremental
– QuickHull

Computational geometry
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Talk overview

 Definition and examples

 Applications

 Algorithms in 2D
– D&C             O(n log n)
– Sweep line   O(n log n)
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Voronoi diagram (VD)

 One of the most important structure in Comp. geom.
 Encodes proximity information

What is close to what?
 Standard VD – this lecture

– Set of points - nDim
– Euclidean space & metric

 Generalizations 
– Set of line segments or curves
– Different metrics
– Higher order VD’s (furthest point)

Gershon Elber: IRIT
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Voronoi cell (for points in plane)

 Let P = {p1, p2,…, pn} be a set of points (sites) in 
dDim space                                … 2D space (plane) here

 Voronoi cell V(pi) – is open!
= set of points q closer to pi than to any other site:

, where
is the Euclidean distance between p and q

},,{)( ijqpqpqpV jii 
pq

   
ij

jii pphpV


 ,
 ji pph , = open halfplane

= set of pts strictly closer to pi than to pj

= intersection of open halfplanes

[Berg]
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Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells 
= collection of line segments

(possibly unbounded)

Site (given point)
VoroGlide demo
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Voronoi diagram (in plane)

 Voronoi diagram Vor(P) of points P
= what is left of the plane after removing all the

open Voronoi cells 
= collection of line segments

(possibly unbounded)

Edge

Site (given point)

Vertex 

Region around 
the site is cell
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Voronoi diagram examples

1 point
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Voronoi diagram examples

1 point 2 points
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Voronoi diagram examples

1 point 2 points 3 points
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Voronoi diagram examples

1 point 2 points 3 points

Cell
• The whole plain for 1 point
• Halfplane or strip for collinear points
• Convex (possibly unbounded) polygon 
Edges of  VD
• || lines for collinear points
• Halflines (for non-collinear CH points)
• Line segments (for bounded cells)

Felkel: Computational geometry
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Voronoi diagram examples

16 points

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6

Felkel: Computational geometry
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Voronoi diagram examples

16 points 17 points

Cell with O(n) vertices
From total |nv|  2n-5 

[Håkan Jonsson]

Vertex with O(n) incident edges
From total |ne| ≤ 3n – 6

Felkel: Computational geometry
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Voronoi diagram examples
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Voronoi diagram (in plane)

= planar graph 
– Subdivides plane into n cells (n = num. of input sites |P|)
– Edge = locus of equidistant pairs of points (cells)

= part of the bisector of these points
– Vertex = center of the circle defined by ≥ 3 points

=> vertices  have degree ≥ 3
– Number of vertices nv ≤ 2n – 5 => O(n)
– Number of edges ne ≤ 3n – 6 => O(n)

(only O(n) from O(n2) intersections of bisectors)
– In higher dimensions complexity from O(n) up to O(n|d/2|)
– Unbounded cells belong to sites (points) on convex hull

Felkel: Computational geometry
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Voronoi diagram O(n) complexity derivation
 For n collinear sites: ݊௩ = 0														 ≤ 2݊ − 5݊ = ݊ − 1 		≤ 3݊ − 6
 For n non-collinear sites:

– Add extra VD vertex v in infinity ݉௩ = ݊ + 1
– Apply Euler’s  formula:       ݉௩ −݉ + ݉ = 2
– Obtain ݊௩ + 1 −	݊ + 	݊		 = 2
– Every VD edge has 2 vertices      Sum of vertex degrees = 2݊
– Every VD vertex has degree ¥ 3  Sum of vertex degrees = 3݉௩ = 3(݊௩ + 1)
– Together   2݊ ≥ 3 ݊௩ + 1
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2݊ ≥ 3 ݊௩ + 1 																2݊ ≥ 3 ݊ − ݊ + 1 + 12݊ ≥ 3݊ − 3݊ + 6݊ ≤ 3݊ − 6

݊ = ݊௩ + ݊ − 1݊௩ = ݊ − ݊ + 1

both hold

2݊ ≥ 3 ݊௩ + 12(݊௩ + ݊ − 1) ≥ 3 ݊௩ + 12݊௩ + 2݊ − 2 ≥ 3݊௩ + 3݊௩ ≤ 2݊ − 5



Voronoi diagram and convex hull

 Convex hull 

Connects points from 
unbounded cells
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Delaunay triangulation

 point set triangulation   (straight line dual to VD)
 maximize the minimal angle  (tends to 

equiangularity)
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Largest empty circle CP(q) with center in
1. In VD vertex q: has 3 or more sites on its boundary
2. On VD edge:   contains exactly 2 sites on its 

boundary and no other site

Edges, vertices and largest empty circles

[Berg]

[Berg]
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Some applications

 Nearest neighbor queries in Vor(P) of points P
– Point q œ P  … search sites across the edges around

the cell q
– Point q – P  … point location queries – see Lecture 2

(the cell where point q falls)

 Facility location (shop or power plant)
– Largest empty circle (better in Manhattan metric VD)

 Neighbors and Interpolation
– Interpolate with the nearest neighbor, 

in 3D: surface reconstruction from points

 Art
 …
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Voronoi Art

Boundary Functions
Scott Snibbe, 1998

Felkel: Computational geometry

(15 / 43)



Voronoi Art

Courtesy [Gold]
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Algorithms in 2D

 D&C             O(n log n)
 Fortune’s Sweep line   O(n log n)
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Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on  x-

coord into L and R
2. Recursion on L and R

1-3 points => return 
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from 

the chain
O(n log n)
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Voronoi diagram (VD)

Divide and Conquer method
1. Split points based on  x-

coord into L and R
2. Recursion on L and R

1-3 points => return 
>3 points => recursion

3. Merge VDL and VDR

• monotone chain
• trim intersected edges
• Add new edges from

the chain
O(n log n) 
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Monotone chain search in O(n)
 Avoid repeated rescanning of cell edges
 Start in the last tested edge of the cell (each edge tested ~once)

 In the left cell li continue CW, in the right cell ri go CCW 
 Image shows CW search on cell ݈ and CCW on cells ri :

l0

left cell right 
cell

CW CCW

[Mount]
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Divide and Conquer method complexity

 Initial sort 
 recursion levels

– O(n) each merge (chain search, trim, add edges to VD)

 Altogether 
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Fortune’s sweep line algorithm – idea in 3D

Cones in sites
Scanning plane 
Both slanted 45º

Projection of the
intersection to xy: 
 Cone x plane => 

parabolic arcs
 Cone x cone => 

edges of VD
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Fortune’s sweep line algorithm

 Differs from “typical” sweep line algorithm
 Unprocessed sites ahead from sweep line may 

generate Voronoi vertex behind the sweep line

[Mount]

DONE

TODO

Fortune’s applet
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Fortune’s sweep line algorithm idea

 Subdivide the halfplane above the sweep line l
into 2 regions
1. Points closer to some site above than to sweep line l 

(solved part) 
2. Points closer to sweep line l than any point above

(unsolved part – can be changed by sites below l)

 Border between these 2 regions is a beach line

l

l

[Mount]

UNSOLVED

TODO

DONE
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Sweep line and beach line

 Straight sweep line l
– Separates processed and unprocessed sites (points)

 Beach line (Looks like waves rolling up on a beach)
– Separates solved and unsolved regions above sweep line

(separates sites above l that can be changed from sites 
that cannot be changed by sites below l)

– x-monotonic curve made of parabolic arcs
– Follows the sweep line
– Prevents us from missing unanticipated events until the 

sweep line encounters the corresponding site
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Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the 

lowest points of all the parabolas (lower envelope)

x[Berg]
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Beach line

 Every site pi above l defines a complete parabola
 Beach line is the function, that passes through the 

lowest points of all the parabolas (lower envelope)

x[Berg]

Q: How many arcs may the
beach line have at maximum? 
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Break point (bod zlomu)

= Intersection of two arcs on the beach line
 Equidistant to 2 sites and sweep line l
 Lies on Voronoi edge of the final diagram

x[Berg]
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Notes

Beach line is x-monotone 
= every vertical line intersects it in exactly ONE point

Along the beach line 
Parabolic arcs are ordered
Breakpoints are ordered

Breakpoints 
trace the Voronoi edges
compute their position on the fly from neighboring arcs
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Events

What event types exist?
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Events

There are two types of events:
 Site events (SE)

– When the sweep line passes over a new site pi, 
• new arc is added to the beach line 
• new edge fragment added to the VD.

– All SEs known from the beginning (sites sorted by y)

 Voronoi vertex event ([Berg] calls a circle event)
– When the parabolic arc shrinks to zero and disappears, 

new Voronoi vertex is created.
– Created dynamically by the algorithm

for triples or more neighbors on the beach line
(triples changed by both types of events)
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Generated when the sweep line passes over a site pi
– New parabolic arc created, 

it starts as a vertical ray from pi to the beach line
– As the sweep line sweeps on, the arc grows wider 
– The entry ‚…, pj ,…Ú on the sweep line status is replaced 

by the triple ‚…, pj , pi , pj ,…Ú

– Dangling future VD edge created on the bisector (pi, pj )

Site event

[Mount]

sweep line

beach line

Felkel: Computational geometry

(35 / 43)



Voronoi vertex event (circle event)

Generated when l passes the lowest point of a circle
– Sites pi , pj , pk appear consecutively on the beach line
– Circumcircle lies partially below the sweep line

(Voronoi vertex has not yet been generated) 
– This circumcircle contains no point below the sweep line

(no future point will block the creation of the vertex)
– Vertex & bisector (pi, pk ) created, (pi, pj ) & (pj, pk) finished
– One parabolic arc removed from the beach line

[Mount]
sweep line

beach line
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Data structures

1. (Partial) Voronoi diagram 
2. Beach line data structure T
3. Event queue Q
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Data structures

1. (Partial) Voronoi diagram 
2. Beach line data structure T
3. Event queue Q

1. VD edges arise during: site event   circle event?
2. VD vertices arise during: site event   circle event?
3. Site events known from the beginning: yes no?
4. Circle events known from the beginning: yes no?
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1. (Partial) Voronoi diagram data structure

Any PSLG data structure, e.g. DCEL (planar stright line graph)

 Stores the VD during the construction
 Contain unbounded edges 

– dangling edges during the construction (managed by 
the beach line DS) and 

– edges of unbounded cells 
at the end
=> create a bounding box

[Berg]
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[Mount]

2. Beach line tree data structure T – status 

 Used to locate the arc directly above a new site
 E.g. Binary tree T

– Leaves - ordered arcs along the beach line (x-monotone)
• T stores only the sites pi in leaves, T does not store the parabolas

– Inner tree nodes - breakpoints as ordered pairs <pj, pk>
• pj, pk are neighboring sites
• Breakpoint position computed on the fly 

from pj, pk and y-coord of the sweep line

– Pointers to other two DS
• In leaves – pointer to event queue, point to node 

when arc disappears via Voronoi vertex event – if it exists
• In inner nodes  - pointer to (dangling) half-edge in DCEL of VD, 

that is being traced out by the break point
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Max 2n -1 arcs on the beach line
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ଷ
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ଵ ଵଶଵ1+ ଵ+2ଶଵଷଵ2+

ଵ ଵଶଵ1+ ଵଶଷଶଵ2+ +2

New site splits just one arc

Leaves in T



2. Beach line tree T
x-coord computed on the fly for a 
given position of the beach line ݈
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Arcs = Leaves in T

Break points 
= inner nodes in T

[Berg]



3. Event queue Q

 Priority queue, ordered by y-coordinate
 For site event 

– stores the site itself
– known from the beginning

 For Voronoi vertex event (circle event)
– stores the lowest point of the circle
– stores also pointer to the leaf in tree T

(represents the parabolic arc that will disappear)
– created by both events, when triples of points become 

neighbors (possible max three triples for a site)
– pi, pj, pk, pl, pm insert of pk can create up to 3 triples

and delete up to 2 triples (pi, pj, pl) and (pj, pl, pm )
Felkel: Computational geometry
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Input:
Output:

Fortune’s algorithm
FortuneVoronoi(P)

A set of point sites P = {p1, p2,…, pn} in the plane
Voronoi diagram Vor(P) inside a bounding box in a DCEL struct.

1. Init event queue Q with all site events
2. while( Q not empty) do
3. consider the event with largest y-coordinate in Q (next in the queue)
4. if( event is a site event at site pi )
5. then HandleSiteEvent(pi) 
6. else  HandleVoroVertexEvent(pi), where pi is the lowest point

of the circle causing the event
7. remove the event from Q
8. Create a bbox and attach half-infinite edges in T to it in DCEL.
9. Traverse the halfedges in DCEL and 

add cell records and pointers to and from them



Input:
Output:

Handle site event
HandleSiteEvent(pi)

event site pi
updated DCEL

1. Search in T for arc a vertically above pi. Let pj be the corresponding site
2. Apply insert-and-split operation, inserting a new entry of pi to the beach 

line T (new arc), thus replacing ‚…, pj ,…Ú with ‚…, pj , pi , pj ,…Ú

3. Create a new (dangling) edge in the Voronoi diagram, which lies on the 
bisector between pi and pj

4. Neighbors on the beach line changed -> check the neighboring triples 
of arcs and insert or delete Voronoi vertex events (insert only if the 
circle intersects the sweep line and it is not present yet). 
Note: Newly created triple pj , pi , pj cannot generate a circle event 
because it only involves two distinct sites.

[Mount]



Input:
Output:

Handle Voronoi vertex (circle) event
HandleVoroVertexEvent(pj)

event site pj
updated DCEL

Let pi , pj , pk be the sites that generated this event (from left to right).
1. Delete the entry pj from the beach line (thus eliminating its arc a), 

i.e.: Replace a triple ‚…, pi , pj , pk ,…Ú with ‚…, pi , pk,…Ú in T.
2. Create a new vertex in the Voronoi diagram (at circumcenter of 

‚pi , pj , pkÚ) and join the two Voronoi edges for the bisectors ‚pi , pjÚ
and ‚pj , pkÚ to this vertex (dangling edges – created in step 3 above).

3. Create a new (dangling) edge for the bisector between ‚pj , pkÚ

4. Delete any Voronoi vertex events (max. three) from Q that arose from 
triples involving the arc a of pj and generate (two) new events 
corresponding to consecutive triples involving pi, and pk. 

[Mount]



Beach line modification

Q: Beach line contains: abcdef
After deleting of d, which triples vanish and which 
triples are added to the beach line?



Handling degeneracies

Algorithm handles degeneracies correctly
 2 or more events with the same y

– if x coords are different, process them in any order
– if x coords are the same (cocircular sites)

process them in any order, 
it creates duplicated vertices with 

zero-length edges, 
remove them in post processing step

 degeneracies while handling an event
– Site below a beach line breakpoint
– Creates circle event on the same position, 

remove zero-length edges in post processing step

[Berg]

[Berg]

Felkel: Computational geometry

(47 / 43)



References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: 

Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 7, http://www.cs.uu.nl/geobook/

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture 
Notes for Spring 2007, University of Maryland, Lectures 12 and 29.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Preparata] Preperata, F.P.,  Shamos, M.I.: Computational Geometry. An 
Introduction. Berlin, Springer-Verlag,1985. Chapter 5

[VoroGlide] VoroGlide applet: 
http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide/

[Fortune] Fortune’s algorithm applet: 
http://www.personal.kent.edu/~rmuhamma/Compgeometry/
MyCG/Voronoi/Fortune/fortune.htm

[Muhama] http://www.personal.kent.edu/~rmuhamma/Compgeometry/ 
compgeom.html

http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/Div
ConqVor/divConqVor.htm

Felkel: Computational geometry

(48 / 43)



VORONOI DIAGRAM
PART II

PETR FELKEL
FEL CTU PRAGUE

Version from 16.11.2017



Talk overview

 Incremental construction
 Voronoi diagram of line segments
 VD of order k
 Farthest-point VD
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Summary of the VD terms

 Site = input point, line segment, …
 Cell = area around the site, in VD1 the nearest to 

site
 Edge, arc = part of Voronoi diagram

(border between cells)
 Vertex = intersection of VD edges
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Incremental construction – bounded cell

x
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Incremental construction – unbounded cell

x

Felkel: Computational geometry

(5 / 45)



Incremental construction – unbounded cell

x
y

Felkel: Computational geometry

(5 / 45)



Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)



Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)



Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)



Incremental construction – unbounded cell

x
y

b
a

Felkel: Computational geometry

(5 / 45)



Incremental construction – unbounded cell
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Input:
Output:

Incremental construction algorithm
InsertPoint(S, Vor(S), y ) … y = a new site

Point set S, its Voronoi diagram, and inserted point y–S
VD after insertion of y

1. Find the site x in which cell point y falls, …O(log n)
2. Detect the intersections {a,b} of bisector L(x,y) with cell x boundary

=> create the first edge e = ab on the border of site x …O(n)
3. Set start intersection point p = b, set new intersection c = undef
4. site z = neighbor site across the border with intersection b     …O(1)
5. while( exists(p) and c ∫ a )  // trace the bisectors from b in one direction

a. Detect intersection c of  L(y,z) with border of cell z
b. Report Voronoi edge pc …O(n2)
c. p = c, z=neighbor site across border with intersec. c

5. if( c ∫ a ) then // trace the bisectors from a in other direction
a. p = a
b. Similarly as in steps 3,4,5 with a

O(n2) worst-case, O(n) expected time for some distributions



Voronoi diagram of line segments
Input: S = {s1, …, sn} = set of n disjoint line segments (sites)




[Berg]
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Voronoi diagram of line segments
Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments 

parabolic arcs

[Berg]
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Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments 

parabolic arcs

[Berg]
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Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments 

parabolic arcs
Type 1

[Berg]
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Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments 

parabolic arcs
Type 1

Type 2
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Voronoi diagram of line segments

Distance measured
perpendicularly to the object
(line segment)

Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments 

parabolic arcs
Type 1

Type 2

Type 3

[Berg]
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Voronoi diagram of line segments
Input: S = {s1, …, sn} = set of n disjoint line segments (sites)
VD: line segments 

parabolic arcs
Type 1

Type 2

Type 3

[Berg]
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VD of line segments with bounding box

BBOX
=>

standard
DCEL

[Berg]
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Bisector of 2 line-segments in detail 

 Consists of line segments and parabolic arcs 
Distance from point-to-object is measured to the closest point on the object 
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Input line segments

[Berg]

Type 1

Type 2

Type 3
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(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Bisector of two disjoint 
line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(10 / 45)



Bisector of 2 line-segments in detail 

 Consists of line segments and parabolic arcs
Distance from point-to-object is measured to the closest point on the object 
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)

– Parabolic arc – of point and interior(3) of a line segment

Bisector of two disjoint 
line segments has ≤7 parts

Input line segments

[Berg]

Type 1

Type 2

Type 3

Felkel: Computational geometry

(10 / 45)



Bisector of 2 line-segments in detail 

 Consists of line segments and parabolic arcs 
Distance from point-to-object is measured to the closest point on the object 
(perpendicularly to the object silhouette)

– Line segment – bisector of end-points(1) or of interiors(2)
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Bisector of two disjoint 
line segments has ≤7 parts
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Type 2
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Bisector in greater details

Bisector of two 
line segment interiors

(in intersection of perpendicular slabs only)

Bisector of (end-)point and 
line segment interior

[Reiberg]

Type 2 Type 3
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VD of points and line segments examples

[Reiberg]

2 points Point & segment 2 line segments

E2
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Voronoi diagram of line segments

 More complex bisectors of line segments
– VD contains line segments and parabolic arcs

 Still combinatorial complexity of O(n)
 Assumptions on the input line segments:

– non-crossing
– strictly disjoint end-points (slightly shorten the segm.)

[Berg]
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if(we allow touching segments)
Shared endpoints cause complication: 
The whole region is equally close
to two line segments



Shape of Beach line for line segments

=   Points with distance to the closest site above sweep line l
equal to the distance to l

 Beach line contains
– parabolic arcs when closest to a site end-point
– straight line segments when closest to a site interior 

(or just the part of the site interior above l if the site s intersects l)

[Berg]

(This is the shape of the beach line)
Felkel: Computational geometry

(15 / 45)



Beach line breakpoints types

Breakpoint p is equidistant from l and 
equidistant and closest to:

1. two site end-points => p traces a VD line segment
2. two site interiors => p traces a VD line segment
3. end-point and interior => p traces a VD parabolic arc
4. one site end-point     => p traces a line segment

(border of the slab
perpendicular to the site)

5. site interior intersects => p = intersection, traces 
the scan line l the input line segment

Cases 4 and 5 involve only one site and therefore do 
not form a Voronoi diagram edge (are used by alg.only)

Felkel: Computational geometry
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Breakpoints types and what they trace

 1,2 trace a Voronoi line segment    (part of VD edge) DRAW

 3 traces a Voronoi parabolic arc  (part of VD edge) DRAW

 4,5 trace a line segment    (used only by the algorithm) MOVE

– 4 limits the slab perpendicular to the line segment
– 5 traces the intersection of input segment with a sweep line

1
24

5

3 4
4 4 4

4

3

3

2

Traced parabolic arcParabolic arc on the 
beach line

[Berg]

(This is the shape of the traced VD arcs)
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Site event – sweep line reaches an endpoint

I. At upper endpoint of
– Arc above is split into two
– four new arcs are created 

(2 segments + 2 parabolas)
– Breakpoints for two segments

are of type 4-5-4
– Breakpoints for parabolas

depend on the surrounding
sites

• Type 1 for two end-points
• Type 3 for endpoint and interior
• etc… 4 5

4

1

1 (1 or 3 or even 2
depending on 
mutual positions)

dangling 
VD edge 
(for 1 – 1 )

4 5

4

4

4

[Berg]
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Site event – sweep line reaches an endpoint

II. At lower endpoint of
– Intersection with interior 

(breakpoint of type 5)

– is replaced by two breakpoints
(of type 4) 
with parabolic arc between them

4 5

5
4

4

4

4

l

l

l
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Circle event – lower point of circle of 3 sites

 Two breakpoints meet (on the beach-line)
 Solution depends on their type

– Any of first three types (1,2,or 3) meet
– 3 sites involved – Voronoi vertex created

– Type 4 with something else
– two sites involved – breakpoint changes its type
– Voronoi vertex not created

(Voronoi edge may change its shape)
– Type 5 with something else

– never happens for disjoint segments
(meet with type 4 happens before)
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Motion planning example - retraction

qend qstart

Find path for a circular robot of radius r from Qstart to Qend
Rušení hran

[Berg]
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Motion planning example - retraction
Find path for a circular robot of radius r from Qstart to Qend

 Create Voronoi diagram of line segments,
take it as a graph

 Project Qstart to Pstart on VD and Qend to Pend

 Remove segments with distance to sites smaller than
radius r of a robot

 Depth first search if path from Pstart to Pend exists
 Report path Qstart Pstart…path… Pend to Qend

 O(n log n) time using O(n) storage

Rušení hran
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Order-2 Voronoi diagram

[Nandy]
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Order-2 Voronoi diagram

V(pi,pj) : the set of points
of the plane closer
to each of pi and pj
than to any other site

[Nandy]
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Order-2 Voronoi diagram

V(pi,pj) : the set of points
of the plane closer
to each of pi and pj
than to any other site

Property
The order-2 Voronoi
regions are convex

[Nandy]
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Construction of V(3,5) = V(5,3)

Intersection of all halfplanes
except h(3,5) and h(5,3)

[Nandy]


35

),5(),3(
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Order-2 Voronoi edges

[Nandy]
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Order-2 Voronoi edges

c3(1,2)

edge : set of centers of
circles passing through
2 sites s and t and
containing one site  p
=> cp(s,t)

[Nandy]
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Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?
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Order-2 Voronoi edges

Question
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V(5,7)

Felkel: Computational geometry

(25 / 45)



Order-2 Voronoi vertices

[Nandy]
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Order-2 Voronoi vertices

vertex : center of a circle
passing through at least 
3 sites and containing
either site p or nothing

[Nandy]
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Order-2 Voronoi vertices

 up(Q)
u5(2,3,7), 

vertex : center of a circle
passing through at least 
3 sites and containing
either site p or nothing

[Nandy]
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Order-2 Voronoi vertices

 up(Q)
u5(2,3,7), 

u5(2,3,7)

u(3,6,7,5)

vertex : center of a circle
passing through at least 
3 sites and containing
either site p or nothing

[Nandy]

or u(Q ( p)
u(3,6,7)
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Order-2 Voronoi vertices

 up(Q)
u5(2,3,7), 

u5(2,3,7)

u(3,6,7,5)

vertex : center of a circle
passing through at least 
3 sites and containing
either site p or nothing

(circle circumscribed to Q)

[Nandy]

or u(Q ( p)
u(3,6,7)
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Order-2 Voronoi vertex up(Q) 

[Nandy]

u5(2,3,7)
C5(2,7)

Case up(Q) 
u5(2,3,7)

5 is inside for all
incident edges:
C5(2,3)
C5(2,7)
C5(3,7)
=> is inside for circle 
with center in vertex

vertex : center of a circle
passing through at least 
3 sites and containing
either site p or nothing

C5(3,7)

C5(2,3)
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Order-2 Voronoi vertex u(Q ( p)

[Nandy]

u(3,6,7,5)
C6(3,7)

C3(5,6)

Case u(Q ( p)
u(3,6,7,5)

vertex : center of a circle
passing through at least 
3 sites and containing
either site p or nothing

C7(5,6)

C5(3,7)
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Order-k Voronoi Diagram

Theorem věta

The size of the order-k
diagrams is O(k(n-k))

Theorem věta

The order-k diagrams
can be constructed from
the order-(k-1) diagrams
in O(k(n-k)) time

Corollary důsledek

The order-k diagrams can
be iteratively constructed
in O(n log n + k2(n-k)) time

[Nandy]
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Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the 
plane farther from pi=7
than from any other 
site



[Nandy]

= Vn-1({1,2,3,4,5,6})
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Order n-1 = Farthest-point Voronoi diagram
cell V-1(7)
= set of points in the 
plane farther from pi=7
than from any other 
site

Vor-1(P) = Vorn-1(P) 
= partition of the plane 
formed by the farthest 
point Voronoi regions, 
their edges, and 
vertices

[Nandy]

= Vn-1({1,2,3,4,5,6})
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a) 3 in – 1 out

Farthest-point Voronoi diagrams example
Roundness of manufactured objects
 Input: set of measured points in 2D
 Output: width of the smallest-width annulus mezikruží s nejmenší šířkou

(region between two concentric circles Cinner and Couter)
Three cases to test – one will win:

b) 1 point in – 3 out c) 2 in – 2 out
[Berg]
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Smallest width annulus – cases with 3 pts
a) Cinner contains at least 3 points 
 Center is the vertex of normal Voronoi

diagram (1st order VD)
 The remaining point on Couter in O(n) for 

each vertex
3 in – 1 out 

1 point in – 3 out

Cinner
Couter b) Couter contains at least 3 points

 Center is the vertex of the
farthest Voronoi diagram

 The remaining point on Cinner in 
O(n)

[Berg]

[Berg]

 not the largest (inscribed) empty circle - as discussed on seminar
as we must test all VD vertices in combination with point on C outer

 O(n2)

 not the smallest enclosing circle - as discussed on seminar
as we must test all vertices in combination with point on C inner

 O(n2)
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[Berg]

Smallest width annulus – case with 2+2 pts
c) Cinner and Couter contain 2 points each
 Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams
=> O(n2) candidates for centers

(we need only vertices, 
not the complete overlay)

 annulus computed in O(1) 
from center and 4 points
(same for all 3 cases)

 O(n2)

2 in – 2 out
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[Berg]
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[Berg]

3 in – 1 out

1 in 
– 3 out

2 in – 2 out

Smallest width annulus – case with 2+2 pts
c) Cinner and Couter contain 2 points each
 Generate vertices of overlay of Voronoi (__)

and farthest-point Voronoi (- - -) diagrams
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not the complete overlay)
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Input:
Output:

Smallest width annulus
Smallest-Width-Annulus 

Set P of n points in the plane
Smallest width annulus center and radii r and R (roundness)

1. Compute Voronoi diagram Vor(P)
and farthest-point Voronoi diagram Vor-1(P) of P

2. For each vertex of Vor(P) (r) determine the farthest point (R) from P
=> O(n) sets of four points defining candidate annuli – case a)

3. For each vertex of Vor-1(P) (R) determine the closest point (r) from P
=> O(n) sets of four points defining candidate annuli – case b)

4. For every pair of edges Vor(P) and Vor-1(P) test if they intersect
=> another set of four points defining candidate annulus – c)

5. For all candidates of all three types
chose the smallest-width annulus

O(n2) time using O(n) storage

1. O(n log n)
2. O(n2)
3. O(n2)
4. O(n2)
5. O(n2)



Farthest-point Voronoi diagram
V-1(pi)  cell 
= set of points in the 
plane farther from pi
than from any other 
site



[Nandy]
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Farthest-point Voronoi diagram
V-1(pi)  cell 
= set of points in the 
plane farther from pi
than from any other 
site

Vor-1(P) diagram
= partition of the plane 
formed by the farthest 
point Voronoi regions, 
their edges, and 
vertices

[Nandy]
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Farthest-point Voronoi region (cell)

Computed as intersection 
of halfplanes, but we take 
“other sides” of bisectors

Construction of V-1(7)

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௫ୀଵݔ , ݕ ≠ ݔ
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Farthest-point Voronoi region (cell)

Computed as intersection 
of halfplanes, but we take 
“other sides” of bisectors

Construction of V-1(7)

Property
The farthest point Voronoi 
regions are convex 
and unbounded

[Nandy]

ܸି ଵ = ⋂ ℎ ,ݕ ௫ୀଵݔ , ݕ ≠ ݔ
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Farthest-point Voronoi region 
Properties: 
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Farthest-point Voronoi region 
Properties: 
 Only vertices of the  convex hull have their cells in farthest 

Voronoi diagram
 The farthest point 

Voronoi regions 
are unbounded

 The farthest point 
Voronoi edges and 
vertices form a tree
(in the graph sense)

[Nandy]
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Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant    
from 2 sites and closer to 
all the other sites     

[Nandy]
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Application of Vor-1(P) : Smallest enclosing circle

 Construct Vor-1(P) and find minimal circle with
center in   Vor-1(P) vertices or on edges

V-1(2)

V-1(4)

V-1(7)

[Nandy]
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Modified DCEL  for farthest-point Voronoi d

 Half-infinite edges -> we adapt DCEL
 Half-edges with origin in infinity

– Special vertex-like record for origin in infinity
– Store direction instead of coordinates
– Next(e) or Prev(e) pointers undefined

 For each inserted site pj
– store a pointer to the most 

CCW half-infinite half-edge 
of its cell in DCEL
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– Special vertex-like record for origin in infinity
– Store direction instead of coordinates
– Next(e) or Prev(e) pointers undefined

 For each inserted site pj
– store a pointer to the most

CCW half-infinite half-edge
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Idea of the algorithm

1. Create the convex hull
and number the CH points randomly

2. Remove the points starting in the last of this
random order and store cw(pi) and ccw(pi) points
at the time of removal.

3. Include the points back and compute V-1

ସ ଶ
ଵଷହ ସ ଶ

ଵଷହ
 ()ݓܿܿ ()ݓܿ ଷ ହହ ଷ ଶ
…
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Input:
Output:

Farthest-point Voronoi d. construction
Farthest-pointVoronoi O(nlog n) time in O(n) storage

Set of points P in plane
Farthest-point VD Vor-1(P)

1. Compute convex hull of P
2. Put points in CH(P) of P in random order p1,…,ph
3. Remove ph, … ,p4 from the cyclic order (around the CH). 

When removing pi, store the neighbors: cw(pi) and ccw(pi) at the time of 
removal. (This is done to know the neighbors needed in step 6.)

4. Compute Vor-1( { p1, p2, p3 } ) as init
5. for  i = 4  to h do 
6. Add site pi to Vor-1({ p1, p2,…, pi-1 }) between site cw(pi) and ccw(pi) 
7. - start at most CCW edge of the cell ccw(pi) 
8. - continue CW to find intersection with bisector( ccw(pi), pi )
9. - trace borders of Voronoi cell pi in CCW order, add edges
10. - remove invalid edges inside of Voronoi cell pi



Farthest-point Voronoi d. construction

Insertion of site pi
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Farthest-point Voronoi d. construction

After insertion of site pi
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Felkel: Computational geometry

Talk overview

 Polygon triangulation
– Monotone polygon triangulation
– Monotonization of non-monotone polygon

 Delaunay triangulation (DT) of points
– Input: set of 2D points
– Properties
– Incremental Algorithm
– Relation of DT in 2D and lower envelope (CH) in 3D

and
relation of VD in 2D to upper envelope in 3D

(2 / 79)



Felkel: Computational geometry

Polygon triangulation problem

 Triangulation (in general)
= subdividing a spatial domain into simplices

 Application
– decomposition of complex shapes into simpler shapes
– art gallery problem (how many cameras and where)

 We will discuss
– Triangulation of a simple polygon
– without demand on triangle shapes

 Complexity of polygon triangulation
– O(n) alg. exists [Chazelle91], but it is too complicated
– practical algorithms run in O(n log n)

(3 / 79)



Felkel: Computational geometry

Terminology

Simple polygon
= region enclosed by a closed polygonal chain that 

does not intersect itself
Visible points 
= two points on the boundary are visible if the 

interior of the line segment joining them lies 
entirely in the interior of the polygon

Diagonal
= line segment joining any pair of visible vertices

!
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Felkel: Computational geometry

Terminology

 A polygonal chain C is strictly monotone with 
respect to line L, if any line orthogonal to L 
intersects C in at most one point

 A chain C is monotone with respect to line L, if any 
line orthogonal to L intersects C in at most one 
connected component (point, line segment,...)

 Polygon P is monotone with respect to line L, if its 
boundary (bnd(P), ∂P) can be split into two chains, 
each of which is monotone with respect to L

(5 / 79)



Felkel: Computational geometry

Terminology

 Horizontally monotone polygon
= monotone with respect to x-axis

– Can be tested in O(n)
– Find leftmost and rightmost point in O(n)
– Split boundary to upper and lower chain
– Walk left to right, verifying that x-coord are non-

decreasing

[Mount]

(6 / 79)



Felkel: Computational geometry

Terminology

 Every simple polygon can be triangulated
 Simple polygon with n vertices consists of

– exactly n-2 triangles
– exactly n-3 diagonals
– Each diagonal is added once

=> O(n) sweep line algorithm exist

n = 3  => 0 diagonal n = 4  => 1 diagonal n := n+1 => n + 1 – 3  diagonals
n + 1 = 7 => 4 diagonals)

Proof by induction

(7 / 79)
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Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)
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Felkel: Computational geometry

2. Triangulation of the monotone polygon

 Sweep left to right - in O(n) time
 Triangulate everything you can by adding

diagonals between visible points
 Remove triangulated region from further

consideration – mark as DONE

[Mount]
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Triangulation of the monotone polygon

[Mount]
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Felkel: Computational geometry

Main invariant of the untriangulated region

Main invariant
 Let vi be the vertex being just processed 
 The untriangulated region left of vi consists of 

two x-monotone chains (upper and lower)
 Each chain has at least one edge
 If it has more than one edge

– these edges form a reflex chain
= sequence of vertices 

with interior angle ≥ 180°
– the other chain consist of single edge u vi

 Left vertex of the last added diagonal is u
 Vertices between u and vi are waiting in the stack

[Mount]
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Felkel: Computational geometry

Triangulation cases for vi    (vertex being just processed)

[Mount]

 Case 1: vi lies on the opposite chain
– Add diagonals from next(u) to vi-1 (empty the stack-pop)
– Set u = vi-1. Last diagonal (invariant) is vivi-1

 Case 2: vi is on the same chain as vi-1
a) walk back, adding diagonals joining vi to prior vertices

until the angle becomes > 180° or u is reached - pop)

– s

b) push to stack

(12 / 79)



Felkel: Computational geometry

Simple polygon triangulation

 Simple polygon can be triangulated in 2 steps:
1. Partition the polygon into x-monotone pieces
2. Triangulate all monotone pieces

(we will discuss the steps in the reversed order)
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 X-monotonicity breaks the polygon in vertices with 
edges directed both left or both right

 The monotone polygons parts are separated by 
the splitting diagonals (joining vertex and helper)

Felkel: Computational geometry

1. Polygon subdivision into monotone pieces

[Mount]
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Felkel: Computational geometry

Data structures for subdivision

 Events
– Endpoints of edges, known from the beginning
– Can be stored in sorted list – no priority queue

 Sweep status
– List of edges intersecting sweep line (top to bottom)
– Stored in O(log n) time dictionary (like balanced tree)

 Event processing
– Six event types based on local structure of edges

around vertex v

(15 / 79)



Helper – definition

Felkel: Computational geometry

helper(ea)
= the rightmost vertically visible processed vertex u on or

below edge ea on polygonal chain between edges ea & eb

is visible to every point along the sweep line between ea & eb

v = current vertex
(sweep line stop)

all these vertices 
see   u = helper(ea)

(16 / 79)



Helper

Felkel: Computational geometry

helper(ea)
is defined only for edges intersected by the sweep line

Previous 
helper h(e)

)

(17 / 79)

- Start point of the edge itself

rightmost vertically visible 
processed vertex

- Start point of the edge below
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Six event types of vertex v

1. Split vertex
– Find edge e above v,

connect v with helper(e) by diagonal
– Add 2 new edges incident to v into SL status
– Set new helper(e) = helper(lower edge of these two) = v

2. Merge vertex
– Find two edges incident with v in SL status
– Delete both from SL status
– Let e is edge immediately above v
– Make helper(e) = v
(Interior angle >180° for both – split & merge vertices)

[Mount]

Polygon 
interior is

white

Previous 
helper h(e)

out

in

(18 / 79)
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Six event types of vertex v

3. Start vertex
– Both incident edges lie right from v
– But interior angle <180°
– Insert both edges to SL status
– Set helper(upper edge) = v

4. End vertex 
– Both incident edges lie left from v
– But interior angle <180°
– Delete both edges from SL status
– No helper set – we are out of the polygon

[Mount]
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Six event types of vertex v

5. Upper chain-vertex
– one side is to the left, one side to the right, 

interior is below
– replace the left edge with the right edge 

in SL status
– Make v helper of the new (upper) edge

6. Lower chain-vertex
– one side is to the left, one side to the right, 

interior is above
– replace the left edge with the right edge 

in SL status
– Make v helper of the edge e above [Mount]

(20 / 79)
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Polygon subdivision complexity

 Simple polygon with n vertices can be partitioned
into x-monotone polygons in

– O(n log n) time      (n steps of SL, log n search each)
– O(n) storage

 Complete simple polygon triangulation
– O(n log n) time for partitioning into monotone polygons
– O(n) time for triangulation
– O(n) storage

(21 / 79)
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Delaunay triangulation



Felkel: Computational geometry

Dual graph G for a Voronoi diagram
Graph G: Node for each Voronoi-diagram cell V(p) ~ VD site p
Arc connects neighboring cells
(arc for every voronoi edge)

[Berg]

(23 / 79)



Felkel: Computational geometry

Delaunay graph DG(P)
= straight line embedding of G

(straight-line dual of Voronoi diagram)
 Node for cell V(p) is site p
 Arc (DG edge)

connecting cells
V(p) and V(q)
is the segment pq

[Борис Николаевич Делоне]

VD cell V(p)

site (point) p 
= DG node

VD vertex

DG arc

[Berg]

(24 / 79)



Felkel: Computational geometry

Delaunay graph and Delaunay triangulation

 Delaunay graph DG(P) has convex polygonal faces
(with number of vertices ≥3, equal
to the degree of Voronoi vertex)

 Delaunay triangulation DT(P)
= Delaunay graph for sites in

general position
– No four sites on a circle
– Faces are triangles (Voronoi vertices have degree = 3)
– DT is unique (DG not! Can be triangulated differently)

DG(P) sites not in general position
– Triangulate larger faces – such triangulation is not

unique

[Berg]
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Delaunay triangulation properties 1/2
Circumcircle property
 The circumcircle of any triangle in DT is empty (no sites)

Proof: It’s center is the Voronoi vertex 
 Three points a,b,c are vertices of the same face of DG(P) 

iff circle through a,b,c contains no point of P in its interior
Empty circle property and legal edge
 Two points a,b form an edge of DG(P) – it is a legal edge

iff  closed disc with a,b on its boundary that contains 
no other point of P in its interior … disc minimal diameter = dist(a,b)

Closest pair property
 The closest pair of points in P are neighbors in DT(P)

(26 / 79)
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Delaunay triangulation properties 2/2
 DT edges do not intersect
 Triangulation T is legal, iff T is a Delaunay triangulation

(i.e., if it does not contain illegal edges)
 Edge that was legal before 

may become illegal if one 
of the triangles incident to it 
changes

 In convex quadrilateral abcd
(abcd do not lie on common circle)
exactly one of ac, bd

is an illegal edge
and the other edge is legal

= principle of edge flip operation c

a

b

d

[Berg]
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Edge flip operation
Edge flip
= a local operation, that increases the angle vector
 Given two adjacent triangles abc and cda such that 

their union forms a convex quadrilateral, the edge flip
operation replaces the diagonal ac with bd.

c

a

b

d

[Berg]
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Delaunay triangulation
 Let T be a triangulation with m triangles (and 3m angles)
 Angle-vector

= non-decreasing ordered sequence ( 1, 2, … , 3m) 
inner angles of triangles, i ≤ j, for i < j

 In the plane, Delaunay triangulation has the
lexicographically largest angle sequence

– It maximizes the minimal angle (the first angle in angle-vector)
– It maximizes the second minimal angle, …
– It maximizes all angles
– It is an angle sequence optimal triangulation

(29 / 79)



Delaunay triangulation

 It maximizes the minimal angle
– The smallest angle in the DT is at least as large as the 

smallest angle in any other triangulation. 

 However, the Delaunay triangulation 
– does not necessarily minimize the maximum angle.
– does not necessarily minimize the length of the edges. 

Felkel: Computational geometry
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Thales’s theorem  (624-546 BC)

Felkel: Computational geometry

 Let = circle,
 =line intersecting in points

 = points on the same 
side of 
p,q on , is in, is out

 Then for the angles holds:

http://www.mathopenref.com/arccentralangletheorem.html

Respective Central Angle Theorem

[Berg]
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Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips 
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd

(32 / 79)
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Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3
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Edge flip of illegal edge and angle vector

 The minimum angle increases after the edge flip

1 > 2 > 3

|bd| < |ac| φab > ab φbc > bc φcd > cd φda > da

flip(ac)

=> After limited number of edge flips 
– Terminate with lexicographically maximum triangulation
– It satisfies the empty circle condition => Delauney T.

[Mount]

of illegal edge ac > bd
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Incremental algorithm principle

1. Create a large triangle containing all points
(to avoid problems with unbounded cells)
– must be larger than the largest circle through 3 points
– will be discarded at the end

2. Insert the points in random order
– Find triangle with inserted point p
– Add edges to its vertices

(these new edges are correct) 
– Check correctness of the old edges (triangles) 

“around p” and legalize (flip) potentially illegal edges 

3. Discard the large triangle and incident edges

(33 / 79)



Input:
Output:

Incremental algorithm in detail
DelaunayTriangulation(P)

Set P of n points in the plane 
A Delaunay triangulation T of P

1. Let p–2, p–1, p0 form a triangle large enough to contain P
2. Initialize T as the triangulation consisting a single triangle p–2p–1p0
3. Compute random permutation p1, p2 , … , pn of P \ {p0}
4. for r = 1 to n do
5. T = Insert( pr , T )
6. Discard p–1, p–2 with all incident edges from T
7. return T

[Berg]



Input:
Output:

Insert( p, T )
Point p being inserted into triangulation T
Correct Delaunay triangulation after insertion of p

1. Find a triangle abc  T containing p
2. if p lies in the interior of abc then
3. Insert edges pa, pb, pc into triangulation T

(splitting abc into 3 triangles pab, pbc, pca )
4. LegalizeEdge( p, ab, T)
5. LegalizeEdge( p, bc, T)
6. LegalizeEdge( p, ca, T)
7. else // p lies on the edge of abc, say ab, point d is right from edge ab
8. Remove ab and insert edges pa, pb, pc, pd into triangulation T

(splitting abc and abd into 4 triangles pad, pdb, pbc, pca )
9. LegalizeEdge( p, ab, T)
10. LegalizeEdge( p, bc, T)
11. LegalizeEdge( p, cd, T)
12. LegalizeEdge( p, da, T)
13. return T

Incremental algorithm – insertion of a point

a
b

c

a

b

d

c [Berg]
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Input:
Output:

Incremental algorithm – edge legalization
LegalizeEdge( p, ab, T )

Edge ab being checked after insertion of point p to triangulation T
Delaunay triangulation of p T

1. if( ab is edge on the exterior face ) return
2. let d be the vertex to the right of edge ab
3. if( inCircle( p, a, b, d ) )   // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge( p, ad, T )
6. LegalizeEdge( p, db, T )

a

b

p

d

[Berg]
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3. if( inCircle( p, a, b, d ) )   // d is in the circle around pab => d is illegal
4. Flip edge ab for pd
5. LegalizeEdge( p, ad, T )
6. LegalizeEdge( p, db, T )

a

b

p

d

[Berg]

Inserted point p

Insertion of p may make edges ab, bc & ca illegal
(circle around pab will contain point d )
After edge flip, the edge pd will be legal
(the circumcircles of the resulting triangles 
pdb, and pad will bee empty) 
We must check and possibly flip edges ad, db
(We must check and possibly flip edges bc & ca
- lines 5,6 in Insert( p, T ) ) c
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Correctness of edge flip of illegal edge
 Assume point is in (it violates DT criteria for )
 was a triangle of DT => was an empty circle
 Create circle ᇱ trough point , ᇱ is inscribed to , ᇱ

=> ᇱ is also an empty circle ( )
=> new edge pd is a Delaunay edge

a

b

p

d

[Berg]

Inserted point p
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DT- point insert and mesh legalization

Every new edge created due to insertion of p will be incident to p

[Berg]
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Delaunay triangulation – other point insert

[Mount]

Legalize now

Legal edge

Legalize later
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Correctness of the algorithm

 Every new edge (created due to insertion of p)
– is incident to p
– must be legal

=> no need to test them

 Edge can only become illegal if one of its incident
triangle changes

– Algorithm tests any edge that may become illegal
=> the algorithm is correct

 Every edge flip makes the angle-vector larger
=> algorithm can never get into infinite loop

(48 / 79)
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Point location data structure

 For finding a triangle abc  T containing p
– Leaves for active (current) triangles
– Internal nodes for destroyed triangles
– Links to new triangles

 Search p: start in root (initial triangle)
– In each inner node of T:

• Check all children (max three)
• Descend to child containing p

(49 / 79)
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Point location data structure

Simplified 
- it should also contain the root node

[Berg]
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Point location data structure

[Berg]
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Point location data structure

[Berg]

2 nodes (triangles )=> new 2 nodes
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Point location data structure

[Berg]
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InCircle test

 a,b,c are counterclockwise in the plane
 Test, if d lies to the left of the oriented circle 

through a,b,c

c

a

b

d

> 0

[Mount]
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Creation of the initial triangle
Idea: For given points set P:
 Initial triangle p–2p–1p0

– Must contain all points of P
– Must not be (none of its points)

in any circle defined
by non-collinear points of P

 l–2 = horizontal line above P
 l–1 = horizontal line below P
 p–2 = lies on l–2 as far left that p–2 lies outside every circle
 p–1 = lies on l–1 as far right that p–1 lies outside every circle

defined by 3 non-collinear points of P

Symbolical tests with this triangle => p–1 and p–2 always out

[Mount]

(55 / 79)

l–2

l–1



Felkel: Computational geometry

Complexity of incremental DT algorithm

 Delaunay triangulation of a set P in the plane can 
be computed in 

– O(n log n) expected time 
– using O(n) storage

 For details see [Berg, Section 9.4]
Idea
– expected number of created triangles is 9n+1
– expected search O(log n) in the search structure

done n times for n inserted points

(56 / 79)
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Delaunay triangulations and Convex hulls

 Delaunay triangulation in Rd can be computed
as part of the convex hull in Rd+1 (lower CH)

 2D: Connection is the paraboloid: 22 yxz 

[Mount]
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Vertical projection of points to paraboloid

 Vertical projection of 2D point to paraboloid in 3D

 Lower convex hull
= portion of CH visible from (forms DT)

   22,,, yxyxyx 

z

[Rourke]
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Relation between CH and DT

 Delaunay condition (2D)
Points p,q,r  S form a Delaunay triangle iff the 
circumcircle of p,q,r is empty (contains no point)

 Convex hull condition (3D)
Points p’,q’,r’  S’ form a face of CH(S’) iff the 
plane passing through p’,q’,r’ is supporting S’

– all other points lie to one side of the plane
– plane passing through p’,q’,r’ is supporting hyperplane

of the convex hull CH(S’)

(62 / 79)
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Relation between CH and DT

 4 distinct points p,q,r,s in the plane, and let p’, q’, r’, s’ be
their respective projections onto the paraboloid, z = x2 + y2.

 The point s lies within the circumcircle of pqr iff s’ lies on
the lower side of the plane passing through p’, q’, r’.

[Rourke]
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Tangent and secant planes
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ଶݎ

(ܽ,b)

x

z
’ݍ

p'

Tangent plane

Secant plane

Cross section of the paraboloid

Circle in xy planexݕ×
ݕ

rp ݍ
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Tangent plane to paraboloid 

 Non-vertical tangent plane through


 Derivation at this point

 Evaluates to      and
 Plane:

[Mount]

 Tangent plane through point 

Paraboloid ଶ+ ଶ

ଶ ଶ ଶ ଶ

ଶ ଶ

ଶ ଶ
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Plane intersecting the paraboloid (secant plane)

 Non-vertical tangent plane through

 Shift this plane     upwards –> secant plane
intersects the paraboloid in an ellipse in 3D

 Eliminate z (project to 2D)

 This is a circle projected to 2D with center (a, b):

[Mount]

ଶ
ଶ ଶଶ ଶ

ଶ ଶ + ଶ
ଶ+ ଶ ଶ ଶ + ଶଶ+ ଶ

ଶ ଶ ଶ
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Secant plane defined by three points
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[Mount]
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Test inCircle – meaning in 3D

[Mount]

 Points p,q,r are counterclockwise in the plane
 Test, if s lies in the circumcircle of pqr is equal to

= test, weather s’ lies within a lower half space of the 
plane passing through p’,q’,r’ (3D)

= test, if quadruple p’,q’,r’,s’ is positively oriented (3D)
= test, if s lies to the left of the oriented circle through pqr

(2D)

(68 / 79)
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Delaunay triangulation and inCircle test
 DT splits each quadrangle by one of its two diagonals
 For a valid diagonal, the fourth point is not inCircle

=>  the fourth point is right from the oriented circumcircle (outside)
=>  inCircle(….) < 0 for CCW orientation

 inCircle(P,Q,R,S) = inCircle(P,R,S,Q) = – inCircle(P,Q,S,R) = – inCircle(S,Q,R,P)

Felkel: Computational geometry

Q

R

S

P

RP QS
Invalid diagonal Valid diagonal

inCircle(…) > 0 inCircle(…) < 0
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inCircle test detail
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Q

R

S

P

Q

R

S

P

Q

R

S
P

Invalid diagonal Valid diagonal

Point P moves right toward point R
We test position of R in relation to oriented circle (P,Q,S)

inCircle(P,Q,S,R) = 0
R is on the circle

inCircle(P,Q,S,R) < 0
R is right (out) 

inCircle(P,Q,S,R) > 0
R is left (in)

(70 / 79)
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inCircle test detail
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R

Q

R

S

P

Invalid diagonal Valid diagonal

Q

S

P

inCircle(P,Q,S,R) > 0
R is left

inCircle(P,Q,S,R) > 0
R is left

Circle of infinite diameter The circle flipped its orientation

(71 / 79)

CWCCW<->CW



An the Voronoi diagram?

 VD and DT are dual structures
 Points and lines in the plane 

are dual to 
points and planes in 3D space

 VD of points in the plane
can be transformed to 
intersection of halfspaces in 3D space

Felkel: Computational geometry
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Voronoi diagram as upper envelope in Rd+1

 For each point  p = (a, b) a tangent plane to the 
paraboloid is

 H+(p) is the set of points above this plane 

[Mount]

ଶ ଶ
 VD of points in the plane can be 

computed as intersection of 
halfspaces H+(pi) in 3D

 This intersection of halfspaces
= unbounded convex polyhedron  
= upper envelope of halfspaces

H+(pi) 

ା ଶ ଶ
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Upper envelope of planes

Felkel: Computational geometry

Upper envelope 
of the tangent hyperplanes

= unbounded convex polytope 

Lower envelope 
of the tangent hyperplanes

[Mount]

(77 / 79)



Projection to 2D

 Upper envelope of 
tangent hyperplanes
(through sites 
projected upwards to 
the cone)

 Projected to 2D gives 
Voronoi diagram

Felkel: Computational geometry [Mount]
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Voronoi diagram as upper envelope in 3D

[Fukuda]
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Derivation of projected Voronoi edge

 2 points: and in the plane

 Intersect the planes, project onto xy (eliminate z)

 This line passes through midpoint between p and q

 It is perpendicular bisector with slope
[Mount]

Tangent planes
to paraboloid

ଶ ଶଶ ଶ
ଶ ଶ + ଶ ଶ

ାଶ ାௗଶ ଶ ଶ + ଶ ଶ
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Talk overview

 Intersections of line segments (Bentley-Ottmann)
– Motivation
– Sweep line algorithm recapitulation
– Sweep line intersections of line segments

 Intersection of polygons or planar subdivisions
– See assignment [21] or [Berg, Section 2.3]

 Intersection of axis parallel rectangles
– See assignment [26]

Felkel: Computational geometry
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Geometric intersections – what are they for?
One of the most basic problems in computational geometry
 Solid modeling

– Intersection of object boundaries in CSG

 Overlay of subdivisions, e.g. layers in GIS
– Bridges on intersections of roads and rivers
– Maintenance responsibilities (road network X county boundaries)

 Robotics
– Collision detection and collision avoidance

 Computer graphics
– Rendering via ray shooting (intersection of the ray with objects)

 …
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Line segment intersection
 Intersection of complex shapes is often reduced to simpler 

and simpler intersection problems
 Line segment intersection is the most basic intersection 

algorithm
 Problem statement:

Given n line segments in the plane, report all points where 
a pair of line segments intersect.

 Problem complexity
– Worst case – I = O(n2) intersections
– Practical case – only some intersections
– Use an output sensitive algorithm

• O(n log n + I) optimal randomized algorithm
• O(n log n + I log n ) sweep line algorithm - % [Berg]

(4 / 71)
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Plane sweep line algorithm recapitulation

 Horizontal line (sweep line, scan line) l moves
top-down (or vertical line: left to right) over the set of objects

 The move is not continuous, but l jumps from one
event point to another

– Event points are in priority queue or sorted list (~y)
– The (left) top-most event point is removed first
– New event points may be created

(usually as interaction of neighbors on the sweep line)
and inserted into the queue

 Scan-line status
– Stores information about the objects intersected by l
– It is updated while stopping on event point

(5 / 71)
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Line segment intersection - Sweep line alg.
 Avoid testing of pairs of segments far apart
 Compute intersections of neighbors on the sweep line only
 O(n log n + I log n ) time in O(n) memory

– 2n steps for end points, 
– I steps for intersections,

– log n search the status tree

 Ignore “nasty cases” (most of them will be solved later on)
– No segment is parallel to the sweep line 
– Segments intersect in one point and do not overlap
– No three segments meet in a common point

(6 / 71)
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Line segment intersections

Status = ordered sequence of segments 
intersecting the sweep line l 

Events (waiting in the priority queue)
=  points, where the algorithm actually does something

– Segment end-points 

• known at algorithm start

– Segment intersections between neighboring segments 
along SL

• discovered as the sweep executes

(7 / 71)
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Detecting intersections

[Berg]

(8 / 71)

 Intersection events must be detected and inserted
to the event queue before they occur

 Given two segments a, b intersecting in point p,
there must be a placement of sweep line l prior 
to p, such that segments a, b are adjacent along l
(only adjacent will be tested for intersection)

– segments a, b are not adjacent when the alg. starts
– segments a, b are adjacent just before p
=> there must be an event point when a,b become 

adjacent and therefore are tested for intersection
=> All intersections are found
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Data structures
Sweep line l status = order of segments along l
 Balanced binary search tree of segments
 Coords of intersections with l vary as l moves

=> store pointers to line segments in tree nodes
– Position of l is plugged in the y=mx+b to get the x-key

[Berg]
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Data structures

Event queue (postupový plán, časový plán)

 Define: Order � (top-down, lexicographic)

p � q iff py > qy or py = qy and px < qx

top-down, left-right approach
(points on l treated left to right)

 Operations
– Insertion of computed intersection points
– Fetching the next event

(highest y below l or the leftmost right of e)
– Test, if the segment is already present in the queue

(Locate and delete intersection event in the queue)

x

y top-down
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Data structures
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Problem with duplicities of intersections
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Data structures

Event queue data structure
a) Heap

– Problem: can not check duplicated intersection events
(reinvented & stired more than once)

– Intersections processed twice or even more times
– Memory complexity up to O(n2)

b) Ordered dictionary (balanced binary tree)
– Can check duplicated events (adds just constant factor)
– Nothing inserted twice
– If non-neighbor intersections are deleted

i.e.,  if only intersections of neighbors along l are stored
then memory complexity just O(n)

3x detected
intersection

1
2

3
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Input:
Output:
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Line segment intersection algorithm
FindIntersections(S)

A set S of line segments in the plane
The set of intersection points + pointers to segments in each 

1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
3. while Q in not empty
4. remove next event p from Q
5. handleEventPoint(p)

Note: Upper-end-point events store info about the segment

Upper endpoint 
Intersection
Lower endpoint 
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1. init an empty event queue Q and insert the segment endpoints
2. init an empty status structure T
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4. remove next event p from Q
5. handleEventPoint(p)

Note: Upper-end-point events store info about the segment

Upper endpoint 
Intersection
Lower endpoint 
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Improved algorithm:
Handles all in p
in a single step
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handleEventPoint() principle

 Upper endpoint U(p)
– insert p (on sj) to status T
– add intersections with left and 

right neighbors to Q

 Intersection C(p)
– switch order of segments in T
– add intersections with nearest left 

and nearest right neighbor to Q

 Lower endpoint L(p)
– remove p (on sl) from T
– add intersections of left and right 

neighbors to Q

[Berg]
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More than two segments incident

U(p) = {s2} start here
C(p) = {s1, s3} cross on l
L(p) = {s4, s5} end here [Berg]
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Felkel: Computational geometry

Handle Events [Berg, page 25]

handleEventPoint(p)
1. Let U(p) = set of segments whose Upper endpoint is p.

These segmets are stored with the event point p (will be added to T)
2. Search T for all segments S(p) that contain p (are adjacent in T):

Let L(p)  S(p) = segments whose Lower endpoint is p
Let C(p)  S(p) = segments that Contain p in interior

3. if( L(p)  U(p)  C(p) contains more than one segment )
4. report p as intersection  together with L(p), U(p), C(p)
5. Delete the segments in L(p)  C(p) from T
6. Insert  the segments in U(p)  C(p) into T

(order as below l, horizontal segment as the last)

7. if( U(p)  C(p) =  ) then findNewEvent(sl, sr, p) // left & right neighbors
8. else s’  = leftmost segment of U(p)  C(p); findNewEvent(sl , s’, p)

s’’ = rightmost segment of U(p)  C(p); findNewEvent(s’’, sr , p)

Reverse order of C(p) in T

p

U(p)

p
L(p)

p
C(p)

p srsl
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Felkel: Computational geometry

Detection of new intersections
findNewEvent(sl , sr , p) // with handling of horizontal segments

two segments (left & right from p in T) and a current event point p
updated event queue Q with new intersection

1. if [ ( sl and sr intersect below the sweep line l ) // line 7. above

or (sr intersect s’’ on l and to the right of p ) ] // horizontal segm.
and( the intersection is not present in Q )

2. then
insert intersection as a new event into Q

sl and sr intersect below 
sr and s’’ intersect on l, 
s’’ is horizontal and to the right of p 

(17 / 71)

Non-overlapping 

p

srsl

p
s’’

s’  

srsl
psl

s’ = leftmost from U(p)  C(p)
s’’ = rightmost from U(p)  C(p)

s’’

srs’

Intersection - line 4

Intersection - line 7,8



Felkel: Computational geometry

Line segment intersections

 Memory O(I) = O(n2) with duplicities in Q 
or O(n ) with duplicities in Q deleted

 Operational complexity
– n + I stops
– log n each
=> O( I + n) log n total

 The algorithm is by Bentley-Ottmann
Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", IEEE 
Transactions on Computers C-28 (9): 643-647, doi:10.1109/TC.1979.1675432 . 

See also http://wapedia.mobi/en/Bentley%E2%80%93Ottmann_algorithm
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Intersection of axis parallel rectangles

 Given the collection of n isothetic rectangles,
report all intersecting parts

r7

r2

r8

r6

r5
r4

r3

r1

Answer:  (r1, r2) (r1, r3) (r1, r8) (r3, r4) (r3, r5) (r3, r9) (r4, r5) (r7, r8) 

r9

Overlap

Inclusion

[?]

Alternate sides 
belong to two 
pencils of lines

(trsy přímek)

(often used with 
points in infinity 
= axis parallel)

2D => 2 pencils 
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Felkel: Computational geometry

Brute force intersection
Brute force algorithm

set S of axis parallel rectangles
pairs of intersected rectangles

1. For every pair (ri , rj) of rectangles  S, i  j
2. if  (ri  rj  ) then
3. report (ri , rj)

Analysis
Preprocessing:  None.
Query:  ܱ ܰଶ 2ܰ = ே(ேିଵ)ଶ ∈ ܱ ܰଶ .
Storage:  ܱ ܰ

(20 / 71)
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Plane sweep intersection algorithm

 Vertical sweep line moves from left to right
 Stops at every x-coordinate of a rectangle 

(either at its left side or at its right side).
 active rectangles – a set

= rectangles currently intersecting the sweep line
– left side event of a rectangle      – start

=> the rectangle is added to the active set. 
– right side – end

=> the rectangle is deleted from the active set.

 The active set used to detect rectangle intersection

(21 / 71)
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Example rectangles and sweep line

not active 
rectangle

active 
rectangle

sweep line
[Drtina]

y
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Felkel: Computational geometry

Interval tree as sweep line status structure

 Vertical sweep-line => only y-coordinates along it
 The status tree is drawn horizontal - turn 90° right 

as if the sweep line (y-axis) is horizontal 

y
L R

not active 
rectangle

active 
rectangle

sweep line [Drtina]

y
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Intersection test – between pair of intervals 

 Given two intervals R = [y1, y2] and R’ = [y’1, y’2] 
the condition R  R’ is equivalent to one of these 
mutually exclusive conditions:

a) y1  y ’1 y2

b) y ’1  y1 y ’2
y’1 y’2

y1 y2

y1 y2

y ’1 y ’2

a) b) b)Intervals along the sweep line

Intersection (fork)

(24 / 71)
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Static interval tree – stores all end points
 Let v = ymed be the median of end-points of segments
 Sl : segments of S that are completely to the left of ymed

 Smed : segments of S that contain ymed

 Sr : segments of S that are completely to the right of ymed

[Vigneron]

ymed
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Static interval tree – Example

L(v)
R(v)

[Vigneron]

Sl

Smed

Sr

Left ends – ascending
Right ends – descending
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Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
5 6

[Kukral]

 Stores intervals along y sweep line
 3 kinds of information

- end points
- incident 
intervals

- active nodes
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Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = midpoint of all 
segment endpoints

H(v) = value (y-coord) of v

5 6

[Kukral]
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ML(v) – left endpoints of interval containing v
(sorted ascending)

MR(v) – right endpoints
(descending)

Secondary lists of incident interval end-pts.

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

5 6

[Kukral]
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Active nodes – intersected by the sweep line 

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

Subset of all nodes currently
intersected by the sweep line
(nodes with intervals)

5 6

[Kukral]

RPTR

Active node

Active node

Active node

LPTR

(30 / 71)



Input:
Output:

Felkel: Computational geometry

Query =  sweep and report intersections
RectangleIntersections( S )

Set S of rectangles
Intersected rectangle pairs

1. Preprocess( S )   // create the interval tree T (for y-coords)
// and event queue Q (for x-coords)

2. while ( Q  ) do
3. Get next entry (xi , yil , yir , t) from Q  // t ∈ { left | right }
4. if ( t = left )   // left edge
5. a) QueryInterval ( yil , yir, root(T)) // report intersections
6. b) InsertInterval ( yil , yir, root(T)) // insert new interval
7. else // right edge 
8. c) DeleteInterval ( yil , yir, root(T) )

(31 / 71)
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Felkel: Computational geometry

Preprocessing
Preprocess( S )

Set S of rectangles
Primary structure of the interval tree T and the event queue Q

1. T = PrimaryTree(S)   // Construct the static primary structure 
// of the interval tree -> sweep line STATUS T

2. // Init event queue Q with vertical rectangle edges in ascending order ~x
// Put the left edges with the same x ahead of right ones

3. for i = 1 to n
4. insert( ( xil , yil , yir , left ), Q) // left edges of i-th rectangle 
5. insert( ( xir, yil , yir , right ), Q) // right edges

(32 / 71)
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Felkel: Computational geometry

Interval tree – primary structure construction
PrimaryTree(S)   // only the y-tree structure, without intervals

Set S of rectangles
Primary structure of an interval tree T

1. Sy = Sort endpoints of all segments in S according to y-coordinate
2. T = BST( Sy )
3. return T

BST( Sy )
1. if(  |Sy | = 0 ) return null
2. yMed = median of Sy // the smaller item for even Sy.size
3. L = endpoints py  yMed
4. R = endpoints py > yMed
5. t = new IntervalTreeNode( yMed )
6. t.left = BST(L)
7. t.right = BST(R)
8. return t

(33 / 71)
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Felkel: Computational geometry

Interval tree – search the intersections
QueryInterval ( b, e, T )

Interval of the edge and current tree T
Report the rectangles that intersect [ b, e ]

1. if( T = null ) return
2. i=0; if( b < H(v) < e )  // forks at this node 
3. while ( MR(v).[i] >= b ) && (i < Count(v)) // Report all intervals inM
4. ReportIntersection; i++
5. QueryInterval( b,e,T.LPTR )
6. QueryInterval( b,e,T.RPTR )
7. else if (H(v)  b < e) // search RIGHT (    )
8. while (MR(v).[i] >= b) && (i < Count(v)) 
9. ReportIntersection; i++
10. QueryInterval( b,e,T.RPTR )
11. else // b < e  H(v) //search LEFT(    )
12. while (ML(v).[i] <= e) 
13. ReportIntersection; i++
14. QueryInterval( b,e,T.LPTR )

H(v) New interval being 
tested for intersection 

b e

Stored intervals
of active rectangles

T.LPTR T.RPTR

A

C
B

Crosses A,B

Crosses A,B,C Cross.B

Crosses A,B,C

Crosses C

Crosses nothing

(34 / 71)

Other new interval being 
tested for intersection 



Input:
Output:

Felkel: Computational geometry

Interval tree - interval insertion 
InsertInterval ( b, e, T ) 

Interval [b,e] and interval tree T
T after insertion of the interval 

1. v = root(T )
2. while( v != null )  // find the fork node
3. if (H(v) < b < e) 
4. v = v.right // continue right
5. else if (b < e < H(v)) 
6. v = v.left // continue left
7. else // bH(v)  e // insert interval
8. set v node to active
9. connect LPTR resp. RPTR to its parent
10. insert [b,e] into list ML(v) – sorted in ascending order of b’s
11. insert [b,e] into list MR(v) – sorted in descending order of e’s
12. break
13. endwhile
14. return T

H(v)
New interval 

being inserted

b e

b e
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Example 1
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Example 1 – static tree on endpoints





X

Y

0
1 2 3 4

1

2

3

4

1 3

2 

 

[Drtina]

A

B

A

B

H(v) – value of node v
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Interval insertion [1,3] a) Query Interval

X

Y

0
1 2 3 4

1

2

3

4

1 3

2
A

B

A

B

1

3

Current node

Active node

Active rectangle

[Drtina]

b < H(v) < e

1 < 2 < 3

Search MR(v) or ML(v):
MR(v) is empty
No active sons, stop
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X

Y

0
1 2 3 4

1

2

3

4

1 3

2

Interval insertion [1,3] b) Insert Interval
b  H(v)  e

? 1  2  3 ?

A

B

Current node

Active node

Active rectangle
A

B

[Drtina]
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X

Y

0
1 2 3 4

1

2

3

4

1 3

2

1 3

Interval insertion [1,3]    b) Insert Interval

fork
=> to lists

A

B

Current node

Active node

Active rectangle
A

B

[Drtina]

b  H(v)  e

1  2  3
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X

Y

0
1 2 3 4

1

2

3

4

1 31 3

H(v)  b < e

2  2 < 4

Search MR(v) only:
MR(v)[1] = 3  2?

=> intersection

Interval insertion [2,4]   a) Query Interval

R(v)

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0
1 2 3 4

1

2

3

4

1 31,2 4,3

b  H(v)  e

2  2  4

Interval insertion [2,4]   b) Insert Interval

fork
=> to lists

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0

1

2

3

4

1 2 3 4

1 31,2 4,3

Interval delete [1,3]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]
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X

Y

0

1

2

3

4

1 2 3 4

1 32 4

Interval delete [1,3]

A

B

Current node

Active node

Active rectangle

2

A

B

[Drtina]

(44 / 71)



Felkel: Computational geometry

X

Y

0

1

2

3

4

1 2 3 4

1 32 4

Interval delete [2,4]

A

B

Current node

Active node

Active rectangle

2

A

B
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X

Y

0

1

2

3

4

1 2 3 4

1 3

2

Interval delete [2,4]

A

B

A

B

[Drtina]
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Felkel: Computational geometry

Example 2
RectangleIntersections( S )  // this is a copy of the slide before

Set S of rectangles // just to remember the algorithm
Intersected rectangle pairs

1. Preprocess( S ) // create the interval tree T and event queue Q

2. while ( Q  ) do
3. Get next entry (xil, yil, yir, t) from Q  // t ∈ { left | right }
4. if ( t = left )   // left edge
5. a) QueryInterval ( yil, yir, root(T)) // report intersections
6. b) InsertInterval ( yil, yir, root(T)) // insert new interval
7. else // right edge 
8. c) DeleteInterval ( yil, yir, root(T) )
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X

Y

0

1
2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Example 2 – tree from PrimaryTree(S)

a

b

c

d

e

f

a

b

c d

e

f
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Felkel: Computational geometry

Complexities of rectangle intersections

 n rectangles, s intersected pairs found
 O(n log n) preprocessing time to separately sort  

– x-coordinates of the rectangles for the plane sweep  
– the y-coordinates for initializing the interval tree. 

 The plane sweep itself takes O(n log n + s) time, 
so the overall time is O(n log n + s)

 O(n) space 
 This time is optimal for a decision-tree algorithm 

(i.e., one that only makes comparisons between 
rectangle coordinates).
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Windowing queries - examples

 Interaction in GIS
– Select subset by outlining
– Zoom in and re-center

 Circuit board inspection,…
[Vakken]

[Berg]

[Berg]

(2 / 59)



Windowing versus range queries

 Range queries (see range trees in Lecture 03)

– Points
– Often in higher dimensions

 Windowing queries
– Line segments, curves, …
– Usually in low dimension (2D, 3D)

 The goal for both:
Preprocess the data into a data structure

– so that the objects intersected by the query rectangle
can be reported efficiently

(3 / 59)



Windowing queries on line segments

1. Axis parallel line segments 2. Arbitrary line segments
(non-crossing) [Vakken]

(4 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
– 3 variants of interval tree – IT in x-direction
– Differ in storage of segment end points ML and MR 

i. Line stabbing (standard IT with sorted lists ) lecture 9 - intersections

ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(5 / 59)



1. Windowing of axis parallel line segments

[Vakken]
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1. Windowing of axis parallel line segments

Window query
 Given

– a set of orthogonal line segments S (preprocessed),
– and orthogonal query rectangle W = [ x : x’ ] μ [ y : y’ ]

 Count or report all the line segments of S that
intersect W

 Such segments have
a) 1 endpoint in
b) 2 end points in – Included
c) no end point in – Cross over

[Mount]

a)
a)

b)
c)

c)

(7 / 59)



Line segments with 1 or 2 points inside

a) 1 point inside
– Use a range tree (Lesson 3)
– O(n log n) storage
– O(log2 n + k) query time or
– O(log n + k) with fractional 

cascading

b) 2 points inside – as a) 1 point inside
– Avoid reporting twice

1. Mark segment when reported (clear after the query)
2. When end point found, check the other end-point.

Report only the leftmost or bottom endpoint

a)
a)

b)

c)

c)

[Mount]
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Line segments that cross over the window

c) No points inside
– Such segments not detected 

using end-point range tree 
– Cross the boundary twice 

or 
contain one boundary edge

– It is enough to 
detect segments intersected by the left and bottom
boundary edges (not having end point inside)

– For left boundary: Report the segments intersecting 
vertical query line segment (1/ii.)

– Let’s discuss vertical query line first (1/i.)
– Bottom boundary is rotated 90°

[Mount]
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Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists)
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(10 / 59)



i. Segment intersected by vertical line – 1D

 Query line l := (x=qx)

Report the segments 
stabbed by a vertical line 
= 1 dimensional problem

(ignore y coordinate)

 Report the interval 
containing query point qx

DS: Interval tree with sorted lists
[Mount]
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Interval tree principle (see lecture 9 - intersections)

L(v)
R(v)

[Vigneron]

L R

M
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Static interval tree [Edelsbrunner80]

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
5 6

[Kukral]

Tree over sorted segment end-points
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Primary structure – static tree for endpoints

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3

v = vertex
d(v)= midpoint of 

segment 
endpoints

5 6

[Kukral]
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Secondary lists – sorted segments in M

1 2 3 4 5 6

1 3 5

2

4

2,4 6,5

1 3
ML(v) MR(v)

ML(v) – intervals containing v
(sorted of ascending lo points)

MR(v) – intervals containing v
(descending 
hi endpoints)

5 6

[Kukral]
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Input:
Output:

(20 / 59)

Interval tree construction
ConstructIntervalTree( S )   // Intervals all active – no active lists

Set S of intervals on the real line – on x-axis
The root of an interval tree for S

1. if (|S| == 0) return null // no more intervals
2. else
3. xMed = median endpoint of intervals in S // median endpoint
4. L = { [xlo, xhi] in S | xhi < xMed } // left of median
5. R = { [xlo, xhi] in S | xlo > xMed } // right of median
6. M = { [xlo, xhi] in S | xlo <= xMed <= xhi } // contains median
7. ML = sort M in increasing order of xlo // sort M
8. MR = sort M in decreasing order of xhi
9. t = new IntTreeNode(xMed, ML, MR) // this node
10. t.left = ConstructIntervalTree(L) // left subtree
11. t.right = ConstructIntervalTree(R) // right subtree
12. return t

[Mount]

Merged procedures from in lecture 09
- PrimaryTree(S)  on slide 33 
- InsertInterval ( b, e, T ) on slide 35



Input:
Output:

(21 / 59)

Line stabbing query for an interval tree
Stab( t, xq)

IntTreeNode t, Scalar xq
prints the intersected intervals

1. if (t == null) return // no leaf: fell out of the tree
2. if (xq < t.xMed) // left of median?
3. for (i = 0; i < t.ML.length; i++)  // traverse ML
4. if (t.ML[i].lo ≤ xq) print(t.ML[i]) // ..report if in range
5. else break // ..else done
6. stab(t.left, xq) // recurse on left
7. else  // (xq ¥ t.xMed) // right of or equal to median
8. for (i = 0; i < t.MR.length; i++) { // traverse MR
9. if (t.MR[i].hi ¥ xq) print(t.MR[i]) // ..report if in range
10. else break // ..else done
11. stab(t.right, xq) // recurse on right

Note: Small inefficiency for xq == t.xMed – recurse on right
[Mount]

Less effective variant of QueryInterval ( b, e, T )
on slide 34 in lecture 09
with merged parts: fork and search right



Complexity of line stabbing via interval tree

 Construction - time
– Each step divides at maximum into two halves or less

(minus elements of M) => tree of height ℎ = ܱ(log ݊)
– If presorted endpoints in three lists L,R, and M 

then median in O(1) and copy to new L,R,M in O(n)]

 Vertical line stabbing query - time
– One node processed in ܱ(1 + ݇′),   ݇′reported intervals– ݒ visited nodes in ܱ(ݒ + ݇), 						݇	total reported intervals– ݒ = ℎ = tree height = ܱ(log ݊)

 Storage -
– Tree has ܱ(݊) nodes, each segment stored twice 

(two endpoints)

݇ = Σ݇′
(18 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree – IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(19 / 59)



Line segment stabbing (IT with range trees)

Enhance 1D interval trees to 2D
– Change 1D test ݍ௫ ∈ ,ݔ ′ݔ

done by interval tree with sorted lists ML and MR
into 2D test ௫ݍ ∈ (−¶ ∶ [	௫ݍ

– and change lines ௫ݍ × [−¶ ∶ ¶] (no y-test)
to segments ݍ௫ × ௬ݍ] ∶ [௬′ݍ (additional y-test)

(20 / 59)



i. Segment intersected by vertical line - 2D

 Query line l ௫ ¶ ¶

 Horizontal segment of M stabs the query 
line l iff its left endpoint lies in 
halph-space ݍ ≔	 (−¶ ∶ [	௫ݍ × [−¶ ∶ ¶]

 In IT node with stored median xMid
report all segments from M

– ML: whose left point lies in (−¶ ∶ [	௫ݍ
if l lies left from xMid

– MR: whose right point lies in [ݍ௫ ∶ +¶)
if l lies right from xMid

l

Inspired by [Berg]

xMidqx

l
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ii. Segment intersected by vertical line segment

 Query segment ݍ ≔ ௫ݍ × ௬ݍ] ∶ [௬′ݍ
 Horizontal segment of ML stabs the query

segment q iff its left endpoint lies in
semi-infinite rectangular regionݍ ≔ (−∞ ∶ [௫ݍ × ௬ݍ] ∶ [௬′ݍ

 In IT node with stored median xMid
report all segments

– ML: whose left points lie in(−∞ ∶ [௫ݍ × ௬ݍ] ∶ [௬′ݍ
where ݍ௫ lies left from xMid

– MR: whose right point lies in[ݍ௫ ∶ +∞) × ௬ݍ] ∶ [௬′ݍ
where ௫ݍ lies right from xMid

[Berg]

xMidqx

(22 / 59)

ML MR



Data structure for endpoints

 Storage of ML and MR
– 1D Sorted lists not enough for line segments
– Use two 2D range trees

 Instead O(n) sequential search in ML and MR
perform O(log n) search 
in range tree with fractional cascading

(23 / 59)



2D range tree (without fractional cascading-more in Lecture 3)

Segment left end-points for ML

segment right end-points for MR

[Mount]

(24 / 59)



Complexity of line segment stabbing

 Construction - O(n log n) time
– Each step divides at maximum into two halves L,R

or less (minus elements of M) => tree height O(log n)
– If the range trees are efficiently build in O(n) after points sorted

 Vertical line segment stab. q. - O(k + log2 n) time
– One node processed in O(log n + k’), k’=reported inter.
– v-visited nodes in O(v log n + k), k=total reported inter.
– v = interval tree height = O(log n)
– O(k + log2 n) time - range tree with fractional cascading
– O(k + log3 n) time - range tree without fractional casc.

 Storage - O(n log n)
– Dominated by the range trees

2D range tree search with Fractional Cascading

(25 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(26 / 59)



iii. Priority search trees [McCreight85]

 Priority search trees – in case c) on slide 9
– Exploit the fact that query rectangle in range queries is 

unbounded (in x direction)
– Can be used as secondary data structures for both left 

and right endpoints (ML and MR) of segments in nodes 
of interval tree – one for ML, one for MR

– Improve the storage to O(n) for horizontal segment 
intersection with window edge (Range tree has O(n log n))

 For cases a) and b) - O(n log n) remains
– we need range trees for windowing segment endpoints 

(27 / 59)



Rectangular range queries variants

 Let P = { p1, p2,…, pn } is set of points in plane
 Goal: rectangular range queries of the form

(–¶ : qx] μ [qy ; q’y ]
 In 1D: search for nodes v with vx œ (–¶ : qx]

– range tree O(log n + k) time
– ordered list O(1 + k) time

(start in the leftmost, stop on v with vx>qx)
– use heap  O(1 + k) time !

(traverse all children, stop when vx>qx)
 In 2D – use heap for points with x œ (–¶ : qx]

+ integrate information about y-coordinate

(28 / 59)



Heap for 1D unbounded range queries

 Traverse all children, stop when vx>qx

 Example: Query (–¶:10]

6

50 100

12

7

9

11

99 19

stop

report

[Berg]

xMidqx

l

(29 / 59)
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Principle of priority search tree

 Heap 
– relation between parent and its child nodes
– no relation between the child nodes themselves

 Priority search tree
– relate the child nodes according to y

≤ ௬
≤ ௬

≤ ௬

(30 / 59)



Priority search tree (PST)
 Heap in 2D can incorporate info about both x,y

– BST on y-coordinate (horizontal slabs) ~ range tree
– Heap on x-coordinate (minimum x from slab along x)

 If P is empty, PST is empty leaf
 else

– pmin = point with smallest x-coordinate in P --- a heap root
– ymed = y-coord. median of points P \ {pmin} --- BST root
– Pbelow := { p œ P \ {pmin} : py § ymed}
– Pabove := { p œ P \ {pmin} : py > ymed}

 Point pmin and scalar ymed are stored in the PST root
 The left subtree is PST of Pbelow

 The right subtree is PST of Pabove

(31 / 59)



Priority search tree construction example
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Priority search tree construction
PrioritySearchTree( P )

set P of points in plane
priority search tree  T

1. if P=« then PST is an empty leaf
2. else
3. pmin = point with smallest x-coordinate in P // heap on x root
4. ymed = y-coord. median of points P \ {pmin} // BST on y root
5. Split points P \ {pmin} into two subsets – according to ymed
6. Pbelow := { p œ P \ {pmin} : py § ymed}
7. Pabove := { p œ P \ {pmin} : py > ymed}
8. T = newTreeNode() Notation in alg: 
9. T.p = pmin // point [ x, y ] … p(v)
10. T.y = ymid // skalar … y(v)
11. T.left = PrioritySearchTree( Pbelow ) … lc(v)
12. T.rigft = PrioritySearchTree( Pabove ) … rc(v)

13. O( n log n ) , but O( n ) if presorted on y-coordinate and bottom up
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Query Priority Search Tree
QueryPrioritySearchTree( T, (–• : qx] ¥ [qy ; q’y ] )

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with qy and q’y in T // BST on y-coordinate – select y range     
Let νsplit be the node where the two search paths split (split node)

2. for each node ν on the search path of qy or q’y // points along the paths
3. if p(ν) œ (–¶ : qx] μ [qy ; q’y ] then report p(ν) // starting in tree root

4. for each node ν on the path of qy in the left subtree of νsplit // inner trees
5. if the search path goes left at ν
6. ReportInSubtree( rc(ν), qx )   // report right subtree
7. for each node ν on the path of q’y in right subtree of νsplit
8. if the search path goes right at ν
9. ReportInSubtree( lc(ν), qx )   // rep. left subtree

[Berg]
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Query Priority Search Tree
QueryPrioritySearchTree( T, (–• : qx] ¥ [qy ; q’y ] )

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with qy and q’y in T // BST on y-coordinate – select y range     
Let νsplit be the node where the two search paths split (split node)

2. for each node ν on the search path of qy or q’y // points along the paths
3. if p(ν) œ (–¶ : qx] μ [qy ; q’y ] then report p(ν) // starting in tree root

4. for each node ν on the path of qy in the left subtree of νsplit // inner trees
5. if the search path goes left at ν
6. ReportInSubtree( rc(ν), qx )   // report right subtree
7. for each node ν on the path of q’y in right subtree of νsplit
8. if the search path goes right at ν
9. ReportInSubtree( lc(ν), qx )   // rep. left subtree

[Berg]
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Query Priority Search Tree
QueryPrioritySearchTree( T, (–• : qx] ¥ [qy ; q’y ] )

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with qy and q’y in T // BST on y-coordinate – select y range
Let νsplit be the node where the two search paths split (split node)

2. for each node ν on the search path of qy or q’y // points along the paths
3. if p(ν) œ (–¶ : qx] μ [qy ; q’y ] then report p(ν) // starting in tree root

4. for each node ν on the path of qy in the left subtree of νsplit // inner trees
5. if the search path goes left at ν
6. ReportInSubtree( rc(ν), qx )   // report right subtree
7. for each node ν on the path of q’y in right subtree of νsplit
8. if the search path goes right at ν
9. ReportInSubtree( lc(ν), qx )   // rep. left subtree

[Berg]



Input:
Output:

(65 / 59)

Query Priority Search Tree
QueryPrioritySearchTree( T, (–• : qx] ¥ [qy ; q’y ] )

A priority search tree and a range, unbounded to the left
All points lying in the range 

1. Search with qy and q’y in T // BST on y-coordinate – select y range
Let νsplit be the node where the two search paths split (split node)

2. for each node ν on the search path of qy or q’y // points along the paths
3. if p(ν) œ (–¶ : qx] μ [qy ; q’y ] then report p(ν) // starting in tree root

4. for each node ν on the path of qy in the left subtree of νsplit // inner trees
5. if the search path goes left at ν
6. ReportInSubtree( rc(ν), qx )   // report right subtree
7. for each node ν on the path of q’y in right subtree of νsplit
8. if the search path goes right at ν
9. ReportInSubtree( lc(ν), qx )   // rep. left subtree

[Berg]
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Reporting of subtrees between the paths
ReportInSubtree( ν, qx )

The root ν of a subtree of a priority search tree and a value qx.
All points in the subtree with x-coordinate at most qx.

1. if ν is not a leaf and x( p(ν) ) § qx // x œ (–¶ : qx] -- heap condition

2. Report p(ν).
3. ReportInSubtree( lc(ν), qx )
4. ReportInSubtree( rc(ν), qx )



Priority search tree query
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Priority search tree query
1. select y range (y-BVS~ 1D range tree)
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Priority search tree query
1. select y range (y-BVS~ 1D range tree)
2. report points on paths (x-heap)
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Priority search tree query
1. select y range (y-BVS~ 1D range tree)
2. report points on paths (x-heap)
3. report subtrees (x-heap)
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Priority search tree complexity

For set of n points in the plane
 Build O(n log n)
 Storage O(n)
 Query O( k + log n)

– points in query range (–¶ : qx] μ [qy ; q’y ])
– k is number of reported points

 Use Priority search tree as associated data
structure for interval trees for storage of M (one
for ML, one for MR)

(37 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree

(38 / 59)



2. Windowing of line segments in general position

[Vakken]

(39 / 59)



 Two cases of intersection
a,b) Endpoint inside the query window => range tree
c) Segment intersects side of query window => ???

 Intersection with BBOX (segment bounding box)?
– Intersection with 4n sides
– But segments may not intersect the window –> query y

Windowing of arbitrary oriented line segments

(40 / 59)
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ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree
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Segment tree [Bentley, 1977]

 Exploits locus approach 
– Partition parameter space into regions of same answer
– Localization of such region = knowing the answer

 For given set S of n intervals (segments) on real line
– Finds m elementary intervals (induced by interval end-points)

– Partitions 1D parameter space into these elementary 
intervals

– Stores intervals si with the elementary intervals
– Reports the intervals si containing query point qx.

p1-∞ p2 p3 p4 +∞ 

(42 / 59)



[p2: p3][p2: p2]

Segment tree example

x

Intervals

Elementary Intervals

[p1: p1]
…

…

Intervals
S = { [x1 : x1’], [x2 : x2’], …,  [xn : xn’] } 
si = [xi : xi’]

(-∞ : p1 ) (p1 : p2 ) (pm : +∞ )

[Berg]
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Segment tree definition

Segment tree
 Skeleton is a balanced binary tree T
 Leaves ~ elementary intervals Int(v)
 Internal nodes v

~ union of elementary intervals of its children 
– Store: 1. interval Int(v) = union of elementary intervals

of its children 
2. canonical set S(v) of intervals [x : x’] œ S

– Holds Int(v) Œ [x : x’] and Int(parent(v)] [x : x’] 
(node interval is not larger than the segment)

– Intervals [x : x’] are stored as high as possible, such that 
Int(v) is completely contained in the segment

segments si

(44 / 59)



Segments span the slab
Segments span the slab of the node, 
but not of its parent
(stored as up as possible)

Int(v2)
Int(v1)

Int(v3)

Int(vj) Œ si

and 
Int(parent(vj)] si

[Berg]

(45 / 59)



Input:
Output:

(93 / 59)

Query segment tree – stabbing query
QuerySegmentTree(v, qx)

The root of a (subtree of a) segment tree and a query point qx
All intervals in the tree containing qx.

1. Report all the intervals si in S(ν). // current node
2. if ν is not a leaf
3. if qx œ Int( lc(ν) ) // go left
4. QuerySegmentTree( lc(ν), qx )
5. else // or go right
6. QuerySegmentTree( rc(ν), qx )

Query time O( log n  + k ), where k is the number of reported intervals
O( 1 + kv ) for one node
Height O( log n ) 



Input:
Output:
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Segment tree construction 
ConstructSegmentTree( S )

Set of intervals S - segments
segment tree

1. Sort endpoints of segments in S -> get elemetary intervals …O(n log 
n)

2. Construct a binary search tree T on elementary intervals …O(n)
(bottom up) and determine the interval Int(v) it represents

3. Compute the canonical subsets for the nodes (lists of their segments):
4. v = root( T )
5. for all segments si = [x : x’] œ S
6. InsertSegmentTree( v, [x : x’] )



Input:
Output:
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Segment tree construction – interval insertion

InsertSegmentTree( v, [x : x’] ) 
The root of (a subtree of) a segment tree and an interval.
The interval will be stored in the subtree.

1. if Int(v) Œ [ x : x’ ] // Int(v) contains si = [ x : x’ ]
2. store [ x : x’ ] at ν
3. else if Int( lc(ν) ) ∩ [ x : x’ ] ∫ «
4. InsertSegmentTree( lc(ν), [x : x’ ] )
5. if Int( rc(ν) ) ∩ [ x : x’ ] ∫ «
6. InsertSegmentTree(rc(ν), [x : x’ ] )

One interval is stored at most twice in one level =>
Single interval insert ܱ log	݊ , insert ݊ intervals ܱ 2݊	log	݊
Construction total ܱ ݊	log	݊

Storage ܱ ݊	log	݊
Tree height ܱ log	݊ , name stored max 2x in one level
Storage total ܱ ݊	log	݊ – see next slide



Space complexity - notes

Worst case – ܱ(݊ଶ) segments in leaf
But 

Store segments as high, as possible
Segment max 2 times in one levelmax4݊ + 1 elementary intervals (leaves)⇒ ܱ ݊ space for the tree⇒ ܱ ݊	log	݊ space for interval names

ݏ covered by ଵݒ and ݒଷ⇒ ଶݒ covered, (ଶݒ)ݐ݊ܫ 	∈ ݏ
As ݒଶ lies between ଵݒ and ݒଷ⇒ ((ଶݒ)ݐ݊݁ݎܽ)ݐ݊ܫ 	∈ ݏ ⇒

segment ݏ	will not be
stored in ݒଶ

ݏ

(49 / 59)

[Berg]

[Berg]

⇐

ݏݏ ݏ



Segment tree complexity

A segment tree for set S of n intervals in the plane, 
 Build O(n log n)
 Storage O(n log n)
 Query O( k + log n)

– Report all intervals that contain a query point
– k is number of reported intervals

(50 / 59)



Segment tree versus Interval tree

 Segment tree
– O(n log n ) storage x O(n) of Interval tree  
– But returns exactly the intersected segments si, interval 

tree must search the lists ML and/or MR 

 Good for 
1. extensions (allows different structuring of intervals) 
2. stabbing counting queries 

– store number of intersected intervals in nodes
– O(n) storage and O(log n ) query time = optimal

3. higher dimensions – multilevel segment trees
(Interval and priority search trees do not exist in ^dims)

(51 / 59)



Talk overview

1. Windowing of axis parallel line segments in 2D
(variants of interval tree - IT)

i. Line stabbing (standard IT with sorted lists )
ii. Line segment stabbing (IT with range trees)
iii. Line segment stabbing (IT with priority search trees)

2. Windowing of line segments in general position
– segment tree
– the algorithm

(52 / 59)



2. Windowing of line segments in general position

qx

qy

q’y

[Vakken]

(53 / 59)



Windowing of arbitrary oriented line segments

 Let S be a set of arbitrarily oriented line segments 
in the plane. 

 Report the segments intersecting a vertical query 
segment q := qx μ [qy : q’y ]

 Segment tree T on x intervals of segments in S
– node v of T corresponds to vertical slab Int(v) μ (-¶ : ¶)
– segments span the slab of the

node, but not of its parent
– segments do not intersect  

=> segments in the slab (node)
can be vertically ordered – BST

[Berg]
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Segments between vertical segment endpoints

 Segments (in the slab) do not mutually intersect
=> segments can be vertically ordered and stored in BST

– Each node v of the x segment tree
has an associated y BST

– BST T(v) of node v stores the canonical subset S(v)
according to the vertical order

– Intersected segments can be found by searching T(v) in
O( kv + log n), kv is the number of intersected segments

(55 / 59)



Segments between vertical segment endpoints

 Segment s is intersected by vert.query segment q iff
– The lower endpoint (B) of q is below s and
– The upper endpoint (A) of q is above s

A

B

q

[Berg]
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Windowing of arbitrary oriented line segments complexity

Structure associated to node (BST) uses storage 
linear in the size of S(v)

 Build O(n log n)
 Storage O(n log n)
 Query O( k + log2 n)

– Report all segments that contain a query point
– k is number of reported segments
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Windowing of line segments in 2D – conclusions 

Construction: all variants O(n logn)
1. Axis parallel Search Memory

i. Line (sorted lists ) O( k + log n)    O(n)

ii. Segment (range trees) O( k + log2 n)   O(n log n)

iii. Segment (priority s. tr.) O( k + log n)     O(n)

2. In general position
– segment tree O( k + log2 n)    O(n log n)
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Talk overview

 Arrangements of lines
– Incremental construction
– Topological plane sweep

 Duality – next lesson

(2 / 55)



Arrangements

 The next most important structure in CG after
CH, VD, and DT

 Possible in any dimension
arrangement of (d-1)-dimensional hyperplanes

 We concentrate on arrangement of lines in plane
 Typical application:  problems of point sets in dual

plane (collinear points, point on circles, …)

(3 / 55)



Some more applications (see CGAL)

 Finding the minimum-area triangle defined by a set of 
points,

 computation of the sorted angular sequences of points,
 finding the ham-sandwich cut, 
 planning the motion of a polygon translating among 

polygons in the plane, 
 computing the offset polygon, 
 constructing the farthest-point Voronoi diagram, 
 coordinating the motion of two discs moving among 

obstacles in the plane, 
 performing Boolean operations on curved polygons.
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Line arrangement

 A finite set L of lines subdivides the plane into a 
cell complex, called arrangement A(L)

 In plane, arrangement defines a planar graph
– Vertices – intersections of (2 or more) lines 
– Edges – intersection free segments (or rays or lines)
– Faces – convex regions containing no line 

(possibly unbounded)

[Mount] (5 / 55)



 Simple arrangement assumption
= no three lines intersect in a single point

– Can be solved by careful implementation or symbolic
perturbation

Line arrangement
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Line arrangement

 Formal problem: graph must have bounded edges
– Topological fix: add vertex in infinity
– Geometrical fix: BBOX, often enough as abstract 

with corners −∞,−∞ , {∞,∞}

[Mount]
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Combinatorial complexity of line arrangement

 O(n2) 
 Given n lines in general position, max numbers are

– Vertices                     - each line intersect n – 1 others

– Edges    n2 - n–1 intersections create n edges
on each of n lines

– Faces 
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f1 = 2 f2 = 4 f3 = 7

n=0

f0 = 1



Construction of line arrangement

(0.  Plane sweep method)
– O(n2 log n) time and O(n) storage

plus O(n2) storage for the arrangement
(n2 vertices, edges, faces. log ݊ଶ - heap & BVS access)  

A.  Incremental method 
– O(n2) time and O(n2) storage
– Optimal method

B.  Topological plane sweep
– O(n2) time and O(n) storage only
– Does not store the result arrangement
– Useful for applications that may throw out the

arrangement after processing

(9 / 55)

݊ଶ log ݊ଶ= 2݊ଶ log ݊= ܱ(݊ଶ log ݊)



A. Incremental construction of arrangement

 2 time, 2 space
~size of arrangement => it is an optimal algorithm 

 Not randomized – depends on n only, not on order
 Add line  one by one ( )

– Find the leftmost intersection with the BBOX
among 2(݅ − 1) + 4	edges already on the BBOX …ܱ(݅)

– Trace the line through the arrangement ܣ(ܮିଵ) and split
the intersected faces …ܱ(݅) – why? See later

– Update the subdivision (cell split) …ܱ(1)
 Altogether 2
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Input:
Output:

A. Incremental construction of arrangement
Arrangement( L )

Set of lines L in general position (no 3 intersect in 1 common point)
Line arrangement A(L) (resp. part of the arrangement stored in
BBOX B(L) containing all the vertices of A(L) )

1. Compute the BBOX B(L) containing all the vertices of A(L) …O(n2)
2. Construct DCEL for the subdivision induced by BBOX B(L)

…O(1)
3. for i = 1 to n do      // insert line li
4. find edge e, where line li intersects the BBOX of 2(i-1)+4 edges …O(i)
5. f = bounded face incident to the edge e
6. while f is in B(L)   (bounded face f  = f is in the BBOX) … O(i)
7. split f and set f to be the next intersected face

across the intersected edge
8. update the DCEL (split the cell) …O(1)

See later…



Tracing the line through the arrangement

 Walk around edges of current face (face walking)
 Determine if the line li intersects current edge e
 When intersection found, jump to the face on the 

other side of edge e

[Berg]

n=8 lines, 7 faces in the zone, 16 edges tested of max 48
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Tracing the line through the arrangement

 Number of traversed edges determines the 
insertion complexity

 Naïve estimation would be 2 traversed edges
( faces,  lines per face, 2 edges)

 According to the Zone theorem, it is edges 
only!

Zone theorem
=  given an arrangement of lines in the plane 

and given any line in the plane, the total number 
of edges in all the cells of the zone ܣ is at 
most . For proof see [Mount, page 69]
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Cell split in O(1)

 1 new vertex 
 2 new face records, 1 face record ( f ) destroyed
 3x2 new  half-edges, 2 half-edges destroyed  
 update pointers    … O(1)

[Berg]
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Complexity of incremental algorithm

 n insertions
 time for one line insertion

instead of O(i2) 
(Zone theorem)

=> Complexity: 2 2
bbox edges walked

(15 / 55)



B. Topological plane sweep algorithm

 Complete arrangement needs 2 storage
 Often we need just to process each arrangement 

element just once – and we can throw it out then
 Classical Sweep line algorithm (for arrangement of lines)

– needs ܱ(݊) storage
– needs log	݊ for heap manipulation in ܱ(݊2) event points
=> ܱ(݊2	log	݊ )	algorithm

 Topological sweep line - TSL
– no ܱ(log	݊ ) factor in time complexity
– array of n neighbors and a stack of ready vertices 	ܱ(1)
=> ܱ(݊2) algorithm

(16 / 55)



Illustration from Edelsbrunner & Guibas
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Topological line (curve)
(an intuitive notion)

 Monotonic curve in y-dir
 intersects each line 

exactly once 
(as a sweep line)

Cut in an arrangement A
 is an ordered sequence of edges c1, c2,…,cn in A 

(one taken from each line), such that for 1 § i § n-1, 
ci and ci+1 are incident to the same face of A and 
ci is above and ci+1 below the face

 Edges in the cut are not necessarily connected (as c2 and c3)

Topological line and cut
1

2

3

4
5 Topological line
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Topological plane sweep algorithm
 Starts at the leftmost cut

– Consist of left-unbounded edges of A (ending at –¶)
– Computed in O(n log n) time – order of slopes

 The sweep line is
– pushed from the leftmost cut to the rightmost cut
– Advances in elementary steps

 Elementary step
= Processing of any ready vertex

(intersection of consecutive edges at their right-point)
– Swaps the order of lines along the sweep line
– Is always possible (e.g., the point with smallest x)
– Searching of smallest x would need O(log n) time …

ready 
vertex

topological 
sweep line
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Step 0 – the leftmost cut

Topological line

1

2

3

4
5

c1

c2

c3

c4

c5

ci = ordered sequence of edges along the topological sweep line

Slope

ready
vertex

ready
vertex
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Step 1 – after processing of c4 x c5

Topological line

1

2

3

4
5

c1

c2

c3
c4 c5

Slope

ready
vertex

ready
vertex
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Step 2 – after processing of c3 x c4

1

2

3

4
5

Topological line

1

2

3

4
5

c1

c2

c3

c5

c4

Slope
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How to determine the next right point?

 Elementary step (intersection at edges right-point)
– Is always possible (e.g., the point with smallest x)
– But searching the smallest x would need O(log n) time
– We need O(1) time

 Right endpoint of the edge in the cut results from
– a line of smaller slope intersecting it from above (traced 

from L to R) or
– line of larger slope intersecting it from below.

 Use Upper and Lower Horizon Trees (UHT, LHT)
– Common segments of UHT and LHT belong to the cut
– Intersect the trees, find pairs of consecutive edges
– use the right points as legal steps (push to stack)

Slope

(23 / 55)
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Upper and lower horizon tree

 Upper horizon tree (UHT)
– Insert lines in order of decreasing slope (cw)
– When two edges meet, keep the edge with higher slope

and trim the inserted edge (with lower slope)
– To get one tree and not the forest of trees (if not 

connected) add a vertical line in +¶ (slope +90°)
– Left endpoints of the edges in the cut 

do not belong to the tree

 Lower horizon tree (LHT) construction is symmetrical
 UHT and LHT serve for right endpts determination

(24 / 55)



Upper horizon tree (UHT) – initial tree 

Insert lines in order of decreasing slope (“cw”)

Topological line

1

2

3

4
5

Slope
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Lower horizon tree (LHT) – initial tree 

Insert lines in order of increasing slope (“ccw”)

Topological line
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4
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Slope
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Overlap UHT and LHT – detect ready vertices

Topological line

1
2

3

4
5

Topological line

1
2

3

4
5

UHT LHT

6 6

Topological line

1
2

3

4
5

Overlap

6

ready
vertex

ready
vertex
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Upper horizon tree (UHT) – init. construction

 Insert lines in order of decreasing slope (cw)
 Each new line starts above all the current lines
 The uppermost face = convex polygonal chain
 Walk left to right along the chain

to determine the intersection
 Never walk twice over a segment

– Such segment is no longer part of 
the upper chain

– O(n) segments in UHT 
=> O(n) initial construction

(after n log n sorting of the lines ~slope)

(28 / 55)



Upper horizon tree (UHT) – update 

l

Ready vertex

(29 / 55)

 After the elementary step
 Two edges swap position along 

the sweep line
 Lower edge l (lower slope, comes from above)

– Reenter to UHT
– Terminate at nearest edge of UHT
– Start in edge below in the current cut
– Traverse the face in CCW order
– Intersection must exist, as l has lower

slope than the other edge from v
and both belong to the same face



Data structures for topological sweep alg.

Topological sweep line algorithm uses 5 arrays:

1) Line equation coefficients – E [1:n]
2) Upper horizon tree – UHT [1:n]
3) Lower horizon tree – LHT [1:n]
4) Order of lines cut by the sweep line – C [1:n]
5) Edges along the sweep line – N [1:n]
6) Stack for ready vertices (events) – S

(n number of lines)

(30 / 55)



1) Line equation coefficients E [1:n]

 Array of line equation coefs. E
– Contains coefficients ai and bi

of line equations  y = aix + bi

– E is indexed by the line index
– Lines are ordered according to

their slope (angle from -90° to
90°)

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

1
2

3
4
5

(6)

In
di

ce
s 

of
 li

ne
s

Slope

(31 / 55)



2) and 3) – Horizon trees UHT and LHT

 Store pairs of line indices in E 
that delimit segment li to the left 
and to the right  

 Segments are half open
 Unlimited line has “indices”

(–¶, +¶] (+¶, –¶]
 One additional vertical line

– prevents the tree from splitting into 
forest of trees

– is inserted first and never trimmed
– is (–¶, +¶] for UHT
– is (+¶, –¶] for LHT

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ −∞

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +∞

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

6 6

Their intersection is
used for searching
of legal steps
(right points)
- the shorter edge wins

(32 / 55)



4) Order of lines cut by sweep line – C [1:n] 

 The topological sweep line cuts each line once
 Order of the cuts (along the topological sweep 

line) is stored in array C as a sequence of line 
indices

 Array C “points” to the array E 
of line equations

 For the initial leftmost cut, 
the order is the same as in E

 Index ci addresses i-th line from top
along the sweep line

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines

(33 / 55)



5) Edges along the sweep line – N [1:n]

 Edges intersected by the topological sweep line are
stored here (edges along the sweep line)

 Instead of endpoints themselves, we store the
indices of lines whose intersections delimit the edge

 Order of these edges is
the same as in C
(both use the index ci)

 Index ci stores the index
of i-th edge from top along
the sweep line

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

CUT edges N
Pairs of line indices
delimiting the edge 

(34 / 55)

The first edge 
along the sweep line: 
- lies on line C[c1] 
- Comes from infinity 
- is delimited by edge E[2]



6) Stack S

 The exact order of events is not important
(event = intersection in ready vertex)

 Alg. can process any of the “ready vertex”
 Event queue is therefore replaced by a stack

(faster: O(1) instead of O(log n) for queue)
 The stack stores just the upper edge ci

from the pair intersecting in ready vertex
 Intersection in the ready vertex

is computed between stored ci and ci+1
c4

c1

Stack S
Ready vertex 
first edge idx

(35 / 55)

c4 x c5
c1 x c2



Topological sweep line demo

Input 
 set of lines L in the plane
 ordered in increasing slope 

( -90° to 90°), simple, 
not vertical 

 line parameters in array E

1
2

3
4
5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

(36 / 55)

Slope

In
di

ce
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of
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ne
s
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of
 li

ne
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1) Initial leftmost cut - C

 Store the indices of lines in E
into the Cut lines array C
in increasing slope order

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

CUT Lines C
Indexes of sup-

porting lines

(37 / 55)
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1) Initial leftmost cut - N

 Prepare array N for endpoints of
the cut edges (resp. for line
indices delimiting these edges)

 Init it by line “ends” −∞,+∞
1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

indices of lines

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

(38 / 55)



1) Initial leftmost cut - N

 Prepare array N for endpoints of 
the cut edges (resp. for line 
indices delimiting these edges)

 Init it by line “ends” −∞,+∞
1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Array of line
equations E

y = aix + b

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

indices of lines

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

(38 / 55)

Index of delimiter edge in	−∞



2a) Compute Upper Horizon Tree - UHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 3
c4 4
c5 5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5
Topological line

1
2

3
4
5

6

UHT

Additional “help edge“
Unlimited, bottom-up
Inserted first, never changed

(39 / 55)

Order of 
insertion 
into UHT



2b) Compute Lower Horizon Tree - LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ ¶

c2 −∞ ¶

c3 −∞ ¶

c4 −∞ ¶

c5 −∞ ¶

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

Inserted first, never changed
top to bottom

(40 / 55)

Order of 
insertion 
into LHT



Intersect the trees – take the shorter edge

3a) Determine right delimiters of edges - N

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6
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Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

(42 / 55)



Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

(42 / 55)
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Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

(42 / 55)

c1



Compute intersections of neighbors – push into stack

3b) Ready vertices = inters. of neighbors – S 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 4
c5 5

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

(42 / 55)
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4a) Pop ready vertex from S – process c4 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 4
c5 5

c1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 5
c5 −∞ 4

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

(43 / 55)

c4
c1



4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

Topological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 4
c5 −∞ 5

1 −∞ 6
2 −∞ 1
3 −∞ 1
4 −∞ 3
5 −∞ 4
6 +∞ –¶

1 −∞ 2
2 −∞ 5
3 −∞ 5
4 −∞ 5
5 −∞ 6
6 −∞ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

6 6

(44 / 55)

c1



4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 −∞ 2
c2 −∞ 1
c3 −∞ 5
c4 −∞ 4
c5 −∞ 5

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
partTopological line

1
2

3
4
5

CUTc1

c2

c3
c4

c5

(45 / 55)
Note:            Edges are half open to prevent the tree after reinsertion

c1



Intersct the trees

4d) Determine new cut edges endpoints – N 

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersect the trees – take the shorter edge

(46 / 55)

c1



4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

(47 / 55)

c1



4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

(47 / 55)

c1



4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

(47 / 55)

c1



4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack

(47 / 55)

c1



4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 3
c4 5
c5 4

c1

c2

c3
c4 c5

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
upper edge idx

Array of line
equations E

y = aix + b

6 6

Reentered
part

Intersections of neighbors - into stack
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4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6
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4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6
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4a) Pop ready vertex from S – process c3

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

c1 1
c2 2
c3 3
c4 5
c5 4

c1 –¶ 2
c2 –¶ 1
c3 –¶ 5
c4 4 3
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4

6 6
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c1

4b) Swap lines c4 and c5 – swap 4 and 5

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

Topological line

1
2

3
4
5Topological line

1
2

3
4
5

UHT LHT

Topological line

1
2

3
4
5

CUT

c1 1
c2 2
c3 5
c4 3
c5 4

c1

c2

c3

c5

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 –¶ 1
4 5 3
5 4 3
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 –¶ 5
4 5 6
5 4 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

c4

6 6
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4c) Update the horizon trees – UHT and LHT

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 4 3
c4 –¶ 5
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6Topological line

1
2

3
4
5

CUTc1

c2

c3

c5
c4
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4d) Determine new cut edges endpoints

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

Intersect the trees – take the shorter edge

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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c4
c1

4e) Intersect with neighbors – push into S

1 a1 b1

2 a2 b2

3 a3 b3

4 a4 b4

5 a5 b5

c1 1
c2 2
c3 5
c4 3
c5 4

c1 –¶ 2
c2 –¶ 1
c3 3 1
c4 5 4
c5 5 3

1 –¶ 6
2 –¶ 1
3 5 1
4 5 3
5 3 1
6 +¶ –¶

1 –¶ 2
2 –¶ 5
3 5 4
4 5 6
5 3 6
6 –¶ +¶

UHT array 
Delimiting 

lines indices

LHT array 
Delimiting 

lines indices

CUT edges N
Pairs of line indices
delimiting the edge 

CUT Lines C
Indexes of sup-

porting lines

Stack S
Ready vertex 
first edge idx

Array of line
equations E

y = aix + b

Topological line

UHT

6

1
2

3
4
5 Topological line

1
2

3
4
5

LHT

6

1
2

3
4
5Topological line

1
2

3
4
5

CUTc1

c2
c3

c5

c4
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Input:
Output:

Topological sweep algorithm
TopoSweep(L)

Set of lines L sorted by slope (-90° to 90°), simple, not vertical
All parts of an Arrangement A(L) detected and then destroyed

1. Let C be the initial (leftmost) cut – lines in increasing order of slope
2. Create the initial UHT and LHT incrementally:

a) UHT by inserting lines in decreasing order of slope
b) LHT by inserting lines in increasing order of slope

3. By consulting UHT and LHT
a) Determine the right endpoints N of all edges of the initial cut C
b) Store neighboring lines with common endpoint into stack S

(initial set of ready vertices)
4. Repeat until stack not empty

a) Pop next ready vertex from stack S (its upper edge ci )
b) Swap these lines within the cut C (ci <-> ci+1 )
c) Update the horizon trees UHT and LHT (reenter edge parts )
d) Consulting UHT and LHT determine new cut edges endpoints N
e) If new neighboring edges share an endpoint -> push them on S

Slope



4d) Determining cut edges from UHT and LHT

 for lines i = 1 to n
– Compare UHT and  LHT edges on line i
– Set the cut lying on edge i to the shorter edge of these 

 Order of the cuts along the sweep line
– Order changes only at the intersection v (neighbors)
– Order of remaining cuts not incident with intersection v

does not change

 After changes of the order, test the new neighbors 
for intersections

– Store intersections right from sweep line into the stack

(54 / 55)



Complexity

 O(n2) intersections  
=> O(n2) events (elementary steps)

 O(1) amortized time for one step – 4c) 

=> O(n2) time for the algorithm

Amortized time 
=  even though a single elementary step can take 

more than O(1) time, the total time needed to 
perform O(n2) elementary steps is O(n2), hence 
the average time for each step is O(1).
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References
[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars: 

Computational Geometry: Algorithms and Applications, Springer-Verlag, 
3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-77973-5, 
Chapters 8., http://www.cs.uu.nl/geobook/

[Mount] Mount, D.: Computational Geometry Lecture Notes for Fall 2016, 
University of Maryland, Lectures 14, 15, and 27.
http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

[Edelsbrunner] Edelsbrunner and Guibas. Topologically sweeping an arrangement. 
TR 9, 1986, Digital www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-
9.pdf

[Rafalin] E. Rafalin, D. Souvaine, I. Streinu, "Topological Sweep in Degenerate 
cases", in Proceedings of the 4th international workshop on Algorithm 
Engineering and Experiments, ALENEX 02, in LNCS 2409, Springer-
Verlag, Berlin, Germany, pages 155-156. 
http://www.cs.tufts.edu/research/geometry/other/sweep/paper.pdf

[Agarwal] Pankaj K. Agarwal and Mica Sharir. Arrangements and Their 
Applications, 1998, http://www.math.tau.ac.il/~michas/arrsurv.pdf

(56 / 55)



DUALITY AND 
APPLICATIONS OF ARRANGEMENTS

PETR FELKEL
FEL CTU PRAGUE

Version from 5.2.2017



Felkel: Computational geometry

(2)

Talk overview

 Duality
1. Points and lines
2. Line segments
3. Polar duality (different points and lines)
4. Convex hull using duality

 Applications of duality and arrangements
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1. Duality of lines and points in the plane

 Points and lines - both have 2 parameters:
– Points – coords x and y
– Lines  – slope k and y-intercept q

y = kx + q

 We can simply map points and lines 1:1
 Many mappings exist – it depends on the context

φ
q k = tg φ
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Why to use duality?

Some reasons why to use duality:
 Transforming a problem to dual plane may

give a new view on the problem
 Looking from a different angle may

give the insight needed to solve it
 Solution in dual space may be even simpler
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Definition of duality transformation D

Let D be the duality transform:
 Point p = [ px, py ] is transformed 

to line Dp = p* := ( b = pxa – py )
 Line  l : ( y = ax – b ) is transformed 

to point Dl = l* := [ a, b ]

p
l

x

y

a

b

p*

l*

Primal plane (xy) Dual plane (ab)

variables

constants
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Example and more about duality D

 Example: 
line y = 5x – 3 
can be represented as point y*=[5, 3]

 Duality D 
– is its own inverse DDp = p, DDl = l
– cannot represent vertical lines

=>Take vertical lines as special cases, use lexico-
graphic order, or rotate the problem space slightly.

– Primal plane – plane with coordinates x, y
– Dual plane* – plane with coordinates a, b 

See the [applet]
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]




line p* := (b = pxa – py )
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)


line p* := (b = pxa – py )
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)


line p* := (b = pxa – py )
Point l* = [ a, – b ]
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)


line p* := (b = pxa – py )
Point l* = [ a, – b ]
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py )
Point l* = [ a, – b ]
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py )
Point l* = [ a, – b ]




Felkel: Computational geometry

(7)

Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py )
Point l* = [ a, – b ]
Point l* = [ a, b ]
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py )
Point l* = [ a, – b ]
Point l* = [ a, b ]
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Duality of lines and points in the plane
Primal plane Dual plane

a

b

[Berg]

l

l*

point p = [ px, py ]
line l := (y = ax + b)
line l := (y = ax – b)

line p* := (b = pxa – py )
Point l* = [ a, – b ]
Point l* = [ a, b ]

Same form => It is convenient to negate b in the 
line equation
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Why is b negated in the line equation?

 In primal plane, consider
– point p = [ px, py ] and
– set of non-vertical lines li :y = aix – bi

passing through p satisfy the equation  py = aipx – bi
(each line with different constants ai,bi)

 In dual plane, these lines transform to collinear
points { li* = [ai,bi] : bi = pxai – py }

Same form =>
It is convenient to 

negate b in the 
line equation

p = [px, py ]

l3*= [a3,b3]
a

by

x

l1

l2

l3: y=a3x – b3



If b not negated in the line equation…
Lines li have equartion li :y = aix – bi OR y = aix + bi

Passing through point p = [ px, py ] :

 With minus
– equation li:  py = aipx – bi

dual points {li * = [ai,bi] : bi = pxai – py } … same form

 With plus
– equation li: py = aipx + bi

dual {li * = [ai,bi] : bi = – pxai + py }    … different form

Felkel: Computational geometry

(9)
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Properties of points and lines duality

Incidence is preserved
 Point p is incident to the line l in primal plane

iff
point l* is incident to the line p* in the dual plane.

 Lines l1, l2 intersects at point p
iff
line p* passes through points l1*, l2*.
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Properties of points and lines duality

But order is reversed
 Point p lies above (below) line l in the primal plane

iff
line p* passes below (above) point l* in the dual
plane    Or said order is preserved: … iff Point l* lies above (below) line p*

l*

p*
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Properties of points and lines duality

Collinearity
 Points are collinear in the primal plane iff their

dual lines intersect in a common point

 This does not hold for points on vertical line

m*
p*

r*

q*p

r

q

m

a

b

x

y
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 Dual transform is undefined for vertical lines
– Points with the same x coordinate dualize to lines with

the same slope (parallel lines) and therefore
– These dual lines do not intersect (as should for collinear points)

– Vertical line through these points does not dualize to an
intersection point

– For detection of vertically collinear points use other
method - O(n) vertical lines -> O(n2) brute force  3|| lines s.

-> O(n)  after O(n log n) 
sorting by x

Handling of vertical lines

p*
q*
r*

p
q

r Vertical distances of such duals 
are “preserved”. For px = qx

vertDist(q*b, p*b) = py – qy

a

by

x
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2. Duality of line segments

 Line segment s
= set of collinear points ––> set of lines passing one point
– union of these lines is a (left-right) double wedge s*

p

q

m

s

m*

q*

p*

s*

dual 

left

right wedgetop

bottom wedges*

Dvojitý klín
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 Line b intersects line segment s
– if point b* lays in the double wedge s*,

i.e., between the duals p*,q* of segment endpoints p,q
– point p lies above line b    and   q lies below line b
– point b* lies above line p* and   b* lies below line q*

p

q

m

s

a

b

c
m*

q*

p*

s*

s*

b*

a*

c*

Intersection of line and line segment
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3. Polar duality (Polarity)

 Another example of point-line duality
 In 2D: Point p = (px, py) in the primal plane

corresponds to a line Tp with equation ax + by = 1
in the dual plane and vice versa

 In dD: Point p is taken as a radius-vector (starts
in origin O). The dot product (p . x) = 1 defines a
polar hyperplane p* = Tp = { x Rd : (p . x) = 1 }

 Used in theory of polytopes

px x + py y = 1 
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Polar duality (Polarity)

 Geometrically in 2D, this means that
– if d is the distance from the origin(O) to the point p,

the dual Tp of p is the line perpendicular to Op at
distance 1/d from O and placed on the other side of O.

[Goswami]

p

1

d

Unit circle

1/d

Tp
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4. Convex hull using duality – definitions

 An optimal algorithm
 Let P be the given set of n points in the plane.
 Let pa P be the point with smallest x-coordinate
 Let pd P be the point with largest x-coordinate

Both pa and pd CH(P)
Upper hull = CW polygonal chain

pa,…, pd along the hull
Lower hull = CCW polygonal chain

pa,…, pd along the hull

pa

pd

lower hull

upper hull
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Definitions

 Let L be a set of lines in the
plane

 The upper envelope is a
polygonal chain Eu such that
no line l L is above Eu.

 The lower envelope is a
polygonal chain EL such that
no line l L is below EL.

[Goswami]
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Connection between Hull and Envelope

ps

lc*

lb*

la*

ps*

ld*

le*

pd

pb

pc

Pa

pe

la

lb
lc

ld
le

ps

p*e

[Goswami]
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Connection between Hull and Envelope

Upper hull (lower hull) in primal 
plane corresponds to the 
lower envelope (upper envelope) in 
the dual plane.

Thus the problem of computing convex hull of a 
point set in the primal plane reduces to the problem 
of computing upper and lower envelopes of the line 
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*
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Connection between Hull and Envelope

Upper hull (lower hull) in primal 
plane corresponds to the 
lower envelope (upper envelope) in 
the dual plane.

Thus the problem of computing convex hull of a 
point set in the primal plane reduces to the problem 
of computing upper and lower envelopes of the line 
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*
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Connection between Hull and Envelope

Upper hull (lower hull) in primal 
plane corresponds to the 
lower envelope (upper envelope) in 
the dual plane.

Thus the problem of computing convex hull of a 
point set in the primal plane reduces to the problem 
of computing upper and lower envelopes of the line 
set in the dual plane.

pd

pb

pc

Pa

pe

la

lb
lc

ld
ly

ps

la*

lb*

lc*

ps*

ld*

le*

[Goswami]

la*

lb*

lc*

le

pc*

pa*

pb*

pd*
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Input:
Output:

UpperEnvelope(L)
Set of lines L sorted by increasing order of slopes (-90° to 90°)
Polygonal chain O representing the upper hull

1. O = L1 // the only complete line in O
2. for i = 2 to n
3. L = last entry in O // O contains half-lines, or line segments,

//  except of complete line L1
4. while( the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)
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//  except of complete line L1
4. while( the line segment L does not intersect line Li)
5. remove L from O and replace L with its predecessor // L2, L5
6. insert the line segment Li at the tail of the list O (trim L, trim Li)
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Convex hull via upper and lower envelope

 Upper envelope complexity
– After sorting n lines by their slopes in O(n logn) time, 

the upper envelope can be obtained in O(n) time
– Proof: It may check more than one line segment when 

inserting a new line, but those ones checked are all 
removed except the last one.
(O(n) insertions, max O(n) removals 
=> O(n) all steps. Average step O(1) amortized time)

 Convex hull complexity
– Given a set P of n points in the plane, CH(P) can be 

computed in O(n log n) time using O(n) space.
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Applications of line arrangement

Examples of applications – solved in O(n2) and 
O(n2) space by constructing a line arrangement or 
O(n) space through topological plain sweep.

a) General position test: 
Given a set of n points in the plane, determine 
whether any three are collinear.

– Construct an arrangement in dual plane
– Report intersections of more than 2 lines 

a

b
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b) Minimum k-corridor

 Given a set of n points, and an integer k [ 1 : n ],
determine the narrowest pair of parallel lines that
enclose at least k points of the set.

 The distance between the lines can be defined
– either as the vertical distance between the lines
– or as the perpendicular distance between the lines

 Simplifications
– Assume k = 3 and no 3 points are collinear

=> narrowest corridor  - contains  exactly 3 points
- has width > 0

– No 2 points have the same x coordinate (avoid I duals)

vertical
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b) Minimum k-corridor

 Vertical distance of la,lb = (-) distance of la*,lb*
 Nearest lines – one passes 2 vertices, e.g.,  p & r
 In dual plane are represented as intersection p* r*
 Find nearest 3-stabber similarly as trapezoidal map
 O(n2) time and O(n) space – topological line sweep

[Mount]
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c) Minimum area triangle             [Goswami]

 Given a set of n points in the plane, determine the
minimum area triangle whose vertices are selected
from these points

 Construct “trapezoids” as in the nearest corridor
 Minimize perpendicular distances (converted from

vertical) multiplied by the distance from pi to pj

[Goswami]
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 Natural application of duality and arrangements
 Important for visibility graph computation
 Set of n points in the plane
 For each point perform an CCW angular sweep
 Naïve: for each point compute angles to 

remaining n – 1  points and sort them
 => O(n log n) time per point 
 O(n2 log n) time overall
 Arrangements can get rid of O(log n) factor

d) Sorting all angular sequences – naïve
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d) Sorting all angular sequences – optimal 

 For point pi
– Dual of point pi is line pi*
– Line pi* intersects other dual lines in order of slope

(angles from -90° to 90°)                         (180°)
– We need order of angles around pi

(angles from -90° to 270°) (360°)

– Split points in primal plane by vertical line through pi

– First, report intersections of points right of pi

– Second, report the intersections of points left of pi

– Once the arrangement is constructed:
O(n) time for point, O(n2) time for all n points
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d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane



Felkel: Computational geometry

(30)

d) Angular sequence around p9

p9

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

*p9

p1

In primal plane In dual plane
Point order around p9 : p1, p2, p3, p4, p5, p6, p7, p8



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane



Felkel: Computational geometry

(31)

d) Angular sequences around p3

p1

p2p3

p4

p5

p6

p7

p8

*p4

*p5

*p6

*p7*p8

*p1

*p2
*p3

p9

*p9

In primal plane In dual plane
Point order around p3 : p2, p4, p5, p6, p7, p8, p3, p1



Felkel: Computational geometry

(32)

d) Angular sequences around p4
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e) More applications of line arrangement

Visibility graph
Given a set of n non-intersecting line segments, 
compute the visibility graph, whose vertices are 
the endpoints of the segments, and whose edges 
are pairs of visible endpoints 
(use angular sequences).

Maximum stabbing line 
Given a set of n line segments in the plane, 
compute the line that stabs (intersects) the 
maximum number of these line segments.
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More applications of line arrangement

Ham-Sandwich cut
Given two sets of points, n red and m blue points 
compute a single line that simultaneously bisects 
both sets
Principle – intersect middle levels of arrangements

Point at k-th level Lk has 
at most k lines above and 
at most n – k – 1 lines below

level5

level4

level0 level1

level2
level3

[Mount][Goswami]
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Modern algorithms
1. Computational geometry today
2. Space efficient algorithms 

(In-place / in situ algorithms)
3. Data stream algorithms
4. Randomized algorithms
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Computational geometry today

 Popular: beauty as discipline, wide applicability
 Started in 2D with linear objects (points, lines,…),

now 3D and nD, hyperplanes, curved objects,…
 Shift from purely mathematical approach and

asymptotical optimality ignoring singular cases
 to practical algorithms, simpler data structures

and robustness => algorithms and data structures
provable efficient in realistic situations (application
dependent)

Felkel: Computational geometry

(3)



Felkel: Computational geometry

Space efficient algorithms

(4)



Felkel: Computational geometry

Space efficient algorithms

 output is in the same location as the input and
 need only a small amount of additionally memory

– in-place – O(1) extra storage
sometimes including O(log n) bits for indice

– in situ – O(log n) extra storage

(5)
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Space efficient algorithms - practical advantages

 Allow for processing larger data sets
– Algorithms with separate input and output 

need space for 2n points to store – O(n) extra space
– Space efficient algs. – n points + O(1) or O(log n) space

 Greater locality of reference
– Practical for modern HW with memory hierarchies

(e.g., main RAM – ram on chip – registers, caches, disk 
latency, network latency )

 Less prone to failure
– no allocation of large amounts of memory, which can 

fail at run time
– good for mission critical applications

 Less memory => faster program

(6)



Ex: String reverse
function reverse(a[0..n])

allocate b[0..n]
for i from 0 to n

b[n-i] = a[i]
return b×

function reverseInPlace(a[0..n])
for i from 0 to floor(n/2)

swap (a[n-i], a[i])
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In-place sorting

 In array – continuous block in memory
– nth element in ܱ(1) time
– Select sort, insert sort … in-place,ܱ(1)	additional memory, ܱ(݊2) time
– Heapsort – in-place, ܱ(1)	add. memory, ܱ(݊	log	݊) time
– Quicksort – in-situ, ܱ(log ݊)	add. memory for recursion
– Mergesort – not in-place, not in-situ, ܱ(݊)	add. memory

 In list – linked lists in dynamical memory
– nth element in ܱ(݊) time
– Mergesort –in-situ, ܱ(log ݊)	add. memory, ܱ(݊ log ݊)	time

Felkel: Computational geometry
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Input:
Output:

Graham in-place algorithm

Felkel: Computational geometry

Graham-InPlaceScan(ܵ, ݊, ݀)ܵ – index to array of length ݊ with points in plane, ݀ = ±1 direction
Convex Hull in clockwise order

// ݀ controls the sort direction:
1. InPlace-Sort(ܵ, ݊, ݀) // ݀ = 			1 sort ascending    for upper hull 
2. ℎ	 ← 	1	 // empty stack // ݀ = −1	sort descending  for lower hull
3. for ݅	 ← 	1	. . . ݊	 − 	1 do
4. while ℎ	 ≥ 	2	and not right turn(	ܵ[ℎ	 − 	2], ܵ[ℎ	 − 	1], ܵ[݅] ) do
5. ℎ	 ← 	ℎ	 − 	1 // pop top element from the stack 
6. swap ܵ[݅] 	↔ 	ܵ[ℎ] // push the new point to the stack
7. ℎ	 ← 	ℎ	 + 	1 // increment stack length
8. return ℎ // end of convex hull (the first point above the stack)

The array: ܵ = offset of the sub-array (index of its first point)ℎ = index of the first point above the stack (offset to ܵ)݅ = index of the current point

TOSTOS-1 NEW

(9 / 38)



Graham in-place algorithm
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Upper Hull ℎ
TOS

Below Hull ݅ Unprocessed points

PUSH
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Input:
Output:

Graham in-place algorithm
Graham-InPlaceHull(ܵ, ݊)ܵ – an array of length ݊ with points in plane

Convex Hull in clockwise order (CW)
O(n log n)

1. ℎ← Graham-InPlaceScan(ܵ, ݊, 1)    // 1= ascending – CW upper hull
2. for ݅ ← 0 . . ℎ	 − 	2	do
3. swap ܵ[݅] 	↔ 	ܵ[݅	 + 	1] // bubble ܽ to the right O(h)
4. ℎ′	← Graham-InPlaceScan(ܵ	 + 	ℎ	 − 	2, ݊	 − 	ℎ	 + 	2, −1)  // lower hull
5. return ℎ	 + 	ℎ′	 − 	2
Principle:
Stack at the beginning of the array ܵ on indices [0	. . 	ℎ	 − 	1]
Exchange by swap operation
We need the in-place sort

Felkel: Computational geometry
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Graham in-place algorithm
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[BrönnimannC]

0 h-1 n-1
Sort first

Sort first ܾ stays left ܽ moves right

stack
Points below CH

ℎ
ܵ + ℎ − 2

ܽ left CH pointܾ right CH point
ܽ ܾ

(12)
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Optimized Graham in-place algorithm

above ܽ, ܾ below	ܽ, ܾ

[BrönnimannC]

ܽ ܾ

Sort first ܾ stays left ܽ moves right

(13)
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Data stream algorithms [Indyk]

 Data stream = a massive sequence of data
– Too large to store (on disk, memory, cache,…)

 Examples
– Network traffic
– Database transactions
– Sensor networks
– Satellite data feeds
– …

 Approaches
– Ignore it (CERN ignores 9/10 of the data)
– Develop algorithms for dealing with such data

(15)



Motivation example [Muthukrishnan]

 Paul presents numbers in random 
order, one number missing

 Carole must determine the missing number
but has only bits of memory

 Compute the sum of the numbers and subtracts 
the incoming numbers one by one. 

ழ
 The missing number “remains”

Felkel: Computational geometry

Any idea?
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Motivation example [Muthukrishnan]

 And two missing numbers ?

 Store sum of numbers and sum of squares ᇱ
݅ + ݆ = 	݊(݊ + 1)2 	− 2݅ݏ + ݆2 = 	݊(݊ + 1)(2݊ + 1)6 	− ′ݏ

(this principle is applicable for ݇-missing numbers)
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Basic data stream model [Indyk]

 Single pass over the data: 1 2 ݊
– Typically ݊ is known

 Bounded storage (typically ఈ or  or only )
– Units of storage: bits, words, or elements

(such as points, nodes/edges, …)
– Impossible to store the complete data

 Fast processing time per element
– Randomness is OK (in fact, almost necessary)
– Often sub-linear time for the whole data
– Often approximation of the result

Felkel: Computational geometry

(18)



Data stream models classification

 Input stream 1 2 
– arrives sequentially, item by item
– describes an underlying signal ܣ, 

a 1D function :ܣ	1]. . ܰ] 	−> 	ܴ
 Models differ on how the input ݅’s describe the 

signal for increasing 
(in increasing order of generality):

a) Time series model  - ܽ݅ equals to signal ܣ ݅
b) Cash register model- ܽ݅ are increments to ܣ ݆ , ܫ 	> 	0
c) Turnstile model - ܽ݅ are updates to ܣ ݆ , ܷ݅ ∈ ܴ	

Felkel: Computational geometry
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a) Time series model (časová řada)

 Stream elements ݅ are equal to
( ݅’s are samples of the signal)

 ݅’s appear in increasing order of ( )

 Applications
 Observation of the traffic on IP address each 5 minutes
 NASDAQ volume of trades per minute
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b) Cash register model (pokladna)

 ݅ are increments to signal ᇱ
 Stream elements ܽ݅ = (݆, 	݅ܫ		 ,(݅ܫ ≥ 	0 to mean݅ܣ ݆ = ିଵܣ ݆ + ܫ

where                                                 ( )– ݅ܣ ݆ is the state of the signal after seeing ݅-th item
– multiple ܽ݅ can increment given ܣ ݆ over time

 A most popular data stream model
– IP addresses accessing web server (histogram)
– Source IP addresses sending packets over a link
– access many times, send many packets,…
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c) Turnstile model (turniket)
 ܽ݅ are updates to signal ܣ ݆ ᇱݏ
 Stream elements ܽ݅ = (݆, ܷ݅), 		ܷ݅	 ∈ ܴ to mean݅ܣ ݆ = ିଵܣ ݆ + ܷ݅

where (݅~time,	j~bucket,	turnstile)– ݅ܣ is the state of the signal after seeing ݅-th item– ܷ݅ may be positive or negative
– multiple ܽ݅ can update given ܣ ݆ over time

 A most general data stream model
– Passengers in NY subway arriving and departing
– Useful for completely dynamic tasks
– Hard to get reasonable solution in this model
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c) Turnstile model variants (for completeness)

 strict turnstile model – ݅
– People can only exit via the turnstile they entered in
– Databases – delete only a record you inserted
– Storage – you can take items only if they are there

 non-strict turnstile model – ݅
– Difference between two cash register streams
– ݅ܣ) ݆ < 0	… negative amount of items for some ݅)

Felkel: Computational geometry
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Examples: Iceberg queries [Manku]

 Identify all elements whose current frequency
exceeds support threshold  s = 0.1%
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Stream
[Manku]
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Ex: Iceberg queries – a) ordinary solution 

The ordinary solution in two passes (not data stream)

1. Pass – identify frequencies (count the hashes)
– a set of counters is maintained. Each incoming item is 

hashed onto a counter, which is incremented. 
– These counters are then compressed into a bitmap, 

with a 1 denoting a large counter value. 

2. Pass – count exact values for large counters only
– exact frequencies counters for only those elements 

which hash to a value whose corresponding bitmap 
value is 1

 Hard to modify for data stream – unknown 
frequencies after only 1st pass
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Ex: Iceberg queries – data stream definition

 Input: threshold error length
 Output: list of items and frequencies              
 Guarantees:

– No item omitted (reported all items with frequency > ܰݏ)
– No item added (no item with frequency < (ݏ − ߳)ܰ)
– Estimated frequencies are not less than ߳ܰ of the true 

frequencies 

 Ex: ଵଵ ଵଶ
– All elements with freq. > 0.1% will output
– None of element with freq. < 0.09% will output
– Some elements between 0.09% and 0.1% will output
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Ex: Iceberg queries – b) sticky sampling

 Probabilistic algorithm, given threshold , error
and probability of failure

– Data structure ܵ of entries (݁, ݂), // ܵ	=subset of counters݁ element, ݂ estimated frequency,
r sampling rate, sampling probability ଵ



 If then //count, if the counter exists
else insert into with probability ଵ

 sweeps along the stream as a magnet, attracting
all elements which already have an entry in 
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Ex: Iceberg queries – b) sticky sampling

 r changes over the stream, ଵఢ ଵ௦ఋ– ݎ elements	ݐ2 = 1
– next 2ݐ elements ݎ = 2
– next 4ݐ elements ݎ = 	4	…

 whenever changes, we update 
– For each entry ݁, ݂ 	in ܵ // random decrement of counters

• toss a coin until successful (head) // with probability 1/2
• if not successful (tail), decrement ݂
• if ݂ becomes 0, remove entry (݁, ݂)	from ܵ

 Output: list of items with threshold 
i.e. all entries in S where 
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Ex: Iceberg queries – b) sticky sampling

 Space complexity is independent on 
 For 

– support threshold ݏ = 0.1%,	
– error ߳ = 0.01%, 
– and probability of failure	ߜ = 1%

 Sticky sampling computes results 
– with 1 − ߜ = 99% probability 
– using  at most 2t = 80 000 entries– ݐ = ଵఢ log ଵ௦ఋ = 40	000, |ܵ| < ݐ2
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Ex: Iceberg queries – b) sticky sampling
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Stream

 Create counters by sampling
(mind the order of counters)
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Ex: Iceberg queries – c) lossy counting

 Deterministic algorithm (user specifies error ߝ and threshold (ݏ
 Stream conceptually divided into buckets

– With bucket size	ݓ = items each ߝ/1
– Numbered from 1, current bucket id is ܾܿݐ݊݁ݎݎݑ

 Data structure of entries , – ݁ element,– ݂ estimated frequency,– ∆ maximum possible error of ݂, ∆	= ܾ௨௧ − 1
(max number of occurrences in the previous buckets)

 At most ଵఢ entries
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Ex: Iceberg queries – c) lossy counting

Felkel: Computational geometry

bucket 1 bucket 2 bucket 3

 Divide the stream into buckets
 Keep exact counters for items in the buckets
 Prune entries at bucket boundaries

(remove entries  for which ݂ + ∆	≤ (	ݐ݊݁ݎݎݑܾܿ
[Manku]
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Ex: Iceberg queries – c) lossy counting alg.



 New element 
– If ݁ ∈ ܦ then increment its f
– If ݁ ∉ ܦ then 

• Create a new entry ݁, 1, ܾ௨௧ − 1
• If on the bucket border, i.e., ܰ	݉݀	ݓ = 0

then delete entries with ݂ + ∆	≤ 	ݐ݊݁ݎݎݑܾܿ
• i.e., with zero or one occurrence in each of the previous buckets

– New ∆	= ݐ݊݁ݎݎݑܾܿ − 1 is maximum number of times ݁
could have occurred in the first ܾܿݐ݊݁ݎݎݑ − 1 buckets

 Output: list of items with threshold 
i.e. all entries in S where 
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Comparison of sticky and lossy sampling

 Sticky sampling performs worse
– Tendency to remember every unique element
– The worst case is for sequence without duplicates

 Lossy counting
– Is good in pruning low frequency elements quickly
– Worst case for pathological sequence which never 

occurs in reality
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Number of mutually different entries  1/2

 Input: stream 1 2 , with repeated entries
 Output: Estimate of number of different entries
 Appl: # of different transactions in one day
a) Precise deterministic algorithm:

– Array ܾ[1. . ܷ], ܷ = max number of different entries
– Init by ܾ[݅] 	= 	0	for all ݅, counter ܿ = 0
– for each ܽ݅

if ܾ[ܽ݅] 	= 	0	then inc(ܿ), ܾ[݅] = 1
– Return ܿ as number of different entries in ܾ[]– ܱ(1) update and query times, ܱ(ܷ)	memory 
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Number of mutually different entries 2/2

b) Approximate algorithm
– Array ܾ[1… log	ܷ ], ܷ = max number of different entries
– Init by ܾ[݅] 	= 	0	for all ݅
– Hash function ℎ:	 1. . ܷ → {0. . logܷ}
– For each ܽ݅

Set ܾ[ℎ(ܽ)] = 1
– Extract probable number of different entries from ܾ[]
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Sublinear time example       

 Given mutually different numbers 1 2 
 Determine any number from upper half of values
 Alg: select numbers equally randomly 

– Compute their maximum 
– Return this estimation as solution 

 Probability of wrong answer = probability of all 

selected numbers are from the lower half = ଵଶ 
 For error take ଵఢ samples

 Not useful for MIN, MAX selection
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Randomized algorithms

Motivation
 Array of elements, half of char ”a”, half of char ”b”
 Find ”a”
 Deterministic alg: steps of sequential search

(when all ”b” are first)
 Randomized:

– Try random indices
– Probability of finding ”a” soon is high regardless of the

order of characters in the array
(Las Vegas algorithm – keep trying up to ݊/2 steps)
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Randomized algorithms

 May be simpler even if the same worst time
 Deterministic algorithm 

– is not known (prime numbers)
– does not exist

 Randomization 
– can improve the average running time (with the same 

worst case time), while 
– the worst time depends on our luck – not on the data 

distribution
(It is “hard” to prepare killing datasets)
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Randomized algorithms

a) Incremental algorithms
(insert something in random order)
– Linear programming (random plane insertion)
– Convex hulls
– Intersections, space subdivisions

b) Divide and conquer
(split in random place)
– Random sampling
– Nearest neighbors, trapezoidal subdivisions
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Another classification

 Monte Carlo
– We always get an answer, often not correct
– Fast solution with risk of an error
– It is not possible to determine, if the answer is correct→ run multiple times and compare the results
– Output can be understand as a random variable
– Example: prime number test

• Task: Find a ∈ 2, ଶ such as n is divisible by a
• Algorithm: Sample 10 numbers from the given interval, answer 

 Las Vegas
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Las Vegas algorithms

Las Vegas
– We always get a correct answer
– The run time is random (typically ≤ deterministic time)
– Sometimes fails –> perform restart
– Example: Randomized quicksort 

• No median necessary
• Simpler algorithm
• Independent on data distribution
• Return a correct result
• The result will be ready in ߠ(݊ log ݊) time with a high probability
• Bad luck – we select the smallest element -> Selection sort

Felkel: Computational geometry

(45)



Input:
Output:

Randomized quicksort (Las Vegas alg.)

RQS(ܵ) = Randomized Quicksort
sequence of data elements ܽ1, ܽ2, … , ܽ ∈ ܵ
sorted set ܵ

1. Step 1: choose ݅ ∈ 1, ݊ in random
2. Step 2: Let A is a multiset {ܽ1, ܽ2, … , ܽ}

• if ݊ = 1	then output(S)
• else – create three subsets of 	ܵழ, 	 ܵୀ, 	 ܵவܵழ = ܾ ∈ :ܣ ܾ < ܽܵୀ = ܾ ∈ :ܣ ܾ = ܽ݅ܵவ = ܾ ∈ :ܣ ܾ > ܽ݅

3. Step 3: RQS(ܵழ) and RQS(ܵவ)

4. Return: RQS(ܵழ), ܵୀ, RQS(ܵவ)
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Conclusion on randomized algs.

 Randomized algorithms are often experimental
 We would not get perfect results, but nicely good
 We use randomized algorithm if we do not know 

how to proceed

Felkel: Computational geometry

(47)



Felkel: Computational geometry

References
[Kolingerová] Nové směry v algoritmizaci a výpočetní geometrii (1 a 2), 

přednáška z předmětu Aplikovaná výpočetní geometrie, MFF UK, 
2008

[Brönnimann] Hervé Brönnimann. Towards Space-Efficient Geometric Algorithms, 
Polytechnic university, Brooklyn, NY,USA, ICCSA04, Italy, 2004

[BrönnimannC]Hervé Brönnimann, et al. 2002. In-Place Planar Convex Hull
Algorithms. In Proceedings of the 5th Latin American Symposium 
on Theoretical Informatics (LATIN '02), Sergio Rajsbaum (Ed.). 
Springer-Verlag, London, UK, UK, 494-507.
http://dl.acm.org/citation.cfm?id=690520

[Indyk] Piotr Indyk. 6.895: Sketching, Streaming and Sub-linear Space 
Algorithms, MIT course

[Muthukrishnan] Data streams: Algorithms and applications, (“adorisms” in Google)
[Mulmuley] Ketan Mulmuley. Computational Geometry. An Introduction 

Through Randomized Algorithms. Prentice Hall, NJ,1994
[Manku] G.S. Manku, R. Motwani. Approximate Frequency Counts over 

Data Streams, Proceedings of the 28th VLDB Conference, Hong 
Kong, China, 2002. http://www.vldb.org/conf/2002/S10P03.pdf

(48)


	01-intro-split
	02-pointloc-split
	03-rangesearch-splitxxxxxxxxx
	04-convexhull-splitxxxxxxxxxxx
	05-convexhull-3d-split
	06-voronoi-split
	07-voronoi-ii-splitxxxxxxxxxxxxx
	08-triang-splitxxxxxxxxxxxx
	09-intersect-split
	10-windowing-splitxxxxxxxxxxxx
	11-arrangements-split
	12-duality-splitxxxxxxxxxxxx
	13-modernalg

